WO2016067640A1 - Autonomous moving device - Google Patents

Autonomous moving device Download PDF

Info

Publication number
WO2016067640A1
WO2016067640A1 PCT/JP2015/052391 JP2015052391W WO2016067640A1 WO 2016067640 A1 WO2016067640 A1 WO 2016067640A1 JP 2015052391 W JP2015052391 W JP 2015052391W WO 2016067640 A1 WO2016067640 A1 WO 2016067640A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
grid
information
mobile device
autonomous mobile
Prior art date
Application number
PCT/JP2015/052391
Other languages
French (fr)
Japanese (ja)
Inventor
清水 一寿
翔貴 吉野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016067640A1 publication Critical patent/WO2016067640A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an autonomous mobile device such as a cleaning robot that can move autonomously.
  • autonomous mobile devices such as autonomous mobile robots that can autonomously move within a limited area inside a building or outdoors based on surrounding environmental information are being developed.
  • Such an autonomous mobile device enables autonomous movement by creating a movement route from the current position to a specific target point on a movement map stored in advance with respect to the movement area. For this reason, in general, an autonomous mobile device has a function of recognizing its own position in a movement area.
  • a reflector whose position is known in advance is installed in the surrounding environment and a laser range finder provided in the autonomous mobile device.
  • a method is known in which the self-position is calculated based on the principle of triangulation by measuring the reflector.
  • the above-described method has a problem that a complicated work is required to install the reflector, and a large-scale facility work is required for self-position estimation. For this reason, there is a need for an infrastructureless self-position estimation method that does not require extensive construction work.
  • the autonomous mobile device described in Patent Document 1 recognizes its own position by comparing environmental information acquired by a laser range finder with map information.
  • a method using a grid map is often used.
  • the grid map is a map showing a moving region in a simulated manner, and presence information such as walls and obstacles is registered on the map (for example, whether or not a predetermined area on the map is a wall is 0). Or it is registered with one digital information).
  • the autonomous mobile device compares the data measured by the autonomous mobile device in the actual environment with the data virtually measured by the autonomous mobile device on the grid map. Estimate the actual self-position. If the autonomous mobile device is equipped with a laser range finder, the actual position of the autonomous mobile device can be determined by comparing the data acquired by the laser range finder with the data virtually measured on the grid map. It is possible to calculate with high accuracy.
  • the distance measurement from the autonomous mobile device to the surrounding obstacles by the actual measuring device is simulated.
  • the autonomous mobile device is equipped with a laser range finder as described above, the laser light for distance measurement from the virtual position of the own aircraft virtually set on the grid map for self-position estimation calculation by the grid map
  • the distance from the virtual position of the aircraft to the obstacle is determined by extending the straight line simulating the obstacle to the surrounding obstacles and determining whether there is a collision between the straight line and the obstacle by a program calculation process based on the collision judgment. Is calculated.
  • a straight line is extended from the position of the aircraft by one grid element constituting the grid map, and a program calculation process is performed based on a collision determination between the grid element grid and an obstacle. If it is determined by the collision determination that there is no collision and there is no obstacle, the straight line is extended by the next one cell, and the determination of the collision between the grid element 1 cell and the obstacle is performed again.
  • An object of the present invention is to provide an autonomous mobile device that can reduce the amount of calculation for virtually measuring the distance to an obstacle on a grid map.
  • an autonomous mobile device includes a sensor that detects environmental information related to an obstacle, and an obstacle based on the environmental information detected by the sensor.
  • a generation unit that generates a grid map; and an estimation unit that calculates a virtual distance from the self-position candidate point to the obstacle on the grid map generated by the generation unit, and estimates the position of the grid.
  • the map includes a plurality of grid elements, and each grid element represents obstacle information representing the obstacle, neighboring area information representing an neighboring area adjacent to the obstacle, and a remote area away from the obstacle. Any of the remote area information is retained.
  • FIG. 1 It is the figure which showed the state which is implementing the virtual calculation of the distance to an obstruction with the grid map which concerns on Embodiment 2.
  • FIG. It is the figure which showed the state which is implementing the virtual calculation of the distance to an obstruction with the grid map which concerns on Embodiment 3.
  • FIG. It is the figure which showed the state which is implementing the virtual calculation of the distance to an obstruction with the grid map which concerns on Embodiment 4.
  • the autonomous mobile device includes a laser range finder as a sensor that acquires environmental information indicating the position and shape of an object existing in a moving area, and uses the moving map related to the moving area, It is an autonomous mobile device that can move while recognizing its own position based on environmental information acquired by a laser range finder.
  • the autonomous mobile device according to Embodiment 1 of the present invention will be described with reference to the drawings.
  • the autonomous mobile device in the present embodiment is a device that autonomously moves on a plane by driving a pair of wheels.
  • FIG. 1 is a diagram illustrating a relationship between the autonomous mobile device 1 and the movement area 102 according to the first embodiment.
  • the vehicle-type autonomous mobile device 1 moves in a limited movement area 102 (area surrounded by a broken line) on the floor 101.
  • a limited movement area 102 area surrounded by a broken line
  • the autonomous mobile device 1 can arbitrarily move in the moving area 102. .
  • FIG. 2 is a plan view schematically showing the configuration of the autonomous mobile device 1.
  • the autonomous mobile device 1 is an opposing two-wheeled mobile device including a box-shaped main body 201, a pair of opposing wheels 202 a and 202 b, and a caster 203. These wheels 202a and 202b and casters 203 support the main body 201 horizontally. Further, in the main body 201, motors 204a and 204b for driving the wheels 202a and 202b, encoders 205a and 205b for detecting the rotation speeds of the wheels 202a and 202b, and wheels 202a and 202b, respectively, are driven.
  • a storage area 206a such as a memory provided as a storage unit provided inside the calculation unit 206 has a program for controlling the movement speed, movement direction, movement distance, and the like of the autonomous mobile device 1 based on the control signal.
  • the shape and size of the moving area 102 are stored as map information.
  • a laser range finder 2 for recognizing environmental information in the direction (front) in which the autonomous mobile device 1 moves is provided on the front surface of the main body 201.
  • the laser range finder 2 omits a detailed structure, but receives a light source for irradiating laser light at a predetermined spread angle with respect to the front of the main body 201 and reflected light of the laser light emitted from the light source. And a light receiving portion.
  • Object detection (sensing) based on the so-called TOF (Time (of flight) principle of detecting the position of an obstacle that reflected the laser light based on the angle of irradiation with the laser light and the time required for reflection. ) Is performed. Details of the procedure for obtaining environmental information (position and shape of an object to be sensed) by the laser range finder 2 will be described later.
  • the autonomous mobile device 1 includes a self-position acquisition unit for acquiring its own position.
  • This self-position acquisition unit includes the encoders 205a and 205b and the calculation unit 206 described above. That is, by calculating the rotational speed of the wheels 202a and 202b detected by the encoders 205a and 205b in the calculation unit 206, information such as the moving speed and distance of the autonomous mobile device 1 is obtained. The self position (odometry position) of the autonomous mobile device 1 is calculated.
  • the position information as a self-position candidate obtained from these self-position acquisition units is appropriately corrected based on environment information obtained by a laser range funder 208 described later. Details of the method for correcting the position information will be described later.
  • the autonomous mobile device 1 configured in this way independently controls the drive amount of the pair of wheels 202a and 202b, thereby moving straight, curving (turning), moving backward, and rotating on the spot (the midpoint of both wheels). Movement such as turning around the center. Then, the autonomous mobile device 1 determines the movement route to the designated destination in the movement area 102 in accordance with a command from a PC (Personal Computer) or the like (not shown) provided outside that designates the movement location. The destination is reached by creating autonomously and moving to follow the movement route.
  • PC Personal Computer
  • a grid map as a movement map created based on the shape of the movement area 102 and an object (an obstacle such as a wall) included in the movement area 102 stored in the storage area 206a will be described.
  • the shape of the entire moving area 102 on the floor 101 is set as an outer frame, and is arranged in the horizontal direction and the vertical direction at a constant interval m (for example, 5 cm) inside.
  • m for example, 5 cm
  • FIG. 3 illustrates an example of the grid map described above.
  • the grid map GM1 depicts grid lines 303 that connect the lattice points arranged in the horizontal direction and the vertical direction at a fixed interval m in the outer frame 302 simulating the shape of the moving region 102 in the horizontal direction and the vertical direction. Is. Then, by the grid element GE surrounded by the grid line 303, the location corresponding to the autonomous position of the autonomous mobile device 1, the movement end point that is the destination, and the movement direction of the autonomous mobile device 1 at the movement end point are specified. Is done. Note that the interval m can be appropriately changed according to conditions such as the curvature of the autonomous mobile device 1 and the accuracy of recognizing the absolute position.
  • the interval m can also be used as a threshold value when it is determined that a slip has occurred. Further, when it is known that fixed objects such as walls and obstacles exist in the moving area 102, the storage area is stored in a form in which the positions of these known objects are registered in advance on the grid map GM1. Assume that it is stored in 206a.
  • FIG. 4 is a block diagram illustrating a configuration of the calculation unit 206 provided in the autonomous mobile device 1.
  • the calculation unit 206 includes a grid map generation unit 3 (generation unit) and a self-position estimation unit 4 (estimation unit).
  • the grid map generation unit 3 generates a grid map showing obstacles based on environmental information detected by the laser range finder 2 (sensor).
  • the self-position estimation unit 4 calculates a virtual distance from the self-position candidate point to the obstacle on the grid map generated by the grid map generation unit 3 and estimates its own position.
  • FIG. 5 is a diagram for explaining the grid map GM2 generated by the grid map generation unit 3 provided in the calculation unit 206.
  • the grid map GM2 is divided into an area where the obstacle OB exists and an area where the autonomous mobile device 1 can travel.
  • the distance information from the obstacle OB is added to the grid elements of the grid map GM2 by the following procedure.
  • Each grid element is pre-written with obstacle information indicating whether or not the obstacle OB is in the obstacle region R1. For example, when the grid element is the obstacle region R1 where the obstacle OB exists, the distance “0” (obstacle information) is written in the grid element and is not the obstacle region R1 where the obstacle OB exists.
  • the distance “0” representing the obstacle information is written in the obstacle region R1 corresponding to the grid element where the obstacle OB exists. Then, the distance “1” of the adjacent area information representing the adjacent area R2 adjacent to the obstacle OB is written in the adjacent area R2 corresponding to the grid element adjacent to the obstacle area R1. Grid elements other than the grid elements corresponding to the obstacle region R1 and the adjacent region R2 are included in the remote region R3 away from the obstacle OB.
  • the remote area R3 includes a first remote adjacent area R4 adjacent to the adjacent area R2 from the opposite side of the obstacle OB, and a second remote adjacent area R5 adjacent to the first remote adjacent area R4 from the opposite side of the obstacle OB. Including.
  • the remote area information distance “2” representing the remote area away from the obstacle OB is written.
  • the distance “3” of the remote area information is written in the second remote adjacent area R5.
  • the distance value of the remote area information increases as the distance from the obstacle OB increases, and corresponds to the number of other grid elements existing between the obstacle OB.
  • the work of giving information related to the distance from the obstacle OB to the grid map GM2 only needs to be performed once immediately after the movement map is created by the autonomous mobile device 1, and thereafter the same grid map is used. can do.
  • incidental information such as the type of the obstacle OB and the entry prohibition area of the autonomous mobile device 1 may be given to each grid element GE. However, in order to simplify the description, description of these pieces of information is omitted.
  • FIG. 6 is a diagram schematically showing a measurement state by the laser range finder 2 provided in the autonomous mobile device 1.
  • a method for acquiring environmental information on the front surface of the autonomous mobile device 1 using the laser range finder 2 described above will be briefly described.
  • the autonomous mobile device 1 when irradiated with the actual light beam RL.
  • the data measured by the laser range finder 2 is output as a polar coordinate system defined by the measured distance Rd from the laser range finder 2 and the angle ⁇ in the irradiation direction of the actual light beam RL. For example, when the resolution when measuring 270 degrees forward of the traveling direction of the autonomous mobile device 1 is 1.0 degree, 271 data are measured by one scan. Such a sensing result by the laser range finder 2 is stored in the storage area 206a.
  • FIG. 6 shows a state in which an obstacle OB is provided in front of the autonomous mobile device 1 in the movement area.
  • the autonomous mobile device 1 irradiates the front surface with a real light RL from a laser range finder 2.
  • an obstacle OB is included in the sensing area of the laser range finder 2.
  • the distance to the obstacle OB sensed by the laser range finder 2 is stored in the storage area 206a.
  • a grid map is generated based on the environmental information acquired in this way and stored in the storage area 206a.
  • FIG. 7 is a diagram showing a state in which the virtual calculation of the distance to the obstacle OB is performed by the grid map GM2.
  • MCL Monitoring-Carlo-Localization
  • Adopt a method. This is a technique for expressing the probability expression of the robot's location using position candidate points called particles P (self-position candidate points).
  • a calculation method using distance information from the grid element to the obstacle OB according to the present embodiment will be described.
  • a distance calculation method for performing distance calculation by irradiating a virtual light beam from a particle P that is a candidate for the self position in the MCL calculation toward the surroundings will be described.
  • the self-position estimation unit 4 provided in the calculation unit 206 extends a straight line from the position of the particle P along the measurement direction of the laser range finder 2 on the grid map GM2. That is, the virtual ray VL is virtually depicted from the position of the particle P on the grid map GM2.
  • the virtual ray VL extended at a predetermined angle from the grid element including the particle P is used as the grid element. Pass in order.
  • the horizontal direction is the x direction
  • the vertical direction is the y direction.
  • the inclination of the virtual ray VL is known in advance, so that when the virtual ray VL is advanced in the x direction or the y direction by one square, another virtual ray VL is obtained.
  • the y-direction is determined. If the grid is advanced in the y-direction, the inclination of the virtual ray VL is determined whether the grid is advanced in the x-direction. Based on the calculation method. This is a technique called Bresenham's straight line drawing algorithm.
  • the collision determination process may be performed after the distance value written to the grid element through which the virtual ray VL passes becomes 1.
  • the distance “5” is written in the grid element including the particle P. Since “5” that is “2” or more is written in the grid element in the seventh row from the top and the third column from the right through which the virtual ray VL from the particle P passes, the collision determination process is not performed. . Similarly, “5” is written in the grid element in the sixth row from the top and the third column from the right through which the virtual ray VL passes, and in the grid element in the fifth row from the top and the third column from the right, “4” is written, and “3” is written in the grid element in the fourth row from the top and the third column from the right.
  • the collision determination process is not performed for the grid element in which “2” or more is written, and the collision determination process is performed for the grid element in which “1” is written. It is possible to reduce the amount of calculation for virtually measuring the distance between the two on the grid map.
  • the value of the grid element is called every time the virtual ray VL advances one grid line on the grid map, A collision determination process for determining whether or not the grid element is an obstacle OB is required.
  • the virtual ray VL is displayed in the grid without performing the reading of the value of the grid element and the collision determination process. Can pass through the element.
  • the virtual ray VL can pass through the grid element without performing the collision determination, but the distance value written in the grid element.
  • the virtual ray VL moves the grid element by one cell, and the grid element after the movement determines the collision with the obstacle OB.
  • the grid element is an obstacle OB
  • the length of a straight line extending from the particle P to the obstacle OB can be obtained from the position of the grid element and the position of the grid element including the particle P.
  • distance data between the particle P imitating measurement with one virtual ray VL and the obstacle OB can be calculated. Thereafter, the distance measurement between each particle and the obstacle OB is repeated in the same manner.
  • the distance measurement between the particle P and the obstacle OB is executed. Thereafter, the calculation of MCL continues, but the description is omitted here.
  • the calculation method according to the present embodiment does not need to perform the collision determination process with the obstacle OB for each grid element of the grid map, so that the calculation can be performed at high speed.
  • MCL the distance calculation to the obstacle OB by the virtual ray VL is repeated for a plurality of angles for each of several hundred particles. For this reason, even if only one collision determination process is omitted, in one self-position estimation calculation, the reduction effect of the calculation process is large.
  • the autonomous mobile device 1 can be operated in a shorter cycle if the calculation processing load of the MCL is reduced and the self-position estimation time per time is shortened. Self-position estimation becomes possible, and the accuracy of the actual movement position can be improved.
  • the calculation start position when the virtual ray VL sequentially passes through the grid elements is changed according to the following procedure. (1) The coordinate of the position of the grid element containing the particle P is set to (xi, yi). (2) The angle of the virtual ray VL emitted from the particle P is known, and its value is ⁇ .
  • the calculation start position SP related to the collision determination process on the grid map is skipped from the particle P to a position close to the obstacle OB as described above. For this reason, the collision determination process is not necessary for the grid element between the particle P and the start position SP, and may be performed only for the grid element between the start position SP and the obstacle OB. Therefore, the amount of calculation for the virtual ray VL to perform the collision determination process on the grid element is further reduced.
  • FIG. 9 is a diagram illustrating a state in which the virtual calculation of the distance to the obstacle OB is performed by the grid map GM3 according to the third embodiment.
  • members having the same functions as those described in the embodiment are given the same reference numerals, and description thereof is omitted.
  • information corresponding to the distance from the obstacle OB is given by the following procedure for generating the grid map GM3 that gives the information corresponding to the distance from the obstacle OB to each grid element.
  • Each grid element is pre-written with obstacle information indicating whether or not the obstacle OB is in the obstacle region R1. For example, when the grid element is the obstacle region R1 where the obstacle OB exists, the distance “0” (obstacle information) is written in the grid element and is not the obstacle region R1 where the obstacle OB exists. In this case, “ ⁇ 1” is written in the grid element.
  • the information corresponding to the distance from the obstacle OB can be written in all the grid elements without repeatedly performing the determination process for all the grid elements of the grid map as in the first embodiment. Reduction can be achieved.
  • FIG. 10 is a diagram illustrating a state in which the virtual calculation of the distance to the obstacle OB is performed by the grid map GM2 according to the fourth embodiment.
  • members having the same functions as those described in the embodiment are given the same reference numerals, and description thereof is omitted.
  • how many times the collision determination need not be performed based on the information corresponding to the distance from the obstacle OB is processed as follows.
  • the distance information written in the grid element at the position of a certain particle P is N1.
  • the collision determination is not performed for (N1 / 2) grid elements through which the virtual ray VL passes.
  • the distance information written in the grid element that has arrived without making a collision determination in (2) above is N2.
  • the collision determination is not performed for (N2 / 2) grid elements from which the virtual ray VL further passes. (5) Repeat (3) to (4) above.
  • the calculation related to the collision determination process is performed from the arrival point P4. Accordingly, the collision determination process is unnecessary for the grid element between the particle P and the arrival point P4.
  • the collision determination of the straight line extended from the particle P is performed by a simpler method without performing the processing such as the trigonometric function that is complicated as in the second embodiment (FIG. 8). be able to.
  • the calculation unit 206 (particularly the grid map generation unit 3 and the self-position estimation unit 4) of the autonomous mobile device 1 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU It may be realized by software using (Central Processing Unit).
  • the arithmetic unit 206 includes a CPU that executes instructions of a program that is software that implements each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU), or A storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the autonomous mobile device 1 includes a sensor (laser range finder 2) that detects environmental information related to an obstacle OB, and an obstacle based on environmental information detected by the sensor (laser range finder 2).
  • a generation unit (grid map generation unit 3) that generates grid maps GM1 to GM3 showing the object OB, and self-position candidate points on the grid maps GM1 to GM3 generated by the generation unit (grid map generation unit 3)
  • An estimation unit self-position estimation unit 4) that calculates a virtual distance from (particle P) to the obstacle OB and estimates its own position, and the grid maps GM1 to GM3 include a plurality of grid elements GE.
  • Each grid element GE includes obstacle information representing the obstacle OB and an adjacent area R2 adjacent to the obstacle OB. And band information, and holds one of the remote area information representative of the remote regions R3 away from the obstacle OB.
  • the grid map has the remote area information representing the remote area, when the virtual ray virtually passes through the remote area corresponding to the remote area information, the calculation related to the collision determination process Need not be implemented. As a result, it is possible to reduce the amount of calculation for virtually measuring the distance to the obstacle on the grid map in order to estimate the position of itself.
  • the autonomous mobile device 1 according to aspect 2 of the present invention is the above-described aspect 1, wherein the remote area R3 includes the first remote adjacent area R4 that is adjacent to the adjacent area R2 from the opposite side of the obstacle OB, and the first remote adjacent area R4.
  • a second remote adjacent region R5 adjacent to the remote adjacent region R4 from the opposite side of the obstacle OB may be included.
  • the second remote adjacent area is farther from the obstacle OB than the first remote adjacent area. For this reason, information corresponding to the distance from the obstacle OB can be written in the grid elements corresponding to the first remote adjacent area and the second remote adjacent area.
  • the remote area information may include information corresponding to the number of other grid elements existing between the obstacle OB.
  • the environment information detected by the sensor includes information indicating an actually measured distance to the obstacle OB
  • the estimation unit may calculate the virtual distance based on the obstacle information, the adjacent area information, and the remote area information held by each grid element.
  • the calculation related to the collision determination process is not performed in the remote area corresponding to the remote area information, the calculation amount for virtually measuring the distance to the obstacle on the grid map is reduced. Can be reduced.
  • the estimation unit (self-position estimation unit 4) has the virtual ray VL that collides with the obstacle OB from the self-position candidate point (particle P). For each grid element that passes, the grid element and the obstacle that read out any one of the obstacle information held by each grid element, the adjacent area information, and the remote area information and read the adjacent area information Calculation for collision determination with the OB may be performed.
  • the distance between the obstacle and the grid map It is possible to reduce the amount of calculation for virtually measuring above.
  • the senor may be a laser range finder 2.
  • the calculation unit of the autonomous mobile device may be realized by a computer.
  • the calculation unit is realized by the computer by operating the computer as each unit included in the calculation unit.
  • An arithmetic unit control program for an autonomous mobile device to be recorded and a computer-readable recording medium on which the program is recorded also fall within the scope of the present invention.
  • the present invention can be used for an autonomous mobile device such as a cleaning robot that can move autonomously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The purpose of the present invention is to reduce computational volume for virtually measuring distances to obstacles upon a grid map. Provided is an autonomous moving device, a grid map (GM2) whereof comprising a plurality of grid elements. Each grid element retains obstacle information which represents an obstacle (OB), adjacent region information which represents an adjacent region (R2) which is adjacent to the obstacle (OB), or distant region information which represents a distant region (R3) which is removed from the obstacle (OB).

Description

自律移動装置Autonomous mobile device
 本発明は、清掃ロボット等の自律的に移動可能な自律移動装置に関する。 The present invention relates to an autonomous mobile device such as a cleaning robot that can move autonomously.
 近年、建物内部や屋外の限定された領域内を、周囲の環境情報に基づいて自律的に移動可能な自律移動型ロボット等の自律移動装置が開発されつつある。このような自律移動装置は、移動領域に関して予め記憶された移動マップ上において、現在の自己の位置から特定の目標地点までの移動経路を作成することで自律移動を可能とする。このため、一般的に、自律移動装置は移動領域内における自己位置を認識する機能を備えている。 In recent years, autonomous mobile devices such as autonomous mobile robots that can autonomously move within a limited area inside a building or outdoors based on surrounding environmental information are being developed. Such an autonomous mobile device enables autonomous movement by creating a movement route from the current position to a specific target point on a movement map stored in advance with respect to the movement area. For this reason, in general, an autonomous mobile device has a function of recognizing its own position in a movement area.
 このような自律移動装置を制御するために、自律移動装置に自己位置を認識させる技術として、例えば予め位置のわかっている反射板を周囲の環境に設置し、自律移動装置に設けたレーザレンジファインダで反射板を計測することによって、三角測量の原理により自己位置を算出するような方法が知られている。 In order to control such an autonomous mobile device, as a technique for allowing the autonomous mobile device to recognize its own position, for example, a reflector whose position is known in advance is installed in the surrounding environment and a laser range finder provided in the autonomous mobile device. A method is known in which the self-position is calculated based on the principle of triangulation by measuring the reflector.
 しかしながら、前記の手法では、反射板を設置するために煩雑な作業が必要となり、自己位置推定のため大掛かりな設備工事が必要になるという問題がある。このため、大掛かりな設備工事を必要としないインフラレスの自己位置推定手法が求められている。 However, the above-described method has a problem that a complicated work is required to install the reflector, and a large-scale facility work is required for self-position estimation. For this reason, there is a need for an infrastructureless self-position estimation method that does not require extensive construction work.
 大掛かりな設備工事を必要とせずに自己位置を推定する手法としては、移動領域の地図情報と取得した環境情報との比較により自己位置を推定する手法が提案されている。例えば特許文献1に記載の自律移動装置は、レーザレンジファインダで取得した環境情報を地図情報と比較して、自己の位置を認識するものである。また、このような自己位置推定手法としては、グリッドマップを利用する手法が良く用いられている。グリッドマップは移動領域を模擬的に示す地図であり、マップ上には壁や障害物などの存在情報が登録されている(例えば、マップ上の所定のエリアが壁であるか否かを、0又は1のデジタル情報により登録している)。 As a method for estimating the self-location without requiring large-scale equipment construction, a method for estimating the self-location by comparing the map information of the moving area with the acquired environmental information has been proposed. For example, the autonomous mobile device described in Patent Document 1 recognizes its own position by comparing environmental information acquired by a laser range finder with map information. As such a self-position estimation method, a method using a grid map is often used. The grid map is a map showing a moving region in a simulated manner, and presence information such as walls and obstacles is registered on the map (for example, whether or not a predetermined area on the map is a wall is 0). Or it is registered with one digital information).
日本国公開特許公報「特開2009-223757号公報(2009年10月1日公開)」Japanese Patent Gazette “Japanese Unexamined Patent Publication No. 2009-223757 (Published October 1, 2009)”
 こうした、グリッドマップを利用した自己位置推定方法では、自律移動装置が実際の環境において計測したデータと、自律移動装置がグリッドマップ上において仮想的に計測したデータとを比較することにより、自律移動装置の実際の自己位置を推定する。自律移動装置がレーザレンジファインダを備えている場合には、レーザレンジファインダにより取得したデータと、グリッドマップ上で仮想的に計測したデータとを比較することで、自律移動装置の実際の自己位置を精度良く算出することができる。 In such a self-position estimation method using the grid map, the autonomous mobile device compares the data measured by the autonomous mobile device in the actual environment with the data virtually measured by the autonomous mobile device on the grid map. Estimate the actual self-position. If the autonomous mobile device is equipped with a laser range finder, the actual position of the autonomous mobile device can be determined by comparing the data acquired by the laser range finder with the data virtually measured on the grid map. It is possible to calculate with high accuracy.
 ここで、グリッドマップ上において自律移動装置が仮想的に計測したデータの算出においては、実際の計測装置による自律移動装置から周囲の障害物までの距離計測を模擬する。前記のように自律移動装置がレーザレンジファインダを備えている場合は、グリッドマップによる自己位置推定計算のため、グリッドマップ上に仮想的に設定した自機の仮想位置から距離計測のためのレーザ光を模擬した直線を周囲の障害物まで伸ばしていき、その直線と障害物との間の衝突の有無を、衝突判定に基づくプログラム計算処理により判定し、自機の仮想位置から障害物までの距離を算出する。こうした計算においては、自機の位置から直線を、グリッドマップを構成するグリッド要素の1マス分伸ばし、当該グリッド要素1マスと障害物との間の衝突判定に基づくプログラム計算処理を行う。衝突判定により衝突が無く障害物が無いと判定されれば、次の1マス分直線を伸ばし、再度、当該グリッド要素1マスと障害物との間の衝突判定を行うことを繰り返す。 Here, in the calculation of data virtually measured by the autonomous mobile device on the grid map, the distance measurement from the autonomous mobile device to the surrounding obstacles by the actual measuring device is simulated. If the autonomous mobile device is equipped with a laser range finder as described above, the laser light for distance measurement from the virtual position of the own aircraft virtually set on the grid map for self-position estimation calculation by the grid map The distance from the virtual position of the aircraft to the obstacle is determined by extending the straight line simulating the obstacle to the surrounding obstacles and determining whether there is a collision between the straight line and the obstacle by a program calculation process based on the collision judgment. Is calculated. In such a calculation, a straight line is extended from the position of the aircraft by one grid element constituting the grid map, and a program calculation process is performed based on a collision determination between the grid element grid and an obstacle. If it is determined by the collision determination that there is no collision and there is no obstacle, the straight line is extended by the next one cell, and the determination of the collision between the grid element 1 cell and the obstacle is performed again.
 このため、1本のレーザ光を模擬した直線について障害物までの距離を仮想的に計測するだけでも、衝突判定に基づくプログラム計算処理を大量に繰り返すことが必要となる。さらに自己位置の推定計算のためにはこうした仮想の直線による距離計測を自機の仮想位置として配置した複数の仮想自己位置(自己位置候補点)の分だけ繰り返す必要があるため、衝突判定に基づくプログラム計算処理の計算量は膨大となる。このため、自律移動装置が実空間内を移動しながら前記のような自己位置の推定計算を行うためには高い演算性能をもつ演算装置が必要となってしまうという問題がある。 For this reason, it is necessary to repeat a large amount of program calculation processing based on collision determination just by virtually measuring the distance to an obstacle for a straight line simulating one laser beam. Furthermore, for the self-position estimation calculation, it is necessary to repeat the distance measurement based on this virtual straight line for the multiple virtual self-positions (self-position candidate points) arranged as the virtual position of the own aircraft. The calculation amount of the program calculation process is enormous. For this reason, in order for the autonomous mobile device to perform the self-position estimation calculation as described above while moving in the real space, there is a problem that an arithmetic device with high calculation performance is required.
 本発明の目的は、障害物との間の距離をグリッドマップ上で仮想的に計測するための計算量を削減することができる自律移動装置を提供することにある。 An object of the present invention is to provide an autonomous mobile device that can reduce the amount of calculation for virtually measuring the distance to an obstacle on a grid map.
 上記の課題を解決するために、本発明の一態様に係る自律移動装置は、障害物に関連する環境情報を検出するセンサと、前記センサにより検出された環境情報に基づく障害物が示されたグリッドマップを生成する生成部と、前記生成部により生成されたグリッドマップ上において自己位置候補点から前記障害物までの仮想距離を算出して自己の位置を推定する推定部とを備え、前記グリッドマップは、複数のグリッド要素を含み、各グリッド要素が、前記障害物を表す障害物情報と、前記障害物に隣接する隣接領域を表す隣接領域情報と、前記障害物から離れた遠隔領域を表す遠隔領域情報とのいずれかを保持していることを特徴とする。 In order to solve the above problems, an autonomous mobile device according to an aspect of the present invention includes a sensor that detects environmental information related to an obstacle, and an obstacle based on the environmental information detected by the sensor. A generation unit that generates a grid map; and an estimation unit that calculates a virtual distance from the self-position candidate point to the obstacle on the grid map generated by the generation unit, and estimates the position of the grid. The map includes a plurality of grid elements, and each grid element represents obstacle information representing the obstacle, neighboring area information representing an neighboring area adjacent to the obstacle, and a remote area away from the obstacle. Any of the remote area information is retained.
 本発明の一態様によれば、障害物との間の距離をグリッドマップ上で仮想的に計測するための計算量を削減することができるという効果を奏する。 According to one aspect of the present invention, there is an effect that it is possible to reduce the amount of calculation for virtually measuring the distance to the obstacle on the grid map.
実施形態1に係る自律移動装置と移動領域との間の関係を示す図である。It is a figure which shows the relationship between the autonomous mobile device which concerns on Embodiment 1, and a movement area. 上記自律移動装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the said autonomous mobile apparatus. 上記自律移動装置に搭載されるグリッドマップの構成を説明するための図である。It is a figure for demonstrating the structure of the grid map mounted in the said autonomous mobile apparatus. 上記自律移動装置に設けられた演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the calculating part provided in the said autonomous mobile apparatus. 上記演算部に設けられたグリッドマップ生成部により生成されるグリッドマップを説明するための図である。It is a figure for demonstrating the grid map produced | generated by the grid map production | generation part provided in the said calculating part. 上記自律移動装置に設けられたレーザレンジファインダによる計測状態を模式的に示した図である。It is the figure which showed typically the measurement state by the laser range finder provided in the said autonomous mobile apparatus. 上記グリッドマップにより障害物までの距離の仮想計算を実施している状態を示した図である。It is the figure which showed the state which is implementing the virtual calculation of the distance to an obstruction by the said grid map. 実施形態2に係るグリッドマップにより障害物までの距離の仮想計算を実施している状態を示した図である。It is the figure which showed the state which is implementing the virtual calculation of the distance to an obstruction with the grid map which concerns on Embodiment 2. FIG. 実施形態3に係るグリッドマップにより障害物までの距離の仮想計算を実施している状態を示した図である。It is the figure which showed the state which is implementing the virtual calculation of the distance to an obstruction with the grid map which concerns on Embodiment 3. FIG. 実施形態4に係るグリッドマップにより障害物までの距離の仮想計算を実施している状態を示した図である。It is the figure which showed the state which is implementing the virtual calculation of the distance to an obstruction with the grid map which concerns on Embodiment 4. FIG.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 〔実施形態1〕
 本発明の実施形態1における自律移動装置は、移動領域に存在する物体の位置・形状を示す環境情報を取得するセンサとして、レーザレンジファインダを備えており、移動領域に関する移動マップを用いて、前記レーザレンジファインダで取得した環境情報に基づいて自己位置を認識しつつ移動可能な自律移動装置である。
[Embodiment 1]
The autonomous mobile device according to the first embodiment of the present invention includes a laser range finder as a sensor that acquires environmental information indicating the position and shape of an object existing in a moving area, and uses the moving map related to the moving area, It is an autonomous mobile device that can move while recognizing its own position based on environmental information acquired by a laser range finder.
 本発明の実施形態1にかかる自律移動装置について図面を参照しながら説明する。本実施形態における自律移動装置は、1対の車輪を駆動することで平面上を自律的に移動する装置である。 The autonomous mobile device according to Embodiment 1 of the present invention will be described with reference to the drawings. The autonomous mobile device in the present embodiment is a device that autonomously moves on a plane by driving a pair of wheels.
 図1は、実施形態1に係る自律移動装置1と移動領域102との間の関係を示す図である。図1を参照すると、床部101上の限られた移動領域102(破線に囲まれた領域)内を、車両型の自律移動装置1が移動する。図1においては、床部101上の移動領域102内には特に障害物が設置されていない状態を示すものとし、自律移動装置1が移動領域102内を任意に移動することができるものとする。 FIG. 1 is a diagram illustrating a relationship between the autonomous mobile device 1 and the movement area 102 according to the first embodiment. Referring to FIG. 1, the vehicle-type autonomous mobile device 1 moves in a limited movement area 102 (area surrounded by a broken line) on the floor 101. In FIG. 1, it is assumed that an obstacle is not particularly installed in the moving area 102 on the floor 101, and the autonomous mobile device 1 can arbitrarily move in the moving area 102. .
 図2は、自律移動装置1の構成を模式的に示す平面図である。図2に示すように、自律移動装置1は、箱型の本体201と、1対の対向する車輪202a・202bと、キャスタ203とを備える対向2輪型の移動装置である。これらの車輪202a・202bとキャスタ203とが本体201を水平に支持する。さらに、本体201の内部には、車輪202a・202bをそれぞれ駆動するモータ204a・204bと、車輪202a・202bの回転数をそれぞれ検出するためのエンコーダ205a・205bと、車輪202a・202bを駆動するための制御信号を作成し、モータ204a・204bにその制御信号を送信する演算部206と、及びこれらの構成要素に電力を供給するためのバッテリー207とが備えられている。そして、演算部206内部に備えられた記憶部としてのメモリなどの記憶領域206aには、制御信号に基づいて自律移動装置1の移動速度や移動方向、移動距離などを制御するためのプログラムとともに、移動領域102の形状及び大きさがマップ情報として記憶されている。 FIG. 2 is a plan view schematically showing the configuration of the autonomous mobile device 1. As shown in FIG. 2, the autonomous mobile device 1 is an opposing two-wheeled mobile device including a box-shaped main body 201, a pair of opposing wheels 202 a and 202 b, and a caster 203. These wheels 202a and 202b and casters 203 support the main body 201 horizontally. Further, in the main body 201, motors 204a and 204b for driving the wheels 202a and 202b, encoders 205a and 205b for detecting the rotation speeds of the wheels 202a and 202b, and wheels 202a and 202b, respectively, are driven. Are provided, and a calculation unit 206 that transmits the control signal to the motors 204a and 204b, and a battery 207 for supplying power to these components. A storage area 206a such as a memory provided as a storage unit provided inside the calculation unit 206 has a program for controlling the movement speed, movement direction, movement distance, and the like of the autonomous mobile device 1 based on the control signal. The shape and size of the moving area 102 are stored as map information.
 さらに、本体201の前面には、自律移動装置1が移動する方向(前方)の環境情報を認識するためのレーザレンジファインダ2が設けられている。レーザレンジファインダ2は、詳細な構造については省略するが、本体201の前方に対して所定の広がり角度でレーザ光を照射するための光源と、光源より照射されたレーザ光の反射光を受光するための受光部とを備えている。そして、レーザ光を照射した角度と、反射するまでに要した時間とに基づいて、レーザ光を反射した障害物の位置を検出するという、いわゆるTOF(Time of flight)の原理による物体検知(センシング)が行われる。尚、レーザレンジファインダ2により環境情報(センシングされる物体の位置及び形状)を得る手順の詳細については後述する。 Furthermore, a laser range finder 2 for recognizing environmental information in the direction (front) in which the autonomous mobile device 1 moves is provided on the front surface of the main body 201. The laser range finder 2 omits a detailed structure, but receives a light source for irradiating laser light at a predetermined spread angle with respect to the front of the main body 201 and reflected light of the laser light emitted from the light source. And a light receiving portion. Object detection (sensing) based on the so-called TOF (Time (of flight) principle of detecting the position of an obstacle that reflected the laser light based on the angle of irradiation with the laser light and the time required for reflection. ) Is performed. Details of the procedure for obtaining environmental information (position and shape of an object to be sensed) by the laser range finder 2 will be described later.
 また、自律移動装置1は、自己の位置を取得するための自己位置取得部を備えている。この自己位置取得部は、前述したエンコーダ205a・205b及び演算部206とから構成される。すなわち、エンコーダ205a・205bで検知された車輪202a・202bの回転数を演算部206において積算することで、自律移動装置1の移動した速度や距離などの情報を求め、これらの情報から、移動領域内における自律移動装置1の自己位置(オドメトリ位置)を算出する。 In addition, the autonomous mobile device 1 includes a self-position acquisition unit for acquiring its own position. This self-position acquisition unit includes the encoders 205a and 205b and the calculation unit 206 described above. That is, by calculating the rotational speed of the wheels 202a and 202b detected by the encoders 205a and 205b in the calculation unit 206, information such as the moving speed and distance of the autonomous mobile device 1 is obtained. The self position (odometry position) of the autonomous mobile device 1 is calculated.
 そして、これらの自己位置取得部より得られた自己位置候補としての位置情報は、後述するレーザレンジファンダ208により得られる環境情報に基づいて適宜修正される。なお、この位置情報を修正する手法の詳細については後述する。 And the position information as a self-position candidate obtained from these self-position acquisition units is appropriately corrected based on environment information obtained by a laser range funder 208 described later. Details of the method for correcting the position information will be described later.
 このように構成された自律移動装置1は、1対の車輪202a・202bの駆動量をそれぞれ独立に制御することで、直進や曲線移動(旋回)、後退、その場回転(両車輪の中点を中心とした旋回)などの移動動作を行うことができる。そして、自律移動装置1は、移動場所を指定する外部に設けられたPC(Personal Computer)等(図示せず)からの指令にしたがって、移動領域102内の指定された目的地までの移動経路を自律的に作成し、その移動経路に追従するように移動することで、目的地に到達する。なお、移動経路の自律的な作成は演算装置15において実行されるが、ここでは説明を省略する。 The autonomous mobile device 1 configured in this way independently controls the drive amount of the pair of wheels 202a and 202b, thereby moving straight, curving (turning), moving backward, and rotating on the spot (the midpoint of both wheels). Movement such as turning around the center. Then, the autonomous mobile device 1 determines the movement route to the designated destination in the movement area 102 in accordance with a command from a PC (Personal Computer) or the like (not shown) provided outside that designates the movement location. The destination is reached by creating autonomously and moving to follow the movement route. In addition, although autonomous creation of a movement route is performed in the arithmetic unit 15, description is abbreviate | omitted here.
 次に、記憶領域206aの内部に記憶された、移動領域102の形状や、その内部に含まれる物体(壁などの障害物)に基づいて作成される移動マップとしてのグリッドマップについて説明する。演算部206内部に備えられた記憶領域206aには、床部101上の移動領域102全体の形状を外枠として、その内部に一定間隔m(例えば5cm)で水平方向及び垂直方向に配置された格子点を結ぶグリッド線を仮想的に描写することで得られるグリッドマップが記憶されている。 Next, a grid map as a movement map created based on the shape of the movement area 102 and an object (an obstacle such as a wall) included in the movement area 102 stored in the storage area 206a will be described. In the storage area 206a provided inside the arithmetic unit 206, the shape of the entire moving area 102 on the floor 101 is set as an outer frame, and is arranged in the horizontal direction and the vertical direction at a constant interval m (for example, 5 cm) inside. A grid map obtained by virtually describing grid lines connecting lattice points is stored.
 図3に、前述のグリッドマップの一例を図示する。グリッドマップGM1は、移動領域102の形状を模した外枠302の内部を、一定の間隔mで水平方向及び垂直方向に配置された格子点を水平方向及び垂直方向に結ぶグリッド線303を描写したものである。そして、このグリッド線303で囲まれたグリッド要素GEにより、自律移動装置1の自己位置に相当する場所、及び目的地である移動終了点、及び移動終了点における自律移動装置1の移動方向が特定される。なお、間隔mは、自律移動装置1の移動可能な曲率や絶対位置を認識する精度などの条件に応じて、適宜変更可能である。スリップしたと判定される際の閾値としても間隔mを用いることができる。また、移動領域102内において、壁や障害物等の固定物体が存在していることが既知である場合は、それらの既知の物体の位置が予めグリッドマップGM1上に登録された形で記憶領域206aに記憶されているものとする。 FIG. 3 illustrates an example of the grid map described above. The grid map GM1 depicts grid lines 303 that connect the lattice points arranged in the horizontal direction and the vertical direction at a fixed interval m in the outer frame 302 simulating the shape of the moving region 102 in the horizontal direction and the vertical direction. Is. Then, by the grid element GE surrounded by the grid line 303, the location corresponding to the autonomous position of the autonomous mobile device 1, the movement end point that is the destination, and the movement direction of the autonomous mobile device 1 at the movement end point are specified. Is done. Note that the interval m can be appropriately changed according to conditions such as the curvature of the autonomous mobile device 1 and the accuracy of recognizing the absolute position. The interval m can also be used as a threshold value when it is determined that a slip has occurred. Further, when it is known that fixed objects such as walls and obstacles exist in the moving area 102, the storage area is stored in a form in which the positions of these known objects are registered in advance on the grid map GM1. Assume that it is stored in 206a.
 図4は、自律移動装置1に設けられた演算部206の構成を示すブロック図である。演算部206には、グリッドマップ生成部3(生成部)と自己位置推定部4(推定部)とが設けられている。グリッドマップ生成部3は、レーザレンジファインダ2(センサ)により検出された環境情報に基づく障害物が示されたグリッドマップを生成する。自己位置推定部4は、グリッドマップ生成部3により生成されたグリッドマップ上において自己位置候補点から障害物までの仮想距離を算出して自己の位置を推定する。 FIG. 4 is a block diagram illustrating a configuration of the calculation unit 206 provided in the autonomous mobile device 1. The calculation unit 206 includes a grid map generation unit 3 (generation unit) and a self-position estimation unit 4 (estimation unit). The grid map generation unit 3 generates a grid map showing obstacles based on environmental information detected by the laser range finder 2 (sensor). The self-position estimation unit 4 calculates a virtual distance from the self-position candidate point to the obstacle on the grid map generated by the grid map generation unit 3 and estimates its own position.
 ここで、グリッドマップの各グリッド要素における障害物からの距離情報について説明する。図5は、演算部206に設けられたグリッドマップ生成部3により生成されるグリッドマップGM2を説明するための図である。グリッドマップGM2は、障害物OBが存在する領域と、自律移動装置1が走行可能な領域とに分けられる。こうしたグリッドマップGM2のグリッド要素に、以下の手順で障害物OBからの距離情報を付加する。
(1)各グリッド要素は、障害物OBが存在する障害物領域R1であるか否かを示す障害物情報が予め書き込まれている。例えば、当該グリッド要素が障害物OBの存在する障害物領域R1である場合には、当該グリッド要素に距離「0」(障害物情報)が書き込まれ、障害物OBの存在する障害物領域R1でない場合には、当該グリッド要素に「-1」が書き込まれる。
(2)「-1」が書き込まれたグリッド要素の1つについて、隣のグリッド要素が障害物OBの存在する障害物領域R1であれば、当該グリッド要素に距離「1」(隣接領域情報)が上書きされる。
(3)上記(2)を「-1」が書き込まれた全てのグリッド要素について繰り返す。
(4)「-1」が書き込まれたグリッド要素の1つについて、隣のグリッド要素に距離「1」が書き込まれていれば、当該グリッド要素に距離「2」(遠隔領域情報)が上書きされる。
(5)上記(4)を「-1」が書き込まれた全てのグリッド要素について繰り返す。
(6)以降同様に、「-1」が書き込まれたグリッド要素の1つについて、隣のグリッド要素に距離「n-1」が書き込まれていれば、当該グリッド要素に距離「n」を上書きし(nは3以上の整数)、それを、「-1」が書き込まれた全てのグリッド要素について繰り返す。
(7)上記(6)をグリッドマップの全てのグリッド要素に距離「0」以上が上書きされるまで繰り返す。
Here, distance information from an obstacle in each grid element of the grid map will be described. FIG. 5 is a diagram for explaining the grid map GM2 generated by the grid map generation unit 3 provided in the calculation unit 206. The grid map GM2 is divided into an area where the obstacle OB exists and an area where the autonomous mobile device 1 can travel. The distance information from the obstacle OB is added to the grid elements of the grid map GM2 by the following procedure.
(1) Each grid element is pre-written with obstacle information indicating whether or not the obstacle OB is in the obstacle region R1. For example, when the grid element is the obstacle region R1 where the obstacle OB exists, the distance “0” (obstacle information) is written in the grid element and is not the obstacle region R1 where the obstacle OB exists. In this case, “−1” is written in the grid element.
(2) For one of the grid elements in which “−1” is written, if the adjacent grid element is the obstacle region R1 where the obstacle OB exists, the distance “1” (adjacent region information) to the grid element Will be overwritten.
(3) The above (2) is repeated for all grid elements in which “−1” is written.
(4) For one of the grid elements in which “−1” is written, if the distance “1” is written in the adjacent grid element, the distance “2” (remote area information) is overwritten in the grid element. The
(5) The above (4) is repeated for all grid elements in which “−1” is written.
(6) Similarly, if the distance “n−1” is written in the adjacent grid element for one of the grid elements in which “−1” is written, the distance “n” is overwritten in the grid element. (N is an integer greater than or equal to 3), and this is repeated for all grid elements in which “−1” is written.
(7) The above (6) is repeated until all grid elements of the grid map are overwritten with the distance “0” or more.
 図5に示す例では、障害物OBが存在するグリッド要素に対応する障害物領域R1に障害物情報を表す距離「0」が書き込まれる。そして、障害物領域R1に隣接するグリッド要素に対応する隣接領域R2に、障害物OBに隣接する隣接領域R2を表す隣接領域情報の距離「1」が書き込まれる。障害物領域R1及び隣接領域R2に対応するグリッド要素以外のグリッド要素は、障害物OBから離れた遠隔領域R3に含まれる。遠隔領域R3は、隣接領域R2に障害物OBの反対側から隣接する第1遠隔隣接領域R4と、第1遠隔隣接領域R4に障害物OBの反対側から隣接する第2遠隔隣接領域R5とを含む。 In the example shown in FIG. 5, the distance “0” representing the obstacle information is written in the obstacle region R1 corresponding to the grid element where the obstacle OB exists. Then, the distance “1” of the adjacent area information representing the adjacent area R2 adjacent to the obstacle OB is written in the adjacent area R2 corresponding to the grid element adjacent to the obstacle area R1. Grid elements other than the grid elements corresponding to the obstacle region R1 and the adjacent region R2 are included in the remote region R3 away from the obstacle OB. The remote area R3 includes a first remote adjacent area R4 adjacent to the adjacent area R2 from the opposite side of the obstacle OB, and a second remote adjacent area R5 adjacent to the first remote adjacent area R4 from the opposite side of the obstacle OB. Including.
 第1遠隔隣接領域R4には、障害物OBから離れた遠隔領域を表す遠隔領域情報の距離「2」が書き込まれる。第2遠隔隣接領域R5には、遠隔領域情報の距離「3」が書き込まれる。遠隔領域情報の距離の値は、障害物OBから離れるに従って大きくなり、障害物OBとの間に存在する他のグリッド要素の数に対応する。 In the first remote adjacent area R4, the remote area information distance “2” representing the remote area away from the obstacle OB is written. The distance “3” of the remote area information is written in the second remote adjacent area R5. The distance value of the remote area information increases as the distance from the obstacle OB increases, and corresponds to the number of other grid elements existing between the obstacle OB.
 このグリッドマップGM2に障害物OBからの距離に関連する情報を与える作業は、自律移動装置1により移動マップが作成された直後に1回だけ実行されるだけでよく、以降は同じグリッドマップを使用することができる。なお、障害物OBの種別、自律移動装置1の進入禁止エリアなどの付帯情報を各グリッド要素GEに与える場合もあるが、説明をより簡潔にするため、これらの情報については説明を省略する。 The work of giving information related to the distance from the obstacle OB to the grid map GM2 only needs to be performed once immediately after the movement map is created by the autonomous mobile device 1, and thereafter the same grid map is used. can do. Note that incidental information such as the type of the obstacle OB and the entry prohibition area of the autonomous mobile device 1 may be given to each grid element GE. However, in order to simplify the description, description of these pieces of information is omitted.
 図6は、自律移動装置1に設けられたレーザレンジファインダ2による計測状態を模式的に示した図である。次に、前述したレーザレンジファインダ2を用いて自律移動装置1の前面の環境情報を取得する手法について、簡単に説明する。まず、自律移動装置1のレーザレンジファインダ2から照射されたレーザによる実光線RLの障害物OBによる反射光がレーザレンジファインダ2により受光されると、実光線RLを照射したときの自律移動装置1の自己位置と、レーザレンジファインダ2から照射される実光線RLの照射方向と、実光線RLを照射してから反射光を受光するまでの時間とから、照射した実光線RLが反射した地点が特定される。 FIG. 6 is a diagram schematically showing a measurement state by the laser range finder 2 provided in the autonomous mobile device 1. Next, a method for acquiring environmental information on the front surface of the autonomous mobile device 1 using the laser range finder 2 described above will be briefly described. First, when the reflected light from the obstacle OB of the actual light beam RL by the laser irradiated from the laser range finder 2 of the autonomous mobile device 1 is received by the laser range finder 2, the autonomous mobile device 1 when irradiated with the actual light beam RL. The point at which the irradiated actual light beam RL is reflected from the self-position, the irradiation direction of the actual light beam RL irradiated from the laser range finder 2, and the time from receiving the actual light beam RL to receiving the reflected light. Identified.
 レーザレンジファインダ2によって計測されるデータは、レーザレンジファインダ2からの実測距離Rd及び実光線RLの照射方向の角度φにより規定される極座標系として出力される。例えば自律移動装置1の進行方向前方270度を計測する際の分解能を1.0度とした場合には、一度のスキャンにより271個のデータを計測する。このようなレーザレンジファインダ2によるセンシング結果が記憶領域206aに記憶される。 The data measured by the laser range finder 2 is output as a polar coordinate system defined by the measured distance Rd from the laser range finder 2 and the angle φ in the irradiation direction of the actual light beam RL. For example, when the resolution when measuring 270 degrees forward of the traveling direction of the autonomous mobile device 1 is 1.0 degree, 271 data are measured by one scan. Such a sensing result by the laser range finder 2 is stored in the storage area 206a.
 図6は、移動領域内において、自律移動装置1の前面に障害物OBが設けられている様子を示している。図6に示すように、自律移動装置1はその前面にレーザレンジファインダ2から実光線RLを照射している。このとき、レーザレンジファインダ2のセンシング領域内には障害物OBが含まれている。このような場合、レーザレンジファインダ2によりセンシングされた障害物OBまでの距離が記憶領域206aに記憶される。このようにして取得された環境情報をもとにグリッドマップが生成され、記憶領域206aに記憶される。 FIG. 6 shows a state in which an obstacle OB is provided in front of the autonomous mobile device 1 in the movement area. As shown in FIG. 6, the autonomous mobile device 1 irradiates the front surface with a real light RL from a laser range finder 2. At this time, an obstacle OB is included in the sensing area of the laser range finder 2. In such a case, the distance to the obstacle OB sensed by the laser range finder 2 is stored in the storage area 206a. A grid map is generated based on the environmental information acquired in this way and stored in the storage area 206a.
 図7は、グリッドマップGM2により障害物OBまでの距離の仮想計算を実施している状態を示した図である。次に、レーザレンジファインダ2により取得した環境情報を用いて、オドメトリ法により算出した自己位置候補の中から現時点の自己位置を推定する手法として、本実施形態では、MCL(Monte Carlo Localization)と呼ばれる手法を採用する。これは、ロボットの存在位置の確率表現を、パーティクルP(自己位置候補点)と呼ばれる位置候補点により表現する手法である。 FIG. 7 is a diagram showing a state in which the virtual calculation of the distance to the obstacle OB is performed by the grid map GM2. Next, as a technique for estimating the current self-position from among the self-position candidates calculated by the odometry method using the environment information acquired by the laser range finder 2, this embodiment is called MCL (Monte-Carlo-Localization). Adopt a method. This is a technique for expressing the probability expression of the robot's location using position candidate points called particles P (self-position candidate points).
 ここでは、本実施形態に係るグリッド要素から障害物OBまでの距離情報を用いた計算手法を説明する。本実施形態では、MCLの演算における自己位置の候補となるパーティクルPからレーザによる仮想光線を周囲に向けて照射し、距離計算を行う時の距離計算手法を説明する。 Here, a calculation method using distance information from the grid element to the obstacle OB according to the present embodiment will be described. In the present embodiment, a distance calculation method for performing distance calculation by irradiating a virtual light beam from a particle P that is a candidate for the self position in the MCL calculation toward the surroundings will be described.
 まず、演算部206に設けられた自己位置推定部4は、グリッドマップGM2上において、パーティクルPの位置から、レーザレンジファインダ2の計測方向に沿って直線を延ばす。即ち、グリッドマップGM2上において、パーティクルPの位置から仮想光線VLを仮想的に描写する。 First, the self-position estimation unit 4 provided in the calculation unit 206 extends a straight line from the position of the particle P along the measurement direction of the laser range finder 2 on the grid map GM2. That is, the virtual ray VL is virtually depicted from the position of the particle P on the grid map GM2.
 ここで、図7を参照すると、1つのパーティクルPから仮想光線VLを伸ばして距離計算を行うとすると、パーティクルPを含むグリッド要素を起点として、所定の角度で伸ばされる仮想光線VLがグリッド要素を順に通過していく。ここで、グリッドマップGM2に関して横方向をx方向、縦方向をy方向とする。グリッドマップGM2のグリッド要素を仮想光線VLが通過していくには、予め仮想光線VLの傾きがわかっているため、1マス分x方向、もしくはy方向に仮想光線VLを進めた時にもう一つの軸、つまり、x方向に仮想光線VLのグリッド要素のマス目を進めた場合はy方向、y方向にマス目を進めた場合はx方向に升目を進ませるかどうかを仮想光線VLの傾きをもとに計算する手法をとる。こればブレゼンハムの直線描画アルゴリズムと呼ばれる手法である。 Here, referring to FIG. 7, if the distance calculation is performed by extending the virtual ray VL from one particle P, the virtual ray VL extended at a predetermined angle from the grid element including the particle P is used as the grid element. Pass in order. Here, regarding the grid map GM2, the horizontal direction is the x direction and the vertical direction is the y direction. In order for the virtual ray VL to pass through the grid elements of the grid map GM2, the inclination of the virtual ray VL is known in advance, so that when the virtual ray VL is advanced in the x direction or the y direction by one square, another virtual ray VL is obtained. If the grid of the grid element of the virtual ray VL is advanced in the axis, that is, the x-direction, the y-direction is determined. If the grid is advanced in the y-direction, the inclination of the virtual ray VL is determined whether the grid is advanced in the x-direction. Based on the calculation method. This is a technique called Bresenham's straight line drawing algorithm.
 仮想光線VLが通過するグリッド要素に書き込まれた距離の値が2以上である間は、当該グリッド要素が障害物OBと衝突しているおそれは無いと判断されるから、衝突判定処理が不要になる。そして、仮想光線VLが通過するグリッド要素に書き込まれた距離の値が1になった時以降に、衝突判定処理を実施すればよいと考えられる。 While the value of the distance written in the grid element through which the virtual ray VL passes is 2 or more, it is determined that there is no possibility that the grid element collides with the obstacle OB. Become. Then, it is considered that the collision determination process may be performed after the distance value written to the grid element through which the virtual ray VL passes becomes 1.
 例えば、パーティクルPを含むグリッド要素には、距離「5」が書き込まれている。そして、パーティクルPからの仮想光線VLが通過する上から7行目、右から3列目のグリッド要素には「2」以上である「5」が書き込まれているので、衝突判定処理を実施しない。同様に、仮想光線VLが通過する上から6行目、右から3列目のグリッド要素には「5」が書き込まれており、上から5行目、右から3列目のグリッド要素には「4」が書き込まれており、上から4行目、右から3列目のグリッド要素には「3」が書き込まれている。そして、仮想光線VLが通過する上から4行目、右から2列目のグリッド要素には「3」が書き込まれており、上から3行目、右から2列目のグリッド要素には「2」が書き込まれている。このため、「5」~「2」が書き込まれたこれらのグリッド要素については、衝突判定処理を実施しない。そして、仮想光線VLが通過する上から2行目、右から2列目のグリッド要素には「1」が書き込まれているため、衝突判定処理を実施する。 For example, the distance “5” is written in the grid element including the particle P. Since “5” that is “2” or more is written in the grid element in the seventh row from the top and the third column from the right through which the virtual ray VL from the particle P passes, the collision determination process is not performed. . Similarly, “5” is written in the grid element in the sixth row from the top and the third column from the right through which the virtual ray VL passes, and in the grid element in the fifth row from the top and the third column from the right, “4” is written, and “3” is written in the grid element in the fourth row from the top and the third column from the right. Then, “3” is written in the grid element in the fourth row from the top and the second column from the right through which the virtual ray VL passes, and “3” is written in the grid element in the third row from the top and the second column from the right. 2 "is written. For this reason, collision determination processing is not performed for these grid elements in which “5” to “2” are written. Since “1” is written in the grid element in the second row from the top and the second column from the right through which the virtual ray VL passes, the collision determination process is performed.
 このように、「2」以上が書き込まれているグリッド要素については衝突判定処理を実施せず、「1」が書き込まれているグリッド要素について衝突判定処理を実施するので、パーティクルPと障害物OBとの間の距離をグリッドマップ上で仮想的に計測するための計算量を削減することができる。 As described above, the collision determination process is not performed for the grid element in which “2” or more is written, and the collision determination process is performed for the grid element in which “1” is written. It is possible to reduce the amount of calculation for virtually measuring the distance between the two on the grid map.
 グリッドマップの各グリッド要素に障害物OBからの距離に対応する値が書き込まれていない場合は、グリッドマップ上のグリッド要素を仮想光線VLが1マス進むたびに、グリッド要素の値を呼び出して、当該グリッド要素が障害物OBかどうかを判断する衝突判定処理が必要になるが、本実施形態によれば、そうしたグリッド要素の値の読出しと衝突判定処理とを行うことなく、仮想光線VLがグリッド要素を通過することができる。 When the value corresponding to the distance from the obstacle OB is not written in each grid element of the grid map, the value of the grid element is called every time the virtual ray VL advances one grid line on the grid map, A collision determination process for determining whether or not the grid element is an obstacle OB is required. According to the present embodiment, the virtual ray VL is displayed in the grid without performing the reading of the value of the grid element and the collision determination process. Can pass through the element.
 前述したように、グリッド要素に書き込まれた距離の値が2以上である間は衝突判定をせずに仮想光線VLがグリッド要素を通過することができるが、グリッド要素に書き込まれた距離の値が1になった時以降は仮想光線VLがグリッド要素を1マス移動し、その移動後のグリッド要素で障害物OBとの衝突判定を行う。そのグリッド要素が障害物OBであれば、そのグリッド要素の位置とパーティクルPを含むグリッド要素の位置とからパーティクルPから障害物OBに伸ばした直線の長さを求めることができる。このように、一つの仮想光線VLによる計測を模したパーティクルPと障害物OBとの間の距離データを算出することができる。以降同様に各パーティクルについて障害物OBとの間の距離計測を繰り返す。 As described above, while the distance value written in the grid element is 2 or more, the virtual ray VL can pass through the grid element without performing the collision determination, but the distance value written in the grid element. After the value becomes 1, the virtual ray VL moves the grid element by one cell, and the grid element after the movement determines the collision with the obstacle OB. If the grid element is an obstacle OB, the length of a straight line extending from the particle P to the obstacle OB can be obtained from the position of the grid element and the position of the grid element including the particle P. Thus, distance data between the particle P imitating measurement with one virtual ray VL and the obstacle OB can be calculated. Thereafter, the distance measurement between each particle and the obstacle OB is repeated in the same manner.
 このように本実施形態に係るパーティクルPと障害物OBとの間の距離計測は実行される。以降もMCLの演算が続くがここでは説明を省略する。 Thus, the distance measurement between the particle P and the obstacle OB according to the present embodiment is executed. Thereafter, the calculation of MCL continues, but the description is omitted here.
 本実施形態に係る計算方法はグリッドマップのグリッド要素の一つ一つについて障害物OBとの衝突判定処理を実施する必要がないため、演算を高速に行うことができる。特に、MCLにおいては数百の各パーティクルに対して複数の角度について仮想光線VLによる障害物OBまでの距離計算を繰り返す。このため、衝突判定処理が一つ省略されるだけでも、1度の自己位置推定計算においては計算処理の軽減効果は大きい。さらに、MCLの演算は自律移動装置1が移動しながら繰り返し実行されるため、MCLの演算処理負荷が小さくなり、1回あたりの自己位置推定時間が短くなれば、より短い周期で自律移動装置1の自己位置推定が可能となり実際の移動位置の精度を高めることができる。 The calculation method according to the present embodiment does not need to perform the collision determination process with the obstacle OB for each grid element of the grid map, so that the calculation can be performed at high speed. In particular, in MCL, the distance calculation to the obstacle OB by the virtual ray VL is repeated for a plurality of angles for each of several hundred particles. For this reason, even if only one collision determination process is omitted, in one self-position estimation calculation, the reduction effect of the calculation process is large. Furthermore, since the calculation of MCL is repeatedly executed while the autonomous mobile device 1 moves, the autonomous mobile device 1 can be operated in a shorter cycle if the calculation processing load of the MCL is reduced and the self-position estimation time per time is shortened. Self-position estimation becomes possible, and the accuracy of the actual movement position can be improved.
 〔実施形態2〕
 本発明の他の実施形態について、図8に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 実施形態2においては、前記したグリッドマップGM2においてパーティクルPから仮想光線VLが各グリッド要素を通過していく過程の演算において、パーティクルPを含むグリッド要素における障害物OBからの距離に対応する値Nをもとに、仮想光線VLがグリッド要素を順に通過していく際の演算の開始位置を以下の手順に沿って変更する。
(1)パーティクルPを含むグリッド要素の位置の座標を(xi,yi)とする。
(2)パーティクルPから発する仮想光線VLの角度は既知であり、その値をφとする。(3)仮想光線VLがグリッド要素を通過する際の衝突判定処理に係る演算の開始位置SPの座標を(xj,yj)とすると、
xj=N×cosφ、yj=N×sinφ
   で衝突判定処理に係る演算の開始位置SPの座標を求める。
In the second embodiment, the value N corresponding to the distance from the obstacle OB in the grid element including the particle P in the calculation of the process in which the virtual ray VL passes through each grid element from the particle P in the grid map GM2. Based on the above, the calculation start position when the virtual ray VL sequentially passes through the grid elements is changed according to the following procedure.
(1) The coordinate of the position of the grid element containing the particle P is set to (xi, yi).
(2) The angle of the virtual ray VL emitted from the particle P is known, and its value is φ. (3) When the coordinates of the calculation start position SP related to the collision determination process when the virtual ray VL passes through the grid element are (xj, yj),
xj = N × cosφ, yj = N × sinφ
To obtain the coordinates of the calculation start position SP related to the collision determination process.
 このようにグリッドマップ上の衝突判定処理に係る演算の開始位置SPを上記のようにパーティクルPから障害物OBに近い位置まで飛ばしてしまうことになる。このため、衝突判定処理は、パーティクルPから開始位置SPまでの間のグリッド要素については不要であり、開始位置SPから障害物OBまでの間のグリッド要素についてのみ実施すればよい。従って、仮想光線VLがグリッド要素上で衝突判定処理を実施する演算量はさらに少なくなる。 As described above, the calculation start position SP related to the collision determination process on the grid map is skipped from the particle P to a position close to the obstacle OB as described above. For this reason, the collision determination process is not necessary for the grid element between the particle P and the start position SP, and may be performed only for the grid element between the start position SP and the obstacle OB. Therefore, the amount of calculation for the virtual ray VL to perform the collision determination process on the grid element is further reduced.
 〔実施形態3〕
 実施形態3に係る自律移動装置について説明する。図9は、実施形態3に係るグリッドマップGM3により障害物OBまでの距離の仮想計算を実施している状態を示した図である。説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
An autonomous mobile device according to Embodiment 3 will be described. FIG. 9 is a diagram illustrating a state in which the virtual calculation of the distance to the obstacle OB is performed by the grid map GM3 according to the third embodiment. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and description thereof is omitted.
 実施形態3においては、前記した障害物OBからの距離に対応する情報を各グリッド要素に与えるグリッドマップGM3の生成について、以下の手順で障害物OBからの距離に対応する情報を与える。
(1)各グリッド要素は、障害物OBが存在する障害物領域R1であるか否かを示す障害物情報が予め書き込まれている。例えば、当該グリッド要素が障害物OBの存在する障害物領域R1である場合には、当該グリッド要素に距離「0」(障害物情報)が書き込まれ、障害物OBの存在する障害物領域R1でない場合には、当該グリッド要素に「-1」が書き込まれる。
(2)距離「0」が書き込まれたグリッド要素の位置をリスト化する。
(3)上記(2)で距離「0」が書き込まれた各グリッド要素の上下左右のグリッド要素について、「-1」が書き込まれていれば、距離「1」を書き込む。
(4)距離「1」が書き込まれたグリッド要素の位置をリスト化する。
(5)上記(3)~(4)を、距離情報を1ずつ増やしながら距離情報を書き込むグリッド要素が無くなるまで繰り返す。
In the third embodiment, information corresponding to the distance from the obstacle OB is given by the following procedure for generating the grid map GM3 that gives the information corresponding to the distance from the obstacle OB to each grid element.
(1) Each grid element is pre-written with obstacle information indicating whether or not the obstacle OB is in the obstacle region R1. For example, when the grid element is the obstacle region R1 where the obstacle OB exists, the distance “0” (obstacle information) is written in the grid element and is not the obstacle region R1 where the obstacle OB exists. In this case, “−1” is written in the grid element.
(2) List the positions of grid elements in which the distance “0” is written.
(3) If “−1” is written for the upper, lower, left, and right grid elements of each grid element in which the distance “0” is written in (2) above, the distance “1” is written.
(4) List the positions of grid elements in which the distance “1” is written.
(5) Repeat the above steps (3) to (4) while increasing the distance information by 1 until there is no grid element to write the distance information.
 こうすれば、実施形態1のようにグリッドマップの全グリッド要素について繰り返し判定処理を行うことなく、障害物OBからの距離に対応する情報をすべてのグリッド要素に書き込むことができるため、計算負荷の低減を図ることが可能となる。 In this way, the information corresponding to the distance from the obstacle OB can be written in all the grid elements without repeatedly performing the determination process for all the grid elements of the grid map as in the first embodiment. Reduction can be achieved.
 〔実施形態4〕
 実施形態4に係る自律移動装置について説明する。図10は、実施形態4に係るグリッドマップGM2により障害物OBまでの距離の仮想計算を実施している状態を示した図である。説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
An autonomous mobile device according to Embodiment 4 will be described. FIG. 10 is a diagram illustrating a state in which the virtual calculation of the distance to the obstacle OB is performed by the grid map GM2 according to the fourth embodiment. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and description thereof is omitted.
 実施形態4においては、前記した障害物OBからの距離に対応する情報をもとに、衝突判定を何回実施せずに済ませるかを以下のように処理する。
(1)あるパーティクルPの位置のグリッド要素に書き込まれた距離情報をN1とする。(2)仮想光線VLが通過するグリッド要素の(N1/2)個については衝突判定をしない。
(3)上記(2)で衝突判定をせずに進んで到着したグリッド要素に書き込まれた距離情報をN2とする。
(4)そこから仮想光線VLがさらに通過するグリッド要素の(N2/2)個については衝突判定をしない。
(5)上記(3)~(4)を繰り返す。
In the fourth embodiment, how many times the collision determination need not be performed based on the information corresponding to the distance from the obstacle OB is processed as follows.
(1) The distance information written in the grid element at the position of a certain particle P is N1. (2) The collision determination is not performed for (N1 / 2) grid elements through which the virtual ray VL passes.
(3) The distance information written in the grid element that has arrived without making a collision determination in (2) above is N2.
(4) The collision determination is not performed for (N2 / 2) grid elements from which the virtual ray VL further passes.
(5) Repeat (3) to (4) above.
 例えば、図10に示す例では、パーティクルPのグリッド要素に距離「5」が書き込まれている。そして、仮想光線VLが通過するグリッド要素の(N1/2=5/2=2)個(但し、小数点以下切り下げ)については衝突判定をしない。次に、衝突判定をせずに進んで到着した到着点P2のグリッド要素に距離「N2=5」が書き込まれている。 For example, in the example shown in FIG. 10, the distance “5” is written in the grid element of the particle P. Then, the collision determination is not performed for (N1 / 2 = 5/2 = 2) grid elements (but rounded down after the decimal point) through which the virtual ray VL passes. Next, the distance “N2 = 5” is written in the grid element of the arrival point P2 that has arrived without making a collision determination.
 その後、到着点P2から仮想光線VLがさらに通過するグリッド要素の(N2/2=5/2=2)個(但し、小数点以下切り下げ)については衝突判定をしない。上記で衝突判定をせずに進んで到着した到着点P3のグリッド要素に距離「N2=3」が書き込まれている。 Thereafter, the collision determination is not performed for (N2 / 2 = 5/2 = 2) grid elements (but rounded down after the decimal point) through which the virtual ray VL further passes from the arrival point P2. In the above, the distance “N2 = 3” is written in the grid element of the arrival point P3 that has arrived without making a collision determination.
 そして、到着点P3から仮想光線VLがさらに通過するグリッド要素の(N2/2=3/2=1)個(但し、小数点以下切り下げ)については衝突判定をしない。上記で衝突判定をせずに進んで到着した到着点P4のグリッド要素に距離「N2=2」が書き込まれている。次に、到着点P4からは衝突判定処理に係る演算を実施する。従って、パーティクルPから到着点P4までの間のグリッド要素については衝突判定処理が不要である。 Then, (N2 / 2 = 3/2 = 1) grid elements (however, rounded down after the decimal point) where the virtual ray VL further passes from the arrival point P3 is not subjected to collision determination. In the above, the distance “N2 = 2” is written in the grid element of the arrival point P4 that has arrived without making a collision determination. Next, the calculation related to the collision determination process is performed from the arrival point P4. Accordingly, the collision determination process is unnecessary for the grid element between the particle P and the arrival point P4.
 このように処理することで、実施形態2(図8)のように三角関数のような計算が複雑になる処理を行うことなく、より単純な方法でパーティクルPから伸ばした直線の衝突判定を行うことができる。 By performing the processing in this way, the collision determination of the straight line extended from the particle P is performed by a simpler method without performing the processing such as the trigonometric function that is complicated as in the second embodiment (FIG. 8). be able to.
 〔ソフトウェアによる実現例〕
 自律移動装置1の演算部206(特にグリッドマップ生成部3および自己位置推定部4)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The calculation unit 206 (particularly the grid map generation unit 3 and the self-position estimation unit 4) of the autonomous mobile device 1 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU It may be realized by software using (Central Processing Unit).
 後者の場合、演算部206は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the arithmetic unit 206 includes a CPU that executes instructions of a program that is software that implements each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU), or A storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係る自律移動装置1は、障害物OBに関連する環境情報を検出するセンサ(レーザレンジファインダ2)と、前記センサ(レーザレンジファインダ2)により検出された環境情報に基づく障害物OBが示されたグリッドマップGM1~GM3を生成する生成部(グリッドマップ生成部3)と、前記生成部(グリッドマップ生成部3)により生成されたグリッドマップGM1~GM3上において自己位置候補点(パーティクルP)から前記障害物OBまでの仮想距離を算出して自己の位置を推定する推定部(自己位置推定部4)とを備え、前記グリッドマップGM1~GM3は、複数のグリッド要素GEを含み、各グリッド要素GEが、前記障害物OBを表す障害物情報と、前記障害物OBに隣接する隣接領域R2を表す隣接領域情報と、前記障害物OBから離れた遠隔領域R3を表す遠隔領域情報とのいずれかを保持している。
[Summary]
The autonomous mobile device 1 according to the first aspect of the present invention includes a sensor (laser range finder 2) that detects environmental information related to an obstacle OB, and an obstacle based on environmental information detected by the sensor (laser range finder 2). A generation unit (grid map generation unit 3) that generates grid maps GM1 to GM3 showing the object OB, and self-position candidate points on the grid maps GM1 to GM3 generated by the generation unit (grid map generation unit 3) An estimation unit (self-position estimation unit 4) that calculates a virtual distance from (particle P) to the obstacle OB and estimates its own position, and the grid maps GM1 to GM3 include a plurality of grid elements GE. Each grid element GE includes obstacle information representing the obstacle OB and an adjacent area R2 adjacent to the obstacle OB. And band information, and holds one of the remote area information representative of the remote regions R3 away from the obstacle OB.
 上記の構成によれば、グリッドマップが遠隔領域を表す遠隔領域情報を有しているので、遠隔領域情報に対応する遠隔領域を仮想光線が仮想的に通過する際は、衝突判定処理に係る演算を実施する必要がなくなる。この結果、自己の位置を推定するために、障害物との間の距離をグリッドマップ上で仮想的に計測するための計算量を削減することができる。 According to the above configuration, since the grid map has the remote area information representing the remote area, when the virtual ray virtually passes through the remote area corresponding to the remote area information, the calculation related to the collision determination process Need not be implemented. As a result, it is possible to reduce the amount of calculation for virtually measuring the distance to the obstacle on the grid map in order to estimate the position of itself.
 本発明の態様2に係る自律移動装置1は、上記態様1において、前記遠隔領域R3が、前記隣接領域R2に前記障害物OBの反対側から隣接する第1遠隔隣接領域R4と、前記第1遠隔隣接領域R4に前記障害物OBの反対側から隣接する第2遠隔隣接領域R5とを含んでもよい。 The autonomous mobile device 1 according to aspect 2 of the present invention is the above-described aspect 1, wherein the remote area R3 includes the first remote adjacent area R4 that is adjacent to the adjacent area R2 from the opposite side of the obstacle OB, and the first remote adjacent area R4. A second remote adjacent region R5 adjacent to the remote adjacent region R4 from the opposite side of the obstacle OB may be included.
 上記の構成によれば、第2遠隔隣接領域が第1遠隔隣接領域よりも障害物OBから離れている。このため、障害物OBからの距離に対応する情報を第1遠隔隣接領域及び第2遠隔隣接領域に対応するグリッド要素に書き込むことができる。 According to the above configuration, the second remote adjacent area is farther from the obstacle OB than the first remote adjacent area. For this reason, information corresponding to the distance from the obstacle OB can be written in the grid elements corresponding to the first remote adjacent area and the second remote adjacent area.
 本発明の態様3に係る自律移動装置1は、上記態様1において、前記遠隔領域情報は、前記障害物OBとの間に存在する他のグリッド要素の数に対応する情報を含んでもよい。 In the autonomous mobile device 1 according to the aspect 3 of the present invention, in the aspect 1, the remote area information may include information corresponding to the number of other grid elements existing between the obstacle OB.
 上記の構成によれば、障害物OBからの距離に対応する情報を遠隔領域に対応するグリッド要素に書き込むことができる。 According to the above configuration, information corresponding to the distance from the obstacle OB can be written in the grid element corresponding to the remote area.
 本発明の態様4に係る自律移動装置1は、上記態様1において、前記センサ(レーザレンジファインダ2)により検出された環境情報は前記障害物OBまでの実測距離を表す情報を含み、前記推定部(自己位置推定部4)は、各グリッド要素が保持する前記障害物情報、前記隣接領域情報、及び前記遠隔領域情報に基づいて、前記仮想距離を算出してもよい。 In the autonomous mobile device 1 according to the aspect 4 of the present invention, in the aspect 1, the environment information detected by the sensor (laser range finder 2) includes information indicating an actually measured distance to the obstacle OB, and the estimation unit (Self-position estimation unit 4) may calculate the virtual distance based on the obstacle information, the adjacent area information, and the remote area information held by each grid element.
 上記の構成によれば、遠隔領域情報に対応する遠隔領域では、衝突判定処理に係る演算を実施しないので、障害物との間の距離をグリッドマップ上で仮想的に計測するための計算量を削減することができる。 According to the above configuration, since the calculation related to the collision determination process is not performed in the remote area corresponding to the remote area information, the calculation amount for virtually measuring the distance to the obstacle on the grid map is reduced. Can be reduced.
 本発明の態様5に係る自律移動装置1は、上記態様1において、前記推定部(自己位置推定部4)は、前記自己位置候補点(パーティクルP)から前記障害物OBに衝突した仮想光線VLが通過したグリッド要素ごとに、各グリッド要素が保持する前記障害物情報と、前記隣接領域情報と、前記遠隔領域情報とのいずれかを読出し、前記隣接領域情報を読み出したグリッド要素と前記障害物OBとの間の衝突判定のための計算を実施してもよい。 In the autonomous mobile device 1 according to the aspect 5 of the present invention, in the aspect 1, the estimation unit (self-position estimation unit 4) has the virtual ray VL that collides with the obstacle OB from the self-position candidate point (particle P). For each grid element that passes, the grid element and the obstacle that read out any one of the obstacle information held by each grid element, the adjacent area information, and the remote area information and read the adjacent area information Calculation for collision determination with the OB may be performed.
 上記の構成によれば、遠隔領域情報を読出したグリッド要素で、当該グリッド要素と前記障害物OBとの間の衝突判定のための計算を実施しないので、障害物との間の距離をグリッドマップ上で仮想的に計測するための計算量を削減することができる。 According to the above configuration, since the calculation for collision determination between the grid element and the obstacle OB is not performed on the grid element from which the remote area information is read, the distance between the obstacle and the grid map It is possible to reduce the amount of calculation for virtually measuring above.
 本発明の態様6に係る自律移動装置1は、上記態様1において、前記センサが、レーザレンジファインダ2であってもよい。 In the autonomous mobile device 1 according to aspect 6 of the present invention, in the aspect 1, the sensor may be a laser range finder 2.
 上記の構成によれば、簡単な構成により、障害物に関連する環境情報を検出することができる。 According to the above configuration, environmental information related to the obstacle can be detected with a simple configuration.
 本発明の各態様に係る自律移動装置の演算部は、コンピュータによって実現してもよく、この場合には、コンピュータを上記演算部が備える各手段として動作させることにより上記演算部をコンピュータにて実現させる自律移動装置の演算部制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The calculation unit of the autonomous mobile device according to each aspect of the present invention may be realized by a computer. In this case, the calculation unit is realized by the computer by operating the computer as each unit included in the calculation unit. An arithmetic unit control program for an autonomous mobile device to be recorded and a computer-readable recording medium on which the program is recorded also fall within the scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、清掃ロボット等の自律的に移動可能な自律移動装置に利用することができる。 The present invention can be used for an autonomous mobile device such as a cleaning robot that can move autonomously.
 1 自律移動装置
 2 レーザレンジファインダ(センサ)
 3 グリッドマップ生成部(生成部)
 4 自己位置推定部(推定部)
OB 障害物
GM1 グリッドマップ
GM2 グリッドマップ
GM3 グリッドマップ
 P パーティクル(自己位置候補点)
P2 到着点
P3 到着点
P4 到着点
GE グリッド要素
R1 障害物領域
R2 隣接領域
R3 遠隔領域
R4 第1遠隔隣接領域
R5 第2遠隔隣接領域
RL 実光線
VL 仮想光線
Rd 実測距離
Vd 仮想距離
SP 開始位置
 
1 Autonomous mobile device 2 Laser range finder (sensor)
3 Grid map generator (generator)
4 Self-position estimation unit (estimation unit)
OB Obstacle GM1 Grid map GM2 Grid map GM3 Grid map P Particle (Self-position candidate point)
P2 Arrival point P3 Arrival point P4 Arrival point GE Grid element R1 Obstacle area R2 Adjacent area R3 Remote area R4 First remote adjacent area R5 Second remote adjacent area RL Real light VL Virtual light Rd Actual distance Vd Virtual distance SP Start position

Claims (6)

  1.  障害物に関連する環境情報を検出するセンサと、
     前記センサにより検出された環境情報に基づく障害物が示されたグリッドマップを生成する生成部と、
     前記生成部により生成されたグリッドマップ上において自己位置候補点から前記障害物までの仮想距離を算出して自己の位置を推定する推定部とを備え、
     前記グリッドマップは、複数のグリッド要素を含み、
     各グリッド要素が、前記障害物を表す障害物情報と、前記障害物に隣接する隣接領域を表す隣接領域情報と、前記障害物から離れた遠隔領域を表す遠隔領域情報とのいずれかを保持していることを特徴とする自律移動装置。
    A sensor for detecting environmental information related to obstacles;
    A generating unit that generates a grid map showing obstacles based on environmental information detected by the sensor;
    An estimation unit that calculates a virtual distance from the self-position candidate point to the obstacle on the grid map generated by the generation unit, and estimates the position of the self,
    The grid map includes a plurality of grid elements;
    Each grid element holds any one of obstacle information representing the obstacle, adjacent area information representing an adjacent area adjacent to the obstacle, and remote area information representing a remote area away from the obstacle. An autonomous mobile device characterized by that.
  2.  前記遠隔領域が、前記隣接領域に前記障害物の反対側から隣接する第1遠隔隣接領域と、前記第1遠隔隣接領域に前記障害物の反対側から隣接する第2遠隔隣接領域とを含む請求項1に記載の自律移動装置。 The remote area includes a first remote adjacent area adjacent to the adjacent area from the opposite side of the obstacle, and a second remote adjacent area adjacent to the first remote adjacent area from the opposite side of the obstacle. Item 4. The autonomous mobile device according to Item 1.
  3.  前記遠隔領域情報は、前記障害物との間に存在する他のグリッド要素の数に対応する情報を含む請求項1に記載の自律移動装置。 2. The autonomous mobile device according to claim 1, wherein the remote area information includes information corresponding to the number of other grid elements existing between the obstacles.
  4.  前記センサにより検出された環境情報は前記障害物までの実測距離を表す情報を含み、
     前記推定部は、各グリッド要素が保持する前記障害物情報、前記隣接領域情報、及び前記遠隔領域情報に基づいて、前記仮想距離を算出する請求項1に記載の自律移動装置。
    The environmental information detected by the sensor includes information representing the measured distance to the obstacle,
    The autonomous mobile device according to claim 1, wherein the estimation unit calculates the virtual distance based on the obstacle information, the adjacent area information, and the remote area information held by each grid element.
  5.  前記推定部は、前記自己位置候補点から前記障害物に衝突した仮想光線が通過したグリッド要素ごとに、各グリッド要素が保持する前記障害物情報と、前記隣接領域情報と、前記遠隔領域情報とのいずれかを読出し、前記隣接領域情報を読み出したグリッド要素と前記障害物との間の衝突判定のための計算を実施する請求項1に記載の自律移動装置。 The estimation unit, for each grid element through which a virtual ray colliding with the obstacle from the self-position candidate point has passed, the obstacle information held by each grid element, the adjacent area information, the remote area information, The autonomous mobile device according to claim 1, wherein a calculation for determining a collision between the grid element from which the adjacent area information is read and the obstacle is performed.
  6.  前記センサが、レーザレンジファインダである請求項1に記載の自律移動装置。
     
    The autonomous mobile device according to claim 1, wherein the sensor is a laser range finder.
PCT/JP2015/052391 2014-10-28 2015-01-28 Autonomous moving device WO2016067640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014219614A JP5902275B1 (en) 2014-10-28 2014-10-28 Autonomous mobile device
JP2014-219614 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016067640A1 true WO2016067640A1 (en) 2016-05-06

Family

ID=55747725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052391 WO2016067640A1 (en) 2014-10-28 2015-01-28 Autonomous moving device

Country Status (2)

Country Link
JP (1) JP5902275B1 (en)
WO (1) WO2016067640A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106983460A (en) * 2017-04-07 2017-07-28 小狗电器互联网科技(北京)股份有限公司 A kind of sweeping robot region cleans display control method
WO2019085567A1 (en) * 2017-10-30 2019-05-09 珠海市一微半导体有限公司 Robot path prediction and control method
WO2019228436A1 (en) * 2018-06-01 2019-12-05 浙江亚特电器有限公司 Route planning method for mobile vehicle
US11574483B2 (en) 2019-12-24 2023-02-07 Yandex Self Driving Group Llc Methods and systems for computer-based determining of presence of objects
US11753037B2 (en) 2019-11-06 2023-09-12 Yandex Self Driving Group Llc Method and processor for controlling in-lane movement of autonomous vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474927B (en) * 2020-04-01 2023-04-18 北京智行者科技股份有限公司 Preprocessing method and device for distance transformation
JP7227944B2 (en) * 2020-07-03 2023-02-22 日立チャネルソリューションズ株式会社 Working vehicle and working method
CN113093736B (en) * 2021-03-17 2023-01-13 湖南格兰博智能科技有限责任公司 Low-cost chip route-finding algorithm suitable for sweeper

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205348A (en) * 2005-01-31 2006-08-10 Sony Corp Obstacle avoiding device, obstacle avoiding method, obstacle avoiding program, and movable robot device
JP2009157430A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Coordinate correction method, coordinate correction program and autonomous mobile robot
JP2009217333A (en) * 2008-03-07 2009-09-24 Toyota Motor Corp Mobile robot and operation control method thereof
US20100061185A1 (en) * 2008-09-11 2010-03-11 Pohang University Of Science And Technology Method of constructing environmental map using sonar sensors
JP2010072762A (en) * 2008-09-16 2010-04-02 Murata Machinery Ltd Environment map correction device and autonomous mobile device
JP2011128899A (en) * 2009-12-17 2011-06-30 Murata Machinery Ltd Autonomous mobile device
JP2012022467A (en) * 2010-07-13 2012-02-02 Murata Mach Ltd Autonomous mobile body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205348A (en) * 2005-01-31 2006-08-10 Sony Corp Obstacle avoiding device, obstacle avoiding method, obstacle avoiding program, and movable robot device
JP2009157430A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Coordinate correction method, coordinate correction program and autonomous mobile robot
JP2009217333A (en) * 2008-03-07 2009-09-24 Toyota Motor Corp Mobile robot and operation control method thereof
US20100061185A1 (en) * 2008-09-11 2010-03-11 Pohang University Of Science And Technology Method of constructing environmental map using sonar sensors
JP2010072762A (en) * 2008-09-16 2010-04-02 Murata Machinery Ltd Environment map correction device and autonomous mobile device
JP2011128899A (en) * 2009-12-17 2011-06-30 Murata Machinery Ltd Autonomous mobile device
JP2012022467A (en) * 2010-07-13 2012-02-02 Murata Mach Ltd Autonomous mobile body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALVES, P.; ET AL.: "Localization and navigation of a mobile robot in an office-like environment", AUTONOMOUS ROBOT SYSTEMS (ROBOTICA), 2013 13TH INTERNATIONAL CONFERENCE, 24 April 2013 (2013-04-24), pages 1 - 6, XP032498367, DOI: doi:10.1109/Robotica.2013.6623536 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106983460A (en) * 2017-04-07 2017-07-28 小狗电器互联网科技(北京)股份有限公司 A kind of sweeping robot region cleans display control method
CN106983460B (en) * 2017-04-07 2019-08-27 小狗电器互联网科技(北京)股份有限公司 A kind of sweeping robot region cleaning display control method
WO2019085567A1 (en) * 2017-10-30 2019-05-09 珠海市一微半导体有限公司 Robot path prediction and control method
US11526170B2 (en) 2017-10-30 2022-12-13 Amicro Semiconductor Co., Ltd. Method for detecting skidding of robot, mapping method and chip
WO2019228436A1 (en) * 2018-06-01 2019-12-05 浙江亚特电器有限公司 Route planning method for mobile vehicle
US11385067B2 (en) 2018-06-01 2022-07-12 Zhejiang Yat Electrical Appliance Co., Ltd Route planning method for mobile vehicle
US11753037B2 (en) 2019-11-06 2023-09-12 Yandex Self Driving Group Llc Method and processor for controlling in-lane movement of autonomous vehicle
US11574483B2 (en) 2019-12-24 2023-02-07 Yandex Self Driving Group Llc Methods and systems for computer-based determining of presence of objects

Also Published As

Publication number Publication date
JP2016085689A (en) 2016-05-19
JP5902275B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5902275B1 (en) Autonomous mobile device
JP6949107B2 (en) Systems and methods for training robots to drive autonomously on the route
US9239580B2 (en) Autonomous mobile robot, self position estimation method, environmental map generation method, environmental map generation apparatus, and data structure for environmental map
JP2007310866A (en) Robot using absolute azimuth and map creation method using it
JP5817611B2 (en) Mobile robot
JP2022511359A (en) Autonomous map traversal with waypoint matching
US11112780B2 (en) Collaborative determination of a load footprint of a robotic vehicle
Ravankar et al. A hybrid topological mapping and navigation method for large area robot mapping
CN103472434B (en) Robot sound positioning method
US11931900B2 (en) Method of predicting occupancy of unseen areas for path planning, associated device, and network training method
JP2016149090A (en) Autonomous mobile device, autonomous mobile system, autonomous mobile method and program
JP2017526083A (en) Positioning and mapping apparatus and method
JP2010066932A (en) Route planning unit and autonomous mobile device
Tsai et al. Use of ultrasonic sensors to enable wheeled mobile robots to avoid obstacles
JP5414465B2 (en) Simulation system
JP5287050B2 (en) Route planning method, route planning device, and autonomous mobile device
Csaba et al. Differences between Kinect and structured lighting sensor in robot navigation
JP2018206038A (en) Point group data processing device, mobile robot, mobile robot system, and point group data processing method
JP6759625B2 (en) Measuring device
Jae-Bok Mobile robot localization using range sensors: Consecutive scanning and cooperative scanning
KR102009479B1 (en) Apparatus and method for controlling mobile robot
Kumar Development of SLAM algorithm for a Pipe Inspection Serpentine Robot
JP2021114222A (en) Robot system and method of estimating its position
WO2018180175A1 (en) Mobile body, signal processing device, and computer program
Hwang et al. Robust 3D map building for a mobile robot moving on the floor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853959

Country of ref document: EP

Kind code of ref document: A1