WO2015182558A1 - Method for manufacturing glass substrate and electronic device - Google Patents

Method for manufacturing glass substrate and electronic device Download PDF

Info

Publication number
WO2015182558A1
WO2015182558A1 PCT/JP2015/064937 JP2015064937W WO2015182558A1 WO 2015182558 A1 WO2015182558 A1 WO 2015182558A1 JP 2015064937 W JP2015064937 W JP 2015064937W WO 2015182558 A1 WO2015182558 A1 WO 2015182558A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
pulse laser
irradiation
film
Prior art date
Application number
PCT/JP2015/064937
Other languages
French (fr)
Japanese (ja)
Inventor
翔 伊東
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2016523486A priority Critical patent/JPWO2015182558A1/en
Publication of WO2015182558A1 publication Critical patent/WO2015182558A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose

Definitions

  • the present invention relates to a method for producing a glass substrate by forming an electronic device material such as a liquid crystal element on a glass film, and an electronic device.
  • the glass substrates incorporated in these products are being thinned. It is. And as what responds to such a request
  • Patent Document 1 discloses a technique that can eliminate such a problem.
  • This laminated body becomes a structure which a support glass supports a rectangular glass film.
  • the supporting glass is formed with a hole extending in the thickness direction, and the two glasses are placed so that one of the corner portions of the glass film (hereinafter referred to as a specific corner portion) is positioned on the hole. It is superimposed. That is, in this laminated body, the specific corner portion of the glass film is in a non-contact state with the supporting glass.
  • the above technique has an advantage that the glass film is easily peeled even for the laminate placed in a high temperature atmosphere, but on the other hand, it is still improved from the viewpoint of the quality of the glass substrate to be manufactured. There is room for this.
  • the present invention made in view of such circumstances, when manufacturing a glass substrate using a laminate, even if the laminate is placed in a high temperature atmosphere, the glass film that has been processed It is a technical problem to enable smooth peeling and to prevent deterioration of the quality of the glass substrate.
  • the present invention which was created to solve the above problems, produces a laminate in which a flexible glass film and a supporting glass that supports the glass film are adhered to each other via a light absorption layer.
  • a glass substrate including a laminate manufacturing step, a processing step of forming an electronic device material on the glass film in the laminate and using the glass film as a glass substrate, and a peeling step of peeling the entire glass substrate from the supporting glass.
  • the manufacturing method after the execution of the treatment step and before the peeling step, the light absorption layer is irradiated with a pulse laser, and a part of the glass substrate is peeled off from the supporting glass in the irradiation region. It is characterized by performing a peeling start point portion forming step for forming a peeling start point portion that is a starting point of the peeling step.
  • the separation starting point forming step is performed after the processing step is performed and before the separation step is performed. Therefore, when the processing step is performed, the separation starting point that is the starting point of the separation step is performed. The part is naturally in an unformed state. Therefore, due to the formation of the peeling start point portion, a situation in which the processing step is executed under a state where a gap is formed between the support glass and the glass film cannot occur. As a result, the electronic device material can be suitably formed on the glass film, and the deterioration of the quality of the glass substrate due to the formation of the gap can be reliably prevented.
  • the laminate production step the laminate is produced by bringing the glass film and the supporting glass into close contact with each other through the light absorption layer.
  • the following action occurs in the pulse laser irradiation region. That is, the light absorption layer is turned into plasma as the light absorption layer is irradiated with the pulse laser. Furthermore, among the glass substrate and the supporting glass, the glass located on the irradiation side of the pulse laser absorbs more energy than the glass located on the irradiation side, and a part thereof (light The vicinity of the absorption layer) becomes plasma. Then, a part of the glass positioned on the irradiation source side and the light absorption layer, both of which are converted into plasma, adhere to the glass positioned on the irradiation destination side.
  • the gases generated by the pulse laser irradiation push the two glasses apart so that the glass substrate and the supporting glass are separated.
  • a part of the glass substrate is peeled off from the supporting glass, and a peeling starting point is formed.
  • the whole glass substrate is peeled from support glass by performing a peeling process.
  • the light absorption layer is interposed between the glass substrate and the supporting glass, even when the laminate is placed in a high temperature atmosphere, the adhesion force acting between the two glasses is reduced. Since the increase is suppressed, the entire glass substrate can be smoothly peeled from the supporting glass.
  • the light absorption layer is preferably composed of an inorganic film.
  • the light absorption layer is composed of a thermally stable inorganic film, so that the glass substrate can be peeled off from the supporting glass more smoothly even when the laminate is placed in a high-temperature atmosphere. Can be made. Moreover, since outgas generation is suppressed as much as possible, contamination of the glass substrate by the outgas can be suitably prevented.
  • the pulse laser irradiation region is preferably a region along the outer peripheral edge of the glass substrate.
  • the adhering substance can be removed by irradiation with a pulsed laser. it can. For this reason, it is possible to prevent as much as possible the occurrence of a situation in which peeling of the glass substrate is hindered by the deposit and the glass substrate is cracked. As a result, the glass substrate and the supporting glass can be stably peeled off.
  • the glass substrate has a rectangular shape, and the peeling start point is formed at the corner of the glass substrate.
  • the support glass absorbs more energy than the glass substrate in the irradiation region of the pulse laser at the time of performing the peeling start point forming step, and a part thereof (near the light absorption layer) ) Becomes plasma. And in the said irradiation area
  • the pulse width of the pulse laser is preferably 500 ps or less.
  • the pulse width is sufficiently short, excessive energy absorption in the glass substrate and the supporting glass can be prevented, and damage to both glasses can be suppressed as much as possible.
  • various inorganic films can be satisfactorily processed.
  • the above glass substrate manufacturing method may be repeated a plurality of times by repeatedly using the same supporting glass.
  • both of the glass film and the surface area of the supporting glass corresponding to the irradiation area of the pulse laser in the peeling start point forming process executed before the previous time and the glass film do not overlap during the second and subsequent laminate manufacturing processes. It is preferable to adhere the glass.
  • the “surface region of the supporting glass corresponding to the irradiation region of the pulse laser” means the surface region of the supporting glass that overlaps with the irradiation region of the pulse laser in a plan view when the separation starting portion forming step is performed. (same as below).
  • a processing mark is formed on the surface region corresponding to the irradiation region of the pulse laser on the support glass that has undergone the peeling start point forming step.
  • the presence of this processing mark can be confirmed visually. Therefore, when the same supporting glass is repeatedly used and the above glass substrate manufacturing method is repeated, the pulse laser in the peeling start point forming step executed before the previous time is executed at the time of the second and subsequent laminate manufacturing steps. If the two glasses are brought into close contact with each other so that the surface region of the supporting glass corresponding to the irradiation region and the glass film do not overlap, the following actions and effects can be obtained.
  • the processing trace formed in support glass will be formed in a mutually different location, whenever a peeling starting part formation process is performed. And it becomes possible to discriminate
  • the light absorbing layer may be irradiated with a plurality of pulse lasers, and at least a part of these irradiation spots may overlap.
  • the peeling start point forming step when the peeling start point forming step is performed, a plurality of pulse lasers interfere with each other in the irradiation region by the overlapping irradiation spots, and the light absorption layer can be processed according to the interference pattern.
  • the “irradiation area by the overlapping irradiation spot” means the entire area where the overlapping irradiation spot is formed on the light absorption layer during the execution of the peeling start point forming step (hereinafter the same). Due to this, after completion of the peeling step, the light absorption layer remains as a fine convex portion on the surface region of the supporting glass corresponding to the irradiation region by the overlapping irradiation spot.
  • the “surface region of the supporting glass corresponding to the irradiation region by the overlapping irradiation spot” means the surface region of the supporting glass that overlaps with the irradiation region by the overlapping irradiation spot in a plan view when the peeling start point forming step is executed. (same as below). And the light which permeate
  • a light absorption layer can also be processed suitably.
  • the plurality of pulse lasers become coherent with each other, it is possible to increase the coherence of the plurality of pulse lasers in the irradiation region by the overlapping irradiation spots when the peeling start point forming step is performed.
  • fine convex portions are likely to remain periodically in the surface region of the supporting glass corresponding to the irradiation region by the overlapping irradiation spots.
  • the location of the portion where the fine convex portion remains can be more clearly visually recognized.
  • the plurality of pulse lasers include a first pulse laser irradiated from the support glass side and a second pulse laser irradiated from the glass substrate side, and the first pulse laser and the second pulse laser Of the pulse lasers, one pulse laser is preferably generated by reflecting the other pulse laser that has passed through the laminate toward the laminate.
  • one of the first pulse laser and the second pulse laser can be generated by simply reflecting the other pulse laser that has passed through the laminate toward the laminate. . Therefore, the light absorption layer can be processed more efficiently.
  • the above glass substrate manufacturing method may be repeated a plurality of times by repeatedly using the same supporting glass.
  • the surface region of the supporting glass corresponding to the irradiation region due to the overlapping irradiation spot in the separation starting point forming step executed before the previous time and the glass film do not overlap. It is preferable to adhere both glasses.
  • the light absorbing layer is formed on the supporting glass, and in the peeling starting point forming step, the light absorbing layer is irradiated with the pulse laser as the starting pulse laser from the supporting glass side, and then the starting pulse is further formed. You may irradiate the pulsed laser of the laser irradiation area
  • the light absorption layer formed on the supporting glass adheres to the glass substrate in the irradiation region. Thereafter, as the subsequent pulse laser is irradiated from the glass substrate side, the light absorption layer attached to the glass substrate at the time of irradiation with the first pulse laser can be attached to the supporting glass again in the irradiation region. . That is, it becomes possible to repair the light absorption layer on the supporting glass.
  • the first pulse laser and the second pulse laser are oscillated from the same oscillation source.
  • the first pulse laser oscillation source and the second pulse laser oscillation source are prepared separately. There is no need. Therefore, it becomes possible to process the light absorption layer efficiently.
  • the light absorbing layer can be irradiated with the first pulse laser and the subsequent pulse laser without adversely affecting the electronic device material by the pulse laser.
  • the energy of the pulse laser is absorbed by the electronic device material does not occur, it is possible to suitably apply the energy of the first and second pulse lasers to the light absorption layer.
  • an irradiation spot of the irradiation spot and subsequent pulse laser Advance pulse laser it is preferable that the area of each within the range of 1mm 2 ⁇ 500mm 2.
  • the part of the glass substrate corresponding to the irradiation region of the first pulse laser and the part of the glass substrate corresponding to the irradiation region of the subsequent pulse laser are separated from the support glass. It is preferable to restrict the displacement in the direction.
  • “the part of the glass substrate corresponding to the irradiation region of the first (later) pulsed laser” refers to the glass that overlaps with the irradiation region of the first (later) pulsed laser in plan view when the separation starting portion forming step is performed. It means the part of the substrate (hereinafter the same).
  • the corresponding part When the adhesion between the glass substrate and the support glass is large, at the part of the glass substrate that corresponds to the irradiation area of the first and subsequent pulse lasers (hereinafter referred to as the corresponding part), the corresponding part expands due to the heat of both pulse lasers. Due to this, there is a possibility of causing the following problems. That is, excessive stress acts at the boundary between the corresponding part and the part where the glass substrate and the supporting glass existing in the vicinity of the corresponding part are in close contact, and the glass substrate may be damaged. However, if the displacement of the corresponding part in the direction away from the supporting glass is restricted, the action of stress at the boundary between the two parts can be reduced as much as possible. It becomes possible to eliminate.
  • the above glass substrate manufacturing method may be repeated a plurality of times by repeatedly using the same supporting glass.
  • both the support glass surface area corresponding to the irradiation area of the subsequent pulse laser in the previously-executed peeling start point forming process and the glass film overlap during the second and subsequent laminate manufacturing processes. It is preferable to adhere the glass.
  • the “surface region of the support glass corresponding to the irradiation region of the subsequent pulse laser” means the surface region of the support glass that overlaps with the irradiation region of the subsequent pulse laser in plan view when the peeling start point forming step is performed. Meaning (hereinafter the same).
  • An absorption layer will be included.
  • the light absorption layer restored to the supporting glass can be effectively used without waste.
  • the same support glass is repeatedly used, it is possible to suppress the cost for manufacturing the glass substrate.
  • this electronic device is provided with a glass substrate in which an electronic device material is formed on a glass film, and the glass film has an irradiated region irradiated with a pulse laser from both the front and back sides. It is characterized in that a plurality of convex portions made of a film are formed in the irradiated region.
  • the plurality of convex portions are formed in parallel, and the width of the convex portion and the width of the gap formed between adjacent convex portions are each 0.1 ⁇ m to 20 ⁇ m, and It is preferable that the formation pitch of the plurality of convex portions is 0.2 ⁇ m to 40 ⁇ m, and the area of the convex portion formed in the irradiated region is 10% or more.
  • the method for manufacturing a glass substrate according to the present invention when a glass substrate is manufactured using the laminate, even if the laminate is placed in a high-temperature atmosphere, the processing is performed. As a result, the glass film can be smoothly peeled and the quality of the glass substrate can be prevented from deteriorating.
  • this glass substrate manufacturing method is a laminate in which a laminate 4 is produced in which a glass film 1 and a supporting glass 2 are brought into close contact with each other through an inorganic film 3 as a light absorption layer.
  • a manufacturing process FIG. 1
  • a processing process FIG. 2
  • an electronic device material 5 is formed on the glass film 1 to form a glass substrate 6
  • the inorganic film 3 is irradiated with a pulse laser 7.
  • the surfaces of the glass film 1 having flexibility and the supporting glass 2 that supports the glass film 1 that are in close contact with each other (hereinafter referred to as “infrared film 3”).
  • the surface roughness Ra of the contact side surface is finished to a smooth surface of 2.0 nm or less.
  • the surface roughness Ra can be obtained by, for example, using unmolded glass formed by the overflow downdraw method, adjusting the concentration of the etching solution, the solution temperature, and the processing time when performing chemical etching on the glass, It is possible to control by performing mirror polishing or optical polishing.
  • both the glasses 1 and 2 have a rectangular shape, and the support glass 2 has a size that is slightly larger than the glass film 1.
  • the inorganic film 3 is formed with a uniform thickness on the entire surface of the contact surface.
  • the inorganic film 3 is composed of a film having a lower transmittance with respect to light having a wavelength of 300 nm to 3000 nm than both the glasses 1 and 2.
  • the inorganic film 3 SiO, SiO 2, Al 2 O 3, MgO, Y 2 O 3, La 2 O 3, Pr 6 O 11, Sc 2 O 3, WO 3, HfO 2, In 2 O 3, Oxide films such as ITO, ZrO 2 , Nd 2 O 3 , Ta 2 O 5 , CeO 2 , Nb 2 O 5 , TiO, TiO 2 , Ti 3 O 5 , NiO and ZnO, and nitrides such as SiN, SiAlN and SiON A film or a film made of a combination of these can be used.
  • the thickness of the inorganic film 3 is preferably in the range of 1 nm to 200 nm.
  • the laminated body 4 is produced by bringing the two glasses 1 and 2 into close contact with each other through the inorganic film 3.
  • the inorganic film 3 may be formed on the adhesion side surface of the glass film 1 instead of the adhesion side surface of the support glass 2.
  • the electronic device material 5 is formed on the glass film 1 for the laminate 4 produced in the laminate production step, and the glass film 1 is used as the glass substrate 6.
  • the electronic device material 5 for example, a liquid crystal element, an organic EL element, a touch panel element, a solar cell element, a piezoelectric element, a light receiving element, a battery element such as a lithium ion secondary battery, a MEMS element, a semiconductor element, or the like is formed. To do.
  • the pulsed laser 7 is focused on the inorganic film 3 from the support glass 2 side and irradiated (the inorganic film 3 is set as the focal position of the pulsed laser 7).
  • the pulse laser 7 is irradiated by a galvanometer mirror (not shown) and an f- ⁇ lens (not shown) so that its optical axis extends in the thickness direction of the laminate 4.
  • the irradiation region 7 x of the pulse laser 7 is a square region including the corner portion of the glass substrate 6 among the regions along the outer peripheral end 6 a of the glass substrate 6.
  • the irradiation region 7x is set so that each side of the square formed by the irradiation region 7x is inclined by 45 ° with respect to each of the two sides forming the corner portion of the glass substrate 6. ing. Then, the pulse laser 7 is scanned along the scanning path S so that the irradiation spots 7a of the pulse laser 7 are arranged at a constant irradiation pitch P. In the present embodiment, as shown in FIG. 5, the pulse laser 7 is irradiated so that the adjacent irradiation spots 7a do not overlap each other, but the adjacent irradiation spots 7a partially overlap each other. It may be irradiated.
  • the following action occurs in the irradiation region 7x of the pulse laser 7, the following action occurs. That is, as shown in FIG. 6, with the irradiation of the pulsed laser 7 to the inorganic film 3, the inorganic film 3 absorbs the laser light and is turned into plasma (cross-hatched part). Furthermore, the supporting glass 2 positioned on the irradiation source side of the pulse laser 7 absorbs more energy than the glass substrate 6 positioned on the irradiation destination side, and the vicinity of the inorganic film 3 is turned into plasma. (Cross-hatched part). Then, a part of the supporting glass 2 and the inorganic film 3 that are plasmatized together adhere to the glass substrate 6.
  • the gas generated by the irradiation of the pulse laser 7 pushes the two glasses 2 and 6 apart so that the supporting glass 2 and the glass substrate 6 are separated.
  • a part of the glass substrate 6 is peeled off from the support glass 2 to form a peeling starting point 6x.
  • processing traces due to the irradiation of the laser 7 are formed on the surface region corresponding to the irradiation region 7 x of the pulse laser 7. This processing mark includes irregularities.
  • the kind of the pulse laser 7 a solid laser, LD laser, disk laser, fiber laser, or the like can be used.
  • the wavelength of the pulse laser 7 is preferably in the range of 300 nm to 3000 nm.
  • the pulse width is 500 ps or less, it is preferably in the range of 10 fs to 500 ps, more preferably in the range of 100 fs to 100 ps.
  • the present invention is not limited to this, and the pulse width may be on the order of nanoseconds.
  • the frequency is preferably in the range of 1 kHz to 50 MHz.
  • the pulse energy is preferably in the range of 1 ⁇ J to 50 ⁇ J.
  • the peak value of the pulse energy is preferably in the range of 5.0 ⁇ 10 9 J / cm 2 ⁇ s to 1.0 ⁇ 10 15 J / cm 2 ⁇ s.
  • the irradiation pitch P of the pulse laser 7 is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the length (irradiation range) R of one side of the square formed by the irradiation region 7x is preferably in the range of 0.1 mm to 100 mm.
  • the size of the dents is preferably 1000 nm or less. Note that only a part of the thickness of the inorganic film 3 or only the entire thickness may be processed by the irradiation of the pulse laser 7. In this case, the size of the recess is zero.
  • a plurality of suction pads 8 are used for peeling the glass substrate 6 from the support glass 2.
  • Each of the suction pads 8 has a plurality of suction holes at the contact portion with the glass substrate 6, and the glass substrate 6 is sucked by generating a negative pressure on the glass substrate 6 through the suction holes. To do.
  • sucked the glass substrate 6 moves to the upper direction sequentially from the peeling start part 6x side, and peels the whole glass substrate 6 from the support glass 2.
  • the glass substrate 6 is manufactured through the above steps.
  • the surface strength of the glass substrate 6 and the supporting glass 2 after the peeling step is preferably in the range of 100 MPa to 3000 MPa.
  • FIG. 7 is a plan view showing a laminate manufacturing process executed for the third time.
  • the supporting glass 2 has already undergone two peeling start point forming steps.
  • the surface regions 2ax and 2bx of the supporting glass corresponding to the corner portions of the glass films 1a and 1b in close contact with the supporting glass 2 are respectively provided.
  • a processing mark is formed.
  • the support glass 2 and the glass film 1c are brought into close contact so that the surface regions 2ax, 2bx (processing marks) and the glass film 1c used in the third laminate manufacturing process do not overlap.
  • the peeling start point forming step is executed.
  • the peeling starting point portion 6x that is the starting point of the peeling step is in an unformed state. Therefore, due to the formation of the separation starting point portion 6x, a situation in which the processing step is performed under a state where a gap is formed between the support glass 2 and the glass film 1 cannot occur. Therefore, even when a treatment that requires the use of a liquid such as water is performed, there is no possibility that the liquid enters the gap.
  • the electronic device material 5 can be suitably formed on the glass film 1, and it is possible to reliably prevent the quality of the glass substrate 6 from being deteriorated due to the formation of the gap.
  • the laminate 4 is produced by bringing the glass film 1 and the supporting glass 2 into close contact with each other through the inorganic film 3 in the laminate production step. Therefore, even when the laminate 4 is placed in a high temperature atmosphere, an increase in the adhesion force acting between the two glasses 2 and 6 is suppressed. It becomes possible to peel from the supporting glass 2 smoothly. This effect is further enhanced by the fact that the inorganic film 3 is thermally stable.
  • movement and effect are acquired by making the irradiation area
  • FIG. It is done. That is, even if an adherent (for example, a photoresist agent) that joins the corner portion of the glass substrate 6 and the support glass 2 remains after the processing step is performed, the adherent is removed from the pulse laser 7. Can be removed by irradiation. For this reason, it is possible to prevent as much as possible the occurrence of a situation in which peeling of the glass substrate 6 is hindered by the deposit and the glass substrate 6 is cracked.
  • an adherent for example, a photoresist agent
  • peeling of the glass substrate 6 from the support glass 2 can be started from the corner portion. Thereby, the force required to peel the glass substrate 6 can be efficiently applied. As a result, the glass substrate 6 and the support glass 2 can be stably peeled off.
  • the pulse width of the pulse laser 7 is 500 ps or less, and the pulse width is sufficiently short. For this reason, absorption of excessive energy in the glass substrate 6 and the supporting glass 2 can be prevented, and damage to both the glasses 2 and 6 can be suppressed as much as possible. Note that this effect can be further enhanced by controlling the size of the overlapped area when the adjacent irradiation spots 7a are overlapped.
  • the pulse laser 7 having a short pulse width it is possible to satisfactorily process various inorganic films 3. Further, since outgas generation from the inorganic film 3 is suppressed as much as possible, contamination of the glass substrate 6 by the outgas can be suitably prevented.
  • the surface region of the supporting glass 2 corresponding to the irradiation region 7x of the pulse laser 7 in the peeling start point forming step executed before the previous time overlaps with the glass film 1 during the second and subsequent laminate manufacturing steps.
  • the following actions and effects can be obtained by bringing the two glasses 1 and 2 into close contact with each other. That is, every time the peeling start point forming step is executed, processing marks formed on the support glass 2 are formed at different locations. Further, the presence of this processing mark can be confirmed visually. Therefore, it is possible to determine the number of times the support glass 2 has been repeatedly used based on the number of processing marks. Thereby, the number of times the support glass 2 is used can be managed very easily.
  • the amount of dents in the processing mark is approximately the same as the wavelength of visible light, the visibility of the processing mark can be improved.
  • the same support glass 2 is repeatedly used, it is possible to suppress the cost for manufacturing the glass substrate 6.
  • the glass film 1 is not superimposed on the unevenness included in the processing mark, it is possible to avoid bubbles from entering between the glass film 1 and the support glass 2 due to the unevenness. Therefore, it is also suitable for preventing deterioration of the quality of the manufactured glass substrate 6.
  • FIG. 8 is a longitudinal side view showing a peeling starting point forming step in the method for manufacturing a glass substrate according to the second embodiment of the present invention
  • FIG. 9 is a plan view showing the step.
  • the inorganic film 3 is divided into two of the first pulse laser 9 and the second pulse laser 10. And an overlapping irradiation spot Z in which a part of these irradiation spots 9a and 10a overlaps is formed.
  • the first pulse laser 9 is oscillated from a laser oscillator 11 as an oscillation source and reflected by a mirror 12 to irradiate the inorganic film 3 from the support glass 2 side.
  • the second pulse laser 10 is generated by reflecting the first pulse laser 9 transmitted through the laminated body 4 by the mirror 12x toward the laminated body 4, and is formed on the glass substrate with respect to the inorganic film 3. Irradiated from the 6th side. That is, the first pulse laser 9 and the second pulse laser 10 are lasers oscillated from the same laser oscillator 11 (oscillation source). The second pulse laser 10 transmitted through the laminate 4 is scattered by the scattering plate 13.
  • the first pulse laser 9 and the second pulse laser 10 are irradiated in a defocused state without being focused on the inorganic film 3.
  • the inorganic film 3 is not used as the focal position of both pulse lasers 9 and 10).
  • the polarized light of both pulse lasers 9 and 10 is linearly polarized light.
  • the optical axis of the second pulse laser 10 generated by being reflected by the mirror 12x is inclined with respect to the optical axis of the first pulse laser 9 that is transmitted through the laminate 4 and incident on the mirror 12x. The angle at which the mirror 12x is installed is adjusted.
  • both pulse lasers 9 and 10 a solid laser, LD laser, disk laser, fiber laser, etc. can be used.
  • the wavelengths of both pulse lasers 9 and 10 are preferably in the range of 300 nm to 3 ⁇ m.
  • the pulse width is preferably in the range of 1 ps to 1 ⁇ s.
  • the frequency is preferably in the range of 0.5 Hz to 10 kHz.
  • the pulse energy is preferably in the range of 1 mJ to 2J.
  • the peak value of the pulse energy is preferably in the range of 5.0 ⁇ 10 6 J / cm 2 ⁇ s to 1.0 ⁇ 10 15 J / cm 2 ⁇ s.
  • the area of the irradiation spots 9a, 10a of both pulse lasers 9, 10 is preferably in the range of 1 mm 2 to 500 mm 2 .
  • the area of the overlapping irradiation spot Z is preferably 10% to 99.9% of the area of the irradiation spots 9a and 10a.
  • the overlapping irradiation spot Z in which the irradiation regions 9 a and 10 a of both pulse lasers 9 and 10 partially overlap is the glass substrate 6 in the region along the outer peripheral edge 6 a of the glass substrate 6. It is formed in a region including the corner portion.
  • the overlapping irradiation spot Z is formed at only one place on the inorganic film 3.
  • the present invention is not limited to the embodiment, and as a modification, the overlapping irradiation spots Z may be intermittently formed at a plurality of locations whose positions are different from each other.
  • the following procedures (A) and (B) are repeatedly executed.
  • both pulse lasers 9, 10 are re-irradiated to re-form the overlapping irradiation spots Z at different positions.
  • two adjacent overlapping irradiation spots Z may be formed so that a part of them overlaps or may not be overlapped.
  • the overlapping irradiation spot Z is formed as an overlapping irradiation spot Z that continuously scans the inorganic film 3 by moving the laminated body 4 in a state where both the pulse lasers 9 and 10 are irradiated to the inorganic film 3. May be.
  • the following action occurs in the irradiation region by the overlapping irradiation spot Z. That is, a separation starting point portion 6x in which a part of the glass substrate 6 is separated from the support glass 2 is formed. Further, when the peeling start point forming step is executed, both pulse lasers 9 and 10 interfere in the irradiation region by the overlapping irradiation spot Z, and the inorganic film 3 is processed according to the interference pattern. As a result, as shown in FIG. 11, after the peeling process is completed, the inorganic film 3 is formed as fine protrusions 3 x on the surface region 2 y of the support glass 2 corresponding to the irradiation region by the overlapping irradiation spot Z. It remains.
  • the support glass 2 is repeatedly used in the glass substrate manufacturing method after the peeling step is completed, as in the first embodiment.
  • the surface area 2y of the supporting glass 2 corresponding to the irradiation area by the overlapping irradiation spot Z in the peeling starting point forming process executed before the previous time and the glass film 1 are executed at the time of the second and subsequent laminate manufacturing processes. Both glasses 1 and 2 are brought into close contact so as not to overlap.
  • FIG. 12 is a vertical cross-sectional side view showing a laminate manufacturing process executed for the third time.
  • the supporting glass 2 has already undergone two peeling start point forming steps.
  • fine convex portions 3x remain in the surface regions 2ay and 2by of the support glass 2 corresponding to the irradiation regions by the overlapping irradiation spots Z, respectively. is doing.
  • the support glass 2 and the glass film 1c are brought into close contact so that the surface regions 2ay and 2by and the glass film 1c used in the third laminate manufacturing process do not overlap.
  • the method for manufacturing a glass substrate according to the second embodiment it becomes possible to process the inorganic film 3 with the energy of both pulse lasers 9 and 10 in the irradiation region by the overlapping irradiation spot Z, and preferably The inorganic film 3 can be processed. Further, by adjusting the size of the area of the irradiation region by the overlapping irradiation spot Z, it is possible to adjust the size of the area of the glass substrate 6 that is partially peeled from the support glass 2 in the peeling start point forming step. As a result, it is possible to easily create a state in which the glass substrate 6 is easily peeled from the support glass 2 in the peeling step.
  • both the pulse lasers 9 and 10 become coherent with each other. Therefore, it is possible to enhance the coherence of both pulse lasers 9 and 10 in the irradiation region by the overlapping irradiation spot Z when executing the peeling start point forming step. Thereby, the fine convex part 3x tends to remain periodically. As a result, the location of the portion where the fine convex portion 3x remains can be visually recognized more clearly.
  • region by the overlap irradiation spot Z in the peeling origin part formation process performed before the last time, and the glass film 1 overlap at the time of execution of the laminated body manufacturing process after the 2nd time.
  • the location where the fine convex part 3x remained can be visually recognized, it can discriminate
  • the glass substrate 6 manufactured by the glass substrate manufacturing method according to the second embodiment is irradiated with a pulse laser from both front and back sides.
  • the irradiated region T (the region where the overlapping irradiation spot Z is formed) is irradiated.
  • a plurality of convex portions 3z made of the inorganic film 3 are formed in parallel.
  • the pulse laser having linearly polarized light is used, the convex portions 3z are formed in parallel.
  • the present invention is not limited to this, but when a pulse laser having circularly polarized light is used, it is not shown. It may be formed in a dot shape.
  • Each of the convex portions 3z is formed so as to be elongated along a direction perpendicular to the paper surface in FIG. 13 and is formed outside the region where the electronic device material 5 is formed in the glass film 1.
  • the width W1 of the protrusion 3z and the width W2 of the gap formed between the adjacent protrusions 3z are in the range of 0.1 ⁇ m to 20 ⁇ m, respectively.
  • the plurality of protrusions 3z are formed periodically (three periods in FIG. 13) along the direction in which they are arranged, and the formation pitch PT of the protrusions 3z is in the range of 0.2 ⁇ m to 40 ⁇ m. It has become.
  • the area of the region where the convex portion 3z occupying the irradiated region T is 10% or more.
  • the height H of the protrusion 3z is substantially equal to the thickness of the inorganic film 3.
  • the region of the protrusion 3z to be formed, the width W1, the pitch PT, and the like are randomly formed to some extent. Accordingly, a part of the irradiated region T irradiated with the pulse laser is enlarged and observed, and converted into data as an image by a photographing means such as a CCD camera, and compared with each other, thereby making the glass substrate 6 have individual identification (traceability). It becomes possible to grant. Furthermore, it is also possible to identify by the cross-sectional shape of the convex portion 3z and the power spectrum obtained by performing Fourier transform on the image.
  • an electronic device for example, a liquid crystal panel, an organic EL panel, a touch panel, a solar cell panel, a panel on which other semiconductor elements are formed, etc.
  • the glass substrate 6 can be obtained by various known methods. If manufactured, individual identification can be imparted to the electronic device as well. This is extremely advantageous for quality control of electronic devices.
  • FIG. 13 illustrates the case where the convex portion 3z is formed over three periods.
  • the number of periods in which the convex portions 3z are formed can be changed.
  • the number of periods in which the convex portions 3z are formed is preferably 2 periods to 30000 periods.
  • region T can also be changed by changing the size of the area
  • region T was formed is 20% or more. By doing so, the discriminability of the glass substrate 6 can be further improved.
  • FIG. 14 is a longitudinal side view showing a peeling starting point forming step in the method for manufacturing a glass substrate according to the third embodiment of the present invention.
  • the inorganic film 3 formed on the adhesion side surface of the support glass 2 is started from the support glass 2 side.
  • the subsequent pulse laser 15 is irradiated from the glass substrate 6 side to the irradiation region 14x of the previous pulse laser 14.
  • Both pulse lasers 14 and 15 perform irradiation sorting by branching the optical path L through which the pulse laser 16 oscillated from the laser oscillator 11 passes. That is, both pulse lasers 14 and 15 are lasers oscillated from the same laser oscillator 11 (oscillation source).
  • the pulse laser 16 oscillated from the laser oscillator 11 passes through the half-wave plate 17 installed in the optical path L and reaches the polarization beam splitter 18.
  • the polarization beam splitter 18 switches whether the pulse laser 16 travels to the optical path L1 for the preceding pulse laser 14 or the optical path L2 for the subsequent pulse laser 15.
  • the polarization of both pulse lasers 14 and 15 is linearly polarized light.
  • the inorganic film 3 is irradiated with the pulse laser 16 as the first pulse laser 14 by advancing the optical path L1 for the first pulse laser 14 to the pulse laser 16.
  • switching is performed by the polarization beam splitter 18 so that the pulse laser 16 travels in the optical path L2.
  • the optical path L2 for the subsequent pulse laser 15 is advanced to the pulse laser 16
  • the inorganic film 3 is irradiated with the pulse laser 16 as the subsequent pulse laser 15.
  • Both pulse lasers 14 and 15 irradiate the electronic device material 5 on the glass substrate 6 so as to pass through the non-formed region.
  • both pulse lasers 14 and 15 are irradiated in a defocused state without being focused on the inorganic film 3 (both inorganic films 3 are both focused). It is not the focal position of the pulse lasers 14 and 15). Further, the angle of the mirror 12y installed in the optical path L2 is adjusted so that the optical axis of the subsequent pulse laser 15 is inclined with respect to the optical axis of the previous pulse laser 14.
  • both pulse lasers 14 and 15 a solid laser, LD laser, disk laser, fiber laser, etc. can be used as a kind of both pulse lasers 14 and 15 (pulse laser 16).
  • the wavelengths of both pulse lasers 14 and 15 (pulse laser 16) are preferably in the range of 300 nm to 3 ⁇ m.
  • the pulse width is preferably in the range of 10 fs to 1 ⁇ s.
  • the frequency is preferably in the range of 0.5 Hz to 10 kHz.
  • the pulse energy is preferably in the range of 1 mJ to 2J.
  • the peak value of the pulse energy is preferably in the range of 5.0 ⁇ 10 6 J / cm 2 ⁇ s to 1.0 ⁇ 10 15 J / cm 2 ⁇ s.
  • both pulse lasers 14 and 15 are among the regions along the outer peripheral edge 6 a of the glass substrate 6.
  • a circular region including a corner portion of the glass substrate 6 is used.
  • both irradiation regions 14x and 15x are set so that both irradiation regions 14x and 15x overlap substantially completely on the inorganic film 3.
  • both the irradiation regions 14x and 15x may have a mode in which only a part of them overlaps.
  • regions 14x and 15x is good not only in circular but arbitrary shapes.
  • the area of both irradiation regions 14x and 15x is preferably an area within a range of 10 mm 2 to 10000 mm 2 .
  • the area of the overlapping portion is preferably 10% to 99.9% of the area of both irradiation regions 14x and 15x.
  • the irradiation spot 14a of the previous pulse laser 14 is intermittently formed at a plurality of locations whose positions are different from each other.
  • the plurality of irradiation spots 14a are uniformly formed in the irradiation region 14x.
  • the two adjacent irradiation spots 14a are formed so as to partially overlap each other.
  • the area of each irradiation spot 14a is set to an area within the range of 1 mm 2 to 500 mm 2 .
  • the following procedures (A) and (B) are repeatedly performed to form the irradiation spot 14a at a plurality of locations.
  • adjacent irradiation spots 14a may be formed so as not to overlap each other.
  • the irradiation with the first pulse laser 14 is performed by moving the stacked body 4 in a state where the first pulse laser 14 is irradiated onto the inorganic film 3, so that the irradiation spot 14a moves within the irradiation region 14x. You may perform in the aspect which scans uniformly.
  • the irradiation with the preceding pulse laser 14 may be performed in such a manner that the irradiation spot 14a having an area equal to the irradiation region 14x is formed only once.
  • each irradiation spot 15a of the preceding pulse laser 15 is intermittently formed at a plurality of positions different from each other in the irradiation region 15x of the subsequent pulse laser 15.
  • Each irradiation spot 15a is formed so as to overlap a portion where each of the irradiation spots 14a has been formed.
  • the formation of these irradiation spots 15a is performed in the same manner as in the case of forming the irradiation spots 14a. Further, the formation of these irradiation spots 15a may be executed by a modification similar to the case of forming the irradiation spots 14a.
  • the formation of the irradiation spot 15a at a plurality of locations is collectively executed after the formation of the irradiation spot 14a at a plurality of locations, but this is not restrictive.
  • the formation of the irradiation spot 14a and the formation of the irradiation spot 15a may be performed alternately one by one.
  • the peeling start point forming step is executed a plurality of times (each of the irradiation spots 14a and 15a is formed one by one by executing one peeling start point forming step). )
  • the following effects occur in the irradiation region 14x of the preceding pulse laser 14 and the irradiation region 15x of the subsequent pulse laser 15. That is, as shown in FIG. 16a, the inorganic film 3 formed on the supporting glass 2 adheres to the glass substrate 6 in the irradiation region 14x as the first pulse laser 14 is irradiated from the supporting glass 2 side. To do. Thereafter, as shown in FIG. 16 b, the inorganic film 3 adhered to the glass substrate 6 during irradiation of the first pulse laser 14 in the irradiation region 15 x as the subsequent pulse laser 15 is irradiated from the glass substrate 6 side. Can be attached to the supporting glass 2 again.
  • the inorganic film 3 is repaired on the support glass 2.
  • a separation starting point portion 6x in which a part of the glass substrate 6 is separated from the support glass 2 is formed.
  • membrane 3 is on the support glass 2. It will be repaired.
  • the support glass 2 is repeatedly used in the glass substrate manufacturing method after the peeling step is completed, as in the first and second embodiments.
  • the irradiation region 15x of the subsequent pulse laser 15 in the separation start portion forming step performed last time (in this embodiment, the irradiation region 14x of the preceding pulse laser 14).
  • Both glass 1 and 2 are closely_contact
  • FIG. 17 is a plan view showing a laminate manufacturing process executed for the second time.
  • the supporting glass 2 has already undergone a single peeling start point forming step.
  • the inorganic film 3 is repaired on the support glass 2 in the surface region of the support glass 2 corresponding to the irradiation region 15x of the subsequent pulse laser 15.
  • the support glass 2 and the glass film 1b are brought into close contact so that the surface region and the glass film 1b used in the second laminate manufacturing process overlap.
  • the glass film 1b is brought into close contact with the support glass 2 while avoiding the central portion 2c of the surface region of the support glass 2 corresponding to the irradiation region 15x.
  • the glass substrate manufacturing method of the third embodiment since both pulse lasers 14 and 15 are oscillated from the same laser oscillator 11, the first pulse laser 14 and the subsequent pulse laser 15 are combined with the inorganic film 3. Therefore, it is not necessary to separately prepare an oscillation source for the first pulse laser 14 and an oscillation source for the subsequent pulse laser 15. Therefore, it becomes possible to process the inorganic film 3 efficiently.
  • both pulse lasers 14 and 15 are irradiated so that the electronic device material 5 on the glass substrate 6 passes through the non-formed region. Therefore, the inorganic film 3 can be irradiated with both pulse lasers 14 and 15 without adversely affecting the electronic device material 5 due to the pulse laser. Furthermore, since the situation where the energy of the pulse laser is absorbed in the electronic device material 5 does not occur, the energy of both pulse lasers 14 and 15 can be suitably applied to the inorganic film 3.
  • the inorganic film 3 can be easily restored to a flat state. Moreover, damage to the support glass 2 and the glass substrate 6 can be prevented as much as possible.
  • the glass film 1 and the supporting glass 2 are kept in close contact with each other while avoiding the central portion 2c of the surface region of the supporting glass 2 corresponding to the irradiation region 15x, the glass film 1 and the supporting glass 2 are directly attached. It is possible to reliably prevent a situation where a close contact portion is generated or a bubble enters between the two glasses 1 and 2.
  • region 15x of the subsequent pulse laser 15 in the peeling starting part formation process performed last time and the glass film 1 overlap at the time of execution of the laminated body manufacturing process after the 2nd time.
  • OA-10G non-alkali glass manufactured by Nippon Electric Glass Co., Ltd.
  • the glass film 1 has a thickness of 0.2 mm
  • the support glass 2 has a thickness of 0.5 mm.
  • a laminated body production process was performed, and both glasses 1 and 2 were brought into close contact with each other through the inorganic film 3 at room temperature to produce a laminated body 4.
  • a processing step was performed to form the electronic device material 5 on the glass film 1 to obtain a glass substrate 6.
  • the process temperature of the treatment process was 300 ° C.
  • a peeling starting point forming step was performed, and a pulse laser 16 having a wavelength of 1064 nm, a pulse width of 5 ns, a frequency of 10 Hz, and a pulse energy of 800 mJ was oscillated from the laser oscillator 11.
  • the inorganic film 3 was irradiated with the first pulse laser 14 and the subsequent pulse laser 15 by switching the optical paths L1 and L2 by the polarization beam splitter 18.
  • an ITO film indium tin oxide film having a thickness of 20 nm was used.
  • the peeling process was performed and the glass substrate 6 was peeled from the support glass 2 using the suction pad 8.
  • the same support glass 2 was used again, and the second laminate manufacturing step, the processing step, the peeling start point forming step, and the peeling step were executed under the same conditions as the first time. Then, whether the inorganic film 3 was repaired on the supporting glass 2 in the first peeling starting point forming step and whether the glass substrate 6 was peeled from the supporting glass 2 in the first and second peeling steps were verified. As a result of the verification, it was possible to satisfactorily execute the repair of the inorganic film 3 on the supporting glass 2 in the first peeling starting point forming step. Moreover, in the 1st time and the 2nd peeling process, peeling from the support glass 2 of the glass substrate 6 was able to be performed favorably.
  • the manufacturing method of the glass substrate which concerns on this invention is not limited to the aspect demonstrated by said each embodiment.
  • the pulse laser is irradiated from the support glass side
  • the glass substrate positioned on the irradiation source side of the pulse laser absorbs more energy than the supporting glass positioned on the irradiation destination side.
  • a part of the glass substrate and the inorganic film are both turned into plasma and adhere to the supporting glass. Therefore, in this case, since the thickness of the supporting glass is avoided from being reduced, it is possible to prevent the surface strength of the supporting glass from being lowered, and it is advantageous in repeatedly using the supporting glass. It becomes.
  • the inorganic film is formed with a uniform thickness, but this is not restrictive.
  • the entire inorganic film only the portion corresponding to the pulse laser irradiation region in the peeling start point forming step may be thinner than the other portions, or conversely thick.
  • the inorganic film is formed on the entire surface of the supporting glass in the close contact side.
  • the present invention is not limited to this, and the inorganic film may be formed only in a partial region of the close contact side.
  • the inorganic film may be formed only in the region corresponding to the irradiation region of the pulse laser (first and second pulse lasers, first and second pulse lasers) in the peeling start point forming step on the adhesion side surface.
  • the pulse laser first and second pulse lasers, first and second pulse lasers
  • the inorganic film is formed on the adhesion side surface of the glass film as a modification of the first and second embodiments. It is.
  • an inorganic film is used as the light absorption layer, but this is not necessarily the case.
  • an organic film may be used, or a two-layer film in which an inorganic film and an organic film are stacked may be used.
  • two different kinds of inorganic films or a film composed of two layers in which organic films are stacked may be used.
  • the first layer film and the second layer film may not have the same area.
  • an organic film or an inorganic film is formed only on a part of the surface of the inorganic film (organic film). May be.
  • these things are the same not only when forming a film on the adhesion side surface of the supporting glass but also when forming a film on the adhesion side surface of the glass film as a modification of the first and second embodiments. It is.
  • the pulse laser is irradiated so that the optical axis extends along the thickness direction of the laminate, but the optical axis extends in a direction inclined with respect to the thickness direction of the laminate. May be irradiated with a pulsed laser.
  • the shape of the irradiation region of the pulse laser is not limited to the square as in the first embodiment, and may be an arbitrary shape. For example, it may be a circle or an ellipse, or may be a rectangle or a polygon.
  • the scanning path for scanning with the pulse laser is not limited to the scanning path shown in FIG. 5 and may be an arbitrary scanning path.
  • scanning may be performed along a spiral scanning path, or scanning may be performed along a zigzag scanning path.
  • the irradiation pitch of a pulse laser is constant, it does not need to be constant.
  • the peeling start point is formed at the corner of the glass substrate, but may be formed at an arbitrary position.
  • an area along one side of the outer peripheral edge of the rectangular glass substrate is an irradiation area of a pulse laser (first and second pulse lasers, first and second pulse lasers), and the side is A separation starting point portion may be formed along.
  • the supporting glass and the glass substrate are located at the side of the glass substrate (especially the portion about 30 mm inside from the outer contour) rather than the central portion.
  • the adhesive strength is increased easily. Therefore, if the peeling starting point is formed along the side, it is extremely effective for peeling the glass substrate from the supporting glass.
  • the pulse laser is irradiated by the galvanometer mirror and the f- ⁇ lens.
  • a polygon mirror may be used, or multipoint simultaneous irradiation by a spatial light modulator or the like. May be performed.
  • the irradiation spots of both pulse lasers are formed so that a part of the irradiation spot of the first pulse laser and the irradiation spot of the second pulse laser overlap. This is not the case. It is good also as an aspect which forms both irradiation spots so that both irradiation spots may overlap substantially completely. In this case, the areas of the irradiation spot of the first pulse laser, the irradiation spot of the second pulse laser, and the overlapping irradiation spot are substantially equal.
  • the first pulse laser is irradiated from the support glass side and the second pulse laser is irradiated from the glass substrate side, but this is not restrictive.
  • both pulse lasers may be irradiated from the supporting glass side or from the glass substrate side.
  • the third pulse laser is generated by reflecting the second pulse laser that has passed through the laminate toward the laminate with a mirror. May be.
  • the third pulse laser is irradiated so that at least a part of the irradiation spot of the third pulse laser overlaps with the irradiation spots of the first and second pulse lasers.
  • the fourth pulse laser is reflected by reflecting the third pulse laser that has passed through the laminate to the laminate with a mirror. It may be generated. If the thus-reflected pulse laser is repeatedly irradiated to the inorganic film, the energy of the pulse laser can be used efficiently.
  • the first pulse laser and the second pulse laser are oscillated from the same laser oscillator.
  • the first pulse laser and the second pulse laser are the same. Although oscillating from a laser oscillator, these may be oscillated from separate laser oscillators. However, even in this case, it is preferable to irradiate the inorganic film with mutually coherent pulse lasers.
  • polarized light of each pulse laser is made into linearly polarized light, it is good also as circularly polarized light, elliptically polarized light, radial polarized light, azimuth polarized light etc., for example.
  • the direction away from the support glass with respect to the portion of the glass substrate corresponding to the irradiation region by the overlapping irradiation spots of the first and second pulse lasers may be restricted (the same applies when overlapping irradiation spots are formed by three or more pulse lasers). In this way, the possibility that the glass substrate may be damaged can be accurately eliminated, as in the case where displacement is regulated in the separation starting point forming step of the third embodiment. Note that this displacement regulation is preferably executed when the area of the overlapping irradiation spot is 20 mm 2 or more.
  • the part of the glass substrate corresponding to the irradiation region by the overlapping irradiation spot means the part of the glass substrate that overlaps with the irradiation region by the overlapping irradiation spot in plan view when the peeling start point forming step is executed.
  • the manufacturing method of the glass substrate which concerns on this invention is applicable also in the following cases, for example. That is, when manufacturing the liquid crystal panel, after facing the two laminated bodies so that the two glass substrates are bonded together with a sealing member for enclosing the liquid crystal, each of the two laminated bodies, It can be applied to the case where the supporting glass side is adsorbed and the glass substrate is peeled off from the supporting glass.
  • the electronic device according to the present invention is not limited to the configuration described in the above embodiment.
  • the convex portion formed of the inorganic film is periodically formed in the glass substrate provided in the electronic device.
  • Such a glass substrate can be manufactured, for example, in the case of using a glass film having fine particles attached to a region where an overlapping irradiation spot is formed in the glass substrate manufacturing method according to the second embodiment. is there.
  • the method for producing a glass substrate according to the first embodiment was performed under the following conditions, and the possibility of peeling of the glass substrate from the supporting glass was verified.
  • the example was verified under five conditions, and the comparative example was verified only under one condition.
  • OA-10G non-alkali glass manufactured by Nippon Electric Glass Co., Ltd. was prepared as a glass film and supporting glass.
  • the glass film has a thickness of 0.2 mm, and the supporting glass has a thickness of 0.5 mm.
  • both glasses were brought into close contact with each other through an inorganic film at room temperature to produce a laminated body.
  • a processing step was performed. In the processing step, the formation of the electronic device material is omitted, and as an alternative, the laminated body is heated to apply a temperature change to the laminated body when the electronic device material is formed, and the resist ink is applied. , Curing and removal.
  • the resist ink was applied to the heated laminate, dried in an oven, and then cured by irradiation with UV light. Furthermore, the hardened resist was removed by using a resist remover.
  • a pulse laser was condensed on the inorganic film and irradiated by a galvanometer mirror and an f- ⁇ lens.
  • the glass substrate was adsorbed by a plurality of suction pads, and an attempt was made to peel the glass substrate from the supporting glass.
  • Examples 1 to 5 (1) the kind of inorganic film interposed between the glass film and the supporting glass, (2) the thickness of the inorganic film, and (3) the process temperature in the treatment step (heating of the laminate) The four points of (temperature) and (4) pulse laser irradiation conditions were set as specific implementation conditions.
  • the implementation conditions (1) to (3) are as shown in [Table 1] below.
  • the wavelength of the pulse laser is 532 nm
  • the pulse width is 20 ps
  • the frequency is 100 kHz
  • the pulse energy is 7 ⁇ J
  • the length of one side of the square formed by the irradiation region is 10 mm
  • the irradiation pitch is 10 ⁇ m.
  • the focal length was 160 mm.
  • the wavelength of the pulse laser was 1552 nm
  • the pulse width was 800 fs
  • the frequency was 100 kHz
  • the pulse energy was 4 ⁇ J
  • the length of one side of the square formed by the irradiation region was 10 mm
  • the irradiation pitch was 20 ⁇ m
  • the focal length was 100 mm.
  • the implementation conditions of the comparative example differ from the implementation conditions of Examples 1 to 5 in that (1) no inorganic film is interposed between the glass film and the supporting glass, and (2) laminate production After implementing a process and a process process, it is two points with the point which is implementing the peeling process, without implementing the peeling origin part formation process.
  • the process temperature (heating temperature of a laminated body) of the process process in a comparative example was 300 degreeC.
  • Table 1 shows the results of verifying whether the glass substrate can be peeled from the supporting glass in Examples 1 to 5 and Comparative Example.
  • the value shown in parentheses in the item of film type represents the thickness of the inorganic film.
  • the value shown in parentheses represents the pulse width of the pulse laser.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Provided is a method for manufacturing a glass substrate including: a laminate producing step of producing a laminate (4) in which a glass film (1) and a support glass (2) are placed in close contact with an inorganic film (3) therebetween; a processing step of forming an electronic device material (5) on the glass film (1) of the laminate (4) to form a glass substrate (6); and a separation step of separating the entire glass substrate (6) from the support glass (2). After the processing step and before the separation step, a separation starting point forming step of forming a separation starting point (6x), which is to be the starting point of the separation step, is performed by irradiating the inorganic film (3) with a pulse laser (7) and separating a portion of the glass substrate (6) from the support glass (2) at the irradiated region (7x).

Description

ガラス基板の製造方法、及び電子デバイスManufacturing method of glass substrate and electronic device
 本発明は、ガラスフィルムに液晶素子等の電子デバイス材を形成して、ガラス基板を製造するための方法、及び電子デバイスに関する。 The present invention relates to a method for producing a glass substrate by forming an electronic device material such as a liquid crystal element on a glass film, and an electronic device.
 近年急速に普及しているスマートフォンや、タブレット型PC等のモバイル機器は、軽量であることが要求されるため、これらの製品に組み込まれるガラス基板においては、薄肉化が推進されているのが現状である。そして、このような要求に応えるものとして、板ガラスをフィルム状にまで薄肉化(例えば、厚みが300μm以下)したガラスフィルムが開発されるに至っている。このガラスフィルムは、その厚みが極めて薄いことから、可撓性に富んだ性質を有している。 In recent years, mobile devices such as smartphones and tablet PCs, which are rapidly spreading, are required to be lightweight. Therefore, the glass substrates incorporated in these products are being thinned. It is. And as what responds to such a request | requirement, the glass film which thinned plate glass to the film form (for example, thickness is 300 micrometers or less) has come to be developed. This glass film has a very flexible property because its thickness is extremely thin.
 このガラスフィルムに対して、例えば、液晶素子等の電子デバイス材を形成する処理を施し、ガラス基板を製造するような場合には、ガラスフィルムの取り扱いを容易にするため、ガラスフィルムと、これを支持する支持ガラスとを重ね合わせた積層体を利用する場合がある。この積層体を利用すれば、支持ガラスと重ね合わせたことで、ガラスフィルムの可撓性に富んだ性質を一時的に排除することができる。また、重ね合わせた両ガラスの間に密着力が作用することから、パターニングの位置ずれが生じにくいという利点もある。 For example, in the case of manufacturing a glass substrate by performing a process for forming an electronic device material such as a liquid crystal element on the glass film, in order to facilitate the handling of the glass film, There is a case where a laminated body in which a supporting glass to be supported is overlapped is used. If this laminated body is utilized, the flexible property of the glass film can be temporarily excluded by superimposing it on the supporting glass. In addition, since an adhesion force acts between the two laminated glasses, there is an advantage that patterning positional deviation hardly occurs.
 このような優れた機能を有する積層体であるが、処理を終えたガラスフィルムをガラス基板として製品に組み込むにあたり、支持ガラスからガラスフィルムを剥離させる際には、以下のような不具合が生じることがある。すなわち、積層体が高温雰囲気下に置かれるような処理をガラスフィルムに施した場合には、ガラスフィルムと支持ガラスとの間に作用する密着力が増大し、ガラスフィルムを支持ガラスから剥離させることが困難となる場合があった。そこで、このような不具合を解消し得る技術が特許文献1に開示されている。 Although it is a laminate having such an excellent function, when the glass film after processing is incorporated into a product as a glass substrate, the following problems may occur when the glass film is peeled from the supporting glass. is there. That is, when the glass film is subjected to a treatment such that the laminate is placed in a high temperature atmosphere, the adhesion force acting between the glass film and the supporting glass increases, and the glass film is peeled off from the supporting glass. May become difficult. Therefore, Patent Document 1 discloses a technique that can eliminate such a problem.
 同文献には、支持ガラスからガラスフィルムを剥離させやすくするための積層体が開示されている。この積層体は、矩形のガラスフィルムを支持ガラスが支持する構成となっている。そして、支持ガラスには、その厚み方向に延びる孔が形成されており、この孔上にガラスフィルムのコーナー部の一つ(以下、特定コーナー部と表記する)が位置するように、両ガラスが重ね合わされている。つまり、この積層体では、ガラスフィルムの特定コーナー部が支持ガラスと非接触の状態下にある。 The same document discloses a laminate for easily peeling the glass film from the supporting glass. This laminated body becomes a structure which a support glass supports a rectangular glass film. The supporting glass is formed with a hole extending in the thickness direction, and the two glasses are placed so that one of the corner portions of the glass film (hereinafter referred to as a specific corner portion) is positioned on the hole. It is superimposed. That is, in this laminated body, the specific corner portion of the glass film is in a non-contact state with the supporting glass.
 これにより、ガラスフィルムを支持ガラスから剥離させる際には、支持ガラスと密着することのない特定コーナー部を起点として、ガラスフィルムの剥離を開始することができると共に、剥離させるために要する力をガラスフィルムに好適に作用させることが可能となる。そのため、ガラスフィルムの処理中に、高温雰囲気下に置かれた積層体についても、ガラスフィルムを支持ガラスから剥離させやすくなる。 As a result, when the glass film is peeled from the supporting glass, it is possible to start the peeling of the glass film starting from a specific corner portion that does not adhere to the supporting glass, and the force required to peel the glass film is reduced. It becomes possible to make it act suitably on a film. Therefore, it becomes easy to peel a glass film from support glass also about the laminated body put in the high temperature atmosphere during the process of a glass film.
特開2012-30404号公報JP 2012-30404 A
 しかしながら、上記の技術によっても、未だ下記のような解決すべき問題が残存している。すなわち、上記の積層体においては、剥離の起点となるガラスフィルムの特定コーナー部を支持ガラスと非接触の状態とするために、支持ガラスに孔が形成されている。そして、この孔の内周に沿った部位においては、他の部位とは異なり、不可避的にガラスフィルムと支持ガラスとの相互間に隙間ができやすい傾向がある。 However, the following problems still need to be solved by the above technique. That is, in the above laminate, holes are formed in the support glass so that the specific corner portion of the glass film that is the starting point of peeling is not in contact with the support glass. And in the site | part along the inner periphery of this hole, unlike another site | part, there exists a tendency for a clearance gap to be easy to be inevitable between a glass film and support glass.
 このため、ガラスフィルムに対して、例えば、フォトレジストの形成等の液体を使用する必要がある処理を施す際には、当該液体が両ガラスの相互間に形成された隙間に入り込んでしまう場合がある。このような事態が発生すると、ガラスフィルムを好適に処理することが困難となり、ひいては、製造されるガラス基板の品質を低下させる結果を招いてしまう。 For this reason, for example, when a treatment that requires the use of a liquid such as formation of a photoresist is performed on the glass film, the liquid may enter a gap formed between the two glasses. is there. When such a situation occurs, it becomes difficult to appropriately process the glass film, and as a result, the quality of the glass substrate to be manufactured is deteriorated.
 このように、上記の技術は、高温雰囲気下に置かれた積層体についても、ガラスフィルムを剥離させやすいという利点を有するが、一方で、製造されるガラス基板の品質という観点からは、未だ改善の余地があるのが現状である。このような事情に鑑みなされた本発明は、積層体を利用してガラス基板を製造する際に、当該積層体が高温雰囲気下に置かれた場合であっても、処理を終えたガラスフィルムの円滑な剥離を可能とし、且つガラス基板の品質の低下を防止することを技術的課題とする。 As described above, the above technique has an advantage that the glass film is easily peeled even for the laminate placed in a high temperature atmosphere, but on the other hand, it is still improved from the viewpoint of the quality of the glass substrate to be manufactured. There is room for this. The present invention made in view of such circumstances, when manufacturing a glass substrate using a laminate, even if the laminate is placed in a high temperature atmosphere, the glass film that has been processed It is a technical problem to enable smooth peeling and to prevent deterioration of the quality of the glass substrate.
 上記の課題を解決するために創案された本発明は、可撓性を有するガラスフィルムと、ガラスフィルムを支持する支持ガラスとを、光吸収層を介して相互に密着させた積層体を作製する積層体作製工程と、積層体におけるガラスフィルムに電子デバイス材を形成して、ガラスフィルムをガラス基板とする処理工程と、支持ガラスからガラス基板の全体を剥離させる剥離工程とを含んだガラス基板の製造方法であって、処理工程の実行後で、且つ剥離工程の実行前に、光吸収層にパルスレーザーを照射して、その照射領域で支持ガラスからガラス基板の一部を剥離させることで、剥離工程の起点となる剥離起点部を形成する剥離起点部形成工程を実行することに特徴付けられる。 The present invention, which was created to solve the above problems, produces a laminate in which a flexible glass film and a supporting glass that supports the glass film are adhered to each other via a light absorption layer. A glass substrate including a laminate manufacturing step, a processing step of forming an electronic device material on the glass film in the laminate and using the glass film as a glass substrate, and a peeling step of peeling the entire glass substrate from the supporting glass. In the manufacturing method, after the execution of the treatment step and before the peeling step, the light absorption layer is irradiated with a pulse laser, and a part of the glass substrate is peeled off from the supporting glass in the irradiation region. It is characterized by performing a peeling start point portion forming step for forming a peeling start point portion that is a starting point of the peeling step.
 このような方法によれば、処理工程の実行後で、且つ剥離工程の実行前に、剥離起点部形成工程を実行することから、処理工程の実行時においては、剥離工程の起点となる剥離起点部が当然に未形成の状態にある。従って、剥離起点部の形成に起因して、支持ガラスとガラスフィルムとの相互間に隙間が形成された状態の下で、処理工程が実行されてしまうような状況が生じ得なくなる。その結果、ガラスフィルムに電子デバイス材を好適に形成することができ、隙間の形成に起因したガラス基板の品質の低下を確実に防止することが可能となる。また、この方法では、積層体作製工程において、ガラスフィルムと支持ガラスとを、光吸収層を介して密着させることで積層体を作製している。そのため、剥離起点部形成工程の実行時には、パルスレーザーの照射領域で以下のような作用が生じる。すなわち、光吸収層へのパルスレーザーの照射に伴って、当該光吸収層がプラズマ化する。さらには、ガラス基板と支持ガラスとのうち、パルスレーザーの照射元側に位置するガラスは、照射先側に位置するガラスと比較して、より多くのエネルギーを吸収して、その一部(光吸収層の近傍)がプラズマ化する。そして、共にプラズマ化した照射元側に位置するガラスの一部と光吸収層とが、照射先側に位置するガラスへと付着する。加えて、パルスレーザーの照射により生じたガスが、ガラス基板と支持ガラスとを分離させるように両ガラスを押し分ける。これらの作用により、ガラス基板の一部が支持ガラスから剥離して、剥離起点部が形成される。その後、剥離工程が実行されることで、ガラス基板の全体が支持ガラスから剥離される。このとき、ガラス基板と支持ガラスとの間に光吸収層が介在していることで、積層体が高温雰囲気下に置かれていた場合であっても、両ガラスの間に作用する密着力の増大が抑制されるため、ガラス基板の全体を円滑に支持ガラスから剥離させることが可能となる。 According to such a method, the separation starting point forming step is performed after the processing step is performed and before the separation step is performed. Therefore, when the processing step is performed, the separation starting point that is the starting point of the separation step is performed. The part is naturally in an unformed state. Therefore, due to the formation of the peeling start point portion, a situation in which the processing step is executed under a state where a gap is formed between the support glass and the glass film cannot occur. As a result, the electronic device material can be suitably formed on the glass film, and the deterioration of the quality of the glass substrate due to the formation of the gap can be reliably prevented. In this method, in the laminate production step, the laminate is produced by bringing the glass film and the supporting glass into close contact with each other through the light absorption layer. Therefore, at the time of executing the peeling start point forming step, the following action occurs in the pulse laser irradiation region. That is, the light absorption layer is turned into plasma as the light absorption layer is irradiated with the pulse laser. Furthermore, among the glass substrate and the supporting glass, the glass located on the irradiation side of the pulse laser absorbs more energy than the glass located on the irradiation side, and a part thereof (light The vicinity of the absorption layer) becomes plasma. Then, a part of the glass positioned on the irradiation source side and the light absorption layer, both of which are converted into plasma, adhere to the glass positioned on the irradiation destination side. In addition, the gases generated by the pulse laser irradiation push the two glasses apart so that the glass substrate and the supporting glass are separated. By these actions, a part of the glass substrate is peeled off from the supporting glass, and a peeling starting point is formed. Then, the whole glass substrate is peeled from support glass by performing a peeling process. At this time, since the light absorption layer is interposed between the glass substrate and the supporting glass, even when the laminate is placed in a high temperature atmosphere, the adhesion force acting between the two glasses is reduced. Since the increase is suppressed, the entire glass substrate can be smoothly peeled from the supporting glass.
 上記の方法において、光吸収層が無機膜で構成されていることが好ましい。 In the above method, the light absorption layer is preferably composed of an inorganic film.
 このようにすれば、光吸収層が熱的に安定した無機膜で構成されることで、積層体が高温雰囲気下に置かれた場合であっても、ガラス基板をより円滑に支持ガラスから剥離させることができる。また、アウトガスの発生が可及的に抑制されるため、当該アウトガスによるガラス基板の汚染についても、好適に防止することが可能である。 In this way, the light absorption layer is composed of a thermally stable inorganic film, so that the glass substrate can be peeled off from the supporting glass more smoothly even when the laminate is placed in a high-temperature atmosphere. Can be made. Moreover, since outgas generation is suppressed as much as possible, contamination of the glass substrate by the outgas can be suitably prevented.
 上記の方法において、パルスレーザーの照射領域をガラス基板の外周端部に沿った領域とすることが好ましい。 In the above method, the pulse laser irradiation region is preferably a region along the outer peripheral edge of the glass substrate.
 このようにすれば、処理工程の実行後に、ガラス基板の外周端部と支持ガラスとを繋ぎ合せるような付着物が残存した場合であっても、当該付着物をパルスレーザーの照射によって取り除くことができる。このため、付着物によってガラス基板の剥離が阻害され、当該ガラス基板に割れが生じるような事態の発生を可及的に防止することが可能となる。その結果、ガラス基板と支持ガラスとを安定的に剥離させることができる。 In this way, even after the processing step is performed, even if an adhering substance that joins the outer peripheral edge of the glass substrate and the supporting glass remains, the adhering substance can be removed by irradiation with a pulsed laser. it can. For this reason, it is possible to prevent as much as possible the occurrence of a situation in which peeling of the glass substrate is hindered by the deposit and the glass substrate is cracked. As a result, the glass substrate and the supporting glass can be stably peeled off.
 上記の方法において、ガラス基板が矩形の形状を有し、剥離起点部をガラス基板のコーナー部に形成することが好ましい。 In the above method, it is preferable that the glass substrate has a rectangular shape, and the peeling start point is formed at the corner of the glass substrate.
 このようにすれば、剥離工程において、ガラス基板の支持ガラスからの剥離を、コーナー部を起点に開始することができる。これにより、ガラス基板を剥離させるために要する力を効率よく作用させることが可能となるため、ガラス基板を支持ガラスからより剥離させやすくなる。 If it does in this way, in a peeling process, peeling from the support glass of a glass substrate can be started from a corner part. Thereby, since it becomes possible to make the force required in order to peel a glass substrate work efficiently, it becomes easier to peel a glass substrate from support glass.
 上記の方法において、パルスレーザーを支持ガラス側から照射することが好ましい。 In the above method, it is preferable to irradiate the pulse laser from the supporting glass side.
 このようにすれば、剥離起点部形成工程の実行時に、パルスレーザーの照射領域では、ガラス基板と比較して、支持ガラスがより多くのエネルギーを吸収して、その一部(光吸収層の近傍)がプラズマ化する。そして、当該照射領域において、共にプラズマ化した支持ガラスの一部と光吸収層とが、ガラス基板へと付着する。このため、ガラス基板は、支持ガラスとは異なり、剥離起点部形成工程の実行に伴って、その厚みが薄肉化されることが回避される。これにより、ガラス基板の面強度の低下を防止することが可能となる。 In this way, the support glass absorbs more energy than the glass substrate in the irradiation region of the pulse laser at the time of performing the peeling start point forming step, and a part thereof (near the light absorption layer) ) Becomes plasma. And in the said irradiation area | region, a part of support glass and light absorption layer which were made into plasma together adhere to a glass substrate. For this reason, unlike support glass, it is avoided that the thickness becomes thin with execution of a peeling start part formation process. Thereby, it becomes possible to prevent the surface strength of the glass substrate from being lowered.
 上記の方法において、パルスレーザーのパルス幅を500ps以下とすることが好ましい。 In the above method, the pulse width of the pulse laser is preferably 500 ps or less.
 このようにすれば、パルス幅が十分に短いことで、ガラス基板、及び支持ガラスにおける過度なエネルギーの吸収を防止でき、両ガラスの損傷を可及的に抑制することができる。また、パルス幅の短いものを使用することにより、様々な無機膜に対して良好に加工を行うことが可能となる。 In this way, since the pulse width is sufficiently short, excessive energy absorption in the glass substrate and the supporting glass can be prevented, and damage to both glasses can be suppressed as much as possible. In addition, by using a material having a short pulse width, various inorganic films can be satisfactorily processed.
 なお、パルス幅が100ps以下のものを使用した場合には、特に好ましい作用・効果が得られる。すなわち、ガラス基板、及び支持ガラスにおいて、パルスレーザーの照射領域に対応した表面領域には、当該レーザーの照射による加工痕が形成されるが、この加工痕に含まれる凹凸を可及的に小さくすることができる。その結果、両ガラスについて、良好な面強度を確保することが可能となる。 In addition, when a pulse width of 100 ps or less is used, particularly preferable actions and effects can be obtained. That is, in the glass substrate and the supporting glass, a processing mark is formed on the surface region corresponding to the irradiation region of the pulse laser, but the unevenness included in the processing mark is made as small as possible. be able to. As a result, good surface strength can be secured for both glasses.
 また、上記のガラス基板の製造方法は、同一の支持ガラスを繰り返し使用して、複数回繰り返してもよい。このとき、二回目以降の積層体作製工程の実行時に、前回以前に実行した剥離起点部形成工程におけるパルスレーザーの照射領域に対応した支持ガラスの表面領域と、ガラスフィルムとが重複しないように両ガラスを密着させることが好ましい。ここで、「パルスレーザーの照射領域に対応した支持ガラスの表面領域」とは、剥離起点部形成工程の実行時に、平面視でパルスレーザーの照射領域と重なる支持ガラスの表面領域を意味している(以下、同じ)。 Further, the above glass substrate manufacturing method may be repeated a plurality of times by repeatedly using the same supporting glass. At this time, both of the glass film and the surface area of the supporting glass corresponding to the irradiation area of the pulse laser in the peeling start point forming process executed before the previous time and the glass film do not overlap during the second and subsequent laminate manufacturing processes. It is preferable to adhere the glass. Here, the “surface region of the supporting glass corresponding to the irradiation region of the pulse laser” means the surface region of the supporting glass that overlaps with the irradiation region of the pulse laser in a plan view when the separation starting portion forming step is performed. (same as below).
 剥離起点部形成工程を経た支持ガラスには、上述のようにパルスレーザーの照射領域に対応した表面領域に加工痕が形成される。そして、この加工痕は目視でその存在を確認することが可能である。そのため、同一の支持ガラスを繰り返し使用して、上記のガラス基板の製造方法を繰り返す場合において、二回目以降の積層体作製工程の実行時に、前回以前に実行した剥離起点部形成工程におけるパルスレーザーの照射領域に対応した支持ガラスの表面領域と、ガラスフィルムとが重複しないように両ガラスを密着させれば、以下のような作用・効果を得ることができる。すなわち、このようにすれば、剥離起点部形成工程を実行する度に支持ガラスに形成される加工痕が、相互に異なる箇所に形成されることになる。そして、この加工痕の数に基づいて、支持ガラスを繰り返し使用した回数を判別することが可能になる。これにより、支持ガラスを使用した回数について、その管理を極めて容易に行うことができる。また、同一の支持ガラスを繰り返し使用することから、ガラス基板の製造に掛かるコストを抑制することも可能となる。さらには、加工痕に含まれる凹凸上にガラスフィルムが重ね合わされることが防止される。このため、凹凸に起因して、ガラスフィルムと支持ガラスとの間に気泡が入り込むことを回避することができる。従って、製造されたガラス基板の品質の低下を防止する上でも好適である。 As described above, a processing mark is formed on the surface region corresponding to the irradiation region of the pulse laser on the support glass that has undergone the peeling start point forming step. The presence of this processing mark can be confirmed visually. Therefore, when the same supporting glass is repeatedly used and the above glass substrate manufacturing method is repeated, the pulse laser in the peeling start point forming step executed before the previous time is executed at the time of the second and subsequent laminate manufacturing steps. If the two glasses are brought into close contact with each other so that the surface region of the supporting glass corresponding to the irradiation region and the glass film do not overlap, the following actions and effects can be obtained. That is, if it does in this way, the processing trace formed in support glass will be formed in a mutually different location, whenever a peeling starting part formation process is performed. And it becomes possible to discriminate | determine the frequency | count of having used the support glass repeatedly based on the number of this process trace. Thereby, the number of times the support glass is used can be managed very easily. Moreover, since the same support glass is repeatedly used, it is possible to suppress the cost for manufacturing the glass substrate. Furthermore, it is possible to prevent the glass film from being superimposed on the unevenness included in the processing mark. For this reason, it is possible to avoid bubbles from entering between the glass film and the support glass due to the unevenness. Therefore, it is also suitable for preventing deterioration of the quality of the manufactured glass substrate.
 上記の方法では、剥離起点部形成工程において、光吸収層に複数のパルスレーザーを照射すると共に、これらの照射スポットの少なくとも一部が重複した重複照射スポットを形成してもよい。 In the above method, in the separation starting point forming step, the light absorbing layer may be irradiated with a plurality of pulse lasers, and at least a part of these irradiation spots may overlap.
 このようにすれば、剥離起点部形成工程の実行時に、重複照射スポットによる照射領域において複数のパルスレーザーが干渉し、その干渉パターンに従って光吸収層を加工することが可能となる。ここで、「重複照射スポットによる照射領域」とは、剥離起点部形成工程の実行中に、光吸収層上において重複照射スポットを形成した全領域を意味する(以下、同じ)。このことに起因して、剥離工程の完了後、重複照射スポットによる照射領域に対応する支持ガラスの表面領域には、光吸収層が微細な凸部として残留した状態となる。ここで、「重複照射スポットによる照射領域に対応する支持ガラスの表面領域」とは、剥離起点部形成工程の実行時に、平面視で重複照射スポットによる照射領域と重なる支持ガラスの表面領域を意味する(以下、同じ)。そして、微細な凸部が残留した箇所を透過した光は、当該箇所以外を透過した光とは異なる視え方をするようになる。このため、微細な凸部が残留した箇所の所在を視認することができるようになる。さらに、重複照射スポットによる照射領域においては、複数のパルスレーザーの総エネルギーにて光吸収層を加工することが可能となるため、好適に光吸収層を加工することもできる。また、この方法によれば、重複照射スポットによる照射領域の面積の大小を調節することにより、剥離起点部形成工程において支持ガラスから部分的に剥離するガラス基板の面積の大小を調節することも可能となる。その結果、剥離工程において支持ガラスからガラス基板を剥離させやすい状態を容易に作り出すことができる。 In this way, when the peeling start point forming step is performed, a plurality of pulse lasers interfere with each other in the irradiation region by the overlapping irradiation spots, and the light absorption layer can be processed according to the interference pattern. Here, the “irradiation area by the overlapping irradiation spot” means the entire area where the overlapping irradiation spot is formed on the light absorption layer during the execution of the peeling start point forming step (hereinafter the same). Due to this, after completion of the peeling step, the light absorption layer remains as a fine convex portion on the surface region of the supporting glass corresponding to the irradiation region by the overlapping irradiation spot. Here, the “surface region of the supporting glass corresponding to the irradiation region by the overlapping irradiation spot” means the surface region of the supporting glass that overlaps with the irradiation region by the overlapping irradiation spot in a plan view when the peeling start point forming step is executed. (same as below). And the light which permeate | transmitted the location where the fine convex part remained came to be seen differently from the light which permeate | transmitted the part other than the said location. For this reason, it becomes possible to visually recognize the location of the portion where the fine convex portion remains. Furthermore, since it becomes possible to process a light absorption layer with the total energy of a several pulse laser in the irradiation area | region by an overlapped irradiation spot, a light absorption layer can also be processed suitably. Moreover, according to this method, it is also possible to adjust the size of the area of the glass substrate that is partially peeled from the supporting glass in the peeling start point forming step by adjusting the size of the irradiation area by the overlapping irradiation spots. It becomes. As a result, it is possible to easily create a state in which the glass substrate is easily peeled from the supporting glass in the peeling step.
 上記の方法において、複数のパルスレーザーを同一の発振源から発振させることが好ましい。 In the above method, it is preferable to oscillate a plurality of pulse lasers from the same oscillation source.
 このようにすれば、複数のパルスレーザーが相互にコヒーレントとなるため、剥離起点部形成工程の実行時に、重複照射スポットによる照射領域において複数のパルスレーザーの干渉性を高めることが可能となる。これにより、剥離工程の完了後、重複照射スポットによる照射領域に対応する支持ガラスの表面領域では、微細な凸部が周期的に残留した状態となりやすい。このことに由来して、微細な凸部が残留した箇所の所在をより明確に視認することができるようになる。また、この方法によれば、複数のパルスレーザーを光吸収層に照射するにあたって、光吸収層に照射されるパルスレーザーの数と同数の発振源を準備するような必要がなくなる。そのため、効率的に光吸収層の加工を行うことが可能となる。 In this way, since the plurality of pulse lasers become coherent with each other, it is possible to increase the coherence of the plurality of pulse lasers in the irradiation region by the overlapping irradiation spots when the peeling start point forming step is performed. Thereby, after the peeling process is completed, fine convex portions are likely to remain periodically in the surface region of the supporting glass corresponding to the irradiation region by the overlapping irradiation spots. As a result, the location of the portion where the fine convex portion remains can be more clearly visually recognized. Further, according to this method, it is not necessary to prepare the same number of oscillation sources as the number of pulse lasers irradiated to the light absorption layer when irradiating the light absorption layer with a plurality of pulse lasers. Therefore, it becomes possible to process the light absorption layer efficiently.
 上記の方法において、複数のパルスレーザーは、支持ガラス側から照射される第一のパルスレーザーと、ガラス基板側から照射される第二のパルスレーザーとを含み、第一のパルスレーザーと第二のパルスレーザーとのうち、一方のパルスレーザーを、積層体を透過した他方のパルスレーザーを積層体に向かって反射させることで発生させることが好ましい。 In the above method, the plurality of pulse lasers include a first pulse laser irradiated from the support glass side and a second pulse laser irradiated from the glass substrate side, and the first pulse laser and the second pulse laser Of the pulse lasers, one pulse laser is preferably generated by reflecting the other pulse laser that has passed through the laminate toward the laminate.
 このようにすれば、第一のパルスレーザーと第二のパルスレーザーとのうち、一方のパルスレーザーを、積層体を透過した他方のパルスレーザーを単に積層体に向かって反射させるだけで発生させ得る。そのため、さらに効率的に光吸収層の加工を行うことができる。 In this way, one of the first pulse laser and the second pulse laser can be generated by simply reflecting the other pulse laser that has passed through the laminate toward the laminate. . Therefore, the light absorption layer can be processed more efficiently.
 また、上記のガラス基板の製造方法は、同一の支持ガラスを繰り返し使用して、複数回繰り返してもよい。このとき、二回目以降の積層体作製工程の実行時に、前回以前に実行した剥離起点部形成工程における重複照射スポットによる照射領域に対応した支持ガラスの表面領域と、ガラスフィルムとが重複しないように両ガラスを密着させることが好ましい。 Further, the above glass substrate manufacturing method may be repeated a plurality of times by repeatedly using the same supporting glass. At this time, during the execution of the second and subsequent laminate manufacturing steps, the surface region of the supporting glass corresponding to the irradiation region due to the overlapping irradiation spot in the separation starting point forming step executed before the previous time and the glass film do not overlap. It is preferable to adhere both glasses.
 このようにすれば、剥離起点部形成工程を実行する度に、微細な凸部が残留した箇所が増加していくと共に、これらの所在が相互に異なった状態となる。また、微細な凸部が残留した箇所は視認することが可能であるため、この微細な凸部が残留した箇所の数に基づいて、支持ガラスを繰り返し使用した回数を判別することが可能になる。これにより、支持ガラスを使用した回数について、その管理を極めて容易に行うことができる。また、同一の支持ガラスを繰り返し使用することから、ガラス基板の製造に掛かるコストを抑制することも可能となる。さらには、微細な凸部上にガラスフィルムが重ね合わされることが防止されるため、微細な凸部に起因して、ガラスフィルムと支持ガラスとの間に気泡が入り込むことを回避することができる。従って、製造されたガラス基板の品質の低下を防止する上でも好適である。 In this way, every time the peeling start point forming step is executed, the number of places where fine convex portions remain increases, and these locations are in different states. Moreover, since the location where the fine convex part remained can be visually recognized, it becomes possible to discriminate the number of times the support glass has been repeatedly used based on the number of places where the fine convex part remained. . Thereby, the number of times the support glass is used can be managed very easily. Moreover, since the same support glass is repeatedly used, it is possible to suppress the cost for manufacturing the glass substrate. Furthermore, since it is prevented that a glass film is superimposed on a fine convex part, it can avoid that a bubble enters between a glass film and support glass resulting from a fine convex part. . Therefore, it is also suitable for preventing deterioration of the quality of the manufactured glass substrate.
 上記の方法では、光吸収層を支持ガラスに形成すると共に、剥離起点部形成工程において、光吸収層に上記のパルスレーザーを先発のパルスレーザーとして支持ガラス側から照射した後、さらに、先発のパルスレーザーの照射領域に対して、ガラス基板側から後発のパルスレーザーを照射してもよい。 In the above method, the light absorbing layer is formed on the supporting glass, and in the peeling starting point forming step, the light absorbing layer is irradiated with the pulse laser as the starting pulse laser from the supporting glass side, and then the starting pulse is further formed. You may irradiate the pulsed laser of the laser irradiation area | region from the glass substrate side later.
 このようにすれば、先発のパルスレーザーを支持ガラス側から照射するのに伴って、その照射領域では、支持ガラスに形成された光吸収層がガラス基板へと付着する。その後、後発のパルスレーザーをガラス基板側から照射するのに伴い、その照射領域では、先発のパルスレーザーの照射時にガラス基板へと付着した光吸収層を、再び支持ガラスへと付着させることができる。すなわち、支持ガラスに光吸収層を修復することが可能になる。 In this way, as the first pulse laser is irradiated from the supporting glass side, the light absorption layer formed on the supporting glass adheres to the glass substrate in the irradiation region. Thereafter, as the subsequent pulse laser is irradiated from the glass substrate side, the light absorption layer attached to the glass substrate at the time of irradiation with the first pulse laser can be attached to the supporting glass again in the irradiation region. . That is, it becomes possible to repair the light absorption layer on the supporting glass.
 上記の方法において、先発のパルスレーザーと後発のパルスレーザーとを、同一の発振源から発振させることが好ましい。 In the above method, it is preferable that the first pulse laser and the second pulse laser are oscillated from the same oscillation source.
 このようにすれば、先発のパルスレーザーと後発のパルスレーザーとを光吸収層に照射するにあたって、先発のパルスレーザー用の発振源と後発のパルスレーザー用の発振源とを別々に準備するような必要がなくなる。そのため、効率的に光吸収層の加工を行うことが可能となる。 In this manner, when the light-absorbing layer is irradiated with the first pulse laser and the second pulse laser, the first pulse laser oscillation source and the second pulse laser oscillation source are prepared separately. There is no need. Therefore, it becomes possible to process the light absorption layer efficiently.
 上記の方法において、先発のパルスレーザーと後発のパルスレーザーとを、ガラス基板における電子デバイス材が非形成の領域を透過するように照射することが好ましい。 In the above method, it is preferable to irradiate the first pulse laser and the second pulse laser so that the electronic device material on the glass substrate passes through the non-formed region.
 このようにすれば、電子デバイス材に対してパルスレーザーによる悪影響を与えることなく、先発のパルスレーザーと後発のパルスレーザーとを光吸収層に照射することができる。また、電子デバイス材にパルスレーザーのエネルギーが吸収されるような事態が生じないため、光吸収層に対して先発、及び後発のパルスレーザーのエネルギーを好適に作用させることが可能となる。 In this manner, the light absorbing layer can be irradiated with the first pulse laser and the subsequent pulse laser without adversely affecting the electronic device material by the pulse laser. In addition, since a situation in which the energy of the pulse laser is absorbed by the electronic device material does not occur, it is possible to suitably apply the energy of the first and second pulse lasers to the light absorption layer.
 上記の方法において、先発のパルスレーザーの照射スポットと後発のパルスレーザーの照射スポットとを、それぞれ1mm~500mmの範囲内の面積とすることが好ましい。 In the above method, an irradiation spot of the irradiation spot and subsequent pulse laser Advance pulse laser, it is preferable that the area of each within the range of 1mm 2 ~ 500mm 2.
 このようにすれば、剥離起点部形成工程の実行後、後発のパルスレーザーの照射領域に対応する支持ガラスの表面領域において、光吸収層を平坦な状態に修復しやすくなる。また、先発、及び後発のパルスレーザーの照射スポットをそれぞれ上記のような面積とすることで、支持ガラス、及びガラス基板の損傷を可及的に防止することができる。 This makes it easier to repair the light absorption layer to a flat state in the surface region of the supporting glass corresponding to the irradiation region of the subsequent pulse laser after execution of the peeling start point forming step. Moreover, damage to the supporting glass and the glass substrate can be prevented as much as possible by setting the irradiation spots of the first and second pulse lasers to the areas as described above.
 上記の方法では、剥離起点部形成工程において、先発のパルスレーザーの照射領域に対応するガラス基板の部位、及び、後発のパルスレーザーの照射領域に対応するガラス基板の部位に対し、支持ガラスから離間する方向への変位を規制することが好ましい。ここで、「先発(後発)のパルスレーザーの照射領域に対応したガラス基板の部位」とは、剥離起点部形成工程の実行時に、平面視で先発(後発)のパルスレーザーの照射領域と重なるガラス基板の部位を意味している(以下、同じ)。 In the above method, in the separation starting point forming step, the part of the glass substrate corresponding to the irradiation region of the first pulse laser and the part of the glass substrate corresponding to the irradiation region of the subsequent pulse laser are separated from the support glass. It is preferable to restrict the displacement in the direction. Here, “the part of the glass substrate corresponding to the irradiation region of the first (later) pulsed laser” refers to the glass that overlaps with the irradiation region of the first (later) pulsed laser in plan view when the separation starting portion forming step is performed. It means the part of the substrate (hereinafter the same).
 ガラス基板と支持ガラスとの密着力が大きい場合、先発及び後発のパルスレーザーの照射領域に対応するガラス基板の部位(以下、対応部位と表記する)では、両パルスレーザーの熱によって対応部位が膨張することに起因して、以下のような不具合を生じる恐れがある。すなわち、対応部位と、その周辺に存するガラス基板と支持ガラスとが密着した部位との両部位の境界で過大な応力が作用し、ガラス基板が破損してしまう恐れがある。しかしながら、対応部位の支持ガラスから離間する方向への変位を規制すれば、両部位の境界での応力の作用を可及的に低減することができるため、上記のような不具合の発生を的確に排除することが可能となる。 When the adhesion between the glass substrate and the support glass is large, at the part of the glass substrate that corresponds to the irradiation area of the first and subsequent pulse lasers (hereinafter referred to as the corresponding part), the corresponding part expands due to the heat of both pulse lasers. Due to this, there is a possibility of causing the following problems. That is, excessive stress acts at the boundary between the corresponding part and the part where the glass substrate and the supporting glass existing in the vicinity of the corresponding part are in close contact, and the glass substrate may be damaged. However, if the displacement of the corresponding part in the direction away from the supporting glass is restricted, the action of stress at the boundary between the two parts can be reduced as much as possible. It becomes possible to eliminate.
 また、上記のガラス基板の製造方法は、同一の支持ガラスを繰り返し使用して、複数回繰り返してもよい。このとき、二回目以降の積層体作製工程の実行時に、前回実行した剥離起点部形成工程における後発のパルスレーザーの照射領域に対応した支持ガラスの表面領域と、ガラスフィルムとが重複するように両ガラスを密着させることが好ましい。ここで、「後発のパルスレーザーの照射領域に対応した支持ガラスの表面領域」とは、剥離起点部形成工程の実行時に、平面視で後発のパルスレーザーの照射領域と重なる支持ガラスの表面領域を意味している(以下、同じ)。 Further, the above glass substrate manufacturing method may be repeated a plurality of times by repeatedly using the same supporting glass. At this time, both the support glass surface area corresponding to the irradiation area of the subsequent pulse laser in the previously-executed peeling start point forming process and the glass film overlap during the second and subsequent laminate manufacturing processes. It is preferable to adhere the glass. Here, the “surface region of the support glass corresponding to the irradiation region of the subsequent pulse laser” means the surface region of the support glass that overlaps with the irradiation region of the subsequent pulse laser in plan view when the peeling start point forming step is performed. Meaning (hereinafter the same).
 このようにすれば、二回目以降の積層体作製工程において、支持ガラスとガラスフィルムとの間に介在する光吸収層の中に、前回実行した剥離起点部形成工程で支持ガラスに修復させた光吸収層が含まれることになる。これにより、支持ガラスに修復させた光吸収層を無駄なく有効に利用することができる。また、同一の支持ガラスを繰り返し使用することから、ガラス基板の製造に掛かるコストを抑制することも可能となる。 In this way, in the second and subsequent laminate manufacturing steps, the light that has been repaired to the supporting glass in the separation starting point forming step that was previously performed in the light absorbing layer interposed between the supporting glass and the glass film. An absorption layer will be included. Thereby, the light absorption layer restored to the supporting glass can be effectively used without waste. Moreover, since the same support glass is repeatedly used, it is possible to suppress the cost for manufacturing the glass substrate.
 また、上記のガラス基板の製造方法を利用すれば、下記のような電子デバイスを製造することができる。すなわち、この電子デバイスは、ガラスフィルムに電子デバイス材が形成されてなるガラス基板を備えたものであって、ガラスフィルムが、その表裏両側からパルスレーザーを照射された被照射領域を有し、この被照射領域に、膜で構成された複数の凸部が形成されていることに特徴付けられる。 Further, if the above glass substrate manufacturing method is used, the following electronic device can be manufactured. That is, this electronic device is provided with a glass substrate in which an electronic device material is formed on a glass film, and the glass film has an irradiated region irradiated with a pulse laser from both the front and back sides. It is characterized in that a plurality of convex portions made of a film are formed in the irradiated region.
 このような電子デバイスによれば、ガラスフィルムの被照射領域の拡大画像をCCDカメラ等により取得しておくことで、ガラス基板に個体の識別性(トレーサビリティ)を付与することが可能となる。その結果、このガラス基板を備えた電子デバイスに対しても、同様に個体の識別性を付与することができるため、その品質の管理を行う上で極めて有利となる。 According to such an electronic device, it is possible to impart individual identification (traceability) to the glass substrate by acquiring an enlarged image of the irradiated region of the glass film with a CCD camera or the like. As a result, individual identification can be imparted to an electronic device including this glass substrate as well, which is extremely advantageous in managing the quality.
 上記の電子デバイスにおいて、複数の凸部は、並列に形成されており、凸部の幅、及び隣り合う凸部の相互間に形成される隙間の幅がそれぞれ0.1μm~20μmで、且つ、複数の凸部の形成ピッチが0.2μm~40μmで、且つ、被照射領域に占める凸部の形成された領域の面積が10%以上であることが好ましい。 In the above electronic device, the plurality of convex portions are formed in parallel, and the width of the convex portion and the width of the gap formed between adjacent convex portions are each 0.1 μm to 20 μm, and It is preferable that the formation pitch of the plurality of convex portions is 0.2 μm to 40 μm, and the area of the convex portion formed in the irradiated region is 10% or more.
 このような電子デバイスによれば、被照射領域に占める凸部の領域や形状を特定し易くなるため、電子デバイスの個体の識別性をより高めることができる。 According to such an electronic device, it becomes easy to specify the region and shape of the convex portion occupying the irradiated region, so that the individual identification of the electronic device can be further improved.
 以上のように、本発明に係るガラス基板の製造方法によれば、積層体を利用してガラス基板を製造する際に、当該積層体が高温雰囲気下に置かれた場合であっても、処理を終えたガラスフィルムの円滑な剥離が可能となると共に、ガラス基板の品質の低下を防止することができる。 As described above, according to the method for manufacturing a glass substrate according to the present invention, when a glass substrate is manufactured using the laminate, even if the laminate is placed in a high-temperature atmosphere, the processing is performed. As a result, the glass film can be smoothly peeled and the quality of the glass substrate can be prevented from deteriorating.
本発明の第一実施形態に係るガラス基板の製造方法における積層体作製工程を示す縦断側面図である。It is a vertical side view which shows the laminated body preparation process in the manufacturing method of the glass substrate which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るガラス基板の製造方法における処理工程を示す縦断側面図である。It is a vertical side view which shows the process process in the manufacturing method of the glass substrate which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図である。It is a vertical side view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るガラス基板の製造方法における剥離工程を示す縦断側面図である。It is a vertical side view which shows the peeling process in the manufacturing method of the glass substrate which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す平面図である。It is a top view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図である。It is a vertical side view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るガラス基板の製造方法における積層体作製工程を示す平面図である。It is a top view which shows the laminated body preparation process in the manufacturing method of the glass substrate which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図である。It is a vertical side view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す平面図である。It is a top view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す平面図である。It is a top view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係るガラス基板の製造方法における剥離工程を示す縦断側面図である。It is a vertical side view which shows the peeling process in the manufacturing method of the glass substrate which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図である。It is a vertical side view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係るガラス基板の製造方法によって製造されたガラス基板を示す縦断側面図である。It is a vertical side view which shows the glass substrate manufactured by the manufacturing method of the glass substrate which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図である。It is a vertical side view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す平面図である。It is a top view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図である。It is a vertical side view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図である。It is a vertical side view which shows the peeling origin part formation process in the manufacturing method of the glass substrate which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係るガラス基板の製造方法における積層体作製工程を示す平面図である。It is a top view which shows the laminated body preparation process in the manufacturing method of the glass substrate which concerns on 3rd embodiment of this invention.
 以下、本発明の実施形態に係るガラス基板の製造方法、及び電子デバイスについて、添付の図面を参照して説明する。 Hereinafter, a glass substrate manufacturing method and an electronic device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
<第一実施形態>
 図1~図4は、本発明の第一実施形態に係るガラス基板の製造方法に含まれる各工程を示す図である。これらの図に示すように、このガラス基板の製造方法は、ガラスフィルム1と支持ガラス2とを、光吸収層としての無機膜3を介して相互に密着させた積層体4を作製する積層体作製工程(図1)と、ガラスフィルム1に電子デバイス材5を形成して、ガラス基板6とする処理工程(図2)と、無機膜3にパルスレーザー7を照射して、支持ガラス2からガラス基板6の一部を剥離させることで、剥離起点部6xを形成する剥離起点部形成工程(図3)と、支持ガラス2からガラス基板6の全体を剥離させる剥離工程(図4)とを含んでいる。そして、同一の支持ガラス2を繰り返し使用して、このガラス基板の製造方法を複数回繰り返す。
<First embodiment>
1 to 4 are diagrams showing each step included in the glass substrate manufacturing method according to the first embodiment of the present invention. As shown in these figures, this glass substrate manufacturing method is a laminate in which a laminate 4 is produced in which a glass film 1 and a supporting glass 2 are brought into close contact with each other through an inorganic film 3 as a light absorption layer. From the supporting glass 2, a manufacturing process (FIG. 1), a processing process (FIG. 2) in which an electronic device material 5 is formed on the glass film 1 to form a glass substrate 6, and the inorganic film 3 is irradiated with a pulse laser 7. By peeling off a part of the glass substrate 6, a peeling starting point forming step (FIG. 3) for forming the peeling starting point 6 x and a peeling step (FIG. 4) for peeling the entire glass substrate 6 from the support glass 2 are performed. Contains. And the same support glass 2 is repeatedly used and this glass substrate manufacturing method is repeated a plurality of times.
 積層体作製工程では、まず、可撓性を有するガラスフィルム1と、ガラスフィルム1を支持する支持ガラス2との各々について、相互に密着(無機膜3を介して密着)する側の面(以下、密着側面と表記する)の表面粗さRaを2.0nm以下の平滑な面に仕上げる。この表面粗さRaは、例えば、オーバーフローダウンドロー法で成形されたガラスを未研磨で使用したり、ガラスにケミカルエッチングを施すにあたってエッチング液の濃度、液温度、処理時間の調整を行ったり、ガラスに鏡面研磨や光学研磨を施したりすること等で制御することが可能である。なお、本実施形態においては、両ガラス1,2は共に矩形の形状を有しており、支持ガラス2はガラスフィルム1に対して、ひとまわり大きいサイズを有している。次に、支持ガラス2について、密着側面の全面に無機膜3を均一な厚みで形成する。ここで、無機膜3は、両ガラス1,2に比べて、波長300nm~3000nmの光に対して透過率の低い膜で構成する。この無機膜3としては、SiO、SiO、Al、MgO、Y、La、Pr11、Sc、WO、HfO、In、ITO、ZrO、Nd、Ta、CeO、Nb、TiO、TiO、Ti、NiO、ZnO等の酸化膜や、SiN、SiAlN、SiON等の窒化膜や、これらの組み合わせで構成される膜を使用することができる。また、無機膜3の厚みとしては、1nm~200nmの範囲内とすることが好ましい。最後に、無機膜3を介して両ガラス1,2を相互に密着させることで、積層体4を作製する。なお、本実施形態においては、無機膜3は、支持ガラス2の密着側面ではなく、ガラスフィルム1の密着側面に形成してもよい。 In the laminate manufacturing step, first, the surfaces of the glass film 1 having flexibility and the supporting glass 2 that supports the glass film 1 that are in close contact with each other (adhering via the inorganic film 3) (hereinafter referred to as “infrared film 3”). The surface roughness Ra of the contact side surface is finished to a smooth surface of 2.0 nm or less. The surface roughness Ra can be obtained by, for example, using unmolded glass formed by the overflow downdraw method, adjusting the concentration of the etching solution, the solution temperature, and the processing time when performing chemical etching on the glass, It is possible to control by performing mirror polishing or optical polishing. In the present embodiment, both the glasses 1 and 2 have a rectangular shape, and the support glass 2 has a size that is slightly larger than the glass film 1. Next, with respect to the supporting glass 2, the inorganic film 3 is formed with a uniform thickness on the entire surface of the contact surface. Here, the inorganic film 3 is composed of a film having a lower transmittance with respect to light having a wavelength of 300 nm to 3000 nm than both the glasses 1 and 2. As the inorganic film 3, SiO, SiO 2, Al 2 O 3, MgO, Y 2 O 3, La 2 O 3, Pr 6 O 11, Sc 2 O 3, WO 3, HfO 2, In 2 O 3, Oxide films such as ITO, ZrO 2 , Nd 2 O 3 , Ta 2 O 5 , CeO 2 , Nb 2 O 5 , TiO, TiO 2 , Ti 3 O 5 , NiO and ZnO, and nitrides such as SiN, SiAlN and SiON A film or a film made of a combination of these can be used. The thickness of the inorganic film 3 is preferably in the range of 1 nm to 200 nm. Finally, the laminated body 4 is produced by bringing the two glasses 1 and 2 into close contact with each other through the inorganic film 3. In the present embodiment, the inorganic film 3 may be formed on the adhesion side surface of the glass film 1 instead of the adhesion side surface of the support glass 2.
 処理工程では、積層体作製工程で作製された積層体4について、ガラスフィルム1に電子デバイス材5を形成して、ガラスフィルム1をガラス基板6とする。ここで、電子デバイス材5としては、例えば、液晶素子、有機EL素子、タッチパネル素子、太陽電池素子、圧電素子、受光素子、リチウムイオン2次電池等の電池素子、MEMS素子、半導体素子等を形成する。 In the treatment step, the electronic device material 5 is formed on the glass film 1 for the laminate 4 produced in the laminate production step, and the glass film 1 is used as the glass substrate 6. Here, as the electronic device material 5, for example, a liquid crystal element, an organic EL element, a touch panel element, a solar cell element, a piezoelectric element, a light receiving element, a battery element such as a lithium ion secondary battery, a MEMS element, a semiconductor element, or the like is formed. To do.
 剥離起点部形成工程では、支持ガラス2側からパルスレーザー7を無機膜3に集光させて照射する(無機膜3をパルスレーザー7の焦点位置とする)。このパルスレーザー7は、ガルバノミラー(図示省略)とf-θレンズ(図示省略)とによって、その光軸が積層体4の厚み方向に延びるように照射される。また、図5に示すように、パルスレーザー7の照射領域7xは、ガラス基板6の外周端部6aに沿った領域のうち、当該ガラス基板6のコーナー部を含む正方形状の領域としている。さらに、本実施形態においては、照射領域7xが形作る正方形の各辺が、ガラス基板6のコーナー部を形成する二つの辺部の各々に対して45°傾斜するように、照射領域7xを設定している。そして、パルスレーザー7の照射スポット7aの各々が一定の照射ピッチPで並ぶように、当該パルスレーザー7を走査経路Sに沿って走査させる。なお、本実施形態においては、図5に示すように、隣り合う照射スポット7a同士が重複しないようにパルスレーザー7が照射されているが、隣り合う照射スポット7a同士が部分的に重複するように照射されていてもよい。 In the peeling start point forming step, the pulsed laser 7 is focused on the inorganic film 3 from the support glass 2 side and irradiated (the inorganic film 3 is set as the focal position of the pulsed laser 7). The pulse laser 7 is irradiated by a galvanometer mirror (not shown) and an f-θ lens (not shown) so that its optical axis extends in the thickness direction of the laminate 4. As shown in FIG. 5, the irradiation region 7 x of the pulse laser 7 is a square region including the corner portion of the glass substrate 6 among the regions along the outer peripheral end 6 a of the glass substrate 6. Further, in the present embodiment, the irradiation region 7x is set so that each side of the square formed by the irradiation region 7x is inclined by 45 ° with respect to each of the two sides forming the corner portion of the glass substrate 6. ing. Then, the pulse laser 7 is scanned along the scanning path S so that the irradiation spots 7a of the pulse laser 7 are arranged at a constant irradiation pitch P. In the present embodiment, as shown in FIG. 5, the pulse laser 7 is irradiated so that the adjacent irradiation spots 7a do not overlap each other, but the adjacent irradiation spots 7a partially overlap each other. It may be irradiated.
 これにより、パルスレーザー7の照射領域7xでは、以下のような作用が生じる。すなわち、図6に示すように、無機膜3へのパルスレーザー7の照射に伴って、当該無機膜3がレーザー光を吸収してプラズマ化する(クロスハッチングを施した部位)。さらには、パルスレーザー7の照射元側に位置する支持ガラス2は、照射先側に位置するガラス基板6と比較して、より多くのエネルギーを吸収して、無機膜3の近傍がプラズマ化する(クロスハッチングを施した部位)。そして、共にプラズマ化した支持ガラス2の一部と無機膜3とが、ガラス基板6へと付着する。加えて、パルスレーザー7の照射により生じたガスが、支持ガラス2とガラス基板6とを分離させるように両ガラス2,6を押し分ける。これらの作用により、ガラス基板6の一部が支持ガラス2から剥離して、剥離起点部6xが形成される。なお、支持ガラス2、及びガラス基板6において、パルスレーザー7の照射領域7xに対応した表面領域には、当該レーザー7の照射による加工痕が形成される。この加工痕には凹凸が含まれている。 Thereby, in the irradiation region 7x of the pulse laser 7, the following action occurs. That is, as shown in FIG. 6, with the irradiation of the pulsed laser 7 to the inorganic film 3, the inorganic film 3 absorbs the laser light and is turned into plasma (cross-hatched part). Furthermore, the supporting glass 2 positioned on the irradiation source side of the pulse laser 7 absorbs more energy than the glass substrate 6 positioned on the irradiation destination side, and the vicinity of the inorganic film 3 is turned into plasma. (Cross-hatched part). Then, a part of the supporting glass 2 and the inorganic film 3 that are plasmatized together adhere to the glass substrate 6. In addition, the gas generated by the irradiation of the pulse laser 7 pushes the two glasses 2 and 6 apart so that the supporting glass 2 and the glass substrate 6 are separated. By these actions, a part of the glass substrate 6 is peeled off from the support glass 2 to form a peeling starting point 6x. In the support glass 2 and the glass substrate 6, processing traces due to the irradiation of the laser 7 are formed on the surface region corresponding to the irradiation region 7 x of the pulse laser 7. This processing mark includes irregularities.
 ここで、パルスレーザー7の種類としては、固体レーザー、LDレーザー、ディスクレーザー、ファイバーレーザー等を使用することができる。また、パルスレーザー7の波長としては、300nm~3000nmの範囲内とすることが好ましい。さらに、パルス幅は、500ps以下としているが、10fs~500psの範囲内とすることが好ましく、より好ましくは100fs~100psの範囲内とする。しかしながら、この限りではなく、ナノ秒オーダーのパルス幅としてもよい。加えて、周波数としては、1kHz~50MHzの範囲内とすることが好ましい。また、パルスエネルギーとしては、1μJ~50μJの範囲内とすることが好ましい。さらに、パルスエネルギーの尖頭値としては、5.0×10J/cm・s~1.0×1015J/cm・sの範囲内とすることが好ましい。加えて、パルスレーザー7の照射ピッチPとしては、1μm~100μmの範囲内とすることが好ましい。また、照射領域7xがなす正方形の一辺の長さ(照射範囲)Rは、0.1mm~100mmの範囲内とすることが好ましい。さらに、支持ガラス2、ガラス基板6に形成される加工痕において、凹みの大きさ(厚み方向における寸法)は、1000nm以下とすることが好ましい。なお、パルスレーザー7の照射により、無機膜3の厚みの一部のみ、又は、全厚みのみが加工される場合もある。この場合には、凹みの大きさは零となる。 Here, as the kind of the pulse laser 7, a solid laser, LD laser, disk laser, fiber laser, or the like can be used. The wavelength of the pulse laser 7 is preferably in the range of 300 nm to 3000 nm. Further, although the pulse width is 500 ps or less, it is preferably in the range of 10 fs to 500 ps, more preferably in the range of 100 fs to 100 ps. However, the present invention is not limited to this, and the pulse width may be on the order of nanoseconds. In addition, the frequency is preferably in the range of 1 kHz to 50 MHz. The pulse energy is preferably in the range of 1 μJ to 50 μJ. Further, the peak value of the pulse energy is preferably in the range of 5.0 × 10 9 J / cm 2 · s to 1.0 × 10 15 J / cm 2 · s. In addition, the irradiation pitch P of the pulse laser 7 is preferably in the range of 1 μm to 100 μm. The length (irradiation range) R of one side of the square formed by the irradiation region 7x is preferably in the range of 0.1 mm to 100 mm. Furthermore, in the processing traces formed on the support glass 2 and the glass substrate 6, the size of the dents (dimensions in the thickness direction) is preferably 1000 nm or less. Note that only a part of the thickness of the inorganic film 3 or only the entire thickness may be processed by the irradiation of the pulse laser 7. In this case, the size of the recess is zero.
 剥離工程では、支持ガラス2からのガラス基板6の剥離に、複数の吸着パッド8を使用する。この吸着パッド8の各々は、ガラス基板6との当接部に複数の吸引孔を有しており、この吸引孔を介してガラス基板6に負圧を発生させることで、ガラス基板6を吸着する。そして、ガラス基板6を吸着した各吸着パッド8が、剥離起点部6xの側から順次に上方へと移動することで、支持ガラス2からガラス基板6の全体を剥離させる。以上の各工程を経てガラス基板6が製造される。ここで、剥離工程後のガラス基板6、及び支持ガラス2の面強度は、100MPa~3000MPaの範囲内であることが好ましい。 In the peeling process, a plurality of suction pads 8 are used for peeling the glass substrate 6 from the support glass 2. Each of the suction pads 8 has a plurality of suction holes at the contact portion with the glass substrate 6, and the glass substrate 6 is sucked by generating a negative pressure on the glass substrate 6 through the suction holes. To do. And each suction pad 8 which adsorb | sucked the glass substrate 6 moves to the upper direction sequentially from the peeling start part 6x side, and peels the whole glass substrate 6 from the support glass 2. FIG. The glass substrate 6 is manufactured through the above steps. Here, the surface strength of the glass substrate 6 and the supporting glass 2 after the peeling step is preferably in the range of 100 MPa to 3000 MPa.
 なお、ガラス基板6を剥離させた後の支持ガラス2は、上記のガラス基板の製造方法に繰り返し使用する。このとき、二回目以降の積層体作製工程の実行時には、前回以前に実行した剥離起点部形成工程におけるパルスレーザー7の照射領域7xに対応した支持ガラス2の表面領域と、ガラスフィルム1とが重複しないように、両ガラス1,2を密着させる。ここで、具体例を一つ挙げる。図7は、三回目に実行する積層体作製工程を示す平面図である。支持ガラス2は、既に二回の剥離起点部形成工程を経ている。これにより、一回目、二回目に実行された積層体作製工程において、支持ガラス2と密着させた各ガラスフィルム1a,1bのコーナー部に対応する支持ガラスの各表面領域2ax,2bxには、それぞれ加工痕が形成されている。この表面領域2ax,2bx(加工痕)と、三回目の積層体作製工程に使用されるガラスフィルム1cとが重複しないように、支持ガラス2とガラスフィルム1cとを密着させる。 In addition, the support glass 2 after peeling the glass substrate 6 is repeatedly used for the manufacturing method of said glass substrate. At this time, at the time of execution of the second and subsequent laminate manufacturing steps, the surface region of the support glass 2 corresponding to the irradiation region 7x of the pulse laser 7 in the peeling start point forming step executed before the previous time overlaps with the glass film 1. The two glasses 1 and 2 are brought into close contact with each other. Here, one specific example is given. FIG. 7 is a plan view showing a laminate manufacturing process executed for the third time. The supporting glass 2 has already undergone two peeling start point forming steps. Thereby, in the laminated body manufacturing process performed for the first time and the second time, the surface regions 2ax and 2bx of the supporting glass corresponding to the corner portions of the glass films 1a and 1b in close contact with the supporting glass 2 are respectively provided. A processing mark is formed. The support glass 2 and the glass film 1c are brought into close contact so that the surface regions 2ax, 2bx (processing marks) and the glass film 1c used in the third laminate manufacturing process do not overlap.
 以下、上記の第一実施形態に係るガラス基板の製造方法について、その作用・効果を説明する。 Hereinafter, the operation and effect of the glass substrate manufacturing method according to the first embodiment will be described.
 この第一実施形態に係るガラス基板の製造方法によれば、処理工程の実行後で、且つ剥離工程の実行前に、剥離起点部形成工程を実行することから、処理工程の実行時においては、剥離工程の起点となる剥離起点部6xが当然に未形成の状態にある。従って、剥離起点部6xの形成に起因して、支持ガラス2とガラスフィルム1との相互間に隙間が形成された状態の下で、処理工程が実行されてしまうような状況が生じ得なくなる。従って、水等の液体を使用する必要のある処理を行う場合であっても、当該液体が隙間に入り込むようなおそれがない。その結果、ガラスフィルム1に電子デバイス材5を好適に形成することができ、隙間の形成に起因したガラス基板6の品質の低下を確実に防止することが可能となる。 According to the method for manufacturing a glass substrate according to the first embodiment, after executing the processing step and before executing the peeling step, the peeling start point forming step is executed. Naturally, the peeling starting point portion 6x that is the starting point of the peeling step is in an unformed state. Therefore, due to the formation of the separation starting point portion 6x, a situation in which the processing step is performed under a state where a gap is formed between the support glass 2 and the glass film 1 cannot occur. Therefore, even when a treatment that requires the use of a liquid such as water is performed, there is no possibility that the liquid enters the gap. As a result, the electronic device material 5 can be suitably formed on the glass film 1, and it is possible to reliably prevent the quality of the glass substrate 6 from being deteriorated due to the formation of the gap.
 また、このガラス基板の製造方法では、積層体作製工程において、ガラスフィルム1と支持ガラス2とを、無機膜3を介して密着させることで積層体4を作製している。そのため、積層体4が高温雰囲気下に置かれていた場合であっても、両ガラス2,6の間に作用する密着力の増大が抑制されるため、剥離工程において、ガラス基板6の全体を円滑に支持ガラス2から剥離させることが可能となる。なお、この効果は、無機膜3が熱的に安定していることで、より高められる。 Further, in this glass substrate manufacturing method, the laminate 4 is produced by bringing the glass film 1 and the supporting glass 2 into close contact with each other through the inorganic film 3 in the laminate production step. Therefore, even when the laminate 4 is placed in a high temperature atmosphere, an increase in the adhesion force acting between the two glasses 2 and 6 is suppressed. It becomes possible to peel from the supporting glass 2 smoothly. This effect is further enhanced by the fact that the inorganic film 3 is thermally stable.
 また、パルスレーザー7の照射領域7xを、ガラス基板6の外周端部6aに沿った領域のうち、当該ガラス基板6のコーナー部を含む領域としたことで、以下のような作用・効果が得られる。すなわち、処理工程の実行後に、ガラス基板6のコーナー部と支持ガラス2とを繋ぎ合せるような付着物(例えば、フォトレジスト剤)が残存した場合であっても、当該付着物をパルスレーザー7の照射によって取り除くことができる。このため、付着物によってガラス基板6の剥離が阻害され、当該ガラス基板6に割れが生じるような事態の発生を可及的に防止することが可能となる。さらに、剥離工程において、ガラス基板6の支持ガラス2からの剥離を、コーナー部を起点に開始することができる。これにより、ガラス基板6を剥離させるために要する力を効率よく作用させることが可能となる。その結果、ガラス基板6と支持ガラス2とを安定的に剥離させることができる。 Moreover, the following operation | movement and effect are acquired by making the irradiation area | region 7x of the pulse laser 7 into the area | region including the corner part of the said glass substrate 6 among the areas along the outer periphery edge part 6a of the glass substrate 6. FIG. It is done. That is, even if an adherent (for example, a photoresist agent) that joins the corner portion of the glass substrate 6 and the support glass 2 remains after the processing step is performed, the adherent is removed from the pulse laser 7. Can be removed by irradiation. For this reason, it is possible to prevent as much as possible the occurrence of a situation in which peeling of the glass substrate 6 is hindered by the deposit and the glass substrate 6 is cracked. Furthermore, in the peeling step, peeling of the glass substrate 6 from the support glass 2 can be started from the corner portion. Thereby, the force required to peel the glass substrate 6 can be efficiently applied. As a result, the glass substrate 6 and the support glass 2 can be stably peeled off.
 また、パルスレーザー7のパルス幅が500ps以下とされ、パルス幅が十分に短くなっている。このため、ガラス基板6、及び支持ガラス2における過度なエネルギーの吸収を防止でき、両ガラス2,6の損傷を可及的に抑制することができる。なお、この効果は、隣り合う照射スポット7a同士を重複させる場合に、その重複した領域の大きさを制御することで、より高めることが可能である。また、パルス幅の短いパルスレーザー7を使用していることで、様々な無機膜3に対して良好に加工を行うことも可能である。さらに、無機膜3からはアウトガスの発生が可及的に抑制されるため、当該アウトガスによるガラス基板6の汚染についても、好適に防止することが可能である。加えて、パルスレーザー7を支持ガラス2側から照射していることで、上述のように、剥離起点部形成工程の実行時に、共にプラズマ化した支持ガラス2の一部と無機膜3とが、ガラス基板6へと付着する。このため、ガラス基板6は、支持ガラス2とは異なり、剥離起点部形成工程の実行に伴って、その厚みが薄肉化されることが回避される。これにより、ガラス基板6の面強度の低下を防止することが可能となる。また、特にパルス幅が100ps以下のパルスレーザー7を使用した場合には、加工痕に含まれる凹凸を可及的に小さくすることができる。その結果、両ガラス2,6について、良好な面強度を確保する上で有利となる。 Also, the pulse width of the pulse laser 7 is 500 ps or less, and the pulse width is sufficiently short. For this reason, absorption of excessive energy in the glass substrate 6 and the supporting glass 2 can be prevented, and damage to both the glasses 2 and 6 can be suppressed as much as possible. Note that this effect can be further enhanced by controlling the size of the overlapped area when the adjacent irradiation spots 7a are overlapped. In addition, by using the pulse laser 7 having a short pulse width, it is possible to satisfactorily process various inorganic films 3. Further, since outgas generation from the inorganic film 3 is suppressed as much as possible, contamination of the glass substrate 6 by the outgas can be suitably prevented. In addition, by irradiating the pulse laser 7 from the support glass 2 side, as described above, a part of the support glass 2 and the inorganic film 3 that are plasmatized together at the time of performing the peeling start point forming step, It adheres to the glass substrate 6. For this reason, unlike the supporting glass 2, the glass substrate 6 is prevented from having a reduced thickness with the execution of the peeling start point forming step. Thereby, it becomes possible to prevent the surface strength of the glass substrate 6 from being lowered. In particular, when the pulse laser 7 having a pulse width of 100 ps or less is used, the unevenness included in the processing trace can be made as small as possible. As a result, both glasses 2 and 6 are advantageous in securing good surface strength.
 加えて、二回目以降の積層体作製工程の実行時に、前回以前に実行した剥離起点部形成工程におけるパルスレーザー7の照射領域7xに対応した支持ガラス2の表面領域と、ガラスフィルム1とが重複しないように、両ガラス1,2を密着させていることで、以下のような作用・効果が得られる。すなわち、剥離起点部形成工程を実行する度に支持ガラス2に形成される加工痕が、相互に異なる箇所に形成される。また、この加工痕は目視でその存在を確認することが可能である。そのため、この加工痕の数に基づいて、支持ガラス2を繰り返し使用した回数を判別することが可能になる。これにより、支持ガラス2を使用した回数について、その管理を極めて容易に行うことができる。なお、加工痕における凹み量を可視光の波長と同程度とすれば、加工痕の視認性を向上させることが可能である。また、同一の支持ガラス2を繰り返し使用することから、ガラス基板6の製造に掛かるコストを抑制することも可能となる。さらには、加工痕に含まれる凹凸上にガラスフィルム1を重ね合わせないため、凹凸に起因して、ガラスフィルム1と支持ガラス2との間に気泡が入り込むことを回避することができる。従って、製造されたガラス基板6の品質の低下を防止する上でも好適である。 In addition, the surface region of the supporting glass 2 corresponding to the irradiation region 7x of the pulse laser 7 in the peeling start point forming step executed before the previous time overlaps with the glass film 1 during the second and subsequent laminate manufacturing steps. The following actions and effects can be obtained by bringing the two glasses 1 and 2 into close contact with each other. That is, every time the peeling start point forming step is executed, processing marks formed on the support glass 2 are formed at different locations. Further, the presence of this processing mark can be confirmed visually. Therefore, it is possible to determine the number of times the support glass 2 has been repeatedly used based on the number of processing marks. Thereby, the number of times the support glass 2 is used can be managed very easily. In addition, if the amount of dents in the processing mark is approximately the same as the wavelength of visible light, the visibility of the processing mark can be improved. Moreover, since the same support glass 2 is repeatedly used, it is possible to suppress the cost for manufacturing the glass substrate 6. Furthermore, since the glass film 1 is not superimposed on the unevenness included in the processing mark, it is possible to avoid bubbles from entering between the glass film 1 and the support glass 2 due to the unevenness. Therefore, it is also suitable for preventing deterioration of the quality of the manufactured glass substrate 6.
<第二実施形態>
 以下、本発明の第二実施形態に係るガラス基板の製造方法について説明する。なお、この第二実施形態に係るガラス基板の製造方法の説明において、上記の第一実施形態で既に説明した事項については、第二実施形態の説明で参照する図面に同一の符号を付すことで重複する説明を省略し、第一実施形態との相違点についてのみ説明する。
<Second embodiment>
Hereinafter, the manufacturing method of the glass substrate which concerns on 2nd embodiment of this invention is demonstrated. In addition, in description of the manufacturing method of the glass substrate which concerns on this 2nd embodiment, about the matter already demonstrated in said 1st embodiment, it attaches | subjects the same code | symbol to drawing referred in description of 2nd embodiment. The overlapping description will be omitted, and only differences from the first embodiment will be described.
 図8は、本発明の第二実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図であり、図9は、同工程を示す平面図である。これらの図に示すように、この第二実施形態に係るガラス基板の製造方法では、剥離起点部形成工程において、無機膜3に第一のパルスレーザー9と第二のパルスレーザー10との二つを照射すると共に、これらの照射スポット9a,10aの一部が重複した重複照射スポットZを形成する。 FIG. 8 is a longitudinal side view showing a peeling starting point forming step in the method for manufacturing a glass substrate according to the second embodiment of the present invention, and FIG. 9 is a plan view showing the step. As shown in these drawings, in the method for manufacturing a glass substrate according to the second embodiment, in the peeling start point forming step, the inorganic film 3 is divided into two of the first pulse laser 9 and the second pulse laser 10. And an overlapping irradiation spot Z in which a part of these irradiation spots 9a and 10a overlaps is formed.
 図8に示すように、第一のパルスレーザー9は、発振源としてのレーザー発振器11から発振させると共に、ミラー12で反射させることにより、無機膜3に対して支持ガラス2側から照射している。一方、第二のパルスレーザー10は、積層体4を透過した第一のパルスレーザー9を当該積層体4に向かってミラー12xで反射させることで発生させており、無機膜3に対してガラス基板6側から照射している。つまり、第一のパルスレーザー9と第二のパルスレーザー10とは、同一のレーザー発振器11(発振源)から発振されたレーザーとなっている。積層体4を透過した第二のパルスレーザー10は、散乱板13で散乱させている。なお、本実施形態においては、上記の第一実施形態とは異なり、第一のパルスレーザー9と第二のパルスレーザー10とを、無機膜3に集光させずにデフォーカスした状態で照射している(無機膜3を両パルスレーザー9,10の焦点位置としていない)。また、両パルスレーザー9,10の偏光は、直線偏光としている。さらに、積層体4を透過してミラー12xに入射する第一のパルスレーザー9の光軸に対して、ミラー12xで反射させることで発生させた第二のパルスレーザー10の光軸が傾斜するように、ミラー12xを設置する角度を調節している。 As shown in FIG. 8, the first pulse laser 9 is oscillated from a laser oscillator 11 as an oscillation source and reflected by a mirror 12 to irradiate the inorganic film 3 from the support glass 2 side. . On the other hand, the second pulse laser 10 is generated by reflecting the first pulse laser 9 transmitted through the laminated body 4 by the mirror 12x toward the laminated body 4, and is formed on the glass substrate with respect to the inorganic film 3. Irradiated from the 6th side. That is, the first pulse laser 9 and the second pulse laser 10 are lasers oscillated from the same laser oscillator 11 (oscillation source). The second pulse laser 10 transmitted through the laminate 4 is scattered by the scattering plate 13. In this embodiment, unlike the first embodiment, the first pulse laser 9 and the second pulse laser 10 are irradiated in a defocused state without being focused on the inorganic film 3. (The inorganic film 3 is not used as the focal position of both pulse lasers 9 and 10). The polarized light of both pulse lasers 9 and 10 is linearly polarized light. Further, the optical axis of the second pulse laser 10 generated by being reflected by the mirror 12x is inclined with respect to the optical axis of the first pulse laser 9 that is transmitted through the laminate 4 and incident on the mirror 12x. The angle at which the mirror 12x is installed is adjusted.
 ここで、両パルスレーザー9,10の種類としては、固体レーザー、LDレーザー、ディスクレーザー、ファイバーレーザー等を使用することができる。また、両パルスレーザー9,10の波長としては、300nm~3μmの範囲内とすることが好ましい。さらに、パルス幅は、1ps~1μsの範囲内とすることが好ましい。加えて、周波数としては、0.5Hz~10kHzの範囲内とすることが好ましい。また、パルスエネルギーとしては、1mJ~2Jの範囲内とすることが好ましい。さらに、パルスエネルギーの尖頭値としては、5.0×10J/cm・s~1.0×1015J/cm・sの範囲内とすることが好ましい。加えて、両パルスレーザー9,10の照射スポット9a,10aの面積は、1mm~500mmの範囲内とすることが好ましい。また、重複照射スポットZの面積は、照射スポット9a,10aの面積の10%~99.9%の面積とすることが好ましい。 Here, as a kind of both pulse lasers 9 and 10, a solid laser, LD laser, disk laser, fiber laser, etc. can be used. The wavelengths of both pulse lasers 9 and 10 are preferably in the range of 300 nm to 3 μm. Further, the pulse width is preferably in the range of 1 ps to 1 μs. In addition, the frequency is preferably in the range of 0.5 Hz to 10 kHz. The pulse energy is preferably in the range of 1 mJ to 2J. Further, the peak value of the pulse energy is preferably in the range of 5.0 × 10 6 J / cm 2 · s to 1.0 × 10 15 J / cm 2 · s. In addition, the area of the irradiation spots 9a, 10a of both pulse lasers 9, 10 is preferably in the range of 1 mm 2 to 500 mm 2 . The area of the overlapping irradiation spot Z is preferably 10% to 99.9% of the area of the irradiation spots 9a and 10a.
 図9に示すように、両パルスレーザー9,10の照射領域9a,10aの一部が重複した重複照射スポットZは、ガラス基板6の外周端部6aに沿った領域のうち、当該ガラス基板6のコーナー部を含む領域に形成している。ここで、本実施形態においては、重複照射スポットZを、無機膜3上において一箇所のみに形成している。 As shown in FIG. 9, the overlapping irradiation spot Z in which the irradiation regions 9 a and 10 a of both pulse lasers 9 and 10 partially overlap is the glass substrate 6 in the region along the outer peripheral edge 6 a of the glass substrate 6. It is formed in a region including the corner portion. Here, in the present embodiment, the overlapping irradiation spot Z is formed at only one place on the inorganic film 3.
 なお、本実施形態のような態様に限らず、変形例として、図10に示すように、重複照射スポットZを相互に位置が異なった複数箇所に断続的に形成してもよい。なお、複数箇所に断続的に重複照射スポットZを形成する場合には、例えば、以下の(A)、(B)の手順を繰り返し実行する。(A)無機膜3上に両照射スポット9a,10aを形成して重複照射スポットZを形成した後、一旦、両パルスレーザー9,10の照射を中止する。(B)積層体4を移動させて両照射スポット9a,10aが形成される位置をずらした後、両パルスレーザー9,10を再照射して重複照射スポットZを異なる位置に再形成する。このとき、隣り合う二つの重複照射スポットZは、これらの一部が重なるように形成してもよいし、重ならないように形成してもよい。さらなる変形例として、重複照射スポットZは、両パルスレーザー9,10を無機膜3に照射した状態で積層体4を移動させることにより、無機膜3を連続的に走査する重複照射スポットZとして形成してもよい。 It should be noted that the present invention is not limited to the embodiment, and as a modification, the overlapping irradiation spots Z may be intermittently formed at a plurality of locations whose positions are different from each other. In addition, when forming the overlapping irradiation spot Z intermittently in a plurality of places, for example, the following procedures (A) and (B) are repeatedly executed. (A) After forming both irradiation spots 9a and 10a on the inorganic film 3 to form the overlapping irradiation spot Z, the irradiation of both pulse lasers 9 and 10 is once stopped. (B) After moving the laminated body 4 and shifting the positions where both irradiation spots 9a, 10a are formed, both pulse lasers 9, 10 are re-irradiated to re-form the overlapping irradiation spots Z at different positions. At this time, two adjacent overlapping irradiation spots Z may be formed so that a part of them overlaps or may not be overlapped. As a further modification, the overlapping irradiation spot Z is formed as an overlapping irradiation spot Z that continuously scans the inorganic film 3 by moving the laminated body 4 in a state where both the pulse lasers 9 and 10 are irradiated to the inorganic film 3. May be.
 これにより、重複照射スポットZによる照射領域では、以下のような作用が生じる。すなわち、支持ガラス2からガラス基板6の一部が剥離した剥離起点部6xが形成される。また、剥離起点部形成工程の実行時に、重複照射スポットZによる照射領域において両パルスレーザー9,10が干渉し、その干渉パターンに従って無機膜3が加工される。このことに起因して、図11に示すように、剥離工程の完了後、重複照射スポットZによる照射領域に対応する支持ガラス2の表面領域2yには、無機膜3が微細な凸部3xとして残留した状態となる。そして、微細な凸部3xが残留した箇所を透過した光は、当該箇所以外を透過した光とは異なる視え方をするようになる。これにより、微細な凸部3xが残留した箇所の所在を視認することができるようになる。 As a result, the following action occurs in the irradiation region by the overlapping irradiation spot Z. That is, a separation starting point portion 6x in which a part of the glass substrate 6 is separated from the support glass 2 is formed. Further, when the peeling start point forming step is executed, both pulse lasers 9 and 10 interfere in the irradiation region by the overlapping irradiation spot Z, and the inorganic film 3 is processed according to the interference pattern. As a result, as shown in FIG. 11, after the peeling process is completed, the inorganic film 3 is formed as fine protrusions 3 x on the surface region 2 y of the support glass 2 corresponding to the irradiation region by the overlapping irradiation spot Z. It remains. And the light which permeate | transmitted the location where the fine convex part 3x remained came to be seen differently from the light which permeate | transmitted other than the said location. Thereby, it becomes possible to visually recognize the location of the portion where the fine convex portion 3x remains.
 また、この第二実施形態に係るガラス基板の製造方法では、上記の第一実施形態と同様に、剥離工程の完了後、支持ガラス2をガラス基板の製造方法に繰り返し使用する。このとき、二回目以降の積層体作製工程の実行時に、前回以前に実行した剥離起点部形成工程における重複照射スポットZによる照射領域に対応した支持ガラス2の表面領域2yと、ガラスフィルム1とが重複しないように両ガラス1,2を密着させる。 Further, in the glass substrate manufacturing method according to the second embodiment, the support glass 2 is repeatedly used in the glass substrate manufacturing method after the peeling step is completed, as in the first embodiment. At this time, the surface area 2y of the supporting glass 2 corresponding to the irradiation area by the overlapping irradiation spot Z in the peeling starting point forming process executed before the previous time and the glass film 1 are executed at the time of the second and subsequent laminate manufacturing processes. Both glasses 1 and 2 are brought into close contact so as not to overlap.
 ここで、具体例を一つ挙げる。図12は、三回目に実行する積層体作製工程を示す縦断側面図である。支持ガラス2は、既に二回の剥離起点部形成工程を経ている。これにより、一回目、二回目に実行された剥離起点部形成工程において、重複照射スポットZによる照射領域に対応した支持ガラス2の各表面領域2ay,2byには、それぞれ微細な凸部3xが残留している。この表面領域2ay,2byと、三回目の積層体作製工程に使用されるガラスフィルム1cとが重複しないように、支持ガラス2とガラスフィルム1cとを密着させる。 Here is one specific example. FIG. 12 is a vertical cross-sectional side view showing a laminate manufacturing process executed for the third time. The supporting glass 2 has already undergone two peeling start point forming steps. As a result, in the peeling start point forming process executed for the first time and the second time, fine convex portions 3x remain in the surface regions 2ay and 2by of the support glass 2 corresponding to the irradiation regions by the overlapping irradiation spots Z, respectively. is doing. The support glass 2 and the glass film 1c are brought into close contact so that the surface regions 2ay and 2by and the glass film 1c used in the third laminate manufacturing process do not overlap.
 以下、上記の第二実施形態に係るガラス基板の製造方法について、その作用・効果を説明する。 Hereinafter, the operation and effect of the glass substrate manufacturing method according to the second embodiment will be described.
 この第二実施形態に係るガラス基板の製造方法によれば、重複照射スポットZによる照射領域において、両パルスレーザー9,10の双方のエネルギーにて無機膜3を加工することが可能となり、好適に無機膜3を加工することができる。また、重複照射スポットZによる照射領域の面積の大小を調節することにより、剥離起点部形成工程において支持ガラス2から部分的に剥離するガラス基板6の面積の大小を調節することも可能となる。その結果、剥離工程において支持ガラス2からガラス基板6を剥離させやすい状態を容易に作り出すことができる。 According to the method for manufacturing a glass substrate according to the second embodiment, it becomes possible to process the inorganic film 3 with the energy of both pulse lasers 9 and 10 in the irradiation region by the overlapping irradiation spot Z, and preferably The inorganic film 3 can be processed. Further, by adjusting the size of the area of the irradiation region by the overlapping irradiation spot Z, it is possible to adjust the size of the area of the glass substrate 6 that is partially peeled from the support glass 2 in the peeling start point forming step. As a result, it is possible to easily create a state in which the glass substrate 6 is easily peeled from the support glass 2 in the peeling step.
 また、第一のパルスレーザー9と第二のパルスレーザー10とが同一のレーザー発振器11から発振されていることから、両パルスレーザー9,10が相互にコヒーレントとなる。そのため、剥離起点部形成工程の実行時に、重複照射スポットZによる照射領域において両パルスレーザー9,10の干渉性を高めることが可能となる。これにより、微細な凸部3xが周期的に残留した状態となりやすい。このことに由来して、微細な凸部3xが残留した箇所の所在をより明確に視認することができるようになる。さらに、両パルスレーザー9,10を無機膜3に照射するにあたって、無機膜3に照射されるパルスレーザーの数(本実施形態においては二つ)と同数の発振源を準備するような必要がなくなる。そのため、効率的に無機膜3の加工を行うことが可能となる。なお、この効果は、第二のパルスレーザー10を、積層体4を透過した第一のパルスレーザー9を当該積層体4に向かって反射させて発生させていることで、より高められている。 Further, since the first pulse laser 9 and the second pulse laser 10 are oscillated from the same laser oscillator 11, both the pulse lasers 9 and 10 become coherent with each other. Therefore, it is possible to enhance the coherence of both pulse lasers 9 and 10 in the irradiation region by the overlapping irradiation spot Z when executing the peeling start point forming step. Thereby, the fine convex part 3x tends to remain periodically. As a result, the location of the portion where the fine convex portion 3x remains can be visually recognized more clearly. Furthermore, when irradiating both the pulse lasers 9 and 10 to the inorganic film 3, it is not necessary to prepare the same number of oscillation sources as the number of pulse lasers (two in the present embodiment) irradiated to the inorganic film 3. . Therefore, it becomes possible to process the inorganic film 3 efficiently. This effect is further enhanced by generating the second pulse laser 10 by reflecting the first pulse laser 9 transmitted through the laminate 4 toward the laminate 4.
 また、二回目以降の積層体作製工程の実行時に、前回以前に実行した剥離起点部形成工程における重複照射スポットZによる照射領域に対応した支持ガラス2の表面領域2yと、ガラスフィルム1とが重複しないように両ガラス1,2を密着させていることで、以下のような作用・効果をも得ることができる。すなわち、この方法では、剥離起点部形成工程を実行する度に、微細な凸部3xが残留した箇所が増加していくと共に、これらの所在が相互に異なった状態となる。また、微細な凸部3xが残留した箇所は視認することが可能であるため、この微細な凸部3xが残留した箇所の数に基づいて、支持ガラス2を繰り返し使用した回数を判別することが可能になる。これにより、支持ガラス2を使用した回数について、その管理を極めて容易に行うことができる。さらには、微細な凸部3x上にガラスフィルム1が重ね合わされることが防止されるため、微細な凸部3xに起因して、ガラスフィルム1と支持ガラス2との間に気泡が入り込むことを回避することができる。従って、製造されたガラス基板6の品質の低下を防止する上でも好適である。 Moreover, the surface area | region 2y of the support glass 2 corresponding to the irradiation area | region by the overlap irradiation spot Z in the peeling origin part formation process performed before the last time, and the glass film 1 overlap at the time of execution of the laminated body manufacturing process after the 2nd time. The following actions and effects can be obtained by bringing the two glasses 1 and 2 into close contact with each other. That is, in this method, each time the peeling start point forming step is executed, the number of places where the fine convex portions 3x remain increases, and the locations of these portions become different from each other. Moreover, since the location where the fine convex part 3x remained can be visually recognized, it can discriminate | determine the frequency | count that the support glass 2 was repeatedly used based on the number of the location where this fine convex part 3x remained. It becomes possible. Thereby, the number of times the support glass 2 is used can be managed very easily. Furthermore, since it is prevented that the glass film 1 is superimposed on the fine convex part 3x, air bubbles enter between the glass film 1 and the supporting glass 2 due to the fine convex part 3x. It can be avoided. Therefore, it is also suitable for preventing deterioration of the quality of the manufactured glass substrate 6.
 なお、この第二実施形態に係るガラス基板の製造方法によって製造されたガラス基板6(電子デバイス材5が形成されたガラスフィルム1)は、図13に示すように、その表裏両側からパルスレーザーを照射された被照射領域T(重複照射スポットZが形成された領域)を有している。この被照射領域Tには、無機膜3で構成された複数の凸部3zが並列に形成されている。図13では、直線偏光を有するパルスレーザーを使用しているため、凸部3zが並列に形成されているが、これには限定されず、円偏光を有するパルスレーザーを使用した場合、図示しないがドット状に形成されることがある。 In addition, as shown in FIG. 13, the glass substrate 6 manufactured by the glass substrate manufacturing method according to the second embodiment (the glass film 1 on which the electronic device material 5 is formed) is irradiated with a pulse laser from both front and back sides. The irradiated region T (the region where the overlapping irradiation spot Z is formed) is irradiated. In the irradiated region T, a plurality of convex portions 3z made of the inorganic film 3 are formed in parallel. In FIG. 13, since the pulse laser having linearly polarized light is used, the convex portions 3z are formed in parallel. However, the present invention is not limited to this, but when a pulse laser having circularly polarized light is used, it is not shown. It may be formed in a dot shape.
 凸部3zの各々は、図13において紙面に鉛直な方向に沿って長尺となるように形成されると共に、ガラスフィルム1において電子デバイス材5が形成された領域外に形成されている。凸部3zの幅W1、及び、隣り合う凸部3zの相互間に形成される隙間の幅W2は、それぞれ0.1μm~20μmの範囲内となっている。また、複数の凸部3zは、これらが並ぶ方向に沿って周期的(図13においては3周期)に形成されており、凸部3zの形成ピッチPTは、0.2μm~40μmの範囲内となっている。さらに、被照射領域Tに占める凸部3zの形成された領域の面積は、10%以上となっている。加えて、凸部3zの高さHは、無機膜3の厚みと略等しくなっている。これらの測定は、原子間力顕微鏡、レーザー顕微鏡や、光の干渉による表面形状測定機等を用いることにより行うことができる。尚、本実施形態において、被照射領域Tに占める凸部3zが形成された領域の面積とは、被照射領域Tの範囲の中で凸部と凹部が形成されている領域を抽出し、凸部3zのみの面積を積算して算出する。 Each of the convex portions 3z is formed so as to be elongated along a direction perpendicular to the paper surface in FIG. 13 and is formed outside the region where the electronic device material 5 is formed in the glass film 1. The width W1 of the protrusion 3z and the width W2 of the gap formed between the adjacent protrusions 3z are in the range of 0.1 μm to 20 μm, respectively. The plurality of protrusions 3z are formed periodically (three periods in FIG. 13) along the direction in which they are arranged, and the formation pitch PT of the protrusions 3z is in the range of 0.2 μm to 40 μm. It has become. Furthermore, the area of the region where the convex portion 3z occupying the irradiated region T is 10% or more. In addition, the height H of the protrusion 3z is substantially equal to the thickness of the inorganic film 3. These measurements can be performed by using an atomic force microscope, a laser microscope, a surface shape measuring device by light interference, or the like. In the present embodiment, the area of the region where the convex portion 3z occupying the irradiated region T is the region where the convex portion and the concave portion are formed in the irradiated region T. The area of only the portion 3z is integrated and calculated.
 本実施形態において、被照射領域Tにおいては、形成される凸部3zの領域や幅W1、ピッチPT等がある程度ランダムに形成される。従って、パルスレーザーを照射された被照射領域Tの一部を拡大観察し、CCDカメラなどの撮影手段により画像としてデータ化し、それらを比較することによりガラス基板6に個体の識別性(トレーサビリティ)を付与することが可能となる。さらに、凸部3zの断面形状や、上記画像に対しフーリエ変換を行うことによるパワースペクトルにより、識別することも可能である。その結果、このガラス基板6を備えた電子デバイス(例えば、液晶パネル、有機ELパネル、タッチパネル,太陽電池パネル,その他の半導体素子が形成されたパネル等)を既に公知となっている種々の方法で製造すれば、当該電子デバイスに対しても、同様に個体の識別性を付与することができる。これにより、電子デバイスについて品質の管理を行う上で極めて有利となる。 In the present embodiment, in the irradiated region T, the region of the protrusion 3z to be formed, the width W1, the pitch PT, and the like are randomly formed to some extent. Accordingly, a part of the irradiated region T irradiated with the pulse laser is enlarged and observed, and converted into data as an image by a photographing means such as a CCD camera, and compared with each other, thereby making the glass substrate 6 have individual identification (traceability). It becomes possible to grant. Furthermore, it is also possible to identify by the cross-sectional shape of the convex portion 3z and the power spectrum obtained by performing Fourier transform on the image. As a result, an electronic device (for example, a liquid crystal panel, an organic EL panel, a touch panel, a solar cell panel, a panel on which other semiconductor elements are formed, etc.) provided with the glass substrate 6 can be obtained by various known methods. If manufactured, individual identification can be imparted to the electronic device as well. This is extremely advantageous for quality control of electronic devices.
 ここで、図13には、凸部3zが3周期に亘って形成されている場合を例示しているが、例えば、重複照射スポットZが形成される領域の面積の大小を変更することで、凸部3zが形成される周期の数を変更することができる。そして、凸部3zが形成される周期の数としては、2周期~30000周期とすることが好ましい。また、重複照射スポットZが形成される領域の面積の大小を変更することにより、被照射領域Tに占める凸部3zが形成された領域の面積を変更することもできる。そして、被照射領域Tに占める凸部3zが形成された領域の面積は、20%以上とすることが好ましい。これらのようにすれば、ガラス基板6の識別性をより向上させることができる。 Here, FIG. 13 illustrates the case where the convex portion 3z is formed over three periods. For example, by changing the size of the area of the overlapping irradiation spot Z formed, The number of periods in which the convex portions 3z are formed can be changed. The number of periods in which the convex portions 3z are formed is preferably 2 periods to 30000 periods. Moreover, the area of the area | region in which the convex part 3z which occupies for the to-be-irradiated area | region T can also be changed by changing the size of the area | region in which the overlapping irradiation spot Z is formed. And it is preferable that the area of the area | region in which the convex part 3z which occupies for the to-be-irradiated area | region T was formed is 20% or more. By doing so, the discriminability of the glass substrate 6 can be further improved.
<第三実施形態>
 以下、本発明の第三実施形態に係るガラス基板の製造方法について説明する。なお、この第三実施形態に係るガラス基板の製造方法の説明において、上記の第一、及び第二実施形態で既に説明した事項については、第三実施形態の説明で参照する図面に同一の符号を付すことで重複する説明を省略し、第一、及び第二実施形態との相違点についてのみ説明する。
<Third embodiment>
Hereinafter, the manufacturing method of the glass substrate which concerns on 3rd embodiment of this invention is demonstrated. In the description of the glass substrate manufacturing method according to the third embodiment, the same reference numerals are used in the drawings referred to in the description of the third embodiment for the matters already described in the first and second embodiments. The description which overlaps by affixing is abbreviate | omitted, and only the difference with 1st and 2nd embodiment is demonstrated.
 図14は、本発明の第三実施形態に係るガラス基板の製造方法における剥離起点部形成工程を示す縦断側面図である。同図に示すように、この第三実施形態に係るガラス基板の製造方法では、剥離起点部形成工程において、支持ガラス2の密着側面に形成された無機膜3に対し、支持ガラス2側から先発のパルスレーザー14を照射した後、さらに、先発のパルスレーザー14の照射領域14xに対して、ガラス基板6側から後発のパルスレーザー15を照射する。 FIG. 14 is a longitudinal side view showing a peeling starting point forming step in the method for manufacturing a glass substrate according to the third embodiment of the present invention. As shown in the figure, in the method for manufacturing a glass substrate according to the third embodiment, in the peeling starting point forming step, the inorganic film 3 formed on the adhesion side surface of the support glass 2 is started from the support glass 2 side. Then, the subsequent pulse laser 15 is irradiated from the glass substrate 6 side to the irradiation region 14x of the previous pulse laser 14.
 両パルスレーザー14,15は、レーザー発振器11から発振されたパルスレーザー16が通過する光路Lを途中で分岐させることで照射仕分けている。つまり、両パルスレーザー14,15は、同一のレーザー発振器11(発振源)から発振されたレーザーとなっている。レーザー発振器11から発振されたパルスレーザー16は、光路Lに設置された1/2波長板17を通過して、偏光ビームスプリッター18まで到達する。この偏光ビームスプリッター18によって、パルスレーザー16が、先発のパルスレーザー14用の光路L1と、後発のパルスレーザー15用の光路L2とのいずれに進むかが切り替えられる。なお、本実施形態においては、両パルスレーザー14,15の偏光は、直線偏光としている。 Both pulse lasers 14 and 15 perform irradiation sorting by branching the optical path L through which the pulse laser 16 oscillated from the laser oscillator 11 passes. That is, both pulse lasers 14 and 15 are lasers oscillated from the same laser oscillator 11 (oscillation source). The pulse laser 16 oscillated from the laser oscillator 11 passes through the half-wave plate 17 installed in the optical path L and reaches the polarization beam splitter 18. The polarization beam splitter 18 switches whether the pulse laser 16 travels to the optical path L1 for the preceding pulse laser 14 or the optical path L2 for the subsequent pulse laser 15. In the present embodiment, the polarization of both pulse lasers 14 and 15 is linearly polarized light.
 まず、パルスレーザー16に、先発のパルスレーザー14用の光路L1を進ませることにより、当該パルスレーザー16を先発のパルスレーザー14として無機膜3に照射する。次に、先発のパルスレーザー15の照射が完了した後、偏光ビームスプリッター18によってパルスレーザー16が光路L2を進むように切り替えを行う。これにより、パルスレーザー16に後発のパルスレーザー15用の光路L2を進ませ、当該パルスレーザー16を後発のパルスレーザー15として無機膜3に照射する。なお、両パルスレーザー14,15は、共にガラス基板6における電子デバイス材5が非形成の領域を透過するように照射している。また、本実施形態においては、上記の第一実施形態とは異なり、両パルスレーザー14,15を、無機膜3に集光させずにデフォーカスした状態で照射している(無機膜3を両パルスレーザー14,15の焦点位置としていない)。また、先発のパルスレーザー14の光軸に対して、後発のパルスレーザー15の光軸が傾斜するように、光路L2に設置されたミラー12yの角度を調節している。 First, the inorganic film 3 is irradiated with the pulse laser 16 as the first pulse laser 14 by advancing the optical path L1 for the first pulse laser 14 to the pulse laser 16. Next, after the irradiation with the first pulse laser 15 is completed, switching is performed by the polarization beam splitter 18 so that the pulse laser 16 travels in the optical path L2. As a result, the optical path L2 for the subsequent pulse laser 15 is advanced to the pulse laser 16, and the inorganic film 3 is irradiated with the pulse laser 16 as the subsequent pulse laser 15. Both pulse lasers 14 and 15 irradiate the electronic device material 5 on the glass substrate 6 so as to pass through the non-formed region. Further, in the present embodiment, unlike the first embodiment described above, both pulse lasers 14 and 15 are irradiated in a defocused state without being focused on the inorganic film 3 (both inorganic films 3 are both focused). It is not the focal position of the pulse lasers 14 and 15). Further, the angle of the mirror 12y installed in the optical path L2 is adjusted so that the optical axis of the subsequent pulse laser 15 is inclined with respect to the optical axis of the previous pulse laser 14.
 ここで、両パルスレーザー14,15(パルスレーザー16)の種類としては、固体レーザー、LDレーザー、ディスクレーザー、ファイバーレーザー等を使用することができる。また、両パルスレーザー14,15(パルスレーザー16)の波長としては、300nm~3μmの範囲内とすることが好ましい。さらに、パルス幅は、10fs~1μsの範囲内とすることが好ましい。加えて、周波数としては、0.5Hz~10kHzの範囲内とすることが好ましい。また、パルスエネルギーとしては、1mJ~2Jの範囲内とすることが好ましい。さらに、パルスエネルギーの尖頭値としては、5.0×10J/cm・s~1.0×1015J/cm・sの範囲内とすることが好ましい。 Here, as a kind of both pulse lasers 14 and 15 (pulse laser 16), a solid laser, LD laser, disk laser, fiber laser, etc. can be used. The wavelengths of both pulse lasers 14 and 15 (pulse laser 16) are preferably in the range of 300 nm to 3 μm. Further, the pulse width is preferably in the range of 10 fs to 1 μs. In addition, the frequency is preferably in the range of 0.5 Hz to 10 kHz. The pulse energy is preferably in the range of 1 mJ to 2J. Further, the peak value of the pulse energy is preferably in the range of 5.0 × 10 6 J / cm 2 · s to 1.0 × 10 15 J / cm 2 · s.
 以下、両パルスレーザー14,15の具体的な照射の態様について、図15に基づいて説明する。図15に示すように、無機膜3上において、先発のパルスレーザー14の照射領域14x、及び後発のパルスレーザー15の照射領域15xは、ガラス基板6の外周端部6aに沿った領域のうち、当該ガラス基板6のコーナー部を含む円形の領域としている。なお、本実施形態においては、両照射領域14x,15xが無機膜3上において略完全に重複するように両照射領域14x,15xを設定している。しかしながら、この限りではなく、変形例として、両照射領域14x,15xは、これらの一部のみが重複する態様としてもよい。また、両照射領域14x,15xの形状は、円形のみに限らず、任意の形状としてよい。 Hereinafter, a specific mode of irradiation of both pulse lasers 14 and 15 will be described with reference to FIG. As shown in FIG. 15, on the inorganic film 3, the irradiation region 14 x of the first pulse laser 14 and the irradiation region 15 x of the subsequent pulse laser 15 are among the regions along the outer peripheral edge 6 a of the glass substrate 6. A circular region including a corner portion of the glass substrate 6 is used. In the present embodiment, both irradiation regions 14x and 15x are set so that both irradiation regions 14x and 15x overlap substantially completely on the inorganic film 3. However, the present invention is not limited to this, and as a modification, both the irradiation regions 14x and 15x may have a mode in which only a part of them overlaps. Moreover, the shape of both irradiation area | regions 14x and 15x is good not only in circular but arbitrary shapes.
 ここで、両照射領域14x,15xの面積は、10mm~10000mmの範囲内の面積とすることが好ましい。また、両照射領域14x,15xの一部のみを重複させる場合に、重複する箇所の面積は、両照射領域14x,15xの面積の10%~99.9%の面積とすることが好ましい。 Here, the area of both irradiation regions 14x and 15x is preferably an area within a range of 10 mm 2 to 10000 mm 2 . When only a part of both irradiation regions 14x and 15x is overlapped, the area of the overlapping portion is preferably 10% to 99.9% of the area of both irradiation regions 14x and 15x.
 先発のパルスレーザー14の照射領域14x内においては、当該先発のパルスレーザー14の照射スポット14aを相互に位置が異なった複数箇所に断続的に形成していく。この複数箇所の照射スポット14aは、照射領域14x内に万遍なく形成する。なお、本実施形態においては、隣り合う二つの照射スポット14a同士の一部が重なるように形成している。また、各照射スポット14aの面積は、1mm~500mmの範囲内の面積としている。複数箇所への照射スポット14aの形成には、例えば、以下の(A)、(B)の手順を繰り返し実行する。(A)無機膜3上に先発のパルスレーザー14を照射して照射スポット14aを形成した後、一旦、先発のパルスレーザー14の照射を中止する。(B)積層体4を移動させて照射スポット14aが形成される位置をずらした後、先発のパルスレーザー14を再照射して照射スポット14aを異なる位置に再形成する。 In the irradiation region 14x of the previous pulse laser 14, the irradiation spot 14a of the previous pulse laser 14 is intermittently formed at a plurality of locations whose positions are different from each other. The plurality of irradiation spots 14a are uniformly formed in the irradiation region 14x. In the present embodiment, the two adjacent irradiation spots 14a are formed so as to partially overlap each other. The area of each irradiation spot 14a is set to an area within the range of 1 mm 2 to 500 mm 2 . For example, the following procedures (A) and (B) are repeatedly performed to form the irradiation spot 14a at a plurality of locations. (A) After the irradiation pulse 14a is formed on the inorganic film 3 by irradiating the starting pulse laser 14, the irradiation of the starting pulse laser 14 is once stopped. (B) After moving the laminated body 4 to shift the position where the irradiation spot 14a is formed, the irradiation pulse 14a is re-formed at a different position by re-irradiating the previous pulse laser 14.
 なお、本実施形態のような態様に限らず、変形例として、隣り合う照射スポット14a同士を、これらが重ならないように形成してもよい。また、別の変形例として、先発のパルスレーザー14の照射は、当該先発のパルスレーザー14を無機膜3に照射した状態で積層体4を移動させることにより、照射スポット14aが照射領域14x内を万遍なく走査するような態様で実行してもよい。さらなる変形例として、先発のパルスレーザー14の照射は、照射領域14xに等しい面積を有する照射スポット14aを一回のみ形成するような態様で実行してもよい。 It should be noted that the present invention is not limited to the embodiment, and as a modification, adjacent irradiation spots 14a may be formed so as not to overlap each other. As another modification, the irradiation with the first pulse laser 14 is performed by moving the stacked body 4 in a state where the first pulse laser 14 is irradiated onto the inorganic film 3, so that the irradiation spot 14a moves within the irradiation region 14x. You may perform in the aspect which scans uniformly. As a further modification, the irradiation with the preceding pulse laser 14 may be performed in such a manner that the irradiation spot 14a having an area equal to the irradiation region 14x is formed only once.
 各照射スポット14aの形成が完了すると、次に、後発のパルスレーザー15の照射領域15x内において、当該先発のパルスレーザー15の照射スポット15aを相互に位置が異なった複数箇所に断続的に形成していく。各照射スポット15aは、照射スポット14aの各々が形成されていた箇所と重なるように形成していく。なお、これら照射スポット15aの形成は、照射スポット14aを形成する場合と同様にして実行する。また、これら照射スポット15aの形成は、照射スポット14aを形成する場合と同様の変形例によって実行してもよい。 When the formation of each irradiation spot 14a is completed, next, the irradiation spot 15a of the preceding pulse laser 15 is intermittently formed at a plurality of positions different from each other in the irradiation region 15x of the subsequent pulse laser 15. To go. Each irradiation spot 15a is formed so as to overlap a portion where each of the irradiation spots 14a has been formed. The formation of these irradiation spots 15a is performed in the same manner as in the case of forming the irradiation spots 14a. Further, the formation of these irradiation spots 15a may be executed by a modification similar to the case of forming the irradiation spots 14a.
 なお、本実施形態では、照射スポット14aの複数箇所への形成をまとめて実行した後で、照射スポット15aの複数箇所への形成をまとめて実行しているが、この限りではない。変形例として、照射スポット14aの形成と照射スポット15aの形成とを一箇所ずつ交互に実行してもよい。この場合においては、剥離起点部形成工程を複数回に亘って実行していることになる(一回の剥離起点部形成工程の実行で、両照射スポット14a,15aの各々が一箇所ずつ形成される)。 In this embodiment, the formation of the irradiation spot 15a at a plurality of locations is collectively executed after the formation of the irradiation spot 14a at a plurality of locations, but this is not restrictive. As a modification, the formation of the irradiation spot 14a and the formation of the irradiation spot 15a may be performed alternately one by one. In this case, the peeling start point forming step is executed a plurality of times (each of the irradiation spots 14a and 15a is formed one by one by executing one peeling start point forming step). )
 これにより、先発のパルスレーザー14の照射領域14x、後発のパルスレーザー15の照射領域15xでは、以下のような作用が生じる。すなわち、図16aに示すように、先発のパルスレーザー14を支持ガラス2側から照射するのに伴って、その照射領域14xでは、支持ガラス2に形成された無機膜3がガラス基板6へと付着する。その後、図16bに示すように、後発のパルスレーザー15をガラス基板6側から照射するのに伴い、その照射領域15xでは、先発のパルスレーザー14の照射時にガラス基板6へと付着した無機膜3を、再び支持ガラス2へと付着させることができる。つまり、支持ガラス2に無機膜3が修復される。また、支持ガラス2からガラス基板6の一部が剥離した剥離起点部6xが形成される。なお、両照射領域14x,15xの一部のみが重複している場合には、両照射領域14x,15xが重複した箇所に対応する支持ガラス2の表面領域において、無機膜3が支持ガラス2に修復される。 As a result, the following effects occur in the irradiation region 14x of the preceding pulse laser 14 and the irradiation region 15x of the subsequent pulse laser 15. That is, as shown in FIG. 16a, the inorganic film 3 formed on the supporting glass 2 adheres to the glass substrate 6 in the irradiation region 14x as the first pulse laser 14 is irradiated from the supporting glass 2 side. To do. Thereafter, as shown in FIG. 16 b, the inorganic film 3 adhered to the glass substrate 6 during irradiation of the first pulse laser 14 in the irradiation region 15 x as the subsequent pulse laser 15 is irradiated from the glass substrate 6 side. Can be attached to the supporting glass 2 again. That is, the inorganic film 3 is repaired on the support glass 2. In addition, a separation starting point portion 6x in which a part of the glass substrate 6 is separated from the support glass 2 is formed. In addition, when only a part of both irradiation area | regions 14x and 15x overlaps, in the surface area | region of the support glass 2 corresponding to the location where both irradiation area | regions 14x and 15x overlapped, the inorganic film | membrane 3 is on the support glass 2. It will be repaired.
 また、この第三実施形態に係るガラス基板の製造方法では、上記の第一、及び第二実施形態と同様に、剥離工程の完了後、支持ガラス2をガラス基板の製造方法に繰り返し使用する。このとき、二回目以降の積層体作製工程の実行時に、前回実行した剥離起点部形成工程における後発のパルスレーザー15の照射領域15x(本実施形態においては、先発のパルスレーザー14の照射領域14xに等しい)に対応した支持ガラス2の表面領域と、ガラスフィルム1とが重複するように両ガラス1,2を密着させる。 Further, in the glass substrate manufacturing method according to the third embodiment, the support glass 2 is repeatedly used in the glass substrate manufacturing method after the peeling step is completed, as in the first and second embodiments. At this time, at the time of executing the second and subsequent laminate manufacturing steps, the irradiation region 15x of the subsequent pulse laser 15 in the separation start portion forming step performed last time (in this embodiment, the irradiation region 14x of the preceding pulse laser 14). Both glass 1 and 2 are closely_contact | adhered so that the surface area | region of the support glass 2 corresponding to (equal) and the glass film 1 may overlap.
 ここで、具体例を一つ挙げる。図17は、二回目に実行する積層体作製工程を示す平面図である。支持ガラス2は、既に一回の剥離起点部形成工程を経ている。これにより、一回目に実行された剥離起点部形成工程において、後発のパルスレーザー15の照射領域15xに対応した支持ガラス2の表面領域では、当該支持ガラス2に無機膜3が修復されている。この表面領域と、二回目の積層体作製工程に使用されるガラスフィルム1bとが重複するように、支持ガラス2とガラスフィルム1bとを密着させる。なお、この具体例では、ガラスフィルム1bを、照射領域15xに対応した支持ガラス2の表面領域のうち、その中心部2cを避けて支持ガラス2と密着させている。 Here is one specific example. FIG. 17 is a plan view showing a laminate manufacturing process executed for the second time. The supporting glass 2 has already undergone a single peeling start point forming step. Thereby, in the peeling start part forming process performed for the first time, the inorganic film 3 is repaired on the support glass 2 in the surface region of the support glass 2 corresponding to the irradiation region 15x of the subsequent pulse laser 15. The support glass 2 and the glass film 1b are brought into close contact so that the surface region and the glass film 1b used in the second laminate manufacturing process overlap. In this specific example, the glass film 1b is brought into close contact with the support glass 2 while avoiding the central portion 2c of the surface region of the support glass 2 corresponding to the irradiation region 15x.
 以下、上記の第三実施形態に係るガラス基板の製造方法について、その作用・効果を説明する。 Hereinafter, the operation and effect of the glass substrate manufacturing method according to the third embodiment will be described.
 この第三実施形態に係るガラス基板の製造方法によれば、両パルスレーザー14,15が同一のレーザー発振器11から発振されるため、先発のパルスレーザー14と後発のパルスレーザー15とを無機膜3に照射するにあたって、先発のパルスレーザー14用の発振源と後発のパルスレーザー15用の発振源とを別々に準備するような必要がなくなる。そのため、効率的に無機膜3の加工を行うことが可能となる。 According to the glass substrate manufacturing method of the third embodiment, since both pulse lasers 14 and 15 are oscillated from the same laser oscillator 11, the first pulse laser 14 and the subsequent pulse laser 15 are combined with the inorganic film 3. Therefore, it is not necessary to separately prepare an oscillation source for the first pulse laser 14 and an oscillation source for the subsequent pulse laser 15. Therefore, it becomes possible to process the inorganic film 3 efficiently.
 また、両パルスレーザー14,15を、共にガラス基板6における電子デバイス材5が非形成の領域を透過するように照射している。このことから、電子デバイス材5に対してパルスレーザーによる悪影響を与えることなく、両パルスレーザー14,15を無機膜3に照射することができる。さらに、電子デバイス材5にパルスレーザーのエネルギーが吸収されるような事態が生じないため、無機膜3に対して両パルスレーザー14,15のエネルギーを好適に作用させることが可能となる。 Further, both pulse lasers 14 and 15 are irradiated so that the electronic device material 5 on the glass substrate 6 passes through the non-formed region. Therefore, the inorganic film 3 can be irradiated with both pulse lasers 14 and 15 without adversely affecting the electronic device material 5 due to the pulse laser. Furthermore, since the situation where the energy of the pulse laser is absorbed in the electronic device material 5 does not occur, the energy of both pulse lasers 14 and 15 can be suitably applied to the inorganic film 3.
 また、両パルスレーザー14,15の照射スポット14a,15aの面積を、1mm~500mmの範囲内の面積としたことで、剥離起点部形成工程の実行後、後発のパルスレーザー15の照射領域15xに対応する支持ガラス2の表面領域において、無機膜3を平坦な状態に修復しやすくなる。また、支持ガラス2、及びガラス基板6の損傷を可及的に防止することができる。 Further, by setting the areas of the irradiation spots 14a and 15a of the two pulse lasers 14 and 15 within the range of 1 mm 2 to 500 mm 2 , the irradiation area of the subsequent pulse laser 15 after execution of the peeling start point forming step In the surface region of the supporting glass 2 corresponding to 15x, the inorganic film 3 can be easily restored to a flat state. Moreover, damage to the support glass 2 and the glass substrate 6 can be prevented as much as possible.
 また、上記の具体例のように、照射領域15xに対応する支持ガラス2の表面領域のうち、その中心部2cを避けてガラスフィルム1と支持ガラス2とを密着させれば、以下のような作用・効果が得られる。すなわち、照射領域15xの中心部には、両パルスレーザー14,15のエネルギーが最も大きく作用するため、後発のパルスレーザー15の照射後において、支持ガラス2に十分に無機膜3が修復されないおそれがある。しかしながら、照射領域15xに対応する支持ガラス2の表面領域のうち、その中心部2cを避けてガラスフィルム1と支持ガラス2とを密着させておけば、ガラスフィルム1と支持ガラス2とが直接に密着した部位が発生したり、両ガラス1,2の間に気泡が入り込んだりするような事態を確実に防止することが可能となる。 Moreover, if the glass film 1 and the support glass 2 are made to adhere | attach, avoiding the center part 2c among the surface area | regions of the support glass 2 corresponding to the irradiation area | region 15x like said specific example, it is as follows. Action and effect are obtained. That is, since the energy of both pulse lasers 14 and 15 acts the most at the center of the irradiation region 15x, there is a possibility that the inorganic film 3 is not sufficiently repaired on the support glass 2 after the irradiation with the subsequent pulse laser 15. is there. However, if the glass film 1 and the supporting glass 2 are kept in close contact with each other while avoiding the central portion 2c of the surface region of the supporting glass 2 corresponding to the irradiation region 15x, the glass film 1 and the supporting glass 2 are directly attached. It is possible to reliably prevent a situation where a close contact portion is generated or a bubble enters between the two glasses 1 and 2.
 また、二回目以降の積層体作製工程の実行時に、前回実行した剥離起点部形成工程における後発のパルスレーザー15の照射領域15xに対応した支持ガラス2の表面領域と、ガラスフィルム1とが重複するように両ガラス1,2を密着させていることで、以下のような作用・効果をも得ることが可能である。すなわち、この方法では、二回目以降の積層体作製工程において、支持ガラス2とガラスフィルム1との間に介在する無機膜3の中に、前回実行した剥離起点部形成工程で支持ガラス2に修復させた無機膜3が含まれることになる。これにより、支持ガラス2に修復させた無機膜3を無駄なく有効に利用することができる。 Moreover, the surface area | region of the support glass 2 corresponding to the irradiation area | region 15x of the subsequent pulse laser 15 in the peeling starting part formation process performed last time and the glass film 1 overlap at the time of execution of the laminated body manufacturing process after the 2nd time. As described above, by bringing the two glasses 1 and 2 into close contact, the following actions and effects can be obtained. That is, in this method, in the second and subsequent laminate manufacturing steps, the inorganic glass 3 interposed between the supporting glass 2 and the glass film 1 is repaired to the supporting glass 2 in the previously performed peeling starting point forming step. The inorganic film 3 made to be included is included. Thereby, the inorganic film | membrane 3 restored | repaired to the support glass 2 can be utilized effectively without waste.
 ここで、この第三実施形態に係るガラス基板の製造方法の具体例を一つ挙げる。 Here, one specific example of the manufacturing method of the glass substrate according to the third embodiment will be given.
 ガラスフィルム1、及び支持ガラス2として、日本電気硝子社製のOA-10G(無アルカリガラス)を準備した。ガラスフィルム1の厚みは0.2mm、支持ガラス2の厚みは0.5mmである。次に、積層体作製工程を実行し、無機膜3を介して両ガラス1,2を常温下で密着させて積層体4を作製した。次に、処理工程を実行し、ガラスフィルム1に電子デバイス材5を形成することでガラス基板6とした。処理工程の工程温度は300℃とした。 As a glass film 1 and a supporting glass 2, OA-10G (non-alkali glass) manufactured by Nippon Electric Glass Co., Ltd. was prepared. The glass film 1 has a thickness of 0.2 mm, and the support glass 2 has a thickness of 0.5 mm. Next, a laminated body production process was performed, and both glasses 1 and 2 were brought into close contact with each other through the inorganic film 3 at room temperature to produce a laminated body 4. Next, a processing step was performed to form the electronic device material 5 on the glass film 1 to obtain a glass substrate 6. The process temperature of the treatment process was 300 ° C.
 次に、剥離起点部形成工程を実行し、波長が1064nm、パルス幅が5ns、周波数が10Hz、パルスエネルギーが800mJのパルスレーザー16をレーザー発振器11から発振させた。そして、偏光ビームスプリッター18による光路L1,L2の切り替えを行うことで、先発のパルスレーザー14と後発のパルスレーザー15とを無機膜3に照射した。なお、無機膜3としては、厚みが20nmのITO膜(酸化インジウムスズ膜)を使用した。最後に、剥離工程を実行し、吸着パッド8を用いてガラス基板6を支持ガラス2から剥離させた。 Next, a peeling starting point forming step was performed, and a pulse laser 16 having a wavelength of 1064 nm, a pulse width of 5 ns, a frequency of 10 Hz, and a pulse energy of 800 mJ was oscillated from the laser oscillator 11. Then, the inorganic film 3 was irradiated with the first pulse laser 14 and the subsequent pulse laser 15 by switching the optical paths L1 and L2 by the polarization beam splitter 18. As the inorganic film 3, an ITO film (indium tin oxide film) having a thickness of 20 nm was used. Finally, the peeling process was performed and the glass substrate 6 was peeled from the support glass 2 using the suction pad 8.
 剥離工程を実行した後、同一の支持ガラス2を再び使用して、二回目の積層体作製工程、処理工程、剥離起点部形成工程、及び剥離工程を一回目と同条件で実行した。そして、一回目の剥離起点部形成工程における支持ガラス2への無機膜3の修復の可否と、一回目及び二回目の剥離工程におけるガラス基板6の支持ガラス2からの剥離の可否について検証した。検証の結果、一回目の剥離起点部形成工程において、支持ガラス2への無機膜3の修復を良好に実行することが可能であった。また、一回目及び二回目の剥離工程において、ガラス基板6の支持ガラス2からの剥離を良好に実行することができた。 After executing the peeling step, the same support glass 2 was used again, and the second laminate manufacturing step, the processing step, the peeling start point forming step, and the peeling step were executed under the same conditions as the first time. Then, whether the inorganic film 3 was repaired on the supporting glass 2 in the first peeling starting point forming step and whether the glass substrate 6 was peeled from the supporting glass 2 in the first and second peeling steps were verified. As a result of the verification, it was possible to satisfactorily execute the repair of the inorganic film 3 on the supporting glass 2 in the first peeling starting point forming step. Moreover, in the 1st time and the 2nd peeling process, peeling from the support glass 2 of the glass substrate 6 was able to be performed favorably.
 ここで、本発明に係るガラス基板の製造方法は、上記の各実施形態で説明した態様に限定されるものではない。上記の第一実施形態では、パルスレーザーを支持ガラス側から照射しているが、ガラス基板側から照射してもよい。この場合、パルスレーザーの照射元側に位置するガラス基板は、照射先側に位置する支持ガラスと比較して、より多くのエネルギーを吸収する。これにより、ガラス基板の一部と無機膜とが共にプラズマ化して、支持ガラスへと付着することになる。従って、このようにした場合には、支持ガラスの厚みが薄肉化されることが回避されるため、当該支持ガラスの面強度の低下を防止することができ、支持ガラスを繰り返し使用する上で有利となる。 Here, the manufacturing method of the glass substrate which concerns on this invention is not limited to the aspect demonstrated by said each embodiment. In said 1st embodiment, although the pulse laser is irradiated from the support glass side, you may irradiate from the glass substrate side. In this case, the glass substrate positioned on the irradiation source side of the pulse laser absorbs more energy than the supporting glass positioned on the irradiation destination side. Thereby, a part of the glass substrate and the inorganic film are both turned into plasma and adhere to the supporting glass. Therefore, in this case, since the thickness of the supporting glass is avoided from being reduced, it is possible to prevent the surface strength of the supporting glass from being lowered, and it is advantageous in repeatedly using the supporting glass. It becomes.
 また、上記の各実施形態では、無機膜を均一な厚みで形成しているが、この限りではない。例えば、無機膜全体のうち、剥離起点部形成工程におけるパルスレーザーの照射領域に対応する部位のみを、他の部位よりも薄くしてもよいし、逆に厚くしてもよい。さらに、上記の各実施形態では、支持ガラスにおける密着側面の全面に無機膜を形成しているが、この限りではなく、密着側面の一部の領域にのみ無機膜を形成してもよい。例えば、密着側面のうち、剥離起点部形成工程におけるパルスレーザー(第一及び第二のパルスレーザー、先発及び後発のパルスレーザー)の照射領域に対応する領域にのみ無機膜を形成してもよい。これらのことは、支持ガラスの密着側面に無機膜を形成する場合のみならず、上記の第一、第二実施形態の変形例として、ガラスフィルムの密着側面に無機膜を形成する場合においても同様である。 In each of the above embodiments, the inorganic film is formed with a uniform thickness, but this is not restrictive. For example, in the entire inorganic film, only the portion corresponding to the pulse laser irradiation region in the peeling start point forming step may be thinner than the other portions, or conversely thick. Further, in each of the above embodiments, the inorganic film is formed on the entire surface of the supporting glass in the close contact side. However, the present invention is not limited to this, and the inorganic film may be formed only in a partial region of the close contact side. For example, the inorganic film may be formed only in the region corresponding to the irradiation region of the pulse laser (first and second pulse lasers, first and second pulse lasers) in the peeling start point forming step on the adhesion side surface. The same applies not only when the inorganic film is formed on the adhesion side surface of the supporting glass, but also when the inorganic film is formed on the adhesion side surface of the glass film as a modification of the first and second embodiments. It is.
 また、上記の各実施形態では、光吸収層として無機膜を用いているが、必ずしもこの限りではない。光吸収層としては有機膜を用いてもよいし、無機膜と有機膜とを重ね合わせた二層からなる膜を用いてもよい。さらに、異なる二種の無機膜同士、或いは、有機膜同士を重ね合わせた二層からなる膜を用いてもよい。これらの場合、一層目の膜と二層目の膜とが、同一の面積を有していなくともよい。一例を挙げると、支持ガラスにおける密着側面の全面に無機膜(有機膜)を形成した後、当該無機膜(有機膜)の表面における一部の領域にのみ有機膜、或いは、無機膜を形成してもよい。なお、これらのことは、支持ガラスの密着側面に膜を形成する場合のみならず、上記の第一、第二実施形態の変形例として、ガラスフィルムの密着側面に膜を形成する場合においても同様である。 In each of the above embodiments, an inorganic film is used as the light absorption layer, but this is not necessarily the case. As the light absorption layer, an organic film may be used, or a two-layer film in which an inorganic film and an organic film are stacked may be used. Furthermore, two different kinds of inorganic films or a film composed of two layers in which organic films are stacked may be used. In these cases, the first layer film and the second layer film may not have the same area. For example, after an inorganic film (organic film) is formed on the entire surface of the adhesion glass in the supporting glass, an organic film or an inorganic film is formed only on a part of the surface of the inorganic film (organic film). May be. In addition, these things are the same not only when forming a film on the adhesion side surface of the supporting glass but also when forming a film on the adhesion side surface of the glass film as a modification of the first and second embodiments. It is.
 また、上記の第一実施形態では、光軸が積層体の厚み方向に沿って延びるようにパルスレーザーを照射しているが、積層体の厚み方向に対して傾斜した方向に光軸が延びるようにパルスレーザーを照射してもよい。さらに、パルスレーザーの照射領域の形状としては、上記の第一実施形態のような正方形に限らず、任意の形状としてよい。例えば、円形や楕円形であってもよいし、長方形や多角形であってもよい。加えて、パルスレーザーを走査させる走査経路は、図5に示した走査経路に限らず、任意の走査経路としてよい。例えば、渦巻き状の走査経路に沿って走査させてもよいし、ジグザグな走査経路に沿って走査させてもよい。さらには、上記の第一実施形態では、パルスレーザーの照射ピッチを一定としているが、一定でなくともよい。また、上記の各実施形態では、剥離起点部をガラス基板のコーナー部に形成しているが、任意の位置に形成してよい。例えば、矩形のガラス基板の外周端部のうち、一の辺部に沿った領域をパルスレーザー(第一及び第二のパルスレーザー、先発及び後発のパルスレーザー)の照射領域とし、当該辺部に沿って剥離起点部を形成してもよい。加熱を伴う処理工程を実行した場合に、積層体が均一に加熱されたとしても、ガラス基板の辺部(特に外周輪郭から30mm程度内側の部位)においては、中央部よりも支持ガラスとガラス基板との密着力が大きくなりやすい傾向がある。そのため、辺部に沿って剥離起点部を形成しておけば、支持ガラスからガラス基板を剥離させるのに極めて有効である。さらに、上記の第一実施形態では、ガルバノミラーとf-θレンズとによってパルスレーザーを照射しているが、例えば、ポリゴンミラーを使用してもよいし、空間光変調器等によって多点同時照射を行ってもよい。 In the first embodiment described above, the pulse laser is irradiated so that the optical axis extends along the thickness direction of the laminate, but the optical axis extends in a direction inclined with respect to the thickness direction of the laminate. May be irradiated with a pulsed laser. Furthermore, the shape of the irradiation region of the pulse laser is not limited to the square as in the first embodiment, and may be an arbitrary shape. For example, it may be a circle or an ellipse, or may be a rectangle or a polygon. In addition, the scanning path for scanning with the pulse laser is not limited to the scanning path shown in FIG. 5 and may be an arbitrary scanning path. For example, scanning may be performed along a spiral scanning path, or scanning may be performed along a zigzag scanning path. Furthermore, in said 1st embodiment, although the irradiation pitch of a pulse laser is constant, it does not need to be constant. In each of the above embodiments, the peeling start point is formed at the corner of the glass substrate, but may be formed at an arbitrary position. For example, an area along one side of the outer peripheral edge of the rectangular glass substrate is an irradiation area of a pulse laser (first and second pulse lasers, first and second pulse lasers), and the side is A separation starting point portion may be formed along. Even when the laminated body is heated uniformly when a processing step involving heating is performed, the supporting glass and the glass substrate are located at the side of the glass substrate (especially the portion about 30 mm inside from the outer contour) rather than the central portion. There is a tendency for the adhesive strength to increase easily. Therefore, if the peeling starting point is formed along the side, it is extremely effective for peeling the glass substrate from the supporting glass. Furthermore, in the first embodiment described above, the pulse laser is irradiated by the galvanometer mirror and the f-θ lens. However, for example, a polygon mirror may be used, or multipoint simultaneous irradiation by a spatial light modulator or the like. May be performed.
 また、上記の第二実施形態では、第一のパルスレーザーの照射スポットと第二のパルスレーザーの照射スポットとの一部が重複するように、両パルスレーザーの照射スポットを形成しているが、この限りではない。両照射スポットが略完全に重複するように、両照射スポットを形成する態様としてもよい。この場合、第一のパルスレーザーの照射スポットと、第二のパルスレーザーの照射スポットと、重複照射スポットとの面積が略等しくなる。 In the second embodiment, the irradiation spots of both pulse lasers are formed so that a part of the irradiation spot of the first pulse laser and the irradiation spot of the second pulse laser overlap. This is not the case. It is good also as an aspect which forms both irradiation spots so that both irradiation spots may overlap substantially completely. In this case, the areas of the irradiation spot of the first pulse laser, the irradiation spot of the second pulse laser, and the overlapping irradiation spot are substantially equal.
 また、上記の第二実施形態では、第一のパルスレーザーを支持ガラス側から照射すると共に、第二のパルスレーザーをガラス基板側から照射する態様となっているが、この限りではない。例えば、両パルスレーザーを、共に支持ガラス側から、或いは、ガラス基板側から照射する態様としてもよい。さらに、第一及び第二のパルスレーザーの二つのみでなく、さらに多数のパルスレーザーを無機膜に照射する態様としてもよい。例えば、新たに第三のパルスレーザーを無機膜に照射する場合には、積層体を透過した第二のパルスレーザーをミラーで積層体に向かって反射させることで、第三のパルスレーザーを発生させてもよい。この場合においても、第三のパルスレーザーの照射スポットの少なくとも一部が、第一及び第二のパルスレーザーの照射スポットと重複するように、第三のパルスレーザーを照射する。同様にして、新たに第四のパルスレーザーを無機膜に照射する場合には、積層体を透過した第三のパルスレーザーをミラーで積層体に向かって反射させることで、第四のパルスレーザーを発生させてもよい。このように反射させたパルスレーザー繰り返し無機膜に照射すれば、当該パルスレーザーのエネルギーを効率よく使うことが可能となる。尚、直線偏光を有する複数のパルスレーザーを用いる場合であっても、3つ以上のパルスレーザーを反射させることで同時に照射した場合は、千鳥のドット状に凸部が形成される傾向にあり、パルスレーザーの照射数に応じた特有の周期パターンが形成される。 In the second embodiment, the first pulse laser is irradiated from the support glass side and the second pulse laser is irradiated from the glass substrate side, but this is not restrictive. For example, both pulse lasers may be irradiated from the supporting glass side or from the glass substrate side. Furthermore, it is good also as an aspect which irradiates not only two of the 1st and 2nd pulse lasers but more many pulse lasers to an inorganic film | membrane. For example, when the inorganic film is irradiated with a new third pulse laser, the third pulse laser is generated by reflecting the second pulse laser that has passed through the laminate toward the laminate with a mirror. May be. Also in this case, the third pulse laser is irradiated so that at least a part of the irradiation spot of the third pulse laser overlaps with the irradiation spots of the first and second pulse lasers. Similarly, when the inorganic film is irradiated with a new fourth pulse laser, the fourth pulse laser is reflected by reflecting the third pulse laser that has passed through the laminate to the laminate with a mirror. It may be generated. If the thus-reflected pulse laser is repeatedly irradiated to the inorganic film, the energy of the pulse laser can be used efficiently. In addition, even when using a plurality of pulsed lasers having linearly polarized light, if three or more pulsed lasers are reflected simultaneously, the projections tend to be formed in a staggered dot shape, A peculiar periodic pattern corresponding to the number of pulse laser irradiations is formed.
 また、上記の第二実施形態では、第一のパルスレーザーと第二のパルスレーザーとを同一のレーザー発振器から発振させ、第三実施形態では、先発のパルスレーザーと後発のパルスレーザーとを同一のレーザー発振器から発振させているが、これらを別々のレーザー発振器から発振させてもよい。しかしながら、この場合においても、相互にコヒーレントなパルスレーザーを無機膜に照射することが好ましい。また、上記の第二、及び第三実施形態では、各パルスレーザーの偏光を直線偏光としているが、例えば、円偏光、楕円偏光、ラジアル偏光、アジマス偏光等としてもよい。 In the second embodiment, the first pulse laser and the second pulse laser are oscillated from the same laser oscillator. In the third embodiment, the first pulse laser and the second pulse laser are the same. Although oscillating from a laser oscillator, these may be oscillated from separate laser oscillators. However, even in this case, it is preferable to irradiate the inorganic film with mutually coherent pulse lasers. Moreover, in said 2nd and 3rd embodiment, although polarized light of each pulse laser is made into linearly polarized light, it is good also as circularly polarized light, elliptically polarized light, radial polarized light, azimuth polarized light etc., for example.
 また、上記の第三実施形態では、剥離起点部形成工程において、先発及び後発のパルスレーザーの照射領域に対応するガラス基板の部位に対し、支持ガラスから離間する方向への変位を規制してもよい。変位の規制するための態様の一例としては、ガラス基板の上にガラス板を載置し、当該ガラス板の自重によってガラス基板を支持ガラスに押し付けるような態様を挙げることができる。このようにすれば、ガラス基板が破損してしまうような恐れを的確に排除することが可能となる。同様の態様により、上記の第二実施形態の剥離起点部形成工程において、第一及び第二のパルスレーザーの重複照射スポットによる照射領域に対応するガラス基板の部位に対し、支持ガラスから離間する方向への変位を規制してもよい(三以上のパルスレーザーによって重複照射スポットを形成する場合も同じ)。このようにすれば、上記の第三実施形態の剥離起点部形成工程において変位の規制を実行した場合と同様に、ガラス基板が破損してしまうような恐れを的確に排除することができる。なお、この変位の規制は、重複照射スポットの面積が20mm以上である場合に実行することが好ましい。ここで、「重複照射スポットによる照射領域に対応するガラス基板の部位」とは、剥離起点部形成工程の実行時に、平面視で重複照射スポットによる照射領域と重なるガラス基板の部位を意味する。 Moreover, in said 3rd embodiment, even if it controls the displacement to the direction away from a support glass with respect to the site | part of the glass substrate corresponding to the irradiation area | region of the starting and subsequent pulse laser in a peeling starting part formation process. Good. As an example of the mode for regulating displacement, there can be mentioned a mode in which a glass plate is placed on a glass substrate and the glass substrate is pressed against the supporting glass by its own weight. In this way, it is possible to accurately eliminate the fear that the glass substrate will be damaged. In the same manner, in the separation starting point forming step of the second embodiment, the direction away from the support glass with respect to the portion of the glass substrate corresponding to the irradiation region by the overlapping irradiation spots of the first and second pulse lasers The displacement may be restricted (the same applies when overlapping irradiation spots are formed by three or more pulse lasers). In this way, the possibility that the glass substrate may be damaged can be accurately eliminated, as in the case where displacement is regulated in the separation starting point forming step of the third embodiment. Note that this displacement regulation is preferably executed when the area of the overlapping irradiation spot is 20 mm 2 or more. Here, “the part of the glass substrate corresponding to the irradiation region by the overlapping irradiation spot” means the part of the glass substrate that overlaps with the irradiation region by the overlapping irradiation spot in plan view when the peeling start point forming step is executed.
 なお、本発明に係るガラス基板の製造方法は、例えば、以下のような場合にも適用することができる。すなわち、液晶パネルを製造する際に、液晶を封入するためのシール部材を挟んで二枚のガラス基板が貼り合わされるように、二つの積層体を対向させた後、両積層体の各々について、支持ガラス側を吸着し、当該支持ガラスからガラス基板を剥離させるような場合に適用することが可能である。 In addition, the manufacturing method of the glass substrate which concerns on this invention is applicable also in the following cases, for example. That is, when manufacturing the liquid crystal panel, after facing the two laminated bodies so that the two glass substrates are bonded together with a sealing member for enclosing the liquid crystal, each of the two laminated bodies, It can be applied to the case where the supporting glass side is adsorbed and the glass substrate is peeled off from the supporting glass.
 ここで、本発明に係る電子デバイスについても、上記の実施形態で説明した構成に限定されるものではない。上記の実施形態では、電子デバイスに備わったガラス基板において、無機膜で構成された凸部が周期的に形成されているが、この限りではなく、凸部が周期的に形成されていない箇所が含まれていてもよい。このようなガラス基板は、上記の第二実施形態に係るガラス基板の製造方法において、重複照射スポットを形成する領域に微細なパーティクルが付着したガラスフィルムを用いた場合等に製造することが可能である。そして、このガラス基板を備えた電子デバイスにおいては、パーティクルと凸部との位置関係でも識別可能となり、この電子デバイスについて個体の識別性をさらに高めることができる。 Here, the electronic device according to the present invention is not limited to the configuration described in the above embodiment. In the above embodiment, in the glass substrate provided in the electronic device, the convex portion formed of the inorganic film is periodically formed. However, this is not the only case, and there is a portion where the convex portion is not periodically formed. It may be included. Such a glass substrate can be manufactured, for example, in the case of using a glass film having fine particles attached to a region where an overlapping irradiation spot is formed in the glass substrate manufacturing method according to the second embodiment. is there. And in an electronic device provided with this glass substrate, it becomes discriminable also by the positional relationship of a particle and a convex part, and individual discernibility can be further raised about this electronic device.
 本発明の実施例として、上記の第一実施形態に係るガラス基板の製造方法を、下記の各実施条件の下で実施し、支持ガラスからのガラス基板の剥離の可否について検証を行った。なお、実施例については五つの条件の下で検証を行い、比較例については一つの条件の下でのみ検証を行った。 As an example of the present invention, the method for producing a glass substrate according to the first embodiment was performed under the following conditions, and the possibility of peeling of the glass substrate from the supporting glass was verified. The example was verified under five conditions, and the comparative example was verified only under one condition.
 以下、実施例1~5の全てに共通する実施条件について説明する。ガラスフィルム、及び支持ガラスとして、日本電気硝子社製のOA-10G(無アルカリガラス)を準備した。ガラスフィルムの厚みは0.2mm、支持ガラスの厚みは0.5mmである。次に、積層体作製工程として、無機膜を介して両ガラスを常温下で密着させ、積層体を作製した。次に、処理工程を実行した。なお、処理工程では、電子デバイス材の形成を省略しており、その代替として、電子デバイス材を形成する場合の温度変化を積層体に与えるべく当該積層体の加熱を行うと共に、レジストインクの塗布、硬化、除去を行っている。レジストインクは加熱後の積層体に塗布し、オーブンで乾燥させた後、UV光を照射することで硬化させた。さらに、レジスト剥離剤を用いることで硬化したレジストを除去した。次に、剥離起点部形成工程として、ガルバノミラーとf-θレンズとによって、パルスレーザーを無機膜に集光させて照射した。最後に、剥離工程として、複数の吸着パッドによってガラス基板を吸着し、支持ガラスからのガラス基板の剥離を試みた。 Hereinafter, implementation conditions common to all of Examples 1 to 5 will be described. OA-10G (non-alkali glass) manufactured by Nippon Electric Glass Co., Ltd. was prepared as a glass film and supporting glass. The glass film has a thickness of 0.2 mm, and the supporting glass has a thickness of 0.5 mm. Next, as a laminated body production process, both glasses were brought into close contact with each other through an inorganic film at room temperature to produce a laminated body. Next, a processing step was performed. In the processing step, the formation of the electronic device material is omitted, and as an alternative, the laminated body is heated to apply a temperature change to the laminated body when the electronic device material is formed, and the resist ink is applied. , Curing and removal. The resist ink was applied to the heated laminate, dried in an oven, and then cured by irradiation with UV light. Furthermore, the hardened resist was removed by using a resist remover. Next, as the separation starting point forming step, a pulse laser was condensed on the inorganic film and irradiated by a galvanometer mirror and an f-θ lens. Finally, as a peeling process, the glass substrate was adsorbed by a plurality of suction pads, and an attempt was made to peel the glass substrate from the supporting glass.
 以下、実施例1~5のそれぞれに固有の実施条件について説明する。実施例1~5において、(1)ガラスフィルムと支持ガラスとの間に介在させた無機膜の種類と、(2)無機膜の厚みと、(3)処理工程における工程温度(積層体の加熱温度)と、(4)パルスレーザーの照射条件との四点については、それぞれに固有の実施条件とした。(1)~(3)の実施条件については、下記の〔表1〕に示すとおりである。(4)について、実施例1~4では、パルスレーザーの波長は532nm、パルス幅は20ps、周波数は100kHz、パルスエネルギーは7μJ、照射領域が形作る正方形の一辺の長さは10mm、照射ピッチは10μm、焦点距離は160mmとした。実施例5では、パルスレーザーの波長は1552nm、パルス幅は800fs、周波数は100kHz、パルスエネルギーは4μJ、照射領域が形作る正方形の一辺の長さは10mm、照射ピッチは20μm、焦点距離は100mmとした。 Hereinafter, the implementation conditions unique to each of Examples 1 to 5 will be described. In Examples 1 to 5, (1) the kind of inorganic film interposed between the glass film and the supporting glass, (2) the thickness of the inorganic film, and (3) the process temperature in the treatment step (heating of the laminate) The four points of (temperature) and (4) pulse laser irradiation conditions were set as specific implementation conditions. The implementation conditions (1) to (3) are as shown in [Table 1] below. Regarding (4), in Examples 1 to 4, the wavelength of the pulse laser is 532 nm, the pulse width is 20 ps, the frequency is 100 kHz, the pulse energy is 7 μJ, the length of one side of the square formed by the irradiation region is 10 mm, and the irradiation pitch is 10 μm. The focal length was 160 mm. In Example 5, the wavelength of the pulse laser was 1552 nm, the pulse width was 800 fs, the frequency was 100 kHz, the pulse energy was 4 μJ, the length of one side of the square formed by the irradiation region was 10 mm, the irradiation pitch was 20 μm, and the focal length was 100 mm. .
 以下、比較例の実施条件について説明する。比較例の実施条件が、実施例1~5の実施条件と異なっている点は、(1)ガラスフィルムと支持ガラスとの間に無機膜を介在させていない点と、(2)積層体作製工程と処理工程とを実施した後、剥離起点部形成工程を実施せずに、剥離工程を実施している点との二点である。なお、比較例における処理工程の工程温度(積層体の加熱温度)は300℃とした。 Hereinafter, the implementation conditions of the comparative example will be described. The implementation conditions of the comparative example differ from the implementation conditions of Examples 1 to 5 in that (1) no inorganic film is interposed between the glass film and the supporting glass, and (2) laminate production After implementing a process and a process process, it is two points with the point which is implementing the peeling process, without implementing the peeling origin part formation process. In addition, the process temperature (heating temperature of a laminated body) of the process process in a comparative example was 300 degreeC.
 〔表1〕に、実施例1~5及び比較例において、支持ガラスからのガラス基板の剥離の可否について検証を行った結果を示す。なお、〔表1〕における膜の種類の項目で、括弧書きで示す値は、無機膜の厚みを表している。また、レーザー照射の項目で、括弧書きで示す値は、パルスレーザーのパルス幅を表している。 [Table 1] shows the results of verifying whether the glass substrate can be peeled from the supporting glass in Examples 1 to 5 and Comparative Example. In Table 1, the value shown in parentheses in the item of film type represents the thickness of the inorganic film. In the laser irradiation item, the value shown in parentheses represents the pulse width of the pulse laser.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔表1〕の結果から、実施例1~5においては、比較例とは異なり、良好な結果が得られていることが分かる。以上のことから、本発明に係るガラス基板の製造方法によれば、ガラス基板の支持ガラスからの円滑な剥離が可能となるものと推認される。 From the results of [Table 1], it can be seen that in Examples 1 to 5, good results were obtained unlike the comparative examples. From the above, it is presumed that according to the method for producing a glass substrate according to the present invention, the glass substrate can be smoothly peeled from the supporting glass.
 1        ガラスフィルム
 2        支持ガラス
 2ax,2bx  支持ガラスの表面領域
 2y       支持ガラスの表面領域
 3        無機膜
 3z       凸部
 4        積層体
 5        電子デバイス材
 6        ガラス基板
 6x       剥離起点部
 6a       ガラス基板の外周端部
 7        パルスレーザー
 7x       照射領域
 9        第一のパルスレーザー
 9a       第一のパルスレーザーの照射スポット
 10       第二のパルスレーザー
 10a      第二のパルスレーザーの照射スポット
 Z        重複照射スポット
 11       レーザー照射器
 14       先発のパルスレーザー
 14a      先発のパルスレーザーの照射スポット
 14x      先発のパルスレーザーの照射領域
 15       後発のパルスレーザー
 15a      後発のパルスレーザーの照射スポット
 15x      後発のパルスレーザーの照射領域
 T        被照射領域
 W1       凸部の幅
 W2       隙間の幅
 PT       形成ピッチ
DESCRIPTION OF SYMBOLS 1 Glass film 2 Support glass 2ax, 2bx Support glass surface area 2y Support glass surface area 3 Inorganic film 3z Convex part 4 Laminated body 5 Electronic device material 6 Glass substrate 6x Peeling origin part 6a Outer edge part of glass substrate 7 Pulse laser 7x irradiation region 9 first pulse laser 9a first pulse laser irradiation spot 10 second pulse laser 10a second pulse laser irradiation spot Z overlap irradiation spot 11 laser irradiator 14 first pulse laser 14a first pulse Laser irradiation spot 14x First pulse laser irradiation region 15 Subsequent pulse laser 15a Subsequent pulse laser irradiation spot 15x Width PT formation pitch width W2 gap irradiated region T irradiated region W1 protrusion of the origination of the pulsed laser

Claims (19)

  1.  可撓性を有するガラスフィルムと、該ガラスフィルムを支持する支持ガラスとを、光吸収層を介して相互に密着させた積層体を作製する積層体作製工程と、
     前記積層体における前記ガラスフィルムに電子デバイス材を形成して、該ガラスフィルムをガラス基板とする処理工程と、
     前記支持ガラスから前記ガラス基板の全体を剥離させる剥離工程とを含んだガラス基板の製造方法であって、
     前記処理工程の実行後で、且つ前記剥離工程の実行前に、前記光吸収層にパルスレーザーを照射して、その照射領域で前記支持ガラスから前記ガラス基板の一部を剥離させることで、前記剥離工程の起点となる剥離起点部を形成する剥離起点部形成工程を実行することを特徴とするガラス基板の製造方法。
    A laminate production step of producing a laminate in which a flexible glass film and a supporting glass supporting the glass film are adhered to each other via a light absorption layer;
    Forming an electronic device material on the glass film in the laminate, and processing the glass film as a glass substrate,
    A method for producing a glass substrate including a peeling step of peeling the entire glass substrate from the supporting glass,
    After the execution of the processing step and before the peeling step, the light absorption layer is irradiated with a pulse laser, and a part of the glass substrate is peeled off from the support glass in the irradiation region. The manufacturing method of the glass substrate characterized by performing the peeling starting point part formation process which forms the peeling starting point part used as the starting point of a peeling process.
  2.  前記光吸収層が無機膜で構成されていることを特徴とする請求項1に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 1, wherein the light absorption layer is composed of an inorganic film.
  3.  前記パルスレーザーの照射領域を前記ガラス基板の外周端部に沿った領域とすることを特徴とする請求項1又は2に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 1 or 2, wherein an irradiation region of the pulse laser is a region along an outer peripheral edge of the glass substrate.
  4.  前記ガラス基板が矩形の形状を有し、
     前記剥離起点部を前記ガラス基板のコーナー部に形成することを特徴とする請求項1~3のいずれかに記載のガラス基板の製造方法。
    The glass substrate has a rectangular shape;
    The method for producing a glass substrate according to any one of claims 1 to 3, wherein the separation starting point is formed at a corner of the glass substrate.
  5.  前記パルスレーザーを前記支持ガラス側から照射することを特徴とする請求項1~4のいずれかに記載のガラス基板の製造方法。 The method for producing a glass substrate according to any one of claims 1 to 4, wherein the pulse laser is irradiated from the supporting glass side.
  6.  前記パルスレーザーのパルス幅を500ps以下とすることを特徴とする請求項1~5のいずれかに記載のガラス基板の製造方法。 The method for producing a glass substrate according to any one of claims 1 to 5, wherein a pulse width of the pulse laser is set to 500 ps or less.
  7.  同一の前記支持ガラスを繰り返し使用して、請求項1~6のいずれかに記載のガラス基板の製造方法を複数回繰り返すと共に、
     二回目以降の前記積層体作製工程の実行時に、前回以前に実行した前記剥離起点部形成工程における前記パルスレーザーの照射領域に対応した前記支持ガラスの表面領域と、前記ガラスフィルムとが重複しないように両ガラスを密着させることを特徴とするガラス基板の製造方法。
    While repeatedly using the same supporting glass, the method for producing a glass substrate according to any one of claims 1 to 6 is repeated a plurality of times,
    At the time of executing the laminate manufacturing process for the second and subsequent times, the glass film does not overlap with the surface area of the support glass corresponding to the irradiation area of the pulse laser in the peeling start point forming process executed before the previous time. A method for producing a glass substrate, wherein both glasses are brought into close contact with each other.
  8.  前記剥離起点部形成工程において、前記光吸収層に複数のパルスレーザーを照射すると共に、これらの照射スポットの少なくとも一部が重複した重複照射スポットを形成することを特徴とする請求項1~4のいずれかに記載のガラス基板の製造方法。 5. The method according to claim 1, wherein, in the separation starting portion forming step, the light absorption layer is irradiated with a plurality of pulse lasers, and at least a part of these irradiation spots overlaps to form an overlapping irradiation spot. The manufacturing method of the glass substrate in any one.
  9.  前記複数のパルスレーザーを同一の発振源から発振させることを特徴とする請求項8に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 8, wherein the plurality of pulse lasers are oscillated from the same oscillation source.
  10.  前記複数のパルスレーザーは、前記支持ガラス側から照射される第一のパルスレーザーと、前記ガラス基板側から照射される第二のパルスレーザーとを含み、
     前記第一のパルスレーザーと前記第二のパルスレーザーとのうち、一方のパルスレーザーを、前記積層体を透過した他方のパルスレーザーを該積層体に向かって反射させることで発生させることを特徴とする請求項9に記載のガラス基板の製造方法。
    The plurality of pulse lasers include a first pulse laser irradiated from the support glass side and a second pulse laser irradiated from the glass substrate side,
    One of the first pulse laser and the second pulse laser is generated by reflecting the other pulse laser transmitted through the laminate toward the laminate. The manufacturing method of the glass substrate of Claim 9.
  11.  同一の前記支持ガラスを繰り返し使用して、請求項8~10のいずれかに記載のガラス基板の製造方法を複数回繰り返すと共に、
     二回目以降の前記積層体作製工程の実行時に、前回以前に実行した前記剥離起点部形成工程における前記重複照射スポットによる照射領域に対応した前記支持ガラスの表面領域と、前記ガラスフィルムとが重複しないように両ガラスを密着させることを特徴とするガラス基板の製造方法。
    While repeatedly using the same supporting glass, the method for producing a glass substrate according to any one of claims 8 to 10 is repeated a plurality of times,
    At the time of executing the laminate manufacturing process after the second time, the glass film does not overlap with the surface area of the supporting glass corresponding to the irradiation area by the overlapping irradiation spot in the peeling start point forming process executed before the previous time. A method for producing a glass substrate, characterized in that both glasses are brought into close contact with each other.
  12.  前記光吸収層を前記支持ガラスに形成すると共に、
     前記剥離起点部形成工程において、前記光吸収層に前記パルスレーザーを先発のパルスレーザーとして前記支持ガラス側から照射した後、さらに、前記先発のパルスレーザーの照射領域に対して、前記ガラス基板側から後発のパルスレーザーを照射することを特徴とする請求項1~4のいずれかに記載のガラス基板の製造方法。
    While forming the light absorption layer on the support glass,
    In the peeling start point forming step, after the pulse laser is irradiated to the light absorption layer as a starting pulse laser from the supporting glass side, further, from the glass substrate side to the irradiation region of the starting pulse laser. The method for producing a glass substrate according to any one of claims 1 to 4, wherein a subsequent pulse laser is irradiated.
  13.  前記先発のパルスレーザーと前記後発のパルスレーザーとを、同一の発振源から発振させることを特徴とする請求項12に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 12, wherein the first pulse laser and the second pulse laser are oscillated from the same oscillation source.
  14.  前記先発のパルスレーザーと前記後発のパルスレーザーとを、前記ガラス基板における前記電子デバイス材が非形成の領域を透過するように照射することを特徴とする請求項12又は13に記載のガラス基板の製造方法。 14. The glass substrate according to claim 12, wherein the first pulse laser and the subsequent pulse laser are irradiated so that the electronic device material in the glass substrate passes through a non-formation region. Production method.
  15.  前記先発のパルスレーザーの照射スポットと前記後発のパルスレーザーの照射スポットとを、それぞれ1mm~500mmの範囲内の面積とすることを特徴とする請求項12~14のいずれかに記載のガラス基板の製造方法。 Glass according to any one of claims 12 to 14, characterized in that the area within the range irradiated with the spot of 1 mm 2 ~ 500 mm 2 each pulse laser irradiation spot and the subsequent pulse laser of the starting A method for manufacturing a substrate.
  16.  前記剥離起点部形成工程において、前記先発のパルスレーザーの照射領域に対応する前記ガラス基板の部位、及び、前記後発のパルスレーザーの照射領域に対応する前記ガラス基板の部位に対し、前記支持ガラスから離間する方向への変位を規制することを特徴とする請求項15に記載のガラス基板の製造方法。 In the peeling starting point forming step, from the support glass, the part of the glass substrate corresponding to the irradiation region of the preceding pulse laser and the part of the glass substrate corresponding to the irradiation region of the subsequent pulse laser. The method for manufacturing a glass substrate according to claim 15, wherein displacement in the direction of separation is restricted.
  17.  同一の前記支持ガラスを繰り返し使用して、請求項12~16のいずれかに記載のガラス基板の製造方法を複数回繰り返すと共に、
     二回目以降の前記積層体作製工程の実行時に、前回実行した前記剥離起点部形成工程における前記後発のパルスレーザーの照射領域に対応した前記支持ガラスの表面領域と、前記ガラスフィルムとが重複するように両ガラスを密着させることを特徴とするガラス基板の製造方法。
    The same supporting glass is repeatedly used, and the method for producing a glass substrate according to any one of claims 12 to 16 is repeated a plurality of times,
    At the time of executing the laminate manufacturing process for the second and subsequent times, the glass film overlaps with the surface area of the support glass corresponding to the irradiation area of the subsequent pulse laser in the peeling start point forming process executed last time. A method for producing a glass substrate, wherein both glasses are brought into close contact with each other.
  18.  ガラスフィルムに電子デバイス材が形成されてなるガラス基板を備えた電子デバイスであって、
     前記ガラスフィルムが、その表裏両側からパルスレーザーを照射された被照射領域を有し、該被照射領域に、膜で構成された複数の凸部が形成されていることを特徴とする電子デバイス。
    An electronic device comprising a glass substrate in which an electronic device material is formed on a glass film,
    An electronic device, wherein the glass film has an irradiated region irradiated with a pulse laser from both front and back sides, and a plurality of convex portions made of a film are formed in the irradiated region.
  19.  前記複数の凸部は、並列に形成されており、
     前記凸部の幅、及び隣り合う前記凸部の相互間に形成される隙間の幅がそれぞれ0.1μm~20μmで、且つ、前記複数の凸部の形成ピッチが0.2μm~40μmで、且つ、前記被照射領域に占める前記凸部の形成された領域の面積が10%以上であることを特徴とする請求項18に記載の電子デバイス。
    The plurality of convex portions are formed in parallel,
    The width of the convex portions and the width of the gap formed between the adjacent convex portions are each 0.1 μm to 20 μm, and the formation pitch of the plurality of convex portions is 0.2 μm to 40 μm, and 19. The electronic device according to claim 18, wherein an area of the region where the protrusion is formed in the irradiated region is 10% or more.
PCT/JP2015/064937 2014-05-28 2015-05-25 Method for manufacturing glass substrate and electronic device WO2015182558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016523486A JPWO2015182558A1 (en) 2014-05-28 2015-05-25 Manufacturing method of glass substrate and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-110183 2014-05-28
JP2014110183 2014-05-28
JP2014228972 2014-11-11
JP2014-228972 2014-11-11

Publications (1)

Publication Number Publication Date
WO2015182558A1 true WO2015182558A1 (en) 2015-12-03

Family

ID=54698885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064937 WO2015182558A1 (en) 2014-05-28 2015-05-25 Method for manufacturing glass substrate and electronic device

Country Status (3)

Country Link
JP (1) JPWO2015182558A1 (en)
TW (1) TW201601925A (en)
WO (1) WO2015182558A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097059A (en) * 2015-11-19 2017-06-01 日本電気硝子株式会社 Patterning substrate manufacturing method and laminate
JP2020049491A (en) * 2018-09-25 2020-04-02 株式会社ディスコ Laser processing device and laser processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116967613A (en) * 2023-09-21 2023-10-31 上海传芯半导体有限公司 Device and method for removing metal film on surface of waste mask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066858A (en) * 2001-08-23 2003-03-05 Sony Corp Method of manufacturing thin-film device substrate
JP2007038570A (en) * 2005-08-04 2007-02-15 Seiko Epson Corp Method for manufacturing nozzle plate, liquid droplet ejection head, and liquid droplet ejection head
JP2011184284A (en) * 2009-09-18 2011-09-22 Nippon Electric Glass Co Ltd Method for producing glass film, method for treating glass film and glass film laminate
JP2014031302A (en) * 2012-08-06 2014-02-20 Asahi Glass Co Ltd Management method and management device of a support substrate for a glass laminate
JP2015108735A (en) * 2013-12-05 2015-06-11 旭硝子株式会社 Manufacturing method of electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066858A (en) * 2001-08-23 2003-03-05 Sony Corp Method of manufacturing thin-film device substrate
JP2007038570A (en) * 2005-08-04 2007-02-15 Seiko Epson Corp Method for manufacturing nozzle plate, liquid droplet ejection head, and liquid droplet ejection head
JP2011184284A (en) * 2009-09-18 2011-09-22 Nippon Electric Glass Co Ltd Method for producing glass film, method for treating glass film and glass film laminate
JP2014031302A (en) * 2012-08-06 2014-02-20 Asahi Glass Co Ltd Management method and management device of a support substrate for a glass laminate
JP2015108735A (en) * 2013-12-05 2015-06-11 旭硝子株式会社 Manufacturing method of electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097059A (en) * 2015-11-19 2017-06-01 日本電気硝子株式会社 Patterning substrate manufacturing method and laminate
JP2020049491A (en) * 2018-09-25 2020-04-02 株式会社ディスコ Laser processing device and laser processing method
JP7173809B2 (en) 2018-09-25 2022-11-16 株式会社ディスコ Laser processing method

Also Published As

Publication number Publication date
JPWO2015182558A1 (en) 2017-04-20
TW201601925A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
JP5905274B2 (en) Manufacturing method of semiconductor device
TWI527649B (en) The cutting method of the object to be processed
JP5491761B2 (en) Laser processing equipment
WO2007004607A1 (en) Method for cutting workpiece
US10646954B2 (en) Method of manufacturing display apparatus
WO2006101091A1 (en) Laser machining method
JP6938021B2 (en) Machining method by laser lift-off and flattening jig
WO2015182558A1 (en) Method for manufacturing glass substrate and electronic device
CN108335994A (en) Wafer connection structure, chip connection method, chip stripping means and device
JP2007118009A (en) Method for machining laminated body
TWI831794B (en) Workpiece separation device and workpiece separation method
JP6012185B2 (en) Manufacturing method of semiconductor device
JP2013069769A (en) Method of manufacturing tft substrate and laser annealing apparatus
JP6119712B2 (en) Manufacturing method of semiconductor device
JP2007015169A (en) Scribing formation method, scribing formation apparatus, and multilayer substrate
JP2018182078A (en) Division method
US10137532B2 (en) Substrate cutting apparatus and method of manufacturing display apparatus by using a substrate cutting apparatus
JP5969214B2 (en) Manufacturing method of semiconductor device
CN115485097A (en) Method for cutting composite material
JP2009190943A (en) Separating device of substrate, separating method of substrate and substrate manufactured by using the method
WO2020130054A1 (en) Laser processing method, semiconductor member manufacturing method, and laser processing device
TW202104948A (en) Method for dividing composite material
JP2013147380A (en) Method for laser beam machining
JP2015223771A (en) Method for manufacturing glass substrate
JP5285741B2 (en) Semiconductor wafer and processing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523486

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15798830

Country of ref document: EP

Kind code of ref document: A1