WO2016080244A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2016080244A1
WO2016080244A1 PCT/JP2015/081604 JP2015081604W WO2016080244A1 WO 2016080244 A1 WO2016080244 A1 WO 2016080244A1 JP 2015081604 W JP2015081604 W JP 2015081604W WO 2016080244 A1 WO2016080244 A1 WO 2016080244A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrode
electric field
drive
substrate
Prior art date
Application number
PCT/JP2015/081604
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 森脇
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016080244A1 publication Critical patent/WO2016080244A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/169Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on orientable non-spherical particles having a common optical characteristic, e.g. suspended particles of reflective metal flakes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to an optical device, and more particularly to an optical device having a pixel whose reflectance or transmittance changes according to the magnitude of an applied voltage.
  • Patent Document 1 discloses a liquid crystal display device using the memory property of cholesteric liquid crystal.
  • the cholesteric liquid crystal has a property (memory property) that can maintain the alignment state when the applied voltage is zero. Therefore, power consumption can be reduced by reducing the number of times image data is written using this memory property.
  • Patent Document 2 discloses a liquid crystal display device with a built-in pixel memory.
  • a static memory is included in the pixel circuit of each pixel, a refresh operation is not necessary when displaying a still image, and thus power consumption can be reduced.
  • Patent Document 1 Since the technology of Patent Document 1 uses the memory property of a cholesteric liquid crystal material that is a constituent material of the display medium layer (liquid crystal layer), naturally, the display medium layer itself has no memory property. Not applicable.
  • Patent Document 2 can be applied to a display device in which the display medium layer itself does not have a memory property, in order to operate the pixel memory when the applied voltage at the time of writing image data is high. Necessary power consumption increases.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an optical device excellent in low power consumption.
  • An optical device includes a pixel, and an optical panel in which the reflectance or transmittance of the pixel changes according to the magnitude of a voltage applied to the pixel, and supplies a signal voltage to the optical panel.
  • An optical device wherein the voltage-reflectance characteristic or voltage-transmittance characteristic of the pixel has hysteresis, and the voltage-reflectance characteristic when the applied voltage is increased or The threshold voltage in the step-up curve showing the voltage-transmittance characteristic is higher than the threshold voltage in the voltage-reflectance characteristic or the step-down curve showing the voltage-transmittance characteristic when the applied voltage is decreased, and the applied voltage is In the state of zero, the pixel does not have a memory property, and the applied voltage is changed from a write voltage that is an applied voltage at the time of writing driving for writing data to the pixel.
  • the reflectance or transmittance is substantially constant in a range from the write voltage to a predetermined voltage lower than the write voltage, and
  • the reflectance or transmittance value in the boosting curve when the applied voltage is increased from zero is determined substantially in a one-to-one relationship with the voltage value.
  • refresh drive after performing the pause drive, refresh drive can be performed in which the applied voltage that has decreased during the pause drive is returned to the write voltage.
  • the write drive and / or the refresh drive are performed over a plurality of frames.
  • the period during which the refresh drive is performed is shorter than the period during which the write drive is performed.
  • the first pause drive is performed and the nth (n is an integer of 2 or more) pause drive is performed.
  • the polarity of the applied voltage is opposite in the period of time.
  • the write drive is performed over a plurality of frames, and a waveform pattern of a signal voltage supplied from the driver in a final frame in a period during which the write drive is performed is determined by the driver in a frame before the final frame. This is different from the waveform pattern of the signal voltage supplied from.
  • an optical device in one embodiment, includes a first substrate and a second substrate provided to face each other, and an optical layer provided between the first substrate and the second substrate.
  • the optical layer includes a medium and shape anisotropic particles dispersed in the medium and having shape anisotropy, the medium includes a liquid crystal material, and a lateral electric field and / or fringe is applied to the optical layer. An electric field can be applied.
  • an optical device includes a thin film transistor provided in the pixel, and the thin film transistor includes an oxide semiconductor layer.
  • an optical device excellent in low power consumption is provided.
  • FIG. 1 is a block diagram schematically showing a display device (optical device) 100 according to an embodiment of the present invention.
  • 4 is a cross-sectional view schematically showing a display panel 110 included in the display device 100, and shows a cross section taken along line 2A-2A 'in
  • FIG. 4 is a plan view schematically showing a display panel 110.
  • FIG. (A) is a figure which shows typically the display panel 110 when the electric field is not applied to the optical layer 30,
  • (b) is the display panel 110 when the fringe electric field is applied to the optical layer 30.
  • FIG. 3 is a diagram schematically showing the display panel 110 when a vertical electric field is applied to the optical layer 30.
  • FIG. 3 is a diagram schematically showing the display panel 110 when a fringe electric field and a lateral electric field are applied to the optical layer 30.
  • FIG. (A) is a figure which shows the mode of the optical layer 30 immediately after changing the electric field currently applied to the optical layer 30 from a fringe electric field and / or a horizontal electric field to a vertical electric field
  • (b) is enough after that It is a figure which shows the mode of the optical layer 30 after time passes.
  • It is a top view which shows the electrode structure in a test cell.
  • the potential V 1 of the first electrode 11 in the test cell, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
  • FIG. 1 It is a graph which shows the relationship between pixel voltage (The voltage between the 1st electrode 11, the 2nd electrode 12, and the 3rd electrode 13) Vop (V) and the reflectance (Y value) of a SCE system.
  • Vop The orientation state of the shape anisotropic particles 32 at points A-1, A-2, B-3, B-4, C-5, C-6, C-7, and A-8 in FIG.
  • FIG. It is a graph which shows a step-up curve and a step-down curve when the driving of increasing the pixel voltage Vop from the off voltage (0 V) to the writing voltage corresponding to white display and then decreasing it again to the off voltage is repeated three times.
  • 6 is a graph showing a step-up curve and a step-down curve including a point P1 corresponding to data writing in a certain halftone D and a point P2 stepped down therefrom.
  • (A) And (b) is a figure which shows the orientation state of the shape anisotropic particle 32 corresponding to the points P1 and P2 in FIG. 14, respectively. It is a graph which shows the pressure
  • FIG. 5 is a flowchart illustrating an example of driving in the display device 100. In each of the write drive, resting drive and refresh driving, the potential V 1 of the first electrode 11, the potential V 2 of the second electrode 12, the potential V 3 of the third electrode 13, the potential V 4 and the gate voltage of the fourth electrode 21 It is a timing chart which shows (scanning signal voltage) Vg.
  • FIG. 5 shows (scanning signal voltage) Vg.
  • FIG. 6 is a cross-sectional view schematically showing an FFS mode liquid crystal display device 800.
  • (A) And (b) is sectional drawing which shows the liquid crystal display device 900 of patent document 3 typically. It is a figure which shows typically a mode that the weak electric field area
  • FIG. FIG. 11 is a diagram schematically showing how a weak electric field region WR is generated in an FFS mode liquid crystal display device 800.
  • (A) And (b) is a figure which shows the electric field produced
  • FIG. 11 is a diagram illustrating a state in which a fringe electric field is applied in the FFS mode liquid crystal display device 800. It is a figure which shows the electric field produced
  • the waveform pattern of the signal voltage in the last frame of the first write drive WD1 is made the same as the waveform pattern of the signal voltage in the previous frame, it is generated in the optical layer 30 at the start of the first pause drive PD1.
  • (A) and (b) show the potential V of the first electrode 11 in the first write drive WD1 and the first refresh drive RD1 when the drive frequency is 120 Hz (that is, one frame is about 8.3 msec).
  • the potential V 2 of the second electrode 12 the potential V 3 of the third electrode 13 is a timing chart showing the potential V 4 and the gate voltage (scan signal voltage) Vg of the fourth electrode 21.
  • (A) is a figure which shows the electric field produced
  • (b) is a case in which write drive is performed at a comparatively high frequency. It is a figure which shows the electric field produced
  • 6 is a diagram showing another electrode configuration of the display panel 110.
  • FIG. FIG. 10 is a diagram showing still another electrode configuration of the display panel 110. It is a top view which shows the example of the specific wiring structure in the back substrate 10 in the case of performing active matrix drive. It is a block diagram showing typically electronic equipment 200 provided with display 100 by an embodiment of the present invention.
  • An optical device includes an optical panel having pixels and a driver that supplies a signal voltage to the optical panel.
  • the optical characteristics (specifically, reflectance or transmittance) of the pixel change depending on the magnitude of the voltage applied to the pixel, and the voltage-reflectance characteristic or voltage-transmittance characteristic of the pixel has a hysteresis characteristic.
  • the threshold voltage in the curve indicating the voltage-reflectance characteristic or voltage-transmittance characteristic when the applied voltage is increased (hereinafter referred to as “boost curve”) is the voltage when the applied voltage is decreased.
  • the pixel does not have a memory property in a state where it is higher than a threshold voltage in a curve indicating reflectance characteristics or voltage-transmittance characteristics (hereinafter referred to as “step-down curve”) and the applied voltage is zero.
  • the write voltage in the step-down curve when the applied voltage is decreased from the write voltage (applied voltage at the time of write driving for writing data to the pixel), the write voltage is more than the write voltage.
  • the reflectance or transmittance is substantially constant in the range up to a low predetermined voltage. Therefore, even if the voltage supply is stopped after writing driving and the applied voltage to the pixel is lowered, the reflectance or transmittance is substantially reduced in a predetermined voltage range after the reduction (that is, in a certain period after the voltage reduction starts). Can be kept constant. Therefore, the power consumption can be reduced by performing the pause drive that pauses the driver after the write drive.
  • FIG. 1 shows an optical device (display device) 100 according to an embodiment of the present invention.
  • FIG. 1 is a block diagram schematically showing the display device 100.
  • the display device 100 includes an optical panel (display panel) 110 and a driver (drive circuit) 120 as shown in FIG.
  • the display panel 110 has pixels whose reflectance or transmittance changes according to the magnitude of the applied voltage.
  • the display panel 110 includes a plurality of pixels arranged in a matrix and is driven by an active matrix method.
  • the driver 120 supplies a signal voltage to the display panel 110.
  • the display device 100 includes a gate driver (scanning line driver circuit) 120 g that supplies a scanning signal voltage to the display panel 110 and a source driver (a source driver that supplies the display signal voltage to the display panel 110).
  • Signal line driving circuit 120s.
  • FIG. 2 is a cross-sectional view schematically showing the display panel 110
  • FIG. 3 is a plan view schematically showing the display panel 110.
  • FIG. 2 shows a cross section taken along line 2A-2A 'in FIG.
  • the display panel 110 is a reflective display panel that can perform display in a reflection mode using light incident from the outside (ambient light).
  • the display panel 110 includes a first substrate 10 and a second substrate 20 provided so as to face each other, and an optical layer (display) provided between the first substrate 10 and the second substrate 20.
  • Medium layer) 30 the first substrate 10 and the second substrate 20
  • the first substrate 10 positioned relatively on the back side may be referred to as a “back side substrate” and may be referred to relatively on the front side (that is, on the viewer side).
  • the second substrate 20 positioned at () may be referred to as a “front substrate”.
  • the first substrate (back substrate) 10 has a first electrode 11 and a second electrode 12 that can be given different potentials.
  • the first electrode 11 and the second electrode 12 are provided in each of the plurality of pixels.
  • Each of the 1st electrode 11 and the 2nd electrode 12 has a comb-tooth shape, as shown in FIG.
  • the first electrode 11 has a trunk portion 11b and a plurality of branch portions 11a extending from the trunk portion 11b.
  • the second electrode 12 includes a trunk portion 12b and a plurality of branch portions 12a extending from the trunk portion 12b.
  • the first electrode 11 and the second electrode 12 are arranged so that the plurality of branch portions 11a and 12a mesh with each other via a predetermined gap (hereinafter also referred to as “interelectrode distance”) g. Yes.
  • the width w 1 of the branch part 11 a of the first electrode 11 and the width w 2 of the branch part 12 a of the second electrode 12 are not particularly limited.
  • the inter-electrode distance g, the width w 1 of the branch portion 11a of the first electrode 11, and the width w 2 of the branch portion 12a of the second electrode 12 are each about several ⁇ m to several tens of ⁇ m, for example.
  • the width w 1 of the branch portion 11a of the first electrode 11 and the width w 2 of the branch portion 12a of the second electrode 12 may be the same or different.
  • the first substrate 10 further includes a third electrode 13 provided below the first electrode 11 and the second electrode 12 with the insulating layer 14 interposed therebetween.
  • the first electrode 11, the second electrode 12, and the third electrode 13 may be referred to as “first upper layer electrode”, “second upper layer electrode”, and “lower layer electrode”, respectively.
  • the third electrode 13 is a so-called solid electrode in which no slit or notch is formed.
  • the first substrate 10 is typically an active matrix substrate, and includes a plurality of thin film transistors (TFTs) provided in each pixel and various wirings (a gate wiring, a source wiring, etc. electrically connected to the TFT). (Both not shown here).
  • TFTs thin film transistors
  • the first electrode 11, the second electrode 12, and the third electrode 13 are electrically connected to the corresponding TFTs, respectively.
  • the first substrate 10 further includes a light absorption layer 16 that absorbs light.
  • a light absorption layer 16 that absorbs light.
  • a material of the light absorption layer 16 for example, a pigment used for a black matrix material included in a color filter of a liquid crystal display device or the like can be used.
  • a low-reflection chromium film having a two-layer structure (having a structure in which a chromium layer and a chromium oxide layer are stacked) can be used as the light absorption layer 16.
  • the components of the first substrate 10 are supported by an insulating substrate (for example, a glass substrate) 10a.
  • an insulating substrate for example, a glass substrate
  • the light absorption layer 16 is provided on the back side of the substrate 10a.
  • the light absorption layer 16 may be provided on the optical layer 30 side of the substrate 10a.
  • the second substrate (front substrate) 20 has a fourth electrode (counter electrode) 21 facing the first electrode 11, the second electrode 12 and the third electrode 13.
  • the fourth electrode 21 may be a so-called solid electrode in which no slit or notch is formed.
  • the second substrate 20 further includes a dielectric layer (overcoat layer) 22 provided on the fourth electrode 21.
  • the fourth electrode 21 does not need to be electrically independent for each pixel, and may be a continuous single conductive film (that is, a common electrode) common to all pixels.
  • the fourth electrode 21 is a solid electrode common to all the pixels, patterning by a photolithography technique is not necessary, so that the manufacturing cost can be reduced.
  • the second substrate 20 includes a color filter (not shown).
  • the components of the second substrate 20 (such as the fourth electrode 21 described above) are supported by an insulating substrate (for example, a glass substrate) 20a.
  • an insulating substrate for example, a glass substrate
  • Each of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 is made of a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the method for depositing the conductive film to be these electrodes and various known methods such as a sputtering method, a vacuum evaporation method, and a plasma CVD method can be used.
  • the method for patterning the conductive film in order to form the first electrode 11 and the second electrode 12 having a comb-teeth shape and a known patterning method such as photolithography can be used.
  • the thicknesses of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 are, for example, 100 nm.
  • the optical characteristics of the optical layer 30 change according to the applied electric field.
  • the optical layer 30 includes a liquid medium 31 and particles 32 dispersed in the medium 31 and having shape anisotropy (hereinafter referred to as “shape anisotropic particles”).
  • shape anisotropic particles The first substrate 10 and the second substrate 20 described above are bonded together via a seal portion (not shown here) formed so as to surround the display region, and the medium 31 and the shape anisotropic particles 32 are: It is enclosed in a region (that is, a display region) surrounded by the seal portion.
  • the thickness of the optical layer 30 is, for example, 5 ⁇ m to 30 ⁇ m.
  • the shape anisotropic particle 32 has light reflectivity.
  • the shape anisotropic particle 32 has, for example, a flake shape (flaky shape).
  • the orientation direction of the shape anisotropic particles 32 changes according to the electric field (voltage) applied to the optical layer 30. Since the shape anisotropic particles 32 have shape anisotropy, when the orientation direction of the shape anisotropic particles 32 changes, the substrate surface of the shape anisotropic particles 32 (the substrate surface of the first substrate 10). The projected area on the screen also changes, and the optical characteristics (reflectance in this case) of the optical layer 30 change accordingly. The display panel 110 performs display using this fact. The reason why the orientation direction of the shape anisotropic particles 32 changes according to the applied electric field will be described in detail later.
  • the medium 31 is a liquid crystal material and includes liquid crystal molecules.
  • the liquid crystal material is a nematic liquid crystal material having positive dielectric anisotropy. That is, the medium 31 is a so-called positive nematic liquid crystal material, and the dielectric constant ⁇ // in the major axis direction of the liquid crystal molecules is larger than the dielectric constant ⁇ ⁇ in the minor axis direction. Since the medium 31 is a nematic liquid crystal material, the pixel does not have a memory property when the applied voltage is zero.
  • Each of the first substrate 10 and the second substrate 20 has vertical alignment films 15 and 25 provided on the optical layer 30 side.
  • the vertical alignment films 15 and 25 have an alignment regulating force for vertically aligning liquid crystal molecules contained in the medium (liquid crystal material) 31 (aligned substantially perpendicularly to the substrate surface of the first substrate 10 or the second substrate 20).
  • the vertical alignment films 15 and 25, as will be described in detail later, are alignment restrictions that cause the shape anisotropic particles 32 to be vertically aligned (aligned substantially perpendicularly to the substrate surface of the first substrate 10 or the second substrate 20). Also has power.
  • the vertical alignment film is not necessarily provided on both the first substrate 10 and the second substrate 20, and the vertical alignment film may be provided on only one (for example, only the first substrate 10).
  • a fringe electric field is generated in the optical layer 30 by the first electrode (first upper layer electrode) 11, the second electrode (second upper layer electrode) 12, and the third electrode (lower layer electrode) 13. Is done.
  • a vertical electric field is generated in the optical layer 30 by the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode (counter electrode) 21.
  • FIGS. 4 (a) and 4 (b) 4A is a diagram schematically showing the display panel 110 when no electric field is applied to the optical layer 30, and FIG. 4B is a diagram when a fringe electric field is applied to the optical layer 30. It is a figure which shows typically the display panel 110 of.
  • the shape anisotropic particles 32 are first (its longitudinal direction) due to the alignment regulating force of the vertical alignment films 15 and 25.
  • the substrate 10 is oriented so as to be substantially perpendicular to the substrate surface (that is, in a vertically oriented state).
  • the alignment of the liquid crystal molecules substantially perpendicular to the substrate surface by the alignment regulating force of the vertical alignment films 15 and 25 serves to support the shape anisotropic particles 32 taking a vertical alignment state. In this state, most of the incident ambient light L is transmitted through the optical layer 30. That is, the optical layer 30 is in a transparent state.
  • the shape anisotropic particles 32 are oriented substantially perpendicular to the substrate surface” means that the shape anisotropic particles 32 are oriented strictly perpendicular to the substrate surface. Refers to a state of being oriented at an angle exhibiting substantially the same optical characteristics as the state of being, specifically, the shape anisotropic particles 32 are oriented at an angle of 75 ° or more with respect to the substrate surface. Refers to the state.
  • the shape anisotropic particles 32 have a longitudinal direction of the first substrate 10. Align so as to be substantially parallel to the substrate surface (that is, take a horizontal alignment state). The liquid crystal molecules are also aligned substantially parallel to the substrate surface of the first substrate 10. In this state, most of the incident ambient light L is reflected by the shape anisotropic particles 32 in the optical layer 30. That is, the optical layer 30 is in a reflective state, and white display can be performed in this state. Further, halftone display can be performed by applying a voltage lower than that during white display.
  • the second substrate 20 includes the fourth electrode 21 that faces the first electrode 11, the second electrode 12, and the third electrode 13, and thus generates a vertical electric field in the optical layer 30. You can also.
  • the shape anisotropic particles 32 (on the longitudinal direction) are formed on the substrate surface of the first substrate 10. Align so as to be substantially vertical (that is, take a vertical alignment state). The liquid crystal molecules are also aligned substantially perpendicular to the substrate surface of the first substrate 10. In this state, most of the incident ambient light L is transmitted through the optical layer 30. That is, the optical layer 30 is in a transparent state. Since ambient light transmitted through the optical layer 30 is absorbed by the light absorption layer 16, black display can be performed in this state.
  • a lateral electric field (represented by an electric force line Eh) may be applied to the optical layer 30 in addition to the fringe electric field, as shown in FIG.
  • a transverse electric field can be generated by the first electrode 11 and the second electrode 12.
  • an electric field generated by a potential difference between two electrodes provided on the same substrate on the same level is called a “lateral electric field”, and is generated by a potential difference between two electrodes provided on different levels on the same substrate.
  • the electric field is called a “fringe electric field”.
  • a mode in which display is performed by applying a fringe electric field and / or a lateral electric field to the optical layer 30 is referred to as a “lateral electric field mode”, and a mode in which display is performed by applying a vertical electric field to the optical layer 30. This is called “vertical electric field mode”.
  • FIGS. 7A and 7B show the optical layer immediately after the electric field applied to the optical layer 30 is changed from a fringe electric field and / or a horizontal electric field to a vertical electric field, and after a sufficient time has elapsed thereafter. It is a figure which shows the mode 30 (electric charge distribution and an electric force line).
  • the shape anisotropic particle 32 and the dielectric constant of the medium 31 are different, when the direction of the electric field applied to the optical layer 30 changes, as shown in FIG. Large distortion occurs. Therefore, as shown in FIG. 7B, the shape anisotropic particles 32 rotate so that the energy is minimized.
  • the dielectrophoretic force F dep acting on particles dispersed in a medium is expressed as follows, where the dielectric constant of the particles is ⁇ p , the dielectric constant of the medium is ⁇ m , the radius of the particles is a, and the strength of the electric field is E. It is represented by Formula (1). Re in the expression (1) is an operator that extracts a real part.
  • the medium 31 is a liquid crystal material and has dielectric anisotropy.
  • the shape anisotropic particles 32 are allowed to develop a vertical alignment state by the alignment regulating force of the vertical alignment films 15 and 25 and the support of liquid crystal molecules.
  • the vertical alignment operation and the horizontal alignment operation of the shape anisotropic particles 32 can be suitably switched.
  • the orientation direction of the shape anisotropic particles 32 can be changed by applying a voltage to the optical layer 30, and display can be performed using this. Since the display panel 110 does not require a polarizing plate, high light utilization efficiency can be realized.
  • the reflectance of each pixel changes according to the magnitude of the voltage applied to the pixel.
  • the voltage-reflectance characteristic of the pixel has a hysteresis characteristic.
  • this hysteresis property will be specifically described.
  • the step-up curve shown voltage-reflectance characteristics when the applied voltage is increased
  • the step-down curve shown as examples.
  • the display panel 110 having the above-described configuration was actually prototyped (that is, a test cell was manufactured), and the test cell was obtained.
  • the test cell adopts an electrode structure as shown in FIG. 8 instead of active matrix driving.
  • terminals 11t, 12t, and 13t are provided at the respective ends of the first electrode 11, the second electrode 12, and the third electrode 13.
  • a voltage having a desired waveform was input from the arbitrary waveform generator to the first electrode 11, the second electrode 12, and the third electrode 13 via the terminals 11t, 12t, and 13t.
  • the optical layer 30 has a thickness (cell thickness) of 15 ⁇ m.
  • the medium 31 is a positive nematic liquid crystal material (manufactured by Merck & Co., Inc.) having a dielectric anisotropy ⁇ of 20.4.
  • the average particle diameter of the shape anisotropic particles 32 is 7 ⁇ m, and the content of the shape anisotropic particles 32 in the optical layer 30 is 6% by weight.
  • the substrates 10a and 20a are glass substrates, respectively.
  • Each of the first electrode (first upper layer electrode) 11 and the second electrode (second upper layer electrode) 12 has a comb-tooth shape.
  • the third electrode (lower layer electrode) 13 has a plurality of slits (see FIG. 34 described later).
  • the fourth electrode (counter electrode) 21 is a solid electrode.
  • Each of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 is made of IZO and has a thickness of 100 nm.
  • the width w 1 of the branch portion 11a of the first electrode 11 and the width w 2 of the branch portion 12a of the second electrode 12 are each 3 ⁇ m, and the inter-electrode distance g is 10 ⁇ m.
  • the insulating layer 14 is made of SiNx and has a thickness of 350 nm.
  • the vertical alignment films 15 and 25 are polyamic acid-based vertical alignment films (manufactured by Nissan Chemical Industries) having a surface energy of 35 mJ / m 2 .
  • the potential V 1 of the first electrode 11 in the test cell, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13.
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, each frame within one period (about 16.7 msec) Change to + aV, 0V, -aV, 0V.
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
  • FIG. 10 shows the step-up curve and the step-down curve of the display panel 110 (test cell).
  • FIG. 10 is a graph showing the relationship between the pixel voltage (the voltage between the first electrode 11 and the second electrode 12 and the third electrode 13) Vop (V) and the reflectance (Y value) of the SCE method. .
  • the voltage-reflectance characteristic of the pixel has a hysteresis characteristic
  • the threshold voltage in the boost curve is higher than the threshold voltage in the buck curve.
  • the reflectance is substantially constant in a range r from the write voltage to a predetermined voltage lower than the write voltage.
  • the reflectance is substantially constant specifically means that the reflectance R is 0.8 times or more the reflectance Rw when the write voltage is applied within the range r. It means that it is 2 times or less (that is, the relationship of 0.8Rw ⁇ R ⁇ 1.2Rw is satisfied).
  • the reflectance value in the boost curve when the applied voltage is increased from zero is substantially determined in a one-to-one relationship with the voltage value.
  • FIG. 11 shows the orientation state of the shape anisotropic particles 32 at points A-1, A-2, B-3, B-4, C-5, C-6, C-7 and A-8 in FIG. FIG.
  • FIG. 11 see the alignment states corresponding to points A-1, A-2, B-3, B-4, and C-5
  • the optical layer 30 increases.
  • the electric field strength in the thickness direction increases. Accordingly, the shape anisotropic particles 32 in the vertical alignment state move to the first substrate 10 side and are horizontally aligned. Further, as can be seen from FIG.
  • the applied voltage is applied from the state in which many shape anisotropic particles 32 are horizontally aligned on the first substrate 10 side.
  • the shape anisotropic particles 32 do not exist so much on the counter substrate 20 side where the electric field strength is weak, most of the shape anisotropic particles 32 are in the horizontal alignment state on the first substrate 10 side. To maintain. This is the cause of the hysteresis.
  • the shape anisotropy can no longer maintain the horizontal alignment state. The particles 32 diffuse toward the second substrate 20 side.
  • the step-up curve and the step-down curve (see FIG. 10) of the display panel 110 include three regions A, B, and C.
  • the region A including points A-1, A-2, and A-8
  • the region B including points B-3 and B-4
  • the shape anisotropic particles 32 on the second substrate 20 side having relatively weak electric field strength move to the first substrate 10 side, and the orientation direction thereof changes.
  • the shape anisotropic particles 32 maintain the horizontal alignment state on the first substrate 10 side.
  • the voltage-reflectance characteristic of the pixel has a hysteresis characteristic, and the write voltage in the step-down curve when the applied voltage is decreased from the write voltage.
  • the reflectivity is substantially constant in a range from a voltage to a predetermined voltage lower than the write voltage (range r in FIG. 10). Therefore, even if the voltage supply is stopped after writing driving and the applied voltage to the pixel is lowered, the reflectivity is maintained substantially constant in a predetermined voltage range after the reduction (that is, in a certain period after the voltage reduction starts). can do. Therefore, the power consumption can be reduced by performing the pause drive that pauses the driver 120 after the write drive.
  • the reflectance value in the boosting curve when the applied voltage is increased from zero is substantially determined in a one-to-one relationship with the voltage value. Therefore, halftone display can be suitably performed by setting the write voltage based on the boost curve.
  • the pixel memory used in the technique of Patent Document 2 is a binary digital circuit, the technique of Patent Document 2 cannot perform halftone display.
  • FIG. 12 shows the result of verifying the repeatability of hysteresis.
  • FIG. 12 is a graph showing a step-up curve and a step-down curve when the driving of increasing the pixel voltage Vop from the off-voltage (0 V) to the writing voltage corresponding to white display and then reducing it again to the off-voltage is repeated three times. It is.
  • FIG. 13 is a graph showing a step-up curve and a step-down curve when the driving of increasing the pixel voltage Vop from the off voltage (0 V) to the writing voltage and then decreasing the pixel voltage Vop again to the off voltage is repeated five times.
  • the first and fifth writing voltages are voltages corresponding to white display, whereas the second, third and fourth writing voltages are voltages corresponding to halftone display.
  • FIG. 13 shows that the boosting curve in the second and subsequent driving matches the boosting curve in the first driving. For this reason, switching from the black display to the halftone display may be performed by writing data with the pixel voltage Vop having a reflectance corresponding to the desired halftone display in accordance with the boost curve.
  • FIG. 13 shows that there is a range r in which the reflectance is substantially constant in the step-down curve after the data is written with the voltage corresponding to the halftone display.
  • FIG. 14 is a graph showing a step-up curve and a step-down curve including the point P1 corresponding to data writing in the halftone D and the point P2 stepped down from the point P2 within the range r described above.
  • a state in which the write voltage corresponding to the halftone D is applied to the pixel (point P1: see FIG. 15A) and a state in which the voltage is stepped down within the range r from that state (point P2: FIG. 15 (b)) is reversible. That is, in the voltage range (corresponding to the region C in FIG. 10) in which the shape anisotropic particles 32 maintain the horizontal alignment state on the first substrate 10 side, the change in the alignment state is reversible. For this reason, switching from the display of halftone D to the display of halftone E on the higher gradation side (or white display) is performed by changing the write voltage corresponding to halftone E as it is from the step-down state after writing the data of halftone D. Application may be performed (point P3 in FIG. 14).
  • FIG. 16 is a graph showing a step-up curve and a step-down curve.
  • FIGS. 17A, 17B, 18A, and 18B are respectively shown at points P4, P5, P6, and P7 in FIG. It is a figure which shows the orientation state of the corresponding shape anisotropic particle.
  • the step-down curve differs depending on the magnitude of the previous writing voltage. For this reason, the pixel voltage Vop and the reflectance are not determined in a one-to-one relationship.
  • the boosting curve differs depending on the amount of the shape anisotropic particles 32 maintaining the horizontal alignment state. Vop and reflectance are not determined in a one-to-one relationship. Therefore, when switching from white or a certain halftone D display to a lower halftone F display, the pixel voltage Vop is once set to zero (hereinafter also referred to as “black insertion”).
  • the pixel voltage Vop and the reflectance can be determined in a one-to-one relationship according to a boosting curve (including points P6 and P7) with the starting point being zero. From FIG. 16, after black insertion is performed, data is written with the write voltage corresponding to the halftone F (point P7), and when data is written directly from the point P4 with the write voltage corresponding to the halftone F. It can be seen that the reflectance is different between (Point P5).
  • the applied voltage to the pixel is once reduced to zero, and then the original writing voltage is applied to the pixel. do it.
  • the drive 120 after performing the write drive, the drive 120 can be paused so that the power consumption can be reduced.
  • the reflectance Rp of the pixel in the period in which the pause driving is performed is 0.9 to 1.1 times the reflectance Rw of the pixel when the writing voltage is applied (that is, 0.9 Rw). ⁇ Rp ⁇ 1.1Rw is satisfied). If the former reflectance Rp is 0.9 times or more and 1.1 times or less than the latter reflectance Rw, it is difficult for an observer to recognize a change in reflectance due to rest driving.
  • the display device 100 can perform refresh driving that returns the applied voltage, which has been reduced during the period of performing pause driving, to the writing voltage after performing pause driving. By performing the refresh drive, the reflectance of the pixel can be kept sufficiently high.
  • FIG. 19 is a flowchart illustrating an example of driving in the display device 100.
  • FIG. 20 in each of the write drive, resting drive and refresh driving, the potential V 1 of the first electrode 11, the potential V 2 of the second electrode 12, the potential V 3 of the third electrode 13, the fourth electrode 21 potential V 4 and the gate voltage is a timing chart showing the (scan signal voltage) Vg.
  • first write drive WD1 is performed first.
  • the signal voltage is naturally supplied from the gate driver 120g and the source driver 120s (that is, the driver 120 is on).
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, if one frame (60 Hz driving in one cycle, It changes to + 10V, 0V, -10V, 0V every about 16.7msec).
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 one frame of phase (towards the potential V 2 of the second electrode 12 is delayed by one frame).
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
  • the first write drive WD1 is performed for 9 cycles (36 frames).
  • the waveform pattern of the signal voltage in the last frame of the first write drive WD1 is different from the waveform pattern of the signal voltage in the frame before the last frame. More specifically, in the frame before the last frame, whereas the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 are different from each other in the final frame, the potential of the first electrode 11 V 1 and the potential V 2 of the second electrode 12 are the same (both are ⁇ 10 V).
  • the first pause drive PD1 is performed.
  • the gate driver 120g and the source driver 120s no signal voltage is supplied from the gate driver 120g and the source driver 120s, and the gate driver 120g and the source driver 120s are paused (that is, the driver 120 is off). Therefore, the gate voltage Vg remains off voltage much, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is gradually with time from the first rest driving PD1 starting -10V It approaches 0V.
  • Potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V.
  • the length of the period during which the first pause drive PD1 is performed is, for example, 40 seconds.
  • the first refresh drive RD1 is performed. Also in the first refresh drive RD1, the signal voltage is supplied from the gate driver 120g and the source driver 120s (that is, the driver 120 is in the on state).
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, -10 V for each frame within one period, 0V , + 10V and 0V.
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 one frame of phase (towards the potential V 1 of the first electrode 11 is delayed by one frame).
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V.
  • the first refresh drive RD1 is performed, for example, for 3 periods (12 frames).
  • the waveform pattern of the signal voltage in the last frame of the first refresh drive RD1 is different from the waveform pattern of the signal voltage in the frame before the last frame. More specifically, in the frame before the last frame, whereas the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 are different from each other in the final frame, the potential of the first electrode 11 V 1 and the potential V 2 of the second electrode 12 are the same (both are +10 V).
  • the second pause drive PD2 is performed.
  • the signal voltage is not supplied from the gate driver 120g and the source driver 120s, and the gate driver 120g and the source driver 120s are paused (that is, the driver 120 is off). Therefore, the gate voltage Vg remains off voltage much, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 gradually with time from the second rest driving PD2 starting + 10V It approaches 0V.
  • Potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V.
  • the length of the period during which the second pause drive PD2 is performed is, for example, 40 seconds.
  • the second refresh drive RD2 is performed. Also in the second refresh drive RD2, a signal voltage is supplied from the gate driver 120g and the source driver 120s (that is, the driver 120 is in an on state).
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, + 10V for each frame within one period, 0V, Varies between -10V and 0V.
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 one frame of phase (towards the potential V 2 of the second electrode 12 is delayed by one frame).
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V.
  • the second refresh drive RD2 is performed, for example, for 3 cycles (12 frames). Further, the waveform pattern of the signal voltage in the last frame of the second refresh drive RD2 is different from the waveform pattern of the signal voltage in the frame before the last frame. More specifically, in the frame before the last frame, whereas the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 are different from each other in the final frame, the potential of the first electrode 11 V 1 and the potential V 2 of the second electrode 12 are the same (both are ⁇ 10 V).
  • the first pause drive PD1 is performed again. Thereafter, the first refresh drive RD1, the second pause drive PD2, the second refresh drive RD2, and the first pause drive PD1 are repeated, or the second write drive WD2 is performed.
  • the signal voltage is naturally supplied from the gate driver 120g and the source driver 120s (that is, the driver 120 is in the on state).
  • the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, -10 V for each frame within one period, 0V , + 10V and 0V.
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 one frame of phase (towards the potential V 2 of the second electrode 12 is delayed by one frame).
  • the potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V.
  • the second write drive WD2 is performed, for example, for 9 cycles (36 frames).
  • the waveform pattern of the signal voltage in the last frame of the second write drive WD2 is different from the waveform pattern of the signal voltage in the frame before the last frame. More specifically, in the frame before the last frame, whereas the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 are different from each other in the final frame, the potential of the first electrode 11 V 1 and the potential V 2 of the second electrode 12 are the same (both are +10 V).
  • the second pause drive PD2, the second refresh drive RD2, the first pause drive PD1, the first refresh drive RD1, and the second pause drive PD2 are sequentially performed. Thereafter, the second refresh drive RD2, the first pause drive PD1, the first refresh drive RD1, and the second pause drive PD2 are repeated, or the first write drive WD1 is performed.
  • each of the first write drive WD1, the second write drive WD2, the first refresh drive RD1, and the second refresh drive RD2 is performed over a plurality of frames.
  • a sufficiently high reflectivity may not be obtained only by performing one frame of write driving and / or refresh driving.
  • the period in which each of the first refresh drive RD1 and the second refresh drive RD2 is performed is shorter than the period in which each of the first write drive WD1 and the second write drive WD2 is performed. .
  • the polarity of the voltage applied to the pixels is opposite between the period in which the first pause drive PD1 is performed and the period in which the second pause drive PD2 is performed.
  • the polarity of the applied voltage is reversed every pause driving.
  • a DC voltage is continuously applied to the optical layer 30.
  • the bias of the electric field is alleviated and seizure due to adsorption of ionic impurities. It is possible to suppress a decrease in reliability. Note that it is not always necessary to perform the polarity reversal for each pause drive.
  • the polarity inversion may be performed after the pause drive with the same polarity applied voltage is performed twice or more. That is, when the pause drive and the refresh drive are alternately repeated, the first pause drive is performed and the n-th (n is an integer of 2 or more) pause drive is performed.
  • the polarity of the applied voltage may be opposite.
  • the waveform pattern of the signal voltage in the last frame in the period in which each of the first write drive WD1 and the second write drive WD2 is performed is the waveform pattern of the signal voltage in the frame before the last frame. Is different. This makes it possible to apply a voltage with a waveform pattern suitable for sufficiently increasing the reflectance during writing driving, and to realize an electric field distribution in which the reflectance is stably maintained during rest driving. be able to. Hereinafter, this will be described more specifically.
  • a VA mode As a display mode of a liquid crystal display device, a VA (Vertical Alignment) mode and an FFS (Fringe Field Switching) mode are known.
  • VA mode display is performed by applying a vertical electric field to the vertically aligned liquid crystal layer.
  • FFS mode display is performed by applying a fringe electric field to the horizontally aligned liquid crystal layer.
  • FIG. 21 shows a general structure of an FFS mode liquid crystal display device.
  • a liquid crystal display device 800 illustrated in FIG. 21 includes a TFT substrate 810 and a counter substrate 820, and a liquid crystal layer 830 provided therebetween.
  • the TFT substrate 810 is provided on the transparent substrate 810a, the common electrode (lower layer electrode) 812 provided on the transparent substrate 810a, the insulating layer 813 provided to cover the common electrode 812, and the insulating layer 813.
  • the pixel electrode 811 has a comb shape.
  • the pixel electrode 811 has a plurality of comb teeth 811a extending in a predetermined direction and slits 811b formed between adjacent comb teeth 811a.
  • the counter substrate 820 includes a transparent substrate 820a and a color filter layer (not shown) provided on the transparent substrate 820a.
  • the liquid crystal layer 830 is a horizontal alignment type liquid crystal layer.
  • a horizontal alignment film (not shown) is provided on the surface of the TFT substrate 810 and the counter substrate 820 on the liquid crystal layer 830 side, and the liquid crystal molecules contained in the liquid crystal layer 830 are horizontally aligned in a state where no voltage is applied (that is, Oriented substantially parallel to the surfaces of the TFT substrate 810 and the counter substrate 820).
  • a fringe electric field (represented by an electric force line Ef) is generated in the liquid crystal layer 830.
  • Ef an electric force line
  • the FFS mode described above can achieve a wide viewing angle characteristic.
  • the VA mode can also realize a wide viewing angle characteristic.
  • Patent Document 3 discloses an electrode structure capable of achieving high-speed response and high transmittance of a VA mode liquid crystal display device.
  • 22A and 22B show the structure of the liquid crystal display device disclosed in Patent Document 3.
  • FIG. A liquid crystal display device 900 shown in FIGS. 22A and 22B includes a TFT substrate 910 and a counter substrate 920, and a liquid crystal layer 930 provided therebetween.
  • the TFT substrate 910 includes a glass substrate 910a, a lower layer electrode 913 provided on the glass substrate 910a, an insulating layer 914 provided so as to cover the lower layer electrode 913, and a pair of upper layer electrodes provided on the insulating layer 914. (First upper layer electrode and second upper layer electrode) 911 and 912. Each of the first upper layer electrode 911 and the second upper layer electrode 912 has a comb shape.
  • the counter substrate 920 includes a glass substrate 920a and a counter electrode 921 provided on the glass substrate 920a.
  • the liquid crystal layer 930 is a vertical alignment type liquid crystal layer.
  • a vertical alignment film (not shown) is provided on the surface of the TFT substrate 910 and the counter substrate 920 on the liquid crystal layer 930 side, and the liquid crystal molecules contained in the liquid crystal layer 930 are vertically aligned in a state where no voltage is applied (that is, Oriented substantially parallel to the surfaces of the TFT substrate 910 and the counter substrate 920).
  • the first upper layer electrode 911 and the second upper layer electrode 912 are arranged.
  • a lateral electric field (represented by electric lines of force Eh) due to the potential difference is generated in the liquid crystal layer 930.
  • a fringe electric field (represented by electric lines of force Ef) due to a potential difference between the first upper layer electrode 911 and the lower layer electrode 913 and a potential difference between the second upper layer electrode 912 and the lower layer electrode 913 is also generated in the liquid crystal layer 930. Is done.
  • Patent Document 3 describes an example in which potentials of +7 V, +14 V, +10.5 V, and +7 V are applied to the first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921, respectively.
  • a lateral electric field corresponding to 7 V and a fringe electric field corresponding to 3.5 V are applied to the liquid crystal layer 930.
  • Patent Document 3 describes an example in which potentials of + 14V, + 14V, + 14V, and 0V are applied to the first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921, respectively.
  • a vertical electric field corresponding to 14 V is applied to the liquid crystal layer 930.
  • the inventor of the present application examined the use of an electrode structure proposed for a liquid crystal display device as a method for further improving the light utilization efficiency of a display panel including an optical layer containing shape anisotropic particles. As a result, it has been found that the following problems occur when the electrode structure as described above is simply adopted.
  • the potential of the lower layer electrode 913 is limited, and a sufficiently strong fringe electric field cannot be generated.
  • the potential of the lower layer electrode 913 needs to be set to an intermediate potential between the potential of the first upper layer electrode 911 and the potential of the second upper layer electrode 912.
  • the potentials of the first upper electrode 911 and the second upper electrode 912 are +7 V and +14 V, respectively, it is necessary to set the potential of the lower electrode 913 to +10.5 V. Therefore, since the generated fringe electric field is equivalent to 3.5 V, compared to the case where the FFS mode electrode structure is adopted (a fringe electric field equivalent to 7 V is generated as shown in FIG. 21). The alignment regulating force due to the fringe electric field is weakened.
  • the potential of the lower layer electrode 913 is made the same as the potential of the first upper layer electrode 911 (for example, the first The first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921 are applied with potentials of + 7V, + 14V, + 7V, and + 7V, respectively), and as shown in FIG.
  • a strong fringe electric field (equivalent to 7 V) is generated due to a potential difference from 913, no fringe electric field is generated in the vicinity of the first upper layer electrode 911, and a weak electric field region WR having a relatively weak electric field strength is formed. Due to the presence of the weak electric field region WR, the light use efficiency (mode efficiency) is lowered.
  • the plurality of comb-tooth portions 811a of the pixel electrode 811 are at the same potential, so that no horizontal electric field is generated between the adjacent comb-tooth portions 811a. Therefore, as shown in FIG. 24, a weak electric field region WR is generated near the center of the slit 811b, and the light utilization efficiency is lowered.
  • FIGS. 25A and 25B are diagrams showing the electric field generated in the optical layer 30 when the first write drive WD1 is performed, and FIG. 25A shows the first write drive.
  • FIG. 25B corresponds to the second frame when the first write drive WD1 is performed, corresponding to the first frame when the WD1 is performed.
  • each pixel When an electric field is applied to the optical layer 30, as shown in FIGS. 25A and 25B, each pixel has a first region SR in which the electric field has the first electric field strength, and the electric field is greater than the first electric field strength.
  • the second region WR having a weak second electric field strength has an electric field distribution arranged along the in-plane direction of the optical layer 30.
  • the first region SR having a relatively strong electric field strength is referred to as a “strong electric field region”
  • the second region WR having a relatively weak electric field strength is referred to as a “weak electric field region”.
  • first fringe electric field a fringe electric field
  • second fringe electric field a fringe electric field
  • the second fringe electric field is generated, but the first fringe electric field is not generated.
  • the region where the fringe electric field is not generated near the branch portion 11a of the first electrode 11 is the weak electric field region WR, and the other region including the vicinity of the branch portion 12a of the second electrode 12 is the strong electric field region SR.
  • the period during which the same display is performed (that is, a certain pixel has the same gradation level).
  • the arrangement of the strong electric field region SR and the weak electric field region WR in the electric field distribution is exchanged one or more times within a period during which the display is performed. That is, the position of the weak electric field region WR is not fixed, and the region that has been the weak electric field region WR in one frame becomes the strong electric field region SR in another certain frame. Therefore, the orientation direction of the shape anisotropic particles 32 can be changed over almost the entire pixel, and a decrease in light use efficiency (mode efficiency) due to the weak electric field region WR can be suppressed.
  • mode efficiency mode efficiency
  • the potentials of the first electrode 11, the second electrode 12, and the third electrode 13 are set so that only one of the first fringe electric field and the second fringe electric field is generated.
  • the potential setting of the first electrode 11, the second electrode 12, and the third electrode 13 is not limited to this example.
  • both the first fringe field and the second fringe field may be generated simultaneously.
  • the region in which the fringe electric field having the relatively strong electric field strength of the first fringe electric field and the second fringe electric field is generated becomes the strong electric field region SR, and the fringe electric field having the relatively weak electric field strength.
  • the region in which is generated becomes the weak electric field region WR.
  • the potential of the third electrode 13 must be set to an intermediate potential between the potential of the first electrode 11 and the potential of the second electrode 12.
  • the potential of the first electrode 11 is B [V]
  • the potential of the second electrode 12 is A [V]
  • the potential of the third electrode 13 is C [V]
  • the first electrode 11 and the second electrode 12 The horizontal electric field due to the potential difference is equivalent to
  • the fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 is equivalent to
  • the potential of the first electrode 11 is A [V]
  • the potential of the second electrode 12 is B [V]
  • the potential of the third electrode 13 is C [V]
  • the first electrode 11, the second electrode 12 The lateral electric field due to the potential difference is equivalent to
  • the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 is equivalent to
  • a fringe electric field having the same strength as when the FFS mode electrode structure is employed can be applied to the optical layer 30.
  • the arrangement of the strong electric field region SR and the weak electric field region WR can be changed by, for example, switching the potential of the first electrode 11 and the potential of the second electrode 12. Can be replaced.
  • the FFS mode electrode structure As shown in FIG. 27, when the potential of the common electrode 812 is A [V] and the potential of the pixel electrode 811 is B [V], the potential difference between the pixel electrode 811 and the common electrode 812 is obtained.
  • the fringe electric field due to is equivalent to
  • the FFS mode electrode structure can generate a sufficiently strong fringe electric field, but a horizontal electric field is not generated between adjacent comb-tooth portions 811a, so that a weak electric field region WR is generated near the center of the slit 811b. .
  • a lateral electric field can be generated between the first electrode 11 and the second electrode 12, so that the vicinity of the middle between the branch portion 11a of the first electrode 11 and the branch portion 12a of the second electrode 12 is obtained.
  • a decrease in light utilization efficiency due to the formation of the weak electric field region WR can be suppressed.
  • the period in which the arrangement of the strong electric field region SR and the weak electric field region WR is switched (hereinafter also simply referred to as “switching cycle”) is typically an integer multiple of the time corresponding to one frame. .
  • the replacement period is preferably short, and most preferably a time corresponding to one frame. Since the replacement cycle is short, the number of fluctuations in the electric field distribution per unit time can be increased, and the light utilization efficiency can be further improved.
  • the switching period may not be constant within the period in which the same display is performed, but the total time during which the positive voltage is applied to the optical layer 30 and the negative voltage are applied. It is preferable that the total amount of time is substantially equal.
  • the arrangement of the strong electric field region SR and the weak electric field region WR can be replaced by, for example, switching the potential of the first electrode 11 and the potential of the second electrode 12.
  • the arrangement of the strong electric field region SR and the weak electric field region WR can be exchanged by the first substrate 10 having two comb electrodes (electrodes having a comb shape) that can be given different potentials. it can.
  • FIG. 28 is a diagram illustrating an electric field generated in the optical layer 30 at the start of the first pause drive PD1.
  • the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 are the same as each other. Therefore, during the period in which the first pause drive PD1 is performed, a fringe electric field is generated both in the vicinity of the branch portion 11a of the first electrode 11 and in the vicinity of the branch portion 12a of the second electrode 12, as shown in FIG. Is done. Therefore, the shape anisotropic particles 32 that are uniformly dispersed during the first writing drive WD1 are stably held, and thus the reflectance can be stably maintained.
  • FIG. 29 shows the optical layer at the start of the first pause drive PD1 when the waveform pattern of the signal voltage in the last frame of the first write drive WD1 is the same as the waveform pattern of the signal voltage in the previous frame. It is a figure which shows the electric field produced
  • FIG. In this case, in the period during which the first pause drive PD1 is performed, as shown in FIG. 29, a fringe electric field is generated in the vicinity of the branch portion 12a of the second electrode 12, but the branch portion of the first electrode 11 is generated. No fringe electric field is generated in the vicinity of 11a. That is, the weak electric field region WR exists. Thus, since the electric field is fixed in a non-uniform state, the shape anisotropic particles 32 are biased and the reflectance cannot be stably maintained.
  • the waveform pattern of the signal voltage in the last frame in the period in which the write drive is performed is different from the waveform pattern of the signal voltage in the frame before the last frame.
  • FIG. 30 shows the relationship between the elapsed time after the pixel TFT is turned off and the pixel voltage retention rate and reflectance attenuation rate.
  • the pixel voltage drops to 65% after 40 seconds, but the reflectance is attenuated by only about 1%. Therefore, in the display panel 110 as illustrated, it can be seen that there is no problem in visibility even when the pause driving is performed for a relatively long time.
  • FIG. 20 illustrates the case where the drive frequency is 60 Hz (that is, one frame is about 16.7 msec), but it is also preferable to increase the frequency of the write drive and the refresh drive as shown in FIG. 31A and 31B show the first electrode 11 in the first write drive WD1 and the first refresh drive RD1 when the drive frequency is 120 Hz (that is, one frame is about 8.3 msec).
  • potential V 1 the potential V 2 of the second electrode 12, the potential V 3 of the third electrode 13 is a timing chart showing the potential V 4 and the gate voltage (scan signal voltage) Vg of the fourth electrode 21.
  • the response speed at the time of write drive and refresh drive can be improved by increasing the frequency of write drive and refresh drive.
  • the drive frequency is 120 Hz
  • the write drive and refresh drive periods can be halved (eg, 600 msec to 300 msec) as compared with the case where the drive frequency is 60 Hz.
  • FIG. 32A is a diagram showing the electric field generated in the odd-numbered frame and the even-numbered frame when writing driving is performed at a relatively low frequency
  • FIG. 32B is a diagram illustrating writing driving at a relatively high frequency. It is a figure which shows the electric field produced
  • the shape anisotropic particles 32 in the region where the electric field strength is weak may fluctuate, and the fluctuation of the reflectance resulting from the fluctuation causes flicker.
  • the driving frequency is high, as shown in FIG. 32B, the fluctuation of the shape anisotropic particles 32 is suppressed, so that the flicker caused by the fluctuation of the reflectance can be suppressed.
  • the display device 100 uses the hysteresis of the optical characteristics of the pixels.
  • the above-described hysteresis property of the optical characteristics appears in the display panel 110 in which the optical layer 30 includes the medium 31 and the shape anisotropic particles 32 as illustrated.
  • the medium 31 of the optical layer 30 is preferably a liquid crystal material.
  • the orientation direction of the shape anisotropic particles 32 can be efficiently changed by utilizing the change of the director of the liquid crystal molecules.
  • the liquid crystal material generally has a high specific resistance
  • the medium 31 is a liquid crystal material
  • off-leakage through the medium 31 is prevented in a state where the TFT after writing to the pixel is off. Therefore, a high voltage holding ratio can be obtained, and active matrix driving can be suitably performed.
  • the leakage current is small, power consumption can be further reduced.
  • the power consumption P of the display device 100 is expressed by the following formula (2), where C is the panel capacitance, V is the voltage applied to the optical layer 30, f is the drive frequency, and I is the leakage current.
  • P C ⁇ V ⁇ f + I ⁇ V (2)
  • Equation (2) The first term on the right side of Equation (2) should be called the pixel capacitance term, and the second term should be called the leakage current term. That is, the power consumption P can be considered separately for the pixel capacitance component and the leakage current component. When the specific resistance of the medium 31 is high, the leakage current I decreases, so that the power consumption P can be reduced as is apparent from the equation (2).
  • the behavior of the shape anisotropic particles 32 and the behavior of the liquid crystal molecules when an electric field is applied to the optical layer 30 match.
  • the electric field applied to the optical layer 30 is switched from a fringe electric field and / or a horizontal electric field to a vertical electric field
  • the shape anisotropic particles 32 try to change from the horizontal alignment state to the vertical alignment state, and the liquid crystal molecules are also aligned horizontally. Attempts to change from state to vertical alignment. Therefore, since the number (existence probability) of the shape anisotropic particles 32 that are properly vertically aligned can be increased, a higher contrast ratio can be realized.
  • a liquid crystal material for a liquid crystal display device can be used widely and suitably.
  • a fluorine-based liquid crystal material in which fluorine is introduced into the side chain can be suitably used.
  • Fluorine-based liquid crystal materials are often used in active matrix-driven liquid crystal display devices and have large dielectric anisotropy and high specific resistance.
  • a dielectric constant in the major axis direction epsilon // 24.7, the short axial permittivity epsilon ⁇ 4.3, the specific resistance ⁇ is a liquid crystal material 6 ⁇ 10 13 ⁇ ⁇ cm be able to.
  • the dielectric constant and specific resistance of the liquid crystal material are not limited to those exemplified here.
  • the specific resistance of the liquid crystal material is preferably 1 ⁇ 10 11 to 12 ⁇ ⁇ cm or more.
  • the dielectric anisotropy ⁇ of the liquid crystal material preferably exceeds 10 ( ⁇ > 10).
  • a liquid crystal material having negative dielectric anisotropy (that is, a negative liquid crystal material) may be used as the medium 31.
  • the shape anisotropic particles 32 are caused by the alignment regulating force of the vertical alignment films 15 and 25. Is prevented from sticking to the substrate surface in a horizontal state.
  • a vertical alignment film for a liquid crystal display device in a VA (Vertical Alignment) mode for example, a polyimide-based or polyamic acid-based vertical alignment film manufactured by JSR or Nissan Chemical
  • VA Vertical Alignment
  • each of the vertical alignment films 15 and 25 is, for example, 100 nm. Of course, it is not limited to this.
  • each shape anisotropic particle 32 basically takes only one of a horizontal alignment state and a vertical alignment state (that is, a binary state). Since the electric field strength in the thickness direction can be changed, the amount (number) of the shape anisotropic particles 32 horizontally oriented on the first substrate 10 side can be controlled. Therefore, halftone display can be suitably performed.
  • the vertical electric field mode since the electric field strength in the cell thickness direction is constant, halftone display is difficult.
  • the shape anisotropic particles 32 are attracted toward the first substrate 10 having a high electric field strength in accordance with the applied voltage at the time of data writing. In the range r) in FIG. 10, the horizontal orientation state of the shape anisotropic particles 32 can be maintained.
  • the structure of the 1st electrode 11, the 2nd electrode 12, and the 3rd electrode 13 is not limited to what was illustrated in FIG. FIG. 33 shows another electrode configuration of the display panel 110.
  • a further insulating layer 17 is provided so as to cover the first electrode 11, and the second electrode 12 is provided on the further insulating layer 17.
  • the second electrode 12 is provided above the first electrode 11 via the further insulating layer 17.
  • a fringe electric field (electric field lines) is generated instead of a lateral electric field due to a potential difference between the first electrode 11 and the second electrode 12. Ef ′) is generated.
  • a further insulating layer 17 is located between the first electrode 11 and the second electrode 12, a short circuit occurs even if the interval between the first electrode 11 and the second electrode 12 is narrowed. The advantage is that there is no.
  • FIG. 34 shows still another electrode configuration of the display panel 110.
  • the third electrode 13 has a plurality of slits 13 s formed at positions overlapping the first electrode 11 and the second electrode 12.
  • the fringe electric field distribution is concentrated from the end of the first electrode 11 or the second electrode 12 to between the first electrode 11 and the second electrode 12 (between adjacent branch portions 11a and 12a). ), It is possible to make it closer to the center.
  • the third electrode 13 is a solid electrode
  • the first electrode 11 and the second electrode 12 the third electrode 13, and the insulating layer 14 positioned between them. The advantage that an auxiliary capacity can be configured is obtained.
  • first TFT, second TFT, and third TFT are provided for each pixel.
  • the first electrode 11, the second electrode 12, and the third electrode 13 are electrically connected to the first TFT t1, the second TFT t2, and the third TFT t3, respectively.
  • a gate line GL extending in the row direction and a first source line SL1, a second source line SL2, and a third source line SL3 extending in the column direction are provided.
  • the first TFT t1 is supplied with a gate signal and a first source signal from the gate line GL and the first source line SL1.
  • the second TFT t2 is supplied with a gate signal and a second source signal from the gate line GL and the second source line SL2.
  • the third TFT t3 is supplied with the gate signal and the third source signal from the gate line GL and the third source line SL3.
  • the material of the semiconductor layer included in the first TFT t1, the second TFT t2, and the third TFT t3 various known semiconductor materials can be used.
  • amorphous silicon, polycrystalline silicon, continuous grain boundary crystal silicon (CGS: Continuous Grain Silicon) Etc. can be used.
  • the semiconductor layer may be an oxide semiconductor layer formed from an oxide semiconductor.
  • the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed in, for example, Japanese Patent Laid-Open No. 2012-134475.
  • Japanese Patent Laid-Open No. 2012-134475 the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT). Therefore, when an oxide semiconductor layer formed using an In—Ga—Zn—O-based semiconductor is used as the semiconductor layer, power consumption can be further reduced because off-leakage is small.
  • the oxide semiconductor layer is not limited to the In—Ga—Zn—O-based semiconductor layer.
  • the oxide semiconductor layer includes, for example, a Zn—O based semiconductor (ZnO), an In—Zn—O based semiconductor (IZO), a Zn—Ti—O based semiconductor (ZTO), a Cd—Ge—O based semiconductor, a Cd—Pb—
  • ZnO Zn—O based semiconductor
  • IZO In—Zn—O based semiconductor
  • ZTO Zn—Ti—O based semiconductor
  • Cd—Ge—O based semiconductor a Cd—Pb—
  • An O-based semiconductor, an In—Sn—Zn—O based semiconductor (eg, In 2 O 3 —SnO 2 —ZnO), an In—Ga—Sn—O based semiconductor, or the like may be included.
  • Active matrix driving can be performed by the wiring structure shown in FIG.
  • the wiring structure of the back substrate 10 is not limited to the example shown in FIG.
  • an oxide semiconductor TFT including an oxide semiconductor layer is used as a thin film transistor (TFT) provided in each pixel, so that the voltage holding ratio in active matrix driving can be increased. For this reason, it is possible to lengthen the period of pause driving and further reduce power consumption.
  • the display device 100 constitutes a part of the electronic device 200.
  • the electronic device 200 includes a display device 100, a touch panel 210, and a main body device 220 as shown in FIG.
  • the display device 100 includes the display panel 110, the gate driver (scanning line driving circuit) 120g, and the source driver (signal line driving circuit) 120s already described.
  • the display device 100 includes a common electrode driving circuit 130 and a timing controller 140.
  • the display panel 110 includes a plurality of gate wirings GL that are electrically connected to the gate electrodes of the TFTs of the corresponding pixels, and a plurality of source wirings SL1 that are electrically connected to the source electrodes of the TFTs of the corresponding pixels. SL2 and SL3.
  • the gate driver 120g supplies a scanning signal voltage to each gate wiring GL.
  • the source driver 120s calculates the value of the voltage to be output to each pixel from the video signal VS input from the main body device 220 via the timing controller 140, and displays the calculated display signal voltage for each source line SL1, SL2. And supplied to SL3.
  • the common electrode driving circuit 130 outputs a common voltage to the counter electrode 21 based on a signal input from the timing controller 140.
  • the timing controller 140 outputs, to each driver 120, a reference signal for each driver 120 to operate in synchronization based on the clock signal, horizontal synchronization signal, and vertical synchronization signal input from the main unit 220. Specifically, the timing controller 140 outputs a gate start pulse signal, a gate clock signal, and a gate output enable signal to the gate driver 120g based on the vertical synchronization signal. The timing controller 140 outputs a source start pulse signal, a source latch strobe signal, and a source clock signal to the source driver 120s based on the horizontal synchronization signal.
  • the gate driver 120g starts scanning the display panel 110 with the gate start pulse signal received from the timing controller 140 as a cue, and applies to each gate line GL according to a gate clock signal that is a signal for shifting the selection state of the gate line GL.
  • the on-voltage is applied sequentially.
  • the source driver 120s stores the input image data of each pixel in a register according to the source clock signal. Then, after storing the image data, the source driver 120s writes the image data to each source wiring of the display panel 110 in accordance with the next source latch strobe signal. For example, an analog amplifier included in the source driver 120s is used for writing the image data.
  • the touch panel 210 includes a detection unit 211 and a control unit 212.
  • the detecting unit 211 is provided on the screen of the display panel 110 of the display device 100, and detects the position on the screen specified by the user's finger or the like.
  • the control unit 212 controls the detection unit 211. Specifically, when the control unit 212 drives the detection unit 211 via the drive line Tx, the detection unit 211 detects the position and transmits a detection signal to the control unit 212 via the detection line Sx. .
  • the control unit 212 creates detection data indicating the detected position based on the detection signal from the detection unit 211, and transmits the detection data to the main device 220.
  • the touch panel 210 is, for example, a projected capacitive touch panel.
  • the detection unit 211 has a matrix-like transparent electrode pattern formed on a transparent substrate such as glass or plastic.
  • the control unit 212 can detect the position where the user's finger or the like has touched or approached by detecting a change in the current or voltage of the transparent electrode pattern.
  • the touch panel 210 may detect that a user's finger or the like has touched or approached an arbitrary position on the screen. In this case, it is only necessary to detect contact or approach of a finger or the like, and it is not necessary to detect the position.
  • the main body device 220 transmits a video signal and a video synchronization signal to the display device 100 in order to recognize a user operation based on detection data from the touch panel 210 and to control display of the display device 100.
  • the timing controller 140 outputs a pause signal PS, which is a signal for pausing the gate driver 120g and the source driver 120s, to the gate driver 120g and the source driver 120s.
  • a pause signal PS is output from the timing controller 140 to the gate driver 120g and the source driver 120s, whereby the gate driver 120g and the source driver 120s are paused.
  • the timing controller 140 outputs a detection instruction signal DS that is a signal for instructing a detection operation in the touch panel 210 to the control unit 212 of the touch panel 210.
  • the control unit 212 receives the detection instruction signal DS from the timing controller 140, the detection unit 211 performs a detection operation, and the control unit 212 outputs detection data indicating the detection result to the main body device 220.
  • the fourth electrode 21 is provided on the second substrate 20 side, but the fourth electrode 21 may be omitted. This is because, when the optical layer 30 is in a state where no electric field is applied, the shape anisotropic particles 32 take a vertical alignment state. However, from the viewpoint of response speed, it is preferable to adopt a configuration in which the fourth electrode 21 is provided on the second substrate 20 side (that is, a configuration in which a vertical electric field can be applied to the optical layer 30). That is, it is preferable that display is performed by switching between a state in which a vertical electric field is generated in the optical layer 30 and a state in which a horizontal electric field and / or a fringe electric field is generated in the optical layer 30. Since the change from the former state to the latter state and the change from the latter state to the former state are both performed by changing the direction of the applied electric field, a sufficient response speed can be realized. .
  • the display device 100 can suitably perform halftone display. Therefore, by providing a color filter for each pixel, multicolor display corresponding to gradation can be performed.
  • the shape anisotropic particles 32 are not particularly limited in specific shape and material as long as the projected area on the substrate surface changes according to the applied voltage (direction of applied electric field) as described above.
  • the shape anisotropic particles 32 may have a flake shape (flaky shape), a cylindrical shape, an oval shape, or the like. From the viewpoint of realizing a high contrast ratio, the shape anisotropic particle 32 preferably has a shape such that the ratio of the maximum projected area to the minimum projected area is 2: 1 or more.
  • the shape anisotropic particles 32 may be a dielectric multilayer film or may be formed from a cholesteric resin material.
  • an insulating layer (dielectric layer) is preferably formed on the surface of the shape anisotropic particles 32.
  • the dielectric constant of a single metal is an imaginary number, by forming an insulating layer (for example, a resin layer or a metal oxide layer) on the surface, the shape anisotropic particles 32 formed of a metal material can be handled as a dielectric. it can.
  • shape anisotropic particles 32 for example, aluminum flakes whose surfaces are coated with a resin material (for example, acrylic resin) can be used.
  • the aluminum flake content of the display medium layer 30 is, for example, 6% by weight.
  • aluminum flakes having an SiO 2 layer formed on the surface, aluminum flakes having an aluminum oxide layer formed on the surface, or the like can also be used.
  • a metal material other than aluminum may be used as the metal material.
  • the shape anisotropic particles 32 may be colored.
  • the length of the shape anisotropic particles 32 is not particularly limited, but is preferably 4 ⁇ m or more and 10 ⁇ m or less. If the length of the shape anisotropic particles 32 exceeds 10 ⁇ m, the shape anisotropic particles 32 may be difficult to move. On the other hand, when the length of the shape anisotropic particles 32 is less than 4 ⁇ m, it may be difficult to produce the shape anisotropic particles 32 or the reflective performance of the shape anisotropic particles 32 may be insufficient. Further, in the reflective display device as in the present embodiment, when it is desired to cover the substrate surface with the shape anisotropic particles 32 in the horizontal alignment state in order to obtain a high reflectance, the length of the shape anisotropic particles 32 is increased.
  • the thickness of the shape anisotropic particle 32 is not particularly limited. However, since the transmittance of the display medium layer 30 in the transparent state can be increased as the thickness of the shape anisotropic particles 32 is smaller, the thickness of the shape anisotropic particles 32 is larger than the inter-electrode distance g. It is preferably small (for example, 4 ⁇ m or less), and more preferably light wavelength or less (for example, 0.5 ⁇ m or less).
  • the specific gravity of the shape anisotropic particles 32 is preferably 11g / cm 3 or less, more preferably 3 g / cm 3 or less, further preferably the specific gravity substantially equal to that of the medium 31. This is because if the specific gravity of the shape anisotropic particles 32 is significantly different from the specific gravity of the medium 31, there may be a problem that the shape anisotropic particles 32 settle or float. From the viewpoint of increasing the effect of moving the shape anisotropic particles 32 by the peristaltic motion of the medium 31, the shape anisotropic particles 32 are preferably light.
  • the configuration in which the first substrate 10 which is an active matrix substrate is arranged on the back side is illustrated, but the arrangement of the first substrate 10 is not limited to this.
  • the first substrate 10 may be disposed on the front side. Since the first substrate 10 that is an active matrix substrate includes components formed from a light-shielding material, if the configuration in which the first substrate 10 is disposed on the back side is adopted, the shape anisotropic particles 32 The reflection effect can be used to the maximum.
  • the reflective display device 100 has been described as an example.
  • the embodiment of the present invention is also suitable for a transmissive display device (or a transmissive / reflective display device for transparent display). Used for.
  • a transmissive display device a light absorption layer (the light absorption layer 16 illustrated in FIG. 1 and the like) is not provided on the back substrate.
  • an illumination element backlight that irradiates light to the display panel is provided.
  • the voltage-transmittance characteristic of the pixel has hysteresis, and the threshold value in the boost curve indicating the voltage-transmittance characteristic when the applied voltage is increased
  • the voltage is higher than the threshold voltage in the step-down curve indicating the voltage-transmittance characteristics when the applied voltage is decreased.
  • the transmittance is substantially constant in the range from the write voltage to a predetermined voltage lower than the write voltage.
  • the transmittance is maintained substantially constant in the predetermined voltage range after the reduction (that is, in a certain period after the voltage reduction starts). can do. Therefore, the power consumption can be reduced by performing the pause drive that pauses the driver after the write drive.
  • the write voltage is set based on the boosting curve.
  • halftone display can be suitably performed.
  • an optical device excellent in low power consumption is provided.
  • the optical device according to the embodiment of the present invention is suitably used as a display device, for example.
  • the optical device according to the embodiment of the present invention is suitably used for various electronic devices.

Abstract

An optical device (100) is provided with an optical panel (110) composed of pixels having the reflectivity or transmittance thereof changed according to the magnitude of a voltage applied thereto, and a driver (120) for supplying the optical panel with a signal voltage. The voltage-reflectivity characteristics or voltage-transmittance characteristics of the pixels include hysteresis characteristics, and the threshold voltage in a boosting curve is higher than the threshold voltage in a step down curve. The pixels do not have memory capabilities while the applied voltage is zero. The reflectivity or transmittance is substantially constant from a writing voltage until a prescribed voltage lower than the writing voltage in the step down curve when reducing the applied voltage from the writing voltage. The optical device may execute a standby drive during which the driver is placed in a standby state after the writing drive.

Description

光学装置Optical device
 本発明は、光学装置に関し、特に、印加電圧の大きさに応じて反射率または透過率が変化する画素を有する光学装置に関する。 The present invention relates to an optical device, and more particularly to an optical device having a pixel whose reflectance or transmittance changes according to the magnitude of an applied voltage.
 近年、表示装置の低消費電力化のための様々な提案がなされている。 In recent years, various proposals for reducing power consumption of display devices have been made.
 例えば、特許文献1には、コレステリック液晶のメモリ性を利用した液晶表示装置が開示されている。コレステリック液晶は、印加電圧がゼロのときにその配向状態を維持することができる性質(メモリ性)を有する。そのため、このメモリ性を利用して画像データの書き込み回数を減らすことにより、消費電力を低減することができる。 For example, Patent Document 1 discloses a liquid crystal display device using the memory property of cholesteric liquid crystal. The cholesteric liquid crystal has a property (memory property) that can maintain the alignment state when the applied voltage is zero. Therefore, power consumption can be reduced by reducing the number of times image data is written using this memory property.
 また、特許文献2には、画素メモリ内蔵型の液晶表示装置が開示されている。この液晶表示装置では、各画素の画素回路にスタティックメモリが含まれていることにより、静止画を表示する場合にはリフレッシュ動作が不要となるので、消費電力を低減することができる。 Patent Document 2 discloses a liquid crystal display device with a built-in pixel memory. In this liquid crystal display device, since a static memory is included in the pixel circuit of each pixel, a refresh operation is not necessary when displaying a still image, and thus power consumption can be reduced.
特開平10-105085号公報Japanese Patent Laid-Open No. 10-105085 特開2007-199441号公報JP 2007-199441 A 国際公開第2013/065529号International Publication No. 2013/0665529
 特許文献1の技術は、表示媒体層(液晶層)の構成材料であるコレステリック液晶材料のメモリ性を利用するものであるので、当然ながら、表示媒体層自体がメモリ性を有しない表示装置には適用できない。 Since the technology of Patent Document 1 uses the memory property of a cholesteric liquid crystal material that is a constituent material of the display medium layer (liquid crystal layer), naturally, the display medium layer itself has no memory property. Not applicable.
 これに対し、特許文献2の技術は、表示媒体層自体がメモリ性を有しない表示装置にも適用できるものの、画像データの書き込み時の印加電圧が高い場合には、画素メモリを動作させるために必要な消費電力が大きくなってしまう。 On the other hand, although the technique of Patent Document 2 can be applied to a display device in which the display medium layer itself does not have a memory property, in order to operate the pixel memory when the applied voltage at the time of writing image data is high. Necessary power consumption increases.
 本発明は、上記問題に鑑みてなされたものであり、その目的は、低消費電力性に優れた光学装置を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide an optical device excellent in low power consumption.
 本発明の実施形態による光学装置は、画素を有し、前記画素への印加電圧の大きさに応じて前記画素の反射率または透過率が変化する光学パネルと、前記光学パネルに信号電圧を供給するドライバと、を備える光学装置であって、前記画素の電圧-反射率特性または電圧-透過率特性がヒステリシス性を有し、印加電圧を増加させていくときの前記電圧-反射率特性または前記電圧-透過率特性を示す昇圧曲線における閾値電圧が、印加電圧を減少させていくときの前記電圧-反射率特性または前記電圧-透過率特性を示す降圧曲線における閾値電圧よりも高く、印加電圧がゼロである状態において、前記画素はメモリ性を有しておらず、印加電圧を、前記画素へのデータ書き込みを行う書き込み駆動時の印加電圧である書き込み電圧から減少させていくときの前記降圧曲線において、前記書き込み電圧から前記書き込み電圧よりも低い所定の電圧までの範囲で反射率または透過率が実質的に一定であり、前記書き込み駆動を行った後に、前記ドライバを休止させる休止駆動を行うことができる。 An optical device according to an embodiment of the present invention includes a pixel, and an optical panel in which the reflectance or transmittance of the pixel changes according to the magnitude of a voltage applied to the pixel, and supplies a signal voltage to the optical panel. An optical device, wherein the voltage-reflectance characteristic or voltage-transmittance characteristic of the pixel has hysteresis, and the voltage-reflectance characteristic when the applied voltage is increased or The threshold voltage in the step-up curve showing the voltage-transmittance characteristic is higher than the threshold voltage in the voltage-reflectance characteristic or the step-down curve showing the voltage-transmittance characteristic when the applied voltage is decreased, and the applied voltage is In the state of zero, the pixel does not have a memory property, and the applied voltage is changed from a write voltage that is an applied voltage at the time of writing driving for writing data to the pixel. In the step-down curve when decreasing, the reflectance or transmittance is substantially constant in a range from the write voltage to a predetermined voltage lower than the write voltage, and after performing the write drive, Pause driving for pausing the driver can be performed.
 ある実施形態において、印加電圧をゼロから増加させていくときの前記昇圧曲線における反射率または透過率の値は、電圧値に対して実質的に1対1の関係で決まる。 In one embodiment, the reflectance or transmittance value in the boosting curve when the applied voltage is increased from zero is determined substantially in a one-to-one relationship with the voltage value.
 ある実施形態において、前記休止駆動を行った後、前記休止駆動を行っている期間中に低下した印加電圧を前記書き込み電圧まで戻すリフレッシュ駆動を行うことができる。 In one embodiment, after performing the pause drive, refresh drive can be performed in which the applied voltage that has decreased during the pause drive is returned to the write voltage.
 ある実施形態において、前記書き込み駆動および/またはリフレッシュ駆動は、複数フレームにわたって行われる。 In one embodiment, the write drive and / or the refresh drive are performed over a plurality of frames.
 ある実施形態において、前記リフレッシュ駆動が行われる期間は、前記書き込み駆動が行われる期間よりも短い。 In one embodiment, the period during which the refresh drive is performed is shorter than the period during which the write drive is performed.
 ある実施形態において、前記休止駆動および前記リフレッシュ駆動が交互に繰り返し行われる場合、1回目の休止駆動が行われている期間と、n回目(nは2以上のある整数)の休止駆動が行われている期間とで、印加電圧の極性が反対である。 In one embodiment, when the pause drive and the refresh drive are alternately and repeatedly performed, the first pause drive is performed and the nth (n is an integer of 2 or more) pause drive is performed. The polarity of the applied voltage is opposite in the period of time.
 ある実施形態において、前記書き込み駆動は、複数フレームにわたって行われ、前記書き込み駆動が行われる期間の最終フレームにおいて前記ドライバから供給される信号電圧の波形パターンは、最終フレームよりも前のフレームにおいて前記ドライバから供給される信号電圧の波形パターンとは異なる。 In one embodiment, the write drive is performed over a plurality of frames, and a waveform pattern of a signal voltage supplied from the driver in a final frame in a period during which the write drive is performed is determined by the driver in a frame before the final frame. This is different from the waveform pattern of the signal voltage supplied from.
 ある実施形態において、本発明による光学装置は、互いに対向するように設けられた第1基板および第2基板と、前記第1基板および前記第2基板の間に設けられた光学層と、を備え、前記光学層は、媒体と、前記媒体中に分散され、形状異方性を有する形状異方性粒子とを含み、前記媒体は、液晶材料を含み、前記光学層に横電界および/またはフリンジ電界を印加し得る。 In one embodiment, an optical device according to the present invention includes a first substrate and a second substrate provided to face each other, and an optical layer provided between the first substrate and the second substrate. The optical layer includes a medium and shape anisotropic particles dispersed in the medium and having shape anisotropy, the medium includes a liquid crystal material, and a lateral electric field and / or fringe is applied to the optical layer. An electric field can be applied.
 ある実施形態において、本発明による光学装置は、前記画素に設けられた薄膜トランジスタを有し、前記薄膜トランジスタは、酸化物半導体層を含む。 In one embodiment, an optical device according to the present invention includes a thin film transistor provided in the pixel, and the thin film transistor includes an oxide semiconductor layer.
 本発明の実施形態によると、低消費電力性に優れた光学装置が提供される。 According to the embodiment of the present invention, an optical device excellent in low power consumption is provided.
本発明の実施形態による表示装置(光学装置)100を模式的に示すブロック図である。1 is a block diagram schematically showing a display device (optical device) 100 according to an embodiment of the present invention. 表示装置100が備える表示パネル110を模式的に示す断面図であり、図3中の2A-2A’線に沿った断面を示している。4 is a cross-sectional view schematically showing a display panel 110 included in the display device 100, and shows a cross section taken along line 2A-2A 'in FIG. 表示パネル110を模式的に示す平面図である。4 is a plan view schematically showing a display panel 110. FIG. (a)は、光学層30に電界が印加されていないときの表示パネル110を模式的に示す図であり、(b)は、光学層30にフリンジ電界が印加されているときの表示パネル110を模式的に示す図である。(A) is a figure which shows typically the display panel 110 when the electric field is not applied to the optical layer 30, (b) is the display panel 110 when the fringe electric field is applied to the optical layer 30. FIG. 光学層30に縦電界が印加されているときの表示パネル110を模式的に示す図である。3 is a diagram schematically showing the display panel 110 when a vertical electric field is applied to the optical layer 30. FIG. 光学層30にフリンジ電界および横電界が印加されているときの表示パネル110を模式的に示す図である。3 is a diagram schematically showing the display panel 110 when a fringe electric field and a lateral electric field are applied to the optical layer 30. FIG. (a)は、光学層30に印加されている電界をフリンジ電界および/または横電界から縦電界に変化させた直後の光学層30の様子を示す図であり、(b)は、その後十分な時間が経過した後の光学層30の様子を示す図である。(A) is a figure which shows the mode of the optical layer 30 immediately after changing the electric field currently applied to the optical layer 30 from a fringe electric field and / or a horizontal electric field to a vertical electric field, (b) is enough after that It is a figure which shows the mode of the optical layer 30 after time passes. テストセルにおける電極構造を示す平面図である。It is a top view which shows the electrode structure in a test cell. テストセルにおける第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。The potential V 1 of the first electrode 11 in the test cell, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. 画素電圧(第1電極11および第2電極12と第3電極13との間の電圧)Vop(V)と、SCE方式の反射率(Y値)との関係を示すグラフである。It is a graph which shows the relationship between pixel voltage (The voltage between the 1st electrode 11, the 2nd electrode 12, and the 3rd electrode 13) Vop (V) and the reflectance (Y value) of a SCE system. 図10中の点A-1、A-2、B-3、B-4、C-5、C-6、C-7およびA-8における形状異方性粒子32の配向状態を模式的に示す図である。The orientation state of the shape anisotropic particles 32 at points A-1, A-2, B-3, B-4, C-5, C-6, C-7, and A-8 in FIG. FIG. 画素電圧Vopを、オフ電圧(0V)から白表示に対応する書き込み電圧まで増加させ、その後再びオフ電圧まで減少させるという駆動を3回繰り返したときの昇圧曲線および降圧曲線を示すグラフである。It is a graph which shows a step-up curve and a step-down curve when the driving of increasing the pixel voltage Vop from the off voltage (0 V) to the writing voltage corresponding to white display and then decreasing it again to the off voltage is repeated three times. 画素電圧Vopを、オフ電圧(0V)から書き込み電圧まで増加させ、その後再びオフ電圧まで減少させるという駆動を5回繰り返したときの昇圧曲線および降圧曲線を示すグラフである。It is a graph which shows a step-up curve and a step-down curve when the driving of increasing the pixel voltage Vop from the off voltage (0 V) to the writing voltage and then decreasing it again to the off voltage is repeated five times. ある中間調Dでのデータ書き込みに対応する点P1およびそこから降圧した点P2を含む昇圧曲線および降圧曲線を示すグラフである。6 is a graph showing a step-up curve and a step-down curve including a point P1 corresponding to data writing in a certain halftone D and a point P2 stepped down therefrom. (a)および(b)は、それぞれ図14中の点P1およびP2に対応する形状異方性粒子32の配向状態を示す図である。(A) And (b) is a figure which shows the orientation state of the shape anisotropic particle 32 corresponding to the points P1 and P2 in FIG. 14, respectively. 表示パネル110(テストセル)の昇圧曲線および降圧曲線を示すグラフである。It is a graph which shows the pressure | voltage rise curve and pressure | voltage fall curve of the display panel 110 (test cell). (a)および(b)は、それぞれ図16中の点P4およびP5に対応する形状異方性粒子32の配向状態を示す図である。(A) And (b) is a figure which shows the orientation state of the shape anisotropic particle 32 corresponding to the points P4 and P5 in FIG. 16, respectively. (a)および(b)は、それぞれ図16中の点P6およびP7に対応する形状異方性粒子32の配向状態を示す図である。(A) And (b) is a figure which shows the orientation state of the shape anisotropic particle 32 corresponding to the points P6 and P7 in FIG. 16, respectively. 表示装置100における駆動の例を示すフローチャートである。5 is a flowchart illustrating an example of driving in the display device 100. 書き込み駆動、休止駆動およびリフレッシュ駆動のそれぞれにおける、第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3、第4電極21の電位V4およびゲート電圧(走査信号電圧)Vgを示すタイミングチャートである。In each of the write drive, resting drive and refresh driving, the potential V 1 of the first electrode 11, the potential V 2 of the second electrode 12, the potential V 3 of the third electrode 13, the potential V 4 and the gate voltage of the fourth electrode 21 It is a timing chart which shows (scanning signal voltage) Vg. FFSモードの液晶表示装置800を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an FFS mode liquid crystal display device 800. (a)および(b)は、特許文献3の液晶表示装置900を模式的に示す断面図である。(A) And (b) is sectional drawing which shows the liquid crystal display device 900 of patent document 3 typically. 特許文献3の液晶表示装置900において弱電界領域WRが発生する様子を模式的に示す図である。It is a figure which shows typically a mode that the weak electric field area | region WR generate | occur | produces in the liquid crystal display device 900 of patent document 3. FIG. FFSモードの液晶表示装置800において弱電界領域WRが発生する様子を模式的に示す図である。FIG. 11 is a diagram schematically showing how a weak electric field region WR is generated in an FFS mode liquid crystal display device 800. (a)および(b)は、第1の書き込み駆動WD1が行われているときに光学層30に生成される電界を示す図であり、(a)は、第1の書き込み駆動WD1が行われているときの第1フレームに対応し、(b)は、第1の書き込み駆動WD1が行われているときの第2フレームに対応する。(A) And (b) is a figure which shows the electric field produced | generated in the optical layer 30 when 1st write drive WD1 is performed, (a) is 1st write drive WD1 performed. (B) corresponds to the second frame when the first write drive WD1 is performed. 特許文献3の液晶表示装置900において横電界およびフリンジ電界の印加が行われている状態を示す図である。It is a figure which shows the state in which the application of a horizontal electric field and a fringe electric field is performed in the liquid crystal display device 900 of patent document 3. FIG. FFSモードの液晶表示装置800においてフリンジ電界の印加が行われている状態を示す図である。FIG. 11 is a diagram illustrating a state in which a fringe electric field is applied in the FFS mode liquid crystal display device 800. 第1の休止駆動PD1開始時に光学層30に生成される電界を示す図である。It is a figure which shows the electric field produced | generated by the optical layer 30 at the time of 1st pause drive PD1 start. 第1の書き込み駆動WD1の最終フレームにおける信号電圧の波形パターンを、それよりも前のフレームにおける信号電圧の波形パターンと同じにした場合の、第1の休止駆動PD1開始時に光学層30に生成される電界を示す図である。When the waveform pattern of the signal voltage in the last frame of the first write drive WD1 is made the same as the waveform pattern of the signal voltage in the previous frame, it is generated in the optical layer 30 at the start of the first pause drive PD1. FIG. 画素のTFTをオフ状態にしてからの経過時間と、画素電圧の保持率および反射率の減衰率との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after turning off TFT of a pixel, and the retention rate of a pixel voltage, and the attenuation factor of a reflectance. (a)および(b)は、駆動周波数を120Hz(つまり1フレームが約8.3msec)とした場合の、第1の書き込み駆動WD1および第1のリフレッシュ駆動RD1における、第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3、第4電極21の電位V4およびゲート電圧(走査信号電圧)Vgを示すタイミングチャートである。(A) and (b) show the potential V of the first electrode 11 in the first write drive WD1 and the first refresh drive RD1 when the drive frequency is 120 Hz (that is, one frame is about 8.3 msec). 1, the potential V 2 of the second electrode 12, the potential V 3 of the third electrode 13 is a timing chart showing the potential V 4 and the gate voltage (scan signal voltage) Vg of the fourth electrode 21. (a)は、比較的低い周波数で書き込み駆動を行う場合の、奇数フレームおよび偶数フレームにおいて生成される電界を示す図であり、(b)は、比較的高い周波数で書き込み駆動を行う場合の、奇数フレームおよび偶数フレームにおいて生成される電界を示す図である。(A) is a figure which shows the electric field produced | generated in an odd-numbered frame and an even-numbered frame in the case of performing write drive at a comparatively low frequency, (b) is a case in which write drive is performed at a comparatively high frequency. It is a figure which shows the electric field produced | generated in an odd frame and an even frame. 表示パネル110の他の電極構成を示す図である。6 is a diagram showing another electrode configuration of the display panel 110. FIG. 表示パネル110のさらに他の電極構成を示す図である。FIG. 10 is a diagram showing still another electrode configuration of the display panel 110. アクティブマトリクス駆動を行う場合の背面基板10における具体的な配線構造の例を示す平面図である。It is a top view which shows the example of the specific wiring structure in the back substrate 10 in the case of performing active matrix drive. 本発明の実施形態による表示装置100を備えた電子機器200を模式的に示すブロック図である。It is a block diagram showing typically electronic equipment 200 provided with display 100 by an embodiment of the present invention.
 本発明の実施形態による光学装置は、画素を有する光学パネルと、光学パネルに信号電圧を供給するドライバとを備える。画素の光学特性(具体的には反射率または透過率)は、画素への印加電圧の大きさに応じて変化し、画素の電圧-反射率特性または電圧-透過率特性は、ヒステリシス性を有する。また、印加電圧を増加させていくときの電圧-反射率特性または電圧-透過率特性を示す曲線(以下では「昇圧曲線」と呼ぶ)における閾値電圧が、印加電圧を減少させていくときの電圧-反射率特性または電圧-透過率特性を示す曲線(以下では「降圧曲線」と呼ぶ)における閾値電圧よりも高く、印加電圧がゼロである状態において、画素はメモリ性を有していない。 An optical device according to an embodiment of the present invention includes an optical panel having pixels and a driver that supplies a signal voltage to the optical panel. The optical characteristics (specifically, reflectance or transmittance) of the pixel change depending on the magnitude of the voltage applied to the pixel, and the voltage-reflectance characteristic or voltage-transmittance characteristic of the pixel has a hysteresis characteristic. . Further, the threshold voltage in the curve indicating the voltage-reflectance characteristic or voltage-transmittance characteristic when the applied voltage is increased (hereinafter referred to as “boost curve”) is the voltage when the applied voltage is decreased. The pixel does not have a memory property in a state where it is higher than a threshold voltage in a curve indicating reflectance characteristics or voltage-transmittance characteristics (hereinafter referred to as “step-down curve”) and the applied voltage is zero.
 さらに、本発明の実施形態による光学装置では、印加電圧を書き込み電圧(画素へのデータ書き込みを行う書き込み駆動時の印加電圧)から減少させていくときの降圧曲線において、書き込み電圧から書き込み電圧よりも低い所定の電圧までの範囲で反射率または透過率が実質的に一定である。そのため、書き込み駆動後に電圧供給を停止して画素への印加電圧が低下しても、低下後の所定の電圧範囲においては(つまり降圧開始後の一定期間において)反射率または透過率を実質的に一定に維持することができる。それ故、書き込み駆動を行った後に、ドライバを休止させる休止駆動を行うことにより、消費電力を低減することができる。 Further, in the optical device according to the embodiment of the present invention, in the step-down curve when the applied voltage is decreased from the write voltage (applied voltage at the time of write driving for writing data to the pixel), the write voltage is more than the write voltage. The reflectance or transmittance is substantially constant in the range up to a low predetermined voltage. Therefore, even if the voltage supply is stopped after writing driving and the applied voltage to the pixel is lowered, the reflectance or transmittance is substantially reduced in a predetermined voltage range after the reduction (that is, in a certain period after the voltage reduction starts). Can be kept constant. Therefore, the power consumption can be reduced by performing the pause drive that pauses the driver after the write drive.
 以下、図面を参照しながら本発明による実施形態の光学装置をより具体的に説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, an optical device according to an embodiment of the present invention will be described in more detail with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 図1に、本発明の実施形態による光学装置(表示装置)100を示す。図1は、表示装置100を模式的に示すブロック図である。 FIG. 1 shows an optical device (display device) 100 according to an embodiment of the present invention. FIG. 1 is a block diagram schematically showing the display device 100.
 表示装置100は、図1に示すように、光学パネル(表示パネル)110と、ドライバ(駆動回路)120とを備える。 The display device 100 includes an optical panel (display panel) 110 and a driver (drive circuit) 120 as shown in FIG.
 表示パネル110は、印加電圧の大きさに応じて反射率または透過率が変化する画素を有する。ここでは、表示パネル110は、マトリクス状に配列された複数の画素を有し、アクティブマトリクス方式で駆動される。 The display panel 110 has pixels whose reflectance or transmittance changes according to the magnitude of the applied voltage. Here, the display panel 110 includes a plurality of pixels arranged in a matrix and is driven by an active matrix method.
 ドライバ120は、表示パネル110に信号電圧を供給する。図1に示す例では、表示装置100は、ドライバ120として、表示パネル110に走査信号電圧を供給するゲートドライバ(走査線駆動回路)120gと、表示パネル110に表示信号電圧を供給するソースドライバ(信号線駆動回路)120sとを備える。 The driver 120 supplies a signal voltage to the display panel 110. In the example illustrated in FIG. 1, the display device 100 includes a gate driver (scanning line driver circuit) 120 g that supplies a scanning signal voltage to the display panel 110 and a source driver (a source driver that supplies the display signal voltage to the display panel 110). Signal line driving circuit) 120s.
 ここで、図2および図3を参照しながら、表示パネル110の具体的な構成を説明する。 Here, a specific configuration of the display panel 110 will be described with reference to FIGS. 2 and 3.
 図2は、表示パネル110を模式的に示す断面図であり、図3は、表示パネル110を模式的に示す平面図である。図2は、図3中の2A-2A’線に沿った断面を示している。ここでは、表示パネル110は、外部から入射する光(周囲光)を用いて反射モードで表示を行うことができる反射型の表示パネルである。 FIG. 2 is a cross-sectional view schematically showing the display panel 110, and FIG. 3 is a plan view schematically showing the display panel 110. FIG. 2 shows a cross section taken along line 2A-2A 'in FIG. Here, the display panel 110 is a reflective display panel that can perform display in a reflection mode using light incident from the outside (ambient light).
 図2に示すように、表示パネル110は、互いに対向するように設けられた第1基板10および第2基板20と、第1基板10および第2基板20の間に設けられた光学層(表示媒体層)30とを備える。以下では、第1基板10および第2基板20のうちの、相対的に背面側に位置する第1基板10を「背面側基板」と呼ぶことがあり、相対的に前面側(つまり観察者側)に位置する第2基板20を「前面側基板」と呼ぶことがある。 As shown in FIG. 2, the display panel 110 includes a first substrate 10 and a second substrate 20 provided so as to face each other, and an optical layer (display) provided between the first substrate 10 and the second substrate 20. Medium layer) 30. Hereinafter, of the first substrate 10 and the second substrate 20, the first substrate 10 positioned relatively on the back side may be referred to as a “back side substrate” and may be referred to relatively on the front side (that is, on the viewer side). The second substrate 20 positioned at () may be referred to as a “front substrate”.
 第1基板(背面側基板)10は、互いに異なる電位を与えられ得る第1電極11および第2電極12を有する。第1電極11および第2電極12は、複数の画素のそれぞれに設けられている。第1電極11および第2電極12のそれぞれは、図3に示すように、櫛歯形状を有する。 The first substrate (back substrate) 10 has a first electrode 11 and a second electrode 12 that can be given different potentials. The first electrode 11 and the second electrode 12 are provided in each of the plurality of pixels. Each of the 1st electrode 11 and the 2nd electrode 12 has a comb-tooth shape, as shown in FIG.
 第1電極11は、幹部11bと、幹部11bから延びる複数の枝部11aとを有する。第2電極12は、同様に、幹部12bと、幹部12bから延びる複数の枝部12aとを有する。第1電極11と第2電極12とは、それぞれの複数の枝部11a、12aが所定の間隙(以下では「電極間距離」と呼ぶこともある)gを介して噛合するように配置されている。 The first electrode 11 has a trunk portion 11b and a plurality of branch portions 11a extending from the trunk portion 11b. Similarly, the second electrode 12 includes a trunk portion 12b and a plurality of branch portions 12a extending from the trunk portion 12b. The first electrode 11 and the second electrode 12 are arranged so that the plurality of branch portions 11a and 12a mesh with each other via a predetermined gap (hereinafter also referred to as “interelectrode distance”) g. Yes.
 電極間距離gに特に制限はない。また、第1電極11の枝部11aの幅w1および第2電極12の枝部12aの幅w2にも特に制限はない。電極間距離g、第1電極11の枝部11aの幅w1および第2電極12の枝部12aの幅w2は、それぞれ例えば数μm~十数μm程度である。第1電極11の枝部11aの幅w1と、第2電極12の枝部12aの幅w2とは、同じであってもよいし、異なっていてもよい。 There is no restriction | limiting in particular in the distance g between electrodes. Further, the width w 1 of the branch part 11 a of the first electrode 11 and the width w 2 of the branch part 12 a of the second electrode 12 are not particularly limited. The inter-electrode distance g, the width w 1 of the branch portion 11a of the first electrode 11, and the width w 2 of the branch portion 12a of the second electrode 12 are each about several μm to several tens of μm, for example. The width w 1 of the branch portion 11a of the first electrode 11 and the width w 2 of the branch portion 12a of the second electrode 12 may be the same or different.
 また、第1基板10は、絶縁層14を介して第1電極11および第2電極12の下方に設けられた第3電極13をさらに有する。以下では、第1電極11、第2電極12および第3電極13を、それぞれ「第1上層電極」、「第2上層電極」および「下層電極」と呼ぶこともある。図2および図3に示している例では、第3電極13は、スリットや切欠き部が形成されていない、いわゆるべた電極である。 The first substrate 10 further includes a third electrode 13 provided below the first electrode 11 and the second electrode 12 with the insulating layer 14 interposed therebetween. Hereinafter, the first electrode 11, the second electrode 12, and the third electrode 13 may be referred to as “first upper layer electrode”, “second upper layer electrode”, and “lower layer electrode”, respectively. In the example shown in FIGS. 2 and 3, the third electrode 13 is a so-called solid electrode in which no slit or notch is formed.
 第1基板10は、典型的には、アクティブマトリクス基板であり、各画素に設けられた複数の薄膜トランジスタ(TFT)と、各種の配線(TFTに電気的に接続されたゲート配線、ソース配線など)とを有する(いずれもここでは不図示)。第1電極11、第2電極12および第3電極13は、それぞれ対応するTFTに電気的に接続されている。 The first substrate 10 is typically an active matrix substrate, and includes a plurality of thin film transistors (TFTs) provided in each pixel and various wirings (a gate wiring, a source wiring, etc. electrically connected to the TFT). (Both not shown here). The first electrode 11, the second electrode 12, and the third electrode 13 are electrically connected to the corresponding TFTs, respectively.
 第1基板10は、さらに、光を吸収する光吸収層16を有する。光吸収層16の材料に特に制限はない。光吸収層16の材料としては、例えば、液晶表示装置等のカラーフィルタに含まれるブラックマトリクスの材料などに用いられる顔料を用いることができる。あるいは、光吸収層16として、二層構造の低反射クロム膜(クロム層と酸化クロム層とが積層された構造を有する)を用いることもできる。 The first substrate 10 further includes a light absorption layer 16 that absorbs light. There is no restriction | limiting in particular in the material of the light absorption layer 16. FIG. As a material of the light absorption layer 16, for example, a pigment used for a black matrix material included in a color filter of a liquid crystal display device or the like can be used. Alternatively, a low-reflection chromium film having a two-layer structure (having a structure in which a chromium layer and a chromium oxide layer are stacked) can be used as the light absorption layer 16.
 第1基板10の構成要素(上述した第1電極11など)は、絶縁性を有する基板(例えばガラス基板)10aによって支持されている。なお、図2では、光吸収層16は基板10aの背面側に設けられているが、光吸収層16が基板10aの光学層30側に設けられていてもよい。 The components of the first substrate 10 (such as the first electrode 11 described above) are supported by an insulating substrate (for example, a glass substrate) 10a. In FIG. 2, the light absorption layer 16 is provided on the back side of the substrate 10a. However, the light absorption layer 16 may be provided on the optical layer 30 side of the substrate 10a.
 第2基板(前面側基板)20は、第1電極11、第2電極12および第3電極13に対向する第4電極(対向電極)21を有する。第4電極21は、スリットや切欠き部が形成されていない、いわゆるべた電極であってよい。図2に示している例では、第2基板20は、第4電極21上に設けられた誘電体層(オーバーコート層)22をさらに有する。第4電極21は、画素ごとに電気的に独立している必要はなく、すべての画素に共通の連続した単一の導電膜(つまり共通電極)であってよい。第4電極21が、すべての画素に共通のべた電極であると、フォトリソグラフィ技術によるパターニングが不要となるので、製造コストを低減することができる。また、カラー表示を行う場合には、第2基板20は、カラーフィルタ(不図示)を有する。 The second substrate (front substrate) 20 has a fourth electrode (counter electrode) 21 facing the first electrode 11, the second electrode 12 and the third electrode 13. The fourth electrode 21 may be a so-called solid electrode in which no slit or notch is formed. In the example illustrated in FIG. 2, the second substrate 20 further includes a dielectric layer (overcoat layer) 22 provided on the fourth electrode 21. The fourth electrode 21 does not need to be electrically independent for each pixel, and may be a continuous single conductive film (that is, a common electrode) common to all pixels. When the fourth electrode 21 is a solid electrode common to all the pixels, patterning by a photolithography technique is not necessary, so that the manufacturing cost can be reduced. When performing color display, the second substrate 20 includes a color filter (not shown).
 第2基板20の構成要素(上述した第4電極21など)は、絶縁性を有する基板(例えばガラス基板)20aによって支持されている。 The components of the second substrate 20 (such as the fourth electrode 21 described above) are supported by an insulating substrate (for example, a glass substrate) 20a.
 第1電極11、第2電極12、第3電極13および第4電極21のそれぞれは、ITO(インジウム錫酸化物)やIZO(インジウム亜鉛酸化物)などの透明導電材料から形成されている。これらの電極となる導電膜を堆積する方法に特に制限はなく、スパッタリング法、真空蒸着法、プラズマCVD法等、公知の種々の方法を用いることができる。また、櫛歯形状を有する第1電極11および第2電極12を形成するために導電膜をパターニングする方法にも特に制限はなく、フォトリソグラフィ等の公知のパターニング方法を用いることができる。第1電極11、第2電極12、第3電極13および第4電極21の厚さは、例えば、100nmである。 Each of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 is made of a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide). There is no particular limitation on the method for depositing the conductive film to be these electrodes, and various known methods such as a sputtering method, a vacuum evaporation method, and a plasma CVD method can be used. Further, there is no particular limitation on the method for patterning the conductive film in order to form the first electrode 11 and the second electrode 12 having a comb-teeth shape, and a known patterning method such as photolithography can be used. The thicknesses of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 are, for example, 100 nm.
 光学層30は、印加された電界に応じてその光学特性が変化する。光学層30は、液状の媒体31と、媒体31中に分散され、形状異方性を有する粒子(以下では「形状異方性粒子」と呼ぶ)32とを含む。上述した第1基板10および第2基板20は、表示領域を包囲するように形成されたシール部(ここでは不図示)を介して貼り合わされており、媒体31および形状異方性粒子32は、シール部に包囲された領域(つまり表示領域)内に封入されている。光学層30の厚さ(セルギャップ)に特に制限はない。光学層30の厚さは、例えば、5μm~30μmである。 The optical characteristics of the optical layer 30 change according to the applied electric field. The optical layer 30 includes a liquid medium 31 and particles 32 dispersed in the medium 31 and having shape anisotropy (hereinafter referred to as “shape anisotropic particles”). The first substrate 10 and the second substrate 20 described above are bonded together via a seal portion (not shown here) formed so as to surround the display region, and the medium 31 and the shape anisotropic particles 32 are: It is enclosed in a region (that is, a display region) surrounded by the seal portion. There is no particular limitation on the thickness (cell gap) of the optical layer 30. The thickness of the optical layer 30 is, for example, 5 μm to 30 μm.
 形状異方性粒子32は、光反射性を有する。形状異方性粒子32は、例えばフレーク状(薄片状)である。 The shape anisotropic particle 32 has light reflectivity. The shape anisotropic particle 32 has, for example, a flake shape (flaky shape).
 形状異方性粒子32は、光学層30に印加された電界(電圧)に応じて配向方向が変化する。形状異方性粒子32は、形状異方性を有しているので、形状異方性粒子32の配向方向が変化すると、形状異方性粒子32の基板面(第1基板10の基板面)への投影面積も変化し、それに伴って、光学層30の光学特性(ここでは反射率)が変化する。表示パネル110では、そのことを利用して表示が行われる。形状異方性粒子32の配向方向が印加電界に応じて変化する理由については、後に詳述する。 The orientation direction of the shape anisotropic particles 32 changes according to the electric field (voltage) applied to the optical layer 30. Since the shape anisotropic particles 32 have shape anisotropy, when the orientation direction of the shape anisotropic particles 32 changes, the substrate surface of the shape anisotropic particles 32 (the substrate surface of the first substrate 10). The projected area on the screen also changes, and the optical characteristics (reflectance in this case) of the optical layer 30 change accordingly. The display panel 110 performs display using this fact. The reason why the orientation direction of the shape anisotropic particles 32 changes according to the applied electric field will be described in detail later.
 本実施形態における表示パネル110では、媒体31は、液晶材料であり、液晶分子を含んでいる。ここでは、液晶材料は、正の誘電異方性を有するネマチック液晶材料である。つまり、媒体31は、いわゆるポジ型のネマチック液晶材料であり、液晶分子の長軸方向の誘電率ε//は、短軸方向の誘電率εよりも大きい。媒体31がネマチック液晶材料であるので、印加電圧がゼロである状態において、画素はメモリ性を有していない。 In the display panel 110 according to the present embodiment, the medium 31 is a liquid crystal material and includes liquid crystal molecules. Here, the liquid crystal material is a nematic liquid crystal material having positive dielectric anisotropy. That is, the medium 31 is a so-called positive nematic liquid crystal material, and the dielectric constant ε // in the major axis direction of the liquid crystal molecules is larger than the dielectric constant ε の in the minor axis direction. Since the medium 31 is a nematic liquid crystal material, the pixel does not have a memory property when the applied voltage is zero.
 第1基板10および第2基板20のそれぞれは、光学層30側に設けられた垂直配向膜15および25を有する。垂直配向膜15および25は、媒体(液晶材料)31に含まれる液晶分子を垂直配向(第1基板10または第2基板20の基板面に対して略垂直に配向)させる配向規制力を有する。また、垂直配向膜15および25は、後に詳述するように、形状異方性粒子32を垂直配向(第1基板10または第2基板20の基板面に対して略垂直に配向)させる配向規制力も有する。なお、必ずしも第1基板10および第2基板20の両方に垂直配向膜が設けられている必要はなく、一方のみ(例えば第1基板10のみ)に垂直配向膜が設けられていてもよい。 Each of the first substrate 10 and the second substrate 20 has vertical alignment films 15 and 25 provided on the optical layer 30 side. The vertical alignment films 15 and 25 have an alignment regulating force for vertically aligning liquid crystal molecules contained in the medium (liquid crystal material) 31 (aligned substantially perpendicularly to the substrate surface of the first substrate 10 or the second substrate 20). Further, the vertical alignment films 15 and 25, as will be described in detail later, are alignment restrictions that cause the shape anisotropic particles 32 to be vertically aligned (aligned substantially perpendicularly to the substrate surface of the first substrate 10 or the second substrate 20). Also has power. Note that the vertical alignment film is not necessarily provided on both the first substrate 10 and the second substrate 20, and the vertical alignment film may be provided on only one (for example, only the first substrate 10).
 本実施形態における表示パネル110では、第1電極(第1上層電極)11および第2電極(第2上層電極)12と、第3電極(下層電極)13とによって光学層30にフリンジ電界が生成される。本発明の実施形態による表示装置100では、さらに、第1電極11、第2電極12および第3電極13と、第4電極(対向電極)21とによって光学層30に縦電界が生成される。 In the display panel 110 according to the present embodiment, a fringe electric field is generated in the optical layer 30 by the first electrode (first upper layer electrode) 11, the second electrode (second upper layer electrode) 12, and the third electrode (lower layer electrode) 13. Is done. In the display device 100 according to the embodiment of the present invention, a vertical electric field is generated in the optical layer 30 by the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode (counter electrode) 21.
 以下、図4(a)および(b)を参照しながら、形状異方性粒子32の配向方向が印加電界(印加電圧)に応じて変化する理由をより具体的に説明する。図4(a)は、光学層30に電界が印加されていないときの表示パネル110を模式的に示す図であり、図4(b)は、光学層30にフリンジ電界が印加されているときの表示パネル110を模式的に示す図である。 Hereinafter, the reason why the orientation direction of the shape anisotropic particles 32 changes according to the applied electric field (applied voltage) will be described in more detail with reference to FIGS. 4 (a) and 4 (b). 4A is a diagram schematically showing the display panel 110 when no electric field is applied to the optical layer 30, and FIG. 4B is a diagram when a fringe electric field is applied to the optical layer 30. It is a figure which shows typically the display panel 110 of.
 光学層30に電界が印加されていない場合、図4(a)に示すように、形状異方性粒子32は、垂直配向膜15および25の配向規制力によって、(その長手方向が)第1基板10の基板面に対して略垂直になるように配向している(つまり垂直配向状態をとる)。また、垂直配向膜15および25の配向規制力によって液晶分子が基板面に略垂直に配向することが、形状異方性粒子32が垂直配向状態をとることをサポートするように働く。この状態において、入射した周囲光Lの多くは光学層30を透過する。つまり、光学層30は透明状態となる。光学層30を透過した周囲光は、光吸収層16で吸収されるので、この状態において、黒表示を行うことができる。なお、本願明細書において、「形状異方性粒子32が基板面に対して略垂直に配向している」とは、形状異方性粒子32が、基板面に対して厳密に垂直に配向している状態と実質的に同程度の光学特性を示すような角度で配向している状態を指し、具体的には、形状異方性粒子32が基板面に対して75°以上の角度で配向した状態を指す。 When no electric field is applied to the optical layer 30, as shown in FIG. 4 (a), the shape anisotropic particles 32 are first (its longitudinal direction) due to the alignment regulating force of the vertical alignment films 15 and 25. The substrate 10 is oriented so as to be substantially perpendicular to the substrate surface (that is, in a vertically oriented state). In addition, the alignment of the liquid crystal molecules substantially perpendicular to the substrate surface by the alignment regulating force of the vertical alignment films 15 and 25 serves to support the shape anisotropic particles 32 taking a vertical alignment state. In this state, most of the incident ambient light L is transmitted through the optical layer 30. That is, the optical layer 30 is in a transparent state. Since ambient light transmitted through the optical layer 30 is absorbed by the light absorption layer 16, black display can be performed in this state. In the present specification, “the shape anisotropic particles 32 are oriented substantially perpendicular to the substrate surface” means that the shape anisotropic particles 32 are oriented strictly perpendicular to the substrate surface. Refers to a state of being oriented at an angle exhibiting substantially the same optical characteristics as the state of being, specifically, the shape anisotropic particles 32 are oriented at an angle of 75 ° or more with respect to the substrate surface. Refers to the state.
 図4(b)に示すように、光学層30にフリンジ電界(電気力線Efで表わされる)が印加されると、形状異方性粒子32は、(その長手方向が)第1基板10の基板面に略平行になるように配向する(つまり水平配向状態をとる)。また、液晶分子も、第1基板10の基板面に略平行に配向する。この状態において、入射した周囲光Lの多くは光学層30中の形状異方性粒子32で反射される。つまり、光学層30は反射状態となり、この状態において、白表示を行うことができる。また、白表示時よりも低い電圧を印加することにより、中間調表示を行うこともできる。 As shown in FIG. 4B, when a fringe electric field (represented by the electric lines of force Ef) is applied to the optical layer 30, the shape anisotropic particles 32 have a longitudinal direction of the first substrate 10. Align so as to be substantially parallel to the substrate surface (that is, take a horizontal alignment state). The liquid crystal molecules are also aligned substantially parallel to the substrate surface of the first substrate 10. In this state, most of the incident ambient light L is reflected by the shape anisotropic particles 32 in the optical layer 30. That is, the optical layer 30 is in a reflective state, and white display can be performed in this state. Further, halftone display can be performed by applying a voltage lower than that during white display.
 また、表示パネル110では、第2基板20が、第1電極11、第2電極12および第3電極13に対向する第4電極21を有しているので、光学層30に縦電界を生成することもできる。 In the display panel 110, the second substrate 20 includes the fourth electrode 21 that faces the first electrode 11, the second electrode 12, and the third electrode 13, and thus generates a vertical electric field in the optical layer 30. You can also.
 図5に示すように、光学層30に縦電界(電気力線Evで表わされる)が印加されると、形状異方性粒子32は、(その長手方向が)第1基板10の基板面に略垂直になるように配向する(つまり垂直配向状態をとる)。また、液晶分子も、第1基板10の基板面に略垂直に配向する。この状態において、入射した周囲光Lの多くは光学層30を透過する。つまり、光学層30は透明状態となる。光学層30を透過した周囲光は、光吸収層16で吸収されるので、この状態において、黒表示を行うことができる。 As shown in FIG. 5, when a longitudinal electric field (represented by electric lines of force Ev) is applied to the optical layer 30, the shape anisotropic particles 32 (on the longitudinal direction) are formed on the substrate surface of the first substrate 10. Align so as to be substantially vertical (that is, take a vertical alignment state). The liquid crystal molecules are also aligned substantially perpendicular to the substrate surface of the first substrate 10. In this state, most of the incident ambient light L is transmitted through the optical layer 30. That is, the optical layer 30 is in a transparent state. Since ambient light transmitted through the optical layer 30 is absorbed by the light absorption layer 16, black display can be performed in this state.
 なお、白表示および中間調表示を行う場合、図6に示すように、フリンジ電界に加えて横電界(電気力線Ehで表わされる)が光学層30に印加されてもよい。横電界は、第1電極11と第2電極12とによって生成され得る。本願明細書では、同一基板の同一レベルに設けられた2つの電極の電位差によって生成される電界を「横電界」と呼び、同一基板の異なるレベルに設けられた2つの電極の電位差によって生成される電界を「フリンジ電界」と呼ぶ。また、本願明細書では、光学層30にフリンジ電界および/または横電界を印加して表示を行うモードを「横電界モード」と呼び、光学層30に縦電界を印加して表示を行うモードを「縦電界モード」と呼ぶ。 In addition, when performing white display and halftone display, a lateral electric field (represented by an electric force line Eh) may be applied to the optical layer 30 in addition to the fringe electric field, as shown in FIG. A transverse electric field can be generated by the first electrode 11 and the second electrode 12. In this specification, an electric field generated by a potential difference between two electrodes provided on the same substrate on the same level is called a “lateral electric field”, and is generated by a potential difference between two electrodes provided on different levels on the same substrate. The electric field is called a “fringe electric field”. Further, in this specification, a mode in which display is performed by applying a fringe electric field and / or a lateral electric field to the optical layer 30 is referred to as a “lateral electric field mode”, and a mode in which display is performed by applying a vertical electric field to the optical layer 30. This is called “vertical electric field mode”.
 上述したような形状異方性粒子32の配向変化は、電界とそれによって誘起された電気双極子モーメントとの相互作用による誘電泳動力に起因している。以下、図7(a)および(b)を参照しながら、より具体的に説明を行う。図7(a)および(b)は、光学層30に印加されている電界をフリンジ電界および/または横電界から縦電界に変化させた直後、およびその後十分な時間が経過した後の、光学層30の様子(電荷の分布および電気力線)を示す図である。 The orientation change of the shape anisotropic particles 32 as described above is caused by the dielectrophoretic force due to the interaction between the electric field and the electric dipole moment induced thereby. Hereinafter, a more specific description will be given with reference to FIGS. 7 (a) and 7 (b). FIGS. 7A and 7B show the optical layer immediately after the electric field applied to the optical layer 30 is changed from a fringe electric field and / or a horizontal electric field to a vertical electric field, and after a sufficient time has elapsed thereafter. It is a figure which shows the mode 30 (electric charge distribution and an electric force line).
 形状異方性粒子32の誘電率と、媒体31の誘電率とが異なっている場合、光学層30への印加電界の方向が変化すると、図7(a)に示すように、電気力線に大きな歪みが生じる。そのため、形状異方性粒子32は、図7(b)に示すように、エネルギーが最小となるように回転する。 When the dielectric constant of the shape anisotropic particle 32 and the dielectric constant of the medium 31 are different, when the direction of the electric field applied to the optical layer 30 changes, as shown in FIG. Large distortion occurs. Therefore, as shown in FIG. 7B, the shape anisotropic particles 32 rotate so that the energy is minimized.
 一般に、媒体中に分散された粒子に働く誘電泳動力Fdepは、粒子の誘電率をεp、媒体の誘電率をεm、粒子の半径をa、電界の強さをEとすると、下記式(1)で表される。式(1)中のReは、実部を取り出す演算子である。なお、本実施形態では、媒体31は、液晶材料であり、誘電異方性を有している。つまり、液晶分子の長軸方向の誘電率ε//と短軸方向の誘電率εとが異なっており、εm=ε//-ε=Δεに相当すると考えられる。 In general, the dielectrophoretic force F dep acting on particles dispersed in a medium is expressed as follows, where the dielectric constant of the particles is ε p , the dielectric constant of the medium is ε m , the radius of the particles is a, and the strength of the electric field is E. It is represented by Formula (1). Re in the expression (1) is an operator that extracts a real part. In the present embodiment, the medium 31 is a liquid crystal material and has dielectric anisotropy. That is, the dielectric constant epsilon the long axis direction of the dielectric constant epsilon // and the minor axis direction of liquid crystal molecules is different, is considered to correspond to ε m = ε // -ε ⊥ = Δε.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、既に説明したことからもわかるように、上記の誘電泳動力以外に垂直配向膜15および25の配向規制力と液晶分子のサポートとにより形状異方性粒子32に垂直配向状態を発現させることにより、形状異方性粒子32の垂直配向動作および水平配向動作の切り替えを好適に行うことができる。 Further, as can be seen from the above description, in addition to the above-described dielectrophoretic force, the shape anisotropic particles 32 are allowed to develop a vertical alignment state by the alignment regulating force of the vertical alignment films 15 and 25 and the support of liquid crystal molecules. Thus, the vertical alignment operation and the horizontal alignment operation of the shape anisotropic particles 32 can be suitably switched.
 上述したように、表示パネル110では、光学層30への電圧の印加により、形状異方性粒子32の配向方向を変化させることができ、そのことを利用して表示を行うことができる。表示パネル110は、偏光板を必要としないので、高い光利用効率を実現することができる。 As described above, in the display panel 110, the orientation direction of the shape anisotropic particles 32 can be changed by applying a voltage to the optical layer 30, and display can be performed using this. Since the display panel 110 does not require a polarizing plate, high light utilization efficiency can be realized.
 各画素の反射率は、画素への印加電圧の大きさに応じて変化する。上述した構成を有する表示パネル110では、画素の電圧-反射率特性は、ヒステリシス性を有する。以下、このヒステリシス性を具体的に説明する。なお、以下の説明において例示する昇圧曲線(印加電圧を増加させていくときの電圧-反射率特性を示す)および降圧曲線(印加電圧を減少させていくときの電圧-反射率特性を示す)は、上述した構成を有する表示パネル110を実際に試作し(つまりテストセルを作製し)、そのテストセルについて求めたものである。 反射 The reflectance of each pixel changes according to the magnitude of the voltage applied to the pixel. In the display panel 110 having the above-described configuration, the voltage-reflectance characteristic of the pixel has a hysteresis characteristic. Hereinafter, this hysteresis property will be specifically described. In the following explanation, the step-up curve (showing voltage-reflectance characteristics when the applied voltage is increased) and the step-down curve (showing voltage-reflectance characteristics when the applied voltage is reduced) are shown as examples. The display panel 110 having the above-described configuration was actually prototyped (that is, a test cell was manufactured), and the test cell was obtained.
 テストセルは、アクティブマトリクス駆動ではなく、図8に示すような電極構造を採用した。図8に示す電極構造では、第1電極11、第2電極12および第3電極13のそれぞれの端部に端子11t、12tおよび13tが設けられている。第1電極11、第2電極12および第3電極13に、端子11t、12tおよび13tを介して任意波形発生器から所望の波形の電圧を入力した。 The test cell adopts an electrode structure as shown in FIG. 8 instead of active matrix driving. In the electrode structure shown in FIG. 8, terminals 11t, 12t, and 13t are provided at the respective ends of the first electrode 11, the second electrode 12, and the third electrode 13. A voltage having a desired waveform was input from the arbitrary waveform generator to the first electrode 11, the second electrode 12, and the third electrode 13 via the terminals 11t, 12t, and 13t.
 テストセルでは、光学層30の厚さ(セル厚)は、15μmである。媒体31は、誘電異方性Δεが20.4のポジ型ネマチック液晶材料(メルク株式会社製)である。形状異方性粒子32の平均粒径は7μmであり、光学層30における形状異方性粒子32の含有量は6重量%である。基板10aおよび20aは、それぞれガラス基板である。第1電極(第1上層電極)11および第2電極(第2上層電極)12のそれぞれは、櫛歯形状を有する。第3電極(下層電極)13は、複数のスリットを有する(後述する図34参照)。第4電極(対向電極)21は、べた電極である。第1電極11、第2電極12、第3電極13および第4電極21のそれぞれは、IZOから形成されており、100nmの厚さを有する。第1電極11の枝部11aの幅w1および第2電極12の枝部12aの幅w2は、それぞれ3μmであり、電極間距離gは10μmである。絶縁層14は、SiNxから形成されており、350nmの厚さを有する。オーバーコート層22は、比誘電率εr=3.4のフォトレジスト(凸版印刷社製)から形成されており、3μmの厚さを有する。垂直配向膜15および25は、表面エネルギーが35mJ/m2のポリアミック酸系垂直配向膜(日産化学社製)である。 In the test cell, the optical layer 30 has a thickness (cell thickness) of 15 μm. The medium 31 is a positive nematic liquid crystal material (manufactured by Merck & Co., Inc.) having a dielectric anisotropy Δε of 20.4. The average particle diameter of the shape anisotropic particles 32 is 7 μm, and the content of the shape anisotropic particles 32 in the optical layer 30 is 6% by weight. The substrates 10a and 20a are glass substrates, respectively. Each of the first electrode (first upper layer electrode) 11 and the second electrode (second upper layer electrode) 12 has a comb-tooth shape. The third electrode (lower layer electrode) 13 has a plurality of slits (see FIG. 34 described later). The fourth electrode (counter electrode) 21 is a solid electrode. Each of the first electrode 11, the second electrode 12, the third electrode 13, and the fourth electrode 21 is made of IZO and has a thickness of 100 nm. The width w 1 of the branch portion 11a of the first electrode 11 and the width w 2 of the branch portion 12a of the second electrode 12 are each 3 μm, and the inter-electrode distance g is 10 μm. The insulating layer 14 is made of SiNx and has a thickness of 350 nm. The overcoat layer 22 is formed of a photoresist (manufactured by Toppan Printing Co., Ltd.) having a relative dielectric constant εr = 3.4, and has a thickness of 3 μm. The vertical alignment films 15 and 25 are polyamic acid-based vertical alignment films (manufactured by Nissan Chemical Industries) having a surface energy of 35 mJ / m 2 .
 図9は、テストセルにおける第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3および第4電極21の電位V4を示すタイミングチャートである。図9に示すように、第1電極11の電位V1および第2電極12の電位V2は、4フレームを周期とする矩形波であり、1周期内で1フレーム(約16.7msec)ごとに+aV、0V、-aV、0Vと変化する。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0V(接地電位)である。 9, the potential V 1 of the first electrode 11 in the test cell, the potential V 2 of the second electrode 12 is a timing chart showing the potential V 4 in the potential V 3 and the fourth electrode 21 of the third electrode 13. As shown in FIG. 9, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, each frame within one period (about 16.7 msec) Change to + aV, 0V, -aV, 0V. The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
 図10に、表示パネル110(テストセル)の昇圧曲線および降圧曲線を示す。図10は、画素電圧(第1電極11および第2電極12と第3電極13との間の電圧)Vop(V)と、SCE方式の反射率(Y値)との関係を示すグラフである。 FIG. 10 shows the step-up curve and the step-down curve of the display panel 110 (test cell). FIG. 10 is a graph showing the relationship between the pixel voltage (the voltage between the first electrode 11 and the second electrode 12 and the third electrode 13) Vop (V) and the reflectance (Y value) of the SCE method. .
 図10からわかるように、画素の電圧-反射率特性は、ヒステリシス性を有しており、昇圧曲線における閾値電圧が、降圧曲線における閾値電圧よりも高い。また、印加電圧を書き込み電圧から減少させていくときの降圧曲線において、書き込み電圧から書き込み電圧よりも低い所定の電圧までの範囲rで反射率が実質的に一定である。ここで、「反射率が実質的に一定である」とは、具体的には、範囲r内において反射率Rが書き込み電圧が印加されているときの反射率Rwの0.8倍以上1.2倍以下である(つまり0.8Rw≦R≦1.2Rwの関係が満足される)ことを意味している。さらに、印加電圧をゼロから増加させていくときの昇圧曲線における反射率の値は、電圧値に対して実質的に1対1の関係で決まる。以下、図11も参照しながら、このようなヒステリシス性が発現するメカニズムを説明する。 As can be seen from FIG. 10, the voltage-reflectance characteristic of the pixel has a hysteresis characteristic, and the threshold voltage in the boost curve is higher than the threshold voltage in the buck curve. In the step-down curve when the applied voltage is decreased from the write voltage, the reflectance is substantially constant in a range r from the write voltage to a predetermined voltage lower than the write voltage. Here, “the reflectance is substantially constant” specifically means that the reflectance R is 0.8 times or more the reflectance Rw when the write voltage is applied within the range r. It means that it is 2 times or less (that is, the relationship of 0.8Rw ≦ R ≦ 1.2Rw is satisfied). Further, the reflectance value in the boost curve when the applied voltage is increased from zero is substantially determined in a one-to-one relationship with the voltage value. Hereinafter, the mechanism by which such hysteresis is developed will be described with reference to FIG.
 図11は、図10中の点A-1、A-2、B-3、B-4、C-5、C-6、C-7およびA-8における形状異方性粒子32の配向状態を模式的に示す図である。図11からわかるように(点A-1、A-2、B-3、B-4、C-5に対応する配向状態を参照されたい)、印加電圧が増加していくと、光学層30の厚さ方向(セル厚方向)の電界強度が強くなる。それに伴い、垂直配向状態にある形状異方性粒子32が第1基板10側に移動して水平配向していく。また、図11からわかるように(点C-6およびC-7に対応する配向状態を参照されたい)、多くの形状異方性粒子32が第1基板10側で水平配向した状態から印加電圧を減少させていっても、電界強度が弱い対向基板20側には形状異方性粒子32があまり存在していないので、形状異方性粒子32の多くは第1基板10側で水平配向状態を維持する。このことが、ヒステリシス性が発現する原因である。また、図11からわかるように(点A-8およびA-1に対応する配向状態を参照されたい)、さらに印加電圧を減少させていくと、水平配向状態を維持できなくなった形状異方性粒子32が第2基板20側に拡散していく。 FIG. 11 shows the orientation state of the shape anisotropic particles 32 at points A-1, A-2, B-3, B-4, C-5, C-6, C-7 and A-8 in FIG. FIG. As can be seen from FIG. 11 (see the alignment states corresponding to points A-1, A-2, B-3, B-4, and C-5), as the applied voltage increases, the optical layer 30 increases. The electric field strength in the thickness direction (cell thickness direction) increases. Accordingly, the shape anisotropic particles 32 in the vertical alignment state move to the first substrate 10 side and are horizontally aligned. Further, as can be seen from FIG. 11 (see the alignment state corresponding to points C-6 and C-7), the applied voltage is applied from the state in which many shape anisotropic particles 32 are horizontally aligned on the first substrate 10 side. However, since the shape anisotropic particles 32 do not exist so much on the counter substrate 20 side where the electric field strength is weak, most of the shape anisotropic particles 32 are in the horizontal alignment state on the first substrate 10 side. To maintain. This is the cause of the hysteresis. In addition, as can be seen from FIG. 11 (see the alignment state corresponding to points A-8 and A-1), as the applied voltage is further reduced, the shape anisotropy can no longer maintain the horizontal alignment state. The particles 32 diffuse toward the second substrate 20 side.
 上述の説明からもわかるように、表示パネル110の昇圧曲線および降圧曲線(図10参照)は、3つの領域A、BおよびCを含んでいる。領域A(点A-1、A-2およびA-8を含む)では、相対的に電界強度が強い第1基板10側の形状異方性粒子32の配向方向が変化する。領域B(点B-3およびB-4を含む)では、相対的に電界強度が弱い第2基板20側の形状異方性粒子32が第1基板10側に移動し、その配向方向が変化する。領域C(点C-5、C-6およびC-7を含む)では、第1基板10側で形状異方性粒子32が水平配向状態を維持する。 As can be seen from the above description, the step-up curve and the step-down curve (see FIG. 10) of the display panel 110 include three regions A, B, and C. In the region A (including points A-1, A-2, and A-8), the orientation direction of the shape anisotropic particles 32 on the first substrate 10 side where the electric field strength is relatively strong changes. In the region B (including points B-3 and B-4), the shape anisotropic particles 32 on the second substrate 20 side having relatively weak electric field strength move to the first substrate 10 side, and the orientation direction thereof changes. To do. In the region C (including the points C-5, C-6, and C-7), the shape anisotropic particles 32 maintain the horizontal alignment state on the first substrate 10 side.
 上述したように、本発明の実施形態による表示装置100では、画素の電圧-反射率特性がヒステリシス性を有しており、印加電圧を書き込み電圧から減少させていくときの降圧曲線において、書き込み電圧から書き込み電圧よりも低い所定の電圧までの範囲(図10中の範囲r)で反射率が実質的に一定である。そのため、書き込み駆動後に電圧供給を停止して画素への印加電圧が低下しても、低下後の所定の電圧範囲においては(つまり降圧開始後の一定期間において)反射率を実質的に一定に維持することができる。それ故、書き込み駆動を行った後に、ドライバ120を休止させる休止駆動を行うことにより、消費電力を低減することができる。 As described above, in the display device 100 according to the embodiment of the present invention, the voltage-reflectance characteristic of the pixel has a hysteresis characteristic, and the write voltage in the step-down curve when the applied voltage is decreased from the write voltage. The reflectivity is substantially constant in a range from a voltage to a predetermined voltage lower than the write voltage (range r in FIG. 10). Therefore, even if the voltage supply is stopped after writing driving and the applied voltage to the pixel is lowered, the reflectivity is maintained substantially constant in a predetermined voltage range after the reduction (that is, in a certain period after the voltage reduction starts). can do. Therefore, the power consumption can be reduced by performing the pause drive that pauses the driver 120 after the write drive.
 また、表示装置100では、印加電圧をゼロから増加させていくときの昇圧曲線における反射率の値は、電圧値に対して実質的に1対1の関係で決まる。そのため、書き込み電圧を昇圧曲線に基づいて設定することにより、中間調表示を好適に行うことができる。これに対し、特許文献2の技術に用いられる画素メモリは2値のデジタル回路であるので、特許文献2の技術では、中間調表示ができない。 Further, in the display device 100, the reflectance value in the boosting curve when the applied voltage is increased from zero is substantially determined in a one-to-one relationship with the voltage value. Therefore, halftone display can be suitably performed by setting the write voltage based on the boost curve. On the other hand, since the pixel memory used in the technique of Patent Document 2 is a binary digital circuit, the technique of Patent Document 2 cannot perform halftone display.
 ここで、ヒステリシス性を利用した表示方法をより具体的に説明する。 Here, the display method using the hysteresis characteristic will be described more specifically.
 まず、黒表示および白表示を説明する。図12に、ヒステリシス性の繰り返し再現性を検証した結果を示す。図12は、画素電圧Vopを、オフ電圧(0V)から白表示に対応する書き込み電圧まで増加させ、その後再びオフ電圧まで減少させるという駆動を3回繰り返したときの昇圧曲線および降圧曲線を示すグラフである。 First, black display and white display will be described. FIG. 12 shows the result of verifying the repeatability of hysteresis. FIG. 12 is a graph showing a step-up curve and a step-down curve when the driving of increasing the pixel voltage Vop from the off-voltage (0 V) to the writing voltage corresponding to white display and then reducing it again to the off-voltage is repeated three times. It is.
 図12から、1回目、2回目および3回目の昇圧曲線および降圧曲線が重なっており、ヒステリシス性が高い精度で再現されていることがわかる。従って、黒表示と白表示との切り替えを繰り返して好適に行うことができる。 From FIG. 12, it can be seen that the first time, the second time and the third time pressure increase curve and the pressure decrease curve are overlapped, and the hysteresis property is reproduced with high accuracy. Accordingly, it is possible to suitably perform switching between black display and white display repeatedly.
 続いて、中間調表示を説明する。まず、図13を参照しながら、黒表示と中間調表示との切り替えについて説明を行う。図13は、画素電圧Vopを、オフ電圧(0V)から書き込み電圧まで増加させ、その後再びオフ電圧まで減少させるという駆動を5回繰り返したときの昇圧曲線および降圧曲線を示すグラフである。1回目および5回目の書き込み電圧が白表示に対応する電圧であるのに対し、2回目、3回目および4回目の書き込み電圧は中間調表示に対応する電圧である。 Next, the halftone display will be explained. First, switching between black display and halftone display will be described with reference to FIG. FIG. 13 is a graph showing a step-up curve and a step-down curve when the driving of increasing the pixel voltage Vop from the off voltage (0 V) to the writing voltage and then decreasing the pixel voltage Vop again to the off voltage is repeated five times. The first and fifth writing voltages are voltages corresponding to white display, whereas the second, third and fourth writing voltages are voltages corresponding to halftone display.
 図13から、2回目以降の駆動における昇圧曲線が、1回目の駆動における昇圧曲線に一致していることがわかる。そのため、黒表示から中間調表示への切り替えは、昇圧曲線に従い、所望の中間調表示に対応する反射率となる画素電圧Vopでデータ書き込みを行えばよい。また、図13から、中間調表示に対応する電圧でデータ書き込みを行った後の降圧曲線においても、反射率が実質的に一定な範囲rが存在していることがわかる。 FIG. 13 shows that the boosting curve in the second and subsequent driving matches the boosting curve in the first driving. For this reason, switching from the black display to the halftone display may be performed by writing data with the pixel voltage Vop having a reflectance corresponding to the desired halftone display in accordance with the boost curve. In addition, it can be seen from FIG. 13 that there is a range r in which the reflectance is substantially constant in the step-down curve after the data is written with the voltage corresponding to the halftone display.
 次に、図14および図15を参照しながら、ある中間調(中間調D)の表示からより高階調側の中間調(中間調E)の表示または白表示への切り替えについて説明を行う。図14は、中間調Dでのデータ書き込みに対応する点P1およびそこから上述した範囲r内で降圧した点P2を含む昇圧曲線および降圧曲線を示すグラフであり、図15(a)および(b)は、それぞれ点P1およびP2に対応する形状異方性粒子32の配向状態を示す図である。 Next, with reference to FIG. 14 and FIG. 15, switching from a halftone (halftone D) display to a higher halftone (halftone E) display or white display will be described. FIG. 14 is a graph showing a step-up curve and a step-down curve including the point P1 corresponding to data writing in the halftone D and the point P2 stepped down from the point P2 within the range r described above. ) Is a diagram showing the orientation state of the shape anisotropic particles 32 corresponding to the points P1 and P2, respectively.
 図14からわかるように、中間調Dに対応する書き込み電圧が画素に印加された状態(点P1:図15(a)参照)と、その状態から範囲r内で降圧した状態(点P2:図15(b)参照)とは、可逆である。つまり、第1基板10側で形状異方性粒子32が水平配向状態を維持する電圧範囲(図10中の領域Cに対応)では、配向状態の変化が可逆的である。そのため、中間調Dの表示から、より高階調側の中間調Eの表示(または白表示)への切り替えは、中間調Dのデータ書き込み後に降圧した状態からそのまま中間調Eに対応する書き込み電圧の印加を行えばよい(図14中の点P3)。 As can be seen from FIG. 14, a state in which the write voltage corresponding to the halftone D is applied to the pixel (point P1: see FIG. 15A) and a state in which the voltage is stepped down within the range r from that state (point P2: FIG. 15 (b)) is reversible. That is, in the voltage range (corresponding to the region C in FIG. 10) in which the shape anisotropic particles 32 maintain the horizontal alignment state on the first substrate 10 side, the change in the alignment state is reversible. For this reason, switching from the display of halftone D to the display of halftone E on the higher gradation side (or white display) is performed by changing the write voltage corresponding to halftone E as it is from the step-down state after writing the data of halftone D. Application may be performed (point P3 in FIG. 14).
 続いて、図16、図17および図18を参照しながら、白またはある中間調Dの表示からより低階調側の中間調(中間調F)の表示への切り替えについて説明を行う。図16は、昇圧曲線および降圧曲線を示すグラフであり、図17(a)、(b)および図18(a)、(b)は、それぞれ図16中の点P4、P5、P6およびP7に対応する形状異方性粒子32の配向状態を示す図である。 Subsequently, switching from white or a certain halftone D display to a lower halftone (halftone F) display will be described with reference to FIGS. FIG. 16 is a graph showing a step-up curve and a step-down curve. FIGS. 17A, 17B, 18A, and 18B are respectively shown at points P4, P5, P6, and P7 in FIG. It is a figure which shows the orientation state of the corresponding shape anisotropic particle.
 白または中間調Dのデータ書き込み後に範囲r内で降圧し、その後さらに画素電圧Vopを点P4まで減少させる場合、降圧曲線は、その前の書き込み電圧の大きさに依存して異なる。そのため、画素電圧Vopと反射率とが1対1の関係では決まらない。また、点P4から画素電圧Vopを増加させてデータ書き込みを行う場合、水平配向状態を維持している形状異方性粒子32の量に依存して昇圧曲線が異なるので、この場合にも画素電圧Vopと反射率とが1対1の関係では決まらない。そのため、白またはある中間調Dの表示からより低階調側の中間調Fの表示への切り替えに際しては、いったん画素電圧Vopをゼロにする(以下では「黒挿引」と呼ぶこともある)ことにより、起点をゼロとする昇圧曲線(点P6およびP7を含む)に従って、画素電圧Vopと反射率とを1対1の関係で決めることができる。図16から、いったん黒挿引を行った後に中間調Fに対応する書き込み電圧でデータ書き込みを行う場合(点P7)と、点P4から直接中間調Fに対応する書き込み電圧でデータ書き込みを行う場合(点P5)とで、反射率が異なっていることがわかる。 When white or halftone D data is written and then stepped down within the range r and then the pixel voltage Vop is further reduced to the point P4, the step-down curve differs depending on the magnitude of the previous writing voltage. For this reason, the pixel voltage Vop and the reflectance are not determined in a one-to-one relationship. In addition, when data is written by increasing the pixel voltage Vop from the point P4, the boosting curve differs depending on the amount of the shape anisotropic particles 32 maintaining the horizontal alignment state. Vop and reflectance are not determined in a one-to-one relationship. Therefore, when switching from white or a certain halftone D display to a lower halftone F display, the pixel voltage Vop is once set to zero (hereinafter also referred to as “black insertion”). Accordingly, the pixel voltage Vop and the reflectance can be determined in a one-to-one relationship according to a boosting curve (including points P6 and P7) with the starting point being zero. From FIG. 16, after black insertion is performed, data is written with the write voltage corresponding to the halftone F (point P7), and when data is written directly from the point P4 with the write voltage corresponding to the halftone F. It can be seen that the reflectance is different between (Point P5).
 このように、現フレームの印加電圧に対応する反射率が次フレームの書き込み電圧に対応する反射率よりも高い場合、画素への印加電圧をいったんゼロにし、その後、画素に本来の書き込み電圧を印加すればよい。 Thus, when the reflectance corresponding to the applied voltage of the current frame is higher than the reflectance corresponding to the writing voltage of the next frame, the applied voltage to the pixel is once reduced to zero, and then the original writing voltage is applied to the pixel. do it.
 上述したように、本発明の実施形態による表示装置100では、書き込み駆動を行った後に、ドライバ120を休止させる休止駆動を行うことができ、それによって消費電力を低減することができる。なお、休止駆動が行われている期間における画素の反射率Rpは、書き込み電圧が印加されているときの画素の反射率Rwの0.9倍以上1.1倍以下である(つまり0.9Rw≦Rp≦1.1Rwの関係が満足される)ことが好ましい。前者の反射率Rpが、後者の反射率Rwの0.9倍以上1.1倍以下であると、休止駆動を行うことによる反射率の変化を観察者が認識しにくい。 As described above, in the display device 100 according to the embodiment of the present invention, after performing the write drive, the drive 120 can be paused so that the power consumption can be reduced. Note that the reflectance Rp of the pixel in the period in which the pause driving is performed is 0.9 to 1.1 times the reflectance Rw of the pixel when the writing voltage is applied (that is, 0.9 Rw). ≦ Rp ≦ 1.1Rw is satisfied). If the former reflectance Rp is 0.9 times or more and 1.1 times or less than the latter reflectance Rw, it is difficult for an observer to recognize a change in reflectance due to rest driving.
 また、休止駆動の期間が長くなりすぎると、画素の反射率Rpが低くなりすぎる(書き込み電圧が印加されているときの画素の反射率Rwの0.9倍未満となってしまう)ことがある。そのため、表示装置100は、休止駆動を行った後、休止駆動を行っている期間中に低下した印加電圧を書き込み電圧まで戻すリフレッシュ駆動を行い得ることが好ましい。リフレッシュ駆動を行うことにより、画素の反射率を十分に高く維持し続けることができる。 In addition, if the period of pause driving is too long, the reflectance Rp of the pixel may be too low (below 0.9 times the reflectance Rw of the pixel when the writing voltage is applied). . For this reason, it is preferable that the display device 100 can perform refresh driving that returns the applied voltage, which has been reduced during the period of performing pause driving, to the writing voltage after performing pause driving. By performing the refresh drive, the reflectance of the pixel can be kept sufficiently high.
 図19および図20を参照しながら、書き込み駆動および休止駆動に加えてリフレッシュ駆動を行うことができる表示装置100における駆動の例を説明する。図19は、表示装置100における駆動の例を示すフローチャートである。また、図20は、書き込み駆動、休止駆動およびリフレッシュ駆動のそれぞれにおける、第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3、第4電極21の電位V4およびゲート電圧(走査信号電圧)Vgを示すタイミングチャートである。 An example of driving in the display device 100 capable of performing refresh driving in addition to writing driving and pause driving will be described with reference to FIGS. 19 and 20. FIG. 19 is a flowchart illustrating an example of driving in the display device 100. Further, FIG. 20, in each of the write drive, resting drive and refresh driving, the potential V 1 of the first electrode 11, the potential V 2 of the second electrode 12, the potential V 3 of the third electrode 13, the fourth electrode 21 potential V 4 and the gate voltage is a timing chart showing the (scan signal voltage) Vg.
 図19および図20に示す例では、まず、第1の書き込み駆動WD1が行われる。第1の書き込み駆動WD1では、当然ながら、ゲートドライバ120gおよびソースドライバ120sから信号電圧の供給が行われる(つまりドライバ120はオン状態)。第1の書き込み駆動WD1では、第1電極11の電位V1および第2電極12の電位V2は、4フレームを周期とする矩形波であり、1周期内で1フレーム(60Hz駆動の場合、約16.7msec)ごとに+10V、0V、-10V、0Vと変化する。ただし、第1電極11の電位V1と第2電極12の電位V2とは、1フレーム分位相がずれている(第2電極12の電位V2の方が1フレーム分遅れている)。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0V(接地電位)である。 In the example shown in FIGS. 19 and 20, first write drive WD1 is performed first. In the first write drive WD1, the signal voltage is naturally supplied from the gate driver 120g and the source driver 120s (that is, the driver 120 is on). In the first write driver WD1, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, if one frame (60 Hz driving in one cycle, It changes to + 10V, 0V, -10V, 0V every about 16.7msec). However, the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, one frame of phase (towards the potential V 2 of the second electrode 12 is delayed by one frame). The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V (ground potential).
 表示パネル110の応答時間が例えば600msec程度である場合、第1の書き込み駆動WD1は、9周期(36フレーム)分行われる。また、図20に示す例では、第1の書き込み駆動WD1の最終フレームにおける信号電圧の波形パターンは、最終フレームよりも前のフレームにおける信号電圧の波形パターンとは異なっている。具体的には、最終フレームよりも前のフレームでは、第1電極11の電位V1および第2電極12の電位V2が互いに異なっているのに対し、最終フレームでは、第1電極11の電位V1および第2電極12の電位V2が互いに同じ(ともに-10V)である。 When the response time of the display panel 110 is, for example, about 600 msec, the first write drive WD1 is performed for 9 cycles (36 frames). In the example shown in FIG. 20, the waveform pattern of the signal voltage in the last frame of the first write drive WD1 is different from the waveform pattern of the signal voltage in the frame before the last frame. More specifically, in the frame before the last frame, whereas the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 are different from each other in the final frame, the potential of the first electrode 11 V 1 and the potential V 2 of the second electrode 12 are the same (both are −10 V).
 次に、第1の休止駆動PD1が行われる。第1の休止駆動PD1では、ゲートドライバ120gおよびソースドライバ120sから信号電圧の供給は行われず、ゲートドライバ120gおよびソースドライバ120sは休止している(つまりドライバ120はオフ状態)。そのため、ゲート電圧Vgはずっとオフ電圧のままであり、第1電極11の電位V1および第2電極12の電位V2は、第1の休止駆動PD1開始時の-10Vから時間の経過とともに徐々に0Vに近付いていく。第3電極13の電位V3および第4電極21の電位V4は、ずっと0Vである。第1の休止駆動PD1が行われる期間の長さは、例えば40secである。 Next, the first pause drive PD1 is performed. In the first pause drive PD1, no signal voltage is supplied from the gate driver 120g and the source driver 120s, and the gate driver 120g and the source driver 120s are paused (that is, the driver 120 is off). Therefore, the gate voltage Vg remains off voltage much, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is gradually with time from the first rest driving PD1 starting -10V It approaches 0V. Potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V. The length of the period during which the first pause drive PD1 is performed is, for example, 40 seconds.
 続いて、第1のリフレッシュ駆動RD1が行われる。第1のリフレッシュ駆動RD1でも、ゲートドライバ120gおよびソースドライバ120sから信号電圧の供給が行われる(つまりドライバ120はオン状態)。第1のリフレッシュ駆動RD1では、第1電極11の電位V1および第2電極12の電位V2は、4フレームを周期とする矩形波であり、1周期内で1フレームごとに-10V、0V、+10V、0Vと変化する。ただし、第1電極11の電位V1と第2電極12の電位V2とは、1フレーム分位相がずれている(第1電極11の電位V1の方が1フレーム分遅れている)。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0Vである。 Subsequently, the first refresh drive RD1 is performed. Also in the first refresh drive RD1, the signal voltage is supplied from the gate driver 120g and the source driver 120s (that is, the driver 120 is in the on state). In the first refresh driving RD1, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, -10 V for each frame within one period, 0V , + 10V and 0V. However, the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, one frame of phase (towards the potential V 1 of the first electrode 11 is delayed by one frame). The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V.
 第1のリフレッシュ駆動RD1は、例えば3周期(12フレーム)分行われる。また、第1のリフレッシュ駆動RD1の最終フレームにおける信号電圧の波形パターンは、最終フレームよりも前のフレームにおける信号電圧の波形パターンとは異なっている。具体的には、最終フレームよりも前のフレームでは、第1電極11の電位V1および第2電極12の電位V2が互いに異なっているのに対し、最終フレームでは、第1電極11の電位V1および第2電極12の電位V2が互いに同じ(ともに+10V)である。 The first refresh drive RD1 is performed, for example, for 3 periods (12 frames). In addition, the waveform pattern of the signal voltage in the last frame of the first refresh drive RD1 is different from the waveform pattern of the signal voltage in the frame before the last frame. More specifically, in the frame before the last frame, whereas the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 are different from each other in the final frame, the potential of the first electrode 11 V 1 and the potential V 2 of the second electrode 12 are the same (both are +10 V).
 次に、第2の休止駆動PD2が行われる。第2の休止駆動PD2では、ゲートドライバ120gおよびソースドライバ120sから信号電圧の供給は行われず、ゲートドライバ120gおよびソースドライバ120sは休止している(つまりドライバ120はオフ状態)。そのため、ゲート電圧Vgはずっとオフ電圧のままであり、第1電極11の電位V1および第2電極12の電位V2は、第2の休止駆動PD2開始時の+10Vから時間の経過とともに徐々に0Vに近付いていく。第3電極13の電位V3および第4電極21の電位V4は、ずっと0Vである。第2の休止駆動PD2が行われる期間の長さは、例えば40secである。 Next, the second pause drive PD2 is performed. In the second pause drive PD2, the signal voltage is not supplied from the gate driver 120g and the source driver 120s, and the gate driver 120g and the source driver 120s are paused (that is, the driver 120 is off). Therefore, the gate voltage Vg remains off voltage much, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 gradually with time from the second rest driving PD2 starting + 10V It approaches 0V. Potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V. The length of the period during which the second pause drive PD2 is performed is, for example, 40 seconds.
 続いて、第2のリフレッシュ駆動RD2が行われる。第2のリフレッシュ駆動RD2でも、ゲートドライバ120gおよびソースドライバ120sから信号電圧の供給が行われる(つまりドライバ120はオン状態)。第2のリフレッシュ駆動RD2では、第1電極11の電位V1および第2電極12の電位V2は、4フレームを周期とする矩形波であり、1周期内で1フレームごとに+10V、0V、-10V、0Vと変化する。ただし、第1電極11の電位V1と第2電極12の電位V2とは、1フレーム分位相がずれている(第2電極12の電位V2の方が1フレーム分遅れている)。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0Vである。 Subsequently, the second refresh drive RD2 is performed. Also in the second refresh drive RD2, a signal voltage is supplied from the gate driver 120g and the source driver 120s (that is, the driver 120 is in an on state). In the second refresh driving RD2, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, + 10V for each frame within one period, 0V, Varies between -10V and 0V. However, the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, one frame of phase (towards the potential V 2 of the second electrode 12 is delayed by one frame). The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V.
 第2のリフレッシュ駆動RD2は、例えば3周期(12フレーム)分行われる。また、第2のリフレッシュ駆動RD2の最終フレームにおける信号電圧の波形パターンは、最終フレームよりも前のフレームにおける信号電圧の波形パターンとは異なっている。具体的には、最終フレームよりも前のフレームでは、第1電極11の電位V1および第2電極12の電位V2が互いに異なっているのに対し、最終フレームでは、第1電極11の電位V1および第2電極12の電位V2が互いに同じ(ともに-10V)である。 The second refresh drive RD2 is performed, for example, for 3 cycles (12 frames). Further, the waveform pattern of the signal voltage in the last frame of the second refresh drive RD2 is different from the waveform pattern of the signal voltage in the frame before the last frame. More specifically, in the frame before the last frame, whereas the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 are different from each other in the final frame, the potential of the first electrode 11 V 1 and the potential V 2 of the second electrode 12 are the same (both are −10 V).
 次に、再び第1の休止駆動PD1が行われる。その後は、第1のリフレッシュ駆動RD1、第2の休止駆動PD2、第2のリフレッシュ駆動RD2および第1の休止駆動PD1が繰り返されるか、または、第2の書き込み駆動WD2が行われる。 Next, the first pause drive PD1 is performed again. Thereafter, the first refresh drive RD1, the second pause drive PD2, the second refresh drive RD2, and the first pause drive PD1 are repeated, or the second write drive WD2 is performed.
 第2の書き込み駆動WD2では、当然ながら、ゲートドライバ120gおよびソースドライバ120sから信号電圧の供給が行われる(つまりドライバ120はオン状態)。第2の書き込み駆動WD2では、第1電極11の電位V1および第2電極12の電位V2は、4フレームを周期とする矩形波であり、1周期内で1フレームごとに-10V、0V、+10V、0Vと変化する。ただし、第1電極11の電位V1と第2電極12の電位V2とは、1フレーム分位相がずれている(第2電極12の電位V2の方が1フレーム分遅れている)。また、第3電極13の電位V3および第4電極21の電位V4は、ずっと0Vである。 In the second write drive WD2, the signal voltage is naturally supplied from the gate driver 120g and the source driver 120s (that is, the driver 120 is in the on state). In the second write driver WD2, the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 is a rectangular wave having a period of four frames, -10 V for each frame within one period, 0V , + 10V and 0V. However, the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12, one frame of phase (towards the potential V 2 of the second electrode 12 is delayed by one frame). The potential V 3 and the potential V 4 of the fourth electrode 21 of the third electrode 13 is much 0V.
 第2の書き込み駆動WD2は、例えば9周期(36フレーム)分行われる。また、第2の書き込み駆動WD2の最終フレームにおける信号電圧の波形パターンは、最終フレームよりも前のフレームにおける信号電圧の波形パターンとは異なっている。具体的には、最終フレームよりも前のフレームでは、第1電極11の電位V1および第2電極12の電位V2が互いに異なっているのに対し、最終フレームでは、第1電極11の電位V1および第2電極12の電位V2が互いに同じ(ともに+10V)である。 The second write drive WD2 is performed, for example, for 9 cycles (36 frames). In addition, the waveform pattern of the signal voltage in the last frame of the second write drive WD2 is different from the waveform pattern of the signal voltage in the frame before the last frame. More specifically, in the frame before the last frame, whereas the potential V 2 of the potentials V 1 and second electrode 12 of the first electrode 11 are different from each other in the final frame, the potential of the first electrode 11 V 1 and the potential V 2 of the second electrode 12 are the same (both are +10 V).
 なお、ここでは、説明の簡単さのために、第1の書き込み駆動WD1と、第2の書き込み駆動WD2とで同じ階調のデータ書き込みが行われる場合を示しているが、勿論、第1の書き込み駆動WD1と、第2の書き込み駆動WD2とで異なる階調のデータ書き込みが行われてもよい。 Here, for the sake of simplicity of explanation, a case where data writing of the same gradation is performed by the first write drive WD1 and the second write drive WD2 is shown. Data writing of different gradations may be performed between the write drive WD1 and the second write drive WD2.
 第2の書き込み駆動WD2の後は、第2の休止駆動PD2、第2のリフレッシュ駆動RD2、第1の休止駆動PD1、第1のリフレッシュ駆動RD1および第2の休止駆動PD2が順次行われる。その後は、第2のリフレッシュ駆動RD2、第1の休止駆動PD1、第1のリフレッシュ駆動RD1および第2の休止駆動PD2が繰り返されるか、または、第1の書き込み駆動WD1が行われる。 After the second write drive WD2, the second pause drive PD2, the second refresh drive RD2, the first pause drive PD1, the first refresh drive RD1, and the second pause drive PD2 are sequentially performed. Thereafter, the second refresh drive RD2, the first pause drive PD1, the first refresh drive RD1, and the second pause drive PD2 are repeated, or the first write drive WD1 is performed.
 図19および図20を参照しながら説明した例では、第1の書き込み駆動WD1、第2の書き込み駆動WD2、第1のリフレッシュ駆動RD1および第2のリフレッシュ駆動RD2のそれぞれは、複数フレームにわたって行われる。表示パネル110の応答速度が十分に速くない場合、書き込み駆動および/またはリフレッシュ駆動を1フレーム行っただけでは、十分に高い反射率が得られないことがある。書き込み駆動および/またはリフレッシュ駆動を複数フレームにわたって行うことにより、十分に高い反射率を得ることができる。 In the example described with reference to FIGS. 19 and 20, each of the first write drive WD1, the second write drive WD2, the first refresh drive RD1, and the second refresh drive RD2 is performed over a plurality of frames. . When the response speed of the display panel 110 is not sufficiently high, a sufficiently high reflectivity may not be obtained only by performing one frame of write driving and / or refresh driving. By performing the writing drive and / or the refresh drive over a plurality of frames, a sufficiently high reflectance can be obtained.
 また、上述した例では、第1のリフレッシュ駆動RD1および第2のリフレッシュ駆動RD2のそれぞれが行われる期間は、第1の書き込み駆動WD1および第2の書き込み駆動WD2のそれぞれが行われる期間よりも短い。これは、リフレッシュ駆動の開始時において、形状異方性粒子32の多くが、データ書き込み時と同じ配向状態を維持しているので、リフレッシュ駆動では一部の形状異方性粒子32を再配向させればよいだけだからである。リフレッシュ駆動が行われる期間を、書き込み駆動が行われる期間よりも短くすることにより、いっそうの低消費電力化を実現することができる。 In the example described above, the period in which each of the first refresh drive RD1 and the second refresh drive RD2 is performed is shorter than the period in which each of the first write drive WD1 and the second write drive WD2 is performed. . This is because most of the shape anisotropic particles 32 maintain the same alignment state as at the time of data writing at the start of the refresh drive, so that some shape anisotropic particles 32 are reoriented in the refresh drive. It is only necessary. By making the period during which refresh driving is performed shorter than the period during which writing driving is performed, further reduction in power consumption can be realized.
 さらに、上述した例では、第1の休止駆動PD1が行われている期間と、第2の休止駆動PD2が行われている期間とで、画素への印加電圧の極性が反対である。つまり、休止駆動ごとに印加電圧の極性が反転している。休止駆動が行われている期間では、光学層30に直流電圧が印可され続けることになるが、上述したような極性反転を行うことにより、電界の偏りが緩和され、イオン性不純物の吸着による焼き付きなどの信頼性低下を抑制できる。なお、必ずしも休止駆動1回ごとに極性反転を行う必要はなく、例えば、同極性の印加電圧での休止駆動を2回以上行った後に極性反転を行ってもよい。つまり、休止駆動およびリフレッシュ駆動が交互に繰り返し行われる場合、1回目の休止駆動が行われている期間と、n回目(nは2以上のある整数)の休止駆動が行われている期間とで、印加電圧の極性が反対であればよい。ただし、信頼性低下の抑制という観点からは、休止駆動1回ごとに極性反転を行うことが好ましい。 Furthermore, in the above-described example, the polarity of the voltage applied to the pixels is opposite between the period in which the first pause drive PD1 is performed and the period in which the second pause drive PD2 is performed. In other words, the polarity of the applied voltage is reversed every pause driving. In the period in which the pause driving is performed, a DC voltage is continuously applied to the optical layer 30. However, by performing the polarity reversal as described above, the bias of the electric field is alleviated and seizure due to adsorption of ionic impurities. It is possible to suppress a decrease in reliability. Note that it is not always necessary to perform the polarity reversal for each pause drive. For example, the polarity inversion may be performed after the pause drive with the same polarity applied voltage is performed twice or more. That is, when the pause drive and the refresh drive are alternately repeated, the first pause drive is performed and the n-th (n is an integer of 2 or more) pause drive is performed. The polarity of the applied voltage may be opposite. However, from the viewpoint of suppressing the decrease in reliability, it is preferable to perform polarity inversion every pause drive.
 また、上述した例では、第1の書き込み駆動WD1および第2の書き込み駆動WD2のそれぞれが行われる期間の最終フレームにおける信号電圧の波形パターンが、最終フレームよりも前のフレームにおける信号電圧の波形パターンとは異なっている。このことにより、書き込み駆動の際には、反射率を十分に高くするのに適した波形パターンで電圧印加を行い、休止駆動の際には、反射率が安定に維持される電界分布を実現することができる。以下、このことをより具体的に説明する。 In the example described above, the waveform pattern of the signal voltage in the last frame in the period in which each of the first write drive WD1 and the second write drive WD2 is performed is the waveform pattern of the signal voltage in the frame before the last frame. Is different. This makes it possible to apply a voltage with a waveform pattern suitable for sufficiently increasing the reflectance during writing driving, and to realize an electric field distribution in which the reflectance is stably maintained during rest driving. be able to. Hereinafter, this will be described more specifically.
 まず、例示した書き込み駆動における波形パターンが、反射率を十分に高くするのに適している理由を説明する。本願出願人は、形状異方性粒子を含む光学層を備えた表示パネルの光利用効率をいっそう向上させるべく、種々の検討を行った。以下、検討により得られた知見を説明する。 First, the reason why the illustrated waveform pattern in the write drive is suitable for sufficiently increasing the reflectance will be described. The applicant of the present application has made various studies in order to further improve the light utilization efficiency of a display panel including an optical layer containing shape anisotropic particles. Hereinafter, the knowledge obtained by the examination will be described.
 液晶表示装置の表示モードとして、VA(Vertical Alignment)モードやFFS(Fringe Field Switching)モードが知られている。VAモードでは、垂直配向型の液晶層に対して縦電界が印加されることによって表示が行われる。これに対し、FFSモードでは、水平配向型の液晶層に対してフリンジ電界が印加されることによって表示が行われる。 As a display mode of a liquid crystal display device, a VA (Vertical Alignment) mode and an FFS (Fringe Field Switching) mode are known. In the VA mode, display is performed by applying a vertical electric field to the vertically aligned liquid crystal layer. On the other hand, in the FFS mode, display is performed by applying a fringe electric field to the horizontally aligned liquid crystal layer.
 図21に、FFSモードの液晶表示装置の一般的な構造を示す。図21に示す液晶表示装置800は、TFT基板810および対向基板820と、これらの間に設けられた液晶層830とを備える。 FIG. 21 shows a general structure of an FFS mode liquid crystal display device. A liquid crystal display device 800 illustrated in FIG. 21 includes a TFT substrate 810 and a counter substrate 820, and a liquid crystal layer 830 provided therebetween.
 TFT基板810は、透明基板810aと、透明基板810a上に設けられた共通電極(下層電極)812と、共通電極812を覆うように設けられた絶縁層813と、絶縁層813上に設けられた画素電極(上層電極)811とを有する。 The TFT substrate 810 is provided on the transparent substrate 810a, the common electrode (lower layer electrode) 812 provided on the transparent substrate 810a, the insulating layer 813 provided to cover the common electrode 812, and the insulating layer 813. A pixel electrode (upper layer electrode) 811.
 画素電極811は、櫛歯形状を有する。画素電極811は、所定の方向に延びる複数の櫛歯部811aと、隣接する櫛歯部811a間に形成されたスリット811bとを有する。 The pixel electrode 811 has a comb shape. The pixel electrode 811 has a plurality of comb teeth 811a extending in a predetermined direction and slits 811b formed between adjacent comb teeth 811a.
 対向基板820は、透明基板820aと、透明基板820a上に設けられたカラーフィルタ層(不図示)とを有する。 The counter substrate 820 includes a transparent substrate 820a and a color filter layer (not shown) provided on the transparent substrate 820a.
 液晶層830は、水平配向型の液晶層である。TFT基板810および対向基板820の液晶層830側の表面には、水平配向膜(不図示)が設けられており、液晶層830に含まれる液晶分子は、電圧無印加状態において水平配向する(つまりTFT基板810および対向基板820の表面に略平行に配向する)。 The liquid crystal layer 830 is a horizontal alignment type liquid crystal layer. A horizontal alignment film (not shown) is provided on the surface of the TFT substrate 810 and the counter substrate 820 on the liquid crystal layer 830 side, and the liquid crystal molecules contained in the liquid crystal layer 830 are horizontally aligned in a state where no voltage is applied (that is, Oriented substantially parallel to the surfaces of the TFT substrate 810 and the counter substrate 820).
 FFSモードの液晶表示装置800では、画素電極811と共通電極812との間に所定の電位差が与えられると、液晶層830にフリンジ電界(電気力線Efで表わされる)が生成される。画素電極811および共通電極812に、例えばそれぞれ+14Vおよび+7Vの電位が与えられると、7V相当のフリンジ電界が液晶層830に印加されることになる。液晶層830に印加されたフリンジ電界によって、液晶分子の配向方向が変化し、そのことによって表示が行われる。 In the FFS mode liquid crystal display device 800, when a predetermined potential difference is applied between the pixel electrode 811 and the common electrode 812, a fringe electric field (represented by an electric force line Ef) is generated in the liquid crystal layer 830. For example, when a potential of + 14V and + 7V is applied to the pixel electrode 811 and the common electrode 812, respectively, a fringe electric field corresponding to 7V is applied to the liquid crystal layer 830. The alignment direction of the liquid crystal molecules is changed by the fringe electric field applied to the liquid crystal layer 830, and thus display is performed.
 上述したFFSモードは、広視野角特性を実現することができる。また、VAモードも、広視野角特性を実現することができる。 The FFS mode described above can achieve a wide viewing angle characteristic. The VA mode can also realize a wide viewing angle characteristic.
 特許文献3には、VAモードの液晶表示装置を高速応答化、高透過率化できる電極構造が開示されている。図22(a)および(b)に、特許文献3に開示されている液晶表示装置の構造を示す。図22(a)および(b)に示す液晶表示装置900は、TFT基板910および対向基板920と、これらの間に設けられた液晶層930とを備える。 Patent Document 3 discloses an electrode structure capable of achieving high-speed response and high transmittance of a VA mode liquid crystal display device. 22A and 22B show the structure of the liquid crystal display device disclosed in Patent Document 3. FIG. A liquid crystal display device 900 shown in FIGS. 22A and 22B includes a TFT substrate 910 and a counter substrate 920, and a liquid crystal layer 930 provided therebetween.
 TFT基板910は、ガラス基板910aと、ガラス基板910a上に設けられた下層電極913と、下層電極913を覆うように設けられた絶縁層914と、絶縁層914上に設けられた一対の上層電極(第1上層電極および第2上層電極)911および912とを有する。第1上層電極911および第2上層電極912のそれぞれは、櫛歯形状を有する。 The TFT substrate 910 includes a glass substrate 910a, a lower layer electrode 913 provided on the glass substrate 910a, an insulating layer 914 provided so as to cover the lower layer electrode 913, and a pair of upper layer electrodes provided on the insulating layer 914. (First upper layer electrode and second upper layer electrode) 911 and 912. Each of the first upper layer electrode 911 and the second upper layer electrode 912 has a comb shape.
 対向基板920は、ガラス基板920aと、ガラス基板920a上に設けられた対向電極921とを有する。 The counter substrate 920 includes a glass substrate 920a and a counter electrode 921 provided on the glass substrate 920a.
 液晶層930は、垂直配向型の液晶層である。TFT基板910および対向基板920の液晶層930側の表面には、垂直配向膜(不図示)が設けられており、液晶層930に含まれる液晶分子は、電圧無印加状態において垂直配向する(つまりTFT基板910および対向基板920の表面に略平行に配向する)。 The liquid crystal layer 930 is a vertical alignment type liquid crystal layer. A vertical alignment film (not shown) is provided on the surface of the TFT substrate 910 and the counter substrate 920 on the liquid crystal layer 930 side, and the liquid crystal molecules contained in the liquid crystal layer 930 are vertically aligned in a state where no voltage is applied (that is, Oriented substantially parallel to the surfaces of the TFT substrate 910 and the counter substrate 920).
 液晶表示装置900では、立ち上がり時(黒表示状態から白表示状態への配向状態の変化時)には、図22(a)に示すように、第1上層電極911および第2上層電極912間の電位差による横電界(電気力線Ehで表わされる)が液晶層930に生成される。また、このとき、第1上層電極911および下層電極913間の電位差と、第2上層電極912および下層電極913間の電位差とによるフリンジ電界(電気力線Efで表わされる)も液晶層930に生成される。特許文献3には、第1上層電極911、第2上層電極912、下層電極913および対向電極921に、それぞれ+7V、+14V、+10.5Vおよび+7Vの電位が与えられる例が記載されている。この例では、7V相当の横電界と、3.5V相当のフリンジ電界とが液晶層930に印加されることになる。 In the liquid crystal display device 900, at the time of start-up (when the alignment state changes from the black display state to the white display state), as shown in FIG. 22A, the first upper layer electrode 911 and the second upper layer electrode 912 are arranged. A lateral electric field (represented by electric lines of force Eh) due to the potential difference is generated in the liquid crystal layer 930. At this time, a fringe electric field (represented by electric lines of force Ef) due to a potential difference between the first upper layer electrode 911 and the lower layer electrode 913 and a potential difference between the second upper layer electrode 912 and the lower layer electrode 913 is also generated in the liquid crystal layer 930. Is done. Patent Document 3 describes an example in which potentials of +7 V, +14 V, +10.5 V, and +7 V are applied to the first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921, respectively. In this example, a lateral electric field corresponding to 7 V and a fringe electric field corresponding to 3.5 V are applied to the liquid crystal layer 930.
 また、立ち下り時(白表示状態から黒表示状態への配向状態の変化時)には、図22(b)に示すように、第1上層電極911、第2上層電極912および下層電極913と、対向電極921との電位差による縦電界(電気力線Evで表わされる)が液晶層930に生成される。特許文献3には、第1上層電極911、第2上層電極912、下層電極913および対向電極921に、それぞれ+14V、+14V、+14Vおよび0Vの電位が与えられる例が記載されている。この例では、14V相当の縦電界が液晶層930に印加されることになる。 Further, at the time of falling (when the orientation state changes from the white display state to the black display state), as shown in FIG. 22B, the first upper layer electrode 911, the second upper layer electrode 912, and the lower layer electrode 913 A vertical electric field (represented by lines of electric force Ev) due to a potential difference with the counter electrode 921 is generated in the liquid crystal layer 930. Patent Document 3 describes an example in which potentials of + 14V, + 14V, + 14V, and 0V are applied to the first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921, respectively. In this example, a vertical electric field corresponding to 14 V is applied to the liquid crystal layer 930.
 本願発明者は、形状異方性粒子を含む光学層を備えた表示パネルの光利用効率をいっそう向上させる手法として、液晶表示装置について提案されている電極構造を用いることを検討した。その結果、上述したような電極構造を単純に採用すると、以下のような問題が発生することを見出した。 The inventor of the present application examined the use of an electrode structure proposed for a liquid crystal display device as a method for further improving the light utilization efficiency of a display panel including an optical layer containing shape anisotropic particles. As a result, it has been found that the following problems occur when the electrode structure as described above is simply adopted.
 まず、特許文献3の電極構造では、下層電極913の電位に制約があり、十分に強いフリンジ電界を生成させることができない。具体的には、配向の対称性を保つためには、下層電極913の電位は、第1上層電極911の電位と第2上層電極912の電位との中間の電位に設定する必要がある。特許文献3に記載されている例のように、第1上層電極911および第2上層電極912の電位をそれぞれ+7Vおよび+14Vとすると、下層電極913の電位を+10.5Vに設定する必要がある。そのため、生成されるフリンジ電界は、3.5V相当のものとなるので、FFSモードの電極構造を採用した場合(図21に示しているように7V相当のフリンジ電界が生成される)に比べてフリンジ電界による配向規制力が弱くなってしまう。 First, in the electrode structure of Patent Document 3, the potential of the lower layer electrode 913 is limited, and a sufficiently strong fringe electric field cannot be generated. Specifically, in order to maintain the symmetry of orientation, the potential of the lower layer electrode 913 needs to be set to an intermediate potential between the potential of the first upper layer electrode 911 and the potential of the second upper layer electrode 912. As in the example described in Patent Document 3, if the potentials of the first upper electrode 911 and the second upper electrode 912 are +7 V and +14 V, respectively, it is necessary to set the potential of the lower electrode 913 to +10.5 V. Therefore, since the generated fringe electric field is equivalent to 3.5 V, compared to the case where the FFS mode electrode structure is adopted (a fringe electric field equivalent to 7 V is generated as shown in FIG. 21). The alignment regulating force due to the fringe electric field is weakened.
 また、仮に、特許文献3の電極構造において、FFSモードの電極構造と同じ強さのフリンジ電界を生成するために、下層電極913の電位を第1上層電極911の電位と同じにする(例えば第1上層電極911、第2上層電極912、下層電極913および対向電極921に、それぞれ+7V、+14V、+7Vおよび+7Vの電位を与える)と、図23に示すように、第2上層電極912と下層電極913との電位差による強いフリンジ電界(7V相当)が生成されるものの、第1上層電極911近傍はフリンジ電界が生成されず、相対的に電界強度が弱い弱電界領域WRとなる。この弱電界領域WRが存在することにより、光利用効率(モード効率)が低下する。 In addition, in the electrode structure of Patent Document 3, in order to generate a fringe electric field having the same strength as that of the FFS mode electrode structure, the potential of the lower layer electrode 913 is made the same as the potential of the first upper layer electrode 911 (for example, the first The first upper layer electrode 911, the second upper layer electrode 912, the lower layer electrode 913, and the counter electrode 921 are applied with potentials of + 7V, + 14V, + 7V, and + 7V, respectively), and as shown in FIG. Although a strong fringe electric field (equivalent to 7 V) is generated due to a potential difference from 913, no fringe electric field is generated in the vicinity of the first upper layer electrode 911, and a weak electric field region WR having a relatively weak electric field strength is formed. Due to the presence of the weak electric field region WR, the light use efficiency (mode efficiency) is lowered.
 一方、FFSモードの電極構造を採用すると、画素電極811の複数の櫛歯部811aは同電位であるので、隣接する櫛歯部811a間に横電界は生成されない。そのため、図24に示すように、スリット811bの中央付近に弱電界領域WRが発生し、光利用効率が低下する。 On the other hand, when the FFS mode electrode structure is adopted, the plurality of comb-tooth portions 811a of the pixel electrode 811 are at the same potential, so that no horizontal electric field is generated between the adjacent comb-tooth portions 811a. Therefore, as shown in FIG. 24, a weak electric field region WR is generated near the center of the slit 811b, and the light utilization efficiency is lowered.
 図20に例示したような第1の書き込み駆動WD1および第2の書き込み駆動WD2を行うと、横電界およびフリンジ電界印加時に形成される弱電界領域に起因する光利用効率の低下を抑制することができる。 When the first write drive WD1 and the second write drive WD2 illustrated in FIG. 20 are performed, it is possible to suppress a decrease in light utilization efficiency due to a weak electric field region formed when a lateral electric field and a fringe electric field are applied. it can.
 図25(a)および(b)は、第1の書き込み駆動WD1が行われているときに光学層30に生成される電界を示す図であり、図25(a)は、第1の書き込み駆動WD1が行われているときの第1フレームに対応し、図25(b)は、第1の書き込み駆動WD1が行われているときの第2フレームに対応する。 FIGS. 25A and 25B are diagrams showing the electric field generated in the optical layer 30 when the first write drive WD1 is performed, and FIG. 25A shows the first write drive. FIG. 25B corresponds to the second frame when the first write drive WD1 is performed, corresponding to the first frame when the WD1 is performed.
 光学層30に電界が印加されたとき、各画素は、図25(a)および(b)に示すように、電界が第1電界強度を有する第1領域SRと、電界が第1電界強度よりも弱い第2電界強度を有する第2領域WRとが光学層30の面内方向に沿って配列された電界分布を有する。以下では、相対的に電界強度が強い第1領域SRを「強電界領域」と呼び、相対的に電界強度が弱い第2領域WRを「弱電界領域」と呼ぶ。 When an electric field is applied to the optical layer 30, as shown in FIGS. 25A and 25B, each pixel has a first region SR in which the electric field has the first electric field strength, and the electric field is greater than the first electric field strength. The second region WR having a weak second electric field strength has an electric field distribution arranged along the in-plane direction of the optical layer 30. Hereinafter, the first region SR having a relatively strong electric field strength is referred to as a “strong electric field region”, and the second region WR having a relatively weak electric field strength is referred to as a “weak electric field region”.
 図25(a)に示す状態では、第1電極11と第3電極13との電位差によるフリンジ電界(以下では便宜的に「第1フリンジ電界」と呼ぶ)が生成されているものの、第2電極12と第3電極13との電位差によるフリンジ電界(以下では便宜的に「第2フリンジ電界」と呼ぶ)は生成されていない。この状態では、第2電極12の枝部12a近傍の、フリンジ電界が生成されていない領域が弱電界領域WRとなり、第1電極11の枝部11a近傍を含む他の領域が強電界領域SRとなる。 In the state shown in FIG. 25A, a fringe electric field (hereinafter referred to as “first fringe electric field” for convenience) is generated by the potential difference between the first electrode 11 and the third electrode 13, but the second electrode A fringe electric field (hereinafter referred to as “second fringe electric field” for convenience) is not generated due to a potential difference between the electrode 12 and the third electrode 13. In this state, the region where the fringe electric field is not generated in the vicinity of the branch portion 12a of the second electrode 12 is the weak electric field region WR, and the other region including the vicinity of the branch portion 11a of the first electrode 11 is the strong electric field region SR. Become.
 また、図25(b)に示す状態では、第2フリンジ電界が生成されているものの、第1フリンジ電界が生成されていない。この状態では、第1電極11の枝部11a近傍の、フリンジ電界が生成されていない領域が弱電界領域WRとなり、第2電極12の枝部12a近傍を含む他の領域が強電界領域SRとなる。 In the state shown in FIG. 25B, the second fringe electric field is generated, but the first fringe electric field is not generated. In this state, the region where the fringe electric field is not generated near the branch portion 11a of the first electrode 11 is the weak electric field region WR, and the other region including the vicinity of the branch portion 12a of the second electrode 12 is the strong electric field region SR. Become.
 図20に例示した第1の書き込み駆動WD1を行うと、図25(a)および(b)に示しているように、同一の表示が行われている期間(つまりある画素が同一の階調レベルの表示を行う期間)内で電界分布における強電界領域SRおよび弱電界領域WRの配列が1回以上入れ替わる。つまり、弱電界領域WRの位置が固定的ではなく、あるフレームにおいて弱電界領域WRとなっていた領域が、別のあるフレームでは強電界領域SRとなる。そのため、画素のほぼ全体にわたって形状異方性粒子32の配向方向を変化させることができ、弱電界領域WRに起因する光利用効率(モード効率)の低下を抑制することができる。 When the first write drive WD1 illustrated in FIG. 20 is performed, as shown in FIGS. 25A and 25B, the period during which the same display is performed (that is, a certain pixel has the same gradation level). The arrangement of the strong electric field region SR and the weak electric field region WR in the electric field distribution is exchanged one or more times within a period during which the display is performed. That is, the position of the weak electric field region WR is not fixed, and the region that has been the weak electric field region WR in one frame becomes the strong electric field region SR in another certain frame. Therefore, the orientation direction of the shape anisotropic particles 32 can be changed over almost the entire pixel, and a decrease in light use efficiency (mode efficiency) due to the weak electric field region WR can be suppressed.
 なお、図25(a)および(b)には、第1フリンジ電界および第2フリンジ電界の一方のみが生成されるように第1電極11、第2電極12および第3電極13の電位が設定された例を示しているが、第1電極11、第2電極12および第3電極13の電位設定は、この例に限定されない。第1フリンジ電界および第2フリンジ電界の強さが互いに異なっている限り、第1フリンジ電界および第2フリンジ電界の両方が同時に生成されてもよい。その場合、第1フリンジ電界および第2フリンジ電界のうちの相対的に電界強度が強い方のフリンジ電界が生成されている領域が強電界領域SRとなり、相対的に電界強度が弱い方のフリンジ電界が生成されている領域が弱電界領域WRとなる。 25A and 25B, the potentials of the first electrode 11, the second electrode 12, and the third electrode 13 are set so that only one of the first fringe electric field and the second fringe electric field is generated. However, the potential setting of the first electrode 11, the second electrode 12, and the third electrode 13 is not limited to this example. As long as the strengths of the first fringe field and the second fringe field are different from each other, both the first fringe field and the second fringe field may be generated simultaneously. In that case, the region in which the fringe electric field having the relatively strong electric field strength of the first fringe electric field and the second fringe electric field is generated becomes the strong electric field region SR, and the fringe electric field having the relatively weak electric field strength. The region in which is generated becomes the weak electric field region WR.
 また、第3電極13の電位を、第1電極11の電位と第2電極12の電位との中間の電位に設定しなければならないという制約はない。第1電極11および第2電極12の一方の電位と、第3電極13の電位とを同じにすることにより、第1電極11および第2電極12の他方と第3電極13との電位差によるフリンジ電界をもっとも強くすることができる。例えば、第1電極11の電位をB[V]、第2電極12の電位をA[V]、第3電極13の電位をC[V]とすると、第1電極11と第2電極12との電位差による横電界は、|A-B|[V]相当となり、第1電極11と第3電極13との電位差によるフリンジ電界は、|B-C|V相当となる。ここで、第3電極13の電位C[V]を、第2電極12の電位A[V]と同じにすると(C=A)、第1電極11と第3電極13との電位差によるフリンジ電界は、|B-C|=|B-A|=|A-B|[V]相当となる。また、第1電極11の電位をA[V]、第2電極12の電位をB[V]、第3電極13の電位をC[V]とすると、第1電極11と第2電極12との電位差による横電界は、|A-B|[V]相当となり、第2電極12と第3電極13との電位差によるフリンジ電界は、|B-C|V相当となる。ここで、第3電極13の電位C[V]を、第1電極11の電位A[V]と同じにすると(C=A)、第2電極12と第3電極13との電位差によるフリンジ電界は、|B-C|=|B-A|=|A-B|[V]相当となる。このように、第3電極13の電位に制約がないと、FFSモードの電極構造を採用した場合と同じ強さのフリンジ電界を光学層30に印加し得る。また、図25(a)および(b)に示しているように、例えば第1電極11の電位と第2電極12の電位とを入れ替えることにより、強電界領域SRおよび弱電界領域WRの配列を入れ替えることができる。 Further, there is no restriction that the potential of the third electrode 13 must be set to an intermediate potential between the potential of the first electrode 11 and the potential of the second electrode 12. By making the potential of one of the first electrode 11 and the second electrode 12 the same as the potential of the third electrode 13, the fringe due to the potential difference between the other of the first electrode 11 and the second electrode 12 and the third electrode 13. The electric field can be strongest. For example, when the potential of the first electrode 11 is B [V], the potential of the second electrode 12 is A [V], and the potential of the third electrode 13 is C [V], the first electrode 11 and the second electrode 12 The horizontal electric field due to the potential difference is equivalent to | A−B | [V], and the fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13 is equivalent to | BC−V. Here, if the potential C [V] of the third electrode 13 is made the same as the potential A [V] of the second electrode 12 (C = A), a fringe electric field due to the potential difference between the first electrode 11 and the third electrode 13. Is equivalent to | BC | = | BA | = | AB | [V]. Further, when the potential of the first electrode 11 is A [V], the potential of the second electrode 12 is B [V], and the potential of the third electrode 13 is C [V], the first electrode 11, the second electrode 12, The lateral electric field due to the potential difference is equivalent to | AB | [V], and the fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13 is equivalent to | BC | V. Here, if the potential C [V] of the third electrode 13 is made the same as the potential A [V] of the first electrode 11 (C = A), a fringe electric field due to the potential difference between the second electrode 12 and the third electrode 13. Is equivalent to | BC | = | BA | = | AB | [V]. Thus, if there is no restriction on the potential of the third electrode 13, a fringe electric field having the same strength as when the FFS mode electrode structure is employed can be applied to the optical layer 30. Further, as shown in FIGS. 25A and 25B, the arrangement of the strong electric field region SR and the weak electric field region WR can be changed by, for example, switching the potential of the first electrode 11 and the potential of the second electrode 12. Can be replaced.
 これに対し、特許文献3の電極構造では、図26に示すように、第1上層電極911の電位をA[V]、第2上層電極912の電位をB[V]とすると、下層電極913の電位をMin(A,B)+|(A-B)|/2[V]とする必要がある。そのため、第1上層電極911と第2上層電極912との電位差による横電界が|A-B|[V]相当であるのに対し、第1上層電極911と下層電極913との電位差によるフリンジ電界、および、第2上層電極912と下層電極913との電位差によるフリンジ電界は、それぞれ|A-B|/2[V]相当となる。そのため、フリンジ電界がFFSモードの電極構造を採用した場合よりも弱くなってしまう。 On the other hand, in the electrode structure of Patent Document 3, when the potential of the first upper layer electrode 911 is A [V] and the potential of the second upper layer electrode 912 is B [V], as shown in FIG. Is required to be Min (A, B) + | (AB) | / 2 [V]. Therefore, the lateral electric field due to the potential difference between the first upper electrode 911 and the second upper electrode 912 is equivalent to | AB | [V], whereas the fringe electric field due to the potential difference between the first upper electrode 911 and the lower electrode 913 is used. The fringe electric field due to the potential difference between the second upper layer electrode 912 and the lower layer electrode 913 is equivalent to | AB | / 2 [V]. For this reason, the fringe electric field becomes weaker than when the FFS mode electrode structure is adopted.
 また、FFSモードの電極構造では、図27に示すように、共通電極812の電位をA[V]、画素電極811の電位をB[V]とすると、画素電極811と共通電極812との電位差によるフリンジ電界は|A-B|[V]相当となる。FFSモードの電極構造では、十分な強さのフリンジ電界を生成させ得るものの、隣接する櫛歯部811a間に横電界が生成されないので、スリット811bの中央付近に弱電界領域WRが発生してしまう。これに対し、上述した書き込み駆動では、第1電極11および第2電極12間に横電界を生成させ得るので、第1電極11の枝部11aおよび第2電極12の枝部12aとの中間付近に弱電界領域WRが形成されることによる光利用効率の低下を抑制することができる。 In the FFS mode electrode structure, as shown in FIG. 27, when the potential of the common electrode 812 is A [V] and the potential of the pixel electrode 811 is B [V], the potential difference between the pixel electrode 811 and the common electrode 812 is obtained. The fringe electric field due to is equivalent to | AB | [V]. The FFS mode electrode structure can generate a sufficiently strong fringe electric field, but a horizontal electric field is not generated between adjacent comb-tooth portions 811a, so that a weak electric field region WR is generated near the center of the slit 811b. . On the other hand, in the write drive described above, a lateral electric field can be generated between the first electrode 11 and the second electrode 12, so that the vicinity of the middle between the branch portion 11a of the first electrode 11 and the branch portion 12a of the second electrode 12 is obtained. In addition, a decrease in light utilization efficiency due to the formation of the weak electric field region WR can be suppressed.
 アクティブマトリクス駆動を行う場合、強電界領域SRおよび弱電界領域WRの配列が入れ替わる周期(以下では単に「入れ替わり周期」とも呼ぶ)は、典型的には、1フレームに相当する時間の整数倍である。光利用効率の向上の観点からは、入れ替わり周期は短いことが好ましく、1フレームに相当する時間であることがもっとも好ましい。入れ替わり周期が短いことにより、単位時間当たりの電界分布の変動回数を多くすることができ、光利用効率をいっそう向上させることができる。また、同一の表示が行われている期間内で入れ替わり周期は一定でなくてもよいが、光学層30に正極性の電圧が印加されている時間の合計と、負極性の電圧が印加されている時間の合計とがほぼ等しくなることが好ましい。 When performing active matrix driving, the period in which the arrangement of the strong electric field region SR and the weak electric field region WR is switched (hereinafter also simply referred to as “switching cycle”) is typically an integer multiple of the time corresponding to one frame. . From the viewpoint of improving the light utilization efficiency, the replacement period is preferably short, and most preferably a time corresponding to one frame. Since the replacement cycle is short, the number of fluctuations in the electric field distribution per unit time can be increased, and the light utilization efficiency can be further improved. Further, the switching period may not be constant within the period in which the same display is performed, but the total time during which the positive voltage is applied to the optical layer 30 and the negative voltage are applied. It is preferable that the total amount of time is substantially equal.
 既に説明したように、強電界領域SRおよび弱電界領域WRの配列の入れ替えは、例えば第1電極11の電位と第2電極12の電位とを入れ替えることにより、行うことができる。つまり、第1基板10が、互いに異なる電位を与えられ得る2つの櫛歯電極(櫛歯形状を有する電極)を有することにより、強電界領域SRおよび弱電界領域WRの配列の入れ替えを行うことができる。 As already described, the arrangement of the strong electric field region SR and the weak electric field region WR can be replaced by, for example, switching the potential of the first electrode 11 and the potential of the second electrode 12. In other words, the arrangement of the strong electric field region SR and the weak electric field region WR can be exchanged by the first substrate 10 having two comb electrodes (electrodes having a comb shape) that can be given different potentials. it can.
 次に、例示した休止駆動により、反射率が安定に維持される電界分布を実現し得ることを説明する。 Next, it will be described that the electric field distribution in which the reflectance is stably maintained can be realized by the illustrated pause driving.
 図28は、第1の休止駆動PD1開始時に光学層30に生成される電界を示す図である。既に説明したように、第1の書き込み駆動WD1の最終フレームにおいて、第1電極11の電位V1と第2電極12の電位V2とが互いに同じとされる。そのため、第1の休止駆動PD1が行われている期間では、図28に示すように、第1電極11の枝部11a近傍および第2電極12の枝部12a近傍の両方に、フリンジ電界が生成される。そのため、第1の書き込み駆動WD1時に一様に分散した形状異方性粒子32が安定に保持され、それ故、反射率を安定に維持することができる。 FIG. 28 is a diagram illustrating an electric field generated in the optical layer 30 at the start of the first pause drive PD1. As already described, in the last frame of the first write driver WD1, the potential V 1 of the first electrode 11 and the potential V 2 of the second electrode 12 are the same as each other. Therefore, during the period in which the first pause drive PD1 is performed, a fringe electric field is generated both in the vicinity of the branch portion 11a of the first electrode 11 and in the vicinity of the branch portion 12a of the second electrode 12, as shown in FIG. Is done. Therefore, the shape anisotropic particles 32 that are uniformly dispersed during the first writing drive WD1 are stably held, and thus the reflectance can be stably maintained.
 図29は、第1の書き込み駆動WD1の最終フレームにおける信号電圧の波形パターンを、それよりも前のフレームにおける信号電圧の波形パターンと同じにした場合の、第1の休止駆動PD1開始時に光学層30に生成される電界を示す図である。この場合、第1の休止駆動PD1が行われている期間では、図29に示すように、第2電極12の枝部12a近傍にはフリンジ電界が生成されるものの、第1電極11の枝部11a近傍にはフリンジ電界が生成されない。つまり、弱電界領域WRが存在している。このように、電界が不均一な状態で固定されるので、形状異方性粒子32に偏りが生じ、反射率を安定に維持することができない。 FIG. 29 shows the optical layer at the start of the first pause drive PD1 when the waveform pattern of the signal voltage in the last frame of the first write drive WD1 is the same as the waveform pattern of the signal voltage in the previous frame. It is a figure which shows the electric field produced | generated by 30. FIG. In this case, in the period during which the first pause drive PD1 is performed, as shown in FIG. 29, a fringe electric field is generated in the vicinity of the branch portion 12a of the second electrode 12, but the branch portion of the first electrode 11 is generated. No fringe electric field is generated in the vicinity of 11a. That is, the weak electric field region WR exists. Thus, since the electric field is fixed in a non-uniform state, the shape anisotropic particles 32 are biased and the reflectance cannot be stably maintained.
 このように、書き込み駆動が行われる期間の最終フレームにおける信号電圧の波形パターンを、最終フレームよりも前のフレームにおける信号電圧の波形パターンとは異ならせることにより、書き込み駆動の際には、反射率を十分に高くするのに適した波形パターンで電圧印加を行い、休止駆動の際には、反射率が安定に維持される電界分布を実現することができる。 As described above, the waveform pattern of the signal voltage in the last frame in the period in which the write drive is performed is different from the waveform pattern of the signal voltage in the frame before the last frame. By applying a voltage with a waveform pattern suitable for sufficiently increasing the voltage, it is possible to realize an electric field distribution in which the reflectance is stably maintained during rest driving.
 図30に、画素のTFTをオフ状態にしてからの経過時間と、画素電圧の保持率および反射率の減衰率との関係を示す。図30からわかるように、40sec経過後に画素電圧は65%まで低下するが、反射率は約1%しか減衰していない。従って、例示したような表示パネル110では、休止駆動を比較的長い時間行っても視認性に問題はないことがわかる。 FIG. 30 shows the relationship between the elapsed time after the pixel TFT is turned off and the pixel voltage retention rate and reflectance attenuation rate. As can be seen from FIG. 30, the pixel voltage drops to 65% after 40 seconds, but the reflectance is attenuated by only about 1%. Therefore, in the display panel 110 as illustrated, it can be seen that there is no problem in visibility even when the pause driving is performed for a relatively long time.
 図20には、駆動周波数が60Hz(つまり1フレームが約16.7msec)の場合を例示したが、図31に示すように、書き込み駆動およびリフレッシュ駆動の周波数を高くすることも好ましい。図31(a)および(b)は、駆動周波数を120Hz(つまり1フレームが約8.3msec)とした場合の、第1の書き込み駆動WD1および第1のリフレッシュ駆動RD1における、第1電極11の電位V1、第2電極12の電位V2、第3電極13の電位V3、第4電極21の電位V4およびゲート電圧(走査信号電圧)Vgを示すタイミングチャートである。 FIG. 20 illustrates the case where the drive frequency is 60 Hz (that is, one frame is about 16.7 msec), but it is also preferable to increase the frequency of the write drive and the refresh drive as shown in FIG. 31A and 31B show the first electrode 11 in the first write drive WD1 and the first refresh drive RD1 when the drive frequency is 120 Hz (that is, one frame is about 8.3 msec). potential V 1, the potential V 2 of the second electrode 12, the potential V 3 of the third electrode 13 is a timing chart showing the potential V 4 and the gate voltage (scan signal voltage) Vg of the fourth electrode 21.
 書き込み駆動およびリフレッシュ駆動の周波数を高くすることにより、書き込み駆動時およびリフレッシュ駆動時の応答速度を改善することができる。例えば、駆動周波数を120Hzとすると、駆動周波数が60Hzの場合に比べ、書き込み駆動およびリフレッシュ駆動の期間を約半分に(例えば600msecを300msecに)することができる。 The response speed at the time of write drive and refresh drive can be improved by increasing the frequency of write drive and refresh drive. For example, when the drive frequency is 120 Hz, the write drive and refresh drive periods can be halved (eg, 600 msec to 300 msec) as compared with the case where the drive frequency is 60 Hz.
 また、書き込み駆動およびリフレッシュ駆動の周波数を高くすることにより、フリッカ(ちらつき)が視認されることによる表示品位の低下を抑制することができる。図32(a)は、比較的低い周波数で書き込み駆動を行う場合に、奇数フレームおよび偶数フレームにおいて生成される電界を示す図であり、図32(b)は、比較的高い周波数で書き込み駆動を行う場合に、奇数フレームおよび偶数フレームにおいて生成される電界を示す図である。 Further, by increasing the frequency of the write drive and the refresh drive, it is possible to suppress the display quality from being deteriorated due to the flicker (flicker) being visually recognized. FIG. 32A is a diagram showing the electric field generated in the odd-numbered frame and the even-numbered frame when writing driving is performed at a relatively low frequency, and FIG. 32B is a diagram illustrating writing driving at a relatively high frequency. It is a figure which shows the electric field produced | generated in an odd-numbered frame and an even-numbered frame when performing.
 駆動周波数が低い場合、図32(a)に示すように、電界強度が弱い領域の形状異方性粒子32が揺らぐことがあり、そのことに起因する反射率の揺らぎがフリッカの原因となる。これに対し、駆動周波数が高い場合、図32(b)に示すように、形状異方性粒子32の揺らぎが抑制されるので、反射率の揺らぎに起因するフリッカを抑制することができる。 When the drive frequency is low, as shown in FIG. 32 (a), the shape anisotropic particles 32 in the region where the electric field strength is weak may fluctuate, and the fluctuation of the reflectance resulting from the fluctuation causes flicker. On the other hand, when the driving frequency is high, as shown in FIG. 32B, the fluctuation of the shape anisotropic particles 32 is suppressed, so that the flicker caused by the fluctuation of the reflectance can be suppressed.
 既に説明したように、本発明の実施形態による表示装置100では、画素の光学特性のヒステリシス性を利用する。光学特性の上述したようなヒステリシス性は、例示しているような、光学層30が、媒体31および形状異方性粒子32を含む表示パネル110において発現する。 As already described, the display device 100 according to the embodiment of the present invention uses the hysteresis of the optical characteristics of the pixels. The above-described hysteresis property of the optical characteristics appears in the display panel 110 in which the optical layer 30 includes the medium 31 and the shape anisotropic particles 32 as illustrated.
 光学層30の媒体31は、液晶材料であることが好ましい。媒体31が液晶材料であると、液晶分子のダイレクタの変化も利用することにより、形状異方性粒子32の配向方向を効率的に変化させることができる。 The medium 31 of the optical layer 30 is preferably a liquid crystal material. When the medium 31 is a liquid crystal material, the orientation direction of the shape anisotropic particles 32 can be efficiently changed by utilizing the change of the director of the liquid crystal molecules.
 また、液晶材料は、一般に、比抵抗が高いので、媒体31が液晶材料であると、画素への書き込み後のTFTがオフである状態において、媒体31を介したオフリークの発生が防止される。そのため、高い電圧保持率が得られ、アクティブマトリクス駆動を好適に行うことができる。また、リーク電流が少ないので、消費電力をいっそう低減することができる。表示装置100の消費電力Pは、パネル容量をC、光学層30への印加電圧をV、駆動周波数をf、リーク電流をIとすると、下記式(2)で表される。
 P=C・V・f+I・V     ・・・(2)
In addition, since the liquid crystal material generally has a high specific resistance, when the medium 31 is a liquid crystal material, off-leakage through the medium 31 is prevented in a state where the TFT after writing to the pixel is off. Therefore, a high voltage holding ratio can be obtained, and active matrix driving can be suitably performed. In addition, since the leakage current is small, power consumption can be further reduced. The power consumption P of the display device 100 is expressed by the following formula (2), where C is the panel capacitance, V is the voltage applied to the optical layer 30, f is the drive frequency, and I is the leakage current.
P = C · V · f + I · V (2)
 式(2)の右辺における第1項は、画素容量項と呼ぶべきものであり、第2項は、リーク電流項と呼ぶべきものである。つまり、消費電力Pは、画素容量成分と、リーク電流成分とに分けて考えることができる。媒体31の比抵抗が高いと、リーク電流Iが減少するので、式(2)からも明らかなように、消費電力Pを低減することができる。 The first term on the right side of Equation (2) should be called the pixel capacitance term, and the second term should be called the leakage current term. That is, the power consumption P can be considered separately for the pixel capacitance component and the leakage current component. When the specific resistance of the medium 31 is high, the leakage current I decreases, so that the power consumption P can be reduced as is apparent from the equation (2).
 また、液晶材料がポジ型であると、光学層30に電界が印加されたときの形状異方性粒子32の挙動と液晶分子の挙動とが一致する。例えば、光学層30に印加されている電界をフリンジ電界および/または横電界から縦電界に切り替えると、形状異方性粒子32は水平配向状態から垂直配向状態に変化しようとし、液晶分子も水平配向状態から垂直配向状態に変化しようとする。そのため、きちんと垂直配向する形状異方性粒子32の数(存在確率)を増やすことができるので、いっそう高いコントラスト比を実現することができる。 Further, if the liquid crystal material is a positive type, the behavior of the shape anisotropic particles 32 and the behavior of the liquid crystal molecules when an electric field is applied to the optical layer 30 match. For example, when the electric field applied to the optical layer 30 is switched from a fringe electric field and / or a horizontal electric field to a vertical electric field, the shape anisotropic particles 32 try to change from the horizontal alignment state to the vertical alignment state, and the liquid crystal molecules are also aligned horizontally. Attempts to change from state to vertical alignment. Therefore, since the number (existence probability) of the shape anisotropic particles 32 that are properly vertically aligned can be increased, a higher contrast ratio can be realized.
 ポジ型液晶材料としては、液晶表示装置用の液晶材料を広く好適に用いることができる。例えば、側鎖にフッ素が導入されたフッ素系の液晶材料を好適に用いることができる。フッ素系の液晶材料は、アクティブマトリクス駆動の液晶表示装置によく用いられ、大きな誘電異方性および高い比抵抗を有する。具体的には、例えば、長軸方向の誘電率ε//が24.7、短軸方向の誘電率εが4.3、比抵抗ρが6×1013Ω・cmの液晶材料を用いることができる。勿論、液晶材料の誘電率や比抵抗は、ここで例示したものに限定されない。媒体31を介したオフリークの発生を十分に抑制する観点からは、液晶材料の比抵抗は、1×1011~12Ω・cm以上であることが好ましい。また、液晶材料の誘電異方性Δεは、10を超える(Δε>10)ことが好ましい。 As the positive liquid crystal material, a liquid crystal material for a liquid crystal display device can be used widely and suitably. For example, a fluorine-based liquid crystal material in which fluorine is introduced into the side chain can be suitably used. Fluorine-based liquid crystal materials are often used in active matrix-driven liquid crystal display devices and have large dielectric anisotropy and high specific resistance. Specifically, for example, a dielectric constant in the major axis direction epsilon // 24.7, the short axial permittivity epsilon 4.3, the specific resistance ρ is a liquid crystal material 6 × 10 13 Ω · cm be able to. Of course, the dielectric constant and specific resistance of the liquid crystal material are not limited to those exemplified here. From the viewpoint of sufficiently suppressing the occurrence of off-leakage through the medium 31, the specific resistance of the liquid crystal material is preferably 1 × 10 11 to 12 Ω · cm or more. The dielectric anisotropy Δε of the liquid crystal material preferably exceeds 10 (Δε> 10).
 なお、媒体31として、負の誘電異方性を有する液晶材料(つまりネガ型の液晶材料)を用いてもよい。 Note that a liquid crystal material having negative dielectric anisotropy (that is, a negative liquid crystal material) may be used as the medium 31.
 また、本実施形態のように、第1基板10および第2基板20が垂直配向膜15および25を有していると、垂直配向膜15および25の配向規制力により、形状異方性粒子32が水平状態のまま基板表面に貼り付いてしまうことが防止される。垂直配向膜15および25としては、VA(Vertical Alignment)モードの液晶表示装置用の垂直配向膜(例えばJSR社製や日産化学社製の、ポリイミド系やポリアミック酸系垂直配向膜)を好適に用いることができる。高誘電率のポジ型液晶材料を垂直配向させるためには、アルキル基やフッ素含有基のような疎水構造が比較的多く側鎖に導入された垂直配向膜を用いることが好ましい。垂直配向膜15および25のそれぞれの厚さは、例えば100nmである。勿論、これに限定されるものではない。 Further, when the first substrate 10 and the second substrate 20 have the vertical alignment films 15 and 25 as in the present embodiment, the shape anisotropic particles 32 are caused by the alignment regulating force of the vertical alignment films 15 and 25. Is prevented from sticking to the substrate surface in a horizontal state. As the vertical alignment films 15 and 25, a vertical alignment film for a liquid crystal display device in a VA (Vertical Alignment) mode (for example, a polyimide-based or polyamic acid-based vertical alignment film manufactured by JSR or Nissan Chemical) is preferably used. be able to. In order to vertically align a high dielectric constant positive liquid crystal material, it is preferable to use a vertical alignment film in which a relatively large number of hydrophobic structures such as alkyl groups and fluorine-containing groups are introduced into the side chain. The thickness of each of the vertical alignment films 15 and 25 is, for example, 100 nm. Of course, it is not limited to this.
 表示装置100は、本実施形態のように、光学層30に横電界および/またはフリンジ電界を印加し得ることが好ましい。つまり、表示装置100は、横電界モードを利用し得ることが好ましい。既に説明したように、個々の形状異方性粒子32は、基本的には水平配向状態および垂直配向状態のいずれかのみをとる(つまり2値状態)が、横電界モードを用いることにより、セル厚方向の電界強度を変化させることができるので、第1基板10側で水平配向する形状異方性粒子32の量(数)を制御することができる。そのため、中間調表示を好適に行うことができる。これに対し、縦電界モードでは、セル厚方向の電界強度が一定であるので、中間調表示が困難である。また、横電界モードでは、データ書き込み時の印加電圧に応じて、形状異方性粒子32が電界強度の強い第1基板10側へ引き寄せられるので、書き込み電圧から降圧する際の所定の電圧範囲(図10中の範囲r)において、形状異方性粒子32の水平配向状態を維持することができる。 It is preferable that the display device 100 can apply a lateral electric field and / or a fringe electric field to the optical layer 30 as in the present embodiment. That is, it is preferable that the display device 100 can use the horizontal electric field mode. As described above, each shape anisotropic particle 32 basically takes only one of a horizontal alignment state and a vertical alignment state (that is, a binary state). Since the electric field strength in the thickness direction can be changed, the amount (number) of the shape anisotropic particles 32 horizontally oriented on the first substrate 10 side can be controlled. Therefore, halftone display can be suitably performed. On the other hand, in the vertical electric field mode, since the electric field strength in the cell thickness direction is constant, halftone display is difficult. In the horizontal electric field mode, the shape anisotropic particles 32 are attracted toward the first substrate 10 having a high electric field strength in accordance with the applied voltage at the time of data writing. In the range r) in FIG. 10, the horizontal orientation state of the shape anisotropic particles 32 can be maintained.
 なお、第1電極11、第2電極12および第3電極13の構成は、図2などに例示したものに限定されない。図33に、表示パネル110の他の電極構成を示す。 In addition, the structure of the 1st electrode 11, the 2nd electrode 12, and the 3rd electrode 13 is not limited to what was illustrated in FIG. FIG. 33 shows another electrode configuration of the display panel 110.
 図33に示す例では、第1電極11を覆うようにさらなる絶縁層17が設けられており、第2電極12は、このさらなる絶縁層17上に設けられている。つまり、第2電極12は、さらなる絶縁層17を介して第1電極11の上方に設けられている。図33に示す構成では、第1電極11と第2電極12とが異なるレベルに設けられているので、第1電極11と第2電極12との電位差により横電界ではなくフリンジ電界(電気力線Ef’で表わされる)が生成される。図33に示す構成では、第1電極11と第2電極12との間にさらなる絶縁層17が位置しているので、第1電極11と第2電極12との間隔を狭めても短絡することがないという利点が得られる。 33, a further insulating layer 17 is provided so as to cover the first electrode 11, and the second electrode 12 is provided on the further insulating layer 17. In the example shown in FIG. That is, the second electrode 12 is provided above the first electrode 11 via the further insulating layer 17. In the configuration shown in FIG. 33, since the first electrode 11 and the second electrode 12 are provided at different levels, a fringe electric field (electric field lines) is generated instead of a lateral electric field due to a potential difference between the first electrode 11 and the second electrode 12. Ef ′) is generated. In the configuration shown in FIG. 33, since a further insulating layer 17 is located between the first electrode 11 and the second electrode 12, a short circuit occurs even if the interval between the first electrode 11 and the second electrode 12 is narrowed. The advantage is that there is no.
 図34に、表示パネル110のさらに他の電極構成を示す。図34に示す例では、第3電極13は、第1電極11および第2電極12に重なる位置に形成された複数のスリット13sを有する。図34に示す構成では、フリンジ電界の分布を、第1電極11または第2電極12の端部に集中したものから、第1電極11および第2電極12間(隣接する枝部11aおよび12a間)の中央寄りのものにすることができるという利点が得られる。一方、図2などに示したように、第3電極13がべた電極である構成では、第1電極11および第2電極12と、第3電極13と、これらの間に位置する絶縁層14とによって補助容量を構成できるという利点が得られる。 FIG. 34 shows still another electrode configuration of the display panel 110. In the example shown in FIG. 34, the third electrode 13 has a plurality of slits 13 s formed at positions overlapping the first electrode 11 and the second electrode 12. In the configuration shown in FIG. 34, the fringe electric field distribution is concentrated from the end of the first electrode 11 or the second electrode 12 to between the first electrode 11 and the second electrode 12 (between adjacent branch portions 11a and 12a). ), It is possible to make it closer to the center. On the other hand, as shown in FIG. 2 and the like, in the configuration in which the third electrode 13 is a solid electrode, the first electrode 11 and the second electrode 12, the third electrode 13, and the insulating layer 14 positioned between them. The advantage that an auxiliary capacity can be configured is obtained.
 勿論、図33および図34に例示した電極構成以外の改変例を採用してもよい。例えば、第1電極11および第2電極12の一方を省略してもよい。 Of course, modifications other than the electrode configuration illustrated in FIGS. 33 and 34 may be adopted. For example, one of the first electrode 11 and the second electrode 12 may be omitted.
 ここで、図35を参照しながら、アクティブマトリクス駆動を行う場合の背面基板10における具体的な配線構造の例を説明する。 Here, an example of a specific wiring structure in the rear substrate 10 when active matrix driving is performed will be described with reference to FIG.
 図35に示す例では、各画素に3つのTFT(第1TFT、第2TFTおよび第3TFT)t1、t2およびt3が設けられている。第1電極11、第2電極12および第3電極13は、それぞれ第1TFTt1、第2TFTt2および第3TFTt3に電気的に接続されている。また、図35に示す例では、行方向に延びるゲート配線GLと、列方向に延びる第1ソース配線SL1、第2ソース配線SL2および第3ソース配線SL3とが設けられている。第1TFTt1は、ゲート配線GLおよび第1ソース配線SL1からゲート信号および第1ソース信号を供給される。第2TFTt2は、ゲート配線GLおよび第2ソース配線SL2からゲート信号および第2ソース信号を供給される。第3TFTt3は、ゲート配線GLおよび第3ソース配線SL3からゲート信号および第3ソース信号を供給される。 In the example shown in FIG. 35, three TFTs (first TFT, second TFT, and third TFT) t1, t2, and t3 are provided for each pixel. The first electrode 11, the second electrode 12, and the third electrode 13 are electrically connected to the first TFT t1, the second TFT t2, and the third TFT t3, respectively. In the example shown in FIG. 35, a gate line GL extending in the row direction and a first source line SL1, a second source line SL2, and a third source line SL3 extending in the column direction are provided. The first TFT t1 is supplied with a gate signal and a first source signal from the gate line GL and the first source line SL1. The second TFT t2 is supplied with a gate signal and a second source signal from the gate line GL and the second source line SL2. The third TFT t3 is supplied with the gate signal and the third source signal from the gate line GL and the third source line SL3.
 第1TFTt1、第2TFTt2および第3TFTt3が有する半導体層の材料としては、公知の種々の半導体材料を用いることができ、例えば、アモルファスシリコン、多結晶シリコン、連続粒界結晶シリコン(CGS:Continuous Grain Silicon)などを用いることができる。 As the material of the semiconductor layer included in the first TFT t1, the second TFT t2, and the third TFT t3, various known semiconductor materials can be used. For example, amorphous silicon, polycrystalline silicon, continuous grain boundary crystal silicon (CGS: Continuous Grain Silicon) Etc. can be used.
 また、半導体層は、酸化物半導体から形成された酸化物半導体層であってもよい。酸化物半導体層は、例えばIn-Ga-Zn-O系の半導体を含む。ここで、In-Ga-Zn-O系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。In-Ga-Zn-O系半導体は、アモルファスでもよいし、結晶質でもよい。結晶質のIn-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向したものが好ましい。このようなIn-Ga-Zn-O系半導体の結晶構造は、例えば、特開2012-134475号公報に開示されている。参考のために、特開2012-134475号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有している。従って、半導体層として、In-Ga-Zn-O系半導体から形成された酸化物半導体層を用いると、オフリークが少ないので、消費電力のいっそうの低減を図ることができる。 The semiconductor layer may be an oxide semiconductor layer formed from an oxide semiconductor. The oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor. Here, the In—Ga—Zn—O-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the ratio (composition ratio) of In, Ga, and Zn is It is not specifically limited, For example, In: Ga: Zn = 2: 2: 1, In: Ga: Zn = 1: 1: 1, In: Ga: Zn = 1: 1: 2, etc. are included. The In—Ga—Zn—O-based semiconductor may be amorphous or crystalline. As the crystalline In—Ga—Zn—O-based semiconductor, a semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable. Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed in, for example, Japanese Patent Laid-Open No. 2012-134475. For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2012-134475 is incorporated herein by reference. A TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT). Therefore, when an oxide semiconductor layer formed using an In—Ga—Zn—O-based semiconductor is used as the semiconductor layer, power consumption can be further reduced because off-leakage is small.
 なお、酸化物半導体層は、In-Ga-Zn-O系半導体層に限定されない。酸化物半導体層は、例えばZn-O系半導体(ZnO)、In-Zn-O系半導体(IZO)、Zn-Ti-O系半導体(ZTO)、Cd-Ge-O系半導体、Cd-Pb-O系半導体、In-Sn-Zn-O系半導体(例えばIn23-SnO2-ZnO)、In-Ga-Sn-O系半導体などを含んでいてもよい。 Note that the oxide semiconductor layer is not limited to the In—Ga—Zn—O-based semiconductor layer. The oxide semiconductor layer includes, for example, a Zn—O based semiconductor (ZnO), an In—Zn—O based semiconductor (IZO), a Zn—Ti—O based semiconductor (ZTO), a Cd—Ge—O based semiconductor, a Cd—Pb— An O-based semiconductor, an In—Sn—Zn—O based semiconductor (eg, In 2 O 3 —SnO 2 —ZnO), an In—Ga—Sn—O based semiconductor, or the like may be included.
 図35に示す配線構造により、アクティブマトリクス駆動を行うことができる。勿論、背面基板10の配線構造は、図35に示す例に限定されない。各画素に設けられる薄膜トランジスタ(TFT)として、酸化物半導体層を含む酸化物半導体TFTを用いると、オフリークが少ないので、アクティブマトリクス駆動における電圧保持率を高くすることができる。そのため、休止駆動の期間を長くすることができ、いっそうの低消費電力化を図ることができる。 35. Active matrix driving can be performed by the wiring structure shown in FIG. Of course, the wiring structure of the back substrate 10 is not limited to the example shown in FIG. When an oxide semiconductor TFT including an oxide semiconductor layer is used as a thin film transistor (TFT) provided in each pixel, the off-leakage is small, so that the voltage holding ratio in active matrix driving can be increased. For this reason, it is possible to lengthen the period of pause driving and further reduce power consumption.
 続いて、図36を参照しながら、本発明の実施形態による表示装置100において休止駆動を行うためのより具体的な構成の例を説明する。図36に例示する構成では、表示装置100は、電子機器200の一部を構成している。 Subsequently, an example of a more specific configuration for performing the pause drive in the display device 100 according to the embodiment of the present invention will be described with reference to FIG. In the configuration illustrated in FIG. 36, the display device 100 constitutes a part of the electronic device 200.
 電子機器200は、図36に示すように、表示装置100、タッチパネル210および本体装置220を備える。 The electronic device 200 includes a display device 100, a touch panel 210, and a main body device 220 as shown in FIG.
 表示装置100は、既に説明した表示パネル110、ゲートドライバ(走査線駆動回路)120g、ソースドライバ(信号線駆動回路)120sを有する。また、表示装置100は、共通電極駆動回路130およびタイミングコントローラ140を有する。 The display device 100 includes the display panel 110, the gate driver (scanning line driving circuit) 120g, and the source driver (signal line driving circuit) 120s already described. In addition, the display device 100 includes a common electrode driving circuit 130 and a timing controller 140.
 表示パネル110は、対応する画素のTFTのゲート電極に電気的に接続された複数本のゲート配線GLと、対応する画素のTFTのソース電極に電気的に接続された複数本のソース配線SL1、SL2およびSL3とを有する。 The display panel 110 includes a plurality of gate wirings GL that are electrically connected to the gate electrodes of the TFTs of the corresponding pixels, and a plurality of source wirings SL1 that are electrically connected to the source electrodes of the TFTs of the corresponding pixels. SL2 and SL3.
 ゲートドライバ120gは、各ゲート配線GLに走査信号電圧を供給する。ソースドライバ120sは、本体装置220からタイミングコントローラ140を介して入力された映像信号VSから各画素に出力すべき電圧の値を算出し、算出された値の表示信号電圧を各ソース配線SL1、SL2およびSL3に供給する。 The gate driver 120g supplies a scanning signal voltage to each gate wiring GL. The source driver 120s calculates the value of the voltage to be output to each pixel from the video signal VS input from the main body device 220 via the timing controller 140, and displays the calculated display signal voltage for each source line SL1, SL2. And supplied to SL3.
 共通電極駆動回路130は、タイミングコントローラ140から入力される信号に基づき、共通電圧を対向電極21に出力する。 The common electrode driving circuit 130 outputs a common voltage to the counter electrode 21 based on a signal input from the timing controller 140.
 タイミングコントローラ140は、本体装置220から入力されたクロック信号、水平同期信号および垂直同期信号に基づき、各ドライバ120が同期して動作するための基準となる信号を各ドライバ120に対して出力する。具体的には、タイミングコントローラ140は、ゲートドライバ120gには、垂直同期信号に基づき、ゲートスタートパルス信号、ゲートクロック信号およびゲートアウトプットイネーブル信号を出力する。また、タイミングコントローラ140は、ソースドライバ120sには、水平同期信号に基づきソーススタートパルス信号、ソースラッチストローブ信号およびソースクロック信号を出力する。 The timing controller 140 outputs, to each driver 120, a reference signal for each driver 120 to operate in synchronization based on the clock signal, horizontal synchronization signal, and vertical synchronization signal input from the main unit 220. Specifically, the timing controller 140 outputs a gate start pulse signal, a gate clock signal, and a gate output enable signal to the gate driver 120g based on the vertical synchronization signal. The timing controller 140 outputs a source start pulse signal, a source latch strobe signal, and a source clock signal to the source driver 120s based on the horizontal synchronization signal.
 ゲートドライバ120gは、タイミングコントローラ140から受け取ったゲートスタートパルス信号を合図として表示パネル110の走査を開始し、ゲート配線GLの選択状態をシフトさせていく信号であるゲートクロック信号に従って各ゲート配線GLに順次オン電圧を印加していく。ソースドライバ120sは、タイミングコントローラ140から受け取ったソーススタートパルス信号に基づき、入力された各画素の画像データをソースクロック信号に従ってレジスタに蓄える。そして、ソースドライバ120sは、画像データを蓄えた後に、次のソースラッチストローブ信号に従って表示パネル110の各ソース配線に画像データを書き込む。画像データの書き込みには、例えば、ソースドライバ120sが有するアナログアンプが用いられる。 The gate driver 120g starts scanning the display panel 110 with the gate start pulse signal received from the timing controller 140 as a cue, and applies to each gate line GL according to a gate clock signal that is a signal for shifting the selection state of the gate line GL. The on-voltage is applied sequentially. Based on the source start pulse signal received from the timing controller 140, the source driver 120s stores the input image data of each pixel in a register according to the source clock signal. Then, after storing the image data, the source driver 120s writes the image data to each source wiring of the display panel 110 in accordance with the next source latch strobe signal. For example, an analog amplifier included in the source driver 120s is used for writing the image data.
 タッチパネル210は、検出部211およびコントロール部212を有する。 The touch panel 210 includes a detection unit 211 and a control unit 212.
 検出部211は、表示装置100の表示パネル110の画面上に設けられ、ユーザの指等によって特定された画面上の位置を検出する。コントロール部212は、検出部211を制御する。具体的には、コントロール部212が、駆動ラインTxを介して検出部211を駆動すると、検出部211は、上記の位置を検出し、検出信号を検出ラインSxを介してコントロール部212に送信する。コントロール部212は、検出部211からの検出信号に基づいて、検出した位置を示す検出データを作成し、本体装置220へ送信する。 The detecting unit 211 is provided on the screen of the display panel 110 of the display device 100, and detects the position on the screen specified by the user's finger or the like. The control unit 212 controls the detection unit 211. Specifically, when the control unit 212 drives the detection unit 211 via the drive line Tx, the detection unit 211 detects the position and transmits a detection signal to the control unit 212 via the detection line Sx. . The control unit 212 creates detection data indicating the detected position based on the detection signal from the detection unit 211, and transmits the detection data to the main device 220.
 タッチパネル210は、例えば、投影型静電容量方式のタッチパネルである。投影型静電容量方式のタッチパネル210では、検出部211は、マトリクス状の透明電極パターンが、ガラス、プラスチックなどの透明基板上に形成されたものである。検出部211にユーザの指等が接触または接近すると、その付近の透明電極パターンにおける静電容量が変化する。従って、コントロール部212は、透明電極パターンの電流または電圧の変化を検出することにより、ユーザの指等が接触または接近した位置を検出することができる。 The touch panel 210 is, for example, a projected capacitive touch panel. In the projected capacitive touch panel 210, the detection unit 211 has a matrix-like transparent electrode pattern formed on a transparent substrate such as glass or plastic. When a user's finger or the like touches or approaches the detection unit 211, the electrostatic capacity of the transparent electrode pattern in the vicinity thereof changes. Therefore, the control unit 212 can detect the position where the user's finger or the like has touched or approached by detecting a change in the current or voltage of the transparent electrode pattern.
 なお、タッチパネル210は、画面上の任意の位置にユーザの指等が接触または接近したことを検出する場合もある。この場合、指等の接触または接近を検出すればよく、その位置を検出する必要はない。 Note that the touch panel 210 may detect that a user's finger or the like has touched or approached an arbitrary position on the screen. In this case, it is only necessary to detect contact or approach of a finger or the like, and it is not necessary to detect the position.
 本体装置220は、タッチパネル210からの検出データに基づき、ユーザの操作を認識したり、表示装置100の表示を制御するために、映像信号および映像同期信号を表示装置100に送信したりする。 The main body device 220 transmits a video signal and a video synchronization signal to the display device 100 in order to recognize a user operation based on detection data from the touch panel 210 and to control display of the display device 100.
 図36に示す例では、タイミングコントローラ140は、ゲートドライバ120gおよびソースドライバ120sを休止させるための信号である休止信号PSを、ゲートドライバ120gおよびソースドライバ120sに出力する。休止駆動を行う場合、タイミングコントローラ140から休止信号PSがゲートドライバ120gおよびソースドライバ120sに出力されることにより、ゲートドライバ120gおよびソースドライバ120sは休止する。 In the example shown in FIG. 36, the timing controller 140 outputs a pause signal PS, which is a signal for pausing the gate driver 120g and the source driver 120s, to the gate driver 120g and the source driver 120s. When the pause driving is performed, the pause signal PS is output from the timing controller 140 to the gate driver 120g and the source driver 120s, whereby the gate driver 120g and the source driver 120s are paused.
 また、タイミングコントローラ140は、休止駆動が開始されると、タッチパネル210における検出動作を指示する信号である検出指示信号DSを、タッチパネル210のコントロール部212へ出力する。タッチパネル210では、コントロール部212が、タイミングコントローラ140から検出指示信号DSを受け取ると、検出部211が検出の動作を行い、検出結果を示す検出データをコントロール部212が本体装置220に出力する。 Further, when the pause driving is started, the timing controller 140 outputs a detection instruction signal DS that is a signal for instructing a detection operation in the touch panel 210 to the control unit 212 of the touch panel 210. In the touch panel 210, when the control unit 212 receives the detection instruction signal DS from the timing controller 140, the detection unit 211 performs a detection operation, and the control unit 212 outputs detection data indicating the detection result to the main body device 220.
 なお、本実施形態では、第2基板20側に第4電極21が設けられているが、第4電極21は省略されてもよい。光学層30を電界無印加状態にすることにより、形状異方性粒子32は垂直配向状態をとるからである。ただし、応答速度の観点からは、第2基板20側に第4電極21が設けられた構成(つまり光学層30に縦電界が印加され得る構成)を採用することが好ましい。つまり、光学層30に縦電界が生成された状態と、光学層30に横電界および/またはフリンジ電界が生成された状態とを切り替えることによって表示が行われることが好ましい。前者の状態から後者の状態への変化、および、後者の状態から前者の状態への変化は、いずれも印加電界の方向を変化させることにより行われるので、十分な応答速度を実現することができる。 In the present embodiment, the fourth electrode 21 is provided on the second substrate 20 side, but the fourth electrode 21 may be omitted. This is because, when the optical layer 30 is in a state where no electric field is applied, the shape anisotropic particles 32 take a vertical alignment state. However, from the viewpoint of response speed, it is preferable to adopt a configuration in which the fourth electrode 21 is provided on the second substrate 20 side (that is, a configuration in which a vertical electric field can be applied to the optical layer 30). That is, it is preferable that display is performed by switching between a state in which a vertical electric field is generated in the optical layer 30 and a state in which a horizontal electric field and / or a fringe electric field is generated in the optical layer 30. Since the change from the former state to the latter state and the change from the latter state to the former state are both performed by changing the direction of the applied electric field, a sufficient response speed can be realized. .
 また、既に説明したように、本発明の実施形態による表示装置100は、中間調表示を好適に行うことができる。そのため、各画素にカラーフィルタを設けることにより、階調に応じたマルチカラー表示を行うことができる。 Also, as already described, the display device 100 according to the embodiment of the present invention can suitably perform halftone display. Therefore, by providing a color filter for each pixel, multicolor display corresponding to gradation can be performed.
 形状異方性粒子32は、上述したように印加電圧(印加電界の方向)に応じて基板面への投影面積が変化する限り、その具体的な形状や材料には、特に制限はない。形状異方性粒子32は、フレーク状(薄片状)であってもよいし、円柱状や楕円球状などであってもよい。高いコントラスト比を実現する観点からは、形状異方性粒子32は、最大投影面積と最小投影面積との比が2:1以上となるような形状であることが好ましい。 The shape anisotropic particles 32 are not particularly limited in specific shape and material as long as the projected area on the substrate surface changes according to the applied voltage (direction of applied electric field) as described above. The shape anisotropic particles 32 may have a flake shape (flaky shape), a cylindrical shape, an oval shape, or the like. From the viewpoint of realizing a high contrast ratio, the shape anisotropic particle 32 preferably has a shape such that the ratio of the maximum projected area to the minimum projected area is 2: 1 or more.
 形状異方性粒子32の材料としては、金属材料、半導体材料、誘電体材料およびこれらの複合材料を用いることができる。また、形状異方性粒子32は、誘電体多層膜であってもよいし、コレステリック樹脂材料から形成されてもよい。なお、形状異方性粒子32の材料として金属材料を用いる場合、形状異方性粒子32の表面に絶縁層(誘電体層)が形成されていることが好ましい。金属単体の誘電率は虚数であるが、表面に絶縁層(例えば樹脂層や金属酸化物層)を形成することにより、金属材料から形成された形状異方性粒子32を誘電体として扱うことができる。また、表面に絶縁層が形成されていることにより、金属材料から形成された形状異方性粒子32同士の接触による導通や、物理的な相互作用による凝集等を防止する効果も得られる。このような形状異方性粒子32としては、例えば、表面を樹脂材料(例えばアクリル樹脂)で被覆されたアルミニウムフレークを用いることができる。表示媒体層30のアルミニウムフレーク含有量は、例えば6重量%である。あるいは、表面にSiO2層が形成されたアルミニウムフレークや、表面に酸化アルミニウム層が形成されたアルミニウムフレークなどを用いることもできる。勿論、金属材料としてアルミニウム以外の金属材料を用いてもよい。また、形状異方性粒子32は、着色されていてもよい。 As a material of the shape anisotropic particle 32, a metal material, a semiconductor material, a dielectric material, and a composite material thereof can be used. The shape anisotropic particles 32 may be a dielectric multilayer film or may be formed from a cholesteric resin material. When a metal material is used as the material for the shape anisotropic particles 32, an insulating layer (dielectric layer) is preferably formed on the surface of the shape anisotropic particles 32. Although the dielectric constant of a single metal is an imaginary number, by forming an insulating layer (for example, a resin layer or a metal oxide layer) on the surface, the shape anisotropic particles 32 formed of a metal material can be handled as a dielectric. it can. In addition, since the insulating layer is formed on the surface, an effect of preventing conduction due to contact between the shape anisotropic particles 32 formed of a metal material, aggregation due to physical interaction, and the like can be obtained. As such shape anisotropic particles 32, for example, aluminum flakes whose surfaces are coated with a resin material (for example, acrylic resin) can be used. The aluminum flake content of the display medium layer 30 is, for example, 6% by weight. Alternatively, aluminum flakes having an SiO 2 layer formed on the surface, aluminum flakes having an aluminum oxide layer formed on the surface, or the like can also be used. Of course, a metal material other than aluminum may be used as the metal material. Further, the shape anisotropic particles 32 may be colored.
 形状異方性粒子32の長さは、特に制限されないが、4μm以上10μm以下であることが好ましい。形状異方性粒子32の長さが10μmを超えると、形状異方性粒子32が移動しにくくなることがある。一方、形状異方性粒子32の長さが4μm未満になると、形状異方性粒子32の製造が困難になったり、形状異方性粒子32の反射性能が十分でなくなったりすることがある。また、本実施形態のような反射型表示装置で、高い反射率を得るために水平配向状態において形状異方性粒子32で基板面を覆い尽くしたい場合には、形状異方性粒子32の長さを、電極ピッチp(図3参照)以上とすることが好ましい。形状異方性粒子32の厚さも、特に制限されない。ただし、形状異方性粒子32の厚さが小さいほど、透明状態における表示媒体層30の透過率を高くすることができるので、形状異方性粒子32の厚さは、電極間距離gよりも小さい(例えば4μm以下)ことが好ましく、光の波長以下である(例えば0.5μm以下)ことがより好ましい。 The length of the shape anisotropic particles 32 is not particularly limited, but is preferably 4 μm or more and 10 μm or less. If the length of the shape anisotropic particles 32 exceeds 10 μm, the shape anisotropic particles 32 may be difficult to move. On the other hand, when the length of the shape anisotropic particles 32 is less than 4 μm, it may be difficult to produce the shape anisotropic particles 32 or the reflective performance of the shape anisotropic particles 32 may be insufficient. Further, in the reflective display device as in the present embodiment, when it is desired to cover the substrate surface with the shape anisotropic particles 32 in the horizontal alignment state in order to obtain a high reflectance, the length of the shape anisotropic particles 32 is increased. It is preferable that the pitch be equal to or greater than the electrode pitch p (see FIG. 3). The thickness of the shape anisotropic particle 32 is not particularly limited. However, since the transmittance of the display medium layer 30 in the transparent state can be increased as the thickness of the shape anisotropic particles 32 is smaller, the thickness of the shape anisotropic particles 32 is larger than the inter-electrode distance g. It is preferably small (for example, 4 μm or less), and more preferably light wavelength or less (for example, 0.5 μm or less).
 形状異方性粒子32の比重は、11g/cm3以下であることが好ましく、3g/cm3以下であることがより好ましく、媒体31と同程度の比重であることがさらに好ましい。これは、形状異方性粒子32の比重が媒体31の比重と大きく異なっていると、形状異方性粒子32が沈降または浮遊するという問題が生じ得るからである。また、媒体31の搖動によって形状異方性粒子32を移動させる効果を高くする観点からは、形状異方性粒子32は軽いことが好ましい。 The specific gravity of the shape anisotropic particles 32 is preferably 11g / cm 3 or less, more preferably 3 g / cm 3 or less, further preferably the specific gravity substantially equal to that of the medium 31. This is because if the specific gravity of the shape anisotropic particles 32 is significantly different from the specific gravity of the medium 31, there may be a problem that the shape anisotropic particles 32 settle or float. From the viewpoint of increasing the effect of moving the shape anisotropic particles 32 by the peristaltic motion of the medium 31, the shape anisotropic particles 32 are preferably light.
 なお、上記の説明では、アクティブマトリクス基板である第1基板10が背面側に配置されている構成を例示したが、第1基板10の配置は、これに限定されるものではない。第1基板10は、前面側に配置されていてもよい。アクティブマトリクス基板である第1基板10は、遮光性を有する材料から形成された構成要素を含むので、第1基板10が背面側に配置されている構成を採用すると、形状異方性粒子32の反射効果を最大限利用することができる。 In the above description, the configuration in which the first substrate 10 which is an active matrix substrate is arranged on the back side is illustrated, but the arrangement of the first substrate 10 is not limited to this. The first substrate 10 may be disposed on the front side. Since the first substrate 10 that is an active matrix substrate includes components formed from a light-shielding material, if the configuration in which the first substrate 10 is disposed on the back side is adopted, the shape anisotropic particles 32 The reflection effect can be used to the maximum.
 また、上記の説明では、反射型の表示装置100を例として説明を行ったが、本発明の実施形態は、透過型の表示装置(あるいは透過反射両用型の透明ディスプレイ用表示装置)にも好適に用いられる。透過型の表示装置では、背面側の基板には光吸収層(図1などに示されている光吸収層16)は設けられない。また、透過型の表示装置では、表示パネルに光を照射する照明素子(バックライト)が設けられる。 In the above description, the reflective display device 100 has been described as an example. However, the embodiment of the present invention is also suitable for a transmissive display device (or a transmissive / reflective display device for transparent display). Used for. In the transmissive display device, a light absorption layer (the light absorption layer 16 illustrated in FIG. 1 and the like) is not provided on the back substrate. In a transmissive display device, an illumination element (backlight) that irradiates light to the display panel is provided.
 本発明の実施形態を透過型の表示装置に適用した場合、画素の電圧-透過率特性がヒステリシス性を有し、印加電圧を増加させていくときの電圧-透過率特性を示す昇圧曲線における閾値電圧が、印加電圧を減少させていくときの電圧-透過率特性を示す降圧曲線における閾値電圧よりも高い。そして、印加電圧を書き込み電圧から減少させていくときの降圧曲線において、書き込み電圧から書き込み電圧よりも低い所定の電圧までの範囲で透過率が実質的に一定である。そのため、書き込み駆動後に電圧供給を停止して画素への印加電圧が低下しても、低下後の所定の電圧範囲においては(つまり降圧開始後の一定期間において)透過率を実質的に一定に維持することができる。それ故、書き込み駆動を行った後に、ドライバを休止させる休止駆動を行うことにより、消費電力を低減することができる。 When the embodiment of the present invention is applied to a transmissive display device, the voltage-transmittance characteristic of the pixel has hysteresis, and the threshold value in the boost curve indicating the voltage-transmittance characteristic when the applied voltage is increased The voltage is higher than the threshold voltage in the step-down curve indicating the voltage-transmittance characteristics when the applied voltage is decreased. In the step-down curve when the applied voltage is decreased from the write voltage, the transmittance is substantially constant in the range from the write voltage to a predetermined voltage lower than the write voltage. Therefore, even if the voltage supply is stopped after writing driving and the applied voltage to the pixel is reduced, the transmittance is maintained substantially constant in the predetermined voltage range after the reduction (that is, in a certain period after the voltage reduction starts). can do. Therefore, the power consumption can be reduced by performing the pause drive that pauses the driver after the write drive.
 また、印加電圧をゼロから増加させていくときの昇圧曲線における透過率の値が、電圧値に対して実質的に1対1の関係で決まると、書き込み電圧を昇圧曲線に基づいて設定することにより、中間調表示を好適に行うことができる。 Further, when the transmittance value in the boosting curve when the applied voltage is increased from zero is determined in a substantially one-to-one relationship with the voltage value, the write voltage is set based on the boosting curve. Thus, halftone display can be suitably performed.
 本発明の実施形態によると、低消費電力性に優れた光学装置が提供される。本発明の実施形態による光学装置は、例えば表示装置として好適に用いられる。また、本発明の実施形態による光学装置は、各種の電子機器に好適に用いられる。 According to the embodiment of the present invention, an optical device excellent in low power consumption is provided. The optical device according to the embodiment of the present invention is suitably used as a display device, for example. In addition, the optical device according to the embodiment of the present invention is suitably used for various electronic devices.
 10  第1基板
 10a  基板
 11  第1電極(第1上層電極)
 11a  第1電極の枝部
 11b  第1電極の幹部
 12  第2電極(第2上層電極)
 12a  第2電極の枝部
 12b  第2電極の幹部
 13  第3電極(下層電極)
 13s  第3電極のスリット
 14  絶縁層
 15、25  垂直配向膜
 16  光吸収層
 17  さらなる絶縁層
 20  第2基板
 20a  基板
 21  第4電極(対向電極)
 22  誘電体層(オーバーコート層)
 30  光学層(表示媒体層)
 31  媒体(液晶材料)
 32  形状異方性粒子
 100  表示装置
 110  表示パネル
 120  ドライバ(駆動回路)
 120g  ゲートドライバ(走査線駆動回路)
 120s  ソースドライバ(信号線駆動回路)
 130  共通電極駆動回路
 140  タイミングコントローラ
 200  電子機器
 210  タッチパネル
 211  検出部
 212  コントロール部
 220  本体装置
 GL  ゲート配線
 SL1  第1ソース配線
 SL2  第2ソース配線
 SL3  第3ソース配線
 t1  第1薄膜トランジスタ
 t2  第2薄膜トランジスタ
 t3  第3薄膜トランジスタ
DESCRIPTION OF SYMBOLS 10 1st board | substrate 10a board | substrate 11 1st electrode (1st upper layer electrode)
11a Branch portion of the first electrode 11b Trunk portion of the first electrode 12 Second electrode (second upper layer electrode)
12a Branch portion of second electrode 12b Trunk portion of second electrode 13 Third electrode (lower layer electrode)
13s Slit of third electrode 14 Insulating layer 15, 25 Vertical alignment film 16 Light absorbing layer 17 Further insulating layer 20 Second substrate 20a Substrate 21 Fourth electrode (counter electrode)
22 Dielectric layer (overcoat layer)
30 Optical layer (display medium layer)
31 Medium (Liquid Crystal Material)
32 shape anisotropic particles 100 display device 110 display panel 120 driver (drive circuit)
120g Gate driver (scan line drive circuit)
120s source driver (signal line drive circuit)
130 common electrode driving circuit 140 timing controller 200 electronic device 210 touch panel 211 detection unit 212 control unit 220 main unit GL gate wiring SL1 first source wiring SL2 second source wiring SL3 third source wiring t1 first thin film transistor t2 second thin film transistor t3 second 3 Thin film transistor

Claims (9)

  1.  画素を有し、前記画素への印加電圧の大きさに応じて前記画素の反射率または透過率が変化する光学パネルと、
     前記光学パネルに信号電圧を供給するドライバと、を備える光学装置であって、
     前記画素の電圧-反射率特性または電圧-透過率特性がヒステリシス性を有し、
     印加電圧を増加させていくときの前記電圧-反射率特性または前記電圧-透過率特性を示す昇圧曲線における閾値電圧が、印加電圧を減少させていくときの前記電圧-反射率特性または前記電圧-透過率特性を示す降圧曲線における閾値電圧よりも高く、
     印加電圧がゼロである状態において、前記画素はメモリ性を有しておらず、
     印加電圧を、前記画素へのデータ書き込みを行う書き込み駆動時の印加電圧である書き込み電圧から減少させていくときの前記降圧曲線において、前記書き込み電圧から前記書き込み電圧よりも低い所定の電圧までの範囲で反射率または透過率が実質的に一定であり、
     前記書き込み駆動を行った後に、前記ドライバを休止させる休止駆動を行うことができる光学装置。
    An optical panel having pixels, the reflectance or transmittance of the pixels changing according to the magnitude of the voltage applied to the pixels;
    A driver for supplying a signal voltage to the optical panel;
    The voltage-reflectance characteristic or voltage-transmittance characteristic of the pixel has hysteresis.
    The threshold voltage in the boost curve indicating the voltage-reflectance characteristic or the voltage-transmittance characteristic when the applied voltage is increased is the voltage-reflectance characteristic or the voltage- when the applied voltage is decreased. It is higher than the threshold voltage in the step-down curve indicating the transmittance characteristic,
    In a state where the applied voltage is zero, the pixel does not have a memory property,
    A range from the write voltage to a predetermined voltage lower than the write voltage in the step-down curve when the applied voltage is decreased from a write voltage that is an applied voltage at the time of write driving for writing data to the pixel. The reflectance or transmittance is substantially constant,
    An optical apparatus capable of performing pause driving for pausing the driver after performing the writing driving.
  2.  印加電圧をゼロから増加させていくときの前記昇圧曲線における反射率または透過率の値は、電圧値に対して実質的に1対1の関係で決まる請求項1に記載の光学装置。 2. The optical apparatus according to claim 1, wherein a value of reflectance or transmittance in the step-up curve when the applied voltage is increased from zero is substantially determined by a one-to-one relationship with the voltage value.
  3.  前記休止駆動を行った後、前記休止駆動を行っている期間中に低下した印加電圧を前記書き込み電圧まで戻すリフレッシュ駆動を行うことができる請求項1または2に記載の光学装置。 3. The optical device according to claim 1, wherein after the pause drive, the refresh drive can be performed to return the applied voltage, which has been reduced during the pause drive, to the write voltage.
  4.  前記書き込み駆動および/またはリフレッシュ駆動は、複数フレームにわたって行われる請求項3に記載の光学装置。 4. The optical apparatus according to claim 3, wherein the writing drive and / or the refresh drive are performed over a plurality of frames.
  5.  前記リフレッシュ駆動が行われる期間は、前記書き込み駆動が行われる期間よりも短い請求項4に記載の光学装置。 The optical apparatus according to claim 4, wherein a period during which the refresh drive is performed is shorter than a period during which the write drive is performed.
  6.  前記休止駆動および前記リフレッシュ駆動が交互に繰り返し行われる場合、1回目の休止駆動が行われている期間と、n回目(nは2以上のある整数)の休止駆動が行われている期間とで、印加電圧の極性が反対である請求項3から5のいずれかに記載の光学装置。 In the case where the pause drive and the refresh drive are alternately and repeatedly performed, a period in which the first pause drive is performed and a period in which the nth (n is an integer of 2 or more) pause drive is performed. The optical device according to claim 3, wherein the polarity of the applied voltage is opposite.
  7.  前記書き込み駆動は、複数フレームにわたって行われ、
     前記書き込み駆動が行われる期間の最終フレームにおいて前記ドライバから供給される信号電圧の波形パターンは、最終フレームよりも前のフレームにおいて前記ドライバから供給される信号電圧の波形パターンとは異なる請求項1から6のいずれかに記載の光学装置。
    The write drive is performed over a plurality of frames,
    The waveform pattern of the signal voltage supplied from the driver in the last frame of the period during which the write drive is performed is different from the waveform pattern of the signal voltage supplied from the driver in a frame before the last frame. 7. The optical device according to any one of 6.
  8.  互いに対向するように設けられた第1基板および第2基板と、
     前記第1基板および前記第2基板の間に設けられた光学層と、を備え、
     前記光学層は、媒体と、前記媒体中に分散され、形状異方性を有する形状異方性粒子とを含み、
     前記媒体は、液晶材料を含み、
     前記光学層に横電界および/またはフリンジ電界を印加し得る請求項1から7のいずれかに記載の光学装置。
    A first substrate and a second substrate provided to face each other;
    An optical layer provided between the first substrate and the second substrate,
    The optical layer includes a medium, and shape anisotropic particles dispersed in the medium and having shape anisotropy,
    The medium includes a liquid crystal material,
    The optical apparatus according to claim 1, wherein a lateral electric field and / or a fringe electric field can be applied to the optical layer.
  9.  前記画素に設けられた薄膜トランジスタを有し、
     前記薄膜トランジスタは、酸化物半導体層を含む請求項1から8のいずれかに記載の光学装置。
    A thin film transistor provided in the pixel;
    The optical device according to claim 1, wherein the thin film transistor includes an oxide semiconductor layer.
PCT/JP2015/081604 2014-11-19 2015-11-10 Optical device WO2016080244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234967 2014-11-19
JP2014234967 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080244A1 true WO2016080244A1 (en) 2016-05-26

Family

ID=56013789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081604 WO2016080244A1 (en) 2014-11-19 2015-11-10 Optical device

Country Status (1)

Country Link
WO (1) WO2016080244A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018173767A1 (en) * 2017-03-23 2019-03-28 Dic株式会社 Charge indicator
CN114141205A (en) * 2021-12-09 2022-03-04 中山大学 Display driving method based on liquid crystal composite electronic ink system and electrophoretic display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695624A (en) * 1992-09-11 1994-04-08 Citizen Watch Co Ltd Method for driving anti-ferroelectric liquid crystal panel
JPH0714044A (en) * 1993-06-17 1995-01-17 Mitsubishi Heavy Ind Ltd Fee receiving system for toll road
JP2002169181A (en) * 2000-12-04 2002-06-14 Toshiba Corp Liquid crystal display
WO2014007193A1 (en) * 2012-07-05 2014-01-09 シャープ株式会社 Liquid crystal display apparatus and method for driving liquid crystal display apparatus
WO2014061492A1 (en) * 2012-10-17 2014-04-24 シャープ株式会社 Optical device and display device provided with same
JP2014529786A (en) * 2011-08-10 2014-11-13 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Touch sensing integrated with display data update

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695624A (en) * 1992-09-11 1994-04-08 Citizen Watch Co Ltd Method for driving anti-ferroelectric liquid crystal panel
JPH0714044A (en) * 1993-06-17 1995-01-17 Mitsubishi Heavy Ind Ltd Fee receiving system for toll road
JP2002169181A (en) * 2000-12-04 2002-06-14 Toshiba Corp Liquid crystal display
JP2014529786A (en) * 2011-08-10 2014-11-13 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Touch sensing integrated with display data update
WO2014007193A1 (en) * 2012-07-05 2014-01-09 シャープ株式会社 Liquid crystal display apparatus and method for driving liquid crystal display apparatus
WO2014061492A1 (en) * 2012-10-17 2014-04-24 シャープ株式会社 Optical device and display device provided with same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018173767A1 (en) * 2017-03-23 2019-03-28 Dic株式会社 Charge indicator
JP2020008586A (en) * 2017-03-23 2020-01-16 Dic株式会社 Static charge indicator
CN114141205A (en) * 2021-12-09 2022-03-04 中山大学 Display driving method based on liquid crystal composite electronic ink system and electrophoretic display

Similar Documents

Publication Publication Date Title
US10109241B2 (en) Light valve panel and liquid crystal display using the same
US20180067592A1 (en) Liquid crystal display device
JP5719439B2 (en) Liquid crystal drive device and liquid crystal display device
US9618805B2 (en) Liquid crystal display
JP2022183195A (en) Display device
US20140016075A1 (en) Liquid crystal display panel and liquid crystal display apparatus
WO2016090698A1 (en) Liquid crystal display panel and drive method thereof
WO2012128061A1 (en) Liquid crystal drive method and liquid crystal display device
JP5898307B2 (en) Liquid crystal driving method and liquid crystal display device
US9733535B2 (en) Array substrate, liquid crystal display panel and display device
WO2013185425A1 (en) Pixel structure, display device and over-driving method
WO2014174896A1 (en) Optical apparatus and display apparatus provided with same
JP4342538B2 (en) Liquid crystal display device and driving method of liquid crystal display device
JP6047450B2 (en) Liquid crystal display
WO2016080244A1 (en) Optical device
JP2006065330A (en) Optically compensated bend (ocb) mode liquid crystal display and method for driving the same
KR102564463B1 (en) Light valve panel and liquid crystal display device using the same
WO2016072363A1 (en) Optical apparatus
TWI395031B (en) Pixel structure, liquid crystal display and method for operating the same
US9824655B2 (en) Display device having a main writing and additional writing periods
WO2015098184A1 (en) Optical device and display device provided with same
JP5159687B2 (en) Liquid crystal display
WO2013146856A1 (en) Liquid crystal display apparatus and liquid crystal drive method
WO2016063880A1 (en) Display device
KR102298850B1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15861265

Country of ref document: EP

Kind code of ref document: A1