WO2016186166A1 - Organic thin film solar cell module, electronic device and method for manufacturing organic thin film solar cell module - Google Patents

Organic thin film solar cell module, electronic device and method for manufacturing organic thin film solar cell module Download PDF

Info

Publication number
WO2016186166A1
WO2016186166A1 PCT/JP2016/064882 JP2016064882W WO2016186166A1 WO 2016186166 A1 WO2016186166 A1 WO 2016186166A1 JP 2016064882 W JP2016064882 W JP 2016064882W WO 2016186166 A1 WO2016186166 A1 WO 2016186166A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic thin
solar cell
conductive layer
film solar
cell module
Prior art date
Application number
PCT/JP2016/064882
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 青木
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016099721A external-priority patent/JP6769739B2/en
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US15/575,248 priority Critical patent/US20180138326A1/en
Publication of WO2016186166A1 publication Critical patent/WO2016186166A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/06Dials
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • G04C10/02Arrangements of electric power supplies in time pieces the power supply being a radioactive or photovoltaic source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic thin film solar cell module, an electronic device, and a method for manufacturing an organic thin film solar cell module.
  • Patent Document 1 discloses a configuration including a photoelectric conversion layer made of an organic thin film, and a first conductive layer and a second conductive layer sandwiching the photoelectric conversion layer.
  • the first conductive layer is a transparent conductive layer such as ITO.
  • protrusions may be generated during the formation of the photoelectric conversion layer, or particles may adhere to the photoelectric conversion layer.
  • the shape of the second conductive layer may become distorted, and problems such as the entry of outside air may occur.
  • the solar cell has a photoelectric conversion function for converting light such as sunlight into electric power, and is being developed as a power generation means using so-called renewable energy.
  • Organic thin-film solar cells are a type of solar cell.
  • Patent Document 1 discloses a configuration including a photoelectric conversion layer made of an organic thin film, and a first conductive layer and a second conductive layer sandwiching the photoelectric conversion layer.
  • the first conductive layer is a transparent conductive layer such as ITO.
  • 34 to 36 of this document disclose an organic thin film solar cell having an opening. This opening is provided in order to express a display unit such as a liquid crystal display. For this reason, openings of the same shape and size are provided in the photoelectric conversion layer and the second electrode layer.
  • electronic devices are required to have a design such as a manufacturer, a product name, and characters and designs that are desirably displayed upon use.
  • a design such as a manufacturer, a product name, and characters and designs that are desirably displayed upon use.
  • additional members and materials are required, such as laminating a design plate with a design on the organic thin film solar cell module or printing on the organic thin film solar cell module.
  • Patent Document 1 discloses a configuration including a photoelectric conversion layer made of an organic thin film, and a first conductive layer and a second conductive layer sandwiching the photoelectric conversion layer.
  • the first conductive layer is a transparent conductive layer such as ITO.
  • a passivation film that protects the first conductive layer, the second conductive layer, and the photoelectric conversion layer is provided.
  • 34 to 36 of this document disclose an organic thin film solar cell having an opening. This opening is provided in order to express a display unit such as a liquid crystal display. For this reason, openings of the same shape and size are provided in the photoelectric conversion layer and the second electrode layer.
  • the opening described above is covered with the first conductive layer and the passivation film.
  • the opening has a light-transmitting property, but the first conductive layer and the passivation film are colored in the opening.
  • Patent Document 1 discloses a basic configuration of an organic thin film solar cell including a photoelectric conversion layer formed of an organic thin film and a first electrode layer and a second electrode layer sandwiching the photoelectric conversion layer.
  • an electronic device is required to have a design that can be visually recognized from the outside, such as a manufacturer name, a product name, characters, and a design, on the surface of the casing.
  • a design is generally applied to the surface of the casing by a technique such as printing, stamping, sticking a sticker, etc., but when organic thin-film solar cells are arranged in many areas of the casing surface, It would be convenient if the design could also be applied to the housing surface occupied by a simple organic thin film solar cell.
  • the above-described opening is covered with the first conductive layer and the passivation layer. If each of the first conductive layer and the passivation layer has a function to be performed, the opening has translucency, but the first conductive layer and the passivation layer are colored in the opening.
  • the organic thin film solar cell module it is required to increase the proportion of the photoelectric conversion layer that actually contributes to power generation.
  • the organic thin film solar cell module it is required to suppress a reduction in the proportion of the photoelectric conversion layer that actually contributes to power generation.
  • the present invention has been conceived under the circumstances described above, and provides an organic thin film solar cell module, an electronic device, and a method of manufacturing an organic thin film solar cell module capable of suppressing damage. Let that be the issue. It is another object of the present invention to provide an organic thin-film solar cell module and an electronic device that can express a design in appearance without requiring additional members. It is another object of the present invention to provide a method for producing an organic thin film solar cell module, an electronic device, and an organic thin film solar cell module having a more transparent surface. It is another object of the present invention to provide an organic thin-film solar cell capable of expressing the design on the appearance without requiring additional members.
  • An organic thin-film solar cell module provided by the first aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, and the second conductive layer is thicker than the photoelectric conversion layer.
  • the first conductive layer has two first partition portions that are adjacent to each other through a substrate exposed region in which a part of the support substrate is exposed from the first conductive layer.
  • the second conductive layer has two second partition portions adjacent to each other with a part of the substrate exposed region in between, and the photoelectric conversion layer is one of the two adjacent ones in a plan view.
  • the photoelectric conversion layer connecting portion that overlaps both the first partition portion and the other second partition portion of the two adjacent ones has a photoelectric conversion layer penetration portion that penetrates in the thickness direction.
  • the photoelectric conversion layer has a protrusion surrounding the photoelectric conversion layer penetrating portion in a plan view, and the protrusion is covered with the second conductive layer.
  • one of the adjacent two first partition portions does not overlap with the photoelectric conversion layer connection portion in a plan view and overlaps with the second conductive layer.
  • One of the two adjacent sections has a second electrode portion that coincides with the first electrode portion in plan view, and the photoelectric conversion layer has the first electrode in plan view.
  • a photoelectric conversion layer power generation unit that coincides with the electrode unit and the second electrode unit is provided.
  • one of the two adjacent ones has a first connection portion that coincides with the photoelectric conversion layer connection portion in plan view
  • the two adjacent The other second partition portion has a second connection portion that coincides with the photoelectric conversion layer connection portion in plan view.
  • the photoelectric conversion layer penetrating portion has a circular shape in plan view.
  • the first connection part of the first partition part of one of the two adjacent parts is included in the photoelectric conversion layer penetrating part in a plan view and penetrates in the thickness direction. It has a 1st penetration part.
  • the inner end edge of the first penetrating portion is separated from the inner end edge of the photoelectric conversion layer penetrating portion in plan view.
  • the said 1st connection part of one said 1st division part of the said adjacent two is the said support substrate in the area
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • a passivation layer covering the second conductive layer is provided.
  • the passivation layer is made of SiN or SiON.
  • An electronic device provided by the second aspect of the present invention includes an organic thin film solar cell module provided by the first aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
  • the method for producing an organic thin film solar cell module includes a step of laminating a transparent first conductive layer on a transparent support substrate, and photoelectric conversion comprising an organic thin film on the first conductive layer.
  • the second conductive layer is thicker than the photoelectric conversion layer.
  • a metal is laminated by a vapor deposition method.
  • the photoelectric conversion layer penetrating portion is covered with a second conductive layer.
  • the said photoelectric converting layer in the process of laminating
  • the photoelectric conversion layer penetrating portion is formed by an IR laser.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • the organic thin film solar cell module provided by the fourth aspect of the present invention includes a transparent first conductive layer, a second conductive layer, and an organic thin film sandwiched between the first conductive layer and the second conductive layer.
  • a photoelectric conversion layer, and the photoelectric conversion layer has one or more design display portions constituting a design that appears through the first conductive layer.
  • a transparent support substrate on which the first conductive layer is laminated is provided.
  • a passivation film that covers the second conductive layer is provided.
  • the passivation film covers the design display portion.
  • a portion covering the design display portion and a portion covering the portion adjacent to the design display portion in the photoelectric conversion layer are formed flat.
  • the passivation film is thicker than the photoelectric conversion layer.
  • a protective layer laminated on the passivation film is provided.
  • a bonding layer for bonding the passivation film and the protective layer is provided.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • the design display part is constituted by a penetrating part that penetrates the photoelectric conversion layer in the thickness direction.
  • the design display portion is constituted by a thin portion that is thinner than the surroundings.
  • the first conductive layer has a first electrode portion
  • the second conductive layer has a second electrode portion that coincides with the first electrode portion in plan view.
  • the photoelectric conversion layer has a power generation region that is sandwiched between the first electrode portion and the second electrode portion and contributes to power generation by exhibiting a photoelectric conversion function.
  • the photoelectric conversion layer has a non-power generation region that does not overlap the first electrode portion and the second electrode portion in a plan view and does not contribute to power generation.
  • the first conductive layer includes a first partition part that includes the design display part in a plan view and is surrounded by a slit penetrating in the thickness direction.
  • the non-power generation region of the photoelectric conversion layer has a partition region that is a region overlapping the first partition portion of the first conductive layer.
  • the first conductive layer and the second conductive layer are in contact with each other through the design display portion included in the partition region of the photoelectric conversion layer.
  • the first conductive layer has two first electrode portions adjacent to each other with a slit interposed therebetween, and the second conductive layer has the two first electrodes in a plan view.
  • the photoelectric conversion layer has two power generation regions sandwiched between the two first electrode portions and the two second electrode portions.
  • the two power generation regions are connected in series with each other.
  • the two power generation regions are connected in parallel to each other.
  • the first conductive layer is connected to one of the two first electrode portions and is adjacent to the other of the two first electrode portions with the slit interposed therebetween.
  • the second conductive layer is connected to the second electrode portion that coincides with the other of the two first electrode portions in a plan view, and is connected to the second electrode portion with the slit interposed therebetween.
  • a non-power generation area of the photoelectric conversion layer includes a communication area sandwiched between the first communication section and the second communication section, the second communication section being adjacent to one side and in contact with the first communication section. Including.
  • the communication area includes the design display part, and the first communication part and the second communication part are passed through the design display part included in the communication area. It touches.
  • the first conductive layer has a plurality of the first electrode portions and the first connecting portions arranged concentrically, and the second conductive layer has a concentric shape.
  • the photoelectric conversion layer includes a plurality of power generation regions and a plurality of communication regions arranged concentrically.
  • the first conductive layer extends from the first electrode portion of any one of the first electrode portions to the outside of the photoelectric conversion layer in a plan view. Has a protruding part.
  • the first conductive layer includes a slit formed between the first electrode portion connected to the first extension portion and the first electrode portion adjacent to the first electrode portion.
  • the photoelectric conversion layer includes the design display portion included in the first end portion in a plan view and has an end region that overlaps the first end portion.
  • the second conductive layer coincides with the first end portion in plan view and is connected to the adjacent second electrode portion, and is in contact with the first end portion through the design display portion in the end region.
  • the first conductive layer has a second extending portion that extends outward from the photoelectric conversion layer in a plan view from the first end portion.
  • the design display part included in the contact area represents a character for specifying time.
  • the design display part included in the partition area represents a character for specifying time.
  • the first conductive layer has an opening that encloses the design display portion in a plan view, and coincides with the opening of the first conductive layer in the photoelectric conversion layer.
  • the part to perform is the non-power generation region.
  • the design display part included in the opening represents a figure for specifying time.
  • An electronic device provided by the fifth aspect of the present invention includes an organic thin film solar cell module provided by the fourth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
  • a long hand and a short hand driven by the drive unit are provided and configured as a timepiece.
  • the drive unit has a calculation function, and includes a display unit that displays a calculation result by the drive unit, and is configured as an electronic computer.
  • An organic thin film solar cell module provided by the sixth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer comprising an organic thin film sandwiched between the second conductive layers, and a passivation film covering the second conductive layer, the passivation film having a first edge, and the first end The support substrate is exposed in a region adjacent to the edge.
  • the first conductive layer has a third edge that coincides with the first edge in plan view.
  • the first conductive layer has a third inward retraction edge that retreats inward from the first end edge in plan view.
  • the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
  • the first edge is annular in plan view.
  • the third end edge is annular in plan view.
  • the third inward withdrawal edge is annular in plan view.
  • the fourth inward withdrawal edge is annular in plan view.
  • the fifth inward withdrawal edge is annular in plan view.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • the passivation film is made of SiN.
  • a protective resin layer is provided to cover the passivation film, and the protective resin layer has a second edge that coincides with the first edge in plan view.
  • the second end edge and the first end edge form a continuous surface.
  • the second edge is annular in plan view.
  • the protective resin layer is made of an ultraviolet curable resin.
  • the protective resin layer has a second outer edge located on the opposite side of the second edge with at least a part of the photoelectric conversion layer in plan view.
  • the passivation film has a first outer end edge that coincides with the second outer end edge in plan view, and the first conductive layer includes the second outer end edge and the first outer end edge. It has an extended portion that extends outward from the edge, covers at least a part of the extended portion, and includes a bypass conductive portion made of a material having a lower resistance than the material of the first conductive layer.
  • the second outer edge and the first outer edge form a continuous surface.
  • the bypass conductive portion covers the second outer end edge and the first outer end edge.
  • the bypass conductive portion contains Ag or carbon.
  • the second conductive layer has a fourth outer retraction edge that retreats inward from the second outer end edge and the first outer end edge in a plan view.
  • the photoelectric conversion layer has a second outer end edge and a fifth outer retreat edge that retreats inward from the first outer end edge in a plan view. .
  • An electronic device provided by the seventh aspect of the present invention includes an organic thin film solar cell module provided by the sixth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
  • the organic thin film solar cell module manufacturing method provided by the eighth aspect of the present invention includes a step of laminating a transparent first conductive layer on a transparent support substrate, and photoelectric conversion comprising an organic thin film on the first conductive layer.
  • exposing the support substrate in a region adjacent to the second edge and the first edge by partially removing the first conductive layer.
  • a third edge that coincides with the second edge and the first edge in plan view is formed in the first conductive layer.
  • the second end edge and the first end edge are annular in plan view.
  • the third end edge is annular in plan view.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • the passivation film is made of SiN.
  • the protective resin layer is made of an ultraviolet curable resin.
  • a second outer end located on the opposite side of the second end edge across at least a part of the photoelectric conversion layer in plan view Forming a first edge, and forming a first outer edge on the passivation film that coincides with the second outer edge in plan view by partially removing the passivation film from the second edge as a boundary. And covering at least part of the second outer end edge and the first outer end edge of the first conductive layer, and extending at least a part of the first conductive layer. Forming a bypass conductive portion made of a material having a resistance lower than that of the material.
  • the bypass conductive portion in the step of forming the bypass conductive portion, covers the second outer end edge and the first outer end edge.
  • the bypass conductive portion contains Ag or carbon.
  • An organic thin-film solar cell provided by a ninth aspect of the present invention includes a transparent support substrate having a first surface and a second surface opposite to the first surface, and a transparent substrate disposed on the second surface side of the support substrate.
  • a second electrode layer, and the first electrode layer includes an opening on a surface thereof, and the opening represents a design on the first surface side of the support substrate.
  • the outer edge of the opening portion of the opening constitutes a part of the outer edge of the design to be represented.
  • the opening is formed as a set of dots having a predetermined shape in plan view.
  • the set of dodds constitutes a part of the design to be represented.
  • the opening is formed by arranging a plurality of lines having a predetermined width and extending in a predetermined direction at predetermined intervals.
  • the set of the plurality of lines constitutes a part of the design to be represented.
  • the opening generates a hologram when viewed from the outside of the first surface of the support substrate.
  • the plurality of lines as the openings have a width of 5 to 20 ⁇ m and are arranged at intervals of 30 to 50 ⁇ m.
  • the thickness of the first electrode layer other than the opening is 100 to 200 nm.
  • the opening is formed by recessing the first electrode layer by a predetermined depth from the surface opposite to the support substrate.
  • the opening is formed by recessing the first electrode layer by a predetermined depth from the surface on the support substrate side.
  • the removal depth of the opening is such that a thin portion having a thickness of 50 to 100 nm remains.
  • the opening is formed by penetrating the first electrode layer in the thickness direction.
  • a passivation layer is provided that covers the second electrode layer on the side opposite to the photoelectric conversion layer.
  • a protective layer is provided that covers the passivation layer on the side opposite to the second electrode layer.
  • a bonding layer for bonding the passivation layer and the protective layer is provided.
  • the first electrode layer is made of ITO.
  • the photoelectric conversion layer has a thickness of 100 to 200 nm.
  • the thickness of the second electrode layer is 100 to 200 nm.
  • the second electrode layer is made of metal.
  • the second electrode layer is made of Al.
  • the total thickness of the first electrode layer, the photoelectric conversion layer, the second electrode layer, and the passivation layer is 1.0 to 2.0 ⁇ m.
  • the method for producing an organic thin-film solar cell provided by the tenth aspect of the present invention has a predetermined thickness on the second surface side of a transparent support substrate having a first surface and a second surface opposite to the first surface. And forming a transparent first electrode layer having an opening on the surface, forming a photoelectric conversion layer on the first electrode layer, and forming a second electrode layer on the photoelectric conversion layer Steps.
  • the step of forming the first electrode layer includes the step of removing the first electrode layer in the thickness direction to form the opening.
  • the step of forming the opening is performed by removing the first electrode layer by a predetermined depth in the thickness direction.
  • the step of forming the opening is performed such that a thin portion having a thickness of 50 to 100 nm remains in the first electrode layer having a thickness of 100 to 200 nm.
  • the step of forming the opening is performed by removing the first electrode layer from the side opposite to the support substrate.
  • the step of forming the opening is performed after forming the first electrode layer before forming the opening.
  • the step of forming the opening is performed by removing the first electrode layer from the first surface side of the support substrate.
  • the step of forming the opening is performed after the step of forming the second electrode layer on the first electrode layer before the opening is formed.
  • the step of forming the opening is performed by forming a penetrating portion that penetrates the first electrode layer in its thickness direction.
  • the step of forming the opening is formed by arranging a plurality of lines having a width of 5 to 20 ⁇ m and extending in a predetermined direction at intervals of 30 to 50 ⁇ m.
  • the step of forming the opening is performed by laser irradiation.
  • the electronic device provided by the 11th side surface of this invention has a housing
  • the organic thin film solar cell module provided by the twelfth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, and a passivation layer covering the second conductive layer, the passivation layer having a first edge, and the first end The support substrate is exposed in a region adjacent to the edge.
  • the first conductive layer has a third edge that coincides with the first edge in plan view.
  • the first conductive layer has a third inward retraction edge that retreats inward from the first end edge in plan view.
  • the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
  • the first edge is annular in plan view.
  • the third end edge is annular in plan view.
  • the third inward withdrawal edge is annular in plan view.
  • the fourth inward withdrawal edge is annular in plan view.
  • the fifth inward withdrawal edge is annular in plan view.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • the passivation layer is made of SiN.
  • a protective resin layer is provided to cover the passivation layer, and the protective resin layer has a second edge that coincides with the first edge in plan view.
  • the second end edge and the first end edge form a continuous surface.
  • the second edge is annular in plan view.
  • the protective resin layer is made of an ultraviolet curable resin.
  • the protective resin layer has a second outer edge located on the opposite side of the second edge with at least a part of the photoelectric conversion layer in plan view.
  • the passivation layer has a first outer edge that coincides with the second outer edge in a plan view, and the first conductive layer includes the second outer edge and the first outer edge. It has an extended portion that extends outward from the edge, covers at least a part of the extended portion, and includes a bypass conductive portion made of a material having a lower resistance than the material of the first conductive layer.
  • the second outer edge and the first outer edge form a continuous surface.
  • the bypass conductive portion covers the second outer end edge and the first outer end edge.
  • the bypass conductive portion contains Ag or carbon.
  • the passivation layer has a first outer edge located on the opposite side of the first edge with at least a part of the photoelectric conversion layer in plan view,
  • the first conductive layer has an extending portion extending outward from the first outer edge, covers at least a part of the extending portion, and is lower than the material of the first conductive layer.
  • a bypass conductive portion made of a material of resistance, and a protective resin layer covering the bypass conductive portion.
  • the bypass conductive portion covers the first outer end edge.
  • the bypass conductive portion contains Ag or carbon.
  • the protective resin layer overlaps with the bypass conductive portion in a plan view and is provided in a region closer to the first outer edge than the first edge. Part.
  • the non-light-transmitting portion is white.
  • the second conductive layer has a fourth outer retraction edge that retreats inward from the second outer end edge and the first outer end edge in a plan view.
  • the photoelectric conversion layer has a second outer end edge and a fifth outer retreat edge that retreats inward from the first outer end edge in a plan view. .
  • An electronic device provided by a thirteenth aspect of the present invention includes an organic thin film solar cell module provided by a twelfth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
  • the method for producing an organic thin film solar cell module includes a step of laminating a transparent first conductive film on a transparent support substrate, and a photoelectric conversion comprising an organic thin film on the first conductive film.
  • a step of laminating a protective resin layer having a second edge on the insulating film is provided after the step of forming the insulating film and before the step of exposing the support substrate.
  • the step of exposing the support substrate includes the passivation having the first edge that coincides with the second edge in plan view by partially removing the insulating film with the second edge as a boundary. Forming a layer, and forming the first conductive layer by removing portions of the first conductive film exposed from the first edge and the second edge.
  • the first conductive layer having the second edge and the third edge that coincides with the first edge in plan view is formed.
  • the second end edge and the first end edge are annular in plan view.
  • the third end edge is annular in plan view.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • the passivation layer is made of SiN.
  • the protective resin layer is made of an ultraviolet curable resin.
  • a second outer end located on the opposite side of the second end edge across at least a part of the photoelectric conversion layer in plan view Forming an edge on the passivation layer having a first outer edge that coincides with the second outer edge in plan view by partially removing the insulating film with the second edge as a boundary.
  • a step of forming and covering at least a part of the second outer end edge and the extending portion extending outward from the first outer end edge of the first conductive layer, and the first conductive layer Forming a bypass conductive portion made of a material having a resistance lower than that of the material.
  • the bypass conductive portion in the step of forming the bypass conductive portion, covers the second outer end edge and the first outer end edge.
  • the bypass conductive portion contains Ag or carbon.
  • the first conductive film and the insulating film are exposed by irradiating the first conductive film with laser light through the insulating film. Includes partial removal.
  • a region adjacent to the region irradiated with the laser beam in plan view is removed from the insulating film by the partial removal process.
  • a portion of the first conductive film that is not irradiated with the laser light is formed as an extended portion exposed from the passivation layer, covers at least a part of the extended portion, and
  • the bypass conductive portion contains Ag or carbon.
  • the protective resin layer in the step of forming the protective resin layer, it overlaps with the bypass conductive portion in a plan view and is not in the region on the first outer edge side with respect to the first edge. A translucent part is formed.
  • the organic thin film solar cell module provided by the fifteenth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, and a passivation layer covering the second conductive layer, the first conductive layer extending from the passivation layer in plan view An extension part, a slit whose both ends have reached the edge of the extension part, and a connection part having a connection part edge defined by the slit and connected to the both ends of the slit, and the photoelectric conversion
  • the layer includes a through-hole for conduction that is included in the connection portion of the first conductive layer in a plan view and penetrates in the thickness direction, and the second conductive layer and the connection portion of the first conductive layer are The photoelectric conversion layer A first bus bar portion covering at least a part of the connection extending portion extending from the passivation layer among the connection portions, and
  • the through-hole for conduction has a circular shape in plan view.
  • the through-hole for conduction has an elongated shape in a plan view having a direction parallel to the edge of the connection portion as a longitudinal direction.
  • the first electrode collector portion overlaps the second conductive layer and the photoelectric conversion layer in plan view, and in the thickness direction of the support substrate, the first electrode collector portion and The passivation layer is interposed between the second conductive layer.
  • the bypass conductive portion includes a second bus bar portion that covers at least a part of the extension portion of the first conductive layer, and a second collector that is electrically connected to the second bus bar portion. Part.
  • the second electrode collector portion overlaps the second conductive layer and the photoelectric conversion layer in a plan view, and in the thickness direction of the support substrate, the second electrode collector portion and The passivation layer is interposed between the second conductive layer.
  • the second bus bar portion has both ends connected to a portion of the extension portion of the first conductive layer sandwiching the connection portion, and the first pole collector portion in a plan view. It has a detour part which detours.
  • the photoelectric conversion layer has a design display penetrating portion that constitutes a design display portion that penetrates in the thickness direction and appears on the appearance, and the design display penetrating portion includes It is located on the opposite side of the connecting portion end edge with respect to the conducting through portion.
  • the first conductive layer includes a display opening for forming a display area, a third edge that defines the display opening, and the display layer to the display opening.
  • a first extending portion that extends to the side, and the connecting portion is partitioned by the slit having both ends reaching the third end edge.
  • the first conductive layer includes a display opening for forming a display region, a third edge that defines the display opening, and the third edge is opposite to the display opening.
  • a third outer edge located on the side, a first extension extending from the passivation layer to the display opening, and a second extension extending from the passivation layer to the opposite side of the display opening.
  • An extension portion, and the connection portion is partitioned by the slits whose both ends reach the third outer end edge.
  • a protective resin layer covering the bypass conductive portion is provided.
  • the passivation layer has a first edge facing the display opening in plan view
  • the protective resin layer includes a first protective resin layer that covers the passivation layer; A second protective resin layer that is laminated on the first protective resin layer and covers the bypass conductive portion, and the first protective resin layer coincides with the first edge in plan view
  • the first end edge and the second end edge form a continuous surface.
  • the bypass conductive portion has a seventh edge that coincides with the third edge in plan view.
  • the second protective resin layer has a sixth end located on the opposite side of the first end edge with respect to the third end edge and the seventh end edge in a plan view. It has an edge and is in contact with the support substrate.
  • the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
  • the passivation layer has a first edge that opposes the display opening in a plan view, and the bypass conductive portion is opposed to the third edge in a plan view.
  • the seventh end edge is located on the opposite side to the first end edge.
  • the protective resin layer has a second edge located on a side opposite to the first edge with respect to the seventh edge in plan view, and the support substrate. Is in contact with
  • the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
  • the first edge is annular in plan view.
  • the third end edge is annular in plan view.
  • the fourth inward withdrawal edge is annular in plan view.
  • the fifth inward withdrawal edge is annular in plan view.
  • the seventh end edge is annular in plan view.
  • the second edge is annular in plan view.
  • the sixth end edge is annular in plan view.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • the passivation layer is made of SiN.
  • the protective resin layer is made of an ultraviolet curable resin.
  • an electronic apparatus comprising: the organic thin film solar cell module provided by the fifteenth aspect of the present invention; and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
  • An organic thin film solar cell module provided by a seventeenth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, and a passivation layer covering the second conductive layer, the first conductive layer extending from the passivation layer in plan view
  • the passivation layer has a first edge, and the support substrate is exposed in a region adjacent to the first edge.
  • the extension part of the first conductive layer includes a first extension part exposed from the first end edge, and the first extension part is A third edge spaced from the first edge;
  • the protective resin layer includes a first protective resin layer that covers the passivation layer, and a second protective resin layer that is laminated on the first protective resin layer and covers the bypass conductive portion.
  • the first protective resin layer has a second edge that coincides with the first edge in plan view.
  • the first end edge and the second end edge form a continuous surface.
  • the bypass conductive portion has a seventh edge that coincides with the third edge in plan view.
  • the second protective resin layer has a sixth end located on the opposite side of the first end edge with respect to the third end edge and the seventh end edge in a plan view. It has an edge and is in contact with the support substrate.
  • the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
  • the passivation layer has a first outer edge located on the opposite side of the first edge with at least a part of the photoelectric conversion layer in plan view,
  • the extension part includes a second extension part extending from the first outer end edge, and the second extension part is separated from the first outer end edge in a plan view. Has an edge.
  • the first protective resin layer has a second outer edge that coincides with the first outer edge in plan view.
  • the first outer end edge and the second outer end edge form a continuous surface.
  • the bypass conductive portion has a seventh outer end edge that coincides with the third outer end edge in a plan view.
  • the second protective resin layer is opposite to the first outer end edge with respect to the third outer end edge and the seventh outer end edge in a plan view. And has a sixth outer edge located on the support substrate.
  • the second protective resin layer overlaps with the bypass conductive portion in a plan view and is provided in a region that is provided in a region closer to the first outer edge than the first edge. Includes light.
  • the non-light-transmitting portion is white.
  • the bypass conductive portion has a seventh edge located on the opposite side of the first edge with respect to the third edge in plan view.
  • the protective resin layer has a second edge located on a side opposite to the first edge with respect to the seventh edge in plan view, and the support substrate. Is in contact with
  • the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
  • the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
  • the passivation layer has a first outer edge located on the opposite side of the first edge with at least a part of the photoelectric conversion layer in plan view,
  • the extension part includes a second extension part extending from the first outer end edge, and the second extension part is separated from the first outer end edge in a plan view. Has an edge.
  • the bypass conductive portion has a seventh outer end edge located on a side opposite to the first outer end edge with respect to the third outer end edge in a plan view. Have.
  • the protective resin layer has a second outer edge located on the opposite side of the first outer edge with respect to the seventh outer edge in plan view. And in contact with the support substrate.
  • the protective resin layer overlaps the bypass conductive portion in a plan view and is provided in a region closer to the first outer edge than the first edge. including.
  • the non-light-transmitting portion is white.
  • the first edge is annular in plan view.
  • the third end edge is annular in plan view.
  • the fourth inward withdrawal edge is annular in plan view.
  • the fifth inward withdrawal edge is annular in plan view.
  • the sixth end edge is annular in plan view.
  • the seventh end edge is annular in plan view.
  • the second edge is annular in plan view.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • the passivation layer is made of SiN.
  • the protective resin layer is made of an ultraviolet curable resin.
  • An electronic device provided by an eighteenth aspect of the present invention includes an organic thin film solar cell module provided by the seventeenth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
  • An organic thin film solar cell module provided by a nineteenth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, the first conductive layer passing through a substrate exposed region in which a part of the support substrate is exposed from the first conductive layer.
  • the first conductive layer has two adjacent first partition portions, and the second conductive layer has two second partition portions adjacent to each other with a part of the substrate exposed region interposed therebetween.
  • One of the first partition portions has a first edge of the first partition portion that defines the substrate exposure region, and the other of the two adjacent first partition portions defines the substrate exposure region.
  • the first partition part has a second end edge, and one of the two adjacent ones is the first The partition portion overlaps the first partition portion of one of the two adjacent ones in plan view, and the first partition portion first edge of the first partition portion of the two adjacent ones.
  • the second partition part first edge located on the opposite side to the first partition part second edge of the other first partition part is provided,
  • the other second partition portion has a second partition portion second end facing the second partition portion first end of one of the two adjacent ones in plan view, and the photoelectric conversion layer is In the plan view, one of the two adjacent ones and the other of the two adjacent two second divided parts overlap each other, and the first one of the two adjacent ones.
  • one of the adjacent two first partition portions does not overlap with the photoelectric conversion layer connection portion in a plan view and overlaps with the second conductive layer.
  • One of the two adjacent sections has a second electrode portion that coincides with the first electrode portion in plan view, and the photoelectric conversion layer has the first electrode in plan view.
  • a photoelectric conversion layer power generation unit that coincides with the electrode unit and the second electrode unit is provided.
  • one of the two adjacent ones has a first connection portion that coincides with the photoelectric conversion layer connection portion in plan view
  • the two adjacent The other second partition portion has a second connection portion that coincides with the photoelectric conversion layer connection portion in plan view.
  • the photoelectric conversion layer connecting portion and a part of the photoelectric conversion layer power generation portion are adjacent to each other in a direction intersecting with the direction in which the two first partition portions are arranged in plan view. Yes.
  • the photoelectric conversion layer power generation units are located on both sides of the photoelectric conversion layer connection unit in a direction intersecting with the direction in which the two first partition units are arranged in plan view.
  • the photoelectric conversion layer penetrating portion has a circular shape in plan view.
  • the first connection part of the first partition part of one of the two adjacent parts is included in the photoelectric conversion layer penetrating part in a plan view and penetrates in the thickness direction. It has a 1st penetration part.
  • the inner end edge of the first penetrating portion is separated from the inner end edge of the photoelectric conversion layer penetrating portion in plan view.
  • the said 1st connection part of one said 1st division part of the said adjacent two is the said support substrate in the area
  • the other second partition part of the two adjacent ones is connected to the second edge of the second partition part and the second partition part of one of the two adjacent parts.
  • a second partition section third end edge extending to a side away from the second partition section, and the substrate exposure area includes the second partition section second end edge of the other second partition section and the second section. It has two said crossing parts which cross
  • the substrate exposed region has two intersecting portions that intersect two places of the second partition portion second edge of the other second partition portion of the two adjacent ones.
  • the first partition portion first edge of one of the adjacent two partition portions is The first partition portion second end edge of the other first partition portion of the two adjacent ones has a second side that is parallel to the first side.
  • the first side and the second side are linear.
  • the two partition portion second edges are parallel to each other.
  • the second partition portion second edge is linear.
  • the second partition portion first edge of the second partition portion of one of the two mating portions and the second partition portion second edge of the other second partition portion of the two adjacent partitions are parallel to each other. is there.
  • the first side, the second side, the first edge of the second partition part, and the second edge of the second partition part are linear.
  • three or more adjacent first partition portions and three or more adjacent second partition portions are arranged.
  • three or more adjacent first partition portions and three or more adjacent second partition portions are arranged in a straight line.
  • three or more adjacent first partition portions and three or more adjacent second partition portions are arranged in a ring shape.
  • the second partition portion between two of the second partition portions is the second partition portion first edge and The second partition part second edge, and the second partition part first edge and the second partition part third edge that connects both ends of the second partition part second edge.
  • the said 2nd division part 1st edge of the said 2nd division part between two said 2nd division parts among the said 3 or more adjacent 2nd division parts, and the said The second partition portion second edge is parallel to each other.
  • the said 2nd 2nd division part 3rd edge of the said 2nd division part between two said 2nd division parts among the said 3 or more adjacent 2nd division parts. are parallel to each other.
  • the second partition portion first edge of the second partition portion between two of the three or more second partition portions adjacent to each other and the second partition portion and the second partition portion are perpendicular to each other.
  • the first conductive layer includes an external connection portion coinciding with the photoelectric conversion layer connection portion in plan view, and the second conductive layer and the photoelectric conversion connected to the external connection portion. And a third partition portion having an external electrode portion exposed from the layer.
  • the first conductive layer is made of ITO.
  • the second conductive layer is made of metal.
  • the second conductive layer is made of Al.
  • a passivation layer covering the second conductive layer is provided.
  • the passivation layer is made of SiN or SiON.
  • An electronic device provided by a twentieth aspect of the present invention includes an organic thin film solar cell module provided by the nineteenth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 1st Embodiment of this invention.
  • FIG. 4 is an enlarged cross-sectional view of a main part along line IV-IV in FIG. 3.
  • FIG. 5 is an enlarged cross-sectional view of a main part taken along line VV in FIG. 3. It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 1st Embodiment of this invention.
  • FIG. 4 is an enlarged cross-sectional view of a main part along line IV-IV in FIG. 3.
  • FIG. 5 is an enlarged cross-sectional view of a main part taken along line VV in FIG. 3. It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 1st Embodiment of this invention.
  • FIG. 4 is an enlarged cross-sectional view of a main part along line
  • FIG. 7 is an enlarged cross-sectional view of a main part taken along line VII-VII in FIG. 6. It is a system block diagram which shows the organic thin film solar cell module and electronic device based on 1st Embodiment of this invention. It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 1st Embodiment of this invention. It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin-film solar cell module based on 1st Embodiment of this invention. It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 1st Embodiment of this invention.
  • FIG. 16 is an enlarged cross-sectional view of a main part taken along line XVI-XVI in FIG. 15.
  • FIG. 21 is an enlarged cross-sectional view of a main part along the line XXII-XXII in FIG. 20.
  • FIG. 21 is an enlarged cross-sectional view of a main part along the line XXIII-XXIII in FIG. 20.
  • FIG. 22 is an enlarged cross-sectional view of a main part along the line XXIV-XXIV in FIG. 20.
  • FIG. 21 is an enlarged cross-sectional view of a main part along the line XXV-XXV in FIG. 20. It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module of FIG. It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module of FIG. It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module of FIG. It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin film solar cell module of FIG.
  • FIG. 45 is a schematic sectional view taken along line XLVI-XLVI of FIG. 44.
  • FIG. 45 is an essential part enlarged cross-sectional view taken along line XLVII-XLVII in FIG. 44.
  • FIG. 45 is a system configuration diagram showing the electronic device of FIG. 44.
  • FIG. 70 is a diagram showing a structure of an organic thin-film solar cell according to a seventh embodiment of the present invention and corresponding to an enlarged cross-sectional view along the line LXX-LXX in FIG. 69. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG.
  • FIG. 70 is a diagram showing a structure of an organic thin-film solar cell according to an eighth embodiment of the present invention and corresponding to an enlarged cross-sectional view along the line LXX-LXX in FIG. 69.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin-film solar cell shown in FIG. 79.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79.
  • FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar
  • FIG. 70 shows a structure of an organic thin-film solar cell according to a ninth embodiment of the present invention, and is a view corresponding to an enlarged cross-sectional view along the line LXX-LXX in FIG. 69. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG.
  • FIG. 96 is an enlarged cross-sectional view taken along the line XCVI-XCVI in FIG. 95, showing the structure of the organic thin-film solar cell according to the tenth embodiment of the present invention. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG.
  • FIG. 105 is a diagram showing a structure of an organic thin-film solar cell according to an eleventh embodiment of the present invention and corresponding to an enlarged cross-sectional view along the line CV-CV in FIG. 104.
  • FIG. 111 shows a structure of an organic thin-film solar cell according to a twelfth embodiment of the present invention, and is a view corresponding to an enlarged cross-sectional view taken along line CV-CV in FIG. It is a top view which shows the other example of the electronic device with which the organic thin film solar cell of this invention is used. It is an expanded sectional view which follows the CVIII-CVIII line of FIG.
  • FIG. 108 is an enlarged cross-sectional view taken along line CIX-CIX in FIG. 107.
  • FIG. 112 is an enlarged sectional view taken along line CXII-CXII of FIG. 111.
  • FIG. 114 is a schematic cross-sectional view taken along line CXV-CXV in FIG. 113. It is a principal part expanded sectional view which follows the CXVI-CXVI line
  • FIG. 114 is a system configuration diagram showing the electronic device of FIG. 113. It is a principal part disassembled perspective view which shows the organic thin-film solar cell module based on 13th Embodiment of this invention. It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module based on 13th Embodiment of this invention. It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module based on 13th Embodiment of this invention. It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module based on 13th Embodiment of this invention.
  • FIG. 147 is a schematic cross-sectional view taken along line CXLVII-CXLVII in FIG. 146. It is a principal part enlarged bottom view which shows the organic thin-film solar cell module based on 16th Embodiment of this invention.
  • FIG. 148 is an essential part enlarged cross-sectional view along the line CXLIX-CXLIX of FIG. 148;
  • FIG. 149 is an essential part enlarged cross-sectional view along the line CL-CL in FIG. 148;
  • FIG. 147 is a system configuration diagram showing the electronic device of FIG. 146. It is a principal part exploded perspective view which shows the organic thin-film solar cell module based on 16th Embodiment of this invention.
  • FIG. 1 It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. It is a principal part expanded bottom view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. It is a principal part enlarged plan view which shows the modification of the organic thin-film solar cell module based on 16th Embodiment of this invention. It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 17th Embodiment of this invention. FIG.
  • FIG. 173 is an enlarged cross-sectional view of a main part along the line CLXXIII-CLXXIII in FIG. 172;
  • FIG. 172 is an essential part enlarged cross-sectional view along the line CLXXIV-CLXXIV of FIG. 172;
  • It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 17th Embodiment of this invention.
  • It is a principal part expanded bottom view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention.
  • It is a principal part expanded bottom view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention.
  • FIG. 184 is a schematic cross-sectional view taken along the line CLXXXVI-CLXXXVI in FIG. 184.
  • FIG. 184 is an enlarged cross-sectional view of a main part along the line CLXXXVII-CLXXXVII in FIG. 184.
  • FIG. 184 is a system configuration diagram showing the electronic apparatus of FIG.
  • FIG. 23 is a cross-sectional view taken along line CCXXI-CCXXI in FIG. 220. It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 22nd Embodiment of this invention.
  • FIG. 23 is an enlarged cross-sectional view of a main part along the line CCXXIII-CCXXIII in FIG. 222.
  • FIG. 23 is an essential part enlarged cross-sectional view along the line CCXXIV-CCXXIV in FIG. 222. It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 22nd Embodiment of this invention. 228 is an enlarged cross-sectional view of a main part taken along the line CCXXVI-CCXXVI in FIG. 225.
  • FIG. It is a system block diagram which shows the organic thin-film solar cell module and electronic device based on 22nd Embodiment of this invention. It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 22nd Embodiment of this invention.
  • FIG. 25 is an essential part enlarged cross-sectional view taken along the line CCXXXV-CCXXXV in FIG. 234; It is a principal part expanded sectional view which shows the modification of the organic thin-film solar cell module based on 22nd Embodiment of this invention. It is a principal part top view which shows the organic thin film solar cell module based on 23rd Embodiment of this invention.
  • FIG. 228 is an enlarged cross-sectional view of main parts along the line CCXXXIX-CCXXXIX in FIG. 238.
  • FIG. 228 is an enlarged cross-sectional view of a main part along the line CCXL-CCXL in FIG. 238.
  • FIG. It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 24th Embodiment of this invention. It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 25th Embodiment of this invention.
  • “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
  • FIG. 1 to 7 show an organic thin film solar cell module according to the first embodiment of the present invention.
  • FIG. 8 shows an electronic apparatus based on the first embodiment of the present invention.
  • FIG. 1 is a plan view of an essential part showing an organic thin film solar cell module A1.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a main part enlarged plan view showing the organic thin film solar cell module A1.
  • 4 is an enlarged cross-sectional view of a main part taken along line IV-IV in FIG.
  • FIG. 5 is an enlarged cross-sectional view of a main part taken along line VV in FIG.
  • FIG. 6 is an enlarged plan view of a main part showing the organic thin film solar cell module A1.
  • FIG. 7 is an enlarged cross-sectional view of a main part taken along line VII-VII in FIG.
  • FIG. 8 is a system configuration diagram showing the organic thin film solar cell module A1 and the electronic device B1.
  • “view in the z direction” means a plan view
  • z direction means a thickness direction of the support substrate 41 and the like.
  • the electronic device B1 includes an organic thin-film solar cell module A1 and a drive unit 71.
  • the organic thin film solar cell module A1 is a power supply module in the electronic device B1, and converts light such as sunlight into electric power.
  • the driving unit 71 is driven by power feeding from the organic thin film solar cell module A1.
  • the specific configuration and function of the drive unit 71 are not particularly limited, and various configurations that can realize the function of the electronic device B1 can be employed.
  • an electronic calculation processing unit that realizes an electronic device B1 as an electronic calculation device, a wireless communication unit that realizes an electronic device B1 as a wireless communication module, and an electronic device B1 as a wristwatch can be realized. Examples thereof include a timekeeping processing unit, an input / output arithmetic processing unit capable of realizing the electronic device B1 as a portable electronic terminal device, and the like.
  • the organic thin film solar cell module A1 includes a support substrate 41, a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, and a passivation layer.
  • the organic thin film solar cell module A1 has a rectangular shape as viewed in the z direction, but this is an example of the shape of the organic thin film solar cell module A1, and can be set in various shapes.
  • the passivation layer 42 is omitted for convenience of understanding.
  • the support substrate 41 is a base of the organic thin film solar cell module A1.
  • the support substrate 41 has a single layer or a plurality of layers made of a material appropriately selected from, for example, transparent glass or resin.
  • the thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
  • the shape and size of the support substrate 41 are not particularly limited, and in the present embodiment, the support substrate 41 has a rectangular shape as viewed in the z direction.
  • a plurality of substrate exposed regions 410 and substrate exposed regions 412 are formed, and a substrate exposed region 411 is formed as shown in FIG.
  • the plurality of substrate exposed regions 410, substrate exposed regions 411, and substrate exposed regions 412 are regions exposed from the first conductive layer 1 in the support substrate 41.
  • the first conductive layer 1 is formed on the support substrate 41.
  • the first conductive layer 1 is transparent and is made of ITO in this embodiment.
  • the first conductive layer 1 has a plurality of first partition portions 11 and third partition portions 15.
  • the shape of the first conductive layer 1 can be set to various shapes.
  • the thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm.
  • the plurality of first partition portions 11 are adjacent to each other through the substrate exposed region 410.
  • the four first partition portions 11 are adjacent to each other through the three substrate exposed regions 410.
  • the four 1st division parts 11 are arranged on the straight line along the x direction.
  • the four first partition portions 11 are divided into a first partition portion 11-1, a first partition portion 11-2, a first partition portion 11-3, and a first partition portion 11-4. And will be described separately as necessary.
  • the first partition part 11 has a first partition part first edge 110, a first partition part second edge 120, and two first partition part third edges 130.
  • the first partition 110 first edge 110 is an edge that partitions a part of the substrate exposed region 410.
  • the first partition portion second edge 120 is an edge that partitions a part of the substrate exposed region 410. That is, the substrate exposed region 410 includes the first partition portion first edge 110 and the other first partition portion of one of the first partition portions 11 (right side in the x direction in the drawing, first partition portion 11-2 in FIG. 3). 11 (the left side in the x direction in the drawing, the first partition portion 11-3 in FIG. 3) and the second edge 120 of the first partition portion.
  • the first partition portion first edge 110 of the first partition portions 11-1 to 11-3 has the first side 111, and the first partition portion 11-2 to the first partition portion 11-2 to the first partition portion 11-4.
  • the two end edges 120 have a second side 121.
  • the first side 111 (the first side 111 of the first partition unit 11-2 in FIG. 3) and the second side 121 (the second side of the first partition unit 11-3 in FIG. 3) that partition the same substrate exposed region 410 121) are parallel to each other.
  • the first side 111 and the second side 121 are both linear along the y direction.
  • portions of the substrate exposure region 410 that are defined by the first side 111 and the second side 121 are linear along the y direction.
  • the two first partition portion third end edges 130 connect both ends of the first partition portion first end edge 110 and both ends of the first partition portion second end edge 120, respectively.
  • the first partition portion third edge 130 is linear along the x direction.
  • the first partition portion third edge 130 defines a part of the substrate exposed region 412. 11 of this embodiment is constituted by the first side 111 of the first partition part first edge 110, the second side 121 of the first partition part second edge 120, and the two first partition part third edges 130. It is made into the substantially rectangular shape by the x direction view made.
  • the first partition portion 11-1 and the third partition portion 15 located on the rightmost side in the x direction in the drawing are adjacent to each other with the substrate exposed region 411 interposed therebetween.
  • the third partition part 15 has a third partition part edge 160.
  • the substrate exposed region 411 is defined by the third partition portion edge 160 of the third partition portion 15 and the first partition portion second edge 120 of the first partition portion 11-1 adjacent to the third partition portion 15. Yes.
  • the third partition part edge 160 has a third partition part parallel part 161.
  • the third partition parallel part 161 is a part parallel to the second side 121 of the first partition 11-1. In this embodiment, the 3rd division part parallel part 161 is linear form along ay direction.
  • the photoelectric conversion layer 3 is laminated on the support substrate 41 and the first conductive layer 1, and is sandwiched between the first conductive layer 1 and the second conductive layer 2.
  • the photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power.
  • the specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of.
  • the photoelectric conversion layer 3 has a circular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes.
  • the thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
  • a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction.
  • the p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester).
  • the hole transport layer is made of, for example, PEDOT: PSS.
  • Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
  • MDMO-PPV poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene
  • PCDTBT poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]
  • PC60BM 6-phenyl-C61-butyric acid methyl ester
  • PC70BM 6-,6-phenyl-C71-butyric acid methyl ester
  • the material of the second conductive layer 2 is not particularly limited and may be transparent or opaque, but in the present embodiment, the second conductive layer 2 is represented by Al, W, Mo, Mn, and Mg. Made of metal.
  • the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is opaque.
  • a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41.
  • the thickness of the second conductive layer 2 is thicker than the thickness of the photoelectric conversion layer 3 and is, for example, 1 ⁇ m to 5 ⁇ m.
  • the second conductive layer 2 has a plurality of second partition portions 21.
  • the plurality of second partition portions 21 are adjacent to each other with a part of the substrate exposed region 410 interposed therebetween.
  • the adjacent second partition parts 21 include the first side 111 of the first partition part first edge 110 and the second side 121 of the first partition part second edge 120.
  • the four second partition portions 21 are adjacent to each other with a part of each of the three substrate exposed regions 410 interposed therebetween. Further, the four second partition portions 21 are arranged on a straight line along the x direction.
  • the four second partition sections 21 are divided into a second partition section 21-1, a second partition section 21-2, a second partition section 21-3, and a second partition section 21-4. And will be described separately as necessary.
  • the second partition portion 21 overlaps the first partition portion 11 when viewed in the z direction.
  • the second partition part 21 has a second partition part first edge 210, a second partition part second edge 220, and two second partition part third edges 230.
  • the second partition portion first edge 210 of the second partition portions 21-1 to 21-3 is a first partition portion 11-1 to 3-3 (which defines the substrate exposed region 410).
  • the first partition portions 11-2 to 11-4 (first partition portion 11-3 in FIG. 3) defining the substrate exposed region 410 with respect to the first edge 110 of the first partition portion 11-2) in FIG. It is located on the opposite side to the first partition portion second end edge 120.
  • the second partition portion second edge 220 is opposed to the second partition portion first edge 210 of the second partition portion 21 adjacent to each other with a part of the substrate exposed region 410 interposed therebetween in the z direction.
  • the second partition portion first edge 210 (second partition portion first edge 210 of the second partition portion 21-2 in FIG. 3) and the second partition portion second edge 220 (FIG. 3). And the second partition part second end edge 220) of the second partition part 21-3 are parallel to each other.
  • the 2nd division part 1st edge 210 and the 2nd division part 2nd edge 220 are linear form along ay direction. That is, in the present embodiment, the first side 111, the second side 121, the second partition part first edge 210, and the second partition part second edge 220 are parallel to each other, and are linear along the y direction. It is.
  • the two second partition part third end edges 230 connect both ends of the second partition part first end edge 210 and both ends of the second partition part second end edge 220, respectively.
  • the two second partition portion third end edges 230 are parallel to each other and are linear along the x direction.
  • the second partition portion 21 having the second partition portion first end edge 210, the second partition portion second end edge 220, and the two second partition portion third end edges 230 has a rectangular shape as viewed in the z direction.
  • the passivation layer 42 is laminated on the second conductive layer 2 and covers the second conductive layer 2 and the photoelectric conversion layer 3.
  • the passivation layer 42 is made of, for example, SiN or SiON.
  • the thickness of the passivation layer 42 is, for example, 0.5 ⁇ m to 2.0 ⁇ m. In the present embodiment, the thickness is, for example, about 1.5 ⁇ m. Since the passivation layer 42 covers the photoelectric conversion layer 3, it is possible to prevent water, particles, and the like from entering the photoelectric conversion layer 3 from the outside. Moreover, the passivation layer 42 can improve the intensity
  • the flat passivation layer 42 as described above can be formed, for example, by making the passivation layer 42 thick with respect to the photoelectric conversion layer 3 or by a method using CVD described later. Not limited to this.
  • another layer may be stacked on the passivation layer 42.
  • a bonding layer for bonding other components of the electronic device B1 and the organic thin film solar cell module A1 may be provided.
  • a protective layer that protects the passivation layer 42 may be provided.
  • the first partition portion first edge 110 of the first partition portions 11-1 to 11-3 (the first partition portion 11-2 in FIG. 3) is added to the first side 111.
  • Two first covering portions 112 are provided.
  • the first covering portion 112 is a portion of the first partition portion first edge 110 that overlaps the second partition portion 21 when viewed in the z direction and is covered with the second partition portion 21 when viewed in the z direction.
  • two first covering portions 112 are provided connected to both ends of the first side 111 in the y direction.
  • the shape of the first covering portion 112 is not particularly limited.
  • the first covering portion 112 has a shape protruding in the x direction with respect to the first side 111, and the first side 1121, It has two sides 1122 and a third side 1123.
  • the first side 1121 is a side that is parallel to the first partition portion third edge 130 and extends in the x direction.
  • the second side 1122 is a side along the direction intersecting the first side 1121 and is along the y direction.
  • the third side 1123 is a side that connects the first side 1121 and the second side 1122 and has a curved shape in the illustrated example.
  • the illustrated first covering portion 112 has one end reaching the second partition portion second end edge 220 and the other end intersecting the second partition portion third end edge 230 in the z-direction view.
  • the first partition portion second edge 120 of the first partition portions 11-2 to 11-2 to 4 (first partition portion 11-3 in FIG. 3) is added to the second side 121.
  • Two second covering portions 122 are provided.
  • coated part 122 is a part which overlaps with the 2nd division part 21 in z direction view among the 1st division part 2nd edges 120.
  • two second covering portions 122 are provided connected to both ends of the second side 121 in the y direction.
  • the shape of the second covering portion 122 is not particularly limited, and in the present embodiment, the second covering portion 122 has a shape that is recessed in the x direction with respect to the second side 121.
  • the first side 1221 is a side parallel to the first partition portion third end edge 130 and along the x direction.
  • the second side 1222 is a side along the direction intersecting the first side 1221 and is along the y direction.
  • the third side 1223 is a side that connects the first side 1221 and the second side 1222, and has a curved shape in the illustrated example.
  • the illustrated second covering portion 122 has one end reaching the second partition portion second edge 220 and the other end reaching the second partition portion third edge 230.
  • the substrate exposed region 410 of the present embodiment overlaps the second partition portion 21 when viewed in the z direction, and the intersecting portion 415 and the intersecting portion. 416.
  • the intersecting portion 415 is a portion where the substrate exposed region 410 intersects the second partition portion second edge 220.
  • the intersecting portion 416 is a portion where the substrate exposed region 410 intersects the second partition portion third edge 230.
  • the photoelectric conversion layer 3 has a plurality of photoelectric conversion layer connecting portions 33.
  • the photoelectric conversion layer connecting portion 33 is a part of the substrate exposed region 410 when viewed in the z direction (in the case of the portion shown in FIG. 3, the first side 111 of the first partitioning portion 11-2).
  • the first partition portion 11 of the first conductive layer 1 adjacent to each other across the portion defined by the second side 121 of the first partition portion 11-3 (in the case of the portion shown in FIG. 3, the first partition portion 11).
  • the second partition portion 21 of the second conductive layer 2 the second partition portion 21-3 in the case of the portion shown in FIG.
  • the photoelectric conversion layer connecting portion 33 has the second partition portion third edge 230 (in the case of the portion shown in FIG. 3, the second partition portion third edge of the second partition portion 21-3). 230). That is, the photoelectric conversion layer connecting portion 33 of the present embodiment overlaps with a corner of the second partition portion 21 (second partition portion 21-3 in the case of the portion shown in FIG. 3) that is rectangular when viewed in the z direction. In the position. Further, in the present embodiment, as shown in FIG. 1, two photoelectric conversion layer connection portions 33 are provided at positions overlapping two corner portions separated in the y direction with respect to one second partition portion 21. It has been.
  • a photoelectric conversion layer penetrating portion 331 is formed in the photoelectric conversion layer connecting portion 33.
  • the photoelectric conversion layer penetrating part 331 is configured by a through hole that penetrates the photoelectric conversion layer 3 in the z direction.
  • the shape and size of the photoelectric conversion layer penetrating portion 331 are not particularly limited, and in the illustrated example, the photoelectric conversion layer penetrating portion 331 has a circular shape in the z direction.
  • the diameter of this photoelectric conversion layer penetration part 331 is about 40 micrometers, for example.
  • the photoelectric conversion layer connection portion 33 is formed with a protrusion 332. As shown in FIG.
  • the protrusion 332 is a portion protruding in the z direction from the peripheral portion of the photoelectric conversion layer 3. As shown in FIG. 3, the protrusion 332 surrounds the photoelectric conversion layer penetrating portion 331 when viewed in the z direction.
  • the first partition units 11-1 to 11-3 have a first connection unit 13.
  • the first connection portion 13 is a portion that coincides with the photoelectric conversion layer connection portion 33 when viewed in the z direction.
  • the 2nd division part 21 has the 2nd connection part 23.
  • the 2nd connection part 23 is a part which corresponds with the photoelectric converting layer connection part 33 in z direction view.
  • the first connecting portion 13 of the first partitioning portions 11-1 to 11-3 and the second connecting portions 21-2 to 4-4 are in contact with each other through the photoelectric conversion layer penetrating portion 331 and are electrically connected to each other. Yes. For this reason, the 1st connection part 13, the 2nd connection part 23, and the photoelectric converting layer connection part 33 are parts which do not generate electric power.
  • the first penetration part 131 is provided in the first connection part 13 of the first partition part 11.
  • a through hole that penetrates the first conductive layer 1 in the z direction is referred to as a first through portion 131.
  • the first penetration part 131 is included in the photoelectric conversion layer penetration part 331 when viewed in the z direction. Further, the inner end edge of the first penetrating part 131 is separated from the inner end edge of the photoelectric conversion layer penetrating part 331 when viewed in the z direction. Thereby, a part of the 1st connection part 13 of the 1st division part 11 is exposed from the photoelectric converting layer penetration part 331 in z direction view.
  • the second connection portions 23 of the second partition portions 21-2 to 21-4 of the second conductive layer 2 are in contact with the exposed portions. Further, the second connection portions 23 of the second partition portions 21-2 to 21-4 are in contact with the support substrate 41 through the first penetration portion 131.
  • the photoelectric conversion layer 3 has a plurality of photoelectric conversion layer power generation units 32. Further, the first partition portion 11 of the first conductive layer 1 has a first electrode portion 12, and the second partition portion 21 of the second conductive layer 2 has a second electrode portion 22. 1, 3, and 6, the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 are hatched with a plurality of discrete points.
  • the first electrode portion 12 is a portion that does not overlap with the photoelectric conversion layer connection portion 33 and overlaps with the second partition portion 21 of the second conductive layer 2 when viewed in the z direction.
  • the second partition portion 21 is a portion that coincides with the first electrode portion 12 when viewed in the z direction.
  • the photoelectric conversion layer power generation unit 32 is a portion that coincides with the first electrode unit 12 and the second electrode unit 22 when viewed in the z direction.
  • the 1st electrode part 12, the 2nd electrode part 22, and the photoelectric converting layer electric power generation part 32 are 2nd division part 1st edge 210, 2nd division part 2nd edge 220 in z direction view, This is a portion defined by the two second partition portion third edges 230 and the two second covering portions 122.
  • the 1st electrode part 12 and the 2nd electrode part 22 are laminated
  • the photoelectric conversion layer connection portion 33 and a part of the photoelectric conversion layer power generation portion 32 are adjacent to each other with a gap in the y direction. That is, the position of the photoelectric conversion layer connection unit 33 in the x direction is the same as the position in the x direction of a part of the photoelectric conversion layer power generation unit 32.
  • the first connection portion 13 is adjacent to a part of the first electrode portion 12 of the first partition portion 11 adjacent to each other via the substrate exposed region 410 in the y direction. That is, the position of the first connection portion 13 in the x direction overlaps with a part of the first electrode portion 12 in the x direction.
  • the third partition portion 15 includes an external electrode portion 151 and an external connection portion 153.
  • the external connection portion 153 is a portion that coincides with the second connection portion 23 and the photoelectric conversion layer connection portion 33 of the second partition portion 21-1 when viewed in the z direction.
  • the external connection part 153 is in contact with the second connection part 23 of the second partition part 21-1 through the photoelectric conversion layer penetration part 331.
  • the external connection portion 153 is provided with an external connection portion penetration portion 1531.
  • a through hole that penetrates the external connection portion 153 of the first conductive layer 1 in the z direction is referred to as an external connection portion through portion 1531.
  • the external connection portion penetration portion 1531 is included in the photoelectric conversion layer penetration portion 331 as viewed in the z direction. Further, the inner end edge of the external connection portion penetration portion 1531 is separated from the inner end edge of the photoelectric conversion layer penetration portion 331 when viewed in the z direction. Thereby, a part of external connection part 153 of the 3rd division part 15 is exposed from the photoelectric converting layer penetration part 331 in z direction view.
  • the second connection part 23 of the second partition part 21-1 of the second conductive layer 2 is in contact with the exposed part.
  • the second connection portion 23 is in contact with the support substrate 41 through the external connection portion through portion 1531.
  • the external electrode portion 151 is a portion exposed from the second conductive layer 2, the photoelectric conversion layer 3, and the passivation layer 42.
  • the external electrode portion 151 is a portion that outputs the electric power generated in the organic thin film solar cell module A1, and is electrically connected to the terminal of the electronic device B1, for example.
  • the first partition portion 11-4 provided on the side opposite to the third partition portion 15 in the x direction has the external electrode portion 141.
  • the external electrode portion 141 is a portion exposed from the second conductive layer 2, the photoelectric conversion layer 3, and the passivation layer 42 in the first partition portion 11-4.
  • the external electrode part 141 is a part that outputs electric power generated in the organic thin film solar cell module A1, and is electrically connected to, for example, a terminal of the electronic device B1.
  • the organic thin film solar cell module A ⁇ b> in the organic thin film solar cell module A ⁇ b> 1, four sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32. Are directly connected to each other through six sets of the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33.
  • the electric power generated in the four sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 connected in series is output from the external electrode unit 141 and the external electrode unit 151. This electric power is used to drive the drive unit 71 of the electronic apparatus B1.
  • FIGS. 9, FIG. 11, FIG. 13 and FIG. 15 are main part enlarged plan views showing the same parts as FIG. 3, and FIGS. 10, 12, 14 and 16 are the same parts as FIG. It is a principal part expanded sectional view which shows this.
  • the first conductive film 10 is formed by depositing ITO on one surface of the support substrate 41 by a general method such as sputtering. Next, by patterning the first conductive film 10, a substrate exposed region 410, a substrate exposed region 411 and a substrate exposed region 412 are formed, and a plurality of first partition portions 11 and third partition portions 15 are obtained.
  • a patterning method for the first conductive film 10 for example, a method using wet etching and a method using laser patterning such as Green laser light and IR laser light are appropriately employed. In the present embodiment, IR laser light is used as the laser light Lz1. Note that, in FIG. 9, reference numerals are given to portions that become the first covering portion 112 and the second covering portion 122 through the steps described later for the sake of convenience.
  • an organic film 30 is formed.
  • the organic film 30 is formed, for example, by forming an organic film on the support substrate 41 and the first conductive film 10 by spin coating.
  • the photoelectric conversion layer penetrating portion 331 is formed in the organic film 30.
  • the photoelectric conversion layer penetrating part 331 is formed by, for example, laser patterning.
  • the laser beam Lz2 used for this laser patterning one that can partially remove the photoelectric conversion layer penetrating portion 331 is appropriately selected. In the present embodiment, a case where laser patterning using an IR laser beam as the laser beam Lz2 is performed will be described as an example.
  • the laser beam Lz2 removes part of the organic film 30 and the first conductive film 10 one by one.
  • the photoelectric conversion layer penetration part 331 is formed in the organic film 30, and the first penetration part 131 is formed in the first conductive film 10.
  • the first conductive layer 1 and the photoelectric conversion layer 3 are obtained as shown in FIGS. 13 and 14.
  • a protrusion 332 is formed in the photoelectric conversion layer 3.
  • the second conductive layer 2 is formed.
  • the second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive layer 1 and the photoelectric conversion layer 3 from the above-described metal by an evaporation method such as an electron beam evaporation method.
  • the film thickness at this time is larger than the thickness of the photoelectric conversion layer 3 and is, for example, 1 ⁇ m to 5 ⁇ m.
  • the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having a plurality of second partition portions 21 is formed on the first conductive layer 1 and the photoelectric conversion layer 3.
  • a passivation layer 42 is formed by depositing SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
  • the organic thin film solar cell module A1 is obtained through the above steps.
  • the thickness of the second conductive layer 2 is thicker than the thickness of the photoelectric conversion layer 3. For this reason, for example, even when the protrusion 332 is generated when the photoelectric conversion layer penetrating portion 331 is formed in the photoelectric conversion layer 3, the protrusion 332 can be more reliably covered with the second conductive layer 2. Thereby, for example, it is possible to avoid the occurrence of fine cracks in the passivation layer 42 due to the presence of the protrusions 332. This is suitable for preventing outside air from entering the photoelectric conversion layer 3 and the like. Therefore, unintentional breakage of the organic thin film solar cell module A1 and the electronic device B1 can be prevented.
  • the thickness of the photoelectric conversion layer 3 is 50 nm to 300 nm, while the thickness of the second conductive layer 2 is 1 ⁇ m to 5 ⁇ m.
  • an irregular portion such as the photoelectric conversion layer penetrating portion 331 that may occur in the photoelectric conversion layer 3 during production or the like.
  • the substrate exposed region 410 partially defined by the first covering portion 112 of the first partition portion 11-2 that partitions the photoelectric conversion layer connecting portion 33 is the second partition portion 21-3.
  • the second section 220 has an intersection 415 that intersects the second edge 220.
  • the photoelectric conversion layer connecting portion 33 is partially provided along the second partition portion second edge 220 of the second partition portion 21-3, and the second partition portion of the second partition portion 21-3.
  • the photoelectric conversion layer connection portion 33 is not provided over the entire length of the second end edge 220.
  • the substrate exposed region 410 has one intersection 415 and one intersection 416. That is, the substrate exposed region 410 that partitions the photoelectric conversion layer connection portion 33 extends from the second partition portion second edge 220 of the second partition portion 21-3 and extends from the second partition portion 21-3 of the second partition portion 21-3. Crosses 3 edge 230.
  • the substrate exposed region 410 intersects the second partition part second end edge 220 of the second partition part 21-3 at two locations, the second partition is viewed in the z direction as compared to the present example.
  • the substrate exposed region 410 that overlaps the portion 21-3 becomes longer. Since the substrate exposed region 410 is a non-power generation portion, it is suitable for reducing the area ratio of such a non-power generation portion.
  • the photoelectric conversion layer penetrating portion 331 is constituted by a through hole having a diameter of about 40 ⁇ m, for example. For this reason, the area of the photoelectric conversion layer connection part 33 including the photoelectric conversion layer penetrating part 331 can be further reduced.
  • the first penetration part 131 is formed together with the photoelectric conversion layer penetration part 331 when, for example, an IR laser beam is used as the laser beam Lz2 shown in FIG. Since this IR laser light can partially remove the first conductive layer 1 made of ITO, it can be used as the laser light Lz1 in the laser patterning of the first conductive film 10 shown in FIG. Thus, in the method for manufacturing the organic thin-film solar cell module A1 shown in FIGS. 9 to 16, one type of laser light (IR laser light) may be used as the laser light Lz1 and the laser light Lz2. This is preferable for simplification of the manufacturing method and the manufacturing apparatus, and contributes to shortening of the manufacturing time.
  • IR laser light IR laser light
  • connection part 13 By providing two sets of the first connection part 13, the second connection part 23, and the photoelectric conversion layer connection part 33 at a position overlapping the two corners of the second partition part 21, two adjacent sets of the first electrode parts 12.
  • the resistance between the second electrode unit 22 and the photoelectric conversion layer power generation unit 32 can be further reduced.
  • the first connection portion 13, the second connection in the other set Even if conduction in the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33 in one set becomes inappropriate, the first connection portion 13, the second connection in the other set.
  • the two adjacent first electrode parts 12, the second electrode part 22, and the photoelectric conversion layer power generation part 32 can be appropriately connected by the connection part 23 and the photoelectric conversion layer connection part 33.
  • FIG. 17 shows a modification of the present invention.
  • the same or similar elements as those in the above example are denoted by the same reference numerals as in the above example.
  • FIG. 17 shows a modification of the organic thin film solar cell module A1.
  • the first through portion 131 described above is not formed in the first connection portion 13 of the first partition portion 11 (the first partition portion 11-2 in FIG. 17).
  • the support substrate 41 is connected to the first connection portion 13 of the first conductive layer 1 (the first partition portion 11-2 in FIG. It is covered by a connection 13).
  • Such a configuration is realized, for example, by using Green laser light as the laser light Lz2 and appropriately setting the output and irradiation time in laser patterning for forming the photoelectric conversion layer penetrating portion 331 in the organic film 30. Yes.
  • the protrusion 332 is not formed on the photoelectric conversion layer 3.
  • the manufacturing method of the organic thin film solar cell module, the electronic device, and the organic thin film solar cell module according to the present invention is not limited to the above-described embodiment.
  • the specific configuration of the electronic device and the method for manufacturing the organic thin-film solar cell module according to the present invention can be variously changed in design.
  • “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
  • the electronic apparatus B2 of this embodiment includes an organic thin-film solar cell module A2, a case 61, a band 62, a drive unit 71, a long needle 72, and a short needle 73.
  • FIG. 18 is a plan view showing the electronic device B2.
  • FIG. 19 is a system configuration diagram showing the electronic apparatus B2.
  • Organic thin-film solar cell module A2 is a power supply module in electronic device B2, and converts light such as sunlight into electric power.
  • the driving unit 71 is driven by power feeding from the organic thin film solar cell module A2.
  • the long hand 72 and the short hand 73 are driven by the long hand 72.
  • the drive unit 71 has a timekeeping function.
  • the drive unit 71 drives the long hand 72 and the short hand 73 at an angle (position) corresponding to the time. Further, the drive unit 71 acquires the power acquired from the organic thin film solar cell module A2 from a circuit that adjusts the voltage or current level so that it can be used by an IC having a timekeeping function, or the organic thin film solar cell module A2.
  • a secondary battery that stores the generated electric power may be provided.
  • the photoelectric conversion layer 3 has a plurality of design display portions 35 to be described later appearing on the appearance. The plurality of design display portions 35 are designed to specify time.
  • the organic thin film solar cell module A2 the driving unit 71, the long needle 72, and the short needle 73 are accommodated in a case 61 made of metal or resin.
  • the band 62 is for fixing the case 61 to the wrist of the user.
  • the organic thin-film solar cell module A2 is configured as a watch (watch).
  • the organic thin film solar cell module A2 includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation film 42, a bonding layer 43, and a protective layer 44.
  • the organic thin-film solar cell module A2 has a circular shape in plan view, but this is an example of the shape of the organic thin-film solar cell module A2, and can be set in various shapes.
  • FIG. 20 is a plan view showing the organic thin film solar cell module A2.
  • FIG. 21 is an exploded perspective view showing the organic thin film solar cell module A2.
  • 22 is an enlarged cross-sectional view of a main part taken along line XXII-XXII in FIG.
  • FIG. 23 is an enlarged cross-sectional view of a main part taken along line XXIII-XXIII in FIG. 24 is an enlarged cross-sectional view of a main part taken along line XXIV-XXIV in FIG.
  • FIG. 25 is an enlarged cross-sectional view of a main part taken along line XXV-XXV in FIG.
  • the first conductive layer 1 is represented as a solid line and transmits
  • the second conductive layer 2 is represented as a hidden line (dotted line).
  • the non-penetrating portion of the photoelectric conversion layer 3 is hatched with a plurality of discrete points. Further, in FIGS. 22 to 25, sunlight comes from above in the drawing.
  • the support substrate 41 is a member that becomes a base of the organic thin film solar cell module A2.
  • the support substrate 41 is made of, for example, transparent glass or resin.
  • the thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
  • the first conductive layer 1 is formed on the support substrate 41.
  • the first conductive layer 1 is transparent and is made of ITO in this embodiment.
  • FIG. 26 is a plan view showing the first conductive layer 1.
  • the first conductive layer 1 includes a plurality of first electrode portions 11, a plurality of first partition portions 12, a plurality of first connecting portions 13, a first end portion 14, and a first extension portion 15.
  • the first conductive layer 1 is configured such that a portion excluding the first extension portion 15 and the second extension portion 16 has a substantially circular shape in plan view. It is an example of 1 shape.
  • the shape of the first conductive layer 1 can be set to various shapes.
  • the thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm.
  • the first electrode portion 11, the first partitioning portion 12, the first connecting portion 13, the first end portion 14, the first extending portion 15 and the second extending portion 16 of the first conductive layer 1 are shown. Are hatched with diagonal lines.
  • the first end portion 14 and the first end portion 14 are formed apart from each other, but the slit 19 indicates a region generated by the separation.
  • the plurality of first electrode portions 11 are layers in which holes generated by the photoelectric conversion layer 3 are aggregated, and function as so-called anode electrodes.
  • the six first electrode portions 11 are arranged concentrically.
  • the first electrode portion 11 of the present embodiment has an arc edge 111 located near the center of the first conductive layer 1.
  • a circular opening in a plan view is defined at the center of the first conductive layer 1 by the arc edges 111 of the six first electrode portions 11.
  • the first electrode portion 11 includes a pair of linear edges 112 extending radially outward from both ends of the arc edge 111, and a pair of substantially semicircles that are connected to the linear edges 112 and recessed inward. It has a circular arc edge 113 having a shape.
  • a portion defined by the shape of the second conductive layer 2 in the shape of the first connecting portion 13 described later is indicated by an imaginary line (two-dot chain line), and a pair of arcs One of the end edges 113 corresponds to this.
  • the portion defined by the shape of the second conductive layer 2 is a boundary for defining the first electrode portion 11 and is not a physical edge formed in the first conductive layer 1. This boundary is referred to as an arc edge 113.
  • the first electrode portion 11 has an arc edge 114 located radially outward with respect to the pair of arc edges 113.
  • the outer edges of the substantially circular portions of the first conductive layer 1 in plan view are formed by the arc edges 114 of the six first electrode portions 11.
  • the first electrode portion 11 has an edge that is recessed inward from the vicinity of the center of the arc edge 114.
  • the inwardly recessed edge includes a pair of linear portions 115 inclined with respect to the radial direction and a substantially circular circular portion 116 connected to the linear portions 115 and surrounds the first partition portion 12. .
  • the first electrode portion 11 is partially opened, and this opening portion is referred to as an opening 18.
  • Adjacent first electrode portions 11 are arranged with a slit 19 therebetween.
  • the first electrode unit 11 has an edge that is recessed inward from the vicinity of the center of the arc edge located radially outward. 11 may have a configuration in which the arc edge located radially outward is continuous in an arc shape and does not have the edge.
  • the plurality of first partition parts 12 are parts surrounded by the first electrode part 11 through the slits 19. Since the first electrode portion 11 and the first partition portion 12 are separated from each other with the slit 19 in plan view, the first electrode portion 11 and the first partition portion 12 are insulated from each other. The first partition portion 12 comes into contact with a part of the second conductive layer 2 through a design display portion 35 (through portion 350) described later. For this reason, the first partition 12 does not function as an electrode for power generation in the photoelectric conversion layer 3. On the other hand, the first electrode portion 11 is insulated from the first partition portion 12, thereby ensuring a function as a power generation electrode.
  • the 1st division part 12 encloses the design display part 35 of the photoelectric converting layer 3 mentioned later in planar view.
  • the plurality of first partition portions 12 are arranged so as to be surrounded by the plurality of first electrode portions 11, and in the radial direction of the substantially circular portion in plan view of the first conductive layer 1. It is arranged at a position closer to the outer periphery than the center.
  • the first partitioning portion 12 has, for example, a shape having a substantially circular portion in a plan view and a wedge-shaped portion that protrudes radially outward from the substantially circular portion.
  • the plurality of first connecting portions 13 are connected to one of the two adjacent first electrode portions 11 and are adjacent to the other of the two adjacent first electrode portions 11 across the slit 19.
  • the first connecting portion 13 includes a protruding portion that is partitioned in a semicircular shape by the slit 19 and a semicircular portion that is connected to the protruding portion and enters the inside of the first electrode portion 11 (see FIG. 26, a portion having a circular shape in plan view, and a wedge-shaped portion protruding outward in the radial direction from the circular portion.
  • a semicircular portion of the first connecting portion 13 that enters the first electrode portion 11 is defined by the shape of the second conductive layer 2 described later.
  • the 1st communication part 13 includes the design display part 35 of the photoelectric converting layer 3 mentioned later in planar view.
  • the first connecting portion 13 is disposed at a position closer to the outer periphery than the center in the radial direction of the substantially circular portion in a plan view of the first conductive layer 1, similarly to the first partition portion 12. ing.
  • the first extending portion 15 is connected to one of the plurality of first electrode portions 11. More specifically, in FIG. 26, the first conductive layer 1 extends radially outward from the right portion of the arc edge 114 of the lower left first electrode portion 11 in the drawing.
  • the 1st extension part 15 of this embodiment is plane view substantially rectangular shape, the shape of the 1st extension part 15 is not limited to this, Various shapes can be adopted.
  • the first end portion 14 is a portion sandwiched between the first electrode portion 11 connected to the first extension portion 15 and the first electrode portion 11 adjacent to the first electrode portion 11 via the slit 19.
  • the first end portion 14 includes a first electrode portion 11 connected to the first extension portion 15, and a first electrode portion 11 adjacent to the right side with respect to the first electrode portion 11 in FIG. 26. It is sandwiched between.
  • the first end portion 14 has, for example, a shape having a circular portion in plan view and a wedge-shaped portion projecting radially outward from the circular portion.
  • the first end portion 14 is located on the outer periphery from the center in the radial direction of the substantially circular portion in the plan view of the photoelectric conversion layer 3, similarly to the first partition portion 12 and the first connecting portion 13. It is arranged at a close position.
  • the second extending portion 16 is connected to the first end portion 14 and extends outward in the radial direction of the first conductive layer 1 from the first end portion 14 and the first electrode portion 11 adjacent to the first end portion 14. I'm out.
  • the 2nd extension part 16 of this embodiment is a planar view substantially rectangular shape, the shape of the 2nd extension part 16 is not limited to this, Various shapes can be employ
  • the second extending portion 16 is disposed below the first electrode portion 11 located on the lower right side in the drawing in FIG.
  • the 1st extension part 15 and the 2nd extension part 16 are set as the arrangement
  • the left side portion of the first end portion 14 in the drawing coincides with the position of the first extending portion 15 in the left-right direction in the drawing, and the right side portion of the first end portion 14 in the drawing has the second extending portion. A part of the part 16 and the position in the left-right direction in the figure coincide.
  • the plurality of openings 18 penetrate the first conductive layer 1 in the thickness direction.
  • the opening 18 has a rectangular shape whose area is relatively small in a plan view as compared with the first partition portion 12, the first connecting portion 13, the first end portion 14, and the like. This is an example of the size and shape of the opening 18, and the opening 18 may have a larger area in plan view than the first partition 12 or the like, and may have a circular shape or the like.
  • the plurality of openings 18 are disposed radially outward from the centers of the first partition portion 12, the first connecting portion 13, and the first end portion 14 in plan view.
  • the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1.
  • the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg.
  • the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is opaque.
  • a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41.
  • the thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
  • FIG. 27 is a plan view showing the second conductive layer 2.
  • the second conductive layer 2 includes a plurality of second electrode portions 21, a plurality of second partition portions 22, a plurality of second connecting portions 23, a second end portion 24, and a plurality of slits 29.
  • the second conductive layer 2 has a substantially circular shape in plan view, but this is an example of the shape of the second conductive layer 2.
  • the shape of the second conductive layer 2 can be set to various shapes.
  • the second electrode part 21, the second partition part 22, the second connecting part 23, and the second end part 24 of the second conductive layer 2 are hatched.
  • the adjacent second electrode portions 21 and the adjacent second electrode portion 21 and the second connecting portion 23 are formed apart from each other, but the slit 29 is formed by separating them. The resulting region is shown.
  • the plurality of second electrode portions 21 are layers in which electrons generated by the photoelectric conversion layer 3 are aggregated, and function as so-called cathode electrodes.
  • the second electrode portion 21 coincides with the first electrode portion 11 in plan view. That is, the second electrode portion 21 of the present embodiment has the arc edge 211 located near the center of the second conductive layer 2 that has a substantially circular shape in plan view. A circular opening in a plan view is formed in the center of the second conductive layer 2 by the arc edges 211 of the six second electrode portions 21.
  • the second electrode portion 21 includes a pair of linear end edges 212 extending radially outward from both ends of the arc end edge 211 and a pair of substantially semicircles that are connected to the straight end edges 212 and recessed inwardly.
  • the portion defined by the shape of the first connecting portion 13 is a boundary for defining the second electrode portion 21 and is not a physical edge formed in the second conductive layer 2. This boundary is referred to as an arc edge 213.
  • the second electrode portion 21 has an arc edge 214 that is located radially outward with respect to the pair of arc edges 213.
  • the arcuate edges 214 of the six second electrode portions 21 constitute the outline of the second conductive layer 2 in plan view.
  • the second electrode portion 21 can be defined with an edge that is recessed inward from the vicinity of the center of the arc edge 214.
  • This inwardly recessed edge is a boundary defined by the shape of the first partition portion 12 of the first conductive layer 1, and is not a physical edge formed in the second conductive layer 2, but this embodiment In the form, this boundary is referred to as an edge for convenience.
  • the edge includes a pair of linear portions 215 inclined with respect to the radial direction and a substantially circular circular portion 216 connected to the linear portions 215 and surrounds the second partition portion 22.
  • the six second electrode portions 21 are arranged concentrically. Adjacent second electrode portions 21 are disposed with a slit 29 therebetween.
  • the plurality of second partition portions 22 are portions that overlap the plurality of first partition portions 12 of the first conductive layer 1 in plan view.
  • the 2nd division part 22 encloses the design display part 35 of the photoelectric converting layer 3 mentioned later in planar view.
  • the second partition section 22 is electrically connected to the first partition section 12 through the design display section 35, and does not function as a power generation electrode in the photoelectric conversion layer 3, like the first partition section 12.
  • the plurality of second partition portions 22 are disposed so as to be surrounded by the plurality of second electrode portions 21, and are more than the center of the second conductive layer 2 that is substantially circular in plan view. It is arranged at a position close to the outer periphery.
  • the second partition portion 22 has, for example, a shape having a substantially circular portion in a plan view and a wedge-shaped portion protruding outward in the radial direction from the substantially circular portion.
  • the plurality of second connecting portions 23 are connected to one of the two adjacent second electrode portions 21 and are adjacent to the other of the two adjacent second electrode portions 21 with the slit 29 interposed therebetween.
  • the second connecting portion 23 is a semicircular shape that is connected to the projecting portion that is partitioned in a semicircular shape by the slit 29 and enters the second electrode portion 21 in plan view. (A portion indicated by an imaginary line in FIG. 27), a circular portion in plan view, and a wedge-shaped portion projecting radially outward from the circular portion. Yes.
  • a semicircular portion of the second connecting portion 23 that enters the inside of the second electrode portion 21 is defined by the first connecting portion 13 of the first conductive layer 1 shown in FIG.
  • the semicircular portion that enters the first electrode portion 11 in the first connecting portion 13 described above is defined by the second connecting portion 23. That is, as understood from FIG. 20, the first connecting portion 13 and the second connecting portion 23 are substantially circular in a plan view.
  • the 2nd connection part 23 includes the design display part 35 of the photoelectric converting layer 3 mentioned later in planar view. In this embodiment, the 2nd connection part 23 is arrange
  • the second end portion 24 corresponds to the first end portion 14 of the first conductive layer 1 in a plan view and is connected to the adjacent second electrode portion 21.
  • the second end portion 24 includes a substantially circular portion in a plan view like the first end portion 14, and a wedge-shaped portion projecting radially outward from the circular portion.
  • the shape has.
  • the second end portion 24 is arranged on the outer periphery rather than the center in the radial direction of the second conductive layer 2 having a substantially circular shape in plan view like the second partition portion 22 and the second connecting portion 23. It is arranged at a close position.
  • the photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41.
  • the photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power.
  • the specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of.
  • the photoelectric conversion layer 3 has a circular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes.
  • the thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
  • a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction.
  • the p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester).
  • the hole transport layer is made of, for example, PEDOT: PSS.
  • Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
  • MDMO-PPV poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene
  • PCDTBT poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]
  • PC60BM 6-phenyl-C61-butyric acid methyl ester
  • PC70BM 6-,6-phenyl-C71-butyric acid methyl ester.
  • FIG. 28 is a plan view showing the photoelectric conversion layer 3.
  • the photoelectric conversion layer 3 has a plurality of non-power generation regions 30, a plurality of power generation regions 31, and a plurality of design display portions 35.
  • the boundary between the non-power generation region 30 and the power generation region 31 is indicated by an imaginary line (two-dot chain line) for convenience.
  • the non-penetrating portion of the photoelectric conversion layer 3 is hatched with a plurality of discrete points.
  • the design display part 35 is a part that constitutes a design that appears through the first conductive layer 1 and appears on the exterior.
  • the design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look.
  • the design display unit 35 is configured by a through-hole portion 350.
  • the penetrating part 350 is a part having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a penetrating portion 350 appears through the first conductive layer 1.
  • the penetrating portion 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the through part 350.
  • a total of twelve penetrating portions 350 represent Roman numerals for specifying time.
  • a total of twelve penetrating portions 350 (design display portions 35) adjacent to the outer side in the radial direction with respect to a total of twelve penetrating portions 350 in the form of Roman numerals are diamond-shaped.
  • a total of 24 penetrating portions 350 (design display portions 35) have a relatively small rectangular shape for specifying the time, and follow the outer periphery of the photoelectric conversion layer 3 having a circular shape in plan view. Are arranged.
  • the power generation region 31 is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2, and exhibits a photoelectric conversion function. This is a region that contributes to power generation.
  • the shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view. In the present embodiment, the six power generation regions 31 are arranged concentrically.
  • the non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap with the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view, and the first partition portion 12, the first connecting portion 13, the first end portion 14, the opening 18 and the slit 19 overlap.
  • the first partition portion 12, the first connecting portion 13, and the first end portion 14 are in contact with a part of the second conductive layer 2, and the aggregated holes and electrons are immediately combined.
  • the non-power generation region 30 does not contribute to power generation. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
  • the plurality of non-power generation areas 30 include a plurality of partition areas 32, a plurality of communication areas 33, and end areas 34.
  • the partition region 32 is a region that overlaps the first partition portion 12 of the first conductive layer 1 and the second partition portion 22 of the second conductive layer 2.
  • the partition area 32 has a penetrating part 350 (design display part 35).
  • the penetrating part 350 (design display part 35) included in the partition region 32 represents the Roman numerals described above.
  • the plurality of connection regions 33 are regions sandwiched between the plurality of first connection portions 13 of the first conductive layer 1 and the plurality of second connection portions 23 of the second conductive layer 2. is there.
  • the communication area 33 has a penetrating part 350 (design display part 35).
  • the penetrating part 350 (design display part 35) included in the communication area 33 represents the Roman numerals described above.
  • the end region 34 includes a through portion 350 (design display portion 35) included in the first end portion 14 of the first conductive layer 1 in a plan view, and includes the first conductive layer. Overlapping the first end 14 of the layer 1. The end region 34 overlaps the second end 24 of the second conductive layer 2. The first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other through the through portion 350 of the end region 34.
  • region 34 represents the Roman numeral mentioned above.
  • a region included in the opening 18 of the first conductive layer 1 in the photoelectric conversion layer 3 is a non-power generation region 30.
  • the first extending portion 15 and the second extending portion 16 of the first conductive layer 1 extend radially outward from the photoelectric conversion layer 3 in plan view.
  • the organic thin-film solar cell module A2 has a configuration in which the six power generation regions 31 are connected in series with each other.
  • the connected paths will be described in order.
  • the first extending portion 15 is connected to one first electrode portion 11.
  • the second electrode portion 21 is arranged with respect to the first electrode portion 11 with the power generation region 31 interposed therebetween.
  • the second connecting part 23 connected to the second electrode part 21 is in contact with the first connecting part 13 through the penetrating part 350 of the connecting region 33.
  • the next second electrode part 21 is arranged with the power generation region 31 interposed therebetween.
  • adjacent power generation regions 31 are connected in series with the first communication unit 13, the second communication unit 23, and the communication region 33 interposed therebetween. Therefore, the power generation region 31 on the lower left side in the drawing to the power generation region 31 on the lower right side in the drawing are connected in series.
  • the 2nd end part 24 is connected to the 2nd electrode part 21 which overlaps with the electric power generation area
  • the second end portion 24 is in contact with the first end portion 14 through the through portion 350 of the end region 34.
  • a second extending portion 16 is connected to the first end portion 14.
  • the 1st extension part 15 and the 2nd extension part 16 function as an output terminal of organic thin film solar cell module A2.
  • the first extension part 15 and the second extension part 16 are connected to the drive part 71 in FIG.
  • the passivation film 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3.
  • the passivation film 42 is made of, for example, SiN or SiON.
  • the thickness of the passivation film 42 is, for example, 0.5 ⁇ m to 2.0 ⁇ m. In the present embodiment, the thickness is, for example, about 1.5 ⁇ m. That is, the passivation film 42 is configured to be thicker than the photoelectric conversion layer 3. Thereby, it can prevent that a water, a particle, etc. approach from the exterior to the photoelectric converting layer 3, and can improve the intensity
  • the portion of the passivation film 42 covering the design display portion 35 and the portion of the photoelectric conversion layer 3 covering the portion adjacent to the design display portion 35 are formed flat. ing. Thereby, destruction of the crack etc. which may generate
  • the flat passivation film 42 as described above can be formed, for example, by making the passivation film 42 thick with respect to the photoelectric conversion layer 3 or by a method using CVD described later. Not limited to this.
  • the bonding layer 43 is a layer for bonding the passivation film 42 and the protective layer 44, and is, for example, a resin-based adhesive layer.
  • the protective layer 44 is for protecting the organic thin-film solar cell module A2 from the side opposite to the support substrate 41.
  • the protective layer 44 is preferably made of glass, but other transparent materials that can protect the organic thin film solar cell module A2 can be appropriately employed.
  • the thickness of the protective layer 44 is, for example, 30 ⁇ m to 100 ⁇ m. In the present embodiment, the thickness is, for example, about 50 ⁇ m.
  • FIGS. 22 to 25 are shown upside down. 22 to 25 show a process of generating a cross-sectional structure along the line XXV-XXV of the organic thin film solar cell module A2 shown in FIG.
  • a support substrate 41 is prepared as shown in FIG.
  • an ITO film is formed on one surface of the support substrate 41 by a general method such as sputtering.
  • the first conductive layer 1 is formed by patterning the ITO.
  • the steps shown in FIGS. 29 and 30 may be performed separately or collectively.
  • a patterning technique to ITO for example, a technique using wet etching, a technique using oxygen plasma etching, and a technique using laser patterning are appropriately employed.
  • the first conductive layer 1 is not limited to the above.
  • the first conductive layer 1 may be formed by directly patterning ITO on the support substrate 41 by a technique using nanoimprint.
  • the photoelectric conversion layer 3 is formed.
  • the photoelectric conversion layer 3 is formed by forming an organic film on the support substrate 41 and the first conductive layer 1 by spin coating, and then using oxygen plasma etching and laser patterning to form a desired through-hole 350. This is done by finishing the structure having the (design display part 35).
  • the photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive layer 1 by a method such as slit coating, capillary coating, or gravure printing. It may be formed by.
  • the second conductive layer 2 is formed.
  • the second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive layer 1 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition.
  • the metal film is patterned by etching using, for example, a mask layer.
  • the second conductive layer 2 is formed on the first conductive layer 1 and the photoelectric conversion layer 3.
  • a passivation film 42 is formed by depositing SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, a plasma CVD method.
  • the protective layer 44 is bonded to the passivation film 42 using the bonding layer 43.
  • the organic thin film solar cell module A2 is obtained through the above steps.
  • the design display portion 35 is formed on the photoelectric conversion layer 3 so as to be visible through the first conductive layer 1, so that the organic display
  • the design appearing on the appearance can be given by the design display unit 35 without laminating additional members on the thin-film solar cell module A2 or printing the outside.
  • the design display unit 35 is configured by the through portion 350, so that the design can be expressed more clearly.
  • the appearance of the second conductive layer 2 through the through portion 350 allows the design to be clarified by the contrast between the second conductive layer 2 and the photoelectric conversion layer 3.
  • the first electrode portion 11 and the first partitioning portion 12 are separated from each other by the slit 19 in the first conductive layer 1, and the first in a plan view. Since the design display part 35 is formed in the non-power generation region 30 overlapping the partition part 12, when the design display part 35 is configured by the penetrating part 350 penetrating the photoelectric conversion layer 3, the first electrode It is possible to prevent the part 11 and the second electrode part 21 from being unintentionally short-circuited.
  • the adjacent power generation regions 31 in series by providing the first communication unit 13, the second communication unit 23, and the communication region 33.
  • the voltage output from organic thin-film solar cell module A2 can be raised to a desired value.
  • the penetration part 350 included in the communication area 33 is a Roman numeral for specifying the time.
  • the communication region 33 and the penetrating part 350 included therein serve as a region representing a design that is essential when used as a watch while fulfilling the function of connecting a plurality of power generation regions 31 in series. Is.
  • the power generation region 31 at one end and the other end 31 among the plurality of power generation regions 31 connected in series are provided adjacent to each other. Is possible. Moreover, the electric power from the electric power generation area
  • FIG. 33 to 35 show modified examples of the organic thin film solar cell module A2.
  • regions 31 provided in the photoelectric converting layer 3 is one is shown.
  • FIG. 33 is a plan view showing the organic thin-film solar cell module A2 of this modification
  • FIG. 34 is a plan view showing the first conductive layer 1 of this modification
  • FIG. FIG. 36 is a plan view showing a photoelectric conversion layer 3 of the present modification.
  • the first conductive layer 1 has one first electrode part 11, eleven first partition parts 12, a first end part 14, a first extension part 15, and a second extension part 16.
  • the 1st conductive layer 1 does not have the 1st connection part 13 in the example mentioned above.
  • the second conductive layer 2 has one second electrode portion 21, eleven second partition portions 22, and second end portions 24 corresponding to the configuration of the first conductive layer 1.
  • the photoelectric conversion layer 3 has one power generation region 31, eleven partition regions 32, and an end region 34.
  • the power generated by one power generation region 31 is output from the first extension portion 15 and the second extension portion 16.
  • the design which appears in the external appearance can be given by the design display part 35, without laminating
  • a configuration in which a plurality of power generation regions 31 are connected in parallel may be employed instead of the configuration in which one power generation region 31 is provided.
  • the plurality of first electrode portions 11 may be electrically connected to each other
  • the plurality of second electrode portions 21 may be electrically connected to each other.
  • B3 of this embodiment is configured as a so-called electronic computer.
  • the electronic device B3 includes an organic thin film solar cell module A3, a case 61, a drive unit 71, a display unit 74, and an input unit 75.
  • Organic thin-film solar cell module A3 is a power generator for electronic device B3.
  • the case 61 is a thin rectangular member, and houses the organic thin film solar cell module A3, the drive unit 71, the display unit 74, and the input unit 75.
  • the driving unit 71 performs a calculation function by being fed from the organic thin film solar cell module A3. Further, the input signal from the input unit 75 is reflected in the calculation function. In addition, information related to the calculation function is displayed on the display unit 74.
  • the display unit 74 is a part where information related to the calculation function is displayed, and is a liquid crystal display, for example.
  • the input unit 75 is a part where an input for performing a calculation is made, and is composed of, for example, a touch sensor.
  • the design display unit 35 constitutes the input unit 75 in order to visually identify the input unit 75.
  • FIG. 39 shows the organic thin film solar cell module A3 of the present embodiment.
  • the organic thin film solar cell module A3 is configured to output the power generated in one power generation region 31 from the first extension portion 15 and the second extension portion 16.
  • FIG. 40 is a plan view showing the first conductive layer 1 of the present embodiment.
  • FIG. 41 is a plan view showing the second conductive layer 2 of the present embodiment.
  • FIG. 42 is a plan view showing the photoelectric conversion layer 3 of the present embodiment.
  • a rectangular opening 18 is formed in the first conductive layer 1, a rectangular opening 28 is formed in the second conductive layer 2, and a rectangular opening 38 is formed in the photoelectric conversion layer 3. Yes.
  • the opening 18, the opening 28, and the opening 38 are for representing the display unit 74 in appearance. Note that the opening 18 and the opening 28 are slightly larger than the opening 38. As a result, a region included in the opening 18 and the opening 28 in the photoelectric conversion layer 3 is a non-power generation region 30.
  • the photoelectric conversion layer 3 has a plurality of penetrating portions 350 (design display portions 35).
  • Each of the plurality of penetrating portions 350 provided in the lower part of the figure represents a number or an arithmetic symbol, and is arranged so as to correspond to each part of the input unit 75.
  • the first conductive layer 1 is formed with a plurality of openings 18 positioned below in the drawing. These openings 18 are sized and shaped to contain a plurality of 350 representing numbers and arithmetic symbols. As a result, a region included in these openings 18 in the photoelectric conversion layer 3 is a non-power generation region 30.
  • penetrating portions 350 are provided on the upper right side in the drawing. These penetrating portions 350 represent characters, symbols, or designs.
  • the penetrating portion 350 having such an aspect is used, for example, to represent a company name or a product name.
  • the first conductive layer 1 has a first end portion 14 on the upper right side in the drawing.
  • the plurality of through portions 350 on the upper right side of the photoelectric conversion layer 3 described above are included in the first end portion 14 in plan view.
  • the region of the photoelectric conversion layer 3 that overlaps the first end portion 14 is defined as the end region 34.
  • a region of the second conductive layer 2 that overlaps the first end 14 is a second end 24.
  • the design appearing on the appearance can be given by the design display unit 35 without laminating an additional member on the organic thin-film solar cell module A3 or printing on the outside. .
  • FIG. 43 shows an organic thin-film solar cell module according to the fourth embodiment of the present invention.
  • the organic thin-film solar cell module A4 of this embodiment includes a structure in which the design display portion 35 of the photoelectric conversion layer 3 is configured by a thin portion 351.
  • the thin portion 351 is a portion that is thinner than the periphery.
  • the level difference caused by the provision of the thin portion 351 realizes a shape that can be visually recognized, and constitutes a design that the design display unit 35 should display.
  • the surface of the photoelectric conversion layer 3 on the support substrate 41 side is flat, and a step due to the thin portion 351 is provided on the side opposite to the support substrate 41.
  • the 2nd conductive layer 2 is formed in the support substrate 41, and the 1st conductive layer 1 is laminated
  • sunlight comes from the lower side in the figure.
  • the design which appears in the external appearance by the design display part 35 can be provided without laminating
  • the organic thin film solar cell module and the electronic device according to the present invention are not limited to the above-described embodiments.
  • the specific configuration of each part of the organic thin-film solar cell module and the electronic device according to the present invention can be varied in design in various ways.
  • [Appendix 1A] A transparent first conductive layer; A second conductive layer; A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer, The said photoelectric conversion layer is an organic thin-film solar cell module which has a 1 or more design display part which comprises the design which appears through the said 1st conductive layer and appears on an external appearance.
  • [Appendix 2A] The organic thin-film solar cell module according to Appendix 1A, comprising a transparent support substrate on which the first conductive layer is laminated.
  • [Appendix 3A] The organic thin-film solar cell module according to appendix 1A or 2A, comprising a passivation film that covers the second conductive layer.
  • the said passivation film is an organic thin-film solar cell module of Additional remark 3A which has covered the said design display part.
  • Appendix 5A The organic thin-film solar cell module according to appendix 4A, wherein the passivation film is formed so that a portion covering the design display portion and a portion covering the portion adjacent to the design display portion in the photoelectric conversion layer are formed flat.
  • Appendix 6A The thickness of the said passivation film is an organic thin-film solar cell module in any one of appendix 3A thru
  • [Appendix 7A] The organic thin-film solar cell module according to any one of appendices 3A to 6A, comprising a protective layer laminated on the passivation film.
  • [Appendix 8A] The organic thin film solar cell module according to appendix 7A, comprising a bonding layer that bonds the passivation film and the protective layer.
  • [Appendix 9A] The organic thin film solar cell module according to any one of Supplementary Notes 1A to 8A, wherein the first conductive layer is made of ITO.
  • [Appendix 10A] The organic thin-film solar cell module according to any one of Supplementary Notes 1A to 9A, wherein the second conductive layer is made of metal.
  • the said design display part is an organic thin-film solar cell module in any one of additional remarks 1A thru
  • the said design display part is an organic thin-film solar cell module in any one of additional remarks 1A thru
  • the first conductive layer has a first electrode portion
  • the second conductive layer has a second electrode portion that coincides with the first electrode portion in plan view
  • the organic thin-film solar cell module according to appendix 12A wherein the photoelectric conversion layer includes a power generation region that is sandwiched between the first electrode portion and the second electrode portion and contributes to power generation by exhibiting a photoelectric conversion function.
  • the photoelectric conversion layer has a non-power generation region that does not overlap the first electrode portion and the second electrode portion in plan view and does not contribute to power generation.
  • [Appendix 16A] The organic thin-film solar cell module according to appendix 15A, wherein the first conductive layer includes a first partition part that includes the design display part in a plan view and is surrounded by a slit that penetrates in the thickness direction.
  • [Appendix 17A] The organic thin-film solar cell module according to appendix 16A, wherein the non-power generation region of the photoelectric conversion layer has a partition region that is a region overlapping the first partition portion of the first conductive layer.
  • [Appendix 18A] The organic thin-film solar cell module according to appendix 17A, wherein the first conductive layer and the second conductive layer are in contact with each other through the design display portion included in the partition region of the photoelectric conversion layer.
  • the first conductive layer has two first electrode portions adjacent to each other across a slit
  • the second conductive layer has two second electrode portions that coincide with the two first electrode portions in plan view
  • the organic thin-film solar cell module according to any one of appendices 15A to 18A, wherein the photoelectric conversion layer has two power generation regions sandwiched between the two first electrode portions and the two second electrode portions.
  • [Appendix 20A] The organic thin-film solar cell module according to appendix 19A, wherein the two power generation regions are connected in series with each other.
  • [Appendix 21A] The organic thin film solar cell module according to appendix 19A, wherein the two power generation regions are connected in parallel to each other.
  • the first conductive layer includes a first connecting portion that is connected to one of the two first electrode portions and that is adjacent to the other of the two first electrode portions with the slit interposed therebetween.
  • the second conductive layer is connected to the second electrode portion that coincides in plan view with the other of the two first electrode portions, and is adjacent to the other of the two second electrode portions with the slit interposed therebetween. , Having a second communication part in contact with the first communication part,
  • the organic thin-film solar cell module according to appendix 20A, wherein the non-power generation region of the photoelectric conversion layer includes a communication region sandwiched between the first communication unit and the second communication unit.
  • the contact area includes the design display portion, The organic thin-film solar cell module according to appendix 22A, wherein the first contact portion and the second contact portion are in contact with each other through the design display portion included in the contact region.
  • the first conductive layer has a plurality of the first electrode portions and the first connecting portions arranged concentrically
  • the second conductive layer has a plurality of the second electrode portions and the second connecting portions arranged concentrically
  • the organic thin-film solar cell module according to Appendix 23A wherein the photoelectric conversion layer includes a plurality of the power generation regions and a plurality of the connection regions arranged concentrically.
  • the first conductive layer has a first extending portion that extends from the first electrode portion of any one of the first electrode portions A to the outside of the photoelectric conversion layer in a plan view.
  • the organic thin-film solar cell module according to any one of 15A to 24A.
  • the first conductive layer has a first end sandwiched between the first electrode part connected to the first extension part and the first electrode part adjacent to the first electrode part via a slit.
  • the photoelectric conversion layer includes an end region that includes the design display unit included in the first end in a plan view and overlaps the first end,
  • the second conductive layer coincides with the first end portion in a plan view and is connected to the adjacent second electrode portion, and is in contact with the first end portion through the design display portion in the end region.
  • Appendix 27A The organic thin-film solar cell module according to appendix 26A, wherein the first conductive layer has a second extending portion that extends outward from the photoelectric conversion layer in a plan view from the first end portion.
  • the organic thin-film solar cell module according to Supplementary Note 30A wherein the design display unit included in the opening represents a graphic for specifying time.
  • Appendix 32A An organic thin film solar cell module according to any one of Supplementary Notes 1A to 31A; A drive unit driven by feeding from the organic thin film solar cell module; An electronic device.
  • Appendix 33A Comprising a long hand and a short hand driven by the drive unit; The electronic device according to attachment 32A, configured as a timepiece.
  • the drive unit has a calculation function, A display unit for displaying a calculation result by the drive unit; The electronic device according to attachment 32A, configured as an electronic computer.
  • “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
  • the electronic device B5 of this embodiment includes an organic thin film solar cell module A5, an organic thin film solar cell module A6, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery. 707 is configured as a portable telephone terminal.
  • the case 61 accommodates other components of the electronic device B5 and is made of a material such as metal, resin, or glass.
  • FIG. 44 is a plan view showing organic thin-film solar cell modules A5 and A6 and electronic equipment B5 using them.
  • FIG. 45 is a bottom view showing the organic thin-film solar cell modules A5 and A6 and the electronic device B5.
  • FIG. 46 is a schematic sectional view taken along line XLVI-XLVI of FIG. 47 is an enlarged cross-sectional view of a main part taken along the line XLVII-XLVII in FIG.
  • FIG. 48 is a system configuration diagram showing the electronic apparatus B5. In FIG. 46, only the case 61, the organic thin film solar cell module A5, the organic thin film solar cell module A6, the control unit 701, the display unit 702, and the battery 707 are schematically shown for convenience of understanding.
  • Organic thin film solar cell module A5 and organic thin film solar cell module A6 are power supply modules in electronic device B5, and convert light such as sunlight into electric power. A specific configuration will be described later.
  • the control unit 701 corresponds to an example of a driving unit in the present invention, and is driven by power feeding from the organic thin film solar cell module A5 and the organic thin film solar cell module A6. Note that the control unit 701 may be directly supplied with power from the organic thin film solar cell module A5 and the organic thin film solar cell module A6, and power from the organic thin film solar cell module A5 and the organic thin film solar cell module A6 is supplied to the battery 707. After being charged once, the battery 707 may be driven by power feeding.
  • the control unit 701 includes, for example, a CPU, a memory, an interface, and the like.
  • the display unit 702 is for displaying various types of information on the external appearance of the electronic device B5.
  • the display unit 702 is, for example, a liquid crystal display panel or an organic EL display panel. In the present embodiment, the display unit 702 displays information on the exterior through the organic thin film solar cell module A5.
  • the input unit 703 is for outputting a user operation as an electrical signal to the control unit 701.
  • the input unit 703 is a touch panel laminated on the display unit 702, for example. Note that the display unit 702 and the input unit 703 may be configured integrally.
  • the microphone 704 is a device that converts a user's voice into an electrical signal.
  • the speaker 705 is a device that outputs the voice of the other party and various notification sounds.
  • the wireless communication unit 706 is a device that performs bidirectional wireless communication conforming to the wireless communication standard.
  • the battery 707 is a device that stores electric power for driving the electronic device B5.
  • the battery 707 is configured to be appropriately charged / discharged.
  • the battery 707 is charged by feeding from commercial power using an adapter (not shown) or feeding from the organic thin film solar cell module A5 and the organic thin film solar cell module A6.
  • the organic thin film solar cell module A5 and the organic thin film solar cell module A6 include the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, the passivation film 42, the protective resin layer 45, and the bypass conductive portion 5. I have.
  • the organic thin-film solar cell module A5 and the organic thin-film solar cell module A6 are rectangular in plan view, but this is an example, and each can have various shapes.
  • the organic thin film solar cell module A5 and the organic thin film solar cell module A6 are common except for a part of each other. In the following, first, the organic thin film solar cell module A5 will be described.
  • FIG. 49 is an exploded perspective view of a main part showing the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, and the protective resin layer 45 in the organic thin film solar cell module A5.
  • the support substrate 41 is indicated by an imaginary line (two-dot chain line).
  • FIG. 50 is a plan view showing the first conductive layer 1 of the organic thin film solar cell module A5.
  • FIG. 51 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A5.
  • FIG. 52 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A5.
  • FIG. 53 is a plan view showing the protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A5.
  • the support substrate 41 is a member that becomes a base of the organic thin film solar cell module A5.
  • the support substrate 41 is made of, for example, transparent glass or resin.
  • the thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
  • the first conductive layer 1 is formed on the support substrate 41.
  • the first conductive layer 1 is transparent and is made of ITO in this embodiment.
  • the first conductive layer 1 includes a first electrode portion 11, a first end portion 14, a first extension portion 15, a second extension portion 16, a plurality of openings 18 and slits 19. And a third end edge 101 and an extending portion 103.
  • the first conductive layer 1 has a substantially rectangular shape in plan view, but this is an example of the shape of the first conductive layer 1.
  • the shape of the first conductive layer 1 can be set to various shapes.
  • the thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm.
  • the first electrode portion 11, the first end portion 14, the first extension portion 15, and the second extension portion 16 are hatched.
  • the first electrode portion 11 is a layer in which holes generated by the photoelectric conversion layer 3 are aggregated, and functions as a so-called anode electrode. In the present embodiment, most of the first conductive layer 1 is a single first electrode portion 11.
  • the first extending portion 15 is a portion extending from the first electrode portion 11 to the outside of the photoelectric conversion layer 3 in plan view.
  • the boundary between the first electrode portion 11 and the first extension portion 15 is indicated by an imaginary line (two-dot chain line).
  • the first end portion 14 is a portion separated from the first electrode portion 11 by the slit 19.
  • the first end portion 14 has, for example, a circular shape in plan view.
  • the first end portion 14 has a shape in which a substantially circular portion and a rectangular portion are combined.
  • the second extending portion 16 extends from the first end portion 14 to the outside of the photoelectric conversion layer 3 in plan view.
  • the boundary between the first end portion 14 and the second extension portion 16 is indicated by an imaginary line (two-dot chain line).
  • the first extending portion 15 and the second extending portion 16 are arranged adjacent to each other.
  • the plurality of openings 18 are openings that penetrate the first conductive layer 1 in the thickness direction.
  • two openings 18 are provided.
  • the upper opening 18 in FIG. 50 is provided to make the speaker 705 function, for example.
  • the largest opening 18 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
  • the third edge 101 is an edge that defines the central opening 18 in the drawing.
  • the third end edge 101 is an end edge surrounding the opening 18 from four directions, and has a rectangular shape in plan view.
  • the third end edge 101 is not limited to a shape surrounding the opening 18 from four directions.
  • the third end edge 101 may be adjacent to the opening 18 from three directions so that the opening 18 opens outward from the first electrode portion 11 in plan view.
  • the third edge 101 may be adjacent to the opening 18 from two or only one side.
  • the support substrate 41 is exposed from the region adjacent to the third edge 101, that is, from the center 18 in the drawing.
  • the third edge 101 is an inner edge of a portion of the first conductive layer 1 that extends from a second edge 451 of a protective resin layer 45 to be described later and a first edge 421 of the passivation film 42. .
  • the extending portion 103 is a portion that extends outward from the passivation film 42 and the protective resin layer 45. In the present embodiment, the extending portion 103 is provided on substantially the entire outer peripheral edge of the first conductive layer 1.
  • the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1.
  • the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg.
  • the second conductive layer 2 is not transparent.
  • a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41.
  • the thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
  • the second conductive layer 2 has a second electrode portion 21, a second end portion 24, and a plurality of openings 28.
  • the second conductive layer 2 has a substantially rectangular shape in plan view, but this is an example of the shape of the second conductive layer 2.
  • the shape of the second conductive layer 2 can be set to various shapes. In FIG. 52, the second electrode portion 21 and the second end portion 24 are hatched.
  • the second electrode portion 21 is a layer in which electrons generated by the photoelectric conversion layer 3 are collected, and functions as a so-called cathode electrode.
  • the second electrode portion 21 coincides with the first electrode portion 11 in plan view. In the present embodiment, most of the second conductive layer 2 is the second electrode portion 21.
  • the second end portion 24 coincides with the first end portion 14 of the first conductive layer 1 in plan view and is connected to the second electrode portion 21.
  • the shape of the second end portion 24 is indicated by an imaginary line (two-dot chain line).
  • the second end portion 24 is a combination of a substantially circular portion in plan view and a rectangular portion in plan view.
  • the plurality of openings 28 are openings that penetrate the second conductive layer 2 in the thickness direction.
  • two openings 28 are provided.
  • the upper opening 28 in FIG. 52 is provided, for example, to make the speaker 705 function.
  • the largest opening 28 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
  • the fourth inward retracting edge 201 is an edge that defines the central opening 28 in the drawing.
  • the fourth inward retracting edge 201 is an edge that surrounds the opening 28 from four directions and has a rectangular shape in plan view.
  • the fourth inward retracting edge 201 is not limited to a shape surrounding the opening 28 from four directions.
  • the fourth inward retracting edge 201 may be configured such that the opening 28 is opened outward from the second electrode portion 21 in plan view by adjoining the opening 28 from three directions.
  • the fourth inward retracting edge 201 may be adjacent to the opening 28 from two or only one side. As shown in FIG. 47, the fourth inward retracting edge 201 is retracted inward (opposite to the direction extending into the opening 18) from the third end edge 101.
  • the fourth outer retracting edge 202 is inward in a plan view than a first outer edge 422 of a passivation film 42 to be described later and a second outer edge 452 of the protective resin layer 45. It is retracted (to the right in FIG. 47).
  • the fourth outward retracting edge 202 has an annular shape in plan view.
  • the photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41.
  • the photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power.
  • the specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of.
  • the photoelectric conversion layer 3 has a rectangular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes.
  • the thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
  • a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction.
  • the p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester).
  • the hole transport layer is made of, for example, PEDOT: PSS.
  • Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
  • MDMO-PPV poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene
  • PCDTBT poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]
  • PC60BM 6-phenyl-C61-butyric acid methyl ester
  • PC70BM 6-,6-phenyl-C71-butyric acid methyl ester.
  • the photoelectric conversion layer 3 includes a non-power generation region 30, a power generation region 31, a design display unit 35, a plurality of openings 38, a fifth inner retraction edge 301, and a fifth outer retraction edge 302.
  • the non-power generation region 30 and the power generation region 31 are hatched with a plurality of discrete points.
  • the design display part 35 is a part that constitutes a design that appears through the first conductive layer 1 and appears on the exterior.
  • the design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look.
  • the design display unit 35 represents an annular shape.
  • the design display unit 35 is configured by a through-hole portion 350.
  • the penetrating part 350 is a part having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a penetrating portion 350 appears through the first conductive layer 1.
  • the penetrating portion 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the through part 350.
  • the power generation region 31 is a region that is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 and contributes to power generation by exhibiting a photoelectric conversion function.
  • the shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view.
  • the non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view. 1 overlaps the first end 14 of the first. The first end portion 14 is in contact with the second end portion 24 of the second conductive layer 2, and the aggregated holes and electrons are immediately combined. For this reason, the non-power generation region 30 does not contribute to power generation. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
  • the non-power generation region 30 is an end region 34.
  • the end region 34 has a penetrating portion 350 (design display portion 35).
  • the end region 34 includes a through portion 350 (design display portion 35) included in the first end portion 14 of the first conductive layer 1 in plan view, and overlaps the first end portion 14 of the first conductive layer 1. ing.
  • the end region 34 overlaps the second end 24 of the second conductive layer 2.
  • the first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other through the through portion 350 of the end region 34.
  • the plurality of openings 38 are openings that penetrate the photoelectric conversion layer 3 in the thickness direction.
  • two openings 38 are provided.
  • the upper opening 38 in FIG. 51 is provided, for example, to make the speaker 705 function.
  • the largest opening 38 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
  • the fifth inward retracting edge 301 is an edge that defines the central opening 38 in the drawing.
  • the fifth inward retracting edge 301 is an edge that surrounds the opening 38 from four directions and has a rectangular ring shape in plan view.
  • the fifth inward retracting edge 301 is not limited to a shape surrounding the opening 38 from four directions.
  • the fifth inward retracting edge 301 may be configured such that the opening 38 is opened outward from the power generation region 31 in a plan view by adjoining the opening 38 from three directions.
  • the fifth inward retracting edge 301 may be provided in two or only one with respect to the opening 38. Further, as shown in FIG. 47, the fifth inward retracting edge 301 is retracted inward (opposite to the direction extending into the opening 18) than the third end edge 101.
  • the fifth outer retreat end edge 302 is inward in a plan view than a first outer end edge 422 of a passivation film 42 to be described later and a second outer end edge 452 of the protective resin layer 45. It is retracted (to the right in FIG. 47).
  • the fifth outward retracting edge 302 is annular in plan view.
  • the first extending portion 15 is connected to the first electrode portion 11. Further, the second end portion 24 is connected to the second electrode portion 21. The second end portion 24 is in contact with the first end portion 14 through the through portion 350 of the end region 34. A second extending portion 16 is connected to the first end portion 14.
  • the 1st extension part 15 and the 2nd extension part 16 function as an output terminal of organic thin film solar cell module A5.
  • the passivation film 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3.
  • the passivation film 42 is made of, for example, SiN or SiON.
  • the thickness of the passivation film 42 is, for example, 0.5 ⁇ m to 2.0 ⁇ m. In the present embodiment, the thickness is, for example, about 1.5 ⁇ m.
  • the protective resin layer 45 is a layer that covers the passivation film 42.
  • the protective resin layer 45 is made of, for example, an ultraviolet curable resin.
  • the thickness of the protective resin layer 45 is, for example, 3 ⁇ m to 20 ⁇ m. In the present embodiment, the thickness is, for example, about 10 ⁇ m.
  • the protective resin layer 45 has a plurality of openings 458, a second end edge 451, and a second outer end edge 452. In FIG. 53, the protective resin layer 45 is hatched.
  • the plurality of openings 458 is a mode in which a part of the protective resin layer 45 is removed, and penetrates the protective resin layer 45.
  • two openings 458 are provided.
  • the upper opening 458 in the drawing is provided to allow the speaker 705 to function, for example.
  • the largest opening 458 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
  • the second edge 451 is an edge that defines the central opening 458 in the drawing.
  • the second end edge 451 is an end edge that surrounds the opening 458 from four directions, and has a rectangular ring shape in plan view.
  • the second end edge 451 is not limited to a shape surrounding the opening 458 from four sides.
  • the second edge 451 may be adjacent to the opening 458 from three directions, so that the opening 458 opens outward from the protective resin layer 45 in plan view.
  • the second end edge 451 may be provided in two or only one with respect to the opening 458.
  • the second outer end edge 452 is located on the opposite side of the second end edge 451 across at least a part of the photoelectric conversion layer 3 in plan view, and in this embodiment, the outer peripheral end of the protective resin layer 45. It is an edge.
  • the passivation film 42 has a first end edge 421 and a first outer end edge 422.
  • the first end edge 421 coincides with the second end edge 451 in plan view. In the present embodiment, the first end edge 421 forms a surface continuous with the second end edge 451.
  • the first outer end edge 422 coincides with the second outer end edge 452 in plan view. In the present embodiment, the first outer end edge 422 forms a surface that is continuous with the second outer end edge 452.
  • a part of the support substrate 41 is exposed as an exposed region 411 from an opening 458 that is a region surrounded by the second end edge 451 and the first end edge 421.
  • the exposed region 411 is not covered with the first conductive layer 1 or the like, and the surface of the support substrate 41 is directly exposed.
  • the bypass conductive portion 5 is for configuring a path having a lower resistance than the first conductive layer 1 for collecting holes that have reached the first conductive layer 1.
  • the bypass conductive portion 5 includes two bus bar portions 51, a plurality of connecting portions 52, and two pole collecting portions 53.
  • the bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
  • one bus bar portion 51 covers the second end edge 451 and the first end edge 421 over the entire length.
  • the bus bar portion 51 covers a portion of the first conductive layer 1 located between the third end edge 101 and the first end edge 421 (second end edge 451). Further, the inner edge of the bus bar portion 51 coincides with the third edge 101 in plan view.
  • the other bus bar portion 51 covers the second outer end edge 452 and the first outer end edge 422 over the entire length.
  • the bus bar portion 51 covers the extending portion 103 of the first conductive layer 1. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
  • the plurality of connecting portions 52 are portions formed on the protective resin layer 45 and connect the inner bus bar portion 51 in FIG. 53 and the outer connecting portion 52 in the drawing.
  • One of the two current collectors 53 is electrically connected to the first conductive layer 1, and the other is electrically connected to the second conductive layer 2.
  • FIG. 54 is a plan view showing the first conductive layer 1 of the organic thin-film solar cell module A6.
  • FIG. 55 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A6.
  • FIG. 56 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A6.
  • FIG. 57 is a plan view showing the protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A6.
  • the organic thin film solar cell module A6 is not provided with the opening 18, the opening 28, the opening 38, the opening 458 and the like for showing the display portion 702 in appearance. For this reason, the 3rd edge 101, the 4th inward retracting edge 201, the 5th inward retracting edge 301, the 1st end edge 421, and the 2nd end edge 451 are not provided.
  • the bypass conductive portion 5 has a bus bar portion 51 along the outer periphery, and does not have a connecting portion 52.
  • the photoelectric conversion layer 3 is provided with a plurality of through portions 350 (35).
  • Each of these penetrating portions 350 represents an alphabet.
  • the point where the first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other using the through portion 350 is the same as that of the organic thin film solar cell module A5. .
  • FIG. 47 is shown upside down.
  • 58 to 65 show a process of generating a cross-sectional structure taken along line XLVII-XLVII of the electronic apparatus B5 shown in FIG.
  • a support substrate 41 is prepared as shown in FIG.
  • the first conductive layer 1 made of ITO is formed on one surface of the support substrate 41 by a general method such as sputtering.
  • patterning is performed on the ITO to form patterns such as openings 18 and slits 19.
  • a patterning technique to ITO for example, a technique using wet etching, a technique using oxygen plasma etching, and a technique using laser patterning are appropriately employed.
  • the first conductive layer 1 is not limited to the above.
  • the first conductive layer 1 may be formed by directly patterning ITO on the support substrate 41 by a technique using nanoimprint.
  • the photoelectric conversion layer 3 is formed by, for example, depositing an organic film on the support substrate 41 and the first conductive layer 1 by spin coating, and then using oxygen plasma etching and laser patterning to perform fifth inward retraction. This is done by finishing the structure having an end edge 301, a fifth outward retracting end edge 302, an opening 38, and a penetrating part 350 (design display part 35).
  • the photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive layer 1 by a method such as slit coating, capillary coating, or gravure printing. It may be formed by.
  • the second conductive layer 2 is formed.
  • the second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive layer 1 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition.
  • the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having the fourth inner withdrawal edge 201 and the fourth outer withdrawal edge 202 is formed on the photoelectric conversion layer 3.
  • a passivation film 42 is formed.
  • the passivation film 42 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by plasma CVD, for example.
  • a protective resin layer 45 is formed.
  • the protective resin layer 45 is formed by applying a liquid resin material containing, for example, an ultraviolet curable resin on the passivation film 42 by screen printing and irradiating it with ultraviolet rays. Thereby, the protective resin layer 45 having the second end edge 451 and the second outer end edge 452 is obtained.
  • the passivation film 42 is patterned using the protective resin layer 45 as a mask.
  • This patterning is performed, for example, by wet etching using hydrofluoric acid containing 0.55% to 4.5% hydrogen fluoride.
  • hydrofluoric acid hardly dissolves the protective resin layer 45 made of an ultraviolet curable resin, but selectively dissolves the passivation film 42 made of SiN or the like.
  • hydrofluoric acid hardly dissolves the first conductive layer 1 made of ITO or the like.
  • the first end edge 421 and the first outer end edge 422 are formed in the passivation film 42.
  • the first edge 421 coincides with the second edge 451 in plan view.
  • the first edge 421 and the second edge 451 form a continuous surface.
  • the first outer end edge 422 coincides with the second outer end edge 452 in plan view.
  • the first outer end edge 422 and the second outer end edge 452 form a continuous surface.
  • the bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying.
  • the first conductive layer 1 is patterned. This patterning is performed, for example, using aqua regia in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a ratio of 3: 1. By this patterning, portions of the first conductive layer 1 exposed from the bypass conductive portion 5 and the protective resin layer 45 are selectively removed. As a result, the third edge 101 and the like are formed in the first conductive layer 1.
  • an organic thin film solar cell module A5 is obtained.
  • the organic thin film solar cell module A6 can be manufactured in the same manner.
  • the support substrate 41 is exposed in a region adjacent to the second end edge 451 and the second outer end edge 452. In this portion, the passivation film 42 and the protective resin layer 45 are not formed. Therefore, it is possible to finish this portion more transparent, and the display portion 702 can be expressed more clearly.
  • the first conductive layer 1 is not formed on the support substrate 41 except for a small area covered with the bus bar portion 51 among the areas adjacent to the second edge 451 and the first edge 421.
  • the first conductive layer 1 is made of ITO, the first conductive layer 1 is visually recognized as being slightly colored depending on how light hits. In the present embodiment, it is possible to finish the region for displaying the display unit 702 in an even more transparent manner, and a more beautiful appearance can be realized.
  • the fifth inward retracting edge 301 of the photoelectric conversion layer 3 and the fourth inward retracting edge 201 of the second conductive layer 2 are separated from the first end edge 421 and the second end edge 451, thereby The two conductive layers 2 and the photoelectric conversion layer 3 can be prevented from being unduly conducted with the bypass conductive portion 5. Further, since the passivation film 42 is interposed between the fourth inner retracting edge 201 and the fifth inner retracting edge 301 and the first end edge 421 and the second end edge 451, the second conductive layer 2 and the photoelectric conversion layer 3 and the bus bar portion 51 of the bypass conductive portion 5 can be more reliably prevented from short-circuiting.
  • the passivation film 42 having the same shape as that of the protective resin layer 45 can be formed by patterning the passivation film 42 using the protective resin layer 45 as a mask. That is, if the protective resin layer 45 is formed using a material excellent in shape formation such as an ultraviolet curable resin, the passivation film 42 made of a material not necessarily excellent in shape formation can be finished in a desired shape.
  • the protective resin layer 45 may be removed after the passivation film 42 is formed. However, when the protective resin layer 45 is left, the effect of preventing intrusion of moisture and particles into the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3 and the like, and the organic thin film solar cell module A5 The effect of improving strength can be expected.
  • the bypass conductive portion 5 By providing the bypass conductive portion 5, the holes diffused in the first conductive layer 1 can be guided to the collector portion 53 via the bus bar portion 51. Since the bypass conductive portion 5 has a lower resistance than the first conductive layer 1, it is possible to prevent power from being converted into heat. This reduces power generation loss of the organic thin film solar cell module A5 and the organic thin film solar cell module A6 and is suitable for power generation by the power generation region 31 having a larger area.
  • the connecting portion 52 of the bypass conductive portion 5 is not an end face of the first conductive layer 1 but in a plan view of the first conductive layer 1.
  • the structure is in contact with a portion having a significant area (such as the extension 103). This is advantageous for reliable conduction while lowering the contact resistance between the first conductive layer 1 and the bypass conductive portion 5.
  • FIG. 66 shows a modification of the electronic device B5 and the organic thin film solar cell module A5.
  • the third edge 101 of the first conductive layer 1 coincides with the first edge 421 and the second edge 451 in plan view.
  • the inner bus bar portion 51 in the above-described example is not provided.
  • Such a modification is formed by patterning the first conductive layer 1 using aqua regia using the protective resin layer 45 as a mask.
  • FIG. 67 shows a modification of the electronic device B5 and the organic thin film solar cell module A5.
  • the first conductive layer 1 has a third inward retracting edge 102 instead of the third end edge 101.
  • the third inward retracting edge 102 is retracted inward from the first end edge 421 and the second end edge 451 in a plan view.
  • the inner bus bar portion 51 in the above-described example is not provided.
  • Such a modification is manufactured by forming the third inward retracting edge 102 together with the slit 19 and the like after the first conductive layer 1 is formed on the support substrate 41.
  • the manufacturing method of the organic thin film solar cell module, the electronic device, and the organic thin film solar cell module according to the present invention is not limited to the above-described embodiment.
  • the specific configuration of the organic thin film solar cell module, the electronic device, and the method of manufacturing the organic thin film solar cell module according to the present invention can be varied in design in various ways.
  • the electronic device according to the present invention can be applied to various electronic devices that can use solar power generation, such as a portable telephone terminal, and examples thereof include a wrist watch and an electronic calculator.
  • [Appendix 1B] A transparent support substrate; A transparent first conductive layer laminated on the support substrate; A second conductive layer; A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer; A passivation film covering the second conductive layer; With The passivation film has a first edge; The organic thin-film solar cell module in which the support substrate is exposed in a region adjacent to the first edge.
  • Appendix 2B The organic thin-film solar cell module according to appendix 1B, wherein the first conductive layer has a third edge that coincides with the first edge in plan view.
  • the protective resin layer has a second outer end edge located on the opposite side of the second end edge across at least a part of the photoelectric conversion layer in plan view;
  • the passivation film has a first outer end edge that coincides with the second outer end edge in plan view,
  • the first conductive layer has an extension portion extending outward from the second outer end edge and the first outer end edge;
  • the organic thin-film solar cell module according to any one of supplementary notes 16B to 19B, comprising a bypass conductive portion that covers at least a part of the extension portion and is made of a material having a lower resistance than the material of the first conductive layer.
  • the bypass conductive part is the organic thin-film solar cell module according to appendix 20B or 21B, which covers the second outer edge and the first outer edge.
  • the second conductive layer has any one of appendices 20B to 23B having a second outer end edge and a fourth outer retreat end edge that retreats inward from the first outer end edge in a plan view.
  • [Appendix 28B] The organic thin-film solar cell module according to appendix 27B, wherein, in the step of exposing the support substrate, a third edge that coincides with the second edge and the first edge in plan view is formed on the first conductive layer. Manufacturing method.
  • [Appendix 29B] The manufacturing method of the organic thin-film solar cell module according to appendix 28B, wherein the second end edge and the first end edge are annular in plan view.
  • [Appendix 30B] The method for manufacturing an organic thin-film solar cell module according to Appendix 29B, wherein the third end edge is annular in plan view.
  • the said 1st conductive layer is a manufacturing method of the organic thin-film solar cell module in any one of appendix 27B thru
  • [Appendix 32B] The method for manufacturing an organic thin-film solar cell module according to any one of appendices 27B to 31B, wherein the second conductive layer is made of metal.
  • [Appendix 33B] The method for manufacturing an organic thin film solar cell module according to Supplementary Note 32B, wherein the second conductive layer is made of Al.
  • the said protective resin layer is a manufacturing method of the organic thin-film solar cell module in any one of appendix 27B thru
  • Appendix 36B In the step of laminating the protective resin layer, forming a second outer edge located on the opposite side of the second edge with at least a part of the photoelectric conversion layer in plan view, Forming a first outer edge on the passivation film that coincides with the second outer edge in plan view by partially removing the passivation film with the second edge as a boundary; The first conductive layer covers at least a part of the second outer end edge and an extended portion extending outward from the first outer end edge, and is lower than the material of the first conductive layer.
  • a step of forming a bypass conductive portion made of a resistance material The method for manufacturing an organic thin-film solar cell module according to any one of appendices 27B to 35B.
  • Appendix 37B In the step of forming the bypass conductive portion, the organic thin-film solar cell module manufacturing method according to appendix 36B, wherein the bypass conductive portion covers the second outer end edge and the first outer end edge.
  • the said bypass conductive part is a manufacturing method of the organic thin-film solar cell module of Additional remark 36B or 37B containing AgB or carbon.
  • “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
  • FIG. 68 shows an example of an electronic device 100 equipped with the organic thin film solar cell 10 according to the present invention.
  • the electronic device 100 is a desktop electronic calculator (calculator).
  • the electronic device 100 includes a display unit 120, an input unit 130, and the organic thin film solar cell 10 that are disposed on the surface of the housing 110.
  • the display unit 120 is, for example, a liquid crystal display.
  • the input unit 130 is a so-called numeric keypad.
  • the electric power generated by the organic thin film solar cell 10 is used as electric power for calculation and display.
  • the organic thin-film solar cell 10 is incorporated so that the light receiving surface 11 faces the surface of the housing 110.
  • the organic thin film solar cell 10 has a form in which a plurality of rectangular cells 12 are arranged in the horizontal direction, and the surface of each cell 12 is externally provided by the configuration described below, which is characterized by the present invention.
  • a desired design D that can be visually recognized is represented.
  • FIG. 70 shows the structure of the organic thin film solar cell 10A according to the seventh embodiment. It is sectional drawing which follows a LXX-LXX line.
  • FIG. 70 shows the light receiving surface 11 facing downward.
  • the organic thin film solar cell 10A includes a support substrate 200, a first electrode layer 310, a photoelectric conversion layer 400, a second electrode layer 510, a passivation layer 610, a bonding layer 620, and a protective layer 630.
  • the support substrate 200 has a first surface 201 and a second surface 202 on the opposite side, and is made of, for example, transparent glass or resin.
  • the thickness of the support substrate 200 is, for example, 0.05 mm to 2.0 mm, but is not limited thereto.
  • the first electrode layer 310 is formed on the second surface 202 of the support substrate 200.
  • the first electrode layer 310 is transparent, and is made of ITO in this embodiment.
  • the first electrode layer 310 is separated for each cell 12 by a slit 311 penetrating in the thickness direction.
  • the first electrode layer 310 is also provided with a recessed portion (opening) 320 on the surface opposite to the support substrate 200 to form a thin portion 312.
  • the thickness of the general portion 313 of the first electrode layer 310 is, for example, 100 to 200 nm, and the thickness of the thin portion 312 is, for example, 50 to 100 nm. is there.
  • the first electrode layer 310 is a layer in which carriers generated in the photoelectric conversion layer 400 are collected.
  • the photoelectric conversion layer 400 is laminated on the opposite side of the first electrode layer 310 from the support substrate 200.
  • the photoelectric conversion layer 400 is separated for each cell 12 by a slit 401 that planarly matches the slit 311 provided in the first electrode layer 310. Thereby, the end surface of the first electrode layer 310 facing the slit 311 and the end surface of the photoelectric conversion layer 400 facing the slit 401 are flush with each other.
  • the photoelectric conversion layer 400 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power.
  • the specific configuration of the photoelectric conversion layer 400 is not particularly limited, and as an example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first electrode layer 310 side with respect to the bulk heterojunction organic active layer are listed. It consists of.
  • the thickness of the photoelectric conversion layer 400 is, for example, 100 to 200 nm.
  • the photoelectric conversion layer 400 is provided with irregularities 411 reflecting the form of the recessed portions 320 formed in the first electrode layer 310. Note that such unevenness 411 may not be formed in the photoelectric conversion layer 400.
  • a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction.
  • the p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester).
  • the hole transport layer is made of, for example, PEDOT: PSS.
  • Examples of materials used to form the photoelectric conversion layer 400 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), and Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
  • MDMO-PPV poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene
  • PCDTBT poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]
  • PC60BM 6-phenyl-C61-butyric acid methyl ester
  • PC70BM 6-,6-phenyl-C71-butyric acid methyl ester.
  • the second electrode layer 510 is stacked on the photoelectric conversion layer 400 for each cell 12 so as to sandwich the photoelectric conversion layer 400 in the thickness direction with the second surface 202 of the support substrate 200 together with the first electrode layer 310.
  • the second electrode layer 510 is formed of, for example, Al, but the material is not limited, and may be formed of an electrode metal typified by W, Mo, Mn, Mg, Au, and Ag. it can. Accordingly, the second electrode layer 2 is not transparent but opaque in the definition of the present application. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second electrode layer 510 opposite to the support substrate 200.
  • the thickness of the second electrode layer 2 is, for example, 100 to 200 nm.
  • the second electrode layer 510 is a layer in which carriers generated by the photoelectric conversion layer are collected. Similar to the photoelectric conversion layer 400, the second electrode layer 510 is provided with irregularities 511 reflecting the form of the recessed portions 320 formed in the first electrode layer 310. Note that such unevenness 511 may not be formed in the second electrode layer 510.
  • the passivation layer 610 is laminated on the second electrode layer 510, protects the second electrode layer 510 and the photoelectric conversion layer 400, and also enters the slit 311 for separating each cell 12, and the slit 311 Is in close contact with the support substrate 200.
  • the passivation layer 610 is made of, for example, SiN, SiO2, or SiON.
  • the thickness of the passivation layer 42 is, for example, 0.5 ⁇ m to 2.0 ⁇ m, and is thicker than each of the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510.
  • the passivation layer 610 is preferably formed to a thickness that allows the surface to be flat without being affected by the recessed portion 320 provided in the first electrode layer 310.
  • the bonding layer 620 is a layer that bonds the passivation layer 610 and the protective layer 630, and is, for example, a resin-based adhesive layer.
  • the protective layer 630 is provided to protect the organic thin-film solar cell 10A from the side opposite to the support substrate 200.
  • the protective layer 630 is preferably made of glass or a film, but other transparent materials that can protect the organic thin film solar cell 10A can be appropriately employed.
  • the thickness of the protective layer 44 is, for example, 30 ⁇ m to 100 ⁇ m.
  • the thin portion 312 is formed in the first electrode layer 310 by providing the recessed portion (opening portion) 320 on the side opposite to the support substrate 200.
  • This thin portion 312 is for representing the design D that can be visually recognized from the first surface 201 side of the support substrate 200.
  • the support substrate of the first electrode layer 310 As shown in detail in FIG. 70, the support substrate of the first electrode layer 310.
  • a plurality of fine line-shaped concave grooves 321 linearly extending with a width w of, for example, 5 to 20 ⁇ m are formed on the surface opposite to 200 by forming a fine pitch interval p of, for example, 30 to 50 ⁇ m. Yes.
  • the region where the groove 321 is provided can be obtained by the light diffraction action at the step portion in the minute groove 321. It can be visually recognized as a hologram. Therefore, by selecting the planar shape of the region where the plurality of fine grooves 321 as described above are provided, as shown in FIG. 69, the first surface 201 side of the support substrate 200, that is, the organic thin film solar cell
  • the design D such as characters and designs can be represented as a hologram on the light receiving surface 11 of the battery 10A.
  • the photoelectric conversion layer 400 and the second electrode layer 510 are provided with the unevenness 411 and 511 reflecting the shape of the recessed portion 320 provided in the first electrode layer 310. Therefore, when the passivation layer 610, the bonding layer 620, and the protective layer 630 are transparent, even when the organic thin-film solar cell 10A is observed from the back side, as shown in FIG. Appears.
  • a support substrate 200 is prepared, and ITO 300 is formed on the second surface 202 of the support substrate 200 by a general method such as sputtering.
  • the ITO 300 is patterned to form first electrode layers 310 separated for each rectangular cell 12.
  • the first electrode layers 310 are independent from each other, and the adjacent first electrode layers 310 are separated by the slits 311.
  • a patterning technique for ITO for example, a technique using wet etching, a technique using dry etching, and a technique using laser patterning are appropriately employed.
  • the first electrode layer 310 is not limited to the above, and may be formed by directly patterning ITO on the second surface 202 of the support substrate 200 by a printing method.
  • a thin-walled portion 312 is formed in the first electrode layer 310 by providing a concave groove (opening) 321 on the exposed surface (surface opposite to the support substrate 200). Specifically, a plurality of concave grooves 321 are formed in a region that should represent the design D on the first electrode layer 310. As described above, in the present embodiment, the thickness of the first electrode layer 310 is 100 to 200 nm, the plurality of concave grooves 321 are in a line shape having a width w of, for example, 5 to 20 ⁇ m, and the arrangement pitch p is 30 to 50 ⁇ m.
  • the depth of the concave groove 321 is 50 to 100 nm.
  • a method of forming the concave groove 321 having such a fine width w on the first electrode layer 310 having a fine pitch interval p and a minute thickness a laser spot having a predetermined output is formed on the first electrode layer 310. It is appropriate to carry out by scanning.
  • the step of providing the concave groove 321 in the first electrode layer 310 can be performed by dry etching simultaneously with the step of providing the slit 311 in the ITO 300.
  • the etching rates are made different from each other, and the concave groove 321 and the slit 311 having different removal depths are formed simultaneously. can do.
  • a photoelectric conversion layer 400 is formed.
  • the photoelectric conversion layer 400 is formed by, for example, forming an organic film on the support substrate 200 and the first electrode layer 310 by spin coating and then using oxygen plasma etching or laser patterning to form a rectangular first film. This is done by finishing to a planar shape that matches the planar shape of the electrode layer 310.
  • the photoelectric conversion layer 400 is not limited to the above, and an organic film is directly formed on the support substrate 200 and the first electrode layer 310 by a slit coating method, a capillary coating method, a printing method such as gravure printing or screen printing. It may be formed by patterning.
  • a second electrode layer 510 is formed.
  • the second electrode layer 510 is formed by, for example, forming a metal film on the support substrate 200, the first electrode layer 310, and the photoelectric conversion layer 400 by using the above-described metal by vacuum heating vapor deposition, and then, for example, forming a mask layer on the metal film. This is performed by performing patterning by performing etching using. By this patterning, the second electrode layer 510 is formed on the photoelectric conversion layer 400. Thereafter, as shown in FIG. 76, for example, SiN, SiO2, or SiON is formed on the support substrate 200, the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510 by plasma CVD.
  • a passivation layer 610 is formed. Then, the protective layer 44 is bonded to the passivation layer 610 via the bonding layer 620 (FIG. 77). Through the above steps, the organic thin-film solar cell 10A shown in FIG. 70 is obtained.
  • the thin-walled portion 312 is provided by forming the recessed portion (opening) 320 in the first electrode layer 310 between the support substrate 200 and the photoelectric conversion layer 400. Since the design D is configured and the design D is configured to be visible from the support substrate 200 side, the organic thin film solar cell 10 can be laminated without adding an additional member or printing on the outside. The design D can be represented on the light receiving surface 11 of the thin film solar cell 10A. In addition, the design D displayed in this way can maintain the quality of the design D display without causing deterioration or disappearance of the design D due to contact or friction with an external object.
  • the design D as a hologram can be expressed so as to be visible from the light receiving surface 11 by processing the first electrode layer 310, and therefore the organic thin film solar cell 10A. Or it is useful for counterfeit measures of the electronic device 100 provided with this.
  • the design D is configured by providing the thin electrode portion 312 that does not penetrate the first electrode layer 310. There is no need to reduce the effective power generation area of the conversion layer 400. For this reason, even if it is a case where the design D is comprised, the reduction
  • FIG. 79 shows the structure of an organic thin-film solar cell 10B according to the eighth embodiment of the present invention, and corresponds to an enlarged cross section taken along line LXX-LXX in FIG.
  • This organic thin film solar cell 10B has a support substrate 200, a first electrode layer 310, a photoelectric conversion layer 400, a second electrode layer 510, a passivation layer 610, a bonding layer 620, and a protective layer 630.
  • the support substrate 200 has a first surface 201 and a second surface 202 on the opposite side, and is made of, for example, transparent glass or resin.
  • the thickness of the support substrate 200 is, for example, 0.05 mm to 2.0 mm, but is not limited thereto.
  • the first electrode layer 310 is formed on the second surface 202 of the support substrate 200.
  • the first electrode layer 310 is transparent, and is made of ITO in this embodiment.
  • the first electrode layer 310 is separated for each cell 12 by a slit 311 penetrating in the thickness direction.
  • the first electrode layer 310 is also provided with a recessed portion (opening) 320 on the surface on the support substrate 200 side, whereby a thin portion 312 is formed.
  • the thickness of the general portion 313 of the first electrode layer 310 is, for example, 100 to 200 nm, and the thickness of the thin portion 312 is, for example, 50 to 100 nm. is there.
  • the first electrode layer 310 is a layer in which carriers generated in the photoelectric conversion layer 400 are collected.
  • the photoelectric conversion layer 400 is laminated on the opposite side of the first electrode layer 310 from the support substrate 200.
  • the photoelectric conversion layer 400 is separated for each cell 12 by a slit 401 that planarly matches the slit 311 provided in the first electrode layer 310. Thereby, the end surface of the first electrode layer 310 facing the slit 311 and the end surface of the photoelectric conversion layer 400 facing the slit 401 are flush with each other.
  • the photoelectric conversion layer 400 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power.
  • the specific configuration of the photoelectric conversion layer 400 is the same as that described above for the organic thin-film solar cell 10A according to the seventh embodiment.
  • the thickness of the photoelectric conversion layer 400 is, for example, 100 to 200 nm.
  • the second electrode layer 510 is stacked on the photoelectric conversion layer 400 for each cell 12 so as to sandwich the photoelectric conversion layer 400 in the thickness direction with the second surface 202 of the support substrate 200 together with the first electrode layer 310.
  • the second electrode layer 510 is formed of, for example, Al.
  • the material is not limited, and W, Mo, Mn, Mg, Au, and Ag are the same as described in the seventh embodiment. It can be formed of a representative electrode metal. Accordingly, the second electrode layer 2 is not transparent but opaque in the definition of the present application. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second electrode layer 510 opposite to the support substrate 200.
  • the thickness of the second electrode layer 2 is, for example, 100 to 200 nm.
  • the second electrode layer 510 is a layer in which carriers generated by the photoelectric conversion layer are collected.
  • the passivation layer 610 is laminated on the second electrode layer 510, protects the second electrode layer 510 and the photoelectric conversion layer 400, and also enters the slit 311 for separating each cell 12, and the slit 311 Is in close contact with the support substrate 200.
  • the passivation layer 610 is made of, for example, SiN, SiO2, or SiON.
  • the thickness of the passivation layer 610 is, for example, 0.5 ⁇ m to 2.0 ⁇ m, and is thicker than each of the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510.
  • the bonding layer 620 is a layer that bonds the passivation layer 610 and the protective layer 630, and is, for example, a resin-based adhesive layer.
  • the protective layer 630 is provided to protect the organic thin-film solar cell 10B from the side opposite to the support substrate 200.
  • the protective layer 630 is preferably made of glass or a film, but other transparent materials that can protect the organic thin film solar cell 10B can be appropriately employed.
  • the thickness of the protective layer 630 is, for example, 30 ⁇ m to 100 ⁇ m.
  • the thin portion 312 is formed in the first electrode layer 310 by providing the recessed portion (opening portion) 320 on the surface on the support substrate 200 side. As will be described later, the thin portion 312 is for representing the design D that can be viewed from the first surface 201 side of the support substrate 200.
  • a plurality of minute concave grooves 321 having a width w of, for example, 5 to 20 ⁇ m and linearly extending on the support substrate 200 side of the layer 310 are formed at a minute pitch interval p of, for example, 30 to 50 ⁇ m.
  • the region where the concave groove 321 is provided as a hologram due to the light diffraction action at the step portion in the fine concave groove 321. It can be visually recognized. Accordingly, by selecting the planar shape of the region where the plurality of fine grooves 321 as described above are provided, as shown in FIG. 70, the first surface side of the support substrate 200, that is, the organic thin film solar cell.
  • the design D such as characters and designs can be represented as a hologram on the light receiving surface 11 of 10B.
  • groove 321 is provided in the support substrate 200 side of the 1st electrode layer 310, the surface on the opposite side to the support substrate 200 of the 1st electrode layer 310 is made flat. Accordingly, the surfaces of the photoelectric conversion layer 400 and the second electrode layer 610 can be flattened.
  • a support substrate 200 is prepared, and an ITO 300 is formed on the second surface 202 of the support substrate 200 by a general method such as sputtering.
  • the first electrode layer 310 separated for each rectangular cell 12 is formed by patterning the ITO 300.
  • the first electrode layers 310 are independent from each other, and the adjacent first electrode layers 310 are separated by the slits 311.
  • a patterning technique for ITO for example, a technique using wet etching, a technique using dry etching, and a technique using laser patterning are appropriately employed.
  • the first electrode layer 310 is not limited to the above, and may be formed by directly patterning ITO on the second surface 202 of the support substrate 200 by a printing method.
  • a photoelectric conversion layer 400 is formed.
  • the photoelectric conversion layer 400 is formed by, for example, forming an organic film on the support substrate 200 and the first electrode layer 310 by spin coating and then using oxygen plasma etching or laser patterning to form a rectangular first film. This is done by finishing to a planar shape that matches the planar shape of the electrode layer 310.
  • the photoelectric conversion layer 400 is not limited to the above, and an organic film is directly formed on the support substrate 200 and the first electrode layer 310 by a slit coating method, a capillary coating method, a printing method such as gravure printing or screen printing. It may be formed by patterning.
  • a second electrode layer 510 is formed.
  • the second electrode layer 510 is formed by forming a metal film on the support substrate 200, the first electrode layer 310, and the photoelectric conversion layer 400 using, for example, the above-described metal by vacuum heating evaporation.
  • the metal film is patterned by performing etching using, for example, a mask layer.
  • the second electrode layer 510 is formed on the photoelectric conversion layer 400.
  • SiN, SiO2 or SiON is formed over the support substrate 200, the first electrode layer 310, the photoelectric conversion layer 400 and the second electrode layer 510 by, for example, plasma CVD.
  • the passivation layer 610 is formed.
  • a thin-walled portion 312 is formed in the first electrode layer 310 by providing a concave groove (opening) 321 on the surface on the support substrate 200 side.
  • a plurality of concave grooves 321 are formed in a region that should represent the design D on the first electrode layer 310.
  • the thickness of the first electrode layer 310 is 100 to 200 nm
  • the plurality of concave grooves 321 have a width w of, for example, 5 to 20 ⁇ m, and an arrangement pitch p of 30 to 50 ⁇ m. .
  • the depth of the concave groove 321 is 50 to 100 nm.
  • a laser having a predetermined output is applied to the transparent support substrate 200. It is appropriate to irradiate the first electrode layer 310 from the one surface 201 side and scan the laser spot.
  • the protective layer 630 is bonded to the passivation layer 610 via the bonding layer 620 (FIG. 86).
  • the organic thin film solar cell 10B shown in FIG. 79 is obtained.
  • the laser is applied from the first surface side of the support substrate 200 as described above. And after scanning the laser spot, after the first electrode layer 310 is formed, the photoelectric conversion layer 400 is formed, the second electrode layer 510 is formed, or After forming up to the protective layer 630, it may be performed at any time.
  • the concave groove 321 on the support base 200 side is provided in the first electrode layer 310 after the protective layer 630 is formed, the concave groove 321 may be provided in a state where the solar cell 10B is further strengthened by the protective layer 630 in the manufacturing process. Therefore, the manufacturing reliability of the solar cell 10B is improved.
  • the thin portion 312 is formed by forming the concave groove (opening) 321 in the first electrode layer 310 between the support substrate 200 and the photoelectric conversion layer 400. Since the design D is configured and the design D is configured to be visible from the support substrate 200 side, the organic thin film solar cell 10B can be laminated without adding an additional member or printing on the outside. The design D can be represented on the light receiving surface 11 of the thin film solar cell 10B. Further, the design D represented as described above can be maintained in the quality of the design display without causing deterioration or disappearance of the design D due to contact or friction with an external object.
  • the design D can be expressed as a hologram so that the design D can be viewed from the light receiving surface 11 by processing on the first electrode layer 310. This is useful for counterfeit countermeasures of the electronic device 100 having this.
  • the design D is configured by providing the first electrode layer 310 with the thin-walled portion 312 that does not penetrate the first electrode layer 310. There is no need to reduce the effective power generation area of the conversion layer 400. For this reason, even when the design D is configured, reduction in power generation efficiency as the organic thin-film solar cell 10B can be suppressed.
  • the groove (opening) 321 is provided on the surface of the first electrode layer 310 on the support substrate 200 side, the support base 200 and the groove 321 In the enclosed space, light incident from the support substrate 200 side can be scattered. Thereby, the light quantity which injects into the photoelectric converting layer 400 can be increased, and electric power generation efficiency can be improved.
  • FIG. 87 shows a cross-sectional view of an organic thin-film solar cell 10C according to the ninth embodiment of the present invention, and the cross-sectional view corresponds to a cross-sectional view taken along line III-II in FIG.
  • the organic thin film solar cell 10C includes a support substrate 200, a first electrode layer 310, a photoelectric conversion layer 400, a second electrode layer 510, a passivation layer 610, a bonding layer 620, and a protective layer 630.
  • the support substrate 200 has a first surface 201 and a second surface 202 on the opposite side, and is made of, for example, transparent glass or resin.
  • the thickness of the support substrate 200 is, for example, 0.05 mm to 2.0 mm, but is not limited thereto.
  • the first electrode layer 310 is formed on the second surface 202 of the support substrate 200.
  • the first electrode layer 310 is transparent, and is made of ITO in this embodiment.
  • the first electrode layer 310 is separated for each cell 12 by a slit 311 penetrating in the thickness direction.
  • the first electrode layer 310 also has a penetrating portion (opening) 330 penetrating in the thickness direction. The details and technical significance of the through portion 330 will be described later.
  • the thickness of the general portion 313 of the first electrode layer 310 is, for example, 100 to 200 nm.
  • the first electrode layer 310 is a layer in which carriers generated in the photoelectric conversion layer 400 are collected.
  • the photoelectric conversion layer 400 is laminated on the opposite side of the first electrode layer 310 from the support substrate 200.
  • the photoelectric conversion layer 400 is separated for each cell 12 by a slit 401 that planarly matches the slit 311 provided in the first electrode layer 310. Thereby, the end surface of the first electrode layer 310 facing the slit 311 and the end surface of the photoelectric conversion layer 400 facing the slit 401 are flush with each other.
  • the photoelectric conversion layer 400 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power.
  • the specific configuration of the photoelectric conversion layer 400 is the same as that described above for the organic thin-film solar cell 10 according to the seventh embodiment.
  • the thickness of the photoelectric conversion layer 400 is, for example, 100 to 200 nm.
  • the photoelectric conversion layer 400 is provided with irregularities 411 reflecting the form of the recessed portions 320 formed in the first electrode layer 310. Note that such unevenness 411 may not be formed in the photoelectric conversion layer 400.
  • the second electrode layer 510 is laminated on the photoelectric conversion layer 400 for each cell 12 so as to sandwich the photoelectric conversion layer 400 in the thickness direction with the second surface 202 of the support substrate 00 together with the first electrode layer 310.
  • the second electrode layer 510 is formed of, for example, Al.
  • the material is not limited, and W, Mo, Mn, Mg, Au, and Ag are the same as described in the seventh embodiment. It can be formed of a representative conductive metal. Accordingly, the second electrode layer 2 is not transparent but opaque in the definition of the present application. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second electrode layer 510 opposite to the support substrate 200.
  • the thickness of the second electrode layer 2 is, for example, 100 to 200 nm.
  • the second electrode layer 510 is a layer in which carriers generated by the photoelectric conversion layer are collected. Similar to the photoelectric conversion layer 400, the second electrode layer 510 is provided with irregularities 511 reflecting the form of the through portion 330 formed in the first electrode layer 310. Such unevenness 511 may not be formed on the second electrode layer 510.
  • the passivation layer 610 is laminated on the second electrode layer 510, protects the second electrode layer 510 and the photoelectric conversion layer 400, and also enters the slit 311 for separating each cell 12, and the slit 311 Is in close contact with the support substrate 200.
  • the passivation layer 610 is made of, for example, SiN, SiO2, or SiON.
  • the thickness of the passivation layer 42 is, for example, 0.5 ⁇ m to 2.0 ⁇ m, and is thicker than each of the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510.
  • the passivation layer 610 is preferably formed to a thickness that allows the surface to be flat without being affected by the recessed portion 320 provided in the first electrode layer 310.
  • the bonding layer 620 is a layer that bonds the passivation layer 610 and the protective layer 630, and is, for example, a resin-based adhesive layer.
  • the protective layer 630 is provided to protect the organic thin-film solar cell 10C from the side opposite to the support substrate 200.
  • the protective layer 630 is preferably made of glass or a film, but other transparent materials that can protect the organic thin-film solar cell 10C can be appropriately employed.
  • the thickness of the protective layer is, for example, 30 ⁇ m to 100 ⁇ m.
  • the first electrode layer 310 is formed with a penetrating portion (opening) 330 penetrating in the thickness direction.
  • the through portion 330 is for representing the design D that can be viewed from the first surface 201 side of the support substrate 200.
  • the width w is, for example, 5 to 20 ⁇ m.
  • a plurality of fine line-shaped slits 331 extending linearly are formed at a fine pitch interval p of, for example, 30 to 50 ⁇ m.
  • the region where the slit 331 is provided can be visually recognized as a hologram due to the light diffraction action of the fine slit 331. Therefore, by selecting the planar shape of the region where the plurality of fine slits 331 as described above are selected, as shown in FIG. 69, the first surface side of the support substrate 200, that is, the organic thin film solar cell 10C.
  • the design D such as letters and designs can be represented as a hologram on the light receiving surface 11.
  • the design as a hologram appears like the organic thin film solar cell 10A which concerns on 1st Embodiment mentioned above. It is.
  • a support substrate 200 is prepared, and ITO 300 is formed on the second surface 202 of the support substrate 200 by a general method such as sputtering.
  • the ITO 300 is patterned to form the first electrode layer 310 separated for each rectangular cell 12.
  • the first electrode layers 310 are independent from each other, and the adjacent first electrode layers 310 are separated by the slits 311.
  • a patterning technique for ITO for example, a technique using wet etching, a technique using dry etching, and a technique using laser patterning are appropriately employed.
  • the first electrode layer 310 is not limited to the above, and may be formed by directly patterning ITO on the second surface 202 of the support substrate 200 by a printing method.
  • a plurality of fine slits 331 are formed in the first electrode layer 310. Specifically, a plurality of slits 331 are formed in a region that should represent the design D on the first electrode layer 310.
  • the thickness of the first electrode layer 310 is 100 to 200 nm
  • the plurality of slits 331 have a width w of, for example, 5 to 20 ⁇ m, and an arrangement pitch p of 30 to 50 ⁇ m.
  • the step of forming the slit 311 in the ITO 300 to form the first electrode layer 310 separated for each cell 12 (FIG. 89) and the step of forming the slit 331 in the first electrode layer 310 (FIG. 90) are in order. It may be reversed.
  • the step of providing the slit 331 in the first electrode layer 310 can be performed by dry etching simultaneously with the step of providing the slit 311 in the ITO 300.
  • a photoelectric conversion layer 400 is formed.
  • the photoelectric conversion layer 400 is formed by, for example, forming an organic film on the support substrate 200 and the first electrode layer 310 by spin coating and then using oxygen plasma etching or laser patterning to form a rectangular first film. This is done by finishing to a planar shape that matches the planar shape of the electrode layer 310.
  • the photoelectric conversion layer 400 is not limited to the above, and an organic film is directly formed on the support substrate 200 and the first electrode layer 310 by a slit coating method, a capillary coating method, a printing method such as gravure printing or screen printing. It may be formed by patterning.
  • a second electrode layer 510 is formed.
  • the second electrode layer 510 is formed by, for example, forming a metal film on the support substrate 200, the first electrode layer 310, and the photoelectric conversion layer 400 by using the above-described metal by vacuum heating vapor deposition, and then, for example, forming a mask layer on the metal film. This is performed by performing patterning by performing etching using. By this patterning, the second electrode layer 510 is formed on the photoelectric conversion layer 400. Thereafter, as shown in FIG. 93, SiN, SiO2, or SiON is formed on the support substrate 200, the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510, for example, by plasma CVD.
  • the organic thin film solar cell 10C shown in FIG. 96 is obtained.
  • the design D is configured by providing the first electrode layer 310 between the support substrate 200 and the photoelectric conversion layer 400 with the through portion (opening) 330. Since D is configured to be visible from the support substrate 200 side, the light-receiving surface 11 of the organic thin-film solar cell 10 can be obtained without laminating an additional member on the organic thin-film solar cell 10C or printing the outside. Design D can be represented by In addition, the design D displayed in this way can maintain the quality of the design D display without causing deterioration or disappearance of the design D due to contact or friction with an external object.
  • the design D can be represented as a hologram so that the design D can be viewed from the light receiving surface 11 by processing the first electrode layer 310, and therefore the organic thin film solar cell 10C. Or it is useful for counterfeit measures of the electronic device 100 provided with this.
  • the thin portion 312 or the slit 331 provided in the first electrode layer 310 is configured to generate a hologram when viewed from the first surface 201 side of the support substrate 200.
  • the thin-walled portion 312 or the slit 331 is not limited in its planar shape, or is not limited to one that generates a hologram as a set of the thin-walled portion 312 or the slit 331.
  • FIG. 95 is a plan view of an organic thin-film solar cell 10D according to the tenth embodiment of the present invention
  • FIG. 96 is an enlarged cross-sectional view taken along the line XCVI-XCVI of FIG.
  • FIG. The same or equivalent members or portions as those of the organic thin-film solar cell 10A according to the seventh embodiment shown in FIG.
  • a thin-walled portion 312 is formed by providing a recess (opening) 340 corresponding to the contour of the design D to be represented on the opposite side of the first electrode layer 310 from the support substrate 200. .
  • the planar shape of the thin portion 312 can be visually recognized from the first surface of the support substrate 200 as a color tone difference. Thereby, the desired design D can be represented.
  • a support substrate 200 is prepared, and an ITO 300 is formed on the second surface 202 of the support substrate 200 by a general method such as sputtering.
  • the first electrode layer 310 separated for each rectangular cell 12 is formed by patterning the ITO.
  • the first electrode layers 310 are independent from each other, and the adjacent first electrode layers 310 are separated by the slits 311.
  • a patterning technique for ITO for example, a technique using wet etching, a technique using oxygen plasma etching, and a technique using laser patterning are appropriately employed.
  • the first electrode layer 310 is not limited to the above, and may be formed by directly patterning the ITO 300 on the second surface 202 of the support substrate 200 by a printing method.
  • the thin portion 312 is formed by providing the first electrode layer 310 with a recess (opening) 340 corresponding to the contour of the design D to be represented.
  • a method for forming such a thin portion 312 it is appropriate to perform scanning by scanning a laser spot having a predetermined output on the first electrode layer 310.
  • a photoelectric conversion layer 400 is formed.
  • the photoelectric conversion layer 400 is formed by forming an organic film on the support substrate 200 and the first electrode layer 310 by spin coating and then using dry etching or laser patterning to form a rectangular first electrode. This is done by finishing to a planar shape that matches the planar shape of the layer 310.
  • the photoelectric conversion layer 400 is not limited to the above, and an organic film is directly formed on the support substrate 200 and the first electrode layer 310 by a slit coating method, a capillary coating method, a printing method such as gravure printing or screen printing. It may be formed by patterning.
  • a second electrode layer 510 is formed.
  • the second electrode layer 510 is formed by forming a metal film on the support substrate 200, the first electrode layer 310, and the photoelectric conversion layer 400 using, for example, the above-described metal by vacuum heating evaporation.
  • patterning is performed on the metal film by, for example, etching using a mask layer.
  • the second electrode layer 510 is formed on the photoelectric conversion layer 400.
  • SiN, SiO2, or SiON is formed on the support substrate 200, the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510 by, for example, plasma CVD.
  • a passivation layer 610 is formed.
  • the protective layer 44 is bonded to the passivation layer 610 via the bonding layer 620 (FIG. 103).
  • FIG. 104 shows a plan view of organic thin-film solar cells 10E and 10F according to the eleventh and twelfth embodiments of the present invention
  • FIG. 105 shows the structure of the organic thin-film solar cell 10E according to the eleventh embodiment. It is an expanded sectional view in alignment with the CV-CV line.
  • a large number of thin portions 312 are provided by providing recesses (openings) 340 as a large number of dots on the opposite side of the first electrode layer 310 from the support substrate 200, and The set corresponds to the planar shape of the design D to be represented. Even with such a configuration, the design D visible from the light receiving surface 11 of the organic thin film solar cell 10E can be represented. In this case, the design D can be expressed more clearly by filling the concave portions 340 for forming dots with a coloring material.
  • FIG. 106 is a view corresponding to an enlarged cross-sectional view taken along line CV-CV of FIG. 104, showing an organic thin-film solar cell 10F according to the twelfth embodiment.
  • this organic thin film solar cell 10F through portions (openings) 330 as a large number of dots are provided in the first electrode layer 310 so that the set of the large number of dots corresponds to the planar shape of the design D to be represented. ing. Even with such a configuration, the design D visible from the light receiving surface 11 of the organic thin-film solar cell 10F can be represented. In this case, the design D can be expressed more clearly by filling the penetrating portions forming the dots with a coloring material.
  • 107 to 109 show examples in which the organic thin film solar cells 10G and 10H according to the present invention are incorporated in a timepiece as the electronic device 100, and the design D as a dial or a pattern is represented on the light receiving surface.
  • 107 is a plan view of a timepiece as the electronic apparatus 100
  • FIG. 108 is an enlarged sectional view taken along line CVIII-CVIII in FIG. 107
  • FIG. 109 is an enlarged sectional view taken along line CIX-CIX in FIG.
  • the same or equivalent members or parts as those of the organic thin film solar cell 10A according to the seventh embodiment shown in FIG. 108 and 109 show the light receiving surface 11 facing upward.
  • the organic thin film solar cell 10G In the organic thin film solar cell 10G, Roman numerals representing the time are represented as a design D in the cells 12 partitioned into an appropriate shape.
  • the organic thin film solar cell 10G for example, the organic thin film solar cell 10D according to the tenth embodiment shown in FIG. 96 may be adopted, but the organic thin film solar cells 10A to 10C according to other embodiments may be adopted. , 10E, 10F may be employed.
  • the outline of a predetermined width of the symbol of the heart is represented as the design D in the cell 12 partitioned into an appropriate shape.
  • the organic thin film solar cell 10H for example, the organic thin film solar cell 10D according to the tenth embodiment shown in FIG. 96 may be adopted, but the organic thin film solar cells 10A to 10C according to other embodiments may be adopted. , 10E, 10F may be employed.
  • the symbol that can be expressed by the organic thin film solar cell 10 according to the present invention is not limited to the heart shape.
  • FIG. 110 to 112 show an example in which the organic thin film solar cell 10I is arranged on the surface of a smartphone as the electronic device 100 and the design D is represented on the organic thin film solar cell 10I.
  • 107 is a plan view of a smartphone as the electronic device 100
  • FIG. 108 is an enlarged plan view of the organic thin-film solar cell 10I
  • FIG. 112 is an enlarged sectional view taken along line CXII-CXII in FIG.
  • FIG. 112 shows the light receiving surface 11 facing upward.
  • the design D made of letters is applied to the cells 12 partitioned into an appropriate shape. It is expressed as a hologram.
  • the organic thin film solar cell 10I As the structure of the organic thin film solar cell 10I, the organic thin film solar cell 10A according to the seventh embodiment shown in FIG. 70 is adopted, but the organic thin film solar cells 10B to 10F according to other embodiments are used. Can also be adopted.
  • the organic thin-film solar cell according to the present invention is not limited to the materials and numerical values described in the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the invention. Not too long.
  • a transparent support substrate having a first surface and a second surface opposite to the first surface; A transparent first electrode layer disposed on the second surface side of the support substrate; A photoelectric conversion layer made of an organic thin film, laminated on the opposite side of the first electrode layer from the support substrate; A second electrode layer laminated on the opposite side of the photoelectric conversion layer from the support substrate, and an organic thin film solar cell comprising:
  • the said 1st electrode layer is an organic thin-film solar cell in which the opening part contains the opening part and this opening part represents a design in the 1st surface side of the said support substrate.
  • the said opening part is an organic thin-film solar cell of Additional remark 1C in which the outer edge of the planar view comprises a part of outer edge of the design which should represent.
  • [Appendix 3C] The organic thin film solar cell according to appendix 1C, wherein the opening is formed as a set of dots having a predetermined shape in plan view.
  • [Appendix 4C] The organic thin-film solar cell according to attachment 3C, wherein the set of dodds constitutes a part of the design to be represented.
  • [Appendix 9C] The organic thin-film solar cell according to any one of appendices 1C to 8C, wherein the thickness of the first electrode layer other than the opening is 100 to 200 nm.
  • Appendix 10C The organic thin-film solar cell according to appendix 9C, wherein the opening is formed by recessing the first electrode layer by a predetermined depth from the surface opposite to the support substrate.
  • Appendix 11C The organic thin-film solar cell according to appendix 9C, wherein the opening is formed by recessing the first electrode layer by a predetermined depth from the surface on the support substrate side.
  • [Appendix 14C] The organic thin-film solar cell according to any one of appendices 9C to 13C, comprising a passivation layer that covers the second electrode layer on the side opposite to the photoelectric conversion layer.
  • [Appendix 23C] Forming a transparent first electrode layer having a predetermined thickness on the second surface side of the transparent support substrate having the first surface and the second surface opposite to the first surface, and having an opening on the surface; , Forming a photoelectric conversion layer on the first electrode layer; and Forming a second electrode layer on the photoelectric conversion layer;
  • a method for producing an organic thin film solar cell comprising: [Appendix 24C] The step of forming the first electrode layer includes the step of removing the first electrode layer in the thickness direction to form the opening, and the method for manufacturing an organic thin-film solar cell according to attachment 23C.
  • [Appendix 25C] The step of forming the opening is the method for manufacturing an organic thin-film solar cell according to appendix 24C, wherein the first electrode layer is removed by a predetermined depth in the thickness direction.
  • [Appendix 26C] The method of manufacturing an organic thin-film solar cell according to appendix 25C, wherein the step of forming the opening is performed such that the first electrode layer having a thickness of 100 to 200 nm remains in a thin portion having a thickness of 50 to 100 nm.
  • [Appendix 27C] The method of manufacturing an organic thin-film solar cell according to appendix 25C or 26C, wherein the step of forming the opening is performed by removing the first electrode layer from the side opposite to the support substrate.
  • [Appendix 28C] The step of forming the opening is the method for manufacturing an organic thin-film solar cell according to appendix 27C, which is performed after forming the first electrode layer before forming the opening.
  • [Appendix 29C] The step of forming the opening is performed by removing the first electrode layer from the first surface side of the support substrate, and the method for manufacturing an organic thin-film solar cell according to attachment 26C.
  • [Appendix 30C] The method of manufacturing an organic thin-film solar cell according to appendix 29C, wherein the step of forming the opening is performed after the step of forming the second electrode layer with respect to the first electrode layer before the opening is formed. .
  • the step of forming the opening is a method for manufacturing an organic thin-film solar cell according to appendix 24C, wherein the step of forming the opening is performed by forming a through portion that penetrates the first electrode layer in the thickness direction.
  • Appendix 32C The organic thin-film solar cell according to any one of appendices 24C to 31C, wherein the step of forming the opening is formed as a plurality of lines extending in a predetermined direction with a width of 5 to 20 ⁇ m arranged at intervals of 30 to 50 ⁇ m. Manufacturing method.
  • Appendix 33C The method of manufacturing an organic thin-film solar cell according to any one of appendices 24C to 31C, wherein the step of forming the opening is performed by laser irradiation.
  • Appendix 34C An electronic apparatus comprising a housing and comprising the organic thin-film solar cell according to any one of appendices 1C to 22C such that the first surface of the support substrate faces the surface of the housing.
  • “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
  • the electronic device B13 of this embodiment includes an organic thin film solar cell module A13, an organic thin film solar cell module A14, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery. 707 is configured as a portable telephone terminal.
  • the case 61 accommodates other components of the electronic device B13 and is made of a material such as metal, resin, or glass.
  • FIG. 113 is a plan view showing organic thin-film solar cell modules A13 and A14 and an electronic device B13 using them.
  • FIG. 114 is a bottom view showing organic thin-film solar cell modules A13 and A14 and electronic device B13.
  • 115 is a schematic cross-sectional view taken along line CXV-CXV in FIG. 116 is an enlarged cross-sectional view of a main part taken along line CXVI-CXVI in FIG. 113.
  • FIG. 117 is a system configuration diagram showing the electronic apparatus B13. In FIG. 115, only the case 61, the organic thin film solar cell module A13, the organic thin film solar cell module A14, the control unit 701, the display unit 702, and the battery 707 are schematically shown for the sake of understanding.
  • Organic thin film solar cell module A13 and organic thin film solar cell module A14 are power supply modules in electronic device B13, and convert light such as sunlight into electric power. A specific configuration will be described later.
  • the control unit 701 corresponds to an example of a drive unit referred to in the present invention, and is driven by power feeding from the organic thin film solar cell module A13 and the organic thin film solar cell module A14. Note that the controller 701 may be directly fed from the organic thin film solar cell module A13 and the organic thin film solar cell module A14, and the power from the organic thin film solar cell module A13 and the organic thin film solar cell module A14 is supplied to the battery 707. After being charged once, the battery 707 may be driven by power feeding.
  • the control unit 701 includes, for example, a CPU, a memory, an interface, and the like.
  • the display unit 702 is for displaying various types of information on the external appearance of the electronic device B13.
  • the display unit 702 is, for example, a liquid crystal display panel or an organic EL display panel. In the present embodiment, the display unit 702 displays information on the exterior through the organic thin film solar cell module A13.
  • the input unit 703 is for outputting a user operation as an electrical signal to the control unit 701.
  • the input unit 703 is a touch panel laminated on the display unit 702, for example. Note that the display unit 702 and the input unit 703 may be configured integrally.
  • the microphone 704 is a device that converts a user's voice into an electrical signal.
  • the speaker 705 is a device that outputs the voice of the other party and various notification sounds.
  • the wireless communication unit 706 is a device that performs bidirectional wireless communication conforming to the wireless communication standard.
  • the battery 707 is a device that stores electric power for driving the electronic apparatus B13.
  • the battery 707 is configured to be appropriately charged / discharged.
  • the battery 707 is charged by feeding from commercial power using an adapter (not shown) or feeding from the organic thin film solar cell module A13 and the organic thin film solar cell module A14.
  • the organic thin film solar cell module A13 and the organic thin film solar cell module A14 include the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, the passivation layer 42, the protective resin layer 45, and the bypass conductive portion 5. I have.
  • the organic thin-film solar cell module A13 and the organic thin-film solar cell module A14 have a rectangular shape in plan view, but this is an example, and each may have various shapes.
  • the organic thin film solar cell module A13 and the organic thin film solar cell module A14 have the same configuration except for a part thereof. In the following, first, the organic thin film solar cell module A13 will be described.
  • FIG. 118 is an exploded perspective view of a main part showing the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, and the protective resin layer 45 in the organic thin film solar cell module A13.
  • the support substrate 41 is indicated by an imaginary line (two-dot chain line).
  • FIG. 119 is a plan view showing the first conductive layer 1 of the organic thin-film solar cell module A13.
  • FIG. 120 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A13.
  • FIG. 121 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A13.
  • 122 is a plan view showing the protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A13.
  • the support substrate 41 is a member that becomes a base of the organic thin film solar cell module A13.
  • the support substrate 41 is made of, for example, transparent glass or resin.
  • the thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
  • the first conductive layer 1 is formed on the support substrate 41.
  • the first conductive layer 1 is transparent and is made of ITO in this embodiment.
  • the first conductive layer 1 includes a first electrode portion 11, a first end portion 14, a first extension portion 15, a second extension portion 16, a plurality of openings 18 and slits 19. And a third end edge 101 and an extending portion 103.
  • the first conductive layer 1 has a substantially rectangular shape in plan view, but this is an example of the shape of the first conductive layer 1.
  • the shape of the first conductive layer 1 can be set to various shapes.
  • the thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm.
  • the first electrode part 11, the first end part 14, the first extension part 15, and the second extension part 16 are hatched.
  • the first electrode portion 11 is a layer in which holes generated by the photoelectric conversion layer 3 are aggregated, and functions as a so-called anode electrode. In the present embodiment, most of the first conductive layer 1 is a single first electrode portion 11.
  • the first extending portion 15 is a portion extending from the first electrode portion 11 to the outside of the photoelectric conversion layer 3 in plan view.
  • the boundary between the first electrode portion 11 and the first extension portion 15 is indicated by an imaginary line (two-dot chain line).
  • the first end portion 14 is a portion separated from the first electrode portion 11 by the slit 19.
  • the first end portion 14 has, for example, a circular shape in plan view.
  • the first end portion 14 has a shape in which a substantially circular portion and a rectangular portion are combined.
  • the second extending portion 16 extends from the first end portion 14 to the outside of the photoelectric conversion layer 3 in plan view.
  • the boundary between the first end portion 14 and the second extending portion 16 is indicated by an imaginary line (two-dot chain line).
  • the first extending portion 15 and the second extending portion 16 are arranged adjacent to each other.
  • the plurality of openings 18 are openings that penetrate the first conductive layer 1 in the thickness direction.
  • two openings 18 are provided.
  • the upper opening 18 in FIG. 119 is provided to make the speaker 705 function, for example.
  • the largest opening 18 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
  • the third edge 101 is an edge that defines the central opening 18 in the drawing.
  • the third end edge 101 is an end edge surrounding the opening 18 from four directions, and has a rectangular shape in plan view.
  • the third end edge 101 is not limited to a shape surrounding the opening 18 from four directions.
  • the third end edge 101 may be adjacent to the opening 18 from three directions so that the opening 18 opens outward from the first electrode portion 11 in plan view.
  • the third edge 101 may be adjacent to the opening 18 from two or only one side.
  • the support substrate 41 is exposed from the region adjacent to the third edge 101, that is, from the center 18 in the drawing.
  • the third edge 101 is an inner edge of a portion of the first conductive layer 1 that extends from a second edge 451 of a protective resin layer 45 to be described later and a first edge 421 of the passivation layer 42. .
  • the extending portion 103 is a portion extending outward from the passivation layer 42 and the protective resin layer 45. In the present embodiment, the extending portion 103 is provided on substantially the entire outer peripheral edge of the first conductive layer 1.
  • the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1.
  • the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg.
  • the second conductive layer 2 is not transparent.
  • a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41.
  • the thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
  • the second conductive layer 2 has a second electrode portion 21, a second end portion 24, and a plurality of openings 28.
  • the second conductive layer 2 has a substantially rectangular shape in plan view, but this is an example of the shape of the second conductive layer 2.
  • the shape of the second conductive layer 2 can be set to various shapes. In FIG. 121, the second electrode portion 21 and the second end portion 24 are hatched.
  • the second electrode portion 21 is a layer in which electrons generated by the photoelectric conversion layer 3 are collected, and functions as a so-called cathode electrode.
  • the second electrode portion 21 coincides with the first electrode portion 11 in plan view. In the present embodiment, most of the second conductive layer 2 is the second electrode portion 21.
  • the second end portion 24 coincides with the first end portion 14 of the first conductive layer 1 in plan view and is connected to the second electrode portion 21.
  • the shape of the second end portion 24 is indicated by an imaginary line (two-dot chain line).
  • the second end portion 24 is a combination of a substantially circular portion in plan view and a rectangular portion in plan view.
  • the plurality of openings 28 are openings that penetrate the second conductive layer 2 in the thickness direction.
  • two openings 28 are provided.
  • the upper opening 28 in FIG. 121 is provided in order to make the speaker 705 function, for example.
  • the largest opening 28 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
  • the fourth inward retracting edge 201 is an edge that defines the central opening 28 in the drawing.
  • the fourth inward retracting edge 201 is an edge that surrounds the opening 28 from four directions and has a rectangular shape in plan view.
  • the fourth inward retracting edge 201 is not limited to a shape surrounding the opening 28 from four directions.
  • the fourth inward retracting edge 201 may be configured such that the opening 28 is opened outward from the second electrode portion 21 in plan view by adjoining the opening 28 from three directions.
  • the fourth inward retracting edge 201 may be adjacent to the opening 28 from two or only one side.
  • the fourth inward retracting edge 201 is retracted inward (on the opposite side to the direction extending into the opening 18) than the third end edge 101.
  • the fourth outward retracting edge 202 is more inward in plan view than a first outer end edge 422 of a passivation layer 42 to be described later and a second outer end edge 452 of the protective resin layer 45. It is retracted (to the right in FIG. 116).
  • the fourth outward retracting edge 202 has an annular shape in plan view.
  • the photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41.
  • the photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power.
  • the specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of.
  • the photoelectric conversion layer 3 has a rectangular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes.
  • the thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
  • a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction.
  • the p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester).
  • the hole transport layer is made of, for example, PEDOT: PSS.
  • Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
  • MDMO-PPV poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene
  • PCDTBT poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]
  • PC60BM 6-phenyl-C61-butyric acid methyl ester
  • PC70BM 6-,6-phenyl-C71-butyric acid methyl ester
  • the photoelectric conversion layer 3 includes a non-power generation region 30, a power generation region 31 and a design display unit 35, a plurality of openings 38, a fifth inner retraction edge 301, and a fifth outer retraction edge 302.
  • the non-power generation region 30 and the power generation region 31 are hatched with a plurality of discrete points.
  • the design display part 35 is a part that constitutes a design that appears through the first conductive layer 1 and appears on the exterior.
  • the design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look.
  • the design display unit 35 represents an annular shape.
  • the design display unit 35 is configured by a through-hole portion 350.
  • the penetrating part 350 is a part having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a penetrating portion 350 appears through the first conductive layer 1.
  • the penetrating portion 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the through part 350.
  • the power generation region 31 is a region that is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 and contributes to power generation by exhibiting a photoelectric conversion function.
  • the shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view.
  • the non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view. 1 overlaps the first end 14 of the first. The first end portion 14 is in contact with the second end portion 24 of the second conductive layer 2, and the aggregated holes and electrons are immediately combined. For this reason, the non-power generation region 30 does not contribute to power generation. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
  • the non-power generation region 30 is an end region 34.
  • the end region 34 has a penetrating portion 350 (design display portion 35).
  • the end region 34 includes a through portion 350 (design display portion 35) included in the first end portion 14 of the first conductive layer 1 in plan view, and overlaps the first end portion 14 of the first conductive layer 1. ing.
  • the end region 34 overlaps the second end 24 of the second conductive layer 2.
  • the first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other through the through portion 350 of the end region 34.
  • the plurality of openings 38 are openings that penetrate the photoelectric conversion layer 3 in the thickness direction.
  • two openings 38 are provided.
  • the upper opening 38 in FIG. 120 is provided to make the speaker 705 function, for example.
  • the largest opening 38 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
  • the fifth inward retracting edge 301 is an edge that defines the central opening 38 in the drawing.
  • the fifth inward retracting edge 301 is an edge that surrounds the opening 38 from four directions and has a rectangular ring shape in plan view.
  • the fifth inward retracting edge 301 is not limited to a shape surrounding the opening 38 from four directions.
  • the fifth inward retracting edge 301 may be configured such that the opening 38 is opened outward from the power generation region 31 in a plan view by adjoining the opening 38 from three directions.
  • the fifth inward retracting edge 301 may be provided in two or only one with respect to the opening 38.
  • the fifth inward retracting edge 301 is retracted inward (opposite to the direction extending into the opening 18) than the third end edge 101.
  • the fifth outer retreat end edge 302 is inward in a plan view than a first outer end edge 422 of a passivation layer 42 and a second outer end edge 452 of the protective resin layer 45 described later. It is retracted (to the right in FIG. 116).
  • the fifth outward retracting edge 302 is annular in plan view.
  • the first extending portion 15 is connected to the first electrode portion 11 in the organic thin film solar cell module A13.
  • the second end portion 24 is connected to the second electrode portion 21.
  • the second end portion 24 is in contact with the first end portion 14 through the through portion 350 of the end region 34.
  • a second extending portion 16 is connected to the first end portion 14.
  • the 1st extension part 15 and the 2nd extension part 16 function as an output terminal of organic thin film solar cell module A13.
  • the passivation layer 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3.
  • the passivation layer 42 is made of, for example, SiN or SiON.
  • the thickness of the passivation layer 42 is, for example, 0.5 ⁇ m to 2.0 ⁇ m. In the present embodiment, the thickness is, for example, about 1.5 ⁇ m.
  • the protective resin layer 45 is a layer that covers the passivation layer 42.
  • the protective resin layer 45 is made of, for example, an ultraviolet curable resin.
  • the thickness of the protective resin layer 45 is, for example, 3 ⁇ m to 20 ⁇ m. In the present embodiment, the thickness is, for example, about 10 ⁇ m.
  • the protective resin layer 45 has a plurality of openings 458, a second end edge 451, and a second outer end edge 452. In FIG. 122, the protective resin layer 45 is hatched.
  • the plurality of openings 458 is a mode in which a part of the protective resin layer 45 is removed, and penetrates the protective resin layer 45.
  • two openings 458 are provided.
  • the upper opening 458 in the drawing is provided to allow the speaker 705 to function, for example.
  • the largest opening 458 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
  • the second edge 451 is an edge that defines the central opening 458 in the drawing.
  • the second end edge 451 is an end edge that surrounds the opening 458 from four directions, and has a rectangular ring shape in plan view.
  • the second end edge 451 is not limited to a shape surrounding the opening 458 from four sides.
  • the second edge 451 may be adjacent to the opening 458 from three directions, so that the opening 458 opens outward from the protective resin layer 45 in plan view.
  • the second end edge 451 may be provided in two or only one with respect to the opening 458.
  • the second outer end edge 452 is located on the opposite side of the second end edge 451 across at least a part of the photoelectric conversion layer 3 in plan view, and in this embodiment, the outer peripheral end of the protective resin layer 45. It is an edge.
  • the passivation layer 42 has a first edge 421 and a first outer edge 422.
  • the first end edge 421 coincides with the second end edge 451 in plan view. In the present embodiment, the first end edge 421 forms a surface continuous with the second end edge 451.
  • the first outer end edge 422 coincides with the second outer end edge 452 in plan view. In the present embodiment, the first outer end edge 422 forms a surface that is continuous with the second outer end edge 452.
  • a part of the support substrate 41 is exposed as an exposed region 411 from an opening 458 that is a region surrounded by the second end edge 451 and the first end edge 421.
  • the exposed region 411 is not covered with the first conductive layer 1 or the like, and the surface of the support substrate 41 is directly exposed.
  • the bypass conductive portion 5 is for configuring a path having a lower resistance than the first conductive layer 1 for collecting holes that have reached the first conductive layer 1.
  • the bypass conductive portion 5 includes two bus bar portions 51, a plurality of connecting portions 52, and two pole collecting portions 53.
  • the bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
  • one bus bar portion 51 covers the second end edge 451 and the first end edge 421 over the entire length.
  • the bus bar portion 51 covers a portion of the first conductive layer 1 located between the third end edge 101 and the first end edge 421 (second end edge 451). Further, the inner edge of the bus bar portion 51 coincides with the third edge 101 in plan view.
  • the other bus bar portion 51 covers the second outer end edge 452 and the first outer end edge 422 over the entire length.
  • the bus bar portion 51 covers the extending portion 103 of the first conductive layer 1. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
  • the plurality of connecting portions 52 are portions formed on the protective resin layer 45, and connect the inner bus bar portion 51 in FIG. 122 and the outer connecting portion 52 in the drawing.
  • One of the two current collectors 53 is electrically connected to the first conductive layer 1, and the other is electrically connected to the second conductive layer 2.
  • FIG. 123 is a plan view showing the first conductive layer 1 of the organic thin-film solar cell module A14.
  • FIG. 124 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A14.
  • FIG. 125 is a plan view showing the second conductive layer 2 of the organic thin-film solar cell module A14.
  • 126 is a plan view showing the protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A14.
  • the opening 18, the opening 28, the opening 38, the opening 458 and the like for displaying the display portion 702 on the appearance are not provided.
  • the 3rd edge 101, the 4th inward retracting edge 201, the 5th inward retracting edge 301, the 1st end edge 421, and the 2nd end edge 451 are not provided.
  • the bypass conductive portion 5 has a bus bar portion 51 along the outer periphery, and does not have a connecting portion 52.
  • the photoelectric conversion layer 3 is provided with a plurality of through portions 350 (35).
  • Each of these penetrating portions 350 represents an alphabet.
  • the point where the first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other using the through portion 350 is the same as that of the organic thin film solar cell module A13. .
  • FIGS. 127 to 134 show a process of generating a cross-sectional structure taken along the line CXVI-CXVI of the electronic apparatus B13 shown in FIG.
  • a support substrate 41 is prepared as shown in FIG.
  • the first conductive film 10 made of ITO is laminated on one surface of the support substrate 41 by a general method such as sputtering.
  • patterning is performed on the ITO to form patterns such as openings 18 and slits 19.
  • a patterning technique to ITO for example, a technique using wet etching, a technique using oxygen plasma etching, and a technique using laser patterning such as Green laser light are appropriately employed.
  • the 1st electrically conductive film 10 is not restricted above, For example, you may make it form by patterning ITO directly on the support substrate 41 by the method using nanoimprint.
  • the photoelectric conversion layer 3 is formed by, for example, depositing an organic film on the support substrate 41 and the first conductive film 10 by spin coating and then using oxygen plasma etching and laser patterning to perform fifth inward retraction. This is done by finishing the structure having an end edge 301, a fifth outward retracting end edge 302, an opening 38, and a penetrating part 350 (design display part 35).
  • the photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive film 10 by a technique such as a slit coating method, a capillary coating method, or gravure printing. It may be formed by.
  • the second conductive layer 2 is formed.
  • the second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive film 10 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition.
  • the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having the fourth inner withdrawal edge 201 and the fourth outer withdrawal edge 202 is formed on the photoelectric conversion layer 3.
  • an insulating film 420 is formed.
  • the insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
  • a protective resin layer 45 is formed.
  • the protective resin layer 45 is formed by applying a liquid resin material containing, for example, an ultraviolet curable resin on the insulating film 420 by screen printing and irradiating it with ultraviolet rays. Thereby, the protective resin layer 45 having the second end edge 451 and the second outer end edge 452 is obtained.
  • the insulating film 420 is patterned using the protective resin layer 45 as a mask.
  • This patterning is performed, for example, by wet etching using hydrofluoric acid containing 0.55% to 4.5% hydrogen fluoride.
  • hydrofluoric acid does not substantially dissolve the protective resin layer 45 made of an ultraviolet curable resin, but selectively dissolves the insulating film 420 made of SiN or the like. Further, hydrofluoric acid hardly dissolves the first conductive film 10 made of ITO or the like.
  • a passivation layer 42 having a first edge 421 and a first outer edge 422 is formed.
  • the first edge 421 coincides with the second edge 451 in plan view.
  • the first edge 421 and the second edge 451 form a continuous surface.
  • the first outer end edge 422 coincides with the second outer end edge 452 in plan view.
  • the first outer end edge 422 and the second outer end edge 452 form a continuous surface.
  • the bypass conductive portion 5 is formed.
  • the bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying.
  • the first conductive film 10 is patterned. This patterning is performed, for example, using aqua regia in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a ratio of 3: 1. By this patterning, portions of the first conductive film 10 exposed from the bypass conductive portion 5 and the protective resin layer 45 are selectively removed. As a result, the first conductive layer 1 having the third edge 101 and the like is formed. By passing through the above process, organic thin-film solar cell module A13 is obtained.
  • the organic thin film solar cell module A14 can be manufactured in the same manner.
  • the support substrate 41 is exposed in a region adjacent to the second end edge 451 and the second outer end edge 452.
  • the passivation layer 42 and the protective resin layer 45 are not formed. Therefore, it is possible to finish this portion more transparent, and the display portion 702 can be expressed more clearly.
  • the first conductive layer 1 is not formed on the support substrate 41 except for a small area covered with the bus bar portion 51 among the areas adjacent to the second edge 451 and the first edge 421.
  • the first conductive layer 1 is made of ITO, the first conductive layer 1 is visually recognized as being slightly colored depending on how light hits. In the present embodiment, it is possible to finish the region for displaying the display unit 702 in an even more transparent manner, and a more beautiful appearance can be realized.
  • the fifth inward retracting edge 301 of the photoelectric conversion layer 3 and the fourth inward retracting edge 201 of the second conductive layer 2 are separated from the first end edge 421 and the second end edge 451, thereby The two conductive layers 2 and the photoelectric conversion layer 3 can be prevented from being unduly conducted with the bypass conductive portion 5. Further, since the passivation layer 42 is interposed between the fourth inner retracting edge 201 and the fifth inner retracting edge 301 and the first end edge 421 and the second end edge 451, the second conductive layer 2 and the photoelectric conversion layer 3 and the bus bar portion 51 of the bypass conductive portion 5 can be more reliably prevented from short-circuiting.
  • the passivation layer 42 having the same shape as the protective resin layer 45 can be formed by patterning the insulating film 420 using the protective resin layer 45 as a mask. That is, if the protective resin layer 45 is formed using a material excellent in shape formation such as an ultraviolet curable resin, the passivation layer 42 made of a material not necessarily excellent in shape formation can be finished in a desired shape.
  • the protective resin layer 45 may be removed after the passivation layer 42 is formed. However, when the protective resin layer 45 is left, the effect of preventing intrusion of moisture and particles into the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3 and the like, and the organic thin film solar cell module A13 The effect of improving strength can be expected.
  • the bypass conductive portion 5 By providing the bypass conductive portion 5, the holes diffused in the first conductive layer 1 can be guided to the collector portion 53 via the bus bar portion 51. Since the bypass conductive portion 5 has a lower resistance than the first conductive layer 1, it is possible to prevent power from being converted into heat. This reduces power generation loss of the organic thin film solar cell module A13 and the organic thin film solar cell module A14, and is suitable for power generation by the power generation region 31 having a larger area.
  • the connecting portion 52 of the bypass conductive portion 5 is not an end face of the first conductive layer 1 but in a plan view of the first conductive layer 1.
  • the structure is in contact with a portion having a significant area (such as the extension 103). This is advantageous for reliable conduction while lowering the contact resistance between the first conductive layer 1 and the bypass conductive portion 5.
  • FIG. 135 shows a modification of the electronic device B13 and the organic thin film solar cell module A13.
  • the third edge 101 of the first conductive layer 1 coincides with the first edge 421 and the second edge 451 in plan view.
  • the inner bus bar portion 51 in the above-described example is not provided.
  • Such a modification is formed by applying patterning using aqua regia to the first conductive film 10 described above using the protective resin layer 45 as a mask.
  • FIG. 136 shows a modification of the electronic device B13 and the organic thin film solar cell module A13.
  • the first conductive layer 1 has a third inward retracting edge 102 instead of the third end edge 101.
  • the third inward retracting edge 102 is retracted inward from the first end edge 421 and the second end edge 451 in a plan view.
  • the inner bus bar portion 51 in the above-described example is not provided.
  • Such a modification is manufactured by forming the third inward retracting edge 102 together with the slit 19 and the like after laminating the first conductive film 10 on the support substrate 41.
  • FIGS. 137 to 139 show an organic thin film solar cell module according to a fifteenth embodiment of the present invention.
  • the organic thin-film solar cell module A15 of this embodiment includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation layer 42, a protective resin layer 45, and a bypass conductive portion 5.
  • the planar view shape of the organic thin film solar cell module A15 is not particularly limited, and the illustrated example is an example in the case of the same planar view shape as the organic thin film solar cell module A13 described above.
  • FIG. 137 is an enlarged cross-sectional view of a main part corresponding to FIG. 116 in the organic thin film solar cell module A13.
  • FIG. 138 is a plan view of relevant parts showing the protective resin layer and the bypass conductive portion of the organic thin-film solar cell module A15.
  • FIG. 139 is an enlarged plan view of a main part in which the protective resin layer 45 and the bypass conductive portion 5 are omitted.
  • the first edge 421 and the first outer edge 422 of the passivation layer 42 of the present embodiment are uneven end faces. Further, as a whole, the first edge 421 is inclined in a direction away from the third edge 101 in plan view as the distance from the support substrate 41 in the thickness direction of the support substrate 41 is increased. Further, the first outer end edge 422 as a whole is inclined in a direction away from the extending portion 103 of the first conductive layer 1 as it is separated from the support substrate 41 in the thickness direction of the support substrate 41.
  • the first end edge 421 of the present embodiment has a non-linear shape separated from the third end edge 101 in plan view.
  • the first end edge 421 has, for example, a shape in which a plurality of broken lines and curves are combined.
  • the first outer end edge 422 has a linear shape in plan view.
  • the bypass conductive part 5 has two bus bar parts 51 and a connecting part 52.
  • the bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
  • One bus bar portion 51 covers the first edge 421 of the passivation layer 42 over the entire length.
  • the bus bar portion 51 covers a portion of the first conductive layer 1 located between the third end edge 101 and the first end edge 421. Further, the inner end edge of the bus bar portion 51 protrudes from the third end edge 101 in plan view. Accordingly, the bus bar portion 51 is in direct contact with the support substrate 41.
  • the other bus bar portion 51 covers the first outer end edge 422 of the passivation layer 42 over the entire length.
  • the bus bar portion 51 covers the extending portion 103 of the first conductive layer 1.
  • the bus bar portion 51 is in direct contact with the support substrate 41. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
  • the connecting part 52 is a part formed on the surface 423 of the passivation layer 42.
  • the connection part 52 connects the bus bar part 51 to parts other than the bus bar part 51 and the connection part 52 of the two bus bar parts 51 or the bypass conductive part 5, for example.
  • the protective resin layer 45 covers the passivation layer 42 and the bypass conductive portion 5, and is made of, for example, an ultraviolet curable resin.
  • the protective resin layer 45 may also serve as a transparent bonding layer for bonding the organic thin film solar cell module A15 and the display unit 702 described above.
  • the second end edge 451 and the second outer end edge 452 of the protective resin layer 45 extend from a portion of the surface 423 of the passivation layer 42 exposed from the bus bar portion 51 in a plan view, and passivated. It exceeds the first edge 421 and the first outer edge 422 of the layer 42 and the bypass conductive portion 5.
  • the protective resin layer 45 has a portion that directly contacts the support substrate 41. Further, the protective resin layer 45 is in close contact with a portion of the surface 423 of the passivation layer 42 exposed from the bypass conductive portion 5.
  • FIG. 137 is shown upside down for convenience of understanding.
  • the support substrate 41 shown in FIG. 127 is prepared. Then, as shown in FIG. 128, the first conductive film 10 made of ITO is laminated on one surface of the support substrate 41 by a general method such as sputtering. Next, the photoelectric conversion layer 3 is formed as shown in FIG. 129, and the second conductive layer 2 is formed as shown in FIG.
  • the first conductive film 10 is patterned by a technique using laser patterning using laser light Lz1. Thereby, a slit 191 and a slit 192 are formed in the first conductive film 10.
  • the laser beam Lz1 is not particularly limited as long as the first conductive film 10 can be subjected to laser patterning. For example, an IR laser beam can be used.
  • the edges of the first conductive film 10 constituting the slit 191 the one located on the second conductive layer 2 and the photoelectric conversion layer 3 side shown is the third edge 101.
  • a portion of the first conductive film 10 between the slit 192 and the fifth outer retraction edge 302 of the photoelectric conversion layer 3 becomes an extension portion 103.
  • patterning for forming the slit 191 and the slit 192 in the first conductive film 10 may be performed.
  • a technique used for the patterning for example, a technique using wet etching, a technique using oxygen plasma etching, or the like is appropriately employed.
  • the first conductive film 10 is not limited to the above, and may be formed by patterning ITO directly on the support substrate 41 by, for example, a technique using nanoimprint.
  • an insulating film 420 is formed.
  • the insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive film 10, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
  • a step of exposing the support substrate 41 in a region adjacent to the edge 421 is performed.
  • the step of exposing the support substrate 41 is performed by irradiating the first conductive film 10 with the laser light Lz2 through the insulating film 420, as shown in FIG.
  • a process of partially removing the insulating film 420 is included.
  • a hatched portion of a plurality of relatively dark discrete points in the first conductive film 10 represents a portion irradiated with the laser light Lz2.
  • a hatched portion of a plurality of relatively thin discrete points in the insulating film 420 represents a portion that is removed due to irradiation with the laser light Lz2.
  • the method is not limited to the method using the laser beam Lz2, and for example, a method using etching may be selected.
  • the laser beam Lz2 for example, an IR laser beam having a wavelength of about 1,064 nm is selected.
  • the portion of the first conductive film 10 irradiated with the laser light Lz2 exhibits a behavior that volatilizes instantaneously when significant energy is applied.
  • the wavelength of the laser beam Lz2 described above is selected such that the insulating film 420 is less likely to absorb than the first conductive film 10. For this reason, the insulating film 420 is not directly destroyed by the laser beam Lz2. However, the portion of the insulating film 420 that contacts the first conductive film 10 is supported by the support substrate 41 via the first conductive film 10. When the first conductive film 10 is volatilized by irradiation with the laser beam Lz2, a part of the insulating film 420 is not supported by the support substrate 41.
  • the insulating film 420 overlapping the portion of the first conductive film 10 irradiated with the laser light Lz2 is the first conductive film. Part of it is scattered by the pressure due to volatilization of 10.
  • the portion of the insulating film 420 adjacent to the portion of the first conductive film 10 irradiated with the laser light Lz2 is scattered due to the volatility of the first conductive film 10. did.
  • the portion of the insulating film 420 that is scattered due to the irradiation of the laser beam Lz2 is hatched with a plurality of relatively thin discrete points.
  • the scattered portion of the insulating film 420 exists on the second conductive layer 2 and photoelectric conversion layer 3 side beyond the slit 191 and the slit 192.
  • the size and position of the slit 191 and the slit 192 and the irradiation range and output of the laser beam Lz2 are set so that the passivation layer 42 is not destroyed to the extent that the second conductive layer 2 and the photoelectric conversion layer 3 are partially exposed. Adjust as appropriate. As a result, the edge located on the slit 191 side of the insulating film 420 becomes the first edge 421, and the edge located on the slit 192 side becomes the first outer edge 422. Moreover, the hatching part which consists of several discrete points adjacent to the slit 191 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2.
  • the edge located in the photoelectric conversion layer 3 side in planar view with respect to the slit 191 in the first conductive film 10 becomes the third edge 101.
  • the hatching part which consists of a some discrete point adjacent to the slit 192 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2.
  • a part of the insulating film 420 adjacent to the slit 192 is scattered with the irradiation of the laser light Lz 2, so that a part of the first conductive film 10 adjacent to the slit 192 is exposed from the passivation layer 420. This part becomes the extension part 103.
  • the first edge 421 and the first outer edge 422 are obtained.
  • a passivation layer 42 is formed.
  • the first conductive layer 1 having portions extending from the first end edge 421 and the first outer end edge 422 is formed.
  • the third end edge 101 and the extending portion 103 are formed.
  • a cleaning process using aqua regia may be performed, for example.
  • the bypass conductive portion 5 is formed as shown in FIG.
  • the bypass conductive portion 5 is formed.
  • the bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying.
  • the bypass conductive portion 5 is formed so as to cover a portion of the first conductive layer 1 extending from the passivation layer 42.
  • the bypass conductive portion 5 is preferably formed so as to directly touch the support substrate 41. Thereby, the bypass conductive part 5 having the bus bar part 51 and the connecting part 52 is obtained.
  • a protective resin layer 45 is formed so as to cover the bypass conductive portion 5 and the passivation layer 42.
  • the protective resin layer 45 is formed by, for example, applying a liquid resin material containing an ultraviolet curable resin on the passivation layer 42 by screen printing and irradiating it with ultraviolet rays.
  • the organic thin film solar cell module A15 shown in FIG. 137 is completed.
  • a protective resin layer 45 that covers the bypass conductive portion 5 may be further provided.
  • bypass conductive portion 5 is covered with the protective resin layer 45, it is possible to avoid the bypass conductive portion 5 being exposed to the outside air. Thereby, it can suppress that the bypass conductive part 5 corrodes etc., and low resistance by the bypass conductive part 5 can be maintained over a longer period of time.
  • the passivation layer 42 is removed by utilizing volatilization of the first conductive layer 1 generated by irradiating the first conductive layer 1 with the laser light Lz2. Therefore, there is no need for a dedicated laser beam or drug for removing the passivation layer 42. This is preferable for reducing manufacturing costs and manufacturing time.
  • IR laser light as the laser light Lz2
  • SiN which is an example of the material of the insulating film 420, transmits light having a wavelength longer than 400 nm. For this reason, when the insulating film 420 is made of SiN, Green laser light having a wavelength of 532 nm may be used as the laser light Lz2. On the other hand, when UV laser light having a wavelength of 355 nm is used as the laser light Lz2, the insulating film 420 and the first conductive film 10 absorb the laser light Lz2, and therefore these can be removed at once. it can.
  • the partial removal of the passivation layer 42 and the first conductive layer 1 is performed using a laser beam Lz2.
  • the laser light Lz2 can control the irradiation region more accurately. Therefore, it is suitable for removing a desired portion of the passivation layer 42 and the first conductive layer 1.
  • the behavior that the passivation layer 42 adjacent to the region irradiated with the laser beam Lz2 in the first conductive layer 1 is destroyed is used.
  • the portion of the first conductive layer 1 exposed from the passivation layer 42 in FIG. 143 is removed even though the portion of the passivation layer 42 covering the portion is not irradiated with the laser beam Lz2. .
  • the passivation layer 42 can be appropriately removed while avoiding undue destruction of the portion exposed from the passivation layer 42 after the first conductive layer 1.
  • the slit 191 and the slit 192 in the first conductive layer 1 it is possible to avoid that the region of the passivation layer 42 affected by the volatilization of the first conductive layer 1 is unreasonably spread over a wide area. . Further, by providing the slit 191 and the slit 192, in the step of partially removing the first conductive film 10 shown in FIGS. 142 and 143, a part of the first conductive film 10 is formed in the region to be removed. Even if this remains, it can be avoided that the remaining portion and the first conductive layer 1 are unintentionally conducted.
  • the part located in the other side of the photoelectric converting layer 3 across the slit 192 among the 1st electrically conductive films 10 may remain
  • This portion is prevented from conducting to the first conductive layer 1 by providing the slit 192. Further, if the removal of this portion is omitted, the manufacturing time can be shortened.
  • the structure which provides the slit 191 and the slit 192 is a suitable example, and the structure which does not provide these may be sufficient.
  • FIG. 145 shows a modification of the organic thin film solar cell module A15.
  • the protective resin layer 45 has a non-light-transmitting part 454 and a light-transmitting part 455.
  • the non-light-transmissive portion 454 overlaps the bypass conductive portion 5 in a plan view and is provided in a region closer to the first outer end edge 422 than the first end edge 421.
  • the non-translucent portion 454 is made of a non-translucent material, for example, white resin.
  • the translucent portion 455 is provided in a region including a region located on the opposite side to the first outer end edge 422 with respect to the first end edge 421.
  • the translucent part 455 is formed so as to straddle the bus bar part 51 on the right side in the drawing. A part of the translucent portion 455 is in contact with the support substrate 41. Also according to this modification, the bypass conductive portion 5 can be protected. Moreover, by having the non-light-transmissive part 454, it can suppress that the bypass conductive part 5 deteriorates by receiving light, such as an ultraviolet-ray.
  • the manufacturing method of the organic thin film solar cell module, the electronic device, and the organic thin film solar cell module according to the present invention is not limited to the above-described embodiment.
  • the specific configuration of the organic thin film solar cell module, the electronic device, and the method of manufacturing the organic thin film solar cell module according to the present invention can be varied in design in various ways.
  • the electronic device according to the present invention can be applied to various electronic devices that can use solar power generation, such as a portable telephone terminal, and examples thereof include a wrist watch and an electronic calculator.
  • [Appendix 1D] A transparent support substrate; A transparent first conductive layer laminated on the support substrate; A second conductive layer; A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer; A passivation layer covering the second conductive layer; With The passivation layer has a first edge; The organic thin-film solar cell module in which the support substrate is exposed in a region adjacent to the first edge.
  • Appendix 2D The organic thin-film solar cell module according to appendix 1D, wherein the first conductive layer has a third edge that coincides with the first edge in plan view.
  • the protective resin layer has a second outer end edge located on the opposite side of the second end edge across at least a part of the photoelectric conversion layer in plan view;
  • the passivation layer has a first outer edge that coincides with the second outer edge in plan view,
  • the first conductive layer has an extension portion extending outward from the second outer end edge and the first outer end edge;
  • the organic thin-film solar cell module according to any one of supplementary notes 16D to 19D, comprising a bypass conductive portion that covers at least a part of the extension portion and is made of a material having a lower resistance than the material of the first conductive layer.
  • [Appendix 21D] The organic thin film solar cell module according to appendix 20D, wherein the second outer edge and the first outer edge form a continuous surface.
  • the bypass conductive part is the organic thin-film solar cell module according to appendix 20D or 21D, which covers the second outer edge and the first outer edge.
  • [Appendix 23D] The organic thin-film solar cell module according to any one of appendices 20D to 22D, wherein the bypass conductive portion includes Ag or carbon.
  • the passivation layer has a first outer end edge located on the opposite side of the first end edge across at least a part of the photoelectric conversion layer in plan view,
  • the first conductive layer has an extending portion extending outward from the first outer edge,
  • a bypass conductive portion that covers at least a portion of the extension and is made of a material having a lower resistance than the material of the first conductive layer;
  • the bypass conductive part is the organic thin-film solar cell module according to appendix 24D, which covers the first outer end edge.
  • the bypass conductive part is the organic thin-film solar cell module according to appendix 24D or 25D, containing Ag or carbon.
  • the protective resin layer includes a non-light-transmitting portion that overlaps the bypass conductive portion in a plan view and is provided in a region closer to the first outer end edge than the first end edge.
  • the non-light-transmitting portion is an organic thin-film solar cell module according to appendix 27D, which is white.
  • the second conductive layer has any one of appendices 20D to 28D having a second outer end edge and a fourth outer retreat end edge retracted inward from the first outer end edge in a plan view.
  • the organic thin film solar cell module described.
  • the photoelectric conversion layer according to any one of appendices 20D to 29D, which has a second outer retreat edge and a fifth outer retreat edge that retreats inward from the first outer end edge in a plan view.
  • Organic thin-film solar cell module [Supplementary Note 31D] An organic thin-film solar cell module according to any one of Supplementary Notes 1D to 30D; A drive unit driven by feeding from the organic thin film solar cell module; An electronic device.
  • [Appendix 32D] Laminating a transparent first conductive film on a transparent support substrate; Laminating a photoelectric conversion layer made of an organic thin film on the first conductive film; Laminating a second conductive layer on the photoelectric conversion layer; Laminating an insulating film covering the second conductive layer; Including forming a passivation layer having a first edge by partially removing the insulating film and forming a first conductive layer by partially removing the first conductive film, and adjacent to the first edge And a step of exposing the support substrate in the region, and a method of manufacturing an organic thin film solar cell module.
  • the step of exposing the support substrate includes: Forming the passivation layer having the first edge coincident with the second edge in plan view by partially removing the insulating film with the second edge as a boundary; Forming the first conductive layer by removing portions of the first conductive film exposed from the first edge and the second edge of the first conductive film, and the organic thin-film solar cell module according to appendix 32D Manufacturing method.
  • [Appendix 34D] The organic thin-film solar cell according to appendix 33D, wherein in the step of exposing the support substrate, the first conductive layer having the second end edge and the third end edge that coincides with the first end edge in plan view is formed.
  • Appendix 35D The method for manufacturing an organic thin-film solar cell module according to Appendix 34D, wherein the second end edge and the first end edge are annular in plan view.
  • [Appendix 36D] The method for producing an organic thin-film solar cell module according to Supplementary Note 35D, wherein the third end edge is annular in plan view.
  • [Appendix 37D] The method for manufacturing an organic thin-film solar cell module according to any one of appendices 33D to 36D, wherein the first conductive layer is made of ITO.
  • [Appendix 38D] The method for manufacturing an organic thin-film solar cell module according to any one of appendices 33D to 37D, wherein the second conductive layer is made of metal.
  • [Appendix 39D] The method for manufacturing an organic thin-film solar cell module according to attachment 38D, wherein the second conductive layer is made of Al.
  • [Appendix 40D] The method for manufacturing an organic thin-film solar cell module according to any one of appendices 33D to 39D, wherein the passivation layer is made of SiN.
  • [Appendix 41D] The method for manufacturing an organic thin-film solar cell module according to any one of Supplementary Notes 33D to 40D, wherein the protective resin layer is made of an ultraviolet curable resin.
  • Appendix 42D In the step of laminating the protective resin layer, forming a second outer edge located on the opposite side of the second edge with at least a part of the photoelectric conversion layer in plan view, Forming on the passivation layer having a first outer edge that coincides with the second outer edge in plan view by partially removing the insulating film with the second edge as a boundary;
  • the first conductive layer covers at least a part of the second outer end edge and an extended portion extending outward from the first outer end edge, and is lower than the material of the first conductive layer.
  • Appendix 43D In the step of forming the bypass conductive portion, the organic thin-film solar cell module manufacturing method according to appendix 42D, wherein the bypass conductive portion covers the second outer end edge and the first outer end edge.
  • the said bypass conductive part is a manufacturing method of the organic thin-film solar cell module of Additional remark 42D or 43D containing Ag or carbon.
  • the step of exposing the support substrate includes a process of partially removing the first conductive film and the insulating film by irradiating the first conductive film with laser light through the insulating film.
  • the step of exposing the support substrate includes removing the region adjacent to the region irradiated with the laser beam in plan view in the insulating film by the partial removal process. Among them, including a process of setting a portion that is not irradiated with the laser light as an extending portion exposed from the passivation layer, Forming a bypass conductive portion that covers at least a portion of the extension and is made of a material having a lower resistance than the material of the first conductive layer; And a step of forming a protective resin layer covering the bypass conductive portion.
  • the bypass conductive part is a method for manufacturing an organic thin-film solar cell module according to appendix 46D, which includes Ag or carbon.
  • Appendix 48D In the step of forming the protective resin layer, a non-light-transmitting portion is formed in a region that overlaps the bypass conductive portion in a plan view and is closer to the first outer edge than the first edge.
  • the organic thin film solar cell module according to 1.
  • “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
  • FIGS. 146 to 151 show an electronic device based on the sixteenth embodiment of the present invention and an organic thin-film solar cell module based on the sixteenth embodiment of the present invention.
  • the electronic device B16 of this embodiment includes an organic thin-film solar cell module A16, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery 707.
  • Type telephone terminal is an organic thin-film solar cell module A16, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery 707.
  • the case 61 accommodates other components of the electronic device B16 and is made of a material such as metal, resin, or glass.
  • FIG. 146 is a plan view showing an organic thin-film solar cell module A16 and an electronic device B16 using the same.
  • FIG. 147 is a schematic sectional view taken along line CXLVII-CXLVII in FIG. 146.
  • FIG. 148 is an enlarged bottom view of the main part showing the organic thin film solar cell module A16.
  • FIG. 149 is an enlarged cross-sectional view of a main part taken along line CXLIX-CXLIX in FIG. 150 is an enlarged cross-sectional view of a main part taken along line CL-CL in FIG.
  • FIG. 151 is a system configuration diagram showing the electronic apparatus B16.
  • FIG. 147 is a schematic sectional view taken along line CXLVII-CXLVII in FIG. 146.
  • FIG. 148 is an enlarged bottom view of the main part showing the organic thin film solar cell module A16.
  • FIG. 149 is an enlarged cross-sectional view of a main part taken along line CXLI
  • Organic thin-film solar cell module A16 is a power supply module in electronic device B16, and converts light such as sunlight into electric power. A specific configuration will be described later.
  • the control unit 701 corresponds to an example of a driving unit in the present invention, and is driven by power feeding from the organic thin film solar cell module A16.
  • the control unit 701 may be directly supplied with power from the organic thin film solar cell module A16, or may be driven by power supplied from the battery 707 after the power from the organic thin film solar cell module A16 is once charged in the battery 707. May be.
  • the control unit 701 includes, for example, a CPU, a memory, an interface, and the like.
  • the display unit 702 is for displaying various types of information on the external appearance of the electronic device B16.
  • the display unit 702 is, for example, a liquid crystal display panel or an organic EL display panel. In the present embodiment, the display unit 702 displays information on the exterior through the organic thin film solar cell module A16.
  • the input unit 703 is for outputting a user operation as an electrical signal to the control unit 701.
  • the input unit 703 is a touch panel laminated on the display unit 702, for example. Note that the display unit 702 and the input unit 703 may be configured integrally.
  • the microphone 704 is a device that converts a user's voice into an electrical signal.
  • the speaker 705 is a device that outputs the voice of the other party and various notification sounds.
  • the wireless communication unit 706 is a device that performs bidirectional wireless communication conforming to the wireless communication standard.
  • the battery 707 is a device that stores electric power for driving the electronic device B16.
  • the battery 707 is configured to be appropriately charged / discharged.
  • the battery 707 is charged by feeding from commercial power using an adapter (not shown) or feeding from the organic thin film solar cell module A16.
  • the organic thin-film solar cell module A16 includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation layer 42, a protective resin layer 4, and a bypass conductive portion 5.
  • the organic thin-film solar cell module A16 has a substantially rectangular shape in plan view, but this is an example, and each may have various shapes.
  • FIG. 152 is an exploded perspective view of a main part showing the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, and the protective resin layer 4 in the organic thin film solar cell module A16.
  • the support substrate 41 is indicated by an imaginary line (two-dot chain line).
  • FIG. 153 is a plan view showing the first conductive layer 1 of the organic thin film solar cell module A16.
  • FIG. 154 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A16.
  • FIG. 155 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A16.
  • FIG. 156 is a bottom view showing a first protective resin layer 45 and a bypass conductive portion 5 described later of the protective resin layer 4 of the organic thin film solar cell module A16.
  • FIG. 157 is a plan view showing a second protective resin layer 46 described later of the protective resin layer 4 of the organic thin film solar cell module A16.
  • the support substrate 41 is a member that becomes a base of the organic thin film solar cell module A16.
  • the support substrate 41 is made of, for example, transparent glass or resin.
  • the thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
  • the first conductive layer 1 is formed on the support substrate 41.
  • the first conductive layer 1 is transparent and is made of ITO in this embodiment.
  • the first conductive layer 1 includes the first electrode portion 11, the connection portion 13, the slit 17, the display opening 181, the opening 18, the slit 193, the third edge 101, It has a third outer end edge 105, a first extension part 104, and a second extension part 103.
  • the first conductive layer 1 has a substantially rectangular shape in plan view, but this is an example of the shape of the first conductive layer 1.
  • the shape of the first conductive layer 1 can be set to various shapes.
  • the thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm.
  • the first electrode portion 11 is a layer in which holes generated by the photoelectric conversion layer 3 are aggregated, and functions as a so-called anode electrode. In the present embodiment, most of the first conductive layer 1 is a single first electrode portion 11.
  • the opening 18 is an opening portion penetrating the first conductive layer 1 in the thickness direction.
  • the opening 18 is provided to allow the speaker 705 to function, for example.
  • the first conductive layer 1 may have a plurality of openings 18.
  • the use of the opening 18 is not particularly limited, and may be used to exhibit functions such as a part for realizing a call and a camera module.
  • the display opening 181 is provided to display the information displayed by the display unit 702 on the appearance. In the present embodiment, the display opening 181 has a rectangular shape in plan view.
  • the slit 193 is an annular slit and partitions a part of the first conductive layer 1 from the first electrode portion 11.
  • the third edge 101 is an edge that defines the display opening 181.
  • the third edge 101 is an edge that surrounds the display opening 181 from four directions, and has a rectangular ring shape in plan view.
  • the third end edge 101 is not limited to a shape surrounding the display opening 181 from four directions.
  • the third opening edge 101 may be adjacent to the display opening 181 from three directions so that the display opening 181 opens outward from the first electrode portion 11 in plan view.
  • the third end edge 101 may be adjacent to the display opening 181 from two sides or only from one side.
  • the support substrate 41 is exposed from a region adjacent to the third edge 101, that is, from the display opening 181.
  • the third edge 101 is an inner edge of a portion of the first conductive layer 1 that extends from a second edge 451 of the first protective resin layer 45 described later and the first edge 421 of the passivation layer 42. ing.
  • the first extending portion 104 is a portion extending from the passivation layer 42 inward (display opening 181).
  • the second extending portion 103 is provided on substantially the entire inner peripheral portion of the first conductive layer 1.
  • the second extending portion 103 is a portion that extends outward from the passivation layer 42.
  • the second extending portion 103 is provided on substantially the entire outer peripheral portion of the first conductive layer 1.
  • the third outer end edge 105 is an outer peripheral end edge of the second extending portion 103.
  • connection portion 13 is partitioned by the slit 17 and is a portion insulated from the first electrode portion 11 by the slit 17.
  • the slit 17 has both ends 171 reaching the third outer edge 105.
  • the connection part 13 includes a connection part edge 131 and a connection extension part 132.
  • the connection part edge 131 is an edge of a part of the connection part 13 that does not face the slit 17. In the illustrated example, the connection portion edge 131 is formed on a substantially extended line of the adjacent third outer end edge 105.
  • the plan view shape of the slit 17 is not particularly limited, and in the illustrated example, the slit 17 has an elongated shape whose longitudinal direction is the direction in which the connection portion edge 131 (third outer edge 105) extends. Is a substantially long rectangular shape.
  • the connection extension part 132 is a part exposed from the photoelectric conversion layer 3 in plan view in the connection part 13.
  • the connection unit 13 is used, for example, to guide electrons collected by power generation in the photoelectric conversion layer 3 to the outside of the organic thin film solar cell module A16.
  • the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1.
  • the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg.
  • the second conductive layer 2 is not transparent.
  • a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41.
  • the thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
  • the second conductive layer 2 has a second electrode portion 21 and an opening 28.
  • the second conductive layer 2 has a substantially rectangular shape in plan view, but this is an example of the shape of the second conductive layer 2.
  • the shape of the second conductive layer 2 can be set to various shapes.
  • the second electrode portion 21 is a layer in which electrons generated by the photoelectric conversion layer 3 are collected, and functions as a so-called cathode electrode.
  • the plurality of openings 28 are openings that penetrate the second conductive layer 2 in the thickness direction.
  • the four upper openings 28 in FIG. 155 are provided to make the speaker 705 function, for example.
  • the largest opening 28 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
  • the fourth inward retracting edge 201 is an edge that defines the central opening 28 in the drawing.
  • the fourth inward retracting edge 201 is an edge that surrounds the opening 28 from four directions and has a rectangular shape in plan view.
  • the fourth inward retracting edge 201 is not limited to a shape surrounding the opening 28 from four directions.
  • the fourth inward retracting edge 201 may be configured such that the opening 28 is opened outward from the second electrode portion 21 in plan view by adjoining the opening 28 from three directions.
  • the fourth inward retracting edge 201 may be adjacent to the opening 28 from two or only one side. As shown in FIG. 149, the fourth inward retracting edge 201 is retracted inward (opposite to the direction extending into the display opening 181) than the third end edge 101.
  • the fourth outer retracting edge 202 is in a plan view than the first outer end edge 422 of the passivation layer 42 and the second outer end edge 452 of the first protective resin layer 45 described later. It is retracted inward (to the right in FIG. 149).
  • the fourth outward retracting edge 202 has an annular shape in plan view.
  • the photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41.
  • the photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power.
  • the specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of.
  • the photoelectric conversion layer 3 has a rectangular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes.
  • the thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
  • a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction.
  • the p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester).
  • the hole transport layer is made of, for example, PEDOT: PSS.
  • Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
  • MDMO-PPV poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene
  • PCDTBT poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]
  • PC60BM 6-phenyl-C61-butyric acid methyl ester
  • PC70BM 6-,6-phenyl-C71-butyric acid methyl ester
  • the photoelectric conversion layer 3 includes a non-power generation region 30, a power generation region 31, a design display unit 35, an opening 38, a fifth inner retraction edge 301, a fifth outer retraction edge 302, and a conductive layer.
  • a through portion 351 is provided.
  • the non-power generation region 30 and the power generation region 31 are hatched with a plurality of discrete points.
  • the design display unit 35 overlaps with a region surrounded by the slits 193 of the first conductive layer 1 in plan view.
  • the design display unit 35 is a part that constitutes a design that appears on the exterior.
  • the design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look.
  • the design display unit 35 represents an annular shape.
  • the design display part 35 is configured by a design display through part 350.
  • the design display penetrating portion 350 is a portion having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a design display penetrating portion 350 appears on the exterior.
  • the design display through-hole 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the design display through-hole 350.
  • the shape or the like of the design display through-hole 350 is not particularly limited, and in the illustrated example, a shape representing an alphabet is adopted.
  • the power generation region 31 is a region that is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 and contributes to power generation by exhibiting a photoelectric conversion function.
  • the shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view.
  • the conduction through portion 351 is configured by a hole that penetrates the photoelectric conversion layer 3.
  • the conduction through portion 351 is provided at a position included in the connection portion 13 of the first conductive layer 1 in plan view.
  • a plurality of through portions 351 for conduction are provided.
  • the shape and arrangement of the conduction through portion 351 are not particularly limited.
  • the through-hole for conduction 351 has a circular shape in plan view, and its diameter is, for example, about 40 ⁇ m.
  • the plurality of through portions 351 for conduction are arranged along the longitudinal direction of the connection portion 13.
  • the connection portion 13 of the first conductive layer 1 and the second conductive layer 2 are electrically connected to each other via the conduction through portion 351.
  • the non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view. This is an area that overlaps with the area surrounded by one connecting portion 13 and the slit 193.
  • the connection part 13 is in contact with the second conductive layer 2.
  • the non-power generation region 30 overlapping the connection portion 13 in plan view does not contribute to power generation.
  • a portion of the photoelectric conversion layer 3 that coincides with the region surrounded by the slit 193 that overlaps the design display unit 35 in plan view is a non-power generation region 30. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
  • the plurality of openings 38 are openings that penetrate the photoelectric conversion layer 3 in the thickness direction.
  • the upper opening 38 in FIG. 154 is provided, for example, to make the speaker 705 function.
  • the largest opening 38 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
  • the fifth inward retracting edge 301 is an edge that defines the central opening 38 in the drawing.
  • the fifth inward retracting edge 301 is an edge that surrounds the opening 38 from four directions and has a rectangular ring shape in plan view.
  • the fifth inward retracting edge 301 is not limited to a shape surrounding the opening 38 from four directions.
  • the fifth inward retracting edge 301 may be configured such that the opening 38 is opened outward from the power generation region 31 in a plan view by adjoining the opening 38 from three directions.
  • the fifth inward retracting edge 301 may be provided in two or only one with respect to the opening 38. Further, as shown in FIG. 149, the fifth inward retracting edge 301 is retracted inward (opposite to the direction extending into the display opening 181) than the third end edge 101.
  • the fifth outer retreating edge 302 is retreated more inwardly (rightward in FIG. 149) in a plan view than a first outer end edge 422 of a passivation layer 42 described later. ing.
  • the fifth outward retracting edge 302 is annular in plan view.
  • the passivation layer 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3.
  • the passivation layer 42 is made of, for example, SiN or SiON.
  • the thickness of the passivation layer 42 is, for example, 0.5 ⁇ m to 2.0 ⁇ m. In the present embodiment, the thickness is, for example, about 1.5 ⁇ m.
  • the protective resin layer 4 is a layer covering the passivation layer 42.
  • the protective resin layer 4 covers the bypass conductive portion 5.
  • the protective resin layer 4 is made of, for example, an ultraviolet curable resin.
  • the thickness of the protective resin layer 4 is, for example, 3 ⁇ m to 20 ⁇ m. In this embodiment, the thickness is, for example, about 10 ⁇ m.
  • the protective resin layer 4 includes a first protective resin layer 45 and a second protective resin layer 46.
  • the first protective resin layer 45 is a layer that covers the passivation layer 42.
  • the second protective resin layer 46 is laminated on the first protective resin layer 45 and covers the bypass conductive portion 5.
  • the first protective resin layer 45 has a plurality of openings 458, a second end edge 451, and a second outer end edge 452.
  • the plurality of openings 458 is a mode in which a part of the first protective resin layer 45 is removed, and penetrates the first protective resin layer 45.
  • the upper three openings 458 in the drawing are provided to allow the speaker 705 to function, for example.
  • the largest opening 458 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
  • the second edge 451 is an edge that defines the central opening 458 in the drawing.
  • the second end edge 451 is an end edge that surrounds the opening 458 from four directions, and has a rectangular ring shape in plan view.
  • the second end edge 451 is not limited to a shape surrounding the opening 458 from four sides.
  • the second end edge 451 may be adjacent to the opening 458 from three directions so that the opening 458 opens outward from the first protective resin layer 45 in plan view.
  • the second end edge 451 may be provided in two or only one with respect to the opening 458.
  • the second outer edge 452 is located on the opposite side of the second edge 451 across at least a part of the photoelectric conversion layer 3 in plan view.
  • the second outer edge 452 of the first protective resin layer 45 is located. It is an outer peripheral edge.
  • the second protective resin layer 46 has a plurality of openings 468, a sixth end edge 461, and a sixth outer end edge 462. Further, the second protective resin layer 46 may be appropriately formed with an opening or a notch that exposes a first electrode collector portion 531 and a second electrode collector portion 532 described later.
  • the plurality of openings 468 are a form in which a part of the second protective resin layer 46 is deleted, and penetrate the second protective resin layer 46.
  • Three upper openings 468 in FIG. 157 are provided in order to make the speaker 705 function, for example.
  • the largest opening 468 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
  • the sixth edge 461 is an edge that defines the central opening 468 in the figure.
  • the sixth end edge 461 is an end edge surrounding the opening 468 from four directions, and has a rectangular ring shape in plan view.
  • the sixth end edge 461 is not limited to a shape surrounding the opening 468 from four directions.
  • the sixth edge 461 may be adjacent to the opening 468 from three directions so that the opening 468 opens outward from the second protective resin layer 46 in plan view.
  • the sixth end edge 461 may be provided in two or only one with respect to the opening 468.
  • the sixth outer edge 462 is located on the opposite side of the sixth edge 461 across at least a part of the photoelectric conversion layer 3 in plan view.
  • the sixth outer edge 462 of the second protective resin layer 46 is located. It is an outer peripheral edge.
  • the passivation layer 42 has a first edge 421 and a first outer edge 422.
  • the first end edge 421 coincides with the second end edge 451 in plan view. In the present embodiment, the first end edge 421 forms a surface continuous with the second end edge 451.
  • the first outer end edge 422 coincides with the second outer end edge 452 in plan view. In the present embodiment, the first outer end edge 422 forms a surface that is continuous with the second outer end edge 452.
  • the bypass conductive portion 5 is configured to collect a hole that has reached the first conductive layer 1 and an electron that has reached the second conductive layer 2 to form a path having at least a lower resistance than the first conductive layer 1.
  • the bypass conductive portion 5 includes a first bus bar portion 513, two second bus bar portions 514, a first electrode collector portion 531, a second electrode collector portion 532, a communication portion 52, a seventh edge 511, and It has a seventh outer edge 512.
  • the bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
  • one second bus bar portion 514 covers the second end edge 451 and the first end edge 421 over the entire length.
  • the second bus bar portion 514 covers the first extending portion 104 located between the third end edge 101 and the first end edge 421 (second end edge 451) of the first conductive layer 1.
  • the seventh end edge 511 of the second bus bar portion 514 coincides with the third end edge 101 in plan view.
  • the other second bus bar portion 514 covers substantially the entire length excluding a part of the second outer end edge 452 and the first outer end edge 422.
  • the second bus bar portion 514 covers the second extending portion 103 of the first conductive layer 1.
  • the seventh outer end edge 512 of the bus bar portion 51 coincides with the third outer end edge 105 in plan view. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
  • the second electrode collector portion 532 is a portion that conducts to the second bus bar portion 514, and outputs holes collected by the first conductive layer 1 to, for example, a hole terminal provided in the electronic device B16. Part.
  • the second electrode collector 532 is formed on the first protective resin layer 45 of the protective resin layer 4.
  • the second electrode collector 532 overlaps the second conductive layer 2 and the photoelectric conversion layer 3 in plan view. In the thickness direction of the support substrate 41, the passivation layer 42 and the first protective resin layer 45 are interposed between the photoelectric conversion layer 3 and the second electrode collector 532.
  • the shape of the second collector 532 in plan view is not particularly limited, and in the illustrated example, it is substantially semi-elliptical. In the illustrated example, the second electrode collector 532 is directly connected to one second bus bar 514.
  • the connecting part 52 is a part formed on the first protective resin layer 45 and connects the bus bar part 51 on the inner side in the drawing in FIG. As a result, the holes collected in the two second bus bar portions 514 are guided to the second electrode collector portion 532.
  • the first bus bar portion 513 is separated from the second bus bar portion 514 and covers a part of the connection extension portion 132 of the connection portion 13. More specifically, the first bus bar portion 513 covers a part of the connection extension portion 132 in the left-right direction in FIG. 148 (longitudinal direction of the connection portion 13). As shown in FIG. 149, the seventh end edge 511 of the first bus bar portion 513 coincides with the connection portion end edge 131 of the connection portion 13 in plan view.
  • the second bus bar portion 514 is provided with a detour portion 5141.
  • the bypass portion 5141 is connected to portions of the second bus bar portion 514 located on both sides of the first bus bar portion 513, and is formed to bypass the first bus bar portion 513 and the first electrode collector portion 531 in a plan view. ing.
  • the first electrode collecting portion 531 is a portion that conducts to the first bus bar portion 513, and is a portion for outputting electrons collected by the second conductive layer 2 to, for example, an electronic terminal provided in the electronic device B16. is there.
  • the first electrode collector 531 is formed on the first protective resin layer 45 of the protective resin layer 4.
  • the first electrode collector 531 overlaps the second conductive layer 2 and the photoelectric conversion layer 3 in plan view. In the thickness direction of the support substrate 41, the passivation layer 42 and the first protective resin layer 45 are interposed between the photoelectric conversion layer 3 and the first electrode collector 531.
  • the shape of the first collector portion 531 in plan view is not particularly limited, and in the illustrated example, it is substantially semi-elliptical. In the illustrated example, the first electrode collector 531 is directly connected to the first bus bar 513.
  • the design display part 35 (design display through part 350) is located on the opposite side of the connection part edge 131 with respect to the conduction through part 351 in plan view. ing.
  • the conduction through portion 351 is located between the connection portion edge 131 and the design display portion 35 in a plan view.
  • a part is exposed as an exposed region 411.
  • the exposed region 411 is not covered with the first conductive layer 1 or the like, and the surface of the support substrate 41 is directly exposed.
  • FIGS. 149 and 150 are shown upside down.
  • FIGS. 158 to 168 show a process of generating a cross-sectional structure taken along the line CXLIX-CXLIX shown in FIG.
  • a support substrate 41 is prepared. Then, the first conductive film 10 made of ITO is laminated on one side of the support substrate 41 by a general method such as sputtering.
  • patterning is performed on the ITO to form patterns such as openings 18, display openings 181, slits 193, and slits 17 and the like.
  • a patterning method to ITO for example, a method using wet etching and a method using laser patterning such as Green laser light are appropriately employed.
  • an organic film 3A is formed.
  • the organic film 3A is formed by, for example, forming an organic film on the support substrate 41 and the first conductive film 10 by spin coating.
  • the photoelectric conversion layer 3 is formed by patterning the organic film 3A.
  • patterning of the organic film 3A for example, oxygen plasma etching or laser patterning is used, so that the fifth inner retracting edge 301, the fifth outer retracting edge 302, the opening 38, the design display through portion 350 (design display portion) 35), by finishing to a configuration having a through-hole 351 for conduction.
  • the photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive film 10 by a technique such as a slit coating method, a capillary coating method, or gravure printing. It may be formed by.
  • the conduction through portion 351 is a circular through hole having a relatively small diameter.
  • patterning using the laser beam Lz0 is suitable.
  • the laser beam Lz0 it is preferable to select a laser beam having a wavelength that leaves the first conductive film 10 while removing the organic film 3A. For example, a green laser beam is selected.
  • the second conductive layer 2 is formed.
  • the second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive film 10 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition.
  • the metal film is patterned by etching using, for example, a mask layer.
  • the second conductive layer 2 having the fourth inner withdrawal edge 201 and the fourth outer withdrawal edge 202 is formed on the photoelectric conversion layer 3.
  • the conduction through portion 351 of the photoelectric conversion layer 3 is filled with the second conductive layer 2.
  • the first conductive layer 1 and the second conductive layer 2 are conducted through the conduction through portion 351.
  • an insulating film 420 is formed.
  • the insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
  • a first protective resin layer 45 is formed.
  • the first protective resin layer 45 is formed, for example, by applying a liquid resin material containing an ultraviolet curable resin on the insulating film 420 by screen printing and irradiating it with ultraviolet rays. As a result, the first protective resin layer 45 having the second end edge 451 and the second outer end edge 452 is obtained.
  • patterning is performed on the insulating film 420 using the first protective resin layer 45 as a mask.
  • This patterning is performed, for example, by wet etching using hydrofluoric acid containing 0.55% to 4.5% hydrogen fluoride.
  • hydrofluoric acid hardly dissolves the first protective resin layer 45 made of an ultraviolet curable resin, but selectively dissolves the insulating film 420 made of SiN or the like.
  • hydrofluoric acid hardly dissolves the first conductive film 10 made of ITO or the like.
  • a passivation layer 42 having a first edge 421 and a first outer edge 422 is formed.
  • the first edge 421 coincides with the second edge 451 in plan view.
  • the first edge 421 and the second edge 451 form a continuous surface.
  • the first outer end edge 422 coincides with the second outer end edge 452 in plan view.
  • the first outer end edge 422 and the second outer end edge 452 form a continuous surface.
  • the bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying.
  • the first conductive film 10 is patterned. This patterning is performed, for example, using aqua regia in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a ratio of 3: 1. By this patterning, portions of the first conductive film 10 exposed from the bypass conductive portion 5 and the first protective resin layer 45 are selectively removed. As a result, the first conductive layer 1 having the third edge 101 and the like is formed.
  • the second protective resin layer 46 is formed.
  • the second protective resin layer 46 is formed by, for example, applying a liquid resin material containing an ultraviolet curable resin on the insulating film 420 by screen printing and curing it by irradiating with ultraviolet rays. Thereby, the 2nd protective resin layer 46 which has the 6th edge 461 and the 6th outside edge 462 is obtained, and protective resin layer 4 is formed. Through the above steps, an organic thin film solar cell module A16 is obtained.
  • the conductive through-hole 351 is provided at a position near the fifth outer retreat edge 302 of the photoelectric conversion layer 3 along the third outer end edge 105. It has been. For this reason, the non-power generation region 30 that includes the conduction through portion 351 and overlaps the connection portion 13 is a relatively small area close to the third outer end edge 105, for example, a region that is smaller than the design display portion 35. It is. Therefore, the area ratio of the power generation region 31 that contributes to power generation in the photoelectric conversion layer 3 can be increased.
  • the through-hole for conduction 351 is a through-hole having a circular shape in plan view, and its diameter is, for example, about 40 ⁇ m.
  • the first electrode collector 531 and the second electrode collector 532 are provided at positions overlapping the second conductive layer 2 and the photoelectric conversion layer 3 in plan view. For this reason, the first electrode collector 531 and the second electrode collector 532 do not extend outward from the third outer edge 105 in plan view. This is suitable for reducing the ground contact area of the organic thin film solar cell module A16.
  • the design display portion 35 is often provided at a conspicuous position in appearance, and is generally separated from the end portion such as the third outer end edge 105. In such a case, being able to omit the lines appearing in the above-described appearance is preferable for finishing the appearance of the organic thin-film solar cell module A16 and the electronic device B16 more beautifully.
  • bypass conductive portion 5 By providing the bypass conductive portion 5, holes diffused in the first conductive layer 1 can be guided to the second electrode collector portion 532 via the second bus bar portion 514.
  • the bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1. For this reason, the bypass conductive portion 5 forms a lower resistance conduction path. By guiding the power generated by the photoelectric conversion layer 3 to such a conduction path, loss due to energization can be suppressed. Further, the bypass conductive portion 5 is covered with the protective resin layer 4. For this reason, it can avoid that the protective resin layer 4 deteriorates by reaction with external air etc. Therefore, it is possible to suppress energization loss while avoiding deterioration of energized portions of the organic thin-film solar cell module A16 and the electronic device B16.
  • the seventh end edge 511 and the seventh outer end edge 512 are located inside the sixth end edge 461 and the sixth outer end edge 462. That is, the bypass conductive portion 5 is completely covered with the protective resin layer 4. This is preferable for protecting the bypass conductive portion 5.
  • the support substrate 41 is exposed in a region adjacent to the second edge 451 and the second outer edge 452. In this portion, the passivation layer 42 and the first protective resin layer 45 are not formed. Therefore, it is possible to finish this portion more transparent, and the display portion 702 can be expressed more clearly.
  • the first conductive layer 1 is not formed on the support substrate 41 except for a small area covered by the second bus bar portion 514 in areas adjacent to the second edge 451 and the first edge 421.
  • the first conductive layer 1 is made of ITO, the first conductive layer 1 is visually recognized as being slightly colored depending on how light hits. In the present embodiment, it is possible to finish the region for displaying the display unit 702 in an even more transparent manner, and a more beautiful appearance can be realized.
  • the fifth inward retracting edge 301 of the photoelectric conversion layer 3 and the fourth inward retracting edge 201 of the second conductive layer 2 are separated from the first end edge 421 and the second end edge 451, thereby The two conductive layers 2 and the photoelectric conversion layer 3 can be prevented from being unduly conducted with the bypass conductive portion 5. Further, since the passivation layer 42 is interposed between the fourth inner retracting edge 201 and the fifth inner retracting edge 301 and the first end edge 421 and the second end edge 451, the second conductive layer 2 and the photoelectric conversion layer 3 and the second bus bar portion 514 of the bypass conductive portion 5 can be prevented more reliably.
  • the passivation layer 42 having the same shape as the first protective resin layer 45 can be formed by patterning the insulating film 420 using the first protective resin layer 45 as a mask. That is, if the first protective resin layer 45 is formed using a material excellent in shape formation such as an ultraviolet curable resin, the passivation layer 42 made of a material not necessarily excellent in shape formation can be finished in a desired shape. Note that the first protective resin layer 45 may be removed after the passivation layer 42 is formed. However, when the first protective resin layer 45 is left, the effect of preventing moisture and particles from entering the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, etc., and the organic thin film solar cell module The effect of improving the strength of A16 can be expected.
  • FIGS. 171 to 183 show a modified example and other embodiments of the present invention.
  • the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and description thereof will be omitted as appropriate.
  • FIG. 171 shows a modification of the organic thin film solar cell module A16.
  • the conduction through portion 351 has an elongated shape in plan view.
  • the longitudinal direction of the conduction through portion 351 is substantially parallel to the connection portion edge 131 and coincides with the longitudinal direction of the connection portion 13. Also by such a modification, the area ratio which contributes to electric power generation among the photoelectric converting layers 3 can be raised.
  • FIGS. 172 to 175 show an organic thin film solar cell module according to an eighteenth embodiment of the present invention.
  • the organic thin-film solar cell module A17 of this embodiment includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation layer 42, a protective resin layer 4, and a bypass conductive portion 5.
  • the planar view shape of the organic thin film solar cell module A17 is not particularly limited, and the illustrated example is an example in the case of the same planar view shape as the organic thin film solar cell module A16 described above.
  • FIG. 172 is an essential part enlarged bottom view showing the organic thin film solar cell module A17.
  • FIG. 173 is an enlarged cross-sectional view of a main part taken along the line CLXXIII-CLXXIII of FIG.
  • FIG. 174 is an enlarged cross-sectional view of a main part taken along line CLXXIV-CLXXIV in FIG.
  • FIG. 175 is an enlarged plan view of a main part in which the first protective resin layer 45 and the bypass conductive portion 5 are omitted.
  • the first edge 421 and the first outer edge 422 of the passivation layer 42 of the present embodiment are concave and convex end faces as shown in FIGS. 173 and 174. Further, as a whole, the first edge 421 is inclined in a direction away from the third edge 101 in plan view as the distance from the support substrate 41 in the thickness direction of the support substrate 41 is increased. Further, the first outer end edge 422 as a whole is inclined in a direction away from the second extending portion 103 of the first conductive layer 1 as it is separated from the support substrate 41 in the thickness direction of the support substrate 41.
  • the first end edge 421 of the present embodiment has a non-linear shape spaced from the third end edge 101 in plan view.
  • the first end edge 421 has, for example, a shape in which a plurality of broken lines and curves are combined.
  • the first outer end edge 422 has a linear shape in plan view.
  • One second bus bar portion 514 of the bypass conductive portion 5 covers substantially the entire length except for a part of the first edge 421 of the passivation layer 42.
  • the second bus bar portion 514 covers the first extending portion 104 located between the third end edge 101 and the first end edge 421 in the first conductive layer 1. Further, the seventh end edge 511 of the second bus bar portion 514 is located on the side opposite to the first end edge 421 with respect to the third end edge 101 in plan view. Thereby, the second bus bar portion 514 is in direct contact with the support substrate 41.
  • the other second bus bar portion 514 covers the first outer end edge 422 of the passivation layer 42 over the entire length.
  • the second bus bar portion 514 covers the second extending portion 103 of the first conductive layer 1.
  • the seventh outer end edge 512 of the second bus bar portion 514 is located on the opposite side of the first outer end edge 422 with respect to the third outer end edge 105 in plan view. Thereby, the second bus bar portion 514 is in direct contact with the support substrate 41. With such a configuration, each of the two second bus bar portions 514 is electrically connected to the first conductive layer 1.
  • the first bus bar portion 513 covers the connection extension portion 132 of the connection portion 13 of the first conductive layer 1. Further, the seventh end edge 511 of the first bus bar portion 513 is located on the opposite side to the first end edge 421 with respect to the third end edge 101 in plan view. Thus, the first bus bar portion 513 is in direct contact with the support substrate 41.
  • the protective resin layer 4 of the present embodiment has only the first protective resin layer 45.
  • the first protective resin layer 45 covers the passivation layer 42 and the bypass conductive portion 5, and is made of, for example, an ultraviolet curable resin.
  • the 1st protective resin layer 45 may serve as the transparent joining layer for joining organic thin-film solar cell module A17 and the display part 702 mentioned above.
  • the second end edge 451 of the second end edge 451 is located on the opposite side of the first end edge 421 with respect to the seventh end edge 511 in plan view.
  • the second outer end edge 452 of the first protective resin layer 45 is located on the opposite side of the first outer end edge 422 with respect to the seventh outer end edge 512 in plan view.
  • the first protective resin layer 45 has a portion that directly contacts the support substrate 41. Further, the first protective resin layer 45 covers a portion of the surface 423 of the passivation layer 42 that is exposed from the bypass conductive portion 5.
  • FIGS. 173 and 174 are shown upside down.
  • the support substrate 41 shown in FIG. 158 is prepared.
  • the first conductive film 10 made of ITO is laminated on one side of the support substrate 41 by a general method such as sputtering.
  • the first conductive film 10 is patterned.
  • a slit 17, a slit 191, a slit 192, a slit 193, and the like are formed in the first conductive film 10.
  • the patterning of the first conductive film 10 is performed by laser patterning, for example.
  • the laser beam Lz1 used for this laser patterning is not particularly limited as long as the first conductive film 10 can be subjected to laser patterning. For example, IR laser beam can be used.
  • the one located on the second conductive layer 2 and the photoelectric conversion layer 3 side shown is the third edge 101.
  • a portion of the first conductive film 10 between the fifth inward retracting edge 301 and the slit 191 becomes the first extending portion 104.
  • the one located on the second conductive layer 2 and the photoelectric conversion layer 3 side shown is the third outer edge 105.
  • a portion of the first conductive film 10 between the slit 192 and the fifth outer retraction edge 302 of the photoelectric conversion layer 3 becomes the second extension portion 103.
  • a portion defined by the slit 17 and the slit 192 becomes the connection portion 13.
  • an organic film is formed on the first conductive film 10, and laser patterning using, for example, Green laser light is performed on the organic film, thereby forming the photoelectric conversion layer 3 shown in FIG. 177.
  • the second conductive layer 2 is formed, and as shown in FIG. 179, the insulating film 420 is formed.
  • the insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive film 10, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
  • an insulating film 420 covering the first conductive film 10, the second conductive layer 2, and the photoelectric conversion layer 3 is formed.
  • forming the passivation layer 42 having the first edge 421 by partially removing the insulating film 420 and forming the first conductive layer 1 by partially removing the first conductive film 10 A step of exposing the support substrate 41 in a region adjacent to the edge 421 is performed.
  • the step of exposing the support substrate 41 is performed by irradiating the first conductive film 10 with laser light Lz2 through the insulating film 420, as shown in FIG.
  • a process of partially removing the insulating film 420 is included.
  • a hatched portion of a plurality of relatively dark discrete points in the first conductive film 10 represents a portion irradiated with the laser light Lz2.
  • a hatched portion of a plurality of relatively thin discrete points in the insulating film 420 represents a portion that is removed due to irradiation with the laser light Lz2. Note that the method is not limited to the method using the laser beam Lz2, and for example, a method using etching may be selected.
  • the laser beam Lz2 for example, an IR laser beam having a wavelength of about 1,064 nm is selected.
  • the portion of the first conductive film 10 irradiated with the laser light Lz2 exhibits a behavior that volatilizes instantaneously when significant energy is applied.
  • the wavelength of the laser beam Lz2 described above is selected such that the insulating film 420 is less likely to absorb than the first conductive film 10. For this reason, the insulating film 420 is not directly destroyed by the laser beam Lz2. However, the portion of the insulating film 420 that contacts the first conductive film 10 is supported by the support substrate 41 via the first conductive film 10. When the first conductive film 10 is volatilized by irradiation with the laser beam Lz2, a part of the insulating film 420 is not supported by the support substrate 41.
  • the insulating film 420 overlapping the portion of the first conductive film 10 irradiated with the laser light Lz2 is the first conductive film. Part of it is scattered by the pressure due to volatilization of 10.
  • the portion of the insulating film 420 adjacent to the portion of the first conductive film 10 irradiated with the laser light Lz2 is scattered due to the volatility of the first conductive film 10. did.
  • the portion of the insulating film 420 that is scattered due to the irradiation of the laser beam Lz2 is hatched with a plurality of relatively thin discrete points.
  • the scattered portion of the insulating film 420 exists on the second conductive layer 2 and photoelectric conversion layer 3 side beyond the slit 191 and the slit 192.
  • the edge located on the slit 191 side of the insulating film 420 becomes the first edge 421, and the edge located on the slit 192 side becomes the first outer edge 422.
  • the hatching part which consists of several discrete points adjacent to the slit 191 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2.
  • the edge located in the photoelectric conversion layer 3 side in planar view with respect to the slit 191 in the first conductive film 10 becomes the third edge 101, and the first conductive film 10 is planar with respect to the slit 192.
  • the edge located on the photoelectric conversion layer 3 side when viewed is the third outer edge 105.
  • the hatching part which consists of a some discrete point adjacent to the slit 192 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2.
  • a part of the insulating film 420 adjacent to the slit 191 and the slit 192 is scattered with the irradiation of the laser light Lz2, so that a part of the first conductive film 10 adjacent to the slit 191 and the slit 192 is passivation. Exposed from layer 42. This portion becomes the first extension portion 104 and the second extension portion 103.
  • the first edge 421 and the first outer edge 422 are obtained.
  • a passivation layer 42 is formed.
  • the first conductive layer 1 having portions extending from the first end edge 421 and the first outer end edge 422 is formed.
  • the connection part 13 partitioned by the slit 17 is formed.
  • a cleaning process using aqua regia may be performed for the purpose of removing the first conductive film 10 and the like remaining on the support substrate 41.
  • the bypass conductive portion 5 is formed.
  • the bypass conductive portion 5 is formed so as to cover a portion of the first conductive layer 1 extending from the passivation layer 42 and the first edge 421 and the first outer edge 422 of the passivation layer 42.
  • the bypass conductive portion 5 is preferably formed so as to directly touch the support substrate 41. Thereby, the bypass conductive part 5 having the bus bar part 51 and the connecting part 52 is obtained.
  • the first protective resin layer 45 (protective resin layer 4) is formed so as to cover the bypass conductive portion 5 and the passivation layer 42.
  • the first protective resin layer 45 is formed by, for example, applying a liquid resin material containing an ultraviolet curable resin on the passivation layer 42 by screen printing and irradiating it with ultraviolet rays.
  • the area ratio of the power generation region 31 of the photoelectric conversion layer 3 can be increased.
  • the second bus bar portion 514 of the bypass conductive portion 5 covers the first extension portion 104 and the second extension portion 103 of the first conductive layer 1.
  • the first bus bar portion 513 covers the connection extension portion 132 of the first conductive layer 1.
  • the conduction area between the first conductive layer 1 and the bypass conductive portion 5 can be increased, which is preferable for reducing the resistance. Since the first end edge 421 and the first outer end edge 422 are concave and convex, the first end edge 421 and the first outer end edge 422 and the first bus bar portion 513 and the second bus bar of the bypass conductive portion 5 are provided. The bonding strength with the portion 514 can be increased.
  • the passivation layer 42 is removed by utilizing volatilization of the first conductive layer 1 generated by irradiating the first conductive layer 1 with the laser light Lz2. Therefore, there is no need for a dedicated laser beam or drug for removing the passivation layer 42. This is preferable for reducing manufacturing costs and manufacturing time.
  • IR laser light as the laser light Lz2
  • IR laser light as the laser light Lz2
  • SiN which is an example of the material of the insulating film 420, transmits light having a wavelength longer than 400 nm. For this reason, when the insulating film 420 is made of SiN, Green laser light having a wavelength of 532 nm may be used as the laser light Lz2. On the other hand, when UV laser light having a wavelength of 355 nm is used as the laser light Lz2, the insulating film 420 and the first conductive film 10 absorb the laser light Lz2, and therefore these can be removed at once. it can.
  • the partial removal of the insulating film 420 and the first conductive film 10 is performed using a laser beam Lz2.
  • the laser light Lz2 can control the irradiation region more accurately. Therefore, the insulating film 420 and the first conductive film 10 are suitable for removing a desired portion.
  • the partial removal of the insulating film 420 utilizes a behavior in which the insulating film 420 adjacent to the first conductive film 10 irradiated with the laser light Lz2 is destroyed. As a result, the portion of the insulating film 420 covering the portion of the first conductive layer 1 exposed from the passivation layer 42 in FIG. 181 is removed even though the laser beam Lz2 is not irradiated. . For this reason, the insulating film 420 can be appropriately removed while avoiding unduly destroying the portion of the first conductive layer 1 exposed from the passivation layer 42.
  • the slit 191 and the slit 192 in the first conductive film 10 it is possible to prevent the region of the insulating film 420 affected by the volatilization of the first conductive film 10 from being unduly wide. . Further, by providing the slit 191 and the slit 192, in the step of partially removing the first conductive film 10 shown in FIGS. 180 and 181, a part of the first conductive film 10 is formed in the region to be removed. Even if this remains, it can be avoided that the remaining portion and the first conductive layer 1 are unintentionally conducted.
  • the part located in the other side of the photoelectric converting layer 3 across the slit 192 among the 1st electrically conductive films 10 may remain
  • This portion is prevented from conducting to the first conductive layer 1 by providing the slit 192. Further, if the removal of this portion is omitted, the manufacturing time can be shortened.
  • the structure which provides the slit 191 and the slit 192 is a suitable example, and the structure which does not provide these may be sufficient.
  • FIG. 183 shows an organic thin-film solar cell module according to the eighteenth embodiment of the present invention.
  • the organic thin film solar cell module A ⁇ b> 18 of this embodiment both ends 171 of the slit 17 reach the third end edge 101 of the first conductive layer 1. That is, the connecting portion 13 is provided at a position facing the display opening 181. In other words, the connection portion 13 is disposed between the display opening 181 and the design display portion 35 in plan view.
  • a bypass portion 5141 is provided in the second bus bar portion 514 facing the display opening 181. Further, the bypass conductive portion 5 of the present embodiment has a connecting portion 521.
  • the communication part 521 connects the first bus bar part 513 and the first electrode collecting part 531.
  • the first electrode collecting portion 531 is disposed at a position separated from the first bus bar portion 513.
  • the second electrode collector 532 is disposed such that the distance from the display opening 181 is the same as that of the first electrode collector 531.
  • the area ratio of the power generation region 31 of the photoelectric conversion layer 3 can be increased.
  • the connection portion 13 is provided at a position facing the display opening 181
  • the first electrode collecting portion 531 is disposed at a position overlapping the second conductive layer 2 and the photoelectric conversion layer 3 in plan view. . For this reason, the first electrode collector 531 does not extend to the display opening 181, and a situation in which the display of the display unit 702 is hindered can be avoided.
  • the organic thin film solar cell module and the electronic device according to the present invention are not limited to the above-described embodiments.
  • the specific configurations of the organic thin-film solar cell module and the electronic device according to the present invention can be variously changed in design.
  • the electronic device according to the present invention can be applied to various electronic devices that can use solar power generation, such as a portable telephone terminal, and examples thereof include a wrist watch and an electronic calculator.
  • [Appendix 1E] A transparent support substrate; A transparent first conductive layer laminated on the support substrate; A second conductive layer; A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer; A passivation layer covering the second conductive layer; With The first conductive layer includes an extension portion extending from the passivation layer in a plan view, a slit having both ends reaching the edge of the extension portion, and a section defined by the slit and connected to the both ends of the slit.
  • connection part having a connection part edge
  • the photoelectric conversion layer has a conduction through portion that is included in the connection portion of the first conductive layer in a plan view and penetrates in the thickness direction, The second conductive layer and the connection portion of the first conductive layer are conducted through the conduction through portion of the photoelectric conversion layer,
  • a bypass conductive portion having a first bus bar portion covering at least a part of the connection extension portion extending from the passivation layer among the connection portions, and a first electrode collector portion conducting to the first bus bar portion;
  • Organic thin-film solar cell module [Appendix 2E] The organic thin-film solar cell module according to Supplementary Note 1E, wherein the through-hole for conduction is circular in plan view.
  • the bypass conductive portion includes a second bus bar portion that covers at least a part of the extension portion of the first conductive layer, and a second electrode collector portion that conducts to the second bus bar portion.
  • the organic thin-film solar cell module in any one.
  • the second electrode collector portion overlaps the second conductive layer and the photoelectric conversion layer in plan view, The organic thin-film solar cell module according to appendix 5E, wherein the passivation layer is interposed between the second electrode collector and the second conductive layer in a thickness direction of the support substrate.
  • the second bus bar portion has a bypass portion having both ends connected to a portion of the extension portion of the first conductive layer sandwiching the connection portion and bypassing the first electrode collector portion in a plan view.
  • the photoelectric conversion layer has a design display penetrating portion that constitutes a design display portion that penetrates in the thickness direction and appears on the appearance.
  • the first conductive layer includes a display opening for forming a display area, a third edge that defines the display opening, and a first extending portion that extends from the passivation layer to the display opening side. And having The said connection part is an organic thin-film solar cell module in any one of Additional remarks 1E thru
  • the first conductive layer includes a display opening for forming a display area, a third edge that defines the display opening, and a third outer edge located on the side opposite to the third edge.
  • connection part is an organic thin-film solar cell module in any one of additional remarks 1E thru
  • the passivation layer has a first edge facing the display opening in plan view
  • the protective resin layer includes a first protective resin layer that covers the passivation layer, and a second protective resin layer that is laminated on the first protective resin layer and covers the bypass conductive portion
  • the organic thin-film solar cell module according to appendix 11E wherein the first protective resin layer has a second end edge that coincides with the first end edge in plan view.
  • the organic thin-film solar cell module according to appendix 12E wherein the first edge and the second edge form a continuous surface.
  • the bypass conductive part is an organic thin-film solar cell module according to appendix 13E, having a seventh edge that coincides with the third edge in plan view.
  • the second protective resin layer has a sixth edge located on a side opposite to the first edge with respect to the third edge and the seventh edge in a plan view, and is in contact with the support substrate.
  • [Appendix 17E] The organic thin-film solar cell module according to appendix 16E, wherein the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
  • [Appendix 18E] The organic thin-film solar cell module according to appendix 17E, wherein the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
  • the passivation layer has a first edge facing the display opening in plan view
  • the bypass conductive part is the organic thin-film solar cell module according to appendix 11E, having a seventh edge located on a side opposite to the first edge with respect to the third edge in plan view.
  • the said protective resin layer has 2nd edge located in the opposite side to said 1st edge with respect to said 7th edge in planar view, and touches the said support substrate of addition 19E.
  • Organic thin-film solar cell module [Appendix 21E] The organic thin-film solar cell module according to appendix 20E, wherein the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
  • Appendix 22E The organic thin-film solar cell module according to appendix 21E, wherein the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
  • “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
  • FIGS. 184 to 188 show an electronic device based on the nineteenth embodiment of the present invention and an organic thin film solar cell module based on the nineteenth and twentieth embodiments of the present invention.
  • the electronic device B19 of this embodiment includes an organic thin film solar cell module A19, an organic thin film solar cell module A20, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery. 707 is configured as a portable telephone terminal.
  • the case 61 accommodates other components of the electronic device B19 and is made of a material such as metal, resin, or glass.
  • FIG. 184 is a plan view showing organic thin-film solar cell modules A19, A20 and an electronic device B19 using them.
  • FIG. 185 is a bottom view showing organic thin-film solar cell modules A19, A20 and electronic device B19.
  • FIG. 186 is a schematic sectional view taken along the line CLXXXVI-CLXXXVI of FIG. 184.
  • FIG. 187 is an enlarged cross-sectional view of a main part taken along line CLXXXVII-CLXXXVII in FIG. 184.
  • FIG. 188 is a system configuration diagram showing the electronic apparatus B19. In FIG. 186, only the case 61, the organic thin film solar cell module A19, the organic thin film solar cell module A20, the control unit 701, the display unit 702, and the battery 707 are schematically shown for the sake of understanding.
  • Organic thin film solar cell module A19 and organic thin film solar cell module A20 are power supply modules in electronic device B19, and convert light such as sunlight into electric power. A specific configuration will be described later.
  • the control unit 701 corresponds to an example of a drive unit referred to in the present invention, and is driven by power feeding from the organic thin film solar cell module A19 and the organic thin film solar cell module A20.
  • the control unit 701 may be directly supplied with power from the organic thin film solar cell module A19 and the organic thin film solar cell module A20, or the power from the organic thin film solar cell module A19 and the organic thin film solar cell module A20 is temporarily supplied to the battery 707. After being charged, the battery 707 may be driven by power feeding.
  • the control unit 701 includes, for example, a CPU, a memory, an interface, and the like.
  • the display unit 702 is for displaying various types of information on the external appearance of the electronic device B19.
  • the display unit 702 is, for example, a liquid crystal display panel or an organic EL display panel.
  • the display unit 702 displays information on the exterior through the organic thin film solar cell module A19.
  • the input unit 703 is for outputting a user operation as an electrical signal to the control unit 701.
  • the input unit 703 is a touch panel laminated on the display unit 702, for example. Note that the display unit 702 and the input unit 703 may be configured integrally.
  • the microphone 704 is a device that converts a user's voice into an electrical signal.
  • the speaker 705 is a device that outputs the voice of the other party and various notification sounds.
  • the wireless communication unit 706 is a device that performs bidirectional wireless communication conforming to the wireless communication standard.
  • the battery 707 is a device that stores electric power for driving the electronic device B19.
  • the battery 707 is configured to be appropriately charged / discharged.
  • the battery 707 is charged by feeding from commercial power using an adapter (not shown) or feeding from the organic thin film solar cell module A19 and the organic thin film solar cell module A20.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This organic thin film solar cell module A1 is provided with a transparent supporting substrate 41, a transparent first conductive layer 1 that is laminated on the supporting substrate 41, a second conductive layer 2, and a photoelectric conversion layer 3 that is formed of an organic thin film and is sandwiched between the first conductive layer 1 and the second conductive layer 2. The second conductive layer 2 is thicker than the photoelectric conversion layer 3. Breakage is able to be suppressed due to this configuration.

Description

有機薄膜太陽電池モジュール、電子機器および有機薄膜太陽電池モジュールの製造方法Organic thin film solar cell module, electronic device, and manufacturing method of organic thin film solar cell module
 本発明は、有機薄膜太陽電池モジュール、電子機器および有機薄膜太陽電池モジュールの製造方法に関する。 The present invention relates to an organic thin film solar cell module, an electronic device, and a method for manufacturing an organic thin film solar cell module.
 太陽電池は、太陽光をはじめとする光を電力に変換する光電変換機能を備えており、いわゆる再生可能エネルギーを利用した発電手段として開発が進められている。有機薄膜太陽電池は、太陽電池の一種である。特許文献1には、有機薄膜からなる光電変換層と、この光電変換層を挟む第1導電層および第2導電層を備える構成が開示されている。第1導電層は、たとえばITOなどの透明導電層とされている。 Solar cells have a photoelectric conversion function that converts sunlight and other light into electric power, and are being developed as power generation means using so-called renewable energy. Organic thin-film solar cells are a type of solar cell. Patent Document 1 discloses a configuration including a photoelectric conversion layer made of an organic thin film, and a first conductive layer and a second conductive layer sandwiching the photoelectric conversion layer. The first conductive layer is a transparent conductive layer such as ITO.
 有機薄膜太陽電池モジュールにおいては、光電変換層の形成時に突起が生じたり、光電変換層上に粒子が付着する場合がある。これによって、第2導電層の形状がいびつとなる虞があり、外気が進入する等の問題が生じうる。 In the organic thin-film solar cell module, protrusions may be generated during the formation of the photoelectric conversion layer, or particles may adhere to the photoelectric conversion layer. As a result, the shape of the second conductive layer may become distorted, and problems such as the entry of outside air may occur.
 また、太陽電池は、太陽光をはじめとする光を電力に変換する光電変換機能を備えており、いわゆる再生可能エネルギーを利用した発電手段として開発が進められている。有機薄膜太陽電池は、太陽電池の一種である。特許文献1には、有機薄膜からなる光電変換層と、この光電変換層を挟む第1導電層および第2導電層を備える構成が開示されている。第1導電層は、たとえばITOなどの透明導電層とされている。同文献の図34~図36には、開口を有する有機薄膜太陽電池が開示されている。この開口は、液晶ディスプレイなどの表示部を外観に表すために設けられている。このため、光電変換層および第2電極層に、同形状および同サイズの開口が設けられている。 Moreover, the solar cell has a photoelectric conversion function for converting light such as sunlight into electric power, and is being developed as a power generation means using so-called renewable energy. Organic thin-film solar cells are a type of solar cell. Patent Document 1 discloses a configuration including a photoelectric conversion layer made of an organic thin film, and a first conductive layer and a second conductive layer sandwiching the photoelectric conversion layer. The first conductive layer is a transparent conductive layer such as ITO. 34 to 36 of this document disclose an organic thin film solar cell having an opening. This opening is provided in order to express a display unit such as a liquid crystal display. For this reason, openings of the same shape and size are provided in the photoelectric conversion layer and the second electrode layer.
 上述した表示部などの他に、電子機器においては、製造メーカー、製品名、使用に際して表示されることが望ましい文字や図柄、などの意匠を付することが求められる。この実現ためには、意匠が施された意匠板を有機薄膜太陽電池モジュールに積層させたり、有機薄膜太陽電池モジュールに印刷を施すなど、追加の部材や素材が必要となってしまう。 In addition to the display unit described above, electronic devices are required to have a design such as a manufacturer, a product name, and characters and designs that are desirably displayed upon use. In order to realize this, additional members and materials are required, such as laminating a design plate with a design on the organic thin film solar cell module or printing on the organic thin film solar cell module.
 また、太陽電池は、太陽光をはじめとする光を電力に変換する光電変換機能を備えており、いわゆる再生可能エネルギーを利用した発電手段として開発が進められている。有機薄膜太陽電池は、太陽電池の一種である。特許文献1には、有機薄膜からなる光電変換層と、この光電変換層を挟む第1導電層および第2導電層を備える構成が開示されている。第1導電層は、たとえばITOなどの透明導電層とされている。また、同文献においては、第1導電層、第2導電層および光電変換層を保護するパッシベーション膜が設けられている。同文献の図34~図36には、開口を有する有機薄膜太陽電池が開示されている。この開口は、液晶ディスプレイなどの表示部を外観に表すために設けられている。このため、光電変換層および第2電極層に、同形状および同サイズの開口が設けられている。 Moreover, the solar cell has a photoelectric conversion function for converting light such as sunlight into electric power, and is being developed as a power generation means using so-called renewable energy. Organic thin-film solar cells are a type of solar cell. Patent Document 1 discloses a configuration including a photoelectric conversion layer made of an organic thin film, and a first conductive layer and a second conductive layer sandwiching the photoelectric conversion layer. The first conductive layer is a transparent conductive layer such as ITO. In this document, a passivation film that protects the first conductive layer, the second conductive layer, and the photoelectric conversion layer is provided. 34 to 36 of this document disclose an organic thin film solar cell having an opening. This opening is provided in order to express a display unit such as a liquid crystal display. For this reason, openings of the same shape and size are provided in the photoelectric conversion layer and the second electrode layer.
 しかしながら、上述した開口は、第1導電層およびパッシベーション膜によって覆われている。第1導電層およびパッシベーション膜は、それぞれが果たすべき機能を具備させると、開口が透光性を有するものの、第1導電層やパッシベーション膜の色が開口に着色されるという問題があった。 However, the opening described above is covered with the first conductive layer and the passivation film. When the first conductive layer and the passivation film have functions to be performed, the opening has a light-transmitting property, but the first conductive layer and the passivation film are colored in the opening.
 また、太陽電池は、太陽光などの光を電力に変換する光電変換機能を備えており、いわゆる再生可能エネルギーを利用した発電手段として開発が進められている。特許文献1には、有機薄膜からなる光電変換層と、この光電変換層を挟む第1電極層および第2電極層を備えるといった有機薄膜太陽電池の基本構成が開示されている。 Also, solar cells have a photoelectric conversion function for converting light such as sunlight into electric power, and are being developed as power generation means using so-called renewable energy. Patent Document 1 discloses a basic configuration of an organic thin film solar cell including a photoelectric conversion layer formed of an organic thin film and a first electrode layer and a second electrode layer sandwiching the photoelectric conversion layer.
 ところで、電子機器は、その筐体の表面にメーカ名、製品名、文字、図柄等、外部から視認できる意匠を付すことが求められる。このような意匠は印刷や刻印、シール貼着等の手法によって筐体表面に付されるのが一般的であるが、筐体表面の多くの領域に有機薄膜太陽電池を配置する場合、このような有機薄膜太陽電池が占める筐体表面にも意匠を付すことができれば便利である。 By the way, an electronic device is required to have a design that can be visually recognized from the outside, such as a manufacturer name, a product name, characters, and a design, on the surface of the casing. Such a design is generally applied to the surface of the casing by a technique such as printing, stamping, sticking a sticker, etc., but when organic thin-film solar cells are arranged in many areas of the casing surface, It would be convenient if the design could also be applied to the housing surface occupied by a simple organic thin film solar cell.
 しかしながら、有機薄膜太陽電池の表面、すなわち、受光面に意匠を印刷したり、シールを貼着する等といった手法を採用したのでは、意匠を付すための部材が増え、外物との接触や摩擦によって意匠の品位が低下したり消失するといった不具合が懸念されるし、光電変換層が意匠に隠れて光電変換効率が実質的に減じられるので好ましくない。 However, when a design such as printing a design on the surface of an organic thin film solar cell, that is, a light-receiving surface, or sticking a seal is adopted, the number of members for attaching the design increases, contact with external objects, and friction Therefore, there is a concern that the quality of the design deteriorates or disappears, and the photoelectric conversion layer is hidden in the design and the photoelectric conversion efficiency is substantially reduced.
 また、上述した開口は、第1導電層およびパッシベーション層によって覆われている。第1導電層およびパッシベーション層は、それぞれが果たすべき機能を具備させると、開口が透光性を有するものの、第1導電層やパッシベーション層の色が開口に着色されるという問題があった。 Further, the above-described opening is covered with the first conductive layer and the passivation layer. If each of the first conductive layer and the passivation layer has a function to be performed, the opening has translucency, but the first conductive layer and the passivation layer are colored in the opening.
 また、有機薄膜太陽電池モジュールにおいては、光電変換層のうち実際に発電に寄与する部分の割合を高めることが求められる。 Also, in the organic thin film solar cell module, it is required to increase the proportion of the photoelectric conversion layer that actually contributes to power generation.
 また、光電変換機能によって得られた電力が通電する際、第2導電層よりも第1導電層において、より大きな損失が生じる。このような損失は、有機薄膜太陽電池モジュール全体としての発電効率を低下させるものであり、好ましくない。 Further, when the electric power obtained by the photoelectric conversion function is energized, a larger loss occurs in the first conductive layer than in the second conductive layer. Such a loss is not preferable because it reduces the power generation efficiency of the organic thin-film solar cell module as a whole.
 また、有機薄膜太陽電池モジュールにおいては、光電変換層のうち実際に発電に寄与する部分の割合の低減を抑制することが求められる。 Moreover, in the organic thin film solar cell module, it is required to suppress a reduction in the proportion of the photoelectric conversion layer that actually contributes to power generation.
特開2014-192196号公報JP 2014-192196 A
 本発明は、上記した事情のもとで考え出されたものであって、破損を抑制することが可能な有機薄膜太陽電池モジュール、電子機器および有機薄膜太陽電池モジュールの製造方法を提供することをその課題とする。また、追加の部材等を要することなく意匠を外観に表すことが可能な有機薄膜太陽電池モジュールおよび電子機器を提供することをその課題とする。また、より透明な表面を有する有機薄膜太陽電池モジュール、電子機器、有機薄膜太陽電池モジュールの製造方法を提供することをその課題とする。また、追加の部材等を要することなく、意匠を外観に表すことが可能な有機薄膜太陽電池を提供することをその課題とする。また、より透明な表面を有する有機薄膜太陽電池モジュール、電子機器、有機薄膜太陽電池モジュールの製造方法を提供することをその課題とする。また、光電変換層のうち実際に発電に寄与する部分の割合を高めることが可能な有機薄膜太陽電池および電子機器を提供することをその課題とする。また、通電部分の劣化を回避しつつ通電損失を抑制することが可能な有機薄膜太陽電池モジュールおよび電子機器を提供することをその課題とする。また、光電変換層のうち実際に発電に寄与する部分の低減を抑制することが可能な有機薄膜太陽電池および電子機器を提供することをその課題とする。 The present invention has been conceived under the circumstances described above, and provides an organic thin film solar cell module, an electronic device, and a method of manufacturing an organic thin film solar cell module capable of suppressing damage. Let that be the issue. It is another object of the present invention to provide an organic thin-film solar cell module and an electronic device that can express a design in appearance without requiring additional members. It is another object of the present invention to provide a method for producing an organic thin film solar cell module, an electronic device, and an organic thin film solar cell module having a more transparent surface. It is another object of the present invention to provide an organic thin-film solar cell capable of expressing the design on the appearance without requiring additional members. It is another object of the present invention to provide a method for producing an organic thin film solar cell module, an electronic device, and an organic thin film solar cell module having a more transparent surface. It is another object of the present invention to provide an organic thin-film solar cell and an electronic device that can increase the proportion of the photoelectric conversion layer that actually contributes to power generation. It is another object of the present invention to provide an organic thin-film solar cell module and an electronic device that can suppress energization loss while avoiding deterioration of the energized portion. It is another object of the present invention to provide an organic thin film solar cell and an electronic device that can suppress a reduction in a portion that actually contributes to power generation in the photoelectric conversion layer.
本発明の第1の側面によって提供される有機薄膜太陽電池モジュールは、透明な支持基板と、前記支持基板に積層された透明な第1導電層と、第2導電層と、前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、を備え、前記第2導電層は、前記光電変換層よりも厚い。 An organic thin-film solar cell module provided by the first aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, and the second conductive layer is thicker than the photoelectric conversion layer.
 本発明の好ましい実施の形態においては、前記第1導電層は、前記支持基板の一部が前記第1導電層から露出した基板露出領域を介して隣り合う2つの第1区画部を有しており、前記第2導電層は、前記基板露出領域の一部を挟んで隣り合う2つの第2区画部を有しており、前記光電変換層は、平面視において前記隣り合う2つのうち一方の前記第1区画部および前記隣り合う2つのうち他方の前記第2区画部の双方と重なる光電変換層接続部に、厚さ方向に貫通する光電変換層貫通部を有する。 In a preferred embodiment of the present invention, the first conductive layer has two first partition portions that are adjacent to each other through a substrate exposed region in which a part of the support substrate is exposed from the first conductive layer. And the second conductive layer has two second partition portions adjacent to each other with a part of the substrate exposed region in between, and the photoelectric conversion layer is one of the two adjacent ones in a plan view. The photoelectric conversion layer connecting portion that overlaps both the first partition portion and the other second partition portion of the two adjacent ones has a photoelectric conversion layer penetration portion that penetrates in the thickness direction.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記光電変換層貫通部を囲む突起を有し、前記突起は、前記第2導電層に覆われている。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a protrusion surrounding the photoelectric conversion layer penetrating portion in a plan view, and the protrusion is covered with the second conductive layer.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部は、平面視において前記光電変換層接続部と重ならず且つ前記第2導電層と重なる第1電極部を有し、前記隣り合う2つのうち一方の前記第2区画部は、平面視において前記第1電極部と一致する第2電極部を有し、前記光電変換層は、平面視において前記第1電極部および前記第2電極部と一致する光電変換層発電部を有する。 In a preferred embodiment of the present invention, one of the adjacent two first partition portions does not overlap with the photoelectric conversion layer connection portion in a plan view and overlaps with the second conductive layer. One of the two adjacent sections has a second electrode portion that coincides with the first electrode portion in plan view, and the photoelectric conversion layer has the first electrode in plan view. A photoelectric conversion layer power generation unit that coincides with the electrode unit and the second electrode unit is provided.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部は、平面視において前記光電変換層接続部と一致する第1接続部を有し、前記隣り合う2つのうち他方の前記第2区画部は、平面視において前記光電変換層接続部と一致する第2接続部を有する。 In a preferred embodiment of the present invention, one of the two adjacent ones has a first connection portion that coincides with the photoelectric conversion layer connection portion in plan view, and the two adjacent The other second partition portion has a second connection portion that coincides with the photoelectric conversion layer connection portion in plan view.
 本発明の好ましい実施の形態においては、前記光電変換層貫通部は、平面視円形状である。 In a preferred embodiment of the present invention, the photoelectric conversion layer penetrating portion has a circular shape in plan view.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部の前記第1接続部は、平面視において前記光電変換層貫通部に内包され且つ厚さ方向に貫通する第1貫通部を有する。 In a preferred embodiment of the present invention, the first connection part of the first partition part of one of the two adjacent parts is included in the photoelectric conversion layer penetrating part in a plan view and penetrates in the thickness direction. It has a 1st penetration part.
 本発明の好ましい実施の形態においては、前記第1貫通部の内端縁は、平面視において前記光電変換層貫通部の内端縁から離間している。 In a preferred embodiment of the present invention, the inner end edge of the first penetrating portion is separated from the inner end edge of the photoelectric conversion layer penetrating portion in plan view.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部の前記第1接続部は、平面視における前記光電変換層貫通部に内包される領域において前記支持基板を覆っている。 In preferable embodiment of this invention, the said 1st connection part of one said 1st division part of the said adjacent two is the said support substrate in the area | region enclosed by the said photoelectric converting layer penetration part in planar view. Covering.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記第2導電層を覆うパッシベーション層を備える。 In a preferred embodiment of the present invention, a passivation layer covering the second conductive layer is provided.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、SiNまたはSiONからなる。 In a preferred embodiment of the present invention, the passivation layer is made of SiN or SiON.
 本発明の第2の側面によって提供される電子機器は、本発明の第1の側面によって提供される有機薄膜太陽電池モジュールと、前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、を備える。 An electronic device provided by the second aspect of the present invention includes an organic thin film solar cell module provided by the first aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
 本発明の第3の側面によって提供される有機薄膜太陽電池モジュールの製造方法は、透明な支持基板に透明な第1導電層を積層する工程と、前記第1導電層に有機薄膜からなる光電変換層を積層する工程と、前記光電変換層に第2導電層を積層する工程と、を備え、前記第2導電層を積層する工程においては、前記光電変換層よりも厚く前記第2導電層を積層する。 The method for producing an organic thin film solar cell module provided by the third aspect of the present invention includes a step of laminating a transparent first conductive layer on a transparent support substrate, and photoelectric conversion comprising an organic thin film on the first conductive layer. A step of laminating a layer, and a step of laminating a second conductive layer on the photoelectric conversion layer. In the step of laminating the second conductive layer, the second conductive layer is thicker than the photoelectric conversion layer. Laminate.
 本発明の好ましい実施の形態においては、前記第2導電層を積層する工程においては、蒸着法によって金属を積層させる。 In a preferred embodiment of the present invention, in the step of laminating the second conductive layer, a metal is laminated by a vapor deposition method.
 本発明の好ましい実施の形態においては、前記光電変換層を積層する工程においては、前記光電変換層を貫通する光電変換層貫通部を形成し、前記第2導電層を積層する工程においては、前記第2導電層によって前記光電変換層貫通部を覆う。 In preferable embodiment of this invention, in the process of laminating | stacking the said photoelectric converting layer, in the process of forming the photoelectric converting layer penetration part which penetrates the said photoelectric converting layer, and laminating | stacking the said 2nd conductive layer, The photoelectric conversion layer penetrating portion is covered with a second conductive layer.
 本発明の好ましい実施の形態においては、前記光電変換層を積層する工程においては、前記光電変換層貫通部とともに平面視において前記光電変換層貫通部に内包され且つ厚さ方向に貫通する第1貫通部を前記第1導電層に形成する。 In preferable embodiment of this invention, in the process of laminating | stacking the said photoelectric converting layer, it is included in the said photoelectric converting layer penetration part in planar view with the said photoelectric converting layer penetration part, and the 1st penetration penetrated in the thickness direction A portion is formed in the first conductive layer.
 本発明の好ましい実施の形態においては、前記光電変換層貫通部の形成は、IRレーザによって行う。 In a preferred embodiment of the present invention, the photoelectric conversion layer penetrating portion is formed by an IR laser.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の第4の側面によって提供される有機薄膜太陽電池モジュールは、透明な第1導電層と、第2導電層と、前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、を備え、前記光電変換層は、前記第1導電層を透して外観に表れる意匠を構成する1以上の意匠表示部を有する。 The organic thin film solar cell module provided by the fourth aspect of the present invention includes a transparent first conductive layer, a second conductive layer, and an organic thin film sandwiched between the first conductive layer and the second conductive layer. A photoelectric conversion layer, and the photoelectric conversion layer has one or more design display portions constituting a design that appears through the first conductive layer.
 本発明の好ましい実施の形態においては、前記第1導電層が積層された、透明な支持基板を備える。 In a preferred embodiment of the present invention, a transparent support substrate on which the first conductive layer is laminated is provided.
 本発明の好ましい実施の形態においては、前記第2導電層を覆うパッシベーション膜を備える。 In a preferred embodiment of the present invention, a passivation film that covers the second conductive layer is provided.
 本発明の好ましい実施の形態においては、前記パッシベーション膜は、前記意匠表示部を覆っている。 In a preferred embodiment of the present invention, the passivation film covers the design display portion.
 本発明の好ましい実施の形態においては、前記パッシベーション膜は、前記意匠表示部を覆う部分と前記光電変換層のうち前記意匠表示部に隣接する部位を覆う部分とが、平坦に形成されている。 In a preferred embodiment of the present invention, in the passivation film, a portion covering the design display portion and a portion covering the portion adjacent to the design display portion in the photoelectric conversion layer are formed flat.
 本発明の好ましい実施の形態においては、前記パッシベーション膜の厚さは、前記光電変換層の厚さよりも厚い。 In a preferred embodiment of the present invention, the passivation film is thicker than the photoelectric conversion layer.
 本発明の好ましい実施の形態においては、前記パッシベーション膜に積層された保護層を備える。 In a preferred embodiment of the present invention, a protective layer laminated on the passivation film is provided.
 本発明の好ましい実施の形態においては、前記パッシベーション膜と前記保護層とを接合する接合層を備える。 In a preferred embodiment of the present invention, a bonding layer for bonding the passivation film and the protective layer is provided.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記意匠表示部は、前記光電変換層を厚さ方向に貫通する貫通部によって構成されている。 In a preferred embodiment of the present invention, the design display part is constituted by a penetrating part that penetrates the photoelectric conversion layer in the thickness direction.
 本発明の好ましい実施の形態においては、前記意匠表示部は、周囲よりも薄肉とされた薄肉部によって構成されている。 In a preferred embodiment of the present invention, the design display portion is constituted by a thin portion that is thinner than the surroundings.
 本発明の好ましい実施の形態においては、前記第1導電層は、第1電極部を有し、前記第2導電層は、平面視において前記第1電極部と一致する第2電極部を有し、前記光電変換層は、前記第1電極部および前記第2電極部に挟まれ、且つ光電変換機能を発揮することにより発電に寄与する発電領域を有する。 In a preferred embodiment of the present invention, the first conductive layer has a first electrode portion, and the second conductive layer has a second electrode portion that coincides with the first electrode portion in plan view. The photoelectric conversion layer has a power generation region that is sandwiched between the first electrode portion and the second electrode portion and contributes to power generation by exhibiting a photoelectric conversion function.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第1電極部および前記第2電極部とは重ならず、且つ発電に寄与しない非発電領域を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a non-power generation region that does not overlap the first electrode portion and the second electrode portion in a plan view and does not contribute to power generation.
 本発明の好ましい実施の形態においては、前記第1導電層は、平面視において前記意匠表示部を内包し、且つ厚さ方向に貫通するスリットによって囲まれた第1区画部を有する。 In a preferred embodiment of the present invention, the first conductive layer includes a first partition part that includes the design display part in a plan view and is surrounded by a slit penetrating in the thickness direction.
 本発明の好ましい実施の形態においては、前記光電変換層の前記非発電領域は、前記第1導電層の前記第1区画部に重なる領域である区画領域を有する。 In a preferred embodiment of the present invention, the non-power generation region of the photoelectric conversion layer has a partition region that is a region overlapping the first partition portion of the first conductive layer.
 本発明の好ましい実施の形態においては、前記光電変換層の前記区画領域に含まれる前記意匠表示部を通じて前記第1導電層と前記第2導電層とが接している。 In a preferred embodiment of the present invention, the first conductive layer and the second conductive layer are in contact with each other through the design display portion included in the partition region of the photoelectric conversion layer.
 本発明の好ましい実施の形態においては、前記第1導電層は、スリットを挟んで隣り合う2つの前記第1電極部を有し、前記第2導電層は、平面視において前記2つの第1電極部と一致する2つの前記第2電極部を有し、前記光電変換層は、前記2つの第1電極部および前記2つの第2電極部に挟まれた2つの前記発電領域を有する。 In a preferred embodiment of the present invention, the first conductive layer has two first electrode portions adjacent to each other with a slit interposed therebetween, and the second conductive layer has the two first electrodes in a plan view. The photoelectric conversion layer has two power generation regions sandwiched between the two first electrode portions and the two second electrode portions.
 本発明の好ましい実施の形態においては、前記2つの発電領域は、互いに直列に接続されている。 In a preferred embodiment of the present invention, the two power generation regions are connected in series with each other.
 本発明の好ましい実施の形態においては、前記2つの発電領域は、互いに並列に接続されている。 In a preferred embodiment of the present invention, the two power generation regions are connected in parallel to each other.
 本発明の好ましい実施の形態においては、前記第1導電層は、前記2つの第1電極部の一方に繋がり、且つ前記スリットを挟んで前記2つの第1電極部の他方に隣り合う第1連絡部を有し、前記第2導電層は、前記2つの第1電極部の他方と平面視において一致する前記第2電極部に繋がり、且つ前記スリットを挟んで前記2つの第2電極部のもう一方に隣り合うとともに、前記第1連絡部と接する第2連絡部を有し、前記光電変換層の前記非発電領域は、前記第1連絡部および前記第2連絡部に挟まれた連絡領域を含む。 In a preferred embodiment of the present invention, the first conductive layer is connected to one of the two first electrode portions and is adjacent to the other of the two first electrode portions with the slit interposed therebetween. And the second conductive layer is connected to the second electrode portion that coincides with the other of the two first electrode portions in a plan view, and is connected to the second electrode portion with the slit interposed therebetween. A non-power generation area of the photoelectric conversion layer includes a communication area sandwiched between the first communication section and the second communication section, the second communication section being adjacent to one side and in contact with the first communication section. Including.
 本発明の好ましい実施の形態においては、前記連絡領域は、前記意匠表示部を含んでおり、前記第1連絡部と前記第2連絡部とは、前記連絡領域に含まれた前記意匠表示部を通じて接している。 In a preferred embodiment of the present invention, the communication area includes the design display part, and the first communication part and the second communication part are passed through the design display part included in the communication area. It touches.
 本発明の好ましい実施の形態においては、前記第1導電層は、同心円状に配置された複数の前記第1電極部と前記第1連絡部とを有し、前記第2導電層は、同心円状に配置された複数の前記第2電極部と前記第2連絡部とを有し、前記光電変換層は、同心円状に配置された複数の前記発電領域と複数の前記連絡領域とを有する。 In a preferred embodiment of the present invention, the first conductive layer has a plurality of the first electrode portions and the first connecting portions arranged concentrically, and the second conductive layer has a concentric shape. The photoelectric conversion layer includes a plurality of power generation regions and a plurality of communication regions arranged concentrically.
 本発明の好ましい実施の形態においては、前記第1導電層は、前記第1電極部のいずれか1の第1電極部から、平面視において前記光電変換層の外方に延出する第1延出部を有している。 In a preferred embodiment of the present invention, the first conductive layer extends from the first electrode portion of any one of the first electrode portions to the outside of the photoelectric conversion layer in a plan view. Has a protruding part.
 本発明の好ましい実施の形態においては、前記第1導電層は、前記第1延出部に繋がる前記第1電極部と該第1電極部に隣り合う前記第1電極部とにスリットを介して挟まれた第1端部を有し、前記光電変換層は、平面視において前記第1端部に内包される前記意匠表示部を含み、且つ前記第1端部に重なる端部領域を有し、前記第2導電層は、平面視において第1端部に一致し、且つ隣接する第2電極部に繋がるとともに、前記端部領域の前記意匠表示部を通じて前記第1端部に接する第2端部を有する。 In a preferred embodiment of the present invention, the first conductive layer includes a slit formed between the first electrode portion connected to the first extension portion and the first electrode portion adjacent to the first electrode portion. The photoelectric conversion layer includes the design display portion included in the first end portion in a plan view and has an end region that overlaps the first end portion. The second conductive layer coincides with the first end portion in plan view and is connected to the adjacent second electrode portion, and is in contact with the first end portion through the design display portion in the end region. Part.
 本発明の好ましい実施の形態においては、前記第1導電層は、前記第1端部から、平面視において前記光電変換層の外方に延出する第2延出部を有している。 In a preferred embodiment of the present invention, the first conductive layer has a second extending portion that extends outward from the photoelectric conversion layer in a plan view from the first end portion.
 本発明の好ましい実施の形態においては、前記連絡領域に含まれる前記意匠表示部は、時刻を特定ための文字を表す。 In a preferred embodiment of the present invention, the design display part included in the contact area represents a character for specifying time.
 本発明の好ましい実施の形態においては、前記区画領域に含まれる前記意匠表示部は、時刻を特定ための文字を表す。 In a preferred embodiment of the present invention, the design display part included in the partition area represents a character for specifying time.
 本発明の好ましい実施の形態においては、前記第1導電層は、平面視において前記意匠表示部を内包する開口を有しており、前記光電変換層のうち前記第1導電層の前記開口に一致する部位が前記非発電領域とされている。 In a preferred embodiment of the present invention, the first conductive layer has an opening that encloses the design display portion in a plan view, and coincides with the opening of the first conductive layer in the photoelectric conversion layer. The part to perform is the non-power generation region.
 本発明の好ましい実施の形態においては、前記開口に内包される前記意匠表示部は、時刻を特定するための図形を表す。 In a preferred embodiment of the present invention, the design display part included in the opening represents a figure for specifying time.
 本発明の第5の側面によって提供される電子機器は、本発明の第4の側面によって提供される有機薄膜太陽電池モジュールと、前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、を備える。 An electronic device provided by the fifth aspect of the present invention includes an organic thin film solar cell module provided by the fourth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
 本発明の好ましい実施の形態においては、前記駆動部によって駆動される長針および短針を備えており、時計として構成されている。 In a preferred embodiment of the present invention, a long hand and a short hand driven by the drive unit are provided and configured as a timepiece.
 本発明の好ましい実施の形態においては、前記駆動部は、演算機能を有しており、前記駆動部による演算結果を表示する表示部を備えており、電子計算機として構成されている。 In a preferred embodiment of the present invention, the drive unit has a calculation function, and includes a display unit that displays a calculation result by the drive unit, and is configured as an electronic computer.
 本発明の第6の側面によって提供される有機薄膜太陽電池モジュールは、透明な支持基板と、前記支持基板に積層された透明な第1導電層と、第2導電層と、前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、前記第2導電層を覆うパッシベーション膜と、を備え、前記パッシベーション膜は、第1端縁を有し、前記第1端縁に隣接する領域において、前記支持基板が露出している。 An organic thin film solar cell module provided by the sixth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer comprising an organic thin film sandwiched between the second conductive layers, and a passivation film covering the second conductive layer, the passivation film having a first edge, and the first end The support substrate is exposed in a region adjacent to the edge.
 本発明の好ましい実施の形態においては、前記第1導電層は、平面視において前記第1端縁と一致する第3端縁を有する。 In a preferred embodiment of the present invention, the first conductive layer has a third edge that coincides with the first edge in plan view.
 本発明の好ましい実施の形態においては、前記第1導電層は、平面視において前記第1端縁よりも内方に退避した第3内方退避端縁を有する。 In a preferred embodiment of the present invention, the first conductive layer has a third inward retraction edge that retreats inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する。 In a preferred embodiment of the present invention, the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している。 In a preferred embodiment of the present invention, the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
 本発明の好ましい実施の形態においては、前記第1端縁は、平面視環状である。 In a preferred embodiment of the present invention, the first edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第3端縁は、平面視環状である。 In a preferred embodiment of the present invention, the third end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第3内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the third inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the fourth inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第5内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the fifth inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記パッシベーション膜は、SiNからなる。 In a preferred embodiment of the present invention, the passivation film is made of SiN.
 本発明の好ましい実施の形態においては、前記パッシベーション膜を覆う保護樹脂層を備えており、前記保護樹脂層は、平面視において前記第1端縁と一致する第2端縁を有する。 In a preferred embodiment of the present invention, a protective resin layer is provided to cover the passivation film, and the protective resin layer has a second edge that coincides with the first edge in plan view.
 本発明の好ましい実施の形態においては、前記第2端縁と前記第1端縁とは、連続した面をなす。 In a preferred embodiment of the present invention, the second end edge and the first end edge form a continuous surface.
 本発明の好ましい実施の形態においては、前記第2端縁は、平面視環状である。 In a preferred embodiment of the present invention, the second edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、紫外線硬化樹脂からなる。 In a preferred embodiment of the present invention, the protective resin layer is made of an ultraviolet curable resin.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第2端縁と反対側に位置する第2外方端縁を有し、前記パッシベーション膜は、平面視において前記第2外方端縁と一致する第1外方端縁を有し、前記第1導電層は、前記第2外方端縁および前記第1外方端縁から外方に延出する延出部を有し、前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を備える。 In a preferred embodiment of the present invention, the protective resin layer has a second outer edge located on the opposite side of the second edge with at least a part of the photoelectric conversion layer in plan view. The passivation film has a first outer end edge that coincides with the second outer end edge in plan view, and the first conductive layer includes the second outer end edge and the first outer end edge. It has an extended portion that extends outward from the edge, covers at least a part of the extended portion, and includes a bypass conductive portion made of a material having a lower resistance than the material of the first conductive layer.
 本発明の好ましい実施の形態においては、前記第2外方端縁と前記第1外方端縁とは、連続した面をなす。 In a preferred embodiment of the present invention, the second outer edge and the first outer edge form a continuous surface.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、前記第2外方端縁および前記第1外方端縁を覆う。 In a preferred embodiment of the present invention, the bypass conductive portion covers the second outer end edge and the first outer end edge.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、Agまたはカーボンを含む。 In a preferred embodiment of the present invention, the bypass conductive portion contains Ag or carbon.
 本発明の好ましい実施の形態においては、前記第2導電層は、平面視において前記第2外方端縁および前記第1外方端縁よりも内方に退避した第4外方退避端縁を有する。 In a preferred embodiment of the present invention, the second conductive layer has a fourth outer retraction edge that retreats inward from the second outer end edge and the first outer end edge in a plan view. Have.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第2外方端縁および前記第1外方端縁よりも内方に退避した第5外方退避端縁を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a second outer end edge and a fifth outer retreat edge that retreats inward from the first outer end edge in a plan view. .
 本発明の第7の側面によって提供される電子機器は、本発明の第6の側面によって提供される有機薄膜太陽電池モジュールと、前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、を備える。 An electronic device provided by the seventh aspect of the present invention includes an organic thin film solar cell module provided by the sixth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
 本発明の第8の側面によって提供される有機薄膜太陽電池モジュールの製造方法は、透明な支持基板に透明な第1導電層を積層する工程と、前記第1導電層に有機薄膜からなる光電変換層を積層する工程と、前記光電変換層に第2導電層を積層する工程と、前記第2導電層を覆うパッシベーション膜を形成する工程と、前記パッシベーション膜に第2端縁を有する保護樹脂層を積層する工程と、前記第2端縁を境界として、前記パッシベーション膜を部分的に除去することにより平面視において前記第2端縁と一致する第1端縁を前記パッシベーション膜に形成する工程と、前記第1導電層を部分的に除去することにより、前記第2端縁および前記第1端縁に隣接する領域において、前記支持基板を露出させる工程と、を備える。 The organic thin film solar cell module manufacturing method provided by the eighth aspect of the present invention includes a step of laminating a transparent first conductive layer on a transparent support substrate, and photoelectric conversion comprising an organic thin film on the first conductive layer. A step of laminating a layer, a step of laminating a second conductive layer on the photoelectric conversion layer, a step of forming a passivation film covering the second conductive layer, and a protective resin layer having a second edge on the passivation film And forming a first edge on the passivation film that coincides with the second edge in plan view by partially removing the passivation film with the second edge as a boundary. And exposing the support substrate in a region adjacent to the second edge and the first edge by partially removing the first conductive layer.
 本発明の好ましい実施の形態においては、前記支持基板を露出させる工程において、平面視において前記第2端縁および前記第1端縁と一致する第3端縁を前記第1導電層に形成する。 In a preferred embodiment of the present invention, in the step of exposing the support substrate, a third edge that coincides with the second edge and the first edge in plan view is formed in the first conductive layer.
 本発明の好ましい実施の形態においては、前記第2端縁および前記第1端縁は、平面視環状である。 In a preferred embodiment of the present invention, the second end edge and the first end edge are annular in plan view.
 本発明の好ましい実施の形態においては、前記第3端縁は、平面視環状である。 In a preferred embodiment of the present invention, the third end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記パッシベーション膜は、SiNからなる。 In a preferred embodiment of the present invention, the passivation film is made of SiN.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、紫外線硬化樹脂からなる。 In a preferred embodiment of the present invention, the protective resin layer is made of an ultraviolet curable resin.
 本発明の好ましい実施の形態においては、前記保護樹脂層を積層する工程において、平面視において前記光電変換層の少なくとも一部を挟んで前記第2端縁と反対側に位置する第2外方端縁を形成し、前記第2端縁を境界として、前記パッシベーション膜を部分的に除去することにより平面視において前記第2外方端縁と一致する第1外方端縁を前記パッシベーション膜に形成する工程と、前記第1導電層のうち前記第2外方端縁および前記第1外方端縁から外方に延出する延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を形成する工程と、を備える。 In a preferred embodiment of the present invention, in the step of laminating the protective resin layer, a second outer end located on the opposite side of the second end edge across at least a part of the photoelectric conversion layer in plan view Forming a first edge, and forming a first outer edge on the passivation film that coincides with the second outer edge in plan view by partially removing the passivation film from the second edge as a boundary. And covering at least part of the second outer end edge and the first outer end edge of the first conductive layer, and extending at least a part of the first conductive layer. Forming a bypass conductive portion made of a material having a resistance lower than that of the material.
 本発明の好ましい実施の形態においては、前記バイパス導電部を形成する工程においては、前記バイパス導電部によって前記第2外方端縁および前記第1外方端縁を覆う。 In a preferred embodiment of the present invention, in the step of forming the bypass conductive portion, the bypass conductive portion covers the second outer end edge and the first outer end edge.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、Agまたはカーボンを含む。 In a preferred embodiment of the present invention, the bypass conductive portion contains Ag or carbon.
 本発明の第9の側面によって提供される有機薄膜太陽電池は、第1面およびこれと反対側の第2面を有する透明な支持基板と、前記支持基板の第2面側に配置された透明な第1電極層と、前記第1電極層の前記支持基板とは反対側に積層された、有機薄膜からなる光電変換層と、前記光電変換層の前記支持基板とは反対側に積層された第2電極層と、を含み、前記第1電極層は、表面に開口部を含んでおり、この開口部が前記支持基板の第1面側に意匠を表す。 An organic thin-film solar cell provided by a ninth aspect of the present invention includes a transparent support substrate having a first surface and a second surface opposite to the first surface, and a transparent substrate disposed on the second surface side of the support substrate. A first electrode layer, a photoelectric conversion layer made of an organic thin film laminated on the side opposite to the support substrate of the first electrode layer, and a layer opposite to the support substrate of the photoelectric conversion layer A second electrode layer, and the first electrode layer includes an opening on a surface thereof, and the opening represents a design on the first surface side of the support substrate.
 好ましい実施の形態では、前記開口部は、その平面視の外縁が、表すべき意匠の外縁の一部を構成している。 In a preferred embodiment, the outer edge of the opening portion of the opening constitutes a part of the outer edge of the design to be represented.
 好ましい実施の形態では、前記開口部は、平面視が所定形状のドットの集合として形成されている。 In a preferred embodiment, the opening is formed as a set of dots having a predetermined shape in plan view.
 好ましい実施の形態では、前記ドッドの集合が、表すべき意匠の一部を構成している。 In a preferred embodiment, the set of dodds constitutes a part of the design to be represented.
 好ましい実施の形態では、前記開口部は、所定幅で所定方向に延びる複数のラインが所定間隔で配列されたものとして形成されている。 In a preferred embodiment, the opening is formed by arranging a plurality of lines having a predetermined width and extending in a predetermined direction at predetermined intervals.
 好ましい実施の形態では、前記複数のラインの集合が、表すべき意匠の一部を構成している。 In a preferred embodiment, the set of the plurality of lines constitutes a part of the design to be represented.
 好ましい実施の形態では、前記開口部は、支持基板の第1面の外部から見たとき、ホログラムを発生する。 In a preferred embodiment, the opening generates a hologram when viewed from the outside of the first surface of the support substrate.
 好ましい実施の形態では、前記開口部としての複数のラインは、幅が5~20μmであり、30~50μm間隔で配列されている。 In a preferred embodiment, the plurality of lines as the openings have a width of 5 to 20 μm and are arranged at intervals of 30 to 50 μm.
 好ましい実施の形態では、前記第1電極層の前記開口部以外の部分の厚みは、100~200nmである。 In a preferred embodiment, the thickness of the first electrode layer other than the opening is 100 to 200 nm.
 好ましい実施の形態では、前記開口部は、前記第1電極層を前記支持基板とは反対側の表面から所定深さ凹入させて形成されている。 In a preferred embodiment, the opening is formed by recessing the first electrode layer by a predetermined depth from the surface opposite to the support substrate.
 好ましい実施の形態では、前記開口部は、前記第1電極層を前記支持基板側の表面から所定深さ凹入させて形成されている。 In a preferred embodiment, the opening is formed by recessing the first electrode layer by a predetermined depth from the surface on the support substrate side.
 好ましい実施の形態では、前記開口部の除去深さは、厚み50~100nmの薄肉部が残る深さである。 In a preferred embodiment, the removal depth of the opening is such that a thin portion having a thickness of 50 to 100 nm remains.
 好ましい実施の形態では、前記開口部は、前記第1電極層を厚み方向に貫通させて形成されている。 In a preferred embodiment, the opening is formed by penetrating the first electrode layer in the thickness direction.
 好ましい実施の形態では、前記第2電極層を前記光電変換層とは反対側において覆うパッシベーション層を備える。 In a preferred embodiment, a passivation layer is provided that covers the second electrode layer on the side opposite to the photoelectric conversion layer.
 好ましい実施の形態では、前記パッシベーション層を前記第2電極層とは反対側において覆う保護層を備える。 In a preferred embodiment, a protective layer is provided that covers the passivation layer on the side opposite to the second electrode layer.
 好ましい実施の形態では、前記パッシベーション層と前記保護層とを接合する接合層を備える。 In a preferred embodiment, a bonding layer for bonding the passivation layer and the protective layer is provided.
 好ましい実施の形態では、前記第1電極層は、ITOからなる。 In a preferred embodiment, the first electrode layer is made of ITO.
 好ましい実施の形態では、前記光電変換層の厚みは、100~200nmである。 In a preferred embodiment, the photoelectric conversion layer has a thickness of 100 to 200 nm.
 好ましい実施の形態では、前記第2電極層の厚みは、100~200nmである。 In a preferred embodiment, the thickness of the second electrode layer is 100 to 200 nm.
 好ましい実施の形態では、前記第2電極層は、金属からなる。 In a preferred embodiment, the second electrode layer is made of metal.
 好ましい実施の形態では、前記第2電極層は、Alからなる。 In a preferred embodiment, the second electrode layer is made of Al.
好ましい実施の形態では、前記第1電極層、前記光電変換層、前記第2電極層および前記パッシペーション層の合計厚みは、1.0~2.0μmである。 In a preferred embodiment, the total thickness of the first electrode layer, the photoelectric conversion layer, the second electrode layer, and the passivation layer is 1.0 to 2.0 μm.
 本発明の第10の側面によって提供される有機薄膜太陽電池の製造方法は、第1面およびこれと反対側の第2面を有する透明な支持基板の前記第2面側に所定の厚みを有し、かつ表面に開口を備えた透明な第1電極層を形成するステップ、前記第1電極層上に光電変換層を形成するステップ、および、前記光電変換層上に第2電極層を形成するステップ、を含む。 The method for producing an organic thin-film solar cell provided by the tenth aspect of the present invention has a predetermined thickness on the second surface side of a transparent support substrate having a first surface and a second surface opposite to the first surface. And forming a transparent first electrode layer having an opening on the surface, forming a photoelectric conversion layer on the first electrode layer, and forming a second electrode layer on the photoelectric conversion layer Steps.
 好ましい実施形態では、前記第1電極層を形成するステップは、前記第1電極層をその厚み方向に除去して前記開口部を形成するステップを含む。 In a preferred embodiment, the step of forming the first electrode layer includes the step of removing the first electrode layer in the thickness direction to form the opening.
 好ましい実施の形態では、前記開口部を形成するステップは、前記第1電極層をその厚み方向に所定深さ除去して行う。 In a preferred embodiment, the step of forming the opening is performed by removing the first electrode layer by a predetermined depth in the thickness direction.
 好ましい実施の形態では、前記開口部を形成するステップは、厚み100~200nmの前記第1電極層を厚み50~100nmの薄肉部が残るようにして行う。 In a preferred embodiment, the step of forming the opening is performed such that a thin portion having a thickness of 50 to 100 nm remains in the first electrode layer having a thickness of 100 to 200 nm.
 好ましい実施の形態では、前記開口部を形成するステップは、前記支持基板とは反対側から前記第1電極層を除去して行う。 In a preferred embodiment, the step of forming the opening is performed by removing the first electrode layer from the side opposite to the support substrate.
 好ましい実施の形態では、前記開口部を形成するステップは、前記開口部を形成する以前の第1電極層を形成した後に行う。 In a preferred embodiment, the step of forming the opening is performed after forming the first electrode layer before forming the opening.
 好ましい実施の形態では、前記開口部を形成するステップは、前記支持基板の第1面側から前記第1電極層を除去して行う。 In a preferred embodiment, the step of forming the opening is performed by removing the first electrode layer from the first surface side of the support substrate.
 好ましい実施の形態では、前記開口部を形成するステップは、前記開口部を形成する以前の第1電極層に対し、前記第2電極層を形成するステップよりも後に行う。 In a preferred embodiment, the step of forming the opening is performed after the step of forming the second electrode layer on the first electrode layer before the opening is formed.
 好ましい実施の形態では、前記開口部を形成するステップは、前記第1電極層をその厚み方向に貫通する貫通部を形成することにより行う。 In a preferred embodiment, the step of forming the opening is performed by forming a penetrating portion that penetrates the first electrode layer in its thickness direction.
 好ましい実施の形態では、前記開口部を形成するステップは、5~20μmの幅で所定方向に延びる複数のラインが30~50μm間隔で配列されたものとして形成する。 In a preferred embodiment, the step of forming the opening is formed by arranging a plurality of lines having a width of 5 to 20 μm and extending in a predetermined direction at intervals of 30 to 50 μm.
 好ましい実施の形態では、前記開口部を形成するステップは、レーザを照射することにより行う。 In a preferred embodiment, the step of forming the opening is performed by laser irradiation.
 本発明の第11の側面によって提供される電子機器は、筐体を有し、当該筐体の表面に前記支持基板の前記第1面が臨むようにして前記第9の側面に係る有機薄膜太陽電池を備える。 The electronic device provided by the 11th side surface of this invention has a housing | casing, The organic thin-film solar cell which concerns on the said 9th side surface so that the said 1st surface of the said support substrate may face the surface of the said housing | casing. Prepare.
 本発明の第12の側面によって提供される有機薄膜太陽電池モジュールは、透明な支持基板と、前記支持基板に積層された透明な第1導電層と、第2導電層と、前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、前記第2導電層を覆うパッシベーション層と、を備え、前記パッシベーション層は、第1端縁を有し、前記第1端縁に隣接する領域において、前記支持基板が露出している。 The organic thin film solar cell module provided by the twelfth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, and a passivation layer covering the second conductive layer, the passivation layer having a first edge, and the first end The support substrate is exposed in a region adjacent to the edge.
 本発明の好ましい実施の形態においては、前記第1導電層は、平面視において前記第1端縁と一致する第3端縁を有する。 In a preferred embodiment of the present invention, the first conductive layer has a third edge that coincides with the first edge in plan view.
 本発明の好ましい実施の形態においては、前記第1導電層は、平面視において前記第1端縁よりも内方に退避した第3内方退避端縁を有する。 In a preferred embodiment of the present invention, the first conductive layer has a third inward retraction edge that retreats inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する。 In a preferred embodiment of the present invention, the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している。 In a preferred embodiment of the present invention, the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
 本発明の好ましい実施の形態においては、前記第1端縁は、平面視環状である。 In a preferred embodiment of the present invention, the first edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第3端縁は、平面視環状である。 In a preferred embodiment of the present invention, the third end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第3内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the third inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the fourth inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第5内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the fifth inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、SiNからなる。 In a preferred embodiment of the present invention, the passivation layer is made of SiN.
 本発明の好ましい実施の形態においては、前記パッシベーション層を覆う保護樹脂層を備えており、前記保護樹脂層は、平面視において前記第1端縁と一致する第2端縁を有する。 In a preferred embodiment of the present invention, a protective resin layer is provided to cover the passivation layer, and the protective resin layer has a second edge that coincides with the first edge in plan view.
 本発明の好ましい実施の形態においては、前記第2端縁と前記第1端縁とは、連続した面をなす。 In a preferred embodiment of the present invention, the second end edge and the first end edge form a continuous surface.
 本発明の好ましい実施の形態においては、前記第2端縁は、平面視環状である。 In a preferred embodiment of the present invention, the second edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、紫外線硬化樹脂からなる。 In a preferred embodiment of the present invention, the protective resin layer is made of an ultraviolet curable resin.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第2端縁と反対側に位置する第2外方端縁を有し、前記パッシベーション層は、平面視において前記第2外方端縁と一致する第1外方端縁を有し、前記第1導電層は、前記第2外方端縁および前記第1外方端縁から外方に延出する延出部を有し、前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を備える。 In a preferred embodiment of the present invention, the protective resin layer has a second outer edge located on the opposite side of the second edge with at least a part of the photoelectric conversion layer in plan view. The passivation layer has a first outer edge that coincides with the second outer edge in a plan view, and the first conductive layer includes the second outer edge and the first outer edge. It has an extended portion that extends outward from the edge, covers at least a part of the extended portion, and includes a bypass conductive portion made of a material having a lower resistance than the material of the first conductive layer.
 本発明の好ましい実施の形態においては、前記第2外方端縁と前記第1外方端縁とは、連続した面をなす。 In a preferred embodiment of the present invention, the second outer edge and the first outer edge form a continuous surface.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、前記第2外方端縁および前記第1外方端縁を覆う。 In a preferred embodiment of the present invention, the bypass conductive portion covers the second outer end edge and the first outer end edge.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、Agまたはカーボンを含む。 In a preferred embodiment of the present invention, the bypass conductive portion contains Ag or carbon.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第1端縁と反対側に位置する第1外方端縁を有し、前記第1導電層は、前記第1外方端縁から外方に延出する延出部を有し、前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部と、前記バイパス導電部を覆う保護樹脂層と、を備える。 In a preferred embodiment of the present invention, the passivation layer has a first outer edge located on the opposite side of the first edge with at least a part of the photoelectric conversion layer in plan view, The first conductive layer has an extending portion extending outward from the first outer edge, covers at least a part of the extending portion, and is lower than the material of the first conductive layer. A bypass conductive portion made of a material of resistance, and a protective resin layer covering the bypass conductive portion.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、前記第1外方端縁を覆う。 In a preferred embodiment of the present invention, the bypass conductive portion covers the first outer end edge.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、Agまたはカーボンを含む。 In a preferred embodiment of the present invention, the bypass conductive portion contains Ag or carbon.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、平面視において前記バイパス導電部と重なり、且つ前記第1端縁よりも前記第1外方端縁側の領域に設けられた非透光部を含む。 In a preferred embodiment of the present invention, the protective resin layer overlaps with the bypass conductive portion in a plan view and is provided in a region closer to the first outer edge than the first edge. Part.
 本発明の好ましい実施の形態においては、前記非透光部は、白色である。 In a preferred embodiment of the present invention, the non-light-transmitting portion is white.
 本発明の好ましい実施の形態においては、前記第2導電層は、平面視において前記第2外方端縁および前記第1外方端縁よりも内方に退避した第4外方退避端縁を有する。 In a preferred embodiment of the present invention, the second conductive layer has a fourth outer retraction edge that retreats inward from the second outer end edge and the first outer end edge in a plan view. Have.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第2外方端縁および前記第1外方端縁よりも内方に退避した第5外方退避端縁を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a second outer end edge and a fifth outer retreat edge that retreats inward from the first outer end edge in a plan view. .
 本発明の第13の側面によって提供される電子機器は、本発明の第12の側面によって提供される有機薄膜太陽電池モジュールと、前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、を備える。 An electronic device provided by a thirteenth aspect of the present invention includes an organic thin film solar cell module provided by a twelfth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
 本発明の第14の側面によって提供される有機薄膜太陽電池モジュールの製造方法は、透明な支持基板に透明な第1導電膜を積層する工程と、前記第1導電膜に有機薄膜からなる光電変換層を積層する工程と、前記光電変換層に第2導電層を積層する工程と、前記第2導電層を覆う絶縁膜を積層する工程と、前記絶縁膜を部分的に除去することによる第1端縁を有するパッシベーション層の形成および前記第1導電膜の部分的な除去による第1導電層の形成を含み、前記第1端縁に隣接する領域において、前記支持基板を露出させる工程と、を備える。 The method for producing an organic thin film solar cell module provided by the fourteenth aspect of the present invention includes a step of laminating a transparent first conductive film on a transparent support substrate, and a photoelectric conversion comprising an organic thin film on the first conductive film. A step of laminating a layer, a step of laminating a second conductive layer on the photoelectric conversion layer, a step of laminating an insulating film covering the second conductive layer, and a first by partially removing the insulating film. Including forming a passivation layer having an edge and forming a first conductive layer by partially removing the first conductive film, and exposing the support substrate in a region adjacent to the first edge. Prepare.
 本発明の好ましい実施の形態においては、前記絶縁膜を形成する工程の後、前記支持基板を露出させる工程の前に、前記絶縁膜に第2端縁を有する保護樹脂層を積層する工程を備え、前記支持基板を露出させる工程は、前記第2端縁を境界として、前記絶縁膜を部分的に除去することにより平面視において前記第2端縁と一致する前記第1端縁を有する前記パッシベーション層を形成する工程と、前記第1導電膜のうち前記第1端縁および前記第2端縁から露出する部分除去することにより前記第1導電層を形成する工程と、を含む。 In a preferred embodiment of the present invention, a step of laminating a protective resin layer having a second edge on the insulating film is provided after the step of forming the insulating film and before the step of exposing the support substrate. The step of exposing the support substrate includes the passivation having the first edge that coincides with the second edge in plan view by partially removing the insulating film with the second edge as a boundary. Forming a layer, and forming the first conductive layer by removing portions of the first conductive film exposed from the first edge and the second edge.
 本発明の好ましい実施の形態においては、前記支持基板を露出させる工程において、平面視において前記第2端縁および前記第1端縁と一致する第3端縁を有する前記第1導電層を形成する。 In a preferred embodiment of the present invention, in the step of exposing the support substrate, the first conductive layer having the second edge and the third edge that coincides with the first edge in plan view is formed. .
 本発明の好ましい実施の形態においては、前記第2端縁および前記第1端縁は、平面視環状である。 In a preferred embodiment of the present invention, the second end edge and the first end edge are annular in plan view.
 本発明の好ましい実施の形態においては、前記第3端縁は、平面視環状である。 In a preferred embodiment of the present invention, the third end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、SiNからなる。 In a preferred embodiment of the present invention, the passivation layer is made of SiN.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、紫外線硬化樹脂からなる。 In a preferred embodiment of the present invention, the protective resin layer is made of an ultraviolet curable resin.
 本発明の好ましい実施の形態においては、前記保護樹脂層を積層する工程において、平面視において前記光電変換層の少なくとも一部を挟んで前記第2端縁と反対側に位置する第2外方端縁を形成し、前記第2端縁を境界として、前記絶縁膜を部分的に除去することにより平面視において前記第2外方端縁と一致する第1外方端縁を有する前記パッシベーション層に形成する工程と、前記第1導電層のうち前記第2外方端縁および前記第1外方端縁から外方に延出する延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を形成する工程と、を備える。 In a preferred embodiment of the present invention, in the step of laminating the protective resin layer, a second outer end located on the opposite side of the second end edge across at least a part of the photoelectric conversion layer in plan view Forming an edge on the passivation layer having a first outer edge that coincides with the second outer edge in plan view by partially removing the insulating film with the second edge as a boundary. A step of forming and covering at least a part of the second outer end edge and the extending portion extending outward from the first outer end edge of the first conductive layer, and the first conductive layer Forming a bypass conductive portion made of a material having a resistance lower than that of the material.
 本発明の好ましい実施の形態においては、前記バイパス導電部を形成する工程においては、前記バイパス導電部によって前記第2外方端縁および前記第1外方端縁を覆う。 In a preferred embodiment of the present invention, in the step of forming the bypass conductive portion, the bypass conductive portion covers the second outer end edge and the first outer end edge.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、Agまたはカーボンを含む。 In a preferred embodiment of the present invention, the bypass conductive portion contains Ag or carbon.
 本発明の好ましい実施の形態においては、前記支持基板を露出させる工程は、前記絶縁膜を透して前記第1導電膜にレーザー光を照射することにより、前記第1導電膜および前記絶縁膜を部分的に除去する処理を含む。 In a preferred embodiment of the present invention, in the step of exposing the support substrate, the first conductive film and the insulating film are exposed by irradiating the first conductive film with laser light through the insulating film. Includes partial removal.
 本発明の好ましい実施の形態においては、前記支持基板を露出させる工程は、前記部分的に除去する処理により前記絶縁膜のうち平面視において前記レーザー光が照射された領域に隣接する領域が除去されることにより、前記第1導電膜のうち前記レーザー光が照射されていない部分を前記パッシベーション層から露出する延出部とする処理を含み、前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を形成する工程と、前記バイパス導電部を覆う保護樹脂層を形成する工程と、を備える。 In a preferred embodiment of the present invention, in the step of exposing the support substrate, a region adjacent to the region irradiated with the laser beam in plan view is removed from the insulating film by the partial removal process. A portion of the first conductive film that is not irradiated with the laser light is formed as an extended portion exposed from the passivation layer, covers at least a part of the extended portion, and A step of forming a bypass conductive portion made of a material having a resistance lower than that of the one conductive layer, and a step of forming a protective resin layer covering the bypass conductive portion.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、Agまたはカーボンを含む。 In a preferred embodiment of the present invention, the bypass conductive portion contains Ag or carbon.
 本発明の好ましい実施の形態においては、前記保護樹脂層を形成する工程においては、平面視において前記バイパス導電部と重なり、且つ前記第1端縁よりも前記第1外方端縁側の領域に非透光部形成する。 In a preferred embodiment of the present invention, in the step of forming the protective resin layer, it overlaps with the bypass conductive portion in a plan view and is not in the region on the first outer edge side with respect to the first edge. A translucent part is formed.
 本発明の第15の側面によって提供される有機薄膜太陽電池モジュールは、透明な支持基板と、前記支持基板に積層された透明な第1導電層と、第2導電層と、前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、前記第2導電層を覆うパッシベーション層と、を備え、前記第1導電層は、平面視において前記パッシベーション層から延出する延出部と、当該延出部の端縁に両端が到達したスリットと、当該スリットによって区画され且つ前記スリットの前記両端に繋がる接続部端縁を有する接続部と、を有し、前記光電変換層は、平面視において前記第1導電層の前記接続部に内包され且つ厚さ方向に貫通する導通用貫通部を有し、前記第2導電層と前記第1導電層の前記接続部とは、前記光電変換層の前記導通用貫通部を介して導通しており、前記接続部のうち前記パッシベーション層から延出する接続延出部の少なくとも一部を覆う第1バスバー部と、当該第1バスバー部に導通する第1集極部とを有するバイパス導電部を備える。 The organic thin film solar cell module provided by the fifteenth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, and a passivation layer covering the second conductive layer, the first conductive layer extending from the passivation layer in plan view An extension part, a slit whose both ends have reached the edge of the extension part, and a connection part having a connection part edge defined by the slit and connected to the both ends of the slit, and the photoelectric conversion The layer includes a through-hole for conduction that is included in the connection portion of the first conductive layer in a plan view and penetrates in the thickness direction, and the second conductive layer and the connection portion of the first conductive layer are The photoelectric conversion layer A first bus bar portion covering at least a part of the connection extending portion extending from the passivation layer among the connection portions, and a first collection conducting to the first bus bar portion. A bypass conductive portion having a pole portion is provided.
 本発明の好ましい実施の形態においては、前記導通用貫通部は、平面視において円形状である。 In a preferred embodiment of the present invention, the through-hole for conduction has a circular shape in plan view.
 本発明の好ましい実施の形態においては、前記導通用貫通部は、前記接続部端縁と平行である方向を長手方向とする平面視細長形状である。 In a preferred embodiment of the present invention, the through-hole for conduction has an elongated shape in a plan view having a direction parallel to the edge of the connection portion as a longitudinal direction.
 本発明の好ましい実施の形態においては、前記第1集極部は、平面視において前記第2導電層および前記光電変換層と重なり、前記支持基板の厚さ方向において、前記第1集極部と前記第2導電層との間に前記パッシベーション層が介在する。 In a preferred embodiment of the present invention, the first electrode collector portion overlaps the second conductive layer and the photoelectric conversion layer in plan view, and in the thickness direction of the support substrate, the first electrode collector portion and The passivation layer is interposed between the second conductive layer.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、前記第1導電層の前記延出部の少なくとも一部を覆う第2バスバー部と、当該第2バスバー部に導通する第2集極部とを有する。 In a preferred embodiment of the present invention, the bypass conductive portion includes a second bus bar portion that covers at least a part of the extension portion of the first conductive layer, and a second collector that is electrically connected to the second bus bar portion. Part.
 本発明の好ましい実施の形態においては、前記第2集極部は、平面視において前記第2導電層および前記光電変換層と重なり、前記支持基板の厚さ方向において、前記第2集極部と前記第2導電層との間に前記パッシベーション層が介在する。 In a preferred embodiment of the present invention, the second electrode collector portion overlaps the second conductive layer and the photoelectric conversion layer in a plan view, and in the thickness direction of the support substrate, the second electrode collector portion and The passivation layer is interposed between the second conductive layer.
 本発明の好ましい実施の形態においては、前記第2バスバー部は、前記第1導電層の前記延出部のうち前記接続部を挟む部分に両端が繋がり、且つ平面視において前記第1集極部を迂回する迂回部を有する。 In a preferred embodiment of the present invention, the second bus bar portion has both ends connected to a portion of the extension portion of the first conductive layer sandwiching the connection portion, and the first pole collector portion in a plan view. It has a detour part which detours.
 本発明の好ましい実施の形態においては、前記光電変換層は、厚さ方向に貫通し且つ外観に表れる意匠表示部を構成する意匠表示用貫通部を有し、前記意匠表示用貫通部は、前記導通用貫通部に対して前記接続部端縁とは反対側に位置している。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a design display penetrating portion that constitutes a design display portion that penetrates in the thickness direction and appears on the appearance, and the design display penetrating portion includes It is located on the opposite side of the connecting portion end edge with respect to the conducting through portion.
 本発明の好ましい実施の形態においては、前記第1導電層は、表示領域を構成するための表示用開口と、当該表示用開口を区画する第3端縁と、前記パッシベーション層から前記表示用開口側に延出する第1延出部と、を有し、前記接続部は、前記第3端縁に両端が到達した前記スリットによって区画されている。 In a preferred embodiment of the present invention, the first conductive layer includes a display opening for forming a display area, a third edge that defines the display opening, and the display layer to the display opening. A first extending portion that extends to the side, and the connecting portion is partitioned by the slit having both ends reaching the third end edge.
 本発明の好ましい実施の形態においては、前記第1導電層は、表示領域を構成するための表示用開口と、当該表示用開口を区画する第3端縁と、当該第3端縁とは反対側に位置する第3外方端縁と、前記パッシベーション層から前記表示用開口側に延出する第1延出部と、前記パッシベーション層から前記表示用開口とは反対側に延出する第2延出部と、を有し、前記接続部は、前記第3外方端縁に両端が到達した前記スリットによって区画されている。 In a preferred embodiment of the present invention, the first conductive layer includes a display opening for forming a display region, a third edge that defines the display opening, and the third edge is opposite to the display opening. A third outer edge located on the side, a first extension extending from the passivation layer to the display opening, and a second extension extending from the passivation layer to the opposite side of the display opening. An extension portion, and the connection portion is partitioned by the slits whose both ends reach the third outer end edge.
 本発明の好ましい実施の形態においては、前記バイパス導電部を覆う保護樹脂層を備える。 In a preferred embodiment of the present invention, a protective resin layer covering the bypass conductive portion is provided.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、平面視において前記表示用開口と対向する第1端縁を有し、前記保護樹脂層は、前記パッシベーション層を覆う第1保護樹脂層と、当該第1保護樹脂層に積層され且つ前記バイパス導電部を覆う第2保護樹脂層と、を含み、前記第1保護樹脂層は、平面視において前記第1端縁と一致する第2端縁を有する。 In a preferred embodiment of the present invention, the passivation layer has a first edge facing the display opening in plan view, and the protective resin layer includes a first protective resin layer that covers the passivation layer; A second protective resin layer that is laminated on the first protective resin layer and covers the bypass conductive portion, and the first protective resin layer coincides with the first edge in plan view Have
 本発明の好ましい実施の形態においては、前記第1端縁と前記第2端縁とは、連続した面をなす。 In a preferred embodiment of the present invention, the first end edge and the second end edge form a continuous surface.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、平面視において前記第3端縁と一致する第7端縁を有する。 In a preferred embodiment of the present invention, the bypass conductive portion has a seventh edge that coincides with the third edge in plan view.
 本発明の好ましい実施の形態においては、前記第2保護樹脂層は、平面視において前記第3端縁および前記第7端縁に対して前記第1端縁とは反対側に位置する第6端縁を有し且つ前記支持基板に接している。 In a preferred embodiment of the present invention, the second protective resin layer has a sixth end located on the opposite side of the first end edge with respect to the third end edge and the seventh end edge in a plan view. It has an edge and is in contact with the support substrate.
 本発明の好ましい実施の形態においては、前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する。 In a preferred embodiment of the present invention, the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している。 In a preferred embodiment of the present invention, the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、平面視において前記表示用開口と対向する第1端縁を有し、前記バイパス導電部は、平面視において前記第3端縁に対して前記第1端縁とは反対側に位置する第7端縁を有する。 In a preferred embodiment of the present invention, the passivation layer has a first edge that opposes the display opening in a plan view, and the bypass conductive portion is opposed to the third edge in a plan view. The seventh end edge is located on the opposite side to the first end edge.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、平面視において前記第7端縁に対して前記第1端縁とは反対側に位置する第2端縁を有し且つ前記支持基板に接している。 In a preferred embodiment of the present invention, the protective resin layer has a second edge located on a side opposite to the first edge with respect to the seventh edge in plan view, and the support substrate. Is in contact with
 本発明の好ましい実施の形態においては、前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する。 In a preferred embodiment of the present invention, the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している。 In a preferred embodiment of the present invention, the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
 本発明の好ましい実施の形態においては、前記第1端縁は、平面視環状である。 In a preferred embodiment of the present invention, the first edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第3端縁は、平面視環状である。 In a preferred embodiment of the present invention, the third end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the fourth inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第5内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the fifth inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第7端縁は、平面視環状である。 In a preferred embodiment of the present invention, the seventh end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第2端縁は、平面視環状である。 In a preferred embodiment of the present invention, the second edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第6端縁は、平面視環状である。 In a preferred embodiment of the present invention, the sixth end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、SiNからなる。 In a preferred embodiment of the present invention, the passivation layer is made of SiN.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、紫外線硬化樹脂からなる。 In a preferred embodiment of the present invention, the protective resin layer is made of an ultraviolet curable resin.
 本発明の第16の側面によって提供される電子機器は、本発明の第15の側面によって提供される有機薄膜太陽電池モジュールと、前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、を備える。 According to a sixteenth aspect of the present invention, there is provided an electronic apparatus comprising: the organic thin film solar cell module provided by the fifteenth aspect of the present invention; and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
 本発明の第17の側面によって提供される有機薄膜太陽電池モジュールは、透明な支持基板と、前記支持基板に積層された透明な第1導電層と、第2導電層と、前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、前記第2導電層を覆うパッシベーション層と、を備え、前記第1導電層は、平面視において前記パッシベーション層から延出する延出部を有し、前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部と、前記バイパス導電部を覆う保護樹脂層と、を備える。 An organic thin film solar cell module provided by a seventeenth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, and a passivation layer covering the second conductive layer, the first conductive layer extending from the passivation layer in plan view A bypass conductive part having an extension part, covering at least a part of the extension part and made of a material having a lower resistance than the material of the first conductive layer, and a protective resin layer covering the bypass conductive part; Is provided.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、第1端縁を有し、前記第1端縁に隣接する領域において、前記支持基板が露出している。 In a preferred embodiment of the present invention, the passivation layer has a first edge, and the support substrate is exposed in a region adjacent to the first edge.
 本発明の好ましい実施の形態においては、前記第1導電層の前記延出部は、前記第1端縁から露出する第1延出部を含み、前記第1延出部は、平面視において前記第1端縁から離間する第3端縁を有する。 In a preferred embodiment of the present invention, the extension part of the first conductive layer includes a first extension part exposed from the first end edge, and the first extension part is A third edge spaced from the first edge;
 本発明の好ましい実施の形態においては、前記保護樹脂層は、前記パッシベーション層を覆う第1保護樹脂層と、当該第1保護樹脂層に積層され且つ前記バイパス導電部を覆う第2保護樹脂層と、を含み、前記第1保護樹脂層は、平面視において前記第1端縁と一致する第2端縁を有する。 In a preferred embodiment of the present invention, the protective resin layer includes a first protective resin layer that covers the passivation layer, and a second protective resin layer that is laminated on the first protective resin layer and covers the bypass conductive portion. The first protective resin layer has a second edge that coincides with the first edge in plan view.
 本発明の好ましい実施の形態においては、前記第1端縁と前記第2端縁とは、連続した面をなす。 In a preferred embodiment of the present invention, the first end edge and the second end edge form a continuous surface.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、平面視において前記第3端縁と一致する第7端縁を有する。 In a preferred embodiment of the present invention, the bypass conductive portion has a seventh edge that coincides with the third edge in plan view.
 本発明の好ましい実施の形態においては、前記第2保護樹脂層は、平面視において前記第3端縁および前記第7端縁に対して前記第1端縁とは反対側に位置する第6端縁を有し且つ前記支持基板に接している。 In a preferred embodiment of the present invention, the second protective resin layer has a sixth end located on the opposite side of the first end edge with respect to the third end edge and the seventh end edge in a plan view. It has an edge and is in contact with the support substrate.
 本発明の好ましい実施の形態においては、前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する。 In a preferred embodiment of the present invention, the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している。 In a preferred embodiment of the present invention, the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第1端縁と反対側に位置する第1外方端縁を有し、前記延出部は、前記第1外方端縁から延出する第2延出部を含み、前記第2延出部は、平面視において前記第1外方端縁から離間する第3外方端縁を有する。 In a preferred embodiment of the present invention, the passivation layer has a first outer edge located on the opposite side of the first edge with at least a part of the photoelectric conversion layer in plan view, The extension part includes a second extension part extending from the first outer end edge, and the second extension part is separated from the first outer end edge in a plan view. Has an edge.
 本発明の好ましい実施の形態においては、前記第1保護樹脂層は、平面視において前記第1外方端縁と一致する第2外方端縁を有する。 In a preferred embodiment of the present invention, the first protective resin layer has a second outer edge that coincides with the first outer edge in plan view.
 本発明の好ましい実施の形態においては、前記第1外方端縁と前記第2外方端縁とは、連続した面をなす。 In a preferred embodiment of the present invention, the first outer end edge and the second outer end edge form a continuous surface.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、平面視において前記第3外方端縁と一致する第7外方端縁を有する。 In a preferred embodiment of the present invention, the bypass conductive portion has a seventh outer end edge that coincides with the third outer end edge in a plan view.
 本発明の好ましい実施の形態においては、前記第2保護樹脂層は、平面視において前記第3外方端縁および前記第7外方端縁に対して前記第1外方端縁とは反対側に位置する第6外方端縁を有し且つ前記支持基板に接している。 In a preferred embodiment of the present invention, the second protective resin layer is opposite to the first outer end edge with respect to the third outer end edge and the seventh outer end edge in a plan view. And has a sixth outer edge located on the support substrate.
 本発明の好ましい実施の形態においては、前記第2保護樹脂層は、平面視において前記バイパス導電部と重なり且つ前記第1端縁よりも前記第1外方端縁側の領域に設けられた非透光部を含む。 In a preferred embodiment of the present invention, the second protective resin layer overlaps with the bypass conductive portion in a plan view and is provided in a region that is provided in a region closer to the first outer edge than the first edge. Includes light.
 本発明の好ましい実施の形態においては、前記非透光部は、白色である。 In a preferred embodiment of the present invention, the non-light-transmitting portion is white.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、平面視において前記第3端縁に対して前記第1端縁とは反対側に位置する第7端縁を有する。 In a preferred embodiment of the present invention, the bypass conductive portion has a seventh edge located on the opposite side of the first edge with respect to the third edge in plan view.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、平面視において前記第7端縁に対して前記第1端縁とは反対側に位置する第2端縁を有し且つ前記支持基板に接している。 In a preferred embodiment of the present invention, the protective resin layer has a second edge located on a side opposite to the first edge with respect to the seventh edge in plan view, and the support substrate. Is in contact with
 本発明の好ましい実施の形態においては、前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する。 In a preferred embodiment of the present invention, the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する。 In a preferred embodiment of the present invention, the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している。 In a preferred embodiment of the present invention, the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第1端縁と反対側に位置する第1外方端縁を有し、前記延出部は、前記第1外方端縁から延出する第2延出部を含み、前記第2延出部は、平面視において前記第1外方端縁から離間する第3外方端縁を有する。 In a preferred embodiment of the present invention, the passivation layer has a first outer edge located on the opposite side of the first edge with at least a part of the photoelectric conversion layer in plan view, The extension part includes a second extension part extending from the first outer end edge, and the second extension part is separated from the first outer end edge in a plan view. Has an edge.
 本発明の好ましい実施の形態においては、前記バイパス導電部は、平面視において前記第3外方端縁に対して前記第1外方端縁とは反対側に位置する第7外方端縁を有する。 In a preferred embodiment of the present invention, the bypass conductive portion has a seventh outer end edge located on a side opposite to the first outer end edge with respect to the third outer end edge in a plan view. Have.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、平面視において第7外方端縁に対して前記第1外方端縁とは反対側に位置する第2外方端縁を有し且つ前記支持基板に接している。 In a preferred embodiment of the present invention, the protective resin layer has a second outer edge located on the opposite side of the first outer edge with respect to the seventh outer edge in plan view. And in contact with the support substrate.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、平面視において前記バイパス導電部と重なり且つ前記第1端縁よりも前記第1外方端縁側の領域に設けられた非透光部を含む。 In a preferred embodiment of the present invention, the protective resin layer overlaps the bypass conductive portion in a plan view and is provided in a region closer to the first outer edge than the first edge. including.
 本発明の好ましい実施の形態においては、前記非透光部は、白色である。 In a preferred embodiment of the present invention, the non-light-transmitting portion is white.
 本発明の好ましい実施の形態においては、前記第1端縁は、平面視環状である。 In a preferred embodiment of the present invention, the first edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第3端縁は、平面視環状である。 In a preferred embodiment of the present invention, the third end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第4内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the fourth inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第5内方退避端縁は、平面視環状である。 In a preferred embodiment of the present invention, the fifth inward withdrawal edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第6端縁は、平面視環状である。 In a preferred embodiment of the present invention, the sixth end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第7端縁は、平面視環状である。 In a preferred embodiment of the present invention, the seventh end edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第2端縁は、平面視環状である。 In a preferred embodiment of the present invention, the second edge is annular in plan view.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、SiNからなる。 In a preferred embodiment of the present invention, the passivation layer is made of SiN.
 本発明の好ましい実施の形態においては、前記保護樹脂層は、紫外線硬化樹脂からなる。 In a preferred embodiment of the present invention, the protective resin layer is made of an ultraviolet curable resin.
 本発明の第18の側面によって提供される電子機器は、本発明の第17の側面によって提供される有機薄膜太陽電池モジュールと、前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、を備える。 An electronic device provided by an eighteenth aspect of the present invention includes an organic thin film solar cell module provided by the seventeenth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
 本発明の第19の側面によって提供される有機薄膜太陽電池モジュールは、透明な支持基板と、前記支持基板に積層された透明な第1導電層と、第2導電層と、前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、を備え、前記第1導電層は、前記支持基板の一部が前記第1導電層から露出した基板露出領域を介して隣り合う2つの第1区画部を有しており、前記第2導電層は、前記基板露出領域の一部を挟んで隣り合う2つの第2区画部を有しており、前記隣り合う2つのうち一方の前記第1区画部は、前記基板露出領域を規定する第1区画部第1端縁を有し、前記隣り合う2つのうち他方の前記第1区画部は、前記基板露出領域を規定する第1区画部第2端縁を有し、前記隣り合う2つのうち一方の前記第2区画部は、平面視において前記隣り合う2つのうち一方の前記第1区画部に重なっているとともに、前記隣り合う2つのうち一方の前記第1区画部の前記第1区画部第1端縁に対して前記隣り合う2つのうち他方の前記第1区画部の前記第1区画部第2端縁とは反対側に位置する第2区画部第1端縁を有し、前記隣り合う2つのうち他方の前記第2区画部は、平面視において前記隣り合う2つのうち一方の前記第2区画部第1端縁と対向する第2区画部第2端縁を有し、前記光電変換層は、平面視において前記隣り合う2つのうち一方の前記第1区画部および前記隣り合う2つのうち他方の前記第2区画部の双方と重なる部分であって前記隣り合う2つのうち一方の前記第1区画部の前記第1区画部第1端縁のうち前記隣り合う2つのうち他方の前記第2区画部に重なる第1被覆部および前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁によって区画された光電変換層接続部に、厚さ方向に貫通する光電変換層貫通部を有し、前記基板露出領域は、前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁と交差する1以上の交差部を有する。 An organic thin film solar cell module provided by a nineteenth aspect of the present invention includes a transparent support substrate, a transparent first conductive layer laminated on the support substrate, a second conductive layer, and the first conductive layer. And a photoelectric conversion layer made of an organic thin film sandwiched between the second conductive layers, the first conductive layer passing through a substrate exposed region in which a part of the support substrate is exposed from the first conductive layer. The first conductive layer has two adjacent first partition portions, and the second conductive layer has two second partition portions adjacent to each other with a part of the substrate exposed region interposed therebetween. One of the first partition portions has a first edge of the first partition portion that defines the substrate exposure region, and the other of the two adjacent first partition portions defines the substrate exposure region. The first partition part has a second end edge, and one of the two adjacent ones is the first The partition portion overlaps the first partition portion of one of the two adjacent ones in plan view, and the first partition portion first edge of the first partition portion of the two adjacent ones. On the other hand, of the two adjacent ones, the second partition part first edge located on the opposite side to the first partition part second edge of the other first partition part is provided, The other second partition portion has a second partition portion second end facing the second partition portion first end of one of the two adjacent ones in plan view, and the photoelectric conversion layer is In the plan view, one of the two adjacent ones and the other of the two adjacent two second divided parts overlap each other, and the first one of the two adjacent ones. Among the two adjacent ones of the first partition part first edge of the part A thickness of the first covering portion that overlaps the second partition portion on the other side and the photoelectric conversion layer connecting portion partitioned by the second edge of the second partition portion of the other two partition portions of the two adjacent ones. One or more crossing parts which have a photoelectric conversion layer penetration part which penetrates in the direction, and the substrate exposure field crosses the 2nd division part 2nd edge of the other said 2nd division part among the two adjacent. Have
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部は、平面視において前記光電変換層接続部と重ならず且つ前記第2導電層と重なる第1電極部を有し、前記隣り合う2つのうち一方の前記第2区画部は、平面視において前記第1電極部と一致する第2電極部を有し、前記光電変換層は、平面視において前記第1電極部および前記第2電極部と一致する光電変換層発電部を有する。 In a preferred embodiment of the present invention, one of the adjacent two first partition portions does not overlap with the photoelectric conversion layer connection portion in a plan view and overlaps with the second conductive layer. One of the two adjacent sections has a second electrode portion that coincides with the first electrode portion in plan view, and the photoelectric conversion layer has the first electrode in plan view. A photoelectric conversion layer power generation unit that coincides with the electrode unit and the second electrode unit is provided.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部は、平面視において前記光電変換層接続部と一致する第1接続部を有し、前記隣り合う2つのうち他方の前記第2区画部は、平面視において前記光電変換層接続部と一致する第2接続部を有する。 In a preferred embodiment of the present invention, one of the two adjacent ones has a first connection portion that coincides with the photoelectric conversion layer connection portion in plan view, and the two adjacent The other second partition portion has a second connection portion that coincides with the photoelectric conversion layer connection portion in plan view.
 本発明の好ましい実施の形態においては、平面視における前記2つの第1区画部が並ぶ方向と交差する方向において、前記光電変換層接続部と前記光電変換層発電部の一部とが隣り合っている。 In a preferred embodiment of the present invention, the photoelectric conversion layer connecting portion and a part of the photoelectric conversion layer power generation portion are adjacent to each other in a direction intersecting with the direction in which the two first partition portions are arranged in plan view. Yes.
 本発明の好ましい実施の形態においては、平面視における前記2つの第1区画部が並ぶ方向と交差する方向において、前記光電変換層接続部の両側に前記光電変換層発電部が位置する。 In a preferred embodiment of the present invention, the photoelectric conversion layer power generation units are located on both sides of the photoelectric conversion layer connection unit in a direction intersecting with the direction in which the two first partition units are arranged in plan view.
 本発明の好ましい実施の形態においては、前記光電変換層貫通部は、平面視円形状である。 In a preferred embodiment of the present invention, the photoelectric conversion layer penetrating portion has a circular shape in plan view.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部の前記第1接続部は、平面視において前記光電変換層貫通部に内包され且つ厚さ方向に貫通する第1貫通部を有する。 In a preferred embodiment of the present invention, the first connection part of the first partition part of one of the two adjacent parts is included in the photoelectric conversion layer penetrating part in a plan view and penetrates in the thickness direction. It has a 1st penetration part.
 本発明の好ましい実施の形態においては、前記第1貫通部の内端縁は、平面視において前記光電変換層貫通部の内端縁から離間している。 In a preferred embodiment of the present invention, the inner end edge of the first penetrating portion is separated from the inner end edge of the photoelectric conversion layer penetrating portion in plan view.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部の前記第1接続部は、平面視における前記光電変換層貫通部に内包される領域において前記支持基板を覆っている。 In preferable embodiment of this invention, the said 1st connection part of one said 1st division part of the said adjacent two is the said support substrate in the area | region enclosed by the said photoelectric converting layer penetration part in planar view. Covering.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち他方の前記第2区画部は、前記第2区画部第2端縁に繋がり且つ前記隣り合う2つのうち一方の前記第2区画部から離間する側に延びる第2区画部第3端縁を有し、前記基板露出領域は、前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁と前記第2区画部第3端縁との一箇所ずつと交差する2つの前記交差部を有する。 In a preferred embodiment of the present invention, the other second partition part of the two adjacent ones is connected to the second edge of the second partition part and the second partition part of one of the two adjacent parts. A second partition section third end edge extending to a side away from the second partition section, and the substrate exposure area includes the second partition section second end edge of the other second partition section and the second section. It has two said crossing parts which cross | intersect one part with a 2 division part 3rd edge.
 本発明の好ましい実施の形態においては、前記基板露出領域は、前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁の二箇所と交差する2つの前記交差部を有する。 In a preferred embodiment of the present invention, the substrate exposed region has two intersecting portions that intersect two places of the second partition portion second edge of the other second partition portion of the two adjacent ones. Have
 本発明の好ましい実施の形態においては、平面視において前記2つの第2区画部と重ならない領域において、前記隣り合う2つのうち一方の前記第1区画部の前記第1区画部第1端縁は、第1辺を有し、前記隣り合う2つのうち他方の前記第1区画部の前記第1区画部第2端縁は、前記第1辺と平行である第2辺を有する。 In a preferred embodiment of the present invention, in a region that does not overlap the two second partition portions in plan view, the first partition portion first edge of one of the adjacent two partition portions is The first partition portion second end edge of the other first partition portion of the two adjacent ones has a second side that is parallel to the first side.
 本発明の好ましい実施の形態においては、前記第1辺および前記第2辺は、直線状である。 In a preferred embodiment of the present invention, the first side and the second side are linear.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第2区画部の前記第2区画部第1端縁と前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁とは、互いに平行である。 In a preferred embodiment of the present invention, the second partition part first end edge of the second partition part of one of the two adjacent parts and the second partition part of the other of the two adjacent parts. The two partition portion second edges are parallel to each other.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第2区画部の前記第2区画部第1端縁と前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁は、直線状である。 In a preferred embodiment of the present invention, the second partition part first end edge of the second partition part of one of the two adjacent parts and the second partition part of the other of the two adjacent parts. The second partition portion second edge is linear.
 本発明の好ましい実施の形態においては、前記隣り合う2つのうち一方の前記第1区画部の前記第1辺、前記隣り合う2つのうち他方の前記第1区画部の前記第2辺、前記隣り合う2つのうち一方の前記第2区画部の前記第2区画部第1端縁および前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁は、互いに平行である。 In a preferred embodiment of the present invention, the first side of the first partition part of the two adjacent ones, the second side of the other first partition part of the two adjacent parts, and the neighbors. The second partition portion first edge of the second partition portion of one of the two mating portions and the second partition portion second edge of the other second partition portion of the two adjacent partitions are parallel to each other. is there.
 本発明の好ましい実施の形態においては、前記第1辺、前記第2辺、前記第2区画部第1端縁および前記第2区画部第2端縁は、直線状である。 In a preferred embodiment of the present invention, the first side, the second side, the first edge of the second partition part, and the second edge of the second partition part are linear.
 本発明の好ましい実施の形態においては、隣り合う3以上の前記第1区画部および隣り合う3以上の前記第2区画部が、配列されている。 In a preferred embodiment of the present invention, three or more adjacent first partition portions and three or more adjacent second partition portions are arranged.
 本発明の好ましい実施の形態においては、隣り合う3以上の前記第1区画部および隣り合う3以上の前記第2区画部が、一直線上に配列されている。 In a preferred embodiment of the present invention, three or more adjacent first partition portions and three or more adjacent second partition portions are arranged in a straight line.
 本発明の好ましい実施の形態においては、隣り合う3以上の前記第1区画部および隣り合う3以上の前記第2区画部が、環状に配列されている。 In a preferred embodiment of the present invention, three or more adjacent first partition portions and three or more adjacent second partition portions are arranged in a ring shape.
 本発明の好ましい実施の形態においては、前記隣り合う3以上の第2区画部のうち2つの前記第2区画部の間にある前記第2区画部は、前記第2区画部第1端縁および前記第2区画部第2端縁と、前記第2区画部第1端縁および前記第2区画部第2端縁の両端同士を繋ぐ2つの第2区画部第3端縁と、を有する。 In a preferred embodiment of the present invention, among the three or more adjacent second partition portions, the second partition portion between two of the second partition portions is the second partition portion first edge and The second partition part second edge, and the second partition part first edge and the second partition part third edge that connects both ends of the second partition part second edge.
 本発明の好ましい実施の形態においては、前記隣り合う3以上の第2区画部のうち2つの前記第2区画部の間にある前記第2区画部の前記第2区画部第1端縁と前記第2区画部第2端縁とは、互いに平行である。 In preferable embodiment of this invention, the said 2nd division part 1st edge of the said 2nd division part between two said 2nd division parts among the said 3 or more adjacent 2nd division parts, and the said The second partition portion second edge is parallel to each other.
 本発明の好ましい実施の形態においては、前記隣り合う3以上の第2区画部のうち2つの前記第2区画部の間にある前記第2区画部の前記2つの第2区画部第3端縁は、互いに平行である。 In preferable embodiment of this invention, the said 2nd 2nd division part 3rd edge of the said 2nd division part between two said 2nd division parts among the said 3 or more adjacent 2nd division parts. Are parallel to each other.
 本発明の好ましい実施の形態においては、前記隣り合う3以上の第2区画部のうち2つの前記第2区画部の間にある前記第2区画部の前記第2区画部第1端縁および前記第2区画部第2端縁と前記2つの第2区画部第3端縁とは、互いに直角である。 In a preferred embodiment of the present invention, the second partition portion first edge of the second partition portion between two of the three or more second partition portions adjacent to each other and the second partition portion and the second partition portion The second edge of the second partition part and the third edge of the two second partition parts are perpendicular to each other.
 本発明の好ましい実施の形態においては、前記第1導電層は、平面視において前記光電変換層接続部に一致する外部接続部と、当該外部接続部に繋がり且つ前記第2導電層および前記光電変換層から露出する外部電極部と、を有する第3区画部を有する。 In a preferred embodiment of the present invention, the first conductive layer includes an external connection portion coinciding with the photoelectric conversion layer connection portion in plan view, and the second conductive layer and the photoelectric conversion connected to the external connection portion. And a third partition portion having an external electrode portion exposed from the layer.
 本発明の好ましい実施の形態においては、前記第1導電層は、ITOからなる。 In a preferred embodiment of the present invention, the first conductive layer is made of ITO.
 本発明の好ましい実施の形態においては、前記第2導電層は、金属からなる。 In a preferred embodiment of the present invention, the second conductive layer is made of metal.
 本発明の好ましい実施の形態においては、前記第2導電層は、Alからなる。 In a preferred embodiment of the present invention, the second conductive layer is made of Al.
 本発明の好ましい実施の形態においては、前記第2導電層を覆うパッシベーション層を備える。 In a preferred embodiment of the present invention, a passivation layer covering the second conductive layer is provided.
 本発明の好ましい実施の形態においては、前記パッシベーション層は、SiNまたはSiONからなる。 In a preferred embodiment of the present invention, the passivation layer is made of SiN or SiON.
 本発明の第20の側面によって提供される電子機器は、本発明の第19の側面によって提供される有機薄膜太陽電池モジュールと、前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、を備える。 An electronic device provided by a twentieth aspect of the present invention includes an organic thin film solar cell module provided by the nineteenth aspect of the present invention, and a drive unit that is driven by power feeding from the organic thin film solar cell module. Prepare.
 本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
本発明の第1実施形態に基づく有機薄膜太陽電池モジュールを示す要部平面図である。It is a principal part top view which shows the organic thin film solar cell module based on 1st Embodiment of this invention. 図1のII-II線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 1st Embodiment of this invention. 図3のIV-IV線に沿う要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part along line IV-IV in FIG. 3. 図3のV-V線に沿う要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part taken along line VV in FIG. 3. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 1st Embodiment of this invention. 図6のVII-VII線に沿う要部拡大断面図である。FIG. 7 is an enlarged cross-sectional view of a main part taken along line VII-VII in FIG. 6. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールおよび電子機器を示すシステム構成図である。It is a system block diagram which shows the organic thin film solar cell module and electronic device based on 1st Embodiment of this invention. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 1st Embodiment of this invention. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin-film solar cell module based on 1st Embodiment of this invention. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 1st Embodiment of this invention. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin-film solar cell module based on 1st Embodiment of this invention. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 1st Embodiment of this invention. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin-film solar cell module based on 1st Embodiment of this invention. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 1st Embodiment of this invention. 図15のXVI-XVI線に沿う要部拡大断面図である。FIG. 16 is an enlarged cross-sectional view of a main part taken along line XVI-XVI in FIG. 15. 本発明の第1実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of the organic thin film solar cell module based on 1st Embodiment of this invention. 本発明の第2実施形態に基づく電子機器を示す平面図である。It is a top view which shows the electronic device based on 2nd Embodiment of this invention. 図18の電子機器を示すシステム構成図である。It is a system block diagram which shows the electronic device of FIG. 本発明の第2実施形態に基づく有機薄膜太陽電池モジュールを示す平面図である。It is a top view which shows the organic thin film solar cell module based on 2nd Embodiment of this invention. 図20の有機薄膜太陽電池モジュールを示す分解斜視図である。It is a disassembled perspective view which shows the organic thin film solar cell module of FIG. 図20のXXII-XXII線に沿う要部拡大断面図である。FIG. 21 is an enlarged cross-sectional view of a main part along the line XXII-XXII in FIG. 20. 図20のXXIII-XXIII線に沿う要部拡大断面図である。FIG. 21 is an enlarged cross-sectional view of a main part along the line XXIII-XXIII in FIG. 20. 図20のXXIV-XXIV線に沿う要部拡大断面図である。FIG. 22 is an enlarged cross-sectional view of a main part along the line XXIV-XXIV in FIG. 20. 図20のXXV-XXV線に沿う要部拡大断面図である。FIG. 21 is an enlarged cross-sectional view of a main part along the line XXV-XXV in FIG. 20. 図20の有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module of FIG. 図20の有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module of FIG. 図20の有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module of FIG. 図20の有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin film solar cell module of FIG. 図20の有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin film solar cell module of FIG. 図20の有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin film solar cell module of FIG. 図20の有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin film solar cell module of FIG. 本発明の第2実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す平面図である。It is a top view which shows the modification of the organic thin film solar cell module based on 2nd Embodiment of this invention. 図33の有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module of FIG. 図33の有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module of FIG. 図33の有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module of FIG. 本発明の第3実施形態に基づく電子機器を示す平面図である。It is a top view which shows the electronic device based on 3rd Embodiment of this invention. 図37の電子機器を示すシステム構成図である。It is a system block diagram which shows the electronic device of FIG. 本発明の第3実施形態に基づく有機薄膜太陽電池モジュールを示す平面図である。It is a top view which shows the organic thin film solar cell module based on 3rd Embodiment of this invention. 図39の有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module of FIG. 図39の有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module of FIG. 図39の有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin-film solar cell module of FIG. 本発明の第4実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the organic thin film solar cell module based on 4th Embodiment of this invention. 本発明の第5および第6実施形態に基づく有機薄膜太陽電池モジュールおよびこれらを用いた電子機器を示す平面図である。It is a top view which shows the organic thin-film solar cell module based on 5th and 6th embodiment of this invention, and an electronic device using these. 図44の有機薄膜太陽電池モジュールおよび電子機器を示す底面図である。It is a bottom view which shows the organic thin film solar cell module and electronic device of FIG. 図44のXLVI-XLVI線に沿う模式的な断面図である。FIG. 45 is a schematic sectional view taken along line XLVI-XLVI of FIG. 44. 図44のXLVII-XLVII線に沿う要部拡大断面図である。FIG. 45 is an essential part enlarged cross-sectional view taken along line XLVII-XLVII in FIG. 44. 図44の電子機器を示すシステム構成図である。FIG. 45 is a system configuration diagram showing the electronic device of FIG. 44. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールを示す要部分解斜視図である。It is a principal part disassembled perspective view which shows the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第6実施形態に基づく有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module based on 6th Embodiment of this invention. 本発明の第6実施形態に基づく有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module based on 6th Embodiment of this invention. 本発明の第6実施形態に基づく有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module based on 6th Embodiment of this invention. 本発明の第6実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of the organic thin-film solar cell module based on 6th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の第5実施形態に基づく有機薄膜太陽電池モジュールの他の変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the other modification of the organic thin-film solar cell module based on 5th Embodiment of this invention. 本発明の有機薄膜太陽電池が用いられる電子機器の一例を示す平面図である。It is a top view which shows an example of the electronic device with which the organic thin film solar cell of this invention is used. 本発明の第7~第9実施形態に係る有機薄膜太陽電池の平面図である。FIG. 7 is a plan view of organic thin-film solar cells according to seventh to ninth embodiments of the present invention. 本発明の第7実施形態に係る有機薄膜太陽電池の構造を示し、図69のLXX-LXX線に沿う拡大断面図に相当する図である。FIG. 70 is a diagram showing a structure of an organic thin-film solar cell according to a seventh embodiment of the present invention and corresponding to an enlarged cross-sectional view along the line LXX-LXX in FIG. 69. 図70に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図70に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図70に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図70に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図70に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図70に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図70に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 本発明の第7実施形態に係る有機薄膜太陽電池の裏面図である。It is a back view of the organic thin-film solar cell concerning 7th Embodiment of this invention. 本発明の第8実施形態に係る有機薄膜太陽電池の構造を示し、図69のLXX-LXX線に沿う拡大断面図に相当する図である。FIG. 70 is a diagram showing a structure of an organic thin-film solar cell according to an eighth embodiment of the present invention and corresponding to an enlarged cross-sectional view along the line LXX-LXX in FIG. 69. 図79示す有機薄膜太陽電池の製造工程の一例の説明図である。FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin-film solar cell shown in FIG. 79. 図79に示す有機薄膜太陽電池の製造工程の一例の説明図である。FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79. 図79に示す有機薄膜太陽電池の製造工程の一例の説明図である。FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79. 図79に示す有機薄膜太陽電池の製造工程の一例の説明図である。FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79. 図79に示す有機薄膜太陽電池の製造工程の一例の説明図である。FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79. 図79に示す有機薄膜太陽電池の製造工程の一例の説明図である。FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79. 図79に示す有機薄膜太陽電池の製造工程の一例の説明図である。FIG. 80 is an explanatory diagram of an example of a manufacturing process of the organic thin film solar cell shown in FIG. 79. 本発明の第9実施形態に係る有機薄膜太陽電池の構造を示し、図69のLXX-LXX線に沿う拡大断面図に相当する図である。FIG. 70 shows a structure of an organic thin-film solar cell according to a ninth embodiment of the present invention, and is a view corresponding to an enlarged cross-sectional view along the line LXX-LXX in FIG. 69. 図86に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図86に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図86に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図86に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図86に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図86に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図86に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 本発明の第10実施形態に係る有機薄膜太陽電池の平面図である。It is a top view of the organic thin-film solar cell concerning 10th Embodiment of this invention. 本発明の第10実施形態に係る有機薄膜太陽電池の構造を示し、図95のXCVI-XCVI線に沿う拡大断面図である。FIG. 96 is an enlarged cross-sectional view taken along the line XCVI-XCVI in FIG. 95, showing the structure of the organic thin-film solar cell according to the tenth embodiment of the present invention. 図96に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図96に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図96に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図96に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図96に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図96に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 図96に示す有機薄膜太陽電池の製造工程の一例の説明図である。It is explanatory drawing of an example of the manufacturing process of the organic thin film solar cell shown in FIG. 本発明の第11、第12実施形態に係る有機薄膜太陽電池の平面図である。It is a top view of the organic thin film solar cell concerning the 11th and 12th embodiment of the present invention. 本発明の第11形態に係る有機薄膜太陽電池の構造を示し、図104のCV-CV線に沿う拡大断面図に相当する図である。FIG. 105 is a diagram showing a structure of an organic thin-film solar cell according to an eleventh embodiment of the present invention and corresponding to an enlarged cross-sectional view along the line CV-CV in FIG. 104. 本発明の第12形態に係る有機薄膜太陽電池の構造を示し、図104のCV-CV線に沿う拡大断面図に相当する図である。FIG. 111 shows a structure of an organic thin-film solar cell according to a twelfth embodiment of the present invention, and is a view corresponding to an enlarged cross-sectional view taken along line CV-CV in FIG. 本発明の有機薄膜太陽電池が用いられる電子機器の他の例を示す平面図である。It is a top view which shows the other example of the electronic device with which the organic thin film solar cell of this invention is used. 図107のCVIII-CVIII線に沿う拡大断面図である。It is an expanded sectional view which follows the CVIII-CVIII line of FIG. 図107のCIX-CIX線に沿う拡大断面図である。FIG. 108 is an enlarged cross-sectional view taken along line CIX-CIX in FIG. 107. 本発明の有機薄膜太陽電池が用いられる電子機器のさらに他の例を示す平面図である。It is a top view which shows the further another example of the electronic device by which the organic thin-film solar cell of this invention is used. 図110の要部拡大図である。It is a principal part enlarged view of FIG. 図111のCXII-CXII線に沿う拡大断面図である。FIG. 112 is an enlarged sectional view taken along line CXII-CXII of FIG. 111. 本発明の第13および第14実施形態に基づく有機薄膜太陽電池モジュールおよびこれらを用いた電子機器を示す平面図である。It is a top view which shows the organic thin-film solar cell module based on 13th and 14th Embodiment of this invention, and an electronic device using these. 図113の有機薄膜太陽電池モジュールおよび電子機器を示す底面図である。It is a bottom view which shows the organic thin film solar cell module and electronic device of FIG. 図113のCXV-CXV線に沿う模式的な断面図である。FIG. 114 is a schematic cross-sectional view taken along line CXV-CXV in FIG. 113. 図113のCXVI-CXVI線に沿う要部拡大断面図である。It is a principal part expanded sectional view which follows the CXVI-CXVI line | wire of FIG. 図113の電子機器を示すシステム構成図である。FIG. 114 is a system configuration diagram showing the electronic device of FIG. 113. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールを示す要部分解斜視図である。It is a principal part disassembled perspective view which shows the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of an organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第14実施形態に基づく有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module based on 14th Embodiment of this invention. 本発明の第14実施形態に基づく有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin-film solar cell module based on 14th Embodiment of this invention. 本発明の第14実施形態に基づく有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module based on 14th Embodiment of this invention. 本発明の第14実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of the organic thin-film solar cell module based on 14th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第13実施形態に基づく有機薄膜太陽電池モジュールの他の変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the other modification of the organic thin-film solar cell module based on 13th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the organic thin-film solar cell module based on 15th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールを示す要部平面図である。It is a principal part top view which shows the organic thin film solar cell module based on 15th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 15th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 15th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 15th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 15th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 15th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 15th Embodiment of this invention. 本発明の第15実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of the organic thin-film solar cell module based on 15th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールおよびこれらを用いた電子機器を示す平面図である。It is a top view which shows the organic thin-film solar cell module based on 16th Embodiment of this invention, and an electronic device using these. 図146のCXLVII-CXLVII線に沿う模式的な断面図である。FIG. 147 is a schematic cross-sectional view taken along line CXLVII-CXLVII in FIG. 146. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュール示す要部拡大底面図である。It is a principal part enlarged bottom view which shows the organic thin-film solar cell module based on 16th Embodiment of this invention. 図148のCXLIX-CXLIX線に沿う要部拡大断面図である。FIG. 148 is an essential part enlarged cross-sectional view along the line CXLIX-CXLIX of FIG. 148; 図148のCL-CL線に沿う要部拡大断面図である。FIG. 149 is an essential part enlarged cross-sectional view along the line CL-CL in FIG. 148; 図146の電子機器を示すシステム構成図である。FIG. 147 is a system configuration diagram showing the electronic device of FIG. 146. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールを示す要部分解斜視図である。It is a principal part exploded perspective view which shows the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す底面図である。It is a bottom view which shows the protective resin layer and bypass conductive part of an organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of an organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大底面図である。It is a principal part expanded bottom view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大底面図である。It is a principal part expanded bottom view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大底面図である。It is a principal part expanded bottom view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第16実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows the modification of the organic thin-film solar cell module based on 16th Embodiment of this invention. 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 17th Embodiment of this invention. 図172のCLXXIII-CLXXIII線に沿う要部拡大断面図である。FIG. 173 is an enlarged cross-sectional view of a main part along the line CLXXIII-CLXXIII in FIG. 172; 図172のCLXXIV-CLXXIV線に沿う要部拡大断面図である。FIG. 172 is an essential part enlarged cross-sectional view along the line CLXXIV-CLXXIV of FIG. 172; 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 17th Embodiment of this invention. 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大底面図である。It is a principal part expanded bottom view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention. 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大底面図である。It is a principal part expanded bottom view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention. 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention. 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention. 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention. 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention. 本発明の第17実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 17th Embodiment of this invention. 本発明の第18実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大底面図である。It is a principal part enlarged bottom view which shows the organic thin-film solar cell module based on 18th Embodiment of this invention. 本発明の第19および第20実施形態に基づく有機薄膜太陽電池モジュールおよびこれらを用いた電子機器を示す平面図である。It is a top view which shows the organic thin-film solar cell module based on 19th and 20th Embodiment of this invention, and an electronic device using these. 図184の有機薄膜太陽電池モジュールおよび電子機器を示す底面図である。187 is a bottom view showing the organic thin-film solar cell module and electronic device of FIG. 184. FIG. 図184のCLXXXVI-CLXXXVI線に沿う模式的な断面図である。FIG. 184 is a schematic cross-sectional view taken along the line CLXXXVI-CLXXXVI in FIG. 184. 図184のCLXXXVII-CLXXXVII線に沿う要部拡大断面図である。FIG. 184 is an enlarged cross-sectional view of a main part along the line CLXXXVII-CLXXXVII in FIG. 184. 図184の電子機器を示すシステム構成図である。FIG. 184 is a system configuration diagram showing the electronic apparatus of FIG. 184. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールを示す要部分解斜視図である。It is a principal part disassembled perspective view which shows the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of an organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of an organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第20実施形態に基づく有機薄膜太陽電池モジュールの第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the organic thin-film solar cell module based on 20th Embodiment of this invention. 本発明の第20実施形態に基づく有機薄膜太陽電池モジュールの光電変換層を示す平面図である。It is a top view which shows the photoelectric converting layer of the organic thin film solar cell module based on 20th Embodiment of this invention. 本発明の第20実施形態に基づく有機薄膜太陽電池モジュールの第2導電層を示す平面図である。It is a top view which shows the 2nd conductive layer of the organic thin-film solar cell module based on 20th Embodiment of this invention. 本発明の第20実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of an organic thin-film solar cell module based on 20th Embodiment of this invention. 本発明の第20実施形態に基づく有機薄膜太陽電池モジュールの保護樹脂層およびバイパス導電部を示す平面図である。It is a top view which shows the protective resin layer and bypass conductive part of an organic thin-film solar cell module based on 20th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの他の変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the other modification of the organic thin-film solar cell module based on 19th Embodiment of this invention. 本発明の第19実施形態に基づく有機薄膜太陽電池モジュールの他の変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the other modification of the organic thin-film solar cell module based on 19th Embodiment of this invention. 図210に示す変形例の第1導電層を示す平面図である。It is a top view which shows the 1st conductive layer of the modification shown in FIG. 本発明の第21実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the organic thin film solar cell module based on 21st Embodiment of this invention. 本発明の第21実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 21st Embodiment of this invention. 本発明の第21実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 21st Embodiment of this invention. 本発明の第21実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 21st Embodiment of this invention. 本発明の第21実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 21st Embodiment of this invention. 本発明の第21実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 21st Embodiment of this invention. 本発明の第21実施形態に基づく有機薄膜太陽電池モジュールの製造方法を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the manufacturing method of the organic thin-film solar cell module based on 21st Embodiment of this invention. 本発明の第21実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of the organic thin-film solar cell module based on 21st Embodiment of this invention. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールを示す要部平面図である。It is a principal part top view which shows the organic thin film solar cell module based on 22nd Embodiment of this invention. 図220のCCXXI-CCXXI線に沿う断面図である。FIG. 23 is a cross-sectional view taken along line CCXXI-CCXXI in FIG. 220. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 22nd Embodiment of this invention. 図222のCCXXIII-CCXXIII線に沿う要部拡大断面図である。FIG. 23 is an enlarged cross-sectional view of a main part along the line CCXXIII-CCXXIII in FIG. 222. 図222のCCXXIV-CCXXIV線に沿う要部拡大断面図である。FIG. 23 is an essential part enlarged cross-sectional view along the line CCXXIV-CCXXIV in FIG. 222. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin-film solar cell module based on 22nd Embodiment of this invention. 図225のCCXXVI-CCXXVI線に沿う要部拡大断面図である。228 is an enlarged cross-sectional view of a main part taken along the line CCXXVI-CCXXVI in FIG. 225. FIG. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールおよび電子機器を示すシステム構成図である。It is a system block diagram which shows the organic thin-film solar cell module and electronic device based on 22nd Embodiment of this invention. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 22nd Embodiment of this invention. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin-film solar cell module based on 22nd Embodiment of this invention. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 22nd Embodiment of this invention. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin-film solar cell module based on 22nd Embodiment of this invention. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows an example of the manufacturing method of the organic thin film solar cell module based on 22nd Embodiment of this invention. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールの製造方法の一例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows an example of the manufacturing method of the organic thin-film solar cell module based on 22nd Embodiment of this invention. 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大平面図である。It is a principal part enlarged plan view which shows the modification of the organic thin-film solar cell module based on 22nd Embodiment of this invention. 図234のCCXXXV-CCXXXV線に沿う要部拡大断面図である。FIG. 25 is an essential part enlarged cross-sectional view taken along the line CCXXXV-CCXXXV in FIG. 234; 本発明の第22実施形態に基づく有機薄膜太陽電池モジュールの変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of the organic thin-film solar cell module based on 22nd Embodiment of this invention. 本発明の第23実施形態に基づく有機薄膜太陽電池モジュールを示す要部平面図である。It is a principal part top view which shows the organic thin film solar cell module based on 23rd Embodiment of this invention. 本発明の第23実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 23rd Embodiment of this invention. 図238のCCXXXIX-CCXXXIX線に沿う要部拡大断面図である。228 is an enlarged cross-sectional view of main parts along the line CCXXXIX-CCXXXIX in FIG. 238. FIG. 図238のCCXL-CCXL線に沿う要部拡大断面図である。228 is an enlarged cross-sectional view of a main part along the line CCXL-CCXL in FIG. 238. FIG. 本発明の第24実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 24th Embodiment of this invention. 本発明の第25実施形態に基づく有機薄膜太陽電池モジュールを示す要部拡大平面図である。It is a principal part enlarged plan view which shows the organic thin film solar cell module based on 25th Embodiment of this invention. 本発明の第26実施形態に基づく有機薄膜太陽電池モジュールおよび電子機器を示す要部平面図である。It is a principal part top view which shows the organic thin film solar cell module and electronic device based on 26th Embodiment of this invention. 本発明の第27実施形態に基づく有機薄膜太陽電池モジュールおよび電子機器を示す要部平面図である。It is a principal part top view which shows the organic thin film solar cell module and electronic device based on 27th Embodiment of this invention.
 以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
[第1実施形態]
 第1実施形態および図1~図17における符号は、これらの実施形態および図において有効であり、他の実施形態および図における符号とは独立している。ただし、第1実施形態の具体的構成と他の実施形態の具体的構成とは、相互に適宜組合せ可能である。
[First Embodiment]
The reference numerals in the first embodiment and FIGS. 1 to 17 are valid in these embodiments and drawings, and are independent of the reference numerals in the other embodiments and drawings. However, the specific configuration of the first embodiment and the specific configurations of the other embodiments can be appropriately combined with each other.
 本発明において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the present invention, “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 図1~図7は、本発明の第1実施形態に基づく有機薄膜太陽電池モジュール示している。図8は、本発明の第1実施形態に基づく電子機器を示している。 1 to 7 show an organic thin film solar cell module according to the first embodiment of the present invention. FIG. 8 shows an electronic apparatus based on the first embodiment of the present invention.
 図1は、有機薄膜太陽電池モジュールA1を示す要部平面図である。図2は、図1のII-II線に沿う断面図である。図3は、有機薄膜太陽電池モジュールA1を示す要部拡大平面図である。図4は、図3のIV-IV線に沿う要部拡大断面図である。図5は、図3のV-V線に沿う要部拡大断面図である。図6は、有機薄膜太陽電池モジュールA1を示す要部拡大平面図である。図7は、図6のVII-VII線に沿う要部拡大断面図である。図8は、有機薄膜太陽電池モジュールA1および電子機器B1を示すシステム構成図である。なお、以降の説明において、「z方向視」は、平面視を意味し、「z方向」は支持基板41等の厚さ方向を意味する。 FIG. 1 is a plan view of an essential part showing an organic thin film solar cell module A1. FIG. 2 is a sectional view taken along line II-II in FIG. FIG. 3 is a main part enlarged plan view showing the organic thin film solar cell module A1. 4 is an enlarged cross-sectional view of a main part taken along line IV-IV in FIG. FIG. 5 is an enlarged cross-sectional view of a main part taken along line VV in FIG. FIG. 6 is an enlarged plan view of a main part showing the organic thin film solar cell module A1. FIG. 7 is an enlarged cross-sectional view of a main part taken along line VII-VII in FIG. FIG. 8 is a system configuration diagram showing the organic thin film solar cell module A1 and the electronic device B1. In the following description, “view in the z direction” means a plan view, and “z direction” means a thickness direction of the support substrate 41 and the like.
 図8に示すように、電子機器B1は、有機薄膜太陽電池モジュールA1および駆動部71を備える。有機薄膜太陽電池モジュールA1は、電子機器B1における電源モジュールであり、太陽光などの光を電力に変換する。 As shown in FIG. 8, the electronic device B1 includes an organic thin-film solar cell module A1 and a drive unit 71. The organic thin film solar cell module A1 is a power supply module in the electronic device B1, and converts light such as sunlight into electric power.
 駆動部71は、有機薄膜太陽電池モジュールA1からの給電によって駆動するものである。駆動部71の具体的な構成や機能は特に限定されず、電子機器B1の機能を実現しうる様々な構成が採用され得る。駆動部71の一例を挙げると、電子計算機器としての電子機器B1を実現する電子計算処理部、無線通信モジュールとしての電子機器B1を実現する無線通信部、腕時計としての電子機器B1を実現しうる計時処理部、携帯型電子端末機器としての電子機器B1を実現しうる入出力演算処理部、等が挙げられる。 The driving unit 71 is driven by power feeding from the organic thin film solar cell module A1. The specific configuration and function of the drive unit 71 are not particularly limited, and various configurations that can realize the function of the electronic device B1 can be employed. As an example of the drive unit 71, an electronic calculation processing unit that realizes an electronic device B1 as an electronic calculation device, a wireless communication unit that realizes an electronic device B1 as a wireless communication module, and an electronic device B1 as a wristwatch can be realized. Examples thereof include a timekeeping processing unit, an input / output arithmetic processing unit capable of realizing the electronic device B1 as a portable electronic terminal device, and the like.
 有機薄膜太陽電池モジュールA1は、支持基板41、第1導電層1、第2導電層2、光電変換層3およびパッシベーション層42を備える。本実施形態においては、有機薄膜太陽電池モジュールA1は、z方向視矩形状とされているが、これは有機薄膜太陽電池モジュールA1の形状の一例であり、様々な形状に設定されうる。図1、図3および図6においては、理解の便宜上、パッシベーション層42を省略している。 The organic thin film solar cell module A1 includes a support substrate 41, a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, and a passivation layer. In the present embodiment, the organic thin film solar cell module A1 has a rectangular shape as viewed in the z direction, but this is an example of the shape of the organic thin film solar cell module A1, and can be set in various shapes. In FIG. 1, FIG. 3 and FIG. 6, the passivation layer 42 is omitted for convenience of understanding.
 支持基板41は、有機薄膜太陽電池モジュールA1の土台となるものである。支持基板41は、たとえば透明なガラスあるいは樹脂等から適宜選択される材質からなる、単層もしくは複数層を有する。支持基板41の厚さは、たとえば0.05mm~2.0mmである。支持基板41の形状や大きさは特に限定されず、本実施形態においては、z方向視矩形状とされている。 The support substrate 41 is a base of the organic thin film solar cell module A1. The support substrate 41 has a single layer or a plurality of layers made of a material appropriately selected from, for example, transparent glass or resin. The thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm. The shape and size of the support substrate 41 are not particularly limited, and in the present embodiment, the support substrate 41 has a rectangular shape as viewed in the z direction.
 有機薄膜太陽電池モジュールA1には、図1および図3に示すように、複数の基板露出領域410および基板露出領域412が形成され、図1に示すように基板露出領域411が形成されている。複数の基板露出領域410、基板露出領域411および基板露出領域412は、支持基板41のうち第1導電層1から露出した領域である。 In the organic thin-film solar cell module A1, as shown in FIGS. 1 and 3, a plurality of substrate exposed regions 410 and substrate exposed regions 412 are formed, and a substrate exposed region 411 is formed as shown in FIG. The plurality of substrate exposed regions 410, substrate exposed regions 411, and substrate exposed regions 412 are regions exposed from the first conductive layer 1 in the support substrate 41.
 第1導電層1は、支持基板41上に形成されている。第1導電層1は、透明であり、本実施形態においてはITOからなる。第1導電層1は、複数の第1区画部11および第3区画部15を有する。第1導電層1の形状は、様々な形状に設定されうる。第1導電層1の厚さは、たとえば100nm~300nmである。 The first conductive layer 1 is formed on the support substrate 41. The first conductive layer 1 is transparent and is made of ITO in this embodiment. The first conductive layer 1 has a plurality of first partition portions 11 and third partition portions 15. The shape of the first conductive layer 1 can be set to various shapes. The thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm.
 複数の第1区画部11は、基板露出領域410を介して隣り合っている。本実施形態においては、4つの第1区画部11が3つの基板露出領域410を介して隣り合っている。また、4つの第1区画部11は、x方向に沿って一直線上に配列されている。なお、以下においては、4つの第1区画部11を、理解の便宜上、第1区画部11-1、第1区画部11-2、第1区画部11-3および第1区画部11-4と必要に応じて区別して説明する。 The plurality of first partition portions 11 are adjacent to each other through the substrate exposed region 410. In the present embodiment, the four first partition portions 11 are adjacent to each other through the three substrate exposed regions 410. Moreover, the four 1st division parts 11 are arranged on the straight line along the x direction. In the following description, for convenience of understanding, the four first partition portions 11 are divided into a first partition portion 11-1, a first partition portion 11-2, a first partition portion 11-3, and a first partition portion 11-4. And will be described separately as necessary.
 第1区画部11は、第1区画部第1端縁110、第1区画部第2端縁120および2つの第1区画部第3端縁130を有する。 The first partition part 11 has a first partition part first edge 110, a first partition part second edge 120, and two first partition part third edges 130.
 第1区画部第1端縁110は、基板露出領域410の一部を区画する端縁である。第1区画部第2端縁120は、基板露出領域410の一部を区画する端縁である。すなわち、基板露出領域410は、一方の第1区画部11(図中x方向右側、図3における第1区画部11-2)の第1区画部第1端縁110と他方の第1区画部11(図中x方向左側、図3における第1区画部11-3)の第1区画部第2端縁120とによって既定されている。 The first partition 110 first edge 110 is an edge that partitions a part of the substrate exposed region 410. The first partition portion second edge 120 is an edge that partitions a part of the substrate exposed region 410. That is, the substrate exposed region 410 includes the first partition portion first edge 110 and the other first partition portion of one of the first partition portions 11 (right side in the x direction in the drawing, first partition portion 11-2 in FIG. 3). 11 (the left side in the x direction in the drawing, the first partition portion 11-3 in FIG. 3) and the second edge 120 of the first partition portion.
 本実施形態においては、第1区画部11-1~3の第1区画部第1端縁110は、第1辺111を有し、第1区画部11-2~4の第1区画部第2端縁120は、第2辺121を有する。同一の基板露出領域410を区画する第1辺111(図3における第1区画部11-2の第1辺111)と第2辺121(図3における第1区画部11-3の第2辺121)とは、互いに平行である。また、本実施形態においては、第1辺111と第2辺121とは、いずれもy方向に沿う直線状である。これに対応して、本実施形態においては、基板露出領域410のうち第1辺111および第2辺121に規定されている部分は、y方向に沿う直線状である。 In the present embodiment, the first partition portion first edge 110 of the first partition portions 11-1 to 11-3 has the first side 111, and the first partition portion 11-2 to the first partition portion 11-2 to the first partition portion 11-4. The two end edges 120 have a second side 121. The first side 111 (the first side 111 of the first partition unit 11-2 in FIG. 3) and the second side 121 (the second side of the first partition unit 11-3 in FIG. 3) that partition the same substrate exposed region 410 121) are parallel to each other. In the present embodiment, the first side 111 and the second side 121 are both linear along the y direction. Correspondingly, in the present embodiment, portions of the substrate exposure region 410 that are defined by the first side 111 and the second side 121 are linear along the y direction.
 2つの第1区画部第3端縁130は、第1区画部第1端縁110の両端と第1区画部第2端縁120の両端とをそれぞれ繋いでいる。本実施形態においては、第1区画部第3端縁130は、x方向に沿う直線状である。第1区画部第3端縁130は、基板露出領域412の一部を規定している。本実施形態の11は、第1区画部第1端縁110の第1辺111、第1区画部第2端縁120の第2辺121および2つの第1区画部第3端縁130によって構成されたx方向視略矩形状とされている。 The two first partition portion third end edges 130 connect both ends of the first partition portion first end edge 110 and both ends of the first partition portion second end edge 120, respectively. In the present embodiment, the first partition portion third edge 130 is linear along the x direction. The first partition portion third edge 130 defines a part of the substrate exposed region 412. 11 of this embodiment is constituted by the first side 111 of the first partition part first edge 110, the second side 121 of the first partition part second edge 120, and the two first partition part third edges 130. It is made into the substantially rectangular shape by the x direction view made.
 図1および図6に示すように、図中x方向において最も右側に位置する第1区画部11-1と第3区画部15とは、基板露出領域411を介して隣り合っている。第3区画部15は、第3区画部端縁160を有する。第3区画部15の第3区画部端縁160と第3区画部15に隣り合う第1区画部11-1の第1区画部第2端縁120とによって、基板露出領域411が規定されている。第3区画部端縁160は、第3区画部平行部161を有する。第3区画部平行部161は、第1区画部11-1の第2辺121と平行な部分である。本実施形態においては、第3区画部平行部161は、y方向に沿う直線状である。 As shown in FIGS. 1 and 6, the first partition portion 11-1 and the third partition portion 15 located on the rightmost side in the x direction in the drawing are adjacent to each other with the substrate exposed region 411 interposed therebetween. The third partition part 15 has a third partition part edge 160. The substrate exposed region 411 is defined by the third partition portion edge 160 of the third partition portion 15 and the first partition portion second edge 120 of the first partition portion 11-1 adjacent to the third partition portion 15. Yes. The third partition part edge 160 has a third partition part parallel part 161. The third partition parallel part 161 is a part parallel to the second side 121 of the first partition 11-1. In this embodiment, the 3rd division part parallel part 161 is linear form along ay direction.
 光電変換層3は、支持基板41および第1導電層1上に積層されており、第1導電層1と第2導電層2とに挟まれている。光電変換層3は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層3の具体的構成は特に限定されないが、その一例を挙げると、バルクヘテロ接合有機活性層と、このバルクヘテロ接合有機活性層に対して第1導電層1側に積層された正孔輸送層とからなる。本実施形態においては、光電変換層3は、平面視円形状とされているが、これは一例であり、光電変換層3は、様々な形状とされうる。光電変換層3の厚さは、たとえば50nm~300nmである。 The photoelectric conversion layer 3 is laminated on the support substrate 41 and the first conductive layer 1, and is sandwiched between the first conductive layer 1 and the second conductive layer 2. The photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of. In the present embodiment, the photoelectric conversion layer 3 has a circular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes. The thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
 バルクヘテロ接合有機活性層は、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。正孔輸送層は、たとえばPEDOT:PSSで形成されている。 In the bulk heterojunction organic active layer, a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction. The p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester). The hole transport layer is made of, for example, PEDOT: PSS.
 光電変換層3の形成に用いられる材質を例示すると、フタロシアニン(Pc:Phthalocyanine)、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)、Me-Ptcdi(N,N’-dimethyl perylene-3,4,9,10-dicarboximide)、フラーレン(C 60 :Buckminster fullerene)が挙げられる。これらの材質は、たとえば真空蒸着に使用される。 Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
 また、光電変換層3の形成に用いられる他の材質を例示すると、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)、PCDTBT(poly[N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-b3nzothiadizaole)])、PC60BM(6,6-phenyl-C61-butyric acid methyl ester)、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)が挙げられる。これらの材質は、たとえば溶液プロセスに使用される。 Other materials used for forming the photoelectric conversion layer 3 are exemplified by MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene), PCDTBT ( poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]), PC60BM (6 , 6-phenyl-C61-butyric acid methyl ester) and PC70BM (6,6-phenyl-C71-butyric acid methyl ester). These materials are used, for example, in solution processes.
 第2導電層2は、その大部分が光電変換層3を介して第1導電層1上に積層されている。また、第2導電層2の一部は、第1導電層1に直接接している。第2導電層2の材質は特に限定されず、透明であっても不透明であってもよいが、本実施形態においては、第2導電層2は、Al、W、Mo、Mn、Mgに代表される金属からなる。以下においては、第2導電層2がAlからなる場合を例に説明する。したがって、第2導電層2は、不透明である。またこの場合、第2導電層2の支持基板41とは反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されてもよい。第2導電層2の厚さは、光電変換層3の厚さよりも厚く、たとえば1μm~5μmである。 Most of the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1. The material of the second conductive layer 2 is not particularly limited and may be transparent or opaque, but in the present embodiment, the second conductive layer 2 is represented by Al, W, Mo, Mn, and Mg. Made of metal. Hereinafter, a case where the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is opaque. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41. The thickness of the second conductive layer 2 is thicker than the thickness of the photoelectric conversion layer 3 and is, for example, 1 μm to 5 μm.
 図1に示すように、第2導電層2は、複数の第2区画部21を有する。複数の第2区画部21は、基板露出領域410の一部ずつを挟んで隣り合っている。本実施形態の場合、より具体的には、隣り合う第2区画部21は、第1区画部第1端縁110の第1辺111と第1区画部第2端縁120の第2辺121とを間に挟んで隣り合っている。本実施形態においては、4つの第2区画部21が3つの基板露出領域410の一部ずつを挟んで隣り合っている。また、4つの第2区画部21は、x方向に沿って一直線上に配列されている。なお、以下においては、4つの第2区画部21を、理解の便宜上、第2区画部21-1、第2区画部21-2、第2区画部21-3および第2区画部21-4と必要に応じて区別して説明する。 As shown in FIG. 1, the second conductive layer 2 has a plurality of second partition portions 21. The plurality of second partition portions 21 are adjacent to each other with a part of the substrate exposed region 410 interposed therebetween. In the case of the present embodiment, more specifically, the adjacent second partition parts 21 include the first side 111 of the first partition part first edge 110 and the second side 121 of the first partition part second edge 120. Next to each other. In the present embodiment, the four second partition portions 21 are adjacent to each other with a part of each of the three substrate exposed regions 410 interposed therebetween. Further, the four second partition portions 21 are arranged on a straight line along the x direction. In the following, for convenience of understanding, the four second partition sections 21 are divided into a second partition section 21-1, a second partition section 21-2, a second partition section 21-3, and a second partition section 21-4. And will be described separately as necessary.
 図1および図3に示すように、第2区画部21は、z方向視において第1区画部11と重なっている。第2区画部21は、第2区画部第1端縁210、第2区画部第2端縁220および2つの第2区画部第3端縁230を有する。 As shown in FIGS. 1 and 3, the second partition portion 21 overlaps the first partition portion 11 when viewed in the z direction. The second partition part 21 has a second partition part first edge 210, a second partition part second edge 220, and two second partition part third edges 230.
 第2区画部21-1~3(図3における第2区画部21-2)の第2区画部第1端縁210は、基板露出領域410を規定する第1区画部11-1~3(図3における11-2)の第1区画部第1端縁110に対して当該基板露出領域410を規定する第1区画部11-2~4(図3における第1区画部11-3)の第1区画部第2端縁120とは反対側に位置する。第2区画部第2端縁220は、z方向視において基板露出領域410の一部を挟んで隣り合う第2区画部21の第2区画部第1端縁210と対向している。 The second partition portion first edge 210 of the second partition portions 21-1 to 21-3 (second partition portion 21-2 in FIG. 3) is a first partition portion 11-1 to 3-3 (which defines the substrate exposed region 410). The first partition portions 11-2 to 11-4 (first partition portion 11-3 in FIG. 3) defining the substrate exposed region 410 with respect to the first edge 110 of the first partition portion 11-2) in FIG. It is located on the opposite side to the first partition portion second end edge 120. The second partition portion second edge 220 is opposed to the second partition portion first edge 210 of the second partition portion 21 adjacent to each other with a part of the substrate exposed region 410 interposed therebetween in the z direction.
 本実施形態においては、第2区画部第1端縁210(図3における第2区画部21-2の第2区画部第1端縁210)と第2区画部第2端縁220(図3における第2区画部21-3の第2区画部第2端縁220)とは、互いに平行である。また、第2区画部第1端縁210および第2区画部第2端縁220は、y方向に沿う直線状である。すなわち、本実施形態においては、第1辺111、第2辺121、第2区画部第1端縁210および第2区画部第2端縁220が、互いに平行であり、y方向に沿う直線状である。 In the present embodiment, the second partition portion first edge 210 (second partition portion first edge 210 of the second partition portion 21-2 in FIG. 3) and the second partition portion second edge 220 (FIG. 3). And the second partition part second end edge 220) of the second partition part 21-3 are parallel to each other. Moreover, the 2nd division part 1st edge 210 and the 2nd division part 2nd edge 220 are linear form along ay direction. That is, in the present embodiment, the first side 111, the second side 121, the second partition part first edge 210, and the second partition part second edge 220 are parallel to each other, and are linear along the y direction. It is.
 2つの第2区画部第3端縁230は、第2区画部第1端縁210の両端と第2区画部第2端縁220の両端とをそれぞれ繋いでいる。2つの第2区画部第3端縁230は、互いに平行であり、x方向に沿う直線状である。これらの第2区画部第1端縁210、第2区画部第2端縁220および2つの第2区画部第3端縁230を有する第2区画部21は、z方向視矩形状である。 The two second partition part third end edges 230 connect both ends of the second partition part first end edge 210 and both ends of the second partition part second end edge 220, respectively. The two second partition portion third end edges 230 are parallel to each other and are linear along the x direction. The second partition portion 21 having the second partition portion first end edge 210, the second partition portion second end edge 220, and the two second partition portion third end edges 230 has a rectangular shape as viewed in the z direction.
 図2、図4、図5および図7に示すように、パッシベーション層42は、第2導電層2上に積層されており、第2導電層2および光電変換層3を覆っている。パッシベーション層42は、たとえばSiNまたはSiONからなる。パッシベーション層42の厚さは、たとえば0.5μm~2.0μmであり、本実施形態においては、たとえば1.5μm程度とされる。パッシベーション層42が光電変換層3を覆っていることにより、光電変換層3に外部から水やパーティクル等が進入することを防止できる。また、パッシベーション層42は、光電変換層3よりも厚く構成されていることにより、有機薄膜太陽電池モジュールA1の強度を向上させることができる。なお、上述のような平坦なパッシベーション層42は、例えばパッシベーション層42が光電変換層3に対して厚い層とすること、また後述するCVDを用いた手法によって形成されることにより形成することができ、これに限られない。また、パッシベーション層42上に、さらに他の層が積層された構成であってもよい。たとえば、電子機器B1の他の構成要素と有機薄膜太陽電池モジュールA1とを接合するための接合層が設けられていてもよい。あるいは、パッシベーション層42を保護する保護層が設けられていてもよい。 As shown in FIGS. 2, 4, 5, and 7, the passivation layer 42 is laminated on the second conductive layer 2 and covers the second conductive layer 2 and the photoelectric conversion layer 3. The passivation layer 42 is made of, for example, SiN or SiON. The thickness of the passivation layer 42 is, for example, 0.5 μm to 2.0 μm. In the present embodiment, the thickness is, for example, about 1.5 μm. Since the passivation layer 42 covers the photoelectric conversion layer 3, it is possible to prevent water, particles, and the like from entering the photoelectric conversion layer 3 from the outside. Moreover, the passivation layer 42 can improve the intensity | strength of organic thin-film solar cell module A1 by being comprised thicker than the photoelectric converting layer 3. FIG. The flat passivation layer 42 as described above can be formed, for example, by making the passivation layer 42 thick with respect to the photoelectric conversion layer 3 or by a method using CVD described later. Not limited to this. In addition, another layer may be stacked on the passivation layer 42. For example, a bonding layer for bonding other components of the electronic device B1 and the organic thin film solar cell module A1 may be provided. Alternatively, a protective layer that protects the passivation layer 42 may be provided.
 図3~図5に示すように、第1区画部11-1~3(図3における第1区画部11-2)の第1区画部第1端縁110は、第1辺111に加えて2つの第1被覆部112を有する。第1被覆部112は、第1区画部第1端縁110のうちz方向視において第2区画部21と重なっており、z方向視において第2区画部21に被覆されている部分である。本実施形態においては、2つの第1被覆部112が、それぞれ第1辺111のy方向両端部に接続されて設けられている。第1被覆部112の形状は特に限定されず、本実施形態においては、第1被覆部112は、第1辺111に対してx方向に突出する形状とされており、第1辺1121、第2辺1122および第3辺1123を有する。第1辺1121は、第1区画部第3端縁130と平行でありx方向に沿う辺である。第2辺1122は、第1辺1121と交差する方向に沿う辺であり、y方向に沿っている。第3辺1123は、第1辺1121と第2辺1122とを繋ぐ辺であり、図示された例においては、湾曲形状とされている。また、図示された第1被覆部112は、一端が第2区画部第2端縁220に到達し、他端が第2区画部第3端縁230にz方向視において交差している。 As shown in FIGS. 3 to 5, the first partition portion first edge 110 of the first partition portions 11-1 to 11-3 (the first partition portion 11-2 in FIG. 3) is added to the first side 111. Two first covering portions 112 are provided. The first covering portion 112 is a portion of the first partition portion first edge 110 that overlaps the second partition portion 21 when viewed in the z direction and is covered with the second partition portion 21 when viewed in the z direction. In the present embodiment, two first covering portions 112 are provided connected to both ends of the first side 111 in the y direction. The shape of the first covering portion 112 is not particularly limited. In the present embodiment, the first covering portion 112 has a shape protruding in the x direction with respect to the first side 111, and the first side 1121, It has two sides 1122 and a third side 1123. The first side 1121 is a side that is parallel to the first partition portion third edge 130 and extends in the x direction. The second side 1122 is a side along the direction intersecting the first side 1121 and is along the y direction. The third side 1123 is a side that connects the first side 1121 and the second side 1122 and has a curved shape in the illustrated example. The illustrated first covering portion 112 has one end reaching the second partition portion second end edge 220 and the other end intersecting the second partition portion third end edge 230 in the z-direction view.
 図3~図5に示すように、第1区画部11-2~4(図3における第1区画部11-3)の第1区画部第2端縁120は、第2辺121に加えて2つの第2被覆部122を有する。第2被覆部122は、第1区画部第2端縁120のうちz方向視において第2区画部21と重なる部分である。本実施形態においては、2つの第2被覆部122が、第2辺121のy方向両端部に接続されて設けられている。第2被覆部122の形状は特に限定されず、本実施形態においては、第2被覆部122は、第2辺121に対してx方向に凹んだ形状とされており、第1辺1221、第2辺1222および第3辺1223を有する。第1辺1221は、第1区画部第3端縁130と平行でありx方向に沿う辺である。第2辺1222は、第1辺1221と交差する方向に沿う辺であり、y方向に沿っている。第3辺1223は、第1辺1221と第2辺1222とを繋ぐ辺であり、図示された例においては、湾曲形状とされている。また、図示された第2被覆部122は、一端が第2区画部第2端縁220に到達し、他端が第2区画部第3端縁230に到達している。 As shown in FIGS. 3 to 5, the first partition portion second edge 120 of the first partition portions 11-2 to 11-2 to 4 (first partition portion 11-3 in FIG. 3) is added to the second side 121. Two second covering portions 122 are provided. The 2nd coating | coated part 122 is a part which overlaps with the 2nd division part 21 in z direction view among the 1st division part 2nd edges 120. As shown in FIG. In the present embodiment, two second covering portions 122 are provided connected to both ends of the second side 121 in the y direction. The shape of the second covering portion 122 is not particularly limited, and in the present embodiment, the second covering portion 122 has a shape that is recessed in the x direction with respect to the second side 121. It has two sides 1222 and a third side 1223. The first side 1221 is a side parallel to the first partition portion third end edge 130 and along the x direction. The second side 1222 is a side along the direction intersecting the first side 1221 and is along the y direction. The third side 1223 is a side that connects the first side 1221 and the second side 1222, and has a curved shape in the illustrated example. The illustrated second covering portion 122 has one end reaching the second partition portion second edge 220 and the other end reaching the second partition portion third edge 230.
 上述した第1被覆部112および第2被覆部122の形状に対応して、本実施形態の基板露出領域410は、z方向視において第2区画部21と重なっており、交差部415および交差部416を有する。交差部415は、基板露出領域410が第2区画部第2端縁220と交差する部分である。交差部416は、基板露出領域410が第2区画部第3端縁230と交差する部分である。 Corresponding to the shape of the first covering portion 112 and the second covering portion 122 described above, the substrate exposed region 410 of the present embodiment overlaps the second partition portion 21 when viewed in the z direction, and the intersecting portion 415 and the intersecting portion. 416. The intersecting portion 415 is a portion where the substrate exposed region 410 intersects the second partition portion second edge 220. The intersecting portion 416 is a portion where the substrate exposed region 410 intersects the second partition portion third edge 230.
 図1~図5に示すように、光電変換層3は、複数の光電変換層接続部33を有する。図3~図5に示すように、光電変換層接続部33は、z方向視において基板露出領域410の一部(図3に示す部位の場合、第1区画部11-2の第1辺111と第1区画部11-3の第2辺121とによって規定された部分)を挟んで隣り合う第1導電層1の第1区画部11(図3に示す部位の場合、第1区画部11-2)と第2導電層2の第2区画部21(図3に示す部位の場合、第2区画部21-3)の双方と重なる部分であって、当該第1区画部11の第1被覆部112および当該第2区画部21の第2区画部第2端縁220によって区画された部分である。また、本実施形態においては、光電変換層接続部33は、第2区画部第3端縁230(図3に示す部位の場合、第2区画部21-3の第2区画部第3端縁230)によって区画されている。すなわち、本実施形態の光電変換層接続部33は、z方向視において矩形状とされた第2区画部21(図3に示す部位の場合、第2区画部21-3)の角部に重なる位置に設けられている。さらに、本実施形態においては、図1に示すように、1つの第2区画部21に対して、2つの光電変換層接続部33が、y方向に離間した2つの角部に重なる位置に設けられている。 As shown in FIGS. 1 to 5, the photoelectric conversion layer 3 has a plurality of photoelectric conversion layer connecting portions 33. As shown in FIGS. 3 to 5, the photoelectric conversion layer connecting portion 33 is a part of the substrate exposed region 410 when viewed in the z direction (in the case of the portion shown in FIG. 3, the first side 111 of the first partitioning portion 11-2). And the first partition portion 11 of the first conductive layer 1 adjacent to each other across the portion defined by the second side 121 of the first partition portion 11-3 (in the case of the portion shown in FIG. 3, the first partition portion 11). -2) and the second partition portion 21 of the second conductive layer 2 (the second partition portion 21-3 in the case of the portion shown in FIG. 3), and the first partition portion 11 This is a portion defined by the covering portion 112 and the second partition portion second edge 220 of the second partition portion 21. Further, in the present embodiment, the photoelectric conversion layer connecting portion 33 has the second partition portion third edge 230 (in the case of the portion shown in FIG. 3, the second partition portion third edge of the second partition portion 21-3). 230). That is, the photoelectric conversion layer connecting portion 33 of the present embodiment overlaps with a corner of the second partition portion 21 (second partition portion 21-3 in the case of the portion shown in FIG. 3) that is rectangular when viewed in the z direction. In the position. Further, in the present embodiment, as shown in FIG. 1, two photoelectric conversion layer connection portions 33 are provided at positions overlapping two corner portions separated in the y direction with respect to one second partition portion 21. It has been.
 光電変換層接続部33には、光電変換層貫通部331が形成されている。光電変換層貫通部331は、光電変換層3をz方向に貫通する貫通孔によって構成されている。光電変換層貫通部331の形状や大きさは特に限定されず、図示された例においては、z方向視円形状とされている。また、この光電変換層貫通部331の直径は、たとえば40μm程度である。また、光電変換層接続部33には、突起332が形成されている。突起332は、図4に示すように、光電変換層3の周辺部分よりもz方向に突出した部位である。図3に示すように、突起332は、z方向視において光電変換層貫通部331を囲んでいる。 In the photoelectric conversion layer connecting portion 33, a photoelectric conversion layer penetrating portion 331 is formed. The photoelectric conversion layer penetrating part 331 is configured by a through hole that penetrates the photoelectric conversion layer 3 in the z direction. The shape and size of the photoelectric conversion layer penetrating portion 331 are not particularly limited, and in the illustrated example, the photoelectric conversion layer penetrating portion 331 has a circular shape in the z direction. Moreover, the diameter of this photoelectric conversion layer penetration part 331 is about 40 micrometers, for example. In addition, the photoelectric conversion layer connection portion 33 is formed with a protrusion 332. As shown in FIG. 4, the protrusion 332 is a portion protruding in the z direction from the peripheral portion of the photoelectric conversion layer 3. As shown in FIG. 3, the protrusion 332 surrounds the photoelectric conversion layer penetrating portion 331 when viewed in the z direction.
 第1区画部11-1~3は、第1接続部13を有する。第1接続部13は、z方向視において光電変換層接続部33と一致する部分である。第2区画部21は、第2接続部23を有する、第2接続部23は、z方向視において光電変換層接続部33と一致する部分である。第1区画部11-1~3の第1接続部13と第2区画部21-2~4第2接続部23とは、光電変換層貫通部331を通じて互いに接触しており、互いに導通している。このため、第1接続部13、第2接続部23および光電変換層接続部33は、発電を行わない部分となっている。 The first partition units 11-1 to 11-3 have a first connection unit 13. The first connection portion 13 is a portion that coincides with the photoelectric conversion layer connection portion 33 when viewed in the z direction. The 2nd division part 21 has the 2nd connection part 23. The 2nd connection part 23 is a part which corresponds with the photoelectric converting layer connection part 33 in z direction view. The first connecting portion 13 of the first partitioning portions 11-1 to 11-3 and the second connecting portions 21-2 to 4-4 are in contact with each other through the photoelectric conversion layer penetrating portion 331 and are electrically connected to each other. Yes. For this reason, the 1st connection part 13, the 2nd connection part 23, and the photoelectric converting layer connection part 33 are parts which do not generate electric power.
 本実施形態においては、第1区画部11の第1接続部13に第1貫通部131が設けられている。本実施形態においては、第1導電層1をz方向に貫通する貫通孔を第1貫通部131と称する。第1貫通部131は、z方向視において光電変換層貫通部331に内包されている。また、第1貫通部131の内端縁は、z方向視において光電変換層貫通部331の内端縁から離間している。これにより、第1区画部11の第1接続部13の一部が、z方向視において光電変換層貫通部331から露出している。この露出した部分に第2導電層2の第2区画部21-2~4の第2接続部23が接触している。また、第2区画部21-2~4の第2接続部23は、第1貫通部131を介して支持基板41に接している。 In the present embodiment, the first penetration part 131 is provided in the first connection part 13 of the first partition part 11. In the present embodiment, a through hole that penetrates the first conductive layer 1 in the z direction is referred to as a first through portion 131. The first penetration part 131 is included in the photoelectric conversion layer penetration part 331 when viewed in the z direction. Further, the inner end edge of the first penetrating part 131 is separated from the inner end edge of the photoelectric conversion layer penetrating part 331 when viewed in the z direction. Thereby, a part of the 1st connection part 13 of the 1st division part 11 is exposed from the photoelectric converting layer penetration part 331 in z direction view. The second connection portions 23 of the second partition portions 21-2 to 21-4 of the second conductive layer 2 are in contact with the exposed portions. Further, the second connection portions 23 of the second partition portions 21-2 to 21-4 are in contact with the support substrate 41 through the first penetration portion 131.
 光電変換層3は、複数の光電変換層発電部32を有している。また、第1導電層1の第1区画部11は、第1電極部12を有しており、第2導電層2の第2区画部21は、第2電極部22を有している。図1、図3および図6においては、第1電極部12、第2電極部22および光電変換層発電部32に、複数の離散点からなるハッチングを付している。第1電極部12は、z方向視において光電変換層接続部33と重ならず且つ第2導電層2の第2区画部21と重なる部分である。言い換えれば第2区画部21は、z方向視において、第1電極部12と一致する部分である。光電変換層発電部32は、z方向視において、第1電極部12および第2電極部22と一致する部分である。本実施形態においては、第1電極部12、第2電極部22および光電変換層発電部32は、z方向視において第2区画部第1端縁210、第2区画部第2端縁220、2つの第2区画部第3端縁230および2つの第2被覆部122によって規定された部分である。第1電極部12および第2電極部22は、光電変換層発電部32を介して積層されており、互いに接触していない。これにより、第1電極部12、第2電極部22および光電変換層発電部32は、発電を行う部分となっている。 The photoelectric conversion layer 3 has a plurality of photoelectric conversion layer power generation units 32. Further, the first partition portion 11 of the first conductive layer 1 has a first electrode portion 12, and the second partition portion 21 of the second conductive layer 2 has a second electrode portion 22. 1, 3, and 6, the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 are hatched with a plurality of discrete points. The first electrode portion 12 is a portion that does not overlap with the photoelectric conversion layer connection portion 33 and overlaps with the second partition portion 21 of the second conductive layer 2 when viewed in the z direction. In other words, the second partition portion 21 is a portion that coincides with the first electrode portion 12 when viewed in the z direction. The photoelectric conversion layer power generation unit 32 is a portion that coincides with the first electrode unit 12 and the second electrode unit 22 when viewed in the z direction. In this embodiment, the 1st electrode part 12, the 2nd electrode part 22, and the photoelectric converting layer electric power generation part 32 are 2nd division part 1st edge 210, 2nd division part 2nd edge 220 in z direction view, This is a portion defined by the two second partition portion third edges 230 and the two second covering portions 122. The 1st electrode part 12 and the 2nd electrode part 22 are laminated | stacked via the photoelectric converting layer electric power generation part 32, and are not mutually contacting. Thereby, the 1st electrode part 12, the 2nd electrode part 22, and the photoelectric converting layer electric power generation part 32 are parts which generate electric power.
 本実施形態においては、z方向視において、光電変換層接続部33と光電変換層発電部32の一部とが、y方向において隙間を介して隣り合っている。すなわち、光電変換層接続部33は、x方向における位置が、光電変換層発電部32の一部のx方向位置と同じである。また、第1接続部13は、基板露出領域410を介して隣り合う第1区画部11の第1電極部12の一部とy方向において隣り合っている。すなわち、当該第1接続部13は、x方向における位置が、当該第1電極部12の一部のx方向位置と重なっている。 In the present embodiment, when viewed in the z direction, the photoelectric conversion layer connection portion 33 and a part of the photoelectric conversion layer power generation portion 32 are adjacent to each other with a gap in the y direction. That is, the position of the photoelectric conversion layer connection unit 33 in the x direction is the same as the position in the x direction of a part of the photoelectric conversion layer power generation unit 32. Further, the first connection portion 13 is adjacent to a part of the first electrode portion 12 of the first partition portion 11 adjacent to each other via the substrate exposed region 410 in the y direction. That is, the position of the first connection portion 13 in the x direction overlaps with a part of the first electrode portion 12 in the x direction.
 図1、図2、図6および図7に示すように、第3区画部15は、外部電極部151および外部接続部153を有する。外部接続部153は、z方向視において第2区画部21-1の第2接続部23および光電変換層接続部33と一致する部分である。外部接続部153は、光電変換層貫通部331を通じて第2区画部21-1の第2接続部23と接触している。本実施形態においては、外部接続部153には、外部接続部貫通部1531が設けられている。本実施形態においては、第1導電層1の外部接続部153をz方向に貫通する貫通孔を外部接続部貫通部1531と称する。外部接続部貫通部1531は、z方向視において光電変換層貫通部331に内包されている。また、外部接続部貫通部1531の内端縁は、z方向視において光電変換層貫通部331の内端縁から離間している。これにより、第3区画部15の外部接続部153の一部が、z方向視において光電変換層貫通部331から露出している。この露出した部分に第2導電層2の第2区画部21-1の第2接続部23が接触している。また、第2接続部23は、外部接続部貫通部1531を介して支持基板41に接している。外部電極部151は、第2導電層2、光電変換層3およびパッシベーション層42から露出した部分である。外部電極部151は、有機薄膜太陽電池モジュールA1において発電された電力を出力する部位であり、たとえば電子機器B1の端子に導通する。 As shown in FIGS. 1, 2, 6, and 7, the third partition portion 15 includes an external electrode portion 151 and an external connection portion 153. The external connection portion 153 is a portion that coincides with the second connection portion 23 and the photoelectric conversion layer connection portion 33 of the second partition portion 21-1 when viewed in the z direction. The external connection part 153 is in contact with the second connection part 23 of the second partition part 21-1 through the photoelectric conversion layer penetration part 331. In the present embodiment, the external connection portion 153 is provided with an external connection portion penetration portion 1531. In the present embodiment, a through hole that penetrates the external connection portion 153 of the first conductive layer 1 in the z direction is referred to as an external connection portion through portion 1531. The external connection portion penetration portion 1531 is included in the photoelectric conversion layer penetration portion 331 as viewed in the z direction. Further, the inner end edge of the external connection portion penetration portion 1531 is separated from the inner end edge of the photoelectric conversion layer penetration portion 331 when viewed in the z direction. Thereby, a part of external connection part 153 of the 3rd division part 15 is exposed from the photoelectric converting layer penetration part 331 in z direction view. The second connection part 23 of the second partition part 21-1 of the second conductive layer 2 is in contact with the exposed part. The second connection portion 23 is in contact with the support substrate 41 through the external connection portion through portion 1531. The external electrode portion 151 is a portion exposed from the second conductive layer 2, the photoelectric conversion layer 3, and the passivation layer 42. The external electrode portion 151 is a portion that outputs the electric power generated in the organic thin film solar cell module A1, and is electrically connected to the terminal of the electronic device B1, for example.
 また、本実施形態においては、図1および図2に示すように、x方向において第3区画部15とは反対側に設けられた第1区画部11-4が、外部電極部141を有している。外部電極部141は、第1区画部11-4のうち第2導電層2、光電変換層3およびパッシベーション層42から露出した部分である。外部電極部141は、有機薄膜太陽電池モジュールA1において発電された電力を出力する部位であり、たとえば電子機器B1の端子に導通する。 In the present embodiment, as shown in FIGS. 1 and 2, the first partition portion 11-4 provided on the side opposite to the third partition portion 15 in the x direction has the external electrode portion 141. ing. The external electrode portion 141 is a portion exposed from the second conductive layer 2, the photoelectric conversion layer 3, and the passivation layer 42 in the first partition portion 11-4. The external electrode part 141 is a part that outputs electric power generated in the organic thin film solar cell module A1, and is electrically connected to, for example, a terminal of the electronic device B1.
 図1、図2および図8から理解されるように、本実施形態においては、有機薄膜太陽電池モジュールA1において、4組の第1電極部12、第2電極部22および光電変換層発電部32が、6組の第1接続部13、第2接続部23および光電変換層接続部33を介して互いに直接に接続されている。直列接続された4組の第1電極部12、第2電極部22および光電変換層発電部32において発電された電力は、外部電極部141および外部電極部151から出力される。この電力は、電子機器B1の駆動部71の駆動に用いられる。 As understood from FIGS. 1, 2, and 8, in this embodiment, in the organic thin film solar cell module A <b> 1, four sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32. Are directly connected to each other through six sets of the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33. The electric power generated in the four sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 connected in series is output from the external electrode unit 141 and the external electrode unit 151. This electric power is used to drive the drive unit 71 of the electronic apparatus B1.
 次に、有機薄膜太陽電池モジュールA1の製造方法の一例について、図9~図16を参照しつつ、以下に説明する。なお、図9、図11、図13および図15は、図3と同様の部分を示す要部拡大平面図であり、図10、図12、図14および図16は、図4と同様の部分を示す要部拡大断面図である。 Next, an example of a method for producing the organic thin film solar cell module A1 will be described below with reference to FIGS. 9, FIG. 11, FIG. 13 and FIG. 15 are main part enlarged plan views showing the same parts as FIG. 3, and FIGS. 10, 12, 14 and 16 are the same parts as FIG. It is a principal part expanded sectional view which shows this.
 まず、図9および図10に示すように、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOを成膜することにより、第1導電膜10を形成する。次いで、第1導電膜10をパターニングすることにより、基板露出領域410、基板露出領域411および基板露出領域412形成し、複数の第1区画部11および第3区画部15が得られる。第1導電膜10へのパターニング手法としては、たとえばウエットエッチングを用いた手法、Greenレーザー光やIRレーザー光等のレーザーパターニングを用いた手法が適宜採用される。本実施形態においては、レーザー光Lz1として、IRレーザー光が用いられる。なお、図9においては、後述する工程を経ることにより第1被覆部112および第2被覆部122となる部位に理解の便宜上、符号を付している。 First, as shown in FIGS. 9 and 10, the first conductive film 10 is formed by depositing ITO on one surface of the support substrate 41 by a general method such as sputtering. Next, by patterning the first conductive film 10, a substrate exposed region 410, a substrate exposed region 411 and a substrate exposed region 412 are formed, and a plurality of first partition portions 11 and third partition portions 15 are obtained. As a patterning method for the first conductive film 10, for example, a method using wet etching and a method using laser patterning such as Green laser light and IR laser light are appropriately employed. In the present embodiment, IR laser light is used as the laser light Lz1. Note that, in FIG. 9, reference numerals are given to portions that become the first covering portion 112 and the second covering portion 122 through the steps described later for the sake of convenience.
 次いで、図11および図12に示すように、有機膜30を形成する。有機膜30の形成は、たとえば、スピンコート塗布により支持基板41上および第1導電膜10上に有機膜を成膜することによりなされる。次いで、有機膜30に対して光電変換層貫通部331を形成する。光電変換層貫通部331の形成は、たとえばレーザーパターニングによってなされる。このレーザーパターニングに用いられるレーザー光Lz2は、光電変換層貫通部331を部分的に除去可能であるものが適宜選択される。本実施形態においては、レーザー光Lz2としてIRレーザー光を用いたレーザーパターニングを行った場合を例に説明する。この場合、レーザー光Lz2は、有機膜30と第1導電膜10との一部ずつを除去する。このため、有機膜30に光電変換層貫通部331が形成されるとともに、第1導電膜10に第1貫通部131が形成される。このパターニングを経ることにより、図13および図14に示すように、第1導電層1および光電変換層3が得られる。また、レーザー光Lz2による光電変換層貫通部331および第1貫通部131の形成に伴い、光電変換層3には、突起332が形成される。 Next, as shown in FIGS. 11 and 12, an organic film 30 is formed. The organic film 30 is formed, for example, by forming an organic film on the support substrate 41 and the first conductive film 10 by spin coating. Next, the photoelectric conversion layer penetrating portion 331 is formed in the organic film 30. The photoelectric conversion layer penetrating part 331 is formed by, for example, laser patterning. As the laser beam Lz2 used for this laser patterning, one that can partially remove the photoelectric conversion layer penetrating portion 331 is appropriately selected. In the present embodiment, a case where laser patterning using an IR laser beam as the laser beam Lz2 is performed will be described as an example. In this case, the laser beam Lz2 removes part of the organic film 30 and the first conductive film 10 one by one. For this reason, the photoelectric conversion layer penetration part 331 is formed in the organic film 30, and the first penetration part 131 is formed in the first conductive film 10. Through this patterning, the first conductive layer 1 and the photoelectric conversion layer 3 are obtained as shown in FIGS. 13 and 14. In addition, with the formation of the photoelectric conversion layer penetrating portion 331 and the first penetrating portion 131 by the laser light Lz2, a protrusion 332 is formed in the photoelectric conversion layer 3.
 次いで、図15および図16に示すように、第2導電層2を形成する。第2導電層2の形成は、たとえば上述した金属をたとえば電子ビーム蒸着法などの蒸着法によって支持基板41、第1導電層1および光電変換層3上に金属膜を成膜する。この際の成膜厚さは、光電変換層3の厚さよりも厚く、たとえば1μm~5μmである。次に、該金属膜に例えばマスク層を用いたエッチングを行うことによりパターニングを施す。このパターニングにより、第1導電層1上および光電変換層3上に複数の第2区画部21を有する第2導電層2を形成する。この後は、たとえばプラズマCVD法によってSiNまたはSiONを支持基板41、第1導電層1、光電変換層3および第2導電層2上に成膜することにより、パッシベーション層42を形成する。以上の工程を経ることにより、有機薄膜太陽電池モジュールA1が得られる。 Next, as shown in FIGS. 15 and 16, the second conductive layer 2 is formed. The second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive layer 1 and the photoelectric conversion layer 3 from the above-described metal by an evaporation method such as an electron beam evaporation method. The film thickness at this time is larger than the thickness of the photoelectric conversion layer 3 and is, for example, 1 μm to 5 μm. Next, the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having a plurality of second partition portions 21 is formed on the first conductive layer 1 and the photoelectric conversion layer 3. Thereafter, a passivation layer 42 is formed by depositing SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD. The organic thin film solar cell module A1 is obtained through the above steps.
 次に、有機薄膜太陽電池モジュールA1および電子機器B1の作用について説明する。 Next, the operation of the organic thin film solar cell module A1 and the electronic device B1 will be described.
 本実施形態によれば、図4および図5に示すように、第2導電層2の厚さは、光電変換層3の厚さよりも厚い。このため、たとえば光電変換層3に光電変換層貫通部331を形成する際に突起332が生じたとしても、この突起332を第2導電層2によってより確実に覆うことができる。これにより、突起332の存在によって、たとえばパッシベーション層42に微細な亀裂が生じることなどを回避することができる。これは、外気が光電変換層3等に進入することを阻止するのに適している。したがって、有機薄膜太陽電池モジュールA1および電子機器B1の意図しない破損を防止することができる。 According to this embodiment, as shown in FIGS. 4 and 5, the thickness of the second conductive layer 2 is thicker than the thickness of the photoelectric conversion layer 3. For this reason, for example, even when the protrusion 332 is generated when the photoelectric conversion layer penetrating portion 331 is formed in the photoelectric conversion layer 3, the protrusion 332 can be more reliably covered with the second conductive layer 2. Thereby, for example, it is possible to avoid the occurrence of fine cracks in the passivation layer 42 due to the presence of the protrusions 332. This is suitable for preventing outside air from entering the photoelectric conversion layer 3 and the like. Therefore, unintentional breakage of the organic thin film solar cell module A1 and the electronic device B1 can be prevented.
 光電変換層3の厚さが、50nm~300nmであるのに対し、第2導電層2の厚さが、1μm~5μmとされている。このような厚さ関係とすることにより、製造時等に光電変換層3に生じうる光電変換層貫通部331等のいびつな部分を適切に覆うことができる。また、有機薄膜太陽電池モジュールA1の製造時に光電変換層3の表面に付着しうる、たとえばシリカ粒子等を、第2導電層2によって覆うことが可能である。 The thickness of the photoelectric conversion layer 3 is 50 nm to 300 nm, while the thickness of the second conductive layer 2 is 1 μm to 5 μm. By adopting such a thickness relationship, it is possible to appropriately cover an irregular portion such as the photoelectric conversion layer penetrating portion 331 that may occur in the photoelectric conversion layer 3 during production or the like. Moreover, it is possible to cover the silica particle etc. which can adhere to the surface of the photoelectric converting layer 3 at the time of manufacture of organic thin film solar cell module A1 with the 2nd conductive layer 2, for example.
 図3に示すように、光電変換層接続部33を区画する第1区画部11-2の第1被覆部112によってその一部が規定された基板露出領域410は、第2区画部21-3の第2区画部第2端縁220と交差する交差部415を有する。これにより、第2区画部21-3の第2区画部第2端縁220に沿って光電変換層接続部33が部分的に設けられる構成となり、第2区画部21-3の第2区画部第2端縁220の全長にわたって光電変換層接続部33が設けられる構成とはならない。したがって、光電変換層3のうち非発電の部分である光電変換層接続部33の面積割合を減少させることが可能であり、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。 As shown in FIG. 3, the substrate exposed region 410 partially defined by the first covering portion 112 of the first partition portion 11-2 that partitions the photoelectric conversion layer connecting portion 33 is the second partition portion 21-3. The second section 220 has an intersection 415 that intersects the second edge 220. As a result, the photoelectric conversion layer connecting portion 33 is partially provided along the second partition portion second edge 220 of the second partition portion 21-3, and the second partition portion of the second partition portion 21-3. The photoelectric conversion layer connection portion 33 is not provided over the entire length of the second end edge 220. Therefore, it is possible to reduce the area ratio of the photoelectric conversion layer connection portion 33 that is a non-power generation portion of the photoelectric conversion layer 3, and to reduce the photoelectric conversion layer power generation portion 32 that is a portion that actually contributes to power generation. Can be suppressed.
 また、図3に示す例においては、基板露出領域410は、1の交差部415と1つの交差部416とを有している。すなわち、光電変換層接続部33を区画する基板露出領域410は、第2区画部21-3の第2区画部第2端縁220から延びて第2区画部21-3の第2区画部第3端縁230と交差している。たとえば、本例とは異なり、基板露出領域410が第2区画部21-3の第2区画部第2端縁220と2箇所で交差する場合、本例と比べてz方向視において第2区画部21-3と重なる基板露出領域410が長くなる。基板露出領域410は、非発電の部分であるため、このような非発電の部分の面積割合を縮小するのに適している。 In the example shown in FIG. 3, the substrate exposed region 410 has one intersection 415 and one intersection 416. That is, the substrate exposed region 410 that partitions the photoelectric conversion layer connection portion 33 extends from the second partition portion second edge 220 of the second partition portion 21-3 and extends from the second partition portion 21-3 of the second partition portion 21-3. Crosses 3 edge 230. For example, unlike the present example, when the substrate exposed region 410 intersects the second partition part second end edge 220 of the second partition part 21-3 at two locations, the second partition is viewed in the z direction as compared to the present example. The substrate exposed region 410 that overlaps the portion 21-3 becomes longer. Since the substrate exposed region 410 is a non-power generation portion, it is suitable for reducing the area ratio of such a non-power generation portion.
 光電変換層貫通部331は、たとえば直径が40μm程度の貫通孔によって構成されている。このため、光電変換層貫通部331を含む光電変換層接続部33の面積をより縮小させることができる。 The photoelectric conversion layer penetrating portion 331 is constituted by a through hole having a diameter of about 40 μm, for example. For this reason, the area of the photoelectric conversion layer connection part 33 including the photoelectric conversion layer penetrating part 331 can be further reduced.
 第1貫通部131は、図12に示すレーザー光Lz2としてたとえばIRレーザー光を用いた場合に、光電変換層貫通部331と一括して形成される。このIRレーザー光は、ITOからなる第1導電層1を部分的に除去可能であるため、図10に示す第1導電膜10のレーザーパターニングにおけるレーザー光Lz1として用いることができる。これにより、図9~図16に示す有機薄膜太陽電池モジュールA1の製造方法において、レーザー光Lz1およびレーザー光Lz2として、1種類のレーザー光(IRレーザー光)を用いれば済む。これは、製造方法および製造装置の簡略化に好ましく、制造時間の短縮に寄与する。 The first penetration part 131 is formed together with the photoelectric conversion layer penetration part 331 when, for example, an IR laser beam is used as the laser beam Lz2 shown in FIG. Since this IR laser light can partially remove the first conductive layer 1 made of ITO, it can be used as the laser light Lz1 in the laser patterning of the first conductive film 10 shown in FIG. Thus, in the method for manufacturing the organic thin-film solar cell module A1 shown in FIGS. 9 to 16, one type of laser light (IR laser light) may be used as the laser light Lz1 and the laser light Lz2. This is preferable for simplification of the manufacturing method and the manufacturing apparatus, and contributes to shortening of the manufacturing time.
 第2区画部21の2つの角部に重なる位置に2組の第1接続部13、第2接続部23および光電変換層接続部33を設けることにより、隣り合う2組の第1電極部12、第2電極部22および光電変換層発電部32の間の抵抗をより低くすることができる。また、仮に一方の組の第1接続部13、第2接続部23および光電変換層接続部33における導通が不適切な状態となったとしても、他方の組の第1接続部13、第2接続部23および光電変換層接続部33によって隣り合う2組の第1電極部12、第2電極部22および光電変換層発電部32を適切に接続することができる。 By providing two sets of the first connection part 13, the second connection part 23, and the photoelectric conversion layer connection part 33 at a position overlapping the two corners of the second partition part 21, two adjacent sets of the first electrode parts 12. The resistance between the second electrode unit 22 and the photoelectric conversion layer power generation unit 32 can be further reduced. In addition, even if conduction in the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33 in one set becomes inappropriate, the first connection portion 13, the second connection in the other set. The two adjacent first electrode parts 12, the second electrode part 22, and the photoelectric conversion layer power generation part 32 can be appropriately connected by the connection part 23 and the photoelectric conversion layer connection part 33.
 図17は、本発明の変形例を示している。なお、本変形例において、上述した例と同一または類似の要素には、上述した例と同一の符号を付している。 FIG. 17 shows a modification of the present invention. In this modification, the same or similar elements as those in the above example are denoted by the same reference numerals as in the above example.
 図17は、有機薄膜太陽電池モジュールA1の変形例を示している。本変形例においては、第1区画部11(図17における第1区画部11-2)の第1接続部13に、上述した第1貫通部131が形成されていない。すなわち、z方向視において光電変換層貫通部331に内包される領域においては、支持基板41は、第1導電層1の第1接続部13(図17における第1区画部11-2の第1接続部13)によって覆われている。このような構成は、たとえば、有機膜30に光電変換層貫通部331を形成するためのレーザーパターニングにおいて、レーザー光Lz2としてGreenレーザー光を用いるとともに、出力や照射時間を適切に設定することによって実現しうる。また、本変形例においては、光電変換層3に突起332が形成されていない。 FIG. 17 shows a modification of the organic thin film solar cell module A1. In the present modification, the first through portion 131 described above is not formed in the first connection portion 13 of the first partition portion 11 (the first partition portion 11-2 in FIG. 17). In other words, in the region enclosed in the photoelectric conversion layer penetrating portion 331 as viewed in the z direction, the support substrate 41 is connected to the first connection portion 13 of the first conductive layer 1 (the first partition portion 11-2 in FIG. It is covered by a connection 13). Such a configuration is realized, for example, by using Green laser light as the laser light Lz2 and appropriately setting the output and irradiation time in laser patterning for forming the photoelectric conversion layer penetrating portion 331 in the organic film 30. Yes. Further, in this modification, the protrusion 332 is not formed on the photoelectric conversion layer 3.
 このような変形例によっても、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。 Even with such a modification, it is possible to suppress a decrease in the photoelectric conversion layer power generation unit 32 that is a part that actually contributes to power generation.
 本発明に係る有機薄膜太陽電池モジュール、電子機器および有機薄膜太陽電池モジュールの製造方法は、上述した実施形態に限定されるものではない。本発明に係る電子機器および有機薄膜太陽電池モジュールの製造方法の具体的な構成は、種々に設計変更自在である。 The manufacturing method of the organic thin film solar cell module, the electronic device, and the organic thin film solar cell module according to the present invention is not limited to the above-described embodiment. The specific configuration of the electronic device and the method for manufacturing the organic thin-film solar cell module according to the present invention can be variously changed in design.
[第2-第4実施形態]
 第2ないし第4実施形態および図18~図43における符号は、これらの実施形態および図において有効であり、他の実施形態および図における符号とは独立している。ただし、第2ないし第4実施形態の具体的構成と他の実施形態の具体的構成とは、相互に適宜組合せ可能である。
[Second to Fourth Embodiments]
The reference numerals in the second to fourth embodiments and FIGS. 18 to 43 are effective in these embodiments and figures, and are independent of the reference numerals in the other embodiments and figures. However, the specific configurations of the second to fourth embodiments and the specific configurations of the other embodiments can be appropriately combined with each other.
 本発明において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the present invention, “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 図18および図19は、本発明の第2実施形態に基づく電子機器を示している。本実施形態の電子機器B2は、有機薄膜太陽電池モジュールA2、ケース61、バンド62、駆動部71、長針72および短針73を備えている。 18 and 19 show an electronic apparatus based on the second embodiment of the present invention. The electronic apparatus B2 of this embodiment includes an organic thin-film solar cell module A2, a case 61, a band 62, a drive unit 71, a long needle 72, and a short needle 73.
 図18は、電子機器B2を示す平面図である。図19は、電子機器B2を示すシステム構成図である。 FIG. 18 is a plan view showing the electronic device B2. FIG. 19 is a system configuration diagram showing the electronic apparatus B2.
 有機薄膜太陽電池モジュールA2は、電子機器B2における電源モジュールであり、太陽光などの光を電力に変換する。 Organic thin-film solar cell module A2 is a power supply module in electronic device B2, and converts light such as sunlight into electric power.
 駆動部71は、有機薄膜太陽電池モジュールA2からの給電によって駆動する。長針72および短針73は、長針72によって駆動される。駆動部71は、計時機能を備えている。また、駆動部71は、時刻に対応した角度(位置)に長針72および短針73を駆動する。さらに、駆動部71は、有機薄膜太陽電池モジュールA2から取得した電力を計時機能を備えたICにて使用できるようにその電圧や電流のレベルを調整する回路や、有機薄膜太陽電池モジュールA2から取得した電力を蓄電する二次電池、が設けられていても良い。光電変換層3は、後述する複数の意匠表示部35が外観に表れている。複数の意匠表示部35は、時刻を特定するための意匠とされている。 The driving unit 71 is driven by power feeding from the organic thin film solar cell module A2. The long hand 72 and the short hand 73 are driven by the long hand 72. The drive unit 71 has a timekeeping function. The drive unit 71 drives the long hand 72 and the short hand 73 at an angle (position) corresponding to the time. Further, the drive unit 71 acquires the power acquired from the organic thin film solar cell module A2 from a circuit that adjusts the voltage or current level so that it can be used by an IC having a timekeeping function, or the organic thin film solar cell module A2. A secondary battery that stores the generated electric power may be provided. The photoelectric conversion layer 3 has a plurality of design display portions 35 to be described later appearing on the appearance. The plurality of design display portions 35 are designed to specify time.
 有機薄膜太陽電池モジュールA2、駆動部71、長針72および短針73は、金属製または樹脂製などのケース61に収容されている。バンド62は、ケース61を使用者の手首に固定するためのものである。このような構成により、有機薄膜太陽電池モジュールA2は時計(腕時計)として構成されている。 The organic thin film solar cell module A2, the driving unit 71, the long needle 72, and the short needle 73 are accommodated in a case 61 made of metal or resin. The band 62 is for fixing the case 61 to the wrist of the user. With such a configuration, the organic thin-film solar cell module A2 is configured as a watch (watch).
 図20~図25は、有機薄膜太陽電池モジュールA2を示している。有機薄膜太陽電池モジュールA2は、第1導電層1、第2導電層2、光電変換層3、支持基板41、パッシベーション膜42、接合層43および保護層44を備えている。本実施形態においては、有機薄膜太陽電池モジュールA2は、平面視円形状とされているが、これは有機薄膜太陽電池モジュールA2の形状の一例であり、様々な形状に設定されうる。 20 to 25 show the organic thin film solar cell module A2. The organic thin film solar cell module A2 includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation film 42, a bonding layer 43, and a protective layer 44. In the present embodiment, the organic thin-film solar cell module A2 has a circular shape in plan view, but this is an example of the shape of the organic thin-film solar cell module A2, and can be set in various shapes.
 図20は、有機薄膜太陽電池モジュールA2を示す平面図である。図21は、有機薄膜太陽電池モジュールA2を示す分解斜視図である。図22は、図20のXXII-XXII線に沿う要部拡大断面図である。図23は、図20のXXIII-XXIII線に沿う要部拡大断面図である。図24は、図20のXXIV-XXIV線に沿う要部拡大断面図である。図25は、図20のXXV-XXV線に沿う要部拡大断面図である。なお、理解の便宜上、図20においては、第1導電層1を実線且つ透過するものとして表しており、第2導電層2を隠れ線(点線)で表している。また、光電変換層3の非貫通部分に、複数の離散点からなるハッチングを付している。また、図22~図25においては、図中上方から太陽光が向かってくる。 FIG. 20 is a plan view showing the organic thin film solar cell module A2. FIG. 21 is an exploded perspective view showing the organic thin film solar cell module A2. 22 is an enlarged cross-sectional view of a main part taken along line XXII-XXII in FIG. FIG. 23 is an enlarged cross-sectional view of a main part taken along line XXIII-XXIII in FIG. 24 is an enlarged cross-sectional view of a main part taken along line XXIV-XXIV in FIG. FIG. 25 is an enlarged cross-sectional view of a main part taken along line XXV-XXV in FIG. For convenience of understanding, in FIG. 20, the first conductive layer 1 is represented as a solid line and transmits, and the second conductive layer 2 is represented as a hidden line (dotted line). The non-penetrating portion of the photoelectric conversion layer 3 is hatched with a plurality of discrete points. Further, in FIGS. 22 to 25, sunlight comes from above in the drawing.
 支持基板41は、有機薄膜太陽電池モジュールA2の土台となる部材である。支持基板41は、たとえば透明なガラスあるいは樹脂からなる。支持基板41の厚さは、たとえば0.05mm~2.0mmである。 The support substrate 41 is a member that becomes a base of the organic thin film solar cell module A2. The support substrate 41 is made of, for example, transparent glass or resin. The thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
 第1導電層1は、支持基板41上に形成されている。第1導電層1は、透明であり、本実施形態においてはITOからなる。図26は、第1導電層1を示す平面図である。同図に示すように、第1導電層1は、複数の第1電極部11、複数の第1区画部12、複数の第1連絡部13、第1端部14、第1延出部15、第2延出部16、複数の開口18および複数のスリット19を有する。本実施形態においては、第1導電層1は、第1延出部15および第2延出部16を除く部分が平面視略円形状をなす構成とされているが、これは第1導電層1の形状の一例である。第1導電層1の形状は、様々な形状に設定されうる。第1導電層1の厚さは、たとえば100nm~300nmである。なお、図26においては、第1導電層1の第1電極部11、第1区画部12、第1連絡部13、第1端部14、第1延出部15および第2延出部16に、斜線からなるハッチングを付している。 The first conductive layer 1 is formed on the support substrate 41. The first conductive layer 1 is transparent and is made of ITO in this embodiment. FIG. 26 is a plan view showing the first conductive layer 1. As shown in the figure, the first conductive layer 1 includes a plurality of first electrode portions 11, a plurality of first partition portions 12, a plurality of first connecting portions 13, a first end portion 14, and a first extension portion 15. The second extending portion 16, the plurality of openings 18, and the plurality of slits 19. In the present embodiment, the first conductive layer 1 is configured such that a portion excluding the first extension portion 15 and the second extension portion 16 has a substantially circular shape in plan view. It is an example of 1 shape. The shape of the first conductive layer 1 can be set to various shapes. The thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm. In FIG. 26, the first electrode portion 11, the first partitioning portion 12, the first connecting portion 13, the first end portion 14, the first extending portion 15 and the second extending portion 16 of the first conductive layer 1 are shown. Are hatched with diagonal lines.
 なお、平面視において、隣り合う第1電極部11同士、隣り合う第1電極部11と第1区画部12、隣り合う第1電極部11と第1連絡部13、隣り合う第1電極部11と第1端部14は、互いに離間して形成されていが、スリット19は、これらが離間することで生じた領域を示している。 In plan view, adjacent first electrode portions 11, adjacent first electrode portions 11 and first partitioning portions 12, adjacent first electrode portions 11 and first connecting portions 13, and adjacent first electrode portions 11. The first end portion 14 and the first end portion 14 are formed apart from each other, but the slit 19 indicates a region generated by the separation.
 複数の第1電極部11は、光電変換層3によって生じた正孔が集約される層であり、いわゆるアノード電極として機能する。本実施形態においては、6つの第1電極部11が同心円状に配置されている。本実施形態の第1電極部11は、第1導電層1の中心寄りに位置する円弧端縁111を有している。6つの第1電極部11の円弧端縁111によって、第1導電層1の中心において平面視円形の開口が区画されている。また、第1電極部11は、円弧端縁111の両端から径方向外方に向けて延びる一対の直線端縁112と、これらの直線端縁112に繋がり且つ内方に凹む一対の略半円形状の円弧端縁113を有する。なお、図26においては、理解の便宜上、後述する第1連絡部13の形状のうち第2導電層2の形状によって定義される部分を想像線(二点鎖線)によって示しており、一対の円弧端縁113の一方がこれにあたる。第2導電層2の形状によって定義される部分は、第1電極部11を定義するための境界であり、第1導電層1に形成された物理的な端縁ではないが、本実施形態においては、この境界を円弧端縁113と称する。また、第1電極部11は、一対の円弧端縁113に対して径方向外方に位置する円弧端縁114を有する。6つの第1電極部11の円弧端縁114によって第1導電層1の平面視略円形部分の外形線が構成されている。さらに第1電極部11は、円弧端縁114の中心付近から内方に凹む端縁を有している。この内方に凹む端縁は、径方向に対して傾斜した一対の直線部分115と、これらの直線部分115に繋がる略円形状の円形部分116とからなり、第1区画部12を囲んでいる。また、第1電極部11は、一部が開口されており、この開口部分を開口18と称する。隣り合う第1電極部11同士は、スリット19を挟んで配置されている。なお、本実施形態では、第1電極部11が自身の径方向外方に位置する円弧端縁の中心付近から内方に凹む端縁を有している例を示したが、第1電極部11は、径方向外方に位置する円弧端縁が円弧状に連なっており、該端縁を有さない構成としても良い。 The plurality of first electrode portions 11 are layers in which holes generated by the photoelectric conversion layer 3 are aggregated, and function as so-called anode electrodes. In the present embodiment, the six first electrode portions 11 are arranged concentrically. The first electrode portion 11 of the present embodiment has an arc edge 111 located near the center of the first conductive layer 1. A circular opening in a plan view is defined at the center of the first conductive layer 1 by the arc edges 111 of the six first electrode portions 11. The first electrode portion 11 includes a pair of linear edges 112 extending radially outward from both ends of the arc edge 111, and a pair of substantially semicircles that are connected to the linear edges 112 and recessed inward. It has a circular arc edge 113 having a shape. In FIG. 26, for convenience of understanding, a portion defined by the shape of the second conductive layer 2 in the shape of the first connecting portion 13 described later is indicated by an imaginary line (two-dot chain line), and a pair of arcs One of the end edges 113 corresponds to this. The portion defined by the shape of the second conductive layer 2 is a boundary for defining the first electrode portion 11 and is not a physical edge formed in the first conductive layer 1. This boundary is referred to as an arc edge 113. Further, the first electrode portion 11 has an arc edge 114 located radially outward with respect to the pair of arc edges 113. The outer edges of the substantially circular portions of the first conductive layer 1 in plan view are formed by the arc edges 114 of the six first electrode portions 11. Further, the first electrode portion 11 has an edge that is recessed inward from the vicinity of the center of the arc edge 114. The inwardly recessed edge includes a pair of linear portions 115 inclined with respect to the radial direction and a substantially circular circular portion 116 connected to the linear portions 115 and surrounds the first partition portion 12. . Further, the first electrode portion 11 is partially opened, and this opening portion is referred to as an opening 18. Adjacent first electrode portions 11 are arranged with a slit 19 therebetween. In the present embodiment, the first electrode unit 11 has an edge that is recessed inward from the vicinity of the center of the arc edge located radially outward. 11 may have a configuration in which the arc edge located radially outward is continuous in an arc shape and does not have the edge.
 複数の第1区画部12は、各々がスリット19を介して第1電極部11によって囲まれた部分である。第1電極部11と第1区画部12とが平面視においてスリット19を隔てて離間していることにより、第1電極部11と第1区画部12とは互いに絶縁されている。後述する意匠表示部35(貫通部350)を介して、第1区画部12が第2導電層2の一部と接触する。このため、第1区画部12は、光電変換層3における発電の電極としては機能しない。一方、第1電極部11は、第1区画部12とは絶縁されていることにより、発電の電極としての機能が担保されている。また、第1区画部12は、後述する光電変換層3の意匠表示部35を平面視において内包している。本実施形態においては、複数の第1区画部12は、複数の第1電極部11に囲まれた配置とされており、第1導電層1の平面視における前記略円形状部分の径方向において、中心よりも外周に近い位置に配置されている。第1区画部12は、たとえば平面視において略円形状の部分と、この略円形状部分から径方向外方に突出するくさび状の部分とを有する形状とされている。 The plurality of first partition parts 12 are parts surrounded by the first electrode part 11 through the slits 19. Since the first electrode portion 11 and the first partition portion 12 are separated from each other with the slit 19 in plan view, the first electrode portion 11 and the first partition portion 12 are insulated from each other. The first partition portion 12 comes into contact with a part of the second conductive layer 2 through a design display portion 35 (through portion 350) described later. For this reason, the first partition 12 does not function as an electrode for power generation in the photoelectric conversion layer 3. On the other hand, the first electrode portion 11 is insulated from the first partition portion 12, thereby ensuring a function as a power generation electrode. Moreover, the 1st division part 12 encloses the design display part 35 of the photoelectric converting layer 3 mentioned later in planar view. In the present embodiment, the plurality of first partition portions 12 are arranged so as to be surrounded by the plurality of first electrode portions 11, and in the radial direction of the substantially circular portion in plan view of the first conductive layer 1. It is arranged at a position closer to the outer periphery than the center. The first partitioning portion 12 has, for example, a shape having a substantially circular portion in a plan view and a wedge-shaped portion that protrudes radially outward from the substantially circular portion.
 複数の第1連絡部13は、隣り合う2つの第1電極部11の一方に繋がり、且つスリット19を挟んで隣り合う2つの第1電極部11の他方に隣接する。本実施形態においては、第1連絡部13は、スリット19によって半円状に区画された突出部分と、この突出部分に繋がり、且つ第1電極部11内方に入り込む半円状の部分(図26における想像線で示された部分)と、からなる平面視円形状の部分と、この円形状の部分から径方向外方に突出するくさび状の部分とを有する形状とされている。なお、第1連絡部13のうち第1電極部11内方に入り込む半円状の部分は、後述する第2導電層2の形状によって規定される。また、第1連絡部13は、後述する光電変換層3の意匠表示部35を平面視において内包している。本実施形態においては、第1連絡部13は、第1区画部12と同様に第1導電層1の平面視における前記略円形状部分の径方向において、中心よりも外周に近い位置に配置されている。 The plurality of first connecting portions 13 are connected to one of the two adjacent first electrode portions 11 and are adjacent to the other of the two adjacent first electrode portions 11 across the slit 19. In the present embodiment, the first connecting portion 13 includes a protruding portion that is partitioned in a semicircular shape by the slit 19 and a semicircular portion that is connected to the protruding portion and enters the inside of the first electrode portion 11 (see FIG. 26, a portion having a circular shape in plan view, and a wedge-shaped portion protruding outward in the radial direction from the circular portion. A semicircular portion of the first connecting portion 13 that enters the first electrode portion 11 is defined by the shape of the second conductive layer 2 described later. Moreover, the 1st communication part 13 includes the design display part 35 of the photoelectric converting layer 3 mentioned later in planar view. In the present embodiment, the first connecting portion 13 is disposed at a position closer to the outer periphery than the center in the radial direction of the substantially circular portion in a plan view of the first conductive layer 1, similarly to the first partition portion 12. ing.
 第1延出部15は、複数の第1電極部11のいずれか1の第1電極部11に繋がっている。より具体的には、図26において図中下側左方の第1電極部11の円弧端縁114の図中右方部分から第1導電層1の径方向外方に延出している。本実施形態の第1延出部15は、平面視略矩形状であるが、第1延出部15の形状はこれに限定されず、様々な形状を採用できる。 The first extending portion 15 is connected to one of the plurality of first electrode portions 11. More specifically, in FIG. 26, the first conductive layer 1 extends radially outward from the right portion of the arc edge 114 of the lower left first electrode portion 11 in the drawing. Although the 1st extension part 15 of this embodiment is plane view substantially rectangular shape, the shape of the 1st extension part 15 is not limited to this, Various shapes can be adopted.
 第1端部14は、第1延出部15に繋がる第1電極部11とこの第1電極部11に隣り合う第1電極部11とにスリット19を介して挟まれた部分である。本実施形態においては、第1端部14は、第1延出部15に繋がる第1電極部11と、図26においてこの第1電極部11に対して右側に隣接する第1電極部11とに挟まれている。第1端部14は、たとえば平面視円形状の部分と、この円形状の部分から径方向外方に突出するくさび状の部分とを有する形状とされている。本実施形態においては、第1端部14は、第1区画部12および第1連絡部13と同様に光電変換層3の平面視における前記略円形状部分の径方向において、中心よりも外周に近い位置に配置されている。 The first end portion 14 is a portion sandwiched between the first electrode portion 11 connected to the first extension portion 15 and the first electrode portion 11 adjacent to the first electrode portion 11 via the slit 19. In the present embodiment, the first end portion 14 includes a first electrode portion 11 connected to the first extension portion 15, and a first electrode portion 11 adjacent to the right side with respect to the first electrode portion 11 in FIG. 26. It is sandwiched between. The first end portion 14 has, for example, a shape having a circular portion in plan view and a wedge-shaped portion projecting radially outward from the circular portion. In the present embodiment, the first end portion 14 is located on the outer periphery from the center in the radial direction of the substantially circular portion in the plan view of the photoelectric conversion layer 3, similarly to the first partition portion 12 and the first connecting portion 13. It is arranged at a close position.
 第2延出部16は、第1端部14に繋がっており、第1端部14および第1端部14に隣り合う第1電極部11から第1導電層1の径方向外方に延出している。本実施形態の第2延出部16は、平面視略矩形状であるが、第2延出部16の形状はこれに限定されず、様々な形状を採用できる。本実施形態においては、図26における図中下側右方に位置する第1電極部11の図中下方に第2延出部16が配置されている。また、第1延出部15と第2延出部16とが図中左右方向において隣り合う配置とされている。また、第1端部14の図中左側部分は、第1延出部15の一部と図中左右方向の位置が一致し、第1端部14の図中右側部分は、第2延出部16の一部と図中左右方向の位置が一致する。 The second extending portion 16 is connected to the first end portion 14 and extends outward in the radial direction of the first conductive layer 1 from the first end portion 14 and the first electrode portion 11 adjacent to the first end portion 14. I'm out. Although the 2nd extension part 16 of this embodiment is a planar view substantially rectangular shape, the shape of the 2nd extension part 16 is not limited to this, Various shapes can be employ | adopted. In the present embodiment, the second extending portion 16 is disposed below the first electrode portion 11 located on the lower right side in the drawing in FIG. Moreover, the 1st extension part 15 and the 2nd extension part 16 are set as the arrangement | positioning adjacent in the left-right direction in the figure. Further, the left side portion of the first end portion 14 in the drawing coincides with the position of the first extending portion 15 in the left-right direction in the drawing, and the right side portion of the first end portion 14 in the drawing has the second extending portion. A part of the part 16 and the position in the left-right direction in the figure coincide.
 複数の開口18は、厚さ方向に第1導電層1を貫通している。本実施形態においては、開口18は、たとえば第1区画部12、第1連絡部13および第1端部14などと比較して相対的に平面視において面積が小さい矩形状であるが、これは開口18の大きさおよび形状の一例であり、開口18は、第1区画部12等と比較して平面視において面積が大きく形成されていてもよく、円形状等であってもよく、これらに限られず種々実現可能である。複数の開口18は、平面視において第1区画部12、第1連絡部13および第1端部14の中心よりも径方向外方に配置されている。 The plurality of openings 18 penetrate the first conductive layer 1 in the thickness direction. In the present embodiment, the opening 18 has a rectangular shape whose area is relatively small in a plan view as compared with the first partition portion 12, the first connecting portion 13, the first end portion 14, and the like. This is an example of the size and shape of the opening 18, and the opening 18 may have a larger area in plan view than the first partition 12 or the like, and may have a circular shape or the like. Various implementations are possible without limitation. The plurality of openings 18 are disposed radially outward from the centers of the first partition portion 12, the first connecting portion 13, and the first end portion 14 in plan view.
 第2導電層2は、その大部分が光電変換層3を介して第1導電層1上に積層されている。また、第2導電層2の一部は、第1導電層1に直接接している。第2導電層2の材質は特に限定されないが、本実施形態においては、第2導電層2は、Al、W、Mo、Mn、Mgに代表される金属からなる。以下においては、第2導電層2がAlからなる場合を例に説明する。したがって、第2導電層2は、不透明である。またこの場合、第2導電層2の支持基板41とは反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されてもよい。第2導電層2の厚さは、たとえば30nm~150nmである。 Most of the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1. Although the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg. Hereinafter, a case where the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is opaque. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41. The thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
 図27は、第2導電層2を示す平面図である。同図に示すように、第2導電層2は、複数の第2電極部21、複数の第2区画部22、複数の第2連絡部23、第2端部24および複数のスリット29を有する。本実施形態においては、第2導電層2は、平面視略円形状とされているが、これは第2導電層2の形状の一例である。第2導電層2の形状は、様々な形状に設定されうる。なお、図27においては、第2導電層2の第2電極部21、第2区画部22、第2連絡部23および第2端部24に、斜線からなるハッチングを付している。 FIG. 27 is a plan view showing the second conductive layer 2. As shown in the figure, the second conductive layer 2 includes a plurality of second electrode portions 21, a plurality of second partition portions 22, a plurality of second connecting portions 23, a second end portion 24, and a plurality of slits 29. . In the present embodiment, the second conductive layer 2 has a substantially circular shape in plan view, but this is an example of the shape of the second conductive layer 2. The shape of the second conductive layer 2 can be set to various shapes. In FIG. 27, the second electrode part 21, the second partition part 22, the second connecting part 23, and the second end part 24 of the second conductive layer 2 are hatched.
 なお、平面視において、隣り合う第2電極部21同士、隣り合う第2電極部21と第2連絡部23は、互いに離間して形成されているが、スリット29は、これらが離間することで生じた領域を示している。 In the plan view, the adjacent second electrode portions 21 and the adjacent second electrode portion 21 and the second connecting portion 23 are formed apart from each other, but the slit 29 is formed by separating them. The resulting region is shown.
 複数の第2電極部21は、光電変換層3によって生じた電子が集約される層であり、いわゆるカソード電極として機能する。第2電極部21は、平面視において、第1電極部11と一致する。すなわち、本実施形態の第2電極部21は、平面視略円形状とされた第2導電層2の中心寄りに位置する円弧端縁211を有している。6つの第2電極部21の円弧端縁211によって、第2導電層2の中心において平面視円形の開口が形成されている。また、第2電極部21は、円弧端縁211の両端から径方向外方に向けて延びる一対の直線端縁212と、これらの直先端縁212に繋がり且つ内方に凹む一対の略半円形状の円弧端縁213を有する。なお、図27においては、理解の便宜上、第2連絡部23のうち第1導電層1の第1連絡部13の形状によって定義される部分を想像線(二点鎖線)によって示しており、一対の円弧端縁213の一方がこれにあたる。第1連絡部13の形状によって定義される部分は、第2電極部21を定義するための境界であり、第2導電層2に形成された物理的な端縁ではないが、本実施形態においては、この境界を円弧端縁213と称する。また、第2電極部21は、一対の円弧端縁213に対して径方向外方に位置する円弧端縁214を有する。6つの第2電極部21の円弧端縁214によって第2導電層2の平面視外形線が構成されている。なお、第2電極部21には、円弧端縁214の中心付近から内方に凹む端縁を定義付けることができる。この内方に凹む端縁は、第1導電層1の第1区画部12の形状によって定義される境界であり、第2導電層2に形成された物理的な端縁ではないが、本実施形態においては、この境界を便宜上、端縁と称する。この端縁は、径方向に対して傾斜した一対の直線部分215と、これらの直線部分215に繋がる略円形状の円形部分216とからなり、第2区画部22を囲んでいる。本実施形態においては、6つの第2電極部21が同心円状に配置されている。隣り合う第2電極部21同士は、スリット29を挟んで配置されている。 The plurality of second electrode portions 21 are layers in which electrons generated by the photoelectric conversion layer 3 are aggregated, and function as so-called cathode electrodes. The second electrode portion 21 coincides with the first electrode portion 11 in plan view. That is, the second electrode portion 21 of the present embodiment has the arc edge 211 located near the center of the second conductive layer 2 that has a substantially circular shape in plan view. A circular opening in a plan view is formed in the center of the second conductive layer 2 by the arc edges 211 of the six second electrode portions 21. The second electrode portion 21 includes a pair of linear end edges 212 extending radially outward from both ends of the arc end edge 211 and a pair of substantially semicircles that are connected to the straight end edges 212 and recessed inwardly. It has a circular arc edge 213 having a shape. In FIG. 27, for convenience of understanding, a portion defined by the shape of the first connecting portion 13 of the first conductive layer 1 in the second connecting portion 23 is indicated by an imaginary line (two-dot chain line). One of the circular arc edges 213 corresponds to this. The portion defined by the shape of the first connecting portion 13 is a boundary for defining the second electrode portion 21 and is not a physical edge formed in the second conductive layer 2. This boundary is referred to as an arc edge 213. Further, the second electrode portion 21 has an arc edge 214 that is located radially outward with respect to the pair of arc edges 213. The arcuate edges 214 of the six second electrode portions 21 constitute the outline of the second conductive layer 2 in plan view. The second electrode portion 21 can be defined with an edge that is recessed inward from the vicinity of the center of the arc edge 214. This inwardly recessed edge is a boundary defined by the shape of the first partition portion 12 of the first conductive layer 1, and is not a physical edge formed in the second conductive layer 2, but this embodiment In the form, this boundary is referred to as an edge for convenience. The edge includes a pair of linear portions 215 inclined with respect to the radial direction and a substantially circular circular portion 216 connected to the linear portions 215 and surrounds the second partition portion 22. In the present embodiment, the six second electrode portions 21 are arranged concentrically. Adjacent second electrode portions 21 are disposed with a slit 29 therebetween.
 複数の第2区画部22は、図20に示すように、平面視において第1導電層1の複数の第1区画部12に重なる部位である。第2区画部22は、後述する光電変換層3の意匠表示部35を平面視において内包している。第2区画部22は、意匠表示部35を通じて第1区画部12と導通しており、第1区画部12と同様に光電変換層3における発電の電極としては機能しない。本実施形態においては、複数の第2区画部22は、複数の第2電極部21に囲まれた配置とされており、平面視において略円形状とされた第2導電層2の中心よりも外周に近い位置に配置されている。第2区画部22は、たとえば平面視において略円形状の部分と、この略円形状部分から径方向外方に突出するくさび状の部分とを有する形状とされている。 As shown in FIG. 20, the plurality of second partition portions 22 are portions that overlap the plurality of first partition portions 12 of the first conductive layer 1 in plan view. The 2nd division part 22 encloses the design display part 35 of the photoelectric converting layer 3 mentioned later in planar view. The second partition section 22 is electrically connected to the first partition section 12 through the design display section 35, and does not function as a power generation electrode in the photoelectric conversion layer 3, like the first partition section 12. In the present embodiment, the plurality of second partition portions 22 are disposed so as to be surrounded by the plurality of second electrode portions 21, and are more than the center of the second conductive layer 2 that is substantially circular in plan view. It is arranged at a position close to the outer periphery. The second partition portion 22 has, for example, a shape having a substantially circular portion in a plan view and a wedge-shaped portion protruding outward in the radial direction from the substantially circular portion.
 複数の第2連絡部23は、隣り合う2つの第2電極部21の一方に繋がり、且つスリット29を挟んで隣り合う2つの第2電極部21の他方に隣接する。本実施形態においては、第2連絡部23は、平面視において、スリット29によって半円状に区画された突出部分と、この突出部分に繋がり、且つ第2電極部21内方に入り込む半円状の部分(図27における想像線で示された部分)と、からなる平面視円形状の部分と、この円形状の部分から径方向外方に突出するくさび状の部分とを有する形状とされている。なお、第2連絡部23のうち第2電極部21内方に入り込む半円状の部分は、図26に示す第1導電層1の第1連絡部13によって規定される。また、上述した第1連絡部13のうち第1電極部11内包に入り込む半円状部分は、第2連絡部23によって規定されている。すなわち、図20から理解されるように、第1連絡部13と第2連絡部23とは、平面視において略円形状とされている。また、第2連絡部23は、後述する光電変換層3の意匠表示部35を平面視において内包している。本実施形態においては、第2連絡部23は、第2区画部22と同様に平面視において略円形状とされた第2導電層2の中心よりも外周に近い位置に配置されている。 The plurality of second connecting portions 23 are connected to one of the two adjacent second electrode portions 21 and are adjacent to the other of the two adjacent second electrode portions 21 with the slit 29 interposed therebetween. In the present embodiment, the second connecting portion 23 is a semicircular shape that is connected to the projecting portion that is partitioned in a semicircular shape by the slit 29 and enters the second electrode portion 21 in plan view. (A portion indicated by an imaginary line in FIG. 27), a circular portion in plan view, and a wedge-shaped portion projecting radially outward from the circular portion. Yes. A semicircular portion of the second connecting portion 23 that enters the inside of the second electrode portion 21 is defined by the first connecting portion 13 of the first conductive layer 1 shown in FIG. In addition, the semicircular portion that enters the first electrode portion 11 in the first connecting portion 13 described above is defined by the second connecting portion 23. That is, as understood from FIG. 20, the first connecting portion 13 and the second connecting portion 23 are substantially circular in a plan view. Moreover, the 2nd connection part 23 includes the design display part 35 of the photoelectric converting layer 3 mentioned later in planar view. In this embodiment, the 2nd connection part 23 is arrange | positioned in the position near an outer periphery rather than the center of the 2nd conductive layer 2 made into substantially circle shape in planar view similarly to the 2nd division part 22. As shown in FIG.
 第2端部24は、平面視において第1導電層1の第1端部14に一致し、且つ隣接する第2電極部21に繋がっている。図20に示すように、第2端部24は、第1端部14と同様に平面視略円形状の部分と、この円形状の部分から径方向外方に突出するくさび状の部分とを有する形状とされている。本実施形態においては、第2端部24は、第2区画部22および第2連絡部23と同様に平面視略円形状とされた第2導電層2の径方向において、中心よりも外周に近い位置に配置されている。 The second end portion 24 corresponds to the first end portion 14 of the first conductive layer 1 in a plan view and is connected to the adjacent second electrode portion 21. As shown in FIG. 20, the second end portion 24 includes a substantially circular portion in a plan view like the first end portion 14, and a wedge-shaped portion projecting radially outward from the circular portion. The shape has. In the present embodiment, the second end portion 24 is arranged on the outer periphery rather than the center in the radial direction of the second conductive layer 2 having a substantially circular shape in plan view like the second partition portion 22 and the second connecting portion 23. It is arranged at a close position.
 光電変換層3は、第1導電層1と第2導電層2とに挟まれて、支持基板41に積層されている。光電変換層3は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層3の具体的構成は特に限定されないが、その一例を挙げると、バルクヘテロ接合有機活性層と、このバルクヘテロ接合有機活性層に対して第1導電層1側に積層された正孔輸送層とからなる。本実施形態においては、光電変換層3は、平面視円形状とされているが、これは一例であり、光電変換層3は、様々な形状とされうる。光電変換層3の厚さは、たとえば50nm~300nmである。 The photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41. The photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of. In the present embodiment, the photoelectric conversion layer 3 has a circular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes. The thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
 バルクヘテロ接合有機活性層は、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。正孔輸送層は、たとえばPEDOT:PSSで形成されている。 In the bulk heterojunction organic active layer, a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction. The p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester). The hole transport layer is made of, for example, PEDOT: PSS.
 光電変換層3の形成に用いられる材質を例示すると、フタロシアニン(Pc:Phthalocyanine)、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)、Me-Ptcdi(N,N’-dimethyl perylene-3,4,9,10-dicarboximide)、フラーレン(C 60 :Buckminster fullerene)が挙げられる。これらの材質は、たとえば真空蒸着に使用される。 Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
 また、光電変換層3の形成に用いられる他の材質を例示すると、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)、PCDTBT(poly[N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-b3nzothiadizaole)])、PC60BM(6,6-phenyl-C61-butyric acid methyl ester)、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)が挙げられる。これらの材質は、たとえば溶液プロセルに使用される。 Other materials used for forming the photoelectric conversion layer 3 are exemplified by MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene), PCDTBT ( poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]), PC60BM (6 , 6-phenyl-C61-butyric acid methyl ester) and PC70BM (6,6-phenyl-C71-butyric acid methyl ester). These materials are used for, for example, a solution process.
 図28は、光電変換層3を示す平面図である。図20および図28に示すように、光電変換層3は、複数の非発電領域30、複数の発電領域31および複数の意匠表示部35を有している。なお、図28においては、非発電領域30および発電領域31の境界を想像線(二点鎖線)によって便宜上示している。また、光電変換層3の非貫通部分に、複数の離散点からなるハッチングを付している。 FIG. 28 is a plan view showing the photoelectric conversion layer 3. As shown in FIGS. 20 and 28, the photoelectric conversion layer 3 has a plurality of non-power generation regions 30, a plurality of power generation regions 31, and a plurality of design display portions 35. In FIG. 28, the boundary between the non-power generation region 30 and the power generation region 31 is indicated by an imaginary line (two-dot chain line) for convenience. The non-penetrating portion of the photoelectric conversion layer 3 is hatched with a plurality of discrete points.
 意匠表示部35は、第1導電層1を透して外観に表れる意匠を構成する部位である。意匠表示部35が構成する意匠とは、使用者等が目視することによって、文字、記号、図柄などの視覚的特異部分として視認されうるものを指す。 The design display part 35 is a part that constitutes a design that appears through the first conductive layer 1 and appears on the exterior. The design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look.
 本実施形態においては、意匠表示部35は、貫通部350によって構成されている。貫通部350は、光電変換層3を厚さ方向に貫通する態様の部位である。このような貫通部350は、第1導電層1を透して外観に表れる。また、本実施形態においては、貫通部350は、第2導電層2を第1導電層1側に露出させている。すなわち、貫通部350を通じて第2導電層2の一部が外観に表れている。 In the present embodiment, the design display unit 35 is configured by a through-hole portion 350. The penetrating part 350 is a part having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a penetrating portion 350 appears through the first conductive layer 1. In the present embodiment, the penetrating portion 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the through part 350.
 本実施形態においては、計12個の貫通部350(意匠表示部35)が時刻を特定するためのローマ数字を表す態様とされている。また、ローマ数字の態様とされた計12個の貫通部350に対して径方向外方に隣接する計12個の貫通部350(意匠表示部35)が菱型とされている。また、計24個の貫通部350(意匠表示部35)が、時刻を特定するための比較的小サイズの矩形状とされており、平面視円形状とされた光電変換層3の外周に沿って配置されている。 In the present embodiment, a total of twelve penetrating portions 350 (design display portions 35) represent Roman numerals for specifying time. In addition, a total of twelve penetrating portions 350 (design display portions 35) adjacent to the outer side in the radial direction with respect to a total of twelve penetrating portions 350 in the form of Roman numerals are diamond-shaped. In addition, a total of 24 penetrating portions 350 (design display portions 35) have a relatively small rectangular shape for specifying the time, and follow the outer periphery of the photoelectric conversion layer 3 having a circular shape in plan view. Are arranged.
 図20および図22に示すように、発電領域31は、第1導電層1の第1電極部11および第2導電層2の第2電極部21に挟まれ、且つ光電変換機能を発揮することにより発電に寄与する領域である。また、発電領域31の形状は、平面視において、第1電極部11および第2電極部21に一致する。本実施形態においては、6つの発電領域31が同心円状に配置されている。 20 and 22, the power generation region 31 is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2, and exhibits a photoelectric conversion function. This is a region that contributes to power generation. The shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view. In the present embodiment, the six power generation regions 31 are arranged concentrically.
 非発電領域30は、光電変換層3のうち平面視において第1導電層1の第1電極部11および第2導電層2の第2電極部21とは重ならない領域であり、第1区画部12、第1連絡部13、第1端部14、開口18およびスリット19と重なっている。第1区画部12、第1連絡部13および第1端部14は、第2導電層2の一部とそれぞれが接しており、集約された正孔と電子とが即座に結合してしまう。また、光電変換層3のうち開口18およびスリット19と重なる領域においては、光電変換の結果得られた正孔が第1導電層1には集約されない。このため、非発電領域30は、発電に寄与しない。すなわち、光電変換層3のうち複数の発電領域31以外の領域が、非発電領域30とされている。 The non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap with the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view, and the first partition portion 12, the first connecting portion 13, the first end portion 14, the opening 18 and the slit 19 overlap. The first partition portion 12, the first connecting portion 13, and the first end portion 14 are in contact with a part of the second conductive layer 2, and the aggregated holes and electrons are immediately combined. In the region of the photoelectric conversion layer 3 that overlaps with the opening 18 and the slit 19, holes obtained as a result of photoelectric conversion are not collected in the first conductive layer 1. For this reason, the non-power generation region 30 does not contribute to power generation. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
 また、図20に示すように、複数の非発電領域30は、複数の区画領域32、複数の連絡領域33および端部領域34を含む。 Further, as shown in FIG. 20, the plurality of non-power generation areas 30 include a plurality of partition areas 32, a plurality of communication areas 33, and end areas 34.
 図20および図23に示すように、区画領域32は、第1導電層1の第1区画部12および第2導電層2の第2区画部22に重なる領域である。区画領域32は、貫通部350(意匠表示部35)を有する。本実施形態においては、区画領域32に含まれる貫通部350(意匠表示部35)は、上述したローマ数字を表すものである。区画領域32の貫通部350を通じて、第1導電層1の第1区画部12と第2導電層2の第2区画部22とは互いに接している。 20 and FIG. 23, the partition region 32 is a region that overlaps the first partition portion 12 of the first conductive layer 1 and the second partition portion 22 of the second conductive layer 2. The partition area 32 has a penetrating part 350 (design display part 35). In the present embodiment, the penetrating part 350 (design display part 35) included in the partition region 32 represents the Roman numerals described above. Through the through part 350 of the partition region 32, the first partition part 12 of the first conductive layer 1 and the second partition part 22 of the second conductive layer 2 are in contact with each other.
 図20および図24に示すように、複数の連絡領域33は、第1導電層1の複数の第1連絡部13および第2導電層2の複数の第2連絡部23に挟まれた領域である。連絡領域33は、貫通部350(意匠表示部35)を有する。本実施形態においては、連絡領域33に含まれる貫通部350(意匠表示部35)は、上述したローマ数字を表すものである。連絡領域33の貫通部350を通じて、第1導電層1の第1連絡部13と第2導電層2の第2連絡部23とは互いに接している。 As shown in FIGS. 20 and 24, the plurality of connection regions 33 are regions sandwiched between the plurality of first connection portions 13 of the first conductive layer 1 and the plurality of second connection portions 23 of the second conductive layer 2. is there. The communication area 33 has a penetrating part 350 (design display part 35). In the present embodiment, the penetrating part 350 (design display part 35) included in the communication area 33 represents the Roman numerals described above. Through the through part 350 of the communication region 33, the first connection part 13 of the first conductive layer 1 and the second connection part 23 of the second conductive layer 2 are in contact with each other.
 図20および図25に示すように、端部領域34は、平面視において第1導電層1の第1端部14に内包される貫通部350(意匠表示部35)を含み、且つ第1導電層1の第1端部14に重なっている。また、端部領域34は、第2導電層2の第2端部24と重なっている。第1導電層1の第1端部14と第2導電層2の第2端部24とは、端部領域34の貫通部350を通じて接している。本実施形態においては、端部領域34に含まれる貫通部350(意匠表示部35)は、上述したローマ数字を表すものである。 As shown in FIGS. 20 and 25, the end region 34 includes a through portion 350 (design display portion 35) included in the first end portion 14 of the first conductive layer 1 in a plan view, and includes the first conductive layer. Overlapping the first end 14 of the layer 1. The end region 34 overlaps the second end 24 of the second conductive layer 2. The first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other through the through portion 350 of the end region 34. In this embodiment, the penetration part 350 (design display part 35) contained in the edge part area | region 34 represents the Roman numeral mentioned above.
 また、図20に示すように、光電変換層3のうち第1導電層1の開口18に内包された領域は、非発電領域30とされている。 Further, as shown in FIG. 20, a region included in the opening 18 of the first conductive layer 1 in the photoelectric conversion layer 3 is a non-power generation region 30.
 第1導電層1の第1延出部15および第2延出部16は、平面視において光電変換層3から径方向外方に延出している。 The first extending portion 15 and the second extending portion 16 of the first conductive layer 1 extend radially outward from the photoelectric conversion layer 3 in plan view.
 上述した構成により、有機薄膜太陽電池モジュールA2は、6つの発電領域31が互いに直列に接続された構成となっている。連結された経路を順に説明する。まず、第1延出部15が1つの第1電極部11に繋がっている。この第1電極部11に対して発電領域31を挟んで第2電極部21が配置されている。この第2電極部21に繋がる第2連絡部23は、連絡領域33の貫通部350を通じて第1連絡部13に接している。この第1連絡部13が繋がる第1電極部11に対して、発電領域31を挟んで次の第2電極部21が配置されている。すなわち、第1連絡部13、第2連絡部23、連絡領域33を挟んで、隣り合う発電領域31同士が直列に接続されている。したがって、図中下方左側の発電領域31から図中下方右側の発電領域31までが直列に接続されている。そして、図中下方右側の発電領域31と重なる第2電極部21には、第2端部24が繋がっている。第2端部24は、端部領域34の貫通部350を通じて第1端部14と接している。第1端部14には、第2延出部16が繋がっている。この結果、第1延出部15と第2延出部16とが有機薄膜太陽電池モジュールA2の出力端子として機能する。第1延出部15と第2延出部16とは、図19において駆動部71に接続されている。 With the above-described configuration, the organic thin-film solar cell module A2 has a configuration in which the six power generation regions 31 are connected in series with each other. The connected paths will be described in order. First, the first extending portion 15 is connected to one first electrode portion 11. The second electrode portion 21 is arranged with respect to the first electrode portion 11 with the power generation region 31 interposed therebetween. The second connecting part 23 connected to the second electrode part 21 is in contact with the first connecting part 13 through the penetrating part 350 of the connecting region 33. With respect to the first electrode part 11 connected to the first connecting part 13, the next second electrode part 21 is arranged with the power generation region 31 interposed therebetween. That is, adjacent power generation regions 31 are connected in series with the first communication unit 13, the second communication unit 23, and the communication region 33 interposed therebetween. Therefore, the power generation region 31 on the lower left side in the drawing to the power generation region 31 on the lower right side in the drawing are connected in series. And the 2nd end part 24 is connected to the 2nd electrode part 21 which overlaps with the electric power generation area | region 31 of the lower right side in the figure. The second end portion 24 is in contact with the first end portion 14 through the through portion 350 of the end region 34. A second extending portion 16 is connected to the first end portion 14. As a result, the 1st extension part 15 and the 2nd extension part 16 function as an output terminal of organic thin film solar cell module A2. The first extension part 15 and the second extension part 16 are connected to the drive part 71 in FIG.
 図22~図25に示すように、パッシベーション膜42は、第2導電層2上に積層されており、第2導電層2および光電変換層3を保護している。パッシベーション膜42は、たとえばSiNまたはSiONからなる。パッシベーション膜42の厚さは、たとえば0.5μm~2.0μmであり、本実施形態においては、たとえば1.5μm程度とされる。すなわち、パッシベーション膜42は、光電変換層3よりも厚く構成されている。これにより、光電変換層3に外部から水やパーティクル等が進入することを防止でき、且つ有機薄膜太陽電池モジュールA2の強度を向上させることができる。また、図23~図25に示すように、パッシベーション膜42のうち意匠表示部35を覆う部分と、光電変換層3のうち意匠表示部35に隣接する部位を覆う部分とは、平坦に形成されている。これにより、パッシベーション膜42に発生しうるクラック等の破壊をより防止でき、ひいては第2導電層2、光電変換層3、第1導電層1の破壊をより防止できる。なお、上述のような平坦なパッシベーション膜42は、例えばパッシベーション膜42が光電変換層3に対して厚い層とすること、また後述するCVDを用いた手法によって形成されることにより形成することができ、これに限られない。 As shown in FIGS. 22 to 25, the passivation film 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3. The passivation film 42 is made of, for example, SiN or SiON. The thickness of the passivation film 42 is, for example, 0.5 μm to 2.0 μm. In the present embodiment, the thickness is, for example, about 1.5 μm. That is, the passivation film 42 is configured to be thicker than the photoelectric conversion layer 3. Thereby, it can prevent that a water, a particle, etc. approach from the exterior to the photoelectric converting layer 3, and can improve the intensity | strength of organic thin-film solar cell module A2. Further, as shown in FIGS. 23 to 25, the portion of the passivation film 42 covering the design display portion 35 and the portion of the photoelectric conversion layer 3 covering the portion adjacent to the design display portion 35 are formed flat. ing. Thereby, destruction of the crack etc. which may generate | occur | produce in the passivation film 42 can be prevented more, and also destruction of the 2nd conductive layer 2, the photoelectric converting layer 3, and the 1st conductive layer 1 can be prevented more. The flat passivation film 42 as described above can be formed, for example, by making the passivation film 42 thick with respect to the photoelectric conversion layer 3 or by a method using CVD described later. Not limited to this.
 接合層43は、パッシベーション膜42と保護層44とを接合する層であり、たとえば樹脂系の接着剤層である。 The bonding layer 43 is a layer for bonding the passivation film 42 and the protective layer 44, and is, for example, a resin-based adhesive layer.
 保護層44は、有機薄膜太陽電池モジュールA2を支持基板41とは反対側から保護するためのものである。保護層44は、好ましくはガラスからなるが、その他有機薄膜太陽電池モジュールA2を保護しうる透明な材質を適宜採用できる。保護層44の厚さは、たとえば30μm~100μmであり、本実施形態においては、たとえば50μm程度とされる。 The protective layer 44 is for protecting the organic thin-film solar cell module A2 from the side opposite to the support substrate 41. The protective layer 44 is preferably made of glass, but other transparent materials that can protect the organic thin film solar cell module A2 can be appropriately employed. The thickness of the protective layer 44 is, for example, 30 μm to 100 μm. In the present embodiment, the thickness is, for example, about 50 μm.
 次に、有機薄膜太陽電池モジュールA2の製造方法について、図29~図32を参照しつつ以下に説明する。なお、これらの図においては、理解の便宜上、図22~図25とは、天地逆に表されている。また、図22~図25においては、図20に示した有機薄膜太陽電池モジュールA2のXXV-XXV線における断面構造を生成する過程を示している。 Next, a method for manufacturing the organic thin film solar cell module A2 will be described below with reference to FIGS. In these drawings, for convenience of understanding, FIGS. 22 to 25 are shown upside down. 22 to 25 show a process of generating a cross-sectional structure along the line XXV-XXV of the organic thin film solar cell module A2 shown in FIG.
 まず、図29に示すように支持基板41を用意する。そして、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOを成膜する。次いで、図30に示すように、該ITOにパターニングを行うことにより第1導電層1を形成する。図29と図30とに示す行程を別々に行ってもよいし、一括して行ってもよい。ここで、ITOへのパターニング手法としては、たとえばウエットエッチングを用いた手法、酸素プラズマエッチングを用いた手法、レーザパターニングを用いた手法が適宜採用される。なお、第1導電層1は、上記に限られず、例えばナノインプリントを用いた手法によって、支持基板41上に直接的にITOをパターニングすることで形成するようにしても良い。 First, a support substrate 41 is prepared as shown in FIG. Then, an ITO film is formed on one surface of the support substrate 41 by a general method such as sputtering. Next, as shown in FIG. 30, the first conductive layer 1 is formed by patterning the ITO. The steps shown in FIGS. 29 and 30 may be performed separately or collectively. Here, as a patterning technique to ITO, for example, a technique using wet etching, a technique using oxygen plasma etching, and a technique using laser patterning are appropriately employed. The first conductive layer 1 is not limited to the above. For example, the first conductive layer 1 may be formed by directly patterning ITO on the support substrate 41 by a technique using nanoimprint.
 次いで、図31に示すように、光電変換層3を形成する。光電変換層3の形成は、たとえば、スピンコート塗布により支持基板41上および第1導電層1上に有機膜を成膜した後に、酸素プラズマエッチング、レーザパターニングを用いることによって、所望の貫通部350(意匠表示部35)を有する構成に仕上げることにより行う。なお、光電変換層3は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷などの手法によって、支持基板41上および第1導電層1上に直接的に有機膜をパターニングすることで形成するようにしても良い。 Next, as shown in FIG. 31, the photoelectric conversion layer 3 is formed. For example, the photoelectric conversion layer 3 is formed by forming an organic film on the support substrate 41 and the first conductive layer 1 by spin coating, and then using oxygen plasma etching and laser patterning to form a desired through-hole 350. This is done by finishing the structure having the (design display part 35). The photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive layer 1 by a method such as slit coating, capillary coating, or gravure printing. It may be formed by.
 次いで、図32に示すように、第2導電層2を形成する。第2導電層2の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板41、第1導電層1および光電変換層3上に金属膜を成膜する。次に、該金属膜に例えばマスク層を用いたエッチングを行うことによりパターニングを施す。このパターニングにより、第1導電層1上および光電変換層3上に第2導電層2を形成する。この後は、たとえばプラズマCVD法によってSiNまたはSiONを支持基板41、第1導電層1、光電変換層3および第2導電層2上に成膜することにより、パッシベーション膜42を形成する。そして、パッシベーション膜42に接合層43を用いて保護層44を接合する。以上の工程を経ることにより、有機薄膜太陽電池モジュールA2が得られる。 Next, as shown in FIG. 32, the second conductive layer 2 is formed. The second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive layer 1 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition. Next, the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 is formed on the first conductive layer 1 and the photoelectric conversion layer 3. Thereafter, a passivation film 42 is formed by depositing SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, a plasma CVD method. Then, the protective layer 44 is bonded to the passivation film 42 using the bonding layer 43. The organic thin film solar cell module A2 is obtained through the above steps.
 次に、有機薄膜太陽電池モジュールA2および電子機器B2の作用について説明する。 Next, the operation of the organic thin film solar cell module A2 and the electronic device B2 will be described.
 本実施形態に係る有機薄膜太陽電池モジュールA2および電子機器B2によれば、光電変換層3に意匠表示部35を形成し、第1導電層1を透して外観に表れるようにしたので、有機薄膜太陽電池モジュールA2に追加の部材を積層させることや外側に印刷を施すことなどをすることなく、意匠表示部35によって外観に表れる意匠を付与することができる。 According to the organic thin-film solar cell module A2 and the electronic device B2 according to the present embodiment, the design display portion 35 is formed on the photoelectric conversion layer 3 so as to be visible through the first conductive layer 1, so that the organic display The design appearing on the appearance can be given by the design display unit 35 without laminating additional members on the thin-film solar cell module A2 or printing the outside.
 また、本実施形態に係る有機薄膜太陽電池モジュールA2および電子機器B2によれば、意匠表示部35を貫通部350によって構成するようにしたので、意匠をより明瞭に表すことができる。特に、貫通部350を通じて第2導電層2が外観に表れていることにより、第2導電層2と光電変換層3とのコントラストによって、意匠の鮮明化を図ることができる。 In addition, according to the organic thin film solar cell module A2 and the electronic device B2 according to the present embodiment, the design display unit 35 is configured by the through portion 350, so that the design can be expressed more clearly. In particular, the appearance of the second conductive layer 2 through the through portion 350 allows the design to be clarified by the contrast between the second conductive layer 2 and the photoelectric conversion layer 3.
 また、本実施形態に係る有機薄膜太陽電池モジュールA2および電子機器B2によれば、第1導電層1においてスリット19により第1電極部11と第1区画部12を離間させ、平面視において第1区画部12に重なる非発電領域30に意匠表示部35を形成するようにしたので、光電変換層3を貫通させた貫通部350により意匠表示部35を構成するようにした場合に、第1電極部11と第2電極部21とが意図せずしてショートすることを防止することができる。 Moreover, according to the organic thin film solar cell module A2 and the electronic device B2 according to the present embodiment, the first electrode portion 11 and the first partitioning portion 12 are separated from each other by the slit 19 in the first conductive layer 1, and the first in a plan view. Since the design display part 35 is formed in the non-power generation region 30 overlapping the partition part 12, when the design display part 35 is configured by the penetrating part 350 penetrating the photoelectric conversion layer 3, the first electrode It is possible to prevent the part 11 and the second electrode part 21 from being unintentionally short-circuited.
 第1連絡部13、第2連絡部23および連絡領域33を設けることにより、隣り合う発電領域31を直列に接続することが可能である。これにより、有機薄膜太陽電池モジュールA2から出力する電圧を所望の値に高めることができる。また、連絡領域33に内包された貫通部350は、時刻を特定するためのローマ数字とされている。このため、連絡領域33およびこれに含まれる貫通部350は、複数の発電領域31を直列に接続する機能を果たしつつ、時計として用いられる場合に必須となる意匠を表す領域を兼ねており、合理的である。 It is possible to connect the adjacent power generation regions 31 in series by providing the first communication unit 13, the second communication unit 23, and the communication region 33. Thereby, the voltage output from organic thin-film solar cell module A2 can be raised to a desired value. Moreover, the penetration part 350 included in the communication area 33 is a Roman numeral for specifying the time. For this reason, the communication region 33 and the penetrating part 350 included therein serve as a region representing a design that is essential when used as a watch while fulfilling the function of connecting a plurality of power generation regions 31 in series. Is.
 第1端部14、第2端部24および端部領域34を設けることにより、直列に接続された複数の発電領域31のうち一端の発電領域31と他端の31とを隣接して設けることが可能である。また、第1延出部15および第2延出部16を備えることにより、発電領域31の面積を不当に減少させることなく、発電領域31からの電力を取り出すことができる。 By providing the first end portion 14, the second end portion 24, and the end region 34, the power generation region 31 at one end and the other end 31 among the plurality of power generation regions 31 connected in series are provided adjacent to each other. Is possible. Moreover, the electric power from the electric power generation area | region 31 can be taken out, without reducing the area of the electric power generation area | region 31 by providing the 1st extension part 15 and the 2nd extension part 16 unreasonably.
 図33~図42は、本発明の変形例および他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 33 to 42 show a modified example and other embodiments of the present invention. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
 図33~図35は、有機薄膜太陽電池モジュールA2の変形例を示している。本変形例においては、光電変換層3に設けられた発電領域31の個数が1つである場合を示している。図33は、本変形例の有機薄膜太陽電池モジュールA2を示す平面図であり、図34は、本変形例の第1導電層1を示す平面図であり、図35は、本変形例の第2導電層2を示す平面図であり、図36は、本変形例の光電変換層3を示す平面図である。 33 to 35 show modified examples of the organic thin film solar cell module A2. In this modification, the case where the number of the electric power generation area | regions 31 provided in the photoelectric converting layer 3 is one is shown. FIG. 33 is a plan view showing the organic thin-film solar cell module A2 of this modification, FIG. 34 is a plan view showing the first conductive layer 1 of this modification, and FIG. FIG. 36 is a plan view showing a photoelectric conversion layer 3 of the present modification.
 第1導電層1は、1つの第1電極部11、11個の第1区画部12、第1端部14、第1延出部15および第2延出部16を有している。第1導電層1は、上述した例における第1連絡部13を有していない。 The first conductive layer 1 has one first electrode part 11, eleven first partition parts 12, a first end part 14, a first extension part 15, and a second extension part 16. The 1st conductive layer 1 does not have the 1st connection part 13 in the example mentioned above.
 第2導電層2は、第1導電層1の構成に対応して、1つの第2電極部21、11個の第2区画部22および第2端部24を有する。 The second conductive layer 2 has one second electrode portion 21, eleven second partition portions 22, and second end portions 24 corresponding to the configuration of the first conductive layer 1.
 光電変換層3は、1つの発電領域31、11個の区画領域32、端部領域34を有する。 The photoelectric conversion layer 3 has one power generation region 31, eleven partition regions 32, and an end region 34.
 このような構成の有機薄膜太陽電池モジュールA2においては、1つの発電領域31が発電した電力が第1延出部15および第2延出部16から出力される。 In the organic thin film solar cell module A2 having such a configuration, the power generated by one power generation region 31 is output from the first extension portion 15 and the second extension portion 16.
 このような変形例によっても、有機薄膜太陽電池モジュールA2に追加の部材を積層させることや外側に印刷を施すことなどをすることなく、意匠表示部35によって外観に表れる意匠を付与することができる。 Also by such a modification, the design which appears in the external appearance can be given by the design display part 35, without laminating | stacking an additional member on the organic thin-film solar cell module A2 or printing outside. .
 なお、1つの発電領域31が設けられた構成に代えて、複数の発電領域31が並列に接続された構成を採用してもよい。この場合、たとえば複数の第1電極部11が互いに導通し、且つ複数の第2電極部21が互いに導通する構成とすればよい。 Note that a configuration in which a plurality of power generation regions 31 are connected in parallel may be employed instead of the configuration in which one power generation region 31 is provided. In this case, for example, the plurality of first electrode portions 11 may be electrically connected to each other, and the plurality of second electrode portions 21 may be electrically connected to each other.
 図37および図38は、本発明の第3実施形態に基づく電子機器を示している。本実施形態のB3は、いわゆる電子計算機として構成されている。 37 and 38 show an electronic apparatus based on the third embodiment of the present invention. B3 of this embodiment is configured as a so-called electronic computer.
 電子機器B3は、有機薄膜太陽電池モジュールA3、ケース61、駆動部71、表示部74および入力部75を備えている。 The electronic device B3 includes an organic thin film solar cell module A3, a case 61, a drive unit 71, a display unit 74, and an input unit 75.
 有機薄膜太陽電池モジュールA3は、電子機器B3の発電装置である。ケース61は、薄型の矩形状部材であり、有機薄膜太陽電池モジュールA3、駆動部71、表示部74および入力部75を収容する。 Organic thin-film solar cell module A3 is a power generator for electronic device B3. The case 61 is a thin rectangular member, and houses the organic thin film solar cell module A3, the drive unit 71, the display unit 74, and the input unit 75.
 駆動部71は、有機薄膜太陽電池モジュールA3から給電されることにより、演算機能を果たす。また、入力部75からの入力信号を演算機能に反映させる。また、演算機能に係る情報を表示部74に表示させる。 The driving unit 71 performs a calculation function by being fed from the organic thin film solar cell module A3. Further, the input signal from the input unit 75 is reflected in the calculation function. In addition, information related to the calculation function is displayed on the display unit 74.
 表示部74は、演算機能に係る情報が表示される部位であり、たとえば液晶ディスプレイである。入力部75は、演算を行うための入力がなされる部位であり、たとえばタッチセンサ等からなる。また、本実施形態においては、入力部75を目視によって識別するために、意匠表示部35が入力部75を構成している。 The display unit 74 is a part where information related to the calculation function is displayed, and is a liquid crystal display, for example. The input unit 75 is a part where an input for performing a calculation is made, and is composed of, for example, a touch sensor. In the present embodiment, the design display unit 35 constitutes the input unit 75 in order to visually identify the input unit 75.
 図39は、本実施形態の有機薄膜太陽電池モジュールA3を示している。有機薄膜太陽電池モジュールA3は、1つの発電領域31において発電された電力を第1延出部15および第2延出部16から出力する構成とされている。 FIG. 39 shows the organic thin film solar cell module A3 of the present embodiment. The organic thin film solar cell module A3 is configured to output the power generated in one power generation region 31 from the first extension portion 15 and the second extension portion 16.
 図40は、本実施形態の第1導電層1を示す平面図である。図41は、本実施形態の第2導電層2を示す平面図である。図42は、本実施形態の光電変換層3を示す平面図である。 FIG. 40 is a plan view showing the first conductive layer 1 of the present embodiment. FIG. 41 is a plan view showing the second conductive layer 2 of the present embodiment. FIG. 42 is a plan view showing the photoelectric conversion layer 3 of the present embodiment.
 第1導電層1には、矩形状の開口18が形成され、第2導電層2には、矩形状の開口28が形成され、光電変換層3には、矩形状の開口38が形成されている。これらの開口18、開口28および開口38は、表示部74を外観に表すためのものである。なお、開口18および開口28は、開口38よりも若干大とされている。この結果、光電変換層3のうち開口18および開口28に内包された領域は、非発電領域30とされている。 A rectangular opening 18 is formed in the first conductive layer 1, a rectangular opening 28 is formed in the second conductive layer 2, and a rectangular opening 38 is formed in the photoelectric conversion layer 3. Yes. The opening 18, the opening 28, and the opening 38 are for representing the display unit 74 in appearance. Note that the opening 18 and the opening 28 are slightly larger than the opening 38. As a result, a region included in the opening 18 and the opening 28 in the photoelectric conversion layer 3 is a non-power generation region 30.
 図42に示すように、光電変換層3には、複数の貫通部350(意匠表示部35)が形成されている。図中下方に設けられた複数の貫通部350は、各々が数字や算術記号を表しており、入力部75の各部に対応するように配置されている。図40に示すように、第1導電層1には、図中下方に位置する複数の開口18が形成されている。これらの開口18は、数字や算術記号を表す複数の350を内包する大きさおよび形状とされている。この結果、光電変換層3のうちこれらの開口18に内包された領域は、非発電領域30とされている。 42, the photoelectric conversion layer 3 has a plurality of penetrating portions 350 (design display portions 35). Each of the plurality of penetrating portions 350 provided in the lower part of the figure represents a number or an arithmetic symbol, and is arranged so as to correspond to each part of the input unit 75. As shown in FIG. 40, the first conductive layer 1 is formed with a plurality of openings 18 positioned below in the drawing. These openings 18 are sized and shaped to contain a plurality of 350 representing numbers and arithmetic symbols. As a result, a region included in these openings 18 in the photoelectric conversion layer 3 is a non-power generation region 30.
 また、図42に示すように、図中上方右側に複数の貫通部350(意匠表示部35)が設けられている。これらの貫通部350は、文字や記号あるいは図柄を表している。このような態様の貫通部350は、たとえば企業名や製品名などを表すために用いられる。 Further, as shown in FIG. 42, a plurality of penetrating portions 350 (design display portions 35) are provided on the upper right side in the drawing. These penetrating portions 350 represent characters, symbols, or designs. The penetrating portion 350 having such an aspect is used, for example, to represent a company name or a product name.
 図39および図40に示すように、第1導電層1は、図中上方右側に第1端部14が設けられている。上述した光電変換層3の図中上方右側の複数の貫通部350は、平面視において第1端部14に内包されている。これにより、光電変換層3のうち第1端部14に重なる領域が端部領域34とされている。また、第2導電層2のうち第1端部14に重なる領域が第2端部24とされている。 As shown in FIGS. 39 and 40, the first conductive layer 1 has a first end portion 14 on the upper right side in the drawing. The plurality of through portions 350 on the upper right side of the photoelectric conversion layer 3 described above are included in the first end portion 14 in plan view. As a result, the region of the photoelectric conversion layer 3 that overlaps the first end portion 14 is defined as the end region 34. A region of the second conductive layer 2 that overlaps the first end 14 is a second end 24.
 このような実施形態によっても、有機薄膜太陽電池モジュールA3に追加の部材を積層させることや外側に印刷を施すことなどをすることなく、意匠表示部35によって外観に表れる意匠を付与することができる。 Even in such an embodiment, the design appearing on the appearance can be given by the design display unit 35 without laminating an additional member on the organic thin-film solar cell module A3 or printing on the outside. .
 図43は、本発明の第4実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の有機薄膜太陽電池モジュールA4は、光電変換層3の意匠表示部35が薄肉部351によって構成されたものを含む。 FIG. 43 shows an organic thin-film solar cell module according to the fourth embodiment of the present invention. The organic thin-film solar cell module A4 of this embodiment includes a structure in which the design display portion 35 of the photoelectric conversion layer 3 is configured by a thin portion 351.
 薄肉部351は、周辺よりも薄肉とされた部位である。薄肉部351が設けられることによって生じる段差が、目視によって視認可能な形状を実現し、意匠表示部35が表示させるべき意匠を構成する。 The thin portion 351 is a portion that is thinner than the periphery. The level difference caused by the provision of the thin portion 351 realizes a shape that can be visually recognized, and constitutes a design that the design display unit 35 should display.
 光電変換層3のうち支持基板41側の面は平坦であり、薄肉部351による段差は、支持基板41とは反対側に設けられる。このため、本実施形態においては、支持基板41に第2導電層2が形成され、光電変換層3を介して第1導電層1が積層されている。そして、本実施形態においては、太陽光は図中下側から向かってくる。 The surface of the photoelectric conversion layer 3 on the support substrate 41 side is flat, and a step due to the thin portion 351 is provided on the side opposite to the support substrate 41. For this reason, in this embodiment, the 2nd conductive layer 2 is formed in the support substrate 41, and the 1st conductive layer 1 is laminated | stacked through the photoelectric converting layer 3. FIG. And in this embodiment, sunlight comes from the lower side in the figure.
 このような実施形態によっても、有機薄膜太陽電池モジュールA4に追加の部材を積層させることや外側に印刷を施すことなどをすることなく、意匠表示部35によって外観に表れる意匠を付与することができる。 Also by such embodiment, the design which appears in the external appearance by the design display part 35 can be provided without laminating | stacking an additional member on the organic thin-film solar cell module A4, or performing printing on the outer side. .
 本発明に係る有機薄膜太陽電池モジュールおよび電子機器は、上述した実施形態に限定されるものではない。本発明に係る有機薄膜太陽電池モジュールおよび電子機器の各部の具体的な構成は、種々に設計変更自在である。 The organic thin film solar cell module and the electronic device according to the present invention are not limited to the above-described embodiments. The specific configuration of each part of the organic thin-film solar cell module and the electronic device according to the present invention can be varied in design in various ways.
 以下に、本発明の技術的特徴について付記する。 The technical features of the present invention will be described below.
  〔付記1A〕
 透明な第1導電層と、
 第2導電層と、
 前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、を備え、
 前記光電変換層は、前記第1導電層を透して外観に表れる意匠を構成する1以上の意匠表示部を有する、有機薄膜太陽電池モジュール。
  〔付記2A〕
 前記第1導電層が積層された、透明な支持基板を備える、付記1Aに記載の有機薄膜太陽電池モジュール。
  〔付記3A〕
 前記第2導電層を覆うパッシベーション膜を備える、付記1Aまたは2Aに記載の有機薄膜太陽電池モジュール。
  〔付記4A〕
 前記パッシベーション膜は、前記意匠表示部を覆っている、付記3Aに記載の有機薄膜太陽電池モジュール。
  〔付記5A〕
 前記パッシベーション膜は、前記意匠表示部を覆う部分と前記光電変換層のうち前記意匠表示部に隣接する部位を覆う部分とが、平坦に形成されている、付記4Aに記載の有機薄膜太陽電池モジュール。
  〔付記6A〕
 前記パッシベーション膜の厚さは、前記光電変換層の厚さよりも厚い、付記3Aないし5Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記7A〕
 前記パッシベーション膜に積層された保護層を備える、付記3Aないし6Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記8A〕
 前記パッシベーション膜と前記保護層とを接合する接合層を備える、付記7Aに記載の有機薄膜太陽電池モジュール。
  〔付記9A〕
 前記第1導電層は、ITOからなる、付記1Aないし8Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記10A〕
 前記第2導電層は、金属からなる、付記1Aないし9Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記11A〕
 前記第2導電層は、Alからなる、付記10Aに記載の有機薄膜太陽電池モジュール。
  〔付記12A〕
 前記意匠表示部は、前記光電変換層を厚さ方向に貫通する貫通部によって構成されている、付記1Aないし11Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記13A〕
 前記意匠表示部は、周囲よりも薄肉とされた薄肉部によって構成されている、付記1Aないし11Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記14A〕
 前記第1導電層は、第1電極部を有し、
 前記第2導電層は、平面視において前記第1電極部と一致する第2電極部を有し、
 前記光電変換層は、前記第1電極部および前記第2電極部に挟まれ、且つ光電変換機能を発揮することにより発電に寄与する発電領域を有する、付記12Aに記載の有機薄膜太陽電池モジュール。
  〔付記15A〕
 前記光電変換層は、平面視において前記第1電極部および前記第2電極部とは重ならず、且つ発電に寄与しない非発電領域を有する、付記14Aに記載の有機薄膜太陽電池モジュール。
  〔付記16A〕
  前記第1導電層は、平面視において前記意匠表示部を内包し、且つ厚さ方向に貫通するスリットによって囲まれた第1区画部を有する、付記15Aに記載の有機薄膜太陽電池モジュール。
  〔付記17A〕
  前記光電変換層の前記非発電領域は、前記第1導電層の前記第1区画部に重なる領域である区画領域を有する、付記16Aに記載の有機薄膜太陽電池モジュール。
  〔付記18A〕
  前記光電変換層の前記区画領域に含まれる前記意匠表示部を通じて前記第1導電層と前記第2導電層とが接している、付記17Aに記載の有機薄膜太陽電池モジュール。
  〔付記19A〕
 前記第1導電層は、スリットを挟んで隣り合う2つの前記第1電極部を有し、
 前記第2導電層は、平面視において前記2つの第1電極部と一致する2つの前記第2電極部を有し、
 前記光電変換層は、前記2つの第1電極部および前記2つの第2電極部に挟まれた2つの前記発電領域を有する、付記15Aないし18Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記20A〕
 前記2つの発電領域は、互いに直列に接続されている、付記19Aに記載の有機薄膜太陽電池モジュール。
  〔付記21A〕
 前記2つの発電領域は、互いに並列に接続されている、付記19Aに記載の有機薄膜太陽電池モジュール。
  〔付記22A〕
 前記第1導電層は、前記2つの第1電極部の一方に繋がり、且つ前記スリットを挟んで前記2つの第1電極部の他方に隣り合う第1連絡部を有し、
 前記第2導電層は、前記2つの第1電極部の他方と平面視において一致する前記第2電極部に繋がり、且つ前記スリットを挟んで前記2つの第2電極部のもう一方に隣り合うとともに、前記第1連絡部と接する第2連絡部を有し、
 前記光電変換層の前記非発電領域は、前記第1連絡部および前記第2連絡部に挟まれた連絡領域を含む、付記20Aに記載の有機薄膜太陽電池モジュール。
  〔付記23A〕
 前記連絡領域は、前記意匠表示部を含んでおり、
 前記第1連絡部と前記第2連絡部とは、前記連絡領域に含まれた前記意匠表示部を通じて接している、付記22Aに記載の有機薄膜太陽電池モジュール。
  〔付記24A〕
 前記第1導電層は、同心円状に配置された複数の前記第1電極部と前記第1連絡部とを有し、
 前記第2導電層は、同心円状に配置された複数の前記第2電極部と前記第2連絡部とを有し、
 前記光電変換層は、同心円状に配置された複数の前記発電領域と複数の前記連絡領域とを有する、付記23Aに記載の有機薄膜太陽電池モジュール。
  〔付記25A〕
 前記第1導電層は、前記第1電極部Aのいずれか1の第1電極部から、平面視において前記光電変換層の外方に延出する第1延出部を有している、付記15Aないし24Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記26A〕
 前記第1導電層は、前記第1延出部に繋がる前記第1電極部と該第1電極部に隣り合う前記第1電極部とにスリットを介して挟まれた第1端部を有し、
 前記光電変換層は、平面視において前記第1端部に内包される前記意匠表示部を含み、且つ前記第1端部に重なる端部領域を有し、
 前記第2導電層は、平面視において第1端部に一致し、且つ隣接する第2電極部に繋がるとともに、前記端部領域の前記意匠表示部を通じて前記第1端部に接する第2端部を有する、付記25Aに記載の有機薄膜太陽電池モジュール。
  〔付記27A〕
 前記第1導電層は、前記第1端部から、平面視において前記光電変換層の外方に延出する第2延出部を有している、付記26Aに記載の有機薄膜太陽電池モジュール。
  〔付記28A〕
 前記連絡領域に含まれる前記意匠表示部は、時刻を特定ための文字を表す、付記22Aに記載の有機薄膜太陽電池モジュール。
  〔付記29A〕
 前記区画領域に含まれる前記意匠表示部は、時刻を特定ための文字を表す、付記18Aに記載の有機薄膜太陽電池モジュール。
  〔付記30A〕
 前記第1導電層は、平面視において前記意匠表示部を内包する開口を有しており、
 前記光電変換層のうち前記第1導電層の前記開口に一致する部位が前記非発電領域とされている、付記15Aないし29Aのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記31A〕
 前記開口に内包される前記意匠表示部は、時刻を特定するための図形を表す、付記30Aに記載の有機薄膜太陽電池モジュール。
  〔付記32A〕
 付記1Aないし31Aのいずれかに記載の有機薄膜太陽電池モジュールと、
 前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、
を備える、電子機器。
  〔付記33A〕
 前記駆動部によって駆動される長針および短針を備えており、
 時計として構成された、付記32Aに記載の電子機器。
  〔付記34A〕
 前記駆動部は、演算機能を有しており、
 前記駆動部による演算結果を表示する表示部を備えており、
 電子計算機として構成された、付記32Aに記載の電子機器。
[Appendix 1A]
A transparent first conductive layer;
A second conductive layer;
A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer,
The said photoelectric conversion layer is an organic thin-film solar cell module which has a 1 or more design display part which comprises the design which appears through the said 1st conductive layer and appears on an external appearance.
[Appendix 2A]
The organic thin-film solar cell module according to Appendix 1A, comprising a transparent support substrate on which the first conductive layer is laminated.
[Appendix 3A]
The organic thin-film solar cell module according to appendix 1A or 2A, comprising a passivation film that covers the second conductive layer.
[Appendix 4A]
The said passivation film is an organic thin-film solar cell module of Additional remark 3A which has covered the said design display part.
[Appendix 5A]
The organic thin-film solar cell module according to appendix 4A, wherein the passivation film is formed so that a portion covering the design display portion and a portion covering the portion adjacent to the design display portion in the photoelectric conversion layer are formed flat. .
[Appendix 6A]
The thickness of the said passivation film is an organic thin-film solar cell module in any one of appendix 3A thru | or 5A thicker than the thickness of the said photoelectric converting layer.
[Appendix 7A]
The organic thin-film solar cell module according to any one of appendices 3A to 6A, comprising a protective layer laminated on the passivation film.
[Appendix 8A]
The organic thin film solar cell module according to appendix 7A, comprising a bonding layer that bonds the passivation film and the protective layer.
[Appendix 9A]
The organic thin film solar cell module according to any one of Supplementary Notes 1A to 8A, wherein the first conductive layer is made of ITO.
[Appendix 10A]
The organic thin-film solar cell module according to any one of Supplementary Notes 1A to 9A, wherein the second conductive layer is made of metal.
[Appendix 11A]
The organic thin film solar cell module according to attachment 10A, wherein the second conductive layer is made of Al.
[Appendix 12A]
The said design display part is an organic thin-film solar cell module in any one of additional remarks 1A thru | or 11A comprised by the penetration part which penetrates the said photoelectric converting layer in the thickness direction.
[Appendix 13A]
The said design display part is an organic thin-film solar cell module in any one of additional remarks 1A thru | or 11A comprised by the thin part made thinner than the circumference | surroundings.
[Appendix 14A]
The first conductive layer has a first electrode portion,
The second conductive layer has a second electrode portion that coincides with the first electrode portion in plan view,
The organic thin-film solar cell module according to appendix 12A, wherein the photoelectric conversion layer includes a power generation region that is sandwiched between the first electrode portion and the second electrode portion and contributes to power generation by exhibiting a photoelectric conversion function.
[Appendix 15A]
The organic thin-film solar cell module according to appendix 14A, wherein the photoelectric conversion layer has a non-power generation region that does not overlap the first electrode portion and the second electrode portion in plan view and does not contribute to power generation.
[Appendix 16A]
The organic thin-film solar cell module according to appendix 15A, wherein the first conductive layer includes a first partition part that includes the design display part in a plan view and is surrounded by a slit that penetrates in the thickness direction.
[Appendix 17A]
The organic thin-film solar cell module according to appendix 16A, wherein the non-power generation region of the photoelectric conversion layer has a partition region that is a region overlapping the first partition portion of the first conductive layer.
[Appendix 18A]
The organic thin-film solar cell module according to appendix 17A, wherein the first conductive layer and the second conductive layer are in contact with each other through the design display portion included in the partition region of the photoelectric conversion layer.
[Appendix 19A]
The first conductive layer has two first electrode portions adjacent to each other across a slit,
The second conductive layer has two second electrode portions that coincide with the two first electrode portions in plan view,
The organic thin-film solar cell module according to any one of appendices 15A to 18A, wherein the photoelectric conversion layer has two power generation regions sandwiched between the two first electrode portions and the two second electrode portions.
[Appendix 20A]
The organic thin-film solar cell module according to appendix 19A, wherein the two power generation regions are connected in series with each other.
[Appendix 21A]
The organic thin film solar cell module according to appendix 19A, wherein the two power generation regions are connected in parallel to each other.
[Appendix 22A]
The first conductive layer includes a first connecting portion that is connected to one of the two first electrode portions and that is adjacent to the other of the two first electrode portions with the slit interposed therebetween.
The second conductive layer is connected to the second electrode portion that coincides in plan view with the other of the two first electrode portions, and is adjacent to the other of the two second electrode portions with the slit interposed therebetween. , Having a second communication part in contact with the first communication part,
The organic thin-film solar cell module according to appendix 20A, wherein the non-power generation region of the photoelectric conversion layer includes a communication region sandwiched between the first communication unit and the second communication unit.
[Appendix 23A]
The contact area includes the design display portion,
The organic thin-film solar cell module according to appendix 22A, wherein the first contact portion and the second contact portion are in contact with each other through the design display portion included in the contact region.
[Appendix 24A]
The first conductive layer has a plurality of the first electrode portions and the first connecting portions arranged concentrically,
The second conductive layer has a plurality of the second electrode portions and the second connecting portions arranged concentrically,
The organic thin-film solar cell module according to Appendix 23A, wherein the photoelectric conversion layer includes a plurality of the power generation regions and a plurality of the connection regions arranged concentrically.
[Appendix 25A]
The first conductive layer has a first extending portion that extends from the first electrode portion of any one of the first electrode portions A to the outside of the photoelectric conversion layer in a plan view. The organic thin-film solar cell module according to any one of 15A to 24A.
[Appendix 26A]
The first conductive layer has a first end sandwiched between the first electrode part connected to the first extension part and the first electrode part adjacent to the first electrode part via a slit. ,
The photoelectric conversion layer includes an end region that includes the design display unit included in the first end in a plan view and overlaps the first end,
The second conductive layer coincides with the first end portion in a plan view and is connected to the adjacent second electrode portion, and is in contact with the first end portion through the design display portion in the end region. The organic thin-film solar cell module according to Supplementary Note 25A.
[Appendix 27A]
The organic thin-film solar cell module according to appendix 26A, wherein the first conductive layer has a second extending portion that extends outward from the photoelectric conversion layer in a plan view from the first end portion.
[Appendix 28A]
The organic thin-film solar cell module according to Supplementary Note 22A, in which the design display unit included in the contact region represents a character for specifying time.
[Appendix 29A]
The organic thin-film solar cell module according to appendix 18A, wherein the design display unit included in the partition region represents a character for specifying time.
[Appendix 30A]
The first conductive layer has an opening that includes the design display portion in a plan view;
The organic thin-film solar cell module according to any one of Supplementary Notes 15A to 29A, wherein a portion of the photoelectric conversion layer that coincides with the opening of the first conductive layer is the non-power generation region.
[Appendix 31A]
30. The organic thin-film solar cell module according to Supplementary Note 30A, wherein the design display unit included in the opening represents a graphic for specifying time.
[Appendix 32A]
An organic thin film solar cell module according to any one of Supplementary Notes 1A to 31A;
A drive unit driven by feeding from the organic thin film solar cell module;
An electronic device.
[Appendix 33A]
Comprising a long hand and a short hand driven by the drive unit;
The electronic device according to attachment 32A, configured as a timepiece.
[Appendix 34A]
The drive unit has a calculation function,
A display unit for displaying a calculation result by the drive unit;
The electronic device according to attachment 32A, configured as an electronic computer.
[第5-第6実施形態]
 第5および第6実施形態および図44~図67における符号は、これらの実施形態および図において有効であり、他の実施形態および図における符号とは独立している。ただし、第5および第6実施形態の具体的構成と他の実施形態の具体的構成とは、相互に適宜組合せ可能である。
[Fifth to sixth embodiments]
The reference numerals in the fifth and sixth embodiments and FIGS. 44 to 67 are valid in these embodiments and figures, and are independent of the reference numerals in the other embodiments and figures. However, the specific configurations of the fifth and sixth embodiments and the specific configurations of the other embodiments can be appropriately combined with each other.
 本発明において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the present invention, “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 図44~図48は、本発明の第5実施形態に基づく電子機器および本発明の第5および第6実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の電子機器B5は、有機薄膜太陽電池モジュールA5、有機薄膜太陽電池モジュールA6、ケース61、制御部701、表示部702、入力部703、マイク704、スピーカ705、無線通信部706およびバッテリ707を備えており、携帯型電話端末として構成されている。 44 to 48 show an electronic device based on the fifth embodiment of the present invention and an organic thin film solar cell module based on the fifth and sixth embodiments of the present invention. The electronic device B5 of this embodiment includes an organic thin film solar cell module A5, an organic thin film solar cell module A6, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery. 707 is configured as a portable telephone terminal.
 ケース61は、電子機器B5のその他の構成要素を収容するものであり、金属、樹脂、ガラスなどの材質からなる。 The case 61 accommodates other components of the electronic device B5 and is made of a material such as metal, resin, or glass.
 図44は、有機薄膜太陽電池モジュールA5,A6およびこれらを用いた電子機器B5を示す平面図である。図45は、有機薄膜太陽電池モジュールA5,A6および電子機器B5を示す底面図である。図46は、図44のXLVI-XLVI線に沿う模式的な断面図である。図47は、図44のXLVII-XLVII線に沿う要部拡大断面図である。図48は、電子機器B5を示すシステム構成図である。なお、図46においては、理解の便宜上、ケース61、有機薄膜太陽電池モジュールA5、有機薄膜太陽電池モジュールA6、制御部701、表示部702およびバッテリ707のみを模式的に示している。 FIG. 44 is a plan view showing organic thin-film solar cell modules A5 and A6 and electronic equipment B5 using them. FIG. 45 is a bottom view showing the organic thin-film solar cell modules A5 and A6 and the electronic device B5. FIG. 46 is a schematic sectional view taken along line XLVI-XLVI of FIG. 47 is an enlarged cross-sectional view of a main part taken along the line XLVII-XLVII in FIG. FIG. 48 is a system configuration diagram showing the electronic apparatus B5. In FIG. 46, only the case 61, the organic thin film solar cell module A5, the organic thin film solar cell module A6, the control unit 701, the display unit 702, and the battery 707 are schematically shown for convenience of understanding.
 有機薄膜太陽電池モジュールA5および有機薄膜太陽電池モジュールA6は、電子機器B5における電源モジュールであり、太陽光などの光を電力に変換する。具体的構成は、後述する。 Organic thin film solar cell module A5 and organic thin film solar cell module A6 are power supply modules in electronic device B5, and convert light such as sunlight into electric power. A specific configuration will be described later.
 制御部701は、本発明でいう駆動部の一例に相当し、有機薄膜太陽電池モジュールA5および有機薄膜太陽電池モジュールA6からの給電によって駆動する。なお、制御部701は、有機薄膜太陽電池モジュールA5および有機薄膜太陽電池モジュールA6からn直接給電されてもよいし、有機薄膜太陽電池モジュールA5および有機薄膜太陽電池モジュールA6からの電力がバッテリ707に一旦充電された後に、このバッテリ707からの給電によって駆動されてもよい。制御部701は、たとえばCPU、メモリおよびインターフェースなどを具備して構成されている。 The control unit 701 corresponds to an example of a driving unit in the present invention, and is driven by power feeding from the organic thin film solar cell module A5 and the organic thin film solar cell module A6. Note that the control unit 701 may be directly supplied with power from the organic thin film solar cell module A5 and the organic thin film solar cell module A6, and power from the organic thin film solar cell module A5 and the organic thin film solar cell module A6 is supplied to the battery 707. After being charged once, the battery 707 may be driven by power feeding. The control unit 701 includes, for example, a CPU, a memory, an interface, and the like.
 表示部702は、各種の情報を電子機器B5の外観に表示するためのものである。表示部702は、たとえば液晶表示パネルあるいは有機EL表示パネルなどである。本実施形態においては、表示部702は、有機薄膜太陽電池モジュールA5を透して外観に情報を表す。 The display unit 702 is for displaying various types of information on the external appearance of the electronic device B5. The display unit 702 is, for example, a liquid crystal display panel or an organic EL display panel. In the present embodiment, the display unit 702 displays information on the exterior through the organic thin film solar cell module A5.
 入力部703は、使用者の操作を電気信号として制御部701に出力するためのものである。入力部703は、たとえば表示部702に積層されたタッチパネルである。なお、表示部702と入力部703とが一体的に構成されていてもよい。 The input unit 703 is for outputting a user operation as an electrical signal to the control unit 701. The input unit 703 is a touch panel laminated on the display unit 702, for example. Note that the display unit 702 and the input unit 703 may be configured integrally.
 マイク704は、使用者の音声を電気信号に変換するデバイスである。スピーカ705は、通話相手の音声や各種の通知音などを出力するデバイスである。 The microphone 704 is a device that converts a user's voice into an electrical signal. The speaker 705 is a device that outputs the voice of the other party and various notification sounds.
 無線通信部706は、無線通信規格に準拠した双方向無線通信を行うデバイスである。 The wireless communication unit 706 is a device that performs bidirectional wireless communication conforming to the wireless communication standard.
 バッテリ707は、電子機器B5を駆動する電力を蓄えるデバイスである。バッテリ707は、充放電が適宜可能に構成されている。バッテリ707の充電は、図示しないアダプタを用いた商用電力からの給電、または有機薄膜太陽電池モジュールA5および有機薄膜太陽電池モジュールA6からの給電によってなされる。 The battery 707 is a device that stores electric power for driving the electronic device B5. The battery 707 is configured to be appropriately charged / discharged. The battery 707 is charged by feeding from commercial power using an adapter (not shown) or feeding from the organic thin film solar cell module A5 and the organic thin film solar cell module A6.
 有機薄膜太陽電池モジュールA5および有機薄膜太陽電池モジュールA6は、第1導電層1、第2導電層2、光電変換層3、支持基板41、パッシベーション膜42、保護樹脂層45およびバイパス導電部5を備えている。本実施形態においては、有機薄膜太陽電池モジュールA5および有機薄膜太陽電池モジュールA6は、平面視矩形状とされているが、これは一例であり、それぞれは様々な形状とされうる。有機薄膜太陽電池モジュールA5と有機薄膜太陽電池モジュールA6とは、互いの構成が一部を除き共通する。以下においては、まず有機薄膜太陽電池モジュールA5について説明する。 The organic thin film solar cell module A5 and the organic thin film solar cell module A6 include the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, the passivation film 42, the protective resin layer 45, and the bypass conductive portion 5. I have. In the present embodiment, the organic thin-film solar cell module A5 and the organic thin-film solar cell module A6 are rectangular in plan view, but this is an example, and each can have various shapes. The organic thin film solar cell module A5 and the organic thin film solar cell module A6 are common except for a part of each other. In the following, first, the organic thin film solar cell module A5 will be described.
 図49は、有機薄膜太陽電池モジュールA5のうち第1導電層1、第2導電層2、光電変換層3、支持基板41および保護樹脂層45を示す要部分解斜視図である。なお、理解の便宜上,支持基板41は想像線(二点鎖線)で示している。図50は、有機薄膜太陽電池モジュールA5の第1導電層1を示す平面図である。図51は、有機薄膜太陽電池モジュールA5の光電変換層3を示す平面図である。図52は、有機薄膜太陽電池モジュールA5の第2導電層2を示す平面図である。図53は、有機薄膜太陽電池モジュールA5の保護樹脂層45およびバイパス導電部5を示す平面図である。 FIG. 49 is an exploded perspective view of a main part showing the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, and the protective resin layer 45 in the organic thin film solar cell module A5. For convenience of understanding, the support substrate 41 is indicated by an imaginary line (two-dot chain line). FIG. 50 is a plan view showing the first conductive layer 1 of the organic thin film solar cell module A5. FIG. 51 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A5. FIG. 52 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A5. FIG. 53 is a plan view showing the protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A5.
 支持基板41は、有機薄膜太陽電池モジュールA5の土台となる部材である。支持基板41は、たとえば透明なガラスあるいは樹脂からなる。支持基板41の厚さは、たとえば0.05mm~2.0mmである。 The support substrate 41 is a member that becomes a base of the organic thin film solar cell module A5. The support substrate 41 is made of, for example, transparent glass or resin. The thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
 第1導電層1は、支持基板41上に形成されている。第1導電層1は、透明であり、本実施形態においてはITOからなる。図49および図50に示すように、第1導電層1は、第1電極部11、第1端部14、第1延出部15、第2延出部16、複数の開口18およびスリット19、第3端縁101および延出部103を有する。本実施形態においては、第1導電層1は、平面視略矩形状とされているが、これは第1導電層1の形状の一例である。第1導電層1の形状は、様々な形状に設定されうる。第1導電層1の厚さは、たとえば100nm~300nmである。なお、図50において、第1電極部11、第1端部14、第1延出部15および第2延出部16には、斜線のハッチングを付している。 The first conductive layer 1 is formed on the support substrate 41. The first conductive layer 1 is transparent and is made of ITO in this embodiment. As shown in FIGS. 49 and 50, the first conductive layer 1 includes a first electrode portion 11, a first end portion 14, a first extension portion 15, a second extension portion 16, a plurality of openings 18 and slits 19. And a third end edge 101 and an extending portion 103. In the present embodiment, the first conductive layer 1 has a substantially rectangular shape in plan view, but this is an example of the shape of the first conductive layer 1. The shape of the first conductive layer 1 can be set to various shapes. The thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm. In FIG. 50, the first electrode portion 11, the first end portion 14, the first extension portion 15, and the second extension portion 16 are hatched.
 第1電極部11は、光電変換層3によって生じた正孔が集約される層であり、いわゆるアノード電極として機能する。本実施形態においては、第1導電層1の大部分が1つの第1電極部11とされている。 The first electrode portion 11 is a layer in which holes generated by the photoelectric conversion layer 3 are aggregated, and functions as a so-called anode electrode. In the present embodiment, most of the first conductive layer 1 is a single first electrode portion 11.
 第1延出部15は、第1電極部11から、平面視において光電変換層3の外方に延出する部分である。図50においては、第1電極部11と第1延出部15との境界を想像線(二点鎖線)で示している。第1延出部15を設けることにより、光電変換層3における発電によって集約された正孔を、有機薄膜太陽電池モジュールA5外に導くことができる。 The first extending portion 15 is a portion extending from the first electrode portion 11 to the outside of the photoelectric conversion layer 3 in plan view. In FIG. 50, the boundary between the first electrode portion 11 and the first extension portion 15 is indicated by an imaginary line (two-dot chain line). By providing the 1st extension part 15, the hole collected by the electric power generation in the photoelectric converting layer 3 can be guide | induced outside the organic thin-film solar cell module A5.
 第1端部14は、スリット19によって第1電極部11と隔離された部分である。本実施形態においては、第1端部14は、たとえば平面視円形状とされている。本実施形態においては、第1端部14は、略円形状とされた部分と矩形状の部分とが組み合わされた形状とされている。 The first end portion 14 is a portion separated from the first electrode portion 11 by the slit 19. In the present embodiment, the first end portion 14 has, for example, a circular shape in plan view. In the present embodiment, the first end portion 14 has a shape in which a substantially circular portion and a rectangular portion are combined.
 第2延出部16は、第1端部14から、平面視において光電変換層3の外方に延出している。図50においては、第1端部14と第2延出部16との境界を想像線(二点鎖線)で示している。本実施形態においては、第1延出部15と第2延出部16とが隣り合う配置とされている。第2延出部16を設けることにより、光電変換層3における発電によって集約された電子を、有機薄膜太陽電池モジュールA5外に導くことができる。 The second extending portion 16 extends from the first end portion 14 to the outside of the photoelectric conversion layer 3 in plan view. In FIG. 50, the boundary between the first end portion 14 and the second extension portion 16 is indicated by an imaginary line (two-dot chain line). In the present embodiment, the first extending portion 15 and the second extending portion 16 are arranged adjacent to each other. By providing the 2nd extension part 16, the electrons concentrated by the electric power generation in the photoelectric converting layer 3 can be guide | induced outside the organic thin-film solar cell module A5.
 複数の開口18は、厚さ方向に第1導電層1を貫通した開口部分である。本実施形態においては、2つの開口18が設けられている。図50における図中上方の開口18は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口18は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 18 are openings that penetrate the first conductive layer 1 in the thickness direction. In the present embodiment, two openings 18 are provided. The upper opening 18 in FIG. 50 is provided to make the speaker 705 function, for example. On the other hand, the largest opening 18 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第3端縁101は、図中中央の開口18を規定する端縁である。本実施形態においては、第3端縁101は、開口18を四方から囲む端縁となっており、平面視矩形環状である。なお、第3端縁101は、開口18を四方から囲む形状に限定されない。たとえば、第3端縁101が開口18に三方から隣接することにより、開口18が第1電極部11から平面視において外方に開いた構成であってもよい。あるいは、第3端縁101は、開口18に対して二方あるいは一方のみから隣接するものであってもよい。第3端縁101に隣接する領域、すなわち図中中央の18からは、支持基板41が露出している。また、第3端縁101は、後述する保護樹脂層45の第2端縁451およびパッシベーション膜42の第1端縁421から延出する第1導電層1の部分の内端縁とされている。 The third edge 101 is an edge that defines the central opening 18 in the drawing. In the present embodiment, the third end edge 101 is an end edge surrounding the opening 18 from four directions, and has a rectangular shape in plan view. The third end edge 101 is not limited to a shape surrounding the opening 18 from four directions. For example, the third end edge 101 may be adjacent to the opening 18 from three directions so that the opening 18 opens outward from the first electrode portion 11 in plan view. Alternatively, the third edge 101 may be adjacent to the opening 18 from two or only one side. The support substrate 41 is exposed from the region adjacent to the third edge 101, that is, from the center 18 in the drawing. The third edge 101 is an inner edge of a portion of the first conductive layer 1 that extends from a second edge 451 of a protective resin layer 45 to be described later and a first edge 421 of the passivation film 42. .
 延出部103は、パッシベーション膜42および保護樹脂層45から外方に延出する部位である。本実施形態においては、第1導電層1の略全外周端縁に、延出部103が設けられている。 The extending portion 103 is a portion that extends outward from the passivation film 42 and the protective resin layer 45. In the present embodiment, the extending portion 103 is provided on substantially the entire outer peripheral edge of the first conductive layer 1.
 第2導電層2は、その大部分が光電変換層3を介して第1導電層1上に積層されている。また、第2導電層2の一部は、第1導電層1に直接接している。第2導電層2の材質は特に限定されないが、本実施形態においては、第2導電層2は、Al、W、Mo、Mn、Mgに代表される金属からなる。以下においては、第2導電層2がAlからなる場合を例に説明する。したがって、第2導電層2は、透明ではない。またこの場合、第2導電層2の支持基板41とは反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されてもよい。第2導電層2の厚さは、たとえば30nm~150nmである。 Most of the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1. Although the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg. Hereinafter, a case where the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is not transparent. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41. The thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
 図52に示すように、第2導電層2は、第2電極部21、第2端部24および複数の開口28を有する。本実施形態においては、第2導電層2は、平面視略矩形状とされているが、これは第2導電層2の形状の一例である。第2導電層2の形状は、様々な形状に設定されうる。なお、図52においては、第2電極部21および第2端部24に、斜線のハッチングを付している。 As shown in FIG. 52, the second conductive layer 2 has a second electrode portion 21, a second end portion 24, and a plurality of openings 28. In the present embodiment, the second conductive layer 2 has a substantially rectangular shape in plan view, but this is an example of the shape of the second conductive layer 2. The shape of the second conductive layer 2 can be set to various shapes. In FIG. 52, the second electrode portion 21 and the second end portion 24 are hatched.
 第2電極部21は、光電変換層3によって生じた電子が集約される層であり、いわゆるカソード電極として機能する。第2電極部21は、平面視において、第1電極部11と一致する。本実施形態においては、第2導電層2の大部分が第2電極部21とされている。 The second electrode portion 21 is a layer in which electrons generated by the photoelectric conversion layer 3 are collected, and functions as a so-called cathode electrode. The second electrode portion 21 coincides with the first electrode portion 11 in plan view. In the present embodiment, most of the second conductive layer 2 is the second electrode portion 21.
 第2端部24は、平面視において第1導電層1の第1端部14に一致し、且つ第2電極部21に繋がっている。図52においては、理解の便宜上、第2端部24の形状を想像線(二点鎖線)で示している。第2端部24は、第1端部14と同様に平面視略円形状の部分と平面視矩形状の部分とが組み合わされたとされている。 The second end portion 24 coincides with the first end portion 14 of the first conductive layer 1 in plan view and is connected to the second electrode portion 21. In FIG. 52, for convenience of understanding, the shape of the second end portion 24 is indicated by an imaginary line (two-dot chain line). Similarly to the first end portion 14, the second end portion 24 is a combination of a substantially circular portion in plan view and a rectangular portion in plan view.
 複数の開口28は、厚さ方向に第2導電層2を貫通する開口部分である。本実施形態においては、2つの開口28が設けられている。図52における図中上方の開口28は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口28は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 28 are openings that penetrate the second conductive layer 2 in the thickness direction. In the present embodiment, two openings 28 are provided. The upper opening 28 in FIG. 52 is provided, for example, to make the speaker 705 function. On the other hand, the largest opening 28 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第4内方退避端縁201は、図中中央の開口28を規定する端縁である。本実施形態においては、第4内方退避端縁201は、開口28を四方から囲む端縁となっており、平面視矩形環状である。なお、第4内方退避端縁201は、開口28を四方から囲む形状に限定されない。たとえば、第4内方退避端縁201が開口28を三方から隣接することにより、開口28が第2電極部21から平面視において外方に開いた構成であってもよい。あるいは、第4内方退避端縁201は、開口28に対して二方あるいは一方のみから隣接するものであってもよい。また、図47に示すように、第4内方退避端縁201は、第3端縁101よりも内方(開口18内に延出する方向とは反対側)に退避している。 The fourth inward retracting edge 201 is an edge that defines the central opening 28 in the drawing. In the present embodiment, the fourth inward retracting edge 201 is an edge that surrounds the opening 28 from four directions and has a rectangular shape in plan view. The fourth inward retracting edge 201 is not limited to a shape surrounding the opening 28 from four directions. For example, the fourth inward retracting edge 201 may be configured such that the opening 28 is opened outward from the second electrode portion 21 in plan view by adjoining the opening 28 from three directions. Alternatively, the fourth inward retracting edge 201 may be adjacent to the opening 28 from two or only one side. As shown in FIG. 47, the fourth inward retracting edge 201 is retracted inward (opposite to the direction extending into the opening 18) from the third end edge 101.
 第4外方退避端縁202は、図47に示すように、後述するパッシベーション膜42の第1外方端縁422および保護樹脂層45の第2外方端縁452よりも平面視において内方(図47における右方)に退避している。本実施形態においては、第4外方退避端縁202は、平面視環状である。 As shown in FIG. 47, the fourth outer retracting edge 202 is inward in a plan view than a first outer edge 422 of a passivation film 42 to be described later and a second outer edge 452 of the protective resin layer 45. It is retracted (to the right in FIG. 47). In the present embodiment, the fourth outward retracting edge 202 has an annular shape in plan view.
 光電変換層3は、第1導電層1と第2導電層2とに挟まれて、支持基板41に積層されている。光電変換層3は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層3の具体的構成は特に限定されないが、その一例を挙げると、バルクヘテロ接合有機活性層と、このバルクヘテロ接合有機活性層に対して第1導電層1側に積層された正孔輸送層とからなる。本実施形態においては、光電変換層3は、平面視矩形状とされているが、これは一例であり、光電変換層3は、様々な形状とされうる。光電変換層3の厚さは、たとえば50nm~300nmである。 The photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41. The photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of. In the present embodiment, the photoelectric conversion layer 3 has a rectangular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes. The thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
 バルクヘテロ接合有機活性層は、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。正孔輸送層は、たとえばPEDOT:PSSで形成されている。 In the bulk heterojunction organic active layer, a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction. The p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester). The hole transport layer is made of, for example, PEDOT: PSS.
 光電変換層3の形成に用いられる材質を例示すると、フタロシアニン(Pc:Phthalocyanine)、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)、Me-Ptcdi(N,N’-dimethyl perylene-3,4,9,10-dicarboximide)、フラーレン(C 60 :Buckminster fullerene)が挙げられる。これらの材質は、たとえば真空蒸着に使用される。 Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
 また、光電変換層3の形成に用いられる他の材質を例示すると、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)、PCDTBT(poly[N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-b3nzothiadizaole)])、PC60BM(6,6-phenyl-C61-butyric acid methyl ester)、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)が挙げられる。これらの材質は、たとえば溶液プロセルに使用される。 Other materials used for forming the photoelectric conversion layer 3 are exemplified by MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene), PCDTBT ( poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]), PC60BM (6 , 6-phenyl-C61-butyric acid methyl ester) and PC70BM (6,6-phenyl-C71-butyric acid methyl ester). These materials are used for, for example, a solution process.
 図51に示すように、光電変換層3は、非発電領域30、発電領域31および意匠表示部35、複数の開口38、第5内方退避端縁301および第5外方退避端縁302を有している。なお、図51においては、非発電領域30および発電領域31に、複数の離散点からなるハッチングを付している。 As shown in FIG. 51, the photoelectric conversion layer 3 includes a non-power generation region 30, a power generation region 31, a design display unit 35, a plurality of openings 38, a fifth inner retraction edge 301, and a fifth outer retraction edge 302. Have. In FIG. 51, the non-power generation region 30 and the power generation region 31 are hatched with a plurality of discrete points.
 意匠表示部35は、第1導電層1を透して外観に表れる意匠を構成する部位である。意匠表示部35が構成する意匠とは、使用者等が目視することによって、文字、記号、図柄などの視覚的特異部分として視認されうるものを指す。本実施形態においては、意匠表示部35は、円環形状を表している。 The design display part 35 is a part that constitutes a design that appears through the first conductive layer 1 and appears on the exterior. The design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look. In the present embodiment, the design display unit 35 represents an annular shape.
 本実施形態においては、意匠表示部35は、貫通部350によって構成されている。貫通部350は、光電変換層3を厚さ方向に貫通する態様の部位である。このような貫通部350は、第1導電層1を透して外観に表れる。また、本実施形態においては、貫通部350は、第2導電層2を第1導電層1側に露出させている。すなわち、貫通部350を通じて第2導電層2の一部が外観に表れている。 In the present embodiment, the design display unit 35 is configured by a through-hole portion 350. The penetrating part 350 is a part having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a penetrating portion 350 appears through the first conductive layer 1. In the present embodiment, the penetrating portion 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the through part 350.
 発電領域31は、第1導電層1の第1電極部11および第2導電層2の第2電極部21に挟まれ、且つ光電変換機能を発揮することにより発電に寄与する領域である。また、発電領域31の形状は、平面視において、第1電極部11および第2電極部21に一致する。 The power generation region 31 is a region that is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 and contributes to power generation by exhibiting a photoelectric conversion function. The shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view.
 非発電領域30は、光電変換層3のうち平面視において第1導電層1の第1電極部11および第2導電層2の第2電極部21とは重ならない領域であり、第1導電層1の第1端部14と重なっている。第1端部14は、第2導電層2の第2端部24と接しており、集約された正孔と電子とが即座に結合してしまう。このため、非発電領域30は、且つ発電に寄与しない。すなわち、光電変換層3のうち複数の発電領域31以外の領域が、非発電領域30とされている。 The non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view. 1 overlaps the first end 14 of the first. The first end portion 14 is in contact with the second end portion 24 of the second conductive layer 2, and the aggregated holes and electrons are immediately combined. For this reason, the non-power generation region 30 does not contribute to power generation. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
 本実施形態においては、非発電領域30は、端部領域34とされている。端部領域34は、貫通部350(意匠表示部35)を有している。端部領域34は、平面視において第1導電層1の第1端部14に内包される貫通部350(意匠表示部35)を含み、且つ第1導電層1の第1端部14に重なっている。また、端部領域34は、第2導電層2の第2端部24と重なっている。第1導電層1の第1端部14と第2導電層2の第2端部24とは、端部領域34の貫通部350を通じて接している。 In the present embodiment, the non-power generation region 30 is an end region 34. The end region 34 has a penetrating portion 350 (design display portion 35). The end region 34 includes a through portion 350 (design display portion 35) included in the first end portion 14 of the first conductive layer 1 in plan view, and overlaps the first end portion 14 of the first conductive layer 1. ing. The end region 34 overlaps the second end 24 of the second conductive layer 2. The first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other through the through portion 350 of the end region 34.
 複数の開口38は、光電変換層3を厚さ方向に貫通する開口部分である。本実施形態においては、2つの開口38が設けられている。図51における図中上方の開口38は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口38は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 38 are openings that penetrate the photoelectric conversion layer 3 in the thickness direction. In the present embodiment, two openings 38 are provided. The upper opening 38 in FIG. 51 is provided, for example, to make the speaker 705 function. On the other hand, the largest opening 38 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
 第5内方退避端縁301は、図中中央の開口38を規定する端縁である。本実施形態においては、第5内方退避端縁301は、開口38を四方から囲む端縁となっており、平面視矩形環状である。なお、第5内方退避端縁301は、開口38を四方から囲む形状に限定されない。たとえば、第5内方退避端縁301が開口38を三方から隣接することにより、開口38が発電領域31から平面視において外方に開いた構成であってもよい。あるいは、第5内方退避端縁301は、開口38に対して二方あるいは一方のみに設けられたものであってもよい。また、図47に示すように、第5内方退避端縁301は、第3端縁101よりも内方(開口18内に延出する方向とは反対側)に退避している。 The fifth inward retracting edge 301 is an edge that defines the central opening 38 in the drawing. In the present embodiment, the fifth inward retracting edge 301 is an edge that surrounds the opening 38 from four directions and has a rectangular ring shape in plan view. The fifth inward retracting edge 301 is not limited to a shape surrounding the opening 38 from four directions. For example, the fifth inward retracting edge 301 may be configured such that the opening 38 is opened outward from the power generation region 31 in a plan view by adjoining the opening 38 from three directions. Alternatively, the fifth inward retracting edge 301 may be provided in two or only one with respect to the opening 38. Further, as shown in FIG. 47, the fifth inward retracting edge 301 is retracted inward (opposite to the direction extending into the opening 18) than the third end edge 101.
 第5外方退避端縁302は、図47に示すように、後述するパッシベーション膜42の第1外方端縁422および保護樹脂層45の第2外方端縁452よりも平面視において内方(図47における右方)に退避している。本実施形態においては、第5外方退避端縁302は、平面視環状である。 As shown in FIG. 47, the fifth outer retreat end edge 302 is inward in a plan view than a first outer end edge 422 of a passivation film 42 to be described later and a second outer end edge 452 of the protective resin layer 45. It is retracted (to the right in FIG. 47). In the present embodiment, the fifth outward retracting edge 302 is annular in plan view.
 上述した構成により、有機薄膜太陽電池モジュールA5においては、第1延出部15が第1電極部11に繋がっている。また、第2電極部21には、第2端部24が繋がっている。第2端部24は、端部領域34の貫通部350を通じて第1端部14と接している。第1端部14には、第2延出部16が繋がっている。この結果、第1延出部15と第2延出部16とが有機薄膜太陽電池モジュールA5の出力端子として機能する。 With the above-described configuration, in the organic thin film solar cell module A5, the first extending portion 15 is connected to the first electrode portion 11. Further, the second end portion 24 is connected to the second electrode portion 21. The second end portion 24 is in contact with the first end portion 14 through the through portion 350 of the end region 34. A second extending portion 16 is connected to the first end portion 14. As a result, the 1st extension part 15 and the 2nd extension part 16 function as an output terminal of organic thin film solar cell module A5.
 パッシベーション膜42は、第2導電層2上に積層されており、第2導電層2および光電変換層3を保護している。パッシベーション膜42は、たとえばSiNまたはSiONからなる。パッシベーション膜42の厚さは、たとえば0.5μm~2.0μmであり、本実施形態においては、たとえば1.5μm程度とされる。 The passivation film 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3. The passivation film 42 is made of, for example, SiN or SiON. The thickness of the passivation film 42 is, for example, 0.5 μm to 2.0 μm. In the present embodiment, the thickness is, for example, about 1.5 μm.
 保護樹脂層45は、パッシベーション膜42を覆っている層である。保護樹脂層45は、たとえば紫外線硬化樹脂からなる。保護樹脂層45の厚さは、たとえば3μm~20μmであり、本実施形態においては、たとえば10μm程度とされる。 The protective resin layer 45 is a layer that covers the passivation film 42. The protective resin layer 45 is made of, for example, an ultraviolet curable resin. The thickness of the protective resin layer 45 is, for example, 3 μm to 20 μm. In the present embodiment, the thickness is, for example, about 10 μm.
 図53に示すように、保護樹脂層45は、複数の開口458、第2端縁451および第2外方端縁452を有する。なお、図53においては、保護樹脂層45に斜線のハッチングを付している。 53, the protective resin layer 45 has a plurality of openings 458, a second end edge 451, and a second outer end edge 452. In FIG. 53, the protective resin layer 45 is hatched.
 複数の開口458は、保護樹脂層45の一部が削除された態様であり、保護樹脂層45を貫通している。本実施形態においては、2つの開口458が設けられている。図53における図中上方の開口458は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口458は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 458 is a mode in which a part of the protective resin layer 45 is removed, and penetrates the protective resin layer 45. In the present embodiment, two openings 458 are provided. In FIG. 53, the upper opening 458 in the drawing is provided to allow the speaker 705 to function, for example. On the other hand, the largest opening 458 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
 第2端縁451は、図中中央の開口458を規定する端縁である。本実施形態においては、第2端縁451は、開口458を四方から囲む端縁となっており、平面視矩形環状である。なお、第2端縁451は、開口458を四方から囲む形状に限定されない。たとえば、第2端縁451が開口458を三方から隣接することにより、開口458が保護樹脂層45から平面視において外方に開いた構成であってもよい。あるいは、第2端縁451は、開口458に対して二方あるいは一方のみ設けられたものであってもよい。 The second edge 451 is an edge that defines the central opening 458 in the drawing. In the present embodiment, the second end edge 451 is an end edge that surrounds the opening 458 from four directions, and has a rectangular ring shape in plan view. The second end edge 451 is not limited to a shape surrounding the opening 458 from four sides. For example, the second edge 451 may be adjacent to the opening 458 from three directions, so that the opening 458 opens outward from the protective resin layer 45 in plan view. Alternatively, the second end edge 451 may be provided in two or only one with respect to the opening 458.
 第2外方端縁452は、平面視において光電変換層3の少なくとも一部を挟んで第2端縁451と反対側に位置しており、本実施形態においては、保護樹脂層45の外周端縁である。 The second outer end edge 452 is located on the opposite side of the second end edge 451 across at least a part of the photoelectric conversion layer 3 in plan view, and in this embodiment, the outer peripheral end of the protective resin layer 45. It is an edge.
 パッシベーション膜42は、第1端縁421および第1外方端縁422を有している。 The passivation film 42 has a first end edge 421 and a first outer end edge 422.
 第1端縁421は、平面視において第2端縁451と一致している。また、本実施形態においては、第1端縁421は、第2端縁451と連続した面をなしている。第1外方端縁422は、平面視において第2外方端縁452と一致している。また、本実施形態においては、第1外方端縁422は、第2外方端縁452と連続した面をなしている。 The first end edge 421 coincides with the second end edge 451 in plan view. In the present embodiment, the first end edge 421 forms a surface continuous with the second end edge 451. The first outer end edge 422 coincides with the second outer end edge 452 in plan view. In the present embodiment, the first outer end edge 422 forms a surface that is continuous with the second outer end edge 452.
 図47に示すように、第2端縁451および第1端縁421によって囲まれた領域である開口458から、支持基板41の一部が露出領域411として露出している。また、露出領域411は、第1導電層1等によって覆われておらず、支持基板41の表面が直接露出している。 47, a part of the support substrate 41 is exposed as an exposed region 411 from an opening 458 that is a region surrounded by the second end edge 451 and the first end edge 421. The exposed region 411 is not covered with the first conductive layer 1 or the like, and the surface of the support substrate 41 is directly exposed.
 バイパス導電部5は、第1導電層1に到達した正孔を集電するための、第1導電層1より低抵抗な経路を構成するためのものである。本実施形態においては、バイパス導電部5は、2つのバスバー部51、複数の連絡部52および2つの集極部53を有する。バイパス導電部5は、第1導電層1よりも低抵抗な材質からなり、たとえばAgまたはカーボンを含む。 The bypass conductive portion 5 is for configuring a path having a lower resistance than the first conductive layer 1 for collecting holes that have reached the first conductive layer 1. In the present embodiment, the bypass conductive portion 5 includes two bus bar portions 51, a plurality of connecting portions 52, and two pole collecting portions 53. The bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
 図47および図53に示すように、1つのバスバー部51は、第2端縁451および第1端縁421を全長にわたって覆っている。このバスバー部51は、第1導電層1のうち第3端縁101と第1端縁421(第2端縁451)との間に位置する部分を覆っている。また、このバスバー部51の内端縁は、平面視において第3端縁101と一致している。他方のバスバー部51は、第2外方端縁452および第1外方端縁422を全長にわたって覆っている。このバスバー部51は、第1導電層1の延出部103を覆っている。このような構成により、2つのバスバー部51は、それぞれが第1導電層1と導通している。 47 and 53, one bus bar portion 51 covers the second end edge 451 and the first end edge 421 over the entire length. The bus bar portion 51 covers a portion of the first conductive layer 1 located between the third end edge 101 and the first end edge 421 (second end edge 451). Further, the inner edge of the bus bar portion 51 coincides with the third edge 101 in plan view. The other bus bar portion 51 covers the second outer end edge 452 and the first outer end edge 422 over the entire length. The bus bar portion 51 covers the extending portion 103 of the first conductive layer 1. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
 複数の連絡部52は、保護樹脂層45上に形成された部分であり、図53における図中内側のバスバー部51と図中外側の連絡部52とを連結している。2つの集極部53は、一方が第1導電層1に導通しており、他方が第2導電層2に導通している。 The plurality of connecting portions 52 are portions formed on the protective resin layer 45 and connect the inner bus bar portion 51 in FIG. 53 and the outer connecting portion 52 in the drawing. One of the two current collectors 53 is electrically connected to the first conductive layer 1, and the other is electrically connected to the second conductive layer 2.
 図54は、有機薄膜太陽電池モジュールA6の第1導電層1を示す平面図である。図55は、有機薄膜太陽電池モジュールA6の光電変換層3を示す平面図である。図56は、有機薄膜太陽電池モジュールA6の第2導電層2を示す平面図である。図57は、有機薄膜太陽電池モジュールA6の保護樹脂層45およびバイパス導電部5を示す平面図である。 FIG. 54 is a plan view showing the first conductive layer 1 of the organic thin-film solar cell module A6. FIG. 55 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A6. FIG. 56 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A6. FIG. 57 is a plan view showing the protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A6.
 有機薄膜太陽電池モジュールA6においては、表示部702を外観に表すための開口18、開口28、開口38、開口458等が設けられていない。このため、第3端縁101、第4内方退避端縁201、第5内方退避端縁301、第1端縁421および第2端縁451は設けられていない。また、バイパス導電部5は、外周に沿うバスバー部51を有し、連絡部52は、有していない。 The organic thin film solar cell module A6 is not provided with the opening 18, the opening 28, the opening 38, the opening 458 and the like for showing the display portion 702 in appearance. For this reason, the 3rd edge 101, the 4th inward retracting edge 201, the 5th inward retracting edge 301, the 1st end edge 421, and the 2nd end edge 451 are not provided. In addition, the bypass conductive portion 5 has a bus bar portion 51 along the outer periphery, and does not have a connecting portion 52.
 本実施形態においては、図55に示すように、光電変換層3に複数の貫通部350(35)が設けられている。これらの貫通部350は、それぞれがアルファベットを表している。この貫通部350を利用して、第1導電層1の第1端部14と第2導電層2の第2端部24とが接している点は、有機薄膜太陽電池モジュールA5と同様である。 In the present embodiment, as shown in FIG. 55, the photoelectric conversion layer 3 is provided with a plurality of through portions 350 (35). Each of these penetrating portions 350 represents an alphabet. The point where the first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other using the through portion 350 is the same as that of the organic thin film solar cell module A5. .
 次いで、有機薄膜太陽電池モジュールA5の製造方法の一例について、図58~図65を参照しつつ、以下に説明する。なお、これらの図においては、理解の便宜上、図47とは、天地逆に表されている。また、図58~図65においては、図44に示した電子機器B5のXLVII-XLVII線における断面構造を生成する過程を示している。 Next, an example of a method for producing the organic thin film solar cell module A5 will be described below with reference to FIGS. In these drawings, for convenience of understanding, FIG. 47 is shown upside down. 58 to 65 show a process of generating a cross-sectional structure taken along line XLVII-XLVII of the electronic apparatus B5 shown in FIG.
 まず、図58に示すように支持基板41を用意する。そして、図59に示すように、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOからなる第1導電層1を成膜する。次に、該ITOにパターニングを施し、開口18、スリット19等のパターンを形成するためのパターニングを行う。ここで、ITOへのパターニング手法としては、たとえばウエットエッチングを用いた手法、酸素プラズマエッチングを用いた手法、レーザパターニングを用いた手法が適宜採用される。なお、第1導電層1は、上記に限られず、例えばナノインプリントを用いた手法によって、支持基板41上に直接的にITOをパターニングすることで形成するようにしても良い。 First, a support substrate 41 is prepared as shown in FIG. Then, as shown in FIG. 59, the first conductive layer 1 made of ITO is formed on one surface of the support substrate 41 by a general method such as sputtering. Next, patterning is performed on the ITO to form patterns such as openings 18 and slits 19. Here, as a patterning technique to ITO, for example, a technique using wet etching, a technique using oxygen plasma etching, and a technique using laser patterning are appropriately employed. The first conductive layer 1 is not limited to the above. For example, the first conductive layer 1 may be formed by directly patterning ITO on the support substrate 41 by a technique using nanoimprint.
 次いで、図60に示すように、光電変換層3を形成する。光電変換層3の形成は、たとえば、スピンコート塗布により支持基板41上および第1導電層1上に有機膜を成膜した後に、酸素プラズマエッチング、レーザパターニングを用いることによって、第5内方退避端縁301、第5外方退避端縁302、開口38、貫通部350(意匠表示部35)を有する構成に仕上げることにより行う。なお、光電変換層3は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷などの手法によって、支持基板41上および第1導電層1上に直接的に有機膜をパターニングすることで形成するようにしても良い。 Next, as shown in FIG. 60, the photoelectric conversion layer 3 is formed. The photoelectric conversion layer 3 is formed by, for example, depositing an organic film on the support substrate 41 and the first conductive layer 1 by spin coating, and then using oxygen plasma etching and laser patterning to perform fifth inward retraction. This is done by finishing the structure having an end edge 301, a fifth outward retracting end edge 302, an opening 38, and a penetrating part 350 (design display part 35). The photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive layer 1 by a method such as slit coating, capillary coating, or gravure printing. It may be formed by.
 次いで、図61に示すように、第2導電層2を形成する。第2導電層2の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板41、第1導電層1および光電変換層3上に金属膜を成膜する。次に、該金属膜に例えばマスク層を用いたエッチングを行うことによりパターニングを施す。このパターニングにより、光電変換層3上に第4内方退避端縁201および第4外方退避端縁202を有する第2導電層2を形成する。 Next, as shown in FIG. 61, the second conductive layer 2 is formed. The second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive layer 1 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition. Next, the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having the fourth inner withdrawal edge 201 and the fourth outer withdrawal edge 202 is formed on the photoelectric conversion layer 3.
 次いで、図62に示すように、パッシベーション膜42を形成する。パッシベーション膜42の形成は、たとえばプラズマCVD法によってSiNまたはSiONなどの膜を支持基板41、第1導電層1、光電変換層3および第2導電層2上に形成することにより行う。 Next, as shown in FIG. 62, a passivation film 42 is formed. The passivation film 42 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by plasma CVD, for example.
 次いで、図63に示すように、保護樹脂層45を形成する。保護樹脂層45の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によってパッシベーション膜42上に塗布し、紫外線を照射することによって硬化させる。これにより、第2端縁451および第2外方端縁452を有する保護樹脂層45が得られる。 Next, as shown in FIG. 63, a protective resin layer 45 is formed. The protective resin layer 45 is formed by applying a liquid resin material containing, for example, an ultraviolet curable resin on the passivation film 42 by screen printing and irradiating it with ultraviolet rays. Thereby, the protective resin layer 45 having the second end edge 451 and the second outer end edge 452 is obtained.
 次いで、図64に示すように、保護樹脂層45をマスクとして用いたパターニングをパッシベーション膜42に施す。このパターニングは、たとえばフッ化水素を0.55%~4.5%含むフッ化水素酸を用いたウエットエッチングによって行う。このようなフッ化水素酸は、紫外線硬化樹脂からなる保護樹脂層45をほとんど溶解しない一方、SiN等からなるパッシベーション膜42を選択的に溶解する。また、フッ化水素酸は、ITO等からなる第1導電層1はほとんど溶解しない。この結果、パッシベーション膜42に第1端縁421および第1外方端縁422が形成される。第1端縁421は、平面視において第2端縁451と一致する。第1端縁421と第2端縁451とは、連続した面をなす。また、第1外方端縁422は、平面視において第2外方端縁452と一致する。第1外方端縁422と第2外方端縁452とは、連続した面をなす。 Next, as shown in FIG. 64, the passivation film 42 is patterned using the protective resin layer 45 as a mask. This patterning is performed, for example, by wet etching using hydrofluoric acid containing 0.55% to 4.5% hydrogen fluoride. Such hydrofluoric acid hardly dissolves the protective resin layer 45 made of an ultraviolet curable resin, but selectively dissolves the passivation film 42 made of SiN or the like. Further, hydrofluoric acid hardly dissolves the first conductive layer 1 made of ITO or the like. As a result, the first end edge 421 and the first outer end edge 422 are formed in the passivation film 42. The first edge 421 coincides with the second edge 451 in plan view. The first edge 421 and the second edge 451 form a continuous surface. The first outer end edge 422 coincides with the second outer end edge 452 in plan view. The first outer end edge 422 and the second outer end edge 452 form a continuous surface.
 次いで、図65に示すように、バイパス導電部5を形成する。バイパス導電部5の形成は、たとえばAgまたはカーボンを含むペーストを塗布した後に、たとえば乾燥などの手法によってこのペーストを硬化させることによって行う。 Next, as shown in FIG. 65, the bypass conductive portion 5 is formed. The bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying.
 次いで、第1導電層1にパターニングを施す。このパターニングは、たとえば濃塩酸と濃硝酸とが3:1の比率で混合された王水を用いて行う。このパターニングにより、第1導電層1のうちバイパス導電部5や保護樹脂層45から露出した部分が選択的に除去される。この結果、第1導電層1に第3端縁101等が形成される。以上の工程を経ることにより、有機薄膜太陽電池モジュールA5が得られる。有機薄膜太陽電池モジュールA6の製造も同様に行うことができる。 Next, the first conductive layer 1 is patterned. This patterning is performed, for example, using aqua regia in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a ratio of 3: 1. By this patterning, portions of the first conductive layer 1 exposed from the bypass conductive portion 5 and the protective resin layer 45 are selectively removed. As a result, the third edge 101 and the like are formed in the first conductive layer 1. Through the above steps, an organic thin film solar cell module A5 is obtained. The organic thin film solar cell module A6 can be manufactured in the same manner.
 次に、有機薄膜太陽電池モジュールA5および電子機器B5の作用について説明する。 Next, the operation of the organic thin film solar cell module A5 and the electronic device B5 will be described.
 本実施形態によれば、第2端縁451および第2外方端縁452に隣接する領域において支持基板41が露出している。この部位には、パッシベーション膜42や保護樹脂層45が形成されていない。したがって、この部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 According to the present embodiment, the support substrate 41 is exposed in a region adjacent to the second end edge 451 and the second outer end edge 452. In this portion, the passivation film 42 and the protective resin layer 45 are not formed. Therefore, it is possible to finish this portion more transparent, and the display portion 702 can be expressed more clearly.
 第2端縁451および第1端縁421に隣接する領域のうちバスバー部51によって覆われた僅かな領域を除いて、支持基板41には第1導電層1が形成されていない。第1導電層1は、ITOからなるものの、光線のあたり具合によっては、うっすらと着色されたものとして視認される。本実施形態においては、表示部702を外観に表すための領域をことさらに透明に仕上げることが可能であり、より美麗な外観を実現することができる。 The first conductive layer 1 is not formed on the support substrate 41 except for a small area covered with the bus bar portion 51 among the areas adjacent to the second edge 451 and the first edge 421. Although the first conductive layer 1 is made of ITO, the first conductive layer 1 is visually recognized as being slightly colored depending on how light hits. In the present embodiment, it is possible to finish the region for displaying the display unit 702 in an even more transparent manner, and a more beautiful appearance can be realized.
 光電変換層3の第5内方退避端縁301および第2導電層2の第4内方退避端縁201が、第1端縁421および第2端縁451と離間していることにより、第2導電層2および光電変換層3がバイパス導電部5と不当に導通することを回避することができる。また、第4内方退避端縁201および第5内方退避端縁301と第1端縁421および第2端縁451との間にパッシベーション膜42が介在していることにより、第2導電層2および光電変換層3とバイパス導電部5のバスバー部51とがショートすることをより確実に防止可能である。 The fifth inward retracting edge 301 of the photoelectric conversion layer 3 and the fourth inward retracting edge 201 of the second conductive layer 2 are separated from the first end edge 421 and the second end edge 451, thereby The two conductive layers 2 and the photoelectric conversion layer 3 can be prevented from being unduly conducted with the bypass conductive portion 5. Further, since the passivation film 42 is interposed between the fourth inner retracting edge 201 and the fifth inner retracting edge 301 and the first end edge 421 and the second end edge 451, the second conductive layer 2 and the photoelectric conversion layer 3 and the bus bar portion 51 of the bypass conductive portion 5 can be more reliably prevented from short-circuiting.
 保護樹脂層45をマスクとして用いたパターニングをパッシベーション膜42に施すことにより、保護樹脂層45と同形状のパッシベーション膜42を形成することができる。すなわち、紫外線硬化樹脂などの形状形成に優れた材質を用いて保護樹脂層45を形成すれば、必ずしも形状形成に優れていない材質からなるパッシベーション膜42を所望の形状に仕上げることができる。なお、保護樹脂層45は、パッシベーション膜42を形成した後に除去してもよい。ただし、保護樹脂層45を残存させた場合、水分やパーティクル等の第1導電層1、第2導電層2および光電変換層3等への侵入を防止する効果や、有機薄膜太陽電池モジュールA5の強度向上を図る効果が期待できる。 The passivation film 42 having the same shape as that of the protective resin layer 45 can be formed by patterning the passivation film 42 using the protective resin layer 45 as a mask. That is, if the protective resin layer 45 is formed using a material excellent in shape formation such as an ultraviolet curable resin, the passivation film 42 made of a material not necessarily excellent in shape formation can be finished in a desired shape. The protective resin layer 45 may be removed after the passivation film 42 is formed. However, when the protective resin layer 45 is left, the effect of preventing intrusion of moisture and particles into the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3 and the like, and the organic thin film solar cell module A5 The effect of improving strength can be expected.
 バイパス導電部5を設けることにより、第1導電層1に拡散してきた正孔を、バスバー部51を経由して集極部53へと導くことができる。バイパス導電部5は、第1導電層1よりも低抵抗であるため、電力が熱に変換されてしまうことを抑制することができる。これは、有機薄膜太陽電池モジュールA5および有機薄膜太陽電池モジュールA6の発電損失を低減するとともに、より大面積の発電領域31による発電に適している。 By providing the bypass conductive portion 5, the holes diffused in the first conductive layer 1 can be guided to the collector portion 53 via the bus bar portion 51. Since the bypass conductive portion 5 has a lower resistance than the first conductive layer 1, it is possible to prevent power from being converted into heat. This reduces power generation loss of the organic thin film solar cell module A5 and the organic thin film solar cell module A6 and is suitable for power generation by the power generation region 31 having a larger area.
 バイパス導電部5を形成した後に第1導電層1にパターニングを施すことにより、バイパス導電部5の連絡部52は、第1導電層1の端面ではなく、第1導電層1のうち平面視において有意な面積を有する部分(延出部103など)に接する構成となる。これは、第1導電層1とバイパス導電部5との接触抵抗を低下させるとともに、確実な導通に有利である。 By patterning the first conductive layer 1 after forming the bypass conductive portion 5, the connecting portion 52 of the bypass conductive portion 5 is not an end face of the first conductive layer 1 but in a plan view of the first conductive layer 1. The structure is in contact with a portion having a significant area (such as the extension 103). This is advantageous for reliable conduction while lowering the contact resistance between the first conductive layer 1 and the bypass conductive portion 5.
 図66および図67は、本発明の変形例を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 66 and 67 show a modification of the present invention. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
 図66は、電子機器B5および有機薄膜太陽電池モジュールA5の変形例を示している。本変形例においては、第1導電層1の第3端縁101が平面視において第1端縁421および第2端縁451と一致している。また、上述した例における内側のバスバー部51は設けられていない。このような変形例は、保護樹脂層45をマスクとして王水を用いたパターニングを第1導電層1に施すことによって形成される。 FIG. 66 shows a modification of the electronic device B5 and the organic thin film solar cell module A5. In this modification, the third edge 101 of the first conductive layer 1 coincides with the first edge 421 and the second edge 451 in plan view. Further, the inner bus bar portion 51 in the above-described example is not provided. Such a modification is formed by patterning the first conductive layer 1 using aqua regia using the protective resin layer 45 as a mask.
 本変形例によっても、第1端縁421および第2端縁451に隣接する部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 Also according to this modification, it is possible to finish the portions adjacent to the first edge 421 and the second edge 451 more transparent, and the display portion 702 can be expressed more clearly.
 図67は、電子機器B5および有機薄膜太陽電池モジュールA5の変形例を示している。本変形例においては、第1導電層1は、第3端縁101に代えて、第3内方退避端縁102を有している。第3内方退避端縁102は、平面視において第1端縁421および第2端縁451よりも内方に退避している。また、上述した例における内側のバスバー部51は設けられていない。このような変形例は、支持基板41に第1導電層1を成膜した後に、スリット19等とともに第3内方退避端縁102を形成しておくことによって製造される。 FIG. 67 shows a modification of the electronic device B5 and the organic thin film solar cell module A5. In the present modification, the first conductive layer 1 has a third inward retracting edge 102 instead of the third end edge 101. The third inward retracting edge 102 is retracted inward from the first end edge 421 and the second end edge 451 in a plan view. Further, the inner bus bar portion 51 in the above-described example is not provided. Such a modification is manufactured by forming the third inward retracting edge 102 together with the slit 19 and the like after the first conductive layer 1 is formed on the support substrate 41.
 本変形例によっても、第1端縁421および第2端縁451に隣接する部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 Also according to this modification, it is possible to finish the portions adjacent to the first edge 421 and the second edge 451 more transparent, and the display portion 702 can be expressed more clearly.
 本発明に係る有機薄膜太陽電池モジュール、電子機器、有機薄膜太陽電池モジュールの製造方法は、上述した実施形態に限定されるものではない。本発明に係る有機薄膜太陽電池モジュール、電子機器、有機薄膜太陽電池モジュールの製造方法の具体的な構成は、種々に設計変更自在である。 The manufacturing method of the organic thin film solar cell module, the electronic device, and the organic thin film solar cell module according to the present invention is not limited to the above-described embodiment. The specific configuration of the organic thin film solar cell module, the electronic device, and the method of manufacturing the organic thin film solar cell module according to the present invention can be varied in design in various ways.
 本発明に係る電子機器は、携帯型電話端末をはじめ、太陽光発電を利用可能な様々な電子機器に適用することが可能であり、たとえば腕時計、電子計算機などが挙げられる。 The electronic device according to the present invention can be applied to various electronic devices that can use solar power generation, such as a portable telephone terminal, and examples thereof include a wrist watch and an electronic calculator.
 以下に、本発明の技術的特徴について付記する。 The technical features of the present invention will be described below.
  〔付記1B〕
 透明な支持基板と、
 前記支持基板に積層された透明な第1導電層と、
 第2導電層と、
 前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、
 前記第2導電層を覆うパッシベーション膜と、
を備え、
 前記パッシベーション膜は、第1端縁を有し、
 前記第1端縁に隣接する領域において、前記支持基板が露出している、有機薄膜太陽電池モジュール。
  〔付記2B〕
 前記第1導電層は、平面視において前記第1端縁と一致する第3端縁を有する、付記1Bに記載の有機薄膜太陽電池モジュール。
  〔付記3B〕
 前記第1導電層は、平面視において前記第1端縁よりも内方に退避した第3内方退避端縁を有する、付記1Bに記載の有機薄膜太陽電池モジュール。
  〔付記4B〕
 前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する、付記2Bに記載の有機薄膜太陽電池モジュール。
  〔付記5B〕
 前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する、付記4Bに記載の有機薄膜太陽電池モジュール。
  〔付記6B〕
 前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している、付記5Bに記載の有機薄膜太陽電池モジュール。
  〔付記7B〕
 前記第1端縁は、平面視環状である、付記4Bないし6Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記8B〕
 前記第3端縁は、平面視環状である、付記7Bに記載の有機薄膜太陽電池モジュール。
  〔付記9B〕 
 前記第3内方退避端縁は、平面視環状である、付記3Bに記載の有機薄膜太陽電池モジュール。
  〔付記10B〕
 前記第4内方退避端縁は、平面視環状である、付記8Bまたは9Bに記載の有機薄膜太陽電池モジュール。
  〔付記11B〕
 前記第5内方退避端縁は、平面視環状である、付記10Bに記載の有機薄膜太陽電池モジュール。
  〔付記12B〕
 前記第1導電層は、ITOからなる、付記1Bないし11Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記13B〕
 前記第2導電層は、金属からなる、付記1Bないし12Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記14B〕
 前記第2導電層は、Alからなる、付記13Bに記載の有機薄膜太陽電池モジュール。
  〔付記15B〕
 前記パッシベーション膜は、SiNからなる、付記1Bないし14Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記16B〕
 前記パッシベーション膜を覆う保護樹脂層を備えており、
 前記保護樹脂層は、平面視において前記第1端縁と一致する第2端縁を有する、付記1Bないし15Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記17B〕
 前記第2端縁と前記第1端縁とは、連続した面をなす、付記16Bに記載の有機薄膜太陽電池モジュール。
  〔付記18B〕
 前記第2端縁は、平面視環状である、付記16Bまたは17Bに記載の有機薄膜太陽電池モジュール。
  〔付記19B〕
 前記保護樹脂層は、紫外線硬化樹脂からなる、付記16Bないし18Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記20B〕
 前記保護樹脂層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第2端縁と反対側に位置する第2外方端縁を有し、
 前記パッシベーション膜は、平面視において前記第2外方端縁と一致する第1外方端縁を有し、
 前記第1導電層は、前記第2外方端縁および前記第1外方端縁から外方に延出する延出部を有し、
 前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を備える、付記16Bないし19Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記21B〕
 前記第2外方端縁と前記第1外方端縁とは、連続した面をなす、付記20Bに記載の有機薄膜太陽電池モジュール。
  〔付記22B〕
 前記バイパス導電部は、前記第2外方端縁および前記第1外方端縁を覆う、付記20Bまたは21Bに記載の有機薄膜太陽電池モジュール。
  〔付記23B〕
 前記バイパス導電部は、AgBまたはカーボンを含む、付記20Bないし22Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記24B〕 
 前記第2導電層は、平面視において前記第2外方端縁および前記第1外方端縁よりも内方に退避した第4外方退避端縁を有する、付記20Bないし23Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記25B〕
 前記光電変換層は、平面視において前記第2外方端縁および前記第1外方端縁よりも内方に退避した第5外方退避端縁を有する、付記20Bないし24Bのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記26B〕
 付記1Bないし25Bのいずれかに記載の有機薄膜太陽電池モジュールと、
 前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、
を備えることを特徴とする、電子機器。
  〔付記27B〕
 透明な支持基板に透明な第1導電層を積層する工程と、
 前記第1導電層に有機薄膜からなる光電変換層を積層する工程と、
 前記光電変換層に第2導電層を積層する工程と、
 前記第2導電層を覆うパッシベーション膜を形成する工程と、
 前記パッシベーション膜に第2端縁を有する保護樹脂層を積層する工程と、
 前記第2端縁を境界として、前記パッシベーション膜を部分的に除去することにより平面視において前記第2端縁と一致する第1端縁を前記パッシベーション膜に形成する工程と、
 前記第1導電層を部分的に除去することにより、前記第2端縁および前記第1端縁に隣接する領域において、前記支持基板を露出させる工程と、を備える、有機薄膜太陽電池モジュールの製造方法。
  〔付記28B〕
 前記支持基板を露出させる工程において、平面視において前記第2端縁および前記第1端縁と一致する第3端縁を前記第1導電層に形成する、付記27Bに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記29B〕
 前記第2端縁および前記第1端縁は、平面視環状である、付記28Bに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記30B〕
 前記第3端縁は、平面視環状である、付記29Bに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記31B〕
 前記第1導電層は、ITOからなる、付記27Bないし30Bのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記32B〕
 前記第2導電層は、金属からなる、付記27Bないし31Bのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記33B〕
 前記第2導電層は、Alからなる、付記32Bに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記34B〕
 前記パッシベーション膜は、SiNからなる、付記27Bないし33Bのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記35B〕
 前記保護樹脂層は、紫外線硬化樹脂からなる、付記27Bないし34Bのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記36B〕
 前記保護樹脂層を積層する工程において、平面視において前記光電変換層の少なくとも一部を挟んで前記第2端縁と反対側に位置する第2外方端縁を形成し、
 前記第2端縁を境界として、前記パッシベーション膜を部分的に除去することにより平面視において前記第2外方端縁と一致する第1外方端縁を前記パッシベーション膜に形成する工程と、
 前記第1導電層のうち前記第2外方端縁および前記第1外方端縁から外方に延出する延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を形成する工程と、を備える、付記27Bないし35Bのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記37B〕
 前記バイパス導電部を形成する工程においては、前記バイパス導電部によって前記第2外方端縁および前記第1外方端縁を覆う、付記36Bに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記38B〕
 前記バイパス導電部は、AgBまたはカーボンを含む、付記36Bまたは37Bに記載の有機薄膜太陽電池モジュールの製造方法。
[Appendix 1B]
A transparent support substrate;
A transparent first conductive layer laminated on the support substrate;
A second conductive layer;
A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer;
A passivation film covering the second conductive layer;
With
The passivation film has a first edge;
The organic thin-film solar cell module in which the support substrate is exposed in a region adjacent to the first edge.
[Appendix 2B]
The organic thin-film solar cell module according to appendix 1B, wherein the first conductive layer has a third edge that coincides with the first edge in plan view.
[Appendix 3B]
The organic thin-film solar cell module according to Appendix 1B, wherein the first conductive layer has a third inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 4B]
The organic thin-film solar cell module according to Appendix 2B, wherein the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 5B]
The organic thin-film solar cell module according to appendix 4B, wherein the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 6B]
The organic thin-film solar cell module according to appendix 5B, wherein the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
[Appendix 7B]
The organic thin-film solar cell module according to any one of appendices 4B to 6B, wherein the first end edge is annular in plan view.
[Appendix 8B]
The organic thin film solar cell module according to appendix 7B, wherein the third end edge is annular in plan view.
[Appendix 9B]
The organic thin film solar cell module according to Supplementary Note 3B, wherein the third inward retracting edge is annular in plan view.
[Appendix 10B]
The organic thin-film solar cell module according to Supplementary Note 8B or 9B, wherein the fourth inward retracting edge is annular in plan view.
[Appendix 11B]
The organic thin-film solar cell module according to Supplementary Note 10B, wherein the fifth inward withdrawal edge is annular in plan view.
[Appendix 12B]
The organic thin film solar cell module according to any one of Supplementary Notes 1B to 11B, wherein the first conductive layer is made of ITO.
[Appendix 13B]
The organic thin film solar cell module according to any one of appendices 1B to 12B, wherein the second conductive layer is made of metal.
[Appendix 14B]
The organic conductive film solar cell module according to appendix 13B, wherein the second conductive layer is made of Al.
[Appendix 15B]
The organic thin-film solar cell module according to any one of appendices 1B to 14B, wherein the passivation film is made of SiN.
[Appendix 16B]
A protective resin layer covering the passivation film;
The said protective resin layer is an organic thin-film solar cell module in any one of additional remarks 1B thru | or 15B which has a 2nd edge corresponding to a said 1st edge in planar view.
[Appendix 17B]
The organic thin film solar cell module according to appendix 16B, wherein the second edge and the first edge form a continuous surface.
[Appendix 18B]
The organic thin film solar cell module according to appendix 16B or 17B, wherein the second end edge is annular in plan view.
[Appendix 19B]
The organic thin-film solar cell module according to any one of Supplementary Notes 16B to 18B, wherein the protective resin layer is made of an ultraviolet curable resin.
[Appendix 20B]
The protective resin layer has a second outer end edge located on the opposite side of the second end edge across at least a part of the photoelectric conversion layer in plan view;
The passivation film has a first outer end edge that coincides with the second outer end edge in plan view,
The first conductive layer has an extension portion extending outward from the second outer end edge and the first outer end edge;
The organic thin-film solar cell module according to any one of supplementary notes 16B to 19B, comprising a bypass conductive portion that covers at least a part of the extension portion and is made of a material having a lower resistance than the material of the first conductive layer.
[Appendix 21B]
The organic thin film solar cell module according to appendix 20B, wherein the second outer end edge and the first outer end edge form a continuous surface.
[Appendix 22B]
The bypass conductive part is the organic thin-film solar cell module according to appendix 20B or 21B, which covers the second outer edge and the first outer edge.
[Appendix 23B]
The organic thin-film solar cell module according to any one of appendices 20B to 22B, wherein the bypass conductive portion includes AgB or carbon.
[Appendix 24B]
The second conductive layer has any one of appendices 20B to 23B having a second outer end edge and a fourth outer retreat end edge that retreats inward from the first outer end edge in a plan view. The organic thin film solar cell module described.
[Appendix 25B]
The photoelectric conversion layer according to any one of appendices 20B to 24B, having a second outer retreat edge and a fifth outer retreat edge that retreats inward from the first outer end edge in a plan view. Organic thin-film solar cell module.
[Appendix 26B]
An organic thin film solar cell module according to any one of Supplementary Notes 1B to 25B;
A drive unit driven by feeding from the organic thin film solar cell module;
An electronic device comprising:
[Appendix 27B]
Laminating a transparent first conductive layer on a transparent support substrate;
Laminating a photoelectric conversion layer made of an organic thin film on the first conductive layer;
Laminating a second conductive layer on the photoelectric conversion layer;
Forming a passivation film covering the second conductive layer;
Laminating a protective resin layer having a second edge on the passivation film;
Forming a first edge on the passivation film that coincides with the second edge in plan view by partially removing the passivation film with the second edge as a boundary;
Exposing the support substrate in a region adjacent to the second edge and the first edge by partially removing the first conductive layer, and manufacturing an organic thin-film solar cell module Method.
[Appendix 28B]
The organic thin-film solar cell module according to appendix 27B, wherein, in the step of exposing the support substrate, a third edge that coincides with the second edge and the first edge in plan view is formed on the first conductive layer. Manufacturing method.
[Appendix 29B]
The manufacturing method of the organic thin-film solar cell module according to appendix 28B, wherein the second end edge and the first end edge are annular in plan view.
[Appendix 30B]
The method for manufacturing an organic thin-film solar cell module according to Appendix 29B, wherein the third end edge is annular in plan view.
[Appendix 31B]
The said 1st conductive layer is a manufacturing method of the organic thin-film solar cell module in any one of appendix 27B thru | or 30B which consists of ITO.
[Appendix 32B]
The method for manufacturing an organic thin-film solar cell module according to any one of appendices 27B to 31B, wherein the second conductive layer is made of metal.
[Appendix 33B]
The method for manufacturing an organic thin film solar cell module according to Supplementary Note 32B, wherein the second conductive layer is made of Al.
[Appendix 34B]
34. The method for manufacturing an organic thin film solar cell module according to any one of appendices 27B to 33B, wherein the passivation film is made of SiN.
[Appendix 35B]
The said protective resin layer is a manufacturing method of the organic thin-film solar cell module in any one of appendix 27B thru | or 34B which consists of ultraviolet curable resin.
[Appendix 36B]
In the step of laminating the protective resin layer, forming a second outer edge located on the opposite side of the second edge with at least a part of the photoelectric conversion layer in plan view,
Forming a first outer edge on the passivation film that coincides with the second outer edge in plan view by partially removing the passivation film with the second edge as a boundary;
The first conductive layer covers at least a part of the second outer end edge and an extended portion extending outward from the first outer end edge, and is lower than the material of the first conductive layer. And a step of forming a bypass conductive portion made of a resistance material. The method for manufacturing an organic thin-film solar cell module according to any one of appendices 27B to 35B.
[Appendix 37B]
In the step of forming the bypass conductive portion, the organic thin-film solar cell module manufacturing method according to appendix 36B, wherein the bypass conductive portion covers the second outer end edge and the first outer end edge.
[Appendix 38B]
The said bypass conductive part is a manufacturing method of the organic thin-film solar cell module of Additional remark 36B or 37B containing AgB or carbon.
[第7-第12実施形態]
 第7ないし第12実施形態および図68~図112における符号は、これらの実施形態および図において有効であり、他の実施形態および図における符号とは独立している。ただし、第7ないし第12実施形態の具体的構成と他の実施形態の具体的構成とは、相互に適宜組合せ可能である。
[Seventh to Twelfth Embodiment]
The reference numerals in the seventh to twelfth embodiments and FIGS. 68 to 112 are valid in these embodiments and figures, and are independent of the reference numerals in the other embodiments and figures. However, the specific configurations of the seventh to twelfth embodiments and the specific configurations of the other embodiments can be appropriately combined with each other.
 本発明において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the present invention, “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 図68は、本発明に係る有機薄膜太陽電池10を装備する電子機器100の一例を示している。この電子機器100は、卓上電子計算機(電卓)である。この電子機器100は、筐体110の表面に配置された表示部120と、入力部130と、有機薄膜太陽電池10とを有する。表示部120は、たとえば、液晶表示器である。入力部130は、いわゆるテン・キーである。この電子機器100は、入力部130からの入力にしたがって演算された結果が表示部120に表示される。演算および表示のための電力は、有機薄膜太陽電池10によって発電された電力が使用される。有機薄膜太陽電池10は、その受光面11が筐体110の表面に臨むようにして組み込まれている。この有機薄膜太陽電池10は、矩形のセル12が横方向に複数並んだ形態を有しており、各セル12の表面には、本発明によって特徴づけられた以下に説明する構成により、外部から視認できる所望の意匠Dが表される。 FIG. 68 shows an example of an electronic device 100 equipped with the organic thin film solar cell 10 according to the present invention. The electronic device 100 is a desktop electronic calculator (calculator). The electronic device 100 includes a display unit 120, an input unit 130, and the organic thin film solar cell 10 that are disposed on the surface of the housing 110. The display unit 120 is, for example, a liquid crystal display. The input unit 130 is a so-called numeric keypad. In the electronic device 100, the result calculated in accordance with the input from the input unit 130 is displayed on the display unit 120. The electric power generated by the organic thin film solar cell 10 is used as electric power for calculation and display. The organic thin-film solar cell 10 is incorporated so that the light receiving surface 11 faces the surface of the housing 110. The organic thin film solar cell 10 has a form in which a plurality of rectangular cells 12 are arranged in the horizontal direction, and the surface of each cell 12 is externally provided by the configuration described below, which is characterized by the present invention. A desired design D that can be visually recognized is represented.
 図69は本発明の第7~第9実施形態に係る有機薄膜太陽電池10A~10Cの平面図を示し、図70は第7実施形態に係る有機薄膜太陽電池10Aの構造を示す、図69のLXX-LXX線に沿う断面図である。なお、図70は、受光面11が下方を向くようにして表している。 69 shows a plan view of the organic thin film solar cells 10A to 10C according to the seventh to ninth embodiments of the present invention, and FIG. 70 shows the structure of the organic thin film solar cell 10A according to the seventh embodiment. It is sectional drawing which follows a LXX-LXX line. FIG. 70 shows the light receiving surface 11 facing downward.
 この有機薄膜太陽電池10Aは、支持基板200、第1電極層310、光電変換層400、第2電極層510、パッシベーション層610、接合層620および保護層630を有している。 The organic thin film solar cell 10A includes a support substrate 200, a first electrode layer 310, a photoelectric conversion layer 400, a second electrode layer 510, a passivation layer 610, a bonding layer 620, and a protective layer 630.
 支持基板200は、第1面201と、その反対側の第2面202とを有し、たとえば、透明なガラスあるいは樹脂からなる。支持基板200の厚さは、たとえば0.05mm~2.0mmであるが、これに限られない。 The support substrate 200 has a first surface 201 and a second surface 202 on the opposite side, and is made of, for example, transparent glass or resin. The thickness of the support substrate 200 is, for example, 0.05 mm to 2.0 mm, but is not limited thereto.
 第1電極層310は、支持基板200の第2面202上に形成されている。第1電極層310は、透明であり、本実施形態においてはITOからなる。この第1電極層310は、厚み方向に貫通するスリット311によってセル12ごとに分離されている。第1電極層310にはまた、支持基板200と反対側の表面に凹入部(開口部)320を設けることにより、薄肉部312が形成されている。薄肉部312の詳細および技術的意義については後述するが、この第1電極層310の一般部313の厚みは、たとえば、100~200nmであり、薄肉部312の厚みは、たとえば、50~100nmである。この第1電極層310は、光電変換層400で生じたキャリアが集約される層である。 The first electrode layer 310 is formed on the second surface 202 of the support substrate 200. The first electrode layer 310 is transparent, and is made of ITO in this embodiment. The first electrode layer 310 is separated for each cell 12 by a slit 311 penetrating in the thickness direction. The first electrode layer 310 is also provided with a recessed portion (opening) 320 on the surface opposite to the support substrate 200 to form a thin portion 312. Although details and technical significance of the thin portion 312 will be described later, the thickness of the general portion 313 of the first electrode layer 310 is, for example, 100 to 200 nm, and the thickness of the thin portion 312 is, for example, 50 to 100 nm. is there. The first electrode layer 310 is a layer in which carriers generated in the photoelectric conversion layer 400 are collected.
 光電変換層400は、第1電極層310の支持基板200と反対側に積層されている。光電変換層400は、第1電極層310に設けたスリット311と平面的に一致するスリット401により、セル12ごとに分離されている。これにより、上記スリット311に臨む第1電極層310の端面と、上記スリット401に臨む光電変換層400の端面は、面一となっている。光電変換層400は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層400の具体的構成は特に限定されないが、その一例を挙げると、バルクヘテロ接合有機活性層と、このバルクヘテロ接合有機活性層に対して第1電極層310側に積層された正孔輸送層とからなる。光電変換層400の厚さは、たとえば100~200nmである。光電変換層400には、第1電極層310に形成した凹入部320の形態が反映された凹凸411が形成されている。なお、光電変換層400にこのような凹凸411が形成されていなくてもよい。 The photoelectric conversion layer 400 is laminated on the opposite side of the first electrode layer 310 from the support substrate 200. The photoelectric conversion layer 400 is separated for each cell 12 by a slit 401 that planarly matches the slit 311 provided in the first electrode layer 310. Thereby, the end surface of the first electrode layer 310 facing the slit 311 and the end surface of the photoelectric conversion layer 400 facing the slit 401 are flush with each other. The photoelectric conversion layer 400 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 400 is not particularly limited, and as an example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first electrode layer 310 side with respect to the bulk heterojunction organic active layer are listed. It consists of. The thickness of the photoelectric conversion layer 400 is, for example, 100 to 200 nm. The photoelectric conversion layer 400 is provided with irregularities 411 reflecting the form of the recessed portions 320 formed in the first electrode layer 310. Note that such unevenness 411 may not be formed in the photoelectric conversion layer 400.
 バルクヘテロ接合有機活性層は、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。正孔輸送層は、たとえばPEDOT:PSSで形成されている。 In the bulk heterojunction organic active layer, a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction. The p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester). The hole transport layer is made of, for example, PEDOT: PSS.
 光電変換層400の形成に用いられる材質を例示すると、フタロシアニン(Pc:Phthalocyanine)、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)、Me-Ptcdi(N,N'-dimethyl perylene-3,4,9,10-dicarboximide)、フラーレン(C 60 :Buckminster fullerene)が挙げられる。これらの材質は、たとえば真空蒸着に使用される。 Examples of materials used to form the photoelectric conversion layer 400 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), and Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
 また、光電変換層3の形成に用いられる他の材質を例示すると、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)、PCDTBT(poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-thienyl-2'1',3'-b3nzothiadizaole)])、PC60BM(6,6-phenyl-C61-butyric acid methyl ester)、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)が挙げられる。これらの材質は、たとえば溶液プロセルに使用される。 Other materials used for forming the photoelectric conversion layer 3 are exemplified by MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene), PCDTBT ( poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]), PC60BM (6 , 6-phenyl-C61-butyric acid methyl ester) and PC70BM (6,6-phenyl-C71-butyric acid methyl ester). These materials are used for, for example, a solution process.
 第2電極層510は、各セル12ごとに、第1電極層310と共に支持基板200の第2面202と厚み方向において光電変換層400を挟むようにして光電変換層400上に積層されている。本実施形態においては、第2電極層510は、たとえばAlにより形成されるが、材質は限定されず、W、Mo、Mn、Mg、Au、Agに代表される電極性金属により形成することができる。したがって、第2電極層2は、本願の定義において透明ではなく、不透明である。またこの場合、第2電極層510の支持基板200と反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されていてもよい。第2電極層2の厚さは、たとえば100~200nmである。第2電極層510は、光電変換層によって生じたキャリアが集約される層である。この第2電極層510には、光電変換層400と同様、第1電極層310に形成した凹入部320の形態が反映された凹凸511が形成されている。なお、第2電極層510にこのような凹凸511が形成されていなくてもよい。 The second electrode layer 510 is stacked on the photoelectric conversion layer 400 for each cell 12 so as to sandwich the photoelectric conversion layer 400 in the thickness direction with the second surface 202 of the support substrate 200 together with the first electrode layer 310. In the present embodiment, the second electrode layer 510 is formed of, for example, Al, but the material is not limited, and may be formed of an electrode metal typified by W, Mo, Mn, Mg, Au, and Ag. it can. Accordingly, the second electrode layer 2 is not transparent but opaque in the definition of the present application. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second electrode layer 510 opposite to the support substrate 200. The thickness of the second electrode layer 2 is, for example, 100 to 200 nm. The second electrode layer 510 is a layer in which carriers generated by the photoelectric conversion layer are collected. Similar to the photoelectric conversion layer 400, the second electrode layer 510 is provided with irregularities 511 reflecting the form of the recessed portions 320 formed in the first electrode layer 310. Note that such unevenness 511 may not be formed in the second electrode layer 510.
 パッシベーション層610は、第2電極層510上に積層されており、第2電極層510および光電変換層400を保護するとともに、各セル12を分離するためのスリット311内にも進入し、スリット311の底部において支持基板200に密着している。パッシベーション層610は、たとえばSiN、SiO2、またはSiONからなる。パッシ
ベーション層42の厚さは、たとえば0.5μm~2.0μmであり、第1電極層310、光電変換層400および第2電極層510の各厚みよりも厚い厚みを有しており、これにより、光電変換層400に外部から水やパーティクル等が進入することを防止し、有機薄膜太陽電池10Aの耐久性を向上させることができる。なお、このパッシベーション層610は、第1電極層310に設けた凹入部320の影響を受けずに表面が平坦となる程度の厚みに形成することが好ましい。
The passivation layer 610 is laminated on the second electrode layer 510, protects the second electrode layer 510 and the photoelectric conversion layer 400, and also enters the slit 311 for separating each cell 12, and the slit 311 Is in close contact with the support substrate 200. The passivation layer 610 is made of, for example, SiN, SiO2, or SiON. The thickness of the passivation layer 42 is, for example, 0.5 μm to 2.0 μm, and is thicker than each of the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510. In addition, it is possible to prevent water, particles and the like from entering the photoelectric conversion layer 400 from the outside, and to improve the durability of the organic thin film solar cell 10A. Note that the passivation layer 610 is preferably formed to a thickness that allows the surface to be flat without being affected by the recessed portion 320 provided in the first electrode layer 310.
 接合層620は、パッシベーション層610と保護層630とを接合する層であり、たとえば樹脂系の接着剤層である。 The bonding layer 620 is a layer that bonds the passivation layer 610 and the protective layer 630, and is, for example, a resin-based adhesive layer.
 保護層630は、有機薄膜太陽電池10Aを支持基板200と反対側から保護するために設けられる。保護層630は、好ましくはガラス、もしくはフィルムからなるが、その他有機薄膜太陽電池10Aを保護しうる透明な材質を適宜採用することができる。保護層44の厚さは、たとえば30μm~100μmである。 The protective layer 630 is provided to protect the organic thin-film solar cell 10A from the side opposite to the support substrate 200. The protective layer 630 is preferably made of glass or a film, but other transparent materials that can protect the organic thin film solar cell 10A can be appropriately employed. The thickness of the protective layer 44 is, for example, 30 μm to 100 μm.
 上記したように、第1電極層310には、支持基板200と反対側に凹入部(開口部)320を設けることにより、薄肉部312が形成されている。この薄肉部312は、支持基板200の第1面201側から視認できる意匠Dを表すためのものであり、本実施形態では、図70に詳示するように、第1電極層310の支持基板200と反対側の面に、幅wがたとえば5~20μmで直線的に延びる複数の微細なライン状の凹溝321をたとえば30~50μmの微細なピッチ間隔pで形成することにより、形成している。このような凹溝321を形成することにより、支持基板200の第1面201側から見たとき、微細な凹溝321における段差部での光の回折作用により、凹溝321を設けた領域をホログラムとして視認することができる。したがって、上記のような複数の微細な凹溝321を設ける領域の平面的な形状を選択することにより、図69に示すように、上記支持基板200の第1面201側、すなわち、有機薄膜太陽電池10Aの受光面11に、文字や図柄などの意匠Dをホログラムとして表すことが可能となる。なお、上記したように、光電変換層400および第2電極層510には、第1電極層310に設けた凹入部320の形態が反映された凹凸411,511が形成されている。そのため、パッシベーション層610、接合層620および保護層630が透明性を有している場合、この有機薄膜太陽電池10Aを裏面から観察した場合においても、図78に示すように、ホログラムとしての意匠Dが表れる。 As described above, the thin portion 312 is formed in the first electrode layer 310 by providing the recessed portion (opening portion) 320 on the side opposite to the support substrate 200. This thin portion 312 is for representing the design D that can be visually recognized from the first surface 201 side of the support substrate 200. In this embodiment, as shown in detail in FIG. 70, the support substrate of the first electrode layer 310. A plurality of fine line-shaped concave grooves 321 linearly extending with a width w of, for example, 5 to 20 μm are formed on the surface opposite to 200 by forming a fine pitch interval p of, for example, 30 to 50 μm. Yes. By forming such a groove 321, when viewed from the first surface 201 side of the support substrate 200, the region where the groove 321 is provided can be obtained by the light diffraction action at the step portion in the minute groove 321. It can be visually recognized as a hologram. Therefore, by selecting the planar shape of the region where the plurality of fine grooves 321 as described above are provided, as shown in FIG. 69, the first surface 201 side of the support substrate 200, that is, the organic thin film solar cell The design D such as characters and designs can be represented as a hologram on the light receiving surface 11 of the battery 10A. In addition, as described above, the photoelectric conversion layer 400 and the second electrode layer 510 are provided with the unevenness 411 and 511 reflecting the shape of the recessed portion 320 provided in the first electrode layer 310. Therefore, when the passivation layer 610, the bonding layer 620, and the protective layer 630 are transparent, even when the organic thin-film solar cell 10A is observed from the back side, as shown in FIG. Appears.
 次に、有機薄膜太陽電池10Aの製造方法について、図71~図77を参照して以下に説明する。 Next, a method for manufacturing the organic thin film solar cell 10A will be described below with reference to FIGS.
 まず、図71に示すように支持基板200を用意し、そして、支持基板200の第2面202にたとえばスパッタ法などの一般的な手法によりITO300を成膜する。次いで、図72に示すように、該ITO300にパターニングを行うことにより矩形のセル12ごとに分離された第1電極層310を形成する。各第1電極層310は、互いに独立しており、隣り合う第1電極層310間は、スリット311により分離された格好となる。ITOに対するパターニング手法としては、たとえばウエットエッチングを用いた手法、ドライエッチングを用いた手法、レーザパターニングを用いた手法が適宜採用される。なお、第1電極層310は、上記に限られず、印刷法によって、支持基板200の第2面202上に直接的にITOをパターニングすることで形成するようにしてもよい。 First, as shown in FIG. 71, a support substrate 200 is prepared, and ITO 300 is formed on the second surface 202 of the support substrate 200 by a general method such as sputtering. Next, as shown in FIG. 72, the ITO 300 is patterned to form first electrode layers 310 separated for each rectangular cell 12. The first electrode layers 310 are independent from each other, and the adjacent first electrode layers 310 are separated by the slits 311. As a patterning technique for ITO, for example, a technique using wet etching, a technique using dry etching, and a technique using laser patterning are appropriately employed. The first electrode layer 310 is not limited to the above, and may be formed by directly patterning ITO on the second surface 202 of the support substrate 200 by a printing method.
 次に、図73に示すように、第1電極層310に、その露出表面(支持基板200と反対側の面)に凹溝(開口部)321を設けることにより、薄肉部312を形成する。具体的には、第1電極層310上の意匠Dを表すべき領域に複数の凹溝321を形成する。上記したように、本実施形態では、第1電極層310の厚さ100~200nmであり、複数の凹溝321は、幅wがたとえば5~20μmのライン状であり、配列ピッチpが30~50μmである。また、薄肉部312の厚さは50~100nmであるから、上記凹溝321の深さは50~100nmである。このような微細な幅wの凹溝321を微細なピッチ間隔pで、しかも、微小厚さの第1電極層310上に形成する手法としては、所定出力のレーザスポットを第1電極層310上に走査することにより行うことが適当である。なお、ITO300にスリット311を設けてセル12ごとに分離した第1電極層310を形成する工程(図72)と、第1電極層310に凹溝321を設けて薄肉部312を形成する工程(図73)は、順序を逆にしてもよい。 Next, as shown in FIG. 73, a thin-walled portion 312 is formed in the first electrode layer 310 by providing a concave groove (opening) 321 on the exposed surface (surface opposite to the support substrate 200). Specifically, a plurality of concave grooves 321 are formed in a region that should represent the design D on the first electrode layer 310. As described above, in the present embodiment, the thickness of the first electrode layer 310 is 100 to 200 nm, the plurality of concave grooves 321 are in a line shape having a width w of, for example, 5 to 20 μm, and the arrangement pitch p is 30 to 50 μm. Further, since the thickness of the thin portion 312 is 50 to 100 nm, the depth of the concave groove 321 is 50 to 100 nm. As a method of forming the concave groove 321 having such a fine width w on the first electrode layer 310 having a fine pitch interval p and a minute thickness, a laser spot having a predetermined output is formed on the first electrode layer 310. It is appropriate to carry out by scanning. In addition, the process (FIG. 72) which forms the slit 311 in ITO300, and isolate | separated every cell 12 (FIG. 72), and the process of providing the groove 321 in the 1st electrode layer 310, and forming the thin part 312 (FIG. In FIG. 73), the order may be reversed.
 また、第1電極層310に凹溝321を設ける工程は、ITO300にスリット311を設ける工程と同時にドライエッチングによって行うことが可能である。その場合、レジストにおける凹溝321のための開口幅をスリット311のための開口幅より小とすることにより、エッチングレートを互いに異ならせ、除去深さの異なる凹溝321とスリット311とを同時に形成することができる。 Also, the step of providing the concave groove 321 in the first electrode layer 310 can be performed by dry etching simultaneously with the step of providing the slit 311 in the ITO 300. In that case, by making the opening width for the concave groove 321 in the resist smaller than the opening width for the slit 311, the etching rates are made different from each other, and the concave groove 321 and the slit 311 having different removal depths are formed simultaneously. can do.
 次に、図74に示すように、光電変換層400を形成する。光電変換層400の形成は、たとえば、スピンコート塗布により支持基板200上および第1電極層310上に有機膜を成膜した後に、酸素プラズマエッチング、あるいはレーザパターニングを用いることによって、矩形の第1電極層310の平面形状と一致した平面形状に仕上げることにより行う。なお、光電変換層400は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷やスクリーン印刷などの印刷法によって、支持基板200上および第1電極層310上に直接的に有機膜をパターニングすることで形成するようにしてもよい。 Next, as shown in FIG. 74, a photoelectric conversion layer 400 is formed. The photoelectric conversion layer 400 is formed by, for example, forming an organic film on the support substrate 200 and the first electrode layer 310 by spin coating and then using oxygen plasma etching or laser patterning to form a rectangular first film. This is done by finishing to a planar shape that matches the planar shape of the electrode layer 310. The photoelectric conversion layer 400 is not limited to the above, and an organic film is directly formed on the support substrate 200 and the first electrode layer 310 by a slit coating method, a capillary coating method, a printing method such as gravure printing or screen printing. It may be formed by patterning.
 次に、図75に示すように、第2電極層510を形成する。第2電極層510の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板200、第1電極層310および光電変換層400上に金属膜を成膜した後、この金属膜にたとえばマスク層を用いたエッチングを行うことによりパターニングを施すことにより行う。このパターニングにより、光電変換層400上に第2電極層510を形成する。この後は、図76に示すように、たとえばプラズマCVD法によってSiN、SiO2、またはSiONを支持基板200、第1電極層310、光電変換層400および第2電極層510上に亙って成膜することにより、パッシベーション層610を形成する。そして、パッシベーション層610に接合層620(図77)を介して保護層44を接合する。以上の工程を経ることにより、図70に示した有機薄膜太陽電池10Aが得られる。 Next, as shown in FIG. 75, a second electrode layer 510 is formed. The second electrode layer 510 is formed by, for example, forming a metal film on the support substrate 200, the first electrode layer 310, and the photoelectric conversion layer 400 by using the above-described metal by vacuum heating vapor deposition, and then, for example, forming a mask layer on the metal film. This is performed by performing patterning by performing etching using. By this patterning, the second electrode layer 510 is formed on the photoelectric conversion layer 400. Thereafter, as shown in FIG. 76, for example, SiN, SiO2, or SiON is formed on the support substrate 200, the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510 by plasma CVD. Thus, a passivation layer 610 is formed. Then, the protective layer 44 is bonded to the passivation layer 610 via the bonding layer 620 (FIG. 77). Through the above steps, the organic thin-film solar cell 10A shown in FIG. 70 is obtained.
 次に、有機薄膜太陽電池10Aの作用について説明する。 Next, the operation of the organic thin film solar cell 10A will be described.
 本実施形態に係る有機薄膜太陽電池10Aによれば、支持基板200と光電変換層400との間の第1電極層310に凹入部(開口部)320を形成することにより薄肉部312を設けて意匠Dを構成し、この意匠Dを支持基板200側から視認できる構成としたので、有機薄膜太陽電池10に追加の部材を積層させることや外側に印刷を施すことなどをすることなく、当該有機薄膜太陽電池10Aの受光面11に意匠Dを表すことができる。また、このようにして表される意匠Dが外物との接触や摩擦によって品位低下を招いたり、消失したりすることもなく、意匠D表示の品位を保つことができる。 According to the organic thin-film solar cell 10A according to the present embodiment, the thin-walled portion 312 is provided by forming the recessed portion (opening) 320 in the first electrode layer 310 between the support substrate 200 and the photoelectric conversion layer 400. Since the design D is configured and the design D is configured to be visible from the support substrate 200 side, the organic thin film solar cell 10 can be laminated without adding an additional member or printing on the outside. The design D can be represented on the light receiving surface 11 of the thin film solar cell 10A. In addition, the design D displayed in this way can maintain the quality of the design D display without causing deterioration or disappearance of the design D due to contact or friction with an external object.
 また、本実施形態に係る有機薄膜太陽電池10Aによれば、第1電極層310に対する加工により受光面11から視認できるようにホログラムとしての意匠Dを表すことができるので、当該有機薄膜太陽電池10Aまたはこれを備える電子機器100の模造品対策に役立つ。 In addition, according to the organic thin film solar cell 10A according to the present embodiment, the design D as a hologram can be expressed so as to be visible from the light receiving surface 11 by processing the first electrode layer 310, and therefore the organic thin film solar cell 10A. Or it is useful for counterfeit measures of the electronic device 100 provided with this.
 さらに、本実施形態に係る有機薄膜太陽電池10Aによれば、第1電極層310にこれを貫通しない薄肉部312を設けて意匠Dを構成しているので、意匠Dを構成することによっても光電変換層400の有効発電面積を減じる必要がない。このため、意匠Dを構成した場合であっても有機薄膜太陽電池10Aとしての発電効率の低減を抑制することができる。 Furthermore, according to the organic thin-film solar cell 10A according to the present embodiment, the design D is configured by providing the thin electrode portion 312 that does not penetrate the first electrode layer 310. There is no need to reduce the effective power generation area of the conversion layer 400. For this reason, even if it is a case where the design D is comprised, the reduction | decrease in the electric power generation efficiency as 10 A of organic thin film solar cells can be suppressed.
 図79は本発明の第8実施形態に係る有機薄膜太陽電池10Bの構造を示し、図69のLXX-LXX線に沿う拡大断面に相当する図である。同図において、図70に示した第7実施形態に係る有機薄膜太陽電池10Aと同一または同等の部材または部分には、同一の符号を付してある。 FIG. 79 shows the structure of an organic thin-film solar cell 10B according to the eighth embodiment of the present invention, and corresponds to an enlarged cross section taken along line LXX-LXX in FIG. In the figure, the same or similar members or parts as those of the organic thin-film solar cell 10A according to the seventh embodiment shown in FIG.
 この有機薄膜太陽電池10Bは、支持基板200、第1電極層310、光電変換層400、第2電極層510、パッシベーション層610、接合層620および保護層630を有している。 This organic thin film solar cell 10B has a support substrate 200, a first electrode layer 310, a photoelectric conversion layer 400, a second electrode layer 510, a passivation layer 610, a bonding layer 620, and a protective layer 630.
 支持基板200は、第1面201と、その反対側の第2面202とを有し、たとえば、透明なガラスあるいは樹脂からなる。支持基板200の厚さは、たとえば0.05mm~2.0mmであるがこれに限定されない。 The support substrate 200 has a first surface 201 and a second surface 202 on the opposite side, and is made of, for example, transparent glass or resin. The thickness of the support substrate 200 is, for example, 0.05 mm to 2.0 mm, but is not limited thereto.
 第1電極層310は、支持基板200の第2面202上に形成されている。第1電極層310は、透明であり、本実施形態においてはITOからなる。この第1電極層310は、厚み方向に貫通するスリット311によってセル12ごとに分離されている。第1電極層310にはまた、支持基板200側の表面に凹入部(開口部)320を設けることにより、薄肉部312が形成されている。薄肉部312の詳細および技術的意義については後述するが、この第1電極層310の一般部313の厚みは、たとえば、100~200nmであり、薄肉部312の厚みは、たとえば、50~100nmである。この第1電極層310は、光電変換層400で生じたキャリアが集約される層である。 The first electrode layer 310 is formed on the second surface 202 of the support substrate 200. The first electrode layer 310 is transparent, and is made of ITO in this embodiment. The first electrode layer 310 is separated for each cell 12 by a slit 311 penetrating in the thickness direction. The first electrode layer 310 is also provided with a recessed portion (opening) 320 on the surface on the support substrate 200 side, whereby a thin portion 312 is formed. Although details and technical significance of the thin portion 312 will be described later, the thickness of the general portion 313 of the first electrode layer 310 is, for example, 100 to 200 nm, and the thickness of the thin portion 312 is, for example, 50 to 100 nm. is there. The first electrode layer 310 is a layer in which carriers generated in the photoelectric conversion layer 400 are collected.
 光電変換層400は、第1電極層310の支持基板200と反対側に積層されている。光電変換層400は、第1電極層310に設けたスリット311と平面的に一致するスリット401により、セル12ごとに分離されている。これにより、上記スリット311に臨む第1電極層310の端面と、上記スリット401に臨む光電変換層400の端面は、面一となっている。光電変換層400は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層400の具体的構成については、第7実施形態に係る有機薄膜太陽電池10Aについて上述したのと同様である。光電変換層400の厚さは、たとえば100~200nmである。 The photoelectric conversion layer 400 is laminated on the opposite side of the first electrode layer 310 from the support substrate 200. The photoelectric conversion layer 400 is separated for each cell 12 by a slit 401 that planarly matches the slit 311 provided in the first electrode layer 310. Thereby, the end surface of the first electrode layer 310 facing the slit 311 and the end surface of the photoelectric conversion layer 400 facing the slit 401 are flush with each other. The photoelectric conversion layer 400 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 400 is the same as that described above for the organic thin-film solar cell 10A according to the seventh embodiment. The thickness of the photoelectric conversion layer 400 is, for example, 100 to 200 nm.
 第2電極層510は、各セル12ごとに、第1電極層310と共に支持基板200の第2面202と厚み方向において光電変換層400を挟むようにして光電変換層400上に積層されている。本実施形態においては、第2電極層510は、たとえばAlにより形成されるが、材質は限定されず、第7実施形態について上述したのと同様、W、Mo、Mn、Mg、Au、Agに代表される電極性金属により形成することができる。したがって、第2電極層2は、本願の定義において透明ではなく、不透明である。またこの場合、第2電極層510の支持基板200と反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されていてもよい。第2電極層2の厚さは、たとえば100~200nmである。第2電極層510は、光電変換層によって生じたキャリアが集約される層である。 The second electrode layer 510 is stacked on the photoelectric conversion layer 400 for each cell 12 so as to sandwich the photoelectric conversion layer 400 in the thickness direction with the second surface 202 of the support substrate 200 together with the first electrode layer 310. In the present embodiment, the second electrode layer 510 is formed of, for example, Al. However, the material is not limited, and W, Mo, Mn, Mg, Au, and Ag are the same as described in the seventh embodiment. It can be formed of a representative electrode metal. Accordingly, the second electrode layer 2 is not transparent but opaque in the definition of the present application. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second electrode layer 510 opposite to the support substrate 200. The thickness of the second electrode layer 2 is, for example, 100 to 200 nm. The second electrode layer 510 is a layer in which carriers generated by the photoelectric conversion layer are collected.
 パッシベーション層610は、第2電極層510上に積層されており、第2電極層510および光電変換層400を保護するとともに、各セル12を分離するためのスリット311内にも進入し、スリット311の底部において支持基板200に密着している。パッシベーション層610は、たとえばSiN、SiO2、またはSiONからなる。パッシ
ベーション層610の厚さは、たとえば0.5μm~2.0μmであり、第1電極層310、光電変換層400および第2電極層510の各厚みよりも厚い厚みを有しており、これにより、光電変換層400に外部から水やパーティクル等が進入することを防止し、有機薄膜太陽電池10Bの耐久性を向上させることができる。
The passivation layer 610 is laminated on the second electrode layer 510, protects the second electrode layer 510 and the photoelectric conversion layer 400, and also enters the slit 311 for separating each cell 12, and the slit 311 Is in close contact with the support substrate 200. The passivation layer 610 is made of, for example, SiN, SiO2, or SiON. The thickness of the passivation layer 610 is, for example, 0.5 μm to 2.0 μm, and is thicker than each of the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510. In addition, it is possible to prevent water, particles and the like from entering the photoelectric conversion layer 400 from the outside, and to improve the durability of the organic thin film solar cell 10B.
 接合層620は、パッシベーション層610と保護層630とを接合する層であり、たとえば樹脂系の接着剤層である。 The bonding layer 620 is a layer that bonds the passivation layer 610 and the protective layer 630, and is, for example, a resin-based adhesive layer.
 保護層630は、有機薄膜太陽電池10Bを支持基板200と反対側から保護するために設けられる。保護層630は、好ましくはガラス、もしくはフィルムからなるが、その他有機薄膜太陽電池10Bを保護しうる透明な材質を適宜採用することができる。保護層630の厚さは、たとえば30μm~100μmである。 The protective layer 630 is provided to protect the organic thin-film solar cell 10B from the side opposite to the support substrate 200. The protective layer 630 is preferably made of glass or a film, but other transparent materials that can protect the organic thin film solar cell 10B can be appropriately employed. The thickness of the protective layer 630 is, for example, 30 μm to 100 μm.
 上記したように、第1電極層310には、支持基板200側の表面に凹入部(開口部)320を設けることにより、薄肉部312が形成されている。この薄肉部312は、後記するように、支持基板200の第1面201側から視認できる意匠Dを表すためのものであり、本実施形態では、図78に詳示するように、第1電極層310の支持基板200側に、幅wがたとえば5~20μmで直線的に延びる複数の微細な凹溝321をたとえば30~50μmの微細なピッチ間隔pで形成することにより、形成している。このような凹溝を形成することにより、支持基板200の第1面側から見たとき、微細な凹溝321における段差部での光の回折作用により、凹溝321を設けた領域をホログラムとして視認することができる。したがって、上記のような複数の微細な凹溝321を設ける領域の平面的な形状を選択することにより、図70に示すように、上記支持基板200の第1面側、すなわち、有機薄膜太陽電池10Bの受光面11に、文字や図柄などの意匠Dをホログラムとして表すことが可能となる。また、この有機薄膜太陽電池10Bにおいては、第1電極層310の支持基板200側に凹溝321を設けているので、第1電極層310の支持基板200と反対側の面を平坦にすることができ、これに伴い、光電変換層400および第2電極層610の表面を平坦にすることができる。 As described above, the thin portion 312 is formed in the first electrode layer 310 by providing the recessed portion (opening portion) 320 on the surface on the support substrate 200 side. As will be described later, the thin portion 312 is for representing the design D that can be viewed from the first surface 201 side of the support substrate 200. In this embodiment, as shown in detail in FIG. A plurality of minute concave grooves 321 having a width w of, for example, 5 to 20 μm and linearly extending on the support substrate 200 side of the layer 310 are formed at a minute pitch interval p of, for example, 30 to 50 μm. By forming such a concave groove, when viewed from the first surface side of the support substrate 200, the region where the concave groove 321 is provided as a hologram due to the light diffraction action at the step portion in the fine concave groove 321. It can be visually recognized. Accordingly, by selecting the planar shape of the region where the plurality of fine grooves 321 as described above are provided, as shown in FIG. 70, the first surface side of the support substrate 200, that is, the organic thin film solar cell. The design D such as characters and designs can be represented as a hologram on the light receiving surface 11 of 10B. Moreover, in this organic thin film solar cell 10B, since the ditch | groove 321 is provided in the support substrate 200 side of the 1st electrode layer 310, the surface on the opposite side to the support substrate 200 of the 1st electrode layer 310 is made flat. Accordingly, the surfaces of the photoelectric conversion layer 400 and the second electrode layer 610 can be flattened.
 次に、有機薄膜太陽電池10Bの製造方法について、図80~図86を参照して以下に説明する。 Next, a method for manufacturing the organic thin-film solar cell 10B will be described below with reference to FIGS.
 まず、図80に示すように支持基板200を用意し、支持基板200の第2面202にたとえばスパッタ法などの一般的な手法によりITO300を成膜する。次いで、図81に示すように、該ITO300にパターニングを行うことにより矩形のセル12ごとに分離された第1電極層310を形成する。各第1電極層310は、互いに独立しており、隣り合う第1電極層310間は、スリット311により分離された格好となる。ITOに対するパターニング手法としては、たとえばウエットエッチングを用いた手法、ドライエッチングを用いた手法、レーザパターニングを用いた手法が適宜採用される。なお、第1電極層310は、上記に限られず、印刷法によって、支持基板200の第2面202上に直接的にITOをパターニングすることで形成するようにしてもよい。 First, as shown in FIG. 80, a support substrate 200 is prepared, and an ITO 300 is formed on the second surface 202 of the support substrate 200 by a general method such as sputtering. Next, as shown in FIG. 81, the first electrode layer 310 separated for each rectangular cell 12 is formed by patterning the ITO 300. The first electrode layers 310 are independent from each other, and the adjacent first electrode layers 310 are separated by the slits 311. As a patterning technique for ITO, for example, a technique using wet etching, a technique using dry etching, and a technique using laser patterning are appropriately employed. The first electrode layer 310 is not limited to the above, and may be formed by directly patterning ITO on the second surface 202 of the support substrate 200 by a printing method.
 次に、図82に示すように、光電変換層400を形成する。光電変換層400の形成は、たとえば、スピンコート塗布により支持基板200上および第1電極層310上に有機膜を成膜した後に、酸素プラズマエッチング、あるいはレーザパターニングを用いることによって、矩形の第1電極層310の平面形状と一致した平面形状に仕上げることにより行う。なお、光電変換層400は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷やスクリーン印刷などの印刷法によって、支持基板200上および第1電極層310上に直接的に有機膜をパターニングすることで形成するようにしてもよい。 Next, as shown in FIG. 82, a photoelectric conversion layer 400 is formed. The photoelectric conversion layer 400 is formed by, for example, forming an organic film on the support substrate 200 and the first electrode layer 310 by spin coating and then using oxygen plasma etching or laser patterning to form a rectangular first film. This is done by finishing to a planar shape that matches the planar shape of the electrode layer 310. The photoelectric conversion layer 400 is not limited to the above, and an organic film is directly formed on the support substrate 200 and the first electrode layer 310 by a slit coating method, a capillary coating method, a printing method such as gravure printing or screen printing. It may be formed by patterning.
 次に、図83に示すように、第2電極層510を形成する。第2電極層510の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板200、第1電極層310および光電変換層400上に金属膜を成膜する。次に、この金属膜にたとえばマスク層を用いたエッチングを行うことによりパターニングを施すことにより行う。このパターニングにより、光電変換層400上に第2電極層510を形成する。この後は、図84に示すように、たとえばプラズマCVD法によってSiN、SiO2またはSiONを支持基板200、第1電極層310、光電変換層400および第2電極層510上に亙って成膜することにより、パッシベーション層610を形成する。 Next, as shown in FIG. 83, a second electrode layer 510 is formed. The second electrode layer 510 is formed by forming a metal film on the support substrate 200, the first electrode layer 310, and the photoelectric conversion layer 400 using, for example, the above-described metal by vacuum heating evaporation. Next, the metal film is patterned by performing etching using, for example, a mask layer. By this patterning, the second electrode layer 510 is formed on the photoelectric conversion layer 400. Thereafter, as shown in FIG. 84, SiN, SiO2 or SiON is formed over the support substrate 200, the first electrode layer 310, the photoelectric conversion layer 400 and the second electrode layer 510 by, for example, plasma CVD. Thereby, the passivation layer 610 is formed.
 次に、図85に示すように、第1電極層310に、支持基板200側の表面に凹溝(開口部)321を設けることにより、薄肉部312を形成する。具体的には、第1電極層310上の意匠Dを表すべき領域に複数の凹溝321を形成する。上記したように、本実施形態では、第1電極層310の厚さ100~200nmであり、複数の凹溝321は、幅wがたとえば5~20μmであり、配列ピッチpが30~50μmである。また、薄肉部312の厚さは50~100nmであるから、上記凹溝321の深さは50~100nmである。このような微細な幅wの凹溝321を微細なピッチ間隔pで、しかも、微小厚さの第1電極層310上に形成する手法としては、所定出力のレーザを透明な支持基板200の第1面201側から第1電極層310上に照射し、レーザスポットを走査することにより行うことが適当である。 Next, as shown in FIG. 85, a thin-walled portion 312 is formed in the first electrode layer 310 by providing a concave groove (opening) 321 on the surface on the support substrate 200 side. Specifically, a plurality of concave grooves 321 are formed in a region that should represent the design D on the first electrode layer 310. As described above, in the present embodiment, the thickness of the first electrode layer 310 is 100 to 200 nm, the plurality of concave grooves 321 have a width w of, for example, 5 to 20 μm, and an arrangement pitch p of 30 to 50 μm. . Further, since the thickness of the thin portion 312 is 50 to 100 nm, the depth of the concave groove 321 is 50 to 100 nm. As a method of forming the concave groove 321 having such a minute width w on the first electrode layer 310 having a minute pitch interval p and a minute thickness, a laser having a predetermined output is applied to the transparent support substrate 200. It is appropriate to irradiate the first electrode layer 310 from the one surface 201 side and scan the laser spot.
 そして、パッシベーション層610に接合層620(図86)を介して保護層630を接合する。以上の工程を経ることにより、図79に示した有機薄膜太陽電池10Bが得られる。 Then, the protective layer 630 is bonded to the passivation layer 610 via the bonding layer 620 (FIG. 86). Through the above steps, the organic thin film solar cell 10B shown in FIG. 79 is obtained.
 なお、第1電極層310にその支持基板200側の表面に凹溝(開口部)321を設けて薄肉部312を形成するにあたっては、上記したように、支持基板200の第1面側からレーザを照射し、かつレーザスポットを走査するが、かかるステップは、上記第1電極層310を形成した後、上記光電変換層400を形成した後、上記第2電極層510を形成した後、あるいは、保護層630まで形成した後、のいずれか時点で行ってもよい。保護層630を形成した後に第1電極層310に支持基盤200側の凹溝321を設ける場合には、製造工程において太陽電池10Bを保護層630によりさらに強化した状態で凹溝321を設けることができるので、太陽電池10Bの製造信頼性が向上する。 In forming the thin portion 312 by providing the first electrode layer 310 with the concave groove (opening) 321 on the surface on the support substrate 200 side, the laser is applied from the first surface side of the support substrate 200 as described above. And after scanning the laser spot, after the first electrode layer 310 is formed, the photoelectric conversion layer 400 is formed, the second electrode layer 510 is formed, or After forming up to the protective layer 630, it may be performed at any time. In the case where the concave groove 321 on the support base 200 side is provided in the first electrode layer 310 after the protective layer 630 is formed, the concave groove 321 may be provided in a state where the solar cell 10B is further strengthened by the protective layer 630 in the manufacturing process. Therefore, the manufacturing reliability of the solar cell 10B is improved.
 次に、有機薄膜太陽電池10Bの作用について説明する。 Next, the operation of the organic thin film solar cell 10B will be described.
 本実施形態に係る有機薄膜太陽電池10Bによれば、支持基板200と光電変換層400との間の第1電極層310に凹溝(開口部)321を形成することによる薄肉部312を設けて意匠Dを構成し、この意匠Dを支持基板200側から視認できる構成としたので、有機薄膜太陽電池10Bに追加の部材を積層させることや外側に印刷を施すことなどをすることなく、当該有機薄膜太陽電池10Bの受光面11に意匠Dを表すことができる。また、このようにして表される意匠Dが外物との接触や摩擦によって品位低下を招いたり、消失したりすることもなく、意匠表示の品位を保つことができる。 According to the organic thin-film solar cell 10 </ b> B according to the present embodiment, the thin portion 312 is formed by forming the concave groove (opening) 321 in the first electrode layer 310 between the support substrate 200 and the photoelectric conversion layer 400. Since the design D is configured and the design D is configured to be visible from the support substrate 200 side, the organic thin film solar cell 10B can be laminated without adding an additional member or printing on the outside. The design D can be represented on the light receiving surface 11 of the thin film solar cell 10B. Further, the design D represented as described above can be maintained in the quality of the design display without causing deterioration or disappearance of the design D due to contact or friction with an external object.
 また、本実施形態に係る有機薄膜太陽電池10Bによれば、第1電極層310に対する加工により受光面11から視認できるようにホログラムとして意匠Dを表すことができるので、当該有機薄膜太陽電池10Bまたはこれを備える電子機器100の模造品対策に役立つ。 Further, according to the organic thin film solar cell 10B according to the present embodiment, the design D can be expressed as a hologram so that the design D can be viewed from the light receiving surface 11 by processing on the first electrode layer 310. This is useful for counterfeit countermeasures of the electronic device 100 having this.
 さらに、本実施形態に係る有機薄膜太陽電池10Bによれば、第1電極層310にこれを貫通しない薄肉部312を設けて意匠Dを構成しているので、意匠Dを構成することによっても光電変換層400の有効発電面積を減じる必要がない。このため、意匠Dを構成した場合であっも有機薄膜太陽電池10Bとしての発電効率の低減を抑制することができる。 Furthermore, according to the organic thin-film solar cell 10B according to the present embodiment, the design D is configured by providing the first electrode layer 310 with the thin-walled portion 312 that does not penetrate the first electrode layer 310. There is no need to reduce the effective power generation area of the conversion layer 400. For this reason, even when the design D is configured, reduction in power generation efficiency as the organic thin-film solar cell 10B can be suppressed.
 さらに、本実施形態に係る有機薄膜太陽電池10Bによれば、第1電極層310の支持基板200側の表面に凹溝(開口部)321を設けているので、支持基盤200と凹溝321で囲まれた空間において、支持基板200側から入射する光を散乱させることができる。これにより、光電変換層400に入射する光量を増加させ、発電効率を向上させることができる。 Furthermore, according to the organic thin-film solar cell 10B according to the present embodiment, since the groove (opening) 321 is provided on the surface of the first electrode layer 310 on the support substrate 200 side, the support base 200 and the groove 321 In the enclosed space, light incident from the support substrate 200 side can be scattered. Thereby, the light quantity which injects into the photoelectric converting layer 400 can be increased, and electric power generation efficiency can be improved.
 図87は、本発明の第9実施形態に係る有機薄膜太陽電池10Cの断面図を示し、当該断面図は、図69のIII-II線に沿う断面図に相当する。同図において、図70に示した第7実施形態に係る有機薄膜太陽電池10Aと同一または同等の部材または部分には、同一の符号を付してある。 FIG. 87 shows a cross-sectional view of an organic thin-film solar cell 10C according to the ninth embodiment of the present invention, and the cross-sectional view corresponds to a cross-sectional view taken along line III-II in FIG. In the figure, the same or similar members or parts as those of the organic thin-film solar cell 10A according to the seventh embodiment shown in FIG.
 この有機薄膜太陽電池10Cは、支持基板200、第1電極層310、光電変換層400、第2電極層510、パッシベーション層610、接合層620および保護層630を有している。 The organic thin film solar cell 10C includes a support substrate 200, a first electrode layer 310, a photoelectric conversion layer 400, a second electrode layer 510, a passivation layer 610, a bonding layer 620, and a protective layer 630.
 支持基板200は、第1面201と、その反対側の第2面202とを有し、たとえば、透明なガラスあるいは樹脂からなる。支持基板200の厚さは、たとえば0.05mm~2.0mmであるがこれに限定されない。 The support substrate 200 has a first surface 201 and a second surface 202 on the opposite side, and is made of, for example, transparent glass or resin. The thickness of the support substrate 200 is, for example, 0.05 mm to 2.0 mm, but is not limited thereto.
 第1電極層310は、支持基板200の第2面202上に形成されている。第1電極層310は、透明であり、本実施形態においてはITOからなる。この第1電極層310は、厚み方向に貫通するスリット311によってセル12ごとに分離されている。第1電極層310にはまた、その厚み方向に貫通する貫通部(開口部)330が形成されている。貫通部330の詳細および技術的意義については後述するが、この第1電極層310の一般部313の厚みは、たとえば、100~200nmである。この第1電極層310は、光電変換層400で生じたキャリアが集約される層である。 The first electrode layer 310 is formed on the second surface 202 of the support substrate 200. The first electrode layer 310 is transparent, and is made of ITO in this embodiment. The first electrode layer 310 is separated for each cell 12 by a slit 311 penetrating in the thickness direction. The first electrode layer 310 also has a penetrating portion (opening) 330 penetrating in the thickness direction. The details and technical significance of the through portion 330 will be described later. The thickness of the general portion 313 of the first electrode layer 310 is, for example, 100 to 200 nm. The first electrode layer 310 is a layer in which carriers generated in the photoelectric conversion layer 400 are collected.
 光電変換層400は、第1電極層310の支持基板200とは反対側に積層されている。光電変換層400は、第1電極層310に設けたスリット311と平面的に一致するスリット401により、セル12ごとに分離されている。これにより、上記スリット311に臨む第1電極層310の端面と、上記スリット401に臨む光電変換層400の端面は、面一となっている。光電変換層400は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層400の具体的構成については、第7実施形態に係る有機薄膜太陽電池10について上述したのと同様である。光電変換層400の厚さは、たとえば100~200nmである。光電変換層400には、第1電極層310に形成した凹入部320の形態が反映された凹凸411が形成されている。なお、光電変換層400にこのような凹凸411が形成されていなくてもよい。 The photoelectric conversion layer 400 is laminated on the opposite side of the first electrode layer 310 from the support substrate 200. The photoelectric conversion layer 400 is separated for each cell 12 by a slit 401 that planarly matches the slit 311 provided in the first electrode layer 310. Thereby, the end surface of the first electrode layer 310 facing the slit 311 and the end surface of the photoelectric conversion layer 400 facing the slit 401 are flush with each other. The photoelectric conversion layer 400 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 400 is the same as that described above for the organic thin-film solar cell 10 according to the seventh embodiment. The thickness of the photoelectric conversion layer 400 is, for example, 100 to 200 nm. The photoelectric conversion layer 400 is provided with irregularities 411 reflecting the form of the recessed portions 320 formed in the first electrode layer 310. Note that such unevenness 411 may not be formed in the photoelectric conversion layer 400.
 第2電極層510は、各セル12ごとに、第1電極層310と共に支持基板00の第2面202と厚み方向において光電変換層400を挟むようにして光電変換層400上に積層されている。本実施形態においては、第2電極層510は、たとえばAlにより形成されるが、材質は限定されず、第7実施形態について上述したのと同様、W、Mo、Mn、Mg、Au、Agに代表される導電性金属により形成することができる。したがって、第2電極層2は、本願の定義において透明ではなく、不透明である。またこの場合、第2電極層510の支持基板200と反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されていてもよい。第2電極層2の厚さは、たとえば100~200nmである。第2電極層510は、光電変換層によって生じたキャリアが集約される層である。この第2電極層510には、光電変換層400と同様、第1電極層310に形成した貫通部330の形態が反映された凹凸511が形成されている。なお第2電極層510にこのような凹凸511が形成されていなくてもよい。 The second electrode layer 510 is laminated on the photoelectric conversion layer 400 for each cell 12 so as to sandwich the photoelectric conversion layer 400 in the thickness direction with the second surface 202 of the support substrate 00 together with the first electrode layer 310. In the present embodiment, the second electrode layer 510 is formed of, for example, Al. However, the material is not limited, and W, Mo, Mn, Mg, Au, and Ag are the same as described in the seventh embodiment. It can be formed of a representative conductive metal. Accordingly, the second electrode layer 2 is not transparent but opaque in the definition of the present application. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second electrode layer 510 opposite to the support substrate 200. The thickness of the second electrode layer 2 is, for example, 100 to 200 nm. The second electrode layer 510 is a layer in which carriers generated by the photoelectric conversion layer are collected. Similar to the photoelectric conversion layer 400, the second electrode layer 510 is provided with irregularities 511 reflecting the form of the through portion 330 formed in the first electrode layer 310. Such unevenness 511 may not be formed on the second electrode layer 510.
 パッシベーション層610は、第2電極層510上に積層されており、第2電極層510および光電変換層400を保護するとともに、各セル12を分離するためのスリット311内にも進入し、スリット311の底部において支持基板200に密着している。パッシベーション層610は、たとえばSiN、SiO2、またはSiONからなる。パッシベーション層42の厚さは、たとえば0.5μm~2.0μmであり、第1電極層310、光電変換層400および第2電極層510の各厚みよりも厚い厚みを有しており、これにより、光電変換層400に外部から水やパーティクル等が進入することを防止し、有機薄膜太陽電池10の耐久性を向上させることができる。なお、このパッシベーション層610は、第1電極層310に設けた凹入部320の影響を受けずに表面が平坦となる程度の厚みに形成することが好ましい。 The passivation layer 610 is laminated on the second electrode layer 510, protects the second electrode layer 510 and the photoelectric conversion layer 400, and also enters the slit 311 for separating each cell 12, and the slit 311 Is in close contact with the support substrate 200. The passivation layer 610 is made of, for example, SiN, SiO2, or SiON. The thickness of the passivation layer 42 is, for example, 0.5 μm to 2.0 μm, and is thicker than each of the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510. In addition, it is possible to prevent water, particles and the like from entering the photoelectric conversion layer 400 from the outside, and to improve the durability of the organic thin film solar cell 10. Note that the passivation layer 610 is preferably formed to a thickness that allows the surface to be flat without being affected by the recessed portion 320 provided in the first electrode layer 310.
 接合層620は、パッシベーション層610と保護層630とを接合する層であり、たとえば樹脂系の接着剤層である。 The bonding layer 620 is a layer that bonds the passivation layer 610 and the protective layer 630, and is, for example, a resin-based adhesive layer.
 保護層630は、有機薄膜太陽電池10Cを支持基板200と反対側から保護するために設けられる。保護層630は、好ましくはガラス、もしくはフィルムからなるが、その他有機薄膜太陽電池10Cを保護しうる透明な材質を適宜採用することができる。保護層の厚さは、たとえば30μm~100μmである。 The protective layer 630 is provided to protect the organic thin-film solar cell 10C from the side opposite to the support substrate 200. The protective layer 630 is preferably made of glass or a film, but other transparent materials that can protect the organic thin-film solar cell 10C can be appropriately employed. The thickness of the protective layer is, for example, 30 μm to 100 μm.
 上記したように、第1電極層310には、厚さ方向に貫通する貫通部(開口部)330が形成されている。この貫通部330は、支持基板200の第1面201側から視認できる意匠Dを表すためのものであり、本実施形態では、図87に詳示するように、幅wがたとえば5~20μmで直線的に延びる複数の微細なライン状のスリット331をたとえば30~50μmの微細なピッチ間隔pで形成することにより、形成している。このようなスリット331を形成することにより、支持基板200の第1面側から見たとき、微細なスリット331における光の回折作用により、スリット331を設けた領域をホログラムとして視認することができる。したがって、上記のような複数の微細なスリット331を設ける領域の平面的な形状を選択することにより、図69に示すように、上記支持基板200の第1面側、すなわち、有機薄膜太陽電池10Cの受光面11に、文字や図柄などの意匠Dをホログラムとして表すことが可能となる。なお、本実施形態に係る有機薄膜太陽電池10Cについても、これを裏面から観察した場合、ホログラムとしての意匠が表れることは、第1の実施形態に係る有機薄膜太陽電池10Aについて上述したのと同様である。 As described above, the first electrode layer 310 is formed with a penetrating portion (opening) 330 penetrating in the thickness direction. The through portion 330 is for representing the design D that can be viewed from the first surface 201 side of the support substrate 200. In this embodiment, as shown in detail in FIG. 87, the width w is, for example, 5 to 20 μm. A plurality of fine line-shaped slits 331 extending linearly are formed at a fine pitch interval p of, for example, 30 to 50 μm. By forming such a slit 331, when viewed from the first surface side of the support substrate 200, the region where the slit 331 is provided can be visually recognized as a hologram due to the light diffraction action of the fine slit 331. Therefore, by selecting the planar shape of the region where the plurality of fine slits 331 as described above are selected, as shown in FIG. 69, the first surface side of the support substrate 200, that is, the organic thin film solar cell 10C. The design D such as letters and designs can be represented as a hologram on the light receiving surface 11. In addition, also about the organic thin film solar cell 10C which concerns on this embodiment, when this is observed from a back surface, the design as a hologram appears like the organic thin film solar cell 10A which concerns on 1st Embodiment mentioned above. It is.
 次に、有機薄膜太陽電池10Cの製造方法について、図88~図94を参照して以下に説明する。 Next, a method for manufacturing the organic thin film solar cell 10C will be described below with reference to FIGS. 88 to 94.
 まず、図88に示すように支持基板200を用意し、そして、支持基板200の第2面202にたとえばスパッタ法などの一般的な手法によりITO300を成膜する。次いで、図89に示すように、該ITO300にパターニングを行うことにより矩形のセル12ごとに分離された第1電極層310を形成する。各第1電極層310は、互いに独立しており、隣り合う第1電極層310間は、スリット311により分離された格好となる。ITOに対するパターニング手法としては、たとえばウエットエッチングを用いた手法、ドライエッチングを用いた手法、レーザパターニングを用いた手法が適宜採用される。なお、第1電極層310は、上記に限られず、印刷法によって、支持基板200の第2面202上に直接的にITOをパターニングすることで形成するようにしてもよい。 First, as shown in FIG. 88, a support substrate 200 is prepared, and ITO 300 is formed on the second surface 202 of the support substrate 200 by a general method such as sputtering. Next, as shown in FIG. 89, the ITO 300 is patterned to form the first electrode layer 310 separated for each rectangular cell 12. The first electrode layers 310 are independent from each other, and the adjacent first electrode layers 310 are separated by the slits 311. As a patterning technique for ITO, for example, a technique using wet etching, a technique using dry etching, and a technique using laser patterning are appropriately employed. The first electrode layer 310 is not limited to the above, and may be formed by directly patterning ITO on the second surface 202 of the support substrate 200 by a printing method.
 次に、図90に示すように、第1電極層310に、複数の微細なスリット331を形成する。具体的には、第1電極層310上の意匠Dを表すべき領域に複数のスリット331を形成する。上記したように、本実施形態では、第1電極層310の厚さ100~200nmであり、複数のスリット331は、幅wがたとえば5~20μmであり、配列ピッチpが30~50μmである。このような微細な幅wのスリット331を微細なピッチ間隔pで形成する手法としては、所定出力のレーザスポットを第1電極層310上に走査することにより行うことが適当である。なお、ITO300にスリット311を設けてセル12ごとに分離した第1電極層310を形成する工程(図89)と、第1電極層310にスリット331を形成する工程(図90)は、順序を逆にしてもよい。 Next, as shown in FIG. 90, a plurality of fine slits 331 are formed in the first electrode layer 310. Specifically, a plurality of slits 331 are formed in a region that should represent the design D on the first electrode layer 310. As described above, in the present embodiment, the thickness of the first electrode layer 310 is 100 to 200 nm, the plurality of slits 331 have a width w of, for example, 5 to 20 μm, and an arrangement pitch p of 30 to 50 μm. As a method of forming the slits 331 having such a fine width w at a fine pitch interval p, it is appropriate to perform scanning by scanning a laser spot having a predetermined output on the first electrode layer 310. The step of forming the slit 311 in the ITO 300 to form the first electrode layer 310 separated for each cell 12 (FIG. 89) and the step of forming the slit 331 in the first electrode layer 310 (FIG. 90) are in order. It may be reversed.
 また、第1電極層310にスリット331を設ける工程は、ITO300にスリット311を設ける工程と同時にドライエッチングによって行うことが可能である。 Further, the step of providing the slit 331 in the first electrode layer 310 can be performed by dry etching simultaneously with the step of providing the slit 311 in the ITO 300.
 次に、図91に示すように、光電変換層400を形成する。光電変換層400の形成は、たとえば、スピンコート塗布により支持基板200上および第1電極層310上に有機膜を成膜した後に、酸素プラズマエッチング、あるいはレーザパターニングを用いることによって、矩形の第1電極層310の平面形状と一致した平面形状に仕上げることにより行う。なお、光電変換層400は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷やスクリーン印刷などの印刷法によって、支持基板200上および第1電極層310上に直接的に有機膜をパターニングすることで形成するようにしてもよい。 Next, as shown in FIG. 91, a photoelectric conversion layer 400 is formed. The photoelectric conversion layer 400 is formed by, for example, forming an organic film on the support substrate 200 and the first electrode layer 310 by spin coating and then using oxygen plasma etching or laser patterning to form a rectangular first film. This is done by finishing to a planar shape that matches the planar shape of the electrode layer 310. The photoelectric conversion layer 400 is not limited to the above, and an organic film is directly formed on the support substrate 200 and the first electrode layer 310 by a slit coating method, a capillary coating method, a printing method such as gravure printing or screen printing. It may be formed by patterning.
 次に、図92に示すように、第2電極層510を形成する。第2電極層510の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板200、第1電極層310および光電変換層400上に金属膜を成膜した後、この金属膜にたとえばマスク層を用いたエッチングを行うことによりパターニングを施すことにより行う。このパターニングにより、光電変換層400上に第2電極層510を形成する。この後は、図93に示すように、たとえばプラズマCVD法によってSiN、SiO2、またはSiONを支持基板200、第1電極層310、光電変換層400および第2電極層510上に成膜することにより、パッシベーション層610を形成する。そして、パッシベーション層610に接合層620を介して保護層620を接合する(図94)。以上の工程を経ることにより、図96に示した有機薄膜太陽電池10Cが得られる。 Next, as shown in FIG. 92, a second electrode layer 510 is formed. The second electrode layer 510 is formed by, for example, forming a metal film on the support substrate 200, the first electrode layer 310, and the photoelectric conversion layer 400 by using the above-described metal by vacuum heating vapor deposition, and then, for example, forming a mask layer on the metal film. This is performed by performing patterning by performing etching using. By this patterning, the second electrode layer 510 is formed on the photoelectric conversion layer 400. Thereafter, as shown in FIG. 93, SiN, SiO2, or SiON is formed on the support substrate 200, the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510, for example, by plasma CVD. Then, a passivation layer 610 is formed. Then, the protective layer 620 is bonded to the passivation layer 610 via the bonding layer 620 (FIG. 94). Through the above steps, the organic thin film solar cell 10C shown in FIG. 96 is obtained.
 次に、有機薄膜太陽電池10Cの作用について説明する。 Next, the operation of the organic thin film solar cell 10C will be described.
 本実施形態に係る有機薄膜太陽電池10Cによれば、支持基板200と光電変換層400との間の第1電極層310に貫通部(開口部)330を設けて意匠Dを構成し、この意匠Dを支持基板200側から視認できる構成としたので、有機薄膜太陽電池10Cに追加の部材を積層させることや外側に印刷を施すことなどをすることなく、当該有機薄膜太陽電池10の受光面11に意匠Dを表すことができる。また、このようにして表される意匠Dが外物との接触や摩擦によって品位低下を招いたり、消失したりすることもなく、意匠D表示の品位を保つことができる。 According to the organic thin-film solar cell 10 </ b> C according to the present embodiment, the design D is configured by providing the first electrode layer 310 between the support substrate 200 and the photoelectric conversion layer 400 with the through portion (opening) 330. Since D is configured to be visible from the support substrate 200 side, the light-receiving surface 11 of the organic thin-film solar cell 10 can be obtained without laminating an additional member on the organic thin-film solar cell 10C or printing the outside. Design D can be represented by In addition, the design D displayed in this way can maintain the quality of the design D display without causing deterioration or disappearance of the design D due to contact or friction with an external object.
 また、本実施形態に係る有機薄膜太陽電池10Cによれば、第1電極層310に対する加工により、受光面11から視認できるようにホログラムとして意匠Dを表すことができるので、当該有機薄膜太陽電池10Cまたはこれを備える電子機器100の模造品対策に役立つ。 Further, according to the organic thin film solar cell 10C according to the present embodiment, the design D can be represented as a hologram so that the design D can be viewed from the light receiving surface 11 by processing the first electrode layer 310, and therefore the organic thin film solar cell 10C. Or it is useful for counterfeit measures of the electronic device 100 provided with this.
 上記した各実施形態では、第1電極層310に設ける薄肉部312またはスリット331として、支持基板200の第1面201側から見た場合にホログラムを生じさせるように構成したが、本発明は、薄肉部312またはスリット331は、それ自体の平面形状は限定されないし、あるいは、これら薄肉部312またはスリット331の集合としてホログラムを生じさせるものに限定されない。 In each of the above-described embodiments, the thin portion 312 or the slit 331 provided in the first electrode layer 310 is configured to generate a hologram when viewed from the first surface 201 side of the support substrate 200. The thin-walled portion 312 or the slit 331 is not limited in its planar shape, or is not limited to one that generates a hologram as a set of the thin-walled portion 312 or the slit 331.
 図95は、本発明の第10実施形態に係る有機薄膜太陽電池10Dの平面図を示し、図96は図95のXCVI-XCVI線に沿う拡大断面図である。同図において、同図において、図70
に示した第7実施形態に係る有機薄膜太陽電池10Aと同一または同等の部材または部分には、同一の符号を付してある。
95 is a plan view of an organic thin-film solar cell 10D according to the tenth embodiment of the present invention, and FIG. 96 is an enlarged cross-sectional view taken along the line XCVI-XCVI of FIG. In the same figure, in FIG.
The same or equivalent members or portions as those of the organic thin-film solar cell 10A according to the seventh embodiment shown in FIG.
 この有機薄膜太陽電池10Dでは、第1電極層310の支持基板200と反対側に、表すべき意匠Dの輪郭と対応した凹部(開口部)340を設けることにより、薄肉部312を形成している。たとえば、光電変換層400の着色を弱め、第1電極層310に着色を施すことにより、薄肉部312の平面的形状が色のトーン差として支持基板200の第1面から視認することができ、これにより所望の意匠Dを表すことができる。 In this organic thin-film solar cell 10D, a thin-walled portion 312 is formed by providing a recess (opening) 340 corresponding to the contour of the design D to be represented on the opposite side of the first electrode layer 310 from the support substrate 200. . For example, by weakening the coloring of the photoelectric conversion layer 400 and coloring the first electrode layer 310, the planar shape of the thin portion 312 can be visually recognized from the first surface of the support substrate 200 as a color tone difference. Thereby, the desired design D can be represented.
 次に、有機薄膜太陽電池10Dの製造方法について、図97~図103を参照して以下に説明する。 Next, a method for manufacturing the organic thin film solar cell 10D will be described below with reference to FIGS.
 まず、図97に示すように支持基板200を用意し、そして、支持基板200の第2面202にたとえばスパッタ法などの一般的な手法によりITO300を成膜する。次いで、図98に示すように、該ITOにパターニングを行うことにより矩形のセル12ごとに分離された第1電極層310を形成する。各第1電極層310は、互いに独立しており、隣り合う第1電極層310間は、スリット311により分離された格好となる。ITOに対するパターニング手法としては、たとえばウエットエッチングを用いた手法、酸素プラズマエッチングを用いた手法、レーザパターニングを用いた手法が適宜採用される。なお、第1電極層310は、上記に限られず、印刷法によって、支持基板200の第2面202上に直接的にITO300をパターニングすることで形成するようにしてもよい。 First, as shown in FIG. 97, a support substrate 200 is prepared, and an ITO 300 is formed on the second surface 202 of the support substrate 200 by a general method such as sputtering. Next, as shown in FIG. 98, the first electrode layer 310 separated for each rectangular cell 12 is formed by patterning the ITO. The first electrode layers 310 are independent from each other, and the adjacent first electrode layers 310 are separated by the slits 311. As a patterning technique for ITO, for example, a technique using wet etching, a technique using oxygen plasma etching, and a technique using laser patterning are appropriately employed. The first electrode layer 310 is not limited to the above, and may be formed by directly patterning the ITO 300 on the second surface 202 of the support substrate 200 by a printing method.
 次に、図99に示すように、第1電極層310に、表すべき意匠Dの輪郭と対応した凹部(開口部)340を設けることにより、薄肉部312を形成する。このような薄肉部312を形成する手法としては、所定出力のレーザスポットを第1電極層310上に走査することにより行うことが適当である。 Next, as shown in FIG. 99, the thin portion 312 is formed by providing the first electrode layer 310 with a recess (opening) 340 corresponding to the contour of the design D to be represented. As a method for forming such a thin portion 312, it is appropriate to perform scanning by scanning a laser spot having a predetermined output on the first electrode layer 310.
 次に、図100に示すように、光電変換層400を形成する。光電変換層400の形成は、たとえば、スピンコート塗布により支持基板200上および第1電極層310上に有機膜を成膜した後に、ドライエッチング、あるいはレーザパターニングを用いることによって、矩形の第1電極層310の平面形状と一致した平面形状に仕上げることにより行う。なお、光電変換層400は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷やスクリーン印刷などの印刷法によって、支持基板200上および第1電極層310上に直接的に有機膜をパターニングすることで形成するようにしてもよい。 Next, as shown in FIG. 100, a photoelectric conversion layer 400 is formed. For example, the photoelectric conversion layer 400 is formed by forming an organic film on the support substrate 200 and the first electrode layer 310 by spin coating and then using dry etching or laser patterning to form a rectangular first electrode. This is done by finishing to a planar shape that matches the planar shape of the layer 310. The photoelectric conversion layer 400 is not limited to the above, and an organic film is directly formed on the support substrate 200 and the first electrode layer 310 by a slit coating method, a capillary coating method, a printing method such as gravure printing or screen printing. It may be formed by patterning.
 次に、図101に示すように、第2電極層510を形成する。第2電極層510の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板200、第1電極層310および光電変換層400上に金属膜を成膜する。次に、この金属膜にたとえばマスク層を用いたエッチングを行うことによりパターニングを施す。このパターニングにより、光電変換層400上に第2電極層510を形成する。この後は、図101に示すように、たとえばプラズマCVD法によってSiN、SiO2、またはSiONを支持基板200、第1電極層310、光電変換層400および第2電極層510上に成膜することにより、パッシベーション層610を形成する。そして、パッシベーション層610に接合層620(図103)を介して保護層44を接合する。以上の工程を経ることにより、図96に示した有機薄膜太陽電池10Dが得られる。 Next, as shown in FIG. 101, a second electrode layer 510 is formed. The second electrode layer 510 is formed by forming a metal film on the support substrate 200, the first electrode layer 310, and the photoelectric conversion layer 400 using, for example, the above-described metal by vacuum heating evaporation. Next, patterning is performed on the metal film by, for example, etching using a mask layer. By this patterning, the second electrode layer 510 is formed on the photoelectric conversion layer 400. Thereafter, as shown in FIG. 101, SiN, SiO2, or SiON is formed on the support substrate 200, the first electrode layer 310, the photoelectric conversion layer 400, and the second electrode layer 510 by, for example, plasma CVD. Then, a passivation layer 610 is formed. Then, the protective layer 44 is bonded to the passivation layer 610 via the bonding layer 620 (FIG. 103). Through the above steps, the organic thin film solar cell 10D shown in FIG. 96 is obtained.
 図104は、本発明の第11、第12実施形態に係る有機薄膜太陽電池10E、10Fの平面図を示し、図105は第11実施形態に係る有機薄膜太陽電池10Eの構造を示す、図104のCV-CV線に沿う拡大断面図である。同図において、図70に示した第7実施形態に係る有機薄膜太陽電池10Aと同一または同等の部材または部分には、同一の符号を付してある。 104 shows a plan view of organic thin-film solar cells 10E and 10F according to the eleventh and twelfth embodiments of the present invention, and FIG. 105 shows the structure of the organic thin-film solar cell 10E according to the eleventh embodiment. It is an expanded sectional view in alignment with the CV-CV line. In the figure, the same or similar members or parts as those of the organic thin-film solar cell 10A according to the seventh embodiment shown in FIG.
 この有機薄膜太陽電池10Eでは、第1電極層310の支持基板200と反対側に、多数のドットとしての凹部(開口部)340を設けることにより多数の薄肉部312を設け、この多数のドットの集合が表すべき意匠Dの平面的形状と対応するようにしている。このような構成によっても、有機薄膜太陽電池10Eの受光面11から視認できる意匠Dを表すことができる。この場合、ドットを形成する凹部340を着色材で埋めることにより、より明確に意匠Dを表すことができる。 In this organic thin film solar cell 10E, a large number of thin portions 312 are provided by providing recesses (openings) 340 as a large number of dots on the opposite side of the first electrode layer 310 from the support substrate 200, and The set corresponds to the planar shape of the design D to be represented. Even with such a configuration, the design D visible from the light receiving surface 11 of the organic thin film solar cell 10E can be represented. In this case, the design D can be expressed more clearly by filling the concave portions 340 for forming dots with a coloring material.
 図106は、第12実施形態に係る有機薄膜太陽電池10Fを示す、図104のCV-CV線に沿う拡大断面図に相当する図である。この有機薄膜太陽電池10Fでは、第1電極層310に、多数のドットとしての貫通部(開口部)330を設け、この多数のドットの集合が表すべき意匠Dの平面的形状と対応するようにしている。このような構成によっても、有機薄膜太陽電池10Fの受光面11から視認できる意匠Dを表すことができる。この場合、ドットを形成する貫通部を着色材で埋めることにより、より明確に意匠Dを表すことができる。 FIG. 106 is a view corresponding to an enlarged cross-sectional view taken along line CV-CV of FIG. 104, showing an organic thin-film solar cell 10F according to the twelfth embodiment. In this organic thin film solar cell 10F, through portions (openings) 330 as a large number of dots are provided in the first electrode layer 310 so that the set of the large number of dots corresponds to the planar shape of the design D to be represented. ing. Even with such a configuration, the design D visible from the light receiving surface 11 of the organic thin-film solar cell 10F can be represented. In this case, the design D can be expressed more clearly by filling the penetrating portions forming the dots with a coloring material.
 図107ないし図109は、電子機器100としての時計に、本発明に係る有機薄膜太陽電池10G,10Hを組み込み、その受光面に文字盤もしくは図柄としての意匠Dを表すようにした例を示す。図107は、電子機器100としての時計の平面図、図108は図107のCVIII-CVIII線に沿う拡大断面図、図109は図107のCIX-CIX線に沿う拡大断面図である。これらの図において、図70に示した第7実施形態に係る有機薄膜太陽電池10Aと同一または同等の部材または部分には、同一の符号を付してある。なお、図108および図109は、受光面11が上方になるように表している。 107 to 109 show examples in which the organic thin film solar cells 10G and 10H according to the present invention are incorporated in a timepiece as the electronic device 100, and the design D as a dial or a pattern is represented on the light receiving surface. 107 is a plan view of a timepiece as the electronic apparatus 100, FIG. 108 is an enlarged sectional view taken along line CVIII-CVIII in FIG. 107, and FIG. 109 is an enlarged sectional view taken along line CIX-CIX in FIG. In these drawings, the same or equivalent members or parts as those of the organic thin film solar cell 10A according to the seventh embodiment shown in FIG. 108 and 109 show the light receiving surface 11 facing upward.
 有機薄膜太陽電池10Gでは、適宜の形状に区切られたセル12に、時刻を表すローマ数字を意匠Dとして表している。有機薄膜太陽電池10Gの構造としては、たとえば,図96に示した第10実施形態に係る有機薄膜太陽電池10Dのものを採用すればよいが、その他の実施形態に係る有機薄膜太陽電池10A~10C,10E,10Fのものを採用することもできる。 In the organic thin film solar cell 10G, Roman numerals representing the time are represented as a design D in the cells 12 partitioned into an appropriate shape. As the structure of the organic thin film solar cell 10G, for example, the organic thin film solar cell 10D according to the tenth embodiment shown in FIG. 96 may be adopted, but the organic thin film solar cells 10A to 10C according to other embodiments may be adopted. , 10E, 10F may be employed.
 有機薄膜太陽電池10Hでは、適宜の形状に区切られたセル12に、ハートの図柄の所定幅の輪郭を意匠Dとして表している。有機薄膜太陽電池10Hの構造としても、たとえば、図96に示した第10実施形態に係る有機薄膜太陽電池10Dのものを採用すればよいが、その他の実施形態に係る有機薄膜太陽電池10A~10C,10E,10Fのものを採用することもできる。また、時計を含む電子機器において、本発明にかかる有機薄膜太陽電池10により表現可能な図柄がハート型に限られないことはいうまでもない。 In the organic thin-film solar cell 10H, the outline of a predetermined width of the symbol of the heart is represented as the design D in the cell 12 partitioned into an appropriate shape. As the structure of the organic thin film solar cell 10H, for example, the organic thin film solar cell 10D according to the tenth embodiment shown in FIG. 96 may be adopted, but the organic thin film solar cells 10A to 10C according to other embodiments may be adopted. , 10E, 10F may be employed. Needless to say, in an electronic device including a timepiece, the symbol that can be expressed by the organic thin film solar cell 10 according to the present invention is not limited to the heart shape.
 図110~図112は、電子機器100としてのスマートフォンの表面に有機薄膜太陽電池10Iを配置し、これに意匠Dを表すようにした例を示す。図107は、電子機器100としてのスマートフォンの平面図を、図108は有機薄膜太陽電池10Iの拡大平面図を、図112は、図111のCXII-CXII線に沿う拡大断面図である。これらの図において、図70に示した第7実施形態に係る有機薄膜太陽電池10Aと同一または同等の部材または部分には、同一の符号を付してある。なお、図112は、受光面11が上になるように表している。 110 to 112 show an example in which the organic thin film solar cell 10I is arranged on the surface of a smartphone as the electronic device 100 and the design D is represented on the organic thin film solar cell 10I. 107 is a plan view of a smartphone as the electronic device 100, FIG. 108 is an enlarged plan view of the organic thin-film solar cell 10I, and FIG. 112 is an enlarged sectional view taken along line CXII-CXII in FIG. In these drawings, the same or equivalent members or parts as those of the organic thin film solar cell 10A according to the seventh embodiment shown in FIG. FIG. 112 shows the light receiving surface 11 facing upward.
 有機薄膜太陽電池10Iでは、スマートフォンの表面のうち、表示部120や操作ボタン130を除く全域に形成した有機薄膜太陽電池のうち、適宜の形状に区切られたセル12に、文字からなる意匠Dをホログラムとして表すようにしている。有機薄膜太陽電池10Iの構造としては、図70に示した第7実施形態に係る有機薄膜太陽電池10Aのものを採用しているが、その他の実施形態に係る有機薄膜太陽電池10B~10Fのものを採用することもできる。 In the organic thin film solar cell 10I, among the organic thin film solar cells formed on the entire surface of the smartphone, excluding the display unit 120 and the operation buttons 130, the design D made of letters is applied to the cells 12 partitioned into an appropriate shape. It is expressed as a hologram. As the structure of the organic thin film solar cell 10I, the organic thin film solar cell 10A according to the seventh embodiment shown in FIG. 70 is adopted, but the organic thin film solar cells 10B to 10F according to other embodiments are used. Can also be adopted.
 本発明に係る有機薄膜太陽電池は、上記した各実施形態および変形例に記載の材料や数値等に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々変更可能であることはいうまでもない。 The organic thin-film solar cell according to the present invention is not limited to the materials and numerical values described in the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the invention. Not too long.
 以下に、本発明の技術的特徴について付記する。 The technical features of the present invention will be described below.
〔付記1C〕
 第1面およびこれと反対側の第2面を有する透明な支持基板と、
 前記支持基板の第2面側に配置された透明な第1電極層と、
 前記第1電極層の前記支持基板とは反対側に積層された、有機薄膜からなる光電変換層と、
 前記光電変換層の前記支持基板とは反対側に積層された第2電極層と、を含む有機薄膜太陽電池であって、
 前記第1電極層は、表面に開口部を含んでおり、この開口部が前記支持基板の第1面側に意匠を表す、有機薄膜太陽電池。
〔付記2C〕
 前記開口部は、その平面視の外縁が、表すべき意匠の外縁の一部を構成している、付記1Cに記載の有機薄膜太陽電池。
〔付記3C〕
 前記開口部は、平面視が所定形状のドットの集合として形成されている、付記1Cに記載の有機薄膜太陽電池。
〔付記4C〕
 前記ドッドの集合が、表すべき意匠の一部を構成している、付記3Cに記載の有機薄膜太陽電池。
〔付記5C〕
 前記開口部は、所定幅で所定方向に延びる複数のラインが所定間隔で配列されたものとして形成されている、付記1Cに記載の有機薄膜太陽電池。
〔付記6C〕
 前記複数のラインの集合が、表すべき意匠の一部を構成している、付記5Cに記載の有機薄膜太陽電池。
〔付記7C〕
 前記開口部は、支持基板の第1面の外部から見たとき、ホログラムを発生する、付記5Cまたは6Cに記載の有機薄膜太陽電池。
〔付記8C〕
 前記開口部としての複数のラインは、幅が5~20μmであり、30~50μm間隔で配列されている、付記7Cに記載の有機薄膜太陽電池。
〔付記9C〕
 前記第1電極層の前記開口部以外の部分の厚みは、100~200nmである、付記1Cないし8Cのいずれかに記載の有機薄膜太陽電池。
〔付記10C〕
 前記開口部は、前記第1電極層を前記支持基板とは反対側の表面から所定深さ凹入させて形成されている、付記9Cに記載の有機薄膜太陽電池。
〔付記11C〕
 前記開口部は、前記第1電極層を前記支持基板側の表面から所定深さ凹入させて形成されている、付記9Cに記載の有機薄膜太陽電池。
〔付記12C〕
 前記開口部の深さは、厚み50~100nmの薄肉部が残る深さである、付記10Cまたは11Cに記載の有機薄膜太陽電池。
〔付記13C〕
 前記開口部は、前記第1電極層を厚み方向に貫通させて形成されている、付記1Cないし7Cのいずれかに記載の有機薄膜太陽電池。
〔付記14C〕
 前記第2電極層を前記光電変換層とは反対側において覆うパッシベーション層を備える、付記9Cないし13Cのいずれかに記載の有機薄膜太陽電池。
〔付記15C〕
 前記パッシベーション層を前記第2電極層とは反対側において覆う保護層を備える、付記14Cに記載の有機薄膜太陽電池。
〔付記16C〕
 前記パッシベーション層と前記保護層とを接合する接合層を備える、付記15Cに記載の有機薄膜太陽電池。
〔付記17C〕
 前記第1電極層は、ITOからなる、付記9Cないし16Cのいずれかに記載の有機薄膜太陽電池。
〔付記18C〕
 前記光電変換層の厚みは、100~200nmである、付記9Cないし17Cのいずれかに記載の有機薄膜太陽電池。
〔付記19C〕
 前記第2電極層の厚みは、100~200nmである、付記9Cないし18Cのいずれかに記載の有機薄膜太陽電池。
〔付記20C〕
 前記第2電極層は、金属からなる、付記19Cに記載の有機薄膜太陽電池。
〔付記21C〕
 前記第2電極層は、Alからなる、付記20Cに記載の有機薄膜太陽電池。
〔付記22C〕
 前記第1電極層、前記光電変換層、前記第2電極層および前記パッシペーション層の合計厚みは、1.0~2.0μmである、付記9Cないし21Cのいずれかに記載の有機薄膜太陽電池。
〔付記23C〕
 第1面およびこれと反対側の第2面を有する透明な支持基板の前記第2面側に所定の厚みを有し、かつ表面に開口部を備えた透明な第1電極層を形成するステップ、
 前記第1電極層上光電変換層を形成するステップ、および、
 前記光電変換層上第2電極層を形成するステップ、
を含む、有機薄膜太陽電池の製造方法。
〔付記24C〕
 前記第1電極層を形成するステップは、前記第1電極層をその厚み方向に除去して前記開口部を形成するステップを含む、付記23Cに記載の有機薄膜太陽電池の製造方法。
〔付記25C〕
 前記開口部を形成するステップは、前記第1電極層をその厚み方向に所定深さ除去して行う、付記24Cに記載の有機薄膜太陽電池の製造方法。
〔付記26C〕
 前記開口部を形成するステップは、厚み100~200nmの前記第1電極層を厚み50~100nmの薄肉部が残るようにして行う、付記25Cに記載の有機薄膜太陽電池の製造方法。
〔付記27C〕
 前記開口部を形成するステップは、前記支持基板とは反対側から前記第1電極層を除去して行う、付記25Cまたは26Cに記載の有機薄膜太陽電池の製造方法。
〔付記28C〕
 前記開口部を形成するステップは、前記開口部を形成する以前の第1電極層を形成した後に行う、付記27Cに記載の有機薄膜太陽電池の製造方法。
〔付記29C〕
 前記開口部を形成するステップは、前記支持基板の第1面側から前記第1電極層を除去して行う、付記26Cに記載の有機薄膜太陽電池の製造方法。
〔付記30C〕
 前記開口部を形成するステップは、前記開口部を形成する以前の第1電極層に対し、前記第2電極層を形成するステップよりも後に行う、付記29Cに記載の有機薄膜太陽電池の製造方法。
〔付記31C〕
 前記開口部を形成するステップは、前記第1電極層をその厚み方向に貫通する貫通部を形成することにより行う、付記24Cに記載の有機薄膜太陽電池の製造方法。
〔付記32C〕
 前記開口部を形成するステップは、5~20μmの幅で所定方向に延びる複数のラインが30~50μm間隔で配列されたものとして形成する、付記24Cないし31Cのいずれかに記載の有機薄膜太陽電池の製造方法。
〔付記33C〕
 前記開口部を形成するステップは、レーザを照射することにより行う、付記24Cないし31Cのいずれかに記載の有機薄膜太陽電池の製造方法。
〔付記34C〕
 筐体を有し、当該筐体の表面に前記支持基板の前記第1面が臨むようにして付記1Cないし22Cのいずれかに記載の有機薄膜太陽電池を備える、電子機器。
[Appendix 1C]
A transparent support substrate having a first surface and a second surface opposite to the first surface;
A transparent first electrode layer disposed on the second surface side of the support substrate;
A photoelectric conversion layer made of an organic thin film, laminated on the opposite side of the first electrode layer from the support substrate;
A second electrode layer laminated on the opposite side of the photoelectric conversion layer from the support substrate, and an organic thin film solar cell comprising:
The said 1st electrode layer is an organic thin-film solar cell in which the opening part contains the opening part and this opening part represents a design in the 1st surface side of the said support substrate.
[Appendix 2C]
The said opening part is an organic thin-film solar cell of Additional remark 1C in which the outer edge of the planar view comprises a part of outer edge of the design which should represent.
[Appendix 3C]
The organic thin film solar cell according to appendix 1C, wherein the opening is formed as a set of dots having a predetermined shape in plan view.
[Appendix 4C]
The organic thin-film solar cell according to attachment 3C, wherein the set of dodds constitutes a part of the design to be represented.
[Appendix 5C]
The organic thin-film solar cell according to appendix 1C, wherein the opening is formed by arranging a plurality of lines having a predetermined width and extending in a predetermined direction at predetermined intervals.
[Appendix 6C]
The organic thin-film solar cell according to appendix 5C, wherein the set of the plurality of lines constitutes a part of the design to be represented.
[Appendix 7C]
The organic thin-film solar battery according to appendix 5C or 6C, wherein the opening generates a hologram when viewed from the outside of the first surface of the support substrate.
[Appendix 8C]
The organic thin-film solar cell according to appendix 7C, wherein the plurality of lines as the openings have a width of 5 to 20 μm and are arranged at intervals of 30 to 50 μm.
[Appendix 9C]
The organic thin-film solar cell according to any one of appendices 1C to 8C, wherein the thickness of the first electrode layer other than the opening is 100 to 200 nm.
[Appendix 10C]
The organic thin-film solar cell according to appendix 9C, wherein the opening is formed by recessing the first electrode layer by a predetermined depth from the surface opposite to the support substrate.
[Appendix 11C]
The organic thin-film solar cell according to appendix 9C, wherein the opening is formed by recessing the first electrode layer by a predetermined depth from the surface on the support substrate side.
[Appendix 12C]
The organic thin-film solar cell according to appendix 10C or 11C, wherein the depth of the opening is a depth at which a thin portion having a thickness of 50 to 100 nm remains.
[Appendix 13C]
The organic thin film solar cell according to any one of appendices 1C to 7C, wherein the opening is formed by penetrating the first electrode layer in a thickness direction.
[Appendix 14C]
The organic thin-film solar cell according to any one of appendices 9C to 13C, comprising a passivation layer that covers the second electrode layer on the side opposite to the photoelectric conversion layer.
[Appendix 15C]
The organic thin-film solar cell according to appendix 14C, comprising a protective layer that covers the passivation layer on the side opposite to the second electrode layer.
[Appendix 16C]
The organic thin-film solar cell according to appendix 15C, comprising a joining layer that joins the passivation layer and the protective layer.
[Appendix 17C]
The organic thin film solar cell according to any one of appendices 9C to 16C, wherein the first electrode layer is made of ITO.
[Appendix 18C]
The organic thin-film solar cell according to any one of appendices 9C to 17C, wherein the photoelectric conversion layer has a thickness of 100 to 200 nm.
[Appendix 19C]
The organic thin-film solar cell according to any one of appendices 9C to 18C, wherein the second electrode layer has a thickness of 100 to 200 nm.
[Appendix 20C]
The organic thin film solar cell according to appendix 19C, wherein the second electrode layer is made of metal.
[Appendix 21C]
The organic thin film solar cell according to appendix 20C, wherein the second electrode layer is made of Al.
[Appendix 22C]
The organic thin-film solar battery according to any one of appendices 9C to 21C, wherein a total thickness of the first electrode layer, the photoelectric conversion layer, the second electrode layer, and the passivation layer is 1.0 to 2.0 μm. .
[Appendix 23C]
Forming a transparent first electrode layer having a predetermined thickness on the second surface side of the transparent support substrate having the first surface and the second surface opposite to the first surface, and having an opening on the surface; ,
Forming a photoelectric conversion layer on the first electrode layer; and
Forming a second electrode layer on the photoelectric conversion layer;
A method for producing an organic thin film solar cell, comprising:
[Appendix 24C]
The step of forming the first electrode layer includes the step of removing the first electrode layer in the thickness direction to form the opening, and the method for manufacturing an organic thin-film solar cell according to attachment 23C.
[Appendix 25C]
The step of forming the opening is the method for manufacturing an organic thin-film solar cell according to appendix 24C, wherein the first electrode layer is removed by a predetermined depth in the thickness direction.
[Appendix 26C]
The method of manufacturing an organic thin-film solar cell according to appendix 25C, wherein the step of forming the opening is performed such that the first electrode layer having a thickness of 100 to 200 nm remains in a thin portion having a thickness of 50 to 100 nm.
[Appendix 27C]
The method of manufacturing an organic thin-film solar cell according to appendix 25C or 26C, wherein the step of forming the opening is performed by removing the first electrode layer from the side opposite to the support substrate.
[Appendix 28C]
The step of forming the opening is the method for manufacturing an organic thin-film solar cell according to appendix 27C, which is performed after forming the first electrode layer before forming the opening.
[Appendix 29C]
The step of forming the opening is performed by removing the first electrode layer from the first surface side of the support substrate, and the method for manufacturing an organic thin-film solar cell according to attachment 26C.
[Appendix 30C]
The method of manufacturing an organic thin-film solar cell according to appendix 29C, wherein the step of forming the opening is performed after the step of forming the second electrode layer with respect to the first electrode layer before the opening is formed. .
[Appendix 31C]
The step of forming the opening is a method for manufacturing an organic thin-film solar cell according to appendix 24C, wherein the step of forming the opening is performed by forming a through portion that penetrates the first electrode layer in the thickness direction.
[Appendix 32C]
The organic thin-film solar cell according to any one of appendices 24C to 31C, wherein the step of forming the opening is formed as a plurality of lines extending in a predetermined direction with a width of 5 to 20 μm arranged at intervals of 30 to 50 μm. Manufacturing method.
[Appendix 33C]
The method of manufacturing an organic thin-film solar cell according to any one of appendices 24C to 31C, wherein the step of forming the opening is performed by laser irradiation.
[Appendix 34C]
An electronic apparatus comprising a housing and comprising the organic thin-film solar cell according to any one of appendices 1C to 22C such that the first surface of the support substrate faces the surface of the housing.
[第13-第15実施形態]
 第13ないし第15実施形態および図113~図145における符号は、これらの実施形態および図において有効であり、他の実施形態および図における符号とは独立している。ただし、第13ないし第15実施形態の具体的構成と他の実施形態の具体的構成とは、相互に適宜組合せ可能である。
[Thirteenth to fifteenth embodiments]
The reference numerals in the thirteenth to fifteenth embodiments and FIGS. 113 to 145 are effective in these embodiments and drawings, and are independent of the reference numerals in the other embodiments and drawings. However, the specific configurations of the thirteenth to fifteenth embodiments and the specific configurations of the other embodiments can be appropriately combined with each other.
 本発明において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the present invention, “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 図113~図117は、本発明の第13実施形態に基づく電子機器および本発明の第13および第14実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の電子機器B13は、有機薄膜太陽電池モジュールA13、有機薄膜太陽電池モジュールA14、ケース61、制御部701、表示部702、入力部703、マイク704、スピーカ705、無線通信部706およびバッテリ707を備えており、携帯型電話端末として構成されている。 113 to 117 show an electronic device based on the thirteenth embodiment of the present invention and an organic thin-film solar cell module based on the thirteenth and fourteenth embodiments of the present invention. The electronic device B13 of this embodiment includes an organic thin film solar cell module A13, an organic thin film solar cell module A14, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery. 707 is configured as a portable telephone terminal.
 ケース61は、電子機器B13のその他の構成要素を収容するものであり、金属、樹脂、ガラスなどの材質からなる。 The case 61 accommodates other components of the electronic device B13 and is made of a material such as metal, resin, or glass.
 図113は、有機薄膜太陽電池モジュールA13,A14およびこれらを用いた電子機器B13を示す平面図である。図114は、有機薄膜太陽電池モジュールA13,A14および電子機器B13を示す底面図である。図115は、図113のCXV-CXV線に沿う模式的な断面図である。図116は、図113のCXVI-CXVI線に沿う要部拡大断面図である。図117は、電子機器B13を示すシステム構成図である。なお、図115においては、理解の便宜上、ケース61、有機薄膜太陽電池モジュールA13、有機薄膜太陽電池モジュールA14、制御部701、表示部702およびバッテリ707のみを模式的に示している。 FIG. 113 is a plan view showing organic thin-film solar cell modules A13 and A14 and an electronic device B13 using them. FIG. 114 is a bottom view showing organic thin-film solar cell modules A13 and A14 and electronic device B13. 115 is a schematic cross-sectional view taken along line CXV-CXV in FIG. 116 is an enlarged cross-sectional view of a main part taken along line CXVI-CXVI in FIG. 113. FIG. 117 is a system configuration diagram showing the electronic apparatus B13. In FIG. 115, only the case 61, the organic thin film solar cell module A13, the organic thin film solar cell module A14, the control unit 701, the display unit 702, and the battery 707 are schematically shown for the sake of understanding.
 有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14は、電子機器B13における電源モジュールであり、太陽光などの光を電力に変換する。具体的構成は、後述する。 Organic thin film solar cell module A13 and organic thin film solar cell module A14 are power supply modules in electronic device B13, and convert light such as sunlight into electric power. A specific configuration will be described later.
 制御部701は、本発明でいう駆動部の一例に相当し、有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14からの給電によって駆動する。なお、制御部701は、有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14からn直接給電されてもよいし、有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14からの電力がバッテリ707に一旦充電された後に、このバッテリ707からの給電によって駆動されてもよい。制御部701は、たとえばCPU、メモリおよびインターフェースなどを具備して構成されている。 The control unit 701 corresponds to an example of a drive unit referred to in the present invention, and is driven by power feeding from the organic thin film solar cell module A13 and the organic thin film solar cell module A14. Note that the controller 701 may be directly fed from the organic thin film solar cell module A13 and the organic thin film solar cell module A14, and the power from the organic thin film solar cell module A13 and the organic thin film solar cell module A14 is supplied to the battery 707. After being charged once, the battery 707 may be driven by power feeding. The control unit 701 includes, for example, a CPU, a memory, an interface, and the like.
 表示部702は、各種の情報を電子機器B13の外観に表示するためのものである。表示部702は、たとえば液晶表示パネルあるいは有機EL表示パネルなどである。本実施形態においては、表示部702は、有機薄膜太陽電池モジュールA13を透して外観に情報を表す。 The display unit 702 is for displaying various types of information on the external appearance of the electronic device B13. The display unit 702 is, for example, a liquid crystal display panel or an organic EL display panel. In the present embodiment, the display unit 702 displays information on the exterior through the organic thin film solar cell module A13.
 入力部703は、使用者の操作を電気信号として制御部701に出力するためのものである。入力部703は、たとえば表示部702に積層されたタッチパネルである。なお、表示部702と入力部703とが一体的に構成されていてもよい。 The input unit 703 is for outputting a user operation as an electrical signal to the control unit 701. The input unit 703 is a touch panel laminated on the display unit 702, for example. Note that the display unit 702 and the input unit 703 may be configured integrally.
 マイク704は、使用者の音声を電気信号に変換するデバイスである。スピーカ705は、通話相手の音声や各種の通知音などを出力するデバイスである。 The microphone 704 is a device that converts a user's voice into an electrical signal. The speaker 705 is a device that outputs the voice of the other party and various notification sounds.
 無線通信部706は、無線通信規格に準拠した双方向無線通信を行うデバイスである。 The wireless communication unit 706 is a device that performs bidirectional wireless communication conforming to the wireless communication standard.
 バッテリ707は、電子機器B13を駆動する電力を蓄えるデバイスである。バッテリ707は、充放電が適宜可能に構成されている。バッテリ707の充電は、図示しないアダプタを用いた商用電力からの給電、または有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14からの給電によってなされる。 The battery 707 is a device that stores electric power for driving the electronic apparatus B13. The battery 707 is configured to be appropriately charged / discharged. The battery 707 is charged by feeding from commercial power using an adapter (not shown) or feeding from the organic thin film solar cell module A13 and the organic thin film solar cell module A14.
 有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14は、第1導電層1、第2導電層2、光電変換層3、支持基板41、パッシベーション層42、保護樹脂層45およびバイパス導電部5を備えている。本実施形態においては、有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14は、平面視矩形状とされているが、これは一例であり、それぞれは様々な形状とされうる。有機薄膜太陽電池モジュールA13と有機薄膜太陽電池モジュールA14とは、互いの構成が一部を除き共通する。以下においては、まず有機薄膜太陽電池モジュールA13について説明する。 The organic thin film solar cell module A13 and the organic thin film solar cell module A14 include the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, the passivation layer 42, the protective resin layer 45, and the bypass conductive portion 5. I have. In the present embodiment, the organic thin-film solar cell module A13 and the organic thin-film solar cell module A14 have a rectangular shape in plan view, but this is an example, and each may have various shapes. The organic thin film solar cell module A13 and the organic thin film solar cell module A14 have the same configuration except for a part thereof. In the following, first, the organic thin film solar cell module A13 will be described.
 図118は、有機薄膜太陽電池モジュールA13のうち第1導電層1、第2導電層2、光電変換層3、支持基板41および保護樹脂層45を示す要部分解斜視図である。なお、理解の便宜上,支持基板41は想像線(二点鎖線)で示している。図119は、有機薄膜太陽電池モジュールA13の第1導電層1を示す平面図である。図120は、有機薄膜太陽電池モジュールA13の光電変換層3を示す平面図である。図121は、有機薄膜太陽電池モジュールA13の第2導電層2を示す平面図である。図122は、有機薄膜太陽電池モジュールA13の保護樹脂層45およびバイパス導電部5を示す平面図である。 FIG. 118 is an exploded perspective view of a main part showing the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, and the protective resin layer 45 in the organic thin film solar cell module A13. For convenience of understanding, the support substrate 41 is indicated by an imaginary line (two-dot chain line). FIG. 119 is a plan view showing the first conductive layer 1 of the organic thin-film solar cell module A13. FIG. 120 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A13. FIG. 121 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A13. 122 is a plan view showing the protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A13.
 支持基板41は、有機薄膜太陽電池モジュールA13の土台となる部材である。支持基板41は、たとえば透明なガラスあるいは樹脂からなる。支持基板41の厚さは、たとえば0.05mm~2.0mmである。 The support substrate 41 is a member that becomes a base of the organic thin film solar cell module A13. The support substrate 41 is made of, for example, transparent glass or resin. The thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
 第1導電層1は、支持基板41上に形成されている。第1導電層1は、透明であり、本実施形態においてはITOからなる。図118および図119に示すように、第1導電層1は、第1電極部11、第1端部14、第1延出部15、第2延出部16、複数の開口18およびスリット19、第3端縁101および延出部103を有する。本実施形態においては、第1導電層1は、平面視略矩形状とされているが、これは第1導電層1の形状の一例である。第1導電層1の形状は、様々な形状に設定されうる。第1導電層1の厚さは、たとえば100nm~300nmである。なお、図119において、第1電極部11、第1端部14、第1延出部15および第2延出部16には、斜線のハッチングを付している。 The first conductive layer 1 is formed on the support substrate 41. The first conductive layer 1 is transparent and is made of ITO in this embodiment. As shown in FIGS. 118 and 119, the first conductive layer 1 includes a first electrode portion 11, a first end portion 14, a first extension portion 15, a second extension portion 16, a plurality of openings 18 and slits 19. And a third end edge 101 and an extending portion 103. In the present embodiment, the first conductive layer 1 has a substantially rectangular shape in plan view, but this is an example of the shape of the first conductive layer 1. The shape of the first conductive layer 1 can be set to various shapes. The thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm. In FIG. 119, the first electrode part 11, the first end part 14, the first extension part 15, and the second extension part 16 are hatched.
 第1電極部11は、光電変換層3によって生じた正孔が集約される層であり、いわゆるアノード電極として機能する。本実施形態においては、第1導電層1の大部分が1つの第1電極部11とされている。 The first electrode portion 11 is a layer in which holes generated by the photoelectric conversion layer 3 are aggregated, and functions as a so-called anode electrode. In the present embodiment, most of the first conductive layer 1 is a single first electrode portion 11.
 第1延出部15は、第1電極部11から、平面視において光電変換層3の外方に延出する部分である。図119においては、第1電極部11と第1延出部15との境界を想像線(二点鎖線)で示している。第1延出部15を設けることにより、光電変換層3における発電によって集約された正孔を、有機薄膜太陽電池モジュールA13外に導くことができる。 The first extending portion 15 is a portion extending from the first electrode portion 11 to the outside of the photoelectric conversion layer 3 in plan view. In FIG. 119, the boundary between the first electrode portion 11 and the first extension portion 15 is indicated by an imaginary line (two-dot chain line). By providing the 1st extension part 15, the hole collected by the electric power generation in the photoelectric converting layer 3 can be guide | induced outside the organic thin film solar cell module A13.
 第1端部14は、スリット19によって第1電極部11と隔離された部分である。本実施形態においては、第1端部14は、たとえば平面視円形状とされている。本実施形態においては、第1端部14は、略円形状とされた部分と矩形状の部分とが組み合わされた形状とされている。 The first end portion 14 is a portion separated from the first electrode portion 11 by the slit 19. In the present embodiment, the first end portion 14 has, for example, a circular shape in plan view. In the present embodiment, the first end portion 14 has a shape in which a substantially circular portion and a rectangular portion are combined.
 第2延出部16は、第1端部14から、平面視において光電変換層3の外方に延出している。図119においては、第1端部14と第2延出部16との境界を想像線(二点鎖線)で示している。本実施形態においては、第1延出部15と第2延出部16とが隣り合う配置とされている。第2延出部16を設けることにより、光電変換層3における発電によって集約された電子を、有機薄膜太陽電池モジュールA13外に導くことができる。 The second extending portion 16 extends from the first end portion 14 to the outside of the photoelectric conversion layer 3 in plan view. In FIG. 119, the boundary between the first end portion 14 and the second extending portion 16 is indicated by an imaginary line (two-dot chain line). In the present embodiment, the first extending portion 15 and the second extending portion 16 are arranged adjacent to each other. By providing the 2nd extension part 16, the electrons concentrated by the electric power generation in the photoelectric converting layer 3 can be guide | induced outside the organic thin-film solar cell module A13.
 複数の開口18は、厚さ方向に第1導電層1を貫通した開口部分である。本実施形態においては、2つの開口18が設けられている。図119における図中上方の開口18は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口18は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 18 are openings that penetrate the first conductive layer 1 in the thickness direction. In the present embodiment, two openings 18 are provided. The upper opening 18 in FIG. 119 is provided to make the speaker 705 function, for example. On the other hand, the largest opening 18 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第3端縁101は、図中中央の開口18を規定する端縁である。本実施形態においては、第3端縁101は、開口18を四方から囲む端縁となっており、平面視矩形環状である。なお、第3端縁101は、開口18を四方から囲む形状に限定されない。たとえば、第3端縁101が開口18に三方から隣接することにより、開口18が第1電極部11から平面視において外方に開いた構成であってもよい。あるいは、第3端縁101は、開口18に対して二方あるいは一方のみから隣接するものであってもよい。第3端縁101に隣接する領域、すなわち図中中央の18からは、支持基板41が露出している。また、第3端縁101は、後述する保護樹脂層45の第2端縁451およびパッシベーション層42の第1端縁421から延出する第1導電層1の部分の内端縁とされている。 The third edge 101 is an edge that defines the central opening 18 in the drawing. In the present embodiment, the third end edge 101 is an end edge surrounding the opening 18 from four directions, and has a rectangular shape in plan view. The third end edge 101 is not limited to a shape surrounding the opening 18 from four directions. For example, the third end edge 101 may be adjacent to the opening 18 from three directions so that the opening 18 opens outward from the first electrode portion 11 in plan view. Alternatively, the third edge 101 may be adjacent to the opening 18 from two or only one side. The support substrate 41 is exposed from the region adjacent to the third edge 101, that is, from the center 18 in the drawing. The third edge 101 is an inner edge of a portion of the first conductive layer 1 that extends from a second edge 451 of a protective resin layer 45 to be described later and a first edge 421 of the passivation layer 42. .
 延出部103は、パッシベーション層42および保護樹脂層45から外方に延出する部位である。本実施形態においては、第1導電層1の略全外周端縁に、延出部103が設けられている。 The extending portion 103 is a portion extending outward from the passivation layer 42 and the protective resin layer 45. In the present embodiment, the extending portion 103 is provided on substantially the entire outer peripheral edge of the first conductive layer 1.
 第2導電層2は、その大部分が光電変換層3を介して第1導電層1上に積層されている。また、第2導電層2の一部は、第1導電層1に直接接している。第2導電層2の材質は特に限定されないが、本実施形態においては、第2導電層2は、Al、W、Mo、Mn、Mgに代表される金属からなる。以下においては、第2導電層2がAlからなる場合を例に説明する。したがって、第2導電層2は、透明ではない。またこの場合、第2導電層2の支持基板41とは反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されてもよい。第2導電層2の厚さは、たとえば30nm~150nmである。 Most of the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1. Although the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg. Hereinafter, a case where the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is not transparent. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41. The thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
 図121に示すように、第2導電層2は、第2電極部21、第2端部24および複数の開口28を有する。本実施形態においては、第2導電層2は、平面視略矩形状とされているが、これは第2導電層2の形状の一例である。第2導電層2の形状は、様々な形状に設定されうる。なお、図121においては、第2電極部21および第2端部24に、斜線のハッチングを付している。 As shown in FIG. 121, the second conductive layer 2 has a second electrode portion 21, a second end portion 24, and a plurality of openings 28. In the present embodiment, the second conductive layer 2 has a substantially rectangular shape in plan view, but this is an example of the shape of the second conductive layer 2. The shape of the second conductive layer 2 can be set to various shapes. In FIG. 121, the second electrode portion 21 and the second end portion 24 are hatched.
 第2電極部21は、光電変換層3によって生じた電子が集約される層であり、いわゆるカソード電極として機能する。第2電極部21は、平面視において、第1電極部11と一致する。本実施形態においては、第2導電層2の大部分が第2電極部21とされている。 The second electrode portion 21 is a layer in which electrons generated by the photoelectric conversion layer 3 are collected, and functions as a so-called cathode electrode. The second electrode portion 21 coincides with the first electrode portion 11 in plan view. In the present embodiment, most of the second conductive layer 2 is the second electrode portion 21.
 第2端部24は、平面視において第1導電層1の第1端部14に一致し、且つ第2電極部21に繋がっている。図121においては、理解の便宜上、第2端部24の形状を想像線(二点鎖線)で示している。第2端部24は、第1端部14と同様に平面視略円形状の部分と平面視矩形状の部分とが組み合わされたとされている。 The second end portion 24 coincides with the first end portion 14 of the first conductive layer 1 in plan view and is connected to the second electrode portion 21. In FIG. 121, for convenience of understanding, the shape of the second end portion 24 is indicated by an imaginary line (two-dot chain line). Similarly to the first end portion 14, the second end portion 24 is a combination of a substantially circular portion in plan view and a rectangular portion in plan view.
 複数の開口28は、厚さ方向に第2導電層2を貫通する開口部分である。本実施形態においては、2つの開口28が設けられている。図121における図中上方の開口28は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口28は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 28 are openings that penetrate the second conductive layer 2 in the thickness direction. In the present embodiment, two openings 28 are provided. The upper opening 28 in FIG. 121 is provided in order to make the speaker 705 function, for example. On the other hand, the largest opening 28 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第4内方退避端縁201は、図中中央の開口28を規定する端縁である。本実施形態においては、第4内方退避端縁201は、開口28を四方から囲む端縁となっており、平面視矩形環状である。なお、第4内方退避端縁201は、開口28を四方から囲む形状に限定されない。たとえば、第4内方退避端縁201が開口28を三方から隣接することにより、開口28が第2電極部21から平面視において外方に開いた構成であってもよい。あるいは、第4内方退避端縁201は、開口28に対して二方あるいは一方のみから隣接するものであってもよい。また、図116に示すように、第4内方退避端縁201は、第3端縁101よりも内方(開口18内に延出する方向とは反対側)に退避している。 The fourth inward retracting edge 201 is an edge that defines the central opening 28 in the drawing. In the present embodiment, the fourth inward retracting edge 201 is an edge that surrounds the opening 28 from four directions and has a rectangular shape in plan view. The fourth inward retracting edge 201 is not limited to a shape surrounding the opening 28 from four directions. For example, the fourth inward retracting edge 201 may be configured such that the opening 28 is opened outward from the second electrode portion 21 in plan view by adjoining the opening 28 from three directions. Alternatively, the fourth inward retracting edge 201 may be adjacent to the opening 28 from two or only one side. Also, as shown in FIG. 116, the fourth inward retracting edge 201 is retracted inward (on the opposite side to the direction extending into the opening 18) than the third end edge 101.
 第4外方退避端縁202は、図116に示すように、後述するパッシベーション層42の第1外方端縁422および保護樹脂層45の第2外方端縁452よりも平面視において内方(図116における右方)に退避している。本実施形態においては、第4外方退避端縁202は、平面視環状である。 As shown in FIG. 116, the fourth outward retracting edge 202 is more inward in plan view than a first outer end edge 422 of a passivation layer 42 to be described later and a second outer end edge 452 of the protective resin layer 45. It is retracted (to the right in FIG. 116). In the present embodiment, the fourth outward retracting edge 202 has an annular shape in plan view.
 光電変換層3は、第1導電層1と第2導電層2とに挟まれて、支持基板41に積層されている。光電変換層3は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層3の具体的構成は特に限定されないが、その一例を挙げると、バルクヘテロ接合有機活性層と、このバルクヘテロ接合有機活性層に対して第1導電層1側に積層された正孔輸送層とからなる。本実施形態においては、光電変換層3は、平面視矩形状とされているが、これは一例であり、光電変換層3は、様々な形状とされうる。光電変換層3の厚さは、たとえば50nm~300nmである。 The photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41. The photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of. In the present embodiment, the photoelectric conversion layer 3 has a rectangular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes. The thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
 バルクヘテロ接合有機活性層は、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。正孔輸送層は、たとえばPEDOT:PSSで形成されている。 In the bulk heterojunction organic active layer, a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction. The p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester). The hole transport layer is made of, for example, PEDOT: PSS.
 光電変換層3の形成に用いられる材質を例示すると、フタロシアニン(Pc:Phthalocyanine)、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)、Me-Ptcdi(N,N’-dimethyl perylene-3,4,9,10-dicarboximide)、フラーレン(C 60 :Buckminster fullerene)が挙げられる。これらの材質は、たとえば真空蒸着に使用される。 Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
 また、光電変換層3の形成に用いられる他の材質を例示すると、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)、PCDTBT(poly[N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-b3nzothiadizaole)])、PC60BM(6,6-phenyl-C61-butyric acid methyl ester)、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)が挙げられる。これらの材質は、たとえば溶液プロセスに使用される。 Other materials used for forming the photoelectric conversion layer 3 are exemplified by MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene), PCDTBT ( poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]), PC60BM (6 , 6-phenyl-C61-butyric acid methyl ester) and PC70BM (6,6-phenyl-C71-butyric acid methyl ester). These materials are used, for example, in solution processes.
 図120に示すように、光電変換層3は、非発電領域30、発電領域31および意匠表示部35、複数の開口38、第5内方退避端縁301および第5外方退避端縁302を有している。なお、図120においては、非発電領域30および発電領域31に、複数の離散点からなるハッチングを付している。 As shown in FIG. 120, the photoelectric conversion layer 3 includes a non-power generation region 30, a power generation region 31 and a design display unit 35, a plurality of openings 38, a fifth inner retraction edge 301, and a fifth outer retraction edge 302. Have. In FIG. 120, the non-power generation region 30 and the power generation region 31 are hatched with a plurality of discrete points.
 意匠表示部35は、第1導電層1を透して外観に表れる意匠を構成する部位である。意匠表示部35が構成する意匠とは、使用者等が目視することによって、文字、記号、図柄などの視覚的特異部分として視認されうるものを指す。本実施形態においては、意匠表示部35は、円環形状を表している。 The design display part 35 is a part that constitutes a design that appears through the first conductive layer 1 and appears on the exterior. The design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look. In the present embodiment, the design display unit 35 represents an annular shape.
 本実施形態においては、意匠表示部35は、貫通部350によって構成されている。貫通部350は、光電変換層3を厚さ方向に貫通する態様の部位である。このような貫通部350は、第1導電層1を透して外観に表れる。また、本実施形態においては、貫通部350は、第2導電層2を第1導電層1側に露出させている。すなわち、貫通部350を通じて第2導電層2の一部が外観に表れている。 In the present embodiment, the design display unit 35 is configured by a through-hole portion 350. The penetrating part 350 is a part having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a penetrating portion 350 appears through the first conductive layer 1. In the present embodiment, the penetrating portion 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the through part 350.
 発電領域31は、第1導電層1の第1電極部11および第2導電層2の第2電極部21に挟まれ、且つ光電変換機能を発揮することにより発電に寄与する領域である。また、発電領域31の形状は、平面視において、第1電極部11および第2電極部21に一致する。 The power generation region 31 is a region that is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 and contributes to power generation by exhibiting a photoelectric conversion function. The shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view.
 非発電領域30は、光電変換層3のうち平面視において第1導電層1の第1電極部11および第2導電層2の第2電極部21とは重ならない領域であり、第1導電層1の第1端部14と重なっている。第1端部14は、第2導電層2の第2端部24と接しており、集約された正孔と電子とが即座に結合してしまう。このため、非発電領域30は、且つ発電に寄与しない。すなわち、光電変換層3のうち複数の発電領域31以外の領域が、非発電領域30とされている。 The non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view. 1 overlaps the first end 14 of the first. The first end portion 14 is in contact with the second end portion 24 of the second conductive layer 2, and the aggregated holes and electrons are immediately combined. For this reason, the non-power generation region 30 does not contribute to power generation. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
 本実施形態においては、非発電領域30は、端部領域34とされている。端部領域34は、貫通部350(意匠表示部35)を有している。端部領域34は、平面視において第1導電層1の第1端部14に内包される貫通部350(意匠表示部35)を含み、且つ第1導電層1の第1端部14に重なっている。また、端部領域34は、第2導電層2の第2端部24と重なっている。第1導電層1の第1端部14と第2導電層2の第2端部24とは、端部領域34の貫通部350を通じて接している。 In the present embodiment, the non-power generation region 30 is an end region 34. The end region 34 has a penetrating portion 350 (design display portion 35). The end region 34 includes a through portion 350 (design display portion 35) included in the first end portion 14 of the first conductive layer 1 in plan view, and overlaps the first end portion 14 of the first conductive layer 1. ing. The end region 34 overlaps the second end 24 of the second conductive layer 2. The first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other through the through portion 350 of the end region 34.
 複数の開口38は、光電変換層3を厚さ方向に貫通する開口部分である。本実施形態においては、2つの開口38が設けられている。図120における図中上方の開口38は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口38は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 38 are openings that penetrate the photoelectric conversion layer 3 in the thickness direction. In the present embodiment, two openings 38 are provided. The upper opening 38 in FIG. 120 is provided to make the speaker 705 function, for example. On the other hand, the largest opening 38 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
 第5内方退避端縁301は、図中中央の開口38を規定する端縁である。本実施形態においては、第5内方退避端縁301は、開口38を四方から囲む端縁となっており、平面視矩形環状である。なお、第5内方退避端縁301は、開口38を四方から囲む形状に限定されない。たとえば、第5内方退避端縁301が開口38を三方から隣接することにより、開口38が発電領域31から平面視において外方に開いた構成であってもよい。あるいは、第5内方退避端縁301は、開口38に対して二方あるいは一方のみに設けられたものであってもよい。また、図116に示すように、第5内方退避端縁301は、第3端縁101よりも内方(開口18内に延出する方向とは反対側)に退避している。 The fifth inward retracting edge 301 is an edge that defines the central opening 38 in the drawing. In the present embodiment, the fifth inward retracting edge 301 is an edge that surrounds the opening 38 from four directions and has a rectangular ring shape in plan view. The fifth inward retracting edge 301 is not limited to a shape surrounding the opening 38 from four directions. For example, the fifth inward retracting edge 301 may be configured such that the opening 38 is opened outward from the power generation region 31 in a plan view by adjoining the opening 38 from three directions. Alternatively, the fifth inward retracting edge 301 may be provided in two or only one with respect to the opening 38. Also, as shown in FIG. 116, the fifth inward retracting edge 301 is retracted inward (opposite to the direction extending into the opening 18) than the third end edge 101.
 第5外方退避端縁302は、図116に示すように、後述するパッシベーション層42の第1外方端縁422および保護樹脂層45の第2外方端縁452よりも平面視において内方(図116における右方)に退避している。本実施形態においては、第5外方退避端縁302は、平面視環状である。 As shown in FIG. 116, the fifth outer retreat end edge 302 is inward in a plan view than a first outer end edge 422 of a passivation layer 42 and a second outer end edge 452 of the protective resin layer 45 described later. It is retracted (to the right in FIG. 116). In the present embodiment, the fifth outward retracting edge 302 is annular in plan view.
 上述した構成により、有機薄膜太陽電池モジュールA13においては、第1延出部15が第1電極部11に繋がっている。また、第2電極部21には、第2端部24が繋がっている。第2端部24は、端部領域34の貫通部350を通じて第1端部14と接している。第1端部14には、第2延出部16が繋がっている。この結果、第1延出部15と第2延出部16とが有機薄膜太陽電池モジュールA13の出力端子として機能する。 With the above-described configuration, the first extending portion 15 is connected to the first electrode portion 11 in the organic thin film solar cell module A13. Further, the second end portion 24 is connected to the second electrode portion 21. The second end portion 24 is in contact with the first end portion 14 through the through portion 350 of the end region 34. A second extending portion 16 is connected to the first end portion 14. As a result, the 1st extension part 15 and the 2nd extension part 16 function as an output terminal of organic thin film solar cell module A13.
 パッシベーション層42は、第2導電層2上に積層されており、第2導電層2および光電変換層3を保護している。パッシベーション層42は、たとえばSiNまたはSiONからなる。パッシベーション層42の厚さは、たとえば0.5μm~2.0μmであり、本実施形態においては、たとえば1.5μm程度とされる。 The passivation layer 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3. The passivation layer 42 is made of, for example, SiN or SiON. The thickness of the passivation layer 42 is, for example, 0.5 μm to 2.0 μm. In the present embodiment, the thickness is, for example, about 1.5 μm.
 保護樹脂層45は、パッシベーション層42を覆っている層である。保護樹脂層45は、たとえば紫外線硬化樹脂からなる。保護樹脂層45の厚さは、たとえば3μm~20μmであり、本実施形態においては、たとえば10μm程度とされる。 The protective resin layer 45 is a layer that covers the passivation layer 42. The protective resin layer 45 is made of, for example, an ultraviolet curable resin. The thickness of the protective resin layer 45 is, for example, 3 μm to 20 μm. In the present embodiment, the thickness is, for example, about 10 μm.
 図122に示すように、保護樹脂層45は、複数の開口458、第2端縁451および第2外方端縁452を有する。なお、図122においては、保護樹脂層45に斜線のハッチングを付している。 As shown in FIG. 122, the protective resin layer 45 has a plurality of openings 458, a second end edge 451, and a second outer end edge 452. In FIG. 122, the protective resin layer 45 is hatched.
 複数の開口458は、保護樹脂層45の一部が削除された態様であり、保護樹脂層45を貫通している。本実施形態においては、2つの開口458が設けられている。図122における図中上方の開口458は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口458は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 458 is a mode in which a part of the protective resin layer 45 is removed, and penetrates the protective resin layer 45. In the present embodiment, two openings 458 are provided. In FIG. 122, the upper opening 458 in the drawing is provided to allow the speaker 705 to function, for example. On the other hand, the largest opening 458 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
 第2端縁451は、図中中央の開口458を規定する端縁である。本実施形態においては、第2端縁451は、開口458を四方から囲む端縁となっており、平面視矩形環状である。なお、第2端縁451は、開口458を四方から囲む形状に限定されない。たとえば、第2端縁451が開口458を三方から隣接することにより、開口458が保護樹脂層45から平面視において外方に開いた構成であってもよい。あるいは、第2端縁451は、開口458に対して二方あるいは一方のみ設けられたものであってもよい。 The second edge 451 is an edge that defines the central opening 458 in the drawing. In the present embodiment, the second end edge 451 is an end edge that surrounds the opening 458 from four directions, and has a rectangular ring shape in plan view. The second end edge 451 is not limited to a shape surrounding the opening 458 from four sides. For example, the second edge 451 may be adjacent to the opening 458 from three directions, so that the opening 458 opens outward from the protective resin layer 45 in plan view. Alternatively, the second end edge 451 may be provided in two or only one with respect to the opening 458.
 第2外方端縁452は、平面視において光電変換層3の少なくとも一部を挟んで第2端縁451と反対側に位置しており、本実施形態においては、保護樹脂層45の外周端縁である。 The second outer end edge 452 is located on the opposite side of the second end edge 451 across at least a part of the photoelectric conversion layer 3 in plan view, and in this embodiment, the outer peripheral end of the protective resin layer 45. It is an edge.
 パッシベーション層42は、第1端縁421および第1外方端縁422を有している。 The passivation layer 42 has a first edge 421 and a first outer edge 422.
 第1端縁421は、平面視において第2端縁451と一致している。また、本実施形態においては、第1端縁421は、第2端縁451と連続した面をなしている。第1外方端縁422は、平面視において第2外方端縁452と一致している。また、本実施形態においては、第1外方端縁422は、第2外方端縁452と連続した面をなしている。 The first end edge 421 coincides with the second end edge 451 in plan view. In the present embodiment, the first end edge 421 forms a surface continuous with the second end edge 451. The first outer end edge 422 coincides with the second outer end edge 452 in plan view. In the present embodiment, the first outer end edge 422 forms a surface that is continuous with the second outer end edge 452.
 図116に示すように、第2端縁451および第1端縁421によって囲まれた領域である開口458から、支持基板41の一部が露出領域411として露出している。また、露出領域411は、第1導電層1等によって覆われておらず、支持基板41の表面が直接露出している。 116, a part of the support substrate 41 is exposed as an exposed region 411 from an opening 458 that is a region surrounded by the second end edge 451 and the first end edge 421. The exposed region 411 is not covered with the first conductive layer 1 or the like, and the surface of the support substrate 41 is directly exposed.
 バイパス導電部5は、第1導電層1に到達した正孔を集電するための、第1導電層1より低抵抗な経路を構成するためのものである。本実施形態においては、バイパス導電部5は、2つのバスバー部51、複数の連絡部52および2つの集極部53を有する。バイパス導電部5は、第1導電層1よりも低抵抗な材質からなり、たとえばAgまたはカーボンを含む。 The bypass conductive portion 5 is for configuring a path having a lower resistance than the first conductive layer 1 for collecting holes that have reached the first conductive layer 1. In the present embodiment, the bypass conductive portion 5 includes two bus bar portions 51, a plurality of connecting portions 52, and two pole collecting portions 53. The bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
 図116および図122に示すように、1つのバスバー部51は、第2端縁451および第1端縁421を全長にわたって覆っている。このバスバー部51は、第1導電層1のうち第3端縁101と第1端縁421(第2端縁451)との間に位置する部分を覆っている。また、このバスバー部51の内端縁は、平面視において第3端縁101と一致している。他方のバスバー部51は、第2外方端縁452および第1外方端縁422を全長にわたって覆っている。このバスバー部51は、第1導電層1の延出部103を覆っている。このような構成により、2つのバスバー部51は、それぞれが第1導電層1と導通している。 116 and 122, one bus bar portion 51 covers the second end edge 451 and the first end edge 421 over the entire length. The bus bar portion 51 covers a portion of the first conductive layer 1 located between the third end edge 101 and the first end edge 421 (second end edge 451). Further, the inner edge of the bus bar portion 51 coincides with the third edge 101 in plan view. The other bus bar portion 51 covers the second outer end edge 452 and the first outer end edge 422 over the entire length. The bus bar portion 51 covers the extending portion 103 of the first conductive layer 1. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
 複数の連絡部52は、保護樹脂層45上に形成された部分であり、図122における図中内側のバスバー部51と図中外側の連絡部52とを連結している。2つの集極部53は、一方が第1導電層1に導通しており、他方が第2導電層2に導通している。 The plurality of connecting portions 52 are portions formed on the protective resin layer 45, and connect the inner bus bar portion 51 in FIG. 122 and the outer connecting portion 52 in the drawing. One of the two current collectors 53 is electrically connected to the first conductive layer 1, and the other is electrically connected to the second conductive layer 2.
 図123は、有機薄膜太陽電池モジュールA14の第1導電層1を示す平面図である。図124は、有機薄膜太陽電池モジュールA14の光電変換層3を示す平面図である。図125は、有機薄膜太陽電池モジュールA14の第2導電層2を示す平面図である。図126は、有機薄膜太陽電池モジュールA14の保護樹脂層45およびバイパス導電部5を示す平面図である。 FIG. 123 is a plan view showing the first conductive layer 1 of the organic thin-film solar cell module A14. FIG. 124 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A14. FIG. 125 is a plan view showing the second conductive layer 2 of the organic thin-film solar cell module A14. 126 is a plan view showing the protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A14.
 有機薄膜太陽電池モジュールA14においては、表示部702を外観に表すための開口18、開口28、開口38、開口458等が設けられていない。このため、第3端縁101、第4内方退避端縁201、第5内方退避端縁301、第1端縁421および第2端縁451は設けられていない。また、バイパス導電部5は、外周に沿うバスバー部51を有し、連絡部52は、有していない。 In the organic thin film solar cell module A14, the opening 18, the opening 28, the opening 38, the opening 458 and the like for displaying the display portion 702 on the appearance are not provided. For this reason, the 3rd edge 101, the 4th inward retracting edge 201, the 5th inward retracting edge 301, the 1st end edge 421, and the 2nd end edge 451 are not provided. In addition, the bypass conductive portion 5 has a bus bar portion 51 along the outer periphery, and does not have a connecting portion 52.
 本実施形態においては、図124に示すように、光電変換層3に複数の貫通部350(35)が設けられている。これらの貫通部350は、それぞれがアルファベットを表している。この貫通部350を利用して、第1導電層1の第1端部14と第2導電層2の第2端部24とが接している点は、有機薄膜太陽電池モジュールA13と同様である。 In the present embodiment, as shown in FIG. 124, the photoelectric conversion layer 3 is provided with a plurality of through portions 350 (35). Each of these penetrating portions 350 represents an alphabet. The point where the first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other using the through portion 350 is the same as that of the organic thin film solar cell module A13. .
 次いで、有機薄膜太陽電池モジュールA13の製造方法の一例について、図127~図134を参照しつつ、以下に説明する。なお、これらの図においては、理解の便宜上、図116とは、天地逆に表されている。また、図127~図134においては、図113に示した電子機器B13のCXVI-CXVI線における断面構造を生成する過程を示している。 Next, an example of a method for manufacturing the organic thin film solar cell module A13 will be described below with reference to FIGS. 127 to 134. In these drawings, for convenience of understanding, FIG. 116 is shown upside down. 127 to 134 show a process of generating a cross-sectional structure taken along the line CXVI-CXVI of the electronic apparatus B13 shown in FIG.
 まず、図127に示すように支持基板41を用意する。そして、図128に示すように、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOからなる第1導電膜10を積層する。次に、該ITOにパターニングを施し、開口18、スリット19等のパターンを形成するためのパターニングを行う。ここで、ITOへのパターニング手法としては、たとえばウエットエッチングを用いた手法、酸素プラズマエッチングを用いた手法、Greenレーザー光等のレーザパターニングを用いた手法が適宜採用される。なお、第1導電膜10は、上記に限られず、例えばナノインプリントを用いた手法によって、支持基板41上に直接的にITOをパターニングすることで形成するようにしても良い。 First, a support substrate 41 is prepared as shown in FIG. Then, as shown in FIG. 128, the first conductive film 10 made of ITO is laminated on one surface of the support substrate 41 by a general method such as sputtering. Next, patterning is performed on the ITO to form patterns such as openings 18 and slits 19. Here, as a patterning technique to ITO, for example, a technique using wet etching, a technique using oxygen plasma etching, and a technique using laser patterning such as Green laser light are appropriately employed. In addition, the 1st electrically conductive film 10 is not restricted above, For example, you may make it form by patterning ITO directly on the support substrate 41 by the method using nanoimprint.
 次いで、図129に示すように、光電変換層3を形成する。光電変換層3の形成は、たとえば、スピンコート塗布により支持基板41上および第1導電膜10上に有機膜を成膜した後に、酸素プラズマエッチング、レーザパターニングを用いることによって、第5内方退避端縁301、第5外方退避端縁302、開口38、貫通部350(意匠表示部35)を有する構成に仕上げることにより行う。なお、光電変換層3は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷などの手法によって、支持基板41上および第1導電膜10上に直接的に有機膜をパターニングすることで形成するようにしても良い。 Next, as shown in FIG. 129, the photoelectric conversion layer 3 is formed. The photoelectric conversion layer 3 is formed by, for example, depositing an organic film on the support substrate 41 and the first conductive film 10 by spin coating and then using oxygen plasma etching and laser patterning to perform fifth inward retraction. This is done by finishing the structure having an end edge 301, a fifth outward retracting end edge 302, an opening 38, and a penetrating part 350 (design display part 35). The photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive film 10 by a technique such as a slit coating method, a capillary coating method, or gravure printing. It may be formed by.
 次いで、図130に示すように、第2導電層2を形成する。第2導電層2の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板41、第1導電膜10および光電変換層3上に金属膜を成膜する。次に、該金属膜に例えばマスク層を用いたエッチングを行うことによりパターニングを施す。このパターニングにより、光電変換層3上に第4内方退避端縁201および第4外方退避端縁202を有する第2導電層2を形成する。 Next, as shown in FIG. 130, the second conductive layer 2 is formed. The second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive film 10 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition. Next, the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having the fourth inner withdrawal edge 201 and the fourth outer withdrawal edge 202 is formed on the photoelectric conversion layer 3.
 次いで、図131に示すように、絶縁膜420を形成する。絶縁膜420の形成は、たとえばプラズマCVD法によってSiNまたはSiONなどの膜を支持基板41、第1導電層1、光電変換層3および第2導電層2上に形成することにより行う。 Next, as shown in FIG. 131, an insulating film 420 is formed. The insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
 次いで、図132に示すように、保護樹脂層45を形成する。保護樹脂層45の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によって絶縁膜420上に塗布し、紫外線を照射することによって硬化させる。これにより、第2端縁451および第2外方端縁452を有する保護樹脂層45が得られる。 Next, as shown in FIG. 132, a protective resin layer 45 is formed. The protective resin layer 45 is formed by applying a liquid resin material containing, for example, an ultraviolet curable resin on the insulating film 420 by screen printing and irradiating it with ultraviolet rays. Thereby, the protective resin layer 45 having the second end edge 451 and the second outer end edge 452 is obtained.
 次いで、図133に示すように、保護樹脂層45をマスクとして用いたパターニングを絶縁膜420に施す。このパターニングは、たとえばフッ化水素を0.55%~4.5%含むフッ化水素酸を用いたウエットエッチングによって行う。このようなフッ化水素酸は、紫外線硬化樹脂からなる保護樹脂層45をほとんど溶解しない一方、SiN等からなる絶縁膜420を選択的に溶解する。また、フッ化水素酸は、ITO等からなる第1導電膜10はほとんど溶解しない。この結果、第1端縁421および第1外方端縁422を有するパッシベーション層42が形成される。第1端縁421は、平面視において第2端縁451と一致する。第1端縁421と第2端縁451とは、連続した面をなす。また、第1外方端縁422は、平面視において第2外方端縁452と一致する。第1外方端縁422と第2外方端縁452とは、連続した面をなす。 Next, as shown in FIG. 133, the insulating film 420 is patterned using the protective resin layer 45 as a mask. This patterning is performed, for example, by wet etching using hydrofluoric acid containing 0.55% to 4.5% hydrogen fluoride. Such hydrofluoric acid does not substantially dissolve the protective resin layer 45 made of an ultraviolet curable resin, but selectively dissolves the insulating film 420 made of SiN or the like. Further, hydrofluoric acid hardly dissolves the first conductive film 10 made of ITO or the like. As a result, a passivation layer 42 having a first edge 421 and a first outer edge 422 is formed. The first edge 421 coincides with the second edge 451 in plan view. The first edge 421 and the second edge 451 form a continuous surface. The first outer end edge 422 coincides with the second outer end edge 452 in plan view. The first outer end edge 422 and the second outer end edge 452 form a continuous surface.
 次いで、図134に示すように、バイパス導電部5を形成する。バイパス導電部5の形成は、たとえばAgまたはカーボンを含むペーストを塗布した後に、たとえば乾燥などの手法によってこのペーストを硬化させることによって行う。 Next, as shown in FIG. 134, the bypass conductive portion 5 is formed. The bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying.
 次いで、第1導電膜10にパターニングを施す。このパターニングは、たとえば濃塩酸と濃硝酸とが3:1の比率で混合された王水を用いて行う。このパターニングにより、第1導電膜10のうちバイパス導電部5や保護樹脂層45から露出した部分が選択的に除去される。この結果、第3端縁101等を有する第1導電層1が形成される。以上の工程を経ることにより、有機薄膜太陽電池モジュールA13が得られる。有機薄膜太陽電池モジュールA14の製造も同様に行うことができる。 Next, the first conductive film 10 is patterned. This patterning is performed, for example, using aqua regia in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a ratio of 3: 1. By this patterning, portions of the first conductive film 10 exposed from the bypass conductive portion 5 and the protective resin layer 45 are selectively removed. As a result, the first conductive layer 1 having the third edge 101 and the like is formed. By passing through the above process, organic thin-film solar cell module A13 is obtained. The organic thin film solar cell module A14 can be manufactured in the same manner.
 次に、有機薄膜太陽電池モジュールA13および電子機器B13の作用について説明する。 Next, the operation of the organic thin film solar cell module A13 and the electronic device B13 will be described.
 本実施形態によれば、第2端縁451および第2外方端縁452に隣接する領域において支持基板41が露出している。この部位には、パッシベーション層42や保護樹脂層45が形成されていない。したがって、この部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 According to the present embodiment, the support substrate 41 is exposed in a region adjacent to the second end edge 451 and the second outer end edge 452. In this portion, the passivation layer 42 and the protective resin layer 45 are not formed. Therefore, it is possible to finish this portion more transparent, and the display portion 702 can be expressed more clearly.
 第2端縁451および第1端縁421に隣接する領域のうちバスバー部51によって覆われた僅かな領域を除いて、支持基板41には第1導電層1が形成されていない。第1導電層1は、ITOからなるものの、光線のあたり具合によっては、うっすらと着色されたものとして視認される。本実施形態においては、表示部702を外観に表すための領域をことさらに透明に仕上げることが可能であり、より美麗な外観を実現することができる。 The first conductive layer 1 is not formed on the support substrate 41 except for a small area covered with the bus bar portion 51 among the areas adjacent to the second edge 451 and the first edge 421. Although the first conductive layer 1 is made of ITO, the first conductive layer 1 is visually recognized as being slightly colored depending on how light hits. In the present embodiment, it is possible to finish the region for displaying the display unit 702 in an even more transparent manner, and a more beautiful appearance can be realized.
 光電変換層3の第5内方退避端縁301および第2導電層2の第4内方退避端縁201が、第1端縁421および第2端縁451と離間していることにより、第2導電層2および光電変換層3がバイパス導電部5と不当に導通することを回避することができる。また、第4内方退避端縁201および第5内方退避端縁301と第1端縁421および第2端縁451との間にパッシベーション層42が介在していることにより、第2導電層2および光電変換層3とバイパス導電部5のバスバー部51とがショートすることをより確実に防止可能である。 The fifth inward retracting edge 301 of the photoelectric conversion layer 3 and the fourth inward retracting edge 201 of the second conductive layer 2 are separated from the first end edge 421 and the second end edge 451, thereby The two conductive layers 2 and the photoelectric conversion layer 3 can be prevented from being unduly conducted with the bypass conductive portion 5. Further, since the passivation layer 42 is interposed between the fourth inner retracting edge 201 and the fifth inner retracting edge 301 and the first end edge 421 and the second end edge 451, the second conductive layer 2 and the photoelectric conversion layer 3 and the bus bar portion 51 of the bypass conductive portion 5 can be more reliably prevented from short-circuiting.
 保護樹脂層45をマスクとして用いたパターニングを絶縁膜420に施すことにより、保護樹脂層45と同形状のパッシベーション層42を形成することができる。すなわち、紫外線硬化樹脂などの形状形成に優れた材質を用いて保護樹脂層45を形成すれば、必ずしも形状形成に優れていない材質からなるパッシベーション層42を所望の形状に仕上げることができる。なお、保護樹脂層45は、パッシベーション層42を形成した後に除去してもよい。ただし、保護樹脂層45を残存させた場合、水分やパーティクル等の第1導電層1、第2導電層2および光電変換層3等への侵入を防止する効果や、有機薄膜太陽電池モジュールA13の強度向上を図る効果が期待できる。 The passivation layer 42 having the same shape as the protective resin layer 45 can be formed by patterning the insulating film 420 using the protective resin layer 45 as a mask. That is, if the protective resin layer 45 is formed using a material excellent in shape formation such as an ultraviolet curable resin, the passivation layer 42 made of a material not necessarily excellent in shape formation can be finished in a desired shape. The protective resin layer 45 may be removed after the passivation layer 42 is formed. However, when the protective resin layer 45 is left, the effect of preventing intrusion of moisture and particles into the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3 and the like, and the organic thin film solar cell module A13 The effect of improving strength can be expected.
 バイパス導電部5を設けることにより、第1導電層1に拡散してきた正孔を、バスバー部51を経由して集極部53へと導くことができる。バイパス導電部5は、第1導電層1よりも低抵抗であるため、電力が熱に変換されてしまうことを抑制することができる。これは、有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14の発電損失を低減するとともに、より大面積の発電領域31による発電に適している。 By providing the bypass conductive portion 5, the holes diffused in the first conductive layer 1 can be guided to the collector portion 53 via the bus bar portion 51. Since the bypass conductive portion 5 has a lower resistance than the first conductive layer 1, it is possible to prevent power from being converted into heat. This reduces power generation loss of the organic thin film solar cell module A13 and the organic thin film solar cell module A14, and is suitable for power generation by the power generation region 31 having a larger area.
 バイパス導電部5を形成した後に第1導電層1にパターニングを施すことにより、バイパス導電部5の連絡部52は、第1導電層1の端面ではなく、第1導電層1のうち平面視において有意な面積を有する部分(延出部103など)に接する構成となる。これは、第1導電層1とバイパス導電部5との接触抵抗を低下させるとともに、確実な導通に有利である。 By patterning the first conductive layer 1 after forming the bypass conductive portion 5, the connecting portion 52 of the bypass conductive portion 5 is not an end face of the first conductive layer 1 but in a plan view of the first conductive layer 1. The structure is in contact with a portion having a significant area (such as the extension 103). This is advantageous for reliable conduction while lowering the contact resistance between the first conductive layer 1 and the bypass conductive portion 5.
 図135~図145は、本発明の変形例および他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付しており、適宜説明を省略する。 135 to 145 show a modification and other embodiments of the present invention. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and description thereof will be omitted as appropriate.
 図135は、電子機器B13および有機薄膜太陽電池モジュールA13の変形例を示している。本変形例においては、第1導電層1の第3端縁101が平面視において第1端縁421および第2端縁451と一致している。また、上述した例における内側のバスバー部51は設けられていない。このような変形例は、保護樹脂層45をマスクとして王水を用いたパターニングを上述した第1導電膜10に施すことによって形成される。 FIG. 135 shows a modification of the electronic device B13 and the organic thin film solar cell module A13. In this modification, the third edge 101 of the first conductive layer 1 coincides with the first edge 421 and the second edge 451 in plan view. Further, the inner bus bar portion 51 in the above-described example is not provided. Such a modification is formed by applying patterning using aqua regia to the first conductive film 10 described above using the protective resin layer 45 as a mask.
 本変形例によっても、第1端縁421および第2端縁451に隣接する部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 Also according to this modification, it is possible to finish the portions adjacent to the first edge 421 and the second edge 451 more transparent, and the display portion 702 can be expressed more clearly.
 図136は、電子機器B13および有機薄膜太陽電池モジュールA13の変形例を示している。本変形例においては、第1導電層1は、第3端縁101に代えて、第3内方退避端縁102を有している。第3内方退避端縁102は、平面視において第1端縁421および第2端縁451よりも内方に退避している。また、上述した例における内側のバスバー部51は設けられていない。このような変形例は、支持基板41に第1導電膜10を積層した後に、スリット19等とともに第3内方退避端縁102を形成しておくことによって製造される。 FIG. 136 shows a modification of the electronic device B13 and the organic thin film solar cell module A13. In the present modification, the first conductive layer 1 has a third inward retracting edge 102 instead of the third end edge 101. The third inward retracting edge 102 is retracted inward from the first end edge 421 and the second end edge 451 in a plan view. Further, the inner bus bar portion 51 in the above-described example is not provided. Such a modification is manufactured by forming the third inward retracting edge 102 together with the slit 19 and the like after laminating the first conductive film 10 on the support substrate 41.
 本変形例によっても、第1端縁421および第2端縁451に隣接する部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 Also according to this modification, it is possible to finish the portions adjacent to the first edge 421 and the second edge 451 more transparent, and the display portion 702 can be expressed more clearly.
 図137~図139は、本発明の第15実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の有機薄膜太陽電池モジュールA15は、第1導電層1、第2導電層2、光電変換層3、支持基板41、パッシベーション層42、保護樹脂層45およびバイパス導電部5を備えている。有機薄膜太陽電池モジュールA15の平面視形状は特に限定されず、図示された例は、上述した有機薄膜太陽電池モジュールA13と同様の平面視形状である場合の例である。図137は、有機薄膜太陽電池モジュールA13における図116に相当する要部拡大断面図である。図138は、有機薄膜太陽電池モジュールA15の保護樹脂層およびバイパス導電部を示す要部平面図である。図139は、保護樹脂層45およびバイパス導電部5を省略した要部拡大平面図である。 FIGS. 137 to 139 show an organic thin film solar cell module according to a fifteenth embodiment of the present invention. The organic thin-film solar cell module A15 of this embodiment includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation layer 42, a protective resin layer 45, and a bypass conductive portion 5. . The planar view shape of the organic thin film solar cell module A15 is not particularly limited, and the illustrated example is an example in the case of the same planar view shape as the organic thin film solar cell module A13 described above. FIG. 137 is an enlarged cross-sectional view of a main part corresponding to FIG. 116 in the organic thin film solar cell module A13. FIG. 138 is a plan view of relevant parts showing the protective resin layer and the bypass conductive portion of the organic thin-film solar cell module A15. FIG. 139 is an enlarged plan view of a main part in which the protective resin layer 45 and the bypass conductive portion 5 are omitted.
 本実施形態のパッシベーション層42の第1端縁421および第1外方端縁422は、図137に示すように、凹凸形状の端面となっている。また、第1端縁421は全体として、支持基板41の厚さ方向において支持基板41から離間するほど平面視において第3端縁101から離間する向きに傾いている。また、第1外方端縁422は全体として、支持基板41の厚さ方向において支持基板41から離間するほど第1導電層1の延出部103から離間する向きに傾いている。また、本実施形態の第1端縁421は、図139に示すように、平面視において第3端縁101から離間した非直線状の形状である。第1端縁421は、たとえば複数の折れ線や曲線が結合された形状である。第1外方端縁422も同様に、平面視において被直線状の形状である。 As shown in FIG. 137, the first edge 421 and the first outer edge 422 of the passivation layer 42 of the present embodiment are uneven end faces. Further, as a whole, the first edge 421 is inclined in a direction away from the third edge 101 in plan view as the distance from the support substrate 41 in the thickness direction of the support substrate 41 is increased. Further, the first outer end edge 422 as a whole is inclined in a direction away from the extending portion 103 of the first conductive layer 1 as it is separated from the support substrate 41 in the thickness direction of the support substrate 41. In addition, as shown in FIG. 139, the first end edge 421 of the present embodiment has a non-linear shape separated from the third end edge 101 in plan view. The first end edge 421 has, for example, a shape in which a plurality of broken lines and curves are combined. Similarly, the first outer end edge 422 has a linear shape in plan view.
 バイパス導電部5は、2つのバスバー部51および連絡部52を有する。バイパス導電部5は、第1導電層1よりも低抵抗な材質からなり、たとえばAgまたはカーボンを含む。 The bypass conductive part 5 has two bus bar parts 51 and a connecting part 52. The bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
 1つのバスバー部51は、パッシベーション層42の第1端縁421を全長にわたって覆っている。このバスバー部51は、第1導電層1のうち第3端縁101と第1端縁421との間に位置する部分を覆っている。また、このバスバー部51の内端縁は、平面視において第3端縁101からはみ出している。これにより、このバスバー部51は、支持基板41に直接接している。他方のバスバー部51は、パッシベーション層42の第1外方端縁422を全長にわたって覆っている。このバスバー部51は、第1導電層1の延出部103を覆っている。また、このバスバー部51は、支持基板41に直接接している。このような構成により、2つのバスバー部51は、それぞれが第1導電層1と導通している。 One bus bar portion 51 covers the first edge 421 of the passivation layer 42 over the entire length. The bus bar portion 51 covers a portion of the first conductive layer 1 located between the third end edge 101 and the first end edge 421. Further, the inner end edge of the bus bar portion 51 protrudes from the third end edge 101 in plan view. Accordingly, the bus bar portion 51 is in direct contact with the support substrate 41. The other bus bar portion 51 covers the first outer end edge 422 of the passivation layer 42 over the entire length. The bus bar portion 51 covers the extending portion 103 of the first conductive layer 1. The bus bar portion 51 is in direct contact with the support substrate 41. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
 連絡部52は、パッシベーション層42の表面423上に形成された部分である。連絡部52は、たとえば2つのバスバー部51同士や、バイパス導電部5のうちバスバー部51および連絡部52以外の部位とバスバー部51を連結している。 The connecting part 52 is a part formed on the surface 423 of the passivation layer 42. The connection part 52 connects the bus bar part 51 to parts other than the bus bar part 51 and the connection part 52 of the two bus bar parts 51 or the bypass conductive part 5, for example.
 保護樹脂層45は、図137および図138に示すように、パッシベーション層42およびバイパス導電部5を覆っており、たとえば紫外線硬化樹脂からなる。また、保護樹脂層45は、有機薄膜太陽電池モジュールA15と上述した表示部702とを接合するための透明な接合層を兼ねていてもよい。図示された例においては、保護樹脂層45の第2端縁451および第2外方端縁452は、平面視においてパッシベーション層42の表面423のうちバスバー部51から露出した部分から延びて、パッシベーション層42の第1端縁421および第1外方端縁422とバイパス導電部5とを超えている。これにより、保護樹脂層45は、支持基板41に直接接する部分を有する。また、保護樹脂層45は、パッシベーション層42の表面423のうちバイパス導電部5から露出した部分と密着している。 As shown in FIGS. 137 and 138, the protective resin layer 45 covers the passivation layer 42 and the bypass conductive portion 5, and is made of, for example, an ultraviolet curable resin. The protective resin layer 45 may also serve as a transparent bonding layer for bonding the organic thin film solar cell module A15 and the display unit 702 described above. In the illustrated example, the second end edge 451 and the second outer end edge 452 of the protective resin layer 45 extend from a portion of the surface 423 of the passivation layer 42 exposed from the bus bar portion 51 in a plan view, and passivated. It exceeds the first edge 421 and the first outer edge 422 of the layer 42 and the bypass conductive portion 5. Thereby, the protective resin layer 45 has a portion that directly contacts the support substrate 41. Further, the protective resin layer 45 is in close contact with a portion of the surface 423 of the passivation layer 42 exposed from the bypass conductive portion 5.
 次に、有機薄膜太陽電池モジュールA15の製造方法の一例について以下に説明する。なお、以下の説明において参照する図においては、理解の便宜上、図137とは、天地逆に表されている。 Next, an example of a manufacturing method of the organic thin film solar cell module A15 will be described below. In the drawings referred to in the following description, FIG. 137 is shown upside down for convenience of understanding.
 まず、図127に示した支持基板41を用意する。そして、図128に示したように、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOからなる第1導電膜10を積層する。次いで、図129に示したように光電変換層3を形成し、図130に示したように第2導電層2を形成する。 First, the support substrate 41 shown in FIG. 127 is prepared. Then, as shown in FIG. 128, the first conductive film 10 made of ITO is laminated on one surface of the support substrate 41 by a general method such as sputtering. Next, the photoelectric conversion layer 3 is formed as shown in FIG. 129, and the second conductive layer 2 is formed as shown in FIG.
 次に図140に示すように、レーザー光Lz1を用いたレーザパターニングを用いた手法によって、第1導電膜10にパターニングを施す。これにより、第1導電膜10には、スリット191およびスリット192が形成される。レーザー光Lz1は、第1導電膜10をレーザパターニング可能なものであれば特に限定されず、たとえばIRレーザー光を用いることができる。スリット191を構成する第1導電膜10の端縁のうち図示された第2導電層2および光電変換層3側に位置するものは、第3端縁101となる。また、第1導電膜10のうちスリット192と光電変換層3の第5外方退避端縁302との間の部分は、延出部103となる。 Next, as shown in FIG. 140, the first conductive film 10 is patterned by a technique using laser patterning using laser light Lz1. Thereby, a slit 191 and a slit 192 are formed in the first conductive film 10. The laser beam Lz1 is not particularly limited as long as the first conductive film 10 can be subjected to laser patterning. For example, an IR laser beam can be used. Of the edges of the first conductive film 10 constituting the slit 191, the one located on the second conductive layer 2 and the photoelectric conversion layer 3 side shown is the third edge 101. In addition, a portion of the first conductive film 10 between the slit 192 and the fifth outer retraction edge 302 of the photoelectric conversion layer 3 becomes an extension portion 103.
 なお、光電変換層3の形成に先立って、第1導電膜10にスリット191およびスリット192を形成するためのパターニングを施してもよい。当該パターニングに用いられる手法としては、たとえばウエットエッチングを用いた手法、酸素プラズマエッチングを用いた手法等が適宜採用される。また、第1導電膜10は、上記に限られず、たとえばナノインプリントを用いた手法によって、支持基板41上に直接的にITOをパターニングすることで形成するようにしても良い。 Prior to the formation of the photoelectric conversion layer 3, patterning for forming the slit 191 and the slit 192 in the first conductive film 10 may be performed. As a technique used for the patterning, for example, a technique using wet etching, a technique using oxygen plasma etching, or the like is appropriately employed. The first conductive film 10 is not limited to the above, and may be formed by patterning ITO directly on the support substrate 41 by, for example, a technique using nanoimprint.
 次いで、図141に示すように、絶縁膜420を形成する。絶縁膜420の形成は、たとえばプラズマCVD法によってSiNまたはSiONなどの膜を支持基板41、第1導電膜10、光電変換層3および第2導電層2上に形成することにより行う。 Next, as shown in FIG. 141, an insulating film 420 is formed. The insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive film 10, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
 次いで、絶縁膜420を部分的に除去することによる第1端縁421を有するパッシベーション層42の形成および第1導電膜10の部分的な除去による第1導電層1の形成を含み、第1端縁421に隣接する領域において支持基板41を露出させる工程を行う。本実施形態においては、支持基板41を露出させる工程は、図142に示すように、絶縁膜420を透して第1導電膜10にレーザー光Lz2を照射することにより、第1導電膜10および絶縁膜420を部分的に除去する処理を含む。同図において、第1導電膜10のうち相対的に濃い複数の離散点からなるハッチングが付された部分は、レーザー光Lz2が照射される部分を表している。また、絶縁膜420のうち相対的に薄い複数の離散点からなるハッチングが付された部分は、レーザー光Lz2の照射に起因して除去される部分を表している。なお、レーザー光Lz2を用いた手法に限定されず、たとえばエッチングを用いた手法を選択してもよい。 Then, forming the passivation layer 42 having the first edge 421 by partially removing the insulating film 420 and forming the first conductive layer 1 by partially removing the first conductive film 10, A step of exposing the support substrate 41 in a region adjacent to the edge 421 is performed. In the present embodiment, the step of exposing the support substrate 41 is performed by irradiating the first conductive film 10 with the laser light Lz2 through the insulating film 420, as shown in FIG. A process of partially removing the insulating film 420 is included. In the figure, a hatched portion of a plurality of relatively dark discrete points in the first conductive film 10 represents a portion irradiated with the laser light Lz2. In addition, a hatched portion of a plurality of relatively thin discrete points in the insulating film 420 represents a portion that is removed due to irradiation with the laser light Lz2. Note that the method is not limited to the method using the laser beam Lz2, and for example, a method using etching may be selected.
 より具体的には、絶縁膜420を透して、第1導電膜10のうちスリット191およびスリット192を挟んで図示された第2導電層2および光電変換層3とは反対側に位置する部分に、レーザー光Lz2を照射する。レーザー光Lz2としては、たとえば波長が1,064nm程度のIRレーザー光が選択される。このレーザー光Lz2が照射された第1導電膜10の部分は、顕著なエネルギー投入によって瞬時に揮発する挙動を示す。 More specifically, a portion of the first conductive film 10 that is located on the opposite side of the second conductive layer 2 and the photoelectric conversion layer 3 that are illustrated across the slit 191 and the slit 192 through the insulating film 420. Are irradiated with laser light Lz2. As the laser beam Lz2, for example, an IR laser beam having a wavelength of about 1,064 nm is selected. The portion of the first conductive film 10 irradiated with the laser light Lz2 exhibits a behavior that volatilizes instantaneously when significant energy is applied.
 一方、上述したレーザー光Lz2の波長は、第1導電膜10に比べて絶縁膜420が吸収しづらいものが選択されている。このため、絶縁膜420は、レーザー光Lz2によって直接に破壊されるものではない。しかし、絶縁膜420のうち第1導電膜10と接する部分は、第1導電膜10を介して支持基板41によって支持されている。第1導電膜10がレーザー光Lz2の照射によって揮発すると、絶縁膜420の一部は、支持基板41によって支持されないものとなる。また、レーザー光Lz2が照射された第1導電膜10の部分(図中において相対的に濃い複数の離散点からなるハッチングが付された部分)に重なっている絶縁膜420は、第1導電膜10が揮発したことによる圧力によってその一部が飛散する。 On the other hand, the wavelength of the laser beam Lz2 described above is selected such that the insulating film 420 is less likely to absorb than the first conductive film 10. For this reason, the insulating film 420 is not directly destroyed by the laser beam Lz2. However, the portion of the insulating film 420 that contacts the first conductive film 10 is supported by the support substrate 41 via the first conductive film 10. When the first conductive film 10 is volatilized by irradiation with the laser beam Lz2, a part of the insulating film 420 is not supported by the support substrate 41. Further, the insulating film 420 overlapping the portion of the first conductive film 10 irradiated with the laser light Lz2 (the hatched portion including a plurality of relatively dark discrete points in the drawing) is the first conductive film. Part of it is scattered by the pressure due to volatilization of 10.
 また、発明者の研究の結果、絶縁膜420のうち、レーザー光Lz2が照射された第1導電膜10の部分に隣接する部分は、第1導電膜10の揮発の影響によって飛散することが判明した。図142においては、絶縁膜420のうちレーザー光Lz2の照射に起因して飛散する部分を、相対的に薄い複数の離散点からなるハッチングを付している。本実施形態においては、絶縁膜420のうち飛散する部分は、スリット191およびスリット192を超えて、第2導電層2および光電変換層3側に存在する。ただし、第2導電層2および光電変換層3の一部を露出させる程度にパッシベーション層42が破壊されないように、スリット191およびスリット192の大きさや位置、およびレーザー光Lz2の照射範囲や出力等を適宜調節している。この結果、絶縁膜420のうちスリット191側に位置する端縁が第1端縁421となり、スリット192側に位置する端縁が第1外方端縁422となる。また、第1導電膜10のうちスリット191に隣接する複数の離散点からなるハッチング部分は、レーザー光Lz2の照射により除去される。このため、第1導電膜10のうちスリット191に対して平面視において光電変換層3側に位置する端縁が、第3端縁101となる。また、第1導電膜10のうちスリット192に隣接する複数の離散点からなるハッチング部分は、レーザー光Lz2の照射により除去される。また、スリット192に隣接する絶縁膜420の一部がレーザー光Lz2の照射に伴って飛散することにより、第1導電膜10のうちスリット192に隣接する一部が、パッシベーション層420から露出する。この部分が、延出部103となる。 As a result of the inventors' research, it has been found that a portion of the insulating film 420 adjacent to the portion of the first conductive film 10 irradiated with the laser light Lz2 is scattered due to the volatility of the first conductive film 10. did. In FIG. 142, the portion of the insulating film 420 that is scattered due to the irradiation of the laser beam Lz2 is hatched with a plurality of relatively thin discrete points. In the present embodiment, the scattered portion of the insulating film 420 exists on the second conductive layer 2 and photoelectric conversion layer 3 side beyond the slit 191 and the slit 192. However, the size and position of the slit 191 and the slit 192 and the irradiation range and output of the laser beam Lz2 are set so that the passivation layer 42 is not destroyed to the extent that the second conductive layer 2 and the photoelectric conversion layer 3 are partially exposed. Adjust as appropriate. As a result, the edge located on the slit 191 side of the insulating film 420 becomes the first edge 421, and the edge located on the slit 192 side becomes the first outer edge 422. Moreover, the hatching part which consists of several discrete points adjacent to the slit 191 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2. For this reason, the edge located in the photoelectric conversion layer 3 side in planar view with respect to the slit 191 in the first conductive film 10 becomes the third edge 101. Moreover, the hatching part which consists of a some discrete point adjacent to the slit 192 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2. In addition, a part of the insulating film 420 adjacent to the slit 192 is scattered with the irradiation of the laser light Lz 2, so that a part of the first conductive film 10 adjacent to the slit 192 is exposed from the passivation layer 420. This part becomes the extension part 103.
 以上に述べたレーザー光Lz2の照射によって、第1導電膜10および絶縁膜420の部分的な除去を行うことにより、図143に示すように、第1端縁421および第1外方端縁422を有するパッシベーション層42が形成される。また、第1端縁421および第1外方端縁422から延出する部分を有する第1導電層1が形成される。ものとなり、第3端縁101および延出部103が形成される。なお、図142に示した工程の後に、支持基板41上に残存した第1導電膜10等の除去を目的として、たとえば王水を用いた洗浄処理を行ってもよい。 By partially removing the first conductive film 10 and the insulating film 420 by the irradiation with the laser beam Lz2 described above, as shown in FIG. 143, the first edge 421 and the first outer edge 422 are obtained. A passivation layer 42 is formed. Further, the first conductive layer 1 having portions extending from the first end edge 421 and the first outer end edge 422 is formed. As a result, the third end edge 101 and the extending portion 103 are formed. In addition, after the process shown in FIG. 142, for the purpose of removing the first conductive film 10 and the like remaining on the support substrate 41, a cleaning process using aqua regia may be performed, for example.
 次いで、図144に示すようにバイパス導電部5を形成する。バイパス導電部5を形成する。バイパス導電部5の形成は、たとえばAgまたはカーボンを含むペーストを塗布した後に、たとえば乾燥などの手法によってこのペーストを硬化させることによって行う。バイパス導電部5の形成は、第1導電層1のうちパッシベーション層42から延出した部分を覆うようにして行う。また、バイパス導電部5は、支持基板41に直接触れるように形成されることが好ましい。これにより、バスバー部51および連絡部52を有するバイパス導電部5が得られる。 Next, the bypass conductive portion 5 is formed as shown in FIG. The bypass conductive portion 5 is formed. The bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying. The bypass conductive portion 5 is formed so as to cover a portion of the first conductive layer 1 extending from the passivation layer 42. The bypass conductive portion 5 is preferably formed so as to directly touch the support substrate 41. Thereby, the bypass conductive part 5 having the bus bar part 51 and the connecting part 52 is obtained.
 この後は、バイパス導電部5およびパッシベーション層42を覆うように、保護樹脂層45を形成する。保護樹脂層45の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によってパッシベーション層42上に塗布し、紫外線を照射することによって硬化させる。以上の工程を経ることにより、図137に示す有機薄膜太陽電池モジュールA15が完成する。なお、上述した有機薄膜太陽電池モジュールA13および有機薄膜太陽電池モジュールA14において、バイパス導電部5を覆う保護樹脂層45をさらに設けてもよい。 Thereafter, a protective resin layer 45 is formed so as to cover the bypass conductive portion 5 and the passivation layer 42. The protective resin layer 45 is formed by, for example, applying a liquid resin material containing an ultraviolet curable resin on the passivation layer 42 by screen printing and irradiating it with ultraviolet rays. Through the above steps, the organic thin film solar cell module A15 shown in FIG. 137 is completed. In the organic thin film solar cell module A13 and the organic thin film solar cell module A14 described above, a protective resin layer 45 that covers the bypass conductive portion 5 may be further provided.
 このような実施形態によっても、第1端縁421に隣接する部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 Also in such an embodiment, it is possible to finish the portion adjacent to the first edge 421 more transparent, and the display unit 702 can be expressed more clearly.
 また、バイパス導電部5が保護樹脂層45によって覆われていることにより、バイパス導電部5が外気に曝されることを回避することが可能である。これにより、バイパス導電部5が腐食すること等を抑制可能であり、バイパス導電部5による低抵抗化をより長期間にわたって維持することができる。 Further, since the bypass conductive portion 5 is covered with the protective resin layer 45, it is possible to avoid the bypass conductive portion 5 being exposed to the outside air. Thereby, it can suppress that the bypass conductive part 5 corrodes etc., and low resistance by the bypass conductive part 5 can be maintained over a longer period of time.
 第1端縁421および第1外方端縁422が、凹凸形状であることにより、第1端縁421および第1外方端縁422とバイパス導電部5のバスバー部51との接合強度を高めることが可能である。 Since the first end edge 421 and the first outer end edge 422 are uneven, the bonding strength between the first end edge 421 and the first outer end edge 422 and the bus bar portion 51 of the bypass conductive portion 5 is increased. It is possible.
 図142に示したように、第1導電層1にレーザー光Lz2を照射することによって生じる第1導電層1の揮発を利用して、パッシベーション層42を除去している。このため、パッシベーション層42を除去するための専用のレーザー光や薬剤等は不要である。これは、製造コストの低減や制造時間の短縮に好ましい。レーザー光Lz2としてIRレーザー光を用いることにより、絶縁膜420を透過して第1導電膜10へとレーザー光Lz2を効率よく照射することが可能である。また、レーザー光Lz2としてIRレーザー光を用いることにより、パッシベーション層42の第1端縁421および第1外方端縁422を凹凸形状に仕上げることができるという利点がある。なお、絶縁膜420の材質の一例であるSiNは、400nmより長波長の光を透過させる。このため、絶縁膜420がSiNからなる場合、レーザー光Lz2として波長が532nmであるGreenレーザー光を用いてもよい。一方で、レーザー光Lz2として波長が355nmであるUVレーザー光を用いた場合には、絶縁膜420と第1導電膜10とがレーザー光Lz2を吸収するため、これらを一括して除去することができる。 142, the passivation layer 42 is removed by utilizing volatilization of the first conductive layer 1 generated by irradiating the first conductive layer 1 with the laser light Lz2. Therefore, there is no need for a dedicated laser beam or drug for removing the passivation layer 42. This is preferable for reducing manufacturing costs and manufacturing time. By using IR laser light as the laser light Lz2, it is possible to efficiently irradiate the first conductive film 10 with the laser light Lz2 through the insulating film 420. Further, by using IR laser light as the laser light Lz2, there is an advantage that the first edge 421 and the first outer edge 422 of the passivation layer 42 can be finished in an uneven shape. Note that SiN, which is an example of the material of the insulating film 420, transmits light having a wavelength longer than 400 nm. For this reason, when the insulating film 420 is made of SiN, Green laser light having a wavelength of 532 nm may be used as the laser light Lz2. On the other hand, when UV laser light having a wavelength of 355 nm is used as the laser light Lz2, the insulating film 420 and the first conductive film 10 absorb the laser light Lz2, and therefore these can be removed at once. it can.
 パッシベーション層42および第1導電層1の部分的な除去は、レーザー光Lz2を用いて行う。レーザー光Lz2は、照射する領域をより正確に制御することが可能である。したがって、パッシベーション層42および第1導電層1のうち所望の箇所を除去するのに適している。 The partial removal of the passivation layer 42 and the first conductive layer 1 is performed using a laser beam Lz2. The laser light Lz2 can control the irradiation region more accurately. Therefore, it is suitable for removing a desired portion of the passivation layer 42 and the first conductive layer 1.
 第1導電層1のうちレーザー光Lz2が照射された領域に隣接するパッシベーション層42が破壊される挙動を利用する。これにより、図143においてパッシベーション層42から露出する第1導電層1の部分は、レーザー光Lz2が照射されていないにもかかわらず、当該部分を覆っていたパッシベーション層42の部分が除去されている。このため、第1導電層1のちパッシベーション層42から露出する部分を不当に破壊することを回避しつつ、パッシベーション層42を適切に除去することができる。 The behavior that the passivation layer 42 adjacent to the region irradiated with the laser beam Lz2 in the first conductive layer 1 is destroyed is used. As a result, the portion of the first conductive layer 1 exposed from the passivation layer 42 in FIG. 143 is removed even though the portion of the passivation layer 42 covering the portion is not irradiated with the laser beam Lz2. . For this reason, the passivation layer 42 can be appropriately removed while avoiding undue destruction of the portion exposed from the passivation layer 42 after the first conductive layer 1.
 第1導電層1にスリット191およびスリット192を設けておくことにより、第1導電層1の揮発の影響を受けるパッシベーション層42の領域が、不当に広域にわたってしまうことを回避することが可能である。また、スリット191およびスリット192を設けておくことにより、図142および図143に示した第1導電膜10を部分的に除去する工程において、除去されるべき領域に第1導電膜10の一部が残存したとしても、この残存部分と第1導電層1とが意図せず導通してしまうことを回避することができる。また、第1導電膜10のうちスリット192を挟んで光電変換層3とは反対側に位置する部分は、除去されることなく、有機薄膜太陽電池モジュールA15の一部として残存してもよい。この部分は、スリット192が設けられていることにより、第1導電層1と導通することが防止されている。また、この部分の除去を省略すれば、製造時間を短縮することができる。なお、スリット191およびスリット192を設ける構成は好適例であり、これらを設けない構成であってもよい。 By providing the slit 191 and the slit 192 in the first conductive layer 1, it is possible to avoid that the region of the passivation layer 42 affected by the volatilization of the first conductive layer 1 is unreasonably spread over a wide area. . Further, by providing the slit 191 and the slit 192, in the step of partially removing the first conductive film 10 shown in FIGS. 142 and 143, a part of the first conductive film 10 is formed in the region to be removed. Even if this remains, it can be avoided that the remaining portion and the first conductive layer 1 are unintentionally conducted. Moreover, the part located in the other side of the photoelectric converting layer 3 across the slit 192 among the 1st electrically conductive films 10 may remain | survive as a part of organic thin-film solar cell module A15, without removing. This portion is prevented from conducting to the first conductive layer 1 by providing the slit 192. Further, if the removal of this portion is omitted, the manufacturing time can be shortened. In addition, the structure which provides the slit 191 and the slit 192 is a suitable example, and the structure which does not provide these may be sufficient.
 図145は、有機薄膜太陽電池モジュールA15の変形例を示している。本変形例においては、保護樹脂層45は、非透光部454および透光部455を有する。非透光部454は、平面視においてバイパス導電部5と重なり、且つ第1端縁421よりも第1外方端縁422側の領域に設けられている。非透光部454は、非透光の材質からなり、たとえば白色の樹脂からなる。透光部455は、第1端縁421に対して第1外方端縁422とは反対側に位置する領域を含む領域に設けられている。図示された例においては、透光部455は、図中右方のバスバー部51を跨ぐようにして形成されている。また、透光部455は、その一部が支持基板41に接している。本変形例によっても、バイパス導電部5を保護することができる。また、非透光部454を有することにより、紫外線等の光を受けることによってバイパス導電部5が劣化すること等を抑制することができる。 FIG. 145 shows a modification of the organic thin film solar cell module A15. In this modification, the protective resin layer 45 has a non-light-transmitting part 454 and a light-transmitting part 455. The non-light-transmissive portion 454 overlaps the bypass conductive portion 5 in a plan view and is provided in a region closer to the first outer end edge 422 than the first end edge 421. The non-translucent portion 454 is made of a non-translucent material, for example, white resin. The translucent portion 455 is provided in a region including a region located on the opposite side to the first outer end edge 422 with respect to the first end edge 421. In the illustrated example, the translucent part 455 is formed so as to straddle the bus bar part 51 on the right side in the drawing. A part of the translucent portion 455 is in contact with the support substrate 41. Also according to this modification, the bypass conductive portion 5 can be protected. Moreover, by having the non-light-transmissive part 454, it can suppress that the bypass conductive part 5 deteriorates by receiving light, such as an ultraviolet-ray.
 本発明に係る有機薄膜太陽電池モジュール、電子機器、有機薄膜太陽電池モジュールの製造方法は、上述した実施形態に限定されるものではない。本発明に係る有機薄膜太陽電池モジュール、電子機器、有機薄膜太陽電池モジュールの製造方法の具体的な構成は、種々に設計変更自在である。 The manufacturing method of the organic thin film solar cell module, the electronic device, and the organic thin film solar cell module according to the present invention is not limited to the above-described embodiment. The specific configuration of the organic thin film solar cell module, the electronic device, and the method of manufacturing the organic thin film solar cell module according to the present invention can be varied in design in various ways.
 本発明に係る電子機器は、携帯型電話端末をはじめ、太陽光発電を利用可能な様々な電子機器に適用することが可能であり、たとえば腕時計、電子計算機などが挙げられる。 The electronic device according to the present invention can be applied to various electronic devices that can use solar power generation, such as a portable telephone terminal, and examples thereof include a wrist watch and an electronic calculator.
 以下に、本発明の技術的特徴について付記する。 The technical features of the present invention will be described below.
  〔付記1D〕
 透明な支持基板と、
 前記支持基板に積層された透明な第1導電層と、
 第2導電層と、
 前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、
 前記第2導電層を覆うパッシベーション層と、
を備え、
 前記パッシベーション層は、第1端縁を有し、
 前記第1端縁に隣接する領域において、前記支持基板が露出している、有機薄膜太陽電池モジュール。
  〔付記2D〕
 前記第1導電層は、平面視において前記第1端縁と一致する第3端縁を有する、付記1Dに記載の有機薄膜太陽電池モジュール。
  〔付記3D〕
 前記第1導電層は、平面視において前記第1端縁よりも内方に退避した第3内方退避端縁を有する、付記1Dに記載の有機薄膜太陽電池モジュール。
  〔付記4D〕
 前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する、付記2Dに記載の有機薄膜太陽電池モジュール。
  〔付記5D〕
 前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する、付記4Dに記載の有機薄膜太陽電池モジュール。
  〔付記6D〕
 前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している、付記5Dに記載の有機薄膜太陽電池モジュール。
  〔付記7D〕
 前記第1端縁は、平面視環状である、付記4Dないし6Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記8D〕
 前記第3端縁は、平面視環状である、付記7Dに記載の有機薄膜太陽電池モジュール。
  〔付記9D〕
 前記第3内方退避端縁は、平面視環状である、付記3Dに記載の有機薄膜太陽電池モジュール。
  〔付記10D〕
 前記第4内方退避端縁は、平面視環状である、付記8Dまたは9Dに記載の有機薄膜太陽電池モジュール。
  〔付記11D〕
 前記第5内方退避端縁は、平面視環状である、付記10Dに記載の有機薄膜太陽電池モジュール。
  〔付記12D〕
 前記第1導電層は、ITOからなる、付記1Dないし11Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記13D〕
 前記第2導電層は、金属からなる、付記1Dないし12Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記14D〕
 前記第2導電層は、Alからなる、付記13Dに記載の有機薄膜太陽電池モジュール。
  〔付記15D〕
 前記パッシベーション層は、SiNからなる、付記1Dないし14Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記16D〕
 前記パッシベーション層を覆う保護樹脂層を備えており、
 前記保護樹脂層は、平面視において前記第1端縁と一致する第2端縁を有する、付記1Dないし15Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記17D〕
 前記第2端縁と前記第1端縁とは、連続した面をなす、付記16Dに記載の有機薄膜太陽電池モジュール。
  〔付記18D〕
 前記第2端縁は、平面視環状である、付記16Dまたは17Dに記載の有機薄膜太陽電池モジュール。
  〔付記19D〕
 前記保護樹脂層は、紫外線硬化樹脂からなる、付記16Dないし18Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記20D〕
 前記保護樹脂層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第2端縁と反対側に位置する第2外方端縁を有し、
 前記パッシベーション層は、平面視において前記第2外方端縁と一致する第1外方端縁を有し、
 前記第1導電層は、前記第2外方端縁および前記第1外方端縁から外方に延出する延出部を有し、
 前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を備える、付記16Dないし19Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記21D〕
 前記第2外方端縁と前記第1外方端縁とは、連続した面をなす、付記20Dに記載の有機薄膜太陽電池モジュール。
  〔付記22D〕
 前記バイパス導電部は、前記第2外方端縁および前記第1外方端縁を覆う、付記20Dまたは21Dに記載の有機薄膜太陽電池モジュール。
  〔付記23D〕
 前記バイパス導電部は、Agまたはカーボンを含む、付記20Dないし22Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記24D〕
 前記パッシベーション層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第1端縁と反対側に位置する第1外方端縁を有し、
 前記第1導電層は、前記第1外方端縁から外方に延出する延出部を有し、
 前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部と、
 前記バイパス導電部を覆う保護樹脂層と、を備える、付記1Dないし15Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記25D〕
 前記バイパス導電部は、前記第1外方端縁を覆う、付記24Dに記載の有機薄膜太陽電池モジュール。
  〔付記26D〕
 前記バイパス導電部は、Agまたはカーボンを含む、付記24Dまたは25Dに記載の有機薄膜太陽電池モジュール。
  〔付記27D〕
 前記保護樹脂層は、平面視において前記バイパス導電部と重なり、且つ前記第1端縁よりも前記第1外方端縁側の領域に設けられた非透光部を含む、付記24Dないし26Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記28D〕
 前記非透光部は、白色である、付記27Dに記載の有機薄膜太陽電池モジュール。
  〔付記29D〕
 前記第2導電層は、平面視において前記第2外方端縁および前記第1外方端縁よりも内方に退避した第4外方退避端縁を有する、付記20Dないし28Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記30D〕
 前記光電変換層は、平面視において前記第2外方端縁および前記第1外方端縁よりも内方に退避した第5外方退避端縁を有する、付記20Dないし29Dのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記31D〕
 付記1Dないし30Dのいずれかに記載の有機薄膜太陽電池モジュールと、
 前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、
を備える、電子機器。
  〔付記32D〕
 透明な支持基板に透明な第1導電膜を積層する工程と、
 前記第1導電膜に有機薄膜からなる光電変換層を積層する工程と、
 前記光電変換層に第2導電層を積層する工程と、
 前記第2導電層を覆う絶縁膜を積層する工程と、
 前記絶縁膜を部分的に除去することによる第1端縁を有するパッシベーション層の形成および前記第1導電膜の部分的な除去による第1導電層の形成を含み、前記第1端縁に隣接する領域において、前記支持基板を露出させる工程と、を備える、有機薄膜太陽電池モジュールの製造方法。
  〔付記33D〕
 前記絶縁膜を形成する工程の後、前記支持基板を露出させる工程の前に、
 前記絶縁膜に第2端縁を有する保護樹脂層を積層する工程を備え、
 前記支持基板を露出させる工程は、
 前記第2端縁を境界として、前記絶縁膜を部分的に除去することにより平面視において前記第2端縁と一致する前記第1端縁を有する前記パッシベーション層を形成する工程と、
 前記第1導電膜のうち前記第1端縁および前記第2端縁から露出する部分除去することにより前記第1導電層を形成する工程と、を含む、付記32Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記34D〕
 前記支持基板を露出させる工程において、平面視において前記第2端縁および前記第1端縁と一致する第3端縁を有する前記第1導電層を形成する、付記33Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記35D〕
 前記第2端縁および前記第1端縁は、平面視環状である、付記34Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記36D〕
 前記第3端縁は、平面視環状である、付記35Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記37D〕
 前記第1導電層は、ITOからなる、付記33Dないし36Dのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記38D〕
 前記第2導電層は、金属からなる、付記33Dないし37Dのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記39D〕
 前記第2導電層は、Alからなる、付記38Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記40D〕
 前記パッシベーション層は、SiNからなる、付記33Dないし39Dのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記41D〕
 前記保護樹脂層は、紫外線硬化樹脂からなる、付記33Dないし40Dのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記42D〕
 前記保護樹脂層を積層する工程において、平面視において前記光電変換層の少なくとも一部を挟んで前記第2端縁と反対側に位置する第2外方端縁を形成し、
 前記第2端縁を境界として、前記絶縁膜を部分的に除去することにより平面視において前記第2外方端縁と一致する第1外方端縁を有する前記パッシベーション層に形成する工程と、
 前記第1導電層のうち前記第2外方端縁および前記第1外方端縁から外方に延出する延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を形成する工程と、を備える、付記33Dないし41Dのいずれかに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記43D〕
 前記バイパス導電部を形成する工程においては、前記バイパス導電部によって前記第2外方端縁および前記第1外方端縁を覆う、付記42Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記44D〕
 前記バイパス導電部は、Agまたはカーボンを含む、付記42Dまたは43Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記45D〕
 前記支持基板を露出させる工程は、前記絶縁膜を透して前記第1導電膜にレーザー光を照射することにより、前記第1導電膜および前記絶縁膜を部分的に除去する処理を含む、付記32Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記46D〕
 前記支持基板を露出させる工程は、前記部分的に除去する処理により前記絶縁膜のうち平面視において前記レーザー光が照射された領域に隣接する領域が除去されることにより、前記第1導電膜のうち前記レーザー光が照射されていない部分を前記パッシベーション層から露出する延出部とする処理を含み、
 前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部を形成する工程と、
 前記バイパス導電部を覆う保護樹脂層を形成する工程と、を備える、付記45Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記47D〕
 前記バイパス導電部は、Agまたはカーボンを含む、付記46Dに記載の有機薄膜太陽電池モジュールの製造方法。
  〔付記48D〕
 前記保護樹脂層を形成する工程においては、平面視において前記バイパス導電部と重なり、且つ前記第1端縁よりも前記第1外方端縁側の領域に非透光部形成する、付記46Dまたは47Dに記載の有機薄膜太陽電池モジュール。
[Appendix 1D]
A transparent support substrate;
A transparent first conductive layer laminated on the support substrate;
A second conductive layer;
A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer;
A passivation layer covering the second conductive layer;
With
The passivation layer has a first edge;
The organic thin-film solar cell module in which the support substrate is exposed in a region adjacent to the first edge.
[Appendix 2D]
The organic thin-film solar cell module according to appendix 1D, wherein the first conductive layer has a third edge that coincides with the first edge in plan view.
[Appendix 3D]
The organic thin-film solar cell module according to appendix 1D, wherein the first conductive layer has a third inward retracting edge that is retracted inward from the first end edge in a plan view.
[Appendix 4D]
The said 2nd conductive layer is an organic thin-film solar cell module of Additional remark 2D which has the 4th inward retracting edge retracted | inwarded rather than the said 1st edge in planar view.
[Appendix 5D]
4. The organic thin-film solar cell module according to appendix 4D, wherein the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in a plan view.
[Appendix 6D]
The organic thin-film solar cell module according to appendix 5D, wherein the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
[Appendix 7D]
The organic thin-film solar cell module according to any one of appendices 4D to 6D, wherein the first end edge is annular in plan view.
[Appendix 8D]
The organic thin film solar cell module according to appendix 7D, wherein the third end edge is annular in plan view.
[Appendix 9D]
The organic thin-film solar cell module according to attachment 3D, wherein the third inward retracting edge is annular in plan view.
[Appendix 10D]
The organic thin-film solar cell module according to Supplementary Note 8D or 9D, wherein the fourth inward withdrawal edge is annular in plan view.
[Appendix 11D]
The organic thin-film solar cell module according to Supplementary Note 10D, wherein the fifth inward withdrawal edge is annular in plan view.
[Appendix 12D]
The organic thin-film solar cell module according to any one of appendices 1D to 11D, wherein the first conductive layer is made of ITO.
[Appendix 13D]
The organic thin-film solar cell module according to any one of Supplementary Notes 1D to 12D, wherein the second conductive layer is made of metal.
[Appendix 14D]
The organic thin film solar cell module according to attachment 13D, wherein the second conductive layer is made of Al.
[Appendix 15D]
The organic thin-film solar cell module according to any one of Supplementary Notes 1D to 14D, wherein the passivation layer is made of SiN.
[Appendix 16D]
A protective resin layer covering the passivation layer;
The organic thin-film solar cell module according to any one of Supplementary Notes 1D to 15D, wherein the protective resin layer has a second edge that coincides with the first edge in plan view.
[Appendix 17D]
The organic thin film solar cell module according to appendix 16D, wherein the second edge and the first edge form a continuous surface.
[Appendix 18D]
The organic thin film solar cell module according to appendix 16D or 17D, wherein the second end edge is annular in plan view.
[Appendix 19D]
The organic thin film solar cell module according to any one of appendices 16D to 18D, wherein the protective resin layer is made of an ultraviolet curable resin.
[Appendix 20D]
The protective resin layer has a second outer end edge located on the opposite side of the second end edge across at least a part of the photoelectric conversion layer in plan view;
The passivation layer has a first outer edge that coincides with the second outer edge in plan view,
The first conductive layer has an extension portion extending outward from the second outer end edge and the first outer end edge;
The organic thin-film solar cell module according to any one of supplementary notes 16D to 19D, comprising a bypass conductive portion that covers at least a part of the extension portion and is made of a material having a lower resistance than the material of the first conductive layer.
[Appendix 21D]
The organic thin film solar cell module according to appendix 20D, wherein the second outer edge and the first outer edge form a continuous surface.
[Appendix 22D]
The bypass conductive part is the organic thin-film solar cell module according to appendix 20D or 21D, which covers the second outer edge and the first outer edge.
[Appendix 23D]
The organic thin-film solar cell module according to any one of appendices 20D to 22D, wherein the bypass conductive portion includes Ag or carbon.
[Appendix 24D]
The passivation layer has a first outer end edge located on the opposite side of the first end edge across at least a part of the photoelectric conversion layer in plan view,
The first conductive layer has an extending portion extending outward from the first outer edge,
A bypass conductive portion that covers at least a portion of the extension and is made of a material having a lower resistance than the material of the first conductive layer;
An organic thin-film solar cell module according to any one of Supplementary Notes 1D to 15D, comprising: a protective resin layer that covers the bypass conductive portion.
[Appendix 25D]
The bypass conductive part is the organic thin-film solar cell module according to appendix 24D, which covers the first outer end edge.
[Appendix 26D]
The bypass conductive part is the organic thin-film solar cell module according to appendix 24D or 25D, containing Ag or carbon.
[Appendix 27D]
Any one of appendices 24D to 26D, wherein the protective resin layer includes a non-light-transmitting portion that overlaps the bypass conductive portion in a plan view and is provided in a region closer to the first outer end edge than the first end edge. Organic thin-film solar cell module according to crab.
[Appendix 28D]
The non-light-transmitting portion is an organic thin-film solar cell module according to appendix 27D, which is white.
[Appendix 29D]
The second conductive layer has any one of appendices 20D to 28D having a second outer end edge and a fourth outer retreat end edge retracted inward from the first outer end edge in a plan view. The organic thin film solar cell module described.
[Appendix 30D]
The photoelectric conversion layer according to any one of appendices 20D to 29D, which has a second outer retreat edge and a fifth outer retreat edge that retreats inward from the first outer end edge in a plan view. Organic thin-film solar cell module.
[Supplementary Note 31D]
An organic thin-film solar cell module according to any one of Supplementary Notes 1D to 30D;
A drive unit driven by feeding from the organic thin film solar cell module;
An electronic device.
[Appendix 32D]
Laminating a transparent first conductive film on a transparent support substrate;
Laminating a photoelectric conversion layer made of an organic thin film on the first conductive film;
Laminating a second conductive layer on the photoelectric conversion layer;
Laminating an insulating film covering the second conductive layer;
Including forming a passivation layer having a first edge by partially removing the insulating film and forming a first conductive layer by partially removing the first conductive film, and adjacent to the first edge And a step of exposing the support substrate in the region, and a method of manufacturing an organic thin film solar cell module.
[Appendix 33D]
After the step of forming the insulating film and before the step of exposing the support substrate,
A step of laminating a protective resin layer having a second edge on the insulating film;
The step of exposing the support substrate includes:
Forming the passivation layer having the first edge coincident with the second edge in plan view by partially removing the insulating film with the second edge as a boundary;
Forming the first conductive layer by removing portions of the first conductive film exposed from the first edge and the second edge of the first conductive film, and the organic thin-film solar cell module according to appendix 32D Manufacturing method.
[Appendix 34D]
The organic thin-film solar cell according to appendix 33D, wherein in the step of exposing the support substrate, the first conductive layer having the second end edge and the third end edge that coincides with the first end edge in plan view is formed. Module manufacturing method.
[Appendix 35D]
The method for manufacturing an organic thin-film solar cell module according to Appendix 34D, wherein the second end edge and the first end edge are annular in plan view.
[Appendix 36D]
The method for producing an organic thin-film solar cell module according to Supplementary Note 35D, wherein the third end edge is annular in plan view.
[Appendix 37D]
The method for manufacturing an organic thin-film solar cell module according to any one of appendices 33D to 36D, wherein the first conductive layer is made of ITO.
[Appendix 38D]
The method for manufacturing an organic thin-film solar cell module according to any one of appendices 33D to 37D, wherein the second conductive layer is made of metal.
[Appendix 39D]
The method for manufacturing an organic thin-film solar cell module according to attachment 38D, wherein the second conductive layer is made of Al.
[Appendix 40D]
The method for manufacturing an organic thin-film solar cell module according to any one of appendices 33D to 39D, wherein the passivation layer is made of SiN.
[Appendix 41D]
The method for manufacturing an organic thin-film solar cell module according to any one of Supplementary Notes 33D to 40D, wherein the protective resin layer is made of an ultraviolet curable resin.
[Appendix 42D]
In the step of laminating the protective resin layer, forming a second outer edge located on the opposite side of the second edge with at least a part of the photoelectric conversion layer in plan view,
Forming on the passivation layer having a first outer edge that coincides with the second outer edge in plan view by partially removing the insulating film with the second edge as a boundary;
The first conductive layer covers at least a part of the second outer end edge and an extended portion extending outward from the first outer end edge, and is lower than the material of the first conductive layer. A method of forming an organic thin-film solar cell module according to any one of appendices 33D to 41D.
[Appendix 43D]
In the step of forming the bypass conductive portion, the organic thin-film solar cell module manufacturing method according to appendix 42D, wherein the bypass conductive portion covers the second outer end edge and the first outer end edge.
[Appendix 44D]
The said bypass conductive part is a manufacturing method of the organic thin-film solar cell module of Additional remark 42D or 43D containing Ag or carbon.
[Appendix 45D]
The step of exposing the support substrate includes a process of partially removing the first conductive film and the insulating film by irradiating the first conductive film with laser light through the insulating film. The manufacturing method of the organic thin-film solar cell module as described in 32D.
[Appendix 46D]
The step of exposing the support substrate includes removing the region adjacent to the region irradiated with the laser beam in plan view in the insulating film by the partial removal process. Among them, including a process of setting a portion that is not irradiated with the laser light as an extending portion exposed from the passivation layer,
Forming a bypass conductive portion that covers at least a portion of the extension and is made of a material having a lower resistance than the material of the first conductive layer;
And a step of forming a protective resin layer covering the bypass conductive portion. The method for manufacturing the organic thin-film solar cell module according to appendix 45D.
[Appendix 47D]
The bypass conductive part is a method for manufacturing an organic thin-film solar cell module according to appendix 46D, which includes Ag or carbon.
[Appendix 48D]
In the step of forming the protective resin layer, a non-light-transmitting portion is formed in a region that overlaps the bypass conductive portion in a plan view and is closer to the first outer edge than the first edge. The organic thin film solar cell module according to 1.
[第16-第18実施形態]
 第16ないし第18実施形態および図146~図183における符号は、これらの実施形態および図において有効であり、他の実施形態および図における符号とは独立している。ただし、第16ないし第18実施形態の具体的構成と他の実施形態の具体的構成とは、相互に適宜組合せ可能である。
[Sixteenth to eighteenth embodiments]
Reference numerals in the sixteenth to eighteenth embodiments and FIGS. 146 to 183 are effective in these embodiments and drawings, and are independent of the reference numerals in the other embodiments and drawings. However, the specific configurations of the sixteenth to eighteenth embodiments and the specific configurations of the other embodiments can be appropriately combined with each other.
 本発明において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the present invention, “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 図146~図151は、本発明の第16実施形態に基づく電子機器および本発明の第16実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の電子機器B16は、有機薄膜太陽電池モジュールA16、ケース61、制御部701、表示部702、入力部703、マイク704、スピーカ705、無線通信部706およびバッテリ707を備えており、携帯型電話端末として構成されている。 FIGS. 146 to 151 show an electronic device based on the sixteenth embodiment of the present invention and an organic thin-film solar cell module based on the sixteenth embodiment of the present invention. The electronic device B16 of this embodiment includes an organic thin-film solar cell module A16, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery 707. Type telephone terminal.
 ケース61は、電子機器B16のその他の構成要素を収容するものであり、金属、樹脂、ガラスなどの材質からなる。 The case 61 accommodates other components of the electronic device B16 and is made of a material such as metal, resin, or glass.
 図146は、有機薄膜太陽電池モジュールA16およびこれを用いた電子機器B16を示す平面図である。図147は、図146のCXLVII-CXLVII線に沿う模式的な断面図である。図148は、有機薄膜太陽電池モジュールA16を示す要部拡大底面図である。図149は、図148のCXLIX-CXLIX線に沿う要部拡大断面図である。図150は、図148のCL-CL線に沿う要部拡大断面図である。図151は、電子機器B16を示すシステム構成図である。なお、図147においては、理解の便宜上、ケース61、有機薄膜太陽電池モジュールA16、有機薄膜太陽電池モジュールA17、制御部701、表示部702およびバッテリ707のみを模式的に示している。また、図148においては、理解の便宜上、第1導電層1および光電変換層3のみを実践で表しており、バイパス導電部5を想像線で示している。 FIG. 146 is a plan view showing an organic thin-film solar cell module A16 and an electronic device B16 using the same. FIG. 147 is a schematic sectional view taken along line CXLVII-CXLVII in FIG. 146. FIG. 148 is an enlarged bottom view of the main part showing the organic thin film solar cell module A16. FIG. 149 is an enlarged cross-sectional view of a main part taken along line CXLIX-CXLIX in FIG. 150 is an enlarged cross-sectional view of a main part taken along line CL-CL in FIG. FIG. 151 is a system configuration diagram showing the electronic apparatus B16. In FIG. 147, only the case 61, the organic thin film solar cell module A16, the organic thin film solar cell module A17, the control unit 701, the display unit 702, and the battery 707 are schematically shown for the sake of understanding. In FIG. 148, for convenience of understanding, only the first conductive layer 1 and the photoelectric conversion layer 3 are shown in practice, and the bypass conductive portion 5 is indicated by an imaginary line.
 有機薄膜太陽電池モジュールA16は、電子機器B16における電源モジュールであり、太陽光などの光を電力に変換する。具体的構成は、後述する。 Organic thin-film solar cell module A16 is a power supply module in electronic device B16, and converts light such as sunlight into electric power. A specific configuration will be described later.
 制御部701は、本発明でいう駆動部の一例に相当し、有機薄膜太陽電池モジュールA16からの給電によって駆動する。なお、制御部701は、有機薄膜太陽電池モジュールA16から直接給電されてもよいし、有機薄膜太陽電池モジュールA16からの電力がバッテリ707に一旦充電された後に、このバッテリ707からの給電によって駆動されてもよい。制御部701は、たとえばCPU、メモリおよびインターフェースなどを具備して構成されている。 The control unit 701 corresponds to an example of a driving unit in the present invention, and is driven by power feeding from the organic thin film solar cell module A16. The control unit 701 may be directly supplied with power from the organic thin film solar cell module A16, or may be driven by power supplied from the battery 707 after the power from the organic thin film solar cell module A16 is once charged in the battery 707. May be. The control unit 701 includes, for example, a CPU, a memory, an interface, and the like.
 表示部702は、各種の情報を電子機器B16の外観に表示するためのものである。表示部702は、たとえば液晶表示パネルあるいは有機EL表示パネルなどである。本実施形態においては、表示部702は、有機薄膜太陽電池モジュールA16を透して外観に情報を表す。 The display unit 702 is for displaying various types of information on the external appearance of the electronic device B16. The display unit 702 is, for example, a liquid crystal display panel or an organic EL display panel. In the present embodiment, the display unit 702 displays information on the exterior through the organic thin film solar cell module A16.
 入力部703は、使用者の操作を電気信号として制御部701に出力するためのものである。入力部703は、たとえば表示部702に積層されたタッチパネルである。なお、表示部702と入力部703とが一体的に構成されていてもよい。 The input unit 703 is for outputting a user operation as an electrical signal to the control unit 701. The input unit 703 is a touch panel laminated on the display unit 702, for example. Note that the display unit 702 and the input unit 703 may be configured integrally.
 マイク704は、使用者の音声を電気信号に変換するデバイスである。スピーカ705は、通話相手の音声や各種の通知音などを出力するデバイスである。 The microphone 704 is a device that converts a user's voice into an electrical signal. The speaker 705 is a device that outputs the voice of the other party and various notification sounds.
 無線通信部706は、無線通信規格に準拠した双方向無線通信を行うデバイスである。 The wireless communication unit 706 is a device that performs bidirectional wireless communication conforming to the wireless communication standard.
 バッテリ707は、電子機器B16を駆動する電力を蓄えるデバイスである。バッテリ707は、充放電が適宜可能に構成されている。バッテリ707の充電は、図示しないアダプタを用いた商用電力からの給電、または有機薄膜太陽電池モジュールA16からの給電によってなされる。 The battery 707 is a device that stores electric power for driving the electronic device B16. The battery 707 is configured to be appropriately charged / discharged. The battery 707 is charged by feeding from commercial power using an adapter (not shown) or feeding from the organic thin film solar cell module A16.
 有機薄膜太陽電池モジュールA16は、第1導電層1、第2導電層2、光電変換層3、支持基板41、パッシベーション層42、保護樹脂層4およびバイパス導電部5を備えている。本実施形態においては、有機薄膜太陽電池モジュールA16は、平面視略矩形状とされているが、これは一例であり、それぞれは様々な形状とされうる。 The organic thin-film solar cell module A16 includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation layer 42, a protective resin layer 4, and a bypass conductive portion 5. In the present embodiment, the organic thin-film solar cell module A16 has a substantially rectangular shape in plan view, but this is an example, and each may have various shapes.
 図152は、有機薄膜太陽電池モジュールA16のうち第1導電層1、第2導電層2、光電変換層3、支持基板41および保護樹脂層4を示す要部分解斜視図である。なお、理解の便宜上,支持基板41は想像線(二点鎖線)で示している。図153は、有機薄膜太陽電池モジュールA16の第1導電層1を示す平面図である。図154は、有機薄膜太陽電池モジュールA16の光電変換層3を示す平面図である。図155は、有機薄膜太陽電池モジュールA16の第2導電層2を示す平面図である。図156は、有機薄膜太陽電池モジュールA16の保護樹脂層4の後述する第1保護樹脂層45およびバイパス導電部5を示す底面図である。図157は、有機薄膜太陽電池モジュールA16の保護樹脂層4の後述する第2保護樹脂層46を示す平面図である。 FIG. 152 is an exploded perspective view of a main part showing the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, and the protective resin layer 4 in the organic thin film solar cell module A16. For convenience of understanding, the support substrate 41 is indicated by an imaginary line (two-dot chain line). FIG. 153 is a plan view showing the first conductive layer 1 of the organic thin film solar cell module A16. FIG. 154 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A16. FIG. 155 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A16. FIG. 156 is a bottom view showing a first protective resin layer 45 and a bypass conductive portion 5 described later of the protective resin layer 4 of the organic thin film solar cell module A16. FIG. 157 is a plan view showing a second protective resin layer 46 described later of the protective resin layer 4 of the organic thin film solar cell module A16.
 支持基板41は、有機薄膜太陽電池モジュールA16の土台となる部材である。支持基板41は、たとえば透明なガラスあるいは樹脂からなる。支持基板41の厚さは、たとえば0.05mm~2.0mmである。 The support substrate 41 is a member that becomes a base of the organic thin film solar cell module A16. The support substrate 41 is made of, for example, transparent glass or resin. The thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
 第1導電層1は、支持基板41上に形成されている。第1導電層1は、透明であり、本実施形態においてはITOからなる。図149、図150および図153に示すように、第1導電層1は、第1電極部11、接続部13、スリット17、表示用開口181、開口18、スリット193、第3端縁101、第3外方端縁105、第1延出部104および第2延出部103を有する。本実施形態においては、第1導電層1は、平面視略矩形状とされているが、これは第1導電層1の形状の一例である。第1導電層1の形状は、様々な形状に設定されうる。第1導電層1の厚さは、たとえば100nm~300nmである。 The first conductive layer 1 is formed on the support substrate 41. The first conductive layer 1 is transparent and is made of ITO in this embodiment. As shown in FIGS. 149, 150, and 153, the first conductive layer 1 includes the first electrode portion 11, the connection portion 13, the slit 17, the display opening 181, the opening 18, the slit 193, the third edge 101, It has a third outer end edge 105, a first extension part 104, and a second extension part 103. In the present embodiment, the first conductive layer 1 has a substantially rectangular shape in plan view, but this is an example of the shape of the first conductive layer 1. The shape of the first conductive layer 1 can be set to various shapes. The thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm.
 第1電極部11は、光電変換層3によって生じた正孔が集約される層であり、いわゆるアノード電極として機能する。本実施形態においては、第1導電層1の大部分が1つの第1電極部11とされている。 The first electrode portion 11 is a layer in which holes generated by the photoelectric conversion layer 3 are aggregated, and functions as a so-called anode electrode. In the present embodiment, most of the first conductive layer 1 is a single first electrode portion 11.
 開口18は、厚さ方向に第1導電層1を貫通した開口部分である。開口18は、たとえばスピーカ705を機能させるために設けられたものである。なお、第1導電層1は、複数の開口18を有してもよい。また、開口18の用途は特に限定されず、通話実現ための部位やカメラモジュール等の機能を発揮させるために用いられてもよい。表示用開口181は、表示部702によって表示された情報を外観に表すために設けられたものである。本実施形態においては表示用開口181は、平面視矩形状である。 The opening 18 is an opening portion penetrating the first conductive layer 1 in the thickness direction. The opening 18 is provided to allow the speaker 705 to function, for example. The first conductive layer 1 may have a plurality of openings 18. Moreover, the use of the opening 18 is not particularly limited, and may be used to exhibit functions such as a part for realizing a call and a camera module. The display opening 181 is provided to display the information displayed by the display unit 702 on the appearance. In the present embodiment, the display opening 181 has a rectangular shape in plan view.
 スリット193は、環状のスリットであり、第1電極部11から第1導電層1の一部を区画している。 The slit 193 is an annular slit and partitions a part of the first conductive layer 1 from the first electrode portion 11.
 第3端縁101は、表示用開口181を規定する端縁である。本実施形態においては、第3端縁101は、表示用開口181を四方から囲む端縁となっており、平面視矩形環状である。なお、第3端縁101は、表示用開口181を四方から囲む形状に限定されない。たとえば、第3端縁101が表示用開口181に三方から隣接することにより、表示用開口181が第1電極部11から平面視において外方に開いた構成であってもよい。あるいは、第3端縁101は、表示用開口181に対して二方あるいは一方のみから隣接するものであってもよい。第3端縁101に隣接する領域、すなわち表示用開口181からは、支持基板41が露出している。また、第3端縁101は、後述する第1保護樹脂層45の第2端縁451およびパッシベーション層42の第1端縁421から延出する第1導電層1の部分の内端縁とされている。 The third edge 101 is an edge that defines the display opening 181. In the present embodiment, the third edge 101 is an edge that surrounds the display opening 181 from four directions, and has a rectangular ring shape in plan view. The third end edge 101 is not limited to a shape surrounding the display opening 181 from four directions. For example, the third opening edge 101 may be adjacent to the display opening 181 from three directions so that the display opening 181 opens outward from the first electrode portion 11 in plan view. Alternatively, the third end edge 101 may be adjacent to the display opening 181 from two sides or only from one side. The support substrate 41 is exposed from a region adjacent to the third edge 101, that is, from the display opening 181. The third edge 101 is an inner edge of a portion of the first conductive layer 1 that extends from a second edge 451 of the first protective resin layer 45 described later and the first edge 421 of the passivation layer 42. ing.
 第1延出部104は、パッシベーション層42から内方(表示用開口181)に延出する部位である。本実施形態においては、第1導電層1の略全内周部分に、第2延出部103が設けられている。 The first extending portion 104 is a portion extending from the passivation layer 42 inward (display opening 181). In the present embodiment, the second extending portion 103 is provided on substantially the entire inner peripheral portion of the first conductive layer 1.
 第2延出部103は、パッシベーション層42から外方に延出する部位である。本実施形態においては、第1導電層1の略全外周部分に、第2延出部103が設けられている。第3外方端縁105は、第2延出部103の外周端縁である。 The second extending portion 103 is a portion that extends outward from the passivation layer 42. In the present embodiment, the second extending portion 103 is provided on substantially the entire outer peripheral portion of the first conductive layer 1. The third outer end edge 105 is an outer peripheral end edge of the second extending portion 103.
 図148および図149に示すように、接続部13は、スリット17によって区画されており、スリット17によって第1電極部11とは絶縁された部分である。スリット17は、その両端171が第3外方端縁105に到達している。接続部13は、接続部端縁131および接続延出部132を有する。接続部端縁131は、接続部13のうちスリット17には対向しない部分の端縁である。図示された例においては、接続部端縁131は、隣り合う第3外方端縁105の略延長線上に形成されている。スリット17の平面視形状は特に限定されず、図示された例においては、接続部端縁131(第3外方端縁105)が延びる方向を長手方向とする細長形状であり、より具体的には略長矩形状である。接続延出部132は、接続部13のうち平面視において光電変換層3から露出する部分である。接続部13は、たとえば光電変換層3における発電によって集約された電子を、有機薄膜太陽電池モジュールA16外に導くために用いられる。 As shown in FIG. 148 and FIG. 149, the connection portion 13 is partitioned by the slit 17 and is a portion insulated from the first electrode portion 11 by the slit 17. The slit 17 has both ends 171 reaching the third outer edge 105. The connection part 13 includes a connection part edge 131 and a connection extension part 132. The connection part edge 131 is an edge of a part of the connection part 13 that does not face the slit 17. In the illustrated example, the connection portion edge 131 is formed on a substantially extended line of the adjacent third outer end edge 105. The plan view shape of the slit 17 is not particularly limited, and in the illustrated example, the slit 17 has an elongated shape whose longitudinal direction is the direction in which the connection portion edge 131 (third outer edge 105) extends. Is a substantially long rectangular shape. The connection extension part 132 is a part exposed from the photoelectric conversion layer 3 in plan view in the connection part 13. The connection unit 13 is used, for example, to guide electrons collected by power generation in the photoelectric conversion layer 3 to the outside of the organic thin film solar cell module A16.
 第2導電層2は、その大部分が光電変換層3を介して第1導電層1上に積層されている。また、第2導電層2の一部は、第1導電層1に直接接している。第2導電層2の材質は特に限定されないが、本実施形態においては、第2導電層2は、Al、W、Mo、Mn、Mgに代表される金属からなる。以下においては、第2導電層2がAlからなる場合を例に説明する。したがって、第2導電層2は、透明ではない。またこの場合、第2導電層2の支持基板41とは反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されてもよい。第2導電層2の厚さは、たとえば30nm~150nmである。 Most of the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1. Although the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg. Hereinafter, a case where the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is not transparent. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41. The thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
 図155に示すように、第2導電層2は、第2電極部21および開口28を有する。本実施形態においては、第2導電層2は、平面視略矩形状とされているが、これは第2導電層2の形状の一例である。第2導電層2の形状は、様々な形状に設定されうる。 As shown in FIG. 155, the second conductive layer 2 has a second electrode portion 21 and an opening 28. In the present embodiment, the second conductive layer 2 has a substantially rectangular shape in plan view, but this is an example of the shape of the second conductive layer 2. The shape of the second conductive layer 2 can be set to various shapes.
 第2電極部21は、光電変換層3によって生じた電子が集約される層であり、いわゆるカソード電極として機能する。 The second electrode portion 21 is a layer in which electrons generated by the photoelectric conversion layer 3 are collected, and functions as a so-called cathode electrode.
 複数の開口28は、厚さ方向に第2導電層2を貫通する開口部分である。図155における図中上方の4つの開口28は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口28は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 28 are openings that penetrate the second conductive layer 2 in the thickness direction. The four upper openings 28 in FIG. 155 are provided to make the speaker 705 function, for example. On the other hand, the largest opening 28 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第4内方退避端縁201は、図中中央の開口28を規定する端縁である。本実施形態においては、第4内方退避端縁201は、開口28を四方から囲む端縁となっており、平面視矩形環状である。なお、第4内方退避端縁201は、開口28を四方から囲む形状に限定されない。たとえば、第4内方退避端縁201が開口28を三方から隣接することにより、開口28が第2電極部21から平面視において外方に開いた構成であってもよい。あるいは、第4内方退避端縁201は、開口28に対して二方あるいは一方のみから隣接するものであってもよい。また、図149に示すように、第4内方退避端縁201は、第3端縁101よりも内方(表示用開口181内に延出する方向とは反対側)に退避している。 The fourth inward retracting edge 201 is an edge that defines the central opening 28 in the drawing. In the present embodiment, the fourth inward retracting edge 201 is an edge that surrounds the opening 28 from four directions and has a rectangular shape in plan view. The fourth inward retracting edge 201 is not limited to a shape surrounding the opening 28 from four directions. For example, the fourth inward retracting edge 201 may be configured such that the opening 28 is opened outward from the second electrode portion 21 in plan view by adjoining the opening 28 from three directions. Alternatively, the fourth inward retracting edge 201 may be adjacent to the opening 28 from two or only one side. As shown in FIG. 149, the fourth inward retracting edge 201 is retracted inward (opposite to the direction extending into the display opening 181) than the third end edge 101.
 第4外方退避端縁202は、図149に示すように、後述するパッシベーション層42の第1外方端縁422および第1保護樹脂層45の第2外方端縁452よりも平面視において内方(図149における右方)に退避している。本実施形態においては、第4外方退避端縁202は、平面視環状である。 As shown in FIG. 149, the fourth outer retracting edge 202 is in a plan view than the first outer end edge 422 of the passivation layer 42 and the second outer end edge 452 of the first protective resin layer 45 described later. It is retracted inward (to the right in FIG. 149). In the present embodiment, the fourth outward retracting edge 202 has an annular shape in plan view.
 光電変換層3は、第1導電層1と第2導電層2とに挟まれて、支持基板41に積層されている。光電変換層3は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層3の具体的構成は特に限定されないが、その一例を挙げると、バルクヘテロ接合有機活性層と、このバルクヘテロ接合有機活性層に対して第1導電層1側に積層された正孔輸送層とからなる。本実施形態においては、光電変換層3は、平面視矩形状とされているが、これは一例であり、光電変換層3は、様々な形状とされうる。光電変換層3の厚さは、たとえば50nm~300nmである。 The photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41. The photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of. In the present embodiment, the photoelectric conversion layer 3 has a rectangular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes. The thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
 バルクヘテロ接合有機活性層は、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。正孔輸送層は、たとえばPEDOT:PSSで形成されている。 In the bulk heterojunction organic active layer, a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction. The p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester). The hole transport layer is made of, for example, PEDOT: PSS.
 光電変換層3の形成に用いられる材質を例示すると、フタロシアニン(Pc:Phthalocyanine)、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)、Me-Ptcdi(N,N’-dimethyl perylene-3,4,9,10-dicarboximide)、フラーレン(C 60 :Buckminster fullerene)が挙げられる。これらの材質は、たとえば真空蒸着に使用される。 Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
 また、光電変換層3の形成に用いられる他の材質を例示すると、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)、PCDTBT(poly[N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-b3nzothiadizaole)])、PC60BM(6,6-phenyl-C61-butyric acid methyl ester)、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)が挙げられる。これらの材質は、たとえば溶液プロセスに使用される。 Other materials used for forming the photoelectric conversion layer 3 are exemplified by MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene), PCDTBT ( poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]), PC60BM (6 , 6-phenyl-C61-butyric acid methyl ester) and PC70BM (6,6-phenyl-C71-butyric acid methyl ester). These materials are used, for example, in solution processes.
 図154に示すように、光電変換層3は、非発電領域30、発電領域31、意匠表示部35、開口38、第5内方退避端縁301、第5外方退避端縁302および導通用貫通部351を有している。なお、図154においては、非発電領域30および発電領域31に、複数の離散点からなるハッチングを付している。意匠表示部35は、平面視において第1導電層1のスリット193に囲まれた領域と重なっている。 As shown in FIG. 154, the photoelectric conversion layer 3 includes a non-power generation region 30, a power generation region 31, a design display unit 35, an opening 38, a fifth inner retraction edge 301, a fifth outer retraction edge 302, and a conductive layer. A through portion 351 is provided. In FIG. 154, the non-power generation region 30 and the power generation region 31 are hatched with a plurality of discrete points. The design display unit 35 overlaps with a region surrounded by the slits 193 of the first conductive layer 1 in plan view.
 意匠表示部35は、外観に表れる意匠を構成する部位である。意匠表示部35が構成する意匠とは、使用者等が目視することによって、文字、記号、図柄などの視覚的特異部分として視認されうるものを指す。本実施形態においては、意匠表示部35は、円環形状を表している。 The design display unit 35 is a part that constitutes a design that appears on the exterior. The design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look. In the present embodiment, the design display unit 35 represents an annular shape.
 本実施形態においては、意匠表示部35は、意匠表示用貫通部350によって構成されている。意匠表示用貫通部350は、光電変換層3を厚さ方向に貫通する態様の部位である。このような意匠表示用貫通部350は、外観に表れる。また、本実施形態においては、意匠表示用貫通部350は、第2導電層2を第1導電層1側に露出させている。すなわち、意匠表示用貫通部350を通じて第2導電層2の一部が外観に表れている。意匠表示用貫通部350の形状等は特に限定されず、図示された例においては、アルファベットを表す形状が採用されている。 In the present embodiment, the design display part 35 is configured by a design display through part 350. The design display penetrating portion 350 is a portion having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a design display penetrating portion 350 appears on the exterior. In the present embodiment, the design display through-hole 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the design display through-hole 350. The shape or the like of the design display through-hole 350 is not particularly limited, and in the illustrated example, a shape representing an alphabet is adopted.
 発電領域31は、第1導電層1の第1電極部11および第2導電層2の第2電極部21に挟まれ、且つ光電変換機能を発揮することにより発電に寄与する領域である。また、発電領域31の形状は、平面視において、第1電極部11および第2電極部21に一致する。 The power generation region 31 is a region that is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 and contributes to power generation by exhibiting a photoelectric conversion function. The shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view.
 図148、図149および図154に示すように、導通用貫通部351は、光電変換層3を貫通する孔によって構成されている。導通用貫通部351は、平面視において第1導電層1の接続部13に内包される位置に設けられている。図示された例においては、複数の導通用貫通部351が設けられている。導通用貫通部351の形状および配置は特に限定されない。図示された例においては、導通用貫通部351は、平面視円形であり、その直径がたとえば40μm程度である。また、複数の導通用貫通部351は、接続部13の長手方向に沿って配列されている。第1導電層1の接続部13と第2導電層2とは、導通用貫通部351を介して互いに導通している。 As shown in FIGS. 148, 149, and 154, the conduction through portion 351 is configured by a hole that penetrates the photoelectric conversion layer 3. The conduction through portion 351 is provided at a position included in the connection portion 13 of the first conductive layer 1 in plan view. In the illustrated example, a plurality of through portions 351 for conduction are provided. The shape and arrangement of the conduction through portion 351 are not particularly limited. In the illustrated example, the through-hole for conduction 351 has a circular shape in plan view, and its diameter is, for example, about 40 μm. In addition, the plurality of through portions 351 for conduction are arranged along the longitudinal direction of the connection portion 13. The connection portion 13 of the first conductive layer 1 and the second conductive layer 2 are electrically connected to each other via the conduction through portion 351.
 非発電領域30は、光電変換層3のうち平面視において第1導電層1の第1電極部11および第2導電層2の第2電極部21とは重ならない領域であり、第1導電層1の接続部13およびスリット193に囲まれた領域と重なっている領域である。接続部13は、第2導電層2と接している。このため、接続部13と平面視において重なる非発電領域30は、発電に寄与しない。また、意匠表示部35と平面視において重なるスリット193に囲まれた領域と平面視において一致する光電変換層3の部分は、非発電領域30となっている。すなわち、光電変換層3のうち複数の発電領域31以外の領域が、非発電領域30とされている。 The non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view. This is an area that overlaps with the area surrounded by one connecting portion 13 and the slit 193. The connection part 13 is in contact with the second conductive layer 2. For this reason, the non-power generation region 30 overlapping the connection portion 13 in plan view does not contribute to power generation. In addition, a portion of the photoelectric conversion layer 3 that coincides with the region surrounded by the slit 193 that overlaps the design display unit 35 in plan view is a non-power generation region 30. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
 複数の開口38は、光電変換層3を厚さ方向に貫通する開口部分である。図154における図中上方の開口38は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口38は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 38 are openings that penetrate the photoelectric conversion layer 3 in the thickness direction. The upper opening 38 in FIG. 154 is provided, for example, to make the speaker 705 function. On the other hand, the largest opening 38 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
 第5内方退避端縁301は、図中中央の開口38を規定する端縁である。本実施形態においては、第5内方退避端縁301は、開口38を四方から囲む端縁となっており、平面視矩形環状である。なお、第5内方退避端縁301は、開口38を四方から囲む形状に限定されない。たとえば、第5内方退避端縁301が開口38を三方から隣接することにより、開口38が発電領域31から平面視において外方に開いた構成であってもよい。あるいは、第5内方退避端縁301は、開口38に対して二方あるいは一方のみに設けられたものであってもよい。また、図149に示すように、第5内方退避端縁301は、第3端縁101よりも内方(表示用開口181内に延出する方向とは反対側)に退避している。 The fifth inward retracting edge 301 is an edge that defines the central opening 38 in the drawing. In the present embodiment, the fifth inward retracting edge 301 is an edge that surrounds the opening 38 from four directions and has a rectangular ring shape in plan view. The fifth inward retracting edge 301 is not limited to a shape surrounding the opening 38 from four directions. For example, the fifth inward retracting edge 301 may be configured such that the opening 38 is opened outward from the power generation region 31 in a plan view by adjoining the opening 38 from three directions. Alternatively, the fifth inward retracting edge 301 may be provided in two or only one with respect to the opening 38. Further, as shown in FIG. 149, the fifth inward retracting edge 301 is retracted inward (opposite to the direction extending into the display opening 181) than the third end edge 101.
 第5外方退避端縁302は、図148および図149に示すように、後述するパッシベーション層42の第1外方端縁422よりも平面視において内方(図149における右方)に退避している。本実施形態においては、第5外方退避端縁302は、平面視環状である。 As shown in FIGS. 148 and 149, the fifth outer retreating edge 302 is retreated more inwardly (rightward in FIG. 149) in a plan view than a first outer end edge 422 of a passivation layer 42 described later. ing. In the present embodiment, the fifth outward retracting edge 302 is annular in plan view.
 パッシベーション層42は、第2導電層2上に積層されており、第2導電層2および光電変換層3を保護している。パッシベーション層42は、たとえばSiNまたはSiONからなる。パッシベーション層42の厚さは、たとえば0.5μm~2.0μmであり、本実施形態においては、たとえば1.5μm程度とされる。 The passivation layer 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3. The passivation layer 42 is made of, for example, SiN or SiON. The thickness of the passivation layer 42 is, for example, 0.5 μm to 2.0 μm. In the present embodiment, the thickness is, for example, about 1.5 μm.
 保護樹脂層4は、パッシベーション層42を覆っている層である。また、保護樹脂層4は、バイパス導電部5を覆っている。保護樹脂層4は、たとえば紫外線硬化樹脂からなる。保護樹脂層4の厚さは、たとえば3μm~20μmであり、本実施形態においては、たとえば10μm程度とされる。 The protective resin layer 4 is a layer covering the passivation layer 42. The protective resin layer 4 covers the bypass conductive portion 5. The protective resin layer 4 is made of, for example, an ultraviolet curable resin. The thickness of the protective resin layer 4 is, for example, 3 μm to 20 μm. In this embodiment, the thickness is, for example, about 10 μm.
 本実施形態においては、保護樹脂層4は、第1保護樹脂層45および第2保護樹脂層46を有する。第1保護樹脂層45は、パッシベーション層42を覆う層である。第2保護樹脂層46は、第1保護樹脂層45に積層されており、バイパス導電部5を覆う層である。 In this embodiment, the protective resin layer 4 includes a first protective resin layer 45 and a second protective resin layer 46. The first protective resin layer 45 is a layer that covers the passivation layer 42. The second protective resin layer 46 is laminated on the first protective resin layer 45 and covers the bypass conductive portion 5.
 図148、図149および図156に示すように、第1保護樹脂層45は、複数の開口458、第2端縁451および第2外方端縁452を有する。 148, 149, and 156, the first protective resin layer 45 has a plurality of openings 458, a second end edge 451, and a second outer end edge 452.
 複数の開口458は、第1保護樹脂層45の一部が削除された態様であり、第1保護樹脂層45を貫通している。図156における図中上方の3つの開口458は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口458は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 458 is a mode in which a part of the first protective resin layer 45 is removed, and penetrates the first protective resin layer 45. In FIG. 156, the upper three openings 458 in the drawing are provided to allow the speaker 705 to function, for example. On the other hand, the largest opening 458 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
 第2端縁451は、図中中央の開口458を規定する端縁である。本実施形態においては、第2端縁451は、開口458を四方から囲む端縁となっており、平面視矩形環状である。なお、第2端縁451は、開口458を四方から囲む形状に限定されない。たとえば、第2端縁451が開口458を三方から隣接することにより、開口458が第1保護樹脂層45から平面視において外方に開いた構成であってもよい。あるいは、第2端縁451は、開口458に対して二方あるいは一方のみ設けられたものであってもよい。 The second edge 451 is an edge that defines the central opening 458 in the drawing. In the present embodiment, the second end edge 451 is an end edge that surrounds the opening 458 from four directions, and has a rectangular ring shape in plan view. The second end edge 451 is not limited to a shape surrounding the opening 458 from four sides. For example, the second end edge 451 may be adjacent to the opening 458 from three directions so that the opening 458 opens outward from the first protective resin layer 45 in plan view. Alternatively, the second end edge 451 may be provided in two or only one with respect to the opening 458.
 第2外方端縁452は、平面視において光電変換層3の少なくとも一部を挟んで第2端縁451と反対側に位置しており、本実施形態においては、第1保護樹脂層45の外周端縁である。 The second outer edge 452 is located on the opposite side of the second edge 451 across at least a part of the photoelectric conversion layer 3 in plan view. In the present embodiment, the second outer edge 452 of the first protective resin layer 45 is located. It is an outer peripheral edge.
 図157に示すように、第2保護樹脂層46は、複数の開口468、第6端縁461および第6外方端縁462を有する。また、第2保護樹脂層46は、後述する第1集極部531および第2集極部532を露出させる開口または切り欠きが適宜形成されてもよい。 157, the second protective resin layer 46 has a plurality of openings 468, a sixth end edge 461, and a sixth outer end edge 462. Further, the second protective resin layer 46 may be appropriately formed with an opening or a notch that exposes a first electrode collector portion 531 and a second electrode collector portion 532 described later.
 複数の開口468は、第2保護樹脂層46の一部が削除された態様であり、第2保護樹脂層46を貫通している。図157における図中上方の3つの開口468は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口468は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 468 are a form in which a part of the second protective resin layer 46 is deleted, and penetrate the second protective resin layer 46. Three upper openings 468 in FIG. 157 are provided in order to make the speaker 705 function, for example. On the other hand, the largest opening 468 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第6端縁461は、図中中央の開口468を規定する端縁である。本実施形態においては、第6端縁461は、開口468を四方から囲む端縁となっており、平面視矩形環状である。なお、第6端縁461は、開口468を四方から囲む形状に限定されない。たとえば、第6端縁461が開口468を三方から隣接することにより、開口468が第2保護樹脂層46から平面視において外方に開いた構成であってもよい。あるいは、第6端縁461は、開口468に対して二方あるいは一方のみ設けられたものであってもよい。 The sixth edge 461 is an edge that defines the central opening 468 in the figure. In the present embodiment, the sixth end edge 461 is an end edge surrounding the opening 468 from four directions, and has a rectangular ring shape in plan view. Note that the sixth end edge 461 is not limited to a shape surrounding the opening 468 from four directions. For example, the sixth edge 461 may be adjacent to the opening 468 from three directions so that the opening 468 opens outward from the second protective resin layer 46 in plan view. Alternatively, the sixth end edge 461 may be provided in two or only one with respect to the opening 468.
 第6外方端縁462は、平面視において光電変換層3の少なくとも一部を挟んで第6端縁461と反対側に位置しており、本実施形態においては、第2保護樹脂層46の外周端縁である。 The sixth outer edge 462 is located on the opposite side of the sixth edge 461 across at least a part of the photoelectric conversion layer 3 in plan view. In the present embodiment, the sixth outer edge 462 of the second protective resin layer 46 is located. It is an outer peripheral edge.
 図148~図150に示すようにパッシベーション層42は、第1端縁421および第1外方端縁422を有している。 148 to 150, the passivation layer 42 has a first edge 421 and a first outer edge 422.
 第1端縁421は、平面視において第2端縁451と一致している。また、本実施形態においては、第1端縁421は、第2端縁451と連続した面をなしている。第1外方端縁422は、平面視において第2外方端縁452と一致している。また、本実施形態においては、第1外方端縁422は、第2外方端縁452と連続した面をなしている。 The first end edge 421 coincides with the second end edge 451 in plan view. In the present embodiment, the first end edge 421 forms a surface continuous with the second end edge 451. The first outer end edge 422 coincides with the second outer end edge 452 in plan view. In the present embodiment, the first outer end edge 422 forms a surface that is continuous with the second outer end edge 452.
 バイパス導電部5は、第1導電層1に到達した正孔と第2導電層2に到達した電子とを集電するための、少なくとも第1導電層1より低抵抗な経路を構成するためのものである。本実施形態においては、バイパス導電部5は、第1バスバー部513、2つの第2バスバー部514、第1集極部531、第2集極部532、連絡部52、第7端縁511および第7外方端縁512を有する。バイパス導電部5は、少なくとも第1導電層1よりも低抵抗な材質からなり、たとえばAgまたはカーボンを含む。 The bypass conductive portion 5 is configured to collect a hole that has reached the first conductive layer 1 and an electron that has reached the second conductive layer 2 to form a path having at least a lower resistance than the first conductive layer 1. Is. In the present embodiment, the bypass conductive portion 5 includes a first bus bar portion 513, two second bus bar portions 514, a first electrode collector portion 531, a second electrode collector portion 532, a communication portion 52, a seventh edge 511, and It has a seventh outer edge 512. The bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
 図148~図150および図156に示すように、1つの第2バスバー部514は、第2端縁451および第1端縁421を全長にわたって覆っている。この第2バスバー部514は、第1導電層1のうち第3端縁101と第1端縁421(第2端縁451)との間に位置する第1延出部104を覆っている。また、この第2バスバー部514の第7端縁511は、平面視において第3端縁101と一致している。他方の第2バスバー部514は、第2外方端縁452および第1外方端縁422の一部を除く略全長にわたって覆っている。この第2バスバー部514は、第1導電層1の第2延出部103を覆っている。このバスバー部51の第7外方端縁512は、平面視において第3外方端縁105と一致している。このような構成により、2つのバスバー部51は、それぞれが第1導電層1と導通している。 As shown in FIGS. 148 to 150 and 156, one second bus bar portion 514 covers the second end edge 451 and the first end edge 421 over the entire length. The second bus bar portion 514 covers the first extending portion 104 located between the third end edge 101 and the first end edge 421 (second end edge 451) of the first conductive layer 1. The seventh end edge 511 of the second bus bar portion 514 coincides with the third end edge 101 in plan view. The other second bus bar portion 514 covers substantially the entire length excluding a part of the second outer end edge 452 and the first outer end edge 422. The second bus bar portion 514 covers the second extending portion 103 of the first conductive layer 1. The seventh outer end edge 512 of the bus bar portion 51 coincides with the third outer end edge 105 in plan view. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
 第2集極部532は、第2バスバー部514に導通する部分であり、第1導電層1によって集約された正孔を、たとえば電子機器B16に設けられた正孔用端子に出力するための部分である。本実施形態においては、第2集極部532は、保護樹脂層4の第1保護樹脂層45上に形成されている。第2集極部532は、平面視において第2導電層2および光電変換層3と重なっている。支持基板41の厚さ方向において、光電変換層3と第2集極部532との間には、パッシベーション層42および第1保護樹脂層45が介在している。第2集極部532の平面視形状は特に限定されず、図示された例においては、略半楕円形状とされている。また、図示された例においては、第2集極部532は、一方の第2バスバー部514に直接つながっている。 The second electrode collector portion 532 is a portion that conducts to the second bus bar portion 514, and outputs holes collected by the first conductive layer 1 to, for example, a hole terminal provided in the electronic device B16. Part. In the present embodiment, the second electrode collector 532 is formed on the first protective resin layer 45 of the protective resin layer 4. The second electrode collector 532 overlaps the second conductive layer 2 and the photoelectric conversion layer 3 in plan view. In the thickness direction of the support substrate 41, the passivation layer 42 and the first protective resin layer 45 are interposed between the photoelectric conversion layer 3 and the second electrode collector 532. The shape of the second collector 532 in plan view is not particularly limited, and in the illustrated example, it is substantially semi-elliptical. In the illustrated example, the second electrode collector 532 is directly connected to one second bus bar 514.
 連絡部52は、第1保護樹脂層45上に形成された部分であり、図156における図中内側のバスバー部51と第2集極部532とを連結している。これにより、2つの第2バスバー部514に集約された正孔が第2集極部532へと導かれる。 The connecting part 52 is a part formed on the first protective resin layer 45 and connects the bus bar part 51 on the inner side in the drawing in FIG. As a result, the holes collected in the two second bus bar portions 514 are guided to the second electrode collector portion 532.
 図148、図149および図156に示すように、第1バスバー部513は、第2バスバー部514から離間しており、接続部13の接続延出部132の一部を覆っている。より具体的には、第1バスバー部513は、図148における図中左右方向(接続部13の長手方向)において接続延出部132の一部を覆っている。図149に示すように、第1バスバー部513の第7端縁511は、平面視において接続部13の接続部端縁131と一致している。第2バスバー部514には、迂回部5141が設けられている。迂回部5141は、第2バスバー部514のうち第1バスバー部513の両側に位置する部分に繋がっており、平面視において第1バスバー部513および第1集極部531を迂回するように形成されている。 As shown in FIGS. 148, 149, and 156, the first bus bar portion 513 is separated from the second bus bar portion 514 and covers a part of the connection extension portion 132 of the connection portion 13. More specifically, the first bus bar portion 513 covers a part of the connection extension portion 132 in the left-right direction in FIG. 148 (longitudinal direction of the connection portion 13). As shown in FIG. 149, the seventh end edge 511 of the first bus bar portion 513 coincides with the connection portion end edge 131 of the connection portion 13 in plan view. The second bus bar portion 514 is provided with a detour portion 5141. The bypass portion 5141 is connected to portions of the second bus bar portion 514 located on both sides of the first bus bar portion 513, and is formed to bypass the first bus bar portion 513 and the first electrode collector portion 531 in a plan view. ing.
 第1集極部531は、第1バスバー部513に導通する部分であり、第2導電層2によって集約された電子を、たとえば電子機器B16に設けられた電子用端子に出力するための部分である。本実施形態においては、第1集極部531は、保護樹脂層4の第1保護樹脂層45上に形成されている。第1集極部531は、平面視において第2導電層2および光電変換層3と重なっている。支持基板41の厚さ方向において、光電変換層3と第1集極部531との間には、パッシベーション層42および第1保護樹脂層45が介在している。第1集極部531の平面視形状は特に限定されず、図示された例においては、略半楕円形状とされている。また、図示された例においては、第1集極部531は、第1バスバー部513に直接つながっている。 The first electrode collecting portion 531 is a portion that conducts to the first bus bar portion 513, and is a portion for outputting electrons collected by the second conductive layer 2 to, for example, an electronic terminal provided in the electronic device B16. is there. In the present embodiment, the first electrode collector 531 is formed on the first protective resin layer 45 of the protective resin layer 4. The first electrode collector 531 overlaps the second conductive layer 2 and the photoelectric conversion layer 3 in plan view. In the thickness direction of the support substrate 41, the passivation layer 42 and the first protective resin layer 45 are interposed between the photoelectric conversion layer 3 and the first electrode collector 531. The shape of the first collector portion 531 in plan view is not particularly limited, and in the illustrated example, it is substantially semi-elliptical. In the illustrated example, the first electrode collector 531 is directly connected to the first bus bar 513.
 図148に示すように、本実施形態においては、意匠表示部35(意匠表示用貫通部350)は、平面視において導通用貫通部351に対して接続部端縁131とは反対側に位置している。言い換えると、導通用貫通部351は、平面視において接続部端縁131と意匠表示部35との間に位置している。 As shown in FIG. 148, in the present embodiment, the design display part 35 (design display through part 350) is located on the opposite side of the connection part edge 131 with respect to the conduction through part 351 in plan view. ing. In other words, the conduction through portion 351 is located between the connection portion edge 131 and the design display portion 35 in a plan view.
 図148~図150に示すように、第2端縁451および第1端縁421に対して第2バスバー部514および第2保護樹脂層46を間に挟んで隣接する領域から、支持基板41の一部が露出領域411として露出している。また、露出領域411は、第1導電層1等によって覆われておらず、支持基板41の表面が直接露出している。 As shown in FIGS. 148 to 150, from the region adjacent to the second end 451 and the first end 421 with the second bus bar portion 514 and the second protective resin layer 46 interposed therebetween, A part is exposed as an exposed region 411. The exposed region 411 is not covered with the first conductive layer 1 or the like, and the surface of the support substrate 41 is directly exposed.
 次いで、有機薄膜太陽電池モジュールA16の製造方法の一例について、図158~図170を参照しつつ、以下に説明する。なお、これらの図においては、理解の便宜上、図149および図150とは、天地逆に表されている。また、図158~図168においては、図148に示したCXLIX-CXLIX線における断面構造を生成する過程を示している。 Next, an example of a method for producing the organic thin film solar cell module A16 will be described below with reference to FIGS. In these drawings, for convenience of understanding, FIGS. 149 and 150 are shown upside down. FIGS. 158 to 168 show a process of generating a cross-sectional structure taken along the line CXLIX-CXLIX shown in FIG.
 まず、図158に示すように、支持基板41を用意する。そして、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOからなる第1導電膜10を積層する。 First, as shown in FIG. 158, a support substrate 41 is prepared. Then, the first conductive film 10 made of ITO is laminated on one side of the support substrate 41 by a general method such as sputtering.
 次に、図159および図160に示すように、該ITOにパターニングを施し、開口18、表示用開口181、スリット193、スリット17等のパターンを形成するためのパターニングを行う。ここで、ITOへのパターニング手法としては、たとえばウエットエッチングを用いた手法、Greenレーザー光等のレーザーパターニングを用いた手法が適宜採用される。 Next, as shown in FIGS. 159 and 160, patterning is performed on the ITO to form patterns such as openings 18, display openings 181, slits 193, and slits 17 and the like. Here, as a patterning method to ITO, for example, a method using wet etching and a method using laser patterning such as Green laser light are appropriately employed.
 次いで、図161に示すように、有機膜3Aを形成する。有機膜3Aの形成は、たとえば、スピンコート塗布により支持基板41上および第1導電膜10上に有機膜を成膜することによって行う。 Next, as shown in FIG. 161, an organic film 3A is formed. The organic film 3A is formed by, for example, forming an organic film on the support substrate 41 and the first conductive film 10 by spin coating.
 次いで、図162および図163に示すように、有機膜3Aにパターニングを施すことにより、光電変換層3を形成する。有機膜3Aのパターニングは、たとえば酸素プラズマエッチング、レーザーパターニングを用いることによって、第5内方退避端縁301、第5外方退避端縁302、開口38、意匠表示用貫通部350(意匠表示部35)、導通用貫通部351を有する構成に仕上げることにより行う。なお、光電変換層3は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷などの手法によって、支持基板41上および第1導電膜10上に直接的に有機膜をパターニングすることで形成するようにしても良い。ただし、図示された例においては、導通用貫通部351は、比較的小径の円形貫通孔である。このような導通用貫通部351の形成は、レーザー光Lz0を用いたパターニングが適している。レーザー光Lz0としては、有機膜3Aを除去しつつ、第1導電膜10を残存させる波長のレーザー光を選択することが好ましく、たとえばGreenレーザー光が選択される。 Next, as shown in FIGS. 162 and 163, the photoelectric conversion layer 3 is formed by patterning the organic film 3A. For patterning of the organic film 3A, for example, oxygen plasma etching or laser patterning is used, so that the fifth inner retracting edge 301, the fifth outer retracting edge 302, the opening 38, the design display through portion 350 (design display portion) 35), by finishing to a configuration having a through-hole 351 for conduction. The photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive film 10 by a technique such as a slit coating method, a capillary coating method, or gravure printing. It may be formed by. However, in the illustrated example, the conduction through portion 351 is a circular through hole having a relatively small diameter. For the formation of such a conduction through portion 351, patterning using the laser beam Lz0 is suitable. As the laser beam Lz0, it is preferable to select a laser beam having a wavelength that leaves the first conductive film 10 while removing the organic film 3A. For example, a green laser beam is selected.
 次いで、図164に示すように、第2導電層2を形成する。第2導電層2の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板41、第1導電膜10および光電変換層3上に金属膜を成膜する。次に、該金属膜に例えばマスク層を用いたエッチングを行うことによりパターニングを施す。このパターニングにより、光電変換層3上に第4内方退避端縁201および第4外方退避端縁202を有する第2導電層2を形成する。また、当該工程において、光電変換層3の導通用貫通部351が第2導電層2によって埋められる。これにより、第1導電層1と第2導電層2とが、導通用貫通部351を介して導通する。 Next, as shown in FIG. 164, the second conductive layer 2 is formed. The second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive film 10 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition. Next, the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having the fourth inner withdrawal edge 201 and the fourth outer withdrawal edge 202 is formed on the photoelectric conversion layer 3. Further, in the process, the conduction through portion 351 of the photoelectric conversion layer 3 is filled with the second conductive layer 2. As a result, the first conductive layer 1 and the second conductive layer 2 are conducted through the conduction through portion 351.
 次いで、図165に示すように、絶縁膜420を形成する。絶縁膜420の形成は、たとえばプラズマCVD法によってSiNまたはSiONなどの膜を支持基板41、第1導電層1、光電変換層3および第2導電層2上に形成することにより行う。 Next, as shown in FIG. 165, an insulating film 420 is formed. The insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
 次いで、図166に示すように、第1保護樹脂層45を形成する。第1保護樹脂層45の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によって絶縁膜420上に塗布し、紫外線を照射することによって硬化させる。これにより、第2端縁451および第2外方端縁452を有する第1保護樹脂層45が得られる。 Next, as shown in FIG. 166, a first protective resin layer 45 is formed. The first protective resin layer 45 is formed, for example, by applying a liquid resin material containing an ultraviolet curable resin on the insulating film 420 by screen printing and irradiating it with ultraviolet rays. As a result, the first protective resin layer 45 having the second end edge 451 and the second outer end edge 452 is obtained.
 次いで、図167に示すように、第1保護樹脂層45をマスクとして用いたパターニングを絶縁膜420に施す。このパターニングは、たとえばフッ化水素を0.55%~4.5%含むフッ化水素酸を用いたウエットエッチングによって行う。このようなフッ化水素酸は、紫外線硬化樹脂からなる第1保護樹脂層45をほとんど溶解しない一方、SiN等からなる絶縁膜420を選択的に溶解する。また、フッ化水素酸は、ITO等からなる第1導電膜10はほとんど溶解しない。この結果、第1端縁421および第1外方端縁422を有するパッシベーション層42が形成される。第1端縁421は、平面視において第2端縁451と一致する。第1端縁421と第2端縁451とは、連続した面をなす。また、第1外方端縁422は、平面視において第2外方端縁452と一致する。第1外方端縁422と第2外方端縁452とは、連続した面をなす。 Next, as shown in FIG. 167, patterning is performed on the insulating film 420 using the first protective resin layer 45 as a mask. This patterning is performed, for example, by wet etching using hydrofluoric acid containing 0.55% to 4.5% hydrogen fluoride. Such hydrofluoric acid hardly dissolves the first protective resin layer 45 made of an ultraviolet curable resin, but selectively dissolves the insulating film 420 made of SiN or the like. Further, hydrofluoric acid hardly dissolves the first conductive film 10 made of ITO or the like. As a result, a passivation layer 42 having a first edge 421 and a first outer edge 422 is formed. The first edge 421 coincides with the second edge 451 in plan view. The first edge 421 and the second edge 451 form a continuous surface. The first outer end edge 422 coincides with the second outer end edge 452 in plan view. The first outer end edge 422 and the second outer end edge 452 form a continuous surface.
 次いで、図168および図169に示すように、バイパス導電部5を形成する。バイパス導電部5の形成は、たとえばAgまたはカーボンを含むペーストを塗布した後に、たとえば乾燥などの手法によってこのペーストを硬化させることによって行う。 Next, as shown in FIGS. 168 and 169, the bypass conductive portion 5 is formed. The bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying.
 次いで、図170に示すように、第1導電膜10にパターニングを施す。このパターニングは、たとえば濃塩酸と濃硝酸とが3:1の比率で混合された王水を用いて行う。このパターニングにより、第1導電膜10のうちバイパス導電部5や第1保護樹脂層45から露出した部分が選択的に除去される。この結果、第3端縁101等を有する第1導電層1が形成される。次いで、第2保護樹脂層46を形成する。第2保護樹脂層46の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によって絶縁膜420上に塗布し、紫外線を照射することによって硬化させる。これにより、第6端縁461および第6外方端縁462を有する第2保護樹脂層46が得られ、保護樹脂層4が形成される。以上の工程を経ることにより、有機薄膜太陽電池モジュールA16が得られる。 Next, as shown in FIG. 170, the first conductive film 10 is patterned. This patterning is performed, for example, using aqua regia in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a ratio of 3: 1. By this patterning, portions of the first conductive film 10 exposed from the bypass conductive portion 5 and the first protective resin layer 45 are selectively removed. As a result, the first conductive layer 1 having the third edge 101 and the like is formed. Next, the second protective resin layer 46 is formed. The second protective resin layer 46 is formed by, for example, applying a liquid resin material containing an ultraviolet curable resin on the insulating film 420 by screen printing and curing it by irradiating with ultraviolet rays. Thereby, the 2nd protective resin layer 46 which has the 6th edge 461 and the 6th outside edge 462 is obtained, and protective resin layer 4 is formed. Through the above steps, an organic thin film solar cell module A16 is obtained.
 次に、有機薄膜太陽電池モジュールA16および電子機器B16の作用について説明する。 Next, the operation of the organic thin film solar cell module A16 and the electronic device B16 will be described.
 本実施形態によれば、図148および図149に示すように、第3外方端縁105に沿う光電変換層3の第5外方退避端縁302に近い位置に導通用貫通部351が設けられている。このため、導通用貫通部351を含み且つ接続部13と重なる非発電領域30は、第3外方端縁105に近接する比較的小面積の領域となり、たとえば意匠表示部35と比べて小さい領域である。したがって、光電変換層3のうち発電に寄与する発電領域31の面積割合を高めることができる。 According to the present embodiment, as shown in FIGS. 148 and 149, the conductive through-hole 351 is provided at a position near the fifth outer retreat edge 302 of the photoelectric conversion layer 3 along the third outer end edge 105. It has been. For this reason, the non-power generation region 30 that includes the conduction through portion 351 and overlaps the connection portion 13 is a relatively small area close to the third outer end edge 105, for example, a region that is smaller than the design display portion 35. It is. Therefore, the area ratio of the power generation region 31 that contributes to power generation in the photoelectric conversion layer 3 can be increased.
 本実施形態においては、導通用貫通部351は、平面視円形状の貫通孔であり、その直径がたとえば40μm程度である。これにより、導通用貫通部351やこれを含む発電領域31を、有機薄膜太陽電池モジュールA16および電子機器B16の外観において目視によってほとんど確認できない程度の部位とすることが可能である。これは、有機薄膜太陽電池モジュールA16および電子機器B16の外観をより美麗に仕上げるのに適している。 In the present embodiment, the through-hole for conduction 351 is a through-hole having a circular shape in plan view, and its diameter is, for example, about 40 μm. Thereby, it is possible to make the conduction | electrical_connection penetration part 351 and the electric power generation area | region 31 containing this into a site | part of a grade which can hardly be visually confirmed in the external appearance of organic thin-film solar cell module A16 and electronic device B16. This is suitable for finishing the appearance of the organic thin film solar cell module A16 and the electronic device B16 more beautifully.
 第1集極部531および第2集極部532は、平面視において第2導電層2および光電変換層3と重なる位置に設けられている。このため、第1集極部531および第2集極部532は、第3外方端縁105から平面視において外方へと延出していない。これは、有機薄膜太陽電池モジュールA16の接地面積を縮小するのに適している。 The first electrode collector 531 and the second electrode collector 532 are provided at positions overlapping the second conductive layer 2 and the photoelectric conversion layer 3 in plan view. For this reason, the first electrode collector 531 and the second electrode collector 532 do not extend outward from the third outer edge 105 in plan view. This is suitable for reducing the ground contact area of the organic thin film solar cell module A16.
 導通用貫通部351を利用して、第1集極部531へと電子を集約する構造であるため、意匠表示部35を構成する意匠表示用貫通部350は、電子の集約に利用する必要が無い。このため、意匠表示部35から電子を集約するための導通経路をたとえば第1導電層1に確保する必要が無い。これにより、意匠表示部35から第3外方端縁105等に至る導通経路を省略することが可能である。したがって、有機薄膜太陽電池モジュールA16および電子機器B16の外観において、意匠表示部35から第3外方端縁105が存在する端部へと延びる線が表れてしまうことを防止することができる。特に、意匠表示部35は、外観において目立つ位置に設けられる場合が多く、第3外方端縁105等の端部から離間していることが一般的である。このような場合に、上述した外観に表れる線を省略できることは、有機薄膜太陽電池モジュールA16および電子機器B16の外観をより美麗に仕上げるのに好ましい。 Since it is a structure which collects electrons to the 1st collector part 531 using the penetration part 351 for conduction, it is necessary to use the penetration part 350 for design display which constitutes the design display part 35 for aggregation of electrons. No. For this reason, it is not necessary to ensure the conduction | electrical_connection path for collecting electrons from the design display part 35 in the 1st conductive layer 1, for example. Thereby, it is possible to omit the conduction path from the design display section 35 to the third outer edge 105 and the like. Therefore, in the external appearance of the organic thin-film solar cell module A16 and the electronic device B16, it can be prevented that a line extending from the design display portion 35 to the end portion where the third outer end edge 105 exists appears. In particular, the design display portion 35 is often provided at a conspicuous position in appearance, and is generally separated from the end portion such as the third outer end edge 105. In such a case, being able to omit the lines appearing in the above-described appearance is preferable for finishing the appearance of the organic thin-film solar cell module A16 and the electronic device B16 more beautifully.
 バイパス導電部5を設けることにより、第1導電層1に拡散してきた正孔を、第2バスバー部514を経由して第2集極部532へと導くことができる。バイパス導電部5は、第1導電層1よりも低抵抗の材料からなる。このため、バイパス導電部5によって、より低抵抗な導通経路が構成される。このような導通経路に光電変換層3によって発電された電力を導くことにより、通電による損失を抑制することができる。また、バイパス導電部5は、保護樹脂層4によって覆われている。このため、保護樹脂層4が外気等との反応によって劣化することを回避することができる。したがって、有機薄膜太陽電池モジュールA16および電子機器B16の通電部分の劣化を回避しつつ通電損失を抑制することができる。 By providing the bypass conductive portion 5, holes diffused in the first conductive layer 1 can be guided to the second electrode collector portion 532 via the second bus bar portion 514. The bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1. For this reason, the bypass conductive portion 5 forms a lower resistance conduction path. By guiding the power generated by the photoelectric conversion layer 3 to such a conduction path, loss due to energization can be suppressed. Further, the bypass conductive portion 5 is covered with the protective resin layer 4. For this reason, it can avoid that the protective resin layer 4 deteriorates by reaction with external air etc. Therefore, it is possible to suppress energization loss while avoiding deterioration of energized portions of the organic thin-film solar cell module A16 and the electronic device B16.
 図149に示すように、第7端縁511および第7外方端縁512は、第6端縁461および第6外方端縁462の内側に位置している。すなわち、バイパス導電部5は、保護樹脂層4によって完全に覆われている。これは、バイパス導電部5の保護に好ましい。 As shown in FIG. 149, the seventh end edge 511 and the seventh outer end edge 512 are located inside the sixth end edge 461 and the sixth outer end edge 462. That is, the bypass conductive portion 5 is completely covered with the protective resin layer 4. This is preferable for protecting the bypass conductive portion 5.
 第2端縁451および第2外方端縁452に隣接する領域において支持基板41が露出している。この部位には、パッシベーション層42や第1保護樹脂層45が形成されていない。したがって、この部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 The support substrate 41 is exposed in a region adjacent to the second edge 451 and the second outer edge 452. In this portion, the passivation layer 42 and the first protective resin layer 45 are not formed. Therefore, it is possible to finish this portion more transparent, and the display portion 702 can be expressed more clearly.
 第2端縁451および第1端縁421に隣接する領域のうち第2バスバー部514によって覆われた僅かな領域を除いて、支持基板41には第1導電層1が形成されていない。第1導電層1は、ITOからなるものの、光線のあたり具合によっては、うっすらと着色されたものとして視認される。本実施形態においては、表示部702を外観に表すための領域をことさらに透明に仕上げることが可能であり、より美麗な外観を実現することができる。 The first conductive layer 1 is not formed on the support substrate 41 except for a small area covered by the second bus bar portion 514 in areas adjacent to the second edge 451 and the first edge 421. Although the first conductive layer 1 is made of ITO, the first conductive layer 1 is visually recognized as being slightly colored depending on how light hits. In the present embodiment, it is possible to finish the region for displaying the display unit 702 in an even more transparent manner, and a more beautiful appearance can be realized.
 光電変換層3の第5内方退避端縁301および第2導電層2の第4内方退避端縁201が、第1端縁421および第2端縁451と離間していることにより、第2導電層2および光電変換層3がバイパス導電部5と不当に導通することを回避することができる。また、第4内方退避端縁201および第5内方退避端縁301と第1端縁421および第2端縁451との間にパッシベーション層42が介在していることにより、第2導電層2および光電変換層3とバイパス導電部5の第2バスバー部514とがショートすることをより確実に防止可能である。 The fifth inward retracting edge 301 of the photoelectric conversion layer 3 and the fourth inward retracting edge 201 of the second conductive layer 2 are separated from the first end edge 421 and the second end edge 451, thereby The two conductive layers 2 and the photoelectric conversion layer 3 can be prevented from being unduly conducted with the bypass conductive portion 5. Further, since the passivation layer 42 is interposed between the fourth inner retracting edge 201 and the fifth inner retracting edge 301 and the first end edge 421 and the second end edge 451, the second conductive layer 2 and the photoelectric conversion layer 3 and the second bus bar portion 514 of the bypass conductive portion 5 can be prevented more reliably.
 第1保護樹脂層45をマスクとして用いたパターニングを絶縁膜420に施すことにより、第1保護樹脂層45と同形状のパッシベーション層42を形成することができる。すなわち、紫外線硬化樹脂などの形状形成に優れた材質を用いて第1保護樹脂層45を形成すれば、必ずしも形状形成に優れていない材質からなるパッシベーション層42を所望の形状に仕上げることができる。なお、第1保護樹脂層45は、パッシベーション層42を形成した後に除去してもよい。ただし、第1保護樹脂層45を残存させた場合、水分やパーティクル等の第1導電層1、第2導電層2および光電変換層3等への侵入を防止する効果や、有機薄膜太陽電池モジュールA16の強度向上を図る効果が期待できる。 The passivation layer 42 having the same shape as the first protective resin layer 45 can be formed by patterning the insulating film 420 using the first protective resin layer 45 as a mask. That is, if the first protective resin layer 45 is formed using a material excellent in shape formation such as an ultraviolet curable resin, the passivation layer 42 made of a material not necessarily excellent in shape formation can be finished in a desired shape. Note that the first protective resin layer 45 may be removed after the passivation layer 42 is formed. However, when the first protective resin layer 45 is left, the effect of preventing moisture and particles from entering the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, etc., and the organic thin film solar cell module The effect of improving the strength of A16 can be expected.
 図171~図183は、本発明の変形例および他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付しており、適宜説明を省略する。 FIGS. 171 to 183 show a modified example and other embodiments of the present invention. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and description thereof will be omitted as appropriate.
 図171は、有機薄膜太陽電池モジュールA16の変形例を示している。本変形例においては、導通用貫通部351が、平面視において細長形状とされている。導通用貫通部351の長手方向は、接続部端縁131と略平行であり、接続部13の長手方向と一致している。このような変形例によっても、光電変換層3のうち発電に寄与する面積割合を高める事ができる。 FIG. 171 shows a modification of the organic thin film solar cell module A16. In this modification, the conduction through portion 351 has an elongated shape in plan view. The longitudinal direction of the conduction through portion 351 is substantially parallel to the connection portion edge 131 and coincides with the longitudinal direction of the connection portion 13. Also by such a modification, the area ratio which contributes to electric power generation among the photoelectric converting layers 3 can be raised.
 図172~図175は、本発明の第18実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の有機薄膜太陽電池モジュールA17は、第1導電層1、第2導電層2、光電変換層3、支持基板41、パッシベーション層42、保護樹脂層4およびバイパス導電部5を備えている。有機薄膜太陽電池モジュールA17の平面視形状は特に限定されず、図示された例は、上述した有機薄膜太陽電池モジュールA16と同様の平面視形状である場合の例である。図172は、有機薄膜太陽電池モジュールA17を示す要部拡大底面図である。図173は、図172のCLXXIII-CLXXIII線に沿う要部拡大断面図である。図174は、図172のCLXXIV-CLXXIV線に沿う要部拡大断面図である。図175は、第1保護樹脂層45およびバイパス導電部5を省略した要部拡大平面図である。 FIGS. 172 to 175 show an organic thin film solar cell module according to an eighteenth embodiment of the present invention. The organic thin-film solar cell module A17 of this embodiment includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation layer 42, a protective resin layer 4, and a bypass conductive portion 5. . The planar view shape of the organic thin film solar cell module A17 is not particularly limited, and the illustrated example is an example in the case of the same planar view shape as the organic thin film solar cell module A16 described above. FIG. 172 is an essential part enlarged bottom view showing the organic thin film solar cell module A17. FIG. 173 is an enlarged cross-sectional view of a main part taken along the line CLXXIII-CLXXIII of FIG. FIG. 174 is an enlarged cross-sectional view of a main part taken along line CLXXIV-CLXXIV in FIG. FIG. 175 is an enlarged plan view of a main part in which the first protective resin layer 45 and the bypass conductive portion 5 are omitted.
 本実施形態のパッシベーション層42の第1端縁421および第1外方端縁422は、図173および図174に示すように、凹凸形状の端面となっている。また、第1端縁421は全体として、支持基板41の厚さ方向において支持基板41から離間するほど平面視において第3端縁101から離間する向きに傾いている。また、第1外方端縁422は全体として、支持基板41の厚さ方向において支持基板41から離間するほど第1導電層1の第2延出部103から離間する向きに傾いている。また、本実施形態の第1端縁421は、図175に示すように、平面視において第3端縁101から離間した非直線状の形状である。第1端縁421は、たとえば複数の折れ線や曲線が結合された形状である。第1外方端縁422も同様に、平面視において被直線状の形状である。 The first edge 421 and the first outer edge 422 of the passivation layer 42 of the present embodiment are concave and convex end faces as shown in FIGS. 173 and 174. Further, as a whole, the first edge 421 is inclined in a direction away from the third edge 101 in plan view as the distance from the support substrate 41 in the thickness direction of the support substrate 41 is increased. Further, the first outer end edge 422 as a whole is inclined in a direction away from the second extending portion 103 of the first conductive layer 1 as it is separated from the support substrate 41 in the thickness direction of the support substrate 41. In addition, as shown in FIG. 175, the first end edge 421 of the present embodiment has a non-linear shape spaced from the third end edge 101 in plan view. The first end edge 421 has, for example, a shape in which a plurality of broken lines and curves are combined. Similarly, the first outer end edge 422 has a linear shape in plan view.
 バイパス導電部5の1つの第2バスバー部514は、パッシベーション層42の第1端縁421を一部を除き、略全長にわたって覆っている。この第2バスバー部514は、第1導電層1のうち第3端縁101と第1端縁421との間に位置する第1延出部104を覆っている。また、この第2バスバー部514の第7端縁511は、平面視において第3端縁101に対して第1端縁421とは反対側に位置している。これにより、この第2バスバー部514は、支持基板41に直接接している。他方の第2バスバー部514は、パッシベーション層42の第1外方端縁422を全長にわたって覆っている。この第2バスバー部514は、第1導電層1の第2延出部103を覆っている。また、この第2バスバー部514の第7外方端縁512は、平面視において第3外方端縁105に対して第1外方端縁422とは反対側に位置している。これにより、この第2バスバー部514は、支持基板41に直接接している。このような構成により、2つの第2バスバー部514は、それぞれが第1導電層1と導通している。 One second bus bar portion 514 of the bypass conductive portion 5 covers substantially the entire length except for a part of the first edge 421 of the passivation layer 42. The second bus bar portion 514 covers the first extending portion 104 located between the third end edge 101 and the first end edge 421 in the first conductive layer 1. Further, the seventh end edge 511 of the second bus bar portion 514 is located on the side opposite to the first end edge 421 with respect to the third end edge 101 in plan view. Thereby, the second bus bar portion 514 is in direct contact with the support substrate 41. The other second bus bar portion 514 covers the first outer end edge 422 of the passivation layer 42 over the entire length. The second bus bar portion 514 covers the second extending portion 103 of the first conductive layer 1. Further, the seventh outer end edge 512 of the second bus bar portion 514 is located on the opposite side of the first outer end edge 422 with respect to the third outer end edge 105 in plan view. Thereby, the second bus bar portion 514 is in direct contact with the support substrate 41. With such a configuration, each of the two second bus bar portions 514 is electrically connected to the first conductive layer 1.
 第1バスバー部513は、第1導電層1の接続部13の接続延出部132を覆っている。また、第1バスバー部513の第7端縁511は、平面視において第3端縁101に対して、第1端縁421とは反対側に位置している。これにより、第1バスバー部513は、支持基板41に直接接している。 The first bus bar portion 513 covers the connection extension portion 132 of the connection portion 13 of the first conductive layer 1. Further, the seventh end edge 511 of the first bus bar portion 513 is located on the opposite side to the first end edge 421 with respect to the third end edge 101 in plan view. Thus, the first bus bar portion 513 is in direct contact with the support substrate 41.
 本実施形態の保護樹脂層4は、第1保護樹脂層45のみを有している。図173および図174に示すように、第1保護樹脂層45は、パッシベーション層42およびバイパス導電部5を覆っており、たとえば紫外線硬化樹脂からなる。また、第1保護樹脂層45は、有機薄膜太陽電池モジュールA17と上述した表示部702とを接合するための透明な接合層を兼ねていてもよい。図示された例においては、第2端縁451の第2端縁451は、平面視において第7端縁511に対して第1端縁421とは反対側に位置している。第1保護樹脂層45の第2外方端縁452は、平面視において第7外方端縁512に対して第1外方端縁422とは反対側に位置している。これにより、第1保護樹脂層45は、支持基板41に直接接する部分を有する。また、第1保護樹脂層45は、パッシベーション層42の表面423のうちバイパス導電部5から露出した部分を覆っている。 The protective resin layer 4 of the present embodiment has only the first protective resin layer 45. As shown in FIGS. 173 and 174, the first protective resin layer 45 covers the passivation layer 42 and the bypass conductive portion 5, and is made of, for example, an ultraviolet curable resin. Moreover, the 1st protective resin layer 45 may serve as the transparent joining layer for joining organic thin-film solar cell module A17 and the display part 702 mentioned above. In the illustrated example, the second end edge 451 of the second end edge 451 is located on the opposite side of the first end edge 421 with respect to the seventh end edge 511 in plan view. The second outer end edge 452 of the first protective resin layer 45 is located on the opposite side of the first outer end edge 422 with respect to the seventh outer end edge 512 in plan view. Thus, the first protective resin layer 45 has a portion that directly contacts the support substrate 41. Further, the first protective resin layer 45 covers a portion of the surface 423 of the passivation layer 42 that is exposed from the bypass conductive portion 5.
 次に、有機薄膜太陽電池モジュールA17の製造方法の一例について以下に説明する。なお、以下の説明において参照する図においては、理解の便宜上、図173および図174とは、天地逆に表されている。 Next, an example of a method for manufacturing the organic thin film solar cell module A17 will be described below. In the drawings referred to in the following description, for convenience of understanding, FIGS. 173 and 174 are shown upside down.
 まず、図158に示した支持基板41を用意する。そして、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOからなる第1導電膜10を積層する。次に、図176に示すように、第1導電膜10にパターニングを施す。これにより、第1導電膜10には、スリット17、スリット191、スリット192、スリット193等が形成される。第1導電膜10のパターニングは、たとえばレーザーパターニングよってなされる。このレーザーパターニングに用いられるレーザー光Lz1は、第1導電膜10をレーザーパターニング可能なものであれば特に限定されず、たとえばIRレーザー光を用いることができる。スリット191を構成する第1導電膜10の端縁のうち図示された第2導電層2および光電変換層3側に位置するものは、第3端縁101となる。第1導電膜10のうち第5内方退避端縁301とスリット191との間の部分は、第1延出部104となる。スリット192を構成する第1導電膜10の端縁のうち図示された第2導電層2および光電変換層3側に位置するものは、第3外方端縁105となる。第1導電膜10のうちスリット192と光電変換層3の第5外方退避端縁302との間の部分は、第2延出部103となる。スリット17とスリット192とによって区画された部分は、接続部13となる。 First, the support substrate 41 shown in FIG. 158 is prepared. Then, the first conductive film 10 made of ITO is laminated on one side of the support substrate 41 by a general method such as sputtering. Next, as shown in FIG. 176, the first conductive film 10 is patterned. As a result, a slit 17, a slit 191, a slit 192, a slit 193, and the like are formed in the first conductive film 10. The patterning of the first conductive film 10 is performed by laser patterning, for example. The laser beam Lz1 used for this laser patterning is not particularly limited as long as the first conductive film 10 can be subjected to laser patterning. For example, IR laser beam can be used. Of the edges of the first conductive film 10 constituting the slit 191, the one located on the second conductive layer 2 and the photoelectric conversion layer 3 side shown is the third edge 101. A portion of the first conductive film 10 between the fifth inward retracting edge 301 and the slit 191 becomes the first extending portion 104. Of the edges of the first conductive film 10 constituting the slit 192, the one located on the second conductive layer 2 and the photoelectric conversion layer 3 side shown is the third outer edge 105. A portion of the first conductive film 10 between the slit 192 and the fifth outer retraction edge 302 of the photoelectric conversion layer 3 becomes the second extension portion 103. A portion defined by the slit 17 and the slit 192 becomes the connection portion 13.
 次いで、第1導電膜10上に有機膜を形成し、この有機膜にたとえばGreenレーザー光を用いたレーザーパターニングを施すことにより、図177に示す、光電変換層3を形成する。 Next, an organic film is formed on the first conductive film 10, and laser patterning using, for example, Green laser light is performed on the organic film, thereby forming the photoelectric conversion layer 3 shown in FIG. 177.
 次いで、図178に示すように、第2導電層2を形成し、図179に示すように、絶縁膜420を形成する。絶縁膜420の形成は、たとえばプラズマCVD法によってSiNまたはSiONなどの膜を支持基板41、第1導電膜10、光電変換層3および第2導電層2上に形成することにより行う。 Next, as shown in FIG. 178, the second conductive layer 2 is formed, and as shown in FIG. 179, the insulating film 420 is formed. The insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive film 10, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
 次いで、図179に示すように、第1導電膜10、第2導電層2および光電変換層3を覆う絶縁膜420を形成する。次いで、絶縁膜420を部分的に除去することによる第1端縁421を有するパッシベーション層42の形成および第1導電膜10の部分的な除去による第1導電層1の形成を含み、第1端縁421に隣接する領域において支持基板41を露出させる工程を行う。本実施形態においては、支持基板41を露出させる工程は、図180に示すように、絶縁膜420を透して第1導電膜10にレーザー光Lz2を照射することにより、第1導電膜10および絶縁膜420を部分的に除去する処理を含む。同図において、第1導電膜10のうち相対的に濃い複数の離散点からなるハッチングが付された部分は、レーザー光Lz2が照射される部分を表している。また、絶縁膜420のうち相対的に薄い複数の離散点からなるハッチングが付された部分は、レーザー光Lz2の照射に起因して除去される部分を表している。なお、レーザー光Lz2を用いた手法に限定されず、たとえばエッチングを用いた手法を選択してもよい。 Next, as shown in FIG. 179, an insulating film 420 covering the first conductive film 10, the second conductive layer 2, and the photoelectric conversion layer 3 is formed. Then, forming the passivation layer 42 having the first edge 421 by partially removing the insulating film 420 and forming the first conductive layer 1 by partially removing the first conductive film 10, A step of exposing the support substrate 41 in a region adjacent to the edge 421 is performed. In the present embodiment, the step of exposing the support substrate 41 is performed by irradiating the first conductive film 10 with laser light Lz2 through the insulating film 420, as shown in FIG. A process of partially removing the insulating film 420 is included. In the figure, a hatched portion of a plurality of relatively dark discrete points in the first conductive film 10 represents a portion irradiated with the laser light Lz2. In addition, a hatched portion of a plurality of relatively thin discrete points in the insulating film 420 represents a portion that is removed due to irradiation with the laser light Lz2. Note that the method is not limited to the method using the laser beam Lz2, and for example, a method using etching may be selected.
 より具体的には、絶縁膜420を透して、第1導電膜10のうちスリット191およびスリット192を挟んで図示された第2導電層2および光電変換層3とは反対側に位置する部分に、レーザー光Lz2を照射する。レーザー光Lz2としては、たとえば波長が1,064nm程度のIRレーザー光が選択される。このレーザー光Lz2が照射された第1導電膜10の部分は、顕著なエネルギー投入によって瞬時に揮発する挙動を示す。 More specifically, a portion of the first conductive film 10 that is located on the opposite side of the second conductive layer 2 and the photoelectric conversion layer 3 that are illustrated across the slit 191 and the slit 192 through the insulating film 420. Are irradiated with laser light Lz2. As the laser beam Lz2, for example, an IR laser beam having a wavelength of about 1,064 nm is selected. The portion of the first conductive film 10 irradiated with the laser light Lz2 exhibits a behavior that volatilizes instantaneously when significant energy is applied.
 一方、上述したレーザー光Lz2の波長は、第1導電膜10に比べて絶縁膜420が吸収しづらいものが選択されている。このため、絶縁膜420は、レーザー光Lz2によって直接に破壊されるものではない。しかし、絶縁膜420のうち第1導電膜10と接する部分は、第1導電膜10を介して支持基板41によって支持されている。第1導電膜10がレーザー光Lz2の照射によって揮発すると、絶縁膜420一部は、支持基板41によって支持されないものとなる。また、レーザー光Lz2が照射された第1導電膜10の部分(図中において相対的に濃い複数の離散点からなるハッチングが付された部分)に重なっている絶縁膜420は、第1導電膜10が揮発したことによる圧力によってその一部が飛散する。 On the other hand, the wavelength of the laser beam Lz2 described above is selected such that the insulating film 420 is less likely to absorb than the first conductive film 10. For this reason, the insulating film 420 is not directly destroyed by the laser beam Lz2. However, the portion of the insulating film 420 that contacts the first conductive film 10 is supported by the support substrate 41 via the first conductive film 10. When the first conductive film 10 is volatilized by irradiation with the laser beam Lz2, a part of the insulating film 420 is not supported by the support substrate 41. Further, the insulating film 420 overlapping the portion of the first conductive film 10 irradiated with the laser light Lz2 (the hatched portion including a plurality of relatively dark discrete points in the drawing) is the first conductive film. Part of it is scattered by the pressure due to volatilization of 10.
 また、発明者の研究の結果、絶縁膜420のうち、レーザー光Lz2が照射された第1導電膜10の部分に隣接する部分は、第1導電膜10の揮発の影響によって飛散することが判明した。図180においては、絶縁膜420のうちレーザー光Lz2の照射に起因して飛散する部分を、相対的に薄い複数の離散点からなるハッチングを付している。本実施形態においては、絶縁膜420のうち飛散する部分は、スリット191およびスリット192を超えて、第2導電層2および光電変換層3側に存在する。ただし、第2導電層2および光電変換層3の一部を露出させる程度に、パッシベーション層42が破壊されないように、スリット191およびスリット192の大きさや位置、およびレーザー光Lz2の照射範囲や出力等を適宜調節している。この結果、絶縁膜420のうちスリット191側に位置する端縁が第1端縁421となり、スリット192側に位置する端縁が第1外方端縁422となる。また、第1導電膜10のうちスリット191に隣接する複数の離散点からなるハッチング部分は、レーザー光Lz2の照射により除去される。このため、第1導電膜10のうちスリット191に対して平面視において光電変換層3側に位置する端縁が、第3端縁101となり、第1導電膜10のうちスリット192に対して平面視において光電変換層3側に位置する端縁が、第3外方端縁105となる。また、第1導電膜10のうちスリット192に隣接する複数の離散点からなるハッチング部分は、レーザー光Lz2の照射により除去される。また、スリット191およびスリット192に隣接する絶縁膜420の一部がレーザー光Lz2の照射に伴って飛散することにより、第1導電膜10のうちスリット191およびスリット192に隣接する一部が、パッシベーション層42から露出する。この部分が、第1延出部104および第2延出部103となる。 As a result of the inventors' research, it has been found that a portion of the insulating film 420 adjacent to the portion of the first conductive film 10 irradiated with the laser light Lz2 is scattered due to the volatility of the first conductive film 10. did. In FIG. 180, the portion of the insulating film 420 that is scattered due to the irradiation of the laser beam Lz2 is hatched with a plurality of relatively thin discrete points. In the present embodiment, the scattered portion of the insulating film 420 exists on the second conductive layer 2 and photoelectric conversion layer 3 side beyond the slit 191 and the slit 192. However, the size and position of the slit 191 and the slit 192, the irradiation range and output of the laser beam Lz2, etc. so that the passivation layer 42 is not destroyed to such an extent that the second conductive layer 2 and the photoelectric conversion layer 3 are partially exposed. Is adjusted accordingly. As a result, the edge located on the slit 191 side of the insulating film 420 becomes the first edge 421, and the edge located on the slit 192 side becomes the first outer edge 422. Moreover, the hatching part which consists of several discrete points adjacent to the slit 191 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2. For this reason, the edge located in the photoelectric conversion layer 3 side in planar view with respect to the slit 191 in the first conductive film 10 becomes the third edge 101, and the first conductive film 10 is planar with respect to the slit 192. The edge located on the photoelectric conversion layer 3 side when viewed is the third outer edge 105. Moreover, the hatching part which consists of a some discrete point adjacent to the slit 192 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2. In addition, a part of the insulating film 420 adjacent to the slit 191 and the slit 192 is scattered with the irradiation of the laser light Lz2, so that a part of the first conductive film 10 adjacent to the slit 191 and the slit 192 is passivation. Exposed from layer 42. This portion becomes the first extension portion 104 and the second extension portion 103.
 以上に述べたレーザー光Lz2の照射によって、第1導電膜10および絶縁膜420の部分的な除去を行うことにより、図181に示すように、第1端縁421および第1外方端縁422を有するパッシベーション層42が形成される。また、第1端縁421および第1外方端縁422から延出する部分を有する第1導電層1が形成される。第1導電層1には、第3端縁101および第2延出部103が形成される。また、スリット17によって区画された接続部13が形成される。なお、図180に示した工程の後に、支持基板41上に残存した第1導電膜10等の除去を目的として、たとえば王水を用いた洗浄処理を行ってもよい。 By partially removing the first conductive film 10 and the insulating film 420 by the irradiation with the laser beam Lz2 described above, as shown in FIG. 181, the first edge 421 and the first outer edge 422 are obtained. A passivation layer 42 is formed. Further, the first conductive layer 1 having portions extending from the first end edge 421 and the first outer end edge 422 is formed. In the first conductive layer 1, a third end edge 101 and a second extending portion 103 are formed. Moreover, the connection part 13 partitioned by the slit 17 is formed. In addition, after the process shown in FIG. 180, for example, a cleaning process using aqua regia may be performed for the purpose of removing the first conductive film 10 and the like remaining on the support substrate 41.
 次いで、図182に示すようにバイパス導電部5を形成する。バイパス導電部5の形成は、第1導電層1のうちパッシベーション層42から延出した部分と、パッシベーション層42の第1端縁421および第1外方端縁422とを覆うようにして行う。また、バイパス導電部5は、支持基板41に直接触れるように形成されることが好ましい。これにより、バスバー部51および連絡部52を有するバイパス導電部5が得られる。 Next, as shown in FIG. 182, the bypass conductive portion 5 is formed. The bypass conductive portion 5 is formed so as to cover a portion of the first conductive layer 1 extending from the passivation layer 42 and the first edge 421 and the first outer edge 422 of the passivation layer 42. The bypass conductive portion 5 is preferably formed so as to directly touch the support substrate 41. Thereby, the bypass conductive part 5 having the bus bar part 51 and the connecting part 52 is obtained.
 この後は、バイパス導電部5およびパッシベーション層42を覆うように、第1保護樹脂層45(保護樹脂層4)を形成する。第1保護樹脂層45の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によってパッシベーション層42上に塗布し、紫外線を照射することによって硬化させる。以上の工程を経ることにより、図172~図174に示す有機薄膜太陽電池モジュールA17が完成する。 Thereafter, the first protective resin layer 45 (protective resin layer 4) is formed so as to cover the bypass conductive portion 5 and the passivation layer 42. The first protective resin layer 45 is formed by, for example, applying a liquid resin material containing an ultraviolet curable resin on the passivation layer 42 by screen printing and irradiating it with ultraviolet rays. Through the above steps, the organic thin-film solar cell module A17 shown in FIGS. 172 to 174 is completed.
 このような実施形態によっても、光電変換層3の発電領域31の面積割合を高めることができる。また、図173および図174に示すように、バイパス導電部5の第2バスバー部514は、第1導電層1の第1延出部104および第2延出部103を覆っている。また、第1バスバー部513は、第1導電層1の接続延出部132を覆っている。これにより、第1導電層1とバイパス導電部5との導通面積を拡大することが可能であり、低抵抗化に好ましい。第1端縁421および第1外方端縁422が、凹凸形状であることにより、第1端縁421および第1外方端縁422とバイパス導電部5の第1バスバー部513および第2バスバー部514との接合強度を高めることが可能である。 Also in such an embodiment, the area ratio of the power generation region 31 of the photoelectric conversion layer 3 can be increased. As shown in FIGS. 173 and 174, the second bus bar portion 514 of the bypass conductive portion 5 covers the first extension portion 104 and the second extension portion 103 of the first conductive layer 1. The first bus bar portion 513 covers the connection extension portion 132 of the first conductive layer 1. Thereby, the conduction area between the first conductive layer 1 and the bypass conductive portion 5 can be increased, which is preferable for reducing the resistance. Since the first end edge 421 and the first outer end edge 422 are concave and convex, the first end edge 421 and the first outer end edge 422 and the first bus bar portion 513 and the second bus bar of the bypass conductive portion 5 are provided. The bonding strength with the portion 514 can be increased.
 図180に示したように、第1導電層1にレーザー光Lz2を照射することによって生じる第1導電層1の揮発を利用して、パッシベーション層42を除去している。このため、パッシベーション層42を除去するための専用のレーザー光や薬剤等は不要である。これは、製造コストの低減や制造時間の短縮に好ましい。レーザー光Lz2としてIRレーザー光を用いることにより、絶縁膜420を透過して第1導電膜10へとレーザー光Lz2を効率よく照射することが可能である。また、レーザー光Lz2としてIRレーザー光を用いることにより、パッシベーション層42の第1端縁421および第1外方端縁422を凹凸形状に仕上げることができるという利点がある。なお、絶縁膜420の材質の一例であるSiNは、400nmより長波長の光を透過させる。このため、絶縁膜420がSiNからなる場合、レーザー光Lz2として波長が532nmであるGreenレーザー光を用いてもよい。一方で、レーザー光Lz2として波長が355nmであるUVレーザー光を用いた場合には、絶縁膜420と第1導電膜10とがレーザー光Lz2を吸収するため、これらを一括して除去することができる。 As shown in FIG. 180, the passivation layer 42 is removed by utilizing volatilization of the first conductive layer 1 generated by irradiating the first conductive layer 1 with the laser light Lz2. Therefore, there is no need for a dedicated laser beam or drug for removing the passivation layer 42. This is preferable for reducing manufacturing costs and manufacturing time. By using IR laser light as the laser light Lz2, it is possible to efficiently irradiate the first conductive film 10 with the laser light Lz2 through the insulating film 420. Further, by using IR laser light as the laser light Lz2, there is an advantage that the first edge 421 and the first outer edge 422 of the passivation layer 42 can be finished in an uneven shape. Note that SiN, which is an example of the material of the insulating film 420, transmits light having a wavelength longer than 400 nm. For this reason, when the insulating film 420 is made of SiN, Green laser light having a wavelength of 532 nm may be used as the laser light Lz2. On the other hand, when UV laser light having a wavelength of 355 nm is used as the laser light Lz2, the insulating film 420 and the first conductive film 10 absorb the laser light Lz2, and therefore these can be removed at once. it can.
 絶縁膜420および第1導電膜10の部分的な除去は、レーザー光Lz2を用いて行う。レーザー光Lz2は、照射する領域をより正確に制御することが可能である。したがって、絶縁膜420および第1導電膜10のうち所望の箇所を除去するのに適している。 The partial removal of the insulating film 420 and the first conductive film 10 is performed using a laser beam Lz2. The laser light Lz2 can control the irradiation region more accurately. Therefore, the insulating film 420 and the first conductive film 10 are suitable for removing a desired portion.
 絶縁膜420の部分的な除去は、レーザー光Lz2が照射された第1導電膜10に隣接する絶縁膜420が破壊される挙動を利用する。これにより、図181においてパッシベーション層42から露出する第1導電層1の部分は、レーザー光Lz2が照射されていないにもかかわらず、当該部分を覆っていた絶縁膜420の部分が除去されている。このため、第1導電層1のうちパッシベーション層42から露出する部分を不当に破壊することを回避しつつ、絶縁膜420を適切に除去することができる。 The partial removal of the insulating film 420 utilizes a behavior in which the insulating film 420 adjacent to the first conductive film 10 irradiated with the laser light Lz2 is destroyed. As a result, the portion of the insulating film 420 covering the portion of the first conductive layer 1 exposed from the passivation layer 42 in FIG. 181 is removed even though the laser beam Lz2 is not irradiated. . For this reason, the insulating film 420 can be appropriately removed while avoiding unduly destroying the portion of the first conductive layer 1 exposed from the passivation layer 42.
 第1導電膜10にスリット191およびスリット192を設けておくことにより、第1導電膜10の揮発の影響を受ける絶縁膜420の領域が、不当に広域にわたってしまうことを回避することが可能である。また、スリット191およびスリット192を設けておくことにより、図180および図181に示した第1導電膜10を部分的に除去する工程において、除去されるべき領域に第1導電膜10の一部が残存したとしても、この残存部分と第1導電層1とが意図せず導通してしまうことを回避することができる。また、第1導電膜10のうちスリット192を挟んで光電変換層3とは反対側に位置する部分は、除去されることなく、有機薄膜太陽電池モジュールA17の一部として残存してもよい。この部分は、スリット192が設けられていることにより、第1導電層1と導通することが防止されている。また、この部分の除去を省略すれば、製造時間を短縮することができる。なお、スリット191およびスリット192を設ける構成は好適例であり、これらを設けない構成であってもよい。 By providing the slit 191 and the slit 192 in the first conductive film 10, it is possible to prevent the region of the insulating film 420 affected by the volatilization of the first conductive film 10 from being unduly wide. . Further, by providing the slit 191 and the slit 192, in the step of partially removing the first conductive film 10 shown in FIGS. 180 and 181, a part of the first conductive film 10 is formed in the region to be removed. Even if this remains, it can be avoided that the remaining portion and the first conductive layer 1 are unintentionally conducted. Moreover, the part located in the other side of the photoelectric converting layer 3 across the slit 192 among the 1st electrically conductive films 10 may remain | survive as a part of organic thin-film solar cell module A17, without removing. This portion is prevented from conducting to the first conductive layer 1 by providing the slit 192. Further, if the removal of this portion is omitted, the manufacturing time can be shortened. In addition, the structure which provides the slit 191 and the slit 192 is a suitable example, and the structure which does not provide these may be sufficient.
 図183は、本発明の第18実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の有機薄膜太陽電池モジュールA18においては、スリット17の両端171は、第1導電層1の第3端縁101に到達している。すなわち、接続部13は、表示用開口181に対向する位置に設けられている。言い換えると、接続部13は、平面視において表示用開口181と意匠表示部35との間に配置されている。表示用開口181に対向する第2バスバー部514には、迂回部5141が設けられている。また、本実施形態のバイパス導電部5は、連絡部521を有する。連絡部521は、第1バスバー部513と第1集極部531とを繋いでいる。これにより、第1集極部531は、第1バスバー部513から離間した位置に配置されている。図示された例においては、第2集極部532は、表示用開口181からの距離が第1集極部531と同じとなるように配置されている。 FIG. 183 shows an organic thin-film solar cell module according to the eighteenth embodiment of the present invention. In the organic thin film solar cell module A <b> 18 of this embodiment, both ends 171 of the slit 17 reach the third end edge 101 of the first conductive layer 1. That is, the connecting portion 13 is provided at a position facing the display opening 181. In other words, the connection portion 13 is disposed between the display opening 181 and the design display portion 35 in plan view. A bypass portion 5141 is provided in the second bus bar portion 514 facing the display opening 181. Further, the bypass conductive portion 5 of the present embodiment has a connecting portion 521. The communication part 521 connects the first bus bar part 513 and the first electrode collecting part 531. As a result, the first electrode collecting portion 531 is disposed at a position separated from the first bus bar portion 513. In the illustrated example, the second electrode collector 532 is disposed such that the distance from the display opening 181 is the same as that of the first electrode collector 531.
 本実施形態によっても、光電変換層3の発電領域31の面積割合を高めることができる。また、接続部13が表示用開口181に対向する位置に設けられているものの、第1集極部531は、平面視において第2導電層2および光電変換層3と重なる位置に配置されている。このため、第1集極部531は、表示用開口181に延出しておらず、表示部702の表示を妨げる事態を回避することができる。 Also in this embodiment, the area ratio of the power generation region 31 of the photoelectric conversion layer 3 can be increased. In addition, although the connection portion 13 is provided at a position facing the display opening 181, the first electrode collecting portion 531 is disposed at a position overlapping the second conductive layer 2 and the photoelectric conversion layer 3 in plan view. . For this reason, the first electrode collector 531 does not extend to the display opening 181, and a situation in which the display of the display unit 702 is hindered can be avoided.
 本発明に係る有機薄膜太陽電池モジュールおよび電子機器は、上述した実施形態に限定されるものではない。本発明に係る有機薄膜太陽電池モジュールおよび電子機器の具体的な構成は、種々に設計変更自在である。 The organic thin film solar cell module and the electronic device according to the present invention are not limited to the above-described embodiments. The specific configurations of the organic thin-film solar cell module and the electronic device according to the present invention can be variously changed in design.
 本発明に係る電子機器は、携帯型電話端末をはじめ、太陽光発電を利用可能な様々な電子機器に適用することが可能であり、たとえば腕時計、電子計算機などが挙げられる。 The electronic device according to the present invention can be applied to various electronic devices that can use solar power generation, such as a portable telephone terminal, and examples thereof include a wrist watch and an electronic calculator.
 以下に、本発明の技術的特徴について付記する。 The technical features of the present invention will be described below.
  〔付記1E〕
 透明な支持基板と、
 前記支持基板に積層された透明な第1導電層と、
 第2導電層と、
 前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、
 前記第2導電層を覆うパッシベーション層と、
を備え、
 前記第1導電層は、平面視において前記パッシベーション層から延出する延出部と、当該延出部の端縁に両端が到達したスリットと、当該スリットによって区画され且つ前記スリットの前記両端に繋がる接続部端縁を有する接続部と、を有し、
 前記光電変換層は、平面視において前記第1導電層の前記接続部に内包され且つ厚さ方向に貫通する導通用貫通部を有し、
 前記第2導電層と前記第1導電層の前記接続部とは、前記光電変換層の前記導通用貫通部を介して導通しており、
 前記接続部のうち前記パッシベーション層から延出する接続延出部の少なくとも一部を覆う第1バスバー部と、当該第1バスバー部に導通する第1集極部とを有するバイパス導電部を備える、有機薄膜太陽電池モジュール。
  〔付記2E〕
 前記導通用貫通部は、平面視において円形状である、付記1Eに記載の有機薄膜太陽電池モジュール。
  〔付記3E〕
 前記導通用貫通部は、前記接続部端縁と平行である方向を長手方向とする平面視細長形状である、付記1Eに記載の有機薄膜太陽電池モジュール。
  〔付記4E〕
 前記第1集極部は、平面視において前記第2導電層および前記光電変換層と重なり、
 前記支持基板の厚さ方向において、前記第1集極部と前記第2導電層との間に前記パッシベーション層が介在する、付記1Eないし3Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記5E〕
 前記バイパス導電部は、前記第1導電層の前記延出部の少なくとも一部を覆う第2バスバー部と、当該第2バスバー部に導通する第2集極部とを有する、付記1Eないし4Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記6E〕
 前記第2集極部は、平面視において前記第2導電層および前記光電変換層と重なり、
 前記支持基板の厚さ方向において、前記第2集極部と前記第2導電層との間に前記パッシベーション層が介在する、付記5Eに記載の有機薄膜太陽電池モジュール。
  〔付記7E〕
 前記第2バスバー部は、前記第1導電層の前記延出部のうち前記接続部を挟む部分に両端が繋がり、且つ平面視において前記第1集極部を迂回する迂回部を有する、付記6Eに記載の有機薄膜太陽電池モジュール。
  〔付記8E〕
 前記光電変換層は、厚さ方向に貫通し且つ外観に表れる意匠表示部を構成する意匠表示用貫通部を有し、
 前記意匠表示用貫通部は、前記導通用貫通部に対して前記接続部端縁とは反対側に位置している、付記1Eないし7Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記9E〕
 前記第1導電層は、表示領域を構成するための表示用開口と、当該表示用開口を区画する第3端縁と、前記パッシベーション層から前記表示用開口側に延出する第1延出部と、を有し、
 前記接続部は、前記第3端縁に両端が到達した前記スリットによって区画されている、付記1Eないし8Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記10E〕
 前記第1導電層は、表示領域を構成するための表示用開口と、当該表示用開口を区画する第3端縁と、当該第3端縁とは反対側に位置する第3外方端縁と、前記パッシベーション層から前記表示用開口側に延出する第1延出部と、前記パッシベーション層から前記表示用開口とは反対側に延出する第2延出部と、を有し、
 前記接続部は、前記第3外方端縁に両端が到達した前記スリットによって区画されている、付記1Eないし8Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記11E〕
 前記バイパス導電部を覆う保護樹脂層を備える、付記9Eまたは10Eに記載の有機薄膜太陽電池モジュール。
  〔付記12E〕
 前記パッシベーション層は、平面視において前記表示用開口と対向する第1端縁を有し、
 前記保護樹脂層は、前記パッシベーション層を覆う第1保護樹脂層と、当該第1保護樹脂層に積層され且つ前記バイパス導電部を覆う第2保護樹脂層と、を含み、
 前記第1保護樹脂層は、平面視において前記第1端縁と一致する第2端縁を有する、付記11Eに記載の有機薄膜太陽電池モジュール。
  〔付記13E〕
 前記第1端縁と前記第2端縁とは、連続した面をなす、付記12Eに記載の有機薄膜太陽電池モジュール。
  〔付記14E〕
 前記バイパス導電部は、平面視において前記第3端縁と一致する第7端縁を有する、付記13Eに記載の有機薄膜太陽電池モジュール。
  〔付記15E〕
 前記第2保護樹脂層は、平面視において前記第3端縁および前記第7端縁に対して前記第1端縁とは反対側に位置する第6端縁を有し且つ前記支持基板に接している、付記14Eに記載の有機薄膜太陽電池モジュール。
  〔付記16E〕
 前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する、付記15Eに記載の有機薄膜太陽電池モジュール。
  〔付記17E〕
 前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する、付記16Eに記載の有機薄膜太陽電池モジュール。
  〔付記18E〕
 前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している、付記17Eに記載の有機薄膜太陽電池モジュール。
  〔付記19E〕
 前記パッシベーション層は、平面視において前記表示用開口と対向する第1端縁を有し、
 前記バイパス導電部は、平面視において前記第3端縁に対して前記第1端縁とは反対側に位置する第7端縁を有する、付記11Eに記載の有機薄膜太陽電池モジュール。
  〔付記20E〕
 前記保護樹脂層は、平面視において前記第7端縁に対して前記第1端縁とは反対側に位置する第2端縁を有し且つ前記支持基板に接している、付記19Eに記載の有機薄膜太陽電池モジュール。
  〔付記21E〕
 前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する、付記20Eに記載の有機薄膜太陽電池モジュール。
  〔付記22E〕
 前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する、付記21Eに記載の有機薄膜太陽電池モジュール。
  〔付記23E〕
 前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している、付記22Eに記載の有機薄膜太陽電池モジュール。
  〔付記24E〕
 前記第1端縁は、平面視環状である、付記18Eまたは23Eに記載の有機薄膜太陽電池モジュール。
  〔付記25E〕
 前記第3端縁は、平面視環状である、付記24Eに記載の有機薄膜太陽電池モジュール。
  〔付記26E〕
 前記第4内方退避端縁は、平面視環状である、付記25Eに記載の有機薄膜太陽電池モジュール。
  〔付記27E〕
 前記第5内方退避端縁は、平面視環状である、付記26Eに記載の有機薄膜太陽電池モジュール。
  〔付記28E〕
 前記第7端縁は、平面視環状である、付記27Eに記載の有機薄膜太陽電池モジュール。
  〔付記29E〕
 前記第2端縁は、平面視環状である、付記28Eに記載の有機薄膜太陽電池モジュール。
  〔付記30E〕
 前記第6端縁は、平面視環状である、付記18Eに記載の有機薄膜太陽電池モジュール。
  〔付記31E〕
 前記第1導電層は、ITOからなる、付記11Eないし30Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記32E〕
 前記第2導電層は、金属からなる、付記11Eないし31Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記33E〕
 前記第2導電層は、Alからなる、付記11Eないし32Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記34E〕
 前記パッシベーション層は、SiNからなる、付記11Eないし33Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記35E〕
 前記保護樹脂層は、紫外線硬化樹脂からなる、付記11Eないし34Eのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記36E〕
 付記1Eないし35Eのいずれかに記載の有機薄膜太陽電池モジュールと、
 前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、
を備える、電子機器。
[Appendix 1E]
A transparent support substrate;
A transparent first conductive layer laminated on the support substrate;
A second conductive layer;
A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer;
A passivation layer covering the second conductive layer;
With
The first conductive layer includes an extension portion extending from the passivation layer in a plan view, a slit having both ends reaching the edge of the extension portion, and a section defined by the slit and connected to the both ends of the slit. A connection part having a connection part edge,
The photoelectric conversion layer has a conduction through portion that is included in the connection portion of the first conductive layer in a plan view and penetrates in the thickness direction,
The second conductive layer and the connection portion of the first conductive layer are conducted through the conduction through portion of the photoelectric conversion layer,
A bypass conductive portion having a first bus bar portion covering at least a part of the connection extension portion extending from the passivation layer among the connection portions, and a first electrode collector portion conducting to the first bus bar portion; Organic thin-film solar cell module.
[Appendix 2E]
The organic thin-film solar cell module according to Supplementary Note 1E, wherein the through-hole for conduction is circular in plan view.
[Appendix 3E]
The organic thin-film solar cell module according to appendix 1E, wherein the through-hole for conduction has an elongated shape in a plan view with a direction parallel to the edge of the connection portion as a longitudinal direction.
[Appendix 4E]
The first electrode collector portion overlaps the second conductive layer and the photoelectric conversion layer in plan view,
The organic thin-film solar cell module according to any one of appendices 1E to 3E, wherein the passivation layer is interposed between the first electrode collector and the second conductive layer in a thickness direction of the support substrate.
[Appendix 5E]
The bypass conductive portion includes a second bus bar portion that covers at least a part of the extension portion of the first conductive layer, and a second electrode collector portion that conducts to the second bus bar portion. The organic thin-film solar cell module in any one.
[Appendix 6E]
The second electrode collector portion overlaps the second conductive layer and the photoelectric conversion layer in plan view,
The organic thin-film solar cell module according to appendix 5E, wherein the passivation layer is interposed between the second electrode collector and the second conductive layer in a thickness direction of the support substrate.
[Appendix 7E]
The second bus bar portion has a bypass portion having both ends connected to a portion of the extension portion of the first conductive layer sandwiching the connection portion and bypassing the first electrode collector portion in a plan view. The organic thin film solar cell module according to 1.
[Appendix 8E]
The photoelectric conversion layer has a design display penetrating portion that constitutes a design display portion that penetrates in the thickness direction and appears on the appearance.
The organic thin-film solar cell module according to any one of appendices 1E to 7E, wherein the design-display-penetrating portion is located on a side opposite to the connection portion end edge with respect to the conduction penetrating portion.
[Appendix 9E]
The first conductive layer includes a display opening for forming a display area, a third edge that defines the display opening, and a first extending portion that extends from the passivation layer to the display opening side. And having
The said connection part is an organic thin-film solar cell module in any one of Additional remarks 1E thru | or 8E divided by the said slit which both ends reached | attained to the said 3rd edge.
[Appendix 10E]
The first conductive layer includes a display opening for forming a display area, a third edge that defines the display opening, and a third outer edge located on the side opposite to the third edge. And a first extension part extending from the passivation layer to the display opening side, and a second extension part extending from the passivation layer to the side opposite to the display opening,
The said connection part is an organic thin-film solar cell module in any one of additional remarks 1E thru | or 8E divided by the said slit which both ends reached | attained to the said 3rd outer edge.
[Appendix 11E]
The organic thin-film solar cell module according to appendix 9E or 10E, comprising a protective resin layer that covers the bypass conductive portion.
[Appendix 12E]
The passivation layer has a first edge facing the display opening in plan view,
The protective resin layer includes a first protective resin layer that covers the passivation layer, and a second protective resin layer that is laminated on the first protective resin layer and covers the bypass conductive portion,
The organic thin-film solar cell module according to appendix 11E, wherein the first protective resin layer has a second end edge that coincides with the first end edge in plan view.
[Appendix 13E]
The organic thin-film solar cell module according to appendix 12E, wherein the first edge and the second edge form a continuous surface.
[Appendix 14E]
The bypass conductive part is an organic thin-film solar cell module according to appendix 13E, having a seventh edge that coincides with the third edge in plan view.
[Appendix 15E]
The second protective resin layer has a sixth edge located on a side opposite to the first edge with respect to the third edge and the seventh edge in a plan view, and is in contact with the support substrate. The organic thin film solar cell module according to Supplementary Note 14E.
[Appendix 16E]
The organic thin-film solar cell module according to appendix 15E, wherein the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 17E]
The organic thin-film solar cell module according to appendix 16E, wherein the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 18E]
The organic thin-film solar cell module according to appendix 17E, wherein the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
[Supplementary note 19E]
The passivation layer has a first edge facing the display opening in plan view,
The bypass conductive part is the organic thin-film solar cell module according to appendix 11E, having a seventh edge located on a side opposite to the first edge with respect to the third edge in plan view.
[Appendix 20E]
The said protective resin layer has 2nd edge located in the opposite side to said 1st edge with respect to said 7th edge in planar view, and touches the said support substrate of addition 19E. Organic thin-film solar cell module.
[Appendix 21E]
The organic thin-film solar cell module according to appendix 20E, wherein the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 22E]
The organic thin-film solar cell module according to appendix 21E, wherein the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 23E]
The organic thin-film solar cell module according to appendix 22E, wherein the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
[Appendix 24E]
The organic thin film solar cell module according to appendix 18E or 23E, wherein the first end edge is annular in plan view.
[Appendix 25E]
The organic thin film solar cell module according to attachment 24E, wherein the third end edge is annular in plan view.
[Appendix 26E]
The organic thin-film solar cell module according to Appendix 25E, wherein the fourth inward retracting edge is annular in plan view.
[Appendix 27E]
The organic thin-film solar cell module according to appendix 26E, wherein the fifth inward retracting edge is annular in plan view.
[Appendix 28E]
The organic thin film solar cell module according to appendix 27E, wherein the seventh end edge is annular in plan view.
[Appendix 29E]
The organic thin film solar cell module according to appendix 28E, wherein the second end edge is annular in plan view.
[Appendix 30E]
The organic thin film solar cell module according to appendix 18E, wherein the sixth end edge is annular in plan view.
[Appendix 31E]
31. The organic thin-film solar cell module according to any one of appendices 11E to 30E, wherein the first conductive layer is made of ITO.
[Appendix 32E]
The organic thin-film solar cell module according to any one of appendices 11E to 31E, wherein the second conductive layer is made of metal.
[Appendix 33E]
32. The organic thin film solar cell module according to any one of appendices 11E to 32E, wherein the second conductive layer is made of Al.
[Appendix 34E]
The organic thin-film solar cell module according to any one of appendices 11E to 33E, wherein the passivation layer is made of SiN.
[Appendix 35E]
The organic thin-film solar cell module according to any one of appendices 11E to 34E, wherein the protective resin layer is made of an ultraviolet curable resin.
[Appendix 36E]
An organic thin-film solar cell module according to any one of Supplementary Notes 1E to 35E;
A drive unit driven by feeding from the organic thin film solar cell module;
An electronic device.
[第19-第21実施形態]
 第19ないし第21実施形態および図184~図219における符号は、これらの実施形態および図において有効であり、他の実施形態および図における符号とは独立している。ただし、第19ないし第21実施形態の具体的構成と他の実施形態の具体的構成とは、相互に適宜組合せ可能である。
[19th to 21st embodiments]
The reference numerals in the nineteenth to twenty-first embodiments and FIGS. 184 to 219 are effective in these embodiments and drawings, and are independent of the reference numerals in the other embodiments and drawings. However, the specific configurations of the nineteenth to twenty-first embodiments and the specific configurations of the other embodiments can be appropriately combined with each other.
 本発明において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the present invention, “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 図184~図188は、本発明の第19実施形態に基づく電子機器および本発明の第19および第20実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の電子機器B19は、有機薄膜太陽電池モジュールA19、有機薄膜太陽電池モジュールA20、ケース61、制御部701、表示部702、入力部703、マイク704、スピーカ705、無線通信部706およびバッテリ707を備えており、携帯型電話端末として構成されている。 FIGS. 184 to 188 show an electronic device based on the nineteenth embodiment of the present invention and an organic thin film solar cell module based on the nineteenth and twentieth embodiments of the present invention. The electronic device B19 of this embodiment includes an organic thin film solar cell module A19, an organic thin film solar cell module A20, a case 61, a control unit 701, a display unit 702, an input unit 703, a microphone 704, a speaker 705, a wireless communication unit 706, and a battery. 707 is configured as a portable telephone terminal.
 ケース61は、電子機器B19のその他の構成要素を収容するものであり、金属、樹脂、ガラスなどの材質からなる。 The case 61 accommodates other components of the electronic device B19 and is made of a material such as metal, resin, or glass.
 図184は、有機薄膜太陽電池モジュールA19,A20およびこれらを用いた電子機器B19を示す平面図である。図185は、有機薄膜太陽電池モジュールA19,A20および電子機器B19を示す底面図である。図186は、図184のCLXXXVI-CLXXXVI線に沿う模式的な断面図である。図187は、図184のCLXXXVII-CLXXXVII線に沿う要部拡大断面図である。図188は、電子機器B19を示すシステム構成図である。なお、図186においては、理解の便宜上、ケース61、有機薄膜太陽電池モジュールA19、有機薄膜太陽電池モジュールA20、制御部701、表示部702およびバッテリ707のみを模式的に示している。 FIG. 184 is a plan view showing organic thin-film solar cell modules A19, A20 and an electronic device B19 using them. FIG. 185 is a bottom view showing organic thin-film solar cell modules A19, A20 and electronic device B19. FIG. 186 is a schematic sectional view taken along the line CLXXXVI-CLXXXVI of FIG. 184. FIG. 187 is an enlarged cross-sectional view of a main part taken along line CLXXXVII-CLXXXVII in FIG. 184. FIG. 188 is a system configuration diagram showing the electronic apparatus B19. In FIG. 186, only the case 61, the organic thin film solar cell module A19, the organic thin film solar cell module A20, the control unit 701, the display unit 702, and the battery 707 are schematically shown for the sake of understanding.
 有機薄膜太陽電池モジュールA19および有機薄膜太陽電池モジュールA20は、電子機器B19における電源モジュールであり、太陽光などの光を電力に変換する。具体的構成は、後述する。 Organic thin film solar cell module A19 and organic thin film solar cell module A20 are power supply modules in electronic device B19, and convert light such as sunlight into electric power. A specific configuration will be described later.
 制御部701は、本発明でいう駆動部の一例に相当し、有機薄膜太陽電池モジュールA19および有機薄膜太陽電池モジュールA20からの給電によって駆動する。なお、制御部701は、有機薄膜太陽電池モジュールA19および有機薄膜太陽電池モジュールA20から直接給電されてもよいし、有機薄膜太陽電池モジュールA19および有機薄膜太陽電池モジュールA20からの電力がバッテリ707に一旦充電された後に、このバッテリ707からの給電によって駆動されてもよい。制御部701は、たとえばCPU、メモリおよびインターフェースなどを具備して構成されている。 The control unit 701 corresponds to an example of a drive unit referred to in the present invention, and is driven by power feeding from the organic thin film solar cell module A19 and the organic thin film solar cell module A20. The control unit 701 may be directly supplied with power from the organic thin film solar cell module A19 and the organic thin film solar cell module A20, or the power from the organic thin film solar cell module A19 and the organic thin film solar cell module A20 is temporarily supplied to the battery 707. After being charged, the battery 707 may be driven by power feeding. The control unit 701 includes, for example, a CPU, a memory, an interface, and the like.
 表示部702は、各種の情報を電子機器B19の外観に表示するためのものである。表示部702は、たとえば液晶表示パネルあるいは有機EL表示パネルなどである。本実施形態においては、表示部702は、有機薄膜太陽電池モジュールA19を透して外観に情報を表す。 The display unit 702 is for displaying various types of information on the external appearance of the electronic device B19. The display unit 702 is, for example, a liquid crystal display panel or an organic EL display panel. In the present embodiment, the display unit 702 displays information on the exterior through the organic thin film solar cell module A19.
 入力部703は、使用者の操作を電気信号として制御部701に出力するためのものである。入力部703は、たとえば表示部702に積層されたタッチパネルである。なお、表示部702と入力部703とが一体的に構成されていてもよい。 The input unit 703 is for outputting a user operation as an electrical signal to the control unit 701. The input unit 703 is a touch panel laminated on the display unit 702, for example. Note that the display unit 702 and the input unit 703 may be configured integrally.
 マイク704は、使用者の音声を電気信号に変換するデバイスである。スピーカ705は、通話相手の音声や各種の通知音などを出力するデバイスである。 The microphone 704 is a device that converts a user's voice into an electrical signal. The speaker 705 is a device that outputs the voice of the other party and various notification sounds.
 無線通信部706は、無線通信規格に準拠した双方向無線通信を行うデバイスである。 The wireless communication unit 706 is a device that performs bidirectional wireless communication conforming to the wireless communication standard.
 バッテリ707は、電子機器B19を駆動する電力を蓄えるデバイスである。バッテリ707は、充放電が適宜可能に構成されている。バッテリ707の充電は、図示しないアダプタを用いた商用電力からの給電、または有機薄膜太陽電池モジュールA19および有機薄膜太陽電池モジュールA20からの給電によってなされる。 The battery 707 is a device that stores electric power for driving the electronic device B19. The battery 707 is configured to be appropriately charged / discharged. The battery 707 is charged by feeding from commercial power using an adapter (not shown) or feeding from the organic thin film solar cell module A19 and the organic thin film solar cell module A20.
 有機薄膜太陽電池モジュールA19および有機薄膜太陽電池モジュールA20は、第1導電層1、第2導電層2、光電変換層3、支持基板41、パッシベーション層42、保護樹脂層4およびバイパス導電部5を備えている。本実施形態においては、有機薄膜太陽電池モジュールA19および有機薄膜太陽電池モジュールA20は、平面視矩形状とされているが、これは一例であり、それぞれは様々な形状とされうる。有機薄膜太陽電池モジュールA19と有機薄膜太陽電池モジュールA20とは、互いの構成が一部を除き共通する。以下においては、まず有機薄膜太陽電池モジュールA19について説明する。 The organic thin film solar cell module A19 and the organic thin film solar cell module A20 include the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, the passivation layer 42, the protective resin layer 4, and the bypass conductive portion 5. I have. In the present embodiment, the organic thin-film solar cell module A19 and the organic thin-film solar cell module A20 are rectangular in plan view, but this is an example, and each may have various shapes. The organic thin film solar cell module A19 and the organic thin film solar cell module A20 are common except for a part of each other. In the following, first, the organic thin film solar cell module A19 will be described.
 図189は、有機薄膜太陽電池モジュールA19のうち第1導電層1、第2導電層2、光電変換層3、支持基板41および保護樹脂層4を示す要部分解斜視図である。なお、理解の便宜上,支持基板41は想像線(二点鎖線)で示している。図190は、有機薄膜太陽電池モジュールA19の第1導電層1を示す平面図である。図191は、有機薄膜太陽電池モジュールA19の光電変換層3を示す平面図である。図192は、有機薄膜太陽電池モジュールA19の第2導電層2を示す平面図である。図193は、有機薄膜太陽電池モジュールA19の保護樹脂層4の後述する第1保護樹脂層45およびバイパス導電部5を示す平面図である。図194は、有機薄膜太陽電池モジュールA19の保護樹脂層4の後述する第2保護樹脂層46を示す平面図である。 FIG. 189 is an exploded perspective view of a main part showing the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, the support substrate 41, and the protective resin layer 4 in the organic thin film solar cell module A19. For convenience of understanding, the support substrate 41 is indicated by an imaginary line (two-dot chain line). FIG. 190 is a plan view showing the first conductive layer 1 of the organic thin-film solar cell module A19. FIG. 191 is a plan view showing the photoelectric conversion layer 3 of the organic thin-film solar cell module A19. FIG. 192 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A19. FIG. 193 is a plan view showing a first protective resin layer 45 and a bypass conductive portion 5 described later of the protective resin layer 4 of the organic thin-film solar cell module A19. FIG. 194 is a plan view showing a second protective resin layer 46 described later of the protective resin layer 4 of the organic thin-film solar cell module A19.
 支持基板41は、有機薄膜太陽電池モジュールA19の土台となる部材である。支持基板41は、たとえば透明なガラスあるいは樹脂からなる。支持基板41の厚さは、たとえば0.05mm~2.0mmである。 The support substrate 41 is a member that becomes a base of the organic thin film solar cell module A19. The support substrate 41 is made of, for example, transparent glass or resin. The thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm.
 第1導電層1は、支持基板41上に形成されている。第1導電層1は、透明であり、本実施形態においてはITOからなる。図189および図190に示すように、第1導電層1は、第1電極部11、第1端部14、第3延出部15、第4延出部16、複数の開口18およびスリット19、第3端縁101、第3外方端縁105、第1延出部104および第2延出部103を有する。本実施形態においては、第1導電層1は、平面視略矩形状とされているが、これは第1導電層1の形状の一例である。第1導電層1の形状は、様々な形状に設定されうる。第1導電層1の厚さは、たとえば100nm~300nmである。なお、図190において、第1電極部11、第1端部14、第3延出部15および第4延出部16には、斜線のハッチングを付している。 The first conductive layer 1 is formed on the support substrate 41. The first conductive layer 1 is transparent and is made of ITO in this embodiment. As shown in FIGS. 189 and 190, the first conductive layer 1 includes a first electrode portion 11, a first end portion 14, a third extension portion 15, a fourth extension portion 16, a plurality of openings 18 and a slit 19. , A third end edge 101, a third outer end edge 105, a first extension part 104, and a second extension part 103. In the present embodiment, the first conductive layer 1 has a substantially rectangular shape in plan view, but this is an example of the shape of the first conductive layer 1. The shape of the first conductive layer 1 can be set to various shapes. The thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm. In FIG. 190, the first electrode portion 11, the first end portion 14, the third extending portion 15, and the fourth extending portion 16 are hatched.
 第1電極部11は、光電変換層3によって生じた正孔が集約される層であり、いわゆるアノード電極として機能する。本実施形態においては、第1導電層1の大部分が1つの第1電極部11とされている。 The first electrode portion 11 is a layer in which holes generated by the photoelectric conversion layer 3 are aggregated, and functions as a so-called anode electrode. In the present embodiment, most of the first conductive layer 1 is a single first electrode portion 11.
 第3延出部15は、第1電極部11から、平面視において光電変換層3の外方に延出する部分である。図190においては、第1電極部11と第3延出部15との境界を想像線(二点鎖線)で示している。第3延出部15を設けることにより、光電変換層3における発電によって集約された正孔を、有機薄膜太陽電池モジュールA19外に導くことができる。 The third extending portion 15 is a portion extending from the first electrode portion 11 to the outside of the photoelectric conversion layer 3 in plan view. In FIG. 190, the boundary between the first electrode portion 11 and the third extension portion 15 is indicated by an imaginary line (two-dot chain line). By providing the 3rd extension part 15, the hole collected by the electric power generation in the photoelectric converting layer 3 can be guide | induced outside the organic thin-film solar cell module A19.
 第1端部14は、スリット19によって第1電極部11と隔離された部分である。本実施形態においては、第1端部14は、たとえば平面視円形状とされている。本実施形態においては、第1端部14は、略円形状とされた部分と矩形状の部分とが組み合わされた形状とされている。 The first end portion 14 is a portion separated from the first electrode portion 11 by the slit 19. In the present embodiment, the first end portion 14 has, for example, a circular shape in plan view. In the present embodiment, the first end portion 14 has a shape in which a substantially circular portion and a rectangular portion are combined.
 第4延出部16は、第1端部14から、平面視において光電変換層3の外方に延出している。図190においては、第1端部14と第4延出部16との境界を想像線(二点鎖線)で示している。本実施形態においては、第3延出部15と第4延出部16とが隣り合う配置とされている。第4延出部16を設けることにより、光電変換層3における発電によって集約された電子を、有機薄膜太陽電池モジュールA19外に導くことができる。 The fourth extending portion 16 extends from the first end portion 14 to the outside of the photoelectric conversion layer 3 in plan view. In FIG. 190, the boundary between the first end portion 14 and the fourth extending portion 16 is indicated by an imaginary line (two-dot chain line). In the present embodiment, the third extending portion 15 and the fourth extending portion 16 are arranged adjacent to each other. By providing the 4th extension part 16, the electrons concentrated by the electric power generation in the photoelectric converting layer 3 can be guide | induced outside the organic thin-film solar cell module A19.
 複数の開口18は、厚さ方向に第1導電層1を貫通した開口部分である。本実施形態においては、2つの開口18が設けられている。図190における図中上方の開口18は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口18は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 18 are openings that penetrate the first conductive layer 1 in the thickness direction. In the present embodiment, two openings 18 are provided. The upper opening 18 in FIG. 190 is provided to make the speaker 705 function, for example. On the other hand, the largest opening 18 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第3端縁101は、図中中央の開口18を規定する端縁である。本実施形態においては、第3端縁101は、開口18を四方から囲む端縁となっており、平面視矩形環状である。なお、第3端縁101は、開口18を四方から囲む形状に限定されない。たとえば、第3端縁101が開口18に三方から隣接することにより、開口18が第1電極部11から平面視において外方に開いた構成であってもよい。あるいは、第3端縁101は、開口18に対して二方あるいは一方のみから隣接するものであってもよい。第3端縁101に隣接する領域、すなわち図中中央の開口18からは、支持基板41が露出している。また、第3端縁101は、後述する第1保護樹脂層45の第2端縁451およびパッシベーション層42の第1端縁421から延出する第1導電層1の部分の内端縁とされている。 The third edge 101 is an edge that defines the central opening 18 in the drawing. In the present embodiment, the third end edge 101 is an end edge surrounding the opening 18 from four directions, and has a rectangular shape in plan view. The third end edge 101 is not limited to a shape surrounding the opening 18 from four directions. For example, the third end edge 101 may be adjacent to the opening 18 from three directions so that the opening 18 opens outward from the first electrode portion 11 in plan view. Alternatively, the third edge 101 may be adjacent to the opening 18 from two or only one side. The support substrate 41 is exposed from a region adjacent to the third edge 101, that is, from the central opening 18 in the drawing. The third edge 101 is an inner edge of a portion of the first conductive layer 1 that extends from a second edge 451 of the first protective resin layer 45 described later and the first edge 421 of the passivation layer 42. ing.
 第1延出部104は、パッシベーション層42から内方(開口18)に延出する部位である。本実施形態においては、第1導電層1の略全内周部分に、第2延出部103が設けられている。 The first extending portion 104 is a portion extending inward (opening 18) from the passivation layer 42. In the present embodiment, the second extending portion 103 is provided on substantially the entire inner peripheral portion of the first conductive layer 1.
 第2延出部103は、パッシベーション層42から外方に延出する部位である。本実施形態においては、第1導電層1の略全外周部分に、第2延出部103が設けられている。第3外方端縁105は、第2延出部103の外周端縁である。 The second extending portion 103 is a portion that extends outward from the passivation layer 42. In the present embodiment, the second extending portion 103 is provided on substantially the entire outer peripheral portion of the first conductive layer 1. The third outer end edge 105 is an outer peripheral end edge of the second extending portion 103.
 第2導電層2は、その大部分が光電変換層3を介して第1導電層1上に積層されている。また、第2導電層2の一部は、第1導電層1に直接接している。第2導電層2の材質は特に限定されないが、本実施形態においては、第2導電層2は、Al、W、Mo、Mn、Mgに代表される金属からなる。以下においては、第2導電層2がAlからなる場合を例に説明する。したがって、第2導電層2は、透明ではない。またこの場合、第2導電層2の支持基板41とは反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されてもよい。第2導電層2の厚さは、たとえば30nm~150nmである。 Most of the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1. Although the material of the 2nd conductive layer 2 is not specifically limited, In this embodiment, the 2nd conductive layer 2 consists of metals represented by Al, W, Mo, Mn, and Mg. Hereinafter, a case where the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is not transparent. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41. The thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
 図192に示すように、第2導電層2は、第2電極部21、第2端部24および複数の開口28を有する。本実施形態においては、第2導電層2は、平面視略矩形状とされているが、これは第2導電層2の形状の一例である。第2導電層2の形状は、様々な形状に設定されうる。なお、図192においては、第2電極部21および第2端部24に、斜線のハッチングを付している。 As shown in FIG. 192, the second conductive layer 2 has a second electrode portion 21, a second end portion 24, and a plurality of openings 28. In the present embodiment, the second conductive layer 2 has a substantially rectangular shape in plan view, but this is an example of the shape of the second conductive layer 2. The shape of the second conductive layer 2 can be set to various shapes. In FIG. 192, the second electrode portion 21 and the second end portion 24 are hatched.
 第2電極部21は、光電変換層3によって生じた電子が集約される層であり、いわゆるカソード電極として機能する。第2電極部21は、平面視において、第1電極部11と一致する。本実施形態においては、第2導電層2の大部分が第2電極部21とされている。 The second electrode portion 21 is a layer in which electrons generated by the photoelectric conversion layer 3 are collected, and functions as a so-called cathode electrode. The second electrode portion 21 coincides with the first electrode portion 11 in plan view. In the present embodiment, most of the second conductive layer 2 is the second electrode portion 21.
 第2端部24は、平面視において第1導電層1の第1端部14に一致し、且つ第2電極部21に繋がっている。図192においては、理解の便宜上、第2端部24の形状を想像線(二点鎖線)で示している。第2端部24は、第1端部14と同様に平面視略円形状の部分と平面視矩形状の部分とが組み合わされたとされている。 The second end portion 24 coincides with the first end portion 14 of the first conductive layer 1 in plan view and is connected to the second electrode portion 21. In FIG. 192, for convenience of understanding, the shape of the second end portion 24 is indicated by an imaginary line (two-dot chain line). Similarly to the first end portion 14, the second end portion 24 is a combination of a substantially circular portion in plan view and a rectangular portion in plan view.
 複数の開口28は、厚さ方向に第2導電層2を貫通する開口部分である。本実施形態においては、2つの開口28が設けられている。図192における図中上方の開口28は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口28は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 28 are openings that penetrate the second conductive layer 2 in the thickness direction. In the present embodiment, two openings 28 are provided. The upper opening 28 in FIG. 192 is provided, for example, to make the speaker 705 function. On the other hand, the largest opening 28 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第4内方退避端縁201は、図中中央の開口28を規定する端縁である。本実施形態においては、第4内方退避端縁201は、開口28を四方から囲む端縁となっており、平面視矩形環状である。なお、第4内方退避端縁201は、開口28を四方から囲む形状に限定されない。たとえば、第4内方退避端縁201が開口28を三方から隣接することにより、開口28が第2電極部21から平面視において外方に開いた構成であってもよい。あるいは、第4内方退避端縁201は、開口28に対して二方あるいは一方のみから隣接するものであってもよい。また、図187に示すように、第4内方退避端縁201は、第3端縁101よりも内方(開口18内に延出する方向とは反対側)に退避している。 The fourth inward retracting edge 201 is an edge that defines the central opening 28 in the drawing. In the present embodiment, the fourth inward retracting edge 201 is an edge that surrounds the opening 28 from four directions and has a rectangular shape in plan view. The fourth inward retracting edge 201 is not limited to a shape surrounding the opening 28 from four directions. For example, the fourth inward retracting edge 201 may be configured such that the opening 28 is opened outward from the second electrode portion 21 in plan view by adjoining the opening 28 from three directions. Alternatively, the fourth inward retracting edge 201 may be adjacent to the opening 28 from two or only one side. As shown in FIG. 187, the fourth inward retracting edge 201 is retracted inward (opposite to the direction extending into the opening 18) than the third end edge 101.
 第4外方退避端縁202は、図187に示すように、後述するパッシベーション層42の第1外方端縁422および第1保護樹脂層45の第2外方端縁452よりも平面視において内方(図187における右方)に退避している。本実施形態においては、第4外方退避端縁202は、平面視環状である。 As shown in FIG. 187, the fourth outer retraction edge 202 is in a plan view than the first outer end edge 422 of the passivation layer 42 to be described later and the second outer end edge 452 of the first protective resin layer 45. It is retracted inward (to the right in FIG. 187). In the present embodiment, the fourth outward retracting edge 202 has an annular shape in plan view.
 光電変換層3は、第1導電層1と第2導電層2とに挟まれて、支持基板41に積層されている。光電変換層3は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層3の具体的構成は特に限定されないが、その一例を挙げると、バルクヘテロ接合有機活性層と、このバルクヘテロ接合有機活性層に対して第1導電層1側に積層された正孔輸送層とからなる。本実施形態においては、光電変換層3は、平面視矩形状とされているが、これは一例であり、光電変換層3は、様々な形状とされうる。光電変換層3の厚さは、たとえば50nm~300nmである。 The photoelectric conversion layer 3 is sandwiched between the first conductive layer 1 and the second conductive layer 2 and laminated on the support substrate 41. The photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of. In the present embodiment, the photoelectric conversion layer 3 has a rectangular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes. The thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
 バルクヘテロ接合有機活性層は、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。正孔輸送層は、たとえばPEDOT:PSSで形成されている。 In the bulk heterojunction organic active layer, a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction. The p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester). The hole transport layer is made of, for example, PEDOT: PSS.
 光電変換層3の形成に用いられる材質を例示すると、フタロシアニン(Pc:Phthalocyanine)、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)、Me-Ptcdi(N,N’-dimethyl perylene-3,4,9,10-dicarboximide)、フラーレン(C 60 :Buckminster fullerene)が挙げられる。これらの材質は、たとえば真空蒸着に使用される。 Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
 また、光電変換層3の形成に用いられる他の材質を例示すると、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)、PCDTBT(poly[N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-b3nzothiadizaole)])、PC60BM(6,6-phenyl-C61-butyric acid methyl ester)、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)が挙げられる。これらの材質は、たとえば溶液プロセスに使用される。 Other materials used for forming the photoelectric conversion layer 3 are exemplified by MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene), PCDTBT ( poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]), PC60BM (6 , 6-phenyl-C61-butyric acid methyl ester) and PC70BM (6,6-phenyl-C71-butyric acid methyl ester). These materials are used, for example, in solution processes.
 図191に示すように、光電変換層3は、非発電領域30、発電領域31および意匠表示部35、複数の開口38、第5内方退避端縁301および第5外方退避端縁302を有している。なお、図191においては、非発電領域30および発電領域31に、複数の離散点からなるハッチングを付している。 As shown in FIG. 191, the photoelectric conversion layer 3 includes a non-power generation region 30, a power generation region 31, a design display unit 35, a plurality of openings 38, a fifth inner retraction edge 301, and a fifth outer retraction edge 302. Have. In FIG. 191, the non-power generation region 30 and the power generation region 31 are hatched with a plurality of discrete points.
 意匠表示部35は、第1導電層1を透して外観に表れる意匠を構成する部位である。意匠表示部35が構成する意匠とは、使用者等が目視することによって、文字、記号、図柄などの視覚的特異部分として視認されうるものを指す。本実施形態においては、意匠表示部35は、円環形状を表している。 The design display part 35 is a part that constitutes a design that appears through the first conductive layer 1 and appears on the exterior. The design which the design display part 35 comprises refers to what can be visually recognized as visually peculiar parts, such as a character, a symbol, and a design, when a user etc. look. In the present embodiment, the design display unit 35 represents an annular shape.
 本実施形態においては、意匠表示部35は、貫通部350によって構成されている。貫通部350は、光電変換層3を厚さ方向に貫通する態様の部位である。このような貫通部350は、第1導電層1を透して外観に表れる。また、本実施形態においては、貫通部350は、第2導電層2を第1導電層1側に露出させている。すなわち、貫通部350を通じて第2導電層2の一部が外観に表れている。 In the present embodiment, the design display unit 35 is configured by a through-hole portion 350. The penetrating part 350 is a part having a mode of penetrating the photoelectric conversion layer 3 in the thickness direction. Such a penetrating portion 350 appears through the first conductive layer 1. In the present embodiment, the penetrating portion 350 exposes the second conductive layer 2 to the first conductive layer 1 side. That is, a part of the second conductive layer 2 appears on the exterior through the through part 350.
 発電領域31は、第1導電層1の第1電極部11および第2導電層2の第2電極部21に挟まれ、且つ光電変換機能を発揮することにより発電に寄与する領域である。また、発電領域31の形状は、平面視において、第1電極部11および第2電極部21に一致する。 The power generation region 31 is a region that is sandwiched between the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 and contributes to power generation by exhibiting a photoelectric conversion function. The shape of the power generation region 31 matches the first electrode part 11 and the second electrode part 21 in plan view.
 非発電領域30は、光電変換層3のうち平面視において第1導電層1の第1電極部11および第2導電層2の第2電極部21とは重ならない領域であり、第1導電層1の第1端部14と重なっている。第1端部14は、第2導電層2の第2端部24と接しており、集約された正孔と電子とが即座に結合してしまう。このため、非発電領域30は、発電に寄与しない。すなわち、光電変換層3のうち複数の発電領域31以外の領域が、非発電領域30とされている。 The non-power generation region 30 is a region of the photoelectric conversion layer 3 that does not overlap the first electrode portion 11 of the first conductive layer 1 and the second electrode portion 21 of the second conductive layer 2 in plan view. 1 overlaps the first end 14 of the first. The first end portion 14 is in contact with the second end portion 24 of the second conductive layer 2, and the aggregated holes and electrons are immediately combined. For this reason, the non-power generation region 30 does not contribute to power generation. That is, a region other than the plurality of power generation regions 31 in the photoelectric conversion layer 3 is a non-power generation region 30.
 本実施形態においては、非発電領域30は、端部領域34とされている。端部領域34は、貫通部350(意匠表示部35)を有している。端部領域34は、平面視において第1導電層1の第1端部14に内包される貫通部350(意匠表示部35)を含み、且つ第1導電層1の第1端部14に重なっている。また、端部領域34は、第2導電層2の第2端部24と重なっている。第1導電層1の第1端部14と第2導電層2の第2端部24とは、端部領域34の貫通部350を通じて接している。 In the present embodiment, the non-power generation region 30 is an end region 34. The end region 34 has a penetrating portion 350 (design display portion 35). The end region 34 includes a through portion 350 (design display portion 35) included in the first end portion 14 of the first conductive layer 1 in plan view, and overlaps the first end portion 14 of the first conductive layer 1. ing. The end region 34 overlaps the second end 24 of the second conductive layer 2. The first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other through the through portion 350 of the end region 34.
 複数の開口38は、光電変換層3を厚さ方向に貫通する開口部分である。本実施形態においては、2つの開口38が設けられている。図191における図中上方の開口38は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口38は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 38 are openings that penetrate the photoelectric conversion layer 3 in the thickness direction. In the present embodiment, two openings 38 are provided. The upper opening 38 in FIG. 191 is provided to make the speaker 705 function, for example. On the other hand, the largest opening 38 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
 第5内方退避端縁301は、図中中央の開口38を規定する端縁である。本実施形態においては、第5内方退避端縁301は、開口38を四方から囲む端縁となっており、平面視矩形環状である。なお、第5内方退避端縁301は、開口38を四方から囲む形状に限定されない。たとえば、第5内方退避端縁301が開口38を三方から隣接することにより、開口38が発電領域31から平面視において外方に開いた構成であってもよい。あるいは、第5内方退避端縁301は、開口38に対して二方あるいは一方のみに設けられたものであってもよい。また、図187に示すように、第5内方退避端縁301は、第3端縁101よりも内方(開口18内に延出する方向とは反対側)に退避している。 The fifth inward retracting edge 301 is an edge that defines the central opening 38 in the drawing. In the present embodiment, the fifth inward retracting edge 301 is an edge that surrounds the opening 38 from four directions and has a rectangular ring shape in plan view. The fifth inward retracting edge 301 is not limited to a shape surrounding the opening 38 from four directions. For example, the fifth inward retracting edge 301 may be configured such that the opening 38 is opened outward from the power generation region 31 in a plan view by adjoining the opening 38 from three directions. Alternatively, the fifth inward retracting edge 301 may be provided in two or only one with respect to the opening 38. Further, as shown in FIG. 187, the fifth inward retracting edge 301 is retracted inward (opposite to the direction extending into the opening 18) than the third end edge 101.
 第5外方退避端縁302は、図187に示すように、後述するパッシベーション層42の第1外方端縁422よりも平面視において内方(図187における右方)に退避している。本実施形態においては、第5外方退避端縁302は、平面視環状である。 As shown in FIG. 187, the fifth outer retracting edge 302 is retracted inward (rightward in FIG. 187) in a plan view from a first outer end edge 422 of a passivation layer 42 described later. In the present embodiment, the fifth outward retracting edge 302 is annular in plan view.
 上述した構成により、有機薄膜太陽電池モジュールA19においては、第3延出部15が第1電極部11に繋がっている。また、第2電極部21には、第2端部24が繋がっている。第2端部24は、端部領域34の貫通部350を通じて第1端部14と接している。第1端部14には、第4延出部16が繋がっている。この結果、第3延出部15と第4延出部16とが有機薄膜太陽電池モジュールA19の出力端子として機能する。 With the above-described configuration, in the organic thin film solar cell module A19, the third extending portion 15 is connected to the first electrode portion 11. Further, the second end portion 24 is connected to the second electrode portion 21. The second end portion 24 is in contact with the first end portion 14 through the through portion 350 of the end region 34. A fourth extension portion 16 is connected to the first end portion 14. As a result, the 3rd extension part 15 and the 4th extension part 16 function as an output terminal of organic thin film solar cell module A19.
 パッシベーション層42は、第2導電層2上に積層されており、第2導電層2および光電変換層3を保護している。パッシベーション層42は、たとえばSiNまたはSiONからなる。パッシベーション層42の厚さは、たとえば0.5μm~2.0μmであり、本実施形態においては、たとえば1.5μm程度とされる。 The passivation layer 42 is laminated on the second conductive layer 2 and protects the second conductive layer 2 and the photoelectric conversion layer 3. The passivation layer 42 is made of, for example, SiN or SiON. The thickness of the passivation layer 42 is, for example, 0.5 μm to 2.0 μm. In the present embodiment, the thickness is, for example, about 1.5 μm.
 保護樹脂層4は、パッシベーション層42を覆っている層である。また、保護樹脂層4は、バイパス導電部5を覆っている。保護樹脂層4は、たとえば紫外線硬化樹脂からなる。保護樹脂層4の厚さは、たとえば3μm~20μmであり、本実施形態においては、たとえば10μm程度とされる。 The protective resin layer 4 is a layer covering the passivation layer 42. The protective resin layer 4 covers the bypass conductive portion 5. The protective resin layer 4 is made of, for example, an ultraviolet curable resin. The thickness of the protective resin layer 4 is, for example, 3 μm to 20 μm. In this embodiment, the thickness is, for example, about 10 μm.
 本実施形態においては、保護樹脂層4は、第1保護樹脂層45および第2保護樹脂層46を有する。第1保護樹脂層45は、パッシベーション層42を覆う層である。第2保護樹脂層46は、第1保護樹脂層45に積層されており、バイパス導電部5を覆う層である。 In this embodiment, the protective resin layer 4 includes a first protective resin layer 45 and a second protective resin layer 46. The first protective resin layer 45 is a layer that covers the passivation layer 42. The second protective resin layer 46 is laminated on the first protective resin layer 45 and covers the bypass conductive portion 5.
 図193に示すように、第1保護樹脂層45は、複数の開口458、第2端縁451および第2外方端縁452を有する。なお、図193においては、第1保護樹脂層45に斜線のハッチングを付している。 193, the first protective resin layer 45 has a plurality of openings 458, a second end edge 451, and a second outer end edge 452. In FIG. 193, the first protective resin layer 45 is hatched.
 複数の開口458は、第1保護樹脂層45の一部が削除された態様であり、第1保護樹脂層45を貫通している。本実施形態においては、2つの開口458が設けられている。図193における図中上方の開口458は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口458は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 458 is a mode in which a part of the first protective resin layer 45 is removed, and penetrates the first protective resin layer 45. In the present embodiment, two openings 458 are provided. An upper opening 458 in FIG. 193 is provided to allow the speaker 705 to function, for example. On the other hand, the largest opening 458 in the center in the drawing is provided to display the information displayed by the display unit 702 on the appearance.
 第2端縁451は、図中中央の開口458を規定する端縁である。本実施形態においては、第2端縁451は、開口458を四方から囲む端縁となっており、平面視矩形環状である。なお、第2端縁451は、開口458を四方から囲む形状に限定されない。たとえば、第2端縁451が開口458を三方から隣接することにより、開口458が第1保護樹脂層45から平面視において外方に開いた構成であってもよい。あるいは、第2端縁451は、開口458に対して二方あるいは一方のみ設けられたものであってもよい。 The second edge 451 is an edge that defines the central opening 458 in the drawing. In the present embodiment, the second end edge 451 is an end edge that surrounds the opening 458 from four directions, and has a rectangular ring shape in plan view. The second end edge 451 is not limited to a shape surrounding the opening 458 from four sides. For example, the second end edge 451 may be adjacent to the opening 458 from three directions so that the opening 458 opens outward from the first protective resin layer 45 in plan view. Alternatively, the second end edge 451 may be provided in two or only one with respect to the opening 458.
 第2外方端縁452は、平面視において光電変換層3の少なくとも一部を挟んで第2端縁451と反対側に位置しており、本実施形態においては、第1保護樹脂層45の外周端縁である。 The second outer edge 452 is located on the opposite side of the second edge 451 across at least a part of the photoelectric conversion layer 3 in plan view. In the present embodiment, the second outer edge 452 of the first protective resin layer 45 is located. It is an outer peripheral edge.
 図194に示すように、第2保護樹脂層46は、複数の開口468、第6端縁461および第6外方端縁462を有する。 194, the second protective resin layer 46 has a plurality of openings 468, a sixth end edge 461, and a sixth outer end edge 462.
 複数の開口468は、第2保護樹脂層46の一部が削除された態様であり、第2保護樹脂層46を貫通している。本実施形態においては、2つの開口468が設けられている。図194における図中上方の開口468は、たとえばスピーカ705を機能させるために設けられたものである。一方、図中中央の最も大である開口468は、表示部702によって表示された情報を外観に表すために設けられたものである。 The plurality of openings 468 are a form in which a part of the second protective resin layer 46 is deleted, and penetrate the second protective resin layer 46. In the present embodiment, two openings 468 are provided. In FIG. 194, the upper opening 468 in the drawing is provided to allow the speaker 705 to function, for example. On the other hand, the largest opening 468 in the center in the figure is provided to display the information displayed by the display unit 702 on the appearance.
 第6端縁461は、図中中央の開口468を規定する端縁である。本実施形態においては、第6端縁461は、開口468を四方から囲む端縁となっており、平面視矩形環状である。なお、第6端縁461は、開口468を四方から囲む形状に限定されない。たとえば、第6端縁461が開口468を三方から隣接することにより、開口468が第2保護樹脂層46から平面視において外方に開いた構成であってもよい。あるいは、第6端縁461は、開口468に対して二方あるいは一方のみ設けられたものであってもよい。また、開口468は、平面視において矩形状以外のたとえば円形であってもよい。 The sixth edge 461 is an edge that defines the central opening 468 in the figure. In the present embodiment, the sixth end edge 461 is an end edge surrounding the opening 468 from four directions, and has a rectangular ring shape in plan view. Note that the sixth end edge 461 is not limited to a shape surrounding the opening 468 from four directions. For example, the sixth edge 461 may be adjacent to the opening 468 from three directions so that the opening 468 opens outward from the second protective resin layer 46 in plan view. Alternatively, the sixth end edge 461 may be provided in two or only one with respect to the opening 468. Further, the opening 468 may be, for example, a circle other than the rectangular shape in plan view.
 第6外方端縁462は、平面視において光電変換層3の少なくとも一部を挟んで第6端縁461と反対側に位置しており、本実施形態においては、第2保護樹脂層46の外周端縁である。 The sixth outer edge 462 is located on the opposite side of the sixth edge 461 across at least a part of the photoelectric conversion layer 3 in plan view. In the present embodiment, the sixth outer edge 462 of the second protective resin layer 46 is located. It is an outer peripheral edge.
 パッシベーション層42は、第1端縁421および第1外方端縁422を有している。 The passivation layer 42 has a first edge 421 and a first outer edge 422.
 第1端縁421は、平面視において第2端縁451と一致している。また、本実施形態においては、第1端縁421は、第2端縁451と連続した面をなしている。第1外方端縁422は、平面視において第2外方端縁452と一致している。また、本実施形態においては、第1外方端縁422は、第2外方端縁452と連続した面をなしている。 The first end edge 421 coincides with the second end edge 451 in plan view. In the present embodiment, the first end edge 421 forms a surface continuous with the second end edge 451. The first outer end edge 422 coincides with the second outer end edge 452 in plan view. In the present embodiment, the first outer end edge 422 forms a surface that is continuous with the second outer end edge 452.
 バイパス導電部5は、第1導電層1に到達した正孔を集電するための、第1導電層1より低抵抗な経路を構成するためのものである。本実施形態においては、バイパス導電部5は、2つのバスバー部51、複数の連絡部52および2つの集極部53を有する。バイパス導電部5は、第1導電層1よりも低抵抗な材質からなり、たとえばAgまたはカーボンを含む。 The bypass conductive portion 5 is for configuring a path having a lower resistance than the first conductive layer 1 for collecting holes that have reached the first conductive layer 1. In the present embodiment, the bypass conductive portion 5 includes two bus bar portions 51, a plurality of connecting portions 52, and two pole collecting portions 53. The bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1 and contains, for example, Ag or carbon.
 図187および図193に示すように、1つのバスバー部51は、第2端縁451および第1端縁421を全長にわたって覆っている。このバスバー部51は、第1導電層1のうち第3端縁101と第1端縁421(第2端縁451)との間に位置する部分を覆っている。また、このバスバー部51の第7端縁511は、平面視において第3端縁101と一致している。他方のバスバー部51は、第2外方端縁452および第1外方端縁422を全長にわたって覆っている。このバスバー部51は、第1導電層1の第2延出部103を覆っている。このバスバー部51の第7外方端縁512は、平面視において第3外方端縁105と一致している。このような構成により、2つのバスバー部51は、それぞれが第1導電層1と導通している。 As shown in FIG. 187 and FIG. 193, one bus bar portion 51 covers the second end edge 451 and the first end edge 421 over the entire length. The bus bar portion 51 covers a portion of the first conductive layer 1 located between the third end edge 101 and the first end edge 421 (second end edge 451). Further, the seventh end edge 511 of the bus bar portion 51 coincides with the third end edge 101 in plan view. The other bus bar portion 51 covers the second outer end edge 452 and the first outer end edge 422 over the entire length. The bus bar portion 51 covers the second extension portion 103 of the first conductive layer 1. The seventh outer end edge 512 of the bus bar portion 51 coincides with the third outer end edge 105 in plan view. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
 複数の連絡部52は、第1保護樹脂層45上に形成された部分であり、図193における図中内側のバスバー部51と図中外側の連絡部52とを連結している。2つの集極部53は、一方が第1導電層1に導通しており、他方が第2導電層2に導通している。 The plurality of connecting portions 52 are portions formed on the first protective resin layer 45, and connect the inner bus bar portion 51 in FIG. 193 to the outer connecting portion 52 in the drawing. One of the two current collectors 53 is electrically connected to the first conductive layer 1, and the other is electrically connected to the second conductive layer 2.
 図187に示すように、第2端縁451および第1端縁421に対してバスバー部51および第2保護樹脂層46を間に挟んで隣接する領域から、支持基板41の一部が露出領域411として露出している。また、露出領域411は、第1導電層1等によって覆われておらず、支持基板41の表面が直接露出している。 As shown in FIG. 187, a part of the support substrate 41 is exposed from a region adjacent to the second end edge 451 and the first end edge 421 with the bus bar portion 51 and the second protective resin layer 46 interposed therebetween. 411 is exposed. The exposed region 411 is not covered with the first conductive layer 1 or the like, and the surface of the support substrate 41 is directly exposed.
 図195は、有機薄膜太陽電池モジュールA20の第1導電層1を示す平面図である。図196は、有機薄膜太陽電池モジュールA20の光電変換層3を示す平面図である。図197は、有機薄膜太陽電池モジュールA20の第2導電層2を示す平面図である。図198は、有機薄膜太陽電池モジュールA20の第1保護樹脂層45およびバイパス導電部5を示す平面図である。図199は、有機薄膜太陽電池モジュールA20の第2保護樹脂層46を示す平面図である。 FIG. 195 is a plan view showing the first conductive layer 1 of the organic thin-film solar cell module A20. FIG. 196 is a plan view showing the photoelectric conversion layer 3 of the organic thin film solar cell module A20. FIG. 197 is a plan view showing the second conductive layer 2 of the organic thin film solar cell module A20. FIG. 198 is a plan view showing the first protective resin layer 45 and the bypass conductive portion 5 of the organic thin-film solar cell module A20. FIG. 199 is a plan view showing the second protective resin layer 46 of the organic thin-film solar cell module A20.
 有機薄膜太陽電池モジュールA20においては、表示部702を外観に表すための開口18、開口28、開口38、開口458、開口468等が設けられていない。このため、第3端縁101、第4内方退避端縁201、第5内方退避端縁301、第1端縁421、第2端縁451および第6端縁461は設けられていない。また、バイパス導電部5は、外周に沿うバスバー部51を有し、連絡部52は、有していない。 In the organic thin-film solar cell module A20, the opening 18, the opening 28, the opening 38, the opening 458, the opening 468, and the like for displaying the display portion 702 are not provided. For this reason, the 3rd edge 101, the 4th inward retracting edge 201, the 5th inward retracting edge 301, the 1st end edge 421, the 2nd end edge 451, and the 6th end edge 461 are not provided. In addition, the bypass conductive portion 5 has a bus bar portion 51 along the outer periphery, and does not have a connecting portion 52.
 本実施形態においては、図196に示すように、光電変換層3に複数の貫通部350(35)が設けられている。これらの貫通部350は、それぞれがアルファベットを表している。この貫通部350を利用して、第1導電層1の第1端部14と第2導電層2の第2端部24とが接している点は、有機薄膜太陽電池モジュールA19と同様である。 In the present embodiment, as shown in FIG. 196, the photoelectric conversion layer 3 is provided with a plurality of through portions 350 (35). Each of these penetrating portions 350 represents an alphabet. The point where the first end portion 14 of the first conductive layer 1 and the second end portion 24 of the second conductive layer 2 are in contact with each other by using the through portion 350 is the same as that of the organic thin film solar cell module A19. .
 次いで、有機薄膜太陽電池モジュールA19の製造方法の一例について、図200~図207を参照しつつ、以下に説明する。なお、これらの図においては、理解の便宜上、図187とは、天地逆に表されている。また、図200~図207においては、図184に示した電子機器B19のCLXXXVII-CLXXXVII線における断面構造を生成する過程を示している。 Next, an example of a method for manufacturing the organic thin film solar cell module A19 will be described below with reference to FIGS. In these figures, for convenience of understanding, FIG. 187 is shown upside down. 200 to 207 show a process of generating a cross-sectional structure taken along the line CLXXXVII-CLXXXVII of the electronic apparatus B19 shown in FIG. 184.
 まず、図200に示すように支持基板41を用意する。そして、図201に示すように、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOからなる第1導電膜10を積層する。次に、該ITOにパターニングを施し、開口18、スリット19等のパターンを形成するためのパターニングを行う。ここで、ITOへのパターニング手法としては、たとえばウエットエッチングを用いた手法、Greenレーザー光等のレーザパターニングを用いた手法が適宜採用される。 First, a support substrate 41 is prepared as shown in FIG. Then, as shown in FIG. 201, the first conductive film 10 made of ITO is laminated on one surface of the support substrate 41 by a general method such as sputtering. Next, patterning is performed on the ITO to form patterns such as openings 18 and slits 19. Here, as a patterning method to ITO, for example, a method using wet etching and a method using laser patterning such as Green laser light are appropriately employed.
 次いで、図202に示すように、光電変換層3を形成する。光電変換層3の形成は、たとえば、スピンコート塗布により支持基板41上および第1導電膜10上に有機膜を成膜した後に、酸素プラズマエッチング、レーザパターニングを用いることによって、第5内方退避端縁301、第5外方退避端縁302、開口38、貫通部350(意匠表示部35)を有する構成に仕上げることにより行う。なお、光電変換層3は、上記に限定されず、スリットコート法、キャピラリーコート法、グラビア印刷などの手法によって、支持基板41上および第1導電膜10上に直接的に有機膜をパターニングすることで形成するようにしても良い。 Next, as shown in FIG. 202, the photoelectric conversion layer 3 is formed. The photoelectric conversion layer 3 is formed by, for example, depositing an organic film on the support substrate 41 and the first conductive film 10 by spin coating and then using oxygen plasma etching and laser patterning to perform fifth inward retraction. This is done by finishing the structure having an end edge 301, a fifth outward retracting end edge 302, an opening 38, and a penetrating part 350 (design display part 35). The photoelectric conversion layer 3 is not limited to the above, and an organic film is directly patterned on the support substrate 41 and the first conductive film 10 by a technique such as a slit coating method, a capillary coating method, or gravure printing. It may be formed by.
 次いで、図203に示すように、第2導電層2を形成する。第2導電層2の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板41、第1導電膜10および光電変換層3上に金属膜を成膜する。次に、該金属膜に例えばマスク層を用いたエッチングを行うことによりパターニングを施す。このパターニングにより、光電変換層3上に第4内方退避端縁201および第4外方退避端縁202を有する第2導電層2を形成する。 Next, as shown in FIG. 203, the second conductive layer 2 is formed. The second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive film 10 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition. Next, the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having the fourth inner withdrawal edge 201 and the fourth outer withdrawal edge 202 is formed on the photoelectric conversion layer 3.
 次いで、図204に示すように、絶縁膜420を形成する。絶縁膜420の形成は、たとえばプラズマCVD法によってSiNまたはSiONなどの膜を支持基板41、第1導電層1、光電変換層3および第2導電層2上に形成することにより行う。 Next, as shown in FIG. 204, an insulating film 420 is formed. The insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
 次いで、図205に示すように、第1保護樹脂層45を形成する。第1保護樹脂層45の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によって絶縁膜420上に塗布し、紫外線を照射することによって硬化させる。これにより、第2端縁451および第2外方端縁452を有する第1保護樹脂層45が得られる。 Next, as shown in FIG. 205, a first protective resin layer 45 is formed. The first protective resin layer 45 is formed, for example, by applying a liquid resin material containing an ultraviolet curable resin on the insulating film 420 by screen printing and irradiating it with ultraviolet rays. As a result, the first protective resin layer 45 having the second end edge 451 and the second outer end edge 452 is obtained.
 次いで、図206に示すように、第1保護樹脂層45をマスクとして用いたパターニングを絶縁膜420に施す。このパターニングは、たとえばフッ化水素を0.55%~4.5%含むフッ化水素酸を用いたウエットエッチングによって行う。このようなフッ化水素酸は、紫外線硬化樹脂からなる第1保護樹脂層45をほとんど溶解しない一方、SiN等からなる絶縁膜420を選択的に溶解する。また、フッ化水素酸は、ITO等からなる第1導電膜10はほとんど溶解しない。この結果、第1端縁421および第1外方端縁422を有するパッシベーション層42が形成される。第1端縁421は、平面視において第2端縁451と一致する。第1端縁421と第2端縁451とは、連続した面をなす。また、第1外方端縁422は、平面視において第2外方端縁452と一致する。第1外方端縁422と第2外方端縁452とは、連続した面をなす。 Next, as shown in FIG. 206, the insulating film 420 is patterned using the first protective resin layer 45 as a mask. This patterning is performed, for example, by wet etching using hydrofluoric acid containing 0.55% to 4.5% hydrogen fluoride. Such hydrofluoric acid hardly dissolves the first protective resin layer 45 made of an ultraviolet curable resin, but selectively dissolves the insulating film 420 made of SiN or the like. Further, hydrofluoric acid hardly dissolves the first conductive film 10 made of ITO or the like. As a result, a passivation layer 42 having a first edge 421 and a first outer edge 422 is formed. The first edge 421 coincides with the second edge 451 in plan view. The first edge 421 and the second edge 451 form a continuous surface. The first outer end edge 422 coincides with the second outer end edge 452 in plan view. The first outer end edge 422 and the second outer end edge 452 form a continuous surface.
 次いで、図207に示すように、バイパス導電部5を形成する。バイパス導電部5の形成は、たとえばAgまたはカーボンを含むペーストを塗布した後に、たとえば乾燥などの手法によってこのペーストを硬化させることによって行う。 Next, as shown in FIG. 207, the bypass conductive portion 5 is formed. The bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying.
 次いで、第1導電膜10にパターニングを施す。このパターニングは、たとえば濃塩酸と濃硝酸とが3:1の比率で混合された王水を用いて行う。このパターニングにより、第1導電膜10のうちバイパス導電部5や第1保護樹脂層45から露出した部分が選択的に除去される。この結果、第3端縁101等を有する第1導電層1が形成される。次いで、第2保護樹脂層46を形成する。第2保護樹脂層46の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によって絶縁膜420上に塗布し、紫外線を照射することによって硬化させる。これにより、第6端縁461および第6外方端縁462を有する第2保護樹脂層46が得られ、保護樹脂層4が形成される。以上の工程を経ることにより、有機薄膜太陽電池モジュールA19が得られる。有機薄膜太陽電池モジュールA20の製造も同様に行うことができる。 Next, the first conductive film 10 is patterned. This patterning is performed, for example, using aqua regia in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a ratio of 3: 1. By this patterning, portions of the first conductive film 10 exposed from the bypass conductive portion 5 and the first protective resin layer 45 are selectively removed. As a result, the first conductive layer 1 having the third edge 101 and the like is formed. Next, the second protective resin layer 46 is formed. The second protective resin layer 46 is formed by, for example, applying a liquid resin material containing an ultraviolet curable resin on the insulating film 420 by screen printing and curing it by irradiating with ultraviolet rays. Thereby, the 2nd protective resin layer 46 which has the 6th edge 461 and the 6th outside edge 462 is obtained, and protective resin layer 4 is formed. Through the above steps, an organic thin-film solar cell module A19 is obtained. The organic thin film solar cell module A20 can be manufactured in the same manner.
 次に、有機薄膜太陽電池モジュールA19および電子機器B19の作用について説明する。 Next, the operation of the organic thin film solar cell module A19 and the electronic device B19 will be described.
 本実施形態によれば、バイパス導電部5を設けることにより、第1導電層1に拡散してきた正孔を、バスバー部51を経由して集極部53へと導くことができる。バイパス導電部5は、第1導電層1よりも低抵抗の材料からなる。このため、バイパス導電部5によって、より低抵抗な導通経路が構成される。このような導通経路に光電変換層3によって発電された電力を導くことにより、通電による損失を抑制することができる。また、バイパス導電部5は、保護樹脂層4によって覆われている。このため、保護樹脂層4が外気等との反応によって劣化することを回避することができる。したがって、有機薄膜太陽電池モジュールA19,A20および電子機器B19の通電部分の劣化を回避しつつ通電損失を抑制することができる。 According to the present embodiment, by providing the bypass conductive portion 5, holes diffused in the first conductive layer 1 can be guided to the collector portion 53 via the bus bar portion 51. The bypass conductive portion 5 is made of a material having a resistance lower than that of the first conductive layer 1. For this reason, the bypass conductive portion 5 forms a lower resistance conduction path. By guiding the power generated by the photoelectric conversion layer 3 to such a conduction path, loss due to energization can be suppressed. Further, the bypass conductive portion 5 is covered with the protective resin layer 4. For this reason, it can avoid that the protective resin layer 4 deteriorates by reaction with external air etc. Therefore, it is possible to suppress energization loss while avoiding deterioration of energized portions of the organic thin film solar cell modules A19, A20 and the electronic device B19.
 図187に示すように、第7端縁511および第7外方端縁512は、第6端縁461および第6外方端縁462の内側に位置している。すなわち、バイパス導電部5は、保護樹脂層4によって完全に覆われている。これは、バイパス導電部5の保護に好ましい。 187, the seventh edge 511 and the seventh outer edge 512 are located inside the sixth edge 461 and the sixth outer edge 462. That is, the bypass conductive portion 5 is completely covered with the protective resin layer 4. This is preferable for protecting the bypass conductive portion 5.
 第2端縁451および第2外方端縁452に隣接する領域において支持基板41が露出している。この部位には、パッシベーション層42や第1保護樹脂層45が形成されていない。したがって、この部位をより透明に仕上げることが可能であり、表示部702をより鮮明に外観に表すことができる。 The support substrate 41 is exposed in a region adjacent to the second edge 451 and the second outer edge 452. In this portion, the passivation layer 42 and the first protective resin layer 45 are not formed. Therefore, it is possible to finish this portion more transparent, and the display portion 702 can be expressed more clearly.
 第2端縁451および第1端縁421に隣接する領域のうちバスバー部51によって覆われた僅かな領域を除いて、支持基板41には第1導電層1が形成されていない。第1導電層1は、ITOからなるものの、光線のあたり具合によっては、うっすらと着色されたものとして視認される。本実施形態においては、表示部702を外観に表すための領域をことさらに透明に仕上げることが可能であり、より美麗な外観を実現することができる。 The first conductive layer 1 is not formed on the support substrate 41 except for a small area covered with the bus bar portion 51 among the areas adjacent to the second edge 451 and the first edge 421. Although the first conductive layer 1 is made of ITO, the first conductive layer 1 is visually recognized as being slightly colored depending on how light hits. In the present embodiment, it is possible to finish the region for displaying the display unit 702 in an even more transparent manner, and a more beautiful appearance can be realized.
 光電変換層3の第5内方退避端縁301および第2導電層2の第4内方退避端縁201が、第1端縁421および第2端縁451と離間していることにより、第2導電層2および光電変換層3がバイパス導電部5と不当に導通することを回避することができる。また、第4内方退避端縁201および第5内方退避端縁301と第1端縁421および第2端縁451との間にパッシベーション層42が介在していることにより、第2導電層2および光電変換層3とバイパス導電部5のバスバー部51とがショートすることをより確実に防止可能である。 The fifth inward retracting edge 301 of the photoelectric conversion layer 3 and the fourth inward retracting edge 201 of the second conductive layer 2 are separated from the first end edge 421 and the second end edge 451, thereby The two conductive layers 2 and the photoelectric conversion layer 3 can be prevented from being unduly conducted with the bypass conductive portion 5. Further, since the passivation layer 42 is interposed between the fourth inner retracting edge 201 and the fifth inner retracting edge 301 and the first end edge 421 and the second end edge 451, the second conductive layer 2 and the photoelectric conversion layer 3 and the bus bar portion 51 of the bypass conductive portion 5 can be more reliably prevented from short-circuiting.
 第1保護樹脂層45をマスクとして用いたパターニングを絶縁膜420に施すことにより、第1保護樹脂層45と同形状のパッシベーション層42を形成することができる。すなわち、紫外線硬化樹脂などの形状形成に優れた材質を用いて第1保護樹脂層45を形成すれば、必ずしも形状形成に優れていない材質からなるパッシベーション層42を所望の形状に仕上げることができる。なお、第1保護樹脂層45は、パッシベーション層42を形成した後に除去してもよい。ただし、第1保護樹脂層45を残存させた場合、水分やパーティクル等の第1導電層1、第2導電層2および光電変換層3等への侵入を防止する効果や、有機薄膜太陽電池モジュールA19の強度向上を図る効果が期待できる。 The passivation layer 42 having the same shape as the first protective resin layer 45 can be formed by patterning the insulating film 420 using the first protective resin layer 45 as a mask. That is, if the first protective resin layer 45 is formed using a material excellent in shape formation such as an ultraviolet curable resin, the passivation layer 42 made of a material not necessarily excellent in shape formation can be finished in a desired shape. Note that the first protective resin layer 45 may be removed after the passivation layer 42 is formed. However, when the first protective resin layer 45 is left, the effect of preventing moisture and particles from entering the first conductive layer 1, the second conductive layer 2, the photoelectric conversion layer 3, etc., and the organic thin film solar cell module The effect of improving the strength of A19 can be expected.
 バイパス導電部5を形成した後に第1導電層1にパターニングを施すことにより、バイパス導電部5の連絡部52は、第1導電層1の端面ではなく、第1導電層1のうち平面視において有意な面積を有する部分(第2延出部103など)に接する構成となる。これは、第1導電層1とバイパス導電部5との接触抵抗を低下させるとともに、確実な導通に有利である。 By patterning the first conductive layer 1 after forming the bypass conductive portion 5, the connecting portion 52 of the bypass conductive portion 5 is not an end face of the first conductive layer 1 but in a plan view of the first conductive layer 1. It becomes the structure which touches the part (2nd extension part 103 etc.) which has a significant area. This is advantageous for reliable conduction while lowering the contact resistance between the first conductive layer 1 and the bypass conductive portion 5.
 図208~図219は、本発明の変形例および他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付しており、適宜説明を省略する。 208 to 219 show a modification of the present invention and other embodiments. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and description thereof will be omitted as appropriate.
 図208は、電子機器B19および有機薄膜太陽電池モジュールA19の変形例を示している。本変形例においては第2保護樹脂層46が、非透光部464および透光部465を有する。非透光部464は、平面視においてバイパス導電部5と重なり、且つ第1端縁421よりも第1外方端縁422側の領域に設けられている。非透光部464は、非透光の材質からなり、たとえば白色の樹脂からなる。透光部465は、非透光部464に対して第1外方端縁422とは反対側に位置する領域を含む領域に設けられている。図示された例においては、透光部465は、図中右方のバスバー部51を跨ぐようにして形成されている。また、透光部465は、その一部が支持基板41に接している。本変形例によっても、バイパス導電部5を保護することができる。また、非透光部464を有することにより、紫外線等の光を受けることによってバイパス導電部5が劣化すること等を抑制することができる。 FIG. 208 shows a modification of the electronic device B19 and the organic thin film solar cell module A19. In the present modification, the second protective resin layer 46 has a non-light-transmitting portion 464 and a light-transmitting portion 465. The non-light-transmissive portion 464 overlaps with the bypass conductive portion 5 in a plan view and is provided in a region closer to the first outer end edge 422 than the first end edge 421. The non-translucent portion 464 is made of a non-translucent material, for example, white resin. The translucent portion 465 is provided in a region including a region located on the opposite side to the first outer end edge 422 with respect to the non-translucent portion 464. In the illustrated example, the translucent portion 465 is formed so as to straddle the bus bar portion 51 on the right side in the drawing. Further, a part of the translucent portion 465 is in contact with the support substrate 41. Also according to this modification, the bypass conductive portion 5 can be protected. Moreover, by having the non-light-transmissive part 464, it can suppress that the bypass conductive part 5 deteriorates by receiving light, such as an ultraviolet-ray.
 図209は、電子機器B19および有機薄膜太陽電池モジュールA19の変形例を示している。本変形例においては、保護樹脂層4の第2保護樹脂層46が有機薄膜太陽電池モジュールA19と表示部702とを接合する接合層を兼ねている。この場合、第2保護樹脂層46は、透明な材質からなる。 FIG. 209 shows a modification of the electronic device B19 and the organic thin film solar cell module A19. In the present modification, the second protective resin layer 46 of the protective resin layer 4 also serves as a bonding layer for bonding the organic thin film solar cell module A19 and the display unit 702. In this case, the second protective resin layer 46 is made of a transparent material.
 図210は、電子機器B19および有機薄膜太陽電池モジュールA19の変形例を示している。図211は、本変形例の第1導電層1を示す平面図である。本変形例においては、第1導電層1は、上述した第3端縁101および第3端縁101によって規定される開口18を有していない。すなわち、本変形例においては、第1導電層1は、平面視において表示部702と重なっている。 FIG. 210 shows a modification of the electronic device B19 and the organic thin film solar cell module A19. FIG. 211 is a plan view showing the first conductive layer 1 of the present modification. In the present modification, the first conductive layer 1 does not have the third edge 101 and the opening 18 defined by the third edge 101 described above. That is, in the present modification, the first conductive layer 1 overlaps the display unit 702 in plan view.
 図212および図213は、本発明の第21実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の有機薄膜太陽電池モジュールA21は、第1導電層1、第2導電層2、光電変換層3、支持基板41、パッシベーション層42、保護樹脂層4およびバイパス導電部5を備えている。有機薄膜太陽電池モジュールA21の平面視形状は特に限定されず、図示された例は、上述した有機薄膜太陽電池モジュールA19と同様の平面視形状である場合の例である。図212は、有機薄膜太陽電池モジュールA19における図187に相当する要部拡大断面図である。図213は、第1保護樹脂層45およびバイパス導電部5を省略した要部拡大平面図である。 212 and 213 show an organic thin-film solar cell module according to the twenty-first embodiment of the present invention. The organic thin-film solar cell module A21 of this embodiment includes a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, a support substrate 41, a passivation layer 42, a protective resin layer 4, and a bypass conductive portion 5. . The planar view shape of the organic thin film solar cell module A21 is not particularly limited, and the illustrated example is an example in the case of the same planar view shape as the organic thin film solar cell module A19 described above. FIG. 212 is an enlarged cross-sectional view of a main part corresponding to FIG. 187 in the organic thin film solar cell module A19. FIG. 213 is an essential part enlarged plan view in which the first protective resin layer 45 and the bypass conductive portion 5 are omitted.
 本実施形態のパッシベーション層42の第1端縁421および第1外方端縁422は、図212に示すように、凹凸形状の端面となっている。また、第1端縁421は全体として、支持基板41の厚さ方向において支持基板41から離間するほど平面視において第3端縁101から離間する向きに傾いている。また、第1外方端縁422は全体として、支持基板41の厚さ方向において支持基板41から離間するほど第1導電層1の第2延出部103から離間する向きに傾いている。また、本実施形態の第1端縁421は、図213に示すように、平面視において第3端縁101から離間した非直線状の形状である。第1端縁421は、たとえば複数の折れ線や曲線が結合された形状である。第1外方端縁422も同様に、平面視において被直線状の形状である。 The first edge 421 and the first outer edge 422 of the passivation layer 42 of the present embodiment are concave and convex end faces as shown in FIG. Further, as a whole, the first edge 421 is inclined in a direction away from the third edge 101 in plan view as the distance from the support substrate 41 in the thickness direction of the support substrate 41 is increased. Further, the first outer end edge 422 as a whole is inclined in a direction away from the second extending portion 103 of the first conductive layer 1 as it is separated from the support substrate 41 in the thickness direction of the support substrate 41. In addition, as shown in FIG. 213, the first end edge 421 of the present embodiment has a non-linear shape spaced from the third end edge 101 in plan view. The first end edge 421 has, for example, a shape in which a plurality of broken lines and curves are combined. Similarly, the first outer end edge 422 has a linear shape in plan view.
 バイパス導電部5の1つのバスバー部51は、パッシベーション層42の第1端縁421を全長にわたって覆っている。このバスバー部51は、第1導電層1のうち第3端縁101と第1端縁421との間に位置する第1延出部104を覆っている。また、このバスバー部51の第7端縁511は、平面視において第3端縁101に対して第1端縁421とは反対側に位置している。これにより、このバスバー部51は、支持基板41に直接接している。他方のバスバー部51は、パッシベーション層42の第1外方端縁422を全長にわたって覆っている。このバスバー部51は、第1導電層1の第2延出部103を覆っている。また、このバスバー部51の第7外方端縁512は、平面視において第3外方端縁105に対して第1外方端縁422とは反対側に位置している。これにより、このバスバー部51は、支持基板41に直接接している。このような構成により、2つのバスバー部51は、それぞれが第1導電層1と導通している。 One bus bar portion 51 of the bypass conductive portion 5 covers the first edge 421 of the passivation layer 42 over the entire length. The bus bar portion 51 covers the first extending portion 104 located between the third end edge 101 and the first end edge 421 in the first conductive layer 1. Further, the seventh end edge 511 of the bus bar portion 51 is located on the side opposite to the first end edge 421 with respect to the third end edge 101 in plan view. Accordingly, the bus bar portion 51 is in direct contact with the support substrate 41. The other bus bar portion 51 covers the first outer end edge 422 of the passivation layer 42 over the entire length. The bus bar portion 51 covers the second extension portion 103 of the first conductive layer 1. Further, the seventh outer end edge 512 of the bus bar portion 51 is located on the side opposite to the first outer end edge 422 with respect to the third outer end edge 105 in a plan view. Accordingly, the bus bar portion 51 is in direct contact with the support substrate 41. With such a configuration, each of the two bus bar portions 51 is electrically connected to the first conductive layer 1.
 連絡部52は、パッシベーション層42の表面423上に形成された部分である。連絡部52は、たとえば2つのバスバー部51同士や、バイパス導電部5のうちバスバー部51および連絡部52以外の部位とバスバー部51を連結している。 The connecting part 52 is a part formed on the surface 423 of the passivation layer 42. The connection part 52 connects the bus bar part 51 to parts other than the bus bar part 51 and the connection part 52 of the two bus bar parts 51 or the bypass conductive part 5, for example.
 本実施形態の保護樹脂層4は、第1保護樹脂層45のみを有している。図212に示すように、第1保護樹脂層45は、パッシベーション層42およびバイパス導電部5を覆っており、たとえば紫外線硬化樹脂からなる。また、第1保護樹脂層45は、有機薄膜太陽電池モジュールA21と上述した表示部702とを接合するための透明な接合層を兼ねていてもよい。図示された例においては、第2端縁451の第2端縁451は、平面視において第7端縁511に対して第1端縁421とは反対側に位置している。第1保護樹脂層45の第2外方端縁452は、平面視において第7外方端縁512に対して第1外方端縁422とは反対側に位置している。これにより、第1保護樹脂層45は、支持基板41に直接接する部分を有する。また、第1保護樹脂層45は、パッシベーション層42の表面423のうちバイパス導電部5から露出した部分を覆っている。 The protective resin layer 4 of the present embodiment has only the first protective resin layer 45. As shown in FIG. 212, the first protective resin layer 45 covers the passivation layer 42 and the bypass conductive portion 5, and is made of, for example, an ultraviolet curable resin. Moreover, the 1st protective resin layer 45 may serve as the transparent joining layer for joining organic thin-film solar cell module A21 and the display part 702 mentioned above. In the illustrated example, the second end edge 451 of the second end edge 451 is located on the opposite side of the first end edge 421 with respect to the seventh end edge 511 in plan view. The second outer end edge 452 of the first protective resin layer 45 is located on the opposite side of the first outer end edge 422 with respect to the seventh outer end edge 512 in plan view. Thus, the first protective resin layer 45 has a portion that directly contacts the support substrate 41. Further, the first protective resin layer 45 covers a portion of the surface 423 of the passivation layer 42 that is exposed from the bypass conductive portion 5.
 次に、有機薄膜太陽電池モジュールA21の製造方法の一例について以下に説明する。なお、以下の説明において参照する図においては、理解の便宜上、図212とは、天地逆に表されている。 Next, an example of a manufacturing method of the organic thin film solar cell module A21 will be described below. In the drawings referred to in the following description, for convenience of understanding, FIG. 212 is shown upside down.
 まず、図200に示した支持基板41を用意する。そして、図201に示したように、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOからなる第1導電膜10を積層する。次いで、図202に示したように光電変換層3を形成し、図203に示したように第2導電層2を形成する。 First, the support substrate 41 shown in FIG. 200 is prepared. Then, as shown in FIG. 201, the first conductive film 10 made of ITO is laminated on one surface of the support substrate 41 by a general method such as sputtering. Next, the photoelectric conversion layer 3 is formed as shown in FIG. 202, and the second conductive layer 2 is formed as shown in FIG.
 次に図214に示すように、レーザー光Lz1を用いたレーザパターニングを用いた手法によって、第1導電膜10にパターニングを施す。これにより、第1導電膜10には、スリット191およびスリット192が形成される。レーザー光Lz1は、第1導電膜10をレーザパターニング可能なものであれば特に限定されず、たとえばIRレーザー光を用いることができる。スリット191を構成する第1導電膜10の端縁のうち図示された第2導電層2および光電変換層3側に位置するものは、第3端縁101となる。第1導電膜10のうち第5内方退避端縁301とスリット191との間の部分は、第1延出部104となる。スリット192を構成する第1導電膜10の端縁のうち図示された第2導電層2および光電変換層3側に位置するものは、第3外方端縁105となる。第1導電膜10のうちスリット192と光電変換層3の第5外方退避端縁302との間の部分は、第2延出部103となる。 Next, as shown in FIG. 214, the first conductive film 10 is patterned by a technique using laser patterning using the laser beam Lz1. Thereby, a slit 191 and a slit 192 are formed in the first conductive film 10. The laser beam Lz1 is not particularly limited as long as the first conductive film 10 can be subjected to laser patterning. For example, an IR laser beam can be used. Of the edges of the first conductive film 10 constituting the slit 191, the one located on the second conductive layer 2 and the photoelectric conversion layer 3 side shown is the third edge 101. A portion of the first conductive film 10 between the fifth inward retracting edge 301 and the slit 191 becomes the first extending portion 104. Of the edges of the first conductive film 10 constituting the slit 192, the one located on the second conductive layer 2 and the photoelectric conversion layer 3 side shown is the third outer edge 105. A portion of the first conductive film 10 between the slit 192 and the fifth outer retraction edge 302 of the photoelectric conversion layer 3 becomes the second extension portion 103.
 なお、光電変換層3の形成に先立って、第1導電膜10にスリット191およびスリット192を形成するためのパターニングを施してもよい。当該パターニングに用いられる手法としては、たとえばウエットエッチングを用いた手法、酸素プラズマエッチングを用いた手法等が適宜採用される。また、第1導電膜10は、上記に限られず、たとえばナノインプリントを用いた手法によって、支持基板41上に直接的にITOをパターニングすることで形成するようにしても良い。 Prior to the formation of the photoelectric conversion layer 3, patterning for forming the slit 191 and the slit 192 in the first conductive film 10 may be performed. As a technique used for the patterning, for example, a technique using wet etching, a technique using oxygen plasma etching, or the like is appropriately employed. The first conductive film 10 is not limited to the above, and may be formed by patterning ITO directly on the support substrate 41 by, for example, a technique using nanoimprint.
 次いで、図215に示すように、絶縁膜420を形成する。絶縁膜420の形成は、たとえばプラズマCVD法によってSiNまたはSiONなどの膜を支持基板41、第1導電膜10、光電変換層3および第2導電層2上に形成することにより行う。 Next, as shown in FIG. 215, an insulating film 420 is formed. The insulating film 420 is formed by forming a film such as SiN or SiON on the support substrate 41, the first conductive film 10, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD.
 次いで、絶縁膜420を部分的に除去することによる第1端縁421を有するパッシベーション層42の形成および第1導電膜10の部分的な除去による第1導電層1の形成を含み、第1端縁421に隣接する領域において支持基板41を露出させる工程を行う。本実施形態においては、支持基板41を露出させる工程は、図216に示すように、絶縁膜420を透して第1導電膜10にレーザー光Lz2を照射することにより、第1導電膜10および絶縁膜420を部分的に除去する処理を含む。同図において、第1導電膜10のうち相対的に濃い複数の離散点からなるハッチングが付された部分は、レーザー光Lz2が照射される部分を表している。また、絶縁膜420のうち相対的に薄い複数の離散点からなるハッチングが付された部分は、レーザー光Lz2の照射に起因して除去される部分を表している。なお、レーザー光Lz2を用いた手法に限定されず、たとえばエッチングを用いた手法を選択してもよい。 Then, forming the passivation layer 42 having the first edge 421 by partially removing the insulating film 420 and forming the first conductive layer 1 by partially removing the first conductive film 10, A step of exposing the support substrate 41 in a region adjacent to the edge 421 is performed. In the present embodiment, the step of exposing the support substrate 41 is performed by irradiating the first conductive film 10 with the laser light Lz2 through the insulating film 420, as shown in FIG. A process of partially removing the insulating film 420 is included. In the figure, a hatched portion of a plurality of relatively dark discrete points in the first conductive film 10 represents a portion irradiated with the laser light Lz2. In addition, a hatched portion of a plurality of relatively thin discrete points in the insulating film 420 represents a portion that is removed due to irradiation with the laser light Lz2. Note that the method is not limited to the method using the laser beam Lz2, and for example, a method using etching may be selected.
 より具体的には、絶縁膜420を透して、第1導電膜10のうちスリット191およびスリット192を挟んで図示された第2導電層2および光電変換層3とは反対側に位置する部分に、レーザー光Lz2を照射する。レーザー光Lz2としては、たとえば波長が1,064nm程度のIRレーザー光が選択される。このレーザー光Lz2が照射された第1導電膜10の部分は、顕著なエネルギー投入によって瞬時に揮発する挙動を示す。 More specifically, a portion of the first conductive film 10 that is located on the opposite side of the second conductive layer 2 and the photoelectric conversion layer 3 that are illustrated across the slit 191 and the slit 192 through the insulating film 420. Are irradiated with laser light Lz2. As the laser beam Lz2, for example, an IR laser beam having a wavelength of about 1,064 nm is selected. The portion of the first conductive film 10 irradiated with the laser light Lz2 exhibits a behavior that volatilizes instantaneously when significant energy is applied.
 一方、上述したレーザー光Lz2の波長は、第1導電膜10に比べて絶縁膜420が吸収しづらいものが選択されている。このため、絶縁膜420は、レーザー光Lz2によって直接に破壊されるものではない。しかし、絶縁膜420のうち第1導電膜10と接する部分は、第1導電膜10を介して支持基板41によって支持されている。第1導電膜10がレーザー光Lz2の照射によって揮発すると、絶縁膜420一部は、支持基板41によって支持されないものとなる。また、レーザー光Lz2が照射された第1導電膜10の部分(図中において相対的に濃い複数の離散点からなるハッチングが付された部分)に重なっている絶縁膜420は、第1導電膜10が揮発したことによる圧力によってその一部が飛散する。 On the other hand, the wavelength of the laser beam Lz2 described above is selected such that the insulating film 420 is less likely to absorb than the first conductive film 10. For this reason, the insulating film 420 is not directly destroyed by the laser beam Lz2. However, the portion of the insulating film 420 that contacts the first conductive film 10 is supported by the support substrate 41 via the first conductive film 10. When the first conductive film 10 is volatilized by irradiation with the laser beam Lz2, a part of the insulating film 420 is not supported by the support substrate 41. Further, the insulating film 420 overlapping the portion of the first conductive film 10 irradiated with the laser light Lz2 (the hatched portion including a plurality of relatively dark discrete points in the drawing) is the first conductive film. Part of it is scattered by the pressure due to volatilization of 10.
 また、発明者の研究の結果、絶縁膜420のうち、レーザー光Lz2が照射された第1導電膜10の部分に隣接する部分は、第1導電膜10の揮発の影響によって飛散することが判明した。図216においては、絶縁膜420のうちレーザー光Lz2の照射に起因して飛散する部分を、相対的に薄い複数の離散点からなるハッチングを付している。本実施形態においては、絶縁膜420のうち飛散する部分は、スリット191およびスリット192を超えて、第2導電層2および光電変換層3側に存在する。ただし、第2導電層2および光電変換層3の一部を露出させる程度に、パッシベーション層42が破壊されないように、スリット191およびスリット192の大きさや位置、およびレーザー光Lz2の照射範囲や出力等を適宜調節している。この結果、絶縁膜420のうちスリット191側に位置する端縁が第1端縁421となり、スリット192側に位置する端縁が第1外方端縁422となる。また、第1導電膜10のうちスリット191に隣接する複数の離散点からなるハッチング部分は、レーザー光Lz2の照射により除去される。このため、第1導電膜10のうちスリット191に対して平面視において光電変換層3側に位置する端縁が、第3端縁101となり、第1導電膜10のうちスリット192に対して平面視において光電変換層3側に位置する端縁が、第3外方端縁105となる。また、第1導電膜10のうちスリット192に隣接する複数の離散点からなるハッチング部分は、レーザー光Lz2の照射により除去される。また、スリット191およびスリット192に隣接する絶縁膜420の一部がレーザー光Lz2の照射に伴って飛散することにより、第1導電膜10のうちスリット191およびスリット192に隣接する一部が、パッシベーション層42から露出する。この部分が、第1延出部104および第2延出部103となる。 As a result of the inventors' research, it has been found that a portion of the insulating film 420 adjacent to the portion of the first conductive film 10 irradiated with the laser light Lz2 is scattered due to the volatility of the first conductive film 10. did. In FIG. 216, portions of the insulating film 420 that are scattered due to the irradiation of the laser beam Lz2 are hatched with a plurality of relatively thin discrete points. In the present embodiment, the scattered portion of the insulating film 420 exists on the second conductive layer 2 and photoelectric conversion layer 3 side beyond the slit 191 and the slit 192. However, the size and position of the slit 191 and the slit 192, the irradiation range and output of the laser beam Lz2, etc. so that the passivation layer 42 is not destroyed to such an extent that the second conductive layer 2 and the photoelectric conversion layer 3 are partially exposed. Is adjusted accordingly. As a result, the edge located on the slit 191 side of the insulating film 420 becomes the first edge 421, and the edge located on the slit 192 side becomes the first outer edge 422. Moreover, the hatching part which consists of several discrete points adjacent to the slit 191 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2. For this reason, the edge located in the photoelectric conversion layer 3 side in planar view with respect to the slit 191 in the first conductive film 10 becomes the third edge 101, and the first conductive film 10 is planar with respect to the slit 192. The edge located on the photoelectric conversion layer 3 side when viewed is the third outer edge 105. Moreover, the hatching part which consists of a some discrete point adjacent to the slit 192 among the 1st electrically conductive films 10 is removed by irradiation of the laser beam Lz2. In addition, a part of the insulating film 420 adjacent to the slit 191 and the slit 192 is scattered with the irradiation of the laser light Lz2, so that a part of the first conductive film 10 adjacent to the slit 191 and the slit 192 is passivation. Exposed from layer 42. This portion becomes the first extension portion 104 and the second extension portion 103.
 以上に述べたレーザー光Lz2の照射によって、第1導電膜10および絶縁膜420の部分的な除去を行うことにより、図217に示すように、第1端縁421および第1外方端縁422を有するパッシベーション層42が形成される。また、第1端縁421および第1外方端縁422から延出する部分を有する第1導電層1が形成される。第1導電層1には、第3端縁101および第2延出部103が形成される。なお、図216に示した工程の後に、支持基板41上に残存した第1導電膜10等の除去を目的として、たとえば王水を用いた洗浄処理を行ってもよい。 By partially removing the first conductive film 10 and the insulating film 420 by the irradiation with the laser beam Lz2 described above, as shown in FIG. 217, the first edge 421 and the first outer edge 422 are obtained. A passivation layer 42 is formed. Further, the first conductive layer 1 having portions extending from the first end edge 421 and the first outer end edge 422 is formed. In the first conductive layer 1, a third end edge 101 and a second extending portion 103 are formed. Note that after the process shown in FIG. 216, for example, a cleaning process using aqua regia may be performed for the purpose of removing the first conductive film 10 and the like remaining on the support substrate 41.
 次いで、図218に示すようにバイパス導電部5を形成する。バイパス導電部5を形成する。バイパス導電部5の形成は、たとえばAgまたはカーボンを含むペーストを塗布した後に、たとえば乾燥などの手法によってこのペーストを硬化させることによって行う。バイパス導電部5の形成は、第1導電層1のうちパッシベーション層42から延出した部分を覆うようにして行う。また、バイパス導電部5は、支持基板41に直接触れるように形成されることが好ましい。これにより、バスバー部51および連絡部52を有するバイパス導電部5が得られる。 Next, the bypass conductive portion 5 is formed as shown in FIG. The bypass conductive portion 5 is formed. The bypass conductive portion 5 is formed by, for example, applying a paste containing Ag or carbon and then curing the paste by a technique such as drying. The bypass conductive portion 5 is formed so as to cover a portion of the first conductive layer 1 extending from the passivation layer 42. The bypass conductive portion 5 is preferably formed so as to directly touch the support substrate 41. Thereby, the bypass conductive part 5 having the bus bar part 51 and the connecting part 52 is obtained.
 この後は、バイパス導電部5およびパッシベーション層42を覆うように、第1保護樹脂層45(保護樹脂層4)を形成する。第1保護樹脂層45の形成は、たとえば紫外線硬化樹脂を含む液体樹脂材料をスクリーン印刷によってパッシベーション層42上に塗布し、紫外線を照射することによって硬化させる。以上の工程を経ることにより、図212に示す有機薄膜太陽電池モジュールA21が完成する。 Thereafter, the first protective resin layer 45 (protective resin layer 4) is formed so as to cover the bypass conductive portion 5 and the passivation layer 42. The first protective resin layer 45 is formed by, for example, applying a liquid resin material containing an ultraviolet curable resin on the passivation layer 42 by screen printing and irradiating it with ultraviolet rays. Through the above steps, the organic thin-film solar cell module A21 shown in FIG. 212 is completed.
 このような実施形態によっても、有機薄膜太陽電池モジュールA19および電子機器B19の通電部分の劣化を回避しつつ通電損失を抑制することができる。また、図212に示すように、バイパス導電部5のバスバー部51は、第1導電層1の第1延出部104および第2延出部103を覆っている。これにより、第1導電層1とバイパス導電部5との導通面積を拡大することが可能であり、低抵抗化に好ましい。第1端縁421および第1外方端縁422が、凹凸形状であることにより、第1端縁421および第1外方端縁422とバイパス導電部5のバスバー部51との接合強度を高めることが可能である。 Also according to such an embodiment, it is possible to suppress energization loss while avoiding deterioration of energized portions of the organic thin film solar cell module A19 and the electronic device B19. As shown in FIG. 212, the bus bar portion 51 of the bypass conductive portion 5 covers the first extension portion 104 and the second extension portion 103 of the first conductive layer 1. Thereby, the conduction area between the first conductive layer 1 and the bypass conductive portion 5 can be increased, which is preferable for reducing the resistance. Since the first end edge 421 and the first outer end edge 422 are uneven, the bonding strength between the first end edge 421 and the first outer end edge 422 and the bus bar portion 51 of the bypass conductive portion 5 is increased. It is possible.
 図216に示したように、第1導電層1にレーザー光Lz2を照射することによって生じる第1導電層1の揮発を利用して、パッシベーション層42を除去している。このため、パッシベーション層42を除去するための専用のレーザー光や薬剤等は不要である。これは、製造コストの低減や制造時間の短縮に好ましい。レーザー光Lz2としてIRレーザー光を用いることにより、絶縁膜420を透過して第1導電膜10へとレーザー光Lz2を効率よく照射することが可能である。また、レーザー光Lz2としてIRレーザー光を用いることにより、パッシベーション層42の第1端縁421および第1外方端縁422を凹凸形状に仕上げることができるという利点がある。なお、絶縁膜420の材質の一例であるSiNは、400nmより長波長の光を透過させる。このため、絶縁膜420がSiNからなる場合、レーザー光Lz2として波長が532nmであるGreenレーザー光を用いてもよい。一方で、レーザー光Lz2として波長が355nmであるUVレーザー光を用いた場合には、絶縁膜420と第1導電膜10とがレーザー光Lz2を吸収するため、これらを一括して除去することができる。 As shown in FIG. 216, the passivation layer 42 is removed by utilizing volatilization of the first conductive layer 1 generated by irradiating the first conductive layer 1 with the laser light Lz2. Therefore, there is no need for a dedicated laser beam or drug for removing the passivation layer 42. This is preferable for reducing manufacturing costs and manufacturing time. By using IR laser light as the laser light Lz2, it is possible to efficiently irradiate the first conductive film 10 with the laser light Lz2 through the insulating film 420. Further, by using IR laser light as the laser light Lz2, there is an advantage that the first edge 421 and the first outer edge 422 of the passivation layer 42 can be finished in an uneven shape. Note that SiN, which is an example of the material of the insulating film 420, transmits light having a wavelength longer than 400 nm. For this reason, when the insulating film 420 is made of SiN, Green laser light having a wavelength of 532 nm may be used as the laser light Lz2. On the other hand, when UV laser light having a wavelength of 355 nm is used as the laser light Lz2, the insulating film 420 and the first conductive film 10 absorb the laser light Lz2, and therefore these can be removed at once. it can.
 絶縁膜420および第1導電膜10の部分的な除去は、レーザー光Lz2を用いて行う。レーザー光Lz2は、照射する領域をより正確に制御することが可能である。したがって、絶縁膜420および第1導電膜10のうち所望の箇所を除去するのに適している。 The partial removal of the insulating film 420 and the first conductive film 10 is performed using a laser beam Lz2. The laser light Lz2 can control the irradiation region more accurately. Therefore, the insulating film 420 and the first conductive film 10 are suitable for removing a desired portion.
 絶縁膜420の部分的な除去は、レーザー光Lz2が照射された第1導電膜10に隣接する絶縁膜420が破壊される挙動を利用する。これにより、図219においてパッシベーション層42から露出する第1導電層1の部分は、レーザー光Lz2が照射されていないにもかかわらず、当該部分を覆っていた絶縁膜420の部分が除去されている。このため、第1導電層1のうちパッシベーション層42から露出する部分を不当に破壊することを回避しつつ、絶縁膜420を適切に除去することができる。 The partial removal of the insulating film 420 utilizes a behavior in which the insulating film 420 adjacent to the first conductive film 10 irradiated with the laser light Lz2 is destroyed. Thus, in FIG. 219, the portion of the first conductive layer 1 exposed from the passivation layer 42 is removed while the portion of the insulating film 420 covering the portion is not irradiated with the laser light Lz2. . For this reason, the insulating film 420 can be appropriately removed while avoiding unduly destroying the portion of the first conductive layer 1 exposed from the passivation layer 42.
 第1導電膜10にスリット191およびスリット192を設けておくことにより、第1導電膜10の揮発の影響を受ける絶縁膜420の領域が、不当に広域にわたってしまうことを回避することが可能である。また、スリット191およびスリット192を設けておくことにより、図218および図219に示した第1導電膜10を部分的に除去する工程において、除去されるべき領域に第1導電膜10の一部が残存したとしても、この残存部分と第1導電層1とが意図せず導通してしまうことを回避することができる。また、第1導電膜10のうちスリット192を挟んで光電変換層3とは反対側に位置する部分は、除去されることなく、有機薄膜太陽電池モジュールA20の一部として残存してもよい。この部分は、スリット192が設けられていることにより、第1導電層1と導通することが防止されている。また、この部分の除去を省略すれば、製造時間を短縮することができる。なお、スリット191およびスリット192を設ける構成は好適例であり、これらを設けない構成であってもよい。 By providing the slit 191 and the slit 192 in the first conductive film 10, it is possible to prevent the region of the insulating film 420 affected by the volatilization of the first conductive film 10 from being unduly wide. . Further, by providing the slit 191 and the slit 192, in the step of partially removing the first conductive film 10 shown in FIGS. 218 and 219, a part of the first conductive film 10 is formed in the region to be removed. Even if this remains, it can be avoided that the remaining portion and the first conductive layer 1 are unintentionally conducted. In addition, the portion of the first conductive film 10 located on the side opposite to the photoelectric conversion layer 3 across the slit 192 may remain as a part of the organic thin film solar cell module A20 without being removed. This portion is prevented from conducting to the first conductive layer 1 by providing the slit 192. Further, if the removal of this portion is omitted, the manufacturing time can be shortened. In addition, the structure which provides the slit 191 and the slit 192 is a suitable example, and the structure which does not provide these may be sufficient.
 図219は、有機薄膜太陽電池モジュールA21の変形例を示している。本変形例においては、第1保護樹脂層45は、非透光部454および透光部455を有する。非透光部454は、平面視においてバイパス導電部5と重なり、且つ第1端縁421よりも第1外方端縁422側の領域に設けられている。非透光部454は、非透光の材質からなり、たとえば白色の樹脂からなる。透光部455は、非透光部454に対して第1外方端縁422とは反対側に位置する領域を含む領域に設けられている。図示された例においては、透光部455は、図中右方のバスバー部51を跨ぐようにして形成されている。また、透光部455は、その一部が支持基板41に接している。本変形例によっても、バイパス導電部5を保護することができる。また、非透光部454を有することにより、紫外線等の光を受けることによってバイパス導電部5が劣化すること等を抑制することができる。 FIG. 219 shows a modification of the organic thin film solar cell module A21. In the present modification, the first protective resin layer 45 has a non-light-transmitting part 454 and a light-transmitting part 455. The non-light-transmissive portion 454 overlaps the bypass conductive portion 5 in a plan view and is provided in a region closer to the first outer end edge 422 than the first end edge 421. The non-translucent portion 454 is made of a non-translucent material, for example, white resin. The translucent portion 455 is provided in a region including a region located on the side opposite to the first outer end edge 422 with respect to the non-translucent portion 454. In the illustrated example, the translucent part 455 is formed so as to straddle the bus bar part 51 on the right side in the drawing. A part of the translucent portion 455 is in contact with the support substrate 41. Also according to this modification, the bypass conductive portion 5 can be protected. Moreover, by having the non-light-transmissive part 454, it can suppress that the bypass conductive part 5 deteriorates by receiving light, such as an ultraviolet-ray.
 本発明に係る有機薄膜太陽電池モジュールおよび電子機器は、上述した実施形態に限定されるものではない。本発明に係る有機薄膜太陽電池モジュールおよび電子機器の具体的な構成は、種々に設計変更自在である。 The organic thin film solar cell module and the electronic device according to the present invention are not limited to the above-described embodiments. The specific configurations of the organic thin-film solar cell module and the electronic device according to the present invention can be variously changed in design.
 本発明に係る電子機器は、携帯型電話端末をはじめ、太陽光発電を利用可能な様々な電子機器に適用することが可能であり、たとえば腕時計、電子計算機などが挙げられる。 The electronic device according to the present invention can be applied to various electronic devices that can use solar power generation, such as a portable telephone terminal, and examples thereof include a wrist watch and an electronic calculator.
 以下に、本発明の技術的特徴について付記する。 The technical features of the present invention will be described below.
  〔付記1F〕
 透明な支持基板と、
 前記支持基板に積層された透明な第1導電層と、
 第2導電層と、
 前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、
 前記第2導電層を覆うパッシベーション層と、
を備え、
 前記第1導電層は、平面視において前記パッシベーション層から延出する延出部を有し、
 前記延出部の少なくとも一部を覆い、且つ前記第1導電層の材料よりも低抵抗の材料からなるバイパス導電部と、
 前記バイパス導電部を覆う保護樹脂層と、を備える、有機薄膜太陽電池モジュール。
  〔付記2F〕
 前記パッシベーション層は、第1端縁を有し、
 前記第1端縁に隣接する領域において、前記支持基板が露出している、付記1Fに記載の有機薄膜太陽電池モジュール。
  〔付記3F〕
 前記第1導電層の前記延出部は、前記第1端縁から露出する第1延出部を含み、
 前記第1延出部は、平面視において前記第1端縁から離間する第3端縁を有する、付記2Fに記載の有機薄膜太陽電池モジュール。
  〔付記4F〕
 前記保護樹脂層は、前記パッシベーション層を覆う第1保護樹脂層と、当該第1保護樹脂層に積層され且つ前記バイパス導電部を覆う第2保護樹脂層と、を含み、
 前記第1保護樹脂層は、平面視において前記第1端縁と一致する第2端縁を有する、付記3Fに記載の有機薄膜太陽電池モジュール。
  〔付記5F〕
 前記第1端縁と前記第2端縁とは、連続した面をなす、付記4Fに記載の有機薄膜太陽電池モジュール。
  〔付記6F〕
 前記バイパス導電部は、平面視において前記第3端縁と一致する第7端縁を有する、付記5Fに記載の有機薄膜太陽電池モジュール。
  〔付記7F〕
 前記第2保護樹脂層は、平面視において前記第3端縁および前記第7端縁に対して前記第1端縁とは反対側に位置する第6端縁を有し且つ前記支持基板に接している、付記6Fに記載の有機薄膜太陽電池モジュール。
  〔付記8F〕
 前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する、付記7Fに記載の有機薄膜太陽電池モジュール。
  〔付記9F〕
 前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する、付記8Fに記載の有機薄膜太陽電池モジュール。
  〔付記10F〕
 前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している、付記9Fに記載の有機薄膜太陽電池モジュール。
  〔付記11F〕
 前記パッシベーション層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第1端縁と反対側に位置する第1外方端縁を有し、
 前記延出部は、前記第1外方端縁から延出する第2延出部を含み、
 前記第2延出部は、平面視において前記第1外方端縁から離間する第3外方端縁を有する、付記10Fに記載の有機薄膜太陽電池モジュール。
  〔付記12F〕
 前記第1保護樹脂層は、平面視において前記第1外方端縁と一致する第2外方端縁を有する、付記11Fに記載の有機薄膜太陽電池モジュール。
  〔付記13F〕
 前記第1外方端縁と前記第2外方端縁とは、連続した面をなす、付記12Fに記載の有機薄膜太陽電池モジュール。
  〔付記14F〕
 前記バイパス導電部は、平面視において前記第3外方端縁と一致する第7外方端縁を有する、付記13Fに記載の有機薄膜太陽電池モジュール。
  〔付記15F〕
 前記第2保護樹脂層は、平面視において前記第3外方端縁および前記第7外方端縁に対して前記第1外方端縁とは反対側に位置する第6外方端縁を有し且つ前記支持基板に接している、付記14Fに記載の有機薄膜太陽電池モジュール。
  〔付記16F〕
 前記第2保護樹脂層は、平面視において前記バイパス導電部と重なり且つ前記第1端縁よりも前記第1外方端縁側の領域に設けられた非透光部を含む、付記15Fに記載の有機薄膜太陽電池モジュール。
  〔付記17F〕
 前記非透光部は、白色である、付記16Fに記載の有機薄膜太陽電池モジュール。
  〔付記18F〕
 前記バイパス導電部は、平面視において前記第3端縁に対して前記第1端縁とは反対側に位置する第7端縁を有する、付記3Fに記載の有機薄膜太陽電池モジュール。
  〔付記19F〕
 前記保護樹脂層は、平面視において前記第7端縁に対して前記第1端縁とは反対側に位置する第2端縁を有し且つ前記支持基板に接している、付記18Fに記載の有機薄膜太陽電池モジュール。
  〔付記20F〕
 前記第2導電層は、平面視において前記第1端縁よりも内方に退避した第4内方退避端縁を有する、付記19Fに記載の有機薄膜太陽電池モジュール。
  〔付記21F〕
 前記光電変換層は、平面視において前記第1端縁よりも内方に退避した第5内方退避端縁を有する、付記20Fに記載の有機薄膜太陽電池モジュール。
  〔付記22F〕
 前記第4内方退避端縁は、平面視において前記第5内方退避端縁よりも内方に退避している、付記21Fに記載の有機薄膜太陽電池モジュール。
  〔付記23F〕
 前記パッシベーション層は、平面視において前記光電変換層の少なくとも一部を挟んで前記第1端縁と反対側に位置する第1外方端縁を有し、
 前記延出部は、前記第1外方端縁から延出する第2延出部を含み、
 前記第2延出部は、平面視において前記第1外方端縁から離間する第3外方端縁を有する、付記22Fに記載の有機薄膜太陽電池モジュール。
  〔付記24F〕
 前記バイパス導電部は、平面視において前記第3外方端縁に対して前記第1外方端縁とは反対側に位置する第7外方端縁を有する、付記23Fに記載の有機薄膜太陽電池モジュール。
  〔付記25F〕
 前記保護樹脂層は、平面視において第7外方端縁に対して前記第1外方端縁とは反対側に位置する第2外方端縁を有し且つ前記支持基板に接している、付記24Fに記載の有機薄膜太陽電池モジュール。
  〔付記26F〕
 前記保護樹脂層は、平面視において前記バイパス導電部と重なり且つ前記第1端縁よりも前記第1外方端縁側の領域に設けられた非透光部を含む、付記25Fに記載の有機薄膜太陽電池モジュール。
  〔付記27F〕
 前記非透光部は、白色である、付記26Fに記載の有機薄膜太陽電池モジュール。
  〔付記28F〕
 前記第1端縁は、平面視環状である、付記15Fまたは25Fに記載の有機薄膜太陽電池モジュール。
  〔付記29F〕
 前記第3端縁は、平面視環状である、付記28Fに記載の有機薄膜太陽電池モジュール。
  〔付記30F〕
 前記第4内方退避端縁は、平面視環状である、付記29Fに記載の有機薄膜太陽電池モジュール。
  〔付記31F〕
 前記第5内方退避端縁は、平面視環状である、付記30Fに記載の有機薄膜太陽電池モジュール。
  〔付記32F〕
 前記第6端縁は、平面視環状である、付記31Fに記載の有機薄膜太陽電池モジュール。
  〔付記33F〕
 前記第7端縁は、平面視環状である、付記32Fに記載の有機薄膜太陽電池モジュール。
  〔付記34F〕
 前記第2端縁は、平面視環状である、付記15Fに記載の有機薄膜太陽電池モジュール。
  〔付記35F〕
 前記第1導電層は、ITOからなる、付記1Fないし34Fのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記36F〕
 前記第2導電層は、金属からなる、付記1Fないし35Fのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記37F〕
 前記第2導電層は、Alからなる、付記1Fないし36Fのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記38F〕
 前記パッシベーション層は、SiNからなる、付記1Fないし37Fのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記39F〕
 前記保護樹脂層は、紫外線硬化樹脂からなる、付記1Fないし38Fのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記40F〕
 付記1Fないし39Fのいずれかに記載の有機薄膜太陽電池モジュールと、
 前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、
を備える、電子機器。
[Appendix 1F]
A transparent support substrate;
A transparent first conductive layer laminated on the support substrate;
A second conductive layer;
A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer;
A passivation layer covering the second conductive layer;
With
The first conductive layer has an extending portion extending from the passivation layer in a plan view,
A bypass conductive portion that covers at least a portion of the extension and is made of a material having a lower resistance than the material of the first conductive layer;
An organic thin-film solar cell module, comprising: a protective resin layer that covers the bypass conductive portion.
[Appendix 2F]
The passivation layer has a first edge;
The organic thin-film solar cell module according to Appendix 1F, wherein the support substrate is exposed in a region adjacent to the first edge.
[Appendix 3F]
The extension part of the first conductive layer includes a first extension part exposed from the first edge,
The said 1st extension part is an organic thin-film solar cell module of Additional remark 2F which has a 3rd edge spaced apart from the said 1st edge in planar view.
[Appendix 4F]
The protective resin layer includes a first protective resin layer that covers the passivation layer, and a second protective resin layer that is laminated on the first protective resin layer and covers the bypass conductive portion,
The said 1st protective resin layer is an organic thin-film solar cell module of Additional remark 3F which has a 2nd edge corresponding to the said 1st edge in planar view.
[Appendix 5F]
The organic thin film solar cell module according to appendix 4F, wherein the first end edge and the second end edge form a continuous surface.
[Appendix 6F]
The bypass conductive part is the organic thin-film solar cell module according to appendix 5F, having a seventh edge that coincides with the third edge in plan view.
[Appendix 7F]
The second protective resin layer has a sixth edge located on a side opposite to the first edge with respect to the third edge and the seventh edge in a plan view, and is in contact with the support substrate. The organic thin-film solar cell module according to Appendix 6F.
[Appendix 8F]
The organic thin film solar cell module according to appendix 7F, wherein the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 9F]
The organic thin-film solar cell module according to appendix 8F, wherein the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 10F]
The organic thin-film solar cell module according to appendix 9F, wherein the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
[Appendix 11F]
The passivation layer has a first outer end edge located on the opposite side of the first end edge across at least a part of the photoelectric conversion layer in plan view,
The extension includes a second extension extending from the first outer end edge,
The said 2nd extension part is an organic thin-film solar cell module of Additional remark 10F which has a 3rd outer end edge spaced apart from a said 1st outer end edge in planar view.
[Appendix 12F]
The organic thin film solar cell module according to appendix 11F, wherein the first protective resin layer has a second outer end edge that coincides with the first outer end edge in a plan view.
[Appendix 13F]
The organic thin-film solar cell module according to Appendix 12F, wherein the first outer end edge and the second outer end edge form a continuous surface.
[Appendix 14F]
The bypass thin film solar cell module according to appendix 13F, wherein the bypass conductive portion has a seventh outer end edge that coincides with the third outer end edge in a plan view.
[Appendix 15F]
The second protective resin layer has a sixth outer edge located on a side opposite to the first outer edge with respect to the third outer edge and the seventh outer edge in plan view. The organic thin-film solar cell module according to appendix 14F, which is in contact with the support substrate.
[Appendix 16F]
The second protective resin layer includes a non-light-transmitting portion that overlaps with the bypass conductive portion in a plan view and is provided in a region closer to the first outer end edge than the first end edge. Organic thin-film solar cell module.
[Appendix 17F]
The non-light-transmitting portion is an organic thin-film solar cell module according to appendix 16F, which is white.
[Appendix 18F]
The bypass conductive part is the organic thin-film solar cell module according to appendix 3F, having a seventh edge located on a side opposite to the first edge with respect to the third edge in plan view.
[Appendix 19F]
The protective resin layer according to appendix 18F, wherein the protective resin layer has a second edge located on a side opposite to the first edge with respect to the seventh edge in plan view, and is in contact with the support substrate. Organic thin-film solar cell module.
[Appendix 20F]
The organic thin-film solar cell module according to appendix 19F, wherein the second conductive layer has a fourth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 21F]
The organic thin-film solar cell module according to appendix 20F, wherein the photoelectric conversion layer has a fifth inward retracting edge that is retracted inward from the first end edge in plan view.
[Appendix 22F]
The organic thin-film solar cell module according to appendix 21F, wherein the fourth inward retracting edge is retracted inward from the fifth inward retracting edge in plan view.
[Appendix 23F]
The passivation layer has a first outer end edge located on the opposite side of the first end edge across at least a part of the photoelectric conversion layer in plan view,
The extension includes a second extension extending from the first outer end edge,
The said 2nd extension part is an organic thin-film solar cell module of Additional remark 22F which has a 3rd outer end edge spaced apart from a said 1st outer end edge in planar view.
[Appendix 24F]
The organic thin-film sun according to appendix 23F, wherein the bypass conductive portion has a seventh outer end edge located on a side opposite to the first outer end edge with respect to the third outer end edge in plan view. Battery module.
[Appendix 25F]
The protective resin layer has a second outer end edge located on a side opposite to the first outer end edge with respect to the seventh outer end edge in a plan view, and is in contact with the support substrate. The organic thin-film solar cell module according to Appendix 24F.
[Appendix 26F]
The organic thin film according to appendix 25F, wherein the protective resin layer includes a non-light-transmitting portion that overlaps the bypass conductive portion in a plan view and is provided in a region closer to the first outer end edge than the first end edge. Solar cell module.
[Appendix 27F]
The non-light-transmitting portion is an organic thin-film solar cell module according to appendix 26F, which is white.
[Appendix 28F]
The organic thin film solar cell module according to Supplementary Note 15F or 25F, wherein the first end edge is annular in plan view.
[Appendix 29F]
The organic thin film solar cell module according to appendix 28F, wherein the third end edge is annular in plan view.
[Appendix 30F]
The organic thin-film solar cell module according to appendix 29F, wherein the fourth inward withdrawal edge is annular in plan view.
[Appendix 31F]
The organic thin film solar cell module according to Supplementary Note 30F, wherein the fifth inward retracting edge is annular in plan view.
[Appendix 32F]
The organic thin-film solar cell module according to Supplementary Note 31F, wherein the sixth end edge is annular in plan view.
[Appendix 33F]
The organic thin film solar cell module according to Supplementary Note 32F, wherein the seventh end edge is annular in plan view.
[Appendix 34F]
The organic thin film solar cell module according to Supplementary Note 15F, wherein the second end edge is annular in plan view.
[Appendix 35F]
The organic thin film solar cell module according to any one of Supplementary Notes 1F to 34F, wherein the first conductive layer is made of ITO.
[Appendix 36F]
The organic thin-film solar cell module according to any one of Supplementary Notes 1F to 35F, wherein the second conductive layer is made of metal.
[Appendix 37F]
The organic thin-film solar cell module according to any one of Supplementary Notes 1F to 36F, wherein the second conductive layer is made of Al.
[Appendix 38F]
The organic thin-film solar cell module according to any one of Supplementary Notes 1F to 37F, wherein the passivation layer is made of SiN.
[Appendix 39F]
The organic thin-film solar cell module according to any one of Supplementary Notes 1F to 38F, wherein the protective resin layer is made of an ultraviolet curable resin.
[Appendix 40F]
An organic thin-film solar cell module according to any one of Supplementary Notes 1F to 39F;
A drive unit driven by feeding from the organic thin film solar cell module;
An electronic device.
[第22-第27実施形態] [Twenty-second to twenty-seventh embodiments]
 本発明において、「透明」とは、透過率が約50%以上であるものと定義する。また「透明」とは、可視光線に対して、無色透明という意味でも使用する。可視光線は波長約360nm~830nm程度、エネルギー約3.45eV~1.49eV程度に相当し、この領域で透過率が50%以上あれば透明である。 In the present invention, “transparent” is defined as having a transmittance of about 50% or more. “Transparent” is also used to mean colorless and transparent to visible light. Visible light corresponds to a wavelength of about 360 nm to 830 nm and an energy of about 3.45 eV to 1.49 eV, and is transparent if the transmittance is 50% or more in this region.
 図220~図226は、本発明の第22実施形態に基づく有機薄膜太陽電池モジュール示している。図227は、本発明の第22実施形態に基づく電子機器を示している。 220 to 226 show an organic thin film solar cell module according to a twenty-second embodiment of the present invention. FIG. 227 shows an electronic apparatus according to the twenty-second embodiment of the present invention.
 図220は、有機薄膜太陽電池モジュールA22を示す要部平面図である。図221は、図220のCCXXI-CCXXI線に沿う断面図である。図222は、有機薄膜太陽電池モジュールA22を示す要部拡大平面図である。図223は、図222のCCXXIII-CCXXIII線に沿う要部拡大断面図である。図224は、図222のCCXXIV-CCXXIV線に沿う要部拡大断面図である。図225は、有機薄膜太陽電池モジュールA22を示す要部拡大平面図である。図226は、図225のCCXXVI-CCXXVI線に沿う要部拡大断面図である。図227は、有機薄膜太陽電池モジュールA22および電子機器B22を示すシステム構成図である。なお、以降の説明において、「z方向視」は、平面視を意味し、「z方向」は支持基板41等の厚さ方向を意味する。 FIG. 220 is a plan view of an essential part showing the organic thin film solar cell module A22. FIG. 221 is a sectional view taken along line CCXXI-CCXXI in FIG. FIG. 222 is an enlarged plan view of a main part showing the organic thin film solar cell module A22. FIG. 223 is an enlarged cross-sectional view of a main part along the line CCXXIII-CCXXIII in FIG. 222. FIG. 224 is an enlarged cross-sectional view of a main part along the line CCXXIV-CCXXIV in FIG. 222. FIG. 225 is a main part enlarged plan view showing the organic thin film solar cell module A22. 226 is an enlarged cross-sectional view of a main part taken along the line CCXXVI-CCXXVI of FIG. FIG. 227 is a system configuration diagram showing the organic thin-film solar cell module A22 and the electronic device B22. In the following description, “view in the z direction” means a plan view, and “z direction” means a thickness direction of the support substrate 41 and the like.
 図227に示すように、電子機器B22は、有機薄膜太陽電池モジュールA22および駆動部71を備える。有機薄膜太陽電池モジュールA25は、電子機器B22における電源モジュールであり、太陽光などの光を電力に変換する。 As shown in FIG. 227, the electronic device B22 includes an organic thin-film solar cell module A22 and a drive unit 71. The organic thin film solar cell module A25 is a power supply module in the electronic device B22, and converts light such as sunlight into electric power.
 駆動部71は、有機薄膜太陽電池モジュールA22からの給電によって駆動するものである。駆動部71の具体的な構成や機能は特に限定されず、電子機器B22の機能を実現しうる様々な構成が採用され得る。駆動部71の一例を挙げると、電子計算機器としての電子機器B22を実現する電子計算処理部、無線通信モジュールとしての電子機器B22を実現する無線通信部、腕時計としての電子機器B22を実現しうる計時処理部、携帯型電子端末機器としての電子機器B22を実現しうる入出力演算処理部、等が挙げられる。 The driving unit 71 is driven by power feeding from the organic thin film solar cell module A22. The specific configuration and function of the drive unit 71 are not particularly limited, and various configurations that can realize the function of the electronic device B22 can be adopted. As an example of the drive unit 71, an electronic calculation processing unit that realizes an electronic device B22 as an electronic calculation device, a wireless communication unit that realizes an electronic device B22 as a wireless communication module, and an electronic device B22 as a wristwatch can be realized. Examples thereof include a timekeeping processing unit, an input / output arithmetic processing unit capable of realizing the electronic device B22 as a portable electronic terminal device, and the like.
 有機薄膜太陽電池モジュールA22は、支持基板41、第1導電層1、第2導電層2、光電変換層3およびパッシベーション層42を備える。本実施形態においては、有機薄膜太陽電池モジュールA22は、z方向視矩形状とされているが、これは有機薄膜太陽電池モジュールA22の形状の一例であり、様々な形状に設定されうる。図220、図222および図225においては、理解の便宜上、パッシベーション層42を省略している。 The organic thin-film solar cell module A22 includes a support substrate 41, a first conductive layer 1, a second conductive layer 2, a photoelectric conversion layer 3, and a passivation layer. In the present embodiment, the organic thin film solar cell module A22 has a rectangular shape as viewed in the z direction, but this is an example of the shape of the organic thin film solar cell module A22, and can be set in various shapes. 220, 222, and 225, the passivation layer 42 is omitted for convenience of understanding.
 支持基板41は、有機薄膜太陽電池モジュールA22の土台となるものである。支持基板41は、たとえば透明なガラスあるいは樹脂等から適宜選択される材質からなる、単層もしくは複数層を有する。支持基板41の厚さは、たとえば0.05mm~2.0mmである。支持基板41の形状や大きさは特に限定されず、本実施形態においては、z方向視矩形状とされている。 The support substrate 41 is a base of the organic thin film solar cell module A22. The support substrate 41 has a single layer or a plurality of layers made of a material appropriately selected from, for example, transparent glass or resin. The thickness of the support substrate 41 is, for example, 0.05 mm to 2.0 mm. The shape and size of the support substrate 41 are not particularly limited, and in the present embodiment, the support substrate 41 has a rectangular shape as viewed in the z direction.
 有機薄膜太陽電池モジュールA22には、図220および図222に示すように、複数の基板露出領域410および基板露出領域412が形成され、図220に示すように基板露出領域411が形成されている。複数の基板露出領域410、基板露出領域411および基板露出領域412は、支持基板41のうち第1導電層1から露出した領域である。 In the organic thin-film solar cell module A22, as shown in FIGS. 220 and 222, a plurality of substrate exposed regions 410 and substrate exposed regions 412 are formed, and a substrate exposed region 411 is formed as shown in FIG. The plurality of substrate exposed regions 410, substrate exposed regions 411, and substrate exposed regions 412 are regions exposed from the first conductive layer 1 in the support substrate 41.
 第1導電層1は、支持基板41上に形成されている。第1導電層1は、透明であり、本実施形態においてはITOからなる。第1導電層1は、複数の第1区画部11および第3区画部15を有する。第1導電層1の形状は、様々な形状に設定されうる。第1導電層1の厚さは、たとえば100nm~300nmである。 The first conductive layer 1 is formed on the support substrate 41. The first conductive layer 1 is transparent and is made of ITO in this embodiment. The first conductive layer 1 has a plurality of first partition portions 11 and third partition portions 15. The shape of the first conductive layer 1 can be set to various shapes. The thickness of the first conductive layer 1 is, for example, 100 nm to 300 nm.
 複数の第1区画部11は、基板露出領域410を介して隣り合っている。本実施形態においては、4つの第1区画部11が3つの基板露出領域410を介して隣り合っている。また、4つの第1区画部11は、x方向に沿って一直線上に配列されている。なお、以下においては、4つの第1区画部11を、理解の便宜上、第1区画部11-1、第1区画部11-2、第1区画部11-3および第1区画部11-4と必要に応じて区別して説明する。 The plurality of first partition portions 11 are adjacent to each other through the substrate exposed region 410. In the present embodiment, the four first partition portions 11 are adjacent to each other through the three substrate exposed regions 410. Moreover, the four 1st division parts 11 are arranged on the straight line along the x direction. In the following description, for convenience of understanding, the four first partition portions 11 are divided into a first partition portion 11-1, a first partition portion 11-2, a first partition portion 11-3, and a first partition portion 11-4. And will be described separately as necessary.
 第1区画部11は、第1区画部第1端縁110、第1区画部第2端縁120および2つの第1区画部第3端縁130を有する。 The first partition part 11 has a first partition part first edge 110, a first partition part second edge 120, and two first partition part third edges 130.
 第1区画部第1端縁110は、基板露出領域410の一部を区画する端縁である。第1区画部第2端縁120は、基板露出領域410の一部を区画する端縁である。すなわち、基板露出領域410は、一方の第1区画部11(図中x方向右側、図222における第1区画部11-2)の第1区画部第1端縁110と他方の第1区画部11(図中x方向左側、図222における第1区画部11-3)の第1区画部第2端縁120とによって既定されている。 The first partition 110 first edge 110 is an edge that partitions a part of the substrate exposed region 410. The first partition portion second edge 120 is an edge that partitions a part of the substrate exposed region 410. That is, the substrate exposed region 410 includes the first partition portion first edge 110 and the other first partition portion of one of the first partition portions 11 (right side in the x direction in the drawing, first partition portion 11-2 in FIG. 222). 11 (the left side in the x direction in the drawing, the first partition portion 11-3 in FIG. 222) and the second edge 120 of the first partition portion.
 本実施形態においては、第1区画部11-1~3の第1区画部第1端縁110は、第1辺111を有し、第1区画部11-2~4の第1区画部第2端縁120は、第2辺121を有する。同一の基板露出領域410を区画する第1辺111(図222における第1区画部11-2の第1辺111)と第2辺121(図222における第1区画部11-3の第2辺121)とは、互いに平行である。また、本実施形態においては、第1辺111と第2辺121とは、いずれもy方向に沿う直線状である。これに対応して、本実施形態においては、基板露出領域410のうち第1辺111および第2辺121に規定されている部分は、y方向に沿う直線状である。 In the present embodiment, the first partition portion first edge 110 of the first partition portions 11-1 to 11-3 has the first side 111, and the first partition portion 11-2 to the first partition portion 11-2 to the first partition portion 11-4. The two end edges 120 have a second side 121. The first side 111 (the first side 111 of the first partition unit 11-2 in FIG. 222) and the second side 121 (the second side of the first partition unit 11-3 in FIG. 222) that partition the same substrate exposed region 410 121) are parallel to each other. In the present embodiment, the first side 111 and the second side 121 are both linear along the y direction. Correspondingly, in the present embodiment, portions of the substrate exposure region 410 that are defined by the first side 111 and the second side 121 are linear along the y direction.
 2つの第1区画部第3端縁130は、第1区画部第1端縁110の両端と第1区画部第2端縁120の両端とをそれぞれ繋いでいる。本実施形態においては、第1区画部第3端縁130は、x方向に沿う直線状である。第1区画部第3端縁130は、基板露出領域412の一部を規定している。本実施形態の11は、第1区画部第1端縁110の第1辺111、第1区画部第2端縁120の第2辺121および2つの第1区画部第3端縁130によって構成されたx方向視略矩形状とされている。 The two first partition portion third end edges 130 connect both ends of the first partition portion first end edge 110 and both ends of the first partition portion second end edge 120, respectively. In the present embodiment, the first partition portion third edge 130 is linear along the x direction. The first partition portion third edge 130 defines a part of the substrate exposed region 412. 11 of this embodiment is constituted by the first side 111 of the first partition part first edge 110, the second side 121 of the first partition part second edge 120, and the two first partition part third edges 130. It is made into the substantially rectangular shape by the x direction view made.
 図220および図225に示すように、図中x方向において最も右側に位置する第1区画部11-1と第3区画部15とは、基板露出領域411を介して隣り合っている。第3区画部15は、第3区画部端縁160を有する。第3区画部15の第3区画部端縁160と第3区画部15に隣り合う第1区画部11-1の第1区画部第2端縁120とによって、基板露出領域411が規定されている。第3区画部端縁160は、第3区画部平行部161を有する。第3区画部平行部161は、第1区画部11-1の第2辺121と平行な部分である。本実施形態においては、第3区画部平行部161は、y方向に沿う直線状である。 As shown in FIGS. 220 and 225, the first partition part 11-1 and the third partition part 15 located on the rightmost side in the x direction in the drawing are adjacent to each other with the substrate exposed region 411 interposed therebetween. The third partition part 15 has a third partition part edge 160. The substrate exposed region 411 is defined by the third partition portion edge 160 of the third partition portion 15 and the first partition portion second edge 120 of the first partition portion 11-1 adjacent to the third partition portion 15. Yes. The third partition part edge 160 has a third partition part parallel part 161. The third partition parallel part 161 is a part parallel to the second side 121 of the first partition 11-1. In this embodiment, the 3rd division part parallel part 161 is linear form along ay direction.
 光電変換層3は、支持基板41および第1導電層1上に積層されており、第1導電層1と第2導電層2とに挟まれている。光電変換層3は、有機薄膜からなる層であり、受けた光を電力に変換する光電変換機能を発揮する。光電変換層3の具体的構成は特に限定されないが、その一例を挙げると、バルクヘテロ接合有機活性層と、このバルクヘテロ接合有機活性層に対して第1導電層1側に積層された正孔輸送層とからなる。本実施形態においては、光電変換層3は、平面視円形状とされているが、これは一例であり、光電変換層3は、様々な形状とされうる。光電変換層3の厚さは、たとえば50nm~300nmである。 The photoelectric conversion layer 3 is laminated on the support substrate 41 and the first conductive layer 1, and is sandwiched between the first conductive layer 1 and the second conductive layer 2. The photoelectric conversion layer 3 is a layer made of an organic thin film, and exhibits a photoelectric conversion function for converting received light into electric power. The specific configuration of the photoelectric conversion layer 3 is not particularly limited. For example, a bulk heterojunction organic active layer and a hole transport layer stacked on the first conductive layer 1 side with respect to the bulk heterojunction organic active layer are given. It consists of. In the present embodiment, the photoelectric conversion layer 3 has a circular shape in plan view, but this is an example, and the photoelectric conversion layer 3 can have various shapes. The thickness of the photoelectric conversion layer 3 is, for example, 50 nm to 300 nm.
 バルクヘテロ接合有機活性層は、p型有機活性層領域とn型有機活性層領域が混在し、複雑なバルクへテロpn接合を形成している。p型有機活性層領域は、例えば、P3HT(poly(3-hexylthiophene-2,5diyl))で形成され、n型有機活性層領域は、例えば、PCBM(6,6-phenyl-C61-butyric acid methyl ester)で形成されている。正孔輸送層は、たとえばPEDOT:PSSで形成されている。 In the bulk heterojunction organic active layer, a p-type organic active layer region and an n-type organic active layer region are mixed to form a complex bulk hetero pn junction. The p-type organic active layer region is formed of, for example, P3HT (poly (3-hexylthiophene-2,5diyl)), and the n-type organic active layer region is, for example, PCBM (6,6-phenyl-C61-butyric acid methyl). ester). The hole transport layer is made of, for example, PEDOT: PSS.
 光電変換層3の形成に用いられる材質を例示すると、フタロシアニン(Pc:Phthalocyanine)、亜鉛フタロシアニン(ZnPc:Zinc- phthalocyanine)、Me-Ptcdi(N,N’-dimethyl perylene-3,4,9,10-dicarboximide)、フラーレン(C 60 :Buckminster fullerene)が挙げられる。これらの材質は、たとえば真空蒸着に使用される。 Examples of materials used to form the photoelectric conversion layer 3 include phthalocyanine (Pc: Phthhalocyanine), zinc phthalocyanine (ZnPc: Zinc- phthalocyanine), Me-Ptcdi (N, N'-dimethyl perylene-3,4,9,10). -dicarboximide) and fullerene (C 60: Buckminster fullerene). These materials are used for vacuum deposition, for example.
 また、光電変換層3の形成に用いられる他の材質を例示すると、MDMO-PPV(poly[2-methoxy-5-(3,7-dimethyl octyloxy)]-1,4-phenylene vinylene)、PCDTBT(poly[N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-b3nzothiadizaole)])、PC60BM(6,6-phenyl-C61-butyric acid methyl ester)、PC70BM(6,6-phenyl-C71-butyric acid methyl ester)が挙げられる。これらの材質は、たとえば溶液プロセスに使用される。 Other materials used for forming the photoelectric conversion layer 3 are exemplified by MDMO-PPV (poly [2-methoxy-5- (3,7-dimethyl-octyloxy)]-1,4-phenylene-vinylene), PCDTBT ( poly [N-9'-hepta-decanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di-thienyl-2'1', 3'-b3nzothiadizaole)]), PC60BM (6 , 6-phenyl-C61-butyric acid methyl ester) and PC70BM (6,6-phenyl-C71-butyric acid methyl ester). These materials are used, for example, in solution processes.
 第2導電層2は、その大部分が光電変換層3を介して第1導電層1上に積層されている。また、第2導電層2の一部は、第1導電層1に直接接している。第2導電層2の材質は特に限定されず、透明であっても不透明であってもよいが、本実施形態においては、第2導電層2は、Al、W、Mo、Mn、Mgに代表される金属からなる。以下においては、第2導電層2がAlからなる場合を例に説明する。したがって、第2導電層2は、不透明である。またこの場合、第2導電層2の支持基板41とは反対側の表面に、Al2O3からなる不動態皮膜(図示略)が形成されてもよい。第2導電層2の厚さは、たとえば30nm~150nmである。 Most of the second conductive layer 2 is laminated on the first conductive layer 1 via the photoelectric conversion layer 3. A part of the second conductive layer 2 is in direct contact with the first conductive layer 1. The material of the second conductive layer 2 is not particularly limited and may be transparent or opaque, but in the present embodiment, the second conductive layer 2 is represented by Al, W, Mo, Mn, and Mg. Made of metal. Hereinafter, a case where the second conductive layer 2 is made of Al will be described as an example. Therefore, the second conductive layer 2 is opaque. In this case, a passive film (not shown) made of Al 2 O 3 may be formed on the surface of the second conductive layer 2 opposite to the support substrate 41. The thickness of the second conductive layer 2 is, for example, 30 nm to 150 nm.
 図220に示すように、第2導電層2は、複数の第2区画部21を有する。複数の第2区画部21は、基板露出領域410の一部ずつを挟んで隣り合っている。本実施形態の場合、より具体的には、隣り合う第2区画部21は、第1区画部第1端縁110の第1辺111と第1区画部第2端縁120の第2辺121とを間に挟んで隣り合っている。本実施形態においては、4つの第2区画部21が3つの基板露出領域410の一部ずつを挟んで隣り合っている。また、4つの第2区画部21は、x方向に沿って一直線上に配列されている。なお、以下においては、4つの第2区画部21を、理解の便宜上、第2区画部21-1、第2区画部21-2、第2区画部21-3および第2区画部21-4と必要に応じて区別して説明する。 As shown in FIG. 220, the second conductive layer 2 has a plurality of second partition portions 21. The plurality of second partition portions 21 are adjacent to each other with a part of the substrate exposed region 410 interposed therebetween. In the case of the present embodiment, more specifically, the adjacent second partition parts 21 include the first side 111 of the first partition part first edge 110 and the second side 121 of the first partition part second edge 120. Next to each other. In the present embodiment, the four second partition portions 21 are adjacent to each other with a part of each of the three substrate exposed regions 410 interposed therebetween. Further, the four second partition portions 21 are arranged on a straight line along the x direction. In the following, for convenience of understanding, the four second partition sections 21 are divided into a second partition section 21-1, a second partition section 21-2, a second partition section 21-3, and a second partition section 21-4. And will be described separately as necessary.
 図220および図222に示すように、第2区画部21は、z方向視において第1区画部11と重なっている。第2区画部21は、第2区画部第1端縁210、第2区画部第2端縁220および2つの第2区画部第3端縁230を有する。 220 and 222, the second partition portion 21 overlaps the first partition portion 11 when viewed in the z direction. The second partition part 21 has a second partition part first edge 210, a second partition part second edge 220, and two second partition part third edges 230.
 第2区画部21-1~3(図222における第2区画部21-2)の第2区画部第1端縁210は、基板露出領域410を規定する第1区画部11-1~3(図222における11-2)の第1区画部第1端縁110に対して当該基板露出領域410を規定する第1区画部11-2~4(図222における第1区画部11-3)の第1区画部第2端縁120とは反対側に位置する。第2区画部第2端縁220は、z方向視において基板露出領域410の一部を挟んで隣り合う第2区画部21の第2区画部第1端縁210と対向している。 The second partition portion first edge 210 of the second partition portions 21-1 to 21-3 (second partition portion 21-2 in FIG. 222) is the first partition portions 11-1 to 11-3 (which define the substrate exposed region 410). The first partition portions 11-2 to 11-4 (first partition portion 11-3 in FIG. 222) defining the substrate exposed region 410 with respect to the first edge 110 of the first partition portion 11-2) in FIG. 222. It is located on the opposite side to the first partition portion second end edge 120. The second partition portion second edge 220 is opposed to the second partition portion first edge 210 of the second partition portion 21 adjacent to each other with a part of the substrate exposed region 410 interposed therebetween in the z direction.
 本実施形態においては、第2区画部第1端縁210(図222における第2区画部21-2の第2区画部第1端縁210)と第2区画部第2端縁220(図222における第2区画部21-3の第2区画部第2端縁220)とは、互いに平行である。また、第2区画部第1端縁210および第2区画部第2端縁220は、y方向に沿う直線状である。すなわち、本実施形態においては、第1辺111、第2辺121、第2区画部第1端縁210および第2区画部第2端縁220が、互いに平行であり、y方向に沿う直線状である。 In the present embodiment, the second partition portion first edge 210 (the second partition portion first edge 210 of the second partition portion 21-2 in FIG. 222) and the second partition portion second edge 220 (FIG. 222). And the second partition part second end edge 220) of the second partition part 21-3 are parallel to each other. Moreover, the 2nd division part 1st edge 210 and the 2nd division part 2nd edge 220 are linear form along ay direction. That is, in the present embodiment, the first side 111, the second side 121, the second partition part first edge 210, and the second partition part second edge 220 are parallel to each other, and are linear along the y direction. It is.
 2つの第2区画部第3端縁230は、第2区画部第1端縁210の両端と第2区画部第2端縁220の両端とをそれぞれ繋いでいる。2つの第2区画部第3端縁230は、互いに平行であり、x方向に沿う直線状である。これらの第2区画部第1端縁210、第2区画部第2端縁220および2つの第2区画部第3端縁230を有する第2区画部21は、z方向視矩形状である。 The two second partition part third end edges 230 connect both ends of the second partition part first end edge 210 and both ends of the second partition part second end edge 220, respectively. The two second partition portion third end edges 230 are parallel to each other and are linear along the x direction. The second partition portion 21 having the second partition portion first end edge 210, the second partition portion second end edge 220, and the two second partition portion third end edges 230 has a rectangular shape as viewed in the z direction.
 図221、図223、図224および図226に示すように、パッシベーション層42は、第2導電層2上に積層されており、第2導電層2および光電変換層3を覆っている。パッシベーション層42は、たとえばSiNまたはSiONからなる。パッシベーション層42の厚さは、たとえば0.5μm~2.0μmであり、本実施形態においては、たとえば1.5μm程度とされる。パッシベーション層42が光電変換層3を覆っていることにより、光電変換層3に外部から水やパーティクル等が進入することを防止できる。また、パッシベーション層42は、光電変換層3よりも厚く構成されていることにより、有機薄膜太陽電池モジュールA22の強度を向上させることができる。なお、上述のような平坦なパッシベーション層42は、例えばパッシベーション層42が光電変換層3に対して厚い層とすること、また後述するCVDを用いた手法によって形成されることにより形成することができ、これに限られない。また、パッシベーション層42上に、さらに他の層が積層された構成であってもよい。たとえば、電子機器B22の他の構成要素と有機薄膜太陽電池モジュールA22とを接合するための接合層が設けられていてもよい。あるいは、パッシベーション層42を保護する保護層が設けられていてもよい。 221, 223, 224, and 226, the passivation layer 42 is stacked on the second conductive layer 2 and covers the second conductive layer 2 and the photoelectric conversion layer 3. The passivation layer 42 is made of, for example, SiN or SiON. The thickness of the passivation layer 42 is, for example, 0.5 μm to 2.0 μm. In the present embodiment, the thickness is, for example, about 1.5 μm. Since the passivation layer 42 covers the photoelectric conversion layer 3, it is possible to prevent water, particles, and the like from entering the photoelectric conversion layer 3 from the outside. Moreover, the passivation layer 42 can improve the intensity | strength of organic thin-film solar cell module A22 by being comprised thicker than the photoelectric converting layer 3. FIG. The flat passivation layer 42 as described above can be formed, for example, by making the passivation layer 42 thick with respect to the photoelectric conversion layer 3 or by a method using CVD described later. Not limited to this. In addition, another layer may be stacked on the passivation layer 42. For example, a bonding layer for bonding another component of the electronic device B22 and the organic thin film solar cell module A22 may be provided. Alternatively, a protective layer that protects the passivation layer 42 may be provided.
 図222~図224に示すように、第1区画部11-1~3(図222における第1区画部11-2)の第1区画部第1端縁110は、第1辺111に加えて2つの第1被覆部112を有する。第1被覆部112は、第1区画部第1端縁110のうちz方向視において第2区画部21と重なっており、z方向視において第2区画部21に被覆されている部分である。本実施形態においては、2つの第1被覆部112が、それぞれ第1辺111のy方向両端部に接続されて設けられている。第1被覆部112の形状は特に限定されず、本実施形態においては、第1被覆部112は、第1辺111に対してx方向に突出する形状とされており、第1辺1121、第2辺1122および第3辺1123を有する。第1辺1121は、第1区画部第3端縁130と平行でありx方向に沿う辺である。第2辺1122は、第1辺1121と交差する方向に沿う辺であり、y方向に沿っている。第3辺1123は、第1辺1121と第2辺1122とを繋ぐ辺であり、図示された例においては、湾曲形状とされている。また、図示された第1被覆部112は、一端が第2区画部第2端縁220に到達し、他端が第2区画部第3端縁230にz方向視において交差している。 As shown in FIGS. 222 to 224, the first partition portion first edge 110 of the first partition portions 11-1 to 11-3 (the first partition portion 11-2 in FIG. 222) is added to the first side 111. Two first covering portions 112 are provided. The first covering portion 112 is a portion of the first partition portion first edge 110 that overlaps the second partition portion 21 when viewed in the z direction and is covered with the second partition portion 21 when viewed in the z direction. In the present embodiment, two first covering portions 112 are provided connected to both ends of the first side 111 in the y direction. The shape of the first covering portion 112 is not particularly limited. In the present embodiment, the first covering portion 112 has a shape protruding in the x direction with respect to the first side 111, and the first side 1121, It has two sides 1122 and a third side 1123. The first side 1121 is a side that is parallel to the first partition portion third edge 130 and extends in the x direction. The second side 1122 is a side along the direction intersecting the first side 1121 and is along the y direction. The third side 1123 is a side that connects the first side 1121 and the second side 1122 and has a curved shape in the illustrated example. The illustrated first covering portion 112 has one end reaching the second partition portion second end edge 220 and the other end intersecting the second partition portion third end edge 230 in the z-direction view.
 図222~図224に示すように、第1区画部11-2~4(図222における第1区画部11-3)の第1区画部第2端縁120は、第2辺121に加えて2つの第2被覆部122を有する。第2被覆部122は、第1区画部第2端縁120のうちz方向視において第2区画部21と重なる部分である。本実施形態においては、2つの第2被覆部122が、第2辺121のy方向両端部に接続されて設けられている。第2被覆部122の形状は特に限定されず、本実施形態においては、第2被覆部122は、第2辺121に対してx方向に凹んだ形状とされており、第1辺1221、第2辺1222および第3辺1223を有する。第1辺1221は、第1区画部第3端縁130と平行でありx方向に沿う辺である。第2辺1222は、第1辺1221と交差する方向に沿う辺であり、y方向に沿っている。第3辺1223は、第1辺1221と第2辺1222とを繋ぐ辺であり、図示された例においては、湾曲形状とされている。また、図示された第2被覆部122は、一端が第2区画部第2端縁220に到達し、他端が第2区画部第3端縁230に到達している。 As shown in FIGS. 222 to 224, the first partition portion second edge 120 of the first partition portions 11-2 to 11-4 (the first partition portion 11-3 in FIG. 222) is added to the second side 121. Two second covering portions 122 are provided. The 2nd coating | coated part 122 is a part which overlaps with the 2nd division part 21 in z direction view among the 1st division part 2nd edges 120. As shown in FIG. In the present embodiment, two second covering portions 122 are provided connected to both ends of the second side 121 in the y direction. The shape of the second covering portion 122 is not particularly limited, and in the present embodiment, the second covering portion 122 has a shape that is recessed in the x direction with respect to the second side 121. It has two sides 1222 and a third side 1223. The first side 1221 is a side parallel to the first partition portion third end edge 130 and along the x direction. The second side 1222 is a side along the direction intersecting the first side 1221 and is along the y direction. The third side 1223 is a side that connects the first side 1221 and the second side 1222, and has a curved shape in the illustrated example. The illustrated second covering portion 122 has one end reaching the second partition portion second edge 220 and the other end reaching the second partition portion third edge 230.
 上述した第1被覆部112および第2被覆部122の形状に対応して、本実施形態の
基板露出領域410は、z方向視において第2区画部21と重なっており、交差部415および交差部416を有する。交差部415は、基板露出領域410が第2区画部第2端縁220と交差する部分である。交差部416は、基板露出領域410が第2区画部第3端縁230と交差する部分である。
Corresponding to the shape of the first covering portion 112 and the second covering portion 122 described above, the substrate exposed region 410 of the present embodiment overlaps the second partition portion 21 when viewed in the z direction, and the intersecting portion 415 and the intersecting portion. 416. The intersecting portion 415 is a portion where the substrate exposed region 410 intersects the second partition portion second edge 220. The intersecting portion 416 is a portion where the substrate exposed region 410 intersects the second partition portion third edge 230.
 図220~図224に示すように、光電変換層3は、複数の光電変換層接続部33を有する。図222~図224に示すように、光電変換層接続部33は、z方向視において基板露出領域410の一部(図222に示す部位の場合、第1区画部11-2の第1辺111と第1区画部11-3の第2辺121とによって規定された部分)を挟んで隣り合う第1導電層1の第1区画部11(図222に示す部位の場合、第1区画部11-2)と第2導電層2の第2区画部21(図222に示す部位の場合、第2区画部21-3)の双方と重なる部分であって、当該第1区画部11の第1被覆部112および当該第2区画部21の第2区画部第2端縁220によって区画された部分である。また、本実施形態においては、光電変換層接続部33は、第2区画部第3端縁230(図222に示す部位の場合、第2区画部21-3の第2区画部第3端縁230)によって区画されている。すなわち、本実施形態の光電変換層接続部33は、z方向視において矩形状とされた第2区画部21(図222に示す部位の場合、第2区画部21-3)の角部に重なる位置に設けられている。さらに、本実施形態においては、図220に示すように、1つの第2区画部21に対して、2つの光電変換層接続部33が、y方向に離間した2つの角部に重なる位置に設けられている。 220 to 224, the photoelectric conversion layer 3 has a plurality of photoelectric conversion layer connection portions 33. As shown in FIGS. 222 to 224, the photoelectric conversion layer connecting portion 33 is part of the substrate exposed region 410 when viewed in the z direction (in the case of the portion shown in FIG. 222, the first side 111 of the first partitioning portion 11-2). And a portion defined by the second side 121 of the first partition part 11-3) and the first partition part 11 of the first conductive layer 1 adjacent to each other (in the case of the part shown in FIG. 222, the first partition part 11) -2) and the second partition part 21 of the second conductive layer 2 (in the case of the part shown in FIG. 222, the second partition part 21-3) overlaps both the first partition part 11 and the first partition part 11 This is a portion defined by the covering portion 112 and the second partition portion second edge 220 of the second partition portion 21. Further, in the present embodiment, the photoelectric conversion layer connecting portion 33 has the second partition portion third edge 230 (in the case of the portion shown in FIG. 222, the second partition portion third edge of the second partition portion 21-3). 230). That is, the photoelectric conversion layer connecting portion 33 of the present embodiment overlaps the corner of the second partition portion 21 (second partition portion 21-3 in the case of the portion shown in FIG. 222) that is rectangular when viewed in the z direction. In the position. Furthermore, in the present embodiment, as shown in FIG. 220, two photoelectric conversion layer connection portions 33 are provided at positions overlapping two corner portions separated in the y direction with respect to one second partition portion 21. It has been.
 光電変換層接続部33には、光電変換層貫通部331が形成されている。光電変換層貫通部331は、光電変換層3をz方向に貫通する貫通孔によって構成されている。光電変換層貫通部331の形状や大きさは特に限定されず、図示された例においては、z方向視円形状とされている。また、この光電変換層貫通部331の直径は、たとえば40μm程度である。 In the photoelectric conversion layer connecting portion 33, a photoelectric conversion layer penetrating portion 331 is formed. The photoelectric conversion layer penetrating part 331 is configured by a through hole that penetrates the photoelectric conversion layer 3 in the z direction. The shape and size of the photoelectric conversion layer penetrating portion 331 are not particularly limited, and in the illustrated example, the photoelectric conversion layer penetrating portion 331 has a circular shape in the z direction. Moreover, the diameter of this photoelectric conversion layer penetration part 331 is about 40 micrometers, for example.
 第1区画部11-1~3は、第1接続部13を有する。第1接続部13は、z方向視において光電変換層接続部33と一致する部分である。第2区画部21は、第2接続部23を有する、第2接続部23は、z方向視において光電変換層接続部33と一致する部分である。第1区画部11-1~3の第1接続部13と第2区画部21-2~4第2接続部23とは、光電変換層貫通部331を通じて互いに接触しており、互いに導通している。このため、第1接続部13、第2接続部23および光電変換層接続部33は、発電を行わない部分となっている。 The first partition units 11-1 to 11-3 have a first connection unit 13. The first connection portion 13 is a portion that coincides with the photoelectric conversion layer connection portion 33 when viewed in the z direction. The 2nd division part 21 has the 2nd connection part 23. The 2nd connection part 23 is a part which corresponds with the photoelectric converting layer connection part 33 in z direction view. The first connecting portion 13 of the first partitioning portions 11-1 to 11-3 and the second connecting portions 21-2 to 4-4 are in contact with each other through the photoelectric conversion layer penetrating portion 331 and are electrically connected to each other. Yes. For this reason, the 1st connection part 13, the 2nd connection part 23, and the photoelectric converting layer connection part 33 are parts which do not generate electric power.
 本実施形態においては、第1区画部11の第1接続部13に第1貫通部131が設けられている。本実施形態においては、第1導電層1をz方向に貫通する貫通孔を第1貫通部131と称する。第1貫通部131は、z方向視において光電変換層貫通部331に内包されている。また、第1貫通部131の内端縁は、z方向視において光電変換層貫通部331の内端縁から離間している。これにより、第1区画部11の第1接続部13の一部が、z方向視において光電変換層貫通部331から露出している。この露出した部分に第2導電層2の第2区画部21-2~4の第2接続部23が接触している。また、第2区画部21-2~4の第2接続部23は、第1貫通部131を介して支持基板41に接している。 In the present embodiment, the first penetration part 131 is provided in the first connection part 13 of the first partition part 11. In the present embodiment, a through hole that penetrates the first conductive layer 1 in the z direction is referred to as a first through portion 131. The first penetration part 131 is included in the photoelectric conversion layer penetration part 331 when viewed in the z direction. Further, the inner end edge of the first penetrating part 131 is separated from the inner end edge of the photoelectric conversion layer penetrating part 331 when viewed in the z direction. Thereby, a part of the 1st connection part 13 of the 1st division part 11 is exposed from the photoelectric converting layer penetration part 331 in z direction view. The second connection portions 23 of the second partition portions 21-2 to 21-4 of the second conductive layer 2 are in contact with the exposed portions. Further, the second connection portions 23 of the second partition portions 21-2 to 21-4 are in contact with the support substrate 41 through the first penetration portion 131.
 光電変換層3は、複数の光電変換層発電部32を有している。また、第1導電層1の第1区画部11は、第1電極部12を有しており、第2導電層2の第2区画部21は、第2電極部22を有している。図220、図222および図225においては、第1電極部12、第2電極部22および光電変換層発電部32に、複数の離散点からなるハッチングを付している。第1電極部12は、z方向視において光電変換層接続部33と重ならず且つ第2導電層2の第2区画部21と重なる部分である。言い換えれば第2区画部21は、z方向視において、第1電極部12と一致する部分である。光電変換層発電部32は、z方向視において、第1電極部12および第2電極部22と一致する部分である。本実施形態においては、第1電極部12、第2電極部22および光電変換層発電部32は、z方向視において第2区画部第1端縁210、第2区画部第2端縁220、2つの第2区画部第3端縁230および2つの第2被覆部122によって規定された部分である。第1電極部12および第2電極部22は、光電変換層発電部32を介して積層されており、互いに接触していない。これにより、第1電極部12、第2電極部22および光電変換層発電部32は、発電を行う部分となっている。 The photoelectric conversion layer 3 has a plurality of photoelectric conversion layer power generation units 32. Further, the first partition portion 11 of the first conductive layer 1 has a first electrode portion 12, and the second partition portion 21 of the second conductive layer 2 has a second electrode portion 22. 220, 222, and 225, the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 are hatched with a plurality of discrete points. The first electrode portion 12 is a portion that does not overlap with the photoelectric conversion layer connection portion 33 and overlaps with the second partition portion 21 of the second conductive layer 2 when viewed in the z direction. In other words, the second partition portion 21 is a portion that coincides with the first electrode portion 12 when viewed in the z direction. The photoelectric conversion layer power generation unit 32 is a portion that coincides with the first electrode unit 12 and the second electrode unit 22 when viewed in the z direction. In this embodiment, the 1st electrode part 12, the 2nd electrode part 22, and the photoelectric converting layer electric power generation part 32 are 2nd division part 1st edge 210, 2nd division part 2nd edge 220 in z direction view, This is a portion defined by the two second partition portion third edges 230 and the two second covering portions 122. The 1st electrode part 12 and the 2nd electrode part 22 are laminated | stacked via the photoelectric converting layer electric power generation part 32, and are not mutually contacting. Thereby, the 1st electrode part 12, the 2nd electrode part 22, and the photoelectric converting layer electric power generation part 32 are parts which generate electric power.
 本実施形態においては、z方向視において、光電変換層接続部33と光電変換層発電部32の一部とが、y方向において隙間を介して隣り合っている。すなわち、光電変換層接続部33は、x方向における位置が、光電変換層発電部32の一部のx方向位置と同じである。また、第1接続部13は、基板露出領域410を介して隣り合う第1区画部11の第1電極部12の一部とy方向において隣り合っている。すなわち、当該第1接続部13は、x方向における位置が、当該第1電極部12の一部のx方向位置と重なっている。 In the present embodiment, when viewed in the z direction, the photoelectric conversion layer connection portion 33 and a part of the photoelectric conversion layer power generation portion 32 are adjacent to each other with a gap in the y direction. That is, the position of the photoelectric conversion layer connection unit 33 in the x direction is the same as the position in the x direction of a part of the photoelectric conversion layer power generation unit 32. Further, the first connection portion 13 is adjacent to a part of the first electrode portion 12 of the first partition portion 11 adjacent to each other via the substrate exposed region 410 in the y direction. That is, the position of the first connection portion 13 in the x direction overlaps with a part of the first electrode portion 12 in the x direction.
 図220、図221、図225および図226に示すように、第3区画部15は、外部電極部151および外部接続部153を有する。外部接続部153は、z方向視において第2区画部21-1の第2接続部23および光電変換層接続部33と一致する部分である。外部接続部153は、光電変換層貫通部331を通じて第2区画部21-1の第2接続部23と接触している。本実施形態においては、外部接続部153には、外部接続部貫通部1531が設けられている。本実施形態においては、第1導電層1の外部接続部153をz方向に貫通する貫通孔を外部接続部貫通部1531と称する。外部接続部貫通部1531は、z方向視において光電変換層貫通部331に内包されている。また、外部接続部貫通部1531の内端縁は、z方向視において光電変換層貫通部331の内端縁から離間している。これにより、第3区画部15の外部接続部153の一部が、z方向視において光電変換層貫通部331から露出している。この露出した部分に第2導電層2の第2区画部21-1の第2接続部23が接触している。また、第2接続部23は、外部接続部貫通部1531を介して支持基板41に接している。外部電極部151は、第2導電層2、光電変換層3およびパッシベーション層42から露出した部分である。外部電極部151は、有機薄膜太陽電池モジュールA22において発電された電力を出力する部位であり、たとえば電子機器B22の端子に導通する。 220, FIG. 221, FIG. 225, and FIG. 226, the third partition part 15 has an external electrode part 151 and an external connection part 153. The external connection portion 153 is a portion that coincides with the second connection portion 23 and the photoelectric conversion layer connection portion 33 of the second partition portion 21-1 when viewed in the z direction. The external connection part 153 is in contact with the second connection part 23 of the second partition part 21-1 through the photoelectric conversion layer penetration part 331. In the present embodiment, the external connection portion 153 is provided with an external connection portion penetration portion 1531. In the present embodiment, a through hole that penetrates the external connection portion 153 of the first conductive layer 1 in the z direction is referred to as an external connection portion through portion 1531. The external connection portion penetration portion 1531 is included in the photoelectric conversion layer penetration portion 331 as viewed in the z direction. Further, the inner end edge of the external connection portion penetration portion 1531 is separated from the inner end edge of the photoelectric conversion layer penetration portion 331 when viewed in the z direction. Thereby, a part of external connection part 153 of the 3rd division part 15 is exposed from the photoelectric converting layer penetration part 331 in z direction view. The second connection part 23 of the second partition part 21-1 of the second conductive layer 2 is in contact with the exposed part. The second connection portion 23 is in contact with the support substrate 41 through the external connection portion through portion 1531. The external electrode portion 151 is a portion exposed from the second conductive layer 2, the photoelectric conversion layer 3, and the passivation layer 42. The external electrode portion 151 is a portion that outputs the electric power generated in the organic thin film solar cell module A22, and is electrically connected to the terminal of the electronic device B22, for example.
 また、本実施形態においては、図220および図221に示すように、x方向において第3区画部15とは反対側に設けられた第1区画部11-4が、外部電極部141を有している。外部電極部141は、第1区画部11-4のうち第2導電層2、光電変換層3およびパッシベーション層42から露出した部分である。外部電極部141は、有機薄膜太陽電池モジュールA22において発電された電力を出力する部位であり、たとえば電子機器B22の端子に導通する。 In the present embodiment, as shown in FIGS. 220 and 221, the first partition portion 11-4 provided on the opposite side to the third partition portion 15 in the x direction has the external electrode portion 141. ing. The external electrode portion 141 is a portion exposed from the second conductive layer 2, the photoelectric conversion layer 3, and the passivation layer 42 in the first partition portion 11-4. The external electrode part 141 is a part that outputs electric power generated in the organic thin film solar cell module A22, and is electrically connected to, for example, a terminal of the electronic device B22.
 図220、図221および図227から理解されるように、本実施形態においては、有機薄膜太陽電池モジュールA22において、4組の第1電極部12、第2電極部22および光電変換層発電部32が、6組の第1接続部13、第2接続部23および光電変換層接続部33を介して互いに直接に接続されている。直列接続された4組の第1電極部12、第2電極部22および光電変換層発電部32において発電された電力は、外部電極部141および外部電極部151から出力される。この電力は、電子機器B22の駆動部71の駆動に用いられる。 As can be understood from FIGS. 220, 221 and 227, in the present embodiment, in the organic thin film solar cell module A22, four sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32. Are directly connected to each other through six sets of the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33. The electric power generated in the four sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 connected in series is output from the external electrode unit 141 and the external electrode unit 151. This electric power is used to drive the drive unit 71 of the electronic apparatus B22.
 次に、有機薄膜太陽電池モジュールA22の製造方法の一例について、図228~図235を参照しつつ、以下に説明する。なお、図228、図230、図232および図234は、図222と同様の部分を示す要部拡大平面図であり、図229、図231、図233および図235は、図223と同様の部分を示す要部拡大断面図である。 Next, an example of a method for producing the organic thin film solar cell module A22 will be described below with reference to FIGS. 228 to 235. 228, 230, 232, and 234 are enlarged plan views of main parts showing the same parts as in FIG. 222, and FIGS. 229, 231, 233, and 235 are the same parts as in FIG. It is a principal part expanded sectional view which shows this.
 まず、図228および図229に示すように、支持基板41の片面にたとえばスパッタ法などの一般的な手法によりITOを成膜することにより、第1導電膜10を形成する。次いで、第1導電膜10をパターニングすることにより、基板露出領域410、基板露出領域411および基板露出領域412形成し、複数の第1区画部11および第3区画部15が得られる。第1導電膜10へのパターニング手法としては、たとえばウエットエッチングを用いた手法、Greenレーザー光やIRレーザー光等のレーザーパターニングを用いた手法が適宜採用される。本実施形態においては、レーザー光Lz1として、IRレーザー光が用いられる。なお、図228においては、後述する工程を経ることにより第1被覆部112および第2被覆部122となる部位に理解の便宜上、符号を付している。 First, as shown in FIGS. 228 and 229, the first conductive film 10 is formed by depositing ITO on one surface of the support substrate 41 by a general method such as sputtering. Next, by patterning the first conductive film 10, a substrate exposed region 410, a substrate exposed region 411 and a substrate exposed region 412 are formed, and a plurality of first partition portions 11 and third partition portions 15 are obtained. As a patterning method for the first conductive film 10, for example, a method using wet etching and a method using laser patterning such as Green laser light and IR laser light are appropriately employed. In the present embodiment, IR laser light is used as the laser light Lz1. Note that, in FIG. 228, reference numerals are assigned to portions that become the first covering portion 112 and the second covering portion 122 through the steps described later for the sake of convenience.
 次いで、図230および図231に示すように、有機膜30を形成する。有機膜30の形成は、たとえば、スピンコート塗布により支持基板41上および第1導電膜10上に有機膜を成膜することによりなされる。次いで、有機膜30に対して光電変換層貫通部331を形成する。光電変換層貫通部331の形成は、たとえばレーザーパターニングによってなされる。このレーザーパターニングに用いられるレーザー光Lz2は、光電変換層貫通部331を部分的に除去可能であるものが適宜選択される。本実施形態においては、レーザー光Lz2としてIRレーザー光を用いたレーザーパターニングを行った場合を例に説明する。この場合、レーザー光Lz2は、有機膜30と第1導電膜10との一部ずつを除去する。このため、有機膜30に光電変換層貫通部331が形成されるとともに、第1導電膜10に第1貫通部131が形成される。このパターニングを経ることにより、図232および図233に示すように、第1導電層1および光電変換層3が得られる。 Next, as shown in FIGS. 230 and 231, an organic film 30 is formed. The organic film 30 is formed, for example, by forming an organic film on the support substrate 41 and the first conductive film 10 by spin coating. Next, the photoelectric conversion layer penetrating portion 331 is formed in the organic film 30. The photoelectric conversion layer penetrating part 331 is formed by, for example, laser patterning. As the laser beam Lz2 used for this laser patterning, one that can partially remove the photoelectric conversion layer penetrating portion 331 is appropriately selected. In the present embodiment, a case where laser patterning using an IR laser beam as the laser beam Lz2 is performed will be described as an example. In this case, the laser beam Lz2 removes part of the organic film 30 and the first conductive film 10 one by one. For this reason, the photoelectric conversion layer penetration part 331 is formed in the organic film 30, and the first penetration part 131 is formed in the first conductive film 10. By performing this patterning, the first conductive layer 1 and the photoelectric conversion layer 3 are obtained as shown in FIGS. 232 and 233.
 次いで、図234および図235に示すように、第2導電層2を形成する。第2導電層2の形成は、たとえば上述した金属を真空加熱蒸着法によって支持基板41、第1導電層1および光電変換層3上に金属膜を成膜する。次に、該金属膜に例えばマスク層を用いたエッチングを行うことによりパターニングを施す。このパターニングにより、第1導電層1上および光電変換層3上に複数の第2区画部21を有する第2導電層2を形成する。この後は、たとえばプラズマCVD法によってSiNまたはSiONを支持基板41、第1導電層1、光電変換層3および第2導電層2上に成膜することにより、パッシベーション層42を形成する。以上の工程を経ることにより、有機薄膜太陽電池モジュールA22が得られる。 Next, as shown in FIGS. 234 and 235, the second conductive layer 2 is formed. The second conductive layer 2 is formed, for example, by forming a metal film on the support substrate 41, the first conductive layer 1 and the photoelectric conversion layer 3 using the above-described metal by vacuum heating vapor deposition. Next, the metal film is patterned by etching using, for example, a mask layer. By this patterning, the second conductive layer 2 having a plurality of second partition portions 21 is formed on the first conductive layer 1 and the photoelectric conversion layer 3. Thereafter, a passivation layer 42 is formed by depositing SiN or SiON on the support substrate 41, the first conductive layer 1, the photoelectric conversion layer 3, and the second conductive layer 2 by, for example, plasma CVD. Through the above steps, an organic thin film solar cell module A22 is obtained.
 次に、有機薄膜太陽電池モジュールA22および電子機器B22の作用について説明する。 Next, the operation of the organic thin film solar cell module A22 and the electronic device B22 will be described.
 本実施形態によれば、図222に示すように、光電変換層接続部33を区画する第1区画部11-2の第1被覆部112によってその一部が規定された基板露出領域410は、第2区画部21-3の第2区画部第2端縁220と交差する交差部415を有する。これにより、第2区画部21-3の第2区画部第2端縁220に沿って光電変換層接続部33が部分的に設けられる構成となり、第2区画部21-3の第2区画部第2端縁220の全長にわたって光電変換層接続部33が設けられる構成とはならない。したがって、光電変換層3のうち非発電の部分である光電変換層接続部33の面積割合を減少させることが可能であり、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。 According to the present embodiment, as shown in FIG. 222, the substrate exposed region 410 partially defined by the first covering portion 112 of the first partition portion 11-2 that partitions the photoelectric conversion layer connecting portion 33 is The cross section 415 intersects the second partition portion second edge 220 of the second partition portion 21-3. As a result, the photoelectric conversion layer connecting portion 33 is partially provided along the second partition portion second edge 220 of the second partition portion 21-3, and the second partition portion of the second partition portion 21-3. The photoelectric conversion layer connection portion 33 is not provided over the entire length of the second end edge 220. Therefore, it is possible to reduce the area ratio of the photoelectric conversion layer connection portion 33 that is a non-power generation portion of the photoelectric conversion layer 3, and to reduce the photoelectric conversion layer power generation portion 32 that is a portion that actually contributes to power generation. Can be suppressed.
 また、図222に示す例においては、基板露出領域410は、1の交差部415と1つの交差部416とを有している。すなわち、光電変換層接続部33を区画する基板露出領域410は、第2区画部21-3の第2区画部第2端縁220から延びて第2区画部21-3の第2区画部第3端縁230と交差している。たとえば、本例とは異なり、基板露出領域410が第2区画部21-3の第2区画部第2端縁220と2箇所で交差する場合、本例と比べてz方向視において第2区画部21-3と重なる基板露出領域410が長くなる。基板露出領域410は、非発電の部分であるため、このような非発電の部分の面積割合を縮小するのに適している。 Further, in the example shown in FIG. 222, the substrate exposed region 410 has one intersection 415 and one intersection 416. That is, the substrate exposed region 410 that partitions the photoelectric conversion layer connection portion 33 extends from the second partition portion second edge 220 of the second partition portion 21-3 and extends from the second partition portion 21-3 of the second partition portion 21-3. Crosses 3 edge 230. For example, unlike the present example, when the substrate exposed region 410 intersects the second partition part second end edge 220 of the second partition part 21-3 at two locations, the second partition is viewed in the z direction as compared to the present example. The substrate exposed region 410 that overlaps the portion 21-3 becomes longer. Since the substrate exposed region 410 is a non-power generation portion, it is suitable for reducing the area ratio of such a non-power generation portion.
 光電変換層貫通部331は、たとえば直径が40μm程度の貫通孔によって構成されている。このため、光電変換層貫通部331を含む光電変換層接続部33の面積をより縮小させることができる。 The photoelectric conversion layer penetrating portion 331 is constituted by a through hole having a diameter of about 40 μm, for example. For this reason, the area of the photoelectric conversion layer connection part 33 including the photoelectric conversion layer penetrating part 331 can be further reduced.
 第1貫通部131は、図231に示すレーザー光Lz2としてたとえばIRレーザー光を用いた場合に、光電変換層貫通部331と一括して形成される。このIRレーザー光は、ITOからなる第1導電層1を部分的に除去可能であるため、図229に示す第1導電膜10のレーザーパターニングにおけるレーザー光Lz1として用いることができる。これにより、図228~図235に示す有機薄膜太陽電池モジュールA22の製造方法において、レーザー光Lz1およびレーザー光Lz2として、1種類のレーザー光(IRレーザー光)を用いれば済む。これは、製造方法および製造装置の簡略化に好ましく、制造時間の短縮に寄与する。 The first through part 131 is formed together with the photoelectric conversion layer through part 331 when, for example, IR laser light is used as the laser light Lz2 shown in FIG. Since this IR laser light can partially remove the first conductive layer 1 made of ITO, it can be used as the laser light Lz1 in the laser patterning of the first conductive film 10 shown in FIG. Thus, in the method for manufacturing the organic thin-film solar cell module A22 shown in FIGS. 228 to 235, one type of laser light (IR laser light) may be used as the laser light Lz1 and the laser light Lz2. This is preferable for simplification of the manufacturing method and the manufacturing apparatus, and contributes to shortening of the manufacturing time.
 第2区画部21の2つの角部に重なる位置に2組の第1接続部13、第2接続部23および光電変換層接続部33を設けることにより、隣り合う2組の第1電極部12、第2電極部22および光電変換層発電部32の間の抵抗をより低くすることができる。また、仮に一方の組の第1接続部13、第2接続部23および光電変換層接続部33における導通が不適切な状態となったとしても、他方の組の第1接続部13、第2接続部23および光電変換層接続部33によって隣り合う2組の第1電極部12、第2電極部22および光電変換層発電部32を適切に接続することができる。 By providing two sets of the first connection part 13, the second connection part 23, and the photoelectric conversion layer connection part 33 at a position overlapping the two corners of the second partition part 21, two adjacent sets of the first electrode parts 12. The resistance between the second electrode unit 22 and the photoelectric conversion layer power generation unit 32 can be further reduced. In addition, even if conduction in the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33 in one set becomes inappropriate, the first connection portion 13, the second connection in the other set. The two adjacent first electrode parts 12, the second electrode part 22, and the photoelectric conversion layer power generation part 32 can be appropriately connected by the connection part 23 and the photoelectric conversion layer connection part 33.
 図236~図244は、本発明の変形例および他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 236 to 244 show a modification and other embodiments of the present invention. In these drawings, the same or similar elements as those in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
 図236は、有機薄膜太陽電池モジュールA22の変形例を示している。本変形例においては、第1区画部11(図236における第1区画部11-2)の第1接続部13に、上述した第1貫通部131が形成されていない。すなわち、z方向視において光電変換層貫通部331に内包される領域においては、支持基板41は、第1導電層1の第1接続部13(図236における第1区画部11-2の第1接続部13)によって覆われている。このような構成は、たとえば、有機膜30に光電変換層貫通部331を形成するためのレーザーパターニングにおいて、レーザー光Lz2としてGreenレーザー光を用いるとともに、出力や照射時間を適切に設定することによって実現しうる。 FIG. 236 shows a modification of the organic thin film solar cell module A22. In the present modification, the first through portion 131 described above is not formed in the first connection portion 13 of the first partition portion 11 (the first partition portion 11-2 in FIG. 236). That is, in the region enclosed in the photoelectric conversion layer penetrating portion 331 when viewed in the z direction, the support substrate 41 has the first connection portion 13 of the first conductive layer 1 (the first partition portion 11-2 in FIG. It is covered by a connection 13). Such a configuration is realized, for example, by using Green laser light as the laser light Lz2 and appropriately setting the output and irradiation time in laser patterning for forming the photoelectric conversion layer penetrating portion 331 in the organic film 30. Yes.
 このような変形例によっても、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。なお、以降の実施形態においては、光電変換層貫通部331が設けられた領域において、第1貫通部131を形成してもよいし、第1貫通部131を形成しなくてもよい。 Even with such a modification, it is possible to suppress a decrease in the photoelectric conversion layer power generation unit 32 that is a part that actually contributes to power generation. In the following embodiments, the first through part 131 may be formed in the region where the photoelectric conversion layer through part 331 is provided, or the first through part 131 may not be formed.
 図238~図240は、本発明の第23実施形態に基づく有機薄膜太陽電池モジュールを示している。本実施形態の有機薄膜太陽電池モジュールA23においては、第1接続部13、第2接続部23および光電変換層接続部33の構成が、上述した実施形態と異なっている。図237は、有機薄膜太陽電池モジュールA23を示す要部平面図である。図238は、有機薄膜太陽電池モジュールA23を示す要部拡大平面図である。図239は、図238のCCXXXIX-CCXXXIX線に沿う要部拡大断面図である。図240は、図238のCCXL-CCXL線に沿う要部拡大断面図である。 238 to 240 show an organic thin film solar cell module according to a twenty-third embodiment of the present invention. In organic thin-film solar cell module A23 of this embodiment, the structure of the 1st connection part 13, the 2nd connection part 23, and the photoelectric converting layer connection part 33 differs from embodiment mentioned above. FIG. 237 is a plan view of a principal part showing the organic thin film solar cell module A23. FIG. 238 is an enlarged plan view of a main part showing the organic thin film solar cell module A23. 239 is an enlarged cross-sectional view of a main part taken along the line CCXXXIX-CCXXXIX in FIG. 240 is an enlarged cross-sectional view of a main part taken along the line CCXL-CCXL in FIG.
 本実施形態においては、図237に示すように、y方向に離間する第2区画部21の2つの角部に対応した位置に設けられた2組の第1接続部13、第2接続部23および光電変換層接続部33配置の間に1組の第1接続部13、第2接続部23および光電変換層接続部33が設けられている。図238~図240に示すように、z方向視においてこの第1接続部13、第2接続部23および光電変換層接続部33を区画する基板露出領域410は、第2区画部21-3の第2区画部第2端縁220と交差する2つの交差部415を有している。2つの交差部415は、y方向に互いに離間している。また、この第1区画部11-2の第1接続部13、第2区画部21-3の第2接続部23および光電変換層接続部33のy方向両側に、第1区画部11-3の第1電極部12、第2区画部21-3の第2電極部22および光電変換層発電部32が位置している。すなわち、この第1区画部11-2の第1接続部13、第2区画部21-3の第2接続部23および光電変換層接続部33は、y方向において第1区画部11-2の第1電極部12、第2区画部21-3第2電極部22および光電変換層発電部32に挟まれている。本実施形態においては、第1被覆部112は、2つの第1辺1121、第2辺1122および2つの第3辺1123を有する。また、第2被覆部122は、2つの第1辺1221、第2辺1222および2つの第3辺1223を有する。 In the present embodiment, as shown in FIG. 237, two sets of the first connection portion 13 and the second connection portion 23 provided at positions corresponding to the two corner portions of the second partition portion 21 that are separated in the y direction. A pair of the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33 are provided between the photoelectric conversion layer connection portion 33 and the photoelectric conversion layer connection portion 33. As shown in FIGS. 238 to 240, the substrate exposed region 410 that divides the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33 in the z-direction view is formed on the second partition portion 21-3. Two intersection portions 415 intersecting the second partition portion second edge 220 are provided. The two intersections 415 are separated from each other in the y direction. In addition, on the both sides in the y direction of the first connection part 13 of the first partition part 11-2, the second connection part 23 of the second partition part 21-3, and the photoelectric conversion layer connection part 33, the first partition part 11-3 The first electrode part 12, the second electrode part 22 of the second partition part 21-3, and the photoelectric conversion layer power generation part 32 are located. That is, the first connection part 13 of the first partition part 11-2, the second connection part 23 of the second partition part 21-3, and the photoelectric conversion layer connection part 33 are connected to the first partition part 11-2 in the y direction. It is sandwiched between the first electrode part 12, the second partition part 21-3, the second electrode part 22, and the photoelectric conversion layer power generation part 32. In the present embodiment, the first covering portion 112 has two first sides 1121, a second side 1122, and two third sides 1123. The second covering portion 122 has two first sides 1221, a second side 1222, and two third sides 1223.
 このような実施形態によっても、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。また、図238に示す光電変換層接続部33は、非発電の領域であるものの、これを区画する基板露出領域410が、第2区画部21-3の第2区画部第2端縁220と交差する2つの交差部415を有する構成となっている。言い換えると、光電変換層接続部33のy方向両側には、光電変換層発電部32が位置している。これにより、第2区画部第2端縁220の全長にわたって光電変換層接続部33が設けられている構成と比べて、光電変換層発電部32減少を抑制することができる。また、図238に示す第1接続部13、第2接続部23および光電変換層接続部33を設けることにより、隣り合う2組の第1電極部12、第2電極部22および光電変換層発電部32の間の抵抗をより低くするとともに、より確実に導通させることができる。 Even in such an embodiment, it is possible to suppress a decrease in the photoelectric conversion layer power generation unit 32 that is a part that actually contributes to power generation. Further, although the photoelectric conversion layer connecting portion 33 shown in FIG. 238 is a non-power generation region, the substrate exposed region 410 that divides the photoelectric conversion layer connecting portion 33 is connected to the second partition portion second edge 220 of the second partition portion 21-3. It has a configuration having two intersecting portions 415 that intersect. In other words, the photoelectric conversion layer power generation units 32 are located on both sides of the photoelectric conversion layer connection unit 33 in the y direction. Thereby, compared with the structure by which the photoelectric converting layer connection part 33 is provided over the full length of the 2nd division part 2nd edge 220, the photoelectric converting layer electric power generation part 32 reduction | decrease can be suppressed. Further, by providing the first connection portion 13, the second connection portion 23, and the photoelectric conversion layer connection portion 33 shown in FIG. 238, two adjacent sets of the first electrode portion 12, the second electrode portion 22, and the photoelectric conversion layer power generation are provided. While making resistance between the parts 32 lower, it can conduct more reliably.
 図241は、本発明の第24実施形態に基づく有機薄膜太陽電池モジュールA24を示す要部拡大平面図である。本実施形態においては、上述した有機薄膜太陽電池モジュールA23と同様の第1接続部13、第2接続部23および光電変換層接続部33を有するものの、第1区画部第1端縁110、第1区画部第2端縁120、第2区画部第1端縁210、第2区画部第2端縁220および基板露出領域410の形状が、上述した実施形態と異なっている。 FIG. 241 is a main part enlarged plan view showing an organic thin-film solar cell module A24 based on the twenty-fourth embodiment of the present invention. In this embodiment, although it has the 1st connection part 13, the 2nd connection part 23, and the photoelectric converting layer connection part 33 similar to organic thin-film solar cell module A23 mentioned above, the 1st division part 1st edge 110, the 1st The shape of the 1st division part 2nd edge 120, the 2nd division part 1st edge 210, the 2nd division part 2nd edge 220, and the board | substrate exposure area | region 410 differs from embodiment mentioned above.
 本実施形態においては、図222における第1区画部11-2の第1辺111および第1区画部11-3の第2辺121が、いずれも曲線状とされている。ただし、これらの第1辺111と第2辺121とは、互いに平行である。また、第2区画部21-2の第2区画部第1端縁210および第2区画部21-3の第2区画部第2端縁220が、いずれも曲線状とされている。ただし、これらの第2区画部第1端縁210と第2区画部第2端縁220とは、互いに平行である。また、これらの第1辺111、第2辺121、第2区画部第1端縁210および第2区画部第2端縁220は、互いに平行である。 In the present embodiment, the first side 111 of the first partition 11-2 and the second side 121 of the first partition 11-3 in FIG. 222 are both curved. However, the first side 111 and the second side 121 are parallel to each other. Further, the second partition part first end edge 210 of the second partition part 21-2 and the second partition part second end edge 220 of the second partition part 21-3 are both curved. However, these 2nd division part 1st edge 210 and 2nd division part 2nd edge 220 are mutually parallel. The first side 111, the second side 121, the second partition portion first edge 210, and the second partition portion second edge 220 are parallel to each other.
 このような実施形態によっても、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。また、本実施形態から理解されるように、第1辺111および第2辺121は、直線状の構成に限定されず、曲線状や折れ線状など様々な形状に設定することができる。また、第2区画部第1端縁210および第2区画部第2端縁220は、直線状の構成に限定されず、曲線状や折れ線状など様々な形状に設定することができる。 Even in such an embodiment, it is possible to suppress a decrease in the photoelectric conversion layer power generation unit 32 that is a part that actually contributes to power generation. Further, as understood from the present embodiment, the first side 111 and the second side 121 are not limited to a linear configuration, and can be set to various shapes such as a curved shape and a polygonal shape. Moreover, the 2nd division part 1st edge 210 and the 2nd division part 2nd edge 220 are not limited to a linear structure, It can set to various shapes, such as curvilinear form and a broken line form.
 図242は、本発明の第25実施形態に基づく有機薄膜太陽電池モジュールA25を示す要部拡大平面図である。本実施形態においては、上述した有機薄膜太陽電池モジュールA23および有機薄膜太陽電池モジュールA24と同様の第1接続部13、第2接続部23および光電変換層接続部33を有するものの、第1区画部11-2の第1区画部第1端縁110、第1区画部11-3の第1区画部第2端縁120、第2区画部21-2の第2区画部第1端縁210、第2区画部21-3の第2区画部第2端縁220および基板露出領域410の形状が、上述した実施形態と異なっている。 FIG. 242 is an essential part enlarged plan view showing an organic thin-film solar cell module A25 based on the twenty-fifth embodiment of the present invention. In this embodiment, although it has the 1st connection part 13, the 2nd connection part 23, and the photoelectric converting layer connection part 33 similar to organic thin-film solar cell module A23 and organic thin-film solar cell module A24 mentioned above, a 1st division part 11-2 first partition portion first edge 110, first partition portion 11-3 first partition portion second edge 120, second partition portion 21-2 second partition portion first edge 210, The shapes of the second partition portion second end edge 220 and the substrate exposed region 410 of the second partition portion 21-3 are different from those of the above-described embodiment.
 本実施形態においては、第1区画部11-2の第1区画部第1端縁110および第1区画部11-3の第1区画部第2端縁120が第1被覆部112および第2被覆部122以外の部分において、いずれも曲線状の部分を有している。これらの曲線状の部分は、z方向視において互いにx方向反対側に凸である形状であり、互いに平行ではない。また、第2区画部21-2の第2区画部第1端縁210および第2区画部21-3の第2区画部第2端縁220は、z方向視において互いにx方向反対側に凸である形状であり、互いに平行ではない。ただし、第1区画部11-2の第1区画部第1端縁110の曲線状の部分と第2区画部21-2の第2区画部第1端縁210とは、互いに平行である。また、第1区画部11-3の第1区画部第2端縁120の曲線状の部分と第2区画部21-3の第2区画部第2端縁220とは、互いに平行である。 In the present embodiment, the first partition portion first end edge 110 of the first partition portion 11-2 and the first partition portion second end edge 120 of the first partition portion 11-3 are the first cover portion 112 and the second cover portion 11-2. All portions other than the covering portion 122 have curved portions. These curved portions have shapes that are convex on the opposite sides in the x direction when viewed in the z direction, and are not parallel to each other. Further, the second partition portion first end edge 210 of the second partition portion 21-2 and the second partition portion second end edge 220 of the second partition portion 21-3 are protruded on the opposite sides in the x direction when viewed in the z direction. And are not parallel to each other. However, the curved portion of the first partition portion first edge 110 of the first partition portion 11-2 and the second partition portion first edge 210 of the second partition portion 21-2 are parallel to each other. The curved portion of the first partition portion second end edge 120 of the first partition portion 11-3 and the second partition portion second end edge 220 of the second partition portion 21-3 are parallel to each other.
 このような実施形態によっても、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。また、第1区画部第1端縁110と第1区画部第2端縁120とは、z方向視において第2区画部21と重ならない部分において、互いに平行ではない構成であってもよい。また、第2区画部第1端縁210と第2区画部第2端縁220とは、互いに平行ではない構成であってもよい。 Even in such an embodiment, it is possible to suppress a decrease in the photoelectric conversion layer power generation unit 32 that is a part that actually contributes to power generation. Moreover, the 1st division part 1st edge 110 and the 1st division part 2nd edge 120 may be the structure which is not mutually parallel in the part which does not overlap with the 2nd division part 21 in z direction view. Moreover, the 2nd division part 1st edge 210 and the 2nd division part 2nd edge 220 may be the structure which is not mutually parallel.
 図243は、本発明の第26実施形態に基づく有機薄膜太陽電池モジュールA26および電子機器B26を示している。本実施形態においては、第1導電層1が8つの第1区画部11-1~8を有しており、第2導電層2が、8つの第2区画部21-1~8を有している。また、8組の第1電極部12、第2電極部22および光電変換層発電部32が、14組の第1接続部13、第2接続部23および光電変換層接続部33によって互いに直列に接続されており、外部電極部141および外部電極部151から電力が出力される。また、本実施形態においては、8組の第1電極部12、第2電極部22および光電変換層発電部32が、z方向視において環状に配列されている。 FIG. 243 shows an organic thin-film solar cell module A26 and an electronic device B26 based on the twenty-sixth embodiment of the present invention. In the present embodiment, the first conductive layer 1 has eight first partition portions 11-1 to 11-8, and the second conductive layer 2 has eight second partition portions 21-1 to 8-8. ing. Further, eight sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 are connected in series by the 14 sets of the first connection unit 13, the second connection unit 23, and the photoelectric conversion layer connection unit 33. Power is output from the external electrode portion 141 and the external electrode portion 151. Moreover, in this embodiment, eight sets of the 1st electrode part 12, the 2nd electrode part 22, and the photoelectric converting layer electric power generation part 32 are arranged cyclically | annularly in z direction view.
 z方向視において8組の第1電極部12、第2電極部22および光電変換層発電部32に囲まれた領域は、支持基板41が存在しており、第1導電層1の一部が存在しうる。ただし、前記領域においては、支持基板41のみが存在することが好ましい。このような領域は、駆動部71のうちたとえば液晶表示パネル等によって構成された表示部を、電子機器B26の外観に露出させる領域として用いられる。このような電子機器B26としては、たとえば液晶型腕時計や携帯型電子端末が挙げられる。 The region surrounded by the eight sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 in the z-direction view includes the support substrate 41, and a part of the first conductive layer 1 is present. Can exist. However, it is preferable that only the support substrate 41 exists in the region. Such a region is used as a region in which the display unit constituted by, for example, a liquid crystal display panel or the like in the driving unit 71 is exposed to the external appearance of the electronic device B26. Examples of such an electronic device B26 include a liquid crystal wristwatch and a portable electronic terminal.
 本実施形態においては、交差部415を区画する基板露出領域411は、第2区画部21の第2区画部第3端縁230と交差する2つの交差部415を有する。これにより、交差部415は、x方向に沿った直線状である第2区画部第3端縁230の中間に位置している。 In the present embodiment, the substrate exposure region 411 that partitions the intersecting portion 415 has two intersecting portions 415 that intersect with the second partition portion third edge 230 of the second partition portion 21. Thereby, the crossing part 415 is located in the middle of the 2nd division part 3rd edge 230 which is linear form along ax direction.
 このような実施形態によっても、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。 Even in such an embodiment, it is possible to suppress a decrease in the photoelectric conversion layer power generation unit 32 that is a part that actually contributes to power generation.
 図244は、本発明の第27実施形態に基づく有機薄膜太陽電池モジュールA27および電子機器B27を示している。同図を参照した説明においては、点Oを通る軸を中心とする円筒座標系を用いる。r方向は径方向であり、θ方向は周方向である。本実施形態においては、第1導電層1が6つの第1区画部11-1~6を有しており、第2導電層2が、6つの第2区画部21-1~6を有している。また、6組の第1電極部12、第2電極部22および光電変換層発電部32が、10組の第1接続部13、第2接続部23および光電変換層接続部33によって互いに直列に接続されており、外部電極部141および外部電極部151から電力が出力される。また、本実施形態においては、6組の第1電極部12、第2電極部22および光電変換層発電部32が、z方向視においてθ方向に沿った環状に配列されている。 FIG. 244 shows an organic thin-film solar cell module A27 and an electronic device B27 based on the twenty-seventh embodiment of the present invention. In the description with reference to the figure, a cylindrical coordinate system centered on an axis passing through the point O is used. The r direction is the radial direction, and the θ direction is the circumferential direction. In the present embodiment, the first conductive layer 1 has six first partition portions 11-1 to 11-6, and the second conductive layer 2 has six second partition portions 21-1 to 21-6. ing. In addition, six sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 are serially connected to each other by the ten sets of the first connection unit 13, the second connection unit 23, and the photoelectric conversion layer connection unit 33. Power is output from the external electrode portion 141 and the external electrode portion 151. In the present embodiment, the six sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 are arranged in an annular shape along the θ direction when viewed in the z direction.
 有機薄膜太陽電池モジュールA26および電子機器B26と同様に、z方向視において6組の第1電極部12、第2電極部22および光電変換層発電部32に囲まれた領域は、支持基板41が存在しており、第1導電層1の一部が存在しうる。ただし、前記領域においては、支持基板41のみが存在することが好ましい。このような電子機器B27としては、たとえば液晶型腕時計が挙げられる。 Similarly to the organic thin film solar cell module A26 and the electronic device B26, the region surrounded by the six sets of the first electrode unit 12, the second electrode unit 22, and the photoelectric conversion layer power generation unit 32 in the z-direction view is the support substrate 41. There may be a part of the first conductive layer 1. However, it is preferable that only the support substrate 41 exists in the region. An example of such an electronic device B27 is a liquid crystal wristwatch.
 このような実施形態によっても、実際に発電に寄与する部分である光電変換層発電部32の減少を抑制することができる。 Even in such an embodiment, it is possible to suppress a decrease in the photoelectric conversion layer power generation unit 32 that is a part that actually contributes to power generation.
 本発明に係る有機薄膜太陽電池モジュールおよび電子機器は、上述した実施形態に限定されるものではない。本発明に係る有機薄膜太陽電池モジュールおよび電子機器の各部の具体的な構成は、種々に設計変更自在である。 The organic thin film solar cell module and the electronic device according to the present invention are not limited to the above-described embodiments. The specific configuration of each part of the organic thin-film solar cell module and the electronic device according to the present invention can be varied in design in various ways.
 以下に、本発明の技術的特徴について付記する。 The technical features of the present invention will be described below.
  〔付記1G〕
 透明な支持基板と、
 前記支持基板に積層された透明な第1導電層と、
 第2導電層と、
 前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、
を備え、
 前記第1導電層は、前記支持基板の一部が前記第1導電層から露出した基板露出領域を介して隣り合う2つの第1区画部を有しており、
 前記第2導電層は、前記基板露出領域の一部を挟んで隣り合う2つの第2区画部を有しており、
 前記隣り合う2つのうち一方の前記第1区画部は、前記基板露出領域を規定する第1区画部第1端縁を有し、
 前記隣り合う2つのうち他方の前記第1区画部は、前記基板露出領域を規定する第1区画部第2端縁を有し、
 前記隣り合う2つのうち一方の前記第2区画部は、平面視において前記隣り合う2つのうち一方の前記第1区画部に重なっているとともに、前記隣り合う2つのうち一方の前記第1区画部の前記第1区画部第1端縁に対して前記隣り合う2つのうち他方の前記第1区画部の前記第1区画部第2端縁とは反対側に位置する第2区画部第1端縁を有し、
 前記隣り合う2つのうち他方の前記第2区画部は、平面視において前記隣り合う2つのうち一方の前記第2区画部第1端縁と対向する第2区画部第2端縁を有し、
 前記光電変換層は、平面視において前記隣り合う2つのうち一方の前記第1区画部および前記隣り合う2つのうち他方の前記第2区画部の双方と重なる部分であって前記隣り合う2つのうち一方の前記第1区画部の前記第1区画部第1端縁のうち前記隣り合う2つのうち他方の前記第2区画部に重なる第1被覆部および前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁によって区画された光電変換層接続部に、厚さ方向に貫通する光電変換層貫通部を有し、
 前記基板露出領域は、前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁と交差する1以上の交差部を有する、有機薄膜太陽電池モジュール。
  〔付記2G〕
 前記隣り合う2つのうち一方の前記第1区画部は、平面視において前記光電変換層接続部と重ならず且つ前記第2導電層と重なる第1電極部を有し、
 前記隣り合う2つのうち一方の前記第2区画部は、平面視において前記第1電極部と一致する第2電極部を有し、
 前記光電変換層は、平面視において前記第1電極部および前記第2電極部と一致する光電変換層発電部を有する、付記1Gに記載の有機薄膜太陽電池モジュール。
  〔付記3G〕
 前記隣り合う2つのうち一方の前記第1区画部は、平面視において前記光電変換層接続部と一致する第1接続部を有し、
 前記隣り合う2つのうち他方の前記第2区画部は、平面視において前記光電変換層接続部と一致する第2接続部を有する、付記2Gに記載の有機薄膜太陽電池モジュール。
  〔付記4G〕
 平面視における前記2つの第1区画部が並ぶ方向と交差する方向において、前記光電変換層接続部と前記光電変換層発電部の一部とが隣り合っている、付記3Gに記載の有機薄膜太陽電池モジュール。
  〔付記5G〕
 平面視における前記2つの第1区画部が並ぶ方向と交差する方向において、前記光電変換層接続部の両側に前記光電変換層発電部が位置する、付記3Gに記載の有機薄膜太陽電池モジュール。
  〔付記6G〕
 前記光電変換層貫通部は、平面視円形状である、付記3Gないし5Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記7G〕
 前記隣り合う2つのうち一方の前記第1区画部の前記第1接続部は、平面視において前記光電変換層貫通部に内包され且つ厚さ方向に貫通する第1貫通部を有する、付記3Gないし6Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記8G〕
 前記第1貫通部の内端縁は、平面視において前記光電変換層貫通部の内端縁から離間している、付記7Gに記載の有機薄膜太陽電池モジュール。
  〔付記9G〕
 前記隣り合う2つのうち一方の前記第1区画部の前記第1接続部は、平面視における前記光電変換層貫通部に内包される領域において前記支持基板を覆っている、付記3Gないし6Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記10G〕
 前記隣り合う2つのうち他方の前記第2区画部は、前記第2区画部第2端縁に繋がり且つ前記隣り合う2つのうち一方の前記第2区画部から離間する側に延びる第2区画部第3端縁を有し、
 前記基板露出領域は、前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁と前記第2区画部第3端縁との一箇所ずつと交差する2つの前記交差部を有する、付記3Gないし9Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記11G〕
 前記基板露出領域は、前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁の二箇所と交差する2つの前記交差部を有する、付記3Gないし9Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記12G〕
 平面視において前記2つの第2区画部と重ならない領域において、前記隣り合う2つのうち一方の前記第1区画部の前記第1区画部第1端縁は、第1辺を有し、前記隣り合う2つのうち他方の前記第1区画部の前記第1区画部第2端縁は、前記第1辺と平行である第2辺を有する、付記3Gないし11Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記13G〕
 前記第1辺および前記第2辺は、直線状である、付記12Gに記載の有機薄膜太陽電池モジュール。
  〔付記14G〕
 前記隣り合う2つのうち一方の前記第2区画部の前記第2区画部第1端縁と前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁とは、互いに平行である、付記12Gまたは13Gに記載の有機薄膜太陽電池モジュール。
  〔付記15G〕
 前記隣り合う2つのうち一方の前記第2区画部の前記第2区画部第1端縁と前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁は、直線状である、付記14Gに記載の有機薄膜太陽電池モジュール。
  〔付記16G〕
 前記隣り合う2つのうち一方の前記第1区画部の前記第1辺、前記隣り合う2つのうち他方の前記第1区画部の前記第2辺、前記隣り合う2つのうち一方の前記第2区画部の前記第2区画部第1端縁および前記隣り合う2つのうち他方の前記第2区画部の前記第2区画部第2端縁は、互いに平行である、付記12Gに記載の有機薄膜太陽電池モジュール。
  〔付記17G〕
 前記第1辺、前記第2辺、前記第2区画部第1端縁および前記第2区画部第2端縁は、直線状である、付記16Gに記載の有機薄膜太陽電池モジュール。
  〔付記18G〕
 隣り合う3以上の前記第1区画部および隣り合う3以上の前記第2区画部が、配列されている、付記3Gないし17Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記19G〕
 隣り合う3以上の前記第1区画部および隣り合う3以上の前記第2区画部が、一直線上に配列されている、付記18Gに記載の有機薄膜太陽電池モジュール。
  〔付記20G〕
 隣り合う3以上の前記第1区画部および隣り合う3以上の前記第2区画部が、環状に配列されている、付記19Gに記載の有機薄膜太陽電池モジュール。
  〔付記21G〕
 前記隣り合う3以上の第2区画部のうち2つの前記第2区画部の間にある前記第2区画部は、前記第2区画部第1端縁および前記第2区画部第2端縁と、前記第2区画部第1端縁および前記第2区画部第2端縁の両端同士を繋ぐ2つの第2区画部第3端縁と、を有する、付記18Gないし20Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記22G〕
 前記隣り合う3以上の第2区画部のうち2つの前記第2区画部の間にある前記第2区画部の前記第2区画部第1端縁と前記第2区画部第2端縁とは、互いに平行である、付記21Gに記載の有機薄膜太陽電池モジュール。
  〔付記23G〕
 前記隣り合う3以上の第2区画部のうち2つの前記第2区画部の間にある前記第2区画部の前記2つの第2区画部第3端縁は、互いに平行である、付記22Gに記載の有機薄膜太陽電池モジュール。
  〔付記24G〕
 前記隣り合う3以上の第2区画部のうち2つの前記第2区画部の間にある前記第2区画部の前記第2区画部第1端縁および前記第2区画部第2端縁と前記2つの第2区画部第3端縁とは、互いに直角である、付記23Gに記載の有機薄膜太陽電池モジュール。
  〔付記25G〕
 前記第1導電層は、平面視において前記光電変換層接続部に一致する外部接続部と、当該外部接続部に繋がり且つ前記第2導電層および前記光電変換層から露出する外部電極部と、を有する第3区画部を有する、付記3Gないし24Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記26G〕
 前記第1導電層は、ITOからなる、付記1Gないし25Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記27G〕
 前記第2導電層は、金属からなる、付記1Gないし26Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記28G〕
 前記第2導電層は、Alからなる、付記1Gないし27Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記29G〕
 前記第2導電層を覆うパッシベーション層を備える、付記1Gないし28Gのいずれかに記載の有機薄膜太陽電池モジュール。
  〔付記30G〕
 前記パッシベーション層は、SiNまたはSiONからなる、付記29Gに記載の有機薄膜太陽電池モジュール。
  〔付記31G〕
 付記1Gないし30Gのいずれかに記載の有機薄膜太陽電池モジュールと、
 前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、
を備える、電子機器。
[Appendix 1G]
A transparent support substrate;
A transparent first conductive layer laminated on the support substrate;
A second conductive layer;
A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer;
With
The first conductive layer has two first partition portions adjacent to each other through a substrate exposed region in which a part of the support substrate is exposed from the first conductive layer.
The second conductive layer has two second partition portions adjacent to each other across a part of the substrate exposed region,
The first partition portion of one of the two adjacent ones has a first partition portion first edge that defines the substrate exposed region,
The other of the adjacent two first partition portions has a first partition portion second edge defining the substrate exposure region,
One of the two adjacent partitions overlaps the first partition of one of the two adjacent in a plan view, and one of the first partitions of the two adjacent 2nd partition part 1st end located on the opposite side to the 1st partition part 2nd edge of the other said 1st partition part among the two adjacent to said 1st partition part 1st edge Has an edge,
The other second partition portion of the two adjacent ones has a second partition portion second end edge facing the second partition portion first end edge of one of the two adjacent portions in plan view,
The photoelectric conversion layer is a portion that overlaps with both the first partition portion of the two adjacent ones and the second partition portion of the other of the two adjacent two portions in plan view. Of the two adjacent ones of the first partition part first edges of one of the first partition parts, the first covering part that overlaps the other second partition part and the other second of the two adjacent parts. The photoelectric conversion layer connecting portion partitioned by the second partition portion second edge of the partition portion has a photoelectric conversion layer penetration portion penetrating in the thickness direction,
The substrate-exposed region is an organic thin-film solar cell module having one or more intersecting portions intersecting the second partition portion second edge of the other second partition portion of the two adjacent ones.
[Appendix 2G]
The first partition portion of one of the two adjacent ones has a first electrode portion that does not overlap the photoelectric conversion layer connection portion and overlaps the second conductive layer in plan view,
One of the two adjacent sections has a second electrode portion that matches the first electrode portion in plan view,
The organic thin-film solar cell module according to appendix 1G, wherein the photoelectric conversion layer includes a photoelectric conversion layer power generation unit that matches the first electrode unit and the second electrode unit in plan view.
[Appendix 3G]
The first partition portion of one of the two adjacent ones has a first connection portion that matches the photoelectric conversion layer connection portion in plan view,
The organic thin film solar cell module according to attachment 2G, wherein the other second partition portion of the two adjacent ones has a second connection portion that coincides with the photoelectric conversion layer connection portion in plan view.
[Appendix 4G]
The organic thin film solar according to appendix 3G, wherein the photoelectric conversion layer connecting portion and a part of the photoelectric conversion layer power generation portion are adjacent to each other in a direction intersecting with a direction in which the two first partition portions are arranged in a plan view. Battery module.
[Appendix 5G]
The organic thin-film solar cell module according to appendix 3G, wherein the photoelectric conversion layer power generation unit is located on both sides of the photoelectric conversion layer connection unit in a direction intersecting with a direction in which the two first partition units are arranged in plan view.
[Appendix 6G]
The said photoelectric conversion layer penetration part is an organic thin-film solar cell module in any one of additional remarks 3G thru | or 5G whose planar view is circular shape.
[Appendix 7G]
1G thru | or 3G thru | or the 1st connection part of the said 1st division part of the said adjacent two has a 1st penetration part which is included in the said photoelectric converting layer penetration part and planarly penetrates in planar view. The organic thin-film solar cell module according to any one of 6G.
[Appendix 8G]
The organic thin-film solar cell module according to appendix 7G, wherein an inner end edge of the first through portion is separated from an inner end edge of the photoelectric conversion layer through portion in plan view.
[Appendix 9G]
Any one of Supplementary Notes 3G to 6G, wherein the first connection portion of the first partition portion of the two adjacent ones covers the support substrate in a region included in the photoelectric conversion layer penetrating portion in a plan view. Organic thin-film solar cell module according to crab.
[Appendix 10G]
The second partition part of the other of the two adjacent parts is connected to the second edge of the second partition part and extends to the side away from the second partition part of the two adjacent parts. Having a third edge;
The substrate exposure area includes two of the two adjacent ones of the second partitioning section and the second partitioning section third edge of the other second partitioning section that intersect each other. The organic thin-film solar cell module according to any one of Supplementary Notes 3G to 9G, having an intersection.
[Appendix 11G]
Any one of Supplementary Notes 3G to 9G, wherein the substrate exposed region has two intersecting portions that intersect two locations of the second partition portion second edge of the other second partition portion of the two adjacent ones. The organic thin film solar cell module according to 1.
[Appendix 12G]
In a region that does not overlap the two second partition portions in plan view, the first partition portion first edge of one of the two adjacent first partition portions has a first side, and the adjacent The organic thin film sun according to any one of appendices 3G to 11G, wherein the second edge of the first partition portion of the other of the two first partition portions has a second side parallel to the first side. Battery module.
[Appendix 13G]
The organic thin-film solar cell module according to Supplementary Note 12G, wherein the first side and the second side are linear.
[Appendix 14G]
Of the two adjacent two, the second partition part first edge of the second partition part and the second partition part second edge of the other of the two adjacent second parts, The organic thin-film solar cell module according to Supplementary Note 12G or 13G, which is parallel to each other.
[Appendix 15G]
Of the two adjacent two, the second partition part first edge of the second partition part and the second partition part second edge of the other two partition part of the two adjacent parts are straight lines. The organic thin-film solar cell module according to Supplementary Note 14G.
[Appendix 16G]
Of the two adjacent two, the first side of the first partition part, the second of the two adjacent ones, the second side of the first partition part, and the second part of the two adjacent ones. 2nd division part 1st edge of a part and the said 2nd division part 2nd edge of the said other 2nd division part among the said adjacent two are mutually parallel, The organic thin film sun of Additional remark 12G Battery module.
[Appendix 17G]
The said 1st edge | side, the said 2nd edge | side, the said 2nd division part 1st edge, and the said 2nd division part 2nd edge are organic thin-film solar cell modules of Additional remark 16G which are linear form.
[Appendix 18G]
The organic thin-film solar cell module according to any one of supplementary notes 3G to 17G, wherein three or more adjacent first partition portions and three or more adjacent second partition portions are arranged.
[Appendix 19G]
The organic thin-film solar cell module according to appendix 18G, wherein three or more adjacent first partition portions and three or more adjacent second partition portions are arranged in a straight line.
[Appendix 20G]
The organic thin-film solar cell module according to appendix 19G, wherein three or more adjacent first partition portions and three or more adjacent second partition portions are arranged in a ring shape.
[Appendix 21G]
Among the three or more adjacent second partition parts, the second partition part between two second partition parts is the second partition part first edge and the second partition part second edge. And the second partition section first end edge and the second partition section second end edge connecting both ends of the second partition section second end edge, and the second partition section third end edge. Organic thin-film solar cell module.
[Appendix 22G]
The second partition portion first edge and the second partition portion second edge of the second partition portion between two second partition portions among the three or more adjacent second partition portions. The organic thin-film solar cell module according to appendix 21G, which are parallel to each other.
[Appendix 23G]
In the supplementary note 22G, the two second partition part third edges of the second partition part between two second partition parts of the three or more adjacent second partition parts are parallel to each other. The organic thin film solar cell module described.
[Appendix 24G]
The second partition portion first edge and the second partition portion second edge of the second partition portion between two second partition portions among the three or more second partition portions adjacent to each other, and The organic thin-film solar cell module according to appendix 23G, wherein the two second partition portion third edges are perpendicular to each other.
[Appendix 25G]
The first conductive layer includes an external connection portion that coincides with the photoelectric conversion layer connection portion in plan view, and an external electrode portion that is connected to the external connection portion and exposed from the second conductive layer and the photoelectric conversion layer. The organic thin-film solar cell module according to any one of Supplementary Notes 3G to 24G, which includes a third partition portion.
[Appendix 26G]
The organic thin-film solar cell module according to any one of appendices 1G to 25G, wherein the first conductive layer is made of ITO.
[Appendix 27G]
The organic thin-film solar cell module according to any one of appendices 1G to 26G, wherein the second conductive layer is made of metal.
[Appendix 28G]
The organic thin-film solar cell module according to any one of appendices 1G to 27G, wherein the second conductive layer is made of Al.
[Appendix 29G]
The organic thin-film solar cell module according to any one of appendices 1G to 28G, comprising a passivation layer that covers the second conductive layer.
[Appendix 30G]
The organic thin-film solar cell module according to attachment 29G, wherein the passivation layer is made of SiN or SiON.
[Appendix 31G]
An organic thin-film solar cell module according to any one of Supplementary Notes 1G to 30G;
A drive unit driven by feeding from the organic thin film solar cell module;
An electronic device.

Claims (23)

  1.  透明な支持基板と、
     前記支持基板に積層された透明な第1導電層と、
     第2導電層と、
     前記第1導電層および前記第2導電層に挟まれた有機薄膜からなる光電変換層と、
    を備え、
     前記第2導電層は、前記光電変換層よりも厚い、有機薄膜太陽電池モジュール。
    A transparent support substrate;
    A transparent first conductive layer laminated on the support substrate;
    A second conductive layer;
    A photoelectric conversion layer comprising an organic thin film sandwiched between the first conductive layer and the second conductive layer;
    With
    The second conductive layer is an organic thin-film solar cell module that is thicker than the photoelectric conversion layer.
  2.  前記第1導電層は、前記支持基板の一部が前記第1導電層から露出した基板露出領域を介して隣り合う2つの第1区画部を有しており、
     前記第2導電層は、前記基板露出領域の一部を挟んで隣り合う2つの第2区画部を有しており、
     前記光電変換層は、平面視において前記隣り合う2つのうち一方の前記第1区画部および前記隣り合う2つのうち他方の前記第2区画部の双方と重なる光電変換層接続部に、厚さ方向に貫通する光電変換層貫通部を有する、請求項1に記載の有機薄膜太陽電池モジュール。
    The first conductive layer has two first partition portions adjacent to each other through a substrate exposed region in which a part of the support substrate is exposed from the first conductive layer.
    The second conductive layer has two second partition portions adjacent to each other across a part of the substrate exposed region,
    The photoelectric conversion layer has a thickness direction in a photoelectric conversion layer connecting portion that overlaps both the first partition portion of the two adjacent ones and the other second partition portion of the two adjacent portions in plan view. The organic thin-film solar cell module according to claim 1, further comprising a photoelectric conversion layer penetrating portion penetrating into the organic thin film.
  3.  前記光電変換層は、平面視において前記光電変換層貫通部を囲む突起を有し、
     前記突起は、前記第2導電層に覆われている、請求項2に記載の有機薄膜太陽電池モジュール。
    The photoelectric conversion layer has a protrusion that surrounds the photoelectric conversion layer penetrating portion in plan view,
    The organic thin film solar cell module according to claim 2, wherein the protrusion is covered with the second conductive layer.
  4.  前記隣り合う2つのうち一方の前記第1区画部は、平面視において前記光電変換層接続部と重ならず且つ前記第2導電層と重なる第1電極部を有し、
     前記隣り合う2つのうち一方の前記第2区画部は、平面視において前記第1電極部と一致する第2電極部を有し、
     前記光電変換層は、平面視において前記第1電極部および前記第2電極部と一致する光電変換層発電部を有する、請求項2または3に記載の有機薄膜太陽電池モジュール。
    The first partition portion of one of the two adjacent ones has a first electrode portion that does not overlap the photoelectric conversion layer connection portion and overlaps the second conductive layer in plan view,
    One of the two adjacent sections has a second electrode portion that matches the first electrode portion in plan view,
    4. The organic thin-film solar cell module according to claim 2, wherein the photoelectric conversion layer has a photoelectric conversion layer power generation unit that coincides with the first electrode unit and the second electrode unit in plan view.
  5.  前記隣り合う2つのうち一方の前記第1区画部は、平面視において前記光電変換層接続部と一致する第1接続部を有し、
     前記隣り合う2つのうち他方の前記第2区画部は、平面視において前記光電変換層接続部と一致する第2接続部を有する、請求項4に記載の有機薄膜太陽電池モジュール。
    The first partition portion of one of the two adjacent ones has a first connection portion that matches the photoelectric conversion layer connection portion in plan view,
    5. The organic thin-film solar cell module according to claim 4, wherein the other second partition portion of the two adjacent ones has a second connection portion that coincides with the photoelectric conversion layer connection portion in a plan view.
  6.  前記光電変換層貫通部は、平面視円形状である、請求項5に記載の有機薄膜太陽電池モジュール。 The organic thin-film solar cell module according to claim 5, wherein the photoelectric conversion layer penetrating portion has a circular shape in a plan view.
  7.  前記隣り合う2つのうち一方の前記第1区画部の前記第1接続部は、平面視において前記光電変換層貫通部に内包され且つ厚さ方向に貫通する第1貫通部を有する、請求項6に記載の有機薄膜太陽電池モジュール。 The first connection part of the first partition part of one of the two adjacent parts has a first penetration part that is included in the photoelectric conversion layer penetration part and penetrates in the thickness direction in plan view. The organic thin film solar cell module according to 1.
  8.  前記第1貫通部の内端縁は、平面視において前記光電変換層貫通部の内端縁から離間している、請求項7に記載の有機薄膜太陽電池モジュール。 The organic thin-film solar cell module according to claim 7, wherein an inner end edge of the first penetrating portion is separated from an inner end edge of the photoelectric conversion layer penetrating portion in a plan view.
  9.  前記隣り合う2つのうち一方の前記第1区画部の前記第1接続部は、平面視における前記光電変換層貫通部に内包される領域において前記支持基板を覆っている、請求項5ないし8のいずれかに記載の有機薄膜太陽電池モジュール。 The first connection part of the first partition part of one of the two adjacent parts covers the support substrate in a region included in the photoelectric conversion layer penetrating part in plan view. The organic thin-film solar cell module in any one.
  10.  前記第1導電層は、ITOからなる、請求項1ないし9のいずれかに記載の有機薄膜太陽電池モジュール。 The organic thin-film solar cell module according to any one of claims 1 to 9, wherein the first conductive layer is made of ITO.
  11.  前記第2導電層は、金属からなる、請求項1ないし10のいずれかに記載の有機薄膜太陽電池モジュール。 The organic thin-film solar cell module according to any one of claims 1 to 10, wherein the second conductive layer is made of metal.
  12.  前記第2導電層は、Alからなる、請求項11に記載の有機薄膜太陽電池モジュール。 The organic thin-film solar cell module according to claim 11, wherein the second conductive layer is made of Al.
  13.  前記第2導電層を覆うパッシベーション層を備える、請求項1ないし12のいずれかに記載の有機薄膜太陽電池モジュール。 The organic thin-film solar cell module according to any one of claims 1 to 12, further comprising a passivation layer that covers the second conductive layer.
  14.  前記パッシベーション層は、SiNまたはSiONからなる、請求項13に記載の有機薄膜太陽電池モジュール。 The organic thin-film solar cell module according to claim 13, wherein the passivation layer is made of SiN or SiON.
  15.  請求項1ないし14のいずれかに記載の有機薄膜太陽電池モジュールと、
     前記有機薄膜太陽電池モジュールからの給電によって駆動する駆動部と、
    を備える、電子機器。
    An organic thin film solar cell module according to any one of claims 1 to 14,
    A drive unit driven by feeding from the organic thin film solar cell module;
    An electronic device.
  16.  透明な支持基板に透明な第1導電層を積層する工程と、
     前記第1導電層に有機薄膜からなる光電変換層を積層する工程と、
     前記光電変換層に第2導電層を積層する工程と、を備え、
     前記第2導電層を積層する工程においては、前記光電変換層よりも厚く前記第2導電層を積層する、有機薄膜太陽電池モジュールの製造方法。
    Laminating a transparent first conductive layer on a transparent support substrate;
    Laminating a photoelectric conversion layer made of an organic thin film on the first conductive layer;
    Laminating a second conductive layer on the photoelectric conversion layer,
    In the step of laminating the second conductive layer, the method for producing an organic thin-film solar cell module, wherein the second conductive layer is laminated thicker than the photoelectric conversion layer.
  17.  前記第2導電層を積層する工程においては、蒸着法によって金属を積層させる、請求項16に記載の有機薄膜太陽電池モジュールの製造方法。 The method for producing an organic thin-film solar cell module according to claim 16, wherein in the step of laminating the second conductive layer, a metal is laminated by a vapor deposition method.
  18.  前記光電変換層を積層する工程においては、前記光電変換層を貫通する光電変換層貫通部を形成し、
     前記第2導電層を積層する工程においては、前記第2導電層によって前記光電変換層貫通部を覆う、請求項16または17に記載の有機薄膜太陽電池モジュールの製造方法。
    In the step of laminating the photoelectric conversion layer, a photoelectric conversion layer penetrating portion that penetrates the photoelectric conversion layer is formed,
    The method for producing an organic thin-film solar cell module according to claim 16 or 17, wherein, in the step of laminating the second conductive layer, the photoelectric conversion layer penetrating portion is covered with the second conductive layer.
  19.  前記光電変換層を積層する工程においては、前記光電変換層貫通部とともに平面視において前記光電変換層貫通部に内包され且つ厚さ方向に貫通する第1貫通部を前記第1導電層に形成する、請求項18に記載の有機薄膜太陽電池モジュールの製造方法。 In the step of laminating the photoelectric conversion layer, a first through portion that is included in the photoelectric conversion layer penetration portion and penetrates in the thickness direction in plan view together with the photoelectric conversion layer penetration portion is formed in the first conductive layer. The manufacturing method of the organic thin-film solar cell module of Claim 18.
  20.  前記光電変換層貫通部の形成は、IRレーザーによって行う、請求項19に記載の有機薄膜太陽電池モジュールの製造方法。 The method for manufacturing an organic thin-film solar cell module according to claim 19, wherein the formation of the photoelectric conversion layer penetrating portion is performed by an IR laser.
  21.  前記第1導電層は、ITOからなる、請求項16ないし20のいずれかに記載の有機薄膜太陽電池モジュールの製造方法。 21. The method of manufacturing an organic thin film solar cell module according to claim 16, wherein the first conductive layer is made of ITO.
  22.  前記第2導電層は、金属からなる、請求項16ないし21のいずれかに記載の有機薄膜太陽電池モジュールの製造方法。 The method for manufacturing an organic thin-film solar cell module according to any one of claims 16 to 21, wherein the second conductive layer is made of metal.
  23.  前記第2導電層は、Alからなる、請求項22に記載の有機薄膜太陽電池モジュールの製造方法。 The method for manufacturing an organic thin-film solar cell module according to claim 22, wherein the second conductive layer is made of Al.
PCT/JP2016/064882 2015-05-19 2016-05-19 Organic thin film solar cell module, electronic device and method for manufacturing organic thin film solar cell module WO2016186166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/575,248 US20180138326A1 (en) 2015-05-19 2016-05-19 Organic thin film solar cell module, electronic device and method for manufacturing organic thin film solar cell module

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2015102193 2015-05-19
JP2015-102202 2015-05-19
JP2015-102193 2015-05-19
JP2015102202 2015-05-19
JP2015152377 2015-07-31
JP2015-152377 2015-07-31
JP2016031716 2016-02-23
JP2016-031716 2016-02-23
JP2016041982 2016-03-04
JP2016-041982 2016-03-04
JP2016-047834 2016-03-11
JP2016047834 2016-03-11
JP2016049770 2016-03-14
JP2016-049770 2016-03-14
JP2016-099721 2016-05-18
JP2016099721A JP6769739B2 (en) 2015-05-19 2016-05-18 Manufacturing method of organic thin-film solar cell module, electronic equipment and organic thin-film solar cell module

Publications (1)

Publication Number Publication Date
WO2016186166A1 true WO2016186166A1 (en) 2016-11-24

Family

ID=57320288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064882 WO2016186166A1 (en) 2015-05-19 2016-05-19 Organic thin film solar cell module, electronic device and method for manufacturing organic thin film solar cell module

Country Status (1)

Country Link
WO (1) WO2016186166A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506554A (en) * 2005-08-26 2009-02-12 ザ トラスティーズ オブ プリンストン ユニヴァシティ Encapsulated electrodes for organic devices
JP2011108722A (en) * 2009-11-13 2011-06-02 Konica Minolta Holdings Inc Organic solar cell device and method of manufacturing the same
JP2011114004A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Organic solar cell
JP2011142217A (en) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd Organic thin-film solar cell
JP2013016668A (en) * 2011-07-05 2013-01-24 Fujifilm Corp Manufacturing method of solar cell
WO2014046539A1 (en) * 2012-09-18 2014-03-27 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electro-optical device stack
WO2016031294A1 (en) * 2014-08-29 2016-03-03 ローム株式会社 Organic thin-film solar cell module, method for manufacturing same, and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506554A (en) * 2005-08-26 2009-02-12 ザ トラスティーズ オブ プリンストン ユニヴァシティ Encapsulated electrodes for organic devices
JP2011108722A (en) * 2009-11-13 2011-06-02 Konica Minolta Holdings Inc Organic solar cell device and method of manufacturing the same
JP2011114004A (en) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd Organic solar cell
JP2011142217A (en) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd Organic thin-film solar cell
JP2013016668A (en) * 2011-07-05 2013-01-24 Fujifilm Corp Manufacturing method of solar cell
WO2014046539A1 (en) * 2012-09-18 2014-03-27 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electro-optical device stack
WO2016031294A1 (en) * 2014-08-29 2016-03-03 ローム株式会社 Organic thin-film solar cell module, method for manufacturing same, and electronic device

Similar Documents

Publication Publication Date Title
US11811006B2 (en) Display panel and display device
CN109920828B (en) OLED substrate and preparation method thereof
RU2010133952A (en) DEVICE HAVING A GENERATING BLACK MASK, AND METHOD FOR ITS MANUFACTURE
BR112015007125B1 (en) Apparatus and method for providing photovoltaic functionality
JP2017168798A (en) Organic thin-film solar cell module, electronic apparatus, and method of manufacturing organic thin-film solar cell module
CN105977328A (en) Solar cell module
CN111625119B (en) Touch screen and display device
WO2016186166A1 (en) Organic thin film solar cell module, electronic device and method for manufacturing organic thin film solar cell module
JP2010211971A (en) Dye-sensitized solar cell and wrist watch equipped with the same
KR20130023027A (en) Photoelectric conversion module and the manufacturing method for the same
KR101219245B1 (en) Photoelectric conversion device and method of preparing the same
JP2009238583A (en) Dye-sensitized solar cell
JP6384801B2 (en) Solar cell module
US11309365B2 (en) Optical fingerprint sensor and display module
US20120085393A1 (en) Solar cell module and method of manufacturing the same
JP2017220481A (en) Organic thin film solar cell module and electronic apparatus
EP2535944A1 (en) Solar cell string, solar cell module, and solar cell
JP6467727B2 (en) Manufacturing method of solar cell module
JPS5994880A (en) Solar battery
JP2013109953A (en) Flexible solar cell element module
JP2013026378A (en) Solar cell, solar cell module and manufacturing method therefor
JP6356476B2 (en) Solar cell mounting substrate and solar cell module
KR20140024505A (en) Dye-sensitized solar cell with serial structure for continuous process
JP5817461B2 (en) Flexible solar cell module
JP2016219549A (en) Solar battery cell, solar battery module and method of manufacturing solar battery cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15575248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796559

Country of ref document: EP

Kind code of ref document: A1