WO2016035821A1 - Resin composition for temporary fixation, resin film for temporary fixation, resin film sheet for temporary fixation, and method for working semiconductor wafer - Google Patents

Resin composition for temporary fixation, resin film for temporary fixation, resin film sheet for temporary fixation, and method for working semiconductor wafer Download PDF

Info

Publication number
WO2016035821A1
WO2016035821A1 PCT/JP2015/074966 JP2015074966W WO2016035821A1 WO 2016035821 A1 WO2016035821 A1 WO 2016035821A1 JP 2015074966 W JP2015074966 W JP 2015074966W WO 2016035821 A1 WO2016035821 A1 WO 2016035821A1
Authority
WO
WIPO (PCT)
Prior art keywords
temporary fixing
semiconductor wafer
resin
film
meth
Prior art date
Application number
PCT/JP2015/074966
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 上野
孝寛 徳安
竜也 牧野
省吾 祖父江
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016546674A priority Critical patent/JPWO2016035821A1/en
Publication of WO2016035821A1 publication Critical patent/WO2016035821A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a temporarily fixing resin composition, a temporarily fixing resin film, a temporarily fixing resin film sheet, and a semiconductor wafer processing method used when processing a semiconductor wafer.
  • SIP System in Package
  • a semiconductor element is manufactured, for example, by incorporating an integrated circuit into a semiconductor wafer having a certain thickness, then thinning the semiconductor wafer by grinding the back surface, and further dividing the semiconductor wafer into individual pieces. Processing of a semiconductor wafer is performed by temporarily fixing the semiconductor wafer to a support with a temporarily fixing material (for example, refer to Patent Document 1 below).
  • TSV through silicon via
  • thermosetting resin such as an epoxy resin
  • the curing is preferably performed at a low temperature for a short time in consideration of damage to the semiconductor wafer.
  • uncured components remain in the curing at a low temperature in a short time, and if uncured components remain, foaming may occur in a high temperature process.
  • the present invention has been made in view of the above circumstances, and a temporarily fixing resin composition capable of forming a temporarily fixing material that can be cured at a low temperature for a short time, and for temporarily fixing using the temporarily fixing resin composition It aims at providing the processing method of a resin film, the resin film sheet for temporary fixation, and a semiconductor wafer.
  • the present invention relates to a temporary fixing resin composition for forming a temporary fixing material used in a method for processing a semiconductor wafer, wherein (A) a thermoplastic resin (component (A)) and (B) a thermosetting resin. ((B) component), (C) (meth) acrylic monomer ((C) component), and (D) a compound ((D) component) that generates a base and a radical by radiation. ) Component content is 5 parts by mass or more with respect to 100 parts by mass of the component (C), and the semiconductor wafer processing method temporarily fixes the semiconductor wafer to a support via the temporary fixing material.
  • a fixing step a processing step of processing the semiconductor wafer temporarily fixed to the support; and a separation step of separating the processed semiconductor wafer from the support and the temporary fixing material.
  • radiation irradiation is performed on the temporary fixing material. It takes place, provides a temporary fixing resin composition.
  • the temporary fixing resin composition according to the present invention uses the components (A) to (D) and the content of the component (D) is in a specific range, so that bases and radicals generated after radiation irradiation Since a reaction is induced by this, a temporary fixing material (such as a film-like temporary fixing material) that can be cured at a low temperature for a short time can be formed.
  • the “low temperature” is, for example, 160 ° C. or less
  • the “short time” is, for example, 60 seconds or less.
  • the temporary fixing material is required to have releasability so that the processed semiconductor wafer can be easily separated from the support.
  • the semiconductor wafer and the support can be separated at as low a temperature as possible so that the semiconductor wafer is not damaged and warped, and that no temporary fixing material remains on the semiconductor wafer.
  • the temporary fixing material described in Patent Document 1 has a tendency that heat resistance to a high-temperature process when a through electrode is formed on a semiconductor wafer and a high-temperature process when connecting the semiconductor wafers formed with the through-electrode are not sufficient. is there. If the heat resistance of the temporarily fixing material is insufficient, there is a tendency that the temporarily fixing material is thermally decomposed during the high temperature process and the semiconductor wafer is peeled off from the support. On the other hand, use of general resin excellent in heat resistance, such as a polyimide having a high glass transition temperature (Tg), can be considered.
  • Tg glass transition temperature
  • the temporary fixing material is in the form of a film to make it easy to ensure flatness during processing, if the glass transition temperature of the resin is high, the semiconductor wafer and the support are bonded together at a high temperature. Must be performed, which may damage the semiconductor wafer. For this reason, the film-like temporary fixing material is required to have a low temperature sticking property that can sufficiently fix the semiconductor wafer and the support even if they are bonded together at a low temperature.
  • the temporary fixing resin composition according to the present invention has good storage stability, can cope with low-temperature and short-time curing, and has excellent low-temperature sticking property and sufficient heat resistance.
  • a temporary fixing material (such as a film-like temporary fixing material) that can sufficiently fix the semiconductor wafer to the support can be formed.
  • This temporary fixing material can easily separate the processed semiconductor wafer from the support and can be easily separated from the processed semiconductor wafer, so that the processed semiconductor wafer is not immersed in a solvent. Can be easily separated from the support and the temporary fixing material.
  • the resin composition for temporary fixing according to the present invention has excellent adhesiveness. Thereby, a support body and a semiconductor wafer can be firmly fixed at the time of grinding (for example, back grinding process) of a semiconductor wafer.
  • the components (A) to (D) are used, and the content of the (D) component is in a specific range, whereby the temporary fixing resin composition is formed.
  • the storage stability of the fixing material such as a film-like temporary fixing material
  • low-temperature curing, and short-time curing can be achieved at a high level.
  • the component (C) preferably has two or more functional groups.
  • the sticking property (low temperature sticking property, etc.) of the temporarily fixing material (film-like temporarily fixing material, etc.) formed from the temporarily fixing resin composition and the short-time curing are further improved. Both can be achieved at a high level.
  • the resin composition for temporary fixing according to the present invention further contains an epoxy resin curing agent and the component (B) is an epoxy resin is preferable.
  • the sticking property (low temperature sticking property, etc.) and the heat resistance of the temporarily fixing material (film-like temporarily fixing material, etc.) formed from the temporarily fixing resin composition can be achieved at a higher level.
  • the component (A) is preferably a (meth) acrylic copolymer having a reactive group.
  • the low-temperature sticking property and the heat resistance of the temporarily fixing material (film-like temporarily fixing material or the like) formed from the temporarily fixing resin composition can be made compatible at a higher level.
  • the resin composition for temporary fixing according to the present invention preferably further contains a silicone compound.
  • the peelability can be further improved.
  • the resin composition for temporary fixing according to the present invention preferably further contains a curing accelerator. In this case, it becomes easy to achieve both curability and storage stability of the temporarily fixing resin composition.
  • the present invention also provides a temporarily fixing resin film formed by forming the temporarily fixing resin composition according to the present invention into a film shape.
  • a temporarily fixing resin film formed by forming the temporarily fixing resin composition according to the present invention into a film shape.
  • the temporary fixing resin film according to the present invention preferably has a viscosity of 200 to 6000 Pa ⁇ s at 120 ° C. before radiation irradiation.
  • the present invention also includes a support film having releasability and the temporarily fixing resin film according to the present invention, wherein the temporarily fixing resin film is provided on the support film.
  • a film sheet According to the resin film sheet for temporary fixing according to the present invention, the resin film for temporary fixing according to the present invention can be easily transferred to a semiconductor wafer or a support, and the semiconductor wafer can be processed efficiently.
  • the present invention also provides a temporary fixing step of temporarily fixing a semiconductor wafer to a support via a temporary fixing material, a processing step of processing the semiconductor wafer temporarily fixed to the support, and the processed semiconductor wafer Separating from the support and the temporary fixing material, radiation irradiation is performed on the temporary fixing material in the temporary fixing step, and the temporary fixing material is for temporary fixing according to the present invention.
  • a method for processing a semiconductor wafer, which is a resin film, is provided. According to the semiconductor wafer processing method of the present invention, the temporarily fixing resin composition can be cured at a low temperature in a short time, and the semiconductor wafer can be processed efficiently.
  • a temporarily fixing resin composition capable of forming a temporarily fixing material that can be cured at a low temperature for a short time, a temporarily fixing resin film using the temporarily fixing resin composition, and a temporarily fixing resin film sheet
  • a method for processing a semiconductor wafer can be provided. According to the present invention, it has good storage stability, can cope with low temperature and short time curing, has excellent low temperature sticking property and sufficient heat resistance, and can sufficiently fix a semiconductor wafer to a support.
  • a temporary fixing resin composition capable of forming a temporary fixing material capable of easily separating the processed semiconductor wafer from the support and the temporary fixing material, and a temporary fixing using the temporary fixing resin composition
  • a fixing resin film, a temporary fixing resin film sheet, and a method for processing a semiconductor wafer can be provided.
  • the present invention it is possible to provide an application of a resin composition for forming a temporary fixing material.
  • ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition for forming a film-form temporary fixing material can be provided. ADVANTAGE OF THE INVENTION according to this invention, the application of the resin composition for forming the temporary fixing material used for the processing method of a semiconductor wafer can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition for forming the film-form temporary fixing material used for the processing method of a semiconductor wafer can be provided.
  • the application of the resin composition, the resin film, or the resin film sheet for temporary fixing to the temporary fixation of a semiconductor wafer can be provided.
  • ADVANTAGE OF THE INVENTION the application of the resin composition, the resin film, or the resin film sheet for temporary fixing to manufacture of a semiconductor element can be provided.
  • ADVANTAGE OF THE INVENTION the application of the resin composition, the resin film, or the resin film sheet for temporary fixing to manufacture of a semiconductor device can be provided.
  • FIG. 1 (A) is a top view showing one embodiment of a resin film sheet for temporary fixing according to the present invention
  • FIG. 1 (B) is a schematic cross section taken along line II of FIG. 1 (A).
  • FIG. FIG. 2 (A) is a top view showing another embodiment of the resin film sheet for temporary fixing according to the present invention
  • FIG. 2 (B) is a schematic view taken along line II-II in FIG. 2 (A).
  • 3A, 3B, and 3C are schematic cross-sectional views for explaining one embodiment of a method for processing a semiconductor wafer
  • FIG. 3D is a semiconductor after processing. It is a top view which shows a wafer.
  • FIG. 3D is a semiconductor after processing. It is a top view which shows a wafer.
  • FIG. 4 is a schematic cross-sectional view for explaining an embodiment of a separation process for separating a processed semiconductor wafer from a support and a temporary fixing material.
  • FIG. 5 is a schematic cross-sectional view for explaining an embodiment of a method for manufacturing a semiconductor device.
  • (meth) acryl is used to mean at least one of acrylic and methacryl corresponding thereto. The same applies to other similar expressions such as “(meth) acrylate”. “A or B” only needs to include either A or B, and may include both.
  • the materials exemplified below may be used alone or in combination of two or more unless otherwise specified.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means.
  • the temporarily fixing resin composition according to the present embodiment is a temporarily fixing resin composition for forming a temporarily fixing material (film-like temporarily fixing material (temporary fixing film) or the like) used in a semiconductor wafer processing method. It is.
  • the resin composition for temporary fixing according to the present embodiment includes (A) a thermoplastic resin (component (A)), (B) a thermosetting resin (component (B)), (C) (meth) acrylic monomer (( C) component) and (D) a compound ((D) component) that generates a base and a radical by radiation, and the content of (D) component is 5 masses per 100 parts by mass of (C) component. Or more.
  • the semiconductor wafer processing method includes a temporary fixing step of temporarily fixing a semiconductor wafer to a support via a temporary fixing material, a processing step of processing the semiconductor wafer temporarily fixed to the support, and a processed semiconductor wafer. Separating from the support and the temporary fixing material.
  • the temporary fixing material is irradiated with radiation in the temporary fixing step.
  • the temporarily fixing resin composition according to the present embodiment is a temporarily fixing resin composition that can cope with low-temperature and short-time curing by generated bases and radicals.
  • the resin composition for temporary fixing uses the components (A) to (D) and the content of the component (D) is in a specific range, the reaction is not induced before irradiation and good storage is achieved. It has stability, and after irradiation, the reaction is induced by the generated bases and radicals and can cope with low temperature and short time curing. It has excellent low temperature sticking property and sufficient heat resistance, and supports semiconductor wafers.
  • Temporary fixing resin that can form a temporary fixing material (film-like temporary fixing material, etc.) that can be sufficiently fixed to the substrate and can easily separate the processed semiconductor wafer from the support and the temporary fixing material.
  • a composition can be provided.
  • thermoplastic resin used in the present embodiment is not particularly limited as long as it is a thermoplastic resin or a resin that has a thermoplastic property at least in an uncured state and forms a crosslinked structure after heating.
  • a thermoplastic resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermoplastic resin a (meth) acrylic copolymer having a reactive group (reactive group-containing (meth) acrylic copolymer) is preferable.
  • (Meth) acrylic copolymers include, for example, (meth) acrylic ester copolymers.
  • the (meth) acrylic ester copolymer is a copolymer having a structural unit derived from a (meth) acrylic acid ester.
  • the (meth) acrylic ester copolymer is preferably a copolymer obtained by polymerizing a monomer composition containing (meth) acrylic acid ester as a main component, and (meth) acrylic from the viewpoint of further excellent polarity or heat resistance.
  • a copolymer obtained by polymerizing a monomer composition containing an acid ester and acrylonitrile is more preferred.
  • (meth) acrylic acid esters include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, and propyl.
  • Examples include methacrylate, isopropyl methacrylate, butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, and lauryl methacrylate.
  • Examples of the copolymer based on a specific monomer combination include, for example, a copolymer having a structural unit derived from butyl acrylate and a structural unit derived from acrylonitrile, a structural unit derived from ethyl acrylate, and acrylonitrile. And a copolymer having a derived structural unit.
  • the (meth) acrylic copolymer having a reactive group can be obtained by copolymerizing a monomer composition containing a (meth) acrylic monomer having a reactive group and the above monomer.
  • the reactive group is preferably at least one selected from the group consisting of an epoxy group, a carboxyl group, an acryloyl group, a methacryloyl group, a hydroxyl group and an episulfide group from the viewpoint of further improving the heat resistance.
  • the epoxy group may be included as a glycidyl group. Among these, an epoxy group and a carboxyl group are more preferable from the viewpoint of excellent crosslinkability.
  • examples of the (meth) acrylic monomer having a reactive group include glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl acrylate, glycidyl methacrylate, 4 -Hydroxybutyl methacrylate glycidyl ether and 3,4-epoxycyclohexylmethyl methacrylate.
  • at least one selected from the group consisting of glycidyl acrylate and glycidyl methacrylate is preferable from the viewpoint of further excellent heat resistance.
  • the (meth) acrylic copolymer having a reactive group preferably has a structural unit derived from at least one selected from the group consisting of glycidyl acrylate and glycidyl methacrylate from the viewpoint of further excellent heat resistance.
  • the Tg (glass transition temperature, glass transition point) of the thermoplastic resin is preferably -50 ° C to 50 ° C.
  • a temporarily fixing material such as a film-like temporarily fixing material
  • flexibility can be secured, and low temperature sticking property Can be easily suppressed.
  • bumps or the like are present on the semiconductor wafer, it is easy to embed bumps at 150 ° C. or lower.
  • the Tg of the thermoplastic resin (A) is ⁇ 50 ° C. or more, the flexibility becomes too high when a temporary fixing material (film-like temporary fixing material or the like) is formed from the temporary fixing resin composition. Decrease in handleability and peelability can be easily suppressed.
  • Tg of the thermoplastic resin is a value of a midpoint glass transition temperature when the (A) thermoplastic resin is measured using a differential scanning calorimeter (DSC8320, manufactured by Rigaku Corporation).
  • the Tg of the thermoplastic resin (A) was calculated by a method according to JIS K 7121: 1987 by measuring the change in calorie under the measurement conditions of a heating rate of 10 ° C./min and a measurement temperature of ⁇ 80 to 80 ° C. The midpoint glass transition temperature.
  • the weight average molecular weight of the thermoplastic resin is preferably 100,000 or more and 2,000,000 or less, more preferably 120,000 or more and 1.9 million or less, and further preferably 150,000 or more and 1.8 million or less.
  • the weight average molecular weight is 100,000 or more, it becomes easy to ensure the heat resistance of the temporarily fixing resin composition.
  • the weight average molecular weight is 2,000,000 or less, when a temporarily fixing material (film-like temporarily fixing material, etc.) is formed from the temporarily fixing resin composition, the flow is lowered and the adhesiveness (low temperature adhesiveness, etc.) Can be easily suppressed.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC) and is a polystyrene equivalent value using a calibration curve based on standard polystyrene.
  • the weight average molecular weight of (A) the thermoplastic resin can be measured using GPC (HLC-8320GPC manufactured by Tosoh Corporation) under the conditions of an eluent flow rate of 1 mL / min and a column temperature of 40 ° C. Tetrahydrofuran can be used as the eluent.
  • GPC gel permeation chromatography
  • the (meth) acrylic copolymer having a reactive group contains glycidyl acrylate and / or glycidyl methacrylate as a copolymerization component (a monomer component giving a (meth) acrylic copolymer), the total of these contents is The content is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and still more preferably 1.0 to 10% by mass, based on the total amount of copolymerization components.
  • a temporarily fixing material film-like temporarily fixing material, etc.
  • the (meth) acrylic copolymer having a reactive group as described above a polymer obtained by a polymerization method such as pearl polymerization or solution polymerization may be used, or HTR-860P-3CSP (Nagase ChemteX). Commercially available products such as HTR-860P-3CSP-30B (manufactured by Nagase ChemteX Corporation) may be used.
  • the content of the component (A) is preferably 15% by mass or more and 40% by mass or less based on the total mass of the solid content of the resin composition from the viewpoint of easily forming a film.
  • thermosetting resin thermosetting resin>
  • the (B) thermosetting resin used in the present embodiment is not particularly limited as long as it is cured by heat.
  • thermosetting resin examples include epoxy resin, acrylic resin, silicone resin, phenol resin, thermosetting polyimide resin, polyurethane resin, melamine resin, and urea resin.
  • a thermosetting resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an epoxy resin curing agent it is preferable to use an epoxy resin curing agent together.
  • the epoxy resin is not particularly limited as long as it is cured and has a heat resistance.
  • the epoxy resin include bifunctional epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; novolak type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin.
  • the epoxy resin a generally known resin such as a polyfunctional epoxy resin, a glycidylamine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin can be applied.
  • Examples of the bisphenol A type epoxy resin include Japan Epoxy Resin Co., Ltd. Epicoat Series (Epicoat 807, Epicoat 815, Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 834, Epicoat 1001, Epicoat 1004, Epicoat 1007, Epicoat 1009, "Epicoat” DER-330, DER-301 and DER-361 manufactured by Dow Chemical Co .; YD-8125 and YDF-8170 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and the like.
  • Examples of the bisphenol F type epoxy resin include YDF-8170C manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Examples of the phenol novolac type epoxy resin include Epicoat 152 and Epicoat 154 manufactured by Japan Epoxy Resin Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd., and DEN-438 manufactured by Dow Chemical Co., Ltd.
  • cresol novolac type epoxy resin examples include EOCN-102S, EOCN-103S, EOCN-104S, EOCN-1012, EOCN-1025, EOCN-1027, and Nippon Kayaku Co., Ltd. YDCN700, YDCN701, YDCN702, YDCN703, YDCN704, etc., manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Epon 1031S manufactured by Japan Epoxy Resin Co., Ltd .
  • Araldite 0163 manufactured by Ciba Specialty Chemicals
  • Aldite and "Denacol” are registered trademarks.
  • Epicoat 604 manufactured by Japan Epoxy Resin Co., Ltd .; YH-434 manufactured by Toto Kasei Co., Ltd .; TETRAD-X and TETRAD-C manufactured by Mitsubishi Gas Chemical Company, Inc .; ELM- manufactured by Sumitomo Chemical Co., Ltd. 120 etc. are mentioned.
  • heterocyclic ring-containing epoxy resin examples include Araldite PT810 manufactured by Ciba Specialty Chemicals; ERL4234, ERL4299, ERL4221, and ERL4206 manufactured by UCC.
  • An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an epoxy resin curing agent When using an epoxy resin, it is preferable to use an epoxy resin curing agent.
  • the epoxy resin curing agent a known curing agent that is usually used can be used.
  • the epoxy resin curing agent include amines; polyamides; acid anhydrides; polysulfides; boron trifluoride; bisphenols having two or more phenolic hydroxyl groups in one molecule such as bisphenol A, bisphenol F, and bisphenol S.
  • Phenolic novolac resins bisphenol A novolak resins, phenol aralkyl resins, biphenyl aralkyl type phenol resins, phenol resins such as cresol novolac resins, and the like.
  • a phenol resin is preferable, and at least one selected from the group consisting of a phenol novolak resin, a bisphenol A novolak resin, a phenol aralkyl resin, a biphenyl aralkyl type phenol resin, and a cresol novolak resin is more preferable. .
  • Preferred curing agents among the phenolic resin curing agents include, for example, trade names: Phenolite LF2882, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH-4150, and DIC Corporation.
  • Phenolite VH4170 Meiwa Kasei Co., Ltd. trade name: H-1, Japan Epoxy Resin Co., Ltd. trade name: Epicure MP402FPY, Epicure YL6065, Epicure YLH129B65, Mitsui Chemicals Co., Ltd. trade names: Mirex XL, Mirex XLC , Mirex RN, Mirex RS, Mirex VR, and Nippon Kayaku Co., Ltd. trade name: Kayahard GPH-103 ("Phenolite", “Epicure”, “Millex”, "Kayahard” Trademark).
  • the content of the (B) thermosetting component in the resin composition for temporary fixing according to the present embodiment is (A) heat from the viewpoint that the low-temperature sticking property, heat resistance and curability can be achieved at a higher level.
  • the following ranges are preferable with respect to 100 parts by mass of the plastic resin.
  • the content of the thermosetting component has further improved adhesive properties (low temperature adhesive properties, etc.) and heat resistance, and it has been suppressed that the retainability at the time of back grinding is lowered due to low elasticity.
  • the content of the thermosetting component is preferably 500 parts by mass or less, more preferably 400 parts by mass or less from the viewpoint of suppressing the viscosity before curing from being lowered and further suppressing the time required for curing. Is more preferably 300 parts by mass or less, and particularly preferably 250 parts by mass or less. From these viewpoints, the content of the thermosetting component (B) is preferably 10 to 500 parts by mass, and more preferably 50 to 300 parts by mass.
  • (meth) acrylic monomer As the (C) (meth) acrylic monomer used in this embodiment, a (meth) acrylic monomer having two or more functional groups can be used, and a bifunctional (meth) acrylate or a trifunctional or more polyfunctional one can be used. Any of (meth) acrylates can be used and is not particularly limited.
  • bifunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth).
  • aliphatic (meth) acrylates such as neopentyl glycol type epoxy (meth) acrylate; cyclohexanedimethanol type epoxy (meth) acrylate, hydrogenated bisphenol A type epoxy
  • trifunctional or higher polyfunctional (meth) acrylates examples include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated propoxylated tri Methylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, pentaerythritol Tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol
  • Each of the bifunctional (meth) acrylate and the trifunctional or higher polyfunctional (meth) acrylate may be used alone or in combination of two or more.
  • a bifunctional (meth) acrylate or a polyfunctional (meth) acrylate having three or more functions and other polymerizable compounds may be used in combination.
  • the content of (C) (meth) acrylic monomer in the temporarily fixing resin composition according to the present embodiment can be easily cured for a short time, and from the viewpoint of being able to easily obtain sufficient low-temperature sticking properties.
  • the content of (C) (meth) acrylic monomer is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 30 parts by mass or more, and 50 parts by mass or more from the viewpoint of easy curing for a short time. Is particularly preferred.
  • the content of the (meth) acrylic monomer is such that the film after curing is suppressed from becoming less elastic, and the retention during back grinding is suppressed from being lowered, so that the wafer is likely to break. From the viewpoint of being suppressed, it is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and still more preferably 100 parts by mass or less. From these viewpoints, the content of (C) (meth) acrylic monomer is preferably 5 to 200 parts by mass, and more preferably 10 to 150 parts by mass.
  • ⁇ (D) component a compound that generates a base and a radical by radiation>
  • the compound which generates a base and a radical by radiation (radiation irradiation) used in the present embodiment is not particularly limited as long as it initiates polymerization by irradiation with actinic rays such as ultraviolet rays (UV) and visible rays. .
  • the compound that generates a base and a radical by radiation is not particularly limited, and examples thereof include ⁇ -aminoketone compounds.
  • ⁇ -aminoketone compounds include 2-benzyl-2-dimethylamino-1- (4-morpholin-4-ylphenyl) -butan-1-one, 2-dimethylamino-2- (4-methylbenzyl)- 1- (4-Morpholin-4-ylphenyl) -butan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl]-(4-morpholin) -2-ylpropane-1 -ON and the like.
  • the component (D) such as ⁇ -aminoketone compound
  • the component (D) such as ⁇ -aminoketone compound
  • the component (D) is dissociated, and a photoreactive monomer polymerization reaction occurs with the generation of radicals.
  • dissociation of the component (D) reduces the steric hindrance so that an activated base (such as amine) is present.
  • a base (amine or the like) has a hardening accelerating action of the thermosetting resin, and thereafter a hardening accelerating action is activated by heating.
  • a hardening accelerating action is activated by heating.
  • there is no radical and activated base such as amine
  • a temporary fixing material having excellent storage stability at room temperature is provided.
  • the curing rate of the photoreactive monomer and the thermosetting resin varies depending on the structure of radicals and bases (amine, etc.) generated by radiation irradiation, the component (D) can be appropriately determined. .
  • the content of the component (D) in the temporarily fixing resin composition according to the present embodiment is (A) from the viewpoint that curing at a low temperature and short time can be easily achieved due to the generation of a sufficient amount of base and radical.
  • 1 mass part or more is preferable with respect to 100 mass parts of thermoplastic resins, 2 mass parts or more are more preferable, and 4 mass parts or more are still more preferable.
  • the content of the component (D) is preferably 70 parts by mass or less and more preferably 65 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A) from the viewpoint that low-temperature short-time curing can be easily achieved. 60 parts by mass or less is more preferable.
  • the content of the component (D) in the resin composition for temporary fixing according to the present embodiment is (C) (meth) acrylic monomer 100 from the viewpoint that curing at a low temperature and short time is possible by generating a sufficient amount of radicals. It is 5 mass parts or more with respect to a mass part.
  • the content of the component (D) is preferably 10 parts by mass or more, and 20 parts by mass or more with respect to 100 parts by mass of the (C) (meth) acrylic monomer, from the viewpoint that curing at low temperature and short time can be easily achieved. More preferably, 30 parts by mass or more is further preferable, and 40 parts by mass or more is particularly preferable.
  • the content of the component (D) is (C )
  • 100 parts by mass or less is preferable with respect to 100 parts by mass of the (C) (meth) acrylic monomer, 75 mass parts or less are more preferable, and 50 mass parts or less are still more preferable.
  • the content of the component (D) is preferably 5 to 100 parts by mass and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the (C) (meth) acrylic monomer.
  • the temporarily fixing resin composition according to the present embodiment generates (A) a thermoplastic resin, (B) a thermosetting resin, (C) a (meth) acrylic monomer, and (D) a base and a radical by radiation.
  • (E) a silicone compound, (F) a curing accelerator, (G) an inorganic filler, an organic solvent, and / or other components can be contained as necessary.
  • the silicone compound is not particularly limited as long as it is a compound having a polysiloxane structure. Silicone-modified resins, poly-modified silicone compounds (such as polyether-modified silicone compounds), straight silicone oils, non-reactive modified silicone oils And reactive modified silicone oils. A silicone compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the (E) silicone compound used in the present embodiment is a silicone-modified resin
  • a silicone-modified alkyd resin is preferable.
  • the temperature is 100 ° C. or less. It can be easily peeled off without using a solvent at a low temperature.
  • a method for obtaining a silicone-modified alkyd resin for example, (i) a method using a normal synthetic reaction for obtaining an alkyd resin (that is, an organopolysiloxane is reacted with a polyhydric alcohol, a fatty acid, a polybasic acid, etc. And (ii) a method of reacting a general alkyd resin synthesized in advance with an organopolysiloxane.
  • Examples of the polyhydric alcohol used as a raw material for the alkyd resin include dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, and neopentyl glycol; glycerin, trimethylolethane, Examples include trihydric alcohols such as trimethylolpropane; tetrahydric or higher polyhydric alcohols such as diglycerin, triglycerin, pentaerythritol, dipentaerythritol, mannitol, and sorbit.
  • a polyhydric alcohol may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polybasic acid used as a raw material for the alkyd resin examples include aromatic polybasic acids such as phthalic anhydride, terephthalic acid, isophthalic acid, and trimetic acid; aliphatic saturated polybasic acids such as succinic acid, adipic acid, and sebacic acid.
  • Basic acid aliphatic unsaturated polybasic acid such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic anhydride; cyclopentadiene-maleic anhydride adduct, terpene-maleic anhydride adduct, rosin-maleic anhydride
  • polybasic acids by Diels-Alder reaction such as acid adducts.
  • a polybasic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the alkyd resin may further contain a modifying agent or a crosslinking agent.
  • modifiers examples include octylic acid, lauric acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, eleostearic acid, ricinoleic acid, dehydrated ricinoleic acid, or coconut oil, linseed oil, kiri oil, castor Oil, dehydrated castor oil, soybean oil, safflower oil, and these fatty acids can be used.
  • denaturant may be used individually by 1 type and may be used in combination of 2 or more type.
  • the temporarily fixing resin composition when the temporarily fixing resin composition according to this embodiment contains a silicone-modified alkyd resin, the temporarily fixing resin composition further contains a crosslinking agent capable of thermally crosslinking the silicone-modified alkyd resin and / or a catalyst.
  • a crosslinking agent capable of thermally crosslinking the silicone-modified alkyd resin and / or a catalyst.
  • the crosslinking agent include amino resins such as melamine resin and urea resin. In this case, it is possible to further improve the heat resistance and peelability of the temporarily fixing material (film-like temporarily fixing material or the like) formed from the temporarily fixing resin composition.
  • crosslinking agent examples include amino resins (melamine resins, urea resins, etc.), urethane resins, epoxy resins, and phenol resins. Among these, when an amino resin is used, an amino alkyd resin crosslinked with an amino resin is preferably obtained. Examples of such silicone-modified alkyd resins include Tesfine 319 and TA31-209E (trade name, manufactured by Hitachi Chemical Co., Ltd.). A crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an acidic catalyst can be used as a curing catalyst.
  • an acidic catalyst It can select suitably from well-known acidic catalysts as a crosslinking reaction catalyst of an alkyd resin, and can use it.
  • an acidic catalyst for example, an organic acidic catalyst such as p-toluenesulfonic acid and methanesulfonic acid is suitable.
  • An acidic catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the acidic catalyst is usually 0.1 to 40 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight as the total of the alkyd resin and the crosslinking agent. It is selected in the range of the part.
  • the surface free energy of the silicone-modified alkyd resin is preferably 15 to 30 mN / m.
  • the temporary fixing resin composition preferably contains a silicone-modified alkyd resin having a surface free energy of 15 to 27 mN / m, more preferably from 15 to 24 mN / m, from the viewpoint of further excellent heat resistance. More preferably, it contains an alkyd resin.
  • the surface free energy was measured with a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.) on a 0.3 ⁇ m thick film obtained by applying a silicone-modified alkyd resin on a PET film and drying at 150 ° C. for 30 seconds.
  • CA-X type can be used to measure the contact angles of water, ethylene glycol and methyl iodide, and can be calculated using surface free energy analysis software (EG-2 manufactured by Kyowa Interface Science Co., Ltd.).
  • the content of the (E) silicone compound in the temporarily fixing resin composition according to the present embodiment facilitates the viewpoint of excellent balance between solubility and adhesiveness, and adhesion and releasability after semiconductor wafer processing. From the standpoint of compatibility, the following ranges are preferable with respect to 100 parts by mass of (A) thermoplastic resin.
  • the content of the silicone compound is more preferably 1.0 part by mass or more, and 5.0 parts by mass from the viewpoint that the releasability after processing of the semiconductor wafer is further excellent and the wafer tends to be prevented from cracking.
  • the above is more preferable, 10 parts by mass or more is further preferable, 30 parts by mass or more is particularly preferable, and 50 parts by mass or more is extremely preferable.
  • the content of the silicone compound is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and still more preferably 70 parts by mass or less, from the viewpoint that sufficient adhesion to the wafer tends to be obtained. From these viewpoints, the content of the (E) silicone compound is preferably 1.0 to 100 parts by mass, and more preferably 5.0 to 80 parts by mass.
  • (F) curing accelerators include imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole-tetraphenylborate, and 1,8 -Diazabicyclo [5,4,0] undecene-7-tetraphenylborate.
  • a hardening accelerator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the (F) curing accelerator in the temporarily fixing resin composition according to the present embodiment is preferably 50 parts by mass or less, more preferably 20 parts by mass or less, with respect to 100 parts by mass of the (A) thermoplastic resin. 10 mass parts or less are still more preferable, and 1 mass part or less is especially preferable.
  • the content of the curing accelerator is within the above range, it is possible to obtain better storage stability while obtaining sufficient curability.
  • the content is 50 parts by mass or less, sufficient storage stability is easily obtained, and sufficient low-temperature sticking property is easily obtained.
  • (F) Although there is no restriction
  • Examples of the inorganic filler include metal fillers such as silver powder, gold powder, and copper powder; non-metallic inorganic fillers such as silica, alumina, boron nitride, titania, glass, iron oxide, and ceramic.
  • the inorganic filler can be selected according to the desired function.
  • the metal filler can be added for the purpose of imparting thixotropy to the temporarily fixing resin composition.
  • the nonmetallic inorganic filler can be added for the purpose of imparting low thermal expansion or low hygroscopicity to the temporarily fixing resin composition.
  • An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the inorganic filler is preferably a filler having an organic group on the surface.
  • the surface of the inorganic filler is modified with an organic group, so that dispersibility in an organic solvent when preparing a temporarily fixing resin composition, and a temporarily fixing material (film) formed from the temporarily fixing resin composition It is easy to improve the adhesion and heat resistance of the temporary fixing material.
  • the inorganic filler having an organic group on the surface can be obtained, for example, by mixing a silane coupling agent represented by the following general formula (B-1) and an inorganic filler and stirring at a temperature of 30 ° C. or higher. .
  • the modification of the surface of the inorganic filler with an organic group can be confirmed by UV (ultraviolet) measurement, IR (infrared) measurement, XPS (X-ray photoelectron spectroscopy) measurement, or the like.
  • X represents an organic group selected from the group consisting of a phenyl group, a glycidoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, a vinyl group, an isocyanate group, and a methacryloxy group;
  • R 11 , R 12 and R 13 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, isopropyl group and isobutyl group. It is done.
  • the alkyl group having 1 to 10 carbon atoms is preferably a methyl group, an ethyl group or a pentyl group from the viewpoint of easy availability.
  • X is preferably an amino group, a glycidoxy group, a mercapto group or an isocyanate group, more preferably a glycidoxy group or a mercapto group, from the viewpoint of further excellent heat resistance.
  • s is preferably 0 to 5, and more preferably 0 to 4, from the viewpoint of suppressing film flow during high heat and further improving heat resistance.
  • silane coupling agent examples include trimethoxyphenylsilane, dimethyldimethoxyphenylsilane, triethoxyphenylsilane, dimethoxymethylphenylsilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- Glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane
  • 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-mercaptopropyltrimethoxysilane are preferable, and trimethoxyphenylsilane, 3-glycol Sidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane are more preferable.
  • a silane coupling agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the silane coupling agent used is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the inorganic filler, from the viewpoint of balancing the effect of further improving the heat resistance and the storage stability. .05 to 20 parts by mass is more preferable, and from the viewpoint of further improving the heat resistance, 0.5 to 10 parts by mass is more preferable.
  • the content of the (G) inorganic filler in the temporarily fixing resin composition according to the present embodiment is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, with respect to 100 parts by mass of the (A) thermoplastic resin. 100 parts by mass or less is more preferable.
  • the minimum of content of an inorganic filler does not have a restriction
  • the temporary fixing resin composition according to this embodiment can further contain an organic filler.
  • the organic filler include carbon, rubber filler, silicone fine particles, polyamide fine particles, and polyimide fine particles.
  • the content of the organic filler is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and still more preferably 100 parts by mass or less with respect to (A) 100 parts by mass of the thermoplastic resin.
  • limiting in particular in content of an organic filler It is preferable that it is 5 mass parts or more with respect to 100 mass parts of (A) thermoplastic resins.
  • the resin composition for temporary fixing according to the present embodiment may be diluted with an organic solvent as necessary, and may contain an organic solvent.
  • the organic solvent is not particularly limited, but can be determined in consideration of the volatility during film formation from the boiling point.
  • a relatively low boiling point solvent such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene is used during film formation. This is preferable in that the curing of the film does not proceed.
  • a solvent having a relatively high boiling point such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, cyclohexanone.
  • An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the solid content concentration of the temporarily fixing resin composition according to the present embodiment is preferably 10 to 80% by mass.
  • the temporarily fixing resin composition generates (A) a thermoplastic resin, (B) a thermosetting resin, (C) a (meth) acrylic monomer, and (D) a base and a radical by radiation. And (E) a silicone compound, (F) a curing accelerator, (G) an inorganic filler, an organic solvent, and other components, if necessary, can be prepared by mixing and kneading. Mixing and kneading can be performed by appropriately combining dispersers such as a normal stirrer, a raking machine, a three-roller, and a bead mill.
  • dispersers such as a normal stirrer, a raking machine, a three-roller, and a bead mill.
  • the temporarily fixing resin film according to the present embodiment is formed by forming the temporarily fixing resin composition according to the present embodiment into a film shape.
  • the temporarily fixing resin film according to this embodiment is a film-like temporarily fixing resin composition, and includes the temporarily fixing resin composition according to this embodiment.
  • the temporarily fixing resin film sheet according to the present embodiment includes a supporting film having releasability and the temporarily fixing resin film according to the present embodiment, and the temporarily fixing resin film is provided on the supporting film. It has been.
  • the temporarily fixing resin film according to the present embodiment can be easily manufactured by, for example, applying a temporarily fixing resin composition to a support film. Moreover, when the resin composition for temporary fixing is diluted with the organic solvent, it can manufacture by apply
  • a protective film can be attached to the temporarily fixing resin film provided on the support film, if necessary.
  • a temporary fixing resin film sheet having a three-layer structure composed of a support film, a temporary fixing resin film, and a protective film, which will be described later, can be obtained.
  • the temporary fixing resin film sheet thus obtained can be easily stored by, for example, winding it into a roll. Moreover, a roll-shaped film can be cut out into a suitable size and stored in a sheet shape.
  • FIG. 1 (A) is a top view showing an embodiment of a temporarily fixing resin film sheet
  • FIG. 1 (B) is a schematic cross-sectional view taken along line II in FIG. 1 (A).
  • a temporary fixing resin film sheet 1 shown in FIG. 1 includes a support film 10 having releasability, a temporary fixing resin film 20 provided on the supporting film 10, and a supporting film 10 of the temporary fixing resin film 20. Includes a protective film 30 provided on the opposite side.
  • the constituent material of the support film 10 is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyamide, and polyimide.
  • the constituent material of the support film 10 is preferably polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polyamide, or polyimide from the viewpoint of excellent flexibility and toughness.
  • it is preferable to use as the support film a film that has been subjected to a release treatment with a silicone compound, a fluorine compound, or the like.
  • the thickness of the support film 10 may be appropriately changed depending on the intended flexibility, but is preferably 3 to 250 ⁇ m, more preferably 5 to 200 ⁇ m, and still more preferably 7 to 150 ⁇ m. If the thickness is 3 ⁇ m or more, the film strength is sufficient. If the thickness is 250 ⁇ m or less, sufficient flexibility can be obtained.
  • the thickness of the temporarily fixing resin film 20 according to the present embodiment is not particularly limited, but is preferably 5 to 300 ⁇ m after drying. If thickness is 5 micrometers or more, since thickness is enough, the intensity
  • a plurality of previously formed films having a thickness of 100 ⁇ m or less may be bonded together.
  • the residual solvent when the thick film is produced can be easily reduced.
  • the viscosity at 120 ° C. before irradiation of the temporarily fixing resin film 20 according to the present embodiment is preferably 200 to 6000 Pa ⁇ s from the viewpoint of excellent handleability of the film and stickability to a wafer (low temperature sticking property, etc.). . If the viscosity is 200 Pa ⁇ s or more, the film is too soft and the film is prevented from being difficult to handle. If the viscosity is 6000 Pa ⁇ s or less, it is too hard to prevent a sufficient sticking property (low temperature sticking property, etc.) from being obtained. Furthermore, the viscosity of the temporarily fixing resin film 20 according to the present embodiment at 120 ° C. after radiation irradiation is preferably 1000 to 10,000 Pa ⁇ s.
  • the viscosity can be measured by the following method. Three temporary fixing resin films having a thickness of 60 ⁇ m are laminated at 80 ° C. to obtain a thickness of 180 ⁇ m, and a measurement method is performed using a rotary viscoelasticity measuring device (ARES, manufactured by T.A. Instruments Co., Ltd.). The temperature was raised to 120 ° C at a heating rate of 20 ° C / min while applying 5% strain at 35 ° C under the conditions of a parallel plate, a measurement jig of 8 mm in diameter, a measurement mode of Dynamic temperature ramp, and a frequency of 1 Hz. And the viscosity at 120 ° C. is measured.
  • the viscosity increase rate (120 ° C.) when stored at 12 ° C. for 12 months (refrigerated storage) before irradiation is preferably 100% or less.
  • the constituent material of the protective film 30 is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, and polypropylene.
  • the constituent material of the protective film 30 is preferably polyethylene terephthalate, polyethylene, or polypropylene from the viewpoint of excellent flexibility and toughness. Further, from the viewpoint of further improving the peelability from the temporarily fixing resin film (resin layer), it is preferable to use as the protective film a film that has been subjected to a release treatment with a silicone compound, a fluorine compound, or the like.
  • the thickness of the protective film 30 can be appropriately set depending on the intended flexibility, but is preferably 10 to 250 ⁇ m, more preferably 15 to 200 ⁇ m, and still more preferably 20 to 150 ⁇ m. When the thickness is 10 ⁇ m or more, the film strength is sufficient. If the thickness is 250 ⁇ m or less, sufficient flexibility can be obtained.
  • FIG. 2 (A) is a top view showing another embodiment of the temporarily fixing resin film sheet
  • FIG. 2 (B) is a schematic sectional view taken along the line II-II in FIG. 2 (A). .
  • the temporarily fixing resin film sheet 2 shown in FIG. 2 is the same as the temporarily fixing resin film sheet 1 except that the temporarily fixing resin film 20 and the protective film 30 are cut in advance according to the shape of the member to be temporarily fixed. It has the same configuration.
  • the outer edge portions of the temporarily fixed resin film 20 and the protective film 30 that have been cut are removed, but the temporary fixing resin film and the protective film are notched according to the shape of the temporarily fixed member. And the outer edge may be left.
  • the semiconductor wafer processing method includes the following steps (a) to (c) in this order, and optionally includes the following step (d).
  • radiation irradiation is irradiation of active rays, such as an ultraviolet-ray (UV) and visible light.
  • (b) Processing step of processing the semiconductor wafer temporarily fixed to the support (c) ) Separation process for separating the processed semiconductor wafer from the support and the temporary fixing material.
  • D A cleaning process for cleaning when there is a residue in the semiconductor wafer.
  • FIGS. 3A, 3B, and 3C are schematic cross-sectional views for explaining one embodiment of a method for processing a semiconductor wafer
  • FIG. 3D is a semiconductor after processing. It is a top view which shows a wafer.
  • the temporary fixing step is a step of performing radiation irradiation when temporarily fixing the semiconductor wafer to the support via a temporary fixing material. By performing irradiation, a base and a radical are generated, and the reaction starts.
  • the temporary fixing material may be irradiated with radiation before temporarily fixing the semiconductor wafer to the support. After the semiconductor wafer is temporarily fixed to the support, the temporary fixing material is irradiated with radiation. May be.
  • the support is a transparent body (glass carrier or the like)
  • the temporary fixing material can be irradiated with radiation after the semiconductor wafer is temporarily fixed to the support.
  • the support is not a transparent body, it is preferable to irradiate the temporary fixing material with radiation before temporarily fixing the semiconductor wafer to the support.
  • FIG. 3A shows a temporary fixing material (film-like temporary fixing) formed from a temporary fixing resin composition or a temporary fixing resin film between the support 50 and the semiconductor wafer 60.
  • the material etc.) 40 is interposed and the process of temporarily fixing the semiconductor wafer 60 to the support body 50 is shown.
  • the release layer 52 will be described later.
  • the thickness of the semiconductor wafer 60 is not particularly limited, but can be 600 to 800 ⁇ m.
  • the temporarily fixing material 40 can be formed on the element forming surface of the semiconductor wafer 60 by a method such as spin coating.
  • the temporarily fixing resin composition is diluted with an organic solvent, the organic solvent is removed by heating and drying according to the volatilization conditions of the solvent after spin coating to form the temporarily fixing material 40.
  • the temporary fixing material 40 can be provided by laminating the temporary fixing resin film 20 on the element forming surface of the semiconductor wafer 60 using a roll laminator, a vacuum laminator, or the like.
  • the temporary fixing material 40 is thickened by irradiation with 10 to 10000 mJ / cm 2 using a radiation exposure machine (UV exposure machine or the like).
  • irradiation with radiation causes dissociation of the component (D) (such as ⁇ -aminoketone compound) in the temporary fixing material 40, thereby generating radicals and bases (such as amine).
  • the radical causes a polymerization reaction of a photoreactive monomer such as (C) (meth) acrylic monomer, and the base (such as amine) has a curing accelerating action of the thermosetting resin. Curing is accelerated by heating.
  • a pressure of 1 hPa or less, a pressure of 1 MPa, a pressure of 60 to 200 ° C., a holding time of 100 to 300 seconds, and a semiconductor wafer 60 and the support 50 are temporarily fixed via a temporary fixing member 40.
  • a vacuum laminator for example, a vacuum laminator LM-50 ⁇ 50-S (trade name) manufactured by NPC Corporation, a vacuum laminator V130 (trade name) manufactured by Nichigo Morton Co., Ltd., etc. is used.
  • the pressure bonding temperature is 40 to 180 ° C. (preferably 60 to 150 ° C.)
  • the lamination pressure is 0.01 to 0.5 MPa (preferably 0.1 to 0.5 MPa)
  • the holding time is 1 to 600 seconds (preferably 30 to 300).
  • the semiconductor wafer 60 and the support body 50 are temporarily fixed via the temporary fixing material 40.
  • the temporary fixing material 40 is thermally cured by heating at 100 to 200 ° C. for 1 to 60 minutes.
  • the support of this embodiment is not particularly limited, but a substrate such as a silicon wafer, a glass wafer, or a quartz wafer can be used.
  • the support of this embodiment may be subjected to a peeling treatment, and the peeling layer 52 is formed by peeling all or part of the surface of the support 50 as shown in FIG.
  • the release agent used for the release treatment is not particularly limited, but from the viewpoint of further improving the release property, for example, a surface modifier having a fluorine element, a polyolefin wax, a silicone oil, a silicone oil containing a reactive group, and Silicone modified alkyd resins are preferred.
  • a temporary fixing material such as a film-like temporary fixing material having the structure described above
  • a semiconductor wafer can be processed at a high temperature using a support, and the resin composition for temporary fixing at room temperature after processing. Can be peeled off from the semiconductor wafer and the support without adhesive residue.
  • processing in the processing step examples include grinding, electrode formation, metal wiring formation, protective film formation, and the like used at the wafer level.
  • a well-known grinding system can be utilized. The grinding is preferably performed while cooling the semiconductor wafer and a grindstone (such as diamond) with water.
  • the back surface of the semiconductor wafer 60 (that is, the surface opposite to the side in contact with the temporary fixing material 40) of the semiconductor wafer 60 is ground by a grinder 90, and the thickness is, for example, about 700 ⁇ m. Is reduced to 100 ⁇ m or less to obtain a semiconductor wafer 80.
  • DGP-8761 (trade name) manufactured by DISCO Corporation can be cited, and the cutting conditions in this case can be arbitrarily selected according to the desired thickness and grinding state of the semiconductor wafer.
  • metal sputtering for forming electrodes, etc. wet etching for etching a metal sputtering layer, application of a resist for masking metal wiring, formation of a pattern by exposure and development
  • Known processes such as resist stripping, dry etching, metal plating, silicon etching for TSV formation, and oxide film formation on the silicon surface can be used.
  • processing such as dry ion etching or Bosch process is performed on the back side of the thinned semiconductor wafer 80 to form through holes, and then processing such as copper plating is performed to form through electrodes 82.
  • processing such as dry ion etching or Bosch process is performed on the back side of the thinned semiconductor wafer 80 to form through holes, and then processing such as copper plating is performed to form through electrodes 82.
  • An example is shown.
  • FIG. 3D is a top view of the semiconductor wafer 80 after processing.
  • the processed semiconductor wafer 80 is divided into semiconductor elements by dicing along a dicing line 84.
  • FIG. 4 is a schematic cross-sectional view for explaining an embodiment of a separation process for separating a processed semiconductor wafer from a support and a temporary fixing material.
  • the separation process according to the present embodiment includes a first peeling process for peeling the semiconductor wafer from the support and a second peeling process for peeling the temporarily fixing material from the semiconductor wafer.
  • the first peeling step is a step of peeling the semiconductor wafer processed in the processing step from the support, that is, a step of peeling the thinned semiconductor wafer from the support before dicing after various processing. It is.
  • the semiconductor wafer and the support are heated (preferably 200 to 250 ° C.) while being slid in the opposite direction along the horizontal direction, and the semiconductor wafer or the support is separated.
  • One side is fixed horizontally, the other is lifted at a certain angle from the horizontal direction, and a protective film is attached to the ground surface of the ground semiconductor wafer, and the semiconductor wafer and the protective film are supported in a peel method
  • the method etc. which peel from a body are mentioned, it can employ
  • one of the semiconductor wafer 80 and the support 50 as shown in FIG. 4A is fixed horizontally and the other from the horizontal direction.
  • a method of lifting with a certain angle, a method of attaching a protective film to the ground surface of the ground semiconductor wafer, and peeling the semiconductor wafer and the protective film by a peel method are more suitable.
  • These peeling methods are usually carried out at room temperature, but may be carried out at a temperature of about 40 to 100 ° C. without damaging the semiconductor wafer.
  • a debonder manufactured by SSUS Co., Ltd., DB12T
  • a De-Bonding device manufactured by EVG, EVG805EZD, or the like
  • EVG EVG805EZD
  • the semiconductor wafer 80 is fixed horizontally and the end of the temporary fixing material 70 is lifted at a certain angle from the horizontal direction.
  • the semiconductor wafer 80 from which the temporary fixing material is peeled can be obtained (see FIG. 4C).
  • a temporarily fixed material is formed using the temporary fixing resin composition according to the present embodiment, so that a processed semiconductor wafer in which residues such as adhesive residue are sufficiently reduced can be easily obtained. Can do.
  • a processed semiconductor wafer may be obtained by performing separation between the semiconductor wafer and the temporary fixing material in the first peeling step.
  • ⁇ (D) Cleaning step> A part of the temporarily fixed material tends to remain on the circuit forming surface of the semiconductor wafer.
  • a cleaning step for removing the temporary fixing material can be provided.
  • the temporary fixing material can be removed, for example, by washing the semiconductor wafer.
  • the cleaning solution used is not particularly limited as long as it is a cleaning solution that can remove the partially remaining temporary fixing material, and examples thereof include the organic solvents that can be used for dilution of the temporary fixing resin composition.
  • An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • bases or acids may be added to the organic solvent.
  • bases such as ethanolamine, diethanolamine, triethanolamine, triethylamine, and ammonia; ammonium salts such as tetramethylammonium hydroxide can be used.
  • the acids that can be used include organic acids such as acetic acid, oxalic acid, benzenesulfonic acid, and dodecylbenzenesulfonic acid.
  • the addition amount is preferably 0.01 to 10% by mass in terms of the concentration in the cleaning liquid.
  • an existing surfactant may be added.
  • the cleaning method is not particularly limited, and examples thereof include a method of performing cleaning with a paddle using the above-described cleaning liquid, a cleaning method by spraying, and a method of immersing in a cleaning liquid tank.
  • the temperature is 10 to 80 ° C., preferably 15 to 65 ° C.
  • the substrate is washed with water or alcohol and dried to obtain a thin semiconductor wafer 80.
  • residues such as adhesive residue can be sufficiently reduced, so that the cleaning step can be omitted.
  • the processed semiconductor wafer 80 is separated into semiconductor elements by dicing along a dicing line 84 (see FIG. 3D).
  • a semiconductor device can be manufactured by connecting the obtained semiconductor element to another semiconductor element or a semiconductor element mounting substrate.
  • FIG. 5 is a schematic cross-sectional view for explaining an embodiment of a method for manufacturing a semiconductor device.
  • the semiconductor element 100 in which the through electrode 86 is formed and separated into pieces by the above-described method is prepared (FIG. 5A).
  • a semiconductor device 120 can be obtained by stacking a plurality of semiconductor elements 100 over the wiring substrate 110 (FIG. 5B).
  • HTR-860P-3CSP (meth) acrylic ester copolymer having a weight average molecular weight of 800,000 by GPC, a structural unit derived from glycidyl methacrylate and a structural unit derived from acrylonitrile, 3% by mass of glycidyl methacrylate, Tg of 12 ° C.
  • Acrylic rubber manufactured by Nagase ChemteX Corporation
  • HTR-860P-3CSP-30B (meth) acrylic ester copolymer having a weight average molecular weight of 300,000 by GPC, a structural unit derived from glycidyl methacrylate and a structural unit derived from acrylonitrile, 8% by mass of glycidyl methacrylate, Tg12 °C acrylic rubber (manufactured by Nagase ChemteX Corporation)
  • YDCN-700-10 Cresol novolac type polyfunctional epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
  • YDF-8170C Bisphenol F type bifunctional epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
  • XLC-LL Phenol aralkyl resin (Mitsui Chemicals)
  • GPH-103 Biphenyl aralkyl type phenol resin (
  • the viscosity was measured by the following method. Three temporary fixing resin films having a thickness of 60 ⁇ m are laminated at 80 ° C. to obtain a thickness of 180 ⁇ m, and a measurement method is performed using a rotary viscoelasticity measuring device (ARES, manufactured by T.A. Instruments Co., Ltd.). The temperature was raised to 120 ° C. at a rate of 20 ° C./min with a 5% distortion at 35 ° C. under the conditions of a parallel plate, a measuring jig of 8 mm in diameter, a measurement mode of Dynamic temperature ramp, and a frequency of 1 Hz. The viscosity at 120 ° C. was measured.
  • the protective film was peeled from the temporary fixing resin film with the protective film and the support film.
  • a vacuum laminator V130 manufactured by Nichigo Morton Co., Ltd. laminating a resin film for temporary fixing to a semiconductor wafer at a pressure of 1 hPa or less, a pressure bonding temperature of 80 ° C., a lamination pressure of 0.5 MPa, and a holding time of 60 seconds (semiconductor wafer) (Lamination of film).
  • the support film was peeled off. Thereby, a semiconductor wafer with a resin film for temporary fixing was obtained.
  • the support and the semiconductor wafer with a resin film for temporary fixing are pressure-bonded at a pressure of 1 hPa or less, a pressure bonding temperature of 100 ° C., a lamination pressure of 0.5 MPa, and a holding time of 100 seconds (
  • the laminate was obtained by crimping the support and the exposed semiconductor wafer with the temporarily fixing resin film (crimping to the support).
  • the state of the resin film for temporary fixing was confirmed using the ultrasonic microscope (SAM, Insight-300 by Insight Co., Ltd.). A sample in which peeling of the temporarily fixing resin film was not observed was evaluated as “ ⁇ ”, and a sample in which peeling was observed was evaluated as “x”.
  • the protective film was peeled after leaving the temporarily fixing resin film in an oven set at 40 ° C. for 5 days. Thereafter, using a vacuum laminator V130 manufactured by Nichigo Morton Co., Ltd., the resin film for temporary fixing was laminated to the semiconductor wafer at a pressure of 1 hPa or less, a pressure bonding temperature of 80 ° C., a lamination pressure of 0.5 MPa, and a holding time of 60 seconds (to the semiconductor wafer). The film was laminated. Subsequently, the support film was peeled off. Thereby, a semiconductor wafer with a resin film for temporary fixing was obtained.
  • the support and the semiconductor wafer with a resin film for temporary fixing are pressure-bonded at a pressure of 1 hPa or less, a pressure bonding temperature of 100 ° C., a lamination pressure of 0.5 MPa, and a holding time of 100 seconds (
  • the laminate was obtained by crimping the support and the exposed semiconductor wafer with the temporarily fixing resin film (crimping to the support).
  • the state of the resin film for temporary fixing was confirmed using the ultrasonic microscope (SAM, Insight-300 by Insight Co., Ltd.). A sample in which peeling of the temporarily fixing resin film was not observed was evaluated as “ ⁇ ”, and a sample in which peeling was observed was evaluated as “x”.
  • the chuck table rotation speed was 300 min ⁇ 1
  • the wheel rotation speed was 1 axis: 3200 min ⁇ 1
  • grinding was performed by a cross-feed method. After grinding to 142 ⁇ m thickness on one axis, grinding was performed to 102 ⁇ m thickness on two axes, and further, grinding was performed to 100 ⁇ m thickness on three axes. A sample in which cracking and deviation did not occur at the end of grinding was evaluated as “ ⁇ ”, and a sample in which cracking or deviation occurred was evaluated as “x”.
  • Comparative Example 1 does not use an ⁇ -aminoketone compound ((D) compound), so that base and radicals are not generated by UV irradiation, and curing at low temperature and short time is insufficient.
  • Comparative Example 2 since there are few ⁇ -aminoketone compounds ((D) compounds), the amount of bases and radicals generated is small when UV irradiation is performed, and curing at low temperature and short time is insufficient.
  • the temporary fixing resin composition according to the present invention and the temporary fixing resin film using the temporary fixing resin composition are processed semiconductor wafers having a temporary fixing step of performing radiation irradiation (UV irradiation or the like). It can be seen that it is suitable for the method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)

Abstract

 A resin composition for temporary fixation for forming a temporary fixation material used in a method for working a semiconductor wafer, wherein: the resin composition contains (A) a thermoplastic resin, (B) a thermosetting resin, (C) a (meth)acrylic monomer, and (D) a compound from which a base and a radical are generated by radiation, the contained amount of component (D) being at least 5 parts by mass relative to 100 parts by mass of component (C); and the method for working a semiconductor wafer includes a temporary fixation step for temporarily fixing the semiconductor wafer to a support body with the temporary fixation material interposed therebetween, a working step for working the semiconductor wafer temporarily fixed to the support body, and a separation step for separating the worked semiconductor wafer from the support body and the temporary fixation material, the temporary fixation material being irradiated with radiation in the temporary fixation step.

Description

仮固定用樹脂組成物、仮固定用樹脂フィルム、仮固定用樹脂フィルムシート及び半導体ウェハの加工方法Temporary fixing resin composition, temporary fixing resin film, temporary fixing resin film sheet, and semiconductor wafer processing method
 本発明は、半導体ウェハを加工する際に使用される仮固定用樹脂組成物、仮固定用樹脂フィルム、仮固定用樹脂フィルムシート及び半導体ウェハの加工方法に関するものである。 The present invention relates to a temporarily fixing resin composition, a temporarily fixing resin film, a temporarily fixing resin film sheet, and a semiconductor wafer processing method used when processing a semiconductor wafer.
 半導体装置の分野では、複数の半導体素子を積み重ねたSIP(System in Package)と呼ばれるパッケージに関する技術の成長が著しい。SIP型のパッケージでは、半導体素子を多数積層するため、半導体素子には、できるだけ厚みが薄いことが要求される。かかる半導体素子は、例えば、一定の厚みを有する半導体ウェハに集積回路を組み込んだ後、裏面を研削することによって半導体ウェハを薄化し、さらに、半導体ウェハを個片化することにより作製される。半導体ウェハの加工は、仮固定材によって半導体ウェハを支持体に仮固定して行われる(例えば、下記特許文献1を参照)。 In the field of semiconductor devices, the technology related to a package called SIP (System in Package) in which a plurality of semiconductor elements are stacked is growing significantly. In the SIP type package, since a large number of semiconductor elements are stacked, the semiconductor elements are required to be as thin as possible. Such a semiconductor element is manufactured, for example, by incorporating an integrated circuit into a semiconductor wafer having a certain thickness, then thinning the semiconductor wafer by grinding the back surface, and further dividing the semiconductor wafer into individual pieces. Processing of a semiconductor wafer is performed by temporarily fixing the semiconductor wafer to a support with a temporarily fixing material (for example, refer to Patent Document 1 below).
 半導体素子の接続に関しては、従来ワイヤボンディング法が主流であったが、近年では、TSV(シリコン貫通電極)と呼ばれる接続方法が注目を集め、盛んに検討されている。貫通電極を有する半導体素子を作製する場合、貫通電極を形成する加工が半導体ウェハの薄化後に施される。この場合、半導体ウェハを300℃程度まで加熱する高温プロセスを伴う。 Conventionally, wire bonding has been the mainstream for connecting semiconductor elements, but in recent years, a connection method called TSV (through silicon via) has attracted attention and has been actively studied. In the case of manufacturing a semiconductor element having a through electrode, processing for forming the through electrode is performed after the semiconductor wafer is thinned. In this case, a high temperature process for heating the semiconductor wafer to about 300 ° C. is involved.
国際公開第2008/045669号International Publication No. 2008/045669
 ところで、半導体素子の製造工程で使用される仮固定材の構成成分として、一般的な熱硬化性樹脂(エポキシ樹脂等)を用いることが考えられる。熱硬化性樹脂を用いることで、硬化前は高い流動性による低温貼付性、硬化後は架橋構造による優れた耐熱性の付与が可能である。この場合の硬化は、半導体ウェハへのダメージを考えると、低温短時間が望ましい。しかし、低温短時間での硬化では未硬化成分が残存する可能性があり、未硬化成分が残存していると、高温プロセスにおいて発泡する可能性がある。 Incidentally, it is conceivable to use a general thermosetting resin (such as an epoxy resin) as a constituent component of the temporarily fixing material used in the manufacturing process of the semiconductor element. By using a thermosetting resin, it is possible to impart excellent heat resistance by low-temperature sticking property due to high fluidity before curing, and by a crosslinked structure after curing. In this case, the curing is preferably performed at a low temperature for a short time in consideration of damage to the semiconductor wafer. However, there is a possibility that uncured components remain in the curing at a low temperature in a short time, and if uncured components remain, foaming may occur in a high temperature process.
 本発明は、上記事情に鑑みてなされたものであり、低温短時間硬化が可能な仮固定材を形成できる仮固定用樹脂組成物、並びに、該仮固定用樹脂組成物を用いた仮固定用樹脂フィルム、仮固定用樹脂フィルムシート及び半導体ウェハの加工方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a temporarily fixing resin composition capable of forming a temporarily fixing material that can be cured at a low temperature for a short time, and for temporarily fixing using the temporarily fixing resin composition It aims at providing the processing method of a resin film, the resin film sheet for temporary fixation, and a semiconductor wafer.
 本発明は、半導体ウェハの加工方法に用いられる仮固定材を形成するための仮固定用樹脂組成物であって、(A)熱可塑性樹脂((A)成分)、(B)熱硬化性樹脂((B)成分)、(C)(メタ)アクリルモノマ((C)成分)、及び、(D)放射線によって塩基とラジカルとを発生する化合物((D)成分)を含有し、前記(D)成分の含有量が、前記(C)成分100質量部に対して5質量部以上であり、前記半導体ウェハの加工方法が、半導体ウェハを支持体に前記仮固定材を介して仮固定する仮固定工程と、前記支持体に仮固定された前記半導体ウェハを加工する加工工程と、加工された前記半導体ウェハを前記支持体及び前記仮固定材から分離する分離工程と、を備え、前記仮固定工程において前記仮固定材に対して放射線照射が行われる、仮固定用樹脂組成物を提供する。 The present invention relates to a temporary fixing resin composition for forming a temporary fixing material used in a method for processing a semiconductor wafer, wherein (A) a thermoplastic resin (component (A)) and (B) a thermosetting resin. ((B) component), (C) (meth) acrylic monomer ((C) component), and (D) a compound ((D) component) that generates a base and a radical by radiation. ) Component content is 5 parts by mass or more with respect to 100 parts by mass of the component (C), and the semiconductor wafer processing method temporarily fixes the semiconductor wafer to a support via the temporary fixing material. A fixing step; a processing step of processing the semiconductor wafer temporarily fixed to the support; and a separation step of separating the processed semiconductor wafer from the support and the temporary fixing material. In the process, radiation irradiation is performed on the temporary fixing material. It takes place, provides a temporary fixing resin composition.
 本発明に係る仮固定用樹脂組成物によれば、(A)成分~(D)成分を用いるとともに(D)成分の含有量が特定範囲であることにより、放射線照射後に発生する塩基とラジカルとによって反応が誘起されるため、低温短時間硬化が可能な仮固定材(フィルム状の仮固定材等)を形成できる。「低温」とは、例えば160℃以下であり、「短時間」とは、例えば60秒以下である。 The temporary fixing resin composition according to the present invention uses the components (A) to (D) and the content of the component (D) is in a specific range, so that bases and radicals generated after radiation irradiation Since a reaction is induced by this, a temporary fixing material (such as a film-like temporary fixing material) that can be cured at a low temperature for a short time can be formed. The “low temperature” is, for example, 160 ° C. or less, and the “short time” is, for example, 60 seconds or less.
 ところで、半導体ウェハの加工方法で使用される仮固定材に対しては、半導体ウェハの研削等の際に支持体と半導体ウェハとを強固に固定する接着性と、高温プロセスにおける耐熱性とが求められる。その一方で、仮固定材には、加工後の半導体ウェハを支持体から容易に分離できる剥離性が要求されている。特に、半導体ウェハへのダメージ及び反りの問題が生じないように、なるべく低温で半導体ウェハと支持体とを分離でき、しかも半導体ウェハには仮固定材が残らないことが求められている。 By the way, for the temporarily fixing material used in the semiconductor wafer processing method, adhesiveness for firmly fixing the support and the semiconductor wafer during grinding of the semiconductor wafer and heat resistance in a high-temperature process are required. It is done. On the other hand, the temporary fixing material is required to have releasability so that the processed semiconductor wafer can be easily separated from the support. In particular, it is required that the semiconductor wafer and the support can be separated at as low a temperature as possible so that the semiconductor wafer is not damaged and warped, and that no temporary fixing material remains on the semiconductor wafer.
 特許文献1に記載の仮固定材は、半導体ウェハに貫通電極を形成するときの高温プロセス、及び、貫通電極を形成した半導体ウェハ同士の接続を行うときの高温プロセスに対する耐熱性が十分でない傾向がある。仮固定材の耐熱性が不十分であると、高温プロセス中に仮固定材が熱分解して半導体ウェハが支持体から剥がれるといった不具合が生じやすい。これに対し、高いガラス転移温度(Tg)を有するポリイミド等の、耐熱性に優れた一般的な樹脂の使用が考えられる。しかし、加工時における平坦性を確保しやすくするために仮固定材がフィルム状である場合、樹脂のガラス転移温度が高いと、半導体ウェハと支持体とを十分固定するためには高温で貼り合せを行わなければならず、半導体ウェハにダメージを与える可能性がある。そのため、フィルム状の仮固定材には、低温で貼りあわせても半導体ウェハと支持体とを十分固定することができる低温貼付性が求められる。 The temporary fixing material described in Patent Document 1 has a tendency that heat resistance to a high-temperature process when a through electrode is formed on a semiconductor wafer and a high-temperature process when connecting the semiconductor wafers formed with the through-electrode are not sufficient. is there. If the heat resistance of the temporarily fixing material is insufficient, there is a tendency that the temporarily fixing material is thermally decomposed during the high temperature process and the semiconductor wafer is peeled off from the support. On the other hand, use of general resin excellent in heat resistance, such as a polyimide having a high glass transition temperature (Tg), can be considered. However, if the temporary fixing material is in the form of a film to make it easy to ensure flatness during processing, if the glass transition temperature of the resin is high, the semiconductor wafer and the support are bonded together at a high temperature. Must be performed, which may damage the semiconductor wafer. For this reason, the film-like temporary fixing material is required to have a low temperature sticking property that can sufficiently fix the semiconductor wafer and the support even if they are bonded together at a low temperature.
 また、低温短時間での硬化において未硬化成分の残存を防ぐため、イミダゾール等の硬化促進剤を増量することにより未硬化成分の残存を抑制することが考えられるが、仮固定材を保管中に反応が進行しやすいため、保存安定性が十分でない可能性がある。反応が進行して仮固定材の物性が変化することで、低温貼付性又は耐熱性が不十分となり、低温での貼付け不具合、又は、高温プロセス中に仮固定材が熱分解して半導体ウェハが支持体から剥がれるといった不具合が生じる可能性がある。 In addition, in order to prevent the remaining of the uncured component in curing at a low temperature in a short time, it is conceivable to suppress the remaining of the uncured component by increasing the amount of a curing accelerator such as imidazole. Since the reaction is likely to proceed, the storage stability may not be sufficient. As the reaction progresses and the physical properties of the temporary fixing material change, the low-temperature sticking property or heat resistance becomes insufficient. There is a possibility that a problem such as peeling from the support occurs.
 これらの事情に対して、本発明に係る仮固定用樹脂組成物によれば、良好な保存安定性を有し、低温短時間硬化に対応可能であり、優れた低温貼付性及び十分な耐熱性を有し、半導体ウェハを支持体に十分固定することができる仮固定材(フィルム状の仮固定材等)を形成することができる。この仮固定材は、加工後の半導体ウェハを支持体から容易に分離することができるとともに加工後の半導体ウェハから容易に剥離することができるため、溶剤に浸漬させることなく、加工後の半導体ウェハを支持体及び仮固定材から容易に分離することができる。 In view of these circumstances, the temporary fixing resin composition according to the present invention has good storage stability, can cope with low-temperature and short-time curing, and has excellent low-temperature sticking property and sufficient heat resistance. And a temporary fixing material (such as a film-like temporary fixing material) that can sufficiently fix the semiconductor wafer to the support can be formed. This temporary fixing material can easily separate the processed semiconductor wafer from the support and can be easily separated from the processed semiconductor wafer, so that the processed semiconductor wafer is not immersed in a solvent. Can be easily separated from the support and the temporary fixing material.
 さらに、本発明に係る仮固定用樹脂組成物は、優れた接着性を有している。これにより、半導体ウェハの研削(例えばバックグラインドプロセス)等の際に支持体と半導体ウェハとを強固に固定することができる。 Furthermore, the resin composition for temporary fixing according to the present invention has excellent adhesiveness. Thereby, a support body and a semiconductor wafer can be firmly fixed at the time of grinding (for example, back grinding process) of a semiconductor wafer.
 本発明に係る仮固定用樹脂組成物において、(A)成分~(D)成分を用いるとともに(D)成分の含有量が特定範囲であることで、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)の保存安定性と低温硬化と短時間硬化とを高水準で両立させることができる。 In the temporarily fixing resin composition according to the present invention, the components (A) to (D) are used, and the content of the (D) component is in a specific range, whereby the temporary fixing resin composition is formed. The storage stability of the fixing material (such as a film-like temporary fixing material), low-temperature curing, and short-time curing can be achieved at a high level.
 本発明に係る仮固定用樹脂組成物において、(C)成分は、2つ以上の官能基を有することが好ましい。このような(C)成分を用いることで、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)の貼付性(低温貼付性等)と短時間硬化とを更に高水準で両立させることができる。 In the temporarily fixing resin composition according to the present invention, the component (C) preferably has two or more functional groups. By using such a component (C), the sticking property (low temperature sticking property, etc.) of the temporarily fixing material (film-like temporarily fixing material, etc.) formed from the temporarily fixing resin composition and the short-time curing are further improved. Both can be achieved at a high level.
 本発明に係る仮固定用樹脂組成物は、エポキシ樹脂硬化剤を更に含有し、かつ、(B)成分がエポキシ樹脂である態様が好ましい。この場合、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)の貼付性(低温貼付性等)と耐熱性とを更に高水準で両立させることができる。 The aspect in which the resin composition for temporary fixing according to the present invention further contains an epoxy resin curing agent and the component (B) is an epoxy resin is preferable. In this case, the sticking property (low temperature sticking property, etc.) and the heat resistance of the temporarily fixing material (film-like temporarily fixing material, etc.) formed from the temporarily fixing resin composition can be achieved at a higher level.
 本発明に係る仮固定用樹脂組成物において、(A)成分は、反応性基を有する(メタ)アクリル共重合体であることが好ましい。この場合、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)の低温貼付性と耐熱性とを更に高水準で両立させることができる。 In the resin composition for temporary fixing according to the present invention, the component (A) is preferably a (meth) acrylic copolymer having a reactive group. In this case, the low-temperature sticking property and the heat resistance of the temporarily fixing material (film-like temporarily fixing material or the like) formed from the temporarily fixing resin composition can be made compatible at a higher level.
 本発明に係る仮固定用樹脂組成物は、シリコーン化合物を更に含有することが好ましい。この場合、剥離性を更に向上させることができる。 The resin composition for temporary fixing according to the present invention preferably further contains a silicone compound. In this case, the peelability can be further improved.
 本発明に係る仮固定用樹脂組成物は、硬化促進剤を更に含有することが好ましい。この場合、仮固定用樹脂組成物の硬化性と保存安定性とを両立することが容易となる。 The resin composition for temporary fixing according to the present invention preferably further contains a curing accelerator. In this case, it becomes easy to achieve both curability and storage stability of the temporarily fixing resin composition.
 本発明は、また、本発明に係る仮固定用樹脂組成物をフィルム状に形成してなる、仮固定用樹脂フィルムを提供する。このような仮固定用樹脂フィルムを用いることで、半導体ウェハを効率よく加工することができる。これにより、SIP型のパッケージに好適な半導体素子を効率よく製造することができ、さらには、このような半導体素子を備える半導体装置を効率よく製造することができる。 The present invention also provides a temporarily fixing resin film formed by forming the temporarily fixing resin composition according to the present invention into a film shape. By using such a temporarily fixing resin film, the semiconductor wafer can be processed efficiently. As a result, a semiconductor element suitable for a SIP package can be efficiently manufactured, and a semiconductor device including such a semiconductor element can be efficiently manufactured.
 また、本発明に係る仮固定用樹脂フィルムは、放射線照射前の120℃における粘度が200~6000Pa・sである態様が好ましい。 Further, the temporary fixing resin film according to the present invention preferably has a viscosity of 200 to 6000 Pa · s at 120 ° C. before radiation irradiation.
 本発明は、また、離型性を有する支持フィルムと、本発明に係る仮固定用樹脂フィルムと、を備え、前記仮固定用樹脂フィルムが前記支持フィルム上に設けられている、仮固定用樹脂フィルムシートを提供する。本発明に係る仮固定用樹脂フィルムシートによれば、本発明に係る仮固定用樹脂フィルムを半導体ウェハ又は支持体に容易に転写することができ、半導体ウェハを効率よく加工することができる。 The present invention also includes a support film having releasability and the temporarily fixing resin film according to the present invention, wherein the temporarily fixing resin film is provided on the support film. Provide a film sheet. According to the resin film sheet for temporary fixing according to the present invention, the resin film for temporary fixing according to the present invention can be easily transferred to a semiconductor wafer or a support, and the semiconductor wafer can be processed efficiently.
 本発明は、また、半導体ウェハを支持体に仮固定材を介して仮固定する仮固定工程と、前記支持体に仮固定された前記半導体ウェハを加工する加工工程と、加工された前記半導体ウェハを前記支持体及び前記仮固定材から分離する分離工程と、を備え、前記仮固定工程において前記仮固定材に対して放射線照射が行われ、前記仮固定材が、本発明に係る仮固定用樹脂フィルムである、半導体ウェハの加工方法を提供する。本発明に係る半導体ウェハの加工方法によれば、低温短時間で仮固定用樹脂組成物を硬化することができ、半導体ウェハを効率よく加工することができる。 The present invention also provides a temporary fixing step of temporarily fixing a semiconductor wafer to a support via a temporary fixing material, a processing step of processing the semiconductor wafer temporarily fixed to the support, and the processed semiconductor wafer Separating from the support and the temporary fixing material, radiation irradiation is performed on the temporary fixing material in the temporary fixing step, and the temporary fixing material is for temporary fixing according to the present invention. A method for processing a semiconductor wafer, which is a resin film, is provided. According to the semiconductor wafer processing method of the present invention, the temporarily fixing resin composition can be cured at a low temperature in a short time, and the semiconductor wafer can be processed efficiently.
 本発明によれば、低温短時間硬化が可能な仮固定材を形成できる仮固定用樹脂組成物、並びに、該仮固定用樹脂組成物を用いた仮固定用樹脂フィルム、仮固定用樹脂フィルムシート及び半導体ウェハの加工方法を提供することができる。本発明によれば、良好な保存安定性を有し、低温短時間硬化に対応可能であり、優れた低温貼付性及び十分な耐熱性を有し、半導体ウェハを支持体に十分固定することができ、かつ、加工後の半導体ウェハを支持体及び仮固定材から容易に分離することができる仮固定材を形成できる仮固定用樹脂組成物、並びに、該仮固定用樹脂組成物を用いた仮固定用樹脂フィルム、仮固定用樹脂フィルムシート及び半導体ウェハの加工方法を提供することができる。 According to the present invention, a temporarily fixing resin composition capable of forming a temporarily fixing material that can be cured at a low temperature for a short time, a temporarily fixing resin film using the temporarily fixing resin composition, and a temporarily fixing resin film sheet In addition, a method for processing a semiconductor wafer can be provided. According to the present invention, it has good storage stability, can cope with low temperature and short time curing, has excellent low temperature sticking property and sufficient heat resistance, and can sufficiently fix a semiconductor wafer to a support. And a temporary fixing resin composition capable of forming a temporary fixing material capable of easily separating the processed semiconductor wafer from the support and the temporary fixing material, and a temporary fixing using the temporary fixing resin composition A fixing resin film, a temporary fixing resin film sheet, and a method for processing a semiconductor wafer can be provided.
 本発明によれば、仮固定材を形成するための樹脂組成物の応用を提供することができる。本発明によれば、フィルム状の仮固定材を形成するための樹脂組成物の応用を提供することができる。本発明によれば、半導体ウェハの加工方法に用いられる仮固定材を形成するための樹脂組成物の応用を提供することができる。本発明によれば、半導体ウェハの加工方法に用いられるフィルム状の仮固定材を形成するための樹脂組成物の応用を提供することができる。本発明によれば、半導体ウェハの仮固定への樹脂組成物、樹脂フィルム又は仮固定用樹脂フィルムシートの応用を提供することができる。本発明によれば、半導体素子の製造への樹脂組成物、樹脂フィルム又は仮固定用樹脂フィルムシートの応用を提供することができる。本発明によれば、半導体装置の製造への樹脂組成物、樹脂フィルム又は仮固定用樹脂フィルムシートの応用を提供することができる。 According to the present invention, it is possible to provide an application of a resin composition for forming a temporary fixing material. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition for forming a film-form temporary fixing material can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition for forming the temporary fixing material used for the processing method of a semiconductor wafer can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition for forming the film-form temporary fixing material used for the processing method of a semiconductor wafer can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition, the resin film, or the resin film sheet for temporary fixing to the temporary fixation of a semiconductor wafer can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition, the resin film, or the resin film sheet for temporary fixing to manufacture of a semiconductor element can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application of the resin composition, the resin film, or the resin film sheet for temporary fixing to manufacture of a semiconductor device can be provided.
図1(A)は、本発明に係る仮固定用樹脂フィルムシートの一実施形態を示す上面図であり、図1(B)は、図1(A)のI-I線に沿った模式断面図である。FIG. 1 (A) is a top view showing one embodiment of a resin film sheet for temporary fixing according to the present invention, and FIG. 1 (B) is a schematic cross section taken along line II of FIG. 1 (A). FIG. 図2(A)は、本発明に係る仮固定用樹脂フィルムシートの他の実施形態を示す上面図であり、図2(B)は、図2(A)のII-II線に沿った模式断面図である。FIG. 2 (A) is a top view showing another embodiment of the resin film sheet for temporary fixing according to the present invention, and FIG. 2 (B) is a schematic view taken along line II-II in FIG. 2 (A). It is sectional drawing. 図3(A)、図3(B)及び図3(C)は、半導体ウェハの加工方法の一実施形態を説明するための模式断面図であり、図3(D)は、加工後の半導体ウェハを示す上面図である。3A, 3B, and 3C are schematic cross-sectional views for explaining one embodiment of a method for processing a semiconductor wafer, and FIG. 3D is a semiconductor after processing. It is a top view which shows a wafer. 図4は、加工された半導体ウェハを支持体及び仮固定材から分離する分離工程の一実施形態を説明するための模式断面図である。FIG. 4 is a schematic cross-sectional view for explaining an embodiment of a separation process for separating a processed semiconductor wafer from a support and a temporary fixing material. 図5は、半導体装置の製造方法の一実施形態を説明するための模式断面図である。FIG. 5 is a schematic cross-sectional view for explaining an embodiment of a method for manufacturing a semiconductor device.
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は、図示の比率に限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
 本明細書において、「(メタ)アクリル」とは、アクリル、及び、それに対応するメタクリルの少なくとも一方の意味で用いられる。「(メタ)アクリレート」等の他の類似の表現においても同様である。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。以下で例示する材料は、特に断らない限り、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In the present specification, “(meth) acryl” is used to mean at least one of acrylic and methacryl corresponding thereto. The same applies to other similar expressions such as “(meth) acrylate”. “A or B” only needs to include either A or B, and may include both. The materials exemplified below may be used alone or in combination of two or more unless otherwise specified. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means.
[仮固定用樹脂組成物]
 本実施形態に係る仮固定用樹脂組成物は、半導体ウェハの加工方法に用いられる仮固定材(フィルム状の仮固定材(仮固定用フィルム)等)を形成するための仮固定用樹脂組成物である。本実施形態に係る仮固定用樹脂組成物は、(A)熱可塑性樹脂((A)成分)、(B)熱硬化性樹脂((B)成分)、(C)(メタ)アクリルモノマ((C)成分)、及び、(D)放射線によって塩基とラジカルとを発生する化合物((D)成分)を含有し、(D)成分の含有量が(C)成分100質量部に対して5質量部以上であることを特徴とする。前記半導体ウェハの加工方法は、半導体ウェハを支持体に仮固定材を介して仮固定する仮固定工程と、支持体に仮固定された半導体ウェハを加工する加工工程と、加工された半導体ウェハを支持体及び仮固定材から分離する分離工程と、を備える。前記半導体ウェハの加工方法では、前記仮固定工程において前記仮固定材に対して放射線照射が行われる。本実施形態に係る仮固定用樹脂組成物は、発生した塩基及びラジカルによって低温短時間硬化に対応可能な仮固定用樹脂組成物である。
[Temporary fixing resin composition]
The temporarily fixing resin composition according to the present embodiment is a temporarily fixing resin composition for forming a temporarily fixing material (film-like temporarily fixing material (temporary fixing film) or the like) used in a semiconductor wafer processing method. It is. The resin composition for temporary fixing according to the present embodiment includes (A) a thermoplastic resin (component (A)), (B) a thermosetting resin (component (B)), (C) (meth) acrylic monomer (( C) component) and (D) a compound ((D) component) that generates a base and a radical by radiation, and the content of (D) component is 5 masses per 100 parts by mass of (C) component. Or more. The semiconductor wafer processing method includes a temporary fixing step of temporarily fixing a semiconductor wafer to a support via a temporary fixing material, a processing step of processing the semiconductor wafer temporarily fixed to the support, and a processed semiconductor wafer. Separating from the support and the temporary fixing material. In the semiconductor wafer processing method, the temporary fixing material is irradiated with radiation in the temporary fixing step. The temporarily fixing resin composition according to the present embodiment is a temporarily fixing resin composition that can cope with low-temperature and short-time curing by generated bases and radicals.
 本実施形態は、仮固定用樹脂組成物が(A)成分~(D)成分を用いるとともに(D)成分の含有量が特定範囲であるため、放射線照射前は反応が誘起せず良好な保存安定性を有し、放射線照射後は発生した塩基及びラジカルによって反応が誘起され低温・短時間硬化に対応可能であり、優れた低温貼付性及び十分な耐熱性を有し、半導体ウェハを支持体に十分固定することができ、かつ、加工後の半導体ウェハを支持体及び仮固定材から容易に分離することができる仮固定材(フィルム状の仮固定材等)を形成可能な仮固定用樹脂組成物を提供することができる。 In the present embodiment, since the resin composition for temporary fixing uses the components (A) to (D) and the content of the component (D) is in a specific range, the reaction is not induced before irradiation and good storage is achieved. It has stability, and after irradiation, the reaction is induced by the generated bases and radicals and can cope with low temperature and short time curing. It has excellent low temperature sticking property and sufficient heat resistance, and supports semiconductor wafers. Temporary fixing resin that can form a temporary fixing material (film-like temporary fixing material, etc.) that can be sufficiently fixed to the substrate and can easily separate the processed semiconductor wafer from the support and the temporary fixing material. A composition can be provided.
<(A)成分:熱可塑性樹脂>
 本実施形態で用いる(A)熱可塑性樹脂としては、熱可塑性を有する樹脂、又は、少なくとも未硬化状態において熱可塑性を有し、加熱後に架橋構造を形成する樹脂であれば特に制限はない。(A)熱可塑性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<(A) component: thermoplastic resin>
The (A) thermoplastic resin used in the present embodiment is not particularly limited as long as it is a thermoplastic resin or a resin that has a thermoplastic property at least in an uncured state and forms a crosslinked structure after heating. (A) A thermoplastic resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 熱可塑性樹脂としては、反応性基を有する(メタ)アクリル共重合体(反応性基含有(メタ)アクリル共重合体)が好ましい。 As the thermoplastic resin, a (meth) acrylic copolymer having a reactive group (reactive group-containing (meth) acrylic copolymer) is preferable.
 (メタ)アクリル共重合体としては、例えば、(メタ)アクリルエステル共重合体が挙げられる。(メタ)アクリルエステル共重合体は、(メタ)アクリル酸エステルに由来する構造単位を有する共重合体である。(メタ)アクリルエステル共重合体は、(メタ)アクリル酸エステルを主成分として含むモノマ組成物を重合させて得られる共重合体が好ましく、極性又は耐熱性に更に優れる観点から、(メタ)アクリル酸エステルとアクリロニトリルとを含むモノマ組成物を重合させて得られる共重合体((メタ)アクリル酸エステルに由来する構造単位と、アクリロニトリルに由来する構造単位とを有する共重合体)がより好ましい。(メタ)アクリル酸エステルとしては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、ブチルアクリレート、イソブチルアクリレート、ヘキシルアクリレート、シクロヘキシルアクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、ブチルメタクリレート、イソブチルメタクリレート、ヘキシルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート、及び、ラウリルメタクリレートが挙げられる。具体的なモノマの組み合わせによる共重合体としては、例えば、ブチルアクリレートに由来する構造単位と、アクリロニトリルに由来する構造単位とを有する共重合体、及び、エチルアクリレートに由来する構造単位と、アクリロニトリルに由来する構造単位とを有する共重合体が挙げられる。 (Meth) acrylic copolymers include, for example, (meth) acrylic ester copolymers. The (meth) acrylic ester copolymer is a copolymer having a structural unit derived from a (meth) acrylic acid ester. The (meth) acrylic ester copolymer is preferably a copolymer obtained by polymerizing a monomer composition containing (meth) acrylic acid ester as a main component, and (meth) acrylic from the viewpoint of further excellent polarity or heat resistance. A copolymer obtained by polymerizing a monomer composition containing an acid ester and acrylonitrile (a copolymer having a structural unit derived from (meth) acrylic acid ester and a structural unit derived from acrylonitrile) is more preferred. Examples of (meth) acrylic acid esters include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, and propyl. Examples include methacrylate, isopropyl methacrylate, butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, and lauryl methacrylate. Examples of the copolymer based on a specific monomer combination include, for example, a copolymer having a structural unit derived from butyl acrylate and a structural unit derived from acrylonitrile, a structural unit derived from ethyl acrylate, and acrylonitrile. And a copolymer having a derived structural unit.
 反応性基を有する(メタ)アクリル共重合体は、反応性基を有する(メタ)アクリルモノマと、上記のモノマとが含まれる単量体組成物を共重合することにより得ることができる。 The (meth) acrylic copolymer having a reactive group can be obtained by copolymerizing a monomer composition containing a (meth) acrylic monomer having a reactive group and the above monomer.
 反応性基としては、耐熱性を更に向上させる観点から、エポキシ基、カルボキシル基、アクリロイル基、メタクリロイル基、水酸基及びエピスルフィド基からなる群より選ばれる少なくとも一種が好ましい。エポキシ基は、グリシジル基として含まれていてもよい。中でも、架橋性に優れる観点から、エポキシ基及びカルボキシル基がより好ましい。反応性基としてエポキシ基を選択する場合、反応性基を有する(メタ)アクリルモノマとしては、例えば、グリシジルアクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチルアクリレート、グリシジルメタクリレート、4-ヒドロキシブチルメタクリレートグリシジルエーテル、及び、3,4-エポキシシクロヘキシルメチルメタクリレートが挙げられる。これらの中でも、耐熱性に更に優れる観点から、グリシジルアクリレート及びグリシジルメタクリレートからなる群より選ばれる少なくとも一種が好ましい。反応性基を有する(メタ)アクリル共重合体は、耐熱性に更に優れる観点から、グリシジルアクリレート及びグリシジルメタクリレートからなる群より選ばれる少なくとも一種に由来する構造単位を有することが好ましい。 The reactive group is preferably at least one selected from the group consisting of an epoxy group, a carboxyl group, an acryloyl group, a methacryloyl group, a hydroxyl group and an episulfide group from the viewpoint of further improving the heat resistance. The epoxy group may be included as a glycidyl group. Among these, an epoxy group and a carboxyl group are more preferable from the viewpoint of excellent crosslinkability. When an epoxy group is selected as the reactive group, examples of the (meth) acrylic monomer having a reactive group include glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl acrylate, glycidyl methacrylate, 4 -Hydroxybutyl methacrylate glycidyl ether and 3,4-epoxycyclohexylmethyl methacrylate. Among these, at least one selected from the group consisting of glycidyl acrylate and glycidyl methacrylate is preferable from the viewpoint of further excellent heat resistance. The (meth) acrylic copolymer having a reactive group preferably has a structural unit derived from at least one selected from the group consisting of glycidyl acrylate and glycidyl methacrylate from the viewpoint of further excellent heat resistance.
 (A)熱可塑性樹脂のTg(ガラス転移温度、ガラス転移点)は、-50℃~50℃であることが好ましい。(A)熱可塑性樹脂のTgが50℃以下であると、仮固定用樹脂組成物から仮固定材(フィルム状の仮固定材等)を形成したときに、柔軟性を確保でき、低温貼付性の低下を容易に抑制できる。また、半導体ウェハにバンプ等が存在する場合、150℃以下でのバンプ埋め込みが容易になる。一方、(A)熱可塑性樹脂のTgが-50℃以上であると、仮固定用樹脂組成物から仮固定材(フィルム状の仮固定材等)を形成したときに、柔軟性が高くなりすぎることによる取扱性及び剥離性の低下を容易に抑制できる。 (A) The Tg (glass transition temperature, glass transition point) of the thermoplastic resin is preferably -50 ° C to 50 ° C. (A) When the Tg of the thermoplastic resin is 50 ° C. or less, when a temporarily fixing material (such as a film-like temporarily fixing material) is formed from the temporarily fixing resin composition, flexibility can be secured, and low temperature sticking property Can be easily suppressed. In addition, when bumps or the like are present on the semiconductor wafer, it is easy to embed bumps at 150 ° C. or lower. On the other hand, when the Tg of the thermoplastic resin (A) is −50 ° C. or more, the flexibility becomes too high when a temporary fixing material (film-like temporary fixing material or the like) is formed from the temporary fixing resin composition. Decrease in handleability and peelability can be easily suppressed.
 (A)熱可塑性樹脂のTgは、示差走査熱量計(理学電機株式会社製、DSC8320)を用いて(A)熱可塑性樹脂を測定したときの中間点ガラス転移温度の値である。なお、(A)熱可塑性樹脂のTgは、昇温速度10℃/分、測定温度:-80~80℃の測定条件で熱量変化を測定し、JIS K 7121:1987に準拠した方法によって算出した中間点ガラス転移温度である。 (A) Tg of the thermoplastic resin is a value of a midpoint glass transition temperature when the (A) thermoplastic resin is measured using a differential scanning calorimeter (DSC8320, manufactured by Rigaku Corporation). The Tg of the thermoplastic resin (A) was calculated by a method according to JIS K 7121: 1987 by measuring the change in calorie under the measurement conditions of a heating rate of 10 ° C./min and a measurement temperature of −80 to 80 ° C. The midpoint glass transition temperature.
 (A)熱可塑性樹脂の重量平均分子量は、10万以上200万以下であることが好ましく、12万以上190万以下であることがより好ましく、15万以上180万以下であることが更に好ましい。重量平均分子量が10万以上であると、仮固定用樹脂組成物の耐熱性を確保しやすくなる。一方、重量平均分子量が200万以下であると、仮固定用樹脂組成物から仮固定材(フィルム状の仮固定材等)を形成したときに、フローの低下及び貼付性(低温貼付性等)の低下を容易に抑制できる。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で測定され、標準ポリスチレンによる検量線を用いたポリスチレン換算値である。例えば、(A)熱可塑性樹脂の重量平均分子量は、GPC(東ソー株式会社製HLC-8320GPC)を用いて、溶離液流量1mL/分、カラム温度40℃の条件で測定することができる。なお、溶離液としてはテトラヒドロフランを使用できる。カラムとしては、日立化成株式会社製Gelpack GL-A150-S/GL-A160-Sを使用できる。 (A) The weight average molecular weight of the thermoplastic resin is preferably 100,000 or more and 2,000,000 or less, more preferably 120,000 or more and 1.9 million or less, and further preferably 150,000 or more and 1.8 million or less. When the weight average molecular weight is 100,000 or more, it becomes easy to ensure the heat resistance of the temporarily fixing resin composition. On the other hand, when the weight average molecular weight is 2,000,000 or less, when a temporarily fixing material (film-like temporarily fixing material, etc.) is formed from the temporarily fixing resin composition, the flow is lowered and the adhesiveness (low temperature adhesiveness, etc.) Can be easily suppressed. The weight average molecular weight is measured by gel permeation chromatography (GPC) and is a polystyrene equivalent value using a calibration curve based on standard polystyrene. For example, the weight average molecular weight of (A) the thermoplastic resin can be measured using GPC (HLC-8320GPC manufactured by Tosoh Corporation) under the conditions of an eluent flow rate of 1 mL / min and a column temperature of 40 ° C. Tetrahydrofuran can be used as the eluent. As the column, Gelpack GL-A150-S / GL-A160-S manufactured by Hitachi Chemical Co., Ltd. can be used.
 反応性基を有する(メタ)アクリル共重合体がグリシジルアクリレート及び/又はグリシジルメタクリレートを共重合成分((メタ)アクリル共重合体を与える単量体成分)として含む場合、これらの含有量の合計は、共重合成分全量を基準として、0.1~20質量%であることが好ましく、0.5~15質量%であることがより好ましく、1.0~10質量%であることが更に好ましい。含有量が上記範囲内であると、仮固定用樹脂組成から仮固定材(フィルム状の仮固定材等)を形成したときに、耐熱性を十分確保しつつ、柔軟性の低下を容易に抑制することができる。 When the (meth) acrylic copolymer having a reactive group contains glycidyl acrylate and / or glycidyl methacrylate as a copolymerization component (a monomer component giving a (meth) acrylic copolymer), the total of these contents is The content is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and still more preferably 1.0 to 10% by mass, based on the total amount of copolymerization components. When the content is within the above range, when a temporarily fixing material (film-like temporarily fixing material, etc.) is formed from the temporarily fixing resin composition, heat resistance is sufficiently secured and a decrease in flexibility is easily suppressed. can do.
 上述のような反応性基を有する(メタ)アクリル共重合体としては、パール重合、溶液重合等の重合方法によって得られる重合体を用いてもよく、あるいは、HTR-860P-3CSP(ナガセケムテックス株式会社製、商品名)、HTR-860P-3CSP-30B(ナガセケムテックス株式会社製)等の市販品を用いてもよい。(A)成分の含有量は、フィルム化しやすい観点から、樹脂組成物の固形分の全質量を基準として、15質量%以上40質量%以下が好ましい。 As the (meth) acrylic copolymer having a reactive group as described above, a polymer obtained by a polymerization method such as pearl polymerization or solution polymerization may be used, or HTR-860P-3CSP (Nagase ChemteX). Commercially available products such as HTR-860P-3CSP-30B (manufactured by Nagase ChemteX Corporation) may be used. The content of the component (A) is preferably 15% by mass or more and 40% by mass or less based on the total mass of the solid content of the resin composition from the viewpoint of easily forming a film.
<(B)成分:熱硬化性樹脂>
 本実施形態で用いる(B)熱硬化性樹脂としては、熱により硬化するものであれば特に制限はない。
<(B) component: thermosetting resin>
The (B) thermosetting resin used in the present embodiment is not particularly limited as long as it is cured by heat.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、熱硬化型ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂及びユリア樹脂が挙げられる。熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。特に、耐熱性、作業性又は信頼性に更に優れる仮固定用樹脂組成物が得られる観点から、エポキシ樹脂を使用することが好ましい。熱硬化性樹脂としてエポキシ樹脂を使用する場合には、エポキシ樹脂硬化剤を合わせて使用することが好ましい。 Examples of the thermosetting resin include epoxy resin, acrylic resin, silicone resin, phenol resin, thermosetting polyimide resin, polyurethane resin, melamine resin, and urea resin. A thermosetting resin may be used individually by 1 type, and may be used in combination of 2 or more type. In particular, it is preferable to use an epoxy resin from the viewpoint of obtaining a temporarily fixing resin composition that is further excellent in heat resistance, workability, or reliability. When using an epoxy resin as the thermosetting resin, it is preferable to use an epoxy resin curing agent together.
 エポキシ樹脂は、硬化して耐熱作用を有する樹脂であれば特に限定されない。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の二官能エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂などを使用することができる。また、エポキシ樹脂としては、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂、又は、脂環式エポキシ樹脂等のように、一般に知られている樹脂を適用することができる。 The epoxy resin is not particularly limited as long as it is cured and has a heat resistance. Examples of the epoxy resin include bifunctional epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; novolak type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin. In addition, as the epoxy resin, a generally known resin such as a polyfunctional epoxy resin, a glycidylamine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin can be applied.
 ビスフェノールA型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製エピコートシリーズ(エピコート807、エピコート815、エピコート825、エピコート827、エピコート828、エピコート834、エピコート1001、エピコート1004、エピコート1007、エピコート1009、「エピコート」は登録商標);ダウケミカル社製のDER-330、DER-301及びDER-361;新日鉄住金化学株式会社製のYD-8125及びYDF-8170等が挙げられる。ビスフェノールF型エポキシ樹脂としては、新日鉄住金化学株式会社製のYDF-8170C等が挙げられる。 Examples of the bisphenol A type epoxy resin include Japan Epoxy Resin Co., Ltd. Epicoat Series (Epicoat 807, Epicoat 815, Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 834, Epicoat 1001, Epicoat 1004, Epicoat 1007, Epicoat 1009, "Epicoat" DER-330, DER-301 and DER-361 manufactured by Dow Chemical Co .; YD-8125 and YDF-8170 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and the like. Examples of the bisphenol F type epoxy resin include YDF-8170C manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
 フェノールノボラック型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製のエピコート152、エピコート154、日本化薬株式会社製のEPPN-201、ダウケミカル社製のDEN-438等が挙げられる。 Examples of the phenol novolac type epoxy resin include Epicoat 152 and Epicoat 154 manufactured by Japan Epoxy Resin Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd., and DEN-438 manufactured by Dow Chemical Co., Ltd.
 クレゾールノボラック型エポキシ樹脂(o-クレゾールノボラック型エポキシ樹脂等)としては、日本化薬株式会社製のEOCN-102S、EOCN-103S、EOCN-104S、EOCN-1012、EOCN-1025、EOCN-1027、及び、新日鉄住金化学株式会社製のYDCN700、YDCN701、YDCN702、YDCN703、YDCN704等が挙げられる。 Examples of the cresol novolac type epoxy resin (o-cresol novolak type epoxy resin, etc.) include EOCN-102S, EOCN-103S, EOCN-104S, EOCN-1012, EOCN-1025, EOCN-1027, and Nippon Kayaku Co., Ltd. YDCN700, YDCN701, YDCN702, YDCN703, YDCN704, etc., manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
 多官能エポキシ樹脂としては、ジャパンエポキシレジン株式会社製のEpon 1031S;チバスペシャリティーケミカルズ社製のアラルダイト0163;ナガセケムテックス株式会社製のデナコールEX-611、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-421、EX-411及びEX-321等が挙げられる(「アラルダイト」、「デナコール」は登録商標)。 As the polyfunctional epoxy resin, Epon 1031S manufactured by Japan Epoxy Resin Co., Ltd .; Araldite 0163 manufactured by Ciba Specialty Chemicals; Denacol EX-611, EX-614, EX-614B, EX-622 manufactured by Nagase ChemteX Corporation , EX-512, EX-521, EX-421, EX-411, EX-321 and the like ("Araldite" and "Denacol" are registered trademarks).
 アミン型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製のエピコート604;東都化成株式会社製のYH-434;三菱ガス化学株式会社製のTETRAD-X及びTETRAD-C;住友化学株式会社製のELM-120等が挙げられる。 As the amine type epoxy resin, Epicoat 604 manufactured by Japan Epoxy Resin Co., Ltd .; YH-434 manufactured by Toto Kasei Co., Ltd .; TETRAD-X and TETRAD-C manufactured by Mitsubishi Gas Chemical Company, Inc .; ELM- manufactured by Sumitomo Chemical Co., Ltd. 120 etc. are mentioned.
 複素環含有エポキシ樹脂としては、チバスペシャリティーケミカルズ社製のアラルダイトPT810;UCC社製のERL4234、ERL4299、ERL4221及びERL4206等が挙げられる。 Examples of the heterocyclic ring-containing epoxy resin include Araldite PT810 manufactured by Ciba Specialty Chemicals; ERL4234, ERL4299, ERL4221, and ERL4206 manufactured by UCC.
 エポキシ樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 エポキシ樹脂を使用する際は、エポキシ樹脂硬化剤を使用することが好ましい。 When using an epoxy resin, it is preferable to use an epoxy resin curing agent.
 エポキシ樹脂硬化剤としては、通常用いられている公知の硬化剤を使用することができる。エポキシ樹脂硬化剤としては、例えば、アミン類;ポリアミド;酸無水物;ポリスルフィド;三フッ化ホウ素;ビスフェノールA、ビスフェノールF、ビスフェノールSのようなフェノール性水酸基を1分子中に2個以上有するビスフェノール類;フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック樹脂等のフェノール樹脂などが挙げられる。特に、吸湿時の耐電食性に優れる観点から、フェノール樹脂が好ましく、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル型フェノール樹脂及びクレゾールノボラック樹脂からなる群より選ばれる少なくとも一種がより好ましい。 As the epoxy resin curing agent, a known curing agent that is usually used can be used. Examples of the epoxy resin curing agent include amines; polyamides; acid anhydrides; polysulfides; boron trifluoride; bisphenols having two or more phenolic hydroxyl groups in one molecule such as bisphenol A, bisphenol F, and bisphenol S. Phenolic novolac resins, bisphenol A novolak resins, phenol aralkyl resins, biphenyl aralkyl type phenol resins, phenol resins such as cresol novolac resins, and the like. In particular, from the viewpoint of excellent electric corrosion resistance at the time of moisture absorption, a phenol resin is preferable, and at least one selected from the group consisting of a phenol novolak resin, a bisphenol A novolak resin, a phenol aralkyl resin, a biphenyl aralkyl type phenol resin, and a cresol novolak resin is more preferable. .
 前記フェノール樹脂硬化剤の中で好ましい硬化剤としては、例えば、DIC株式会社製の商品名:フェノライトLF2882、フェノライトLF2822、フェノライトTD-2090、フェノライトTD-2149、フェノライトVH-4150及びフェノライトVH4170、明和化成株式会社製の商品名:H-1、ジャパンエポキシレジン株式会社製の商品名:エピキュアMP402FPY、エピキュアYL6065、エピキュアYLH129B65、三井化学株式会社製の商品名:ミレックスXL、ミレックスXLC、ミレックスRN、ミレックスRS、ミレックスVR、並びに、日本化薬株式会社製の商品名:カヤハードGPH-103が挙げられる(「フェノライト」、「エピキュア」、「ミレックス」、「カヤハード」は登録商標)。 Preferred curing agents among the phenolic resin curing agents include, for example, trade names: Phenolite LF2882, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH-4150, and DIC Corporation. Phenolite VH4170, Meiwa Kasei Co., Ltd. trade name: H-1, Japan Epoxy Resin Co., Ltd. trade name: Epicure MP402FPY, Epicure YL6065, Epicure YLH129B65, Mitsui Chemicals Co., Ltd. trade names: Mirex XL, Mirex XLC , Mirex RN, Mirex RS, Mirex VR, and Nippon Kayaku Co., Ltd. trade name: Kayahard GPH-103 ("Phenolite", "Epicure", "Millex", "Kayahard" Trademark).
 本実施形態に係る仮固定用樹脂組成物における(B)熱硬化性成分の含有量は、低温貼付性、耐熱性及び硬化性を更に高水準に両立することができる観点から、(A)熱可塑性樹脂100質量部に対して下記の範囲が好ましい。(B)熱硬化性成分の含有量は、更に優れた貼付性(低温貼付性等)及び耐熱性が得られるとともに、低弾性化に伴いバックグラインド時の保持性が低下することが抑制されてウェハの割れが抑制されやすくなる傾向がある観点から、10質量部以上が好ましく、50質量部以上がより好ましく、100質量部以上が更に好ましく、150質量部以上が特に好ましく、200質量部以上が極めて好ましく、220質量部以上が非常に好ましい。(B)熱硬化性成分の含有量は、硬化前の粘度が低くなることが抑制され、硬化に長時間を要することが更に抑制される観点から、500質量部以下が好ましく、400質量部以下がより好ましく、300質量部以下が更に好ましく、250質量部以下が特に好ましい。これらの観点から、(B)熱硬化性成分の含有量は、10~500質量部が好ましく、50~300質量部がより好ましい。 The content of the (B) thermosetting component in the resin composition for temporary fixing according to the present embodiment is (A) heat from the viewpoint that the low-temperature sticking property, heat resistance and curability can be achieved at a higher level. The following ranges are preferable with respect to 100 parts by mass of the plastic resin. (B) The content of the thermosetting component has further improved adhesive properties (low temperature adhesive properties, etc.) and heat resistance, and it has been suppressed that the retainability at the time of back grinding is lowered due to low elasticity. From the viewpoint of tending to suppress cracking of the wafer, 10 parts by mass or more is preferable, 50 parts by mass or more is more preferable, 100 parts by mass or more is further preferable, 150 parts by mass or more is particularly preferable, and 200 parts by mass or more is preferable. It is very preferable, and 220 parts by mass or more is very preferable. (B) The content of the thermosetting component is preferably 500 parts by mass or less, more preferably 400 parts by mass or less from the viewpoint of suppressing the viscosity before curing from being lowered and further suppressing the time required for curing. Is more preferably 300 parts by mass or less, and particularly preferably 250 parts by mass or less. From these viewpoints, the content of the thermosetting component (B) is preferably 10 to 500 parts by mass, and more preferably 50 to 300 parts by mass.
<(C)成分:(メタ)アクリルモノマ>
 本実施形態で用いる(C)(メタ)アクリルモノマとしては、2つ以上の官能基を有する(メタ)アクリルモノマを用いることが可能であり、2官能(メタ)アクリレート又は3官能以上の多官能(メタ)アクリレートのいずれも用いることができ、特に制限はない。
<(C) component: (meth) acrylic monomer>
As the (C) (meth) acrylic monomer used in this embodiment, a (meth) acrylic monomer having two or more functional groups can be used, and a bifunctional (meth) acrylate or a trifunctional or more polyfunctional one can be used. Any of (meth) acrylates can be used and is not particularly limited.
 2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート等の脂肪族(メタ)アクリレート;シクロヘキサンジメタノール(メタ)アクリレート、エトキシ化シクロヘキサンジメタノール(メタ)アクリレート、プロポキシ化シクロヘキサンジメタノール(メタ)アクリレート、エトキシ化プロポキシ化シクロヘキサンジメタノール(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化トリシクロデカンジメタノール(メタ)アクリレート、プロポキシ化トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化プロポキシ化トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化水添ビスフェノールAジ(メタ)アクリレート、プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化水添ビスフェノールFジ(メタ)アクリレート、プロポキシ化水添ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールFジ(メタ)アクリレート等の脂環式(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化ビスフェノールAFジ(メタ)アクリレート、プロポキシ化ビスフェノールAFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAFジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレート;エトキシ化イソシアヌル酸ジ(メタ)アクリレート、プロポキシ化イソシアヌル酸ジ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸ジ(メタ)アクリレート等の複素環式(メタ)アクリレート;これらのカプロラクトン変性体;ネオペンチルグリコール型エポキシ(メタ)アクリレート等の脂肪族(メタ)アクリレート;シクロヘキサンジメタノール型エポキシ(メタ)アクリレート、水添ビスフェノールA型エポキシ(メタ)アクリレート、水添ビスフェノールF型エポキシ(メタ)アクリレート等の脂環式(メタ)アクリレート;レゾルシノール型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールAF型エポキシ(メタ)アクリレート、フルオレン型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどが挙げられる。 Examples of the bifunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth). Acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethoxylated polypropylene glycol di (Meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopen Diglycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol Di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, ethoxylated 2 -Aliphatic (meth) acrylates such as methyl-1,3-propanediol di (meth) acrylate; cyclohexanedimethanol (meth) acrylate, ethoxylated cyclohexanedimethanol (meth) acrylate, propoxylated cyclohexanedimethanol (meth) acrylate , Et Silylated propoxylated cyclohexanedimethanol (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, ethoxylated tricyclodecane dimethanol (meth) acrylate, propoxylated tricyclodecane dimethanol (meth) acrylate, ethoxylated propoxylation Tricyclodecane dimethanol (meth) acrylate, ethoxylated hydrogenated bisphenol A di (meth) acrylate, propoxylated hydrogenated bisphenol A di (meth) acrylate, ethoxylated propoxylated hydrogenated bisphenol A di (meth) acrylate, ethoxylated Alicyclic rings such as hydrogenated bisphenol F di (meth) acrylate, propoxylated hydrogenated bisphenol F di (meth) acrylate and ethoxylated propoxylated hydrogenated bisphenol F di (meth) acrylate Formula (meth) acrylate; ethoxylated bisphenol A di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate, ethoxylated propoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol F di (meth) acrylate, propoxylated Bisphenol F di (meth) acrylate, ethoxylated propoxylated bisphenol F di (meth) acrylate, ethoxylated bisphenol AF di (meth) acrylate, propoxylated bisphenol AF di (meth) acrylate, ethoxylated propoxylated bisphenol AF di (meth) Acrylate, ethoxylated fluorene di (meth) acrylate, propoxylated fluorene di (meth) acrylate, ethoxylated propoxy fluorene di (meth) acrylate Heterocyclic (meth) acrylates such as ethoxylated isocyanuric acid di (meth) acrylate, propoxylated isocyanuric acid di (meth) acrylate, ethoxylated propoxylated isocyanuric acid di (meth) acrylate, etc. Acrylates; these caprolactone-modified products; aliphatic (meth) acrylates such as neopentyl glycol type epoxy (meth) acrylate; cyclohexanedimethanol type epoxy (meth) acrylate, hydrogenated bisphenol A type epoxy (meth) acrylate, hydrogenated bisphenol Alicyclic (meth) acrylates such as F-type epoxy (meth) acrylate; resorcinol-type epoxy (meth) acrylate, bisphenol A-type epoxy (meth) acrylate, bisphenol F-type epoxy (meth) acrylate Rate, bisphenol AF type epoxy (meth) acrylates, and aromatic epoxy (meth) acrylates such as fluorene epoxy (meth) acrylate.
 3官能以上の多官能(メタ)アクリレートとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化イソシアヌル酸トリ(メタ)アクリレート、プロポキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸トリ(メタ)アクリレート等の複素環式(メタ)アクリレート;これらのカプロラクトン変性体;フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどが挙げられる。 Examples of trifunctional or higher polyfunctional (meth) acrylates include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated propoxylated tri Methylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, pentaerythritol Tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol tetra ( ) Aliphatic (meth) acrylates such as acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (meth) acrylate; ethoxylated isocyanuric acid tri (meth) acrylate, propoxy Heterocyclic (meth) acrylates such as triisocyanuric acid tri (meth) acrylate and ethoxylated propoxylated isocyanuric acid tri (meth) acrylate; modified caprolactone thereof; phenol novolac epoxy (meth) acrylate, cresol novolac epoxy ( Aromatic epoxy (meth) acrylates such as (meth) acrylate and the like.
 2官能(メタ)アクリレート及び3官能以上の多官能(メタ)アクリレートのそれぞれは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。2官能(メタ)アクリレート又は3官能以上の多官能(メタ)アクリレートと、その他の重合性化合物とを組み合わせて用いることもできる。 Each of the bifunctional (meth) acrylate and the trifunctional or higher polyfunctional (meth) acrylate may be used alone or in combination of two or more. A bifunctional (meth) acrylate or a polyfunctional (meth) acrylate having three or more functions and other polymerizable compounds may be used in combination.
 本実施形態に係る仮固定用樹脂組成物における(C)(メタ)アクリルモノマの含有量は、短時間硬化が容易に可能であり、十分な低温貼付性を容易に得ることができる観点から、(A)熱可塑性樹脂100質量部に対して下記の範囲が好ましい。(C)(メタ)アクリルモノマの含有量は、短時間硬化が容易である観点から、5質量部以上が好ましく、10質量部以上がより好ましく、30質量部以上が更に好ましく、50質量部以上が特に好ましい。(C)(メタ)アクリルモノマの含有量は、硬化後のフィルムが低弾性化することが抑制され、バックグラインド時の保持性が低下することが抑制されるため、ウェハが割れやすくなることが抑制される傾向がある観点から、200質量部以下が好ましく、150質量部以下がより好ましく、100質量部以下が更に好ましい。これらの観点から、(C)(メタ)アクリルモノマの含有量は、5~200質量部が好ましく、10~150質量部がより好ましい。 The content of (C) (meth) acrylic monomer in the temporarily fixing resin composition according to the present embodiment can be easily cured for a short time, and from the viewpoint of being able to easily obtain sufficient low-temperature sticking properties. (A) The following ranges are preferable with respect to 100 mass parts of thermoplastic resins. The content of (C) (meth) acrylic monomer is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 30 parts by mass or more, and 50 parts by mass or more from the viewpoint of easy curing for a short time. Is particularly preferred. (C) The content of the (meth) acrylic monomer is such that the film after curing is suppressed from becoming less elastic, and the retention during back grinding is suppressed from being lowered, so that the wafer is likely to break. From the viewpoint of being suppressed, it is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and still more preferably 100 parts by mass or less. From these viewpoints, the content of (C) (meth) acrylic monomer is preferably 5 to 200 parts by mass, and more preferably 10 to 150 parts by mass.
<(D)成分:放射線によって塩基とラジカルとを発生する化合物>
 本実施形態で用いる(D)放射線(放射線照射)によって塩基とラジカルとを発生する化合物は、紫外線(UV)、可視光線等の活性光線の照射によって重合を開始させるものであれば特に制限はない。
<(D) component: a compound that generates a base and a radical by radiation>
(D) The compound which generates a base and a radical by radiation (radiation irradiation) used in the present embodiment is not particularly limited as long as it initiates polymerization by irradiation with actinic rays such as ultraviolet rays (UV) and visible rays. .
 (D)放射線によって塩基とラジカルとを発生する化合物としては、特に制限はなく、例えば、α-アミノケトン化合物が挙げられる。α-アミノケトン化合物としては、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリン-4-イルフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イルフェニル)-ブタン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-(4-モルフォリン)-2-イルプロパン-1-オン等が挙げられる。 (D) The compound that generates a base and a radical by radiation is not particularly limited, and examples thereof include α-aminoketone compounds. Examples of α-aminoketone compounds include 2-benzyl-2-dimethylamino-1- (4-morpholin-4-ylphenyl) -butan-1-one, 2-dimethylamino-2- (4-methylbenzyl)- 1- (4-Morpholin-4-ylphenyl) -butan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl]-(4-morpholin) -2-ylpropane-1 -ON and the like.
 放射線を照射する前は、(D)成分(α-アミノケトン化合物等)に由来するラジカルが存在しないため、(C)成分等の光反応性モノマの重合反応は起きない。また、立体障害のため熱硬化性樹脂の硬化も促進しない。しかし、放射線を照射すると、(D)成分(α-アミノケトン化合物等)の解離が起こり、ラジカルの発生に伴い光反応性モノマの重合反応が起こる。また、(D)成分(α-アミノケトン化合物等)の解離により、立体障害が低下し活性化した塩基(アミン等)が存在するようになる。そのため、塩基(アミン等)が熱硬化性樹脂の硬化促進作用を有するようになり、以後加熱により硬化促進作用が働くと類推される。このような作用により、放射線を照射する以前には、ラジカル、及び、活性化した塩基(アミン等)が存在しないため、室温での保存安定性に非常に優れている仮固定材を提供することができる。また、放射線照射により生じるラジカル及び塩基(アミン等)の構造によって光反応性モノマ及び熱硬化性樹脂(エポキシ樹脂等)の硬化速度が変化するので、適宜、(D)成分を決定することができる。 Before irradiation with radiation, there is no radical derived from the component (D) (such as α-aminoketone compound), so that the polymerization reaction of the photoreactive monomer such as the component (C) does not occur. In addition, curing of the thermosetting resin is not accelerated due to steric hindrance. However, when irradiated with radiation, the component (D) (such as α-aminoketone compound) is dissociated, and a photoreactive monomer polymerization reaction occurs with the generation of radicals. Further, dissociation of the component (D) (such as α-aminoketone compound) reduces the steric hindrance so that an activated base (such as amine) is present. For this reason, it is presumed that a base (amine or the like) has a hardening accelerating action of the thermosetting resin, and thereafter a hardening accelerating action is activated by heating. By such an action, there is no radical and activated base (such as amine) before irradiation with radiation, and thus a temporary fixing material having excellent storage stability at room temperature is provided. Can do. In addition, since the curing rate of the photoreactive monomer and the thermosetting resin (epoxy resin, etc.) varies depending on the structure of radicals and bases (amine, etc.) generated by radiation irradiation, the component (D) can be appropriately determined. .
 本実施形態に係る仮固定用樹脂組成物における(D)成分の含有量は、充分量の塩基及びラジカルが発生しやすいことにより低温短時間硬化が容易に達成可能である観点から、(A)熱可塑性樹脂100質量部に対して、1質量部以上が好ましく、2質量部以上がより好ましく、4質量部以上が更に好ましい。(D)成分の含有量は、低温短時間硬化が容易に達成可能である観点から、(A)熱可塑性樹脂100質量部に対して、70質量部以下が好ましく、65質量部以下がより好ましく、60質量部以下が更に好ましい。 The content of the component (D) in the temporarily fixing resin composition according to the present embodiment is (A) from the viewpoint that curing at a low temperature and short time can be easily achieved due to the generation of a sufficient amount of base and radical. 1 mass part or more is preferable with respect to 100 mass parts of thermoplastic resins, 2 mass parts or more are more preferable, and 4 mass parts or more are still more preferable. The content of the component (D) is preferably 70 parts by mass or less and more preferably 65 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A) from the viewpoint that low-temperature short-time curing can be easily achieved. 60 parts by mass or less is more preferable.
 本実施形態に係る仮固定用樹脂組成物における(D)成分の含有量は、充分量のラジカルが発生することにより低温短時間硬化が可能である観点から、(C)(メタ)アクリルモノマ100質量部に対して5質量部以上である。(D)成分の含有量は、低温短時間硬化が容易に達成可能である観点から、(C)(メタ)アクリルモノマ100質量部に対して、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上が更に好ましく、40質量部以上が特に好ましい。(D)成分の含有量は、仮固定材用樹脂フィルムの製造工程及び使用工程等で仮固定用樹脂組成物が少量の放射線(UV光等)にさらされた場合であっても、(C)(メタ)アクリルモノマの硬化が進行することが抑制され、製品特性の安定性を確保しやすい観点から、(C)(メタ)アクリルモノマ100質量部に対して、100質量部以下が好ましく、75質量部以下がより好ましく、50質量部以下が更に好ましい。これらの観点から、(D)成分の含有量は、(C)(メタ)アクリルモノマ100質量部に対して、5~100質量部が好ましく、10~50質量部がより好ましい。 The content of the component (D) in the resin composition for temporary fixing according to the present embodiment is (C) (meth) acrylic monomer 100 from the viewpoint that curing at a low temperature and short time is possible by generating a sufficient amount of radicals. It is 5 mass parts or more with respect to a mass part. The content of the component (D) is preferably 10 parts by mass or more, and 20 parts by mass or more with respect to 100 parts by mass of the (C) (meth) acrylic monomer, from the viewpoint that curing at low temperature and short time can be easily achieved. More preferably, 30 parts by mass or more is further preferable, and 40 parts by mass or more is particularly preferable. Even if the resin composition for temporary fixing is exposed to a small amount of radiation (such as UV light) in the production process and the use process of the resin film for temporary fixing material, the content of the component (D) is (C ) From the viewpoint of suppressing the progress of the curing of the (meth) acrylic monomer and ensuring the stability of the product characteristics, 100 parts by mass or less is preferable with respect to 100 parts by mass of the (C) (meth) acrylic monomer, 75 mass parts or less are more preferable, and 50 mass parts or less are still more preferable. From these viewpoints, the content of the component (D) is preferably 5 to 100 parts by mass and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the (C) (meth) acrylic monomer.
<その他の成分>
 本実施形態に係る仮固定用樹脂組成物は、(A)熱可塑性樹脂、(B)熱硬化性樹脂、(C)(メタ)アクリルモノマ、及び、(D)放射線によって塩基とラジカルとを発生する化合物以外に、必要に応じて(E)シリコーン化合物、(F)硬化促進剤、(G)無機フィラー、有機溶剤、及び/又は、その他の成分を含有することができる。
<Other ingredients>
The temporarily fixing resin composition according to the present embodiment generates (A) a thermoplastic resin, (B) a thermosetting resin, (C) a (meth) acrylic monomer, and (D) a base and a radical by radiation. In addition to the compound to be used, (E) a silicone compound, (F) a curing accelerator, (G) an inorganic filler, an organic solvent, and / or other components can be contained as necessary.
 (E)シリコーン化合物としては、ポリシロキサン構造を有する化合物であれば特に制限はなく、シリコーン変性樹脂、ポリ変性シリコーン化合物(ポリエーテル変性シリコーン化合物等)、ストレートシリコーンオイル、非反応性の変性シリコーンオイル、反応性の変性シリコーンオイル等が挙げられる。シリコーン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 (E) The silicone compound is not particularly limited as long as it is a compound having a polysiloxane structure. Silicone-modified resins, poly-modified silicone compounds (such as polyether-modified silicone compounds), straight silicone oils, non-reactive modified silicone oils And reactive modified silicone oils. A silicone compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 本実施形態で用いる(E)シリコーン化合物がシリコーン変性樹脂である場合、シリコーン変性アルキド樹脂が好ましい。 When the (E) silicone compound used in the present embodiment is a silicone-modified resin, a silicone-modified alkyd resin is preferable.
 仮固定用樹脂組成物がシリコーン変性アルキド樹脂を含有することで、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)を半導体ウェハから剥離する際、100℃以下の低温で、溶剤を用いることなく容易に剥離することが可能となる。 When the temporarily fixing resin composition contains the silicone-modified alkyd resin, when the temporarily fixing material (film-like temporarily fixing material or the like) formed from the temporarily fixing resin composition is peeled from the semiconductor wafer, the temperature is 100 ° C. or less. It can be easily peeled off without using a solvent at a low temperature.
 シリコーン変性アルキド樹脂を得る方法としては、例えば、(i)アルキド樹脂を得る通常の合成反応を用いる方法(すなわち、多価アコールと、脂肪酸、多塩基酸等とを反応させる際に、オルガノポリシロキサンをアルコール成分として同時に反応させる方法)、及び、(ii)あらかじめ合成された一般のアルキド樹脂にオルガノポリシロキサンを反応させる方法が挙げられる。 As a method for obtaining a silicone-modified alkyd resin, for example, (i) a method using a normal synthetic reaction for obtaining an alkyd resin (that is, an organopolysiloxane is reacted with a polyhydric alcohol, a fatty acid, a polybasic acid, etc. And (ii) a method of reacting a general alkyd resin synthesized in advance with an organopolysiloxane.
 アルキド樹脂の原料として用いられる多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチルグリコール等の二価アルコール;グリセリン、トリメチロールエタン、トリメチロールプロパン等の三価アルコール;ジグリセリン、トリグリセリン、ペンタエリスリトール、ジペンタエリスリトール、マンニット、ソルビット等の四価以上の多価アルコールが挙げられる。多価アルコールは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the polyhydric alcohol used as a raw material for the alkyd resin include dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, and neopentyl glycol; glycerin, trimethylolethane, Examples include trihydric alcohols such as trimethylolpropane; tetrahydric or higher polyhydric alcohols such as diglycerin, triglycerin, pentaerythritol, dipentaerythritol, mannitol, and sorbit. A polyhydric alcohol may be used individually by 1 type, and may be used in combination of 2 or more type.
 アルキド樹脂の原料として用いられる多塩基酸としては、例えば、無水フタル酸、テレフタル酸、イソフタル酸、無水トリメット酸等の芳香族多塩基酸;コハク酸、アジピン酸、セバシン酸等の脂肪族飽和多塩基酸;マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水シトラコン酸等の脂肪族不飽和多塩基酸;シクロペンタジエン-無水マレイン酸付加物、テルペン-無水マレイン酸付加物、ロジン-無水マレイン酸付加物等のディールズ・アルダー反応による多塩基酸が挙げられる。多塩基酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the polybasic acid used as a raw material for the alkyd resin include aromatic polybasic acids such as phthalic anhydride, terephthalic acid, isophthalic acid, and trimetic acid; aliphatic saturated polybasic acids such as succinic acid, adipic acid, and sebacic acid. Basic acid; aliphatic unsaturated polybasic acid such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic anhydride; cyclopentadiene-maleic anhydride adduct, terpene-maleic anhydride adduct, rosin-maleic anhydride Examples thereof include polybasic acids by Diels-Alder reaction such as acid adducts. A polybasic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
 アルキド樹脂は、変性剤又は架橋剤を更に含有していてもよい。 The alkyd resin may further contain a modifying agent or a crosslinking agent.
 変性剤としては、オクチル酸、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレイン酸、エレオステアリン酸、リシノレイン酸、脱水リシノレイン酸、あるいは、ヤシ油、アマニ油、キリ油、ヒマシ油、脱水ヒマシ油、大豆油、サフラワー油及びこれらの脂肪酸等を用いることができる。変性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the modifier include octylic acid, lauric acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, eleostearic acid, ricinoleic acid, dehydrated ricinoleic acid, or coconut oil, linseed oil, kiri oil, castor Oil, dehydrated castor oil, soybean oil, safflower oil, and these fatty acids can be used. A modifier | denaturant may be used individually by 1 type and may be used in combination of 2 or more type.
 本実施形態に係る仮固定用樹脂組成物がシリコーン変性アルキド樹脂を含有する場合、仮固定用樹脂組成物は、シリコーン変性アルキド樹脂を熱架橋できる架橋剤、及び/又は、触媒を更に含有することが好ましい。架橋剤としては、メラミン樹脂、尿素樹脂等のアミノ樹脂などが挙げられる。この場合、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)の耐熱性及び剥離性を更に向上させることができる。 When the temporarily fixing resin composition according to this embodiment contains a silicone-modified alkyd resin, the temporarily fixing resin composition further contains a crosslinking agent capable of thermally crosslinking the silicone-modified alkyd resin and / or a catalyst. Is preferred. Examples of the crosslinking agent include amino resins such as melamine resin and urea resin. In this case, it is possible to further improve the heat resistance and peelability of the temporarily fixing material (film-like temporarily fixing material or the like) formed from the temporarily fixing resin composition.
 架橋剤としては、例えば、アミノ樹脂(メラミン樹脂、尿素樹脂等)、ウレタン樹脂、エポキシ樹脂及びフェノール樹脂を例示することができる。これらの中でも、アミノ樹脂を用いた場合、アミノ樹脂により架橋されたアミノアルキド樹脂が得られ好ましい。このようなシリコーン変性アルキド樹脂としては、例えば、テスファイン319、TA31-209E(以上、日立化成ポリマー株式会社製、商品名)が挙げられる。架橋剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the crosslinking agent include amino resins (melamine resins, urea resins, etc.), urethane resins, epoxy resins, and phenol resins. Among these, when an amino resin is used, an amino alkyd resin crosslinked with an amino resin is preferably obtained. Examples of such silicone-modified alkyd resins include Tesfine 319 and TA31-209E (trade name, manufactured by Hitachi Chemical Co., Ltd.). A crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type.
 シリコーン変性アルキド樹脂においては、硬化触媒として酸性触媒を用いることができる。酸性触媒としては、特に制限はなく、アルキド樹脂の架橋反応触媒として公知の酸性触媒の中から適宜選択して用いることができる。このような酸性触媒としては、例えばp-トルエンスルホン酸、メタンスルホン酸等の有機系の酸性触媒が好適である。酸性触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、酸性触媒の含有量は、アルキド樹脂と架橋剤との合計100質量部に対して、通常0.1~40質量部、好ましくは0.5~30質量部、より好ましくは1~20質量部の範囲で選定される。 In the silicone-modified alkyd resin, an acidic catalyst can be used as a curing catalyst. There is no restriction | limiting in particular as an acidic catalyst, It can select suitably from well-known acidic catalysts as a crosslinking reaction catalyst of an alkyd resin, and can use it. As such an acidic catalyst, for example, an organic acidic catalyst such as p-toluenesulfonic acid and methanesulfonic acid is suitable. An acidic catalyst may be used individually by 1 type, and may be used in combination of 2 or more type. The content of the acidic catalyst is usually 0.1 to 40 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight as the total of the alkyd resin and the crosslinking agent. It is selected in the range of the part.
 シリコーン変性アルキド樹脂の表面自由エネルギーは、15~30mN/mであることが好ましい。シリコーン変性アルキド樹脂の表面自由エネルギーがこのような範囲にある時、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)の耐熱性と剥離性とを容易に両立させることができる。さらに、仮固定用樹脂組成物は、耐熱性に更に優れる観点から、表面自由エネルギーが15~27mN/mであるシリコーン変性アルキド樹脂を含有することがより好ましく、15~24mN/mであるシリコーン変性アルキド樹脂を含有することが更に好ましい。なお、表面自由エネルギーは、シリコーン変性アルキド樹脂をPETフィルム上に塗布後、150℃で30秒乾燥して得られた厚み0.3μmの膜に対して、接触角計(協和界面科学株式会社製CA-X型)を用いて、水、エチレングリコール及びヨウ化メチルの接触角を測定し、表面自由エネルギー解析ソフト(協和界面科学株式会社製EG-2)により算出することができる。 The surface free energy of the silicone-modified alkyd resin is preferably 15 to 30 mN / m. When the surface free energy of the silicone-modified alkyd resin is in such a range, both heat resistance and peelability of the temporary fixing material (film-like temporary fixing material, etc.) formed from the temporary fixing resin composition can be easily achieved. Can be made. Further, the temporary fixing resin composition preferably contains a silicone-modified alkyd resin having a surface free energy of 15 to 27 mN / m, more preferably from 15 to 24 mN / m, from the viewpoint of further excellent heat resistance. More preferably, it contains an alkyd resin. The surface free energy was measured with a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.) on a 0.3 μm thick film obtained by applying a silicone-modified alkyd resin on a PET film and drying at 150 ° C. for 30 seconds. CA-X type) can be used to measure the contact angles of water, ethylene glycol and methyl iodide, and can be calculated using surface free energy analysis software (EG-2 manufactured by Kyowa Interface Science Co., Ltd.).
 本実施形態に係る仮固定用樹脂組成物における(E)シリコーン化合物の含有量は、溶解性と接着性とのバランスに優れる観点、及び、半導体ウェハ加工後の密着性と剥離性とを容易に両立できる観点から、(A)熱可塑性樹脂100質量部に対して下記の範囲が好ましい。(E)シリコーン化合物の含有量は、半導体ウェハ加工後の剥離性に更に優れ、ウェハが割れることが抑制されやすくなる傾向がある観点から、1.0質量部以上が好ましく、5.0質量部以上がより好ましく、10質量部以上が更に好ましく、30質量部以上が特に好ましく、50質量部以上が極めて好ましい。(E)シリコーン化合物の含有量は、ウェハへの十分な密着性が得られる傾向がある観点から、100質量部以下が好ましく、80質量部以下がより好ましく、70質量部以下が更に好ましい。これらの観点から、(E)シリコーン化合物の含有量は、1.0~100質量部が好ましく、5.0~80質量部がより好ましい。 The content of the (E) silicone compound in the temporarily fixing resin composition according to the present embodiment facilitates the viewpoint of excellent balance between solubility and adhesiveness, and adhesion and releasability after semiconductor wafer processing. From the standpoint of compatibility, the following ranges are preferable with respect to 100 parts by mass of (A) thermoplastic resin. (E) The content of the silicone compound is more preferably 1.0 part by mass or more, and 5.0 parts by mass from the viewpoint that the releasability after processing of the semiconductor wafer is further excellent and the wafer tends to be prevented from cracking. The above is more preferable, 10 parts by mass or more is further preferable, 30 parts by mass or more is particularly preferable, and 50 parts by mass or more is extremely preferable. (E) The content of the silicone compound is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and still more preferably 70 parts by mass or less, from the viewpoint that sufficient adhesion to the wafer tends to be obtained. From these viewpoints, the content of the (E) silicone compound is preferably 1.0 to 100 parts by mass, and more preferably 5.0 to 80 parts by mass.
 (F)硬化促進剤としては、例えば、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2-エチル-4-メチルイミダゾール-テトラフェニルボレート、及び、1,8-ジアザビシクロ[5,4,0]ウンデセン-7-テトラフェニルボレートが挙げられる。(F)硬化促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of (F) curing accelerators include imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole-tetraphenylborate, and 1,8 -Diazabicyclo [5,4,0] undecene-7-tetraphenylborate. (F) A hardening accelerator may be used individually by 1 type, and may be used in combination of 2 or more type.
 本実施形態に係る仮固定用樹脂組成物における(F)硬化促進剤の含有量は、(A)熱可塑性樹脂100質量部に対して、50質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が更に好ましく、1質量部以下が特に好ましい。硬化促進剤の含有量が上記範囲内であると、十分な硬化性を得つつ、更に良好な保存安定性を得ることができる。含有量が50質量部以下であると、十分な保存安定性が得られやすく、十分な低温貼付性が得られやすい。(F)硬化促進剤の含有量の下限は、特に制限はないが、(A)熱可塑性樹脂100質量部に対して0.01質量部以上であることが好ましい。 The content of the (F) curing accelerator in the temporarily fixing resin composition according to the present embodiment is preferably 50 parts by mass or less, more preferably 20 parts by mass or less, with respect to 100 parts by mass of the (A) thermoplastic resin. 10 mass parts or less are still more preferable, and 1 mass part or less is especially preferable. When the content of the curing accelerator is within the above range, it is possible to obtain better storage stability while obtaining sufficient curability. When the content is 50 parts by mass or less, sufficient storage stability is easily obtained, and sufficient low-temperature sticking property is easily obtained. (F) Although there is no restriction | limiting in particular in content of a hardening accelerator, It is preferable that it is 0.01 mass part or more with respect to 100 mass parts of (A) thermoplastic resins.
 (G)無機フィラーとしては、例えば、銀粉、金粉、銅粉等の金属フィラー;シリカ、アルミナ、窒化ホウ素、チタニア、ガラス、酸化鉄、セラミック等の非金属無機フィラーなどが挙げられる。無機フィラーは、所望する機能に応じて選択することができる。例えば、金属フィラーは、仮固定用樹脂組成物にチキソ性を付与する目的で添加することができる。非金属無機フィラーは、仮固定用樹脂組成物に低熱膨張性又は低吸湿性を付与する目的で添加することができる。無機フィラーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 (G) Examples of the inorganic filler include metal fillers such as silver powder, gold powder, and copper powder; non-metallic inorganic fillers such as silica, alumina, boron nitride, titania, glass, iron oxide, and ceramic. The inorganic filler can be selected according to the desired function. For example, the metal filler can be added for the purpose of imparting thixotropy to the temporarily fixing resin composition. The nonmetallic inorganic filler can be added for the purpose of imparting low thermal expansion or low hygroscopicity to the temporarily fixing resin composition. An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記無機フィラーは、表面に有機基を有するフィラーが好ましい。無機フィラーの表面が有機基によって修飾されていることにより、仮固定用樹脂組成物を調製するときの有機溶剤への分散性、並びに、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)の密着性及び耐熱性を向上させることが容易となる。 The inorganic filler is preferably a filler having an organic group on the surface. The surface of the inorganic filler is modified with an organic group, so that dispersibility in an organic solvent when preparing a temporarily fixing resin composition, and a temporarily fixing material (film) formed from the temporarily fixing resin composition It is easy to improve the adhesion and heat resistance of the temporary fixing material.
 表面に有機基を有する無機フィラーは、例えば、下記一般式(B-1)で表されるシランカップリング剤と無機フィラーとを混合し、30℃以上の温度で攪拌することにより得ることができる。無機フィラーの表面が有機基によって修飾されたことは、UV(紫外線)測定、IR(赤外線)測定、XPS(X線光電子分光)測定等で確認することが可能である。 The inorganic filler having an organic group on the surface can be obtained, for example, by mixing a silane coupling agent represented by the following general formula (B-1) and an inorganic filler and stirring at a temperature of 30 ° C. or higher. . The modification of the surface of the inorganic filler with an organic group can be confirmed by UV (ultraviolet) measurement, IR (infrared) measurement, XPS (X-ray photoelectron spectroscopy) measurement, or the like.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(B-1)中、Xは、フェニル基、グリシドキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、ビニル基、イソシアネート基及びメタクリロキシ基からなる群より選択される有機基を示し、sは、0又は1~10の整数を示し、R11、R12及びR13は、各々独立に、炭素数1~10のアルキル基を示す。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基及びイソブチル基が挙げられる。炭素数1~10のアルキル基としては、入手が容易である観点から、メチル基、エチル基及びペンチル基が好ましい。Xとしては、耐熱性に更に優れる観点から、アミノ基、グリシドキシ基、メルカプト基及びイソシアネート基が好ましく、グリシドキシ基及びメルカプト基がより好ましい。式(B-1)中のsは、高熱時のフィルム流動を抑制し、耐熱性を更に向上させる観点から、0~5が好ましく、0~4がより好ましい。 In the formula (B-1), X represents an organic group selected from the group consisting of a phenyl group, a glycidoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, a vinyl group, an isocyanate group, and a methacryloxy group; Represents 0 or an integer of 1 to 10, and R 11 , R 12 and R 13 each independently represents an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, isopropyl group and isobutyl group. It is done. The alkyl group having 1 to 10 carbon atoms is preferably a methyl group, an ethyl group or a pentyl group from the viewpoint of easy availability. X is preferably an amino group, a glycidoxy group, a mercapto group or an isocyanate group, more preferably a glycidoxy group or a mercapto group, from the viewpoint of further excellent heat resistance. In the formula (B-1), s is preferably 0 to 5, and more preferably 0 to 4, from the viewpoint of suppressing film flow during high heat and further improving heat resistance.
 シランカップリング剤としては、例えば、トリメトキシフェニルシラン、ジメチルジメトキシフェニルシラン、トリエトキシフェニルシラン、ジメトキシメチルフェニルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N,N’-ビス(3-(トリメトキシシリル)プロピル)エチレンジアミン、ポリオキシエチレンプロピルトリアルコキシシラン、及び、ポリエトキシジメチルシロキサンが挙げられる。これらの中でも、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、及び、3-メルカプトプロピルトリメトキシシランが好ましく、トリメトキシフェニルシラン、3-グリシドキシプロピルトリメトキシシラン、及び、3-メルカプトプロピルトリメトキシシランがより好ましい。シランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the silane coupling agent include trimethoxyphenylsilane, dimethyldimethoxyphenylsilane, triethoxyphenylsilane, dimethoxymethylphenylsilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- Glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, Examples include N, N′-bis (3- (trimethoxysilyl) propyl) ethylenediamine, polyoxyethylenepropyltrialkoxysilane, and polyethoxydimethylsiloxane. Among these, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-mercaptopropyltrimethoxysilane are preferable, and trimethoxyphenylsilane, 3-glycol Sidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane are more preferable. A silane coupling agent may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記シランカップリング剤の使用量は、耐熱性を更に向上させる効果と、保存安定性とのバランスを図る観点から、無機フィラー100質量部に対して、0.01~50質量部が好ましく、0.05~20質量部がより好ましく、耐熱性を更に向上させる観点から、0.5~10質量部が更に好ましい。 The amount of the silane coupling agent used is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the inorganic filler, from the viewpoint of balancing the effect of further improving the heat resistance and the storage stability. .05 to 20 parts by mass is more preferable, and from the viewpoint of further improving the heat resistance, 0.5 to 10 parts by mass is more preferable.
 本実施形態に係る仮固定用樹脂組成物における(G)無機フィラーの含有量は、(A)熱可塑性樹脂100質量部に対して、300質量部以下が好ましく、200質量部以下がより好ましく、100質量部以下が更に好ましい。無機フィラーの含有量の下限は、特に制限はないが、(A)熱可塑性樹脂100質量部に対して5質量部以上であることが好ましい。無機フィラーの含有量が上記範囲であることにより、仮固定用樹脂組成物から形成される仮固定材(フィルム状の仮固定材等)の接着性を十分確保しつつ、所望の機能を付与することができる。 The content of the (G) inorganic filler in the temporarily fixing resin composition according to the present embodiment is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, with respect to 100 parts by mass of the (A) thermoplastic resin. 100 parts by mass or less is more preferable. Although the minimum of content of an inorganic filler does not have a restriction | limiting in particular, It is preferable that it is 5 mass parts or more with respect to 100 mass parts of (A) thermoplastic resins. When the content of the inorganic filler is in the above range, a desired function is imparted while sufficiently securing the adhesiveness of a temporary fixing material (film-like temporary fixing material or the like) formed from the temporary fixing resin composition. be able to.
 本実施形態に係る仮固定用樹脂組成物は、有機フィラーを更に含有することができる。有機フィラーとしては、カーボン、ゴム系フィラー、シリコーン系微粒子、ポリアミド微粒子、ポリイミド微粒子等が挙げられる。有機フィラーの含有量は、(A)熱可塑性樹脂100質量部に対して、300質量部以下が好ましく、200質量部以下がより好ましく、100質量部以下が更に好ましい。有機フィラーの含有量の下限は、特に制限はないが、(A)熱可塑性樹脂100質量部に対して5質量部以上であることが好ましい。 The temporary fixing resin composition according to this embodiment can further contain an organic filler. Examples of the organic filler include carbon, rubber filler, silicone fine particles, polyamide fine particles, and polyimide fine particles. The content of the organic filler is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and still more preferably 100 parts by mass or less with respect to (A) 100 parts by mass of the thermoplastic resin. Although there is no restriction | limiting in particular in content of an organic filler, It is preferable that it is 5 mass parts or more with respect to 100 mass parts of (A) thermoplastic resins.
 本実施形態に係る仮固定用樹脂組成物は、必要に応じて、有機溶剤を用いて希釈してもよく、有機溶剤を含有することができる。有機溶剤は、特に限定されないが、製膜時の揮発性等を沸点から考慮して決めることができる。具体的には、例えば、メタノール、エタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、トルエン、キシレン等の比較的低沸点の溶剤は、製膜時にフィルムの硬化が進まない点で好ましい。また、製膜性を向上させる等の目的では、例えば、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、シクロヘキサノン等の比較的高沸点の溶剤を使用することが好ましい。有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The resin composition for temporary fixing according to the present embodiment may be diluted with an organic solvent as necessary, and may contain an organic solvent. The organic solvent is not particularly limited, but can be determined in consideration of the volatility during film formation from the boiling point. Specifically, for example, a relatively low boiling point solvent such as methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene is used during film formation. This is preferable in that the curing of the film does not proceed. For the purpose of improving the film-forming property, it is preferable to use a solvent having a relatively high boiling point such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, cyclohexanone. An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 本実施形態に係る仮固定用樹脂組成物の固形分濃度は、10~80質量%であることが好ましい。 The solid content concentration of the temporarily fixing resin composition according to the present embodiment is preferably 10 to 80% by mass.
 本実施形態に係る仮固定用樹脂組成物は、(A)熱可塑性樹脂、(B)熱硬化性樹脂、(C)(メタ)アクリルモノマ、及び、(D)放射線によって塩基とラジカルとを発生する化合物、並びに、必要に応じて(E)シリコーン化合物、(F)硬化促進剤、(G)無機フィラー、有機溶剤、及び、その他の成分を混合及び混練することによって調製することができる。混合及び混練は、通常の攪拌機、らいかい機、三本ロール、ビーズミル等の分散機を適宜、組み合わせて行うことができる。 The temporarily fixing resin composition according to the present embodiment generates (A) a thermoplastic resin, (B) a thermosetting resin, (C) a (meth) acrylic monomer, and (D) a base and a radical by radiation. And (E) a silicone compound, (F) a curing accelerator, (G) an inorganic filler, an organic solvent, and other components, if necessary, can be prepared by mixing and kneading. Mixing and kneading can be performed by appropriately combining dispersers such as a normal stirrer, a raking machine, a three-roller, and a bead mill.
[仮固定用樹脂フィルム及び仮固定用樹脂フィルムシート]
 本実施形態に係る仮固定用樹脂フィルムは、本実施形態に係る仮固定用樹脂組成物をフィルム状に形成してなるものである。本実施形態に係る仮固定用樹脂フィルムは、フィルム状の仮固定用樹脂組成物であり、本実施形態に係る仮固定用樹脂組成物を含む。本実施形態に係る仮固定用樹脂フィルムシートは、離型性を有する支持フィルムと、本実施形態に係る仮固定用樹脂フィルムと、を備え、前記仮固定用樹脂フィルムが前記支持フィルム上に設けられている。
[Temporary fixing resin film and temporary fixing resin film sheet]
The temporarily fixing resin film according to the present embodiment is formed by forming the temporarily fixing resin composition according to the present embodiment into a film shape. The temporarily fixing resin film according to this embodiment is a film-like temporarily fixing resin composition, and includes the temporarily fixing resin composition according to this embodiment. The temporarily fixing resin film sheet according to the present embodiment includes a supporting film having releasability and the temporarily fixing resin film according to the present embodiment, and the temporarily fixing resin film is provided on the supporting film. It has been.
 本実施形態に係る仮固定用樹脂フィルムは、例えば、仮固定用樹脂組成物を支持フィルムに塗布することにより容易に製造することができる。また、仮固定用樹脂組成物が有機溶剤で希釈されている場合、該樹脂組成物を支持フィルムに塗布し、加熱乾燥により有機溶剤を除去することにより製造することができる。 The temporarily fixing resin film according to the present embodiment can be easily manufactured by, for example, applying a temporarily fixing resin composition to a support film. Moreover, when the resin composition for temporary fixing is diluted with the organic solvent, it can manufacture by apply | coating this resin composition to a support film, and removing an organic solvent by heat drying.
 支持フィルム上に設けられた仮固定用樹脂フィルムには、必要に応じて保護フィルムを貼り付けることができる。この場合、後述する、支持フィルム、仮固定用樹脂フィルム及び保護フィルムからなる3層構造を有する仮固定用樹脂フィルムシートを得ることができる。 A protective film can be attached to the temporarily fixing resin film provided on the support film, if necessary. In this case, a temporary fixing resin film sheet having a three-layer structure composed of a support film, a temporary fixing resin film, and a protective film, which will be described later, can be obtained.
 このようにして得られた仮固定用樹脂フィルムシートは、例えばロール状に巻き取ることによって容易に保存することができる。また、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。 The temporary fixing resin film sheet thus obtained can be easily stored by, for example, winding it into a roll. Moreover, a roll-shaped film can be cut out into a suitable size and stored in a sheet shape.
 図1(A)は、仮固定用樹脂フィルムシートの一実施形態を示す上面図であり、図1(B)は、図1(A)のI-I線に沿った模式断面図である。 FIG. 1 (A) is a top view showing an embodiment of a temporarily fixing resin film sheet, and FIG. 1 (B) is a schematic cross-sectional view taken along line II in FIG. 1 (A).
 図1に示す仮固定用樹脂フィルムシート1は、離型性を有する支持フィルム10と、支持フィルム10上に設けられた仮固定用樹脂フィルム20と、仮固定用樹脂フィルム20の支持フィルム10とは反対側に設けられた保護フィルム30とを備える。 A temporary fixing resin film sheet 1 shown in FIG. 1 includes a support film 10 having releasability, a temporary fixing resin film 20 provided on the supporting film 10, and a supporting film 10 of the temporary fixing resin film 20. Includes a protective film 30 provided on the opposite side.
 支持フィルム10の構成材料としては、特に制限はないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリアミド、及び、ポリイミドが挙げられる。これらの中で、支持フィルム10の構成材料は、柔軟性及び強靭性に優れる観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリアミド、又は、ポリイミドであることが好ましい。また、仮固定用樹脂フィルム(樹脂層)との剥離性を更に向上させる観点から、シリコーン系化合物、フッ素系化合物等により離型処理が施されたフィルムを支持フィルムとして用いることが好ましい。 The constituent material of the support film 10 is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyamide, and polyimide. Among these, the constituent material of the support film 10 is preferably polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polyamide, or polyimide from the viewpoint of excellent flexibility and toughness. In addition, from the viewpoint of further improving the peelability from the temporarily fixing resin film (resin layer), it is preferable to use as the support film a film that has been subjected to a release treatment with a silicone compound, a fluorine compound, or the like.
 支持フィルム10の厚みは、目的とする柔軟性により適宜変えてよいが、3~250μmであることが好ましく、5~200μmであることがより好ましく、7~150μmであることが更に好ましい。厚みが3μm以上であれば、フィルム強度が十分である。厚みが250μm以下であれば、十分な柔軟性が得られる。 The thickness of the support film 10 may be appropriately changed depending on the intended flexibility, but is preferably 3 to 250 μm, more preferably 5 to 200 μm, and still more preferably 7 to 150 μm. If the thickness is 3 μm or more, the film strength is sufficient. If the thickness is 250 μm or less, sufficient flexibility can be obtained.
 本実施形態に係る仮固定用樹脂フィルム20の厚みについては、特に限定されないが、乾燥後の厚みで、5~300μmであることが好ましい。厚みが5μm以上であれば、厚みが十分であるためフィルム又はフィルムの硬化物の強度が十分である。厚みが300μm以下であれば、十分な乾燥によりフィルム中の残留溶剤量を低減することが容易となり、フィルムの硬化物を加熱したときに発泡することを少なくできる。 The thickness of the temporarily fixing resin film 20 according to the present embodiment is not particularly limited, but is preferably 5 to 300 μm after drying. If thickness is 5 micrometers or more, since thickness is enough, the intensity | strength of the film or the hardened | cured material of film is enough. If thickness is 300 micrometers or less, it will become easy to reduce the amount of residual solvents in a film by sufficient drying, and it can reduce foaming when the hardened | cured material of a film is heated.
 厚膜のフィルムを製造する場合は、予め形成した厚み100μm以下の複数のフィルム同士を貼り合せてもよい。このように貼り合せたフィルムを用いることで、厚膜化フィルムを作製したときの残存溶剤を容易に低下させることができる。 In the case of manufacturing a thick film, a plurality of previously formed films having a thickness of 100 μm or less may be bonded together. By using the films bonded in this manner, the residual solvent when the thick film is produced can be easily reduced.
 本実施形態に係る仮固定用樹脂フィルム20の放射線照射前の120℃における粘度は、フィルムの取扱性及びウェハへの貼付性(低温貼付性等)に優れる観点から、200~6000Pa・sが好ましい。粘度が200Pa・s以上であれば、やわらかすぎるためフィルムが取扱い辛くなることが抑制される。粘度が6000Pa・s以下であれば、硬すぎるために十分な貼付性(低温貼付性等)が得られなくなることが抑制される。さらに、本実施形態に係る仮固定用樹脂フィルム20の放射線照射後の120℃における粘度は、1000~10000Pa・sであることが好ましい。 The viscosity at 120 ° C. before irradiation of the temporarily fixing resin film 20 according to the present embodiment is preferably 200 to 6000 Pa · s from the viewpoint of excellent handleability of the film and stickability to a wafer (low temperature sticking property, etc.). . If the viscosity is 200 Pa · s or more, the film is too soft and the film is prevented from being difficult to handle. If the viscosity is 6000 Pa · s or less, it is too hard to prevent a sufficient sticking property (low temperature sticking property, etc.) from being obtained. Furthermore, the viscosity of the temporarily fixing resin film 20 according to the present embodiment at 120 ° C. after radiation irradiation is preferably 1000 to 10,000 Pa · s.
 なお、粘度は以下の方法により測定できる。厚み60μmの3枚の仮固定用樹脂フィルムを80℃でラミネートすることで厚み180μmとし、回転式粘弾性測定装置(ティー・エイ・インスツルメント株式会社製、ARES)を用いて、測定方法がparall plate、測定冶具が直径8mmの円形、測定モードがDynamic temperature ramp、周波数が1Hzである条件で、35℃で5%の歪みを与えながら20℃/分の昇温速度で120℃まで昇温し、120℃の粘度を測定する。 The viscosity can be measured by the following method. Three temporary fixing resin films having a thickness of 60 μm are laminated at 80 ° C. to obtain a thickness of 180 μm, and a measurement method is performed using a rotary viscoelasticity measuring device (ARES, manufactured by T.A. Instruments Co., Ltd.). The temperature was raised to 120 ° C at a heating rate of 20 ° C / min while applying 5% strain at 35 ° C under the conditions of a parallel plate, a measurement jig of 8 mm in diameter, a measurement mode of Dynamic temperature ramp, and a frequency of 1 Hz. And the viscosity at 120 ° C. is measured.
 本実施形態に係る仮固定用樹脂フィルム20において、放射線照射前に5℃以下で12ヶ月保管(冷蔵保管)した場合の粘度上昇率(120℃)は、100%以下であることが好ましい。 In the temporarily fixing resin film 20 according to the present embodiment, the viscosity increase rate (120 ° C.) when stored at 12 ° C. for 12 months (refrigerated storage) before irradiation is preferably 100% or less.
 保護フィルム30の構成材料としては、特に制限はないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン及びポリプロピレンが挙げられる。これらの中でも、保護フィルム30の構成材料は、柔軟性及び強靭性に優れる観点から、ポリエチレンテレフタレート、ポリエチレン、又は、ポリプロピレンであることが好ましい。また、仮固定用樹脂フィルム(樹脂層)との剥離性を更に向上させる観点から、シリコーン系化合物、フッ素系化合物等により離型処理が施されたフィルムを保護フィルムとして用いることが好ましい。 The constituent material of the protective film 30 is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, and polypropylene. Among these, the constituent material of the protective film 30 is preferably polyethylene terephthalate, polyethylene, or polypropylene from the viewpoint of excellent flexibility and toughness. Further, from the viewpoint of further improving the peelability from the temporarily fixing resin film (resin layer), it is preferable to use as the protective film a film that has been subjected to a release treatment with a silicone compound, a fluorine compound, or the like.
 保護フィルム30の厚みは、目的とする柔軟性により適宜設定することができるが、10~250μmであることが好ましく、15~200μmであることがより好ましく、20~150μmであることが更に好ましい。厚みが10μm以上であれば、フィルム強度が十分である。厚みが250μm以下であれば、十分な柔軟性が得られる。 The thickness of the protective film 30 can be appropriately set depending on the intended flexibility, but is preferably 10 to 250 μm, more preferably 15 to 200 μm, and still more preferably 20 to 150 μm. When the thickness is 10 μm or more, the film strength is sufficient. If the thickness is 250 μm or less, sufficient flexibility can be obtained.
 図2(A)は、仮固定用樹脂フィルムシートの他の実施形態を示す上面図であり、図2(B)は、図2(A)のII-II線に沿った模式断面図である。 FIG. 2 (A) is a top view showing another embodiment of the temporarily fixing resin film sheet, and FIG. 2 (B) is a schematic sectional view taken along the line II-II in FIG. 2 (A). .
 図2に示す仮固定用樹脂フィルムシート2は、仮固定する部材の形状に合わせて仮固定用樹脂フィルム20及び保護フィルム30が予め裁断されていること以外は、仮固定用樹脂フィルムシート1と同様の構成を有する。なお、図2では、裁断された仮固定用樹脂フィルム20及び保護フィルム30の外縁部が除去されているが、仮固定する部材の形状に合わせて仮固定用樹脂フィルム及び保護フィルムに切れ込みが設けられ、外縁部が残されていてもよい。 The temporarily fixing resin film sheet 2 shown in FIG. 2 is the same as the temporarily fixing resin film sheet 1 except that the temporarily fixing resin film 20 and the protective film 30 are cut in advance according to the shape of the member to be temporarily fixed. It has the same configuration. In FIG. 2, the outer edge portions of the temporarily fixed resin film 20 and the protective film 30 that have been cut are removed, but the temporary fixing resin film and the protective film are notched according to the shape of the temporarily fixed member. And the outer edge may be left.
[半導体ウェハ加工方法]
 本実施形態に係る半導体ウェハの加工方法は、下記工程(a)~(c)をこの順に備え、任意に下記工程(d)を備える。なお、放射線照射とは、紫外線(UV)、可視光線等の活性光線の照射である。
 (a)半導体ウェハを支持体に仮固定材(フィルム状の仮固定材等)を介して仮固定する仮固定工程
 (b)支持体に仮固定された前記半導体ウェハを加工する加工工程
 (c)加工された前記半導体ウェハを支持体及び仮固定材から分離する分離工程
 (d)半導体ウェハに残渣がある場合に洗浄する洗浄工程
[Semiconductor wafer processing method]
The semiconductor wafer processing method according to this embodiment includes the following steps (a) to (c) in this order, and optionally includes the following step (d). In addition, radiation irradiation is irradiation of active rays, such as an ultraviolet-ray (UV) and visible light.
(A) Temporary fixing step of temporarily fixing a semiconductor wafer to a support via a temporary fixing material (film-like temporary fixing material or the like) (b) Processing step of processing the semiconductor wafer temporarily fixed to the support (c) ) Separation process for separating the processed semiconductor wafer from the support and the temporary fixing material. (D) A cleaning process for cleaning when there is a residue in the semiconductor wafer.
 図3(A)、図3(B)及び図3(C)は、半導体ウェハの加工方法の一実施形態を説明するための模式断面図であり、図3(D)は、加工後の半導体ウェハを示す上面図である。 3A, 3B, and 3C are schematic cross-sectional views for explaining one embodiment of a method for processing a semiconductor wafer, and FIG. 3D is a semiconductor after processing. It is a top view which shows a wafer.
<(a)仮固定工程>
 前記仮固定工程においては、仮固定材に対して放射線照射が行われる。仮固定工程は、半導体ウェハを支持体に仮固定材を介して仮固定する際、放射線照射を行う工程である。放射線照射を行うことで、塩基とラジカルとが発生し、反応が開始する。仮固定工程では、半導体ウェハを支持体に仮固定する前に仮固定材に対して放射線を照射してもよく、半導体ウェハを支持体に仮固定した後に仮固定材に対して放射線を照射してもよい。例えば、支持体が透明体(ガラスキャリア等)である場合、半導体ウェハを支持体に仮固定した後に仮固定材に対して放射線を照射することができる。一方、支持体が透明体ではない場合、半導体ウェハを支持体に仮固定する前に仮固定材に対して放射線を照射することが好ましい。
<(A) Temporary fixing step>
In the temporary fixing step, radiation irradiation is performed on the temporary fixing material. The temporary fixing step is a step of performing radiation irradiation when temporarily fixing the semiconductor wafer to the support via a temporary fixing material. By performing irradiation, a base and a radical are generated, and the reaction starts. In the temporary fixing step, the temporary fixing material may be irradiated with radiation before temporarily fixing the semiconductor wafer to the support. After the semiconductor wafer is temporarily fixed to the support, the temporary fixing material is irradiated with radiation. May be. For example, when the support is a transparent body (glass carrier or the like), the temporary fixing material can be irradiated with radiation after the semiconductor wafer is temporarily fixed to the support. On the other hand, when the support is not a transparent body, it is preferable to irradiate the temporary fixing material with radiation before temporarily fixing the semiconductor wafer to the support.
 図3(A)は、支持体50及び半導体ウェハ60の間に、本実施形態に係る仮固定用樹脂組成物、又は、仮固定用樹脂フィルムから形成される仮固定材(フィルム状の仮固定材等)40を介在させ、支持体50に半導体ウェハ60を仮固定する工程を示す。剥離層52については後述する。 FIG. 3A shows a temporary fixing material (film-like temporary fixing) formed from a temporary fixing resin composition or a temporary fixing resin film between the support 50 and the semiconductor wafer 60. The material etc.) 40 is interposed and the process of temporarily fixing the semiconductor wafer 60 to the support body 50 is shown. The release layer 52 will be described later.
 半導体ウェハ60の厚みは、特に制限はないが、600~800μmとすることができる。 The thickness of the semiconductor wafer 60 is not particularly limited, but can be 600 to 800 μm.
<(a-1)半導体ウェハ60上への仮固定材の形成>
 仮固定用樹脂組成物を用いる場合、スピンコート等の方法により半導体ウェハ60の素子形成面上に仮固定材40を形成することができる。仮固定用樹脂組成物が有機溶剤で希釈されている場合、スピンコート後、その溶剤の揮発条件に応じて、加熱乾燥により有機溶剤を除去し、仮固定材40を形成する。
<(A-1) Formation of Temporary Fixing Material on Semiconductor Wafer 60>
When the temporarily fixing resin composition is used, the temporarily fixing material 40 can be formed on the element forming surface of the semiconductor wafer 60 by a method such as spin coating. When the temporarily fixing resin composition is diluted with an organic solvent, the organic solvent is removed by heating and drying according to the volatilization conditions of the solvent after spin coating to form the temporarily fixing material 40.
 仮固定用樹脂フィルム20を用いる場合、ロールラミネーター、真空ラミネーター等を用いて、半導体ウェハ60の素子形成面上に仮固定用樹脂フィルム20をラミネートすることにより仮固定材40を設けることができる。 When the temporary fixing resin film 20 is used, the temporary fixing material 40 can be provided by laminating the temporary fixing resin film 20 on the element forming surface of the semiconductor wafer 60 using a roll laminator, a vacuum laminator, or the like.
<(a-2)仮固定材への放射線照射(増粘化)>
 放射線露光機(UV露光機等)を用いて10~10000mJ/cm照射することにより、仮固定材40を増粘化する。
<(A-2) Irradiation (thickening) to temporary fixing material>
The temporary fixing material 40 is thickened by irradiation with 10 to 10000 mJ / cm 2 using a radiation exposure machine (UV exposure machine or the like).
 また、放射線(UV等)照射することで、仮固定材40中の(D)成分(α-アミノケトン化合物等)の解離が起こり、ラジカルと塩基(アミン等)とが発生する。そして、ラジカルにより、(C)(メタ)アクリルモノマ等の光反応性モノマの重合反応が起こり、また、塩基(アミン等)は熱硬化性樹脂の硬化促進作用を有しているため、以後、加熱により硬化が促進する。 In addition, irradiation with radiation (such as UV) causes dissociation of the component (D) (such as α-aminoketone compound) in the temporary fixing material 40, thereby generating radicals and bases (such as amine). The radical causes a polymerization reaction of a photoreactive monomer such as (C) (meth) acrylic monomer, and the base (such as amine) has a curing accelerating action of the thermosetting resin. Curing is accelerated by heating.
<(a-3)支持体50の貼り付け>
 次に、ウェハ接合装置又は真空ラミネーター上に、放射線(UV等)照射を行い増粘化した仮固定材40を形成した半導体ウェハ60をセットし、支持体50をプレスで押圧して貼り付ける。
<(A-3) Pasting support 50>
Next, the semiconductor wafer 60 on which the temporarily fixed material 40 that has been thickened by irradiation with radiation (such as UV) is formed is set on a wafer bonding apparatus or a vacuum laminator, and the support 50 is pressed and pasted with a press.
 ウェハ接合装置を用いる場合は、例えば、EVG社製真空プレス機EVG520IS(商品名)を用いて、気圧1hPa以下、圧着圧力1MPa、圧着温度60~200℃、保持時間100~300秒で、半導体ウェハ60と支持体50とを仮固定材40を介して仮固定する。 When using a wafer bonding apparatus, for example, using an EVG vacuum press machine EVG520IS (trade name), a pressure of 1 hPa or less, a pressure of 1 MPa, a pressure of 60 to 200 ° C., a holding time of 100 to 300 seconds, and a semiconductor wafer 60 and the support 50 are temporarily fixed via a temporary fixing member 40.
 真空ラミネーターを用いる場合は、例えば、株式会社エヌ・ピー・シー製真空ラミネーターLM-50×50-S(商品名)、ニチゴーモートン株式会社製真空ラミネーターV130(商品名)等を用いて、気圧1hPa以下、圧着温度40~180℃(好ましくは60~150℃)、ラミネート圧力0.01~0.5MPa(好ましくは0.1~0.5MPa)、保持時間1~600秒(好ましくは30~300秒)で、半導体ウェハ60と支持体50とを仮固定材40を介して仮固定する。 When using a vacuum laminator, for example, a vacuum laminator LM-50 × 50-S (trade name) manufactured by NPC Corporation, a vacuum laminator V130 (trade name) manufactured by Nichigo Morton Co., Ltd., etc. is used. The pressure bonding temperature is 40 to 180 ° C. (preferably 60 to 150 ° C.), the lamination pressure is 0.01 to 0.5 MPa (preferably 0.1 to 0.5 MPa), and the holding time is 1 to 600 seconds (preferably 30 to 300). Second), the semiconductor wafer 60 and the support body 50 are temporarily fixed via the temporary fixing material 40.
<(a-4)仮固定材の硬化>
 半導体ウェハ60と支持体50とを仮固定材40を介して仮固定した後、100~200℃で1~60分加熱することにより、仮固定材40の熱硬化を行う。
<(A-4) Curing of temporary fixing material>
After temporarily fixing the semiconductor wafer 60 and the support 50 via the temporary fixing material 40, the temporary fixing material 40 is thermally cured by heating at 100 to 200 ° C. for 1 to 60 minutes.
 本実施形態の支持体としては、特に制限はないが、シリコンウェハ、ガラスウェハ、石英ウェハ等の基板が使用可能である。 The support of this embodiment is not particularly limited, but a substrate such as a silicon wafer, a glass wafer, or a quartz wafer can be used.
 本実施形態の支持体には剥離処理を行ってもよく、図3(A)のように支持体50の表面の全部又は一部を剥離処理することで剥離層52を形成する。剥離処理に使用される剥離剤は、特に限定されないが、剥離性に更に優れる観点から、例えば、フッ素元素を有する表面改質剤、ポリオレフィン系ワックス、シリコーンオイル、反応性基を含有するシリコーンオイル及びシリコーン変性アルキド樹脂が好ましい。 The support of this embodiment may be subjected to a peeling treatment, and the peeling layer 52 is formed by peeling all or part of the surface of the support 50 as shown in FIG. The release agent used for the release treatment is not particularly limited, but from the viewpoint of further improving the release property, for example, a surface modifier having a fluorine element, a polyolefin wax, a silicone oil, a silicone oil containing a reactive group, and Silicone modified alkyd resins are preferred.
 以上説明したような構成の仮固定材(フィルム状の仮固定材等)を用いると、支持体を用いた高温での半導体ウェハの加工が可能であり、加工後に室温で仮固定用樹脂組成物を半導体ウェハ及び支持体から糊残りなく剥離することができる。 When a temporary fixing material (such as a film-like temporary fixing material) having the structure described above is used, a semiconductor wafer can be processed at a high temperature using a support, and the resin composition for temporary fixing at room temperature after processing. Can be peeled off from the semiconductor wafer and the support without adhesive residue.
<(b)加工工程>
 加工工程における加工としては、ウェハレベルで用いられる研削、電極形成、金属配線形成、保護膜形成等が挙げられる。研削方式に特に制限はなく、公知の研削方式が利用できる。研削は半導体ウェハと砥石(ダイヤモンド等)とに水をかけて冷却しながら行うことが好ましい。
<(B) Processing step>
Examples of processing in the processing step include grinding, electrode formation, metal wiring formation, protective film formation, and the like used at the wafer level. There is no restriction | limiting in particular in a grinding system, A well-known grinding system can be utilized. The grinding is preferably performed while cooling the semiconductor wafer and a grindstone (such as diamond) with water.
 例えば、図3(B)に示すように、グラインダー90によって半導体ウェハ60の裏面(すなわち、半導体ウェハ60の仮固定材40と接する側とは反対側の面)を研削し、例えば700μm程度の厚みを100μm以下にまで薄化して半導体ウェハ80を得る。 For example, as shown in FIG. 3B, the back surface of the semiconductor wafer 60 (that is, the surface opposite to the side in contact with the temporary fixing material 40) of the semiconductor wafer 60 is ground by a grinder 90, and the thickness is, for example, about 700 μm. Is reduced to 100 μm or less to obtain a semiconductor wafer 80.
 研削加工する装置としては、例えばDISCO株式会社製DGP-8761(商品名)等が挙げられ、この場合の切削条件は、所望の半導体ウェハの厚み及び研削状態に応じて任意に選ぶことができる。 As an apparatus for grinding, for example, DGP-8761 (trade name) manufactured by DISCO Corporation can be cited, and the cutting conditions in this case can be arbitrarily selected according to the desired thickness and grinding state of the semiconductor wafer.
 その他の加工工程としては、具体的には、電極等の形成のための金属スパッタリング、金属スパッタリング層をエッチングするウェットエッチング、金属配線をマスクするためのレジストの塗布、露光・現像によるパターンの形成、レジストの剥離、ドライエッチング、金属めっきの形成、TSV形成のためのシリコンエッチング、シリコン表面の酸化膜形成など、公知のプロセスが挙げられる。 As other processing steps, specifically, metal sputtering for forming electrodes, etc., wet etching for etching a metal sputtering layer, application of a resist for masking metal wiring, formation of a pattern by exposure and development, Known processes such as resist stripping, dry etching, metal plating, silicon etching for TSV formation, and oxide film formation on the silicon surface can be used.
 図3(C)は、薄化した半導体ウェハ80の裏面側にドライイオンエッチング又はボッシュプロセス等の加工を行い、貫通孔を形成した後、銅めっき等の処理を行い、貫通電極82を形成した例を示している。 In FIG. 3C, processing such as dry ion etching or Bosch process is performed on the back side of the thinned semiconductor wafer 80 to form through holes, and then processing such as copper plating is performed to form through electrodes 82. An example is shown.
 これにより、半導体ウェハ80に所定の加工が施される。図3(D)は、加工後の半導体ウェハ80の上面図である。加工された半導体ウェハ80は、ダイシングライン84に沿ったダイシングによって半導体素子に個片化される。 Thereby, the semiconductor wafer 80 is subjected to predetermined processing. FIG. 3D is a top view of the semiconductor wafer 80 after processing. The processed semiconductor wafer 80 is divided into semiconductor elements by dicing along a dicing line 84.
<(c)分離工程>
 図4は、加工された半導体ウェハを支持体及び仮固定材から分離する分離工程の一実施形態を説明するための模式断面図である。本実施形態に係る分離工程は、支持体から半導体ウェハを剥離する第一の剥離工程と、半導体ウェハから仮固定材を剥離する第二の剥離工程と、を含む。第一の剥離工程は、加工工程で加工を施した半導体ウェハを支持体から剥離する工程、すなわち、薄型化した半導体ウェハに様々な加工を施した後、ダイシングする前に支持体から剥離する工程である。剥離方法としては、主に半導体ウェハと支持体とを加熱(好ましくは200~250℃)しながら、水平方向に沿って反対方向にスライドさせることにより両者を分離する方法、半導体ウェハ又は支持体の一方を水平に固定しておき、他方を水平方向から一定の角度を付けて持ち上げる方法、及び、研削された半導体ウェハの研削面に保護フィルムを貼り、半導体ウェハと保護フィルムとをピール方式で支持体から剥離する方法等が挙げられるが、特に制限なく採用することができる。
<(C) Separation process>
FIG. 4 is a schematic cross-sectional view for explaining an embodiment of a separation process for separating a processed semiconductor wafer from a support and a temporary fixing material. The separation process according to the present embodiment includes a first peeling process for peeling the semiconductor wafer from the support and a second peeling process for peeling the temporarily fixing material from the semiconductor wafer. The first peeling step is a step of peeling the semiconductor wafer processed in the processing step from the support, that is, a step of peeling the thinned semiconductor wafer from the support before dicing after various processing. It is. As a peeling method, mainly the semiconductor wafer and the support are heated (preferably 200 to 250 ° C.) while being slid in the opposite direction along the horizontal direction, and the semiconductor wafer or the support is separated. One side is fixed horizontally, the other is lifted at a certain angle from the horizontal direction, and a protective film is attached to the ground surface of the ground semiconductor wafer, and the semiconductor wafer and the protective film are supported in a peel method Although the method etc. which peel from a body are mentioned, it can employ | adopt without a restriction | limiting in particular.
 本実施形態には、これらの剥離方法すべてを適用可能であるが、図4(A)に示されるような半導体ウェハ80又は支持体50の一方を水平に固定しておき、他方を水平方向から一定の角度を付けて持ち上げる方法、及び、研削された半導体ウェハの研削面に保護フィルムを貼り、半導体ウェハと保護フィルムとをピール方式で剥離する方法等がより適している。これらの剥離方法は、通常、室温で実施されるが、40~100℃程度の、半導体ウェハにダメージのない温度下で実施してもよい。機械的に分解する際は、例えば、デボンダー(SUSS株式会社製、DB12T)、De-Bonding装置(EVG社製、EVG805EZD)等を用いることができる。 Although all of these peeling methods can be applied to the present embodiment, one of the semiconductor wafer 80 and the support 50 as shown in FIG. 4A is fixed horizontally and the other from the horizontal direction. A method of lifting with a certain angle, a method of attaching a protective film to the ground surface of the ground semiconductor wafer, and peeling the semiconductor wafer and the protective film by a peel method are more suitable. These peeling methods are usually carried out at room temperature, but may be carried out at a temperature of about 40 to 100 ° C. without damaging the semiconductor wafer. When mechanically disassembling, for example, a debonder (manufactured by SSUS Co., Ltd., DB12T), a De-Bonding device (manufactured by EVG, EVG805EZD), or the like can be used.
 第二の剥離工程では、例えば、図4(B)に示されるように、半導体ウェハ80を水平に固定しておき、仮固定材70の端を水平方向から一定の角度をつけて持ち上げることで、仮固定材が剥離された半導体ウェハ80を得ることができる(図4(C)参照)。本実施形態においては、本実施形態に係る仮固定用樹脂組成物を用いて仮固定材が形成されていることにより、糊残り等の残渣が十分低減された加工済み半導体ウェハを容易に得ることができる。 In the second peeling step, for example, as shown in FIG. 4B, the semiconductor wafer 80 is fixed horizontally and the end of the temporary fixing material 70 is lifted at a certain angle from the horizontal direction. The semiconductor wafer 80 from which the temporary fixing material is peeled can be obtained (see FIG. 4C). In the present embodiment, a temporarily fixed material is formed using the temporary fixing resin composition according to the present embodiment, so that a processed semiconductor wafer in which residues such as adhesive residue are sufficiently reduced can be easily obtained. Can do.
 本実施形態においては、第一の剥離工程で、半導体ウェハと仮固定材との間で分離を行って加工済み半導体ウェハを得てもよい。 In this embodiment, a processed semiconductor wafer may be obtained by performing separation between the semiconductor wafer and the temporary fixing material in the first peeling step.
<(d)洗浄工程>
 半導体ウェハの回路形成面は仮固定材の一部が残存しやすい。剥離した半導体ウェハの回路形成面に仮固定材が一部残存した場合、これを除去するための洗浄工程を設けることができる。仮固定材の除去は、例えば、半導体ウェハを洗浄することにより行うことができる。
<(D) Cleaning step>
A part of the temporarily fixed material tends to remain on the circuit forming surface of the semiconductor wafer. When a part of the temporarily fixing material remains on the circuit forming surface of the peeled semiconductor wafer, a cleaning step for removing the temporary fixing material can be provided. The temporary fixing material can be removed, for example, by washing the semiconductor wafer.
 用いる洗浄液には、一部残存した仮固定材を除去できるような洗浄液であれば、特に制限はなく、例えば、仮固定用樹脂組成物の希釈に用いることができる上記有機溶剤が挙げられる。有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The cleaning solution used is not particularly limited as long as it is a cleaning solution that can remove the partially remaining temporary fixing material, and examples thereof include the organic solvents that can be used for dilution of the temporary fixing resin composition. An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、残存した仮固定材が除去しにくい場合は、有機溶剤に塩基類又は酸類を添加してもよい。塩基類としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリエチルアミン、アンモニア等のアミン類;テトラメチルアンモニウムヒドロキシド等のアンモニウム塩類などが使用可能である。酸類としては、酢酸、シュウ酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸等の有機酸などが使用可能である。添加量は、洗浄液中の濃度で0.01~10質量%が好ましい。また、残存物の除去性を向上させるため、既存の界面活性剤を添加してもよい。 If the remaining temporary fixing material is difficult to remove, bases or acids may be added to the organic solvent. As the base, amines such as ethanolamine, diethanolamine, triethanolamine, triethylamine, and ammonia; ammonium salts such as tetramethylammonium hydroxide can be used. Examples of the acids that can be used include organic acids such as acetic acid, oxalic acid, benzenesulfonic acid, and dodecylbenzenesulfonic acid. The addition amount is preferably 0.01 to 10% by mass in terms of the concentration in the cleaning liquid. In order to improve the removability of the residue, an existing surfactant may be added.
 洗浄方法としては、特に制限はないが、例えば、上記洗浄液を用いてパドルでの洗浄を行う方法、スプレー噴霧での洗浄方法、及び、洗浄液槽に浸漬する方法が挙げられる。温度は10~80℃、好ましくは15~65℃であり、最終的に水洗又はアルコール洗浄を行い、乾燥処理させて、薄型の半導体ウェハ80が得られる。 The cleaning method is not particularly limited, and examples thereof include a method of performing cleaning with a paddle using the above-described cleaning liquid, a cleaning method by spraying, and a method of immersing in a cleaning liquid tank. The temperature is 10 to 80 ° C., preferably 15 to 65 ° C. Finally, the substrate is washed with water or alcohol and dried to obtain a thin semiconductor wafer 80.
 なお、上述したように、本実施形態に係る仮固定用樹脂組成物によれば、糊残り等の残渣を十分低減することができるため、洗浄工程を省略することが可能となる。 Note that, as described above, according to the temporarily fixing resin composition according to the present embodiment, residues such as adhesive residue can be sufficiently reduced, so that the cleaning step can be omitted.
 加工された半導体ウェハ80は、ダイシングライン84(図3(D)参照)に沿ったダイシングによって半導体素子に個片化される。なお、ダイシングによって半導体素子に個片化した後に分離工程を行ってもよい。 The processed semiconductor wafer 80 is separated into semiconductor elements by dicing along a dicing line 84 (see FIG. 3D). In addition, you may perform a isolation | separation process, after separating into a semiconductor element by dicing.
 本実施形態においては、得られた半導体素子を他の半導体素子又は半導体素子搭載用基板に接続することにより半導体装置を製造することができる。 In the present embodiment, a semiconductor device can be manufactured by connecting the obtained semiconductor element to another semiconductor element or a semiconductor element mounting substrate.
 図5は、半導体装置の製造方法の一実施形態を説明するための模式断面図である。まず、上述した方法により、貫通電極86が形成され、かつ、個片化された半導体素子100を用意する(図5(A))。そして、半導体素子100を配線基板110上に複数積層することにより半導体装置120を得ることができる(図5(B))。 FIG. 5 is a schematic cross-sectional view for explaining an embodiment of a method for manufacturing a semiconductor device. First, the semiconductor element 100 in which the through electrode 86 is formed and separated into pieces by the above-described method is prepared (FIG. 5A). Then, a semiconductor device 120 can be obtained by stacking a plurality of semiconductor elements 100 over the wiring substrate 110 (FIG. 5B).
 以下、実施例及び比較例によって本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1~8、比較例1~3)
[ワニス(仮固定用樹脂組成物)の調製]
 表1及び2に示す質量部の組成で(A)熱可塑性樹脂、(B)熱硬化性樹脂、(C)(メタ)アクリルモノマ、(D)放射線によって塩基とラジカルとを発生する化合物(表中(D)化合物と表す)、(E)シリコーン化合物、(F)硬化促進剤及び溶剤を配合し、ワニスをそれぞれ調製した。なお、表1及び2中の「UV照射」とは、仮固定工程におけるUV照射である。表1及び2における配合単位は「質量部」である。
(Examples 1 to 8, Comparative Examples 1 to 3)
[Preparation of varnish (resin composition for temporary fixation)]
(A) thermoplastic resin, (B) thermosetting resin, (C) (meth) acrylic monomer, (D) a compound that generates a base and a radical by radiation (Table) (Represented as (D) compound), (E) silicone compound, (F) curing accelerator and solvent were blended to prepare varnishes. Note that “UV irradiation” in Tables 1 and 2 is UV irradiation in the temporary fixing step. The blending unit in Tables 1 and 2 is “parts by mass”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び2中の各成分の詳細は以下のとおりである。
 HTR-860P-3CSP:GPCによる重量平均分子量80万、グリシジルメタクリレートに由来する構造単位と、アクリロニトリルに由来する構造単位とを有する(メタ)アクリルエステル共重合体、グリシジルメタクリレート3質量%、Tg12℃のアクリルゴム(ナガセケムテックス株式会社製)
 HTR-860P-3CSP-30B:GPCによる重量平均分子量30万、グリシジルメタクリレートに由来する構造単位と、アクリロニトリルに由来する構造単位とを有する(メタ)アクリルエステル共重合体、グリシジルメタクリレート8質量%、Tg12℃のアクリルゴム(ナガセケムテックス株式会社製)
 YDCN-700-10:クレゾールノボラック型多官能エポキシ樹脂(新日鉄住金化学株式会社製)
 YDF-8170C:ビスフェノールF型2官能エポキシ樹脂(新日鉄住金化学株式会社製)
 XLC-LL:フェノールアラルキル樹脂(三井化学株式会社製)
 GPH-103:ビフェニルアラルキル型フェノール樹脂(日本化薬株式会社製)
 A-DPH:ジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製)
 A-9300:エトキシ化イソシアヌル酸トリアクリレート(新中村化学工業株式会社製)
 IRGACURE-184(I-184):重合開始剤(BASF株式会社製)「1-ヒドロキシ-シクロヘキシル-フェニル-ケトン」
 IRGACURE-369(I-369):α-アミノケトン化合物(BASF株式会社製)「2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリン-4-イルフェニル)-ブタン-1-オン」
 TA31-209E:シリコーン変性アルキド樹脂(日立化成ポリマー株式会社製)
 SH3773M:ポリエーテル変性シリコーン化合物(東レ・ダウケミカル株式会社製)
 2PZ-CN:イミダゾール系硬化促進剤(四国化成工業株式会社製)
Details of each component in Tables 1 and 2 are as follows.
HTR-860P-3CSP: (meth) acrylic ester copolymer having a weight average molecular weight of 800,000 by GPC, a structural unit derived from glycidyl methacrylate and a structural unit derived from acrylonitrile, 3% by mass of glycidyl methacrylate, Tg of 12 ° C. Acrylic rubber (manufactured by Nagase ChemteX Corporation)
HTR-860P-3CSP-30B: (meth) acrylic ester copolymer having a weight average molecular weight of 300,000 by GPC, a structural unit derived from glycidyl methacrylate and a structural unit derived from acrylonitrile, 8% by mass of glycidyl methacrylate, Tg12 ℃ acrylic rubber (manufactured by Nagase ChemteX Corporation)
YDCN-700-10: Cresol novolac type polyfunctional epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
YDF-8170C: Bisphenol F type bifunctional epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
XLC-LL: Phenol aralkyl resin (Mitsui Chemicals)
GPH-103: Biphenyl aralkyl type phenol resin (manufactured by Nippon Kayaku Co., Ltd.)
A-DPH: Dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
A-9300: Ethoxylated isocyanuric acid triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
IRGACURE-184 (I-184): polymerization initiator (manufactured by BASF Corporation) “1-hydroxy-cyclohexyl-phenyl-ketone”
IRGACURE-369 (I-369): α-aminoketone compound (manufactured by BASF Corporation) “2-Benzyl-2-dimethylamino-1- (4-morpholin-4-ylphenyl) -butan-1-one”
TA31-209E: Silicone-modified alkyd resin (manufactured by Hitachi Chemical Co., Ltd.)
SH3773M: polyether-modified silicone compound (Toray Dow Chemical Co., Ltd.)
2PZ-CN: Imidazole-based accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd.)
[仮固定用樹脂フィルムの作製]
 調製したワニスを、離型処理したポリエチレンテレフタレートフィルム(支持フィルム。帝人デュポンフィルム株式会社製、A31、厚み38μm)の離型処理面上に塗布し、90℃で10分間、120℃で30分間加熱乾燥した。次に、保護フィルムを塗布面へ貼り付け、保護フィルム及び支持フィルム付き仮固定用樹脂フィルムをそれぞれ得た。仮固定用樹脂フィルムの膜厚は30μmであった。実施例1~8及び比較例1~3の仮固定用樹脂フィルムを用いて以下の試験を行い、その評価結果を表3及び4にまとめた。
[Preparation of temporarily fixing resin film]
The prepared varnish was applied onto a release-treated surface of a release-treated polyethylene terephthalate film (support film, Teijin DuPont Films, A31, thickness 38 μm), and heated at 90 ° C. for 10 minutes and 120 ° C. for 30 minutes. Dried. Next, the protective film was affixed on the coating surface, and the protective film and the temporary fixing resin film with a support film were obtained, respectively. The film thickness of the temporarily fixing resin film was 30 μm. The following tests were conducted using the temporarily fixing resin films of Examples 1 to 8 and Comparative Examples 1 to 3, and the evaluation results are summarized in Tables 3 and 4.
[粘度測定]
 粘度は以下の方法により測定した。厚み60μmの3枚の仮固定用樹脂フィルムを80℃でラミネートすることで厚み180μmとし、回転式粘弾性測定装置(ティー・エイ・インスツルメント株式会社製、ARES)を用いて、測定方法がparall plate、測定冶具が直径8mmの円形、測定モードがDynamic temperature ramp、周波数が1Hzである条件で、35℃で5%の歪みを与えながら20℃/分の昇温速度で120℃まで昇温し、120℃の粘度を測定した。
[Viscosity measurement]
The viscosity was measured by the following method. Three temporary fixing resin films having a thickness of 60 μm are laminated at 80 ° C. to obtain a thickness of 180 μm, and a measurement method is performed using a rotary viscoelasticity measuring device (ARES, manufactured by T.A. Instruments Co., Ltd.). The temperature was raised to 120 ° C. at a rate of 20 ° C./min with a 5% distortion at 35 ° C. under the conditions of a parallel plate, a measuring jig of 8 mm in diameter, a measurement mode of Dynamic temperature ramp, and a frequency of 1 Hz. The viscosity at 120 ° C. was measured.
[低温貼付性試験]
 保護フィルム及び支持フィルム付き仮固定用樹脂フィルムから保護フィルムを剥離した。次に、ニチゴーモートン株式会社製真空ラミネーターV130を用いて、気圧1hPa以下、圧着温度80℃、ラミネート圧力0.5MPa、保持時間60秒で半導体ウェハに対して仮固定用樹脂フィルムのラミネート(半導体ウェハへのフィルムのラミネート)を行った。続いて、支持フィルムを剥離した。これにより、仮固定用樹脂フィルム付き半導体ウェハを得た。
 そして、HQP-2型露光機(株式会社オーク製作所製、UV-330)を用いて、1000mJ/cmを仮固定用樹脂フィルム付き半導体ウェハに露光(UV照射)し、露光済仮固定用樹脂フィルム付き半導体ウェハを得た。
 そして、ニチゴーモートン株式会社製真空ラミネーターV130を用いて、気圧1hPa以下、圧着温度100℃、ラミネート圧力0.5MPa、保持時間100秒で、支持体と仮固定用樹脂フィルム付き半導体ウェハとを圧着(支持体への圧着)するとともに、支持体と露光済仮固定用樹脂フィルム付き半導体ウェハとを圧着(支持体への圧着)し、積層サンプルを得た。
 その後、超音波顕微鏡(SAM、インサイト株式会社製、Insight-300)を用いて仮固定用樹脂フィルムの状態を確認した。仮固定用樹脂フィルムの剥離が見られなかったサンプルを「○」と評価し、剥離が見られたサンプルを「×」と評価した。
[Low temperature stickiness test]
The protective film was peeled from the temporary fixing resin film with the protective film and the support film. Next, using a vacuum laminator V130 manufactured by Nichigo Morton Co., Ltd., laminating a resin film for temporary fixing to a semiconductor wafer at a pressure of 1 hPa or less, a pressure bonding temperature of 80 ° C., a lamination pressure of 0.5 MPa, and a holding time of 60 seconds (semiconductor wafer) (Lamination of film). Subsequently, the support film was peeled off. Thereby, a semiconductor wafer with a resin film for temporary fixing was obtained.
Then, using a HQP-2 type exposure machine (manufactured by Oak Manufacturing Co., Ltd., UV-330), 1000 mJ / cm 2 is exposed (UV irradiation) to the semiconductor wafer with the temporarily fixing resin film, and exposed temporarily fixing resin. A semiconductor wafer with a film was obtained.
Then, using a vacuum laminator V130 manufactured by Nichigo Morton Co., Ltd., the support and the semiconductor wafer with a resin film for temporary fixing are pressure-bonded at a pressure of 1 hPa or less, a pressure bonding temperature of 100 ° C., a lamination pressure of 0.5 MPa, and a holding time of 100 seconds ( The laminate was obtained by crimping the support and the exposed semiconductor wafer with the temporarily fixing resin film (crimping to the support).
Then, the state of the resin film for temporary fixing was confirmed using the ultrasonic microscope (SAM, Insight-300 by Insight Co., Ltd.). A sample in which peeling of the temporarily fixing resin film was not observed was evaluated as “◯”, and a sample in which peeling was observed was evaluated as “x”.
[保存安定性]
 加速試験として、40℃に設定したオーブン中で仮固定用樹脂フィルムを5日間放置した後に保護フィルムを剥離した。その後、ニチゴーモートン株式会社製真空ラミネーターV130を用いて、気圧1hPa以下、圧着温度80℃、ラミネート圧力0.5MPa、保持時間60秒で半導体ウェハに対して仮固定用樹脂フィルムのラミネート(半導体ウェハへのフィルムのラミネート)を行った。続いて、支持フィルムを剥離した。これにより、仮固定用樹脂フィルム付き半導体ウェハを得た。
 そして、HQP-2型露光機(株式会社オーク製作所製、UV-330)を用いて、1000mJ/cmを仮固定用樹脂フィルム付き半導体ウェハに露光(UV照射)し、露光済仮固定用樹脂フィルム付き半導体ウェハを得た。
 そして、ニチゴーモートン株式会社製真空ラミネーターV130を用いて、気圧1hPa以下、圧着温度100℃、ラミネート圧力0.5MPa、保持時間100秒で、支持体と仮固定用樹脂フィルム付き半導体ウェハとを圧着(支持体への圧着)するとともに、支持体と露光済仮固定用樹脂フィルム付き半導体ウェハとを圧着(支持体への圧着)し、積層サンプルを得た。
 その後、超音波顕微鏡(SAM、インサイト株式会社製、Insight-300)を用いて仮固定用樹脂フィルムの状態を確認した。仮固定用樹脂フィルムの剥離が見られなかったサンプルを「○」と評価し、剥離が見られたサンプルを「×」と評価した。
[Storage stability]
As an acceleration test, the protective film was peeled after leaving the temporarily fixing resin film in an oven set at 40 ° C. for 5 days. Thereafter, using a vacuum laminator V130 manufactured by Nichigo Morton Co., Ltd., the resin film for temporary fixing was laminated to the semiconductor wafer at a pressure of 1 hPa or less, a pressure bonding temperature of 80 ° C., a lamination pressure of 0.5 MPa, and a holding time of 60 seconds (to the semiconductor wafer). The film was laminated. Subsequently, the support film was peeled off. Thereby, a semiconductor wafer with a resin film for temporary fixing was obtained.
Then, using a HQP-2 type exposure machine (manufactured by Oak Manufacturing Co., Ltd., UV-330), 1000 mJ / cm 2 is exposed (UV irradiation) to the semiconductor wafer with the temporarily fixing resin film, and exposed temporarily fixing resin. A semiconductor wafer with a film was obtained.
Then, using a vacuum laminator V130 manufactured by Nichigo Morton Co., Ltd., the support and the semiconductor wafer with a resin film for temporary fixing are pressure-bonded at a pressure of 1 hPa or less, a pressure bonding temperature of 100 ° C., a lamination pressure of 0.5 MPa, and a holding time of 100 seconds ( The laminate was obtained by crimping the support and the exposed semiconductor wafer with the temporarily fixing resin film (crimping to the support).
Then, the state of the resin film for temporary fixing was confirmed using the ultrasonic microscope (SAM, Insight-300 by Insight Co., Ltd.). A sample in which peeling of the temporarily fixing resin film was not observed was evaluated as “◯”, and a sample in which peeling was observed was evaluated as “x”.
[バックグラインド試験]
 半導体ウェハへのフィルムのラミネート、UV照射、及び、支持体への圧着を前記低温貼付性試験と同様に行った後に、140℃に設定したオーブンに15分間保持して積層サンプルを作製した。次に、フルオートグラインダポリッシャ(DISCO株式会社製、DGP-8761)を用いて積層サンプルにおける半導体ウェハ表面を研削した。ホイールには、1軸:GF01-SDC320-BT300-50、2軸:IF-01-1-4/6-B・K09、3軸:DPEG-GA0001をそれぞれ用いた。チャックテーブル回転数を300min-1、ホイール回転数を1軸:3200min-1、2軸:3400min-1、3軸:1400min-1とし、クロスフィード方式で研削を行った。1軸で142μm厚になるまで研削後、2軸で102μm厚になるまで研削し、さらに、3軸で100μm厚になるまで研削した。研削終了時点で割れ及びずれが発生しなかったサンプルを「○」と評価し、割れ又はずれが発生したサンプルを「×」と評価した。
[Back grinding test]
After laminating a film on a semiconductor wafer, UV irradiation, and pressure bonding to a support in the same manner as in the low-temperature sticking property test, the sample was held in an oven set at 140 ° C. for 15 minutes to prepare a laminated sample. Next, the surface of the semiconductor wafer in the laminated sample was ground using a fully automatic grinder polisher (DGP-8761, manufactured by DISCO Corporation). For the wheel, 1 axis: GF01-SDC320-BT300-50, 2 axis: IF-01-1-4 / 6-B · K09, 3 axis: DPEG-GA0001 were used. The chuck table rotation speed was 300 min −1 , the wheel rotation speed was 1 axis: 3200 min −1 , 2 axis: 3400 min −1 , 3 axis: 1400 min −1, and grinding was performed by a cross-feed method. After grinding to 142 μm thickness on one axis, grinding was performed to 102 μm thickness on two axes, and further, grinding was performed to 100 μm thickness on three axes. A sample in which cracking and deviation did not occur at the end of grinding was evaluated as “◯”, and a sample in which cracking or deviation occurred was evaluated as “x”.
[短時間硬化試験]
 半導体ウェハへのフィルムのラミネート、UV照射、及び、支持体への圧着を前記低温貼付性試験と同様に行った後に、140℃に設定したオーブンに15分間保持した。さらに、前記バックグラインド試験と同様にバックグラインドを行って積層サンプルを作製した。次に、超音波顕微鏡(SAM、インサイト株式会社製、Insight-300)を用いて積層サンプルにおける仮固定用樹脂フィルムの状態を確認した。その後、積層サンプルを200℃に設定したオーブンに2時間放置した。続いて、再度SAMを用いて仮固定用樹脂フィルムの状態を確認し、オーブンに放置しても仮固定用樹脂フィルムの剥離が生じなかったサンプルを「○」と評価し、剥離が生じたサンプルを「×」と評価した。
[Quick curing test]
After laminating the film on the semiconductor wafer, UV irradiation, and pressure bonding to the support in the same manner as in the low temperature sticking test, the film was held in an oven set at 140 ° C. for 15 minutes. Further, a back-grinding was performed in the same manner as the back-grinding test to prepare a laminated sample. Next, the state of the temporarily fixing resin film in the laminated sample was confirmed using an ultrasonic microscope (SAM, manufactured by Insight Co., Ltd., Insight-300). Thereafter, the laminated sample was left in an oven set at 200 ° C. for 2 hours. Subsequently, the state of the temporary fixing resin film was confirmed again using SAM, and the sample in which the temporary fixing resin film did not peel even when left in the oven was evaluated as “◯”, and the sample in which peeling occurred Was evaluated as “×”.
[支持体からの剥離試験]
 半導体ウェハへのフィルムのラミネート、UV照射、及び、支持体への圧着を前記低温貼付性試験と同様に行った後に、140℃に設定したオーブンに15分間保持した。さらに、前記バックグラインド試験と同様にバックグラインドを行った後に、200℃に設定したオーブンに2時間放置して積層サンプルを作製した。次に、デボンダー(SUSS株式会社製、DB12T)を用いて支持体から半導体ウェハを剥離した。このとき、半導体ウェハが割れることなく支持体を剥離できたサンプルを「○」と評価し、剥離できなかったサンプルを「×」と評価した。
[Peeling test from support]
After laminating the film on the semiconductor wafer, UV irradiation, and pressure bonding to the support in the same manner as in the low temperature sticking test, the film was held in an oven set at 140 ° C. for 15 minutes. Further, after performing the back grinding in the same manner as the back grinding test, it was left in an oven set at 200 ° C. for 2 hours to prepare a laminated sample. Next, the semiconductor wafer was peeled from the support using a debonder (manufactured by SSUS Co., Ltd., DB12T). At this time, the sample that could peel the support without cracking the semiconductor wafer was evaluated as “◯”, and the sample that could not be peeled was evaluated as “x”.
[半導体ウェハからの剥離試験]
 半導体ウェハへのフィルムのラミネート、UV照射、及び、支持体への圧着を前記低温貼付性試験と同様に行った後に、140℃に設定したオーブンに15分間保持した。さらに、前記バックグラインド試験と同様にバックグラインドを行った後、200℃に設定したオーブンに2時間放置した。続いて、支持体を剥離した後、半導体ウェハに貼付されている仮固定用樹脂フィルムの端部をピンセットにて持ち上げ、90°の角度で仮固定用樹脂フィルムを引き剥がし、剥離可否を確認した。このとき、半導体ウェハから仮固定用樹脂フィルムを剥離できたサンプルを「○」と評価し、剥離できなかったサンプルを「×」と評価した。
[Peeling test from semiconductor wafer]
After laminating the film on the semiconductor wafer, UV irradiation, and pressure bonding to the support in the same manner as in the low temperature sticking test, the film was held in an oven set at 140 ° C. for 15 minutes. Further, after back grinding was conducted in the same manner as in the back grinding test, it was left in an oven set at 200 ° C. for 2 hours. Subsequently, after peeling off the support, the end of the temporarily fixing resin film affixed to the semiconductor wafer was lifted with tweezers, and the temporarily fixing resin film was peeled off at an angle of 90 ° to confirm whether peeling was possible. . At this time, the sample that could peel the temporarily fixing resin film from the semiconductor wafer was evaluated as “◯”, and the sample that could not be peeled was evaluated as “x”.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~8によれば、160℃以下の条件で半導体ウェハに貼り付けた場合であっても良好なバックグラインド性を得ることができる十分な低温貼付性と平坦性とが得られるとともに、耐熱性及び剥離性に優れていることが確認された。
 これに対し、比較例1は、α-アミノケトン化合物((D)化合物)を使用していないため、UV照射により、塩基及びラジカルが発生せず、低温短時間硬化が不十分となる。
 比較例2は、α-アミノケトン化合物((D)化合物)が少ないため、UV照射した際、発生する塩基及びラジカルの量が少なく、低温短時間硬化が不十分となる。
 比較例3は、α-アミノケトン化合物((D)化合物)を使用していないため、低温短時間硬化性に問題がある。
 よって、本発明に係る仮固定用樹脂組成物、及び、該仮固定用樹脂組成物を用いた仮固定用樹脂フィルムは、放射線照射(UV照射等)を行う仮固定工程を有する半導体ウェハの加工方法に好適であることがわかる。
According to Examples 1 to 8, sufficient low-temperature sticking property and flatness capable of obtaining good back grindability can be obtained even when pasted on a semiconductor wafer under conditions of 160 ° C. or lower, and It was confirmed that it was excellent in heat resistance and peelability.
On the other hand, Comparative Example 1 does not use an α-aminoketone compound ((D) compound), so that base and radicals are not generated by UV irradiation, and curing at low temperature and short time is insufficient.
In Comparative Example 2, since there are few α-aminoketone compounds ((D) compounds), the amount of bases and radicals generated is small when UV irradiation is performed, and curing at low temperature and short time is insufficient.
Since Comparative Example 3 does not use an α-aminoketone compound ((D) compound), there is a problem with low-temperature short-time curability.
Therefore, the temporary fixing resin composition according to the present invention and the temporary fixing resin film using the temporary fixing resin composition are processed semiconductor wafers having a temporary fixing step of performing radiation irradiation (UV irradiation or the like). It can be seen that it is suitable for the method.
 1…仮固定用樹脂フィルムシート、2…仮固定用樹脂フィルムシート、10…支持フィルム、20…仮固定用樹脂フィルム、30…保護フィルム、40…仮固定材、50…支持体、52…剥離層、60…半導体ウェハ、70…仮固定材、80…半導体ウェハ、82…貫通電極、84…ダイシングライン、86…貫通電極、90…グラインダー、100…半導体素子、110…配線基板、120…半導体装置。 DESCRIPTION OF SYMBOLS 1 ... Temporary fixing resin film sheet, 2 ... Temporary fixing resin film sheet, 10 ... Support film, 20 ... Temporary fixing resin film, 30 ... Protection film, 40 ... Temporary fixing material, 50 ... Support, 52 ... Peeling Layer: 60 ... Semiconductor wafer, 70 ... Temporary fixing material, 80 ... Semiconductor wafer, 82 ... Through electrode, 84 ... Dicing line, 86 ... Through electrode, 90 ... Grinder, 100 ... Semiconductor element, 110 ... Wiring board, 120 ... Semiconductor apparatus.

Claims (10)

  1.  半導体ウェハの加工方法に用いられる仮固定材を形成するための仮固定用樹脂組成物であって、
     (A)熱可塑性樹脂、(B)熱硬化性樹脂、(C)(メタ)アクリルモノマ、及び、(D)放射線によって塩基とラジカルとを発生する化合物を含有し、
     前記(D)成分の含有量が、前記(C)成分100質量部に対して5質量部以上であり、
     前記半導体ウェハの加工方法が、半導体ウェハを支持体に前記仮固定材を介して仮固定する仮固定工程と、前記支持体に仮固定された前記半導体ウェハを加工する加工工程と、加工された前記半導体ウェハを前記支持体及び前記仮固定材から分離する分離工程と、を備え、
     前記仮固定工程において前記仮固定材に対して放射線照射が行われる、仮固定用樹脂組成物。
    A resin composition for temporary fixing for forming a temporary fixing material used in a method for processing a semiconductor wafer,
    (A) a thermoplastic resin, (B) a thermosetting resin, (C) a (meth) acrylic monomer, and (D) a compound that generates a base and a radical by radiation,
    The content of the component (D) is 5 parts by mass or more with respect to 100 parts by mass of the component (C),
    The semiconductor wafer processing method includes: a temporary fixing step of temporarily fixing a semiconductor wafer to a support via the temporary fixing material; a processing step of processing the semiconductor wafer temporarily fixed to the support; Separating the semiconductor wafer from the support and the temporary fixing material,
    A resin composition for temporary fixing, wherein the temporary fixing material is irradiated with radiation in the temporary fixing step.
  2.  前記(C)成分が2つ以上の官能基を有する、請求項1に記載の仮固定用樹脂組成物。 The resin composition for temporary fixing according to claim 1, wherein the component (C) has two or more functional groups.
  3.  エポキシ樹脂硬化剤を更に含有し、
     前記(B)成分がエポキシ樹脂である、請求項1又は2に記載の仮固定用樹脂組成物。
    It further contains an epoxy resin curing agent,
    The resin composition for temporary fixing according to claim 1 or 2, wherein the component (B) is an epoxy resin.
  4.  前記(A)成分が、反応性基を有する(メタ)アクリル共重合体である、請求項1~3のいずれか一項に記載の仮固定用樹脂組成物。 The resin composition for temporary fixing according to any one of claims 1 to 3, wherein the component (A) is a (meth) acrylic copolymer having a reactive group.
  5.  シリコーン化合物を更に含有する、請求項1~4のいずれか一項に記載の仮固定用樹脂組成物。 The temporary fixing resin composition according to any one of claims 1 to 4, further comprising a silicone compound.
  6.  硬化促進剤を更に含有する、請求項1~5のいずれか一項に記載の仮固定用樹脂組成物。 The resin composition for temporary fixing according to any one of claims 1 to 5, further comprising a curing accelerator.
  7.  請求項1~6のいずれか一項に記載の仮固定用樹脂組成物をフィルム状に形成してなる、仮固定用樹脂フィルム。 A temporary fixing resin film formed by forming the temporary fixing resin composition according to any one of claims 1 to 6 into a film shape.
  8.  放射線照射前の120℃における粘度が200~6000Pa・sである、請求項7に記載の仮固定用樹脂フィルム。 The resin film for temporary fixing according to claim 7, wherein the viscosity at 120 ° C before irradiation is 200 to 6000 Pa · s.
  9.  離型性を有する支持フィルムと、請求項7又は8に記載の仮固定用樹脂フィルムと、を備え、
     前記仮固定用樹脂フィルムが前記支持フィルム上に設けられている、仮固定用樹脂フィルムシート。
    A support film having releasability, and the resin film for temporary fixing according to claim 7 or 8,
    A temporarily fixing resin film sheet, wherein the temporarily fixing resin film is provided on the support film.
  10.  半導体ウェハを支持体に仮固定材を介して仮固定する仮固定工程と、
     前記支持体に仮固定された前記半導体ウェハを加工する加工工程と、
     加工された前記半導体ウェハを前記支持体及び前記仮固定材から分離する分離工程と、を備え、
     前記仮固定工程において前記仮固定材に対して放射線照射が行われ、
     前記仮固定材が、請求項7又は8に記載の仮固定用樹脂フィルムである、半導体ウェハの加工方法。
    A temporary fixing step of temporarily fixing the semiconductor wafer to the support via a temporary fixing material;
    A processing step of processing the semiconductor wafer temporarily fixed to the support;
    Separating the processed semiconductor wafer from the support and the temporary fixing material, and
    In the temporary fixing step, the temporary fixing material is irradiated with radiation,
    A method for processing a semiconductor wafer, wherein the temporary fixing material is the temporary fixing resin film according to claim 7.
PCT/JP2015/074966 2014-09-05 2015-09-02 Resin composition for temporary fixation, resin film for temporary fixation, resin film sheet for temporary fixation, and method for working semiconductor wafer WO2016035821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016546674A JPWO2016035821A1 (en) 2014-09-05 2015-09-02 Temporary fixing resin composition, temporary fixing resin film, temporary fixing resin film sheet, and semiconductor wafer processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-180832 2014-09-05
JP2014180832 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035821A1 true WO2016035821A1 (en) 2016-03-10

Family

ID=55439880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074966 WO2016035821A1 (en) 2014-09-05 2015-09-02 Resin composition for temporary fixation, resin film for temporary fixation, resin film sheet for temporary fixation, and method for working semiconductor wafer

Country Status (3)

Country Link
JP (1) JPWO2016035821A1 (en)
TW (1) TW201615723A (en)
WO (1) WO2016035821A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129917A1 (en) * 2018-12-20 2020-06-25 日立化成株式会社 Resin composition for temporary fixing use, resin film for temporary fixing use, sheet for temporary fixing use, and method for manufacturing semiconductor device
TWI803461B (en) * 2016-04-28 2023-06-01 日商琳得科股份有限公司 Protective film forming film, complex sheet for forming protective film, and use of energy ray-curable film and supporting sheet
WO2023105688A1 (en) * 2021-12-08 2023-06-15 株式会社レゾナック Laminate manufacturing method and laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087810B2 (en) * 2018-08-09 2022-06-21 信越化学工業株式会社 Thermosetting resin composition for semiconductor encapsulation and semiconductor devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506406A (en) * 2006-10-06 2010-02-25 ブルーワー サイエンス アイ エヌ シー. High temperature and spin-on bonding composition for temporary bonding of wafers using a sliding technique
JP5176076B2 (en) * 2008-01-16 2013-04-03 日立化成株式会社 Photosensitive adhesive composition, film adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer, semiconductor device, and method for manufacturing semiconductor device
JP5348360B1 (en) * 2011-12-13 2013-11-20 日立化成株式会社 Manufacturing method of semiconductor device
JP5458538B2 (en) * 2007-12-12 2014-04-02 日立化成株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506406A (en) * 2006-10-06 2010-02-25 ブルーワー サイエンス アイ エヌ シー. High temperature and spin-on bonding composition for temporary bonding of wafers using a sliding technique
JP5458538B2 (en) * 2007-12-12 2014-04-02 日立化成株式会社 Semiconductor device and manufacturing method thereof
JP5176076B2 (en) * 2008-01-16 2013-04-03 日立化成株式会社 Photosensitive adhesive composition, film adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer, semiconductor device, and method for manufacturing semiconductor device
JP5348360B1 (en) * 2011-12-13 2013-11-20 日立化成株式会社 Manufacturing method of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803461B (en) * 2016-04-28 2023-06-01 日商琳得科股份有限公司 Protective film forming film, complex sheet for forming protective film, and use of energy ray-curable film and supporting sheet
WO2020129917A1 (en) * 2018-12-20 2020-06-25 日立化成株式会社 Resin composition for temporary fixing use, resin film for temporary fixing use, sheet for temporary fixing use, and method for manufacturing semiconductor device
JPWO2020129917A1 (en) * 2018-12-20 2021-11-04 昭和電工マテリアルズ株式会社 Method for manufacturing temporary fixing resin composition, temporary fixing resin film, temporary fixing sheet, and semiconductor device
JP7342886B2 (en) 2018-12-20 2023-09-12 株式会社レゾナック Resin composition for temporary fixation, resin film for temporary fixation, sheet for temporary fixation, and manufacturing method of semiconductor device
WO2023105688A1 (en) * 2021-12-08 2023-06-15 株式会社レゾナック Laminate manufacturing method and laminate

Also Published As

Publication number Publication date
JPWO2016035821A1 (en) 2017-08-03
TW201615723A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
JP6958674B2 (en) How to process electronic components
JP6287190B2 (en) Temporary fixing resin composition, temporary fixing resin film, and temporary fixing resin film sheet
WO2014003056A1 (en) Method for producing semiconductor device
JP6443343B2 (en) Temporary fixing film, temporary fixing film sheet, and semiconductor device
JP6859729B2 (en) Manufacturing method of temporary fixing resin composition, temporary fixing resin film, temporary fixing resin film sheet and semiconductor device
WO2016035821A1 (en) Resin composition for temporary fixation, resin film for temporary fixation, resin film sheet for temporary fixation, and method for working semiconductor wafer
TW201739867A (en) Method for manufacturing electronic component, resin composition for temporary fixing, resin film for temporary fixing, and resin film sheet for temporary fixing
WO2021085539A1 (en) Substrate-conveying support tape and electronic apparatus/device production method
JP6627255B2 (en) Temporary fixing resin composition, temporary fixing resin film, and temporary fixing resin film sheet
JP7147163B2 (en) Temporary fixing resin film, temporary fixing resin film sheet, and method for manufacturing semiconductor device
JP2019151696A (en) Resin composition, resin film, and resin film sheet, for temporary-fixing
JP2017203139A (en) Electronic component supporting member
JP2016039176A (en) Temporarily fixing resin composition, temporarily fixing resin film, temporarily fixing resin film sheet, and semiconductor wafer processing method
JP2017048266A (en) Resin composition for temporarily fixing semiconductor wafer and method for processing semiconductor wafer
JP2017204612A (en) Electronic component support member
JP6578633B2 (en) Temporary fixing resin composition, temporary fixing resin film, and temporary fixing resin film sheet
JP6958089B2 (en) Temporary fixing resin film, temporary fixing resin film sheet and their manufacturing method
JP2016219512A (en) Method for processing semiconductor wafer and method for manufacturing semiconductor device
TWI814968B (en) Resin composition for temporary fixation, resin film for temporary fixation, sheet for temporary fixation, and method for manufacturing semiconductor device
JP6520323B2 (en) Resin composition for temporary fixation, resin film for temporary fixation, and resin film sheet for temporary fixation
JP2015124270A (en) Temporary-fixing resin composition, temporary-fixing resin film, and temporary-fixing resin film sheet
JP2018078199A (en) Temporarily fixing resin composition, temporarily fixing resin film, and temporarily fixing resin film sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838322

Country of ref document: EP

Kind code of ref document: A1