WO2016068383A1 - Unmanned flying object - Google Patents

Unmanned flying object Download PDF

Info

Publication number
WO2016068383A1
WO2016068383A1 PCT/KR2014/011517 KR2014011517W WO2016068383A1 WO 2016068383 A1 WO2016068383 A1 WO 2016068383A1 KR 2014011517 W KR2014011517 W KR 2014011517W WO 2016068383 A1 WO2016068383 A1 WO 2016068383A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
rotating plate
base
propulsion
Prior art date
Application number
PCT/KR2014/011517
Other languages
French (fr)
Korean (ko)
Inventor
유규형
Original Assignee
한화테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화테크윈 주식회사 filed Critical 한화테크윈 주식회사
Publication of WO2016068383A1 publication Critical patent/WO2016068383A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports

Definitions

  • the present invention relates to an unmanned aerial vehicle.
  • Unmanned Aerial Vehicles are aircraft that can perform their assigned missions without boarding a pilot.
  • the drone may fly based on remotely controlled or preset programs or automation systems.
  • the drone generates both horizontal and vertical thrust and can be equipped with a vertical takeoff and landing (VTOL) function.
  • the propeller or rotor can generate thrust in the vertical direction to lift the aircraft and generate thrust in the horizontal direction to provide forward movement.
  • the vertical take-off and landing feature allows the drone to not perform the flight, making it easier to perform tasks.
  • Drones can be used for military or reconnaissance purposes to scout enemies or explore terrain to gather information.
  • drones can carry out ground operations in difficult-to-penetration terrain in parallel with mobile robots.
  • Drones can be used for industrial purposes to survey land or spray pesticides.
  • the drone can be quickly put into an emergency based on the location tracking function to rescue the distress and fallout in the emergency.
  • Embodiments of the present invention to provide an unmanned aerial vehicle that can fold the thrust generating thrust.
  • One aspect of the present invention includes a base portion, a propeller having a first actuator and a propeller rotating by power of the first actuator, and being provided to be rotatable outside the base portion, and one surface of the base portion. It is possible to provide an unmanned aerial vehicle including a rotating plate installed to be rotatable in and a connecting arm connecting the rotating plate and the driving unit.
  • Embodiments of the present invention can be minimized in size when storing the unmanned vehicle by folding the propulsion generating thrust.
  • the propeller may be disposed into the inner space of the unmanned aerial vehicle, thereby facilitating durability and storage of the unmanned aerial vehicle.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a perspective view showing an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 2A is a rear perspective view of the unmanned aerial vehicle of FIG. 1.
  • FIG. 2A is a rear perspective view of the unmanned aerial vehicle of FIG. 1.
  • Figure 2b is a rear perspective view showing another state of the unmanned aerial vehicle shown in FIG.
  • FIG. 3 is an exploded perspective view showing the connecting arm shown in FIG.
  • FIG. 4A is a bottom view of a portion of the unmanned aerial vehicle of FIG. 1.
  • FIG. 4B is an enlarged partial view of region A of FIG. 4A.
  • FIG. 5A is a bottom view illustrating another state of the unmanned aerial vehicle by extracting a portion of the unmanned aerial vehicle illustrated in FIG. 1.
  • FIG. 5B is an enlarged partial view of region B of FIG. 5A.
  • FIG. 6 is a bottom view of a portion of the unmanned aerial vehicle of FIG. 2B.
  • FIG. 6 is a bottom view of a portion of the unmanned aerial vehicle of FIG. 2B.
  • One aspect of the present invention includes a base portion, a propeller having a first actuator and a propeller rotating by power of the first actuator, and being provided to be rotatable outside the base portion, and one surface of the base portion. It provides an unmanned aerial vehicle including a rotating plate installed to be rotatable in and a connecting arm connecting the rotating plate and the propulsion unit.
  • the connecting arm can rotate the driving unit.
  • the rotating plate may be disposed in the center of the base portion.
  • connection arm may have a bent portion bent to protrude in the longitudinal direction.
  • a first hole is formed at one end of the connection arm, and the first pin is inserted into the first hole to be connected to the rotating plate, and a second hole is provided at the other end of the connection arm to the second hole.
  • the second pin is inserted and connected to the driving unit, and the central axis of the first hole and the central axis of the second hole may be displaced.
  • the driving unit when the first hole is away from the driving unit, the driving unit may be folded to the base unit.
  • the propulsion unit may rotate in a state in which the propulsion unit is folded in the base unit in a state in which it is deployed to form the same plane as the base unit.
  • the propulsion unit rotates in a folded state in the unfolded state of the base portion, and when the rotating plate rotates in a direction opposite to the first direction, the pushing portion is folded in the base portion. You can rotate from the state to the unfolded state.
  • the apparatus may further include a supporter portion extending from the base portion to support the base portion.
  • At least a part of the pushing part may be inserted into the supporter part.
  • a base portion a plurality of propulsion portions provided on each side of the base portion, rotatably installed on the base portion, a rotating plate rotatably installed on one surface of the base portion, and the rotating plate
  • a plurality of connection arms installed to connect the plurality of propulsion units, respectively, and when the rotating plate rotates, the plurality of connection arms rotate to provide an unmanned aerial vehicle for rotating the plurality of propulsion units simultaneously.
  • the rotating plate may be disposed in the center of the base portion.
  • the propulsion part may rotate in a state where the propulsion part is folded in the base part in a state in which the plurality of propulsion parts are deployed to form the same plane as the base part.
  • connection arms may have a bent portion formed to be bent in a longitudinal direction.
  • any one of the connection arm of the plurality of connection arms may be arranged to intersect at the lower portion of the bent portion with other adjacent connection arm.
  • the base portion and the plurality of propulsion portions may be disposed on each surface to form an internal space of a three-dimensional shape.
  • the x-axis, y-axis and z-axis are not limited to three axes on the Cartesian coordinate system, but may be interpreted in a broad sense including the same.
  • the x-axis, y-axis, and z-axis may be orthogonal to each other, but may refer to different directions that are not orthogonal to each other.
  • FIG. 1 is a perspective view showing an unmanned aerial vehicle 100 according to an embodiment of the present invention
  • FIG. 2A is a rear perspective view illustrating the unmanned aerial vehicle 100 of FIG. 1
  • FIG. 2B is an unmanned aerial vehicle 100 shown in FIG. 1. Is a rear perspective view showing another state of
  • the unmanned aerial vehicle 100 may include a base portion 10, a propulsion portion 20, a supporter portion 30, a rotation plate 40, and a connection arm 50. Can be.
  • the base unit 10 may be disposed at the center of the unmanned aerial vehicle 100 to form a center of balance of the unmanned aerial vehicle 100.
  • the base unit 10 provides a space for installing a communication component, a control component or an image photographing component mounted on the unmanned aerial vehicle 100.
  • the base unit 10 may support the propulsion unit 20 for generating thrust in the unmanned aerial vehicle 100.
  • the propelling part 20 may be installed outside the base part 10.
  • the propulsion unit 20 may be disposed to radially unfold at the center of the base unit 10 to increase the amount of air passing through the propulsion unit 20 when the propulsion unit 20 generates thrust.
  • the shape of the base part 10 is not limited to a particular shape, and the base part 10 may be formed in a polygonal or cylindrical shape. However, hereinafter, the description will be made with respect to the case formed in a substantially rectangular pillar shape for convenience of description.
  • the propelling part 20 may be installed to be rotatable along the side of the base part 10.
  • the base part 10 has four side surfaces, and along each side surface of the base part 10, the first propulsion part 20a, the second propulsion part 20b, the third propulsion part 20c and the fourth propulsion part are provided.
  • the part 20d may be installed.
  • a control unit (not shown) may be installed in the internal space of the base unit 10.
  • the controller may include sensors for flight manipulation of the unmanned aerial vehicle 100 or various sensors for aviation observation, and control each sensor.
  • the controller may include a gyro sensor, an acceleration sensor, a position sensor, or a pressure sensor.
  • the gyro sensor may measure the rotation speed of the unmanned aerial vehicle 100 that rotates by measuring the angular acceleration of the unmanned aerial vehicle 100.
  • the acceleration sensor may measure a moving speed of the unmanned aerial vehicle 100 by measuring the acceleration of the unmanned aerial vehicle 100.
  • the position sensor may measure the position of the unmanned aerial vehicle 100 by measuring the position coordinates of the unmanned aerial vehicle 100.
  • the pressure sensor may measure the altitude of the unmanned aerial vehicle 100 by measuring the atmospheric pressure of the outside of the unmanned aerial vehicle 100.
  • the controller may control a position, speed, or altitude of the unmanned aerial vehicle 100 by receiving a signal input through a communication module (not shown).
  • the communication module may receive a signal related to global positioning system (GPS) information from an external controller (not shown) and transmit a signal related to position information to the controller. Then, the controller may control the position, speed or altitude of the unmanned aerial vehicle 100 by adjusting the rotational speed of the first actuator 22.
  • GPS global positioning system
  • the controller may generate information about the position, speed, or altitude measured by the unmanned aerial vehicle 100 as a signal and transmit the signal to a communication module (not shown).
  • the communication module may transmit the received signal to the controller.
  • the unmanned aerial vehicle 100 may be installed with a camera module (not shown) to collect image or video information by taking an aerial photo or video.
  • the camera module may be installed on one surface of the base unit 10, and the image or video taken by the camera module may be stored or transmitted to the controller through the communication module.
  • the unmanned aerial vehicle 100 may be installed with a speaker module (not shown) or a microphone module (not shown) to emit voice information or to collect voice information.
  • the propulsion unit 20 may be installed to be rotatable with the base unit 10.
  • the propulsion unit 20 may be provided in plural radially from the center of the base 10.
  • the propulsion unit may generate thrust driving the unmanned aerial vehicle 100, and may include a duct 21, a first actuator 22, a propeller 23, and a rib 25.
  • At least one propulsion unit may be provided in plurality, and may be disposed at a side surface of the base unit 10.
  • the unmanned aerial vehicle 100 is, for convenience of explanation, hereinafter, the first propulsion part 20a, the second propulsion part 20b, the third propulsion part 20c, and the fourth propulsion on each side of the base part 10.
  • the case where the part 20d is installed will be described below. Only the positions of the first to fourth propulsion units arranged in the base portion 10 have the same configuration and will be described below with reference to the first propulsion portion 20a.
  • the duct 21 may be installed to be rotatable on the side of the base portion 10.
  • the duct 21 may include an o-ring 21a installed outside the rotating propeller 23 and a frame 21b in contact with the base portion 10.
  • the o-ring 21a may be connected to the frame 21b to surround the outside of the propeller 23.
  • the o-ring 21a may be formed in an annular shape to guide the flow of air passing through the propeller 23.
  • the o-ring 21a may guide the flow of air in the direction of the rotation axis of the propeller 23.
  • the frame 21b may be connected to the base 10 to rotate.
  • the base portion 10 and the frame 21b form a hinge coupling so that the duct 21 can rotate at a predetermined angle.
  • the O-ring 21a is connected to extend to the frame 21b and may rotate in the base portion 10 by the rotation of the frame 21b.
  • the first actuator 22 may generate propulsion by rotating the propeller 23.
  • the first actuator 22 may be supported by a plurality of ribs 25 crossing the O-ring 21a.
  • the first actuator 22 may be independently controlled by the controller. According to the signal of the controller, the first actuator 22 may adjust the thrust by adjusting the rotational speed (rpm). The first actuator 22 may receive power from a battery (not shown) installed in the base unit 10, and transmit power to the propeller 23.
  • the rib portion 25 is installed to cross the O-ring 21a, and the first actuator 22 may be installed at the center of the O-ring 21a.
  • the rib portion 25 may include a second through hole for coupling with the connection arm 50.
  • the first connection arm 50 may be connected to the rib portion 25 by the second pin 62.
  • the second pin 62 may be inserted into the second hole 51 ′ e formed in the first connection arm 50 and the second through hole.
  • the supporter part 30 may protrude from the base part 10 and support the base part 10.
  • the supporter part 30 is formed to extend from one surface of the base part 10. When the unmanned aerial vehicle 100 is installed, the supporter unit 30 may contact the ground to support the base unit 10.
  • the supporter part 30 may be provided in plurality.
  • the supporter unit 30 may maintain the balance of the unmanned aerial vehicle 100 by dispersing the weight of the base unit 10.
  • the supporter part 30 may be formed to correspond to each side of the base part 10.
  • the supporter part 30 may be formed radially.
  • the case will be described based on the case in which two supporter units 30 are formed on both side surfaces of the base unit 10 so as to face each other for convenience of description.
  • the supporter part 30 may include a pair of first supporters 31 connected to the base part 10 and a second supporter 32 connecting the first supporters 31 to each other.
  • the first supporter 31 may maintain a gap between the base part 10 and the ground.
  • the second supporter 32 may connect between the first supporters 31 to improve strength and balance of the supporter part 30.
  • the second supporter 32 may be formed thicker than the first supporter 31.
  • the second supporter 32 may be formed to protrude inward to improve the area of the part in contact with the ground. If the contact area of the unmanned aerial vehicle 100 and the ground is increased, the stability of the unmanned aerial vehicle may be increased.
  • the angle formed by the supporter 30 and the base 10 is not limited to a specific angle.
  • the base part 10 and the first supporter 31 may be formed to be substantially perpendicular, or an angle between the base part 10 and the first supporter 31 may form an obtuse angle.
  • the base unit 10 and the first supporter 31 are formed to be substantially perpendicular to each other, and thus the driving unit 20 will be described with reference to the case where the unmanned aerial vehicle 100 forms a substantially hexahedron. .
  • Rotating plate 40 may be installed to be rotatable on one surface of the base portion (10).
  • the rotating plate 40 may be disposed at the center of the base portion 10.
  • Rotating plate 40 may be connected to the driving unit 20 by a connecting arm (50).
  • Rotating plate 40 is installed on the lower surface of the base portion 10 can rotate the driving unit 20 by the rotation of the rotating plate (40).
  • the second actuator 41 may be installed in the base portion 10 to transmit a driving force to the rotating plate 40.
  • the second actuator 41 may include an encoder and a reducer to adjust the rotational force or the rotational speed of the second actuator 41.
  • the outer side of the rotating plate 40 may be provided with a first through hole connecting to the plurality of connection arms (50).
  • a plurality of first through holes may be formed to correspond to the number of connection arms installed in the rotating plate 40. Due to the rotation of the rotation plate 40, the plurality of connection arms may move in the rotation direction of the rotation plate 40 at the same time.
  • an outer side of the rotating plate 40 may include a first through hole into which the first pin 61 is inserted.
  • a first pin 61 is inserted into the first hole 51 ′ d of the first connecting arm 50 and the first through hole, and thus the first connecting arm 50 is inserted into the rotating plate 40.
  • the first through hole may be disposed outside from the center of the rotating plate 40 to increase the magnitude of the torque formed by the rotating plate 40.
  • the connecting arm 50 may connect the rotating plate 40 and the pushing unit 20. When the rotating plate 40 rotates, the connection arm is interlocked to rotate the propulsion unit 20.
  • the connecting arm 50 may be provided in plural numbers so as to correspond to each propulsion unit 20.
  • the connecting arm 50 may include a first connecting arm 50 connected to the first pushing unit 20a, a second connecting arm 50 connected to the second pushing unit 20b, and a third pushing unit 20c. It may be provided with a third connecting arm 50 to be connected and a fourth connecting arm 50 connected to the fourth propulsion unit 20d.
  • the first connecting arm 50 and the third connecting arm 50 facing the same will be described with reference to the first connecting arm 50, which is substantially the same only in the arrangement position.
  • the second connection arm 50 and the fourth connection arm 50 facing the same will be described with reference to the second connection arm 50, which is substantially the same only in the arrangement position.
  • FIG. 3 is an exploded perspective view showing the first connection arm 50 shown in FIG.
  • the first connection arm 50 may have a bent portion 51c that is bent to protrude in the longitudinal direction.
  • the first connecting arm 50 has a first end 51a connected with the propulsion unit 20, a second end 51b connected with the rotating plate 40, and a first end 51a and a second end 51b. May be provided with a bent portion 51c.
  • the first connecting arm 50 may be connected to the rotating plate 40 by the first joint 51d.
  • the first joint 51d is inserted into the first end 51a and may have a first hole 51'd.
  • the first pin 61 may be inserted into the first hole 51'd and the first through hole to connect the rotating plate 40 and the first connection arm 50.
  • the first connection arm 50 may be connected to the propulsion unit 20 by the second joint 51e.
  • the second joint 51e is inserted into the second end 51b and may have a second hole 51'e.
  • the second pin 62 may be inserted into the second hole 51 ′ e and the second through hole to connect the propulsion unit 20 and the first connection arm 50.
  • the central axis of the first hole 51'd and the central axis of the second hole 51'e may be displaced. Since the rotational direction of the propulsion unit 20 and the plane formed by the rotation of the rotation plate 40 do not coincide, the center axis of the first hole 51'd and the center axis of the second hole 51'e may be displaced. Can be.
  • the central axis of the first hole 51'd and the central axis of the second hole 51'e may be formed to be orthogonal to each other.
  • the first fin 61 and the second fin 62 may be formed in the form of a ball joint. Since the rotational direction of the propulsion unit 20 and the plane formed by the rotation of the rotating plate 40 do not coincide, the first connection arm 50 requires a plurality of degrees of freedom.
  • the first fin 61 and the second fin 62 may be formed in the form of a ball joint to increase the degree of freedom of the first connection arm 50.
  • the second connection arm 50 and the fourth connection arm 50 may be formed in a cylindrical shape.
  • the second connection arm 50 and the fourth connection arm 50 may be formed in a bar shape to connect the propulsion unit 20 and the rotation plate 40.
  • FIG. 4A is a bottom view of a portion of the unmanned aerial vehicle 100 of FIG. 1, and FIG. 4B is an enlarged view of a portion A of FIG. 4A.
  • the driving unit 20 may form an unfolded state to form the same plane as the base unit 10.
  • the propulsion unit 20 when the propulsion unit 20 is placed in an unfolded state, the unmanned aerial vehicle 100 is defined as being placed in a first position.
  • the first joint 51d and the first pin 61 are arranged at the position of P1.
  • P1 is disposed adjacent to the propulsion unit 20 to which the first connection arm 50 is connected.
  • the axis i perpendicular to the base part 10 is disposed to be orthogonal to the axis j included in the surface formed by the driving part 20. 90 degrees
  • the plurality of driving units 20 may form the same plane as the base unit 10 so that air passing through each propeller 23 flows in one direction. That is, the propulsion unit 20 may be disposed to allow air to flow in a direction perpendicular to the base unit 10 to improve the maneuvering force of the unmanned aerial vehicle 100.
  • FIG. 5A is a bottom view illustrating another state of the unmanned aerial vehicle 100 by extracting a part of the unmanned aerial vehicle 100 shown in FIG. 1, and FIG. 5B is an enlarged partial view of an enlarged area B of FIG. 5A. .
  • the driving unit 20 may form a state in which the base unit 10 is folded at a predetermined angle.
  • the driving unit 20 and the base unit 10 are placed in a folded state to form an acute angle, the unmanned aerial vehicle 100 is defined as being placed in the second position.
  • the first connection arm 50 may rotate by the rotation of the rotation plate 40.
  • the first joint 51d and the first pin 61 are arranged at the P2 position. That is, the rotation plate 40 is rotated counterclockwise by a predetermined rotation angle ⁇ 3 so that the first joint 51d and the first pin 61 move from the P1 position to the P2 position.
  • the axis i perpendicular to the base part 10 may form an acute angle with the axis j included in the surface formed by the driving unit 20. (0 degree ⁇ 2 ⁇ 90 degree)
  • FIG. 6 is a bottom view of a portion of the unmanned aerial vehicle 100 of FIG. 2B.
  • the pushing unit 20 may form a state in which the base unit 10 is folded substantially vertically. At least a part of the pushing unit 20 may be disposed to be inserted into the supporter unit 30.
  • the unmanned aerial vehicle 100 is defined as being in a third position.
  • the first joint 51d and the first pin 61 are disposed in the P3 position. That is, the rotation plate 40 rotates counterclockwise so that the first joint 51d and the first pin 61 move from the P2 position to P3.
  • an axis perpendicular to the base part 10 may be included in a surface formed by the driving unit 20. That is, the pushing unit 20 may be folded to be perpendicular to the base unit 10.
  • the second connecting arm 50 and the fourth connecting arm 50 which are adjacent to the first connecting arm 50 and the first connecting arm 50 may be disposed to intersect.
  • the second connecting arm 50 is disposed below the bent portion 51c of the first connecting arm 50
  • the fourth connecting arm 50 is disposed above the first end 51a of the first connecting arm 50. This can be arranged.
  • the first connecting arm 50 When the first connecting arm 50 moves from the first position to the second position, the first connecting arm 50 may interfere with another neighboring connecting arm. By forming a space in which the second connection arm 50 of the bent portion 51c may move, interference that may occur between the first connection arm 50 and the second connection arm 50 may be eliminated.
  • the third connection arm 50 may also eliminate interference that may be caused by the fourth connection arm 50 in the same manner as the first connection arm 50.
  • the plurality of driving units 20 may be folded to be inserted into the supporter unit 30 and disposed at a third position.
  • the plurality of driving units 20 may be disposed to be orthogonal to the base unit 10.
  • the unmanned aerial vehicle 100 may form a cubic or approximately hexahedral shape.
  • it is formed by the number of the pushing unit 20, it may be formed in the shape of a triangular prism, pentagonal pillar, hexagonal, octagonal cylinder or cylinder according to the number of the pushing unit 20.
  • the base unit 10 and the propelling unit 20 may form an internal space of the unmanned aerial vehicle 100.
  • the first actuator 22 and the propeller 23 may be located in the inner space.
  • the front end of the propeller 23 may be disposed so as not to protrude from the propulsion unit 20. Since the propeller 23 is made to be stubborn ( ⁇ ⁇ ) protruding to the outside may cause a safety problem during storage and transport.
  • the propeller 23 is disposed in the second position, the propeller 23 does not protrude to the outside.
  • the unmanned aerial vehicle 100 may increase safety of storage because the propeller 23 does not protrude to the outside. In addition, it is possible to increase the space utilization by minimizing the size of the unmanned aerial vehicle 100, it is possible to reduce the damage of the propeller (23).
  • the second supporter 32 may be formed to protrude while facing each other inside the unmanned aerial vehicle 100.
  • the protruding portion of the second supporter 32 may be disposed in the internal space to minimize the size of the unmanned aerial vehicle 100.
  • the unmanned aerial vehicle 100 can be easily stored, thereby increasing the space utilization of the unmanned aerial vehicle 100.
  • the unmanned aerial vehicle 100 may fly under the propulsion force of the propulsion unit 20.
  • it is possible to change the direction or change the altitude by adjusting the rotational speed of the propeller 23 of each propulsion unit (20).
  • the propeller 23 may be maintained at the same speed to stop the flight.
  • the unmanned aerial vehicle 100 When the propulsion unit 20 is disposed in the third position, the unmanned aerial vehicle 100 may be easily stored. The volume of the unmanned aerial vehicle 100 may be minimized to improve space utilization.
  • the unmanned aerial vehicle 100 may simultaneously rotate the propulsion unit 20 by a simple operation by forming the plurality of propulsion units 20 to be rotatable at the same time by the rotation of the rotation plate 40.
  • an unmanned aerial vehicle having improved space utilization
  • the embodiments of the present invention may be applied to all military, emergency, industrial transport apparatuses or toys having an unmanned aerial vehicle for industrial use.

Abstract

The present invention discloses an unmanned flying object. The present invention is provided with a base unit, a first actuator, and a propeller which rotates by means of the power of the first actuator, and the present invention comprises: a propulsion unit which is rotatably installed on the outside of the base unit; a rotation plate which is rotatably installed on one surface of the base unit; and a connection arm which connects the rotation plate and the propulsion unit.

Description

무인 비행체Drone
본 발명은 무인 비행체에 관한 것이다.The present invention relates to an unmanned aerial vehicle.
무인 항공기(Unmanned Aerial Vehicle, UAV)는 조종사를 탑승하지 않고 지정된 임무를 수행할 수 있는 비행체이다. 무인 항공기는 원격 제어되거나 미리 설정된 프로그램 또는 자동화 시스템에 기초하여 비행할 수 있다.Unmanned Aerial Vehicles (UAVs) are aircraft that can perform their assigned missions without boarding a pilot. The drone may fly based on remotely controlled or preset programs or automation systems.
무인 항공기는 수평 추력과 수직 추력을 모두 생성되어 수직이착륙(vertical takeoff and landing, VTOL) 기능이 탑재될 수 있다. 프로펠러나 로터는 수직방향으로 추력을 생성하여 비행체를 들어올리고, 수평방향으로 추력을 생성하여 전방으로 움직임을 제공할 수 있다. 수직이착륙 기능의 탑재로 무인 항공기는 활주비행이 필요하지 않아 작업 수행을 용이하게 할 수 있다. The drone generates both horizontal and vertical thrust and can be equipped with a vertical takeoff and landing (VTOL) function. The propeller or rotor can generate thrust in the vertical direction to lift the aircraft and generate thrust in the horizontal direction to provide forward movement. The vertical take-off and landing feature allows the drone to not perform the flight, making it easier to perform tasks.
무인 항공기는 군사용 또는 정찰용으로 사용하여 적을 정찰하거나 지형을 탐색하여 정보를 수집할 수 있다. 또한 무인 항공기는 이동형 로봇과 병행하여 침투가 어려운 지형에서 지상작전을 수행할 수 있다. Drones can be used for military or reconnaissance purposes to scout enemies or explore terrain to gather information. In addition, drones can carry out ground operations in difficult-to-penetration terrain in parallel with mobile robots.
무인 항공기는 산업용으로 사용되어 토지를 측량하거나, 농약을 살포 할 수 있다. 또한 무인 항공기는 위치추적 기능을 기반으로 신속하게 응급상황에 투입되어 응급상황에서 조난자 및 낙상자를 구조할 수 있다.Drones can be used for industrial purposes to survey land or spray pesticides. In addition, the drone can be quickly put into an emergency based on the location tracking function to rescue the distress and fallout in the emergency.
무인 항공기는 항공기술 또는 통신기술이 발전함에 따라 그 수요가 증가하고 있으며, 무인 항공기를 적용할 수 있는 범위가 점차 확대되어 가고 있다. 그에 따라서 무인 항공기의 소형화 및 경량화 기술에 대한 연구가 계속되고 있다. The demand for unmanned aircraft is increasing with the development of aviation technology or communication technology, and the scope of application of the drone is gradually expanding. Accordingly, research on the technology of miniaturization and weight reduction of the drone continues.
상기와 같이 일반적인 미리 입력된 비행경로를 따라 비행 할 수 있는 무인 비행체는 한국 공개 특허 제2013-0100566호(발명의 명칭: 무인 비행체)에 구체적으로 개시되어 있다.As described above, an unmanned aerial vehicle capable of flying along a general pre-input flight path is disclosed in Korean Unexamined Patent Publication No. 2013-0100566 (name: Unmanned Aerial Vehicle).
본 발명의 실시예들은 추력을 생성하는 추진부를 접을 수 있는 무인 비행체 제공하고자 한다.Embodiments of the present invention to provide an unmanned aerial vehicle that can fold the thrust generating thrust.
본 발명의 일 측면은, 베이스부와, 제1 엑튜에이터와 상기 제1 엑튜에이터의 동력에 의해 회전하는 프로펠러를 구비하고, 상기 베이스부의 외측에 회동 가능하도록 설치되는 추진부와, 상기 베이스부의 일면에 회전 가능하도록 설치되는 회전 플레이트 및 상기 회전 플레이트와 상기 추진부를 연결하는 연결암을 포함하는 무인 비행체를 제공할 수 있다.One aspect of the present invention includes a base portion, a propeller having a first actuator and a propeller rotating by power of the first actuator, and being provided to be rotatable outside the base portion, and one surface of the base portion. It is possible to provide an unmanned aerial vehicle including a rotating plate installed to be rotatable in and a connecting arm connecting the rotating plate and the driving unit.
본 발명의 실시예들은 추력을 생성하는 추진부가 접혀져서 무인 비행체를 보관 시에 크기를 최소화할 수 있다. 또한 무인 비행체를 지지하는 서포터부 사이로 추진부가 삽입되면 프로펠러가 무인 비행체의 내부공간으로 배치되어 무인 비행체의 내구성 향상 및 보관을 용이하게 할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Embodiments of the present invention can be minimized in size when storing the unmanned vehicle by folding the propulsion generating thrust. In addition, when the propulsion unit is inserted between the supporter parts supporting the unmanned aerial vehicle, the propeller may be disposed into the inner space of the unmanned aerial vehicle, thereby facilitating durability and storage of the unmanned aerial vehicle. Of course, the scope of the present invention is not limited by these effects.
도 1는 본 발명의 일 실시예에 따른 무인 비행체를 보여주는 사시도이다. 1 is a perspective view showing an unmanned aerial vehicle according to an embodiment of the present invention.
도 2a는 도 1의 무인 비행체를 보여주는 배면 사시도이다.FIG. 2A is a rear perspective view of the unmanned aerial vehicle of FIG. 1. FIG.
도 2b는 도 1에 도시된 무인 비행체의 다른 상태를 보여주는 배면 사시도이다.Figure 2b is a rear perspective view showing another state of the unmanned aerial vehicle shown in FIG.
도 3은 도1에 도시된 연결암을 보여주는 분해 사시도이다.3 is an exploded perspective view showing the connecting arm shown in FIG.
도 4a는 도 1의 무인 비행체의 일부를 발췌하여 도시한 저면도이다.4A is a bottom view of a portion of the unmanned aerial vehicle of FIG. 1.
도 4b는 도 4a의 A영역을 확대하여 도시한 부분 확대도이다.FIG. 4B is an enlarged partial view of region A of FIG. 4A.
도 5a은 도 1에 도시된 무인 비행체의 일부를 발췌하여 무인 비행체의 다른 상태를 도시한 저면도이다.FIG. 5A is a bottom view illustrating another state of the unmanned aerial vehicle by extracting a portion of the unmanned aerial vehicle illustrated in FIG. 1.
도 5b는 도 5a의 B영역을 확대하여 도시한 부분 확대도이다.FIG. 5B is an enlarged partial view of region B of FIG. 5A.
도 6는 도 2b의 무인 비행체의 일부를 발췌하여 도시한 저면도이다.FIG. 6 is a bottom view of a portion of the unmanned aerial vehicle of FIG. 2B. FIG.
본 발명의 일 측면은, 베이스부와, 제1 엑튜에이터와 상기 제1 엑튜에이터의 동력에 의해 회전하는 프로펠러를 구비하고, 상기 베이스부의 외측에 회동 가능하도록 설치되는 추진부와, 상기 베이스부의 일면에 회전 가능하도록 설치되는 회전 플레이트 및 상기 회전 플레이트와 상기 추진부를 연결하는 연결암을 포함하는 무인 비행체를 제공한다.One aspect of the present invention includes a base portion, a propeller having a first actuator and a propeller rotating by power of the first actuator, and being provided to be rotatable outside the base portion, and one surface of the base portion. It provides an unmanned aerial vehicle including a rotating plate installed to be rotatable in and a connecting arm connecting the rotating plate and the propulsion unit.
또한, 상기 회전 플레이트가 회전하면 상기 연결암이 상기 추진부를 회동시킬 수 있다.In addition, when the rotating plate is rotated, the connecting arm can rotate the driving unit.
또한, 상기 회전 플레이트는 상기 베이스부의 중심에 배치될 수 있다.In addition, the rotating plate may be disposed in the center of the base portion.
또한, 상기 연결암은 길이방향으로 일부가 돌출되도록 절곡된 절곡부를 구비할 수 있다.In addition, the connection arm may have a bent portion bent to protrude in the longitudinal direction.
또한, 상기 연결암의 일단에는 제1 홀이 형성되어 상기 제1 홀에 상기 제1 핀이 삽입되어 상기 회전 플레이트와 연결되고, 상기 연결암의 타단에는 제2 홀을 구비하여 상기 제2 홀에 상기 제2 핀이 삽입되어 상기 추진부와 연결되며, 상기 제1 홀의 중심축과 상기 제2 홀의 중심축은 어긋나게 배치될 수 있다.In addition, a first hole is formed at one end of the connection arm, and the first pin is inserted into the first hole to be connected to the rotating plate, and a second hole is provided at the other end of the connection arm to the second hole. The second pin is inserted and connected to the driving unit, and the central axis of the first hole and the central axis of the second hole may be displaced.
또한, 상기 제1 홀이 상기 추진부에서 멀어지면 상기 추진부는 상기 베이스부에 접힐 수 있다.In addition, when the first hole is away from the driving unit, the driving unit may be folded to the base unit.
또한, 상기 추진부는 상기 베이스부와 동일 평면을 형성하도록 펼쳐진 상태에서 상기 추진부가 상기 베이스부에 접히는 상태로 회동할 수 있다.In addition, the propulsion unit may rotate in a state in which the propulsion unit is folded in the base unit in a state in which it is deployed to form the same plane as the base unit.
또한, 상기 회전플레이트가 제1 방향으로 회전하면 상기 추진부는 상기 베이스부에 펼쳐진 상태에서 접힌 상태로 회동하고, 상기 회전 플레이트가 상기 제1 방향과 반대방향으로 회전하면 상기 추진부는 상기 베이스부에 접힌 상태에서 펼쳐진 상태로 회동할 수 있다.In addition, when the rotating plate rotates in the first direction, the propulsion unit rotates in a folded state in the unfolded state of the base portion, and when the rotating plate rotates in a direction opposite to the first direction, the pushing portion is folded in the base portion. You can rotate from the state to the unfolded state.
또한, 상기 베이스부에서 돌출되도록 연장되며, 상기 베이스부를 지지하는 서포터부를 더 포함할 수 있다.The apparatus may further include a supporter portion extending from the base portion to support the base portion.
또한, 상기 회전 플레이트가 회전하면 상기 추진부의 적어도 일부는 상기 서포터부에 삽입될 수 있다.In addition, when the rotating plate is rotated, at least a part of the pushing part may be inserted into the supporter part.
본 발명의 다른 측면은, 베이스부와, 상기 베이스부의 각 측면에 설치되고, 상기 베이스부에 회동가능 하도록 설치된 복수개의 추진부와, 상기 베이스부의 일면에 회전 가능하도록 설치되는 회전 플레이트 및 상기 회전 플레이트에 상기 복수개의 추진부를 각각 연결하도록 설치되는 복수개의 연결암을 포함하고, 상기 회전 플레이트가 회전하면 상기 복수개의 연결암은 회전하여 상기 복수개의 추진부를 동시에 회동시키는 무인 비행체를 제공한다. According to another aspect of the present invention, a base portion, a plurality of propulsion portions provided on each side of the base portion, rotatably installed on the base portion, a rotating plate rotatably installed on one surface of the base portion, and the rotating plate And a plurality of connection arms installed to connect the plurality of propulsion units, respectively, and when the rotating plate rotates, the plurality of connection arms rotate to provide an unmanned aerial vehicle for rotating the plurality of propulsion units simultaneously.
또한, 상기 회전 플레이트는 상기 베이스부의 중심에 배치될 수 있다.In addition, the rotating plate may be disposed in the center of the base portion.
또한, 상기 복수개의 추진부는 상기 베이스부와 동일 평면을 형성하도록 펼쳐진 상태에서 상기 추진부가 상기 베이스부에 접힌 상태로 회동할 수 있다.In addition, the propulsion part may rotate in a state where the propulsion part is folded in the base part in a state in which the plurality of propulsion parts are deployed to form the same plane as the base part.
또한, 상기 복수 개의 연결암 중 적어도 하나는 길이방향으로 일부가 절곡되도록 형성된 절곡부를 구비할 수 있다.In addition, at least one of the plurality of connection arms may have a bent portion formed to be bent in a longitudinal direction.
또한, 상기 추진부가 상기 베이스부에 접힌 상태로 회동하면 상기 복수개의 연결암 중 어느 하나의 연결암은 이웃하는 다른 연결암과 상기 절곡부의 하부에서 교차되도록 배치될 수 있다.In addition, when the driving unit is rotated in the folded state in the base portion any one of the connection arm of the plurality of connection arms may be arranged to intersect at the lower portion of the bent portion with other adjacent connection arm.
또한, 상기 추진부가 상기 베이스부에 회동하면 상기 베이스부와 상기 복수개의 추진부가 각 면에 배치되어 입체도형의 내부공간을 형성할 수 있다.In addition, when the propulsion unit rotates to the base portion, the base portion and the plurality of propulsion portions may be disposed on each surface to form an internal space of a three-dimensional shape.
본 발명은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.The invention will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms. It is provided to fully convey the scope of the invention to those skilled in the art, the invention being defined only by the scope of the claims. Meanwhile, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and / or “comprising” refers to the presence of one or more other components, steps, operations and / or elements. Or does not exclude additions. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
이하의 실시예에서, x축, y축 및 z축은 직교 좌표계 상의 세 축으로 한정되지 않고, 이를 포함하는 넓은 의미로 해석될 수 있다. 예를 들어, x축, y축 및 z축은 서로 직교할 수도 있지만, 서로 직교하지 않는 서로 다른 방향을 지칭할 수도 있다.In the following embodiments, the x-axis, y-axis and z-axis are not limited to three axes on the Cartesian coordinate system, but may be interpreted in a broad sense including the same. For example, the x-axis, y-axis, and z-axis may be orthogonal to each other, but may refer to different directions that are not orthogonal to each other.
도 1는 본 발명의 일 실시예에 따른 무인 비행체(100)를 보여주는 사시도이고, 도 2a는 도 1의 무인 비행체(100)를 보여주는 배면 사시도이며, 도 2b는 도 1에 도시된 무인 비행체(100)의 다른 상태를 보여주는 배면 사시도이다.1 is a perspective view showing an unmanned aerial vehicle 100 according to an embodiment of the present invention, FIG. 2A is a rear perspective view illustrating the unmanned aerial vehicle 100 of FIG. 1, and FIG. 2B is an unmanned aerial vehicle 100 shown in FIG. 1. Is a rear perspective view showing another state of
도 1, 도 2a 및 도 2b를 참고하면, 무인 비행체(100)는 베이스부(10), 추진부(20), 서포터부(30), 회전 플레이트(40) 및 연결암(50)을 구비할 수 있다.1, 2A and 2B, the unmanned aerial vehicle 100 may include a base portion 10, a propulsion portion 20, a supporter portion 30, a rotation plate 40, and a connection arm 50. Can be.
베이스부(10)는 무인 비행체(100)의 중심에 배치되어 무인 비행체(100)의 균형의 중심을 형성할 수 있다. 베이스부(10)는 무인 비행체(100)에 탑재되는 통신 부품, 제어 부품 또는 이미지 촬영 부품 등을 설치할 수 있는 공간을 제공한다.The base unit 10 may be disposed at the center of the unmanned aerial vehicle 100 to form a center of balance of the unmanned aerial vehicle 100. The base unit 10 provides a space for installing a communication component, a control component or an image photographing component mounted on the unmanned aerial vehicle 100.
베이스부(10)는 무인 비행체(100)에 추력을 생성하는 추진부(20)를 지지할 수 있다. 베이스부(10)의 외측에는 추진부(20)가 설치될 수 있다. 추진부(20)는 베이스부(10)의 중심에서 방사형으로 펼쳐지도록 배치되어, 추진부(20)가 추력을 생성시 추진부(20)를 통과하는 공기의 양을 증대할 수 있다. The base unit 10 may support the propulsion unit 20 for generating thrust in the unmanned aerial vehicle 100. The propelling part 20 may be installed outside the base part 10. The propulsion unit 20 may be disposed to radially unfold at the center of the base unit 10 to increase the amount of air passing through the propulsion unit 20 when the propulsion unit 20 generates thrust.
베이스부(10)의 형태는 특정 형태에 한정되지 않으며 베이스부(10)는 다각면체 또는 원기둥 형태로 형성될 수 있다. 다만, 이하에서는 설명의 편의를 위해서 대략 사각기둥 형태로 형성된 경우를 중심으로 설명하기로 한다. The shape of the base part 10 is not limited to a particular shape, and the base part 10 may be formed in a polygonal or cylindrical shape. However, hereinafter, the description will be made with respect to the case formed in a substantially rectangular pillar shape for convenience of description.
베이스부(10)의 측면을 따라 추진부(20)가 회동 가능하도록 설치될 수 있다. 베이스부(10)는 4개의 측면을 구비하고, 베이스부(10)의 각 측면을 따라 제1 추진부(20a), 제2 추진부(20b), 제3 추진부(20c) 및 제4 추진부(20d)가 설치될 있다. The propelling part 20 may be installed to be rotatable along the side of the base part 10. The base part 10 has four side surfaces, and along each side surface of the base part 10, the first propulsion part 20a, the second propulsion part 20b, the third propulsion part 20c and the fourth propulsion part are provided. The part 20d may be installed.
베이스부(10)의 내부공간에는 제어부(미도시)가 설치될 수 있다. 제어부는 무인 비행체(100)의 비행 조작을 위한 센서나 항공 관측을 위한 다양한 센서를 구비하고, 각 센서를 제어할 수 있다. A control unit (not shown) may be installed in the internal space of the base unit 10. The controller may include sensors for flight manipulation of the unmanned aerial vehicle 100 or various sensors for aviation observation, and control each sensor.
예를 들어, 제어부는 자이로 센서, 가속도 센서, 위치 센서 또는 압력 센서를 구비할 수 있다. 자이로 센서는 무인 비행체(100)의 각가속도를 측정하여 회전하는 무인 비행체(100)의 회전속도를 측정할 수 있다. 가속도 센서는 무인 비행체(100)의 가속도를 측정하여 무인 비행체(100)의 이동 속력을 측정할 수 있다. 위치 센서는 무인 비행체(100)의 위치 좌표를 측정하여 무인 비행체(100)의 위치를 측정할 수 있다. 압력 센서는 무인 비행체(100)의 외부의 대기 압력을 측정하여 무인 비행체(100)의 고도를 측정 할 수 있다.For example, the controller may include a gyro sensor, an acceleration sensor, a position sensor, or a pressure sensor. The gyro sensor may measure the rotation speed of the unmanned aerial vehicle 100 that rotates by measuring the angular acceleration of the unmanned aerial vehicle 100. The acceleration sensor may measure a moving speed of the unmanned aerial vehicle 100 by measuring the acceleration of the unmanned aerial vehicle 100. The position sensor may measure the position of the unmanned aerial vehicle 100 by measuring the position coordinates of the unmanned aerial vehicle 100. The pressure sensor may measure the altitude of the unmanned aerial vehicle 100 by measuring the atmospheric pressure of the outside of the unmanned aerial vehicle 100.
제어부는 통신모듈(미도시)를 통해서 입력된 신호를 수신하여 무인 비행체(100)의 위치, 속도 또는 고도 등을 제어할 수 있다. 통신모듈은 외부의 컨트롤러(미도시)에서 위치(GPS, Global positioning system) 정보에 관한 신호를 수신하여 제어부로 위치 정보에 관한 신호를 송신할 수 있다. 그리하면, 제어부는 제1 엑튜에이터(22)의 회전속도를 조절하여 무인 비행체(100)의 위치, 속도 또는 고도 등을 제어할 수 있다. The controller may control a position, speed, or altitude of the unmanned aerial vehicle 100 by receiving a signal input through a communication module (not shown). The communication module may receive a signal related to global positioning system (GPS) information from an external controller (not shown) and transmit a signal related to position information to the controller. Then, the controller may control the position, speed or altitude of the unmanned aerial vehicle 100 by adjusting the rotational speed of the first actuator 22.
또한, 제어부는 무인 비행체(100)에서 측정된 위치, 속도 또는 고도에 관한 정보를 신호로 생성하여 통신모듈(미도시)로 전달할 수 있다. 통신모듈은 전달받은 신호를 컨트롤러에 송출할 수 있다.In addition, the controller may generate information about the position, speed, or altitude measured by the unmanned aerial vehicle 100 as a signal and transmit the signal to a communication module (not shown). The communication module may transmit the received signal to the controller.
무인 비행체(100)는 카메라 모듈(미도시)이 설치되어 항공 사진 또는 동영상을 촬영하여 이미지 또는 동영상 정보를 수집할 수 있다. 베이스부(10)에 일면에 카메라 모듈을 설치하고, 카메라 모듈에서 촬영한 이미지 또는 동영상을 저장하거나, 통신모듈을 통해서 컨트롤러로 전송할 수 있다.The unmanned aerial vehicle 100 may be installed with a camera module (not shown) to collect image or video information by taking an aerial photo or video. The camera module may be installed on one surface of the base unit 10, and the image or video taken by the camera module may be stored or transmitted to the controller through the communication module.
무인 비행체(100)는 스피커 모듈(미도시)이나 마이크로폰 모듈(미도시)이 설치되어 음성정보를 방출시키거나, 음성정보를 수집할 수 있다. The unmanned aerial vehicle 100 may be installed with a speaker module (not shown) or a microphone module (not shown) to emit voice information or to collect voice information.
추진부(20)는 베이스부(10)와 회동 가능하도록 설치될 수 있다. 추진부(20)는 베이스부(10)의 중심에서 방사형으로 복수 개 설치될 수 있다. 추진부는 무인 비행체(100)를 구동시키는 추력을 생성할 수 있으며, 덕트(21), 제1 엑튜에이터(22), 프로펠러(23) 및 리브부(25)를 구비할 수 있다. The propulsion unit 20 may be installed to be rotatable with the base unit 10. The propulsion unit 20 may be provided in plural radially from the center of the base 10. The propulsion unit may generate thrust driving the unmanned aerial vehicle 100, and may include a duct 21, a first actuator 22, a propeller 23, and a rib 25.
추진부는 적어도 하나 이상의 복수 개로 구비되며, 베이스부(10)의 측면에 배치될 수 있다. 무인 비행체(100)는 다만 이하에서는 설명의 편의를 위해서 베이스부(10)의 각 측면에 제1 추진부(20a), 제2 추진부(20b), 제3 추진부(20c) 및 제4 추진부(20d)가 설치되는 경우를 중심으로 설명하기로 한다. 제1 내지 제4 추진부는 베이스부(10)에 배치되는 위치만 상이하고 동일한 구성을 가지고 있는바 이하, 제1 추진부(20a)를 중심으로 설명하기로 한다. At least one propulsion unit may be provided in plurality, and may be disposed at a side surface of the base unit 10. The unmanned aerial vehicle 100 is, for convenience of explanation, hereinafter, the first propulsion part 20a, the second propulsion part 20b, the third propulsion part 20c, and the fourth propulsion on each side of the base part 10. The case where the part 20d is installed will be described below. Only the positions of the first to fourth propulsion units arranged in the base portion 10 have the same configuration and will be described below with reference to the first propulsion portion 20a.
덕트(21)는 베이스부(10)의 측면에 회동 가능하도록 설치될 수 있다. 덕트(21)는 회전하는 프로펠러(23)의 외측에 설치되는 오링(21a)과 베이스부(10)에 접촉하는 프레임(21b)을 구비할 수 있다. The duct 21 may be installed to be rotatable on the side of the base portion 10. The duct 21 may include an o-ring 21a installed outside the rotating propeller 23 and a frame 21b in contact with the base portion 10.
오링(21a)은 프레임(21b)에 연결되어 프로펠러(23)의 외측을 둘러싸도록 형성될 수 있다. 오링(21a)은 환형의 형태로 형성되어, 프로펠러(23)를 통과하는 공기의 유동을 가이드할 수 있다. 오링(21a)은 프로펠러(23)의 회전축 방향으로 공기의 유동을 안내할 수 있다.The o-ring 21a may be connected to the frame 21b to surround the outside of the propeller 23. The o-ring 21a may be formed in an annular shape to guide the flow of air passing through the propeller 23. The o-ring 21a may guide the flow of air in the direction of the rotation axis of the propeller 23.
프레임(21b)은 베이스부(10)와 연결되어 회전할 수 있다. 베이스부(10)와 프레임(21b)은 힌지 결합을 형성하여 덕트(21)가 소정의 각도로 회전할 수 있다. 오링(21a)은 프레임(21b)에 연장되도록 연결되어 프레임(21b)의 회동에 의해서 베이스부(10)에서 회전할 수 있다.The frame 21b may be connected to the base 10 to rotate. The base portion 10 and the frame 21b form a hinge coupling so that the duct 21 can rotate at a predetermined angle. The O-ring 21a is connected to extend to the frame 21b and may rotate in the base portion 10 by the rotation of the frame 21b.
제1 엑튜에이터(22)는 프로펠러(23)를 회전시켜서 추진력을 생성할 수 있다. 제1 엑튜에이터(22)는 오링(21a)을 가로지르는 복수 개의 리브부(25)에 의해서 지지될 수 있다. The first actuator 22 may generate propulsion by rotating the propeller 23. The first actuator 22 may be supported by a plurality of ribs 25 crossing the O-ring 21a.
제1 엑튜에이터(22)는 제어부에 의해서 독립적으로 제어될 수 있다. 제어부의 신호에 따라 제1 엑튜에이터(22)는 회전속도(rpm)를 조절하여 추력을 조절할 수 있다. 제1 엑튜에이터(22)는 베이스부(10)에 설치된 배터리(미도시)에 의해 전력을 공급받아, 프로펠러(23)에 동력을 전달할 수 있다.The first actuator 22 may be independently controlled by the controller. According to the signal of the controller, the first actuator 22 may adjust the thrust by adjusting the rotational speed (rpm). The first actuator 22 may receive power from a battery (not shown) installed in the base unit 10, and transmit power to the propeller 23.
리브부(25)는 오링(21a)을 가로지르도록 설치되며, 오링(21a)의 중심에 제1 엑튜에이터(22)가 설치될 수 있다. 리브부(25)는 연결암(50)과 결합하기 위한 제2 관통홀을 구비할 수 있다. 도 3을 참고하면 제1 연결암(50)은 제2 핀(62)에 의해서 리브부(25)와 연결될 수 있다. 제2 핀(62)은 제1 연결암(50)에 형성된 제2 홀(51'e)과 상기 제2 관통홀에 삽입될 수 있다. The rib portion 25 is installed to cross the O-ring 21a, and the first actuator 22 may be installed at the center of the O-ring 21a. The rib portion 25 may include a second through hole for coupling with the connection arm 50. Referring to FIG. 3, the first connection arm 50 may be connected to the rib portion 25 by the second pin 62. The second pin 62 may be inserted into the second hole 51 ′ e formed in the first connection arm 50 and the second through hole.
서포터부(30)는 베이스부(10)에서 돌출되며 베이스부(10)를 지지할 수 있다. 서포터부(30)는 베이스부(10)의 일면에서 연장되도록 형성된다. 무인 비행체(100)가 설치 시에 서포터부(30)가 지면에 접촉하여 베이스부(10)를 지지할 수 있다. The supporter part 30 may protrude from the base part 10 and support the base part 10. The supporter part 30 is formed to extend from one surface of the base part 10. When the unmanned aerial vehicle 100 is installed, the supporter unit 30 may contact the ground to support the base unit 10.
서포터부(30)는 복수 개로 구비될 수 있다. 서포터부(30)는 베이스부(10)의 자중을 분산시켜 무인 비행체(100)의 균형을 유지할 수 있다. 서포터부(30)는 베이스부(10)의 각각의 측면에 대응하도록 형성될 수 있다. 또한 서포터부(30)는 방사형으로 형성할 수 있다. 다만, 이하에서는 설명의 편의를 위해서 2개의 서포터부(30)가 마주보도록 베이스부(10)의 양 측면에 형성된 경우를 중심으로 설명하기로 한다.The supporter part 30 may be provided in plurality. The supporter unit 30 may maintain the balance of the unmanned aerial vehicle 100 by dispersing the weight of the base unit 10. The supporter part 30 may be formed to correspond to each side of the base part 10. In addition, the supporter part 30 may be formed radially. However, hereinafter, the case will be described based on the case in which two supporter units 30 are formed on both side surfaces of the base unit 10 so as to face each other for convenience of description.
서포터부(30)는 베이스부(10)와 교차되도록 연결되는 한 쌍의 제1 서포터(31)와 제1 서포터(31)를 연결하는 제2 서포터(32)를 구비할 수 있다. 제1 서포터(31)는 베이스부(10)와 지면 사이의 간격을 유지할 수 있다. 제2 서포터(32)는 제1 서포터(31) 사이를 연결하여 서포터부(30)의 강도 및 균형을 향상시킬 수 있다. The supporter part 30 may include a pair of first supporters 31 connected to the base part 10 and a second supporter 32 connecting the first supporters 31 to each other. The first supporter 31 may maintain a gap between the base part 10 and the ground. The second supporter 32 may connect between the first supporters 31 to improve strength and balance of the supporter part 30.
제2 서포터(32)는 제1 서포터(31)보다 두껍게 형성될 수 있다. 제2 서포터(32)는 내측으로 돌출되도록 형성하여 지면과의 접촉되는 부분의 면적을 향상시킬 수 있다. 무인 비행체(100)와 지면의 접촉면적이 증가되면 무인 비행체의 안정성이 증가될 수 있다.The second supporter 32 may be formed thicker than the first supporter 31. The second supporter 32 may be formed to protrude inward to improve the area of the part in contact with the ground. If the contact area of the unmanned aerial vehicle 100 and the ground is increased, the stability of the unmanned aerial vehicle may be increased.
서포터부(30)와 베이스부(10)가 형성하는 각도는 특정각도에 한정되지 않는다. 예를 들어, 베이스부(10)와 제1 서포터(31)가 실질적으로 수직되도록 형성되거나, 베이스부(10)와 제1 서포터(31)의 사이의 각도가 둔각을 형성할 수 있다. 다만, 이하에서는 베이스부(10)와 제1 서포터(31)가 실질적으로 수직되게 형성되어 추진부(20)가 접히면 무인 비행체(100)가 대략 육면체를 형성하는 경우를 중심으로 설명하기로 한다.The angle formed by the supporter 30 and the base 10 is not limited to a specific angle. For example, the base part 10 and the first supporter 31 may be formed to be substantially perpendicular, or an angle between the base part 10 and the first supporter 31 may form an obtuse angle. However, hereinafter, the base unit 10 and the first supporter 31 are formed to be substantially perpendicular to each other, and thus the driving unit 20 will be described with reference to the case where the unmanned aerial vehicle 100 forms a substantially hexahedron. .
회전 플레이트(40)는 베이스부(10)의 일면에 회전 가능하도록 설치될 수 있다. 회전 플레이트(40)는 베이스부(10)의 중심에 배치될 수 있다. 회전 플레이트(40)는 연결암(50)에 의해서 추진부(20)와 연결될 수 있다.  Rotating plate 40 may be installed to be rotatable on one surface of the base portion (10). The rotating plate 40 may be disposed at the center of the base portion 10. Rotating plate 40 may be connected to the driving unit 20 by a connecting arm (50).
회전 플레이트(40)는 베이스부(10)의 하면에 설치되어 회전 플레이트(40)의 회전에 의해서 추진부(20)를 회동시킬 수 있다. 제2 엑튜에이터(41)는 베이스부(10)에 설치되어 회전 플레이트(40)에 구동력을 전달할 수 있다. 제2 엑튜에이터(41)는 엔코더 및 감속기를 구비하여 제2 엑튜에이터(41)의 회전력 또는 회전 속도를 조절할 수 있다.Rotating plate 40 is installed on the lower surface of the base portion 10 can rotate the driving unit 20 by the rotation of the rotating plate (40). The second actuator 41 may be installed in the base portion 10 to transmit a driving force to the rotating plate 40. The second actuator 41 may include an encoder and a reducer to adjust the rotational force or the rotational speed of the second actuator 41.
회전 플레이트(40)의 외측에는 복수의 연결암(50)과 연결하는 제1 관통홀을 구비할 수 있다. 제1 관통홀은 회전 플레이트(40)에 설치되는 연결암의 개수에 대응하여 복수개 형성될 수 있다. 회전 플레이트(40)의 회전으로 인해 복수의 연결암은 동시에 회전 플레이트(40)의 회전 방향으로 이동할 수 있다.The outer side of the rotating plate 40 may be provided with a first through hole connecting to the plurality of connection arms (50). A plurality of first through holes may be formed to correspond to the number of connection arms installed in the rotating plate 40. Due to the rotation of the rotation plate 40, the plurality of connection arms may move in the rotation direction of the rotation plate 40 at the same time.
상세히, 회전 플레이트(40)의 외측에는 제1 핀(61)이 삽입되는 제1 관통홀을 구비할 수 있다. 회전 플레이트(40)는 제1 핀(61)이 제1 연결암(50)의 제1 홀(51'd)과 상기 제1 관통홀에 삽입되어 회전 플레이트(40)에 제1 연결암(50)을 설치할 수 있다. 제1 관통홀은 회전 플레이트(40)의 중심으로부터 외측에 배치되어 회전 플레이트(40)에 의해 형성되는 토크의 크기를 증가할 수 있다.In detail, an outer side of the rotating plate 40 may include a first through hole into which the first pin 61 is inserted. In the rotating plate 40, a first pin 61 is inserted into the first hole 51 ′ d of the first connecting arm 50 and the first through hole, and thus the first connecting arm 50 is inserted into the rotating plate 40. ) Can be installed. The first through hole may be disposed outside from the center of the rotating plate 40 to increase the magnitude of the torque formed by the rotating plate 40.
연결암(50)은 회전 플레이트(40)와 추진부(20)를 연결할 수 있다. 회전 플레이트(40)가 회전하면 연결암이 연동되어 추진부(20)를 회동시킬 수 있다. 연결암(50)은 각 추진부(20)에 대응하도록 복수 개로 구비될 수 있다. The connecting arm 50 may connect the rotating plate 40 and the pushing unit 20. When the rotating plate 40 rotates, the connection arm is interlocked to rotate the propulsion unit 20. The connecting arm 50 may be provided in plural numbers so as to correspond to each propulsion unit 20.
연결암(50)은 제1 추진부(20a)와 연결되는 제1 연결암(50), 제2 추진부(20b)와 연결되는 제2 연결암(50), 제3 추진부(20c)와 연결되는 제3 연결암(50) 및 제4 추진부(20d)와 연결되는 제4 연결암(50)을 구비할 수 있다. 제1 연결암(50)과 이와 마주보는 제3 연결암(50)은 배치 위치만 상이할뿐 실질적으로 동일한바 제1 연결암(50)을 중심으로 설명하기로 한다. 제2 연결암(50)과 이와 마주보는 제4 연결암(50)은 배치 위치만 상이할 뿐 실질적으로 동일한바 제2 연결암(50)을 중심으로 설명하기로 한다.The connecting arm 50 may include a first connecting arm 50 connected to the first pushing unit 20a, a second connecting arm 50 connected to the second pushing unit 20b, and a third pushing unit 20c. It may be provided with a third connecting arm 50 to be connected and a fourth connecting arm 50 connected to the fourth propulsion unit 20d. The first connecting arm 50 and the third connecting arm 50 facing the same will be described with reference to the first connecting arm 50, which is substantially the same only in the arrangement position. The second connection arm 50 and the fourth connection arm 50 facing the same will be described with reference to the second connection arm 50, which is substantially the same only in the arrangement position.
도 3은 도 에 도시된 제1 연결암(50)을 보여주는 분해 사시도이다. 3 is an exploded perspective view showing the first connection arm 50 shown in FIG.
제1 연결암(50)은 길이방향으로 일부가 돌출되도록 절곡된 절곡부(51c)를 구비할 수 있다. 제1 연결암(50)은 추진부(20)와 연결되는 제1 단부(51a), 회전 플레이트(40)와 연결되는 제2 단부(51b) 및 제1 단부(51a)와 제2 단부(51b) 사이에 배치되는 절곡부(51c)를 구비할 수 있다. The first connection arm 50 may have a bent portion 51c that is bent to protrude in the longitudinal direction. The first connecting arm 50 has a first end 51a connected with the propulsion unit 20, a second end 51b connected with the rotating plate 40, and a first end 51a and a second end 51b. May be provided with a bent portion 51c.
제1 연결암(50)은 제1 조인트(51d)에 의해서 회전 플레이트(40)와 연결될 수 있다. 제1 조인트(51d)는 제1 단부(51a)에 삽입되며 제1 홀(51'd)을 구비할 수 있다. 제1 핀(61)은 제1 홀(51'd)과 제1 관통홀에 삽입되어, 회전 플레이트(40)와 제1 연결암(50)을 연결할 수 있다. The first connecting arm 50 may be connected to the rotating plate 40 by the first joint 51d. The first joint 51d is inserted into the first end 51a and may have a first hole 51'd. The first pin 61 may be inserted into the first hole 51'd and the first through hole to connect the rotating plate 40 and the first connection arm 50.
제1 연결암(50)은 제2 조인트(51e)에 의해서 추진부(20)와 연결될 수 있다. 제2 조인트(51e)는 제2 단부(51b)에 삽입되며 제2 홀(51'e)을 구비할 수 있다. 제2 핀(62)은 제2 홀(51'e)과 제2 관통홀에 삽입되어, 추진부(20)와 제1 연결암(50)을 연결할 수 있다.The first connection arm 50 may be connected to the propulsion unit 20 by the second joint 51e. The second joint 51e is inserted into the second end 51b and may have a second hole 51'e. The second pin 62 may be inserted into the second hole 51 ′ e and the second through hole to connect the propulsion unit 20 and the first connection arm 50.
제1 홀(51'd)의 중심축과 제2 홀(51'e)의 중심축은 어긋나게 배치될 수 있다. 추진부(20)의 회동방향과 회전 플레이트(40)의 회전하여 형성하는 평면은 일치하지 않으므로 제1 홀(51'd)의 중심축과 제2 홀(51'e)의 중심축은 어긋나게 배치될 수 있다. 제1 홀(51'd)의 중심축과 제2 홀(51'e)의 중심축은 직교하도록 형성될 수 있다.The central axis of the first hole 51'd and the central axis of the second hole 51'e may be displaced. Since the rotational direction of the propulsion unit 20 and the plane formed by the rotation of the rotation plate 40 do not coincide, the center axis of the first hole 51'd and the center axis of the second hole 51'e may be displaced. Can be. The central axis of the first hole 51'd and the central axis of the second hole 51'e may be formed to be orthogonal to each other.
제1 핀(61)과 제2 핀(62)은 볼 조인트 형태로 형성될 수 있다. 추진부(20)의 회동방향과 회전 플레이트(40)의 회전하여 형성하는 평면은 일치하지 않으므로 제1 연결암(50)은 복수개의 자유도가 필요하다. 제1 핀(61)과 제2 핀(62)은 볼 조인트 형태로 형성되어 제1 연결암(50)의 자유도(detree of freedom)를 증가시킬 수 있다.The first fin 61 and the second fin 62 may be formed in the form of a ball joint. Since the rotational direction of the propulsion unit 20 and the plane formed by the rotation of the rotating plate 40 do not coincide, the first connection arm 50 requires a plurality of degrees of freedom. The first fin 61 and the second fin 62 may be formed in the form of a ball joint to increase the degree of freedom of the first connection arm 50.
제2 연결암(50)과 제4 연결암(50)은 원기둥 형태로 형성될 수 있다. 제2 연결암(50) 및 제4 연결암(50)은 바(Bar)형태로 형성되어 추진부(20)와 회전 플레이트(40)를 연결할 수 있다. The second connection arm 50 and the fourth connection arm 50 may be formed in a cylindrical shape. The second connection arm 50 and the fourth connection arm 50 may be formed in a bar shape to connect the propulsion unit 20 and the rotation plate 40.
회전 플레이트(40)의 회전에 의해서 무인 비행체(100)의 추진부(20)가 폴딩(folding)되는 작동을 설명하면 다음과 같다. The operation of folding the propulsion unit 20 of the unmanned aerial vehicle 100 by the rotation of the rotating plate 40 is as follows.
도 4a는 도 1의 무인 비행체(100)의 일부를 발췌하여 도시한 저면도이고, 도 4b는 도 4a의 A영역을 확대하여 도시한 부분 확대도이다.FIG. 4A is a bottom view of a portion of the unmanned aerial vehicle 100 of FIG. 1, and FIG. 4B is an enlarged view of a portion A of FIG. 4A.
도 4a 및 도 4b를 검토하면, 추진부(20)는 베이스부(10)와 동일 평면을 형성하도록 펼쳐진 상태를 형성할 수 있다. 이하 추진부(20)가 펼쳐진 상태에 놓이면 무인 비행체(100)는 제1 위치에 놓여진 것으로 정의한다.Referring to FIGS. 4A and 4B, the driving unit 20 may form an unfolded state to form the same plane as the base unit 10. Hereinafter, when the propulsion unit 20 is placed in an unfolded state, the unmanned aerial vehicle 100 is defined as being placed in a first position.
제1 조인트(51d) 및 제1 핀(61)은 P1의 위치에 배치된다. P1은 제1 연결암(50)이 연결된 추진부(20)와 인접하게 배치된다. 무인 비행체(100)가 제1 위치에 배치되면 베이스부(10)에 수직인 축(i)은 추진부(20)가 형성하는 면에 포함되는 축(j)과 직교하도록 배치된다.(θ≒90도)The first joint 51d and the first pin 61 are arranged at the position of P1. P1 is disposed adjacent to the propulsion unit 20 to which the first connection arm 50 is connected. When the unmanned aerial vehicle 100 is disposed in the first position, the axis i perpendicular to the base part 10 is disposed to be orthogonal to the axis j included in the surface formed by the driving part 20. 90 degrees)
복수의 추진부(20)는 베이스부(10)와 동일 평면을 형성하여 각각의 프로펠러(23)를 통과하는 공기가 한 방향으로 유동하도록 할 수 있다. 즉, 추진부(20)는 베이스부(10)에 수직하는 방향으로 공기가 유동하도록 배치되어 무인 비행체(100)의 기동력을 향상시킬 수 있다.The plurality of driving units 20 may form the same plane as the base unit 10 so that air passing through each propeller 23 flows in one direction. That is, the propulsion unit 20 may be disposed to allow air to flow in a direction perpendicular to the base unit 10 to improve the maneuvering force of the unmanned aerial vehicle 100.
도 5a은 도 1에 도시된 무인 비행체(100)의 일부를 발췌하여 무인 비행체(100)의 다른 상태를 도시한 저면도이고, 도 5b는 도 5a의 B영역을 확대하여 도시한 부분 확대도이다.FIG. 5A is a bottom view illustrating another state of the unmanned aerial vehicle 100 by extracting a part of the unmanned aerial vehicle 100 shown in FIG. 1, and FIG. 5B is an enlarged partial view of an enlarged area B of FIG. 5A. .
도 5a 및 도 5b를 검토하면, 추진부(20)는 베이스부(10)에서 소정의 각도로 접혀진 상태를 형성할 수 있다. 이하 추진부(20)와 베이스부(10)가 예각을 형성하도록 접힌 상태에 놓이면 무인 비행체(100)는 제2 위치에 놓여진 것으로 정의한다.5A and 5B, the driving unit 20 may form a state in which the base unit 10 is folded at a predetermined angle. Hereinafter, when the driving unit 20 and the base unit 10 are placed in a folded state to form an acute angle, the unmanned aerial vehicle 100 is defined as being placed in the second position.
제1 연결암(50)은 회전 플레이트(40)의 회전에 의해서 회전할 수 있다. 제1 조인트(51d) 및 제1 핀(61)은 P2위치에 배치된다. 즉, 회전 플레이트(40)가 소정의 회전각(θ3)만큼 반시계 방향으로 회전하여 제1 조인트(51d) 및 제1 핀(61)는 P1위치에서 P2위치로 이동한다.The first connection arm 50 may rotate by the rotation of the rotation plate 40. The first joint 51d and the first pin 61 are arranged at the P2 position. That is, the rotation plate 40 is rotated counterclockwise by a predetermined rotation angle θ3 so that the first joint 51d and the first pin 61 move from the P1 position to the P2 position.
무인 비행체(100)가 제2 위치에 배치되면 베이스부(10)에 수직인 축(i)은 추진부(20)가 형성하는 면에 포함되는 축(j)과 예각을 형성할 수 있다. (0도<θ2<90도)When the unmanned aerial vehicle 100 is disposed in the second position, the axis i perpendicular to the base part 10 may form an acute angle with the axis j included in the surface formed by the driving unit 20. (0 degree <θ2 <90 degree)
도 6는 도 2b의 무인 비행체(100)의 일부를 발췌하여 도시한 저면도이다.FIG. 6 is a bottom view of a portion of the unmanned aerial vehicle 100 of FIG. 2B.
도 2b 및 도 6를 검토하면, 추진부(20)는 베이스부(10)에서 실질적으로 수직되게 접힌 상태를 형성할 수 있다. 추진부(20)의 적어도 일부가 서포터부(30)에 삽입되도록 배치될 수 있다. 이하 추진부(20)와 베이스부(10)가 실질적으로 수직되게 접힌 상태에 놓이면 무인 비행체(100)는 제3 위치에 놓여진 것으로 정의한다.2B and 6, the pushing unit 20 may form a state in which the base unit 10 is folded substantially vertically. At least a part of the pushing unit 20 may be disposed to be inserted into the supporter unit 30. Hereinafter, when the propulsion part 20 and the base part 10 are placed in a substantially vertically folded state, the unmanned aerial vehicle 100 is defined as being in a third position.
무인 비행체(100)가 제3 위치에 배치되면, 제1 조인트(51d) 및 제1 핀(61)은 P3위치에 배치된다. 즉, 회전 플레이트(40)가 반시계 방향으로 회전하여 제1 조인트(51d) 및 제1 핀(61)는 P2 위치에서 P3로 이동한다.When the unmanned aerial vehicle 100 is disposed in the third position, the first joint 51d and the first pin 61 are disposed in the P3 position. That is, the rotation plate 40 rotates counterclockwise so that the first joint 51d and the first pin 61 move from the P2 position to P3.
무인 비행체(100)가 제3 위치에 배치되면 베이스부(10)에 수직한 축은 추진부(20)가 형성하는 면에 포함될 수 있다. 즉, 추진부(20)가 베이스부(10)에 수직되도록 접힐 수 있다.When the unmanned aerial vehicle 100 is disposed in the third position, an axis perpendicular to the base part 10 may be included in a surface formed by the driving unit 20. That is, the pushing unit 20 may be folded to be perpendicular to the base unit 10.
제1 연결암(50)과 제1 연결암(50)에 이웃하는 제2 연결암(50) 및 제4 연결암(50) 교차되도록 배치될 수 있다. 이때, 제1 연결암(50)의 절곡부(51c)의 하측에 제2 연결암(50)이 배치되고, 제1 연결암의 제1 단부(51a)의 상측에 제4 연결암(50)이 배치될 수 있다. The second connecting arm 50 and the fourth connecting arm 50 which are adjacent to the first connecting arm 50 and the first connecting arm 50 may be disposed to intersect. In this case, the second connecting arm 50 is disposed below the bent portion 51c of the first connecting arm 50, and the fourth connecting arm 50 is disposed above the first end 51a of the first connecting arm 50. This can be arranged.
제1 연결암(50)이 제1 위치에서 제2 위치로 이동시에, 제1 연결암(50)은 이웃하는 다른 연결암과 간섭이 발생할 수 있다. 절곡부(51c)의 제2 연결암(50)이 이동할 수 있는 공간을 형성하여, 제1 연결암(50)과 제2 연결암(50) 사이에 발생할 수 있는 간섭을 없앨 수 있다. 제3 연결암(50)도 제1 연결암(50)과 동일한 방법으로 제4 연결암(50)에 의해 발생할 수 있는 간섭을 없앨 수 있다.When the first connecting arm 50 moves from the first position to the second position, the first connecting arm 50 may interfere with another neighboring connecting arm. By forming a space in which the second connection arm 50 of the bent portion 51c may move, interference that may occur between the first connection arm 50 and the second connection arm 50 may be eliminated. The third connection arm 50 may also eliminate interference that may be caused by the fourth connection arm 50 in the same manner as the first connection arm 50.
복수의 추진부(20)는 서포터부(30)에 삽입되도록 접혀서 제3 위치에 배치될 수 있다. 복수의 추진부(20)는 베이스부(10)와 직교하도록 배치될 수 있다. 복수의 추진부(20)가 제3 위치에 배치되면 무인 비행체(100)는 큐빅 또는 대략 육면체의 형상을 형성할 수 있다. 다만, 이는 추진부(20)의 개수에 의해 형성되는 것으로써, 추진부(20)의 개수에 따라 삼각기둥, 오각기둥, 육각기동, 팔각기동 또는 원기둥 등의 형상으로 형성될 수 있다.The plurality of driving units 20 may be folded to be inserted into the supporter unit 30 and disposed at a third position. The plurality of driving units 20 may be disposed to be orthogonal to the base unit 10. When the plurality of driving units 20 are disposed in the third position, the unmanned aerial vehicle 100 may form a cubic or approximately hexahedral shape. However, it is formed by the number of the pushing unit 20, it may be formed in the shape of a triangular prism, pentagonal pillar, hexagonal, octagonal cylinder or cylinder according to the number of the pushing unit 20.
무인 비행체(100)가 제3 위치를 형성하면, 무인 비행체(100)는 베이스부(10)와 추진부(20)가 내부공간을 형성할 수 있다. 이때, 제1 엑튜에이터(22)와 프로펠러(23)는 내부공간에 위치할 수 있다. 상세히, 프로펠러(23)의 전단(前端)은 추진부(20)에서 돌출되지 않도록 배치될 수 있다. 프로펠러(23)는 견리(堅利)하게 제작되므로 외부로 돌출되면 보관 및 운반 시에 안전에 문제가 발생할 수 있다. 프로펠러(23)가 제2 위치에 배치하면 프로펠러(23)는 외부에 돌출되지 않는다. When the unmanned aerial vehicle 100 forms the third position, the base unit 10 and the propelling unit 20 may form an internal space of the unmanned aerial vehicle 100. At this time, the first actuator 22 and the propeller 23 may be located in the inner space. In detail, the front end of the propeller 23 may be disposed so as not to protrude from the propulsion unit 20. Since the propeller 23 is made to be stubborn (堅 利) protruding to the outside may cause a safety problem during storage and transport. When the propeller 23 is disposed in the second position, the propeller 23 does not protrude to the outside.
무인 비행체(100)는 프로펠러(23)가 외부로 돌출되지 않아 보관의 안전성을 높일 수 있다. 또한 무인 비행체(100)의 크기를 최소화하여 공간 활용성을 증대할 수 있으며, 프로펠러(23)의 파손을 경감시킬 수 있다.The unmanned aerial vehicle 100 may increase safety of storage because the propeller 23 does not protrude to the outside. In addition, it is possible to increase the space utilization by minimizing the size of the unmanned aerial vehicle 100, it is possible to reduce the damage of the propeller (23).
제2 서포터(32)는 무인 비행체(100)의 내측으로 서로 마주보면서 돌출되도록 형성될 수 있다. 무인 비행체(100)가 제2 위치에 배치 시에, 제2 서포터(32)의 돌출된 부분이 내부공간에 배치되어 무인 비행체(100)의 크기를 최소화할 수 있다. 그리하여 무인 비행체(100)를 쉽게 보관할 수 있어, 무인 비행체(100)의 공간 활용성을 증대할 수 있다.The second supporter 32 may be formed to protrude while facing each other inside the unmanned aerial vehicle 100. When the unmanned aerial vehicle 100 is disposed in the second position, the protruding portion of the second supporter 32 may be disposed in the internal space to minimize the size of the unmanned aerial vehicle 100. Thus, the unmanned aerial vehicle 100 can be easily stored, thereby increasing the space utilization of the unmanned aerial vehicle 100.
무인 비행체(100)는 추진부(20)가 제1 위치에 배치되면, 추진부(20)의 추진력으로 비행할 수 있다. 또한, 각 추진부(20)의 프로펠러(23)의 회전속도를 조절하여 방향을 전환시키거나 고도를 변경할 수 있다. 또한, 프로펠러(23)의 속도를 동일하게 유지하여 정지비행(hovering)할 수 있다.When the propulsion unit 20 is disposed at the first position, the unmanned aerial vehicle 100 may fly under the propulsion force of the propulsion unit 20. In addition, it is possible to change the direction or change the altitude by adjusting the rotational speed of the propeller 23 of each propulsion unit (20). In addition, the propeller 23 may be maintained at the same speed to stop the flight.
무인 비행체(100)는 추진부(20)가 제3 위치에 배치되면, 보관이 용이해질 수 있다. 무인 비행체(100)의 부피가 최소화되어 공간 활용성을 향상시킬 수 있다.When the propulsion unit 20 is disposed in the third position, the unmanned aerial vehicle 100 may be easily stored. The volume of the unmanned aerial vehicle 100 may be minimized to improve space utilization.
무인 비행체(100)는 회전 플레이트(40)의 회전으로 복수 개의 추진부(20)를 동시에 회동 가능하게 형성하여 간단한 조작으로 추진부(20)를 동시에 회동시킬 수 있다.The unmanned aerial vehicle 100 may simultaneously rotate the propulsion unit 20 by a simple operation by forming the plurality of propulsion units 20 to be rotatable at the same time by the rotation of the rotation plate 40.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되었지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위에는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will include such modifications and variations as long as they fall within the spirit of the invention.
본 발명의 일 실시예에 의하면, 공간활용성이 향상된 무인 비행체를 제공하며, 산업상 이용하는 무인 비행체을 구비하는 모든 군사용, 응급용, 산업용 이송장치 또는 장난감 등에 본 발명의 실시예들을 적용할 수 있다. According to one embodiment of the present invention, it is possible to provide an unmanned aerial vehicle having improved space utilization, and the embodiments of the present invention may be applied to all military, emergency, industrial transport apparatuses or toys having an unmanned aerial vehicle for industrial use.

Claims (16)

  1. 베이스부;A base portion;
    제1 엑튜에이터와 상기 제1 엑튜에이터의 동력에 의해 회전하는 프로펠러를 구비하고, 상기 베이스부의 외측에 회동 가능하도록 설치되는 추진부;A propeller having a first actuator and a propeller rotating by the power of the first actuator, the propulsion unit being installed to be rotatable outside the base unit;
    상기 베이스부의 일면에 회전 가능하도록 설치되는 회전 플레이트; 및 A rotating plate installed to be rotatable on one surface of the base part; And
    상기 회전 플레이트와 상기 추진부를 연결하는 연결암;을 포함하는, 무인 비행체.And an connecting arm connecting the rotating plate and the propulsion unit.
  2. 제1 항에 있어서,According to claim 1,
    상기 회전 플레이트가 회전하면 상기 연결암이 상기 추진부를 회동시키는, 무인 비행체.And the connecting arm rotates the propulsion unit when the rotating plate rotates.
  3. 제1 항에 있어서,According to claim 1,
    상기 회전 플레이트는 상기 베이스부의 중심에 배치되는, 무인 비행체.And the rotating plate is disposed at the center of the base portion.
  4. 제1 항에 있어서,According to claim 1,
    상기 연결암은 길이방향으로 일부가 돌출되도록 절곡된 절곡부를 구비하는, 무인 비행체.The connecting arm has a bent portion bent to protrude in the longitudinal direction, unmanned aerial vehicle.
  5. 제1 항에 있어서,According to claim 1,
    상기 연결암의 일단에는 제1 홀이 형성되어 상기 제1 홀에 상기 제1 핀이 삽입되어 상기 회전 플레이트와 연결되고, 상기 연결암의 타단에는 제2 홀을 구비하여 상기 제2 홀에 상기 제2 핀이 삽입되어 상기 추진부와 연결되는,A first hole is formed at one end of the connection arm, and the first pin is inserted into the first hole to be connected to the rotating plate. A second hole is provided at the other end of the connection arm, and the second hole is disposed at the second hole. 2 pin is inserted and connected to the propulsion unit,
    상기 제1 홀의 중심축과 상기 제2 홀의 중심축은 어긋나게 배치되는, 무인 비행체.And a center axis of the first hole and a center axis of the second hole are shifted.
  6. 제5 항에 있어서,The method of claim 5,
    상기 제1 홀이 상기 추진부에서 멀어지면 상기 추진부는 상기 베이스부에 접히는, 무인 비행체. And the propelling portion is folded into the base portion when the first hole is far from the propulsion portion.
  7. 제1 항에 있어서,According to claim 1,
    상기 추진부는 상기 베이스부와 동일 평면을 형성하도록 펼쳐진 상태에서 상기 추진부가 상기 베이스부에 접히는 상태로 회동하는, 무인 비행체.The propulsion unit rotates in a state where the propulsion unit is folded in the base portion in a state unfolded to form the same plane as the base portion, unmanned aerial vehicle.
  8. 제7 항에 있어서,The method of claim 7, wherein
    상기 회전플레이트가 제1 방향으로 회전하면 상기 추진부는 상기 베이스부에 펼쳐진 상태에서 접힌 상태로 회동하고, 상기 회전 플레이트가 상기 제1 방향과 반대방향으로 회전하면 상기 추진부는 상기 베이스부에 접힌 상태에서 펼쳐진 상태로 회동하는, 무인 비행체.When the rotating plate rotates in the first direction, the propulsion part rotates in a folded state in the unfolded state of the base part, and when the rotating plate rotates in a direction opposite to the first direction, the pushing part is in the folded state of the base part Unmanned aerial vehicle rotating in the unfolded state.
  9. 제1 항에 있어서,According to claim 1,
    상기 베이스부에서 돌출되도록 연장되며, 상기 베이스부를 지지하는 서포터부;를 더 포함하는, 무인 비행체.And a supporter portion extending to protrude from the base portion and supporting the base portion.
  10. 제9 항에 있어서,The method of claim 9,
    상기 회전 플레이트가 회전하면 상기 추진부의 적어도 일부는 상기 서포터부에 삽입되는, 무인 비행체.At least a portion of the driving unit is inserted into the supporter when the rotating plate is rotated, unmanned aerial vehicle.
  11. 베이스부;A base portion;
    상기 베이스부의 각 측면에 설치되고, 상기 베이스부에 회동가능 하도록 설치된 복수개의 추진부;A plurality of pushing parts installed on each side of the base part and installed to be rotatable on the base part;
    상기 베이스부의 일면에 회전 가능하도록 설치되는 회전 플레이트; 및 A rotating plate installed to be rotatable on one surface of the base part; And
    상기 회전 플레이트에 상기 복수개의 추진부를 각각 연결하도록 설치되는 복수개의 연결암;을 포함하고,And a plurality of connection arms installed to connect the plurality of driving parts to the rotating plate, respectively.
    상기 회전 플레이트가 회전하면 상기 복수개의 연결암은 회전하여 상기 복수개의 추진부를 동시에 회동시키는, 무인 비행체. When the rotating plate is rotated, the plurality of connection arms rotate to rotate the plurality of propulsion at the same time, unmanned vehicle.
  12. 제11 항에 있어서,The method of claim 11, wherein
    상기 회전 플레이트는 상기 베이스부의 중심에 배치되는, 무인 비행체.And the rotating plate is disposed at the center of the base portion.
  13. 제11 항에 있어서,The method of claim 11, wherein
    상기 복수개의 추진부는 상기 베이스부와 동일 평면을 형성하도록 펼쳐진 상태에서 상기 추진부가 상기 베이스부에 접힌 상태로 회동하는, 무인 비행체The propulsion unit rotates in a state in which the propulsion unit is folded in the base unit while being deployed to form the same plane as the base unit.
  14. 제13 항에 있어서,The method of claim 13,
    상기 복수 개의 연결암 중 적어도 하나는 길이방향으로 일부가 절곡되도록 형성된 절곡부를 구비하는, 무인 비행체.At least one of the plurality of connecting arms has a bent portion formed to be bent in the longitudinal direction, unmanned aerial vehicle.
  15. 제14 항에 있어서,The method of claim 14,
    상기 추진부가 상기 베이스부에 접힌 상태로 회동하면 상기 복수개의 연결암 중 어느 하나의 연결암은 이웃하는 다른 연결암과 상기 절곡부의 하부에서 교차되도록 배치되는, 무인 비행체.When the propulsion unit is rotated in the folded state in the base portion any one of the plurality of connecting arms are arranged to intersect at the lower portion of the bent portion with other adjacent connecting arms.
  16. 제 13항에 있어서,The method of claim 13,
    상기 추진부가 상기 베이스부에 회동하면 상기 베이스부와 상기 복수개의 추진부가 각 면에 배치되어 입체도형의 내부공간을 형성하는, 무인 비행체.When the propulsion unit is rotated to the base portion, the base portion and the plurality of propulsion portion is disposed on each surface to form an internal space of a three-dimensional figure, unmanned aerial vehicle.
PCT/KR2014/011517 2014-10-31 2014-11-28 Unmanned flying object WO2016068383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0150641 2014-10-31
KR1020140150641A KR20160051163A (en) 2014-10-31 2014-10-31 Unmanned flying vehicle

Publications (1)

Publication Number Publication Date
WO2016068383A1 true WO2016068383A1 (en) 2016-05-06

Family

ID=55857710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011517 WO2016068383A1 (en) 2014-10-31 2014-11-28 Unmanned flying object

Country Status (2)

Country Link
KR (1) KR20160051163A (en)
WO (1) WO2016068383A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539457A (en) * 2016-06-28 2018-01-05 比亚迪股份有限公司 Unmanned plane
WO2018119620A1 (en) * 2016-12-27 2018-07-05 深圳市大疆创新科技有限公司 Multi-rotor unmanned aerial vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753150B2 (en) 2016-10-06 2023-09-12 Samsung Electronics Co., Ltd. Unmanned aerial vehicle and method for operating same
CN108609165A (en) * 2016-12-09 2018-10-02 北京京东尚科信息技术有限公司 Unmanned plane
KR200497696Y1 (en) * 2021-10-29 2024-01-30 굿세라 주식회사 Ducted Propeller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025012A1 (en) * 2004-04-14 2012-02-02 Arlton Paul E Rotary wing vehicle
US20120267473A1 (en) * 2009-09-09 2012-10-25 Tony Shuo Tao Elevon control system
US20130068876A1 (en) * 2011-09-16 2013-03-21 Bogdan Radu Flying Vehicle
US20140131510A1 (en) * 2012-11-15 2014-05-15 SZ DJI Technology Co., Ltd Unmanned aerial vehicle and operations thereof
US20140263823A1 (en) * 2013-01-10 2014-09-18 SZ DJI Technology Co., Ltd Transformable aerial vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025012A1 (en) * 2004-04-14 2012-02-02 Arlton Paul E Rotary wing vehicle
US20120267473A1 (en) * 2009-09-09 2012-10-25 Tony Shuo Tao Elevon control system
US20130068876A1 (en) * 2011-09-16 2013-03-21 Bogdan Radu Flying Vehicle
US20140131510A1 (en) * 2012-11-15 2014-05-15 SZ DJI Technology Co., Ltd Unmanned aerial vehicle and operations thereof
US20140263823A1 (en) * 2013-01-10 2014-09-18 SZ DJI Technology Co., Ltd Transformable aerial vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539457A (en) * 2016-06-28 2018-01-05 比亚迪股份有限公司 Unmanned plane
CN107539457B (en) * 2016-06-28 2019-11-08 比亚迪股份有限公司 Unmanned plane
WO2018119620A1 (en) * 2016-12-27 2018-07-05 深圳市大疆创新科技有限公司 Multi-rotor unmanned aerial vehicle
EP3564119A4 (en) * 2016-12-27 2019-11-27 SZ DJI Technology Co., Ltd. Multi-rotor unmanned aerial vehicle
US11597513B2 (en) 2016-12-27 2023-03-07 SZ DJI Technology Co., Ltd. Multi-rotor unmanned aerial vehicle

Also Published As

Publication number Publication date
KR20160051163A (en) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2016056711A1 (en) Unmanned aerial vehicle
WO2016068383A1 (en) Unmanned flying object
US10556708B2 (en) Payload mounting platform
US10293937B2 (en) Unmanned aerial vehicle protective frame configuration
US20200361605A1 (en) Uav having barometric sensor and method of isolating disposing barometric sensor within uav
US20220137643A1 (en) Aircraft control method and aircraft
US10281930B2 (en) Gimbaled universal drone controller
WO2016167413A1 (en) Unmanned aerial vehicle
ES2937394T3 (en) Method and apparatus for locating faults in overhead power lines
US20200148352A1 (en) Portable integrated uav
US20190202549A1 (en) Load assembly and unmanned aerial vehicle
WO2019100821A1 (en) Unmanned aerial vehicle
US11267568B2 (en) Aerial system including foldable frame architecture
JP2017193208A (en) Small-sized unmanned aircraft
KR102280688B1 (en) Controller for Unmanned Aerial Vehicle
WO2018216825A1 (en) Hybrid unmanned aerial vehicle capable of driving and flying
CN103675609A (en) Power line patrol equipment and system
WO2018053715A1 (en) Unmanned aerial vehicle
WO2022217961A1 (en) Anti-collision unmanned aerial vehicle detection apparatus
CN111566005A (en) Collapsible rotor blade assembly and aircraft having collapsible rotor blade assembly
WO2019100825A1 (en) Unmanned aerial vehicle
WO2023106538A1 (en) Drone having movable propeller shaft
WO2022004965A1 (en) Drone having multi-degree-of-freedom flight mode
WO2019120214A1 (en) Two-axis gimbal system
WO2019059428A1 (en) Unmanned aerial device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905062

Country of ref document: EP

Kind code of ref document: A1