WO2015189883A1 - Laser welding method - Google Patents

Laser welding method Download PDF

Info

Publication number
WO2015189883A1
WO2015189883A1 PCT/JP2014/065172 JP2014065172W WO2015189883A1 WO 2015189883 A1 WO2015189883 A1 WO 2015189883A1 JP 2014065172 W JP2014065172 W JP 2014065172W WO 2015189883 A1 WO2015189883 A1 WO 2015189883A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
irradiation
welding
molten pool
heat source
Prior art date
Application number
PCT/JP2014/065172
Other languages
French (fr)
Japanese (ja)
Inventor
雅徳 宮城
旭東 張
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/065172 priority Critical patent/WO2015189883A1/en
Publication of WO2015189883A1 publication Critical patent/WO2015189883A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding

Definitions

  • the present invention relates to a laser welding method.
  • Laser welding has been used in recent years because it can be welded with higher penetration than conventional arc welding because it can be welded with deep penetration.
  • the reason why welding with deep penetration is possible is that the laser has a higher power density than arc welding or the like, so that the metal irradiated with the laser instantaneously melts and evaporates. Due to the high reaction force due to the evaporation, the melting part is pushed down, and a space called a keyhole is formed. Since the laser can reach the inside of the material through the keyhole, welding with deep penetration is achieved.
  • Patent Document 1 superimposes two laser beams with different condensing diameters, and periodically moves at least the laser beam with the smaller condensing diameter of the two laser beams in the same direction as the laser traveling direction. A method for reducing porosity by (weaving) has been proposed.
  • ⁇ Spatter on the part surface may come off during assembly or product use.
  • the spatter that has been peeled off may flow along with the fluid, causing clogging in the middle of the flow path. Since clogging becomes more pronounced as the welded parts become smaller, it is required to reduce the occurrence of spatter, particularly among defects, when laser welding a small fluid machine.
  • Patent Document 1 since the laser B1 forming the keyhole is weaved starting from the irradiation center of the laser B2 having the larger condensing diameter (FIG. 2 of Patent Document 1), the laser B1 is moved backward in the laser traveling direction. When weaving, the molten pool behind the keyhole becomes smaller. Therefore, there is a problem that spatter is easily generated during welding.
  • An object of the present invention is to reduce the generation of spatter.
  • the generation of spatter can be reduced.
  • FIG. 1A is a vertical (welding direction 13) cross-sectional schematic view of a weld pool 15 formed only by a laser.
  • the metal is melted and evaporated to form a keyhole 14, and a molten pool 15 in which the metal is melted is formed around the keyhole 14. Since the pressure inside the keyhole 14 becomes high at the moment when the keyhole 14 is formed, the molten pool 15 receives a large force from the keyhole 14 and the solid metal around the molten pool 15.
  • Reference numeral 17 denotes the flow of the molten pool.
  • the molten metal When the area of the molten pool 15 is narrow, there is no escape place for the molten metal, and the molten metal jumps out of the molten pool 15 as the sputter 20 and adheres to the surface of the solid metal in the vicinity of the welded portion, which tends to cause surface defects. Alternatively, the molten metal is pushed out to the keyhole 14 side (19 in the figure), interferes with the laser, scatters outside the keyhole 14, and easily adheres to the surface of the solid metal near the weld.
  • members are welded using both a laser that performs deep penetration welding and a heat source that heats and melts the periphery of the molten pool so as to expand the molten pool formed by laser irradiation. It is.
  • FIG. 1B is a schematic vertical cross-sectional view of a molten pool formed using a laser and another heat source.
  • the molten pool 16 which melt
  • the heat source only needs to be able to melt the metal to be welded, and examples thereof include lasers, arcs, and plasmas.
  • examples thereof include lasers, arcs, and plasmas.
  • a laser when used, a deep molten pool can be formed instantaneously, so that the range in which the molten metal near the keyhole can flow can be quickly expanded in the depth direction of the welding object.
  • the escape area of the molten metal that has been subjected to pressure from the keyhole can be quickly formed.
  • a fine region can be processed, it is preferable when it is desired to reduce the welded portion.
  • FIG. 2 shows the appearance of the laser welding apparatus of Example 1.
  • 1 is a first laser oscillator
  • 2 is a second laser oscillator
  • 3 is an optical fiber for a first laser
  • 4 is an optical fiber for a second laser
  • 5 is an optical head for a first laser
  • 6 Is an optical head for a second laser
  • 7 is a first laser
  • 8 is a second laser
  • 9 is an object to be welded
  • 10 is a processing table
  • 11 is a shield gas nozzle
  • 12 is a shield gas.
  • the welding object 9 was 304 stainless steel.
  • the first laser 7 was a fiber laser having a wavelength of about 1070 nm
  • the second laser 8 was a semiconductor laser having a wavelength of about 900 nm.
  • the welding direction is from left to right in the figure.
  • the first laser was applied while being inclined 10 ° rearward from the irradiation axis of the second laser with respect to the welding progress direction.
  • the shielding gas 12 was nitrogen gas.
  • the laser generated by the first laser oscillator 1 is sent to the optical head 5 for the first laser through the optical fiber 3 for the first laser.
  • the first laser 7 is condensed by an optical head and irradiated to the welding object 9.
  • the laser generated by the second laser oscillator 2 is sent to the optical head 6 for the second laser through the optical fiber 4 for the second laser.
  • the second laser 8 is converted into a ring-shaped beam by the optical head, and is irradiated to the welding object 9.
  • FIG. 3 shows the irradiation position relationship between the first laser and the second laser.
  • Reference numeral 13 denotes a welding progress method.
  • the first laser 7 was arranged so as to irradiate inside the irradiation position of the second laser 8 and in front of the irradiation center so that the first laser 7 and the second laser 8 do not interfere with each other. Since the second laser 8 expands with the molten pool formed by the first laser 7, it is preferable that the irradiation area is larger than that of the first laser 7.
  • the shape of the first laser beam on the surface of the welding object 9 was a circle, and the beam diameter on the surface of the welding object 9 was 0.1 mm.
  • the second laser beam shape was an elliptical ring shape, the major axis outer diameter was 10 mm, the minor axis outer diameter was 4 mm, and the ring width was 1 mm.
  • the welding direction was from left to right in the figure.
  • FIG. 4 is a schematic view of a molten pool at a certain moment formed by the first laser irradiation and the second laser irradiation, and is a top view of the welding object.
  • 14 is a keyhole formed by the first laser irradiation
  • 15 is a molten pool formed by the first laser irradiation
  • 16 is a molten pool formed by the second laser irradiation.
  • the weld bead formed behind the molten pool is omitted as the welding operation proceeds.
  • the molten pool can be expanded as compared with the case where welding is performed only with the first laser 7 forming the keyhole.
  • the irradiation position of the second laser 8 may be the edge (outer edge) or the outer periphery of the molten pool 15 formed by the first laser 7, but the outer periphery of the second laser 8 does not overlap the outer edge of the molten pool 15. Is preferable because the second laser 8 makes it difficult for the molten metal to scatter.
  • the irradiation position of the first laser and the molten pool formed by the second laser are relatively fixed.
  • the laser tends to cause sputtering when it hits the molten metal.
  • the first laser is irradiated to form the keyhole, the weld pool exists over a wide range of the welding object by the first laser and the second laser, so the laser and the molten metal do not interfere with each other.
  • FIG. 5 is a cross-sectional schematic view of the transverse (direction orthogonal to the welding progress direction) during welding, showing the AA cross section of FIG. 4, and FIG. 6 is a vertical (welding progress direction) cross-sectional schematic view of FIG. BB cross section is shown.
  • Each of the molten pools 15 and 16 has a larger melting area toward the surface of the welding object 9 and becomes narrower toward the inside.
  • the first laser 7 irradiates ahead of the irradiation center of the second laser 8 in the laser traveling direction. Thereby, the molten pool behind the keyhole 14 becomes large, and even if spatter occurs, it can fall into the molten pool and disappear.
  • a fiber laser is used as the first laser and a semiconductor laser is used as the second laser, but the present invention is not limited to this. It is also possible to use a laser branched from one laser oscillator.
  • the first laser is irradiated with an inclination of 10 ° with respect to the vertical direction of the surface of the welding object, but the irradiation angle is not limited to this.
  • the beam shape of the first laser is a circle and the beam shape of the second laser is a ring shape, but the present invention is not limited to this.
  • Example 2 shows an example in which the beam shape of the second laser 8 is rectangular and the welding object 9 is copper. The rest of the system is the same as in the first embodiment.
  • FIG. 7 shows the irradiation positional relationship between the first laser 7 and the second laser 8, and the molten pools 15 and 16 formed by these lasers.
  • the distance between the first laser and the second laser was 1 mm.
  • the first laser was a fiber laser having a beam diameter of 0.1 mm and a wavelength of about 1070 nm.
  • As the second laser a semiconductor laser having a rectangular shape with a beam shape of 1 mm ⁇ 4 mm and a wavelength of about 900 nm was used.
  • Argon gas was used as the shielding gas.
  • a rectangular second laser 8 is disposed behind the first laser 7.
  • the irradiation position of the first laser 7 is not in the irradiation region of the second laser 8, but is formed by irradiation of the molten pool 15 formed by the first laser 7 and the second laser 8. If the weld pool 16 to be overlapped in the welding direction, the weld pool 15 and the weld pool 16 are continuous and are expanded rearward from the keyhole. It may not be in the irradiation area.
  • the present embodiment can easily expand the molten pool rearward, and is preferable when the welding object is made of a material such as copper.
  • a fiber laser is used as the first laser and a semiconductor laser is used as the second laser, but the present invention is not limited to this. It is also possible to use a laser branched from one laser oscillator.
  • the first laser is irradiated with an inclination of 10 ° with respect to the vertical direction of the surface of the welding object, but the irradiation angle is not limited to this.
  • the beam shape of the first laser is a circle and the beam shape of the second laser is a rectangle, but the present invention is not limited to this.
  • Example 3 shows an example in which the second laser 8 is scanned at high speed.
  • FIG. 8 is a schematic external view of the laser welding apparatus.
  • Reference numeral 18 denotes a scanner head.
  • the first laser 7 was a fiber laser having a wavelength of about 1070 nm
  • the second laser 8 was a semiconductor laser having a wavelength of about 900 nm.
  • the first laser beam shape was a circle, and the beam diameter on the surface of the welding object 9 was 0.1 mm.
  • the second laser beam shape was a circle, and the beam diameter on the surface of the welding object 9 was 2 mm.
  • the first and second laser powers were constant.
  • the elliptical shape was scanned with a period of 100 Hz with a major axis of 2 mm and a minor axis of 1 mm.
  • the first laser was tilted by 10 ° for construction.
  • the welding object was 304 stainless steel, and the shielding gas was nitrogen gas. The welding direction was left to right.
  • FIG. 9 shows the first and second laser irradiation position relationships and the scanning trajectory of the second laser.
  • a broken line is a molten pool formed by each laser.
  • the second laser 8 scans the periphery of the first laser 7 with an elliptical orbit at high speed, and simulates a ring-shaped laser as in the first embodiment so that the molten pool 15 is not interrupted. In this case, the center of the orbit of the second laser 8 becomes the irradiation center 21.
  • the second laser 8 may be irradiated so as to trace the outer edge of the molten pool 14, but it is preferable to irradiate the outer periphery slightly away from the molten pool 14 because the molten metal is less likely to be scattered by the second laser 8. .
  • a fiber laser is used as the first laser and a semiconductor laser is used as the second laser, but the present invention is not limited to this. It is also possible to use a laser branched from one laser oscillator.
  • the first laser is irradiated with an inclination of 10 ° with respect to the vertical direction of the surface of the welding object, but the irradiation angle is not limited to this.
  • the beam shapes of the first and second lasers are circles, but the present invention is not limited to this.
  • the scanning trajectory of the second laser is elliptical and 100 Hz, but is not limited to this.
  • the second laser power is constant, but can also be achieved by periodically varying the second laser power.
  • Example 4 shows an example in which the scanning orbit of the second laser 8 is changed and the welding object 9 is made of copper.
  • the other apparatus system is the same as that of the third embodiment.
  • the beam diameter of the first laser 7 was 0.1 mm
  • the beam diameter of the second laser 8 was 1 mm.
  • the second laser was periodically scanned at 50 Hz in a semi-elliptical shape behind the first laser.
  • the semi-elliptical shape had a major axis of 3 mm and a minor axis of 1.5 mm, and was scanned 1 mm behind the first laser.
  • Argon gas was used as the shielding gas.
  • FIG. 10 shows the first and second laser irradiation position relationships and the scanning trajectory of the second laser.
  • a broken line is a molten pool formed by each laser.
  • the molten pool is expanded by reciprocating the second laser 8 in a semi-elliptical shape behind the first laser 7.
  • the center of gravity of the region surrounded by the trajectory of the second laser 8 and the start and end points of the second laser 8 is the irradiation center 21.
  • the second laser 8 may be irradiated so as to trace the outer edge of the molten pool 14, but it is preferable to irradiate the outer periphery slightly away from the molten pool 14 because the molten metal is less likely to be scattered by the second laser 8. .
  • the second laser 8 is separated from the keyhole.
  • the molten metal scattered by the laser 8 is difficult to enter the keyhole. Therefore, it is possible to suppress the occurrence of spatter when the first laser 7 hits the molten metal.
  • a fiber laser is used as the first laser and a semiconductor laser is used as the second laser, but the present invention is not limited to this. It is also possible to use a laser branched from one laser oscillator.
  • the first laser is irradiated with an inclination of 10 ° with respect to the vertical direction of the surface of the welding object, but the irradiation angle is not limited to this.
  • the beam shapes of the first and second lasers are circles, but the present invention is not limited to this.
  • the second laser is positioned behind the first irradiation position and scanned with a semi-elliptical orbit at 50 Hz. It is not limited to.
  • the second laser power is constant, but can also be achieved by periodically varying the second laser power.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser welding method whereby an object being welded is bombarded by a laser and another heat source, wherein the object being welded is bombarded by the laser and the other heat source in a manner such that at least a portion of the weld pool formed by the laser bombardment and the weld pool formed by the other heat source overlap each other, and the object being welded is constantly bombarded by the laser at an area in front of the center of bombardment of the other heat source, in the direction in which the welding progresses.

Description

レーザ溶接方法Laser welding method
 本発明はレーザ溶接方法に関する。 The present invention relates to a laser welding method.
 レーザ溶接は、溶け込みが深い溶接が可能であるとして、従来のアーク溶接と比較して、精密にかつ高速に溶接が可能であるため、近年、利用が拡大している。溶け込みが深い溶接ができる理由として、レーザがアーク溶接などと比べて、高いパワー密度を有しているため、レーザが照射された金属は瞬時に、溶融、蒸発する。その蒸発による高い反力によって、溶融部は押し下げられ、キーホールと呼ばれる空間が形成される。レーザはキーホールを通じて、材料内部まで到達できるため、溶け込みが深い溶接が達成される。 Laser welding has been used in recent years because it can be welded with higher penetration than conventional arc welding because it can be welded with deep penetration. The reason why welding with deep penetration is possible is that the laser has a higher power density than arc welding or the like, so that the metal irradiated with the laser instantaneously melts and evaporates. Due to the high reaction force due to the evaporation, the melting part is pushed down, and a space called a keyhole is formed. Since the laser can reach the inside of the material through the keyhole, welding with deep penetration is achieved.
 しかしながら、レーザ溶接においても、ポロシティ(空孔)、スパッタ(飛散物)、割れなどの溶接欠陥は存在し、現在のレーザ溶接においてこれらの欠陥を完全に抑制することは困難である。その解決策として、特許文献1には、集光径の異なる2つのレーザビームを重畳し、2つのレーザビームのうち少なくとも集光径の小さい方のレーザビームをレーザ進行方向と同じ方向に周期移動(ウィービング)させることで、ポロシティを減少させる方法が提案されている。 However, even in laser welding, there are welding defects such as porosity (spatter), spatter (scattered matter), and cracks, and it is difficult to completely suppress these defects in current laser welding. As a solution to this problem, Patent Document 1 superimposes two laser beams with different condensing diameters, and periodically moves at least the laser beam with the smaller condensing diameter of the two laser beams in the same direction as the laser traveling direction. A method for reducing porosity by (weaving) has been proposed.
特開2007-319878号公報JP 2007-319878
 部品表面のスパッタは、組立時や製品使用時に剥がれ落ちることがある。製品が流体機械の場合、剥がれたスパッタが流体と共に流されて流路の途中で目詰まりを起こすこともある。目詰まりは溶接部品が小さくなるほど顕著となるため、特に小型の流体機械をレーザ溶接する際は、欠陥の中でも特にスパッタの発生を低減することが求められる。 ∙ Spatter on the part surface may come off during assembly or product use. When the product is a fluid machine, the spatter that has been peeled off may flow along with the fluid, causing clogging in the middle of the flow path. Since clogging becomes more pronounced as the welded parts become smaller, it is required to reduce the occurrence of spatter, particularly among defects, when laser welding a small fluid machine.
 しかし上記特許文献1の方法では、スパッタによる表面欠陥が十分考慮されていない。キーホールの前方は、これからレーザ等が進行して溶融される部分なので、スパッタが発生しても溶接対象物の表面にそれほど大きな影響はない。しかし、キーホールの後方は、これから凝固していく部分なので、前方よりも表面欠陥が発生しやすい。 However, in the method of Patent Document 1, surface defects due to sputtering are not sufficiently considered. The front part of the keyhole is a part where a laser or the like will be melted from now on, so even if spattering occurs, the surface of the welding object is not greatly affected. However, since the back of the keyhole is a part that will solidify, surface defects are more likely to occur than the front.
 特許文献1は、集光径の大きい方のレーザB2の照射中心を起点にして、キーホールを形成するレーザB1をウィービングさせるので(特許文献1の図2)、レーザB1をレーザ進行方向の後方にウィービングさせたときはキーホール後方の溶融池が小さくなる。そのため、溶接時にスパッタが発生しやすいという課題がある。 In Patent Document 1, since the laser B1 forming the keyhole is weaved starting from the irradiation center of the laser B2 having the larger condensing diameter (FIG. 2 of Patent Document 1), the laser B1 is moved backward in the laser traveling direction. When weaving, the molten pool behind the keyhole becomes smaller. Therefore, there is a problem that spatter is easily generated during welding.
 本発明の目的は、スパッタの発生を低減することにある。 An object of the present invention is to reduce the generation of spatter.
 上記目的は、請求項に記載の発明により達成される。 The above object is achieved by the invention described in the claims.
 本発明によれば、スパッタの発生を低減することができる。 According to the present invention, the generation of spatter can be reduced.
レーザによって形成された溶融池の縦断面模式図Schematic diagram of longitudinal section of molten pool formed by laser レーザによって形成された溶融池の縦断面模式図Schematic diagram of longitudinal section of molten pool formed by laser レーザ溶接装置の外観Appearance of laser welding equipment 第一のレーザと第二のレーザの照射位置関係Irradiation position relationship between the first laser and the second laser 第一のレーザと第二のレーザ照射によって形成された溶融池の模式図Schematic diagram of the molten pool formed by the first laser and second laser irradiation 溶接中の横断面形状模式図Cross-sectional shape schematic diagram during welding 溶接中の縦断面模式図Schematic diagram of longitudinal section during welding 第一のレーザと第二のレーザの照射位置関係Irradiation position relationship between the first laser and the second laser レーザ溶接装置の外観模式図External view of laser welding equipment 第一、第二のレーザ照射位置関係と第二レーザの走査軌道First and second laser irradiation position relationship and second laser scanning trajectory 第一、第二のレーザ照射位置関係と第二レーザの走査軌道First and second laser irradiation position relationship and second laser scanning trajectory
 図1Aはレーザのみで形成された溶融池15の縦(溶接進行方向13)断面模式図である。溶接対象物9にレーザを照射した瞬間に金属は溶融、蒸発してキーホール14が形成され、キーホール14の周囲には金属が溶融した溶融池15が形成される。キーホール14が形成された瞬間にキーホール14内は高圧になるので、溶融池15はキーホール14と溶融池15周囲の固体金属とから大きな力を受ける。17は溶融池の流れを示す。 FIG. 1A is a vertical (welding direction 13) cross-sectional schematic view of a weld pool 15 formed only by a laser. At the moment when the welding object 9 is irradiated with the laser, the metal is melted and evaporated to form a keyhole 14, and a molten pool 15 in which the metal is melted is formed around the keyhole 14. Since the pressure inside the keyhole 14 becomes high at the moment when the keyhole 14 is formed, the molten pool 15 receives a large force from the keyhole 14 and the solid metal around the molten pool 15. Reference numeral 17 denotes the flow of the molten pool.
 溶融池15の領域が狭い場合は溶融金属の逃げ場がなく、溶融金属はスパッタ20として溶融池15から飛び出し、溶接部近傍の固体金属表面に付着して表面欠陥となりやすい。または溶融金属はキーホール14側へ押し出され(図の19)、レーザと干渉してキーホール14外に飛散し、溶接部近傍の固体金属表面に付着しやすい。 When the area of the molten pool 15 is narrow, there is no escape place for the molten metal, and the molten metal jumps out of the molten pool 15 as the sputter 20 and adheres to the surface of the solid metal in the vicinity of the welded portion, which tends to cause surface defects. Alternatively, the molten metal is pushed out to the keyhole 14 side (19 in the figure), interferes with the laser, scatters outside the keyhole 14, and easily adheres to the surface of the solid metal near the weld.
 本実施形態は、溶け込みの深い溶接を実施するレーザと、レーザの照射により形成される溶融池を拡張するように溶融池の周囲を加熱して溶融させる熱源の両者を用いて部材を溶接するものである。 In this embodiment, members are welded using both a laser that performs deep penetration welding and a heat source that heats and melts the periphery of the molten pool so as to expand the molten pool formed by laser irradiation. It is.
 なお、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。 It should be noted that the present invention is not limited to the embodiments taken up here, and can be combined and improved as appropriate without departing from the scope of the invention.
 図1Bはレーザと他の熱源を用いて形成された溶融池の縦断面模式図である。本実施形態では、更に他の熱源を用いて、レーザにより形成される溶融池15の周囲も溶融させた溶融池16を形成する。そして、熱源の照射範囲の中心より常に前方にレーザを照射することで、溶接進行方向13に対してキーホール14が溶融池15、16内の前部分に常に配置されるようになり、溶接進行方向13に対してキーホール14の後方を特に広く拡張した溶融池15、16を形成することができる。 FIG. 1B is a schematic vertical cross-sectional view of a molten pool formed using a laser and another heat source. In this embodiment, the molten pool 16 which melt | dissolved the circumference | surroundings of the molten pool 15 formed with a laser is further formed using another heat source. Then, by always irradiating the laser forward from the center of the irradiation range of the heat source, the keyhole 14 is always arranged at the front portion in the molten pools 15 and 16 with respect to the welding progress direction 13, and the welding progresses. It is possible to form molten pools 15 and 16 that are particularly widened behind the keyhole 14 with respect to the direction 13.
 これにより、キーホール14からの圧力を受けた溶融金属が対流できる領域を拡大することができる。そのため、溶融金属が溶融池15、16から飛び出すことが減少し、またキーホール14内に溶融金属が押し出されてレーザと干渉することも減少するので、スパッタを抑制することができる。仮にスパッタが発生しても、溶融池16が大きいため、スパッタが溶融池に落下し消滅させることができる。従って、溶融池が凝固した後の固体金属の表面には、スパッタがほとんど付着しない。 This makes it possible to expand the region where the molten metal that has received the pressure from the keyhole 14 can convect. Therefore, it is possible to reduce the occurrence of molten metal jumping out of the molten pools 15 and 16 and to reduce the possibility that the molten metal is pushed into the keyhole 14 and interferes with the laser, so that sputtering can be suppressed. Even if spatter is generated, since the molten pool 16 is large, the spatter can drop into the molten pool and disappear. Therefore, almost no spatter adheres to the surface of the solid metal after the molten pool has solidified.
 熱源は、溶接対象物である金属を溶融させることができればよく、レーザやアーク、プラズマ等が挙げられる。中でもレーザを用いると瞬時に深い溶融池を形成することができるので、キーホール近傍の溶融金属が流動可能な範囲を溶接対象物の深さ方向に素早く広げることができる。そのため、キーホールからの圧力を受けた溶融金属の逃げ場を素早く形成することができるので、更にスパッタを抑制する効果がある。また、微細領域を加工できるので、溶接部分を小さくしたいときに好ましい。 The heat source only needs to be able to melt the metal to be welded, and examples thereof include lasers, arcs, and plasmas. In particular, when a laser is used, a deep molten pool can be formed instantaneously, so that the range in which the molten metal near the keyhole can flow can be quickly expanded in the depth direction of the welding object. As a result, the escape area of the molten metal that has been subjected to pressure from the keyhole can be quickly formed. Further, since a fine region can be processed, it is preferable when it is desired to reduce the welded portion.
 以下、熱源にレーザを用いた場合の実施例について、図面を参照しながら詳細に説明する。なお、本発明はここで取り上げた実施例に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。 Hereinafter, embodiments in which a laser is used as a heat source will be described in detail with reference to the drawings. In addition, this invention is not limited to the Example taken up here, A combination and improvement are possible suitably in the range which does not change a summary.
 図2に実施例1のレーザ溶接装置の外観を示す。1は第一のレーザ発振器、2は第二のレーザ発振器、3は第一のレーザ用の光ファイバ、4は第二のレーザ用の光ファイバ、5は第一のレーザ用の光学ヘッド、6は第二のレーザ用の光学ヘッド、7は第一のレーザ、8は第二のレーザ、9は溶接対象物、10は加工テーブル、11はシールドガスノズル、12はシールドガスである。 FIG. 2 shows the appearance of the laser welding apparatus of Example 1. 1 is a first laser oscillator, 2 is a second laser oscillator, 3 is an optical fiber for a first laser, 4 is an optical fiber for a second laser, 5 is an optical head for a first laser, 6 Is an optical head for a second laser, 7 is a first laser, 8 is a second laser, 9 is an object to be welded, 10 is a processing table, 11 is a shield gas nozzle, and 12 is a shield gas.
 本実施例では、溶接対象物9は304ステンレス鋼とした。また第一のレーザ7は波長が約1070nmのファイバレーザ、第二のレーザ8は波長が約900nmの半導体レーザとした。溶接進行方向は図の左から右である。第一のレーザは溶接進行方向に対して第二のレーザの照射軸から10°後方に傾斜させて施工を行った。シールドガス12は窒素ガスとした。 In this example, the welding object 9 was 304 stainless steel. The first laser 7 was a fiber laser having a wavelength of about 1070 nm, and the second laser 8 was a semiconductor laser having a wavelength of about 900 nm. The welding direction is from left to right in the figure. The first laser was applied while being inclined 10 ° rearward from the irradiation axis of the second laser with respect to the welding progress direction. The shielding gas 12 was nitrogen gas.
 第一のレーザ発振器1で生成されたレーザは第一のレーザ用の光ファイバ3を通じて、第一のレーザ用の光学ヘッド5に送られる。第一のレーザ7は光学ヘッドで集光され、溶接対象物9に照射される。第二のレーザ発振器2で生成されたレーザは第二のレーザ用の光ファイバ4を通じて、第二のレーザ用の光学ヘッド6に送られる。第二のレーザ8は光学ヘッドでリング状のビームに変換され、溶接対象物9に照射される。 The laser generated by the first laser oscillator 1 is sent to the optical head 5 for the first laser through the optical fiber 3 for the first laser. The first laser 7 is condensed by an optical head and irradiated to the welding object 9. The laser generated by the second laser oscillator 2 is sent to the optical head 6 for the second laser through the optical fiber 4 for the second laser. The second laser 8 is converted into a ring-shaped beam by the optical head, and is irradiated to the welding object 9.
 図3は第一のレーザと第二のレーザの照射位置関係を示す。13は溶接進行方法を示す。第一のレーザ7は、第二のレーザ8の照射位置の内側かつ照射中心の前方に照射するように配置し、第一のレーザ7と第二のレーザ8が干渉しないようにした。第二のレーザ8は第一のレーザ7により形成される溶融池と拡張するものであるため、第一のレーザ7よりも照射面積が大きいことが好ましい。 FIG. 3 shows the irradiation position relationship between the first laser and the second laser. Reference numeral 13 denotes a welding progress method. The first laser 7 was arranged so as to irradiate inside the irradiation position of the second laser 8 and in front of the irradiation center so that the first laser 7 and the second laser 8 do not interfere with each other. Since the second laser 8 expands with the molten pool formed by the first laser 7, it is preferable that the irradiation area is larger than that of the first laser 7.
 第一のレーザビームの溶接対象物9の表面での形状は円とし、溶接対象物9の表面でのビームの直径は0.1mmとした。第二のレーザビーム形状は楕円のリング形状とし、長軸外径の長さは10mm、短軸外径の長さは4mmとし、リングの幅は1mmとした。溶接進行方向は図の左から右とした。 The shape of the first laser beam on the surface of the welding object 9 was a circle, and the beam diameter on the surface of the welding object 9 was 0.1 mm. The second laser beam shape was an elliptical ring shape, the major axis outer diameter was 10 mm, the minor axis outer diameter was 4 mm, and the ring width was 1 mm. The welding direction was from left to right in the figure.
 図4は第一のレーザと第二のレーザ照射によって形成されたある瞬間の溶融池の模式図であり、溶接対象物の上面図である。14は第一のレーザ照射によって形成したキーホール、15は第一のレーザ照射によって形成された溶融池、16は第二のレーザ照射によって形成された溶融池を示す。図では、溶接作業が進むにつれて溶融池の後方に形成される溶接ビードは省略している。 FIG. 4 is a schematic view of a molten pool at a certain moment formed by the first laser irradiation and the second laser irradiation, and is a top view of the welding object. 14 is a keyhole formed by the first laser irradiation, 15 is a molten pool formed by the first laser irradiation, and 16 is a molten pool formed by the second laser irradiation. In the figure, the weld bead formed behind the molten pool is omitted as the welding operation proceeds.
 本実施例では、第一のレーザ7の周囲にリング状の第二のレーザ8を照射することにより、キーホールを形成する第一のレーザ7のみで溶接する場合よりも溶融池を拡大することが可能である。第二のレーザ8の照射位置は、第一のレーザ7により形成される溶融池15の縁(外縁)でも外周でもよいが、第二のレーザ8を溶融池15の外縁に重ならないように外周に照射する方が、第二のレーザ8により溶融金属を飛散させにくくなるので好ましい。 In the present embodiment, by irradiating a ring-shaped second laser 8 around the first laser 7, the molten pool can be expanded as compared with the case where welding is performed only with the first laser 7 forming the keyhole. Is possible. The irradiation position of the second laser 8 may be the edge (outer edge) or the outer periphery of the molten pool 15 formed by the first laser 7, but the outer periphery of the second laser 8 does not overlap the outer edge of the molten pool 15. Is preferable because the second laser 8 makes it difficult for the molten metal to scatter.
 また、本実施例では、第一のレーザの照射位置と第二のレーザにより形成される溶融池とを相対的に固定している。上記のとおり、レーザは溶融金属と当たるとスパッタの原因となりやすい。キーホールを形成するために第一のレーザが照射されている間、第一のレーザと第二のレーザによって溶接対象物の広範囲にわたって溶融池が存在しているので、レーザと溶融金属が干渉しないように溶融池の表面を荒らさないことが好ましい。そのため、第一のレーザの照射位置と第二のレーザにより形成される溶融池とを相対的に固定することにより、溶融池が波打つことを防止することができるので、キーホール内に溶融金属が入りにくくなる。従って、更にスパッタの発生を抑制することができる。 In the present embodiment, the irradiation position of the first laser and the molten pool formed by the second laser are relatively fixed. As described above, the laser tends to cause sputtering when it hits the molten metal. While the first laser is irradiated to form the keyhole, the weld pool exists over a wide range of the welding object by the first laser and the second laser, so the laser and the molten metal do not interfere with each other. Thus, it is preferable not to roughen the surface of the molten pool. Therefore, by relatively fixing the irradiation position of the first laser and the molten pool formed by the second laser, it is possible to prevent the molten pool from undulating. It becomes difficult to enter. Therefore, the generation of spatter can be further suppressed.
 図5は溶接中の横(溶接進行方向に直交する方向)断面形状模式図であり図4のA-A断面を示し、図6は溶接中の縦(溶接進行方向)断面模式図であり図4のB-B断面を示す。溶融池15、16は何れも溶接対象物9の表面側ほど溶融面積が広く、内部に向かうほど狭くなっている。本実施例では、第一のレーザ7は第二のレーザ8の照射中心よりもレーザ進行方向の前方に照射する。これにより、キーホール14後方の溶融池が大きくなり、スパッタが発生しても溶融池に落下し消滅させることができる。 FIG. 5 is a cross-sectional schematic view of the transverse (direction orthogonal to the welding progress direction) during welding, showing the AA cross section of FIG. 4, and FIG. 6 is a vertical (welding progress direction) cross-sectional schematic view of FIG. BB cross section is shown. Each of the molten pools 15 and 16 has a larger melting area toward the surface of the welding object 9 and becomes narrower toward the inside. In this embodiment, the first laser 7 irradiates ahead of the irradiation center of the second laser 8 in the laser traveling direction. Thereby, the molten pool behind the keyhole 14 becomes large, and even if spatter occurs, it can fall into the molten pool and disappear.
 本実施例では、第一のレーザにファイバレーザ、第二のレーザに半導体レーザを用いたが、これに限定されない。一つのレーザ発振器からレーザを分岐して使うことも可能である。 In this embodiment, a fiber laser is used as the first laser and a semiconductor laser is used as the second laser, but the present invention is not limited to this. It is also possible to use a laser branched from one laser oscillator.
 本実施例では、第一のレーザを溶接対象物表面の鉛直方向に対して10°傾斜させて照射したが、照射角度はこれに限定されない。 In this embodiment, the first laser is irradiated with an inclination of 10 ° with respect to the vertical direction of the surface of the welding object, but the irradiation angle is not limited to this.
 本実施例では第一のレーザのビーム形状を円、第二のレーザのビーム形状をリング状としたが、これに限定されない。 In this embodiment, the beam shape of the first laser is a circle and the beam shape of the second laser is a ring shape, but the present invention is not limited to this.
 実施例2では、第二のレーザ8のビーム形状を矩形とし、溶接対象物9を銅にした場合の例を示す。それ以外の装置体系は実施例1と同じである。図7に第一のレーザ7と第二のレーザ8の照射位置関係と、これらのレーザにより形成された溶融池15、16を示す。 Example 2 shows an example in which the beam shape of the second laser 8 is rectangular and the welding object 9 is copper. The rest of the system is the same as in the first embodiment. FIG. 7 shows the irradiation positional relationship between the first laser 7 and the second laser 8, and the molten pools 15 and 16 formed by these lasers.
 第一レーザと第二レーザの間隔は1mmとした。第一レーザはビーム径0.1mm、波長が約1070nmのファイバレーザを用いた。第二レーザにはビーム形状が1mm×4mmの矩形で、波長が約900nmの半導体レーザを用いた。シールドガスにはアルゴンガスを用いた。 The distance between the first laser and the second laser was 1 mm. The first laser was a fiber laser having a beam diameter of 0.1 mm and a wavelength of about 1070 nm. As the second laser, a semiconductor laser having a rectangular shape with a beam shape of 1 mm × 4 mm and a wavelength of about 900 nm was used. Argon gas was used as the shielding gas.
 本実施例では第一のレーザ7の後方に矩形の第二のレーザ8を配置した。実施例1と異なり第一のレーザ7の照射位置が第二のレーザ8の照射領域に入っていないが、第一のレーザ7により形成される溶融池15と第二のレーザ8の照射により形成される溶融池16とが溶接進行方向においてオーバーラップしていれば、溶融池15と溶融池16とが連続し、キーホールよりも後方に拡張されることになるので、必ずしも第二のレーザ8の照射領域に入っていなくてもよい。 In this embodiment, a rectangular second laser 8 is disposed behind the first laser 7. Unlike the first embodiment, the irradiation position of the first laser 7 is not in the irradiation region of the second laser 8, but is formed by irradiation of the molten pool 15 formed by the first laser 7 and the second laser 8. If the weld pool 16 to be overlapped in the welding direction, the weld pool 15 and the weld pool 16 are continuous and are expanded rearward from the keyhole. It may not be in the irradiation area.
 銅をレーザ溶接する場合は、キーホール内部での激しい金属の蒸発により、溶融池内部から爆発的に溶融金属が飛び出すことがある。これは一つに銅の熱伝導率が高く、溶融池が小さくなりやすいことに起因している。そのため、本実施例は溶融池を容易に後方に拡張することができ、溶接対象物が銅のような材質の場合に好ましい。 When laser welding copper, molten metal may explode from the inside of the molten pool due to intense metal evaporation inside the keyhole. This is due in part to the fact that copper has a high thermal conductivity and the molten pool tends to be small. Therefore, the present embodiment can easily expand the molten pool rearward, and is preferable when the welding object is made of a material such as copper.
 本実施例では、第一のレーザにファイバレーザ、第二のレーザに半導体レーザを用いたが、これに限定されない。一つのレーザ発振器からレーザを分岐して使うことも可能である。 In this embodiment, a fiber laser is used as the first laser and a semiconductor laser is used as the second laser, but the present invention is not limited to this. It is also possible to use a laser branched from one laser oscillator.
 本実施例では、第一のレーザを溶接対象物表面の鉛直方向に対して10°傾斜させて照射したが、照射角度はこれに限定されない。 In this embodiment, the first laser is irradiated with an inclination of 10 ° with respect to the vertical direction of the surface of the welding object, but the irradiation angle is not limited to this.
 本実施例では第一のレーザのビーム形状を円、第二のレーザのビーム形状を矩形としたが、これに限定されない。 In this embodiment, the beam shape of the first laser is a circle and the beam shape of the second laser is a rectangle, but the present invention is not limited to this.
 実施例3では、第二のレーザ8を高速走査させた場合の例を示す。図8にレーザ溶接装置の外観模式図を示す。18はスキャナーヘッドである。第一のレーザ7は波長が約1070nmのファイバレーザ、第二のレーザ8は波長が約900nmの半導体レーザとした。第一のレーザビーム形状は円とし、溶接対象物9の表面でのビームの直径は0.1mmとした。第二のレーザビーム形状は円とし、溶接対象物9の表面でのビームの直径は2mmとした。第一、第二のレーザパワーは一定とした。楕円形状は長軸が2mm、短軸が1mmとし、100Hzの周期で走査させた。第一のレーザは10°傾斜させて施工を行った。溶接対象物は304ステンレス鋼、シールドガスは窒素ガスとした。溶接進行方向は左から右とした。 Example 3 shows an example in which the second laser 8 is scanned at high speed. FIG. 8 is a schematic external view of the laser welding apparatus. Reference numeral 18 denotes a scanner head. The first laser 7 was a fiber laser having a wavelength of about 1070 nm, and the second laser 8 was a semiconductor laser having a wavelength of about 900 nm. The first laser beam shape was a circle, and the beam diameter on the surface of the welding object 9 was 0.1 mm. The second laser beam shape was a circle, and the beam diameter on the surface of the welding object 9 was 2 mm. The first and second laser powers were constant. The elliptical shape was scanned with a period of 100 Hz with a major axis of 2 mm and a minor axis of 1 mm. The first laser was tilted by 10 ° for construction. The welding object was 304 stainless steel, and the shielding gas was nitrogen gas. The welding direction was left to right.
 図9は第一、第二のレーザ照射位置関係と第二レーザの走査軌道を示している。破線が各々のレーザにより形成された溶融池である。第二のレーザ8は第一のレーザ7の周囲を高速に楕円軌道で走査させ、溶融池15が途切れないように実施例1のようなリング状のレーザを模擬している。この場合は第二のレーザ8の軌道中心が照射中心21となる。第二のレーザ8は溶融池14の外縁をなぞるように照射してもよいが、溶融池14から少し離れた外周を照射する方が第二のレーザ8により溶融金属を飛散させにくくなるので好ましい。 FIG. 9 shows the first and second laser irradiation position relationships and the scanning trajectory of the second laser. A broken line is a molten pool formed by each laser. The second laser 8 scans the periphery of the first laser 7 with an elliptical orbit at high speed, and simulates a ring-shaped laser as in the first embodiment so that the molten pool 15 is not interrupted. In this case, the center of the orbit of the second laser 8 becomes the irradiation center 21. The second laser 8 may be irradiated so as to trace the outer edge of the molten pool 14, but it is preferable to irradiate the outer periphery slightly away from the molten pool 14 because the molten metal is less likely to be scattered by the second laser 8. .
 本実施例のように第二のレーザ8を高速に走査することによっても、上記実施例と同様の効果が得られる。 The same effect as in the above embodiment can be obtained by scanning the second laser 8 at high speed as in the present embodiment.
 本実施例では、第一のレーザにファイバレーザ、第二のレーザに半導体レーザを用いたが、これに限定されない。一つのレーザ発振器からレーザを分岐して使うことも可能である。 In this embodiment, a fiber laser is used as the first laser and a semiconductor laser is used as the second laser, but the present invention is not limited to this. It is also possible to use a laser branched from one laser oscillator.
 本実施例では、第一のレーザを溶接対象物表面の鉛直方向に対して10°傾斜させて照射したが、照射角度はこれに限定されない。 In this embodiment, the first laser is irradiated with an inclination of 10 ° with respect to the vertical direction of the surface of the welding object, but the irradiation angle is not limited to this.
 本実施例では第一、第二のレーザのビーム形状を円としたが、これに限定されない。 In this embodiment, the beam shapes of the first and second lasers are circles, but the present invention is not limited to this.
 本実施例では第二のレーザの走査軌道を楕円で100Hzとしたが、これに限定されない。また第二レーザパワーは一定としたが、周期的に変動させることによっても達成される。 In this embodiment, the scanning trajectory of the second laser is elliptical and 100 Hz, but is not limited to this. The second laser power is constant, but can also be achieved by periodically varying the second laser power.
 実施例4では、第二のレーザ8の走査軌道を変え、溶接対象物9を銅にした場合の例を示す。それ以外の装置体系は実施例3と同じである。第一のレーザ7のビーム径は0.1mmとし、第二のレーザ8のビーム径は1mmとした。第二のレーザは第一のレーザ後方で半楕円形状に50Hzで周期走査させた。半楕円の形状は長軸が3mm、短軸が1.5mmとし、第一レーザの後方に1mm離して走査させた。シールドガスにはアルゴンガスを用いた。 Example 4 shows an example in which the scanning orbit of the second laser 8 is changed and the welding object 9 is made of copper. The other apparatus system is the same as that of the third embodiment. The beam diameter of the first laser 7 was 0.1 mm, and the beam diameter of the second laser 8 was 1 mm. The second laser was periodically scanned at 50 Hz in a semi-elliptical shape behind the first laser. The semi-elliptical shape had a major axis of 3 mm and a minor axis of 1.5 mm, and was scanned 1 mm behind the first laser. Argon gas was used as the shielding gas.
 図10は第一、第二のレーザ照射位置関係と第二レーザの走査軌道を示している。破線が各々のレーザにより形成された溶融池である。第二のレーザ8を第一のレーザ7の後方で半楕円状に往復走査させることによって、溶融池を拡張している。この場合は第二のレーザ8の軌道と第二のレーザ8の始点と終点とで囲んだ領域の重心が照射中心21となる。 FIG. 10 shows the first and second laser irradiation position relationships and the scanning trajectory of the second laser. A broken line is a molten pool formed by each laser. The molten pool is expanded by reciprocating the second laser 8 in a semi-elliptical shape behind the first laser 7. In this case, the center of gravity of the region surrounded by the trajectory of the second laser 8 and the start and end points of the second laser 8 is the irradiation center 21.
 第二のレーザ8は溶融池14の外縁をなぞるように照射してもよいが、溶融池14から少し離れた外周を照射する方が第二のレーザ8により溶融金属を飛散させにくくなるので好ましい。 The second laser 8 may be irradiated so as to trace the outer edge of the molten pool 14, but it is preferable to irradiate the outer periphery slightly away from the molten pool 14 because the molten metal is less likely to be scattered by the second laser 8. .
 また、第一のレーザ7の照射位置よりも後方で第二のレーザ8を走査させることで、第二のレーザ8によって溶融池の表面が乱れてもキーホールから離れているので、第二のレーザ8によって飛散した溶融金属がキーホール内に入り込みにくい。そのため、第一のレーザ7が溶融金属に当たってスパッタが発生することも抑制できる。 In addition, by scanning the second laser 8 behind the irradiation position of the first laser 7, even if the surface of the molten pool is disturbed by the second laser 8, the second laser 8 is separated from the keyhole. The molten metal scattered by the laser 8 is difficult to enter the keyhole. Therefore, it is possible to suppress the occurrence of spatter when the first laser 7 hits the molten metal.
 本実施例のように第二のレーザ8を高速に走査することによっても、上記実施例と同様の効果が得られる。 The same effect as in the above embodiment can be obtained by scanning the second laser 8 at high speed as in the present embodiment.
 本実施例では、第一のレーザにファイバレーザ、第二のレーザに半導体レーザを用いたが、これに限定されない。一つのレーザ発振器からレーザを分岐して使うことも可能である。 In this embodiment, a fiber laser is used as the first laser and a semiconductor laser is used as the second laser, but the present invention is not limited to this. It is also possible to use a laser branched from one laser oscillator.
 本実施例では、第一のレーザを溶接対象物表面の鉛直方向に対して10°傾斜させて照射したが、照射角度はこれに限定されない。 In this embodiment, the first laser is irradiated with an inclination of 10 ° with respect to the vertical direction of the surface of the welding object, but the irradiation angle is not limited to this.
 本実施例では第一、第二のレーザのビーム形状を円としたが、これに限定されない。 In this embodiment, the beam shapes of the first and second lasers are circles, but the present invention is not limited to this.
 本実施例では第二レーザを第一の照射位置の後方とし、半楕円軌道で50Hzで走査させたが、軌道は円、楕円、直線、正弦曲線状等を組み合わせてもよく、走査周期はこれに限定されない。 In this embodiment, the second laser is positioned behind the first irradiation position and scanned with a semi-elliptical orbit at 50 Hz. It is not limited to.
 本実施例では第二レーザパワーは一定としたが、周期的に変動させることによっても達成される。 In the present embodiment, the second laser power is constant, but can also be achieved by periodically varying the second laser power.
1  第一のレーザ発振器
2  第二のレーザ発振器
3  第一のレーザ用の光ファイバ
4  第二のレーザ用の光ファイバ
5  第一のレーザ用の光学ヘッド
6  第二のレーザ用の光学ヘッド
7  第一のレーザ
8  第二のレーザ
9  溶接対象物
10 加工テーブル
11 シールドガスノズル
12 シールドガス
13 溶接進行方向
14 キーホール
15 溶融池
16 溶融池
17 溶融池の流れ
18 スキャナーヘッド
19 キーホール内に押し出された溶融金属
20 スパッタ
21 照射中心
DESCRIPTION OF SYMBOLS 1 1st laser oscillator 2 2nd laser oscillator 3 Optical fiber 4 for 1st laser Optical fiber 5 for 2nd laser Optical head 6 for 1st laser Optical head 7 for 2nd laser One laser 8 Second laser 9 Welding object 10 Processing table 11 Shield gas nozzle 12 Shield gas 13 Welding direction 14 Keyhole 15 Molten pool 16 Molten pool 17 Molten pool flow 18 Scanner head 19 Extruded into the keyhole Molten metal 20 Sputter 21 Irradiation center

Claims (8)

  1.  レーザと他の熱源を照射して溶接対象物を接合するレーザ溶接方法において、前記レーザの照射により形成される溶融池と前記他の熱源の照射により形成される溶融池の少なくとも一部が重なるように前記レーザと前記他の熱源を前記溶接対象物に照射し、前記他の熱源の照射中心より常に溶接進行方向の前方に前記レーザを照射することを特徴とするレーザ溶接方法。 In a laser welding method in which a welding object is joined by irradiating a laser and another heat source, at least a part of the molten pool formed by the irradiation of the laser overlaps with the molten pool formed by the irradiation of the other heat source. And irradiating the welding object with the laser and the other heat source, and always irradiating the laser in front of the welding progress direction from the irradiation center of the other heat source.
  2.  請求項1において、前記他の熱源がレーザであることを特徴とするレーザ溶接方法。 2. The laser welding method according to claim 1, wherein the other heat source is a laser.
  3.  請求項1において、前記他の熱源の照射面積が前記レーザよりも大きいことを特徴とするレーザ溶接方法。 2. The laser welding method according to claim 1, wherein an irradiation area of the other heat source is larger than that of the laser.
  4.  請求項1において、前記レーザの照射位置と前記他の熱源の照射により形成される溶融池との相対位置が固定されていることを特徴とするレーザ溶接方法。 2. The laser welding method according to claim 1, wherein a relative position between the irradiation position of the laser and the molten pool formed by irradiation with the other heat source is fixed.
  5.  請求項1において、前記レーザの照射により形成される溶融池の外縁又は外周を前記他の熱源が照射することを特徴とするレーザ溶接方法。 2. The laser welding method according to claim 1, wherein the other heat source irradiates an outer edge or an outer periphery of the molten pool formed by the laser irradiation.
  6.  請求項1において、前記他の熱源の照射領域が前記レーザの照射位置よりも後方に配置されていることを特徴とするレーザ溶接方法。 2. The laser welding method according to claim 1, wherein the irradiation area of the other heat source is arranged behind the irradiation position of the laser.
  7.  請求項1において、前記レーザが第一のレーザ、前記他の熱源が第二のレーザであり、前記第一のレーザの照射により形成される溶融池の外縁又は外周を前記第二のレーザが走査することを特徴とするレーザ溶接方法。 2. The laser according to claim 1, wherein the laser is a first laser and the other heat source is a second laser, and the second laser scans an outer edge or an outer periphery of a molten pool formed by irradiation with the first laser. And a laser welding method.
  8.  請求項7において、前記第一のレーザの照射位置より溶接進行方向の後方を前記第二のレーザが往復走査することを特徴とするレーザ溶接方法。 8. The laser welding method according to claim 7, wherein the second laser performs reciprocal scanning behind the irradiation position of the first laser in the welding progress direction.
PCT/JP2014/065172 2014-06-09 2014-06-09 Laser welding method WO2015189883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065172 WO2015189883A1 (en) 2014-06-09 2014-06-09 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065172 WO2015189883A1 (en) 2014-06-09 2014-06-09 Laser welding method

Publications (1)

Publication Number Publication Date
WO2015189883A1 true WO2015189883A1 (en) 2015-12-17

Family

ID=54833016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065172 WO2015189883A1 (en) 2014-06-09 2014-06-09 Laser welding method

Country Status (1)

Country Link
WO (1) WO2015189883A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016220067A1 (en) 2016-10-14 2018-04-19 Technische Universität Ilmenau A method for deep welding a workpiece, wherein a tilted vapor capillary is generated by means of two laser beams
WO2018217247A1 (en) * 2016-09-29 2018-11-29 Nlight, Inc. Method of and optical beam system for forming an article with use of variable beam parameters to control a melt pool
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US10520671B2 (en) 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
US10535973B2 (en) 2015-01-26 2020-01-14 Nlight, Inc. High-power, single-mode fiber sources
US10646963B2 (en) 2016-09-29 2020-05-12 Nlight, Inc. Use of variable beam parameters to control a melt pool
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10971885B2 (en) 2014-06-02 2021-04-06 Nlight, Inc. Scalable high power fiber laser
US10971884B2 (en) 2015-03-26 2021-04-06 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
CN115401326A (en) * 2022-09-29 2022-11-29 楚能新能源股份有限公司 Bus bar composite laser welding method and bus bar composite laser welding equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300087A (en) * 1996-05-14 1997-11-25 Suzuki Motor Corp Laser beam welding method
JP2008114276A (en) * 2006-11-07 2008-05-22 Takeji Arai Laser beam welding apparatus and laser beam welding method
JP2013240830A (en) * 2012-05-21 2013-12-05 General Electric Co <Ge> Hybrid laser arc welding process and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300087A (en) * 1996-05-14 1997-11-25 Suzuki Motor Corp Laser beam welding method
JP2008114276A (en) * 2006-11-07 2008-05-22 Takeji Arai Laser beam welding apparatus and laser beam welding method
JP2013240830A (en) * 2012-05-21 2013-12-05 General Electric Co <Ge> Hybrid laser arc welding process and apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971885B2 (en) 2014-06-02 2021-04-06 Nlight, Inc. Scalable high power fiber laser
US10916908B2 (en) 2015-01-26 2021-02-09 Nlight, Inc. High-power, single-mode fiber sources
US10535973B2 (en) 2015-01-26 2020-01-14 Nlight, Inc. High-power, single-mode fiber sources
US10971884B2 (en) 2015-03-26 2021-04-06 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US10520671B2 (en) 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
US11794282B2 (en) 2015-11-23 2023-10-24 Nlight, Inc. Fine-scale temporal control for laser material processing
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US11331756B2 (en) 2015-11-23 2022-05-17 Nlight, Inc. Fine-scale temporal control for laser material processing
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
CN110944787A (en) * 2016-09-29 2020-03-31 恩耐公司 Method and beam system for forming articles using variable beam parameters to control a melt pool
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10663767B2 (en) 2016-09-29 2020-05-26 Nlight, Inc. Adjustable beam characteristics
US10656330B2 (en) 2016-09-29 2020-05-19 Nlight, Inc. Use of variable beam parameters to control solidification of a material
CN110944787B (en) * 2016-09-29 2021-09-14 恩耐公司 Method and beam system for forming articles using variable beam parameters to control a melt pool
US10646963B2 (en) 2016-09-29 2020-05-12 Nlight, Inc. Use of variable beam parameters to control a melt pool
WO2018217247A1 (en) * 2016-09-29 2018-11-29 Nlight, Inc. Method of and optical beam system for forming an article with use of variable beam parameters to control a melt pool
DE102016220067A1 (en) 2016-10-14 2018-04-19 Technische Universität Ilmenau A method for deep welding a workpiece, wherein a tilted vapor capillary is generated by means of two laser beams
DE102016220067B4 (en) 2016-10-14 2023-09-21 Trumpf Laser Und Systemtechnik Gmbh Method for deep welding a workpiece, in which a tilted vapor capillary is created using two laser beams
CN115401326A (en) * 2022-09-29 2022-11-29 楚能新能源股份有限公司 Bus bar composite laser welding method and bus bar composite laser welding equipment

Similar Documents

Publication Publication Date Title
WO2015189883A1 (en) Laser welding method
JP6554670B2 (en) Laser welding method
US7154065B2 (en) Laser-hybrid welding with beam oscillation
JP5827454B2 (en) Laser / arc combined welding method and welded member manufacturing method using the welding method
JP2023063367A (en) Welding method and welding device
US8884183B2 (en) Welding process and a welding arrangement
JP2008126315A (en) Laser welding process with improved penetration
Wang et al. Stabilization mechanism and weld morphological features of fiber laser-arc hybrid welding of pure copper
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
JP5812527B2 (en) Hot wire laser welding method and apparatus
RU2547987C1 (en) Laser welding method
JP5645128B2 (en) Laser narrow groove multilayer welding method and apparatus
JP2011152570A (en) Hollow electrode arc-laser coaxial combination welding method
JP2009166080A (en) Laser beam welding method
JP2014079783A (en) Laser and arc hybrid welding method, hybrid welding head and hybrid welding apparatus
JP2019037997A (en) Laser cladding device
Karhu et al. Defocusing techniques for multi-pass laser welding of austenitic stainless steel
JPH06198472A (en) High-speed laser beam welding method
JP7305502B2 (en) Laser-arc hybrid welding equipment
Zhang et al. Deep penetration welding of thick section steels with 10 kW fiber laser
JP5489005B2 (en) Welding method
JP5987305B2 (en) Laser welding method
RU2635680C1 (en) Method for welding butt joints
JP7219195B2 (en) Laser-arc hybrid welding equipment
RU2635679C1 (en) Method of laser-arc welding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP