WO2016152267A1 - Amplifier and electronic circuit - Google Patents

Amplifier and electronic circuit Download PDF

Info

Publication number
WO2016152267A1
WO2016152267A1 PCT/JP2016/053237 JP2016053237W WO2016152267A1 WO 2016152267 A1 WO2016152267 A1 WO 2016152267A1 JP 2016053237 W JP2016053237 W JP 2016053237W WO 2016152267 A1 WO2016152267 A1 WO 2016152267A1
Authority
WO
WIPO (PCT)
Prior art keywords
type transistor
amplifier
gate
input terminal
bias voltage
Prior art date
Application number
PCT/JP2016/053237
Other languages
French (fr)
Japanese (ja)
Inventor
秀行 高野
史隆 近藤
法男 小路
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/554,366 priority Critical patent/US10587227B2/en
Publication of WO2016152267A1 publication Critical patent/WO2016152267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45224Complementary Pl types having parallel inputs and being supplied in parallel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/234Indexing scheme relating to amplifiers the input amplifying stage being one or more operational amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier

Definitions

  • This technology relates to amplifiers and electronic circuits. Specifically, the present invention relates to an amplifier and an electronic circuit that amplify a signal using a transistor.
  • an amplifier is used to amplify a weak signal in a radio signal receiver or the like.
  • This amplifier is generally arranged at the first stage of the receiver, and its gain and noise figure greatly affect the reception sensitivity of the radio signal.
  • the noise figure is the ratio between the S / N (Signal to Noise) ratio of the input signal to the amplifier and the S / N ratio of the output signal from the amplifier.
  • the larger the gain of the amplifier the higher the receiving sensitivity, and the smaller the noise figure, the higher the receiving sensitivity.
  • an amplifier in which a P-type transistor and an N-type transistor for amplifying a signal are connected in series to a power supply has been proposed (see, for example, Patent Document 1).
  • This technology has been created in view of such a situation, and aims to reduce the minimum operating voltage in an amplifier using a transistor.
  • the present technology has been made to solve the above-mentioned problems, and a first aspect thereof includes a P-type transistor and an N-type transistor connected in series, and an operational amplifier, and the operational amplifier Is connected to one gate of the P-type transistor and the N-type transistor, and one of the inverting input terminal and the non-inverting input terminal of the operational amplifier is connected to the drains of both the P-type transistor and the N-type transistor.
  • the amplifier is connected and a predetermined reference voltage is applied to the other of the inverting input terminal and the non-inverting input terminal.
  • a bias voltage supply unit that supplies a predetermined bias voltage to one of the gates of the P-type transistor and the N-type transistor, the gate of the P-type transistor, and the N-type transistor A capacitor inserted between the gate and the gate may further be provided. This brings about the effect that an independent bias voltage is applied to one gate of the P-type transistor and the N-type transistor.
  • a current source connected to the drain may be further provided. This brings about the effect
  • a cascode transistor element may be further inserted between the drain and the current source. As a result, the parasitic capacitance of the drain is reduced.
  • the first aspect further includes a comparator that compares the potential of the gate with a predetermined potential and supplies the comparison result, and the current source is configured to output the predetermined current based on the comparison result of the comparator. May be supplied. This brings about the effect
  • a low-pass filter may be further provided, the current source may include a transistor, and the low-pass filter may supply a DC bias voltage to the gate terminal of the transistor.
  • the low-pass filter may supply a DC bias voltage to the gate terminal of the transistor.
  • an impedance matching circuit that matches impedances of circuits at both ends of the transmission line connected to the amplifier may be further provided. This brings about the effect that the impedances of the circuits at both ends of the transmission line are matched.
  • the predetermined reference voltage is a value equal to or higher than one saturated drain voltage of the P-type transistor and the N-type transistor. This brings about the effect that the P-type transistor and the N-type transistor operate in a saturation region.
  • a second aspect of the present technology includes a P-type transistor and an N-type transistor connected in series, and an operational amplifier, and an output terminal of the operational amplifier is one of the P-type transistor and the N-type transistor.
  • One of the inverting input terminal and the non-inverting input terminal of the operational amplifier is connected to the drains of both the P-type transistor and the N-type transistor, and the other of the inverting input terminal and the non-inverting input terminal.
  • An electronic circuit comprising an amplifier to which a predetermined reference voltage is applied and a signal processing unit that processes a signal output from the drain.
  • a bias voltage supply unit that supplies a bias voltage having a value indicated by a control signal to one of the gates of the P-type transistor and the N-type transistor, the gate of the P-type transistor, A capacitor inserted between the gate of the N-type transistor may be further included. This brings about an effect that an independent bias voltage is applied to one gate of the P-type transistor and the N-type transistor.
  • the signal processing unit may process the signal output from the drain and generate the control signal based on the level of the signal. As a result, the control signal is generated based on the level of the signal.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless receiver 200 according to the first embodiment.
  • the radio receiver 200 receives an RF (Radio Frequency) signal, and includes a low noise amplifier 300, a frequency down converter 210, and a low pass filter 220.
  • the radio receiver 200 includes an AD (Analog to Digital) converter 230 and a digital signal processing unit 240.
  • An antenna 100 is connected to the wireless receiver 200.
  • the circuit in the wireless receiver 200 is an example of an electronic circuit described in the claims.
  • the antenna 100 converts radio waves into RF signals and supplies them to the low noise amplifier 300 via the signal line 109.
  • the low noise amplifier 300 amplifies the RF signal and supplies it to the frequency down converter 210 via the signal line 309.
  • the low noise amplifier 300 is an example of an amplifier described in the claims.
  • the frequency down converter 210 converts the RF signal into a signal (baseband signal or the like) having a frequency lower than that of the RF signal.
  • the frequency down converter 210 supplies the converted baseband signal to the AD converter 230 via the signal line 219.
  • the AD converter 230 converts an analog baseband signal into a digital signal and supplies it to the digital signal processing unit 240 via a signal line 239.
  • the digital signal processing unit 240 performs predetermined signal processing such as demodulation processing on the digital signal.
  • the digital signal processing unit 240 outputs the processed demodulated signal to an external device.
  • the digital signal processing unit is an example of a signal processing unit described in the claims.
  • the low noise amplifier 300 is provided in the wireless receiver 200, the low noise amplifier 300 may be provided in a device (such as a wireless transmitter or an acoustic device) other than the wireless receiver 200.
  • FIG. 2 is a circuit diagram illustrating a configuration example of the low noise amplifier 300 according to the first embodiment.
  • the low noise amplifier 300 includes an input terminal 307, an output terminal 308, an in-phase feedback circuit 350, a capacitor 371, a capacitor 373, a bias voltage supply unit 380, a P-type transistor 320, and an N-type transistor 310.
  • the common-mode feedback circuit 350 includes a resistor 351 and an operational amplifier 352.
  • MOS transistors are used as the P-type transistor 320 and the N-type transistor 310.
  • the input terminal 307 is connected to the antenna 100.
  • One end of the capacitor 371 is connected to the input terminal 307, and the other end is connected to the capacitor 373, the gate of the P-type transistor 320, and the resistor 351.
  • Capacitor 373 is inserted between the gate of P-type transistor 320 and the gate of N-type transistor 310.
  • P-type transistor 320 and N-type transistor 310 are connected in series to the power supply terminal.
  • the drains of both the P-type transistor 320 and the N-type transistor 310 are connected to the output terminal 308 and the non-inverting input terminal (+) of the operational amplifier 352.
  • a predetermined reference voltage V REF is applied to the inverting input terminal ( ⁇ ) of the operational amplifier 352, and the output terminal of the operational amplifier 352 is connected to the gate of the P-type transistor 320 via the resistor 351.
  • the output terminal 308 is connected to the frequency down converter 210.
  • the reference voltage V REF is set to a value equal to or higher than the saturation drain voltage V SAT of the P-type transistor 320 or the N-type transistor 310, for example. Note that the saturation drain voltages of the P-type transistor 320 and the N-type transistor 310 are the same.
  • the bias voltage supply unit 380 supplies a constant bias voltage V BIAS to the gate of the N-type transistor 310.
  • the bias voltage V BIAS is set to a value that satisfies the following expression.
  • the unit of the bias voltage V BIAS is, for example, volts (V).
  • V T is the threshold voltage of the N-type transistor 310. Note that the threshold voltages of the P-type transistor 320 and the N-type transistor 310 are the same.
  • the DC component of the RF signal is cut by the capacitor 371, and the AC signal component is input to the P-type transistor 320 and the like. It is assumed that this signal component is weak and the gate potential of the P-type transistor 320 is at a low level. In this case, the P-type transistor 320 is turned on and operates in the saturation region. On the other hand, the N-type transistor 310 is also turned on by applying the bias voltage V BIAS . These P-type transistor 320 and N-type transistor 310 amplify the signal component.
  • V OUT is an output voltage from the drains of the P-type transistor 320 and the N-type transistor 310.
  • V OUT V SAT ⁇ ⁇ ⁇ Formula 4
  • Equation 4 the minimum operating voltage of the low noise amplifier 300 is 2V SAT .
  • the minimum operating voltage when the common-mode feedback circuit 350 is not provided is 2V SAT + V T.
  • V SAT the saturation drain voltage
  • V T the threshold voltage
  • V SAT the minimum operating voltage
  • V SAT the minimum operating voltage
  • the low noise amplifier 300 can be operated with a margin under a very low voltage such as (V).
  • the capacitor 371 for cutting the DC component is provided inside the low noise amplifier 300
  • the capacitor 371 may be provided outside the low noise amplifier 300. In this case, for example, a capacitor 371 is inserted between the low noise amplifier 300 and the antenna 100.
  • the bias voltage supply unit 380 is provided inside the low noise amplifier 300, the bias voltage supply unit 380 may be provided outside the low noise amplifier 300.
  • the bias voltage V BIAS is applied to the gate of the N-type transistor 310, it may be configured not to apply it. In this case, the capacitor 373 and the bias voltage supply unit 380 for applying the bias voltage V BIAS only to the N-type transistor 310 become unnecessary.
  • the P-type transistor 320 and the N-type transistor 310 operate as inverters and function only as amplifiers near the voltage to be inverted. Therefore, it is desirable to provide the capacitor 373 and the bias voltage supply unit 380.
  • the reference voltage is applied to the non-inverting input terminal of the operational amplifier 352, and the inverting input terminal and the output terminal are connected via the P-type transistor 320.
  • a virtual short circuit can be made between the non-inverting input terminal and the inverting input terminal.
  • the bias voltage supply unit 380 applies the bias voltage V BIAS to the N-type transistor 310 and inputs a low level weak AC signal to the P-type transistor 320 for amplification.
  • the high-level AC signal cannot be amplified because the P-type transistor 320 is turned off.
  • the bias voltage supply unit 380 is configured to apply a bias voltage to the P-type transistor 320 and input an AC signal to the N-type transistor 310, the high-level AC that is higher than the threshold voltage V T of the N-type transistor 310.
  • the signal can be amplified.
  • the low noise amplifier 300 according to the modification of the first embodiment is different from the first embodiment in that a bias voltage is applied to the P-type transistor 320 and an AC signal is input to the N-type transistor 310.
  • FIG. 3 is a circuit diagram showing a configuration example of the low noise amplifier 300 according to a modification of the first embodiment.
  • the bias voltage supply unit 380 of this modification applies a bias voltage V BIAS ′ to the gate of the P-type transistor 320 instead of the N-type transistor 310.
  • the bias voltage V BIAS ′ is set to a low level such as around 0 volts (V).
  • one end of the resistor 351 of the modification is connected to the gate of the N-type transistor 310, and one end of the capacitor 371 is connected to the capacitor 373, the gate of the N-type transistor 310, and the resistor 351.
  • a high-level AC signal higher than the threshold voltage V T is input to the gate of the N-type transistor 310 of the modified example.
  • the bias voltage is supplied to the gate of the P-type transistor 320 and the AC signal is input to the N-type transistor 310.
  • a high level AC signal can be amplified instead of.
  • the low noise amplifier 300 can amplify a high level AC signal, the low noise amplifier 300 can be applied to the wireless receiver 200 in which the AC signal is assumed to be at a high level.
  • the bias voltage V BIAS is constant, but the radio receiver 200 may control the value of the bias voltage V BIAS according to the reception level.
  • the radio receiver 200 according to the second embodiment is different from the first embodiment in that the value of the bias voltage V BIAS is controlled according to the reception level.
  • FIG. 4 is a block diagram illustrating a configuration example of the wireless receiver 200 according to the second embodiment.
  • the radio receiver 200 according to the second embodiment is different from the first embodiment in that a low noise amplifier 301 and a digital signal processing unit 241 are provided instead of the low noise amplifier 300 and the digital signal processing unit 240.
  • the digital signal processing unit 241 processes the digital signal and detects the level of the digital signal as a reception level. Then, the digital signal processing unit 241 controls the bias voltage V BIAS in the low noise amplifier 301 by the control signal according to the detected reception level. For example, when the reception level is higher than a predetermined threshold Tr, the bias voltage V BIAS is lowered. As a result, although the characteristics such as the gain and noise figure of the low noise amplifier 301 are lowered, the current consumption of the low noise amplifier 301 can be reduced. On the other hand, when the reception level is equal to or lower than the threshold value Tr, the digital signal processing unit 241 increases the bias voltage V BIAS . Thereby, although the current consumption of the low noise amplifier 301 is increased, characteristics such as gain are improved.
  • FIG. 5 is a circuit diagram showing a configuration example of the low-noise amplifier 301 in the second embodiment.
  • the low noise amplifier 301 is different from that of the first embodiment in that a bias voltage supply unit 381 is provided instead of the bias voltage supply unit 380.
  • the bias voltage supply unit 381 is different from the bias voltage supply unit 380 of the first embodiment in that a bias voltage V BIAS having a value indicated by the control signal from the digital signal processing unit 241 is supplied.
  • FIG. 6 is a graph illustrating an example of the drain current for each control value in the second embodiment.
  • the vertical axis represents the drain current ID of the N-type transistor 310
  • the horizontal axis represents the control value indicated by the control signal.
  • the control value, the drain current I D can be controlled from 0 to a range of I D _Max1.
  • the drain current I D can not be larger than I D _Max1 is generally in the gate width and gate length under the same conditions, the current discharge capability of the P-type transistor 320, from the N-type transistor 310 This is because it is small.
  • the maximum drain current can be increased by increasing the gate width of the P-type transistor 320, it is not preferable to increase the gate width because gain and noise characteristics at high frequencies deteriorate. In addition, it is difficult to reduce the gate length of the P-type transistor 320 because the gate length of the P-type transistor 320 is generally set to the minimum value allowed by the manufacturing process for high-frequency operation.
  • FIG. 7 is a flowchart showing an example of the operation of the wireless receiver 200 in the second embodiment. This operation is started, for example, when the radio receiver 200 is turned on.
  • the wireless receiver 200 amplifies the RF signal (step S901) and demodulates the RF signal (step S902). Radio receiver 200 detects the reception level and determines whether or not the value is higher than threshold value Tr (step S906). When the reception level is higher than the threshold value Tr (step S906: Yes), the wireless receiver 200 reduces the bias voltage V BIAS to V1 to reduce the current consumption (step S907). On the other hand, when the reception level is equal to or lower than the threshold value Tr (step S906: No), the wireless receiver 200 increases the current consumption by increasing the bias voltage V BIAS to V2 higher than V1 (step S908). After step S907 or S908, the wireless receiver 200 repeats step S901 and subsequent steps.
  • the radio receiver 200 controls the bias voltage in two stages of V1 or V2 depending on whether the reception level is higher than the threshold value Tr, but is not limited to this configuration.
  • the wireless receiver 200 may be configured to control the bias voltage in multiple steps to a lower value as the reception level increases by setting a plurality of threshold values.
  • the radio receiver 200 controls the bias voltage according to the reception level, and thus receives a balance between the gain and noise figure characteristics and the power consumption. Can be adjusted according to the level.
  • the digital signal processing unit 241 of the radio receiver 200 has controlled the bias voltage V BIAS
  • the external device of the radio receiver 200 controls the bias voltage V BIAS Also good.
  • the radio receiver 200 according to the modification of the second embodiment is different from the second embodiment in that the bias voltage V BIAS is changed according to control of an external device.
  • FIG. 8 is a block diagram illustrating a configuration example of the wireless receiver 200 according to the modification of the second embodiment.
  • the radio receiver 200 of this modification is different from the second embodiment in that a digital signal processing unit 240 is provided instead of the digital signal processing unit 241.
  • the digital signal processing unit 240 supplies the demodulated signal to the electronic device 400 outside the wireless receiver 200.
  • the electronic device 400 detects the level of the demodulated signal as a reception level, and controls the bias voltage V BIAS by a control signal based on the reception level.
  • the electronic device 400 since the electronic device 400 controls the bias voltage V BIAS instead of the digital signal processing unit 240, the bias voltage V BIAS is used as the electronic device 400. Can be set to a value corresponding to the detected reception level.
  • the radio receiver 200 controls the drain current ID of the N-type transistor 310.
  • the drain current I D cannot be larger than the constant value I D — max1.
  • an auxiliary current source that supplies a predetermined current as an auxiliary current is provided at the drain of the N-type transistor 310, the maximum value of the drain current ID is increased without degrading the characteristics (in other words, the control range is widened). )can do.
  • the low noise amplifier 301 of the third embodiment is different from the second embodiment in that the control range of the drain current ID is widened by the auxiliary current source.
  • FIG. 9 is a circuit diagram showing a configuration example of the low-noise amplifier 301 in the third embodiment.
  • the low noise amplifier 301 of the third embodiment is different from that of the second embodiment in that an auxiliary current source 330 is further provided.
  • the auxiliary current source 330 supplies a predetermined auxiliary current from the power supply terminal to the drain of the N-type transistor 310.
  • the auxiliary current source 330 is realized by, for example, a P-type transistor.
  • the auxiliary current source 330 is an example of a current source described in the claims.
  • FIG. 10 is a graph illustrating an example of the drain current for each control value in the third embodiment.
  • the vertical axis represents the drain current ID of the N-type transistor 310
  • the horizontal axis represents the control value indicated by the control signal.
  • I D _Max1 is the maximum value of the drain current I D of the case without the auxiliary current source 330. As illustrated in the figure, by providing the auxiliary current source 330, the drain current I D can be controlled to a value larger than I D _Max1.
  • the auxiliary current source 330 supplies the auxiliary current to the drains of the P-type transistor 320 and the N-type transistor 310, the drain current control range is widened. be able to.
  • the bias voltage supply unit 381 applies the bias voltage V BIAS to the N-type transistor 310 and inputs a low-level weak AC signal to the P-type transistor 320 for amplification.
  • the high-level AC signal cannot be amplified because the P-type transistor 320 is turned off.
  • the bias voltage supply unit 381 is configured to apply a bias voltage to the P-type transistor 320 and input an AC signal to the N-type transistor 310, a high-level AC higher than the threshold voltage V T of the N-type transistor 310.
  • the signal can be amplified.
  • a bias voltage may be applied to the P-type transistor 320.
  • the low noise amplifier 300 according to the modification of the third embodiment is different from the third embodiment in that a bias voltage V is applied to the P-type transistor 320 and an AC signal is input to the N-type transistor 310.
  • FIG. 11 is a circuit diagram showing a configuration example of the low noise amplifier 301 in a modification of the third embodiment.
  • the bias voltage supply unit 380 of this modification applies a bias voltage V BIAS ′ to the gate of the P-type transistor 320 instead of the N-type transistor 310.
  • one end of the resistor 351 of the modification is connected to the gate of the N-type transistor 310, and one end of the capacitor 371 is connected to the capacitor 373, the gate of the N-type transistor 310, and the resistor 351.
  • the auxiliary current source 330 according to the modification supplies an auxiliary current from the ground terminal to the source of the P-type transistor 320.
  • the bias voltage is supplied to the gate of the P-type transistor 320 and the AC signal is input to the N-type transistor 310.
  • a high level AC signal can be amplified instead of.
  • the low noise amplifier 300 can amplify a high level AC signal, the low noise amplifier 300 can be applied to the wireless receiver 200 in which the AC signal is assumed to be at a high level.
  • FIG. 12 is a circuit diagram showing a configuration example of the low-noise amplifier 301 in the fourth embodiment.
  • the low noise amplifier 301 of the fourth embodiment is different from the third embodiment in that it further includes an impedance matching circuit 372 and a low pass filter 360.
  • the low pass filter 360 includes a capacitor 361 and a resistor 362.
  • the auxiliary current source 330 according to the fourth embodiment includes a P-type transistor 331.
  • a MOS transistor is used as the P-type transistor 331.
  • the impedance matching circuit 372 is inserted between the capacitor 371 and the gate of the P-type transistor 320.
  • One end of the capacitor 361 is connected to the power supply terminal, and the other end is connected to the resistor 362 and the gate of the P-type transistor 331.
  • One end of the resistor 362 is connected to the capacitor 361 and the gate of the P-type transistor 331, and the other end is connected to the resistor 351 and the output terminal of the operational amplifier 352.
  • the source of the P-type transistor 331 is connected to the power supply terminal, and the drain is connected to the drains of the P-type transistor 320 and the N-type transistor 310 and the non-inverting input terminal (+) of the operational amplifier 352.
  • the gate of the P-type transistor 331 is connected to the capacitor 361 and the resistor 362.
  • the impedance matching circuit 372 matches the impedance of each circuit on the transmission side and the reception side of the transmission path for transmitting the RF signal. Thereby, reflection loss can be minimized and transmission efficiency can be improved.
  • the low pass filter 360 supplies only a DC bias voltage to the gate terminal of the P-type transistor 331.
  • the cut-off frequency of the low-pass filter 360 is set to a sufficiently low value with respect to the signal component band. Further, by connecting the low-pass filter 360 to the gate of the P-type transistor 331, the P-type transistor 331 does not contribute to signal amplification and functions only as a direct current source. Thereby, oscillation etc. can be suppressed and the low noise amplifier 301 can be operated stably.
  • a channel width ratio between the P-type transistor 320 and the P-type transistor 331 is, for example, 1: a.
  • a is a value that satisfies the following expression. 0 ⁇ a ⁇ 1 Equation 7
  • the drain current I D2 (that is, the auxiliary current) of the P-type transistor 320 is expressed by the following equation, for example.
  • the unit of the drain current ID2 is, for example, ampere (A).
  • I D2 I D ⁇ ⁇ 1 / (1 + a) ⁇
  • Expression 8 In the above formula, ID is the drain current of the N-type transistor 310, and the unit is, for example, ampere (A).
  • transconductance g m2 and the output resistance r o2 of the P-type transistor 320 are expressed by the following equations, for example.
  • the unit of transconductance g m2 is, for example, Siemens (S).
  • the unit of the output resistance r o2 is, for example, ohm ( ⁇ ).
  • g m2 ⁇ (K p ⁇ ID ) / (1 + a) ⁇ 1/2 Equation 9
  • K p ⁇ p ⁇ C ox ⁇ (W / L) Equation 10
  • ⁇ p is the carrier mobility in the P-type transistor 320, and the unit is, for example, square meter per volt per second (m 2 / V ⁇ s).
  • C ox is a gate capacitance according to the gate oxide film thickness, and its unit is, for example, farad (F).
  • W is the gate width and L is the gate length. The unit of W and L is, for example, meters (m).
  • gamma is a channel length modulation coefficient.
  • Equation 8 it seems that the current of the P-type transistor 320 is shunted to the auxiliary current source 330, but the gain of the P-type transistor 320 seems to decrease, but this is not the case.
  • the transconductance g m2 of the P-type transistor 320 is inversely proportional to the square root of the shunt ratio (1 + a), and as illustrated in Equation 11, the output resistance r o2 is proportional to the shunt ratio (1 + a). . Therefore, the gain, which is the product of these, increases in proportion to the square root of the diversion ratio (1 + a) as shown in the following equation. Therefore, even if the auxiliary current source 330 is connected, the gain of the low noise amplifier 300 is not reduced.
  • NF SNR in / SNR out ⁇ formula 13
  • SNR in is the S / N ratio of the input signal
  • SNR out is the S / N ratio of the output signal.
  • Equation 15 G is a voltage gain. Further, Vn 2 with an overline indicates noise generated by the low noise amplifier 300. Equation 13 can be transformed into the following equation using Equation 14 and Equation 15.
  • the voltage gain G of the low noise amplifier 301 is expressed by the following equation.
  • R in is a resistance on the input side of the impedance matching circuit 372.
  • g m1 is the transconductance of the N-type transistor 310, and the unit is, for example, Siemens (S).
  • R s is the resistance of the signal source of the input signal, and its unit is, for example, ohm ( ⁇ ). These resistance values are assumed to be the same, for example.
  • the channel thermal noise current generated by each of the N-type transistor 310, the P-type transistor 320, and the P-type transistor 331 is represented by the following equation.
  • gamma is a channel thermal noise coefficient.
  • the left side of Expression 19 indicates the channel thermal noise current of the N-type transistor 310
  • the left side of Expression 20 indicates the channel thermal noise current of the P-type transistor 320.
  • the left side of Equation 21 represents the channel thermal noise current of the P-type transistor 331.
  • g m3 is the transconductance of the P-type transistor 331, and the unit is, for example, Siemens (S).
  • the noise generated by the low noise amplifier 301 is expressed by the following expression obtained by multiplying the sum of Expressions 19 to 21 by the output resistance. .
  • Equation 17 Equation 17
  • the transconductance of these elements is determined from the element sizes and current values of the P-type transistor 320, the N-type transistor 310, and the P-type transistor 331 according to the square law of the MOS transistors.
  • the transconductances g m1 , g m2, and g m3 of the P-type transistor 320, the N-type transistor 310, and the P-type transistor 331 are obtained by the following equations.
  • Equation 24 Substituting Equation 24, Equation 25, and Equation 26 into Equation 23 and rearranging results in the following equation.
  • the third term of the numerator represents the noise increment due to the auxiliary current source 330.
  • the degree of contribution to noise is lower than that of the first and second terms of the numerator.
  • the noise figure NF decreases in inverse proportion to the square root of the operating current (I D )
  • the effect of improving the noise figure due to the fact that I D can be increased by the auxiliary current source 330 is better. Usually larger.
  • bias voltage supply unit 380 applies the bias voltage V BIAS to the N-type transistor 310 in the fourth embodiment, a bias voltage may be applied to the P-type transistor 320.
  • both the impedance matching circuit 372 and the low-pass filter 360 are provided, a configuration in which only one of them is provided may be employed.
  • the low-pass filter 360 supplies only the DC bias voltage to the gate terminal of the P-type transistor 331, the P-type transistor 331 functions only as a DC current source. be able to. Further, since the impedance matching circuit 372 performs impedance matching, transmission efficiency can be improved.
  • the drain current ID is increased by the auxiliary current source 330.
  • the capacity between the output terminal 308 and the power supply terminal is increased by the capacity of the auxiliary current source 330. End up.
  • this capacitance increases, the cut-off frequency of the low-pass filter composed of the capacitance and resistance decreases, and the frequency band that passes through the filter becomes narrow. As a result, it becomes difficult to amplify high frequency components. Therefore, it is desirable to insert a cascode transistor element such as an N-type transistor and adjust the capacitance so that the characteristics do not deteriorate.
  • the low noise amplifier 301 in the first modification of the fourth embodiment is different from the fourth embodiment in that a cascode transistor element is further provided.
  • FIG. 13 is a circuit diagram showing a configuration example of the low noise amplifier 301 in the first modification example of the fourth embodiment.
  • the low noise amplifier 301 of the first modification is different from the fourth embodiment in that it further includes an N-type transistor 340.
  • the N-type transistor 340 for example, a MOS transistor is used.
  • the gate of the N-type transistor 340 is connected to the bias voltage supply unit 381, and the drain is connected to the drain of the P-type transistor 320 and the non-inverting input terminal (+) of the operational amplifier 352.
  • the source of the N-type transistor 340 is connected to the drain of the N-type transistor 310 and the drain of the P-type transistor 331.
  • the N-type transistor 340 is an example of a cascode transistor element recited in the claims.
  • the N-type transistor 340 is inserted between the auxiliary current source 330 connected to the power supply terminal and the drain of the P-type transistor 320. Since this drain is connected to the output terminal 308, the capacitance between the power supply terminal and the output terminal 308 is reduced as compared with the case where only the auxiliary current source 330 is used.
  • FIG. 14 is a circuit diagram showing a configuration example of the bias voltage supply unit 381 in the first modification example of the fourth embodiment.
  • the bias voltage supply unit 381 includes reference current sources 382 and 383, N-type transistors 384, 385 and 386, capacitors 387 and 388, and a resistor 389.
  • N-type transistors 384, 385 and 386 for example, MOS transistors are used.
  • the gate and drain of the N-type transistor 384 are connected to the reference current source 382, the gates of the N-type transistors 385 and 340, and the capacitor 387, and the source is connected to the ground terminal.
  • N-type transistor 385 is connected to reference current source 382, N-type transistors 384 and 340, and capacitor 387, the source is connected to the ground terminal, and the drain is connected to reference current source 383, capacitor 388, and resistor 389.
  • the gate of the N-type transistor 386 is connected to the capacitor 388, the resistor 389, and the reference current source 383, the source is connected to the ground terminal, and the drain is connected to the source of the N-type transistor 385.
  • One end of the capacitor 387 is connected to the N-type transistors 384, 385 and 340 and the reference current source 382, and the other end is connected to the ground terminal.
  • One end of the capacitor 388 is connected to the N-type transistors 385 and 386, the reference current source 383, and the resistor 389, and the other end is connected to the ground terminal.
  • One end of the resistor 389 is connected to the N-type transistors 385 and 386, the reference current source 383, and the capacitor 388, and the other end is connected to the N-type transistor 310.
  • the reference current source 382 supplies the reference current I REF1 to the N-type transistor 385 and the like in accordance with a control signal from the digital signal processing unit 241.
  • the reference current source 383 supplies the reference current I REF2 to the N-type transistor 386 and the like in accordance with a control signal from the digital signal processing unit 241.
  • the circuit including the N-type transistors 384 and 385 functions as a current mirror circuit.
  • the digital signal processing unit 241 can set the operating current (I D ) corresponding to the reception level by controlling the reference currents (I REF1 , I REF2 ) with the control signal.
  • the N-type transistor 340 is inserted between the auxiliary current source 330 and the drain of the P-type transistor 320, the power supply terminal and the output terminal Increase in capacity between the two can be suppressed. As a result, the frequency band passing through the filter composed of the capacitance and the resistance is widened, and the low noise amplifier 301 can easily amplify the high frequency component.
  • the auxiliary current source 330 always supplies an auxiliary current after the power is turned on. However, when the P-type transistor 320 is in the off state, amplification by the P-type transistor 320 is performed. Therefore, it is not necessary to supply an auxiliary current. For this reason, from the viewpoint of saving current consumption, it is desirable to supply the auxiliary current only when the gate of the P-type transistor 320 is at the low level (that is, the P-type transistor 320 is in the ON state).
  • the low noise amplifier 301 in the second modification of the fourth embodiment is different from the fourth embodiment in that an auxiliary current is supplied when the gate of the P-type transistor 320 is at a low level.
  • FIG. 15 is a circuit diagram showing a configuration example of the low noise amplifier 301 in the second modification example of the fourth embodiment.
  • the low noise amplifier 301 of the second modified example is different from the fourth embodiment in that it further includes a comparator 390.
  • the inverting input terminal ( ⁇ ) of the comparator 390 is connected to the output terminal of the operational amplifier 352 and the resistor 351, a predetermined reference voltage V REF2 is applied to the non-inverting input terminal (+), and the output terminal is connected to the resistor 362. Connected.
  • the reference voltage V REF2 is set to a low level, for example, near 0 volts (V).
  • one end of the resistor 362 of the second modified example is not connected to either the resistor 351 or the operational amplifier 352 but is connected only to the comparator 390.
  • the characteristics (threshold voltage, etc.) of the transistor in the operational amplifier 352 may change due to variations in process, voltage, temperature, and the like, and the output terminal may become high level. In this case, the potential of the gate of the P-type transistor 320 connected to the output terminal becomes a high level, and the P-type transistor 320 is turned off.
  • the comparator 390 compares the voltage at the output terminal of the operational amplifier 352 (that is, the gate of the P-type transistor 320) with the reference voltage V REF2 and supplies the comparison result to the auxiliary current source 330. Then, the auxiliary current source 330 supplies an auxiliary current based on the comparison result. For example, when the gate of the P-type transistor 320 is at a high level higher than the reference voltage V REF2 , the comparator 390 outputs a high level to the auxiliary current source 330, and the auxiliary current source 330 stops supplying the auxiliary current.
  • the comparator 390 outputs the low level to the auxiliary current source 330, and the auxiliary current source 330 supplies the auxiliary current.
  • the N-type transistor 340 is added to the low noise amplifier 301 of the fourth embodiment, and in the second modification example, only the comparator 390 is added. You may add to the low noise amplifier 301 of 4th Embodiment.
  • the auxiliary current source 330 supplies the auxiliary current when the gate of the P-type transistor 320 is at the low level.
  • the auxiliary current can be supplied only when the transistor 320 is on. As a result, no auxiliary current is supplied when the P-type transistor 320 is in the OFF state, so that current consumption can be reduced.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures. (1) a P-type transistor and an N-type transistor connected in series; An operational amplifier, An output terminal of the operational amplifier is connected to one gate of the P-type transistor and the N-type transistor, and one of the inverting input terminal and the non-inverting input terminal of the operational amplifier is both the P-type transistor and the N-type transistor. And a predetermined reference voltage is applied to the other of the inverting input terminal and the non-inverting input terminal.
  • a bias voltage supply unit that supplies a predetermined bias voltage to one of the gates of the P-type transistor and the N-type transistor;
  • the amplifier according to (1) further comprising a capacitor inserted between the gate of the P-type transistor and the gate of the N-type transistor.
  • the amplifier according to (1) or (2) further including a current source connected to the drain.
  • the amplifier according to (3) further including a cascode transistor element inserted between the drain and the current source.
  • (5) further comprising a comparator for comparing the potential of the gate with a predetermined potential and supplying the comparison result;
  • the amplifier according to (3) or (4), wherein the current source supplies the predetermined current based on a comparison result of the comparator.
  • the current source comprises a transistor;
  • the amplifier according to any one of (3) to (5), wherein the low-pass filter supplies a DC bias voltage to a gate terminal of the transistor.
  • the predetermined reference voltage is a value equal to or higher than a saturation drain voltage of one of the P-type transistor and the N-type transistor.
  • An amplifier, An electronic circuit comprising: a signal processing unit that processes a signal output from the drain.
  • (10) a bias voltage supply unit that supplies a bias voltage having a value indicated by a control signal to one of the gates of the P-type transistor and the N-type transistor;
  • (11) The electronic circuit according to (10), wherein the signal processing unit processes the signal output from the drain and generates the control signal based on the level of the signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

To reduce the lowest operation voltage in an amplifier wherein a transistor is used. An amplifier (300) is provided with a P-type transistor (320) and an N-type transistor (310), which are connected in series, and an operation amplifier (352). The output terminal of the operation amplifier (352) is connected to the gate of the P-type transistor (320) or the N-type transistor (310). One of the inverting input terminal and the non-inverting input terminal of the operation amplifier (352) is connected to both the drains of the P-type transistor (320) and the N-type transistor (310). Furthermore, a predetermined reference voltage (VREF) is applied to the other one of the inverting input terminal and the non-inverting input terminal.

Description

増幅器および電子回路Amplifiers and electronic circuits
 本技術は、増幅器および電子回路に関する。詳しくは、トランジスタにより信号を増幅する増幅器および電子回路に関する。 This technology relates to amplifiers and electronic circuits. Specifically, the present invention relates to an amplifier and an electronic circuit that amplify a signal using a transistor.
 従来より、無線信号の受信機などにおいて、微弱な信号を増幅するために増幅器が用いられている。この増幅器は、一般に受信機の初段に配置され、その利得や雑音指数が無線信号の受信感度に大きく影響する。ここで、雑音指数は、増幅器への入力信号のS/N(Signal to Noise)比と、増幅器からの出力信号のS/N比との比率である。通常、増幅器の利得が大きいほど受信感度が高くなり、また、雑音指数が小さいほど受信感度が高くなる。これらの利得等の特性を向上させるために、例えば、信号を増幅するP型トランジスタおよびN型トランジスタを電源に直列に接続した増幅器が提案されている(例えば、特許文献1参照。)。 Conventionally, an amplifier is used to amplify a weak signal in a radio signal receiver or the like. This amplifier is generally arranged at the first stage of the receiver, and its gain and noise figure greatly affect the reception sensitivity of the radio signal. Here, the noise figure is the ratio between the S / N (Signal to Noise) ratio of the input signal to the amplifier and the S / N ratio of the output signal from the amplifier. Usually, the larger the gain of the amplifier, the higher the receiving sensitivity, and the smaller the noise figure, the higher the receiving sensitivity. In order to improve these characteristics such as gain, for example, an amplifier in which a P-type transistor and an N-type transistor for amplifying a signal are connected in series to a power supply has been proposed (see, for example, Patent Document 1).
特開2006-60606号公報Japanese Patent Laid-Open No. 2006-60606
 上述の増幅器では、2つのトランジスタを設けたため、トランジスタが1つのみの増幅器と比較して利得や雑音指数などの特性を向上させることができるが、代わりに最低動作電圧が高くなり、その分、消費電力が大きくなりうるという問題がある。この増幅器では、トランジスタの飽和ドレイン電圧をVsatとし、閾値電圧をVTとすると、最低動作電圧が2VSAT+Vとなり、2Vsatなどの低電圧下では、その電圧よりV分、最低動作電圧が高いために動作させることができなくなってしまう。 In the above-described amplifier, since two transistors are provided, characteristics such as gain and noise figure can be improved as compared with an amplifier having only one transistor, but instead, the minimum operating voltage is increased, and accordingly, There is a problem that power consumption can increase. In this amplifier, when the saturation drain voltage of the transistor is V sat and the threshold voltage is V T , the minimum operating voltage is 2V SAT + V T , and under a low voltage such as 2V sat , the minimum operation is V T by that voltage. It becomes impossible to operate because the voltage is high.
 本技術はこのような状況に鑑みて生み出されたものであり、トランジスタを用いる増幅器において最低動作電圧を低下させることを目的とする。 This technology has been created in view of such a situation, and aims to reduce the minimum operating voltage in an amplifier using a transistor.
[規則91に基づく訂正 14.03.2016] 
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、直列に接続されたP型トランジスタおよびN型トランジスタと、演算増幅器とを具備し、前記演算増幅器の出力端子が前記P型トランジスタおよび前記N型トランジスタの一方のゲートに接続され、前記演算増幅器の反転入力端子および非反転入力端子の一方が前記P型トランジスタおよび前記N型トランジスタの両方のドレインに接続され、前記反転入力端子および前記非反転入力端子の他方に所定の参照電圧が印加される増幅器である。これにより、演算増幅器の反転入力端子および非反転入力端子の一方と、出力端子とが接続されて、反転入力端子と非反転入力端子との間が仮想短絡されるという作用をもたらす。
[Correction based on Rule 91 14.03.2016]
The present technology has been made to solve the above-mentioned problems, and a first aspect thereof includes a P-type transistor and an N-type transistor connected in series, and an operational amplifier, and the operational amplifier Is connected to one gate of the P-type transistor and the N-type transistor, and one of the inverting input terminal and the non-inverting input terminal of the operational amplifier is connected to the drains of both the P-type transistor and the N-type transistor. The amplifier is connected and a predetermined reference voltage is applied to the other of the inverting input terminal and the non-inverting input terminal. As a result, one of the inverting input terminal and the non-inverting input terminal of the operational amplifier and the output terminal are connected, and the inverting input terminal and the non-inverting input terminal are virtually short-circuited.
 また、この第1の側面において、前記P型トランジスタおよび前記N型トランジスタの一方の前記ゲートに所定のバイアス電圧を供給するバイアス電圧供給部と、前記P型トランジスタの前記ゲートと前記N型トランジスタの前記ゲートとの間に挿入されたコンデンサとをさらに具備してもよい。これにより、P型トランジスタおよびN型トランジスタの一方のゲートに独立のバイアス電圧が印加されるという作用をもたらす。 Further, in the first aspect, a bias voltage supply unit that supplies a predetermined bias voltage to one of the gates of the P-type transistor and the N-type transistor, the gate of the P-type transistor, and the N-type transistor A capacitor inserted between the gate and the gate may further be provided. This brings about the effect that an independent bias voltage is applied to one gate of the P-type transistor and the N-type transistor.
 また、この第1の側面において、前記ドレインに接続された電流源をさらに具備してもよい。これにより、電流源から電流が供給されるという作用をもたらす。 Further, in the first aspect, a current source connected to the drain may be further provided. This brings about the effect | action that an electric current is supplied from a current source.
 また、この第1の側面において、前記ドレインと前記電流源との間に挿入されカスコードトランジスタ素子をさらに具備してもよい。これにより、ドレインの寄生容量が減少するという作用をもたらす。 In the first aspect, a cascode transistor element may be further inserted between the drain and the current source. As a result, the parasitic capacitance of the drain is reduced.
 また、この第1の側面において、上記ゲートの電位と所定電位とを比較して当該比較結果を供給するコンパレータをさらに具備し、上記電流源は、上記コンパレータの比較結果に基づいて上記所定の電流を供給してもよい。これにより、コンパレータの比較結果に基づいて電流が供給されるという作用をもたらす。 The first aspect further includes a comparator that compares the potential of the gate with a predetermined potential and supplies the comparison result, and the current source is configured to output the predetermined current based on the comparison result of the comparator. May be supplied. This brings about the effect | action that an electric current is supplied based on the comparison result of a comparator.
 また、この第1の側面において、ローパスフィルタをさらに具備し、上記電流源は、トランジスタを備え、上記ローパスフィルタは、上記トランジスタのゲート端子に直流バイアス電圧を供給してもよい。これにより、直流バイアス電圧のみがトランジスタのゲート端子に供給され、トランジスタが直流電流源としてのみ機能するという作用をもたらす。 Further, in the first aspect, a low-pass filter may be further provided, the current source may include a transistor, and the low-pass filter may supply a DC bias voltage to the gate terminal of the transistor. As a result, only the DC bias voltage is supplied to the gate terminal of the transistor, and the transistor functions only as a DC current source.
 また、この第1の側面において、前記増幅器に接続された伝送路の両端の回路のそれぞれのインピーダンスを整合するインピーダンス整合回路をさらに具備してもよい。これにより、伝送路の両端の回路のそれぞれのインピーダンスが整合するという作用をもたらす。 Further, in the first aspect, an impedance matching circuit that matches impedances of circuits at both ends of the transmission line connected to the amplifier may be further provided. This brings about the effect that the impedances of the circuits at both ends of the transmission line are matched.
 また、この第1の側面において、前記所定の参照電圧は、前記P型トランジスタおよび前記N型トランジスタの一方の飽和ドレイン電圧以上の値である。これにより前記P型トランジスタおよび前記N型トランジスタが飽和領域で動作するという作用をもたらす。 In this first aspect, the predetermined reference voltage is a value equal to or higher than one saturated drain voltage of the P-type transistor and the N-type transistor. This brings about the effect that the P-type transistor and the N-type transistor operate in a saturation region.
[規則91に基づく訂正 14.03.2016] 
 また、本技術の第2の側面は、直列に接続されたP型トランジスタおよびN型トランジスタと、演算増幅器とを具備し、前記演算増幅器の出力端子が前記P型トランジスタおよび前記N型トランジスタの一方のゲートに接続され、前記演算増幅器の反転入力端子および非反転入力端子の一方が前記P型トランジスタおよび前記N型トランジスタの両方のドレインに接続され、前記反転入力端子および前記非反転入力端子の他方に所定の参照電圧が印加される増幅器と、前記ドレインから出力された信号を処理する信号処理部とを具備する電子回路である。これにより、演算増幅器の反転入力端子および非反転入力端子の一方と、出力端子とが接続されて、反転入力端子と非反転入力端子との間が仮想短絡されるという作用をもたらす。
[Correction based on Rule 91 14.03.2016]
A second aspect of the present technology includes a P-type transistor and an N-type transistor connected in series, and an operational amplifier, and an output terminal of the operational amplifier is one of the P-type transistor and the N-type transistor. One of the inverting input terminal and the non-inverting input terminal of the operational amplifier is connected to the drains of both the P-type transistor and the N-type transistor, and the other of the inverting input terminal and the non-inverting input terminal. An electronic circuit comprising an amplifier to which a predetermined reference voltage is applied and a signal processing unit that processes a signal output from the drain. As a result, one of the inverting input terminal and the non-inverting input terminal of the operational amplifier and the output terminal are connected, and the inverting input terminal and the non-inverting input terminal are virtually short-circuited.
 また、この第2の側面において、前記P型トランジスタおよび前記N型トランジスタの一方の前記ゲートに制御信号の示す値のバイアス電圧を供給するバイアス電圧供給部と、前記P型トランジスタの前記ゲートと前記N型トランジスタの前記ゲートとの間に挿入されたコンデンサとをさらに具備してもよい。P型トランジスタおよびN型トランジスタの一方のゲートに独立のバイアス電圧が印加されるという作用をもたらす。 Further, in the second aspect, a bias voltage supply unit that supplies a bias voltage having a value indicated by a control signal to one of the gates of the P-type transistor and the N-type transistor, the gate of the P-type transistor, A capacitor inserted between the gate of the N-type transistor may be further included. This brings about an effect that an independent bias voltage is applied to one gate of the P-type transistor and the N-type transistor.
 また、この第2の側面において、前記信号処理部は、前記ドレインから出力された信号を処理するとともに前記信号のレベルに基づいて前記制御信号を生成してもよい。これにより、信号のレベルに基づいて制御信号が生成されるという作用をもたらす。 In the second aspect, the signal processing unit may process the signal output from the drain and generate the control signal based on the level of the signal. As a result, the control signal is generated based on the level of the signal.
 本技術によれば、トランジスタを用いる増幅器において最低動作電圧を低下させることができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, an excellent effect that the minimum operating voltage can be lowered in an amplifier using a transistor can be obtained. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
第1の実施の形態における無線受信機の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the radio | wireless receiver in 1st Embodiment. 第1の実施の形態における低雑音増幅器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low noise amplifier in 1st Embodiment. 第1の実施の形態の変形例における低雑音増幅器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low noise amplifier in the modification of 1st Embodiment. 第2の実施の形態における無線受信機の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the radio | wireless receiver in 2nd Embodiment. 第2の実施の形態における低雑音増幅器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low noise amplifier in 2nd Embodiment. 第2の実施の形態における制御値ごとのドレイン電流の一例を示すグラフである。It is a graph which shows an example of the drain current for every control value in a 2nd embodiment. 第2の実施の形態における無線受信機の動作の一例を示すフローチャートである。7 is a flowchart illustrating an example of an operation of a wireless receiver according to the second embodiment. 第2の実施の形態の変形例における無線受信機の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the radio receiver in the modification of 2nd Embodiment. 第3の実施の形態における低雑音増幅器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low noise amplifier in 3rd Embodiment. 第3の実施の形態における制御値ごとのドレイン電流の一例を示すグラフである。It is a graph which shows an example of the drain current for every control value in a 3rd embodiment. 第3の実施の形態の変形例における低雑音増幅器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low noise amplifier in the modification of 3rd Embodiment. 第4の実施の形態における低雑音増幅器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low noise amplifier in 4th Embodiment. 第4の実施の形態の第1の変形例における低雑音増幅器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low noise amplifier in the 1st modification of 4th Embodiment. 第4の実施の形態の第1の変形例におけるバイアス電圧供給部の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the bias voltage supply part in the 1st modification of 4th Embodiment. 第4の実施の形態の第2の変形例における低雑音増幅器の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low noise amplifier in the 2nd modification of 4th Embodiment.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(演算増幅器の端子間を仮想短絡した例)
 2.第2の実施の形態(演算増幅器の端子間を仮想短絡し、バイアス電圧を制御する例)
 3.第3の実施の形態(補助電流を供給し、演算増幅器の端子間を仮想短絡する例)
 4.第4の実施の形態(ローパスフィルタ等を設け、演算増幅器の端子間を仮想短絡する例)
Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. First embodiment (example in which terminals of operational amplifier are virtually short-circuited)
2. Second Embodiment (Example of Controlling Bias Voltage by Virtual Shorting Between Operational Amplifier Terminals)
3. Third Embodiment (Example in which auxiliary current is supplied and terminals of operational amplifiers are virtually shorted)
4). Fourth embodiment (example in which a low-pass filter or the like is provided to virtually short-circuit between operational amplifier terminals)
 <1.第1の実施の形態>
 [無線受信機の構成例]
 図1は、第1の実施の形態における無線受信機200の一構成例を示すブロック図である。この無線受信機200は、RF(Radio Frequency)信号を受信するものであり、低雑音増幅器300、周波数ダウンコンバータ210および低域通過フィルタ220を備える。また、無線受信機200は、AD(Analog to Digital)コンバータ230およびデジタル信号処理部240を備える。また、無線受信機200には、アンテナ100が接続されている。なお、無線受信機200内の回路は、特許請求の範囲に記載の電子回路の一例である。
<1. First Embodiment>
[Configuration example of wireless receiver]
FIG. 1 is a block diagram illustrating a configuration example of a wireless receiver 200 according to the first embodiment. The radio receiver 200 receives an RF (Radio Frequency) signal, and includes a low noise amplifier 300, a frequency down converter 210, and a low pass filter 220. The radio receiver 200 includes an AD (Analog to Digital) converter 230 and a digital signal processing unit 240. An antenna 100 is connected to the wireless receiver 200. The circuit in the wireless receiver 200 is an example of an electronic circuit described in the claims.
 アンテナ100は、電波をRF信号に変換し、信号線109を介して低雑音増幅器300に供給するものである。低雑音増幅器300は、RF信号を増幅して周波数ダウンコンバータ210に信号線309を介して供給するものである。なお、低雑音増幅器300は、特許請求の範囲に記載の増幅器の一例である。 The antenna 100 converts radio waves into RF signals and supplies them to the low noise amplifier 300 via the signal line 109. The low noise amplifier 300 amplifies the RF signal and supplies it to the frequency down converter 210 via the signal line 309. The low noise amplifier 300 is an example of an amplifier described in the claims.
 周波数ダウンコンバータ210は、RF信号を、そのRF信号より周波数の低い信号(ベースバンド信号など)に変換するものである。この周波数ダウンコンバータ210は、変換後のベースバンド信号をADコンバータ230に信号線219を介して供給する。 The frequency down converter 210 converts the RF signal into a signal (baseband signal or the like) having a frequency lower than that of the RF signal. The frequency down converter 210 supplies the converted baseband signal to the AD converter 230 via the signal line 219.
 ADコンバータ230は、アナログのベースバンド信号をデジタル信号に変換してデジタル信号処理部240に信号線239を介して供給するものである。 The AD converter 230 converts an analog baseband signal into a digital signal and supplies it to the digital signal processing unit 240 via a signal line 239.
 デジタル信号処理部240は、デジタル信号に対して、復調処理などの所定の信号処理を実行するものである。このデジタル信号処理部240は、処理後の復調信号を外部の装置に出力する。なお、デジタル信号処理部は、特許請求の範囲に記載の信号処理部の一例である。 The digital signal processing unit 240 performs predetermined signal processing such as demodulation processing on the digital signal. The digital signal processing unit 240 outputs the processed demodulated signal to an external device. The digital signal processing unit is an example of a signal processing unit described in the claims.
 なお、低雑音増幅器300を無線受信機200に設けているが、この低雑音増幅器300を無線受信機200以外の機器(無線送信機や音響機器など)に設けてもよい。 In addition, although the low noise amplifier 300 is provided in the wireless receiver 200, the low noise amplifier 300 may be provided in a device (such as a wireless transmitter or an acoustic device) other than the wireless receiver 200.
 [低雑音増幅器の構成例]
 図2は、第1の実施の形態における低雑音増幅器300の一構成例を示す回路図である。この低雑音増幅器300は、入力端子307、出力端子308、同相帰還回路350、コンデンサ371、コンデンサ373、バイアス電圧供給部380、P型トランジスタ320およびN型トランジスタ310を備える。同相帰還回路350は、抵抗351および演算増幅器352を備える。P型トランジスタ320およびN型トランジスタ310として、例えば、MOSトランジスタが用いられる。
[Configuration example of low noise amplifier]
FIG. 2 is a circuit diagram illustrating a configuration example of the low noise amplifier 300 according to the first embodiment. The low noise amplifier 300 includes an input terminal 307, an output terminal 308, an in-phase feedback circuit 350, a capacitor 371, a capacitor 373, a bias voltage supply unit 380, a P-type transistor 320, and an N-type transistor 310. The common-mode feedback circuit 350 includes a resistor 351 and an operational amplifier 352. As the P-type transistor 320 and the N-type transistor 310, for example, MOS transistors are used.
 入力端子307は、アンテナ100に接続される。コンデンサ371の一端は、入力端子307に接続され、他端は、コンデンサ373とP型トランジスタ320のゲートと抵抗351とに接続される。コンデンサ373は、P型トランジスタ320のゲートとN型トランジスタ310のゲートとの間に挿入される。P型トランジスタ320およびN型トランジスタ310は、電源端子に直列に接続される。 The input terminal 307 is connected to the antenna 100. One end of the capacitor 371 is connected to the input terminal 307, and the other end is connected to the capacitor 373, the gate of the P-type transistor 320, and the resistor 351. Capacitor 373 is inserted between the gate of P-type transistor 320 and the gate of N-type transistor 310. P-type transistor 320 and N-type transistor 310 are connected in series to the power supply terminal.
 また、P型トランジスタ320およびN型トランジスタ310の両方のドレインは、出力端子308と演算増幅器352の非反転入力端子(+)とに接続される。この演算増幅器352の反転入力端子(-)には、所定の参照電圧VREFが印加され、演算増幅器352の出力端子は、抵抗351を介してP型トランジスタ320のゲートに接続される。出力端子308は、周波数ダウンコンバータ210に接続される。 The drains of both the P-type transistor 320 and the N-type transistor 310 are connected to the output terminal 308 and the non-inverting input terminal (+) of the operational amplifier 352. A predetermined reference voltage V REF is applied to the inverting input terminal (−) of the operational amplifier 352, and the output terminal of the operational amplifier 352 is connected to the gate of the P-type transistor 320 via the resistor 351. The output terminal 308 is connected to the frequency down converter 210.
 ここで、参照電圧VREFは、例えば、P型トランジスタ320またはN型トランジスタ310の飽和ドレイン電圧VSAT以上の値に設定される。なお、P型トランジスタ320およびN型トランジスタ310のそれぞれの飽和ドレイン電圧は同一であるものとする。 Here, the reference voltage V REF is set to a value equal to or higher than the saturation drain voltage V SAT of the P-type transistor 320 or the N-type transistor 310, for example. Note that the saturation drain voltages of the P-type transistor 320 and the N-type transistor 310 are the same.
 バイアス電圧供給部380は、一定のバイアス電圧VBIASをN型トランジスタ310のゲートに供給するものである。このバイアス電圧VBIASは、次の式を満たす値に設定される。ここで、バイアス電圧VBIASの単位は、例えば、ボルト(V)である。以下、バイアス電圧VBIAS以外の電圧の単位についても同様である。
  V<VBIAS<VSAT+V                ・・・式1
上式において、Vは、N型トランジスタ310の閾値電圧である。なお、P型トランジスタ320およびN型トランジスタ310のそれぞれの閾値電圧は同一であるものとする。
The bias voltage supply unit 380 supplies a constant bias voltage V BIAS to the gate of the N-type transistor 310. The bias voltage V BIAS is set to a value that satisfies the following expression. Here, the unit of the bias voltage V BIAS is, for example, volts (V). The same applies to voltage units other than the bias voltage V BIAS .
V T <V BIAS <V SAT + V T Equation 1
In the above equation, V T is the threshold voltage of the N-type transistor 310. Note that the threshold voltages of the P-type transistor 320 and the N-type transistor 310 are the same.
 上述の構成において、コンデンサ371によりRF信号の直流成分がカットされて、交流の信号成分がP型トランジスタ320等に入力される。この信号成分は微弱であり、P型トランジスタ320のゲートの電位は、ローレベルであるものとする。この場合、P型トランジスタ320はオン状態に移行して飽和領域で動作する。一方、N型トランジスタ310も、バイアス電圧VBIASの印加により、オン状態に移行する。これらのP型トランジスタ320およびN型トランジスタ310により、信号成分が増幅される。 In the above-described configuration, the DC component of the RF signal is cut by the capacitor 371, and the AC signal component is input to the P-type transistor 320 and the like. It is assumed that this signal component is weak and the gate potential of the P-type transistor 320 is at a low level. In this case, the P-type transistor 320 is turned on and operates in the saturation region. On the other hand, the N-type transistor 310 is also turned on by applying the bias voltage V BIAS . These P-type transistor 320 and N-type transistor 310 amplify the signal component.
 ここで、N型トランジスタ310およびP型トランジスタ320をオン状態で動作させるには、電源端子の電源電圧VDDは、次の式を満たす必要がある。
  VDD-VOUT≧VSAT                  ・・・式2
上式において、VOUTは、P型トランジスタ320およびN型トランジスタ310のドレインからの出力電圧である。
Here, in order to operate the N-type transistor 310 and the P-type transistor 320 in the ON state, the power supply voltage V DD at the power supply terminal needs to satisfy the following expression.
V DD -V OUT ≥V SAT ... Formula 2
In the above equation, V OUT is an output voltage from the drains of the P-type transistor 320 and the N-type transistor 310.
 また、P型トランジスタ320がオン状態の際には演算増幅器352の出力端子がP型トランジスタ320を介して非反転入力端子(+)に接続され、非反転入力端子(+)と反転入力端子(-)との間が仮想短絡される。これにより、非反転入力端子(+)の電圧と反転入力端子(-)の電圧とが同一となり、次の式が成立する。
  VOUT=VREF                     ・・・式3
When the P-type transistor 320 is on, the output terminal of the operational amplifier 352 is connected to the non-inverting input terminal (+) via the P-type transistor 320, and the non-inverting input terminal (+) and the inverting input terminal ( -) Is virtually shorted. As a result, the voltage at the non-inverting input terminal (+) and the voltage at the inverting input terminal (−) become the same, and the following equation is established.
V OUT = V REF・ ・ ・ Equation 3
 上式の参照電圧VREFに飽和ドレイン電圧VSATを設定した場合、上式は、次の式に置き換えることができる。
  VOUT=VSAT                     ・・・式4
When the saturation drain voltage V SAT is set to the reference voltage V REF in the above equation, the above equation can be replaced with the following equation.
V OUT = V SAT・ ・ ・ Formula 4
 式4を式2に代入すると、次の式が得られる。
  VDD≧2VSAT                    ・・・式5
上式より、低雑音増幅器300の最低動作電圧は、2VSATである。
Substituting Equation 4 into Equation 2 yields:
V DD ≧ 2V SAT・ ・ ・ Formula 5
From the above equation, the minimum operating voltage of the low noise amplifier 300 is 2V SAT .
 ここで、仮に特許文献1に記載のように同相帰還回路350を設けない構成とした場合、電源電圧VDDは、次の式を満たす必要がある。
  VDD≧2VSAT+VT                 ・・・式6
Here, if a configuration in which the common-mode feedback circuit 350 is not provided as described in Patent Document 1, the power supply voltage V DD needs to satisfy the following equation.
V DD ≧ 2V SAT + V T Equation 6
 上式より、同相帰還回路350を設けない場合の最低動作電圧は、2VSAT+Vとなる。例えば、飽和ドレイン電圧VSATが0.2ボルト(V)、閾値電圧Vが0.4Vである場合には、最低動作電圧は、0.8ボルト(V)になる。これに対して、同相帰還回路350を設けた低雑音増幅器300では、式5より、最低動作電圧は、2VSAT(=0.4V)であり、同相帰還回路350を設けない場合の0.8ボルト(V)と比較して非常に低くなる。実際の回路では、理論上の最低動作電圧(2VSAT)に、マージンを加えた値が電源電圧VDDとして用いられるが、マージンを考慮しても0.6ボルト(V)や0.7ボルト(V)などの非常に低い電圧下において低雑音増幅器300を余裕をもって動作させることができる。 From the above equation, the minimum operating voltage when the common-mode feedback circuit 350 is not provided is 2V SAT + V T. For example, the saturation drain voltage V SAT of 0.2 volts (V), when the threshold voltage V T is 0.4V, the minimum operating voltage of 0.8 volts (V). On the other hand, in the low-noise amplifier 300 provided with the common-mode feedback circuit 350, the minimum operating voltage is 2V SAT (= 0.4V) from Equation 5, and 0.8 when the common-mode feedback circuit 350 is not provided. It is very low compared to the bolt (V). In an actual circuit, a value obtained by adding a margin to the theoretical minimum operating voltage (2V SAT ) is used as the power supply voltage V DD , but 0.6 volt (V) or 0.7 volt is considered even if the margin is taken into consideration. The low noise amplifier 300 can be operated with a margin under a very low voltage such as (V).
 なお、直流成分をカットするためのコンデンサ371を低雑音増幅器300の内部に設ける構成としているが、コンデンサ371を低雑音増幅器300の外部に設けてもよい。この場合、例えば、低雑音増幅器300とアンテナ100との間にコンデンサ371が挿入される。 Although the capacitor 371 for cutting the DC component is provided inside the low noise amplifier 300, the capacitor 371 may be provided outside the low noise amplifier 300. In this case, for example, a capacitor 371 is inserted between the low noise amplifier 300 and the antenna 100.
 また、バイアス電圧供給部380を低雑音増幅器300の内部に設ける構成としているが、バイアス電圧供給部380を低雑音増幅器300の外部に設けてもよい。また、バイアス電圧VBIASをN型トランジスタ310のゲートに印加する構成としているが、印加しない構成としてもよい。この場合、バイアス電圧VBIASをN型トランジスタ310にのみ印加するためのコンデンサ373とバイアス電圧供給部380とが不要となる。ただし、この構成では、P型トランジスタ320およびN型トランジスタ310がインバータとして動作し、反転する電圧の付近でしか、増幅器として機能しなくなる。このため、コンデンサ373およびバイアス電圧供給部380を設けることが望ましい。 Further, although the bias voltage supply unit 380 is provided inside the low noise amplifier 300, the bias voltage supply unit 380 may be provided outside the low noise amplifier 300. Further, although the bias voltage V BIAS is applied to the gate of the N-type transistor 310, it may be configured not to apply it. In this case, the capacitor 373 and the bias voltage supply unit 380 for applying the bias voltage V BIAS only to the N-type transistor 310 become unnecessary. However, in this configuration, the P-type transistor 320 and the N-type transistor 310 operate as inverters and function only as amplifiers near the voltage to be inverted. Therefore, it is desirable to provide the capacitor 373 and the bias voltage supply unit 380.
 このように、本技術の第1の実施の形態によれば、演算増幅器352の非反転入力端子に参照電圧を印加し、反転入力端子と出力端子とをP型トランジスタ320を介して接続したため、非反転入力端子と反転入力端子との間を仮想短絡させることができる。これにより、P型トランジスタ320およびN型トランジスタ310のドレインの出力電圧VOUTが参照電圧VREF(=VSAT)と同一になり、その結果、最低動作電圧を2VSATに低下させることができる。 Thus, according to the first embodiment of the present technology, the reference voltage is applied to the non-inverting input terminal of the operational amplifier 352, and the inverting input terminal and the output terminal are connected via the P-type transistor 320. A virtual short circuit can be made between the non-inverting input terminal and the inverting input terminal. Thereby, the output voltage V OUT of the drains of the P-type transistor 320 and the N-type transistor 310 becomes the same as the reference voltage V REF (= V SAT ), and as a result, the minimum operating voltage can be lowered to 2V SAT .
 [変形例]
 上述の第1の実施の形態では、バイアス電圧供給部380がN型トランジスタ310にバイアス電圧VBIASを印加し、P型トランジスタ320にローレベルの微弱な交流信号を入力して増幅していた。この構成では、ハイレベルの交流信号については、P型トランジスタ320がオフ状態となるため、増幅することができない。しかし、バイアス電圧供給部380がP型トランジスタ320にバイアス電圧を印加し、N型トランジスタ310に交流信号を入力する構成とすれば、そのN型トランジスタ310の閾値電圧Vより高いハイレベルの交流信号を増幅することができる。第1の実施の形態の変形例の低雑音増幅器300は、P型トランジスタ320にバイアス電圧を印加し、N型トランジスタ310に交流信号を入力する点において第1の実施の形態と異なる。
[Modification]
In the first embodiment described above, the bias voltage supply unit 380 applies the bias voltage V BIAS to the N-type transistor 310 and inputs a low level weak AC signal to the P-type transistor 320 for amplification. In this configuration, the high-level AC signal cannot be amplified because the P-type transistor 320 is turned off. However, if the bias voltage supply unit 380 is configured to apply a bias voltage to the P-type transistor 320 and input an AC signal to the N-type transistor 310, the high-level AC that is higher than the threshold voltage V T of the N-type transistor 310. The signal can be amplified. The low noise amplifier 300 according to the modification of the first embodiment is different from the first embodiment in that a bias voltage is applied to the P-type transistor 320 and an AC signal is input to the N-type transistor 310.
 図3は、第1の実施の形態の変形例における低雑音増幅器300の一構成例を示す回路図である。この変形例のバイアス電圧供給部380は、N型トランジスタ310の代わりに、P型トランジスタ320のゲートにバイアス電圧VBIAS’を印加する。このバイアス電圧VBIAS’には、0ボルト(V)前後などのローレベルが設定される。また、変形例の抵抗351の一端は、N型トランジスタ310のゲートに接続され、コンデンサ371の一端は、コンデンサ373とN型トランジスタ310のゲートと抵抗351とに接続される。また、変形例のN型トランジスタ310のゲートには、閾値電圧Vより高いハイレベルの交流信号が入力されるものとする。 FIG. 3 is a circuit diagram showing a configuration example of the low noise amplifier 300 according to a modification of the first embodiment. The bias voltage supply unit 380 of this modification applies a bias voltage V BIAS ′ to the gate of the P-type transistor 320 instead of the N-type transistor 310. The bias voltage V BIAS ′ is set to a low level such as around 0 volts (V). In addition, one end of the resistor 351 of the modification is connected to the gate of the N-type transistor 310, and one end of the capacitor 371 is connected to the capacitor 373, the gate of the N-type transistor 310, and the resistor 351. In addition, a high-level AC signal higher than the threshold voltage V T is input to the gate of the N-type transistor 310 of the modified example.
 このように、本技術の第1の実施の形態の変形例によれば、P型トランジスタ320のゲートにバイアス電圧を供給し、N型トランジスタ310に交流信号を入力するため、ローレベルの交流信号の代わりにハイレベルの交流信号を増幅することができる。このように低雑音増幅器300は、ハイレベルの交流信号を増幅することができるため、交流信号がハイレベルになることが想定される無線受信機200に低雑音増幅器300を適用することができる。 As described above, according to the modification of the first embodiment of the present technology, the bias voltage is supplied to the gate of the P-type transistor 320 and the AC signal is input to the N-type transistor 310. A high level AC signal can be amplified instead of. Thus, since the low noise amplifier 300 can amplify a high level AC signal, the low noise amplifier 300 can be applied to the wireless receiver 200 in which the AC signal is assumed to be at a high level.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、バイアス電圧VBIASを一定としていたが、無線受信機200は、受信レベルに応じてバイアス電圧VBIASの値を制御してもよい。第2の実施の形態の無線受信機200は、受信レベルに応じてバイアス電圧VBIASの値を制御する点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the bias voltage V BIAS is constant, but the radio receiver 200 may control the value of the bias voltage V BIAS according to the reception level. The radio receiver 200 according to the second embodiment is different from the first embodiment in that the value of the bias voltage V BIAS is controlled according to the reception level.
 図4は、第2の実施の形態における無線受信機200の一構成例を示すブロック図である。この第2の実施の形態の無線受信機200は、低雑音増幅器300およびデジタル信号処理部240の代わりに低雑音増幅器301およびデジタル信号処理部241を備える点において第1の実施の形態と異なる。 FIG. 4 is a block diagram illustrating a configuration example of the wireless receiver 200 according to the second embodiment. The radio receiver 200 according to the second embodiment is different from the first embodiment in that a low noise amplifier 301 and a digital signal processing unit 241 are provided instead of the low noise amplifier 300 and the digital signal processing unit 240.
 デジタル信号処理部241は、デジタル信号を処理するほか、そのデジタル信号のレベルを受信レベルとして検出する。そして、デジタル信号処理部241は、検出した受信レベルに応じて、制御信号により低雑音増幅器301内のバイアス電圧VBIASを制御する。例えば、受信レベルが所定の閾値Trより高い場合には、バイアス電圧VBIASを低くする。これにより、低雑音増幅器301の利得や雑音指数などの特性が低下するものの、低雑音増幅器301の消費電流を小さくすることができる。一方、受信レベルが閾値Tr以下の場合には、デジタル信号処理部241は、バイアス電圧VBIASを高くする。これにより、低雑音増幅器301の消費電流が大きくなるものの、利得等の特性が向上する。 The digital signal processing unit 241 processes the digital signal and detects the level of the digital signal as a reception level. Then, the digital signal processing unit 241 controls the bias voltage V BIAS in the low noise amplifier 301 by the control signal according to the detected reception level. For example, when the reception level is higher than a predetermined threshold Tr, the bias voltage V BIAS is lowered. As a result, although the characteristics such as the gain and noise figure of the low noise amplifier 301 are lowered, the current consumption of the low noise amplifier 301 can be reduced. On the other hand, when the reception level is equal to or lower than the threshold value Tr, the digital signal processing unit 241 increases the bias voltage V BIAS . Thereby, although the current consumption of the low noise amplifier 301 is increased, characteristics such as gain are improved.
 図5は、第2の実施の形態における低雑音増幅器301の一構成例を示す回路図である。この低雑音増幅器301は、バイアス電圧供給部380の代わりにバイアス電圧供給部381を備える点において第1の実施の形態と異なる。 FIG. 5 is a circuit diagram showing a configuration example of the low-noise amplifier 301 in the second embodiment. The low noise amplifier 301 is different from that of the first embodiment in that a bias voltage supply unit 381 is provided instead of the bias voltage supply unit 380.
 バイアス電圧供給部381は、デジタル信号処理部241からの制御信号の示す値のバイアス電圧VBIASを供給する点において、第1の実施の形態のバイアス電圧供給部380と異なる。 The bias voltage supply unit 381 is different from the bias voltage supply unit 380 of the first embodiment in that a bias voltage V BIAS having a value indicated by the control signal from the digital signal processing unit 241 is supplied.
 図6は、第2の実施の形態における制御値ごとのドレイン電流の一例を示すグラフである。同図における縦軸は、N型トランジスタ310のドレイン電流Iであり、横軸は、制御信号の示す制御値である。同図に例示するように、制御値により、ドレイン電流Iが0乃至I_max1の範囲で制御される。 FIG. 6 is a graph illustrating an example of the drain current for each control value in the second embodiment. In the figure, the vertical axis represents the drain current ID of the N-type transistor 310, and the horizontal axis represents the control value indicated by the control signal. As illustrated in the figure, the control value, the drain current I D can be controlled from 0 to a range of I D _Max1.
 このように、ドレイン電流IをI_max1より大きくすることができないのは、一般に、ゲート幅やゲート長が同一の条件下では、P型トランジスタ320の電流放出能力は、N型トランジスタ310よりも小さいためである。 Thus, the drain current I D can not be larger than I D _Max1 is generally in the gate width and gate length under the same conditions, the current discharge capability of the P-type transistor 320, from the N-type transistor 310 This is because it is small.
 なお、P型トランジスタ320のゲート幅を広くすることにより、ドレイン電流の最大値を大きくすることができるが、ゲート幅を広くすると高周波における利得や雑音特性が劣化するため好ましくない。また、P型トランジスタ320のゲート長は一般に高周波動作のため製造プロセスの許容する最小値に設定される理由により、ゲート長を小さくすることも困難である。 Although the maximum drain current can be increased by increasing the gate width of the P-type transistor 320, it is not preferable to increase the gate width because gain and noise characteristics at high frequencies deteriorate. In addition, it is difficult to reduce the gate length of the P-type transistor 320 because the gate length of the P-type transistor 320 is generally set to the minimum value allowed by the manufacturing process for high-frequency operation.
 図7は、第2の実施の形態における無線受信機200の動作の一例を示すフローチャートである。この動作は、例えば、無線受信機200に電源が投入されたときに開始される。 FIG. 7 is a flowchart showing an example of the operation of the wireless receiver 200 in the second embodiment. This operation is started, for example, when the radio receiver 200 is turned on.
 無線受信機200は、RF信号を増幅し(ステップS901)、RF信号を復調する(ステップS902)。また、無線受信機200は、受信レベルを検出して、その値が閾値Trより高いか否かを判断する(ステップS906)。受信レベルが閾値Trより高い場合に(ステップS906:Yes)、無線受信機200は、バイアス電圧VBIASをV1に低下させて、消費電流を小さくする(ステップS907)。一方、受信レベルが閾値Tr以下の場合に(ステップS906:No)、無線受信機200は、バイアス電圧VBIASをV1より高いV2に上昇させて、消費電流を大きくする(ステップS908)。ステップS907またはS908の後、無線受信機200は、ステップS901以降を繰り返す。 The wireless receiver 200 amplifies the RF signal (step S901) and demodulates the RF signal (step S902). Radio receiver 200 detects the reception level and determines whether or not the value is higher than threshold value Tr (step S906). When the reception level is higher than the threshold value Tr (step S906: Yes), the wireless receiver 200 reduces the bias voltage V BIAS to V1 to reduce the current consumption (step S907). On the other hand, when the reception level is equal to or lower than the threshold value Tr (step S906: No), the wireless receiver 200 increases the current consumption by increasing the bias voltage V BIAS to V2 higher than V1 (step S908). After step S907 or S908, the wireless receiver 200 repeats step S901 and subsequent steps.
 なお、無線受信機200は、受信レベルが閾値Trより高いか否かによりバイアス電圧をV1またはV2の2段階で制御しているが、この構成に限定されない。例えば、複数の閾値を設定して無線受信機200が、受信レベルが高くなるほど、低い値にバイアス電圧を多段階で制御する構成であってもよい。 The radio receiver 200 controls the bias voltage in two stages of V1 or V2 depending on whether the reception level is higher than the threshold value Tr, but is not limited to this configuration. For example, the wireless receiver 200 may be configured to control the bias voltage in multiple steps to a lower value as the reception level increases by setting a plurality of threshold values.
 このように、本技術の第2の実施の形態によれば、無線受信機200は、受信レベルに応じてバイアス電圧を制御するため、利得や雑音指数の特性と、消費電力とのバランスを受信レベルに応じて調整することができる。 As described above, according to the second embodiment of the present technology, the radio receiver 200 controls the bias voltage according to the reception level, and thus receives a balance between the gain and noise figure characteristics and the power consumption. Can be adjusted according to the level.
 [変形例]
 上述の第2の実施の形態では、無線受信機200内のデジタル信号処理部241がバイアス電圧VBIASを制御していたが、無線受信機200の外部の装置がバイアス電圧VBIASを制御してもよい。第2の実施の形態の変形例の無線受信機200は、外部の装置の制御に従ってバイアス電圧VBIASを変更する点において第2の実施の形態と異なる。
[Modification]
In the second embodiment described above, the digital signal processing unit 241 of the radio receiver 200 has controlled the bias voltage V BIAS, the external device of the radio receiver 200 controls the bias voltage V BIAS Also good. The radio receiver 200 according to the modification of the second embodiment is different from the second embodiment in that the bias voltage V BIAS is changed according to control of an external device.
 図8は、第2の実施の形態の変形例における無線受信機200の一構成例を示すブロック図である。この変形例の無線受信機200は、デジタル信号処理部241の代わりにデジタル信号処理部240を備える点において第2の実施の形態と異なる。 FIG. 8 is a block diagram illustrating a configuration example of the wireless receiver 200 according to the modification of the second embodiment. The radio receiver 200 of this modification is different from the second embodiment in that a digital signal processing unit 240 is provided instead of the digital signal processing unit 241.
 第2の実施の形態のデジタル信号処理部240は、復調信号を無線受信機200の外部の電子装置400に供給する。 The digital signal processing unit 240 according to the second embodiment supplies the demodulated signal to the electronic device 400 outside the wireless receiver 200.
 電子装置400は、復調信号のレベルを受信レベルとして検出し、その受信レベルに基づいて制御信号によりバイアス電圧VBIASを制御するものである。 The electronic device 400 detects the level of the demodulated signal as a reception level, and controls the bias voltage V BIAS by a control signal based on the reception level.
 このように、本技術の第2の実施の形態の変形例によれば、デジタル信号処理部240の代わりに電子装置400がバイアス電圧VBIASを制御するため、バイアス電圧VBIASを、電子装置400の検出した受信レベルに応じた値にすることができる。 Thus, according to the modification of the second embodiment of the present technology, since the electronic device 400 controls the bias voltage V BIAS instead of the digital signal processing unit 240, the bias voltage V BIAS is used as the electronic device 400. Can be set to a value corresponding to the detected reception level.
 <3.第3の実施の形態>
 上述の第2の実施の形態では、無線受信機200は、N型トランジスタ310のドレイン電流Iを制御していたが、P型トランジスタ320のゲート幅やゲート長を変更しない限り、ドレイン電流Iは一定値I_max1より大きくはならない。しかし、N型トランジスタ310のドレインに、所定の電流を補助電流として供給する補助電流源を設ければ、特性を劣化させずにドレイン電流Iの最大値を大きく(言い換えれば、制御範囲を広く)することができる。第3の実施の形態の低雑音増幅器301は、補助電流源により、ドレイン電流Iの制御範囲を広くした点において第2の実施の形態と異なる。
<3. Third Embodiment>
In the second embodiment described above, the radio receiver 200 controls the drain current ID of the N-type transistor 310. However, unless the gate width or gate length of the P-type transistor 320 is changed, the drain current I D cannot be larger than the constant value I D — max1. However, if an auxiliary current source that supplies a predetermined current as an auxiliary current is provided at the drain of the N-type transistor 310, the maximum value of the drain current ID is increased without degrading the characteristics (in other words, the control range is widened). )can do. The low noise amplifier 301 of the third embodiment is different from the second embodiment in that the control range of the drain current ID is widened by the auxiliary current source.
 図9は、第3の実施の形態における低雑音増幅器301の一構成例を示す回路図である。第3の実施の形態の低雑音増幅器301は、補助電流源330をさらに備える点において第2の実施の形態と異なる。 FIG. 9 is a circuit diagram showing a configuration example of the low-noise amplifier 301 in the third embodiment. The low noise amplifier 301 of the third embodiment is different from that of the second embodiment in that an auxiliary current source 330 is further provided.
 補助電流源330は、電源端子から、N型トランジスタ310のドレインへ、所定の補助電流を供給するものである。補助電流源330は、例えば、P型トランジスタなどにより実現される。なお、補助電流源330は、特許請求の範囲に記載の電流源の一例である。 The auxiliary current source 330 supplies a predetermined auxiliary current from the power supply terminal to the drain of the N-type transistor 310. The auxiliary current source 330 is realized by, for example, a P-type transistor. The auxiliary current source 330 is an example of a current source described in the claims.
 この補助電流源330を設けても利得は低下せず、雑音指数は改善する。その詳細については、第4の実施の形態において後述する。 Even if the auxiliary current source 330 is provided, the gain is not lowered and the noise figure is improved. Details thereof will be described later in the fourth embodiment.
 図10は、第3の実施の形態における制御値ごとのドレイン電流の一例を示すグラフである。同図における縦軸は、N型トランジスタ310のドレイン電流Iであり、横軸は、制御信号の示す制御値である。また、I_max1は、補助電流源330を設けない場合のドレイン電流Iの最大値である。同図に例示するように、補助電流源330を設けたことにより、ドレイン電流IをI_max1よりも大きな値に制御することができる。 FIG. 10 is a graph illustrating an example of the drain current for each control value in the third embodiment. In the figure, the vertical axis represents the drain current ID of the N-type transistor 310, and the horizontal axis represents the control value indicated by the control signal. Also, I D _Max1 is the maximum value of the drain current I D of the case without the auxiliary current source 330. As illustrated in the figure, by providing the auxiliary current source 330, the drain current I D can be controlled to a value larger than I D _Max1.
 このように、本技術の第3の実施の形態によれば、補助電流源330が、P型トランジスタ320およびN型トランジスタ310のドレインに補助電流を供給するため、ドレイン電流の制御範囲を広くすることができる。 As described above, according to the third embodiment of the present technology, since the auxiliary current source 330 supplies the auxiliary current to the drains of the P-type transistor 320 and the N-type transistor 310, the drain current control range is widened. be able to.
 [変形例]
 上述の第3の実施の形態では、バイアス電圧供給部381がN型トランジスタ310にバイアス電圧VBIASを印加し、P型トランジスタ320にローレベルの微弱な交流信号を入力して増幅していた。この構成では、ハイレベルの交流信号については、P型トランジスタ320がオフ状態となるため、増幅することができない。しかし、バイアス電圧供給部381がP型トランジスタ320にバイアス電圧を印加し、N型トランジスタ310に交流信号を入力する構成とすれば、そのN型トランジスタ310の閾値電圧Vより高いハイレベルの交流信号を増幅することができる。P型トランジスタ320にバイアス電圧を印加してもよい。第3の実施の形態の変形例の低雑音増幅器300は、P型トランジスタ320にバイアス電圧Vを印加し、N型トランジスタ310に交流信号を入力する点において第3の実施の形態と異なる。
[Modification]
In the third embodiment described above, the bias voltage supply unit 381 applies the bias voltage V BIAS to the N-type transistor 310 and inputs a low-level weak AC signal to the P-type transistor 320 for amplification. In this configuration, the high-level AC signal cannot be amplified because the P-type transistor 320 is turned off. However, if the bias voltage supply unit 381 is configured to apply a bias voltage to the P-type transistor 320 and input an AC signal to the N-type transistor 310, a high-level AC higher than the threshold voltage V T of the N-type transistor 310. The signal can be amplified. A bias voltage may be applied to the P-type transistor 320. The low noise amplifier 300 according to the modification of the third embodiment is different from the third embodiment in that a bias voltage V is applied to the P-type transistor 320 and an AC signal is input to the N-type transistor 310.
 図11は、第3の実施の形態の変形例における低雑音増幅器301の一構成例を示す回路図である。この変形例のバイアス電圧供給部380は、N型トランジスタ310の代わりに、P型トランジスタ320のゲートにバイアス電圧VBIAS’を印加する。また、変形例の抵抗351の一端は、N型トランジスタ310のゲートに接続され、コンデンサ371の一端は、コンデンサ373とN型トランジスタ310のゲートと抵抗351とに接続される。また、変形例の補助電流源330は、接地端子からP型トランジスタ320のソースへ補助電流を供給する。 FIG. 11 is a circuit diagram showing a configuration example of the low noise amplifier 301 in a modification of the third embodiment. The bias voltage supply unit 380 of this modification applies a bias voltage V BIAS ′ to the gate of the P-type transistor 320 instead of the N-type transistor 310. In addition, one end of the resistor 351 of the modification is connected to the gate of the N-type transistor 310, and one end of the capacitor 371 is connected to the capacitor 373, the gate of the N-type transistor 310, and the resistor 351. Further, the auxiliary current source 330 according to the modification supplies an auxiliary current from the ground terminal to the source of the P-type transistor 320.
 このように、本技術の第3の実施の形態の変形例によれば、P型トランジスタ320のゲートにバイアス電圧を供給し、N型トランジスタ310に交流信号を入力するため、ローレベルの交流信号の代わりにハイレベルの交流信号を増幅することができる。このように低雑音増幅器300は、ハイレベルの交流信号を増幅することができるため、交流信号がハイレベルになることが想定される無線受信機200に低雑音増幅器300を適用することができる。 As described above, according to the modification of the third embodiment of the present technology, the bias voltage is supplied to the gate of the P-type transistor 320 and the AC signal is input to the N-type transistor 310. A high level AC signal can be amplified instead of. Thus, since the low noise amplifier 300 can amplify a high level AC signal, the low noise amplifier 300 can be applied to the wireless receiver 200 in which the AC signal is assumed to be at a high level.
 <4.第4の実施の形態>
 上述の第3の実施の形態では、補助電流源330により雑音指数などの特性を改善していたが、ローパスフィルタを設けることにより、さらに特性を改善することができる。また、伝送効率を向上させる観点から、送信側と受信側とのインピーダンスを整合することが望ましい。この第4の実施の形態の低雑音増幅器301は、ローパスフィルタおよびインピーダンス整合回路をさらに設けた点において第3の実施の形態と異なる。
<4. Fourth Embodiment>
In the third embodiment described above, characteristics such as noise figure are improved by the auxiliary current source 330, but the characteristics can be further improved by providing a low-pass filter. Also, from the viewpoint of improving transmission efficiency, it is desirable to match the impedance between the transmission side and the reception side. The low noise amplifier 301 of the fourth embodiment is different from that of the third embodiment in that a low pass filter and an impedance matching circuit are further provided.
 図12は、第4の実施の形態における低雑音増幅器301の一構成例を示す回路図である。第4の実施の形態の低雑音増幅器301は、インピーダンス整合回路372およびローパスフィルタ360をさらに備える点において第3の実施の形態と異なる。このローパスフィルタ360は、コンデンサ361および抵抗362を備える。また、第4の実施の形態の補助電流源330は、P型トランジスタ331を備える。このP型トランジスタ331として、例えば、MOSトランジスタが用いられる。 FIG. 12 is a circuit diagram showing a configuration example of the low-noise amplifier 301 in the fourth embodiment. The low noise amplifier 301 of the fourth embodiment is different from the third embodiment in that it further includes an impedance matching circuit 372 and a low pass filter 360. The low pass filter 360 includes a capacitor 361 and a resistor 362. The auxiliary current source 330 according to the fourth embodiment includes a P-type transistor 331. For example, a MOS transistor is used as the P-type transistor 331.
 インピーダンス整合回路372は、コンデンサ371と、P型トランジスタ320のゲートとの間に挿入される。コンデンサ361の一端は、電源端子に接続され、他端は、抵抗362とP型トランジスタ331のゲートとに接続される。抵抗362の一端は、コンデンサ361とP型トランジスタ331のゲートとに接続され、他端は、抵抗351と演算増幅器352の出力端子とに接続される。P型トランジスタ331のソースは電源端子に接続され、ドレインは、P型トランジスタ320およびN型トランジスタ310のドレインと演算増幅器352の非反転入力端子(+)とに接続される。また、P型トランジスタ331のゲートは、コンデンサ361および抵抗362に接続される。 The impedance matching circuit 372 is inserted between the capacitor 371 and the gate of the P-type transistor 320. One end of the capacitor 361 is connected to the power supply terminal, and the other end is connected to the resistor 362 and the gate of the P-type transistor 331. One end of the resistor 362 is connected to the capacitor 361 and the gate of the P-type transistor 331, and the other end is connected to the resistor 351 and the output terminal of the operational amplifier 352. The source of the P-type transistor 331 is connected to the power supply terminal, and the drain is connected to the drains of the P-type transistor 320 and the N-type transistor 310 and the non-inverting input terminal (+) of the operational amplifier 352. The gate of the P-type transistor 331 is connected to the capacitor 361 and the resistor 362.
 インピーダンス整合回路372は、RF信号を伝送する伝送路の送信側および受信側のそれぞれの回路のインピーダンスを整合するものである。これにより、反射損失を最小化して伝送効率を向上させることができる。 The impedance matching circuit 372 matches the impedance of each circuit on the transmission side and the reception side of the transmission path for transmitting the RF signal. Thereby, reflection loss can be minimized and transmission efficiency can be improved.
 ローパスフィルタ360は、直流バイアス電圧のみをP型トランジスタ331のゲート端子に供給するものである。このローパスフィルタ360の遮断周波数には、信号成分の帯域に対して十分に低い値が設定される。また、ローパスフィルタ360をP型トランジスタ331のゲートに接続することにより、P型トランジスタ331は、信号増幅に寄与せず、直流電流源としてのみ機能する。これにより、発振等を抑制し、低雑音増幅器301を安定して動作させることができる。 The low pass filter 360 supplies only a DC bias voltage to the gate terminal of the P-type transistor 331. The cut-off frequency of the low-pass filter 360 is set to a sufficiently low value with respect to the signal component band. Further, by connecting the low-pass filter 360 to the gate of the P-type transistor 331, the P-type transistor 331 does not contribute to signal amplification and functions only as a direct current source. Thereby, oscillation etc. can be suppressed and the low noise amplifier 301 can be operated stably.
 ここで、補助電流源330により、特性が改善する効果について説明する。P型トランジスタ320とP型トランジスタ331とのチャネル幅の比を例えば、1:aとする。ここで、aは、次の式を満たす値であるものとする。
  0<a<1                     ・・・式7
Here, the effect of improving the characteristics by the auxiliary current source 330 will be described. A channel width ratio between the P-type transistor 320 and the P-type transistor 331 is, for example, 1: a. Here, a is a value that satisfies the following expression.
0 <a <1 Equation 7
 チャネル幅の比が1:aである場合、P型トランジスタ320のドレイン電流ID2(すなわち、補助電流)は、例えば、次の式により表される。このドレイン電流ID2の単位は、例えば、アンペア(A)である。
  ID2=I×{1/(1+a)}           ・・・式8
上式において、Iは、N型トランジスタ310のドレイン電流であり、単位は、例えば、アンペア(A)である。
When the channel width ratio is 1: a, the drain current I D2 (that is, the auxiliary current) of the P-type transistor 320 is expressed by the following equation, for example. The unit of the drain current ID2 is, for example, ampere (A).
I D2 = I D × {1 / (1 + a)} Expression 8
In the above formula, ID is the drain current of the N-type transistor 310, and the unit is, for example, ampere (A).
 また、P型トランジスタ320のトランスコンダクタンスgm2および出力抵抗ro2は、例えば、次の式により表される。トランスコンダクタンスgm2の単位は、例えば、ジーメンス(S)である。出力抵抗ro2の単位は、例えば、オーム(Ω)である。
  gm2={(K・I)/(1+a)}1/2       ・・・式9
  K=μ・Cox・(W/L)           ・・・式10
Further, the transconductance g m2 and the output resistance r o2 of the P-type transistor 320 are expressed by the following equations, for example. The unit of transconductance g m2 is, for example, Siemens (S). The unit of the output resistance r o2 is, for example, ohm (Ω).
g m2 = {(K p · ID ) / (1 + a)} 1/2 Equation 9
K p = μ p · C ox · (W / L) Equation 10
 式10において、μは、P型トランジスタ320におけるキャリア移動度であり、単位は、例えば、平方メートル毎ボルト毎秒(m/V・s)である。Coxは、ゲート酸化膜厚に応じたゲート容量であり、単位は例えば、ファラッド(F)である。Wは、ゲート幅であり、Lはゲート長である。WおよびLの単位は、例えば、メートル(m)である。式11において、ガンマは、チャネル長変調係数である。 In Expression 10, μ p is the carrier mobility in the P-type transistor 320, and the unit is, for example, square meter per volt per second (m 2 / V · s). C ox is a gate capacitance according to the gate oxide film thickness, and its unit is, for example, farad (F). W is the gate width and L is the gate length. The unit of W and L is, for example, meters (m). In Equation 11, gamma is a channel length modulation coefficient.
 式8に例示したように、P型トランジスタ320の電流を、補助電流源330に分流させることにより、一見、P型トランジスタ320の利得が低下するように思えるが、実際にはそうではない。式9に例示したようにP型トランジスタ320のトランスコンダクタンスgm2は、分流比(1+a)の平方根に反比例し、式11に例示したように出力抵抗ro2は、分流比(1+a)に比例する。このため、これらの積である利得は、次の式に示すように分流比(1+a)の平方根に比例して上昇する。よって、補助電流源330を接続しても低雑音増幅器300の利得低下を招くことはない。
Figure JPOXMLDOC01-appb-M000002
As illustrated in Equation 8, it seems that the current of the P-type transistor 320 is shunted to the auxiliary current source 330, but the gain of the P-type transistor 320 seems to decrease, but this is not the case. As illustrated in Equation 9, the transconductance g m2 of the P-type transistor 320 is inversely proportional to the square root of the shunt ratio (1 + a), and as illustrated in Equation 11, the output resistance r o2 is proportional to the shunt ratio (1 + a). . Therefore, the gain, which is the product of these, increases in proportion to the square root of the diversion ratio (1 + a) as shown in the following equation. Therefore, even if the auxiliary current source 330 is connected, the gain of the low noise amplifier 300 is not reduced.
Figure JPOXMLDOC01-appb-M000002
 また、雑音指数についても検討する。一般に雑音指数NFは、次の式により表される。
  NF=SNRin/SNRout            ・・・式13
 上式において、SNRinは、入力信号のS/N比であり、SNRoutは、出力信号のS/N比である。これらのS/N比は、次の式により求められる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Also consider the noise figure. In general, the noise figure NF is expressed by the following equation.
NF = SNR in / SNR out ··· formula 13
In the above equation, SNR in is the S / N ratio of the input signal, and SNR out is the S / N ratio of the output signal. These S / N ratios are obtained by the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 式15において、Gは、電圧利得である。また、オーバーライン付のVnは、低雑音増幅器300が生じる雑音を示す。式14および式15を用いて式13を、次の式に変形することができる。
Figure JPOXMLDOC01-appb-M000005
In Equation 15, G is a voltage gain. Further, Vn 2 with an overline indicates noise generated by the low noise amplifier 300. Equation 13 can be transformed into the following equation using Equation 14 and Equation 15.
Figure JPOXMLDOC01-appb-M000005
 また、インピーダンス整合回路372により入力整合がとれているとき、低雑音増幅器301の電圧利得Gは、次の式により表される。
  G=Rin(gm1+gm2)ro1・ro2/{(R+Rin)・(ro1+ro2)}
   =(gm1+gm2)ro1・ro2/{2(ro1+ro2)}…式17
上式において、Rinは、インピーダンス整合回路372の入力側の抵抗である。gm1は、N型トランジスタ310のトランスコンダクタンスであり、単位は、例えば、ジーメンス(S)である。Rは、入力信号の信号源の抵抗であり、単位は、例えば、オーム(Ω)である。これらの抵抗値は、例えば、同一であるものとする。
When the input matching is achieved by the impedance matching circuit 372, the voltage gain G of the low noise amplifier 301 is expressed by the following equation.
G = R in (g m1 + g m2 ) r o1 · r o2 / {(R s + R in ) · (r o1 + r o2 )}
= (G m1 + g m2 ) r o1 · r o2 / {2 (r o1 + r o2 )}
In the above equation, R in is a resistance on the input side of the impedance matching circuit 372. g m1 is the transconductance of the N-type transistor 310, and the unit is, for example, Siemens (S). R s is the resistance of the signal source of the input signal, and its unit is, for example, ohm (Ω). These resistance values are assumed to be the same, for example.
 次に、インピーダンス整合回路372により、Rが、そのn倍の抵抗に変換されるものとすると(nは、実数)、入力雑音は、次の式により表される。
Figure JPOXMLDOC01-appb-M000006
上式において、kは、ボルツマン定数である。Tは絶対温度であり、単位は例えばケルビン(K)である。
Next, assuming that R s is converted to n times the resistance by the impedance matching circuit 372 (n is a real number), the input noise is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000006
In the above equation, k is a Boltzmann constant. T is an absolute temperature, and the unit is, for example, Kelvin (K).
 また、N型トランジスタ310、P型トランジスタ320およびP型トランジスタ331のそれぞれが生じるチャネル熱雑音電流は、次の式により表される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
式19乃至式21において、ガンマは、チャネル熱雑音係数である。また、式19の左辺はN型トランジスタ310のチャネル熱雑音電流を示し、式20の左辺はP型トランジスタ320のチャネル熱雑音電流を示す。式21の左辺はP型トランジスタ331のチャネル熱雑音電流を示す。また、式21においてgm3は、P型トランジスタ331のトランスコンダクタンスであり、単位は、例えば、ジーメンス(S)である。
The channel thermal noise current generated by each of the N-type transistor 310, the P-type transistor 320, and the P-type transistor 331 is represented by the following equation.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
In Equations 19 to 21, gamma is a channel thermal noise coefficient. Further, the left side of Expression 19 indicates the channel thermal noise current of the N-type transistor 310, and the left side of Expression 20 indicates the channel thermal noise current of the P-type transistor 320. The left side of Equation 21 represents the channel thermal noise current of the P-type transistor 331. In Equation 21, g m3 is the transconductance of the P-type transistor 331, and the unit is, for example, Siemens (S).
 式19乃至式21に例示したチャネル熱雑音のみが雑音として生じると仮定すると、低雑音増幅器301が生じる雑音は、式19乃至式21の和に出力抵抗を乗じた、次の式により表される。
Figure JPOXMLDOC01-appb-M000010
Assuming that only the channel thermal noise exemplified in Expressions 19 to 21 is generated as noise, the noise generated by the low noise amplifier 301 is expressed by the following expression obtained by multiplying the sum of Expressions 19 to 21 by the output resistance. .
Figure JPOXMLDOC01-appb-M000010
 式17、式18および式22を式16に代入して整理すると、次の式が得られる。
Figure JPOXMLDOC01-appb-M000011
Substituting Equation 17, Equation 18, and Equation 22 into Equation 16 gives the following equation.
Figure JPOXMLDOC01-appb-M000011
 ここで、MOSトランジスタの2乗則より、P型トランジスタ320、N型トランジスタ310およびP型トランジスタ331の素子サイズと電流値とから、これらの素子のトランスコンダクタンスが決定される。例えば、P型トランジスタ320、N型トランジスタ310およびP型トランジスタ331のそれぞれのトランスコンダクタンスgm1、gm2およびgm3は、次の式により得られる。
  gm1=(u・Cox(W/L)・I1/2
    =(K・I1/2           ・・・式24
  gm2={(u・Cox(W/L)・I/(1+a)}1/2
    ={Kp・I/(1+a))1/2      ・・・式25
  gm3={(u・Cox(aW/L)・I・a/(1+a)}1/2
    ={Kp・I・a/(1+a)}1/2   ・・・式26
Here, the transconductance of these elements is determined from the element sizes and current values of the P-type transistor 320, the N-type transistor 310, and the P-type transistor 331 according to the square law of the MOS transistors. For example, the transconductances g m1 , g m2, and g m3 of the P-type transistor 320, the N-type transistor 310, and the P-type transistor 331 are obtained by the following equations.
g m1 = (u n · C ox (W / L) · I D) 1/2
= (K n · ID ) 1/2 ··· Formula 24
g m2 = {(u p · C ox (W / L) · I D / (1 + a)} 1/2
= { Kp · ID / (1 + a)) 1/2 ... Equation 25
g m3 = {(u p · C ox (aW / L) · I D · a / (1 + a)} 1/2
= { Kp · ID · a 2 / (1 + a)} 1/2 Equation 26
 式24、式25および式26を式23に代入して整理すると、次の式が得られる。
Figure JPOXMLDOC01-appb-M000012
Substituting Equation 24, Equation 25, and Equation 26 into Equation 23 and rearranging results in the following equation.
Figure JPOXMLDOC01-appb-M000012
 上式において、分子の第3項が補助電流源330によるノイズ増分を表すが、式7よりa<1であるため、分子の第1項および第2項よりは、ノイズに対する寄与の度合いが低い。また、上式に例示したように、雑音指数NFは、動作電流(I)の平方根に反比例して減少するため、補助電流源330によりIを増加できることによる雑音指数の改善効果の方が通常は大きくなる。 In the above equation, the third term of the numerator represents the noise increment due to the auxiliary current source 330. However, since a <1 from Equation 7, the degree of contribution to noise is lower than that of the first and second terms of the numerator. . Further, as illustrated in the above equation, since the noise figure NF decreases in inverse proportion to the square root of the operating current (I D ), the effect of improving the noise figure due to the fact that I D can be increased by the auxiliary current source 330 is better. Usually larger.
 なお、第4の実施の形態においてバイアス電圧供給部380はN型トランジスタ310にバイアス電圧VBIASを印加しているが、P型トランジスタ320にバイアス電圧を印加してもよい。 Although the bias voltage supply unit 380 applies the bias voltage V BIAS to the N-type transistor 310 in the fourth embodiment, a bias voltage may be applied to the P-type transistor 320.
 また、インピーダンス整合回路372およびローパスフィルタ360の両方を設けているが、一方のみを設けた構成であってもよい。 In addition, although both the impedance matching circuit 372 and the low-pass filter 360 are provided, a configuration in which only one of them is provided may be employed.
 このように、本技術の第4の実施の形態によれば、ローパスフィルタ360が直流バイアス電圧のみをP型トランジスタ331のゲート端子に供給するため、P型トランジスタ331を直流電流源としてのみ機能させることができる。また、インピーダンス整合回路372が、インピーダンス整合を行うため、伝送効率を向上させることができる。 Thus, according to the fourth embodiment of the present technology, since the low-pass filter 360 supplies only the DC bias voltage to the gate terminal of the P-type transistor 331, the P-type transistor 331 functions only as a DC current source. be able to. Further, since the impedance matching circuit 372 performs impedance matching, transmission efficiency can be improved.
 [第1の変形例]
 上述の第4の実施の形態では、補助電流源330によりドレイン電流Iを増加していたが、補助電流源330の容量の分、出力端子308と電源端子との間の容量が増加してしまう。この容量が増加すると、その容量と抵抗とからなるローパスフィルタのカットオフ周波数が低下して、そのフィルタを通過する周波数の帯域が狭くなってしまう。この結果、高周波数成分の増幅が困難となる。したがって、N型トランジスタなどのカスコードトランジスタ素子を挿入して、特性が劣化しないように容量を調整することが望ましい。この第4の実施の形態の第1の変形例における低雑音増幅器301は、カスコードトランジスタ素子をさらに設けた点において第4の実施の形態と異なる。
[First Modification]
In the above-described fourth embodiment, the drain current ID is increased by the auxiliary current source 330. However, the capacity between the output terminal 308 and the power supply terminal is increased by the capacity of the auxiliary current source 330. End up. When this capacitance increases, the cut-off frequency of the low-pass filter composed of the capacitance and resistance decreases, and the frequency band that passes through the filter becomes narrow. As a result, it becomes difficult to amplify high frequency components. Therefore, it is desirable to insert a cascode transistor element such as an N-type transistor and adjust the capacitance so that the characteristics do not deteriorate. The low noise amplifier 301 in the first modification of the fourth embodiment is different from the fourth embodiment in that a cascode transistor element is further provided.
 図13は、第4の実施の形態の第1の変形例における低雑音増幅器301の一構成例を示す回路図である。この第1の変形例の低雑音増幅器301は、N型トランジスタ340をさらに備える点において第4の実施の形態と異なる。このN型トランジスタ340として、例えば、MOSトランジスタが用いられる。 FIG. 13 is a circuit diagram showing a configuration example of the low noise amplifier 301 in the first modification example of the fourth embodiment. The low noise amplifier 301 of the first modification is different from the fourth embodiment in that it further includes an N-type transistor 340. As the N-type transistor 340, for example, a MOS transistor is used.
 N型トランジスタ340のゲートはバイアス電圧供給部381に接続され、ドレインはP型トランジスタ320のドレインと演算増幅器352の非反転入力端子(+)とに接続される。また、N型トランジスタ340のソースは、N型トランジスタ310のドレインとP型トランジスタ331のドレインとに接続される。なお、N型トランジスタ340は、特許請求の範囲に記載のカスコードトランジスタ素子の一例である。 The gate of the N-type transistor 340 is connected to the bias voltage supply unit 381, and the drain is connected to the drain of the P-type transistor 320 and the non-inverting input terminal (+) of the operational amplifier 352. The source of the N-type transistor 340 is connected to the drain of the N-type transistor 310 and the drain of the P-type transistor 331. The N-type transistor 340 is an example of a cascode transistor element recited in the claims.
 上述したように、電源端子に接続された補助電流源330と、P型トランジスタ320のドレインとの間にN型トランジスタ340が挿入される。このドレインは、出力端子308に接続されているため、補助電流源330のみの場合と比較して、電源端子と出力端子308との間の容量が低下する。 As described above, the N-type transistor 340 is inserted between the auxiliary current source 330 connected to the power supply terminal and the drain of the P-type transistor 320. Since this drain is connected to the output terminal 308, the capacitance between the power supply terminal and the output terminal 308 is reduced as compared with the case where only the auxiliary current source 330 is used.
 図14は、第4の実施の形態の第1の変形例におけるバイアス電圧供給部381の一構成例を示す回路図である。このバイアス電圧供給部381は、参照電流源382および383と、N型トランジスタ384、385および386と、コンデンサ387および388と、抵抗389とを備える。これらのN型トランジスタ384、385および386として、例えば、MOSトランジスタが用いられる。 FIG. 14 is a circuit diagram showing a configuration example of the bias voltage supply unit 381 in the first modification example of the fourth embodiment. The bias voltage supply unit 381 includes reference current sources 382 and 383, N- type transistors 384, 385 and 386, capacitors 387 and 388, and a resistor 389. As these N- type transistors 384, 385 and 386, for example, MOS transistors are used.
 N型トランジスタ384のゲートおよびドレインは、参照電流源382とN型トランジスタ385および340のゲートとコンデンサ387とに接続され、ソースは接地端子に接続される。 The gate and drain of the N-type transistor 384 are connected to the reference current source 382, the gates of the N- type transistors 385 and 340, and the capacitor 387, and the source is connected to the ground terminal.
 N型トランジスタ385のゲートは、参照電流源382とN型トランジスタ384および340とコンデンサ387とに接続され、ソースは接地端子に接続され、ドレインは参照電流源383とコンデンサ388と抵抗389に接続される。 The gate of N-type transistor 385 is connected to reference current source 382, N- type transistors 384 and 340, and capacitor 387, the source is connected to the ground terminal, and the drain is connected to reference current source 383, capacitor 388, and resistor 389. The
 N型トランジスタ386のゲートはコンデンサ388、抵抗389および参照電流源383に接続され、ソースは接地端子に接続され、ドレインはN型トランジスタ385のソースに接続される。 The gate of the N-type transistor 386 is connected to the capacitor 388, the resistor 389, and the reference current source 383, the source is connected to the ground terminal, and the drain is connected to the source of the N-type transistor 385.
 コンデンサ387の一端は、N型トランジスタ384、385および340と参照電流源382とに接続され、他端は接地端子に接続される。コンデンサ388の一端は、N型トランジスタ385および386と参照電流源383と抵抗389とに接続され、他端は接地端子に接続される。 One end of the capacitor 387 is connected to the N- type transistors 384, 385 and 340 and the reference current source 382, and the other end is connected to the ground terminal. One end of the capacitor 388 is connected to the N- type transistors 385 and 386, the reference current source 383, and the resistor 389, and the other end is connected to the ground terminal.
 抵抗389の一端は、N型トランジスタ385および386と参照電流源383とコンデンサ388とに接続され、他端はN型トランジスタ310に接続される。 One end of the resistor 389 is connected to the N- type transistors 385 and 386, the reference current source 383, and the capacitor 388, and the other end is connected to the N-type transistor 310.
 参照電流源382は、デジタル信号処理部241からの制御信号に従って参照電流IREF1をN型トランジスタ385等に供給するものである。参照電流源383は、デジタル信号処理部241からの制御信号に従って参照電流IREF2をN型トランジスタ386等に供給するものである。 The reference current source 382 supplies the reference current I REF1 to the N-type transistor 385 and the like in accordance with a control signal from the digital signal processing unit 241. The reference current source 383 supplies the reference current I REF2 to the N-type transistor 386 and the like in accordance with a control signal from the digital signal processing unit 241.
 上述した構成により、N型トランジスタ384および385を含む回路はカレントミラー回路として機能する。また、デジタル信号処理部241は、参照電流(IREF1、IREF2)を制御信号で制御することにより、受信レベルに応じた動作電流(I)を設定することができる。 With the above-described configuration, the circuit including the N- type transistors 384 and 385 functions as a current mirror circuit. In addition, the digital signal processing unit 241 can set the operating current (I D ) corresponding to the reception level by controlling the reference currents (I REF1 , I REF2 ) with the control signal.
 このように本技術の第4の実施の形態の第1の変形例によれば、補助電流源330とP型トランジスタ320のドレインとの間にN型トランジスタ340を挿入したため、電源端子と出力端子との間の容量の増加を抑制することができる。これにより、その容量と抵抗とからなるフィルタを通過する周波数の帯域が広くなり、低雑音増幅器301は、高周波数成分の増幅を容易に行うことができる。 As described above, according to the first modification of the fourth embodiment of the present technology, since the N-type transistor 340 is inserted between the auxiliary current source 330 and the drain of the P-type transistor 320, the power supply terminal and the output terminal Increase in capacity between the two can be suppressed. As a result, the frequency band passing through the filter composed of the capacitance and the resistance is widened, and the low noise amplifier 301 can easily amplify the high frequency component.
 [第2の変形例]
 上述の第4の実施の形態では、補助電流源330は電源投入後において常に補助電流を供給していたが、P型トランジスタ320がオフ状態である場合には、P型トランジスタ320による増幅が行われないため、補助電流を供給する必要性に乏しい。このため、消費電流を節約する観点から、P型トランジスタ320のゲートがローレベル(すなわち、P型トランジスタ320がオン状態)である場合にのみ補助電流を供給させることが望ましい。この第4の実施の形態の第2の変形例における低雑音増幅器301は、P型トランジスタ320のゲートがローレベルである場合に補助電流を供給させる点において第4の実施の形態と異なる。
[Second Modification]
In the above-described fourth embodiment, the auxiliary current source 330 always supplies an auxiliary current after the power is turned on. However, when the P-type transistor 320 is in the off state, amplification by the P-type transistor 320 is performed. Therefore, it is not necessary to supply an auxiliary current. For this reason, from the viewpoint of saving current consumption, it is desirable to supply the auxiliary current only when the gate of the P-type transistor 320 is at the low level (that is, the P-type transistor 320 is in the ON state). The low noise amplifier 301 in the second modification of the fourth embodiment is different from the fourth embodiment in that an auxiliary current is supplied when the gate of the P-type transistor 320 is at a low level.
 図15は、第4の実施の形態の第2の変形例における低雑音増幅器301の一構成例を示す回路図である。第2の変形例の低雑音増幅器301は、コンパレータ390をさらに備える点において第4の実施の形態と異なる。 FIG. 15 is a circuit diagram showing a configuration example of the low noise amplifier 301 in the second modification example of the fourth embodiment. The low noise amplifier 301 of the second modified example is different from the fourth embodiment in that it further includes a comparator 390.
 コンパレータ390の反転入力端子(-)は、演算増幅器352の出力端子と抵抗351とに接続され、非反転入力端子(+)には所定の参照電圧VREF2が印加され、出力端子は抵抗362に接続される。この参照電圧VREF2は、例えば、0ボルト(V)付近などのローレベルに設定される。また、第2の変形例の抵抗362の一端は、抵抗351および演算増幅器352のいずれにも接続されず、コンパレータ390にのみ接続される。 The inverting input terminal (−) of the comparator 390 is connected to the output terminal of the operational amplifier 352 and the resistor 351, a predetermined reference voltage V REF2 is applied to the non-inverting input terminal (+), and the output terminal is connected to the resistor 362. Connected. The reference voltage V REF2 is set to a low level, for example, near 0 volts (V). In addition, one end of the resistor 362 of the second modified example is not connected to either the resistor 351 or the operational amplifier 352 but is connected only to the comparator 390.
 演算増幅器352では、プロセス、電圧および温度などのばらつきにより、その演算増幅器352内のトランジスタの特性(閾値電圧など)が変化し、出力端子がハイレベルになることがある。この場合には、その出力端子に接続されたP型トランジスタ320のゲートの電位がハイレベルとなり、P型トランジスタ320がオフ状態となってしまう。 In the operational amplifier 352, the characteristics (threshold voltage, etc.) of the transistor in the operational amplifier 352 may change due to variations in process, voltage, temperature, and the like, and the output terminal may become high level. In this case, the potential of the gate of the P-type transistor 320 connected to the output terminal becomes a high level, and the P-type transistor 320 is turned off.
 そこで、コンパレータ390は、演算増幅器352の出力端子(すなわち、P型トランジスタ320のゲート)の電圧と参照電圧VREF2とを比較し、その比較結果を補助電流源330に供給する。そして、補助電流源330は、その比較結果に基づいて補助電流を供給する。例えば、P型トランジスタ320のゲートが参照電圧VREF2より高いハイレベルである場合にコンパレータ390は、ハイレベルを補助電流源330に出力し、補助電流源330は補助電流の供給を停止する。一方、P型トランジスタ320のゲートが参照電圧VREF2以下のローレベルである場合には、コンパレータ390は、ローレベルを補助電流源330に出力し、補助電流源330は補助電流を供給する。 Therefore, the comparator 390 compares the voltage at the output terminal of the operational amplifier 352 (that is, the gate of the P-type transistor 320) with the reference voltage V REF2 and supplies the comparison result to the auxiliary current source 330. Then, the auxiliary current source 330 supplies an auxiliary current based on the comparison result. For example, when the gate of the P-type transistor 320 is at a high level higher than the reference voltage V REF2 , the comparator 390 outputs a high level to the auxiliary current source 330, and the auxiliary current source 330 stops supplying the auxiliary current. On the other hand, when the gate of the P-type transistor 320 is at the low level equal to or lower than the reference voltage V REF2 , the comparator 390 outputs the low level to the auxiliary current source 330, and the auxiliary current source 330 supplies the auxiliary current.
 なお、第1の変形例では、N型トランジスタ340のみを第4の実施の形態の低雑音増幅器301に追加し、第2の変形例ではコンパレータ390のみを追加していたが、これらの両方を第4の実施の形態の低雑音増幅器301に追加してもよい。 In the first modification example, only the N-type transistor 340 is added to the low noise amplifier 301 of the fourth embodiment, and in the second modification example, only the comparator 390 is added. You may add to the low noise amplifier 301 of 4th Embodiment.
 このように、本技術の第4の実施の形態の第2の変形例によれば、P型トランジスタ320のゲートがローレベルである場合に補助電流源330が補助電流を供給するため、P型トランジスタ320がオン状態の場合にのみ補助電流を供給することができる。これにより、P型トランジスタ320がオフ状態の場合には補助電流が供給されないため、消費電流を低減することができる。 As described above, according to the second modification of the fourth embodiment of the present technology, the auxiliary current source 330 supplies the auxiliary current when the gate of the P-type transistor 320 is at the low level. The auxiliary current can be supplied only when the transistor 320 is on. As a result, no auxiliary current is supplied when the P-type transistor 320 is in the OFF state, so that current consumption can be reduced.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 The above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specific matters in the claims have a corresponding relationship. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology having the same name as this have a corresponding relationship. However, the present technology is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist thereof.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it. As this recording medium, for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
[規則91に基づく訂正 14.03.2016] 
 なお、本技術は以下のような構成もとることができる。
(1)直列に接続されたP型トランジスタおよびN型トランジスタと、
 演算増幅器と
を具備し、
 前記演算増幅器の出力端子が前記P型トランジスタおよび前記N型トランジスタの一方のゲートに接続され、前記演算増幅器の反転入力端子および非反転入力端子の一方が前記P型トランジスタおよび前記N型トランジスタの両方のドレインに接続され、前記反転入力端子および前記非反転入力端子の他方に所定の参照電圧が印加されている
増幅器。
(2)前記P型トランジスタおよび前記N型トランジスタの一方の前記ゲートに所定のバイアス電圧を供給するバイアス電圧供給部と、
 前記P型トランジスタの前記ゲートと前記N型トランジスタの前記ゲートとの間に挿入されたコンデンサと
をさらに具備する前記(1)記載の増幅器。
(3)前記ドレインに接続された電流源をさらに具備する
前記(1)または(2)に記載の増幅器。
(4)前記ドレインと前記電流源との間に挿入されたカスコードトランジスタ素子をさらに具備する
前記(3)記載の増幅器。
(5)前記ゲートの電位と所定電位とを比較して当該比較結果を供給するコンパレータをさらに具備し、
 前記電流源は、前記コンパレータの比較結果に基づいて前記所定の電流を供給する
前記(3)または(4)の記載の増幅器。
(6)ローパスフィルタをさらに具備し、
 前記電流源は、トランジスタを備え、
 前記ローパスフィルタは、前記トランジスタのゲート端子に直流バイアス電圧を供給する前記(3)から(5)のいずれかに記載の増幅器。
(7)前記増幅器に接続された伝送路の両端の回路のそれぞれのインピーダンスを整合するインピーダンス整合回路をさらに具備する
前記(1)から(6)のいずれかに記載の増幅器。
(8)前記所定の参照電圧は、前記P型トランジスタおよび前記N型トランジスタの一方の飽和ドレイン電圧以上の値である
前記(1)から(7)のいずれかに記載の増幅器。
(9)直列に接続されたP型トランジスタおよびN型トランジスタと、演算増幅器とを具備し、前記演算増幅器の出力端子が前記P型トランジスタおよび前記N型トランジスタの一方のゲートに接続され、前記演算増幅器の反転入力端子および非反転入力端子の一方が前記P型トランジスタおよび前記N型トランジスタの両方のドレインに接続され、前記反転入力端子および前記非反転入力端子の他方に所定の参照電圧が印加されている増幅器と、
 前記ドレインから出力された信号を処理する信号処理部と
を具備する電子回路。
(10)前記P型トランジスタおよび前記N型トランジスタの一方の前記ゲートに制御信号の示す値のバイアス電圧を供給するバイアス電圧供給部と、
 前記P型トランジスタの前記ゲートと前記N型トランジスタの前記ゲートとの間に挿入されたコンデンサと
をさらに具備する前記(9)記載の電子回路。
(11)前記信号処理部は、前記ドレインから出力された信号を処理するとともに前記信号のレベルに基づいて前記制御信号を生成する
前記(10)記載の電子回路。
[Correction based on Rule 91 14.03.2016]
In addition, this technique can also take the following structures.
(1) a P-type transistor and an N-type transistor connected in series;
An operational amplifier,
An output terminal of the operational amplifier is connected to one gate of the P-type transistor and the N-type transistor, and one of the inverting input terminal and the non-inverting input terminal of the operational amplifier is both the P-type transistor and the N-type transistor. And a predetermined reference voltage is applied to the other of the inverting input terminal and the non-inverting input terminal.
(2) a bias voltage supply unit that supplies a predetermined bias voltage to one of the gates of the P-type transistor and the N-type transistor;
The amplifier according to (1), further comprising a capacitor inserted between the gate of the P-type transistor and the gate of the N-type transistor.
(3) The amplifier according to (1) or (2), further including a current source connected to the drain.
(4) The amplifier according to (3), further including a cascode transistor element inserted between the drain and the current source.
(5) further comprising a comparator for comparing the potential of the gate with a predetermined potential and supplying the comparison result;
The amplifier according to (3) or (4), wherein the current source supplies the predetermined current based on a comparison result of the comparator.
(6) further comprising a low-pass filter;
The current source comprises a transistor;
The amplifier according to any one of (3) to (5), wherein the low-pass filter supplies a DC bias voltage to a gate terminal of the transistor.
(7) The amplifier according to any one of (1) to (6), further including an impedance matching circuit that matches impedances of circuits at both ends of the transmission line connected to the amplifier.
(8) The amplifier according to any one of (1) to (7), wherein the predetermined reference voltage is a value equal to or higher than a saturation drain voltage of one of the P-type transistor and the N-type transistor.
(9) A P-type transistor and an N-type transistor connected in series, and an operational amplifier, and an output terminal of the operational amplifier is connected to one gate of the P-type transistor and the N-type transistor, One of the inverting input terminal and the non-inverting input terminal of the amplifier is connected to the drains of both the P-type transistor and the N-type transistor, and a predetermined reference voltage is applied to the other of the inverting input terminal and the non-inverting input terminal. An amplifier,
An electronic circuit comprising: a signal processing unit that processes a signal output from the drain.
(10) a bias voltage supply unit that supplies a bias voltage having a value indicated by a control signal to one of the gates of the P-type transistor and the N-type transistor;
The electronic circuit according to (9), further comprising a capacitor inserted between the gate of the P-type transistor and the gate of the N-type transistor.
(11) The electronic circuit according to (10), wherein the signal processing unit processes the signal output from the drain and generates the control signal based on the level of the signal.
 100 アンテナ
 200 無線受信機
 210 周波数ダウンコンバータ
 220 低域通過フィルタ
 230 ADコンバータ
 240、241 デジタル信号処理部
 300、301 低雑音増幅器
 310、340、384、385、386 N型トランジスタ
 320、331 P型トランジスタ
 330 補助電流源
 350 同相帰還回路
 351、362、389 抵抗
 352 演算増幅器
 360 ローパスフィルタ
 361、371、373、387、388 コンデンサ
 372 インピーダンス整合回路
 380、381 バイアス電圧供給部
 382、383 参照電流源
 390 コンパレータ
 400 電子装置
DESCRIPTION OF SYMBOLS 100 Antenna 200 Radio | wireless receiver 210 Frequency down converter 220 Low-pass filter 230 AD converter 240,241 Digital signal processing part 300,301 Low noise amplifier 310,340,384,385,386 N-type transistor 320,331 P-type transistor 330 Auxiliary current source 350 In- phase feedback circuit 351, 362, 389 Resistor 352 Operational amplifier 360 Low- pass filter 361, 371, 373, 387, 388 Capacitor 372 Impedance matching circuit 380, 381 Bias voltage supply unit 382, 383 Reference current source 390 Comparator 400 Electron apparatus

Claims (11)

  1. [規則91に基づく訂正 14.03.2016] 
     直列に接続されたP型トランジスタおよびN型トランジスタと、
     演算増幅器と
    を具備し、
     前記演算増幅器の出力端子が前記P型トランジスタおよび前記N型トランジスタの一方のゲートに接続され、前記演算増幅器の反転入力端子および非反転入力端子の一方が前記P型トランジスタおよび前記N型トランジスタの両方のドレインに接続され、前記反転入力端子および前記非反転入力端子の他方に所定の参照電圧が印加される
    増幅器。
    [Correction based on Rule 91 14.03.2016]
    A P-type transistor and an N-type transistor connected in series;
    An operational amplifier,
    An output terminal of the operational amplifier is connected to one gate of the P-type transistor and the N-type transistor, and one of the inverting input terminal and the non-inverting input terminal of the operational amplifier is both the P-type transistor and the N-type transistor. And a predetermined reference voltage is applied to the other of the inverting input terminal and the non-inverting input terminal.
  2.  前記P型トランジスタおよび前記N型トランジスタの一方の前記ゲートに所定のバイアス電圧を供給するバイアス電圧供給部と、
     前記P型トランジスタの前記ゲートと前記N型トランジスタの前記ゲートとの間に挿入されたコンデンサと
    をさらに具備する請求項1記載の増幅器。
    A bias voltage supply unit for supplying a predetermined bias voltage to one of the gates of the P-type transistor and the N-type transistor;
    The amplifier according to claim 1, further comprising a capacitor inserted between the gate of the P-type transistor and the gate of the N-type transistor.
  3.  前記ドレインに接続された電流源をさらに具備する
    請求項1記載の増幅器。
    The amplifier of claim 1, further comprising a current source connected to the drain.
  4.  前記ドレインと前記電流源との間に挿入されたカスコードトランジスタ素子をさらに具備する
    請求項3記載の増幅器。
    4. The amplifier according to claim 3, further comprising a cascode transistor element inserted between the drain and the current source.
  5.  前記ゲートの電位と所定電位とを比較して当該比較結果を供給するコンパレータをさらに具備し、
     前記電流源は、前記コンパレータの比較結果に基づいて前記所定の電流を供給する
    請求項3記載の増幅器。
    A comparator that compares the potential of the gate with a predetermined potential and supplies the comparison result;
    The amplifier according to claim 3, wherein the current source supplies the predetermined current based on a comparison result of the comparator.
  6.  ローパスフィルタをさらに具備し、
     前記電流源は、トランジスタを備え、
     前記ローパスフィルタは、前記トランジスタのゲート端子に直流バイアス電圧を供給する請求項3記載の増幅器。
    A low-pass filter,
    The current source comprises a transistor;
    The amplifier according to claim 3, wherein the low-pass filter supplies a DC bias voltage to a gate terminal of the transistor.
  7.  前記増幅器に接続された伝送路の両端の回路のそれぞれのインピーダンスを整合するインピーダンス整合回路をさらに具備する
    請求項1記載の増幅器。
    The amplifier according to claim 1, further comprising an impedance matching circuit that matches impedances of circuits at both ends of a transmission line connected to the amplifier.
  8.  前記所定の参照電圧は、前記P型トランジスタおよび前記N型トランジスタの一方の飽和ドレイン電圧以上の値である
    請求項1記載の増幅器。
    2. The amplifier according to claim 1, wherein the predetermined reference voltage is a value equal to or higher than a saturation drain voltage of one of the P-type transistor and the N-type transistor.
  9. [規則91に基づく訂正 14.03.2016] 
     直列に接続されたP型トランジスタおよびN型トランジスタと、演算増幅器とを具備し、前記演算増幅器の出力端子が前記P型トランジスタおよび前記N型トランジスタの一方のゲートに接続され、前記演算増幅器の反転入力端子および非反転入力端子の一方が前記P型トランジスタおよび前記N型トランジスタの両方のドレインに接続され、前記反転入力端子および前記非反転入力端子の他方に所定の参照電圧が印加される増幅器と、
     前記ドレインから出力された信号を処理する信号処理部と
    を具備する電子回路。
    [Correction based on Rule 91 14.03.2016]
    A P-type transistor and an N-type transistor connected in series; and an operational amplifier; an output terminal of the operational amplifier is connected to one gate of the P-type transistor and the N-type transistor; An amplifier in which one of an input terminal and a non-inverting input terminal is connected to drains of both the P-type transistor and the N-type transistor, and a predetermined reference voltage is applied to the other of the inverting input terminal and the non-inverting input terminal; ,
    An electronic circuit comprising: a signal processing unit that processes a signal output from the drain.
  10.  前記P型トランジスタおよび前記N型トランジスタの一方の前記ゲートに制御信号の示す値のバイアス電圧を供給するバイアス電圧供給部と、
     前記P型トランジスタの前記ゲートと前記N型トランジスタの前記ゲートとの間に挿入されたコンデンサと
    をさらに具備する請求項9記載の電子回路。
    A bias voltage supply unit that supplies a bias voltage having a value indicated by a control signal to one of the gates of the P-type transistor and the N-type transistor;
    The electronic circuit according to claim 9, further comprising a capacitor inserted between the gate of the P-type transistor and the gate of the N-type transistor.
  11.  前記信号処理部は、前記ドレインから出力された信号を処理するとともに前記信号のレベルに基づいて前記制御信号を生成する
    請求項10記載の電子回路。
     
    The electronic circuit according to claim 10, wherein the signal processing unit processes a signal output from the drain and generates the control signal based on a level of the signal.
PCT/JP2016/053237 2015-03-24 2016-02-03 Amplifier and electronic circuit WO2016152267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/554,366 US10587227B2 (en) 2015-03-24 2016-02-03 Amplifier and electronic circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-060619 2015-03-24
JP2015060619 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152267A1 true WO2016152267A1 (en) 2016-09-29

Family

ID=56977975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053237 WO2016152267A1 (en) 2015-03-24 2016-02-03 Amplifier and electronic circuit

Country Status (2)

Country Link
US (1) US10587227B2 (en)
WO (1) WO2016152267A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017801A (en) * 2018-07-23 2020-01-30 住友電気工業株式会社 amplifier
WO2020189222A1 (en) * 2019-03-19 2020-09-24 ソニーセミコンダクタソリューションズ株式会社 Potential measurement device
WO2021039279A1 (en) * 2019-08-30 2021-03-04 ソニーセミコンダクタソリューションズ株式会社 Amplifier and signal processing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948252B1 (en) 2017-04-06 2018-04-17 Psemi Corporation Device stack with novel gate capacitor topology
DE102019205114B4 (en) * 2019-04-10 2022-02-10 Siemens Healthcare Gmbh Single-stage amplifier with active feedback compensation
US11329609B2 (en) * 2019-09-25 2022-05-10 Skyworks Solutions, Inc. Analog bias control of RF amplifiers
CN115021687B (en) * 2022-05-18 2023-03-28 杭州地芯科技有限公司 Operational amplifier and electronic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063756A (en) * 1996-06-07 1998-03-06 Sharp Corp Analog signal processing device, and correlation arithmetic unit using the same
JP2006060606A (en) * 2004-08-20 2006-03-02 Interchip Kk Inverting amplifier

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689607A (en) * 1986-01-27 1987-08-25 General Datacomm, Inc. Bidirectional transconductance amplifier
US5838193A (en) * 1996-11-26 1998-11-17 Motorola, Inc. Time-delay compensating wideband class-s modulator and method therefor
US6441685B1 (en) * 2000-03-17 2002-08-27 Jl Audio, Inc. Amplifier circuit and method for providing negative feedback thereto
US7130412B2 (en) * 2001-11-29 2006-10-31 Adtran, Inc. Telecommunication line driver having synthesized output impedance derived from output current sensing circuit
US6940353B2 (en) * 2003-10-16 2005-09-06 Micrel, Incorporated High frequency power amplifier
DE102005041052B3 (en) * 2005-08-30 2007-03-29 Infineon Technologies Ag Method for stability control of a self-oscillating driver circuit and self-oscillating driver circuit
US8725105B2 (en) * 2012-05-24 2014-05-13 Mediatek Inc. Low noise amplifier and saw-less receiver with low-noise amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063756A (en) * 1996-06-07 1998-03-06 Sharp Corp Analog signal processing device, and correlation arithmetic unit using the same
JP2006060606A (en) * 2004-08-20 2006-03-02 Interchip Kk Inverting amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017801A (en) * 2018-07-23 2020-01-30 住友電気工業株式会社 amplifier
WO2020189222A1 (en) * 2019-03-19 2020-09-24 ソニーセミコンダクタソリューションズ株式会社 Potential measurement device
WO2021039279A1 (en) * 2019-08-30 2021-03-04 ソニーセミコンダクタソリューションズ株式会社 Amplifier and signal processing device

Also Published As

Publication number Publication date
US20190158032A1 (en) 2019-05-23
US10587227B2 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2016152267A1 (en) Amplifier and electronic circuit
US8676148B2 (en) Differential amplifier circuit and wireless receiving apparatus
US7109801B2 (en) Low gate oxide stress power amplifier
JP5854372B2 (en) Power amplification module
US8035443B2 (en) Amplifier with gain expansion stage
US10139436B2 (en) Method and system for a wideband CMOS RMS power detection scheme
US9166530B2 (en) Low noise amplifier and receiver
JP3971368B2 (en) A signal intensity detection circuit and an amplification factor control system using the same.
US20150280672A1 (en) Low noise amplifier and receiver
KR100682056B1 (en) Buffer Amplifier
JP2006314059A (en) Semiconductor device
US10707814B2 (en) Amplifier device
US7501892B2 (en) Amplifier circuit and communication device
TWI623193B (en) Power amplifier circuit
TWI485976B (en) Semiconductor integrated circuit and trusted device
US8115553B1 (en) High linearity, low noise, wide bandwidth amplifier/buffer
JP5139963B2 (en) Differential amplifier
US8633767B2 (en) Amplifier circuit with noise suppression and related noise suppression method thereof
JP2005197904A (en) Amplifier and semiconductor integrated circuit
JP2010273284A (en) High frequency amplifier
JP2011188343A (en) Semiconductor integrated circuit device
JP2008258789A (en) Low noise amplifier
JP5239875B2 (en) Bias current generating circuit, amplifier and communication transmitting / receiving circuit
CN109976436B (en) Voltage detector and communication circuit
KR20230115552A (en) Differential envelope detector with common mode feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP