WO2016173204A1 - 一种激光打标机、激光打标方法、打标设备及打标系统 - Google Patents

一种激光打标机、激光打标方法、打标设备及打标系统 Download PDF

Info

Publication number
WO2016173204A1
WO2016173204A1 PCT/CN2015/091203 CN2015091203W WO2016173204A1 WO 2016173204 A1 WO2016173204 A1 WO 2016173204A1 CN 2015091203 W CN2015091203 W CN 2015091203W WO 2016173204 A1 WO2016173204 A1 WO 2016173204A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pixel point
galvanometer
control board
output power
Prior art date
Application number
PCT/CN2015/091203
Other languages
English (en)
French (fr)
Inventor
宋君
何高峰
胡小波
蒋峰
Original Assignee
深圳市创鑫激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510219312.6A external-priority patent/CN104827780B/zh
Priority claimed from CN201510220430.9A external-priority patent/CN104827781B/zh
Application filed by 深圳市创鑫激光股份有限公司 filed Critical 深圳市创鑫激光股份有限公司
Publication of WO2016173204A1 publication Critical patent/WO2016173204A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording

Definitions

  • the present application relates to the field of laser marking technology, and in particular to a laser marking machine, a laser marking method, a marking device and a marking system.
  • Laser marking can produce a variety of text, symbols and patterns.
  • Laser marking is a marking method that uses a high-energy-density laser to locally illuminate a workpiece, causing a chemical reaction of the surface material to vaporize or undergo a color change, thereby leaving a permanent mark.
  • the marking software will set the pixel points according to the resolution of the operator, and perform gray scale calculation according to three sub-pixels of red, green and blue to obtain the gray value of each pixel.
  • the grayscale difference of the image can be represented by the number of marking points per unit area, that is, the density of the marking point is used to realize the grayscale rendering.
  • the existing marking technology adopts the method of separating the marking control and the laser control.
  • the control of the laser is a rough mad line segment control, which cannot be accurately controlled by the marking point, so that the marking is analyzed. The degree is not high and the marking efficiency is low.
  • the extent to which different materials absorb laser light is different. Therefore, different materials need to be manually selected for different materials.
  • the power should be less than 5W. If the power is too large, the outer casing will be damaged directly. When the metal casing is used, it is better to use more than 20w power. If the power is too small, the marking can not be successful.
  • they need to process different materials, they often need to purchase lasers with multiple output powers, which seriously increases the user's expenditure burden.
  • the technical problem to be solved by the embodiments of the present application is to provide a laser marking method to achieve independent control of the coordinates and output power of the marking point, and accurately match the marking material with the laser output power to achieve accurate marking.
  • a laser marking machine which includes: a control board, a laser and a galvanometer respectively connected to the control board; the galvanometer is used to adopt a preset moving speed Displacement based on coordinates of pixel points of the target image; the laser is used to output laser light;
  • the laser marking machine further includes:
  • a first receiving module located on the control board, configured to receive coordinates of a pixel of the target image, and a gray value of the pixel of the target image;
  • a first calculating module of the control board configured to calculate an output power of a target image pixel by using the gray value
  • a control module located on the control board for controlling the laser to adopt a corresponding output power according to the displacement of the galvanometer, and outputting a laser for each target image pixel.
  • the laser marking machine is controlled by a control platform, and the laser marking machine comprises: respectively connected to the control platform by a signal a laser and a galvanometer; the galvanometer is displaced by a preset moving speed based on coordinates of a pixel of the target image; the laser is used to output a laser; and the laser marking device comprises:
  • a first acquiring module of the control platform configured to obtain coordinates of a pixel of the target image, and a gray value of the pixel of the target image
  • a preliminary calculation module of the control platform configured to initially calculate an output power of a target image pixel according to the gray value
  • a second acquiring module of the control platform configured to obtain material information to be marked
  • a correction module located on the control platform, configured to correct an output power of the target image pixel point according to the material information, and obtain a corrected output power
  • control platform controls the laser to adopt a corresponding corrected output power according to the displacement of the galvanometer, and outputs a laser for each target image pixel.
  • a laser marking machine is used for marking, and the laser marking machine comprises: a control main board, a laser and a galvanometer respectively connected to the control main board;
  • the galvanometer is configured to perform displacement based on coordinates of a target image pixel point by using a preset moving speed; the laser is used to output a laser;
  • the method includes:
  • the control board receives coordinates of a pixel of the target image, and a gray value of the pixel of the target image;
  • the control board calculates the output power of the target image pixel point by using the gray value
  • the control board controls the laser to adopt a corresponding output power according to the displacement of the galvanometer, and outputs a laser for each target image pixel.
  • a laser marking system comprising: a control platform, and a terminal and a laser marking machine connected to a signal of the control platform, the laser marking machine comprising a laser and a galvanometer, wherein the galvanometer is used for The laser is used to output a laser beam by using a predetermined moving speed; the laser is used to output a laser; the terminal is used to upload a to-be-marked image to the control platform, and the laser marking system further includes:
  • a first acquiring module of the control platform configured to acquire coordinates of a pixel of the target image, and a gray value of the pixel of the target image
  • a first calculating module of the control platform configured to calculate an output power of a pixel of the target image according to the gray value
  • a second acquiring module of the control platform configured to obtain material information to be marked
  • a third acquiring module of the control platform configured to acquire a corresponding material output power according to the material information
  • a secondary calculation module located at the control platform, configured to calculate a corrected output power of the target image pixel point according to the output power calculated by using the gray value and the material output power;
  • a control module located on the control platform for controlling the displacement of the galvanometer.
  • the laser uses a corresponding corrected output power to output a laser for each target image pixel.
  • the embodiments of the present application include the following advantages:
  • the present application adjusts the output power of the target image pixel (marking point) so that a single pixel can reflect the transformation of the gray value to realize the gray value of the image.
  • the coordinates of each pixel of the grayscale image are calculated.
  • the coordinates of the pixel are not adjusted, and the resolution and resolution of the grayscale image are ensured.
  • each marking point can reflect the gray value, which improves the marking efficiency.
  • Figure 1 is a block diagram showing the structure of a general marking machine
  • FIG. 3 is a flow chart showing the steps of an embodiment of a laser marking method of the present application.
  • Figure 5 is a schematic diagram showing the linear relationship between pump current and laser power in the present application.
  • FIG. 6 is a schematic diagram of laser power control in an embodiment of the present application.
  • Figure 7 is a schematic diagram of the XY2-100 protocol
  • Figure 8 is a timing diagram of actual laser control in the implementation of the present application.
  • FIG. 9 is a structural block diagram of an embodiment of a laser marking machine of the present application.
  • FIG. 10 is a structural block diagram of an embodiment of a laser marking system of the present application.
  • FIG. 11 is a schematic view of a laser marking system in an embodiment of the present application.
  • FIG. 12 is a flow chart showing the steps of an embodiment of a marking method of the present application.
  • FIG. 13 is a flow chart showing the steps of an embodiment of a marking method of the present application.
  • FIG. 14 is a structural block diagram of an embodiment of a marking platform of the present application. ;
  • 15 is a structural block diagram of an embodiment of a laser marking system of the present application.
  • 16 is a flow chart showing the steps of an embodiment of a marking method of the present application.
  • FIG. 1 is a structural block diagram of a general marking machine.
  • the general marking machine includes: a CPU/marking software, a control board, an optical path, and a galvanometer part.
  • the CPU/marking software is mainly responsible for the processing and editing of graphics (bitmap, vector graphics, text, QR code, etc.), which will be converted into control panel identifiable according to the operator's settings and marking conditions.
  • the marking instruction, the marking instruction is the action splitting when the marking machine marks the marking, and each instruction is an action of the marking machine. After the instruction is generated, the instruction is packaged into a communication packet of the agreed protocol and sent to the control board.
  • the control board receives the marking instruction sent by the CPU, stores and parses the instruction, and controls the optical path and the galvanometer of the back end to work according to the analyzed data.
  • the laser is moved relatively flat on the plane by the galvanometer, so that the marked object can be marked.
  • Fig. 2 it is a method of expressing gradation in a conventional laser marking machine.
  • the gradation value is the largest when the unit area is all engraved, and the gradation value is the smallest if the unit area is not engraved.
  • Generate instructions and control by fitting all the marking points in the unit area
  • the main board can control the engraving of these areas according to the analysis of the command and control the cooperation of the laser and the galvanometer.
  • the speed and frequency of the marking machine in the marking process are generally certain, so when the gray level of the pixel changes, the distance between the point and the point will inevitably change, and this change can only rely on Mark the empty jump to achieve.
  • One of the core concepts of the embodiments of the present application is to separately control the output power of each target image pixel point (marking point), and convert pixel points of different gray levels of the target image into marking points of different powers.
  • a laser marking machine is used for marking
  • the laser marking machine includes: a control board, respectively a laser and a galvanometer connected to the control board; the galvanometer is configured to be displaced based on coordinates of a pixel of the target image by using a preset moving speed; the laser is used to output a laser; and specifically includes the following steps:
  • Step 301 the control board receives coordinates of a target image pixel point, and a gray value of the target image pixel point;
  • Step 302 The control board calculates the output power of the pixel of the target image by using the gray value
  • Step 303 the control board controls the laser to adopt a corresponding output power according to the displacement of the galvanometer, and outputs a laser for each target image pixel.
  • the method may further include:
  • the control board receives the image to be marked, and converts the image to be marked into a grayscale image with a preset resolution
  • the control board calculates the coordinates of each pixel in the grayscale image by using the resolution, and The coordinates of each pixel of the grayscale image are taken as the coordinates of the target image pixel.
  • the present application proposes a new gray scale rendering method, which controls the marking depth by marking power, and uses the marking depth to control the marking gray scale, in other words, the power is higher.
  • the image to be marked needs to be converted into a grayscale image
  • the resolution can be set by the resolution required by the user, and the resolution is the number of points constituting the grayscale image, for example, the resolution is 1024 ⁇ 768. That is, the grayscale image has 1024 points on the abscissa and 768 points on the ordinate.
  • the grayscale image of the preset number of points can be obtained by converting the image to be marked according to the preset resolution.
  • the gray value conversion of each point can be calculated from the brightness value of the pixel points in the original image, and the brightness value is the value of the red, green and blue sub-pixels in the image.
  • the gray value is converted to a power value of 0-100, and the 3 seed pixels of the last bitmap are converted into pixel coordinates and the power value of each point.
  • the amount of laser power depends on the pump current in the laser, so controlling the power of each marking point is, in a sense, controlling the pump current.
  • the marking software converts the bitmap into a plurality of pixels of different gradations according to the resolution setting and the brightness value of each pixel in the original image. Once the resolution is determined, the distance between the points is determined. Once the marking brightness is determined, the absolute gray level of each point is determined. Thus, the power value and absolute coordinates of each engraving point are determined.
  • the laser frequency refers to the number of lasers output by the laser per second.
  • the marking scheme in this application is mainly composed of three elements, namely: galvanometer speed, absolute coordinates of each point, and marking power of each point.
  • the marking machine controls the oscillating mirror to move at a constant speed at a set speed. When the galvanometer reaches the absolute coordinate of a certain point, the corresponding power is marked at this point.
  • FIG. 6 is a schematic diagram of laser power control in the embodiment of the present application.
  • the figure shows the relationship between pulse, pump current, fiber storage, galvanometer speed, galvanometer displacement and other parameters.
  • laser cycle which is the timing main line connecting the laser and the galvanometer in the present application.
  • the laser period is the period of "pump current update - working fiber energy storage - release laser".
  • the laser includes a pump and a working fiber coupled to the pump, and an output switch coupled to the working fiber, the output switch being a voice activated switch.
  • the working fiber receives the current from the pump output and begins fiber storage.
  • the control board issues an open command to the voice switch, and the voice switch receives an instruction to open the switch to output the laser stored in the working fiber.
  • the laser period is the period of time when the galvanometer moves to the coordinates of the marking point and is marked.
  • the following three points should be noted for the galvanometer:
  • the movement of the galvanometer includes three stages: an acceleration zone, a uniform velocity zone, and a deceleration zone.
  • the laser can be marked when the galvanometer is in the uniform velocity zone. Therefore, it is necessary to avoid the galvanometer in the acceleration zone or the deceleration zone to avoid marking the laser in these two zones.
  • the galvanometer After entering the uniform velocity zone, the galvanometer will continue to move according to the marking instructions until all points have been marked. That is, in the marking process, for the marking point in the middle, the galvanometer will not stop after reaching the marking point.
  • the protocol used by the galvanometer is basically the XY2-100 protocol. Referring to Figure 7, the XY2-100 protocol is schematic. According to the XY2-100 protocol, the control board sends a control command to the galvanometer every 10 ⁇ s.
  • the control command includes the coordinates of the pixel of the next target image.
  • the galvanometer includes a (DA) analog-to-digital converter, and the DA of the galvanometer will be next.
  • the coordinates of the target image pixel are converted into the movement parameters of the galvanometer, and the galvanometer moves to the next target image pixel according to the movement parameter.
  • the protocol itself is a non-interactive protocol, so the control board only knows whether the position command has been conveyed, and it is impossible to know whether the galvanometer is executed.
  • the step 303 includes the following sub-steps:
  • Sub-step S31 the control board determines whether the galvanometer shifts to the current pixel point, and whether the preset time delay is reached;
  • Sub-step S32 if yes, determining that the galvanometer is displaced to the current pixel point
  • Sub-step S33 when determining to shift to the current pixel point, the control board controls the laser to output laser light corresponding to the output power for the current pixel point.
  • the preset time delay includes: an acceleration delay, a uniform delay, and a deceleration delay
  • the control board determines whether the galvanometer is displaced to the current pixel point, and whether the preset time delay reaches the three processing conditions;
  • the first case is that, when the current pixel is the starting pixel point, the control board determines whether the galvanometer shifts to the current pixel point, whether the preset acceleration delay is reached; and the starting pixel point is laser hitting.
  • the first marking point when the standard machine works;
  • the second case is that, when the current pixel is a midway pixel, the control board determines whether the galvanometer shifts to the current pixel point, whether the preset uniform speed delay is reached; and the midway pixel is a laser marking machine. Marking point from the marking of the first marking point to the last marking point;
  • the third case is that, when the current pixel point is the end pixel point, the control board determines whether the galvanometer shifts to the current pixel point, whether the preset deceleration delay is reached; and the end pixel point is a laser marking machine. The last punctuation point at work.
  • a timing chart of actual laser control in the practice of the present application is shown with reference to FIG.
  • the laser period and the voice pulse of the laser need to find a reference time point to confirm whether the galvanometer reaches the coordinates.
  • the last clock cycle of the XY2-100 protocol transmission command is selected as a reference point, and after the command is sent, wait For the corresponding delay, the waiting delay is used to determine the position of the galvanometer movement. Waiting for the delay waits for the DA action of the galvanometer, waiting for the motor to move to the coordinates of the next target image pixel point required by the instruction.
  • the galvanometer can be regarded as maintaining a uniform motion during the marking process, so by waiting for the corresponding delay, the galvanometer can be considered to arrive.
  • the next target image pixel is divided into three kinds of delays: "start_dly (start delay), mid_dly (midway delay), end_dly (end delay)".
  • the control board sends a first command to the galvanometer, that is, the control galvanometer moves to the first target image pixel point (starting pixel point), at which time, due to the galvanometer motor Did not start working, that is, the moving speed of the galvanometer is 0. It takes a while for the galvanometer motor to accelerate from 0 to a constant speed, which can be measured experimentally.
  • the initial delay is set to be greater than the motor acceleration time. That is, after waiting for the start delay, the galvanometer has been removed in the uniform velocity zone and has reached the starting pixel point.
  • the galvanometer keeps moving at a constant speed.
  • the delay is midway delay, that is, after waiting for the midway delay, the galvanometer moves to the next target image pixel (middle point pixel).
  • the galvanometer decelerates and decelerates from a constant speed to zero.
  • the delay is the end delay, that is, after waiting for the end delay, the galvanometer moves to the end pixel.
  • the laser includes: a pump and a working optical fiber connected to the pump, and an output switch connected to the working optical fiber; the sub-step S33 further includes:
  • control board uses the output power to adjust the output current of the pump
  • Sub-step S42 the working optical fiber receives the output current for energy storage of the optical fiber
  • Sub-step S43 when the galvanometer moves to the current pixel point, the control board issues a switch command, and the output switch releases energy storage in one laser period according to the instruction; the laser period starts to store energy for the working fiber to The time to release energy.
  • the minimum value of the laser period is limited by the characteristics of the laser itself, that is, the energy storage speed of the fiber, etc., that is, the time period from the time when the secondary current is 0 to the time when the current changes to the maximum value.
  • a marking point takes a laser cycle, but you need to pay attention to the following issues when implementing:
  • the DA digital-to-analog conversion module
  • the DA application of 100M-200M is more common.
  • the method further includes:
  • the control board adjusts a moving speed of the galvanometer by using the output power.
  • the laser cycle size depends on the distance between the points and the moving speed of the galvanometer, in the case where the distance between the points is determined, it is necessary to change the moving speed of the galvanometer to make the working fiber storage in the laser period satisfy the required power.
  • the laser marking machine comprises: a control main board 91, a laser 92 and a galvanometer 93 respectively connected to the control main board;
  • the galvanometer 93 is configured to be displaced based on the coordinates of the target image pixel point by using a preset moving speed;
  • the laser 92 is used to output the laser, and specifically may further include the following modules:
  • a first receiving module 911 located on the control board, configured to receive coordinates of a pixel of the target image, and a gray value of the pixel of the target image;
  • a first calculating module 912 located on the control board for calculating an output power of a target image pixel by using the gray value
  • the control module 913 of the control board is configured to control the laser to output laser light for each target image pixel point according to the displacement of the galvanometer.
  • control module 913 further includes:
  • a determining sub-module 9132 located at the control board for determining whether the galvanometer is displaced to the current pixel point and whether the preset time delay is reached;
  • a determining sub-module 9131 located at the control board for determining whether the galvanometer displacement is current when the determination of the preset time delay is YES when the time when the galvanometer is displaced to the current pixel point is determined pixel;
  • the output sub-module 9133 of the control board is configured to, when determining to shift to the current pixel point, the control board controls the laser to output laser light corresponding to the output power for the current pixel point.
  • the preset time delay includes: an acceleration delay, a uniform speed delay, and a deceleration delay; the determining sub-module further includes:
  • the acceleration delay determining sub-module 9132a is configured to: when the current pixel point is the starting pixel point, the control board determines whether the galvanometer is displaced to the current pixel point, and whether the preset acceleration delay is reached;
  • the uniform delay determining sub-module 9132b is configured to: when the current pixel point is a midway pixel, the control board determines whether the galvanometer shifts to the current pixel point, and reaches a preset uniform speed delay;
  • the deceleration delay determination sub-module 9132c is configured to: when the current pixel point is the end pixel point, the control board determines whether the galvanometer is displaced to the current pixel point, and whether the preset deceleration delay is reached.
  • the laser marking machine further includes:
  • a second receiving module 914 located on the control board, configured to receive a to-be-marked image before the step of the control board receiving the coordinates of the target image pixel point and the gray value of the target image pixel point, and Converting the grayscale image to be converted into a preset resolution;
  • the second calculating module 915 of the control board is configured to calculate coordinates of each pixel point in the grayscale image by using the resolution, and use coordinates of each pixel point of the grayscale image as coordinates of the target image pixel point.
  • the laser includes: a pump and a working optical fiber connected to the pump, and an output switch connected to the working optical fiber; the output sub-module further includes:
  • a current adjustment sub-module 9133a of the control board for adjusting an output current of the pump by using the output power
  • a receiving sub-module 9133b of the working optical fiber configured to receive the output current for fiber storage
  • a switch sub-module 9133c located at the control board for issuing a switch command when the galvanometer moves to a current pixel point, the output switch releasing energy storage in a laser period according to the instruction; the laser period is working The time at which the fiber begins to store energy until it releases energy.
  • the laser marking machine further includes:
  • the control board speed adjustment module 916 is configured to adjust the moving speed of the galvanometer by using the output power.
  • FIG. 10 is a structural block diagram of an embodiment of a laser marking system according to a second embodiment of the present application, wherein the laser marking system includes: at least one laser marking machine 001, and the laser marking machine respectively Connected control platform 002 and smart terminal 003;
  • the laser marking machine 001 receives the image to be marked sent by the smart terminal 003;
  • the laser marking machine 001 sends the image to be marked to the control platform 002, and receives a marking instruction returned by the control platform 002;
  • the laser marking machine 001 performs marking according to the marking instruction.
  • the control platform can be an intelligent control center or a control board.
  • FIG. 11 is a schematic diagram of a laser marking system in an embodiment of the present application.
  • the laser marking machine 1 is connected to the background server through a router.
  • the marking machine n is connected to the terminal through a router.
  • the marking machine has a networked group function in design, and at the same time, for the simplicity and variety of operation, as well as the powerful background operation and unified management of the group, it can cooperate with the background.
  • the server uses a switch or router to set up the LAN working mode. Therefore, in operation, the laser marking machine can be used as a universal marking machine alone, or as a marking terminal for network marking. That is, in the second embodiment of the present application, the laser marking machine can drive the laser and the galvanometer to perform marking operation through its own control board, and can also use the above-mentioned server to oscillate, laser and other components included in the marking machine. Take control.
  • the computing task of the marking machine is calculated.
  • the marking machine can directly select the marking command sent by the server according to the mode selection.
  • the background server can also be used.
  • the standard machine is managed in a unified manner. For example, the working state of the marking machine, the running time of the optical module of the circuit module, etc., facilitate uniform maintenance.
  • the marking machine can also realize calculation, query and storage through data storage and calculation of the background server.
  • the marking machine can be connected to the terminal, and the terminal sends an image to be marked to the marking machine through a wired or wireless network, which is convenient for the user to operate.
  • the marking images are not limited to LOGOs, photos, design drawings and 3D drawings.
  • the ratio is described because it is substantially similar to the method embodiment. It is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the third embodiment of the present application proposes a marking method and a marking system.
  • the marking platform is processing different markings by setting a matching relationship table between the material information and the corresponding power in the intelligent processing center.
  • the material can be selected to match the laser output power range of the marking material. Converting the image to be marked into a grayscale image, matching the gray value of each pixel on the grayscale image to be marked with the corresponding output power range, more accurately matching the gray value of the pixel and corresponding
  • the output power makes the marking effect more in line with the user's needs.
  • the intelligent processing center is formed by data calculation, and may exist in the Internet or a local area network, or may exist locally or remotely, thereby implementing data storage, query, and calculation.
  • FIG. 12 a flow chart of steps of an embodiment of a marking method of the present application is shown, wherein marking is performed using a marking platform, and the marking platform includes a connected intelligent processing center and a smart machine marking terminal;
  • the intelligent processing center is provided with a matching relationship table between material information and a corresponding power range;
  • the matching relationship table may also be disposed in the control board of the first embodiment of the present application, that is, the control board of the laser marking machine may store the above matching relationship table.
  • Step 101 The intelligent processing center acquires the to-be-marked image and the material information to be marked; the to-be-marked image is uploaded by the intelligent terminal through a wired or wireless network, and the intelligent terminal such as a mobile phone, a PC or a tablet, to be marked image Not limited to LOGOs, photos, design drawings, and 3D drawings.
  • the intelligent processing center in the third embodiment of the present application may correspond to the control platform in the second embodiment.
  • the control board in the first embodiment may also implement some or all of the functions of the intelligent processing center in this embodiment. .
  • Step 102 The intelligent processing center generates image processing information according to the to-be-marked image
  • Step 103 The smart processing center searches for the corresponding power range information in the matching relationship table by using the marked material information.
  • Step 104 The intelligent processing center generates the marking parameter by using the image processing information and the power range information, and outputs the marking parameter to the smart phone marking terminal.
  • the smart machine marking terminal in the third embodiment may be considered as
  • the marking machines for implementing the marking function in the first and second embodiments are the same or similar, and include, for example, the laser and the galvanometer of the first embodiment.
  • Step 105 The smart machine marking terminal performs marking by using the marking parameter.
  • the step 101 can include the sub-steps:
  • the intelligent processing center acquires marking material information analyzed by the smart machine marking terminal.
  • the marking platform is an intelligent laser marking system that includes a smart machine marking terminal and an intelligent processing center as a processing core.
  • the intelligent machine marking terminal is responsible for analyzing the materials that need to be marked, and marking the relevant parameters after receiving the relevant parameters;
  • the intelligent processing center is responsible for receiving the image to be marked and performing image processing on the image, and analyzing according to the intelligent machine marking terminal
  • the material type searches for the corresponding power range information in the matching relationship table between the preset material information and the corresponding power. Finally, according to the result of the image processing and the power range information of the corresponding material, the required marking parameters are obtained.
  • the output power is different from 0-255 gray values.
  • the output power can be proportional to the gray value, marking gray
  • the output power required for a pixel having a degree of 30 is half the power required to mark a pixel having a gray value of 60.
  • each material matches a power range, and after determining the output power range of the material matching, further matching each pixel on the gray image to be marked within the output power range
  • the output power corresponding to the gray value of the point more accurately achieves the matching of the gray value of the pixel point with the corresponding output power. As shown in the table below:
  • the output power required for the pixel having a gray value of 30 is 1w
  • the output power required for the pixel having the gray value of 60 is 2w
  • the output power required for the pixel having a gray value of 30 is 5w
  • the output power required for the pixel having a gray value of 60 is 10w.
  • the gray value range can be divided into finer intervals, and more specific output power is set for each interval.
  • the table can be set to a gray value of 0-1 corresponding to the marking power of 0.02w, the gray value of 1-2 corresponding to the marking power of 0.04w and so on.
  • the obtaining manner of the matching relationship table includes:
  • the intelligent processing center is provided with a matching relationship table of the material information and the corresponding power range, and the corresponding laser output power range can be obtained by finding the matching relationship table.
  • the power range corresponding to the material can be determined by the marking effect when the user actually uses it, or the analysis of the marking effect of a large number of materials by cloud computing can obtain the power range corresponding to various materials.
  • the relationship between the gray value and the output power is not limited to the linear correlation in the above example.
  • the image processing information may include: pixel point coordinates, pixel point gray value, and the step 102 may further include sub-steps:
  • the intelligent processing center converts the image to be marked into a grayscale image.
  • the intelligent processing center determines coordinates of each pixel point and corresponding pixel point gray value in the grayscale image.
  • the intelligent processing center After receiving the image to be marked, the intelligent processing center first converts the image into a 256-level grayscale image, and determines the coordinates of each pixel in the grayscale image and the grayscale value of the corresponding pixel.
  • the marking parameter may include: pixel point coordinates, pixel point output power, and the step 104 may further include sub-steps:
  • the intelligent processing center searches, in the output power range information, a pixel point output power corresponding to the pixel point gray value.
  • the intelligent processing center combines the pixel point coordinates and the pixel point output power into the marking parameter.
  • FIG. 13 a flow chart of the steps of an embodiment of a marking method of the present application is shown. Specifically, it may include:
  • Step 201 The intelligent processing center receives the image to be marked
  • Step 202 The intelligent processing center converts the image to be marked into a grayscale image through image processing
  • Step 203 according to the marking material and the gray value corresponding to each image pixel point (x, y), find the corresponding laser power p, and perform parameter setting (x, y, p);
  • the metal (stainless steel) casing of the marking object material and the pixel points (x, y) of each image The gray value is found, the corresponding laser power p is found, and the parameter setting (x, y, p) is performed.
  • the gradation value is 50
  • the parameters (100, 100, 1000) of the corresponding pixel point are sent to the smart machine marking terminal.
  • Step 204 The smart machine marking terminal marks the pixel point on the object material according to the parameter (x, y, p) of the pixel.
  • the intelligent machine marking terminal marks the pixel point on the object material according to the parameter (100, 100, 1000) of the pixel point, and sequentially marks the other pixel to the metal according to the marking principle. ) on the outer casing.
  • FIG. 14 a structural block diagram of an embodiment of a marking platform corresponding to a third embodiment of the present application is shown, wherein the marking platform includes a connected intelligent processing center 31 and a smart machine marking terminal 32, and the specific connection is
  • the communication method includes a wired network, a wireless network, and a local serial port;
  • the intelligent processing center is provided with a matching relationship table between the material information and the corresponding power range, and specifically includes the following modules:
  • the acquiring module 311 is located at the smart processing center, and is configured to acquire the image to be marked and the material information to be marked; the image to be marked is uploaded by the smart terminal through a wired or wireless network, and the smart terminal is a mobile phone, a PC or a tablet.
  • the image to be marked is not limited to LOGO, photos, design drawings, and 3D drawings.
  • the intelligent machine marking terminal refers to the marking machine for marking.
  • An image processing module 312 located at the smart processing center, configured to generate image processing information according to the to-be-marked image;
  • a material information matching module 313 located at the smart processing center, configured to search for corresponding power range information in the matching relationship table by using the marked material information;
  • a marking parameter generating module 314 located at the intelligent processing center, configured to generate a marking parameter by using the image processing information and the power range information, and output the marking to the smart machine terminal;
  • the marking module 321 located at the smart machine marking terminal is configured to perform marking by using the marking parameter.
  • the image processing information includes: pixel point coordinates, pixel point gray value; the image processing module 312 further includes:
  • a grayscale conversion sub-module located at the intelligent processing center, configured to convert the image to be marked into a grayscale image
  • a pixel determining sub-module located at the smart processing center, configured to determine coordinates of each pixel point and corresponding pixel point gray value in the grayscale image.
  • the marking parameter includes: a pixel point coordinate and a pixel point output power
  • the marking parameter generating module 314 further includes:
  • the smart processing center power matching sub-module is configured to search, from the output power range information, a pixel point output power corresponding to the pixel point gray value;
  • a parameter synthesis sub-module located at the intelligent processing center, configured to combine the pixel point coordinates and the pixel point output power into the marking parameter.
  • the obtaining module 311 further includes:
  • a material information acquisition sub-module located at the intelligent processing center, configured to acquire marking material information analyzed by the smart machine marking terminal.
  • the obtaining manner of the matching relationship table includes:
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • a fourth embodiment of the present invention provides a laser marking method, as shown in FIG. 16, wherein a laser marking machine is used for marking, and the laser marking machine is controlled by a control platform, which may be as the first implementation.
  • the local control board integrated in the laser marking machine in the example may also be a remote server or intelligent processing center as in the second and third embodiments.
  • the control platform is the control board of the laser marking machine itself, the control board can realize functions of storage, calculation, control, etc., and can control the laser and galvanometer components of the laser marking machine to perform marking operation; when the control platform is far
  • the control platform can be signaled to the control board in the laser marking machine.
  • the laser marking machine comprises: a control board, a laser and a galvanometer respectively connected to the control board; the galvanometer is configured to perform displacement based on coordinates of the target image pixel point by using a preset moving speed;
  • the laser marking method in the embodiment may specifically include the following steps:
  • Step 501 the control board receives coordinates of a target image pixel point, and a gray value of the target image pixel point;
  • Step 502 The control board initially calculates an output power of a pixel of the target image according to the gray value.
  • Step 503 the control board receives the material information to be marked; in this step, the control board can receive, for example, material information to be marked obtained from a control platform, such as a remote intelligent processing center.
  • Step 504 The control board acquires a corresponding material output power according to the material information; in this step, the material output power may be a specific value or a numerical range.
  • Step 505 the control board obtains the corrected output power according to the output power calculated by using the gray value and the output power of the material;
  • Step 506 The control board controls the laser to adopt a corresponding corrected output power according to the displacement of the galvanometer, and outputs a laser for each target image pixel.
  • the method may further include:
  • Step 51 The control board receives the image to be marked, and converts the image to be marked into a grayscale image with a preset resolution;
  • Step 52 The control board calculates the coordinates of each pixel point in the grayscale image by using the resolution, and uses the coordinates of each pixel point of the grayscale image as the coordinates of the target image pixel point.
  • the image to be marked may be transmitted to the control board by a terminal (such as a cell phone, a PC or a tablet) connected to the laser marker and the control board by wire or wirelessly.
  • a terminal such as a cell phone, a PC or a tablet
  • step 502 may be performed before step 503 and step 504, that is, the output power is first calculated according to the gray value, and the material output power is obtained according to the material information. And then using the material in the matching relationship table in step 505 The corresponding power range is corrected for the output power obtained in step 502, and the corrected output power is obtained.
  • Step 502 may also be performed after step 503 and step 504.
  • step 503 and step 504 may be performed to obtain the material output power, for example.
  • the output power is 0.02w when the gray value is 1 and the output power is 5w when the gray value is 255 according to the table, and then step 502 and step 505 are performed according to each target pixel.
  • the gray value determines the corrected output power of the pixel in the interval [0.02, 5].
  • step 506 may further include the following sub-steps:
  • Sub-step 5061 the control board determines whether the galvanometer shifts to the current pixel point, and whether the preset time delay is reached;
  • Sub-step 5062 if yes, determining that the galvanometer is displaced to the current pixel point
  • Sub-step 5063 when determining to shift to the current pixel point, the control board controls the laser to output laser light corresponding to the output power for the current pixel point.
  • sub-step 5063 may further include:
  • Sub-step 50631 the control board uses the output power to adjust an output current of the pump
  • Sub-step 50632 the working optical fiber receives the output current for fiber storage
  • Sub-step 50633 when the galvanometer moves to the current pixel point, the control board issues a switch command, and the output switch releases energy storage in one laser period according to the instruction; the laser period starts to store energy for the working fiber to The time to release energy.
  • the present invention provides a laser marking device corresponding to the above laser marking method, the laser marking machine being controlled by a control platform, the laser marking machine comprising: respectively connected to the control platform by signals a laser and a galvanometer; the galvanometer is displaced by a preset moving speed based on coordinates of a pixel of the target image; the laser is used to output a laser; and the laser marking device comprises:
  • a first calculating module of the control platform configured to calculate an output power of a pixel of the target image according to the gray value
  • a second acquiring module of the control platform configured to obtain material information to be marked
  • a third acquiring module of the control platform configured to acquire a corresponding material output power according to the material information
  • a secondary calculation module located at the control platform, configured to calculate a corrected output power of the target image pixel point according to the output power calculated by using the gray value and the material output power;
  • a control module located on the control platform is configured to control the laser to adopt a corresponding corrected output power according to the displacement of the galvanometer, and output laser light for each target image pixel.
  • control platform is provided with a matching relationship table of material information and a corresponding power range, and the secondary calculation module searches for a corresponding power according to the material information and the gray value in the matching relationship flag. Range information, the corrected output power is obtained.
  • the obtaining manner of the matching relationship table includes:
  • the present invention also proposes a laser marking system corresponding to the laser marking method of the fourth embodiment.
  • the laser marking system comprises: a control platform, and a smart terminal and a laser marking machine connected to the control platform by wire or wirelessly.
  • the control platform may be a control board as described in the first embodiment, a remote server or an intelligent processing center in the second and third embodiments, or a combination of the two.
  • the laser marking machine may include a laser, a galvanometer, and the like as described in the first embodiment for laser marking controlled by the control platform, and the laser marking machine can analyze the marking as described in the third embodiment. Material information.
  • the smart terminal is used to upload the image to be marked to the control platform.
  • the laser marking system further includes:
  • a first acquiring module 41 of the control platform configured to acquire coordinates of a pixel of the target image, and a gray value of the pixel of the target image
  • a first calculating module 42 of the control platform configured to calculate an output power of a target image pixel point according to the gray value
  • a second obtaining module 43 of the control platform configured to acquire material information to be marked
  • a third obtaining module 44 located at the control platform, configured to acquire a corresponding material output power according to the material information
  • a secondary calculation module 45 located at the control platform, configured to calculate a corrected output power of the target image pixel point according to the output power calculated by using the gray value and the material output power;
  • a control module 46 located on the control platform for controlling displacement of the galvanometer uses the corresponding corrected output power to output laser light for each target image pixel.
  • the material information to be marked can be obtained by analysis by a laser marking machine and provided to the second acquisition module, that is, the laser marking machine can have a material analysis module.
  • the first acquiring module, the first calculating module, the second obtaining module, the third obtaining module, and the control module may be located on the control board; and the intelligent processing center may include
  • the storage module is configured to store a matching relationship table of material information and material output power, and may also have the above-mentioned secondary calculation module; the intelligent terminal may include a material analysis module.
  • control module further includes:
  • a judging sub-module 9132 located at the control platform, configured to determine whether the galvanometer is displaced to a current pixel point, and whether a preset time delay is reached;
  • the determining sub-module 9131 located at the control platform is configured to determine whether the galvanometer displacement is current when the determination result of the preset time delay is YES when the time when the galvanometer is displaced to the current pixel point is determined pixel;
  • the output sub-module 9133 of the control platform is configured to, when determining the displacement to the current pixel point, the control platform controls the laser to output a laser corresponding to the output power for the current pixel point.
  • the preset time delay includes: an acceleration delay, a uniform speed delay, and a deceleration delay; the determining sub-module further includes:
  • the acceleration delay determining sub-module 9132a is configured to: when the current pixel point is the starting pixel point, the control platform determines whether the galvanometer is displaced to the current pixel point, and whether the preset acceleration delay is reached;
  • the uniform delay determination sub-module 9132b is configured to: when the current pixel point is a mid-way pixel, the control platform determines whether the galvanometer is displaced to the current pixel point, and whether the preset uniform velocity delay is reached;
  • the deceleration delay determination sub-module 9132c is configured to determine, when the current pixel point is the end pixel point, whether the time when the galvanometer is displaced to the current pixel point and whether the preset deceleration delay is reached.
  • the laser marking system further comprises:
  • a second receiving module 914 located at the control platform for receiving a destination on the control platform Receiving a to-be-marked image and converting the to-be-marked image into a grayscale image of a preset resolution before the step of the coordinates of the pixel of the image image and the gray value of the pixel point of the target image;
  • the second calculation module 915 of the control platform is configured to calculate the coordinates of each pixel point in the grayscale image by using the resolution, and use the coordinates of each pixel point of the grayscale image as the coordinates of the target image pixel point.
  • the laser comprises: a pump and a working fiber connected to the pump, and an output switch connected to the working fiber; the output sub-module further comprising:
  • a current adjustment sub-module 9133a located at the control platform, configured to adjust an output current of the pump by using the output power
  • a receiving sub-module 9133b of the working optical fiber configured to receive the output current for fiber storage
  • a switch sub-module 9133c located at the control platform, configured to issue a switch command when the galvanometer moves to a current pixel point, the output switch releases energy storage in a laser period according to the instruction; the laser cycle is working The time at which the fiber begins to store energy until it releases energy.
  • the laser marking system further comprises:
  • the control platform speed adjustment module 916 is configured to adjust the moving speed of the galvanometer by using the output power.
  • the power correction module may use the matching relationship table of the material information and the corresponding power range provided in the third embodiment to obtain the corrected output power of each pixel of the target image.
  • embodiments of the embodiments of the present application can be provided as a method, apparatus, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the embodiments of the present application refer to a method, a terminal device (system), and a method according to an embodiment of the present application.
  • a flowchart and/or block diagram of a computer program product is described. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal device to produce a machine such that instructions are executed by a processor of a computer or other programmable data processing terminal device
  • Means are provided for implementing the functions specified in one or more of the flow or in one or more blocks of the flow chart.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing terminal device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction device implements the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

提供了一种激光打标机、打标方法、打标设备和打标系统,所述方法包括:控制主板(91)接收目标图像像素点的坐标以及目标图像像素点的灰度值;控制主板采用灰度值计算目标图像像素点的输出功率;控制主板随振镜(93)的位移控制激光器(92)采用相应的输出功率,针对各目标图像像素点输出激光。另外,控制主板在接收目标图像像素点的坐标和灰度值之前,接收待打标图像并将其转换为预设解析度的灰度图,根据预设解析度计算灰度图各像素点的坐标,打标过程中不再调整像素点的坐标,从而保证了灰度图的解析度和分辨率。上述方法通过调整目标图像像素点(打标点)的输出功率,使得独立的一个像素点即能体现灰度值的变换,呈现图像灰度值,从而提高了打标效率。

Description

一种激光打标机、激光打标方法、打标设备及打标系统 技术领域
本申请涉及激光打标技术领域,特别是涉及一种激光打标机、激光打标方法、打标设备和打标系统。
背景技术
激光打标可以打出各种文字、符号和图案等。激光打标是利用高能量密度的激光对工件进行局部照射,使表层材料汽化或发生颜色变化的化学反应,从而留下永久性标记的一种打标方法。
现有的打标机中,打标软件会根据操作者的解析度设置,保留设定的像素点,并根据红绿蓝三个子像素进行灰度计算,得到每个像素点的灰度值,通过单位面积内打标点的数目可以呈现图像的灰度差异,即依靠打标点的密度来实现灰度的呈现。但是由于单位面积小,肉眼根本无法看出他的存在,只能感觉到画面的连续变化性。现有的打标技术采用的是打标控制和激光控制相分离的方式,在激光的控制上采用的是粗狂式的线段控制,不能精确到打标点的控制上,使得打标的解析度不高,打标效率低。
与此同时,不同的材料吸收激光的程度是不一样。因此,对不同的材料进行加工时需要人工选择不同的激光器,例如手机外壳打标过程中,当外壳为塑胶或者碳纤维时,需采用5w以内的功率,功率过大则会直接损毁外壳;而对于金属外壳时,宜采用20w以上功率,功率过小则无法标刻成功,用户在需要对不同材料进行加工时,往往需要购买多种输出功率的激光器,这严重增加了用户的支出负担。
因此,目前需要本领域技术人员迫切解决的一个技术问题就是:如何使激光打标机的输出功率与需要打标的材料匹配的问题。
发明内容
本申请实施例所要解决的技术问题是提供一种激光打标方法,以实现对打标点的坐标和输出功率的独立控制,以及打标材料与激光器输出功率精确匹配,实现精确打标。
为解决上述问题,本申请公开了一种激光打标机,所述激光打标机包括:控制主板、分别与控制主板相连的激光器和振镜;所述振镜用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器用于输出激光;
所述激光打标机还包括:
位于控制主板的第一接收模块,用于接收目标图像像素点的坐标,以及,目标图像像素点的灰度值;
位于所述控制主板的第一计算模块,用于采用所述灰度值计算目标图像像素点的输出功率;
位于所述控制主板的控制模块,用于随所述振镜的位移控制所述激光器采用相应的输出功率,针对各目标图像像素点输出激光。本申请另一实施例公开了一种一种激光打标设备,其特征在于,所述激光打标机通过控制平台进行控制,所述激光打标机包括:分别与所述控制平台通过信号相连的激光器和振镜;所述振镜基于目标图像像素点的坐标而采用预设的移动速度进行位移;所述激光器用于输出激光;所述激光打标设备具包括:
位于所述控制平台的第一获取模块,用于获得目标图像像素点的坐标,以及,目标图像像素点的灰度值;
位于所述控制平台的初步计算模块,用于根据所述灰度值初步计算目标图像像素点的输出功率;
位于所述控制平台的第二获取模块,用于获取待打标的材料信息;
位于所述控制平台的修正模块,用于根据所述的材料信息修正所述目标图像像素点的输出功率,获得修正后输出功率;
位于所述控制平台的控制模块,所述控制平台随所述振镜的位移控制所述激光器采用相应的修正后输出功率,针对各目标图像像素点输出激光。
本申请再一实施例公开了一种激光打标方法,其特征在于,使用激光打标机进行打标,所述激光打标机包括:控制主板、分别与控制主板相连的激光器和振镜;所述振镜用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器用于输出激光;
所述方法包括:
所述控制主板接收目标图像像素点的坐标,以及,目标图像像素点的灰度值;
所述控制主板采用所述灰度值计算目标图像像素点的输出功率;
所述控制主板随所述振镜的位移控制所述激光器采用相应的输出功率,针对各目标图像像素点输出激光。
一种激光打标系统,所述激光打标系统包括:控制平台、以及与控制平台信号连接的终端和激光打标机,所述激光打标机包括激光器和振镜,所述振镜用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器用于输出激光;所述终端用于将待打标图像上传至所述控制平台,所述激光打标系统还包括:
位于所述控制平台的第一获取模块,用于获取目标图像像素点的坐标,以及,目标图像像素点的灰度值;
位于所述控制平台的第一计算模块,用于根据所述灰度值计算目标图像像素点的输出功率;
位于所述控制平台的第二获取模块,用于获取待打标的材料信息;
位于所述控制平台的第三获取模块,用于根据所述材料信息获取对应的材料输出功率;
位于所述控制平台的二次计算模块,用于根据利用灰度值计算出的输出功率和所述材料输出功率,计算出所述目标图像像素点的修正后输出功率;
位于所述控制平台的控制模块,用于所述振镜的位移控制所述激光器采用相应的修正后输出功率,针对各目标图像像素点输出激光。
与现有技术相比,本申请实施例包括以下优点:
本申请通过调整目标图像像素点(打标点)的输出功率,使得独立的一个像素点即能体现灰度值的变换,以实现图像灰度值的呈现。
根据预设的解析度计算灰度图各像素点的坐标,打标过程中,不再调整像素点的坐标,保证灰度图的解析度和分辨率。
放弃通过打标点的密度来呈现灰度的方法,每一个打标点都可以体现灰度值,相对提高了打标效率。
附图说明
图1是一般的打标机的结构框图;
图2是为现有的激光打标机中灰度的表示方法;
图3是本申请的一种激光打标方法实施例的步骤流程图;
图4是本申请实施例中的灰度表示方法;
图5是本申请中泵浦电流与激光功率的线性关系示意图;
图6是本申请实施例中激光功率控制示意图;
图7是XY2-100协议的示意图;
图8是本申请实施中激光实际控制的时序图;
图9是本申请一种激光打标机实施例的结构框图;
图10是本申请一种激光打标系统实施例的结构框图;
图11是本申请实施例中激光打标系统的示意图;
图12是本申请的一种打标方法实施例的步骤流程图;
图13是本申请的一种打标方法实施例的步骤流程图;
图14是本申请一种打标平台实施例的结构框图。;
图15是本申请一种激光打标系统实施例的结构框图;
图16是本申请的一种打标方法实施例的步骤流程图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
参照图1为一般的打标机的结构框图,一般的打标机包括:CPU/打标软件、控制主板、光路、振镜部分。其中,CPU/打标软件主要负责图形(位图,矢量图,文字,二维码等等)的处理和编辑,会根据操作者的设置和打标条件,将图形转换为控制主板可以识别的打标指令,打标指令就是打标机打标时的动作拆分,每一个指令就是打标机的一个动作。产生指令之后,就将指令封装成约定协议的通信包,发送给控制主板。控制主板接收CPU发送的打标指令,将指令进行存储和解析,根据解析的数据控制后端的光路和振镜进行工作。激光通过振镜在平面上进行相对匀速的移动,这样就可以对被打标物件进行打标。
参照图2所示,为现有的激光打标机中灰度的表示方法。图中,单位面积全部实现雕刻覆盖,则灰度值最大,如果单位面积没有进行雕刻,则灰度值最小。通过对所有单位面积内的打标点进行拟合,生成指令,控制 主板可以根据指令的解析,控制激光和振镜的配合来完成这些区域面积的雕刻。
现有的方法尽管可以实现灰度差异的体现,但是存在以下几个缺点:
1、现有方法对图像基本像素点概念进行了转移,本来是点的概念,但是为了在雕刻中体现灰度,只能将点转移到单位面积上。这种概念的转移是以牺牲解析度和最小分辨率为代价的,最终的结果就是打标解析度不高,打标图像不够细腻。
2、为了突出灰度概念,大量的雕刻点团结在一起来体现一个像素点的灰度,由于图像最小单位的扩大,导致的结果就是打标的效率低。
3、打标机在打标过程中的速度和频率一般都是一定的,因此当像素的灰度发生变化的时候,必然导致点与点之间的距离发生变化,而这种变化只能依靠打标的空跳来实现。
本申请实施例的核心构思之一在于,单独控制每个目标图像像素点(打标点)的输出功率,将目标图像不同灰度的像素点转换为不同功率的打标点。
参照图3,示出了本申请第一实施例的一种激光打标方法实施例的步骤流程图,其中,使用激光打标机进行打标,所述激光打标机包括:控制主板、分别与控制主板相连的激光器和振镜;所述振镜用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器用于输出激光;具体可以包括如下步骤:
步骤301,所述控制主板接收目标图像像素点的坐标,以及,目标图像像素点的灰度值;
步骤302,所述控制主板采用所述灰度值计算目标图像像素点的输出功率;
步骤303,所述控制主板随所述振镜的位移控制所述激光器采用相应的输出功率,针对各目标图像像素点输出激光。
在所述步骤301之前,所述方法还可以包括:
所述控制主板接收待打标图像,并将所述待打标图像转换为预设解析度的灰度图;
所述控制主板采用所述解析度计算出灰度图中各像素点的坐标,将所 述灰度图各像素点的坐标作为目标图像像素点的坐标。
基于现有激光打标方法中存在的问题,本申请提出了一种全新的灰度呈现方式,通过打标功率控制打标深度,使用打标深度控制打标灰度,换句话说就是功率越大,灰度越大,打标的过程就是将图像不同灰度的像素点转换成不同功率的打标点,参照图4示出了本申请实施例中的灰度表示方法。
在本申请实施例中,首先需要将待打标图像转换为灰度图,具体可以用户需要的解析度进行设置,解析度即构成灰度图的点的个数,例如,解析度为1024x768,即代表灰度图在横坐标上有1024个点,纵坐标上有768个点。根据预设的解析度对转换待打标图像,就能得到预设点数的灰度图。每个点的灰度值转换可由原图像中像素点的亮度值计算,亮度值即图像中红绿蓝3个子像素的数值。例如,灰度的转换公式可以为:gray=0.3*red+0.59*green+0.11*blue。将灰度值转换成0-100的功率值,最后位图的3种子像素就转变成像素点坐标和每个点的功率值。
激光功率的大小取决于激光器中泵浦电流的大小,因此控制每个打标点的功率在一定意义上来讲,就是控制泵浦电流的大小。参照图5所示,是本申请中泵浦电流与激光功率的线性关系示意图。在一定范围内,泵浦电流的变化和激光功率的变化会有一个线性关系,里面会有一个系数K,也就是W=IK,可以通过实验,找出这个线性范围,并且可以确定系数K。同理,在其他一些范围内,泵浦电流的变化和激光功率的变化呈现曲线关系。
打标软件根据解析度的设置和原图像中各像素点的亮度值,将位图转换为若干个不同灰度的像素点,一旦解析度确定之后,点与点之间的距离就确定了,一旦打标亮度确定之后,每个点的绝对灰度就确定了。这样,每个雕刻点的功率值和绝对坐标就确定了。
需要声明的是,在本申请中激光频率是指激光器每秒内输出的激光数目。在本申请中的打标方案中主要由3个要素组成,分别是:振镜速度,每个点的绝对坐标,每个点的打标功率。打标机会以设定的速度控制振镜匀速运动,当振镜到达某个点的绝对坐标之后,就会以这个点相应的功率进行打标。
参照图6是本申请实施例中激光功率控制示意图。图中示出了,脉冲、泵浦电流、光纤储能、振镜速度、振镜位移等几个参数的关系。在本申请实施例中,还定义了一个术语称为“激光周期”,激光周期是本申请中连接激光器与振镜的时序主线。
对激光器而言,激光周期即“泵浦电流更新-工作光纤储能-释放激光”的时间段。所述激光器包括:泵浦和与泵浦连接的工作光纤、以及与工作光纤连接的输出开关,所述输出开关可以为声控开关。在一个激光周期内,工作光纤接收泵浦输出的电流,开始光纤储能。在到达一个激光周期时,控制主板向声控开关发出打开指令,声控开关接收到指令打开开关,输出存储在工作光纤中的激光。
对振镜而言,激光周期即“振镜运动到打标点的坐标,并进行打标的”的时间段。为了实现激光器与振镜的在激光周期上相互匹配,对于振镜而言,需要注意以下3点:
1、振镜的运动包括三个阶段:加速区、匀速区、减速区。在实际中,激光器需要振镜处于匀速区的时候才能进行打标,因而,需要在振镜处于加速区或减速区时进行规避,避免激光器在这两个区进行打标。
2、振镜在进入匀速区后,会根据打标指令不断的运动,直至所有的点都完成打标。即在打标过程中,对于中途的打标点,振镜是不会在到达打标点后停止的。
3、现在振镜使用的协议基本上是XY2-100协议,参照图7为XY2-100协议的示意图。根据XY2-100协议,控制主板每隔10μs向振镜发送控制指令,控制指令包括下一个目标图像像素点的坐标,振镜中包括有(DA)模数转换器,振镜的DA将下一个目标图像像素点的坐标转换为振镜的移动参数,振镜根据移动参数移动到下一个目标图像像素点。但是这种协议本身就是一种不交互协议,因此控制主板只清楚位置命令是否传达完毕,而无法得知振镜是否执行完毕。
在本申请实施例中,所述步骤303包括以下子步骤:
子步骤S31,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟;
子步骤S32,若是,则判定振镜位移至当前像素点;
子步骤S33,当判定位移至当前像素点时,所述控制主板控制激光器针对当前像素点输出对应输出功率的激光。
更进一步而言,所述预设的时间延迟包括:加速延迟、匀速延迟、减速延迟;
所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟包括三种处理情况;
第一情况是,在当前像素点为起始像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的加速延迟;所述起始像素点是激光打标机工作时的第一个打标点;
第二情况是,在当前像素点为中途像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的匀速延迟;所述中途像素点是激光打标机从第一个打标点打标至最后一个打标点的过程中的打标点;
第三情况是,在当前像素点为结束像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的减速延迟;所述结束像素点是激光打标机工作时的最后一个打标点。
鉴于上述3点注意事项,参照图8示出了本申请实施中激光实际控制的时序图。激光器的激光周期和声控脉冲需要寻找一个参照时间点来确认振镜是否到达坐标,在本申请实施例中选取XY2-100协议发送命令的最后一个时钟周期作为参照点,当命令发送完毕之后,等待相应的延时,采用等待延时来确定振镜移动的位置。等待延时即等待振镜的DA动作,等待电机运动到指令要求的下一个目标图像像素点坐标上去。由于采用XY2-100协议的控制主板是不会知道振镜当前位置的,又振镜在打标过程中可以视为保持匀速运动的状态,因此通过等待相应的延时,即可认为振镜到达下一个目标图像像素点。其中,延时分为“start_dly(起始延时),mid_dly(中途延时),end_dly(结束延时)”三种延时。
具体而言,在第0秒时,控制主板向振镜发送第一个指令,即控制振镜移动至第一个目标图像像素点(起始像素点),这时,由于振镜的电机还没开始工作,即振镜的移动速度为0。振镜的电机从0加速至匀速需要一段时间,这段时间可以由实验测出。为了保证激光器是在振镜匀速运动 的过程中开始打标的,起始延时设定为大于电机加速时间即可。即等待起始延时后,振镜已经除在匀速区,并且已经到了起始像素点。在振镜之后的运动过程中,振镜一直保持匀速运动,这时延时为中途延时,即等待中途延时后,振镜移动到下一个目标图像像素点(中途像素点)。当振镜接收到的下一个像素点为目标图像的最后一个像素点(结束像素点)时,振镜会进行减速,从匀速减速为0。此时,延时为结束延时,即等待结束延时后,振镜移动到结束像素点。这三个延时可以根据实验得出。这样就可以保证振镜在打标过程中是连续匀速运动,又可以准确的确定打标点的坐标。
在本申请实施例中,所述激光器包括:泵浦和与泵浦连接的工作光纤、以及与工作光纤连接的输出开关;所述子步骤S33进一步包括:
子步骤S41,所述控制主板采用所述输出功率调整所述泵浦的输出电流;
子步骤S42,所述工作光纤接收所述输出电流进行光纤储能;
子步骤S43,当所述振镜移动至当前像素点时,所述控制主板发出开关指令,所述输出开关依据指令释放一个激光周期内的储能;所述激光周期为工作光纤开始储存能量至释放能量的时间。
在上述方案中,激光周期的最小值是由激光器本身的特性限制的,就是光纤储能速度等,也就是从二级电流为0时到电流变化到最大值这个时间段所限制。
一个打标点需要耗费一个激光周期,但是在实现的时候需要注意以下几个问题:
(1)控制二级电流变化的DA(数模转换模块)响应速度要比较快,转换速度比较快,目前100M-200M的DA应用比较普遍。
(2)当打标点的功率变换比较频繁的时候,就必须考虑光纤储能时间的问题,当比较小的功率向比较大的功率转变的时候,在一个激光周期内,就可能导致光纤储能时间不足,直接影响激光的功率不能满足要求。
通过调整振镜的移动速度来改变激光周期的大小,由于解析度确定好,灰度图中各点之间的距离就已经确定了,因而通过点间距离和振镜移动速度即可计算得到激光周期。
因此,在本申请实施例中,所述方法还包括:
所述控制主板采用所述输出功率调整所述振镜的移动速度。
由于光纤储能速度有限,为了保证一个激光周期内工作光纤储能能够满足所需要的功率,即需要调整激光周期的大小。又由于激光周期取决于点间距离,和振镜移动速度,在点间距离确定的情况下,就需要通过改变振镜的移动速度来使得激光周期内工作光纤储能够满足需要的功率。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图9,示出了本申请一种激光打标机实施例的结构框图,其中,所述激光打标机包括:控制主板91、分别与控制主板相连的激光器92和振镜93;所述振镜93用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器92用于输出激光,具体还可以包括如下模块:
位于控制主板的第一接收模块911,用于接收目标图像像素点的坐标,以及,目标图像像素点的灰度值;
位于所述控制主板的第一计算模块912,用于采用所述灰度值计算目标图像像素点的输出功率;
位于所述控制主板的控制模块913,用于随所述振镜的位移控制所述激光器采用相应的输出功率,针对各目标图像像素点输出激光。
在本申请实施例中,所述控制模块913进一步包括:
位于所述控制主板的判断子模块9132,用于判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟;
位于所述控制主板的判定子模块9131,用于当所述判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟的判断结果为是时,则判定振镜位移至当前像素点;
位于控制主板的输出子模块9133,用于当判定位移至当前像素点时,所述控制主板控制激光器针对当前像素点输出对应输出功率的激光。
其中,所述预设的时间延迟包括:加速延迟、匀速延迟、减速延迟;所述判断子模块进一步包括;
加速延迟判断子模块9132a,用于在当前像素点为起始像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的加速延迟;
或者,
匀速延迟判断子模块9132b,用于在当前像素点为中途像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的匀速延迟;
或者,
减速延迟判断子模块9132c,用于在当前像素点为结束像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的减速延迟。
在本申请实施例中,所述激光打标机还包括:
位于所述控制主板的第二接收模块914,用于在所述控制主板接收目标图像像素点的坐标,以及,目标图像像素点的灰度值的步骤之前,接收待打标图像,并将所述待打标图像转换为预设解析度的灰度图;
位于所述控制主板的第二计算模块915,用于采用所述解析度计算出灰度图中各像素点的坐标,将所述灰度图各像素点的坐标作为目标图像像素点的坐标。
在本申请实施例中,所述激光器包括:泵浦和与泵浦连接的工作光纤、以及与工作光纤连接的输出开关;所述输出子模块进一步包括:
位于所述控制主板的电流调整子模块9133a,用于采用所述输出功率调整所述泵浦的输出电流;
位于所述工作光纤的接收子模块9133b,用于接收所述输出电流进行光纤储能;
位于所述控制主板的开关子模块9133c,用于当所述振镜移动至当前像素点时,发出开关指令,所述输出开关依据指令释放一个激光周期内的储能;所述激光周期为工作光纤开始储存能量至释放能量的时间。
在本申请实施例中,所述激光打标机还包括:
位于所述控制主板速度调整模块916,用于采用所述输出功率调整所述振镜的移动速度。
参照图10是本申请第二实施例提出的一种激光打标系统实施例的结构框图,其中,激光打标系统包括:至少一台激光打标机001,以及分别与所述激光打标机连接的控制平台002和智能终端003;
所述激光打标机001接收所述智能终端003发送的待打标图像;
所述激光打标机001将所述待打标图像发送至所述控制平台002,并接收所述控制平台002返回的打标指令;
所述激光打标机001依据所述打标指令进行打标。
所述控制平台可以为智能控制中心或控制主板。
参照图11是本申请实施例中激光打标系统的示意图。图中,激光打标机1通过路由器与后台服务器相连。打标机n通过路由器与终端相连。
为了突出应用的灵活性和工作的效率等问题,打标机在设计上具有网络化群组功能,同时为了操作的简单和多样性,以及后台运算的强大和群组的统一管理,可以配合后台服务器,使用交换机或者路由器搭建局域网工作模式,因此在工作上,激光打标机可以单独作为通用打标机进行使用,也可以当做一个打标终端进行网络化打标功能。即,在本申请第二实施例中,激光打标机可以通过自身的控制主板驱动激光器和振镜进行打标操作,也可以通过上述的服务器对打标机所包含的振镜、激光器等元件进行控制。
通过借助后台服务器的强大运算能力,计算完成打标机的运算任务,打标机直接可以根据模式选择,接收服务器发送的打标指令,在大范围的使用场合里,也可以使用后台服务器对打标机进行统一管理。比如打标机的工作状态,电路模块光路模块的运行时间等等,便于统一维护。与此同时,打标机也可以通过后台服务器的数据存储与计算,实现计算、查询与存储。
同样,打标机可以与终端相连,终端通过有线或无线网络向打标机发送需要打标的图像,便于用户操作。终端如手机、PC或平板,打标图像不限于LOGO、照片、设计图以及3维图。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比 较简单,相关之处参见方法实施例的部分说明即可。
本申请第三实施例提出一种打标方法和打标系统,其核心构思之一在于,通过在智能处理中心设置材料信息与对应功率的匹配关系表,当打标平台在处理不同的打标材料时,都能选择到与打标材料匹配的激光输出功率范围。将待打标图像转换为灰度图像,通过将待打标的灰度图像上每一个像素点的灰度值变化与对应的输出功率范围匹配,更精确地匹配像素点的灰度值与对应的输出功率,使打标效果更符合用户的需求。智能处理中心通过数据计算形成,尤其可以存在于互联网或者局域网,也可以存在于本地或者远端,从而实现数据存储、查询、计算。
参照图12,示出了本申请的一种打标方法实施例的步骤流程图,其中,使用打标平台进行打标,所述打标平台包括相连的智能处理中心和智能机打标终端;所述智能处理中心设置有材料信息与对应功率范围的匹配关系表;
值得注意的是,匹配关系表也可以设置在本申请第一实施例的控制主板中,即激光打标机的控制主板可以存储有上述的匹配关系表。
本申请第三实施例的打标方法具体可以包括如下步骤:
步骤101,所述智能处理中心获取待打标图像和待打标的材料信息;所述待打标图像由智能终端通过有线或无线网络上传,智能终端如手机、PC或平板,待打标图像不限于LOGO、照片、设计图以及3维图。本申请第三实施例中的智能处理中心可以对应于第二实施例中的控制平台,同样地,第一实施例中的控制主板也可以实现本实施例中智能处理中心的部分或全部的功能。
步骤102,所述智能处理中心根据所述待打标图像生成图像处理信息;
步骤103,所述智能处理中心采用所述打标的材料信息在所述匹配关系表查找对应的功率范围信息;
步骤104,所述智能处理中心采用所述图像处理信息以及所述功率范围信息生成打标参数,并输出至所述智能机打标终端;第三实施例中的智能机打标终端可以认为与第一和第二实施例中的用于实现打标功能的打标机相同或相似,例如包括第一实施例的激光器和振镜。
步骤105,所述智能机打标终端采用所述打标参数进行打标。
其中所述步骤101可以包括子步骤:
S11,所述智能处理中心获取由所述智能机打标终端分析到的打标材料信息。
打标平台是一种智能激光打标系统,其包括智能机打标终端和作为处理核心的智能处理中心。智能机打标终端负责分析需要打标的材料,以及,接收相关参数后进行打标;智能处理中心负责接收待打标的图像并对图像进行图像处理,以及,根据智能机打标终端分析得到的材料类型在预设的材料信息与对应功率的匹配关系表中搜索相应的功率范围信息。最后根据图像处理的结果以及对应材料的功率范围信息得到需要的打标参数。
待打标的灰度图像上不同的像素点有不同的灰度值,从0-255灰度值对应输出功率也不同,例如,输出功率可以与灰度值具有成比例的关系,打标灰度值为30的像素点所需要的输出功率为打标灰度值为60的像素点所需要的功率的一半。之后,在对应输出功率与材料匹配时,每一种材料匹配一段功率范围,在确定了材料匹配的输出功率范围后,在输出功率范围内,进一步匹配待打标的灰度图像上每一个像素点的灰度值对应的输出功率,更精确地实现像素点的灰度值与对应的输出功率的匹配。如下表格所示:
Figure PCTCN2015091203-appb-000001
举例来说,根据上述表格,如果待打标的材料为塑料,可以确定灰度值为30的像素点所需要的输出功率为1w,而灰度值为60的像素点所需要的输出功率为2w。如果待打标的材料为金属,则灰度值为30的像素点所需要的输出功率为5w,而灰度值为60的像素点所需要的输出功率为10w。上述示例和表格仅为举例说明之用,在应用时,可以将灰度值范围划分为更细的区间,并为每个区间设置更具体对应的输出功率。举例来说, 当待打标的材料为塑料,可以将表格设置为灰度值0-1对应的打标功率为0.02w,灰度值1-2对应的打标功率为0.04w等等。
需要说明的是,在本申请实施例中,所述匹配关系表的获取方式包括:
通过用户的需求设置,和/或,通过云计算分析得到。
对于怎样选择与待打标的材料对应的激光输出功率,在本申请中,智能处理中心设置有材料信息与对应功率范围的匹配关系表,通过查找匹配关系表即可得到对应的激光输出功率范围。材料与其所对应的功率范围可以通过用户实际使用时的打标效果决定,或者,通过云计算对大量材料打标效果的分析,可以得到各种材料对应的功率范围。同一待打标材料时,灰度值与输出功率的关系并不限定为上述举例中的线性相关。
在本申请第三实施例中,所述图像处理信息可以包括:像素点坐标、像素点灰度值,所述步骤102可以进一步包括子步骤:
S21,所述智能处理中心将所述待打标图像转换成灰度图像;
S22,所述智能处理中心在所述灰度图像中确定各像素点的坐标以及对应的像素点灰度值。
在接收待打标的图像后,智能处理中心首先将图像转化为256色阶的灰度图,并且确定灰度图中每个像素点的坐标以及对应像素点的灰度值。
其中,所述打标参数可以包括:像素点坐标、像素点输出功率,所述步骤104,可以进一步包括子步骤:
S41,所述智能处理中心从所述输出功率范围信息中查找与所述像素点灰度值对应的像素点输出功率;
S42,所述智能处理中心将所述像素点坐标与所述像素点输出功率组合成所述打标参数。
参照图13,示出了本申请的一种打标方法实施例的步骤流程图。具体可以包括:
步骤201,智能处理中心接收到待打标图像;
步骤202,智能处理中心将待打标图像经过图像处理转换为灰度图;
步骤203,根据打标材料以及每个图像像素点(x,y)对应的灰度值,查找出所对应的激光器功率p,并进行参数设定(x,y,p);
根据打标物件材料金属(不锈钢)外壳以及每个图像像素点(x,y)对应 的灰度值,查找出所对应的激光器功率p,并进行参数设定(x,y,p)。例如在x=100,y=100即像素(100,100)位置,灰度值是50,通过判别查找智能处理中心库中材料为金属(不锈钢),值为50所对应设定的激光器功率p=1000mw,则将该对应像素点的参数(100,100,1000)发送到智能机打标终端。
步骤204,智能机打标终端根据该像素点的参数(x,y,p)将该像素点打标到物件材料上。
智能机打标终端根据该像素点的参数(100,100,1000),将该像素点打标到物件材料上,依次其他像素点根据打标原理最终将一幅图打标到该金属(不锈钢)外壳上。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图14,示出了本申请第三实施例对应的一种打标平台实施例的结构框图,其中,所述打标平台包括相连的智能处理中心31和智能机打标终端32,具体连接通讯方式包括有线网络、无线网络和本地串口;所述智能处理中心设置有材料信息与对应功率范围的匹配关系表,具体可以包括如下模块:
位于所述智能处理中心的获取模块311,用于获取待打标图像和待打标的材料信息;所述待打标图像由智能终端通过有线或无线网络上传,智能终端如手机、PC或平板,待打标图像不限于LOGO、照片、设计图以及3维图。智能机打标终端,指进行打标的打标机。位于所述智能处理中心的图像处理模块312,用于根据所述待打标图像生成图像处理信息;
位于所述智能处理中心的材料信息匹配模块313,用于采用所述打标的材料信息在所述匹配关系表查找对应的功率范围信息;
位于所述智能处理中心的打标参数生成模块314,用于采用所述图像处理信息以及所述功率范围信息生成打标参数,并输出至所述智能机打标 终端;
位于所述智能机打标终端的打标模块321,用于采用所述打标参数进行打标。
在本申请实施例中,所述图像处理信息包括:像素点坐标、像素点灰度值;所述图像处理模块312进一步包括:
位于所述智能处理中心的灰度转换子模块,用于将所述待打标图像转换成灰度图像;
位于所述智能处理中心的像素确定子模块,用于在所述灰度图像中确定各像素点的坐标以及对应的像素点灰度值。
其中,所述打标参数包括:像素点坐标、像素点输出功率,所述打标参数生成模块314进一步包括:
位于所述智能处理中心功率匹配子模块,用于从所述输出功率范围信息中查找与所述像素点灰度值对应的像素点输出功率;
位于所述智能处理中心的参数合成子模块,用于将所述像素点坐标与所述像素点输出功率组合成所述打标参数。
其中,所述获取模块311进一步包括:
位于所述智能处理中心的材料信息获取子模块,用于获取由所述智能机打标终端分析到的打标材料信息。
其中,所述匹配关系表的获取方式包括:
通过用户的需求设置,和/或,通过云计算分析得到。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本发明第四实施例提出一种激光打标方法,如图16所示,其中,使用激光打标机进行打标,激光打标机通过控制平台进行控制,该控制平台可以是如第一实施例中集成在激光打标机中的本地的控制主板,也可以是如第二和第三实施例中的远端的服务器或智能处理中心。当控制平台为激光打标机本身的控制主板时,该控制主板可以实现存储、运算、控制等功能,可以控制激打标机的激光器和振镜的元件进行打标操作;当控制平台为远端的服务器或智能处理中心时,该控制平台可以与激光打标机中的控制主板通过信号连接。
所述激光打标机包括:控制主板、分别与控制主板通过信号相连的激光器和振镜;所述振镜用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器用于输出激光;本实施例中的激光打标方法具体可以包括如下步骤:
步骤501,所述控制主板接收目标图像像素点的坐标,以及,目标图像像素点的灰度值;
步骤502,所述控制主板根据所述灰度值初步计算目标图像像素点的输出功率;
步骤503,所述控制主板接收待打标的材料信息;在这一步骤中,控制主板例如可以接收从控制平台例如是远端的智能处理中心处获取的待打标的材料信息。
步骤504,所述控制主板根据所述材料信息获取对应的材料输出功率;在这一步骤中,材料输出功率可以是具体的数值,也可以是数值范围。
步骤505,所述控制主板根据利用灰度值计算出的输出功率和上述的材料输出功率,获得修正后输出功率;
步骤506,所述控制主板随所述振镜的位移控制所述激光器采用相应的修正后输出功率,针对各目标图像像素点输出激光。
在所述步骤501之前,所述方法还可以包括:
步骤51,所述控制主板接收待打标图像,并将所述待打标图像转换为预设解析度的灰度图;
步骤52,所述控制主板采用所述解析度计算出灰度图中各像素点的坐标,将所述灰度图各像素点的坐标作为目标图像像素点的坐标。
在步骤51中,待打标图像可以是由与激光打标机和控制主板通过有线或无线连接的终端(例如手机、PC或平板)传递给控制主板。
对上述第一实施例的步骤302进一步处理,例如步骤502、步骤503、步骤504中,可以采用第三实施例中提供的材料信息与对应功率范围的匹配关系表来获得目标图像每一个像素点经过修正后的输出功率。然而,本发明并不特别限定上述步骤501-505的执行顺序,例如,步骤502可以先于步骤503和步骤504执行,即先根据灰度值计算出输出功率,再根据材料信息获取材料输出功率,之后在步骤505中利用匹配关系表中的与材料 对应的功率范围对步骤502获取的输出功率进行修正,获取修正后输出功率;同时步骤502也可以在步骤503和步骤504之后执行,例如,可以先执行步骤503和步骤504获取材料输出功率,例如当待打印的材料为塑料,可以根据表格先确定灰度值为1时输出功率为0.02w,灰度值为255时输出功率为5w,再进行步骤502和步骤505,根据每一个目标像素点的灰度值在[0.02,5]这一区间内确定该像素点的修正后输出功率。
在一实施例中,步骤506还可以包括如下子步骤:
子步骤5061,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟;
子步骤5062,若是,则判定振镜位移至当前像素点;
子步骤5063,当判定位移至当前像素点时,所述控制主板控制激光器针对当前像素点输出对应输出功率的激光。
上述子步骤可以参考第一实施例中的子步骤S31-S33,在此不再赘述。
在一实施例中,子步骤5063还可以进一步包括:
子步骤50631,所述控制主板采用所述输出功率调整所述泵浦的输出电流;
子步骤50632,所述工作光纤接收所述输出电流进行光纤储能;
子步骤50633,当所述振镜移动至当前像素点时,所述控制主板发出开关指令,所述输出开关依据指令释放一个激光周期内的储能;所述激光周期为工作光纤开始储存能量至释放能量的时间。
同样地,本发明提出一种对应于上述激光打标方法的激光打标设备,所述激光打标机通过控制平台进行控制,所述激光打标机包括:分别与所述控制平台通过信号相连的激光器和振镜;所述振镜基于目标图像像素点的坐标而采用预设的移动速度进行位移;所述激光器用于输出激光;所述激光打标设备具包括:
位于所述控制平台的第一计算模块,用于根据所述灰度值计算目标图像像素点的输出功率;
位于所述控制平台的第二获取模块,用于获取待打标的材料信息;
位于所述控制平台的第三获取模块,用于根据所述材料信息获取对应的材料输出功率;
位于所述控制平台的二次计算模块,用于根据利用灰度值计算出的输出功率和所述材料输出功率,计算出所述目标图像像素点的修正后输出功率;
位于所述控制平台的控制模块,用于随所述振镜的位移控制所述激光器采用相应的修正后输出功率,针对各目标图像像素点输出激光。
在一实施例中,所述控制平台设置有材料信息和对应功率范围的匹配关系表,所述二次计算模块根据所述材料信息和所述灰度值在所述匹配关系标查找对应的功率范围信息,获得修正后输出功率。
在一实施例中,所述匹配关系表的获取方式包括:
通过用户的需求设置,和/或,通过云计算分析得到。
本发明还提出一种对应于第四实施例的激光打标方法的激光打标系统。如图15所示,所述激光打标系统包括:控制平台、以及与控制平台通过有线或无线方式连接的智能终端和激光打标机。控制平台可以是如第一实施例所述的控制主板,也可以是第二和第三实施例中的远端的服务器或智能处理中心,或者是二者的组合。激光打标机可以包括如第一实施例所述的激光器、振镜等元件,用于受控于控制平台进行激光打标,同时如第三实施例所述,激光打标机能够分析打标材料信息。智能终端用于将待打标图像上传至控制平台。所述激光打标系统还包括:
位于所述控制平台的第一获取模块41,用于获取目标图像像素点的坐标,以及,目标图像像素点的灰度值;
位于所述控制平台的第一计算模块42,用于根据所述灰度值计算目标图像像素点的输出功率;
位于所述控制平台的第二获取模块43,用于获取待打标的材料信息;
位于所述控制平台的第三获取模块44,用于根据所述材料信息获取对应的材料输出功率;
位于所述控制平台的二次计算模块45,用于根据利用灰度值计算出的输出功率和所述材料输出功率,计算出所述目标图像像素点的修正后输出功率;
位于所述控制平台的控制模块46,用于所述振镜的位移控制所述激光器采用相应的修正后输出功率,针对各目标图像像素点输出激光。
在上述实施例中,待打标的材料信息可以由激光打标机经过分析得到,并提供给第二获取模块,即激光打标机可以具有材料分析模块。
当控制平台同时包括控制主板和智能处理中心时,上述的第一获取模块、第一计算模块、第二获取模块、第三获取模块、控制模块可以位于控制主板;而智能处理中心可以包括用于存储模块,用于存储材料信息和材料输出功率的匹配关系表,同时还可以具有上述二次计算模块;智能终端可以包括材料分析模块。
在一实施例中,结合图9所示,上述控制模块进一步包括:
位于所述控制平台的判断子模块9132,用于判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟;
位于所述控制平台的判定子模块9131,用于当所述判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟的判断结果为是时,则判定振镜位移至当前像素点;
位于控制平台的输出子模块9133,用于当判定位移至当前像素点时,所述控制平台控制激光器针对当前像素点输出对应输出功率的激光。
在一实施例中,所述预设的时间延迟包括:加速延迟、匀速延迟、减速延迟;所述判断子模块进一步包括;
加速延迟判断子模块9132a,用于在当前像素点为起始像素点时,所述控制平台判断所述振镜位移至当前像素点的时间,是否到达预设的加速延迟;
或/和
匀速延迟判断子模块9132b,用于在当前像素点为中途像素点时,所述控制平台判断所述振镜位移至当前像素点的时间,是否到达预设的匀速延迟;
或/和
减速延迟判断子模块9132c,用于在当前像素点为结束像素点时,所述控制平台判断所述振镜位移至当前像素点的时间,是否到达预设的减速延迟。
在一实施例中,所述激光打标系统还包括:
位于所述控制平台的第二接收模块914,用于在所述控制平台接收目 标图像像素点的坐标,以及,目标图像像素点的灰度值的步骤之前,接收待打标图像,并将所述待打标图像转换为预设解析度的灰度图;
位于所述控制平台的第二计算模块915,用于采用所述解析度计算出灰度图中各像素点的坐标,将所述灰度图各像素点的坐标作为目标图像像素点的坐标。
在一实施例中,所述激光器包括:泵浦和与泵浦连接的工作光纤、以及与工作光纤连接的输出开关;所述输出子模块进一步包括:
位于所述控制平台的电流调整子模块9133a,用于采用所述输出功率调整所述泵浦的输出电流;
位于所述工作光纤的接收子模块9133b,用于接收所述输出电流进行光纤储能;
位于所述控制平台的开关子模块9133c,用于当所述振镜移动至当前像素点时,发出开关指令,所述输出开关依据指令释放一个激光周期内的储能;所述激光周期为工作光纤开始储存能量至释放能量的时间。
在一实施例中,所述激光打标系统还包括:
位于所述控制平台速度调整模块916,用于采用所述输出功率调整所述振镜的移动速度。
在一实施例中,功率修正模块可以采用第三实施例中提供的材料信息与对应功率范围的匹配关系表来获得目标图像每一个像素点的修正后的输出功率。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和 计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种激光打标机、激光打标方法及系统,进行 了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (21)

  1. 一种激光打标机,其特征在于,所述激光打标机包括:控制主板、分别与控制主板相连的激光器和振镜;所述振镜用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器用于输出激光;
    所述激光打标机还包括:
    位于控制主板的第一接收模块,用于接收目标图像像素点的坐标,以及,目标图像像素点的灰度值;
    位于所述控制主板的第一计算模块,用于采用所述灰度值计算目标图像像素点的输出功率;
    位于所述控制主板的控制模块,用于随所述振镜的位移控制所述激光器采用相应的输出功率,针对各目标图像像素点输出激光。
  2. 根据权利要求1所述的激光打标机,其特征在于,所述控制模块进一步包括:
    位于所述控制主板的判断子模块,用于判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟;
    位于所述控制主板的判定子模块,用于当所述判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟的判断结果为是时,则判定振镜位移至当前像素点;
    位于控制主板的输出子模块,用于当判定位移至当前像素点时,所述控制主板控制激光器针对当前像素点输出对应输出功率的激光。
  3. 根据权利要求2所述的激光打标机,其特征在于,所述预设的时间延迟包括:加速延迟、匀速延迟、减速延迟;所述判断子模块进一步包括;
    加速延迟判断子模块,用于在当前像素点为起始像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的加速延迟;
    或/和
    匀速延迟判断子模块,用于在当前像素点为中途像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的匀速延迟;
    或/和
    减速延迟判断子模块,用于在当前像素点为结束像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的减速延迟。
  4. 根据权利要求1或3所述的激光打标机,其特征在于,所述激光打标机还包括:
    位于所述控制主板的第二接收模块,用于接收待打标图像,并将所述待打标图像转换为预设解析度的灰度图;
    位于所述控制主板的第二计算模块,用于采用所述解析度计算出灰度图中各像素点的坐标,将所述灰度图各像素点的坐标作为目标图像像素点的坐标。
  5. 根据权利要求4所述的激光打标机,其特征在于,所述激光器包括:泵浦和与泵浦连接的工作光纤、以及与工作光纤连接的输出开关;所述输出子模块进一步包括:
    位于所述控制主板的电流调整子模块,用于采用所述输出功率调整所述泵浦的输出电流;
    位于所述工作光纤的接收子模块,用于接收所述输出电流进行光纤储能;
    位于所述控制主板的开关子模块,用于当所述振镜移动至当前像素点时,发出开关指令,所述输出开关依据指令释放一个激光周期内的储能;所述激光周期为工作光纤开始储存能量至释放能量的时间。
  6. 根据权利要求5所述的激光打标机,其特征在于,所述激光打标机还包括:
    位于所述控制主板速度调整模块,用于采用所述输出功率调整所述振镜的移动速度。
  7. 一种激光打标设备,其特征在于,包括激光打标机和控制平台,所述激光打标机通过控制平台进行控制,所述激光打标机包括:分别与所述控制平台通过信号相连的激光器和振镜;所述振镜基于目标图像像素点的坐标而采用预设的移动速度进行位移;所述激光器用于输出激光;所述激光打标设备包括:
    位于所述控制平台的第一获取模块,用于获取目标图像像素点的坐标,以及,目标图像像素点的灰度值;
    位于所述控制平台的第一计算模块,用于根据所述灰度值计算目标图像像素点的输出功率;
    位于所述控制平台的第二获取模块,用于获取待打标的材料信息;
    位于所述控制平台的第三获取模块,用于根据所述材料信息获取对应的材料输出功率;
    位于所述控制平台的二次计算模块,用于根据利用灰度值计算出的输出功率和所述材料输出功率,计算出所述目标图像像素点的修正后输出功率;
    位于所述控制平台的控制模块,用于随所述振镜的位移控制所述激光器采用相应的修正后输出功率,针对各目标图像像素点输出激光。
  8. 根据权利要求7所述的激光打标设备,其特征在于,所述控制平台设置有材料信息和对应功率范围的匹配关系表,所述二次计算模块根据所述材料信息和所述灰度值在所述匹配关系标查找对应的功率范围信息,获得修正后输出功率。
  9. 根据权利要求8所述的激光打标设备,其特征在于,所述匹配关系表的获取方式包括:
    通过用户的需求设置,和/或,通过云计算分析得到。
  10. 一种激光打标方法,其特征在于,使用激光打标机进行打标,所述激光打标机包括:控制主板、分别与控制主板相连的激光器和振镜;所述振镜用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器用于输出激光;
    所述方法包括:
    所述控制主板接收目标图像像素点的坐标,以及,目标图像像素点的灰度值;
    所述控制主板采用所述灰度值计算目标图像像素点的输出功率;
    所述控制主板随所述振镜的位移控制所述激光器采用相应的输出功率,针对各目标图像像素点输出激光。
  11. 根据权利要求10所述的激光打标方法,其特征在于,所述控制主板随所述振镜的位移控制所述激光器采用相应的输出功率,针对各目标图像像素点输出激光的步骤包括:
    所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟;
    若是,则判定所述振镜位移至当前像素点;
    当判定所述振镜位移至当前像素点时,所述控制主板控制激光器针对当 前像素点输出对应输出功率的激光。
  12. 根据权利要求11所述的激光打标方法,其特征在于,所述预设的时间延迟包括:加速延迟、匀速延迟、减速延迟;所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟的子步骤进一步包括;
    在当前像素点为起始像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的加速延迟;
    在当前像素点为中途像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的匀速延迟;
    在当前像素点为结束像素点时,所述控制主板判断所述振镜位移至当前像素点的时间,是否到达预设的减速延迟。
  13. 根据权利要求10或12所述的激光打标方法,其特征在于,在所述控制主板接收目标图像像素点的坐标,以及,目标图像像素点的灰度值的步骤之前,所述方法还包括:
    所述控制主板接收待打标图像,并将所述待打标图像转换为预设解析度的灰度图;
    所述控制主板采用所述解析度计算出灰度图中各像素点的坐标,将所述灰度图各像素点的坐标作为目标图像像素点的坐标。
  14. 根据权利要求13所述的激光打标方法,其特征在于,所述激光器包括:泵浦和与泵浦连接的工作光纤、以及与工作光纤连接的输出开关;所述当判定位移至当前像素点时,所述控制主板控制激光器针对当前像素点输出对应输出功率的激光子步骤进一步包括:
    所述控制主板采用所述输出功率调整所述泵浦的输出电流;
    所述工作光纤接收所述输出电流进行光纤储能;
    当所述振镜移动至当前像素点时,所述控制主板发出开关指令,所述输出开关依据指令释放一个激光周期内的储能;所述激光周期为工作光纤开始储存能量至释放能量的时间。
  15. 根据权利要求10所述的激光打标方法,其特征在于,所述方法还包括:
    所述控制主板获取待打标的材料信息;
    所述控制主板根据所述的材料信息获取对应的材料输出功率;以及
    所述控制主板根据利用灰度值计算出的所述输出功率和所述材料输出功率,获得修正后输出功率;
    所述控制主板随所述振镜的位移控制所述激光器采用相应的输出功率,针对各目标图像像素点输出激光的步骤具体为:
    所述控制主板随所述振镜的位移控制所述激光器采用相应的修正后输出功率,针对各目标图像像素点输出激光。
  16. 根据权利要求15所述的激光打标方法,其特征在于,所述控制主板设置有材料信息和对应功率范围的匹配关系表,所述控制主板根据利用灰度值计算出的所述输出功率和所述材料输出功率,获得修正后输出功率的步骤具体包括:
    所述控制平台根据所述材料信息和所述灰度值在所述匹配关系标查找对应的功率范围信息,获得修正后输出功率。
  17. 一种激光打标系统,所述激光打标系统包括:控制平台、以及与控制平台信号连接的智能终端和激光打标机,所述激光打标机包括激光器和振镜,所述振镜用于采用预设的移动速度基于目标图像像素点的坐标进行位移;所述激光器用于输出激光;所述智能终端用于将待打标图像上传至所述控制平台,所述激光打标系统还包括:
    位于所述控制平台的第一获取模块,用于获取目标图像像素点的坐标,以及,目标图像像素点的灰度值;
    位于所述控制平台的第一计算模块,用于根据所述灰度值计算目标图像像素点的输出功率;
    位于所述控制平台的第二获取模块,用于获取待打标的材料信息;
    位于所述控制平台的第三获取模块,用于根据所述材料信息获取对应的材料输出功率;
    位于所述控制平台的二次计算模块,用于根据利用灰度值计算出的输出功率和所述材料输出功率,计算出所述目标图像像素点的修正后输出功率;
    位于所述控制平台的控制模块,用于所述振镜的位移控制所述激光器采用相应的修正后输出功率,针对各目标图像像素点输出激光。
  18. 根据权利要求17所述的激光打标系统,其特征在于,所述控制平台设置有材料信息和对应功率范围的匹配关系表,所述二次计算模块用于根 据所述材料信息和所述灰度值在所述匹配关系表中查找对应的功率范围信息,获得修正后输出功率。
  19. 根据权利要求17所述的激光打标系统,其特征在于,所述控制模块进一步包括:
    位于所述控制平台的判断子模块,用于判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟;
    位于所述控制平台的判定子模块,用于当所述判断所述振镜位移至当前像素点的时间,是否到达预设的时间延迟的判断结果为是时,则判定振镜位移至当前像素点;
    位于所述控制平台的输出子模块,用于当判定位移至当前像素点时,所述控制平台控制所述激光器针对当前像素点输出对应输出功率的激光。
  20. 根据权利要求17所述的激光打标系统,其特征在于,所述激光打标系统还包括:
    位于所述控制平台的第二接收模块,用于接收待打标图像,并将所述待打标图像转换为预设解析度的灰度图;
    位于所述控制平台的第二计算模块,用于采用所述解析度计算出灰度图中各像素点的坐标,将所述灰度图各像素点的坐标作为目标图像像素点的坐标。
  21. 根据权利要求17所述的激光打标系统,其特征在于,所述激光器包括:泵浦和与泵浦连接的工作光纤、以及与工作光纤连接的输出开关;所述输出子模块进一步包括:
    位于所述控制平台的电流调整子模块,用于采用所述输出功率调整所述泵浦的输出电流;
    位于所述工作光纤的接收子模块,用于接收所述输出电流进行光纤储能;
    位于所述控制平台的开关子模块,用于当所述振镜移动至当前像素点时,发出开关指令,所述输出开关依据指令释放一个激光周期内的储能;所述激光周期为工作光纤开始储存能量至释放能量的时间。
PCT/CN2015/091203 2015-04-30 2015-09-30 一种激光打标机、激光打标方法、打标设备及打标系统 WO2016173204A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510219312.6A CN104827780B (zh) 2015-04-30 2015-04-30 一种打印方法和打印平台
CN201510220430.9A CN104827781B (zh) 2015-04-30 2015-04-30 一种激光打标方法、激光打标机及系统
CN201510220430.9 2015-04-30
CN201510219312.6 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016173204A1 true WO2016173204A1 (zh) 2016-11-03

Family

ID=54252112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091203 WO2016173204A1 (zh) 2015-04-30 2015-09-30 一种激光打标机、激光打标方法、打标设备及打标系统

Country Status (3)

Country Link
US (2) US9764563B2 (zh)
EP (1) EP3088200B1 (zh)
WO (1) WO2016173204A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11524360B2 (en) * 2018-07-10 2022-12-13 Shutterfly, Llc Marking system for decorating workpieces
KR20210028225A (ko) * 2018-08-01 2021-03-11 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 비밀 마킹
WO2020027825A1 (en) 2018-08-01 2020-02-06 Hewlett-Packard Development Company, L.P. Covert dot patterns
CN110027217B (zh) * 2019-05-06 2023-12-26 南京铖联激光科技有限公司 一种主动监控式激光3d打印装置及监控方法
EP3744505B1 (en) * 2019-05-27 2023-03-01 Additive Industries B.V. Method for calibrating an apparatus for producing an object by means of additive manufacturing, and apparatus for the method
CN115003446A (zh) * 2020-12-23 2022-09-02 深圳市创客工场科技有限公司 加工方法、加工装置、计算机可读存储介质及电子设备
CN112809191A (zh) * 2021-01-25 2021-05-18 铭镭激光智能装备(河源)有限公司 一种激光打标方法、装置及计算机可读存储介质
CN114289858B (zh) * 2021-11-18 2023-07-07 富联裕展科技(深圳)有限公司 调试和监控方法、装置、设备及计算机可读存储介质
CN114265286A (zh) * 2021-12-29 2022-04-01 深圳市先地图像科技有限公司 一种网版曝光方法、装置、存储介质及相关设备
CN117340439B (zh) * 2023-12-06 2024-04-19 宁德时代新能源科技股份有限公司 极片打标系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497279A (zh) * 2009-02-26 2009-08-05 王晓宇 一种测量加工一体化的激光三维打标方法及装置
US20100033548A1 (en) * 2008-08-11 2010-02-11 Sumitomo Electric Industries, Ltd. Laser marking method
EP2380693A2 (en) * 2010-04-21 2011-10-26 Macsa ID, S.A. Device and process for marking a moving object by laser
CN103639591A (zh) * 2013-11-21 2014-03-19 吕武全 一种激光打标方法
US20150100149A1 (en) * 2013-09-19 2015-04-09 Nv Materialise System and method for calibrating a laser scanning system
CN104827781A (zh) * 2015-04-30 2015-08-12 深圳市创鑫激光股份有限公司 一种激光打标方法、激光打标机及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230971A (ja) * 1990-02-06 1991-10-14 Minolta Camera Co Ltd レーザビーム作像装置
DE19707003C2 (de) 1996-02-24 1999-10-14 Foba Gmbh Elektronik & Lasersy Beschriftungslasersystem und Verfahren zur Beschriftung
DE10339472A1 (de) 2003-08-27 2005-03-24 Ralph Schmid Verfahren und Vorrichtung zur Laserbeschriftung
US7505196B2 (en) * 2004-03-31 2009-03-17 Imra America, Inc. Method and apparatus for controlling and protecting pulsed high power fiber amplifier systems
JP2008179131A (ja) * 2006-12-26 2008-08-07 Ricoh Co Ltd 画像処理方法及び画像処理装置
US8243111B2 (en) * 2007-04-26 2012-08-14 Panasonic Corporation Optical disc label printer, thermosensitive recording printer and thermosensitive recording method
CN101221616B (zh) 2007-12-28 2010-11-10 上海市激光技术研究所 一种动态灰阶图卡证激光雕刻制作系统和方法
FR2929439B1 (fr) 2008-03-28 2013-11-08 Commissariat Energie Atomique Procede de stockage d'images et support de stockage correspondant.
CN101352975A (zh) 2008-09-12 2009-01-28 北京工业大学 基于低功率激光的陶瓷表面打标和雕刻装置和方法
JP5510214B2 (ja) * 2009-10-19 2014-06-04 株式会社リコー 描画制御装置、レーザ照射装置、描画制御方法、描画制御プログラム、及びこれを記録した記録媒体
US8585956B1 (en) 2009-10-23 2013-11-19 Therma-Tru, Inc. Systems and methods for laser marking work pieces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100033548A1 (en) * 2008-08-11 2010-02-11 Sumitomo Electric Industries, Ltd. Laser marking method
CN101497279A (zh) * 2009-02-26 2009-08-05 王晓宇 一种测量加工一体化的激光三维打标方法及装置
EP2380693A2 (en) * 2010-04-21 2011-10-26 Macsa ID, S.A. Device and process for marking a moving object by laser
US20150100149A1 (en) * 2013-09-19 2015-04-09 Nv Materialise System and method for calibrating a laser scanning system
CN103639591A (zh) * 2013-11-21 2014-03-19 吕武全 一种激光打标方法
CN104827781A (zh) * 2015-04-30 2015-08-12 深圳市创鑫激光股份有限公司 一种激光打标方法、激光打标机及系统

Also Published As

Publication number Publication date
EP3088200B1 (en) 2021-11-03
US20160318310A1 (en) 2016-11-03
US9764563B2 (en) 2017-09-19
US10377145B2 (en) 2019-08-13
US20170368840A1 (en) 2017-12-28
EP3088200A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
WO2016173204A1 (zh) 一种激光打标机、激光打标方法、打标设备及打标系统
CN104827781B (zh) 一种激光打标方法、激光打标机及系统
CN106251396B (zh) 三维模型的实时控制方法和系统
CN105808176B (zh) 一种基于移动终端、云服务器的激光标刻方法和系统
KR100935482B1 (ko) 합성이미지 제공시스템 및 방법
US10124442B2 (en) Colour marking metal surfaces
WO2015131701A1 (zh) 一种拍照方法、装置及计算机存储介质
US10317199B2 (en) Three-dimensional measuring system and measuring method with multiple measuring modes
CN108648251B (zh) 3d表情制作方法及系统
WO2014170550A1 (en) Colour marking metal surfaces
CN108141280A (zh) 基于光的通信中的自适应波特率
CN109472738A (zh) 图像光照校正方法及装置、电子设备和存储介质
CN102878978B (zh) 遥控测距生成工程蓝图的方法
JP2014003510A5 (ja) 送信装置、映像表示装置、送信方法、映像表示方法、及びプログラム
CN105469092A (zh) 扫描辅助定位系统、条码扫描装置及扫描辅助定位方法
CN105674916B (zh) 一种硬件智能化的结构光三维扫描系统及方法
JP6679847B2 (ja) 棚割情報生成装置、棚割情報生成システム、棚割情報生成方法、撮像装置、およびプログラム
CN205898129U (zh) 一种激光扫描放样装置
CN112073708B (zh) 一种tof相机光发射模组的功率控制方法及设备
CN106840021B (zh) 控制方法及电子设备
CN107534736A (zh) 终端的图像配准方法、装置和终端
JP2020024763A (ja) 反射検知システム
JP2020107127A (ja) 同期制御装置、同期制御システム、同期制御方法及びシミュレーション装置
JP2020064034A (ja) 計測装置、その校正方法、およびプログラム
CN114388059B (zh) 基于三维力反馈控制器的蛋白截面生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890579

Country of ref document: EP

Kind code of ref document: A1