WO2015121934A1 - Wireless power transmission device, wireless power reception device, and wireless power transmission and reception system - Google Patents

Wireless power transmission device, wireless power reception device, and wireless power transmission and reception system Download PDF

Info

Publication number
WO2015121934A1
WO2015121934A1 PCT/JP2014/053251 JP2014053251W WO2015121934A1 WO 2015121934 A1 WO2015121934 A1 WO 2015121934A1 JP 2014053251 W JP2014053251 W JP 2014053251W WO 2015121934 A1 WO2015121934 A1 WO 2015121934A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
detection
power
unit
transmission target
Prior art date
Application number
PCT/JP2014/053251
Other languages
French (fr)
Japanese (ja)
Inventor
浩喜 工藤
亜希子 山田
芙美 杜塚
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2014/053251 priority Critical patent/WO2015121934A1/en
Priority to JP2015562595A priority patent/JP6343292B2/en
Publication of WO2015121934A1 publication Critical patent/WO2015121934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves

Definitions

  • Embodiments of the present invention relate to a non-contact power transmission device, a non-contact power reception device, and a non-contact power transmission and reception system.
  • foreign matter detection for detecting foreign matter present between the power transmission device and the power reception device is performed.
  • the foreign matter causes a reduction in the power transmission efficiency, and also has a risk of generating heat during power transmission.
  • Foreign object detection is particularly important when transmitting a large amount of power, such as an electric car.
  • the conventional foreign matter detection method has a problem in that the power transmission target itself is erroneously detected as the foreign matter.
  • the power transmission device recognizes the power reception device (electric vehicle) by communication means using a power transmission and reception coil, and detects a foreign object when the power reception device receives a response.
  • Foreign object detection methods have been proposed.
  • the communicable range of the communication means using the power transmission and reception coil is very narrow, the electric vehicle approaches the power transmission coil when the power transmission device recognizes the power reception device. There is a possibility that the electric vehicle is erroneously detected as a foreign object.
  • a non-contact power transmission device, a non-contact power reception device, and a non-contact power transmission and reception system are proposed, which reduce the possibility that a power transmission target is erroneously detected as a foreign object when detecting a foreign object.
  • the non-contact power transmission device includes a power transmission unit, a power transmission target detection unit, and a foreign matter detection unit.
  • the power transmission unit transmits power without contact to the power transmission target.
  • the power transmission target detection unit detects that the power transmission target has entered a predetermined detection range including the power transmission unit.
  • the foreign matter detection unit detects foreign matter that interferes with power transmission by the power transmission unit within the detection range.
  • the foreign matter detection unit starts or ends the detection of the foreign matter based on the detection result by the power transmission target detection unit.
  • FIG. 1 is a block diagram showing a configuration of a non-contact power transmission and reception system according to a first embodiment. BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows the structure of the non-contact power transmission apparatus which concerns on 1st Embodiment. The block diagram which shows the other example of a structure of the non-contact power transmission apparatus which concerns on 1st Embodiment. The block diagram which shows the other example of a structure of the non-contact power transmission apparatus which concerns on 1st Embodiment.
  • FIG. 1 is a block diagram showing a configuration of a non-contact power reception device according to a first embodiment. The figure which shows the specific example of the non-contact power transmission and reception system which concerns on 1st Embodiment. FIG.
  • FIG. 7 is a block diagram showing another example of the configuration of the non-contact power reception device according to the first embodiment.
  • FIG. 7 is a block diagram showing another example of the configuration of the non-contact power reception device according to the first embodiment.
  • the transition diagram which shows an example of the transition of the operation state of the non-contact power transmission apparatus which concerns on 1st Embodiment.
  • FIG. 7 is a transition diagram showing an example of transition of the operation state of the foreign matter detection unit according to the first embodiment.
  • 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • FIG. 3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment.
  • the transition diagram which shows an example of the transition of the operation state of the non-contact power transmission apparatus which concerns on 2nd Embodiment.
  • the flowchart which shows operation
  • the block diagram which shows the structure of the non-contact power transmission apparatus which concerns on 3rd Embodiment.
  • the block diagram which shows the structure of the non-contact power transmission apparatus which concerns on 4th Embodiment.
  • a non-contact power transmission and reception system is configured of a non-contact power transmission device for transmitting power without contact to a power transmission target and a non-contact power reception device mounted on the power transmission target.
  • the non-contact power transmission and reception system can be applied to, for example, a parking lot for charging an electric vehicle such as a parked electric vehicle, an EV bus, or an EV taxi in a non-contact manner, or an industrial production line.
  • the non-contact power transmission device is installed in the parking lot, and the non-contact power reception device is mounted on an electric vehicle to be transmitted.
  • the non-contact power transmission device is installed on a conveyance path such as a belt conveyor, and the non-contact power reception device is mounted on a power transmission target (product) conveyed by a belt conveyor or the like.
  • the non-contact power transmission device may be used alone. For example, it can be used to transmit power to a power receiving means provided with a corresponding power transmission method other than the non-contact power receiving device according to the present embodiment.
  • the non-contact power reception device may be used alone. For example, it can be used to receive power from power transmission means provided with a corresponding power transmission method other than the non-contact power transmission device according to the present embodiment.
  • the non-contact power transmission device, the non-contact power reception device, and the non-contact power transmission and reception system are respectively referred to as a power transmission device, a power reception device, and a power transmission and reception system.
  • FIG. 1 is a block diagram showing a configuration of a power transmission and reception system according to the present embodiment.
  • the power transmission and reception system according to this embodiment includes a power transmission device 100 that transmits power without contact and a power reception device 200 that receives power without contact.
  • the power transmission device 100 is a device for contactlessly transmitting power to a power transmission target.
  • FIG. 2 is a block diagram showing a configuration of the power transmission device 100 according to the present embodiment.
  • the power transmission apparatus 100 includes a power transmission unit 101 that performs non-contact power transmission, a first power transmission target detection unit 104 that detects a power transmission target, and a foreign matter detection unit 105 that detects a foreign object that interferes with power transmission.
  • a power transmission control unit 106 that controls the power transmission device 100 and a communication unit 107 that communicates with the power reception device 200 are provided.
  • the power transmission unit 101 transmits power without contact to power reception means of a power reception system corresponding to the power transmission system of the power transmission unit 101.
  • the power transmission method of the power transmission unit 101 corresponds to the power reception method of the power reception unit 201 of the power reception device 200.
  • the power transmission unit 101 can transmit power without being limited to the power reception unit 201 as long as the power reception unit of the power reception method corresponding to the power transmission method of the power transmission unit 101 is used.
  • the power transmission method of the power transmission unit 101 of FIG. 2 is a magnetic field resonance method.
  • the power transmission unit 101 includes a power transmission circuit 102 and a power transmission coil 103.
  • the power transmission circuit 102 is connected to the power supply 110, and converts the power supplied from the power supply 110 into a frequency or voltage suitable for power transmission.
  • the power source 110 may be a system power source such as AC 100 V or AC 200 V, or may be a storage battery or a storage facility. A configuration in which the power supply 110 is included in the power transmission unit 101 is also possible.
  • the power transmission circuit 102 can be configured by, for example, a power factor adjustment circuit or a high frequency inverter.
  • the power transmission coil 103 is a magnetic field emission type power antenna.
  • the power transmission coil 103 is supplied with power from the power transmission circuit 102, and performs non-contact power transmission by LC resonance.
  • the power transmission coil 103 achieves high power transmission efficiency at a specific frequency.
  • the power transmission method of the power transmission unit 101 is not limited to the magnetic field resonance method, and any existing power transmission method such as an electromagnetic induction method or a radio wave method can be adopted.
  • FIG. 3 is a block diagram showing an example of the power transmission unit 101 adopting another power transmission method. As shown in FIG. 3, the power transmission unit 101 includes a power transmission antenna 103 instead of the power transmission coil 103. As the power transmission antenna 103, a rectifying antenna or an antenna for electric field coupling can be used.
  • the first power transmission target detection unit 104 detects that the power transmission target has entered the first detection range.
  • the first detection range is a range predetermined to detect that the power transmission target approaches the power transmission range that can be transmitted by the power transmission unit 101 (the power transmission coil 103), and is set to include the power transmission range. . Further, the first detection range is set wider than the false detection range so as to include the false detection range described later.
  • the foreign matter detection unit 105 starts the foreign matter detection processing at the timing when the power transmission target enters the first detection range.
  • the first power transmission target detection unit 104 can detect the power transmission target in part or all of the surroundings of the first detection range. One or more are provided.
  • one first power transmission target detection unit 104 may be installed in the approach direction of the first detection range.
  • various detection means such as an infrared sensor, an ultrasonic sensor, and a weight sensor can be used as the first power transmission object detection unit 104.
  • the function of the first power transmission target detection unit 104 can be realized using the communication unit 107 described later. The detection method of the power transmission target using the communication unit 107 will be described later.
  • the configuration of the first power transmission target detection unit 104 is not limited to these, and may be any configuration that can detect that the power transmission target has entered the first detection range.
  • the foreign matter detection unit 105 detects a foreign matter that interferes with the power transmission by the power transmission unit 101.
  • the foreign matter includes an object that reduces the power transmission efficiency by the power transmission unit 101, a metal that may generate heat, and the like.
  • various sensors and detection methods such as a CMOS image sensor such as a camera, an ultrasonic sensor, an infrared sensor, and a capacitive sensor used for a touch panel such as a smartphone can be used.
  • the foreign matter detection unit 105 starts the foreign matter detection processing based on the detection result of the first power transmission target detection unit 104. The foreign matter detection processing by the foreign matter detection unit 105 will be described later.
  • the foreign substance detection unit 105 may be configured by one sensor or detection method, or may be configured by combining a plurality of sensors or detection methods.
  • the power transmission apparatus 100 may include a foreign matter detection unit 105A used for foreign matter detection processing before power transmission and a foreign matter detection unit 105B used for foreign matter detection processing during power transmission.
  • the magnetic field sensor such as a metal detector
  • the magnetic field sensor may erroneously detect the power transmission target as a foreign object due to the metal contained in the power transmission target, or the detection accuracy of the foreign object may be deteriorated due to the magnetic field generated during power transmission.
  • the foreign object detection before power transmission since the power transmission target is separated from the foreign object detection unit 105, the foreign object can be detected with high accuracy.
  • foreign matter detection part 105B it is possible to use an ultrasonic sensor etc. which can detect a foreign substance also during power transmission as foreign substance detection part 105B.
  • foreign matter detection can be performed with high accuracy by using the foreign matter detection unit of the foreign matter detection method which is different before and during power transmission.
  • a configuration is also possible in which foreign matter detection can be performed with high accuracy by using the same foreign matter detection method before power transmission and during power transmission and changing the parameter for foreign matter detection.
  • the foreign matter detection unit 105 sets an erroneous detection range in advance.
  • the erroneous detection range is a range in which the foreign object detection unit 105 may erroneously detect the power transmission object as a foreign object when the power transmission object enters the range.
  • the erroneous detection range can be set, for example, by the relative position (relative distance) from the foreign matter detection unit 105 or the power transmission unit 101 (power transmission coil 103).
  • the false detection range is, for example, false in the case where the foreign matter detection unit 105 detects a foreign matter before power transmission during practical use or a test, but the foreign matter detection unit 105 does not detect a foreign matter during power transmission. It can be defined as detection and can be set based on the erroneously detected relative position information of the power transmission target. For example, a plurality of pieces of relative position information of the power transmission object erroneously detected by the above-described method can be acquired, and a range inside the average value or the maximum value of the acquired relative positions (relative distances) can be set as the erroneous detection range .
  • the erroneous detection range can sequentially update the relative position information of the erroneously detected power transmission target, and can update the foreign matter detection range based on the updated relative position information.
  • the erroneous detection range can also be set in accordance with the specification of the sensor and detection method that constitute the foreign matter detection unit 105.
  • the false detection range is preferably set to include the power transmission range.
  • the erroneous detection range set in this manner may be stored in advance as a table.
  • the power transmission control unit 106 controls the operation of the power transmission device 100 based on the signals acquired from the respective components of the power transmission device 100.
  • the power transmission control unit 106 causes the foreign object detection unit 105 to start the foreign object detection processing based on, for example, the power transmission object detection signal received from the first power transmission object detection unit 104.
  • the power transmission control unit 106 causes the power transmission unit 101 to stop power transmission based on the foreign matter detection signal received from the foreign matter detection unit 105.
  • the transmission control unit 106 can be realized by using a central processing unit (CPU), a digital signal processor (DSP), a field-programmable gate array (FPGA), or the like as basic hardware.
  • the communication unit 107 is connected to the transmission control unit 106, and enables wireless communication between the power transmission control unit 106 and an external device such as the power receiving device 200.
  • any existing wireless communication means such as a wireless LAN including Wi-Fi (registered trademark) or Bluetooth (registered trademark) can be used.
  • the power transmission device 100 can also acquire relative position information of the power transmission target by communicating with the power transmission target via the communication unit 107. By comparing the relative position information of the power transmission target with the first detection range, the power transmission device 100 can detect that the power transmission target has entered the first detection range. That is, the function of the first power transmission target detection unit 104 can be realized using the communication unit 107.
  • the power receiving device 200 is a device for receiving power without contact from the power transmission unit.
  • the power receiving device 200 can charge the received power to a load such as a battery or can supply the power to an external device as motive power.
  • FIG. 5 is a block diagram showing a configuration of the power receiving device 200 according to the present embodiment.
  • the power receiving apparatus 200 includes a power receiving unit 201 that receives power without contact, a power receiving control unit 204 that controls the power receiving apparatus 200, and a communication unit 205 that communicates with the power transmission apparatus 100.
  • the power reception unit 201 receives power without contact from the power transmission unit of the power transmission method corresponding to the power reception method of the power reception unit 201.
  • the power reception method of the power reception unit 201 and the power transmission method of the power transmission unit 101 correspond to each other.
  • the power reception unit 201 can receive power without being limited to the power transmission unit 101 as long as the power transmission unit of the power transmission method corresponding to the power reception method of the power reception unit 201 is used.
  • the power reception method of the power reception unit 201 in FIG. 5 is a magnetic field resonance method.
  • the power receiving unit 201 includes a power receiving coil 202 and a power receiving circuit 203.
  • the power receiving coil 202 is a magnetic field emission type power antenna.
  • the power receiving coil 202 is supplied with power from the power transmitting coil 100 and receives power without contact by LC resonance.
  • the power receiving coil 202 achieves high power reception efficiency at a specific frequency.
  • the power receiving circuit 203 is connected to the load 206, and converts the power supplied through the power receiving coil 202 into a frequency or voltage suitable for charging.
  • the load 206 is, for example, a battery. A configuration in which the load 206 is included in the power receiving unit 201 is also possible.
  • the power receiving circuit 203 converts the power supplied via the power receiving coil 202 into a direct current when the frequency suitable for charging is 0 Hz, that is, a direct current.
  • the power receiving circuit 203 can be configured by a rectifier and a DC / DC converter.
  • the power reception method of the power reception unit 201 is not limited to the magnetic field resonance method, and may be an electromagnetic induction method or a radio wave method.
  • the power receiving unit 201 may include a power receiving antenna instead of the power receiving coil 202.
  • As the power receiving antenna a rectifying antenna or an antenna for electric field coupling can be used.
  • the power reception control unit 204 controls the operation of the power reception device 200 based on the signal acquired from each component of the power reception device 200.
  • the power reception control unit 204 can also transmit and receive a signal to / from the control unit of the power transmission target on which the power reception device 200 is mounted. Thereby, for example, the power reception control unit 204 acquires various types of information on the power transmission target from the control unit, generates a signal based on the acquired information, and transmits the signal to an external device such as the power transmission apparatus 100 via the communication unit 205. You can do it.
  • the reception control unit 204 can be realized by using a central processing unit (CPU), a digital signal processor (DSP), a field-programmable gate array (FPGA), or the like as basic hardware.
  • the communication unit 205 is connected to the reception control unit 204, and enables wireless communication between the power reception control unit 204 and an external device such as the power transmission device 100.
  • any existing wireless communication means such as a wireless LAN including Wi-Fi, Bluetooth, etc. can be used.
  • FIG. 6 is a view showing a specific example in which the power transmission and reception system according to the present embodiment is applied to a parking lot for charging an electric vehicle.
  • the power transmission target is an electric vehicle
  • the power transmission device 100 is installed in a parking lot
  • the power reception device 200 is mounted in the electric vehicle.
  • the electric vehicle is parked in a parking space indicated by a white line in FIG.
  • the power transmission coil 103 is installed in the parking lot so that power can be transmitted to the power reception coil 202 of the parked electric vehicle, and transmits power to the power reception coil 202 located on the power transmission range.
  • Foreign matter detection unit 105 detects foreign matter present in a range including the power transmission range of power transmission coil 103.
  • the first power transmission target detection unit 104 detects that the electric vehicle has entered a first detection range including the erroneous detection range of the foreign matter detection unit 105.
  • the configuration of the first power transmission target detection unit 104 may be realized by a ticket issuing device of a parking ticket.
  • the first detection range is in a parking lot inside the ticket issuing device, and the ticket issue signal of the parking ticket transmitted from the ticket issuing device can be used as a power transmission target detection signal.
  • the receiving coil 202 is shown in figure, and the other structure is abbreviate
  • the power reception control unit 204 and an ECU (Engine Control Unit) 207 that is a control unit of the electric vehicle include predetermined ones such as CAN-BUS. It may be connected via the interface of With such a configuration, the power reception control unit 204 can acquire various types of information regarding the electric vehicle from the ECU.
  • the information acquired by the power reception control unit 204 includes information on the traveling speed of the electric vehicle and information indicating that the electric vehicle has stopped.
  • the power reception control unit 204 can generate a signal based on these pieces of information, and can transmit the signal to an external device such as the power transmission device 100 via the communication unit 205.
  • the structure by which the communication part 205 was connected to ECU207 is also possible.
  • the power reception control unit 204 transmits the generated signal to an external device via the communication unit 205 connected to the ECU 207.
  • a configuration in which the function of the power reception control unit 204 is realized by the ECU 207 is also possible.
  • the operation of the power transmission and reception system according to the present embodiment will be described with reference to FIGS. 9 to 20.
  • the power transmission and reception system is applied to a parking lot for charging an electric vehicle as in FIG. 6, that is, the power transmission target is the electric vehicle, the power transmission device 100 is installed in the parking lot, and the power reception device 200 is The case of being mounted on an electric vehicle will be described.
  • the power transmission and reception system is applicable not only to the parking lot but also to other applications.
  • FIG. 9 is a transition diagram showing an example of the transition of the operation state of the power transmission control unit 106 according to the present embodiment.
  • the power transmission control unit 106 is in the standby state M1 until the electric vehicle approaches the parking lot.
  • the first power transmission target detection unit 104 executes power transmission target detection processing.
  • the foreign matter detection unit 105 may or may not perform the foreign matter detection process, but it is preferable that the foreign matter detection process is not performed. Thereby, the power consumption of the power transmission device 100 can be reduced.
  • the power transmission control unit 106 transitions to the pre-power transmission foreign object detection state M2.
  • the foreign object detection unit 105 executes a foreign object detection process (pre-transmission foreign object detection process).
  • the foreign object detection process before power transmission is performed for a predetermined duration.
  • the duration is set such that the foreign object detection processing before power transmission ends before the power transmission target enters the erroneous detection range.
  • the number of foreign object detections may be set such that the foreign object detection processing before power transmission ends before the power transmission target enters the erroneous detection range.
  • the first power transmission target detection unit 104 may or may not execute the power transmission target detection process.
  • the power transmission control unit 106 transitions to the power transmission impossible state M3.
  • the power transmission unit 101 does not perform power transmission even if the electric vehicle is parked in the parking space.
  • the power transmission device 100 may perform foreign object detection notification to notify the driver of the electric vehicle of the presence of the foreign object. The foreign matter detection and notification method will be described later.
  • the power transmission impossible state M3 continues until the foreign matter detected by the foreign matter detection unit 105 is removed. In the power transmission impossible state M3, when the foreign matter detected by the foreign matter detection unit 105 is removed, the power transmission control unit 106 transitions to the standby state M1.
  • the foreign object detection unit 105 may continue the foreign object detection process.
  • the power transmission control unit 106 determines that the foreign matter has been removed when the foreign matter detection unit 105 no longer detects the foreign matter, and transitions to the standby state M1.
  • the foreign matter detection processing in the foreign matter detection state M2 before power transmission may be continued until the foreign matter is removed, or may be continued for a predetermined time. Power consumption of the power transmission device 100 can be reduced by limiting the duration of the foreign matter detection process to a predetermined time.
  • the foreign matter detection unit 105 may end the foreign matter detection processing.
  • the power transmission device 100 may be provided with a foreign matter removal notification unit for notifying that the driver of the electric vehicle has removed the foreign matter.
  • the foreign matter removal notification means will be described later.
  • the power transmission control unit 106 may transition to the power transmittable state M4 instead of the standby state M1.
  • the power transmission control unit 106 transitions to the power transmittable state M4.
  • the power transmission unit 101 performs power transmission when the electric vehicle is parked in the parking space.
  • the power transmittable state M4 continues until the electric car is parked in the parking space, more specifically, until the power receiving coil 202 of the power receiving device 200 mounted on the electric car is positioned on the power transmission range.
  • the foreign matter detection unit 105 ends the foreign matter detection processing.
  • the foreign object detection process is started when the electric vehicle enters the first detection range, and the foreign object detection unit 105 erroneously detects the electric vehicle as a foreign object by ending the foreign object detection process before entering the false detection range.
  • the possibilities can be reduced.
  • the power transmission control unit 106 transitions to the power transmission impossible state M3 and power transmission is not performed. Therefore, power transmission efficiency can be prevented safely and power transmission can be performed safely.
  • the power transmission control unit 106 transitions to the power transmission state M5.
  • the foreign object detection unit 105 starts foreign object detection processing (foreign object detection processing during power transmission), and when no foreign object is detected, the power transmission unit 101 starts power transmission to the electric vehicle. That is, as shown in FIG. 10, the operation state of the foreign object detection unit 105 is the foreign object detection state before power transmission detection state m1 (the foreign object detection state before power transmission in the power transmission control unit 106) and the foreign object during power transmission.
  • the foreign object detection state m2 power transmission state M5 in the power transmission control unit 106) performing the detection process and the foreign object detection stop state m3 (power transmittable state M4 in the power transmission control unit 106) are not executed. Transition.
  • the foreign object detection unit 105 may execute the foreign object detection process by the same method in the foreign object detection state m1 before power transmission and the foreign object detection state m2 during power transmission, or may perform the foreign object detection processing by a different method.
  • the foreign matter detection unit 105 may perform foreign matter detection using different sensors before power transmission and during power transmission, or uses the same sensor before power transmission and during power transmission, and differs as a parameter for detecting foreign substances. Parameters may be used. As described above, foreign matter can be detected more accurately by changing the foreign matter detection method before power transmission and during power transmission.
  • the power transmission control unit 106 transitions to the power transmission impossible state M3.
  • the power transmission portion 101 ends power transmission, and the operation state of the power transmission control portion 106 transitions to the standby state M1.
  • FIG. 11 is a flowchart showing an operation of the power transmission and reception system until the operation state of the power transmission control unit 106 transitions from the standby state M1 to the power transmission impossible state M3 or the power transmission possible state M4.
  • the standby state M1 as described above, the power transmission target detection process is executed by the first power transmission target detection unit 104. Further, in FIG. 11, it is assumed that the electric vehicle is traveling.
  • the first power transmission object detection unit 104 detects that the electric vehicle has entered the first detection range (step S1), and transmits the power transmission object detection signal. It transmits to the control part 106 (step S2).
  • the power transmission control unit 106 receives the power transmission target detection signal (step S3), the power transmission control unit 106 transitions to the foreign object detection state M2 before power transmission.
  • the power transmission control unit 106 transmits a pre-transmission foreign object detection start signal to the foreign object detection unit 105 (step S4).
  • the foreign object detection unit 105 starts the pre-power transmission foreign object detection process (step S5), and transmits the result of the foreign object detection to the power transmission control unit 106 (step S6).
  • the foreign matter detection unit 105 stands by for a predetermined time (step S7), and transmits the detection result to the power transmission control unit 106 again. That is, when the foreign object detection unit 105 starts the foreign object detection process before power transmission, the foreign object detection unit 105 transmits the detection result to the power transmission control unit 106 at predetermined time intervals.
  • the power transmission control unit 106 receives the detection result from the foreign matter detection unit 105 (step S8), and transitions to the power transmission impossible state M3 when the foreign matter is detected (Yes in step S9). On the other hand, when no foreign object is detected (No in step S9), the power transmission control unit 106 determines whether a predetermined duration has elapsed (step S10).
  • the power transmission control unit 106 receives the result of foreign matter detection at predetermined time intervals until the continuation time elapses, and when the continuation time elapses without detection of foreign matter (Yes in step S10), the foreign matter detection before power transmission ends A signal is transmitted to the foreign object detection unit 105 (step S11), and a transition to the power transmittable state M4 is made.
  • the foreign object detection unit 105 receives the foreign object detection completion signal before power transmission, the foreign object detection unit 105 ends the foreign object detection processing before power transmission (step S12).
  • the timing of the end of the pre-transmission foreign object detection state M2 that is, the timing of the end of the pre-transmission foreign object detection process by the foreign object detection unit 105 is limited by a predetermined duration. It may be limited by the number of foreign object detection (the number of transmission of detection results).
  • FIG. 12 is a flowchart showing a specific example of the operation of the power transmission and reception system until the power transmission control unit 106 transitions from the power transmission possible state M4 to the power transmission impossible state M3 or the power transmission state M5.
  • the power transmittable state M4 as described above, the foreign object detection processing before power transmission by the foreign object detection unit 105 is completed. Further, in FIG. 12, it is assumed that the electric vehicle is parked in the parking space so as to be able to transmit power by the power transmission device 100.
  • the power receiving device 200 mounted on the electric vehicle transmits a parking signal to the power transmission control unit 106 (step S13). Details of the parking signal transmission process (step S13) by the power receiving device 200 will be described later.
  • the power transmission control unit 106 When the power transmission control unit 106 receives a parking signal (step S14), first, it transmits a foreign object detection start signal during power transmission to the foreign object detection unit 105 (step S15). When receiving the foreign object detection start signal during power transmission, the foreign object detection unit 105 starts the foreign object detection processing during power transmission (step S16), and transmits the detection result to the power transmission control unit 106 (step S17). After transmitting the detection result, the foreign matter detection unit 105 stands by for a predetermined time (step S18), and transmits the detection result again to the power transmission control unit 109 (step S19). In other words, when the foreign object detection process during power transmission is started, the foreign object detection unit 105 transmits the detection result to the power transmission control unit 106 at predetermined time intervals.
  • the power transmission control unit 106 receives the detection result from the foreign matter detection unit 105 (step S20), and transitions to the power transmission impossible state M3 when the foreign matter is detected (Yes in step S21).
  • the power transmission control unit 106 executes power transmission start processing that causes the power transmission unit 101 to start power transmission (step S22), and transitions to the power transmission state M5. That is, the power transmission apparatus 100 starts power transmission after confirming that no foreign object is present according to the detection result of the foreign object detection processing during power transmission. Therefore, even if a foreign object appears between the end of the foreign object detection process before power transmission and the start of the foreign object detection process during power transmission, it can be detected before the start of power transmission. Therefore, it is possible to prevent the decrease in the power transmission efficiency due to the foreign matter and safely perform the power transmission.
  • the power transmission control unit 106 receives the detection result of the foreign object detection unit 105 at predetermined time intervals after transition to the power transmission state M5 (step S23).
  • the power transmission control unit 106 executes power transmission stop processing for causing the power transmission unit 101 to stop the power transmission processing (step S25). Transition.
  • the power transmission control unit 106 maintains the power transmission state M5 and continues the power transmission.
  • the power reception control unit 204 of the power reception device 200 acquires a control signal of the ECU 207 of the electric vehicle as needed. As shown in FIG. 13, when the power reception control unit 204 acquires a control signal for parking the shift lever from the ECU 207, it determines that the electric vehicle has stopped, that is, parked in the parking space, and outputs a parking signal. , And transmits a parking signal to the power transmission device 100 via the communication unit 205 (step S13). Further, as shown in FIG.
  • the power reception control unit 204 can also transmit a parking signal to the power transmission device 100 when acquiring a control signal for turning on the side brake from the ECU 207 (step S13). Furthermore, as shown in FIG. 15, the power reception control unit 204 can also transmit a parking signal to the power transmission device 100 when acquiring a control signal for turning off the ignition key from the ECU 207 (step S13). Besides, the power reception control unit 204 can also transmit a parking signal to the power transmission device 100 when acquiring a control signal for unlocking the door key from the ECU 207 or a control signal for turning on only the accessory of the ignition key.
  • a configuration in which a parking signal is acquired from devices other than the power receiving device 200 is also possible.
  • a power transmission start terminal for causing the power transmission apparatus 100 to start power transmission is provided in the vicinity of a parking space or in a parking lot, and the driver who parked the electric vehicle operates the power transmission start terminal. It can also be configured to be sent to The power transmission device 100 may perform the processing of step S15 and subsequent steps triggered by the parking signal received from the power transmission start terminal.
  • the power transmission start terminal is connected to the power transmission apparatus 100 in a wired or wireless manner.
  • FIG. 16 is a flowchart showing an operation of the power transmission / reception system from transition to the standby state M1 after the power transmission control unit 106 transitions from the pre-transmission foreign object detection state M2 or the power transmission state M5 to the power transmission impossible state M3. .
  • the foreign object detection unit 105 when the foreign object detection state before power transmission M2 (power transmission state M5) is changed to the power non-transferable state M4, the foreign object detection unit 105 continues the foreign object detection processing before power transmission (foreign object detection processing during power transmission) ing. Therefore, the foreign matter detection unit 105 transmits the detection result at predetermined time intervals (steps S26 and S27), and the power transmission control unit 106 receives the transmitted detection result (step S28), and the foreign matter is detected. (Yes in step S29), the power transmission impossible state M4 is maintained.
  • the power transmission control unit 106 transmits the foreign object detection end signal before power transmission (the foreign object detection end signal during power transmission) (step S30), and transitions to the standby state M1. .
  • the foreign object detection unit 105 receives the foreign object detection end signal before power transmission (foreign object detection completion signal during power transmission)
  • the foreign object detection unit 105 ends the foreign object detection processing before power transmission (foreign object detection processing during power transmission) (step S31).
  • the power transmission control unit 106 may transition to the power transmission enabled state M4 after step S30.
  • the processing may transition to the power transmission state M5 without ending the foreign object detection processing during power transmission. The operation of the power transmission and reception system after transition to the power transmission state M5 will be described later.
  • the power transmission control unit 106 may transmit a foreign substance detection notification signal to notify the driver of the electric vehicle that a foreign substance has been detected, as shown in FIG.
  • the power transmission control unit 106 can transmit a foreign object detection notification signal to the power receiving device 200 via the communication unit 107 (step S32).
  • the power receiving apparatus 200 receives the foreign substance detection notification signal via the communication unit 205 (step S33)
  • the power receiving apparatus 200 notifies the driver that the foreign substance is detected (step S34).
  • the power receiving device 200 can display, via the ECU 207, an operation terminal of a car navigation system mounted on an electric vehicle that a foreign object has been detected. Notification to the driver may be performed by voice.
  • a foreign matter detection and notification terminal other than the power reception device 200 may be provided.
  • the foreign matter detection notification terminal may be provided near the parking space, and the foreign matter detection notification signal may be transmitted to the foreign matter detection notification terminal.
  • the foreign substance detection notification terminal that has received the foreign substance detection notification signal notifies the driver that the foreign substance has been detected by an image or a voice.
  • an information terminal such as a mobile phone or a smartphone of a driver, or in the case of an electric vehicle, a key or an operation terminal of a car navigation system may be used.
  • the power transmission and reception system may include foreign matter removal notification means for notifying the power transmission device 100 that the driver has removed the foreign matter.
  • the power transmission control unit 106 determines whether the continuation time of the foreign matter detection processing has elapsed (step S35), and when the continuation time has elapsed, transmits the foreign matter detection end signal before power transmission (during power transmission). (Step S36)
  • the foreign object detection unit 105 that receives the foreign object detection end signal before power transmission (during power transmission) ends the foreign object detection processing before power transmission (during power transmission) (step S37). Thereafter, the power transmission control unit 106 stands by until the foreign matter removal notification signal for notifying that the driver has removed the foreign matter is received from the foreign matter removal notification means (step S38).
  • the power transmission control unit 106 When the power transmission control unit 106 receives the foreign matter removal notification signal (Yes in step S38), it transmits a foreign matter detection start signal (step S39), and the foreign matter detection unit 105 that receives the foreign matter detection start signal executes foreign matter detection ( Step S40).
  • the power transmission control unit 105 receives the detection result from the foreign matter detection unit 105 (steps S41 and S42), and when no foreign matter is detected (No in step S43), transitions to the standby state M1. On the other hand, when the foreign object is detected (No in step S43), the power transmission control unit 106 transmits the foreign object detection notification signal again (step S32).
  • the foreign matter removal notification means may be a terminal provided near the parking space, or may be a mobile phone of a driver.
  • a foreign object detection and removal signal may be transmitted from the operation terminal of the car navigation system mounted on the electric vehicle via the power receiving device 200.
  • FIG. 19 is a flowchart showing an operation of the power transmission and reception system until the power transmission control unit 106 transitions from the power transmission state M4 to the standby state M1.
  • the power transmission state M4 the foreign object detection processing during power transmission is executed, and when a foreign object is detected, the power transmission control unit 106 transitions to the power transmission impossible state M3.
  • Such an operation is as described in FIG. 12, and thus the description thereof is omitted in FIG.
  • the ECU 207 of the electric vehicle confirms the charge state of the battery (step S44), and determines whether the charge amount is equal to or more than the full charge threshold (step S45). If the battery is fully charged (Yes in step S45), the power reception control unit 204 acquires a control signal indicating that the battery is fully charged from the ECU 207, and the power transmission control unit 106 via the communication unit 206. The power transmission stop signal is transmitted to (step S46). When the function of the power reception control unit 204 is realized by the ECU 207, the ECU 207 transmits a power transmission stop signal. Further, the power reception control unit 204 may determine whether or not the battery is fully charged.
  • the power transmission control unit 106 executes power transmission end processing for causing the power transmission unit 101 to end power transmission (step S48).
  • the power transmission control unit 106 transmits a power transmission end signal to the power reception control unit 204 (step S49), and transitions to the standby state M1.
  • the power reception control unit 204 receives the power transmission end signal (step S50), and charging of the battery is completed.
  • Such operation of the power transmission and reception system can prevent overcharging of the battery of the electric vehicle.
  • the power reception control unit 204 determines the departure of the electric vehicle and transmits a power transmission stop signal to the power transmission control unit 106 (step S46). The following operation is similar to that of FIG. 19 and steps S47 to S50.
  • the power reception control unit 204 determines the departure of the electric vehicle based on a control signal to turn off the side brake, a control signal to turn on the shift lever for driving or the like, a signal to unlock the door key, etc. You can also.
  • foreign object detection processing before power transmission is performed before the power transmission object enters the erroneous detection range, that is, when the power transmission object enters the first detection range.
  • the possibility of false detection is suppressed.
  • power transmission efficiency can be prevented safely and safely.
  • the power transmission and reception system according to the second embodiment will be described with reference to FIGS. 21 and 22.
  • the configurations of the power transmission device 100 and the power reception device 200 in the present embodiment are the same as in the first embodiment.
  • FIG. 21 is a transition diagram illustrating an example of the transition of the operation state of the power transmission control unit 106 according to the present embodiment.
  • the power transmission control unit 106 has a power transmission object authentication state M6 in which an authentication process is performed on the power transmission object detected by the first power transmission object detection unit 104.
  • the operation state of the power transmission control unit 106 transitions to the power transmission target recognition state M6.
  • the power transmission target unit 104 (power transmission target authentication unit) determines whether the power transmission target is a power transmission target that can be transmitted by the power transmission unit 101. If the power transmission control unit 106 determines that power transmission to the detected power transmission target is possible (if authentication is successful), the power transmission control unit 106 transitions to the pre-power transmission foreign object detection state M2. On the other hand, when the power transmission control unit 106 determines that power transmission to the detected power transmission target is impossible, the power transmission control unit 106 transitions to the standby state M1.
  • the case where the power transmission target detected by the first power transmission target detection unit 104 can not transmit power is, for example, the case of an electric vehicle of a power reception method different from the power transmission method of the power transmission unit 101.
  • the first power transmission target detection unit 104 detects a power transmission target using a weight sensor, it may be considered that a vehicle other than the electric vehicle (such as a gasoline car) is detected as the power transmission target.
  • FIG. 22 is a flowchart showing the operation of the power transmission and reception system until the operation state of the power transmission control unit 106 transitions from the standby state M1 to the foreign object detection state before power transmission M2. Steps S1 to S3 in FIG. 22 are the same as those in FIG. In addition, the operation of the power transmission and reception system after the foreign object detection state M2 before power transmission is the same as that of the above-described embodiment.
  • the power transmission control unit 106 when the power transmission control unit 106 receives the power transmission target detection signal (step S3), the power transmission control unit 106 transitions to the power transmission target authentication state M6. In the power transmission target authentication state M6, the power transmission control unit 106 executes wireless connection processing with the power reception control unit 204 via the communication unit 107 (step S51). When the function of the power reception control unit 204 is realized by the ECU 207, the wireless connection process with the ECU 207 is executed. When the wireless connection is not established within a predetermined time (step S52), the power transmission control unit 106 determines that the power transmission target detected by the first power transmission target detection unit 104 can not transmit power, and transitions to the standby state M1.
  • the power transmission control unit 106 transmits a power transmission target authentication inquiry to the power reception control unit 204 (step S53).
  • the power transmission control unit 106 requests authentication information for determining whether or not the power transmission target detected by the first power transmission target detection unit 104 can transmit power in the power transmission target authentication inquiry.
  • the authentication information includes, for example, ID information of the power receiving device 200 and the electric vehicle.
  • step S54 If the power reception control unit 204 can not obtain a response from the power reception control unit 204 within a predetermined time (No in step S54), the power transmission control unit 106 transitions to the standby state M1. On the other hand, when the power transmission control unit 106 receives a response from the power reception control unit 204 within a predetermined time (Yes in step S54), that is, the power reception control unit 204 that has received the power transmission object authentication inquiry transmits authentication information. When the power transmission control unit 106 receives the authentication information (steps S55 to S57), the authentication process is performed (step S58).
  • the power transmission control unit 106 determines whether power transmission is possible based on the received authentication information, and when it is determined that power transmission is not possible (authentication failure) (No in step S58), transits to the standby state M1 and power transmission is possible (authentication When it is determined that the process is successful (Yes in step S58), the state is switched to the foreign object detection state M2 before power transmission.
  • the power reception control unit 204 may acquire the authentication information from the ECU 207 in step S56.
  • the power reception control unit 204 may include an authentication information storage unit storing authentication information, and may transmit the authentication information acquired from the authentication information storage unit to the power transmission control unit 106.
  • the power reception control unit 204 transmits the acquired authentication information to the power transmission control unit 106 via the communication unit 205.
  • various types of power transmission can not be performed by determining in advance (authentication) whether the power transmission target detected by the first power transmission target detection unit 104 can actually transmit power.
  • the power consumption of the power transmission and reception system can be reduced because it is not necessary to execute the processing (for example, foreign substance detection processing) of the above.
  • FIG. 23 is a block diagram showing a configuration of the power transmission device 100 according to the present embodiment.
  • the power transmission device 100 includes a power transmission unit 101, a first power transmission target detection unit 104, a foreign object detection unit 105, a power transmission control unit 106, and a communication unit 107.
  • the above configuration is the same as that of the above embodiment.
  • the power transmission device 100 further includes a second power transmission target detection unit 108.
  • the second power transmission target detection unit 108 detects that the power transmission target has entered the second detection range.
  • the second detection range is a range predetermined to detect that the power transmission target approaches the false detection range, and is set to include the false detection range. Further, the second detection range is set to be included in the first detection range, that is, set narrower than the first detection range. The second detection range may coincide with the false detection range.
  • the foreign object detection unit 105 ends the foreign object detection process before power transmission at the timing when the power transmission target enters the second detection range.
  • the second power transmission target detection unit 108 can detect the power transmission target in part or all of the periphery of the second detection range, One or more are provided.
  • one second power transmission target detection unit 108 may be installed in the approach direction of the second detection range.
  • various detection means such as an infrared sensor, an ultrasonic sensor, and a weight sensor can be used, for example.
  • the first power transmission target detection unit 104 it can be realized using the communication unit 107.
  • the configuration of the second power transmission target detection unit 108 may be the same as or different from that of the first power transmission target detection unit 104.
  • the functions of the first power transmission target detection unit 104 and the second power transmission target detection unit 108 may be realized by a single power transmission target detection unit.
  • the configuration of the second power transmission target detection unit 108 is not limited to these, and may be any configuration that can detect that the power transmission target has entered the second detection range.
  • FIG. 24 is a flowchart showing an operation of the power transmission and reception system until the power transmission control unit 106 transitions from the pre-power transmission foreign object detection state M2 to the power non-transmission possible state M3 or the power transmission possible state M4.
  • the operation up to the foreign object detection state M2 before power transmission and the operations after the power non-permission state M3 and the power transmission possible state M4 are the same as those in the above-described embodiment.
  • the power transmission control unit 106 transmits a power transmission target detection start signal to the second power transmission target detection unit 108 (step S59).
  • the second power transmission target detection unit 108 starts power transmission target detection processing (step S60). That is, the second power transmission target detection unit 108 does not operate until the power transmission control unit 106 transitions to the foreign object detection state M2 before power transmission. Thereby, the power consumption of the power transmission and reception system can be reduced.
  • the second power transmission target detection unit 108 executes detection processing at predetermined time intervals, and transmits the detection result to the power transmission control unit 106 (steps S61 and S62). Further, the power transmission control unit 106 causes the foreign object detection unit 105 to start the foreign object detection processing before power transmission (steps S4 to S7).
  • the foreign object detection processing before power transmission by the foreign object detection unit 105 is the same as that of the above-described embodiment.
  • the power transmission control unit 106 receives the detection result from the second power transmission target detection unit 108 at predetermined time intervals (step S63).
  • the power transmission control unit 106 receives the detection result from the foreign object detection unit 105 (step S8).
  • the power transmission control unit 106 transitions to the power transmission impossible state, and when the foreign object is not detected (step S9), the detection result of the second power transmission object detection unit 108 It receives again (step S63).
  • the power transmission control unit 106 ends the foreign object detection processing before power transmission by the foreign object detection unit 105 (steps S11 and S12).
  • the power transmission target detection process by the target detection unit 108 is ended (steps S65 and S66), and the state is transitioned to the power transmittable state M4.
  • the foreign object detection unit 105 starts the foreign object detection processing before power transmission when the power transmission target enters the first detection range, and ends the foreign object detection processing before power transmission when the power transmission target enters the second detection range.
  • the second detection range is set to include the erroneous detection range, so that the possibility that the power transmission target is erroneously detected as a foreign object by the foreign object detection unit 105 can be more reliably reduced.
  • FIG. 25 is a block diagram showing a configuration of the power transmission device 100 according to the present embodiment.
  • the second power transmission target detection unit 108 includes a position detection unit 109 and a power transmission control unit 106.
  • the other configuration is the same as that of the third embodiment.
  • the position detection unit 109 detects the relative position (relative distance) of the power transmission target with respect to the position detection unit 109 and the power transmission coil 103.
  • the position detection unit 109 for example, alignment means can be used.
  • the alignment means is a means for aligning the power transmission coil 103 and the power reception coil 202, and is configured of a sensor or the like capable of detecting a position within several meters.
  • the alignment means includes, for example, proximity wireless such as RFID and NFC, an ultrasonic sensor, a CMOS sensor, and the like.
  • the power transmission control unit 106 detects that the power transmission target has entered the second detection range by comparing the relative position of the power transmission target detected by the position detection unit 109 with the second detection range. That is, the function of the second power transmission target detection unit 108 in the third embodiment is realized by the position detection unit 109 and the power transmission control unit 106.
  • FIG. 26 is a flowchart showing a specific example of the operation of the power transmission and reception system until the power transmission control unit 106 transitions from the pre-power transmission foreign object detection state M2 to the power non-transmission possible state M3 or the power transmission possible state M4.
  • the operation up to the foreign object detection state M2 before power transmission and the operations after the power non-permission state M3 and the power transmission possible state M4 are the same as those in the above-described embodiment.
  • the power transmission control unit 106 transmits a position detection start signal to the position detection unit 109 (step S67).
  • the position detection unit 109 starts position detection processing (step S68). That is, the position detection unit 109 does not operate until the power transmission control unit 106 transitions to the pre-power transmission foreign object detection state M2. Thereby, the power consumption of the power transmission and reception system can be reduced.
  • the position detection unit 109 executes position detection processing at predetermined time intervals, and transmits the detection result to the power transmission control unit 106 (steps S69 and S70). Further, the power transmission control unit 106 causes the foreign object detection unit 105 to start the foreign object detection processing before power transmission (steps S4 to S7).
  • the foreign object detection processing before power transmission by the foreign object detection unit 105 is the same as that of the above-described embodiment.
  • the power transmission control unit 106 receives the detection result from the position detection unit 109 at predetermined time intervals (step S71), and the received detection result, that is, the relative position of the power transmission target and the second detection range set in advance Are compared, and it is determined whether the power transmission target has entered the second detection range (step S72).
  • the determination can be performed, for example, by comparing the relative distance from the position detection unit 109 or the power transmission coil 103 set as the second relative distance with the relative distance of the detected power transmission target.
  • the power transmission control unit 106 receives the detection result from the foreign object detection unit 105 (step S8).
  • the power transmission control unit 106 transitions to the power transmission impossible state, and when the foreign object is not detected (step S9), the detection result of the second power transmission object detection unit 108 It receives (step S71).
  • the foreign object detection unit 105 ends the pre-power transmission foreign object detection processing (steps S11 and S12), The position detection process by the position detection unit 109 is ended (steps S73 and S74), and the state is transitioned to the power transmittable state M4.
  • the position detection unit 109 it is preferable to omit steps S73 and S74 in FIG. 26 and continue the position detection process.
  • the power transmission control unit 106 determines whether the power transmission target has entered the third detection range, and the foreign object detection unit 105 detects foreign objects after the power transmission target has entered the third detection range. Execute the process
  • FIG. 27 is a flowchart illustrating a specific example of the operation of the power transmission and reception system until the power transmission control unit 106 transitions from the pre-power transmission foreign object detection state M2 to the power non-transferable state M3 or the power transmittable state M4.
  • the operation up to the foreign object detection state M2 before power transmission and the operations after the power non-permission state M3 and the power transmission possible state M4 are the same as those in the above-described embodiment.
  • the operation (steps S67 to S71) from the transition of the power transmission control unit 106 to the foreign object detection state before power transmission to the reception of the detection result is similar to that of the fourth embodiment.
  • the third detection range is a range that includes the false detection range and is included in the first detection range, and is set by adding a predetermined offset distance to the false detection range.
  • the offset distance is preferably a few cm to 1 m or less.
  • the offset distance is the moving speed v (m / s) of the power transmission target, and the delay time t (s) from when the power transmission control unit 106 causes the foreign object detection unit 105 to start the foreign object detection processing until the detection result is received. It is preferable that the offset distance v v (m / s) x t (s).
  • the moving speed of the power transmission target is provided with a timer in the position detection unit 109, and the difference of the relative position of the power transmission target when position detection is performed twice or more is divided by the position detection interval (predetermined time in step S70). It can be calculated by When the power transmission target includes the speed measurement device, the power transmission device 100 may acquire the moving speed of the power transmission target from the speed measurement device via the power reception device 200.
  • the power transmission control unit 106 determines that the power transmission target has entered the third detection range (Yes in step S75), the power transmission control unit 106 transmits a foreign object detection start signal before power transmission to the foreign object detection unit 105 (step S4).
  • the foreign object detection unit 105 receives the foreign object detection start signal before power transmission (step S5), the foreign object detection unit 105 performs foreign object detection a predetermined number of times, transmits the detection result (step S6), and ends the foreign object detection process before power transmission ( Step S12).
  • the number of times the foreign object detection unit 105 executes foreign object detection is determined according to the offset distance, and the foreign object detection process before power transmission is determined to end before the power transmission target enters the erroneous detection range.
  • the object to be transmitted does not enter at least the erroneous detection range within the delay time until the foreign matter detection result is received once. Detection is performed only once.
  • the power transmission control unit 106 transitions to the power transmission impossible state M3.
  • the power transmission control unit 106 ends the position detection process and the foreign object detection process, and transitions to the power transmittable state M4.
  • the foreign object detection processing before power transmission starts when the power transmission target enters the third detection range, and ends before entering the erroneous detection range. Therefore, the process can be simplified as compared with the fourth embodiment in which the determination as to whether or not the power transmission target has entered the second detection range and the foreign object detection process are simultaneously performed.
  • the power transmission control unit 106 may end the position detection process when it is determined that the power transmission target has entered the third detection range.
  • FIG. 28 is a block diagram showing a configuration of the power transmission device 100 according to the present embodiment.
  • the first power transmission target detection unit 104 and the second power transmission target detection unit 108 are both configured by the position detection unit 109 and the power transmission control unit 106.
  • the other structure is the same as that of the above-mentioned embodiment.
  • FIG. 29 is a flowchart showing an operation of the power transmission and reception system until the power transmission control unit 106 transitions from the standby state M1 to the foreign object detection state M2 before power transmission.
  • the position detection unit 109 always executes position detection processing (steps S76 and S77), and the power transmission control unit 106 receives detection results from the position detection unit 109 at predetermined time intervals. (Step S78).
  • the power transmission control unit 106 determines that the power transmission target has entered the first detection range (step S80), and sets the foreign object detection state before power transmission M2. Transition. That is, in the present embodiment, the first detection range is a detectable range of the position detection unit 109.
  • the subsequent operation is the same as that of the fifth embodiment.
  • the position detection unit 109 and the power transmission control unit 106 constitute a first power transmission object detection unit 104 and a second power transmission object detection unit 108. Therefore, the configuration of power transmission device 100 can be simplified.
  • the first detection range may be set by the relative position from the position detection unit 109.
  • the power transmission control unit 106 has entered the first detection range by comparing the relative position of the power transmission target detected by the position detection unit 109 with the first detection range set in advance. It can be determined whether or not.
  • FIG. 30 is a block diagram showing a configuration of a power transmission and reception system according to the present embodiment.
  • the second power transmission target detection unit 108 is provided in the power receiving device 200.
  • the second power transmission target detection unit 108 notifies the power transmission control unit 106 via the communication unit 205.
  • the other structure is the same as that of the above-mentioned embodiment.
  • FIG. 31 is a flowchart showing an operation of the power transmission and reception system until the power transmission control unit 106 transitions from the pre-power transmission foreign object detection state M2 to the power non-transmission possible state M3 or the power transmission possible state M4.
  • the power transmission control unit 106 causes the second power transmission object detection unit 108 provided in the power receiving device 200 to start power transmission object detection processing in the foreign object detection state before power transmission 200 and detects at predetermined time intervals.
  • the result is received (steps S59 to S63).
  • the subsequent operation is the same as that of FIG.
  • the power transmission control unit 106 establishes communication with the power receiving device 200 in advance via the communication unit 107. For example, as described in FIG. 22, communication may be established by performing authentication processing between the power transmission control unit 106 and the power receiving apparatus 200. Also, at the time of transition to the foreign object detection state M2 before power transmission, communication between the power transmission control unit 106 and the power receiving device 200 may be established.
  • the second power transmission target detection unit 108 is provided in the power reception device 200, but the first power transmission target detection object 104 may be provided in the power reception device 200, or the first power transmission target detection unit and the second Both of the power transmission target detection units 108 may be provided in the power receiving apparatus 200.
  • the position detection unit 109 may be provided in the power reception device 200.
  • at least one of the first power transmission object detection unit 104 and the second power transmission object detection unit 108 is configured by the position detection unit 109 provided in the power reception device 200 and the power transmission control unit 106 provided in the power transmission device 100. May be That is, based on the relative position information of the power transmission target received from the position detection unit 109 provided in the power reception device 200, the power transmission control unit 106 has entered the first detection range (second detection range). May be detected.
  • At least one of the first power transmission object detection unit 104 and the second power transmission object detection unit 108 may be configured by the position detection unit 109 and the power reception control unit 204 provided in the power reception device 200.
  • the power reception control unit 204 detects that the power transmission target has entered the first detection range (second detection range) based on the relative position information of the power transmission target detected by the position detection unit 109, and transmits power.
  • the detection signal may be transmitted to the power transmission control unit 106.
  • the present invention is not limited to the above embodiments as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention.
  • various inventions can be formed by appropriately combining the plurality of components disclosed in the above-described embodiments. Further, for example, a configuration in which some components are removed from all the components shown in each embodiment is also conceivable. Furthermore, the components described in different embodiments may be combined as appropriate.
  • 100 power transmission device, 101: power transmission unit, 102: power transmission circuit, 103: power transmission coil, 104: first power transmission object detection unit, 105: foreign object detection unit, 106: power transmission control unit, 107: communication unit, 108: second Power transmission object detection unit 109: position detection unit 110: power supply 200: power reception device 201: power reception unit 202: power reception coil 203: power reception circuit 204: power reception control unit 205: communication unit 206: load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Problem] To propose a wireless power transmission device, a wireless power reception device, a wireless power transmission and reception system that, when detecting a foreign object, reduce the possibility of erroneously detecting a power transmission target as the foreign object. [Solution] The wireless power transmission device according to the present embodiment comprises a power transmission unit, a power transmission target detection unit, and a foreign object detection unit. The power transmission unit wirelessly transmits power to a power transmission target. The power transmission target detection unit detects that the power transmission target has entered a predetermined detection range including the power transmission unit. The foreign object detection unit detects a foreign object within the detection range, said foreign object preventing the power transmission unit from transmitting power. Based on the detection result of the power transmission target detection unit, the foreign object detection unit starts or terminates the foreign object detection.

Description

非接触送電装置、非接触受電装置、及び非接触送受電システムNon-contact power transmission device, non-contact power reception device, and non-contact power transmission / reception system
 本発明の実施形態は、非接触送電装置、非接触受電装置、及び非接触送受電システムに関する。 Embodiments of the present invention relate to a non-contact power transmission device, a non-contact power reception device, and a non-contact power transmission and reception system.
 送電装置から受電装置に非接触で電力を送電する非接触電力伝送の分野では、送電装置と受電装置との間に存在する異物を検出する異物検出が行われている。異物は、送電効率の低下を招くとともに、送電中に発熱する危険性があるためである。特に、電気自動車のように大電力を送電する場合には、異物検出は重要となる。しかしながら、従来の異物検出方法では、送電対象自体を異物として誤検出してしまうという問題があった。 In the field of contactless power transmission where power is transmitted contactlessly from a power transmission device to a power reception device, foreign matter detection for detecting foreign matter present between the power transmission device and the power reception device is performed. The foreign matter causes a reduction in the power transmission efficiency, and also has a risk of generating heat during power transmission. Foreign object detection is particularly important when transmitting a large amount of power, such as an electric car. However, the conventional foreign matter detection method has a problem in that the power transmission target itself is erroneously detected as the foreign matter.
 例えば、電気自動車に非接触で送電する際の異物検出方法として、送受電コイルを利用した通信手段によって送電装置が受電装置(電気自動車)を認識し、受電装置から応答があった際に異物検出を実行する異物検出方法が提案されている。しかしながら、このような異物検出方法の場合、送受電コイルを利用した通信手段の通信可能範囲が非常に狭いため、送電装置が受電装置を認識した時点で、既に電気自動車は送電コイルに近接し、電気自動車が異物として誤検出される可能性がある。 For example, as a foreign matter detection method for non-contact power transmission to an electric vehicle, the power transmission device recognizes the power reception device (electric vehicle) by communication means using a power transmission and reception coil, and detects a foreign object when the power reception device receives a response. Foreign object detection methods have been proposed. However, in the case of such a foreign matter detection method, since the communicable range of the communication means using the power transmission and reception coil is very narrow, the electric vehicle approaches the power transmission coil when the power transmission device recognizes the power reception device. There is a possibility that the electric vehicle is erroneously detected as a foreign object.
 また、電気自動車に非接触で送電する際の異物検出方法として、送電前と送電中の異物検出で、パラメータを変更して異物検出精度を改善する技術が提案されている。しかしながら、このような異物検出方法の場合、パラメータの変更が適切なタイミングで行われないと、依然として電気自動車が異物として誤検出される可能性があった。 Further, as a foreign matter detection method for non-contact power transmission to an electric vehicle, there has been proposed a technique of changing the parameters to improve the foreign matter detection accuracy in foreign matter detection before and during power transmission. However, in the case of such a foreign matter detection method, there is still a possibility that the electric vehicle may be erroneously detected as a foreign matter if the parameter is not changed at an appropriate timing.
特開2011-229265号公報JP 2011-229265 A 特開2013-59239号公報JP, 2013-59239, A
 異物検出の際に送電対象が異物として誤検出される可能性を低減する非接触送電装置、非接触受電装置、及び非接触送受電システムを提案する。 A non-contact power transmission device, a non-contact power reception device, and a non-contact power transmission and reception system are proposed, which reduce the possibility that a power transmission target is erroneously detected as a foreign object when detecting a foreign object.
 本実施形態に係る非接触送電装置は、送電部と、送電対象検出部と、異物検出部とを備える。送電部は、送電対象に非接触で電力を送電する。送電対象検出部は、送電部を含む予め定められた検出範囲に送電対象が進入したことを検出する。異物検出部は、検出範囲内において、送電部による送電を妨げる異物を検出する。異物検出部は、送電対象検出部による検出結果に基づいて、異物の検出を開始又は終了する。 The non-contact power transmission device according to the present embodiment includes a power transmission unit, a power transmission target detection unit, and a foreign matter detection unit. The power transmission unit transmits power without contact to the power transmission target. The power transmission target detection unit detects that the power transmission target has entered a predetermined detection range including the power transmission unit. The foreign matter detection unit detects foreign matter that interferes with power transmission by the power transmission unit within the detection range. The foreign matter detection unit starts or ends the detection of the foreign matter based on the detection result by the power transmission target detection unit.
第1実施形態に係る非接触送受電システムの構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of a non-contact power transmission and reception system according to a first embodiment. 第1実施形態に係る非接触送電装置の構成を示すブロック図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows the structure of the non-contact power transmission apparatus which concerns on 1st Embodiment. 第1実施形態に係る非接触送電装置の構成の他の例を示すブロック図。The block diagram which shows the other example of a structure of the non-contact power transmission apparatus which concerns on 1st Embodiment. 第1実施形態に係る非接触送電装置の構成の他の例を示すブロック図。The block diagram which shows the other example of a structure of the non-contact power transmission apparatus which concerns on 1st Embodiment. 第1実施形態に係る非接触受電装置の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of a non-contact power reception device according to a first embodiment. 第1実施形態に係る非接触送受電システムの具体例を示す図。The figure which shows the specific example of the non-contact power transmission and reception system which concerns on 1st Embodiment. 第1実施形態に係る非接触受電装置の構成の他の例を示すブロック図。FIG. 7 is a block diagram showing another example of the configuration of the non-contact power reception device according to the first embodiment. 第1実施形態に係る非接触受電装置の構成の他の例を示すブロック図。FIG. 7 is a block diagram showing another example of the configuration of the non-contact power reception device according to the first embodiment. 第1実施形態に係る非接触送電装置の動作状態の遷移の一例を示す遷移図。The transition diagram which shows an example of the transition of the operation state of the non-contact power transmission apparatus which concerns on 1st Embodiment. 第1実施形態に係る異物検出部の動作状態の遷移の一例を示す遷移図。FIG. 7 is a transition diagram showing an example of transition of the operation state of the foreign matter detection unit according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第1実施形態に係る非接触送受電システムの動作を示すフローチャート。3 is a flowchart showing the operation of the non-contact power transmission and reception system according to the first embodiment. 第2実施形態に係る非接触送電装置の動作状態の遷移の一例を示す遷移図。The transition diagram which shows an example of the transition of the operation state of the non-contact power transmission apparatus which concerns on 2nd Embodiment. 第2実施形態に係る非接触送受電システムの動作を示すフローチャート。The flowchart which shows operation | movement of the non-contact power transmission and reception system which concerns on 2nd Embodiment. 第3実施形態に係る非接触送電装置の構成を示すブロック図。The block diagram which shows the structure of the non-contact power transmission apparatus which concerns on 3rd Embodiment. 第3実施形態に係る非接触送受電システムの動作を示すフローチャート。The flowchart which shows operation | movement of the non-contact power transmission and reception system which concerns on 3rd Embodiment. 第4実施形態に係る非接触送電装置の構成を示すブロック図。The block diagram which shows the structure of the non-contact power transmission apparatus which concerns on 4th Embodiment. 第4実施形態に係る非接触送受電システムの動作を示すフローチャート。The flowchart which shows operation | movement of the non-contact power transmission and reception system which concerns on 4th Embodiment. 第5実施形態に係る非接触送受電システムの動作を示すフローチャート。The flowchart which shows operation | movement of the non-contact power transmission and reception system which concerns on 5th Embodiment. 第6実施形態に係る非接触送電装置の構成を示すブロック図。The block diagram which shows the structure of the non-contact power transmission apparatus which concerns on 6th Embodiment. 第6実施形態に係る非接触送受電システムの動作を示すフローチャート。The flowchart which shows operation | movement of the non-contact power transmission and reception system which concerns on 6th Embodiment. 第7実施形態に係る非接触送受電システムの構成を示すブロック図。The block diagram which shows the structure of the non-contact power transmission and reception system which concerns on 7th Embodiment. 第7実施形態に係る非接触送受電システムの動作を示すフローチャート。The flowchart which shows operation | movement of the non-contact power transmission and reception system which concerns on 7th Embodiment.
 以下、非接触送受電システムの実施形態について図面を参照して説明する。非接触送受電システムは、送電対象に非接触で送電する非接触送電装置と、送電対象に搭載される非接触受電装置とにより構成される。非接触送受電システムは、例えば、駐車された電気自動車、EVバス、EVタクシーなどの電動車両に非接触で充電する駐車場や、産業用の製造ラインに適用することができる。駐車場の場合、非接触送電装置は駐車場に設置され、非接触受電装置は送電対象である電動車両に搭載される。また、製造ラインの場合、非接触送電装置はベルトコンベアなどの搬送路上に設置され、非接触受電装置はベルトコンベアなどにより搬送される送電対象(製品)に搭載される。 Hereinafter, embodiments of the non-contact power transmission and reception system will be described with reference to the drawings. A non-contact power transmission and reception system is configured of a non-contact power transmission device for transmitting power without contact to a power transmission target and a non-contact power reception device mounted on the power transmission target. The non-contact power transmission and reception system can be applied to, for example, a parking lot for charging an electric vehicle such as a parked electric vehicle, an EV bus, or an EV taxi in a non-contact manner, or an industrial production line. In the case of a parking lot, the non-contact power transmission device is installed in the parking lot, and the non-contact power reception device is mounted on an electric vehicle to be transmitted. Further, in the case of a manufacturing line, the non-contact power transmission device is installed on a conveyance path such as a belt conveyor, and the non-contact power reception device is mounted on a power transmission target (product) conveyed by a belt conveyor or the like.
 非接触送電装置は単独で使用されてもよい。例えば、本実施形態に係る非接触受電装置以外の、対応した電力伝送方式を備える受電手段に送電するために使用することができる。同様に、非接触受電装置は単独で使用されてもよい。例えば、本実施形態に係る非接触送電装置以外の、対応した電力伝送方式を備える送電手段から受電するために使用することができる。なお、以下の説明において、非接触送電装置、非接触受電装置、及び非接触送受電システムを、それぞれ送電装置、受電装置、送受電システムという。 The non-contact power transmission device may be used alone. For example, it can be used to transmit power to a power receiving means provided with a corresponding power transmission method other than the non-contact power receiving device according to the present embodiment. Similarly, the non-contact power reception device may be used alone. For example, it can be used to receive power from power transmission means provided with a corresponding power transmission method other than the non-contact power transmission device according to the present embodiment. In the following description, the non-contact power transmission device, the non-contact power reception device, and the non-contact power transmission and reception system are respectively referred to as a power transmission device, a power reception device, and a power transmission and reception system.
(第1実施形態)
 以下、第1実施形態に係る送受電システムについて、図1~図20を参照して説明する。ここで、図1は、本実施形態に係る送受電システムの構成を示すブロック図である。図1に示すように、本実施形態に係る送受電システムは、非接触で送電する送電装置100と、非接触で受電する受電装置200とからなる。
First Embodiment
The power transmission and reception system according to the first embodiment will be described below with reference to FIGS. 1 to 20. Here, FIG. 1 is a block diagram showing a configuration of a power transmission and reception system according to the present embodiment. As shown in FIG. 1, the power transmission and reception system according to this embodiment includes a power transmission device 100 that transmits power without contact and a power reception device 200 that receives power without contact.
 送電装置100は、送電対象に非接触で送電するための装置である。ここで、図2は、本実施形態に係る送電装置100の構成を示すブロック図である。図2に示すように、送電装置100は、非接触で送電を行う送電部101と、送電対象を検出する第1送電対象検出部104と、送電を妨げる異物を検出する異物検出部105と、送電装置100を制御する送電制御部106と、受電装置200と通信する通信部107とを備える。 The power transmission device 100 is a device for contactlessly transmitting power to a power transmission target. Here, FIG. 2 is a block diagram showing a configuration of the power transmission device 100 according to the present embodiment. As shown in FIG. 2, the power transmission apparatus 100 includes a power transmission unit 101 that performs non-contact power transmission, a first power transmission target detection unit 104 that detects a power transmission target, and a foreign matter detection unit 105 that detects a foreign object that interferes with power transmission. A power transmission control unit 106 that controls the power transmission device 100 and a communication unit 107 that communicates with the power reception device 200 are provided.
 送電部101は、送電部101の送電方式と対応した受電方式の受電手段に対して非接触で送電する。本実施形態において、送電部101の送電方式は、受電装置200の受電部201の受電方式と対応している。送電部101は、送電部101の送電方式と対応した受電方式の受電手段であれば、受電部201に限らず送電することができる。図2の送電部101の送電方式は、磁界共振方式である。送電部101は、送電回路102と送電コイル103とを備える。 The power transmission unit 101 transmits power without contact to power reception means of a power reception system corresponding to the power transmission system of the power transmission unit 101. In the present embodiment, the power transmission method of the power transmission unit 101 corresponds to the power reception method of the power reception unit 201 of the power reception device 200. The power transmission unit 101 can transmit power without being limited to the power reception unit 201 as long as the power reception unit of the power reception method corresponding to the power transmission method of the power transmission unit 101 is used. The power transmission method of the power transmission unit 101 of FIG. 2 is a magnetic field resonance method. The power transmission unit 101 includes a power transmission circuit 102 and a power transmission coil 103.
 送電回路102は、電源110と接続されており、電源110から供給された電力を、送電に適した周波数や電圧に変換する。電源110は、AC100VやAC200Vなどの系統電源であってもよいし、蓄電池や蓄電設備であってもよい。電源110が送電部101に含まれる構成も可能である。送電回路102は、例えば、力率調整回路や高周波インバータにより構成することができる。 The power transmission circuit 102 is connected to the power supply 110, and converts the power supplied from the power supply 110 into a frequency or voltage suitable for power transmission. The power source 110 may be a system power source such as AC 100 V or AC 200 V, or may be a storage battery or a storage facility. A configuration in which the power supply 110 is included in the power transmission unit 101 is also possible. The power transmission circuit 102 can be configured by, for example, a power factor adjustment circuit or a high frequency inverter.
 送電コイル103は、磁界放射型の電力アンテナである。送電コイル103は、送電回路102から電力を供給され、LC共振により非接触で送電を行う。送電コイル103は、特定の周波数において高い送電効率を達成する。 The power transmission coil 103 is a magnetic field emission type power antenna. The power transmission coil 103 is supplied with power from the power transmission circuit 102, and performs non-contact power transmission by LC resonance. The power transmission coil 103 achieves high power transmission efficiency at a specific frequency.
 なお、送電部101の送電方式は、磁界共振方式に限らず、電磁誘導方式や電波方式など、既存の任意の送電方式を採用することができる。図3は、他の送電方式を採用した送電部101の一例を示すブロック図である。図3に示すように、送電部101は、送電コイル103のかわりに送電アンテナ103を備える。送電アンテナ103として、レクテナ(Recitifying Antenna)や電界結合用アンテナを使用することができる。 The power transmission method of the power transmission unit 101 is not limited to the magnetic field resonance method, and any existing power transmission method such as an electromagnetic induction method or a radio wave method can be adopted. FIG. 3 is a block diagram showing an example of the power transmission unit 101 adopting another power transmission method. As shown in FIG. 3, the power transmission unit 101 includes a power transmission antenna 103 instead of the power transmission coil 103. As the power transmission antenna 103, a rectifying antenna or an antenna for electric field coupling can be used.
 第1送電対象検出部104は、第1の検出範囲に送電対象が進入したことを検出する。第1の検出範囲は、送電部101(送電コイル103)により送電可能な送電範囲に送電対象が接近したことを検出するために予め定められた範囲であり、送電範囲を含むように設定される。また、第1の検出範囲は、後述する誤検出範囲を含むように、すなわち誤検出範囲より広く設定される。異物検出部105は、送電対象が第1の検出範囲に進入したタイミングで異物検出処理を開始する。 The first power transmission target detection unit 104 detects that the power transmission target has entered the first detection range. The first detection range is a range predetermined to detect that the power transmission target approaches the power transmission range that can be transmitted by the power transmission unit 101 (the power transmission coil 103), and is set to include the power transmission range. . Further, the first detection range is set wider than the false detection range so as to include the false detection range described later. The foreign matter detection unit 105 starts the foreign matter detection processing at the timing when the power transmission target enters the first detection range.
 第1送電対象検出部104は、第1の検出範囲に送電対象が進入したことを検出するために、第1の検出範囲の周囲の一部又は全部において送電対象を検出可能なように、1つ又は複数設けられる。送電対象の進入方向が予め決まっている場合には、第1送電対象検出部104は、第1の検出範囲の当該進入方向に1つ設置されてもよい。第1送電対象検出部104として、例えば、赤外線センサ、超音波センサ、重量センサなど、様々な検出手段を使用することができる。また、後述する通信部107を利用して第1送電対象検出部104の機能を実現することもできる。通信部107を使用した送電対象の検出方法については後述する。第1送電対象検出部104の構成はこれらに限られず、送電対象が第1の検出範囲に進入したこと検出可能な任意の構成とすることができる。 In order to detect that the power transmission target has entered the first detection range, the first power transmission target detection unit 104 can detect the power transmission target in part or all of the surroundings of the first detection range. One or more are provided. When the approach direction of the power transmission target is determined in advance, one first power transmission target detection unit 104 may be installed in the approach direction of the first detection range. For example, various detection means such as an infrared sensor, an ultrasonic sensor, and a weight sensor can be used as the first power transmission object detection unit 104. Also, the function of the first power transmission target detection unit 104 can be realized using the communication unit 107 described later. The detection method of the power transmission target using the communication unit 107 will be described later. The configuration of the first power transmission target detection unit 104 is not limited to these, and may be any configuration that can detect that the power transmission target has entered the first detection range.
 異物検出部105は、送電部101による送電を妨げる異物を検出する。異物には、送電部101による送電効率を低下させる物体や、発熱の危険性のある金属などが含まれる。異物検出部105として、カメラなどのCMOSイメージセンサ、超音波センサ、赤外線センサ、スマートフォン等のタッチパネルに使用される静電容量式センサなど、多様なセンサや検出方式を使用することができる。異物検出部105は、第1送電対象検出部104による検出結果に基づいて、異物検出処理を開始する。異物検出部105による異物検出処理については後述する。 The foreign matter detection unit 105 detects a foreign matter that interferes with the power transmission by the power transmission unit 101. The foreign matter includes an object that reduces the power transmission efficiency by the power transmission unit 101, a metal that may generate heat, and the like. As the foreign matter detection unit 105, various sensors and detection methods such as a CMOS image sensor such as a camera, an ultrasonic sensor, an infrared sensor, and a capacitive sensor used for a touch panel such as a smartphone can be used. The foreign matter detection unit 105 starts the foreign matter detection processing based on the detection result of the first power transmission target detection unit 104. The foreign matter detection processing by the foreign matter detection unit 105 will be described later.
 異物検出部105は、1つのセンサや検出方式により構成されてもよいし、複数のセンサや検出方式を組み合わせて構成されてもよい。例えば、図4に示すように、送電装置100は、送電前の異物検出処理に使用する異物検出部105Aと、送電中の異物検出処理に使用する異物検出部105Bとを備えてもよい。 The foreign substance detection unit 105 may be configured by one sensor or detection method, or may be configured by combining a plurality of sensors or detection methods. For example, as shown in FIG. 4, the power transmission apparatus 100 may include a foreign matter detection unit 105A used for foreign matter detection processing before power transmission and a foreign matter detection unit 105B used for foreign matter detection processing during power transmission.
 この場合、異物検出部105Aとして、金属探知機のような磁界センサを使用することが考えられる。磁界センサは、送電対象が接近している場合、送電対象に含まれる金属により送電対象を異物と誤検出したり、送電中に発生する磁界により異物の検出精度が低下したりする可能性がある。しかし、送電前の異物検出では、送電対象は異物検出部105から離れているため、異物を高精度で検出することができる。 In this case, it is conceivable to use a magnetic field sensor such as a metal detector as the foreign matter detection unit 105A. When the power transmission target approaches, the magnetic field sensor may erroneously detect the power transmission target as a foreign object due to the metal contained in the power transmission target, or the detection accuracy of the foreign object may be deteriorated due to the magnetic field generated during power transmission. . However, in the foreign object detection before power transmission, since the power transmission target is separated from the foreign object detection unit 105, the foreign object can be detected with high accuracy.
 また、異物検出部105Bとして、送電中にも異物検出が可能な超音波センサなどを使用することが考えられる。このように、送電前と送電中とで異なる異物検出方式の異物検出部を使用することにより、高精度に異物検出を行うことができる。また、送電前と送電中とで同一の異物検出方式を利用するとともに、異物検出のパラメータを変更することにより、高精度に異物検出を行う構成も可能である。 Moreover, it is possible to use an ultrasonic sensor etc. which can detect a foreign substance also during power transmission as foreign substance detection part 105B. As described above, foreign matter detection can be performed with high accuracy by using the foreign matter detection unit of the foreign matter detection method which is different before and during power transmission. In addition, a configuration is also possible in which foreign matter detection can be performed with high accuracy by using the same foreign matter detection method before power transmission and during power transmission and changing the parameter for foreign matter detection.
 異物検出部105は、予め誤検出範囲を設定される。誤検出範囲とは、当該範囲に送電対象が進入した場合、異物検出部105が送電対象を異物として誤検出する可能性がある範囲である。誤検出範囲は、例えば、異物検出部105や送電部101(送電コイル103)からの相対位置(相対距離)により設定することができる。 The foreign matter detection unit 105 sets an erroneous detection range in advance. The erroneous detection range is a range in which the foreign object detection unit 105 may erroneously detect the power transmission object as a foreign object when the power transmission object enters the range. The erroneous detection range can be set, for example, by the relative position (relative distance) from the foreign matter detection unit 105 or the power transmission unit 101 (power transmission coil 103).
 より詳細には、誤検出範囲は、例えば、実用時や試験時において、送電前に異物検出部105が異物を検出したものの、送電中に異物検出部105が異物を検出しなかった場合を誤検出と定義し、誤検出された送電対象の相対位置情報に基づいて設定することができる。例えば、上述の方法により誤検出された送電対象の相対位置情報を複数取得し、取得された相対位置(相対距離)の平均値や最大値より内側の範囲を誤検出範囲として設定することができる。誤検出範囲は、誤検出された送電対象の相対位置情報を逐次更新し、更新された相対位置情報に基づいて異物検出範囲を更新することができる。 More specifically, the false detection range is, for example, false in the case where the foreign matter detection unit 105 detects a foreign matter before power transmission during practical use or a test, but the foreign matter detection unit 105 does not detect a foreign matter during power transmission. It can be defined as detection and can be set based on the erroneously detected relative position information of the power transmission target. For example, a plurality of pieces of relative position information of the power transmission object erroneously detected by the above-described method can be acquired, and a range inside the average value or the maximum value of the acquired relative positions (relative distances) can be set as the erroneous detection range . The erroneous detection range can sequentially update the relative position information of the erroneously detected power transmission target, and can update the foreign matter detection range based on the updated relative position information.
 また、誤検出範囲は、異物検出部105を構成するセンサや検出方式の仕様に応じて設定することもできる。いずれの場合も、誤検出範囲は、送電範囲を含むように設定されるのが好ましい。このように設定された誤検出範囲は、テーブルとして予め記憶されていてもよい。 The erroneous detection range can also be set in accordance with the specification of the sensor and detection method that constitute the foreign matter detection unit 105. In any case, the false detection range is preferably set to include the power transmission range. The erroneous detection range set in this manner may be stored in advance as a table.
 送電制御部106は、送電装置100の各構成から取得した信号に基づいて送電装置100の動作を制御する。送電制御部106は、例えば、第1送電対象検出部104から受信した送電対象検出信号に基づいて、異物検出部105に異物検出処理を開始させる。また、例えば、送電制御部106は、異物検出部105から受信した異物検出信号に基づいて、送電部101に送電を停止させる。送信制御部106は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)等を基本ハードウェアとして使用することで実現することができる。 The power transmission control unit 106 controls the operation of the power transmission device 100 based on the signals acquired from the respective components of the power transmission device 100. The power transmission control unit 106 causes the foreign object detection unit 105 to start the foreign object detection processing based on, for example, the power transmission object detection signal received from the first power transmission object detection unit 104. Also, for example, the power transmission control unit 106 causes the power transmission unit 101 to stop power transmission based on the foreign matter detection signal received from the foreign matter detection unit 105. The transmission control unit 106 can be realized by using a central processing unit (CPU), a digital signal processor (DSP), a field-programmable gate array (FPGA), or the like as basic hardware.
 通信部107は、送信制御部106と接続され、送電制御部106と、受電装置200などの外部機器との間の無線通信を可能にする。通信部107として、Wi-Fi(登録商標)を含む無線LAN、Bluetooth(登録商標)など、既存の任意の無線通信手段を使用することができる。送電装置100は、通信部107を介して送電対象と通信することにより、送電対象の相対位置情報を取得することもできる。送電対象の相対位置情報と第1の検出範囲とを比較することにより、送電装置100は、送電対象が第1の検出範囲に進入したことを検出することができる。すなわち、通信部107を利用して第1送電対象検出部104の機能を実現することができる。 The communication unit 107 is connected to the transmission control unit 106, and enables wireless communication between the power transmission control unit 106 and an external device such as the power receiving device 200. As the communication unit 107, any existing wireless communication means such as a wireless LAN including Wi-Fi (registered trademark) or Bluetooth (registered trademark) can be used. The power transmission device 100 can also acquire relative position information of the power transmission target by communicating with the power transmission target via the communication unit 107. By comparing the relative position information of the power transmission target with the first detection range, the power transmission device 100 can detect that the power transmission target has entered the first detection range. That is, the function of the first power transmission target detection unit 104 can be realized using the communication unit 107.
 受電装置200は、送電手段から非接触で受電するための装置である。受電装置200は、受電した電力を、バッテリなどの負荷に充電したり、動力として外部機器に供給したりすることができる。ここで、図5は、本実施形態に係る受電装置200の構成を示すブロック図である。図5に示すように、受電装置200は、非接触で受電する受電部201と、受電装置200を制御する受電制御部204と、送電装置100と通信する通信部205とを備える。 The power receiving device 200 is a device for receiving power without contact from the power transmission unit. The power receiving device 200 can charge the received power to a load such as a battery or can supply the power to an external device as motive power. Here, FIG. 5 is a block diagram showing a configuration of the power receiving device 200 according to the present embodiment. As shown in FIG. 5, the power receiving apparatus 200 includes a power receiving unit 201 that receives power without contact, a power receiving control unit 204 that controls the power receiving apparatus 200, and a communication unit 205 that communicates with the power transmission apparatus 100.
 受電部201は、受電部201の受電方式と対応した送電方式の送電手段から非接触で受電する。上述の通り、受電部201の受電方式と送電部101の送電方式とは対応している。受電部201は、受電部201の受電方式と対応した送電方式の送電手段であれば、送電部101に限らず受電することができる。なお、図5の受電部201の受電方式は、磁界共振方式である。受電部201は、受電コイル202と受電回路203とを備える。 The power reception unit 201 receives power without contact from the power transmission unit of the power transmission method corresponding to the power reception method of the power reception unit 201. As described above, the power reception method of the power reception unit 201 and the power transmission method of the power transmission unit 101 correspond to each other. The power reception unit 201 can receive power without being limited to the power transmission unit 101 as long as the power transmission unit of the power transmission method corresponding to the power reception method of the power reception unit 201 is used. The power reception method of the power reception unit 201 in FIG. 5 is a magnetic field resonance method. The power receiving unit 201 includes a power receiving coil 202 and a power receiving circuit 203.
 受電コイル202は、磁界放射型の電力アンテナである。受電コイル202は、送電コイル100から電力を供給され、LC共振により非接触で受電する。受電コイル202は、特定の周波数において高い受電効率を達成する。 The power receiving coil 202 is a magnetic field emission type power antenna. The power receiving coil 202 is supplied with power from the power transmitting coil 100 and receives power without contact by LC resonance. The power receiving coil 202 achieves high power reception efficiency at a specific frequency.
 受電回路203は、負荷206と接続されており、受電コイル202を介して供給された電力を、充電に適した周波数や電圧に変換する。負荷206は、例えば、バッテリである。負荷206が受電部201に含まれる構成も可能である。受電回路203は、充電に適した周波数が0Hz、すなわち、直流電流の場合、受電コイル202を介して供給された電力を直流電流に変換する。この場合、受電回路203は、整流器とDC/DCコンバータにより構成することができる。 The power receiving circuit 203 is connected to the load 206, and converts the power supplied through the power receiving coil 202 into a frequency or voltage suitable for charging. The load 206 is, for example, a battery. A configuration in which the load 206 is included in the power receiving unit 201 is also possible. The power receiving circuit 203 converts the power supplied via the power receiving coil 202 into a direct current when the frequency suitable for charging is 0 Hz, that is, a direct current. In this case, the power receiving circuit 203 can be configured by a rectifier and a DC / DC converter.
 なお、受電部201の受電方式は、磁界共振方式に限らず、電磁誘導方式や電波方式であってもよい。受電部201は、受電コイル202のかわりに受電アンテナを備えてもよい。受電アンテナとして、レクテナ(Recitifying Antenna)や電界結合用アンテナを使用することができる。 The power reception method of the power reception unit 201 is not limited to the magnetic field resonance method, and may be an electromagnetic induction method or a radio wave method. The power receiving unit 201 may include a power receiving antenna instead of the power receiving coil 202. As the power receiving antenna, a rectifying antenna or an antenna for electric field coupling can be used.
 受電制御部204は、受電装置200の各構成から取得した信号に基づいて受電装置200の動作を制御する。また、受電制御部204は、受電装置200が搭載された送電対象の制御手段との間で信号の送受信を行うこともできる。これにより、受電制御部204は、例えば、制御手段から送電対象に関する各種の情報を取得したり、取得した情報に基づく信号を生成し、通信部205を介して送電装置100などの外部機器に送信したりすることができる。受信制御部204は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)等を基本ハードウェアとして使用することで実現することができる。 The power reception control unit 204 controls the operation of the power reception device 200 based on the signal acquired from each component of the power reception device 200. The power reception control unit 204 can also transmit and receive a signal to / from the control unit of the power transmission target on which the power reception device 200 is mounted. Thereby, for example, the power reception control unit 204 acquires various types of information on the power transmission target from the control unit, generates a signal based on the acquired information, and transmits the signal to an external device such as the power transmission apparatus 100 via the communication unit 205. You can do it. The reception control unit 204 can be realized by using a central processing unit (CPU), a digital signal processor (DSP), a field-programmable gate array (FPGA), or the like as basic hardware.
 通信部205は、受信制御部204と接続され、受電制御部204と送電装置100などの外部機器との間の無線通信を可能にする。通信部205として、Wi-Fiを含む無線LAN、Bluetoothなど、既存の任意の無線通信手段を使用することができる。 The communication unit 205 is connected to the reception control unit 204, and enables wireless communication between the power reception control unit 204 and an external device such as the power transmission device 100. As the communication unit 205, any existing wireless communication means such as a wireless LAN including Wi-Fi, Bluetooth, etc. can be used.
 図6は、本実施形態に係る送受電システムを電気自動車に充電する駐車場に適用した具体例を示す図である。図6において、送電対象は電気自動車であり、送電装置100は駐車場に設置され、受電装置200は電気自動車に搭載されている。 FIG. 6 is a view showing a specific example in which the power transmission and reception system according to the present embodiment is applied to a parking lot for charging an electric vehicle. In FIG. 6, the power transmission target is an electric vehicle, the power transmission device 100 is installed in a parking lot, and the power reception device 200 is mounted in the electric vehicle.
 電気自動車は、図6において白線で示された駐車スペースに駐車する。送電コイル103は、駐車された電気自動車の受電コイル202に送電可能なように駐車場に設置されており、送電範囲上に位置する受電コイル202に対して送電する。異物検出部105は、送電コイル103の送電範囲を含む範囲に存在する異物を検出する。第1送電対象検出部104は、異物検出部105の誤検出範囲を含む第1の検出範囲に電気自動車が進入したことを検出する。 The electric vehicle is parked in a parking space indicated by a white line in FIG. The power transmission coil 103 is installed in the parking lot so that power can be transmitted to the power reception coil 202 of the parked electric vehicle, and transmits power to the power reception coil 202 located on the power transmission range. Foreign matter detection unit 105 detects foreign matter present in a range including the power transmission range of power transmission coil 103. The first power transmission target detection unit 104 detects that the electric vehicle has entered a first detection range including the erroneous detection range of the foreign matter detection unit 105.
 図6に示すように、送電装置100が駐車場に設置されている場合、駐車券の発券装置により第1送電対象検出部104の構成を実現してもよい。この場合、第1の検出範囲は、発券装置より内側の駐車場内となり、発券装置から送信される駐車券の発券信号を送電対象検出信号として利用することができる。なお、図6において、受電装置200は受電コイル202のみが図示され、他の構成は省略されている。 As shown in FIG. 6, when the power transmission device 100 is installed in a parking lot, the configuration of the first power transmission target detection unit 104 may be realized by a ticket issuing device of a parking ticket. In this case, the first detection range is in a parking lot inside the ticket issuing device, and the ticket issue signal of the parking ticket transmitted from the ticket issuing device can be used as a power transmission target detection signal. In addition, in FIG. 6, only the receiving coil 202 is shown in figure, and the other structure is abbreviate | omitted.
 上述のように、送電対象が電気自動車の場合には、図7に示すように、受電制御部204と電気自動車の制御手段であるECU(Engine Control Unit)207とが、CAN-BUSなどの所定のインターフェースを介して接続されてもよい。このような構成により、受電制御部204はECUから電気自動車に関する各種の情報を取得することができる。受電制御部204が取得する情報には、電気自動車の走行速度に関する情報や、電気自動車が停車したことを示す情報が含まれる。受電制御部204は、これらの情報に基づいて信号を生成し、通信部205を介して送電装置100などの外部機器に送信することができる。 As described above, when the power transmission target is an electric vehicle, as shown in FIG. 7, the power reception control unit 204 and an ECU (Engine Control Unit) 207 that is a control unit of the electric vehicle include predetermined ones such as CAN-BUS. It may be connected via the interface of With such a configuration, the power reception control unit 204 can acquire various types of information regarding the electric vehicle from the ECU. The information acquired by the power reception control unit 204 includes information on the traveling speed of the electric vehicle and information indicating that the electric vehicle has stopped. The power reception control unit 204 can generate a signal based on these pieces of information, and can transmit the signal to an external device such as the power transmission device 100 via the communication unit 205.
 また、通信部205がECU207に接続された構成も可能である。この場合、受電制御部204は、生成した信号を、ECU207に接続された通信部205を介して外部機器に送信する。さらに、図8に示すように、受電制御部204の機能をECU207により実現する構成も可能である。 Moreover, the structure by which the communication part 205 was connected to ECU207 is also possible. In this case, the power reception control unit 204 transmits the generated signal to an external device via the communication unit 205 connected to the ECU 207. Furthermore, as shown in FIG. 8, a configuration in which the function of the power reception control unit 204 is realized by the ECU 207 is also possible.
 次に、本実施形態に係る送受電システムの動作について、図9~図20を参照して説明する。以下では、送受電システムが、図6と同様、電気自動車を充電する駐車場に適用された場合、すなわち、送電対象が電気自動車であり、送電装置100が駐車場に設置され、受電装置200が電気自動車に搭載された場合について説明する。しかし、上述の通り、送受電システムは駐車場に限らず、他の用途に適用することもできる。 Next, the operation of the power transmission and reception system according to the present embodiment will be described with reference to FIGS. 9 to 20. In the following, when the power transmission and reception system is applied to a parking lot for charging an electric vehicle as in FIG. 6, that is, the power transmission target is the electric vehicle, the power transmission device 100 is installed in the parking lot, and the power reception device 200 is The case of being mounted on an electric vehicle will be described. However, as described above, the power transmission and reception system is applicable not only to the parking lot but also to other applications.
 まず、送電制御部106の動作状態の遷移について図9を参照して説明する。図9は、本実施形態に係る送電制御部106の動作状態の遷移の一例を示す遷移図である。図9に示すように、送電制御部106は、駐車場に電気自動車が接近するまで待機状態M1となっている。待機状態M1では、第1送電対象検出部104は送電対象検出処理を実行している。また、待機状態M1において、異物検出部105は異物検出処理を実行していてもよいし、実行していなくてもよいが、実行していないのが好ましい。これにより、送電装置100の消費電力を低減させることができる。第1送電対象検出部104が送電対象を検出すると、送電制御部106は送電前異物検出状態M2に遷移する。 First, the transition of the operation state of the power transmission control unit 106 will be described with reference to FIG. FIG. 9 is a transition diagram showing an example of the transition of the operation state of the power transmission control unit 106 according to the present embodiment. As shown in FIG. 9, the power transmission control unit 106 is in the standby state M1 until the electric vehicle approaches the parking lot. In the standby state M1, the first power transmission target detection unit 104 executes power transmission target detection processing. In the standby state M1, the foreign matter detection unit 105 may or may not perform the foreign matter detection process, but it is preferable that the foreign matter detection process is not performed. Thereby, the power consumption of the power transmission device 100 can be reduced. When the first power transmission target detection unit 104 detects a power transmission target, the power transmission control unit 106 transitions to the pre-power transmission foreign object detection state M2.
 送電前異物検出状態M2において、異物検出部105は、異物検出処理(送電前異物検出処理)を実行する。送電前異物検出処理は、予め定められた継続時間の間実行される。継続時間は、送電対象が誤検出範囲に進入する前に送電前異物検出処理が終了するように設定される。継続時間の代わりに、送電対象が誤検出範囲に進入する前に送電前異物検出処理が終了するように、異物検出の回数が設定されてもよい。送電前異物検出状態M2において、第1送電対象検出部104は、送電対象検出処理を実行してもよいし、実行しなくてもよい。 In the pre-transmission foreign object detection state M2, the foreign object detection unit 105 executes a foreign object detection process (pre-transmission foreign object detection process). The foreign object detection process before power transmission is performed for a predetermined duration. The duration is set such that the foreign object detection processing before power transmission ends before the power transmission target enters the erroneous detection range. Instead of the duration, the number of foreign object detections may be set such that the foreign object detection processing before power transmission ends before the power transmission target enters the erroneous detection range. In the foreign object detection state before power transmission M2, the first power transmission target detection unit 104 may or may not execute the power transmission target detection process.
 送電前異物検出状態M2において、異物検出部105が異物を検出した場合、送電制御部106は送電不可能状態M3に遷移する。送電不可能状態M3において、送電部101は、電気自動車が駐車スペースに駐車しても送電を行わない。送電装置100は、電気自動車のドライバーに異物の存在を知らせるための異物検出通知を行ってもよい。異物検出通知方法については後述する。送電不可能状態M3は、異物検出部105により検出された異物が除去されるまで継続する。送電不可能状態M3において、異物検出部105により検出された異物が除去されると、送電制御部106は待機状態M1に遷移する。 In the foreign object detection state M2 before power transmission, when the foreign object detection unit 105 detects a foreign object, the power transmission control unit 106 transitions to the power transmission impossible state M3. In the power transmission impossible state M3, the power transmission unit 101 does not perform power transmission even if the electric vehicle is parked in the parking space. The power transmission device 100 may perform foreign object detection notification to notify the driver of the electric vehicle of the presence of the foreign object. The foreign matter detection and notification method will be described later. The power transmission impossible state M3 continues until the foreign matter detected by the foreign matter detection unit 105 is removed. In the power transmission impossible state M3, when the foreign matter detected by the foreign matter detection unit 105 is removed, the power transmission control unit 106 transitions to the standby state M1.
 送電前異物検出状態M2において、異物検出部105は、異物検出処理を継続してもよい。この場合、送電制御部106は、異物検出部105が異物を検出しなくなった時点で異物が除去されたものと判定し、待機状態M1に遷移する。送電前異物検出状態M2における異物検出処理は、異物が除去されるまで継続させてもよいし、所定時間だけ継続させてもよい。異物検出処理の継続時間を所定時間に制限することにより、送電装置100の消費電力を低減させることができる。 In the foreign object detection state M2 before power transmission, the foreign object detection unit 105 may continue the foreign object detection process. In this case, the power transmission control unit 106 determines that the foreign matter has been removed when the foreign matter detection unit 105 no longer detects the foreign matter, and transitions to the standby state M1. The foreign matter detection processing in the foreign matter detection state M2 before power transmission may be continued until the foreign matter is removed, or may be continued for a predetermined time. Power consumption of the power transmission device 100 can be reduced by limiting the duration of the foreign matter detection process to a predetermined time.
 また、送電前異物検出状態M2において、異物検出部105は、異物検出処理を終了してもよい。この場合、送電装置100は、電気自動車のドライバーが異物を除去したことを通知するための異物除去通知手段を備えればよい。異物除去通知手段については後述する。なお、送電不可能状態M3において異物が除去された場合、送電制御部106は、待機状態M1ではなく送電可能状態M4に遷移してもよい。 In the foreign matter detection state M2 before power transmission, the foreign matter detection unit 105 may end the foreign matter detection processing. In this case, the power transmission device 100 may be provided with a foreign matter removal notification unit for notifying that the driver of the electric vehicle has removed the foreign matter. The foreign matter removal notification means will be described later. When the foreign matter is removed in the power non-transferable state M3, the power transmission control unit 106 may transition to the power transmittable state M4 instead of the standby state M1.
 送電前異物検出状態M2において、異物検出部105が異物を検出しなかった場合、送電制御部106は送電可能状態M4に遷移する。送電可能状態M4において、送電部101は、電気自動車が駐車スペースに駐車すると送電を行う。送電可能状態M4は、電気自動車が駐車スペースに駐車するまで、より詳細には、電気自動車に搭載された受電装置200の受電コイル202が、送電範囲上に位置するまで継続する。送電制御部106が送電可能状態M4に遷移すると、異物検出手段105は、異物検出処理を終了する。電気自動車が第1の検出範囲に進入した時点で異物検出処理を開始し、誤検出範囲に進入する前に異物検出処理を終了することにより、異物検出部105が電気自動車を異物として誤検出する可能性を低減することができる。また、異物が検出された場合には、送電制御部106が送電不可能状態M3に遷移し、送電が行われないため、送電効率の低下を防ぎ、安全に送電を行うことができる。送電可能状態M4において、電気自動車が駐車スペースに駐車されると、送電制御部106は送電状態M5に遷移する。 In the foreign object detection state M2 before power transmission, when the foreign object detection unit 105 does not detect a foreign object, the power transmission control unit 106 transitions to the power transmittable state M4. In the power transmittable state M4, the power transmission unit 101 performs power transmission when the electric vehicle is parked in the parking space. The power transmittable state M4 continues until the electric car is parked in the parking space, more specifically, until the power receiving coil 202 of the power receiving device 200 mounted on the electric car is positioned on the power transmission range. When the power transmission control unit 106 transitions to the power transmittable state M4, the foreign matter detection unit 105 ends the foreign matter detection processing. The foreign object detection process is started when the electric vehicle enters the first detection range, and the foreign object detection unit 105 erroneously detects the electric vehicle as a foreign object by ending the foreign object detection process before entering the false detection range. The possibilities can be reduced. When a foreign object is detected, the power transmission control unit 106 transitions to the power transmission impossible state M3 and power transmission is not performed. Therefore, power transmission efficiency can be prevented safely and power transmission can be performed safely. In the power transmittable state M4, when the electric vehicle is parked in the parking space, the power transmission control unit 106 transitions to the power transmission state M5.
 送電状態M5において、まず、異物検出部105が異物検出処理(送電中異物検出処理)を開始し、異物が検出されなかった場合には、送電部101が電気自動車に送電を開始する。すなわち、異物検出部105の動作状態は、図10に示すように、送電前異物検出処理を実行する送電前異物検出状態m1(送電制御部106における送電前異物検出状態M2)と送電中に異物検出処理を行う送電中異物検出状態m2(送電制御部106における送電状態M5)との間を、異物検出処理を実行しない異物検出停止状態m3(送電制御部106における送電可能状態M4)を介して遷移する。 In the power transmission state M5, first, the foreign object detection unit 105 starts foreign object detection processing (foreign object detection processing during power transmission), and when no foreign object is detected, the power transmission unit 101 starts power transmission to the electric vehicle. That is, as shown in FIG. 10, the operation state of the foreign object detection unit 105 is the foreign object detection state before power transmission detection state m1 (the foreign object detection state before power transmission in the power transmission control unit 106) and the foreign object during power transmission. The foreign object detection state m2 (power transmission state M5 in the power transmission control unit 106) performing the detection process and the foreign object detection stop state m3 (power transmittable state M4 in the power transmission control unit 106) are not executed. Transition.
 異物検出部105は、送電前異物検出状態m1及び送電中異物検出状態m2において、同一の方法で異物検出処理を実行してもよいし、異なる方法で異物検出処理を行ってもよい。例えば、異物検出部105は、送電前と送電中とで異なるセンサにより異物検出を行ってもよいし、送電前と送電中とで同一のセンサを使用し、異物を検出するためのパラメータとして異なるパラメータを使用してもよい。このように、送電前と送電中とで異物検出方法を変更することにより、異物をより高精度に検出することができる。 The foreign object detection unit 105 may execute the foreign object detection process by the same method in the foreign object detection state m1 before power transmission and the foreign object detection state m2 during power transmission, or may perform the foreign object detection processing by a different method. For example, the foreign matter detection unit 105 may perform foreign matter detection using different sensors before power transmission and during power transmission, or uses the same sensor before power transmission and during power transmission, and differs as a parameter for detecting foreign substances. Parameters may be used. As described above, foreign matter can be detected more accurately by changing the foreign matter detection method before power transmission and during power transmission.
 送電状態M5において、異物検出部105が異物を検出すると、送電制御部106は送電不可能状態M3に遷移する。一方、送電状態M5において、異物検出部105が異物を検出しないまま、電気自動車のバッテリの充電が完了すると、送電部101は送電を終了し、送電制御部106の動作状態は待機状態M1に遷移する。 In the power transmission state M5, when the foreign object detection unit 105 detects a foreign object, the power transmission control unit 106 transitions to the power transmission impossible state M3. On the other hand, in the power transmission state M5, when charging of the battery of the electric vehicle is completed without detecting the foreign object, the power transmission portion 101 ends power transmission, and the operation state of the power transmission control portion 106 transitions to the standby state M1. Do.
 次に、送受電システムの動作の具体例について、図11~図20を参照して説明する。ここで、図11は、送電制御部106の動作状態が待機状態M1から送電不可能状態M3又は送電可能状態M4に遷移するまでの送受電システムの動作を示すフローチャートである。待機状態M1において、上述の通り、第1送電対象検出部104による送電対象検出処理が実行されている。また、図11において、電気自動車は走行中であるものとする。 Next, a specific example of the operation of the power transmission and reception system will be described with reference to FIGS. 11 to 20. Here, FIG. 11 is a flowchart showing an operation of the power transmission and reception system until the operation state of the power transmission control unit 106 transitions from the standby state M1 to the power transmission impossible state M3 or the power transmission possible state M4. In the standby state M1, as described above, the power transmission target detection process is executed by the first power transmission target detection unit 104. Further, in FIG. 11, it is assumed that the electric vehicle is traveling.
 走行中の電気自動車が第1の検出範囲に進入すると、第1送電対象検出部104は、電気自動車が第1の検出範囲に進入したことを検出し(ステップS1)、送電対象検出信号を送電制御部106に送信する(ステップS2)。送電制御部106は、送電対象検出信号を受信すると(ステップS3)、送電前異物検出状態M2に遷移する。 When the traveling electric vehicle enters the first detection range, the first power transmission object detection unit 104 detects that the electric vehicle has entered the first detection range (step S1), and transmits the power transmission object detection signal. It transmits to the control part 106 (step S2). When the power transmission control unit 106 receives the power transmission target detection signal (step S3), the power transmission control unit 106 transitions to the foreign object detection state M2 before power transmission.
 送電前異物検出状態M2において、送電制御部106は、異物検出部105に送電前異物検出開始信号を送信する(ステップS4)。異物検出部105は、送電前異物検出開始信号を受信すると、送電前異物検出処理を開始し(ステップS5)、異物検出の結果を送電制御部106に送信する(ステップS6)。異物検出部105は、検出結果を送信した後、所定の時間待機し(ステップS7)、検出結果を送電制御部106に再度送信する。すなわち、異物検出部105は、送電前異物検出処理を開始すると、所定の時間間隔で検出結果を送電制御部106に送信する。 In the pre-transmission foreign object detection state M2, the power transmission control unit 106 transmits a pre-transmission foreign object detection start signal to the foreign object detection unit 105 (step S4). When receiving the pre-power transmission foreign object detection start signal, the foreign object detection unit 105 starts the pre-power transmission foreign object detection process (step S5), and transmits the result of the foreign object detection to the power transmission control unit 106 (step S6). After transmitting the detection result, the foreign matter detection unit 105 stands by for a predetermined time (step S7), and transmits the detection result to the power transmission control unit 106 again. That is, when the foreign object detection unit 105 starts the foreign object detection process before power transmission, the foreign object detection unit 105 transmits the detection result to the power transmission control unit 106 at predetermined time intervals.
 送電制御部106は、異物検出部105から検出結果を受信し(ステップS8)、異物が検出されている場合(ステップS9のYes)、送電不可能状態M3に遷移する。一方、異物が検出されていない場合(ステップS9のNo)、送電制御部106は、所定の継続時間を経過したか否か判定する(ステップS10)。 The power transmission control unit 106 receives the detection result from the foreign matter detection unit 105 (step S8), and transitions to the power transmission impossible state M3 when the foreign matter is detected (Yes in step S9). On the other hand, when no foreign object is detected (No in step S9), the power transmission control unit 106 determines whether a predetermined duration has elapsed (step S10).
 送電制御部106は、継続時間が経過するまで所定の時間間隔で異物検出の結果を受信し、異物が検出されることなく継続時間が経過した場合(ステップS10のYes)、送電前異物検出終了信号を異物検出部105に送信し(ステップS11)、送電可能状態M4に遷移する。異物検出部105は、送電前異物検出終了信号を受信すると、送電前異物検出処理を終了する(ステップS12)。 The power transmission control unit 106 receives the result of foreign matter detection at predetermined time intervals until the continuation time elapses, and when the continuation time elapses without detection of foreign matter (Yes in step S10), the foreign matter detection before power transmission ends A signal is transmitted to the foreign object detection unit 105 (step S11), and a transition to the power transmittable state M4 is made. When the foreign object detection unit 105 receives the foreign object detection completion signal before power transmission, the foreign object detection unit 105 ends the foreign object detection processing before power transmission (step S12).
 なお、図11において、送電前異物検出状態M2の終了のタイミング、すなわち、異物検出部105による送電前異物検出処理の終了のタイミングは、予め定められた継続時間により制限されたが、上述のように、異物検出の回数(検出結果の送信回数)によって制限されてもよい。 In FIG. 11, the timing of the end of the pre-transmission foreign object detection state M2, that is, the timing of the end of the pre-transmission foreign object detection process by the foreign object detection unit 105 is limited by a predetermined duration. It may be limited by the number of foreign object detection (the number of transmission of detection results).
 図12は、送電制御部106が送電可能状態M4から送電不可能状態M3又は送電状態M5に遷移するまでの送受電システムの動作の具体例を示すフローチャートである。送電可能状態M4において、上述の通り、異物検出部105による送電前異物検出処理は終了している。また、図12において、電気自動車は駐車スペースに、送電装置100により送電可能なように駐車されたものとする。 FIG. 12 is a flowchart showing a specific example of the operation of the power transmission and reception system until the power transmission control unit 106 transitions from the power transmission possible state M4 to the power transmission impossible state M3 or the power transmission state M5. In the power transmittable state M4, as described above, the foreign object detection processing before power transmission by the foreign object detection unit 105 is completed. Further, in FIG. 12, it is assumed that the electric vehicle is parked in the parking space so as to be able to transmit power by the power transmission device 100.
 走行中の電気自動車が駐車スペースに駐車すると、電気自動車に搭載された受電装置200は、駐車信号を送電制御部106に送信する(ステップS13)。受電装置200による駐車信号送信処理(ステップS13)の詳細については後述する。 When the traveling electric vehicle is parked in the parking space, the power receiving device 200 mounted on the electric vehicle transmits a parking signal to the power transmission control unit 106 (step S13). Details of the parking signal transmission process (step S13) by the power receiving device 200 will be described later.
 送電制御部106は、駐車信号を受信すると(ステップS14)、まず、送電中異物検出開始信号を異物検出部105に送信する(ステップS15)。異物検出部105は、送電中異物検出開始信号を受信すると、送電中異物検出処理を開始し(ステップS16)、検出結果を送電制御部106に送信する(ステップS17)。異物検出部105は、検出結果を送信した後、所定の時間待機し(ステップS18)、検出結果を送電制御部109に再度送信する(ステップS19)。すなわち、異物検出部105は、送電中異物検出処理を開始すると、所定の時間間隔で検出結果を送電制御部106に送信する。 When the power transmission control unit 106 receives a parking signal (step S14), first, it transmits a foreign object detection start signal during power transmission to the foreign object detection unit 105 (step S15). When receiving the foreign object detection start signal during power transmission, the foreign object detection unit 105 starts the foreign object detection processing during power transmission (step S16), and transmits the detection result to the power transmission control unit 106 (step S17). After transmitting the detection result, the foreign matter detection unit 105 stands by for a predetermined time (step S18), and transmits the detection result again to the power transmission control unit 109 (step S19). In other words, when the foreign object detection process during power transmission is started, the foreign object detection unit 105 transmits the detection result to the power transmission control unit 106 at predetermined time intervals.
 送電制御部106は、異物検出部105から検出結果を受信し(ステップS20)、異物が検出されている場合(ステップS21のYes)、送電不可能状態M3に遷移する。一方、送電制御部106は、異物が検出されていない場合(ステップS21のNo)、送電部101に送電を開始させる送電開始処理を実行し(ステップS22)、送電状態M5に遷移する。すなわち、送電装置100は、送電中異物検出処理の検出結果により、異物が存在しないことを確認してから送電を開始する。したがって、送電前異物検出処理が終了してから送電中異物検出処理が開始するまでの間に異物が現れた場合であっても、送電開始前に検出することができる。したがって、異物による送電効率の低下を防ぎ、安全に送電を行うことができる。 The power transmission control unit 106 receives the detection result from the foreign matter detection unit 105 (step S20), and transitions to the power transmission impossible state M3 when the foreign matter is detected (Yes in step S21). On the other hand, when no foreign object is detected (No in step S21), the power transmission control unit 106 executes power transmission start processing that causes the power transmission unit 101 to start power transmission (step S22), and transitions to the power transmission state M5. That is, the power transmission apparatus 100 starts power transmission after confirming that no foreign object is present according to the detection result of the foreign object detection processing during power transmission. Therefore, even if a foreign object appears between the end of the foreign object detection process before power transmission and the start of the foreign object detection process during power transmission, it can be detected before the start of power transmission. Therefore, it is possible to prevent the decrease in the power transmission efficiency due to the foreign matter and safely perform the power transmission.
 送電制御部106は、送電状態M5に遷移した後、所定時間間隔で異物検出部105の検出結果を受信する(ステップS23)。送電制御部106は、異物検出部105により異物が検出された場合(ステップS24のYes)、送電部101に送電処理を停止させる送電停止処理を実行し(ステップS25)、送電不可能状態M3に遷移する。一方、異物検出部105により異物が検出されていない場合(ステップS24のNo)、送電制御部106は、送電状態M5を維持し、送電を継続する。 The power transmission control unit 106 receives the detection result of the foreign object detection unit 105 at predetermined time intervals after transition to the power transmission state M5 (step S23). When the foreign object is detected by the foreign object detection unit 105 (Yes in step S24), the power transmission control unit 106 executes power transmission stop processing for causing the power transmission unit 101 to stop the power transmission processing (step S25). Transition. On the other hand, when the foreign object is not detected by the foreign object detection unit 105 (No in step S24), the power transmission control unit 106 maintains the power transmission state M5 and continues the power transmission.
 ここで、受電装置200による駐車信号送信処理(ステップS13)について詳細に説明する。受電装置200の受電制御部204は、電気自動車のECU207の制御信号を随時取得する。図13に示すように、受電制御部204は、ECU207からシフトレバーをパーキングにする制御信号を取得した時点で、電気自動車が停車した、すなわち、駐車スペースに駐車されたものと判断し、駐車信号を生成し、通信部205を介して駐車信号を送電装置100に送信することができる(ステップS13)。また、図14に示すように、受電制御部204は、ECU207からサイドブレーキをONにする制御信号を取得した時点で、駐車信号を送電装置100に送信することもできる(ステップS13)。さらに、図15に示すように、受電制御部204は、ECU207からイグニッションキーをOFFにする制御信号を取得した時点で、駐車信号を送電装置100に送信することもできる(ステップS13)。他にも、受電制御部204は、ECU207からドアキーを開錠する制御信号や、イグニッションキーのアクセサリーのみONする制御信号を取得した時点で、駐車信号を送電装置100に送信することもできる。 Here, the parking signal transmission process (step S13) by the power receiving device 200 will be described in detail. The power reception control unit 204 of the power reception device 200 acquires a control signal of the ECU 207 of the electric vehicle as needed. As shown in FIG. 13, when the power reception control unit 204 acquires a control signal for parking the shift lever from the ECU 207, it determines that the electric vehicle has stopped, that is, parked in the parking space, and outputs a parking signal. , And transmits a parking signal to the power transmission device 100 via the communication unit 205 (step S13). Further, as shown in FIG. 14, the power reception control unit 204 can also transmit a parking signal to the power transmission device 100 when acquiring a control signal for turning on the side brake from the ECU 207 (step S13). Furthermore, as shown in FIG. 15, the power reception control unit 204 can also transmit a parking signal to the power transmission device 100 when acquiring a control signal for turning off the ignition key from the ECU 207 (step S13). Besides, the power reception control unit 204 can also transmit a parking signal to the power transmission device 100 when acquiring a control signal for unlocking the door key from the ECU 207 or a control signal for turning on only the accessory of the ignition key.
 またさらに、駐車信号を受電装置200以外の機器から取得する構成も可能である。例えば、駐車スペースの付近や駐車場内に、送電装置100に送電を開始させるための送電開始端末を設け、電気自動車を駐車したドライバーが送電開始端末を操作することにより、駐車信号が送電制御部106に送信されるように構成することもできる。送電装置100は、送電開始端末から受信した駐車信号を契機にしてステップS15以降の処理を行えばよい。送電開始端末は、送電装置100と有線又は無線にて接続される。 Furthermore, a configuration in which a parking signal is acquired from devices other than the power receiving device 200 is also possible. For example, a power transmission start terminal for causing the power transmission apparatus 100 to start power transmission is provided in the vicinity of a parking space or in a parking lot, and the driver who parked the electric vehicle operates the power transmission start terminal. It can also be configured to be sent to The power transmission device 100 may perform the processing of step S15 and subsequent steps triggered by the parking signal received from the power transmission start terminal. The power transmission start terminal is connected to the power transmission apparatus 100 in a wired or wireless manner.
 図16は、送電制御部106が、送電前異物検出状態M2又は送電状態M5から、送電不可能状態M3に遷移した後、待機状態M1に遷移するまでの送受電システムの動作を示すフローチャートである。 FIG. 16 is a flowchart showing an operation of the power transmission / reception system from transition to the standby state M1 after the power transmission control unit 106 transitions from the pre-transmission foreign object detection state M2 or the power transmission state M5 to the power transmission impossible state M3. .
 図16に示すように、送電前異物検出状態M2(送電状態M5)から送電不可能状態M4に遷移した場合、異物検出部105は、送電前異物検出処理(送電中異物検出処理)を継続している。したがって、異物検出部105は、所定時間間隔で検出結果を送信し(ステップS26,S27)、送電制御部106は、送信された検出結果を受信し(ステップS28)、異物が検出されている場合(ステップS29のYes)、送電不可能状態M4を維持する。一方、送電制御部106は、異物が検出されなくなった場合(ステップS29のNo)、送電前異物検出終了信号(送電中異物検出終了信号)を送信し(ステップS30)、待機状態M1に遷移する。異物検出部105は、送電前異物検出終了信号(送電中異物検出終了信号)を受信すると、送電前異物検出処理(送電中異物検出処理)を終了する(ステップS31)。 As shown in FIG. 16, when the foreign object detection state before power transmission M2 (power transmission state M5) is changed to the power non-transferable state M4, the foreign object detection unit 105 continues the foreign object detection processing before power transmission (foreign object detection processing during power transmission) ing. Therefore, the foreign matter detection unit 105 transmits the detection result at predetermined time intervals (steps S26 and S27), and the power transmission control unit 106 receives the transmitted detection result (step S28), and the foreign matter is detected. (Yes in step S29), the power transmission impossible state M4 is maintained. On the other hand, when the foreign object is not detected (No in step S29), the power transmission control unit 106 transmits the foreign object detection end signal before power transmission (the foreign object detection end signal during power transmission) (step S30), and transitions to the standby state M1. . When the foreign object detection unit 105 receives the foreign object detection end signal before power transmission (foreign object detection completion signal during power transmission), the foreign object detection unit 105 ends the foreign object detection processing before power transmission (foreign object detection processing during power transmission) (step S31).
 なお、送電前異物検出状態M2から送電不可能状態M4に遷移した場合、ステップS30の後、送電制御部106は送電可能状態M4に遷移してもよい。また、送電状態M5から送電不可能状態M4に遷移した場合、ステップS29の後、送電中異物検出処理を終了せずに、送電状態M5に遷移してもよい。送電状態M5に遷移した後の送受電システムの動作については後述する。 If the foreign object detection state before power transmission M2 transitions to the power non-transferable state M4, the power transmission control unit 106 may transition to the power transmission enabled state M4 after step S30. When the power transmission state M5 transitions to the power transmission impossible state M4, after step S29, the processing may transition to the power transmission state M5 without ending the foreign object detection processing during power transmission. The operation of the power transmission and reception system after transition to the power transmission state M5 will be described later.
 送電制御部106は、送電不可能状態M4に遷移した場合、図17に示すように、電気自動車のドライバーに異物が検出されたことを通知するために異物検出通知信号を送信してもよい。例えば、送電制御部106は、通信部107を介して受電装置200に異物検出通知信号を送信することができる(ステップS32)。受電装置200は、通信部205を介して異物検出通知信号を受信すると(ステップS33)、ドライバーに異物が検出されたことを通知する(ステップS34)。受電装置200は、例えば、ECU207を介して、電気自動車に搭載されたカーナビゲーションシステムの操作端末に、異物が検出されたことを表示させることができる。ドライバーへの通知は、音声により行われてもよい。 When transitioning to the power transmission impossible state M4, the power transmission control unit 106 may transmit a foreign substance detection notification signal to notify the driver of the electric vehicle that a foreign substance has been detected, as shown in FIG. For example, the power transmission control unit 106 can transmit a foreign object detection notification signal to the power receiving device 200 via the communication unit 107 (step S32). When the power receiving apparatus 200 receives the foreign substance detection notification signal via the communication unit 205 (step S33), the power receiving apparatus 200 notifies the driver that the foreign substance is detected (step S34). For example, the power receiving device 200 can display, via the ECU 207, an operation terminal of a car navigation system mounted on an electric vehicle that a foreign object has been detected. Notification to the driver may be performed by voice.
 また、受電装置200以外の異物検出通知端末が設けられてもよい。例えば、駐車スペース付近に異物検出通知端末を設け、当該異物検出通知端末に異物検出通知信号を送信する構成も可能である。異物検出通知信号を受信した異物検出通知端末は、画像や音声により、異物が検出されたことをドライバーに通知する。異物検出通知端末として、ドライバーの携帯電話及びスマートフォン等の情報端末や、電気自動車の場合はキーやカーナビゲーションシステムの操作端末などが使用されてもよい。 Also, a foreign matter detection and notification terminal other than the power reception device 200 may be provided. For example, the foreign matter detection notification terminal may be provided near the parking space, and the foreign matter detection notification signal may be transmitted to the foreign matter detection notification terminal. The foreign substance detection notification terminal that has received the foreign substance detection notification signal notifies the driver that the foreign substance has been detected by an image or a voice. As the foreign matter detection and notification terminal, an information terminal such as a mobile phone or a smartphone of a driver, or in the case of an electric vehicle, a key or an operation terminal of a car navigation system may be used.
 さらに、送受電システムは、ドライバーが異物を除去したことを送電装置100に通知するための異物除去通知手段を備えてもよい。この場合、送電不可能状態M4において、異物検出処理を継続する所定の継続時間を設定することができる。図18に示すように、送電制御部106は、異物検出処理の継続時間が経過したか判定し(ステップS35)、継続時間を経過した場合、送電前(送電中)異物検出終了信号を送信し(ステップS36)、送電前(送電中)異物検出終了信号を受信した異物検出部105は、送電前(送電中)異物検出処理を終了する(ステップS37)。その後、送電制御部106は、異物除去通知手段から、ドライバーが異物を除去したことを通知する異物除去通知信号を受信するまで待機する(ステップS38)。 Furthermore, the power transmission and reception system may include foreign matter removal notification means for notifying the power transmission device 100 that the driver has removed the foreign matter. In this case, in the power transmission impossible state M4, it is possible to set a predetermined duration for continuing the foreign matter detection processing. As shown in FIG. 18, the power transmission control unit 106 determines whether the continuation time of the foreign matter detection processing has elapsed (step S35), and when the continuation time has elapsed, transmits the foreign matter detection end signal before power transmission (during power transmission). (Step S36) The foreign object detection unit 105 that receives the foreign object detection end signal before power transmission (during power transmission) ends the foreign object detection processing before power transmission (during power transmission) (step S37). Thereafter, the power transmission control unit 106 stands by until the foreign matter removal notification signal for notifying that the driver has removed the foreign matter is received from the foreign matter removal notification means (step S38).
 送電制御部106は、異物除去通知信号を受信すると(ステップS38のYes)、異物検出開始信号を送信し(ステップS39)、異物検出開始信号を受信した異物検出部105は異物検出を実行する(ステップS40)。送電制御部105は、異物検出部105から検出結果を受信し(ステップS41,S42)、異物が検出されなかった場合(ステップS43のNo)、待機状態M1に遷移する。一方、送電制御部106は、異物が検出された場合(ステップS43のNo)、異物検出通知信号を再度送信する(ステップS32)。 When the power transmission control unit 106 receives the foreign matter removal notification signal (Yes in step S38), it transmits a foreign matter detection start signal (step S39), and the foreign matter detection unit 105 that receives the foreign matter detection start signal executes foreign matter detection ( Step S40). The power transmission control unit 105 receives the detection result from the foreign matter detection unit 105 (steps S41 and S42), and when no foreign matter is detected (No in step S43), transitions to the standby state M1. On the other hand, when the foreign object is detected (No in step S43), the power transmission control unit 106 transmits the foreign object detection notification signal again (step S32).
 異物除去通知手段は、駐車スペース付近に設けられた端末であってもよいし、ドライバーの携帯電話などでもよい。また、電気自動車に搭載されたカーナビゲーションシステムの操作端末から受電装置200を介して異物検出除去信号が送信されてもよい。このような構成により、異物がいつまでも除去されなかった場合に、異物検出部105が異物検出処理を実行し続けることを防ぎ、送電装置100の消費電力を低減させることができる。 The foreign matter removal notification means may be a terminal provided near the parking space, or may be a mobile phone of a driver. A foreign object detection and removal signal may be transmitted from the operation terminal of the car navigation system mounted on the electric vehicle via the power receiving device 200. With such a configuration, when foreign matter is not removed forever, the foreign matter detection unit 105 can be prevented from continuing to execute the foreign matter detection processing, and power consumption of the power transmission device 100 can be reduced.
 図19は、送電制御部106が、送電状態M4から待機状態M1に遷移するまでの送受電システムの動作を示すフローチャートである。送電状態M4において、送電中異物検出処理が実行されており、異物が検出された場合には、送電制御部106は送電不可能状態M3に遷移する。このような動作は、図12において説明した通りであるため、図19では説明を省略する。 FIG. 19 is a flowchart showing an operation of the power transmission and reception system until the power transmission control unit 106 transitions from the power transmission state M4 to the standby state M1. In the power transmission state M4, the foreign object detection processing during power transmission is executed, and when a foreign object is detected, the power transmission control unit 106 transitions to the power transmission impossible state M3. Such an operation is as described in FIG. 12, and thus the description thereof is omitted in FIG.
 図19に示すように、送電状態M4において、電気自動車のECU207は、バッテリの充電状態を確認し(ステップS44)、充電量が満充電閾値以上か否か判定する(ステップS45)。バッテリが満充電となった場合(ステップS45のYes)、受電制御部204は、ECU207からバッテリが満充電になったことを示す制御信号を取得し、通信部206を介して、送電制御部106に送電停止信号を送信する(ステップS46)。受電制御部204の機能がECU207により実現されている場合には、ECU207が送電停止信号を送信する。また、バッテリが満充電となったか否かの判定は、受電制御部204が行ってもよい。 As shown in FIG. 19, in the power transmission state M4, the ECU 207 of the electric vehicle confirms the charge state of the battery (step S44), and determines whether the charge amount is equal to or more than the full charge threshold (step S45). If the battery is fully charged (Yes in step S45), the power reception control unit 204 acquires a control signal indicating that the battery is fully charged from the ECU 207, and the power transmission control unit 106 via the communication unit 206. The power transmission stop signal is transmitted to (step S46). When the function of the power reception control unit 204 is realized by the ECU 207, the ECU 207 transmits a power transmission stop signal. Further, the power reception control unit 204 may determine whether or not the battery is fully charged.
 送電制御部106は、送電停止信号を受信すると(ステップS47)、送電部101に送電を終了させる送電終了処理を実行する(ステップS48)。送電が終了すると、送電制御部106は、受電制御部204に送電終了信号を送信し(ステップS49)、待機状態M1に遷移する。受電制御部204は、送電終了信号を受信し(ステップS50)、バッテリの充電が完了する。送受電システムのこのような動作により、電気自動車のバッテリへの過充電を防ぐことができる。 When the power transmission control unit 106 receives the power transmission stop signal (step S47), the power transmission control unit 106 executes power transmission end processing for causing the power transmission unit 101 to end power transmission (step S48). When the power transmission ends, the power transmission control unit 106 transmits a power transmission end signal to the power reception control unit 204 (step S49), and transitions to the standby state M1. The power reception control unit 204 receives the power transmission end signal (step S50), and charging of the battery is completed. Such operation of the power transmission and reception system can prevent overcharging of the battery of the electric vehicle.
 また、図20に示すように、電気自動車の発車に合わせて送電を終了することも可能である。受電制御部204は、電気自動車のECUからイグニッションキーをONにする信号を取得すると(ステップS51)、電気自動車の発車を判定し、送電制御部106に送電停止信号を送信する(ステップS46)。以下の動作は、図19とステップS47~S50と同様である。なお、受電制御部204は、サイドブレーキがOFFにする制御信号、シフトレバーをドライブなどの走行可能状態にする制御信号、ドアキーを解錠する信号などに基づいて、電気自動車の発車を判定することもできる。 Further, as shown in FIG. 20, it is also possible to end power transmission in accordance with the departure of the electric vehicle. When receiving a signal to turn on the ignition key from the ECU of the electric vehicle (step S51), the power reception control unit 204 determines the departure of the electric vehicle and transmits a power transmission stop signal to the power transmission control unit 106 (step S46). The following operation is similar to that of FIG. 19 and steps S47 to S50. The power reception control unit 204 determines the departure of the electric vehicle based on a control signal to turn off the side brake, a control signal to turn on the shift lever for driving or the like, a signal to unlock the door key, etc. You can also.
 以上説明した通り、本実施形態によれば、送電対象が誤検出範囲に進入する前に、すなわち、第1の検出範囲に進入した時点で送電前異物検出処理を実行するため、送電対象を異物として誤検出する可能性が抑制される。また、送電前及び送電中に異物検出を実行し、異物が検出されないことを確認した上で送電対象に送電を行うため、送電効率の低下を防ぐとともに、安全に送電を行うことができる。 As described above, according to the present embodiment, foreign object detection processing before power transmission is performed before the power transmission object enters the erroneous detection range, that is, when the power transmission object enters the first detection range. The possibility of false detection is suppressed. Moreover, since foreign object detection is performed before and during power transmission and power transmission is performed after power transmission is performed after it is confirmed that foreign objects are not detected, power transmission efficiency can be prevented safely and safely.
(第2実施形態)
 以下、第2実施形態に係る送受電システムについて、図21及び図22を参照して説明する。本実施形態における送電装置100及び受電装置200の構成は第1実施形態と同様である。
Second Embodiment
Hereinafter, the power transmission and reception system according to the second embodiment will be described with reference to FIGS. 21 and 22. The configurations of the power transmission device 100 and the power reception device 200 in the present embodiment are the same as in the first embodiment.
 ここで、図21は、本実施形態に係る送電制御部106の動作状態の遷移の一例を示す遷移図である。図21に示すように、本実施形態において、送電制御部106は、第1送電対象検出部104により検出された送電対象に対して認証処理を実行する送電対象認証状態M6を有する。 Here, FIG. 21 is a transition diagram illustrating an example of the transition of the operation state of the power transmission control unit 106 according to the present embodiment. As shown in FIG. 21, in the present embodiment, the power transmission control unit 106 has a power transmission object authentication state M6 in which an authentication process is performed on the power transmission object detected by the first power transmission object detection unit 104.
 待機状態M1において、第1送電対象検出部104により送電対象が検出されると、送電制御部106の動作状態は送電対象認識状態M6に遷移する。送電対象認識状態M6において、送電対象部104(送電対象認証手段)は送電対象が送電部101により送電可能な送電対象か否か判定する。送電制御部106は、検出された送電対象に送電可能と判定した場合(認証に成功した場合)、送電前異物検出状態M2に遷移する。一方、送電制御部106は、検出された送電対象に送電不可能と判定した場合、待機状態M1に遷移する。 In the standby state M1, when the power transmission target is detected by the first power transmission target detection unit 104, the operation state of the power transmission control unit 106 transitions to the power transmission target recognition state M6. In the power transmission target recognition state M6, the power transmission target unit 104 (power transmission target authentication unit) determines whether the power transmission target is a power transmission target that can be transmitted by the power transmission unit 101. If the power transmission control unit 106 determines that power transmission to the detected power transmission target is possible (if authentication is successful), the power transmission control unit 106 transitions to the pre-power transmission foreign object detection state M2. On the other hand, when the power transmission control unit 106 determines that power transmission to the detected power transmission target is impossible, the power transmission control unit 106 transitions to the standby state M1.
 第1送電対象検出部104により検出された送電対象が送電不可能な場合とは、例えば、送電対象が送電部101の送電方式と異なる受電方式の電気自動車の場合である。また、第1送電対象検出部104が重量センサにより送電対象を検出する場合、電気自動車以外の車両(ガソリン車など)が送電対象として検出されることも考えられる。本実施形態では、送電対象を予め送電可能か否か判定することにより、送電不可能な送電対象に対して各種の処理を実行せずに済むため、送電装置100の消費電力を低減させることができる。 The case where the power transmission target detected by the first power transmission target detection unit 104 can not transmit power is, for example, the case of an electric vehicle of a power reception method different from the power transmission method of the power transmission unit 101. In addition, when the first power transmission target detection unit 104 detects a power transmission target using a weight sensor, it may be considered that a vehicle other than the electric vehicle (such as a gasoline car) is detected as the power transmission target. In the present embodiment, it is not necessary to execute various types of processing on a power transmission target that can not transmit power by determining in advance whether power transmission can be performed on power transmission targets, so the power consumption of the power transmission apparatus 100 can be reduced. it can.
 図22は、送電制御部106の動作状態が待機状態M1から送電前異物検出状態M2に遷移するまでの送受電システムの動作を示すフローチャートである。なお、図22におけるステップS1~S3は、図11と同様である。また、送電前異物検出状態M2以降の送受電システムの動作は、上述の実施形態と同様である。 FIG. 22 is a flowchart showing the operation of the power transmission and reception system until the operation state of the power transmission control unit 106 transitions from the standby state M1 to the foreign object detection state before power transmission M2. Steps S1 to S3 in FIG. 22 are the same as those in FIG. In addition, the operation of the power transmission and reception system after the foreign object detection state M2 before power transmission is the same as that of the above-described embodiment.
 本実施形態において、送電制御部106は、送電対象検出信号を受信すると(ステップS3)、送電対象認証状態M6に遷移する。送電対象認証状態M6において、送電制御部106は、通信部107を介して受電制御部204との無線接続処理を実行する(ステップS51)。受電制御部204の機能がECU207により実現されている場合には、ECU207との無線接続処理を実行する。送電制御部106は、一定時間内に無線接続が確立されない場合(ステップS52)、第1送電対象検出部104により検出された送電対象は送電不可能と判定し、待機状態M1に遷移する。一方、送電制御部106は、一定時間内に無線接続が確立された場合(ステップS52のYes)、受電制御部204に対して送電対象認証問合せを送信する(ステップS53)。送電制御部106は、送電対象認証問合せにおいて、第1送電対象検出部104により検出された送電対象が送電可能か否かを判定するための認証情報を要求する。認証情報には、例えば、受電装置200や電気自動車のID情報などが含まれる。 In the present embodiment, when the power transmission control unit 106 receives the power transmission target detection signal (step S3), the power transmission control unit 106 transitions to the power transmission target authentication state M6. In the power transmission target authentication state M6, the power transmission control unit 106 executes wireless connection processing with the power reception control unit 204 via the communication unit 107 (step S51). When the function of the power reception control unit 204 is realized by the ECU 207, the wireless connection process with the ECU 207 is executed. When the wireless connection is not established within a predetermined time (step S52), the power transmission control unit 106 determines that the power transmission target detected by the first power transmission target detection unit 104 can not transmit power, and transitions to the standby state M1. On the other hand, when the wireless connection is established within a predetermined time (Yes in step S52), the power transmission control unit 106 transmits a power transmission target authentication inquiry to the power reception control unit 204 (step S53). The power transmission control unit 106 requests authentication information for determining whether or not the power transmission target detected by the first power transmission target detection unit 104 can transmit power in the power transmission target authentication inquiry. The authentication information includes, for example, ID information of the power receiving device 200 and the electric vehicle.
 送電制御部106は、一定時間内に受電制御部204から応答が得られない場合(ステップS54のNo)、待機状態M1に遷移する。一方、送電制御部106は、一定時間内に受電制御部204から応答を得られた場合(ステップS54のYes)、すなわち、送電対象認証問合せを受信した受電制御部204が認証情報を送信し、送電制御部106が当該認証情報を受信した場合(ステップS55~S57)、認証処理を実行する(ステップS58)。送電制御部106は、受信した認証情報に基づいて送電可能か否か判定し、送電不可能(認証失敗)と判定した場合(ステップS58のNo)、待機状態M1に遷移し、送電可能(認証成功)と判定した場合(ステップS58のYes)、送電前異物検出状態M2に遷移する。 If the power reception control unit 204 can not obtain a response from the power reception control unit 204 within a predetermined time (No in step S54), the power transmission control unit 106 transitions to the standby state M1. On the other hand, when the power transmission control unit 106 receives a response from the power reception control unit 204 within a predetermined time (Yes in step S54), that is, the power reception control unit 204 that has received the power transmission object authentication inquiry transmits authentication information. When the power transmission control unit 106 receives the authentication information (steps S55 to S57), the authentication process is performed (step S58). The power transmission control unit 106 determines whether power transmission is possible based on the received authentication information, and when it is determined that power transmission is not possible (authentication failure) (No in step S58), transits to the standby state M1 and power transmission is possible (authentication When it is determined that the process is successful (Yes in step S58), the state is switched to the foreign object detection state M2 before power transmission.
 受電制御部204は、ステップS56において、認証情報をECU207から取得してもよい。また、受電制御部204は、認証情報を記憶した認証情報記憶部を備え、認証情報記憶部から取得した認証情報を送電制御部106に送信してもよい。受電制御部204は、取得した認証情報を、通信部205を介して送電制御部106に送信する。 The power reception control unit 204 may acquire the authentication information from the ECU 207 in step S56. In addition, the power reception control unit 204 may include an authentication information storage unit storing authentication information, and may transmit the authentication information acquired from the authentication information storage unit to the power transmission control unit 106. The power reception control unit 204 transmits the acquired authentication information to the power transmission control unit 106 via the communication unit 205.
 以上説明した通り、本実施形態によれば、第1送電対象検出部104により検出された送電対象が実際に送電可能か否か予め判定(認証)することにより、送電不可能な場合には各種の処理(異物検出処理など)を実行せずに済むため、送受電システムの消費電力を低減させることができる。 As described above, according to the present embodiment, various types of power transmission can not be performed by determining in advance (authentication) whether the power transmission target detected by the first power transmission target detection unit 104 can actually transmit power. The power consumption of the power transmission and reception system can be reduced because it is not necessary to execute the processing (for example, foreign substance detection processing) of the above.
(第3実施形態)
 以下、第3実施形態に係る送受電システムについて、図23及び図24を参照して説明する。本実施形態において、異物検出部105は、第2の検出範囲に送電対象が進入した時点で送電前異物検出処理を終了する。ここで、図23は、本実施形態に係る送電装置100の構成を示すブロック図である。図23に示すように、送電装置100は、送電部101と、第1送電対象検出部104と、異物検出部105と、送電制御部106と、通信部107とを備える。以上の構成は上述の実施形態と同様である。本実施形態において、送電装置100は、さらに第2送電対象検出部108を備える。
Third Embodiment
The power transmission and reception system according to the third embodiment will be described below with reference to FIGS. 23 and 24. In the present embodiment, the foreign object detection unit 105 ends the foreign object detection process before power transmission when the power transmission target enters the second detection range. Here, FIG. 23 is a block diagram showing a configuration of the power transmission device 100 according to the present embodiment. As shown in FIG. 23, the power transmission device 100 includes a power transmission unit 101, a first power transmission target detection unit 104, a foreign object detection unit 105, a power transmission control unit 106, and a communication unit 107. The above configuration is the same as that of the above embodiment. In the present embodiment, the power transmission device 100 further includes a second power transmission target detection unit 108.
 第2送電対象検出部108は、第2の検出範囲に送電対象が進入したことを検出する。第2の検出範囲は、誤検出範囲に送電対象が接近したことを検出するために予め定められた範囲であり、誤検出範囲を含むように設定される。また、第2の検出範囲は、第1の検出範囲に含まれるように、すなわち第1の検出範囲より狭く設定される。第2の検出範囲は、誤検出範囲と一致してもよい。異物検出部105は、送電対象が第2の検出範囲に進入したタイミングで送電前異物検出処理を終了する。 The second power transmission target detection unit 108 detects that the power transmission target has entered the second detection range. The second detection range is a range predetermined to detect that the power transmission target approaches the false detection range, and is set to include the false detection range. Further, the second detection range is set to be included in the first detection range, that is, set narrower than the first detection range. The second detection range may coincide with the false detection range. The foreign object detection unit 105 ends the foreign object detection process before power transmission at the timing when the power transmission target enters the second detection range.
 第2送電対象検出部108は、第2の検出範囲に送電対象が進入したことを検出するために、第2の検出範囲の周囲の一部又は全部において送電対象を検出可能なように、1つ又は複数設けられる。送電対象の進入方向が予め決まっている場合には、第2送電対象検出部108は、第2の検出範囲の当該進入方向に1つ設置されてもよい。第2送電対象検出部108として、例えば、赤外線センサ、超音波センサ、重量センサなど、様々な検出手段を使用することができる。また、第1送電対象検出部104と同様に、通信部107を利用して実現することもできる。さらに、第2送電対象検出部108の構成は、第1送電対象検出部104と同様であってもよいし、異なってもよい。また、第1送電対象検出部104と第2送電対象検出部108との機能が、単一の送電対象検出部により実現されてもよい。なお、第2送電対象検出部108の構成はこれらに限られず、送電対象が第2の検出範囲に進入したこと検出可能な任意の構成とすることができる。 In order to detect that the power transmission target has entered the second detection range, the second power transmission target detection unit 108 can detect the power transmission target in part or all of the periphery of the second detection range, One or more are provided. When the approach direction of the power transmission target is determined in advance, one second power transmission target detection unit 108 may be installed in the approach direction of the second detection range. As the second power transmission target detection unit 108, various detection means such as an infrared sensor, an ultrasonic sensor, and a weight sensor can be used, for example. Further, as in the case of the first power transmission target detection unit 104, it can be realized using the communication unit 107. Furthermore, the configuration of the second power transmission target detection unit 108 may be the same as or different from that of the first power transmission target detection unit 104. Also, the functions of the first power transmission target detection unit 104 and the second power transmission target detection unit 108 may be realized by a single power transmission target detection unit. The configuration of the second power transmission target detection unit 108 is not limited to these, and may be any configuration that can detect that the power transmission target has entered the second detection range.
 図24は、送電制御部106が、送電前異物検出状態M2から送電不可能状態M3又は送電可能状態M4に遷移するまでの送受電システムの動作を示すフローチャートである。なお、送電前異物検出状態M2までの動作や、送電不可能状態M3及び送電可能状態M4以降の動作は上述の実施形態と同様である。 FIG. 24 is a flowchart showing an operation of the power transmission and reception system until the power transmission control unit 106 transitions from the pre-power transmission foreign object detection state M2 to the power non-transmission possible state M3 or the power transmission possible state M4. The operation up to the foreign object detection state M2 before power transmission and the operations after the power non-permission state M3 and the power transmission possible state M4 are the same as those in the above-described embodiment.
 送電前異物検出状態M2において、送電制御部106は、送電対象検出開始信号を第2送電対象検出部108に送信する(ステップS59)。第2送電対象検出部108は、送電対象検出開始信号を受信すると、送電対象検出処理を開始する(ステップS60)。すなわち、第2送電対象検出部108は、送電制御部106が送電前異物検出状態M2に遷移するまで動作していない。これにより、送受電システムの消費電力を低減させることができる。 In the foreign object detection state before power transmission M2, the power transmission control unit 106 transmits a power transmission target detection start signal to the second power transmission target detection unit 108 (step S59). When the power transmission target detection start signal is received, the second power transmission target detection unit 108 starts power transmission target detection processing (step S60). That is, the second power transmission target detection unit 108 does not operate until the power transmission control unit 106 transitions to the foreign object detection state M2 before power transmission. Thereby, the power consumption of the power transmission and reception system can be reduced.
 第2送電対象検出部108は、所定の時間間隔で検出処理を実行し、検出結果を送電制御部106に送信する(ステップS61,S62)。また、送電制御部106は、異物検出部105に送電前異物検出処理を開始させる(ステップS4~S7)。異物検出部105による送電前異物検出処理は上述の実施形態と同様である。 The second power transmission target detection unit 108 executes detection processing at predetermined time intervals, and transmits the detection result to the power transmission control unit 106 (steps S61 and S62). Further, the power transmission control unit 106 causes the foreign object detection unit 105 to start the foreign object detection processing before power transmission (steps S4 to S7). The foreign object detection processing before power transmission by the foreign object detection unit 105 is the same as that of the above-described embodiment.
 送電制御部106は、所定の時間間隔で第2送電対象検出部108から検出結果を受信する(ステップS63)。送電制御部106は、送電対象が第2の検出範囲に進入していない場合(ステップS64のNo)、異物検出部105から検出結果を受信する(ステップS8)。送電制御部106は、異物が検出された場合(ステップS9のYes)、送電不可能状態に遷移し、異物が検出されていない場合(ステップS9)、第2送電対象検出部108の検出結果を再度受信する(ステップS63)。 The power transmission control unit 106 receives the detection result from the second power transmission target detection unit 108 at predetermined time intervals (step S63). When the power transmission target has not entered the second detection range (No in step S64), the power transmission control unit 106 receives the detection result from the foreign object detection unit 105 (step S8). When the foreign object is detected (Yes in step S9), the power transmission control unit 106 transitions to the power transmission impossible state, and when the foreign object is not detected (step S9), the detection result of the second power transmission object detection unit 108 It receives again (step S63).
 一方、送電制御部106は、送電対象が第2の検出範囲に進入した場合(ステップS64のYes)、異物検出部105による送電前異物検出処理を終了させ(ステップS11,S12)、第2送電対象検出部108による送電対象検出処理を終了させ(ステップS65,S66)、送電可能状態M4に遷移する。 On the other hand, when the power transmission target enters the second detection range (Yes at step S64), the power transmission control unit 106 ends the foreign object detection processing before power transmission by the foreign object detection unit 105 (steps S11 and S12). The power transmission target detection process by the target detection unit 108 is ended (steps S65 and S66), and the state is transitioned to the power transmittable state M4.
 以上説明した通り、異物検出部105は、送電対象が第1の検出範囲に進入すると送電前異物検出処理を開始し、送電対象が第2の検出範囲に進入すると送電前異物検出処理を終了する。第2の検出範囲は、誤検出範囲を含むように設定されるため、送電対象が異物検出部105により異物として誤検出される可能性をより確実に低減させることができる。 As described above, the foreign object detection unit 105 starts the foreign object detection processing before power transmission when the power transmission target enters the first detection range, and ends the foreign object detection processing before power transmission when the power transmission target enters the second detection range. . The second detection range is set to include the erroneous detection range, so that the possibility that the power transmission target is erroneously detected as a foreign object by the foreign object detection unit 105 can be more reliably reduced.
(第4実施形態)
 以下、第4実施形態に係る送受電システムについて、図25及び図26を参照して説明する。ここで、図25は、本実施形態に係る送電装置100の構成を示すブロック図である。図25に示すように、本実施形態において、第2送電対象検出部108は、位置検出部109と送電制御部106とにより構成される。他の構成は、第3実施形態と同様である。
Fourth Embodiment
The power transmission and reception system according to the fourth embodiment will be described below with reference to FIGS. 25 and 26. Here, FIG. 25 is a block diagram showing a configuration of the power transmission device 100 according to the present embodiment. As shown in FIG. 25, in the present embodiment, the second power transmission target detection unit 108 includes a position detection unit 109 and a power transmission control unit 106. The other configuration is the same as that of the third embodiment.
 位置検出部109は、位置検出部109や送電コイル103に対する送電対象の相対位置(相対距離)を検出する。位置検出部109として、例えば、位置合せ手段を利用することができる。位置合せ手段とは、送電コイル103と受電コイル202とを位置合せするための手段であって、数メートル以内の位置を検出可能なセンサ等により構成される。位置合せ手段には、例えば、RFIDやNFCなどの近接無線や、超音波センサ、CMOSセンサなどが含まれる。位置検出部109として位置合せ手段を利用することにより、第2送電対象検出部108を構成するための新たなセンサ等が不要となり、第2送電対象検出部108の構成を簡素化することができる。 The position detection unit 109 detects the relative position (relative distance) of the power transmission target with respect to the position detection unit 109 and the power transmission coil 103. As the position detection unit 109, for example, alignment means can be used. The alignment means is a means for aligning the power transmission coil 103 and the power reception coil 202, and is configured of a sensor or the like capable of detecting a position within several meters. The alignment means includes, for example, proximity wireless such as RFID and NFC, an ultrasonic sensor, a CMOS sensor, and the like. By using the alignment unit as the position detection unit 109, a new sensor or the like for configuring the second power transmission object detection unit 108 becomes unnecessary, and the configuration of the second power transmission object detection unit 108 can be simplified. .
 送電制御部106は、位置検出部109が検出した送電対象の相対位置と、第2の検出範囲とを比較することにより、送電対象が第2の検出範囲に進入したことを検出する。すなわち、第3実施形態における第2送電対象検出部108の機能は、位置検出部109と送電制御部106とにより実現される。 The power transmission control unit 106 detects that the power transmission target has entered the second detection range by comparing the relative position of the power transmission target detected by the position detection unit 109 with the second detection range. That is, the function of the second power transmission target detection unit 108 in the third embodiment is realized by the position detection unit 109 and the power transmission control unit 106.
 図26は、送電制御部106が、送電前異物検出状態M2から送電不可能状態M3又は送電可能状態M4に遷移するまでの送受電システムの動作の具体例を示すフローチャートである。なお、送電前異物検出状態M2までの動作や、送電不可能状態M3及び送電可能状態M4以降の動作は上述の実施形態と同様である。 FIG. 26 is a flowchart showing a specific example of the operation of the power transmission and reception system until the power transmission control unit 106 transitions from the pre-power transmission foreign object detection state M2 to the power non-transmission possible state M3 or the power transmission possible state M4. The operation up to the foreign object detection state M2 before power transmission and the operations after the power non-permission state M3 and the power transmission possible state M4 are the same as those in the above-described embodiment.
 送電前異物検出状態M2において、送電制御部106は、位置検出開始信号を位置検出部109に送信する(ステップS67)。位置検出部109は、位置検出開始信号を受信すると、位置検出処理を開始する(ステップS68)。すなわち、位置検出部109は、送電制御部106が送電前異物検出状態M2に遷移するまで動作していない。これにより、送受電システムの消費電力を低減させることができる。 In the foreign object detection state M2 before power transmission, the power transmission control unit 106 transmits a position detection start signal to the position detection unit 109 (step S67). When the position detection unit 109 receives the position detection start signal, the position detection unit 109 starts position detection processing (step S68). That is, the position detection unit 109 does not operate until the power transmission control unit 106 transitions to the pre-power transmission foreign object detection state M2. Thereby, the power consumption of the power transmission and reception system can be reduced.
 位置検出部109は、所定の時間間隔で位置検出処理を実行し、検出結果を送電制御部106に送信する(ステップS69,S70)。また、送電制御部106は、異物検出部105に送電前異物検出処理を開始させる(ステップS4~S7)。異物検出部105による送電前異物検出処理は上述の実施形態と同様である。 The position detection unit 109 executes position detection processing at predetermined time intervals, and transmits the detection result to the power transmission control unit 106 (steps S69 and S70). Further, the power transmission control unit 106 causes the foreign object detection unit 105 to start the foreign object detection processing before power transmission (steps S4 to S7). The foreign object detection processing before power transmission by the foreign object detection unit 105 is the same as that of the above-described embodiment.
 送電制御部106は、所定の時間間隔で位置検出部109から検出結果を受信し(ステップS71)、受信した検出結果、すなわち、送電対象の相対位置と、予め設定された第2の検出範囲とを比較し、送電対象が第2の検出範囲に進入したか否か判定する(ステップS72)。当該判定は、例えば、第2の相対距離として設定された位置検出部109や送電コイル103からの相対距離と、検出された送電対象の相対距離とを比較することにより可能である。 The power transmission control unit 106 receives the detection result from the position detection unit 109 at predetermined time intervals (step S71), and the received detection result, that is, the relative position of the power transmission target and the second detection range set in advance Are compared, and it is determined whether the power transmission target has entered the second detection range (step S72). The determination can be performed, for example, by comparing the relative distance from the position detection unit 109 or the power transmission coil 103 set as the second relative distance with the relative distance of the detected power transmission target.
 送電制御部106は、送電対象が第2の検出範囲に進入していないと判定した場合(ステップS72のNo)、異物検出部105から検出結果を受信する(ステップS8)。送電制御部106は、異物が検出された場合(ステップS9のYes)、送電不可能状態に遷移し、異物が検出されていない場合(ステップS9)、第2送電対象検出部108の検出結果を受信する(ステップS71)。 When it is determined that the power transmission target has not entered the second detection range (No in step S72), the power transmission control unit 106 receives the detection result from the foreign object detection unit 105 (step S8). When the foreign object is detected (Yes in step S9), the power transmission control unit 106 transitions to the power transmission impossible state, and when the foreign object is not detected (step S9), the detection result of the second power transmission object detection unit 108 It receives (step S71).
 一方、送電制御部106は、送電対象が第2の検出範囲に進入したと判定した場合(ステップS72のYes)、異物検出部105による送電前異物検出処理を終了させ(ステップS11,S12)、位置検出部109による位置検出処理を終了させ(ステップS73,S74)、送電可能状態M4に遷移する。なお、位置検出部109として上述の位置合せ手段を利用した場合には、図26におけるステップS73,S74を省略し、位置検出処理を継続させるのが好ましい。 On the other hand, when the power transmission control unit 106 determines that the power transmission target has entered the second detection range (Yes in step S72), the foreign object detection unit 105 ends the pre-power transmission foreign object detection processing (steps S11 and S12), The position detection process by the position detection unit 109 is ended (steps S73 and S74), and the state is transitioned to the power transmittable state M4. When the above-mentioned alignment means is used as the position detection unit 109, it is preferable to omit steps S73 and S74 in FIG. 26 and continue the position detection process.
(第5実施形態)
 以下、第5実施形態に係る送受電システムについて、図27を参照して説明する。本実施形態において、送受電システムの構成は第4実施形態と同様である。ただし、本実施形態において、送電制御部106は、送電対象が第3の検出範囲に進入したか否か判定し、異物検出部105は、送電対象が第3の検出範囲に進入した後に異物検出処理を実行する。
Fifth Embodiment
The power transmission and reception system according to the fifth embodiment will be described below with reference to FIG. In the present embodiment, the configuration of the power transmission and reception system is the same as that of the fourth embodiment. However, in the present embodiment, the power transmission control unit 106 determines whether the power transmission target has entered the third detection range, and the foreign object detection unit 105 detects foreign objects after the power transmission target has entered the third detection range. Execute the process
 ここで、図27は、送電制御部106が、送電前異物検出状態M2から送電不可能状態M3又は送電可能状態M4に遷移するまでの送受電システムの動作の具体例を示すフローチャートである。なお、送電前異物検出状態M2までの動作や、送電不可能状態M3及び送電可能状態M4以降の動作は上述の実施形態と同様である。また、本実施形態において、送電制御部106が送電前異物検出状態M2に遷移してから検出結果を受信するまでの動作(ステップS67~S71)は第4実施形態と同様である。 Here, FIG. 27 is a flowchart illustrating a specific example of the operation of the power transmission and reception system until the power transmission control unit 106 transitions from the pre-power transmission foreign object detection state M2 to the power non-transferable state M3 or the power transmittable state M4. The operation up to the foreign object detection state M2 before power transmission and the operations after the power non-permission state M3 and the power transmission possible state M4 are the same as those in the above-described embodiment. Further, in the present embodiment, the operation (steps S67 to S71) from the transition of the power transmission control unit 106 to the foreign object detection state before power transmission to the reception of the detection result (steps S67 to S71) is similar to that of the fourth embodiment.
 送電制御部106は、検出結果を受信すると(ステップS71)、送電対象が第3の検出範囲に進入したか否か判定する(ステップS75)。第3の検出範囲は、誤検出範囲を含み、第1の検出範囲に含まれる範囲であり、誤検出範囲に所定のオフセット距離を加算して設定される。 When the power transmission control unit 106 receives the detection result (step S71), the power transmission control unit 106 determines whether the power transmission target has entered the third detection range (step S75). The third detection range is a range that includes the false detection range and is included in the first detection range, and is set by adding a predetermined offset distance to the false detection range.
 オフセット距離は、数cm~1m以下の値とされるのが好ましい。特に、オフセット距離は、送電対象の移動速度v(m/s)と、送電制御部106が異物検出部105に異物検出処理を開始させてから検出結果を受信するまでの遅延時間t(s)と、に応じて設定され、オフセット距離≧v(m/s)×t(s)と設定されるのが好ましい。 The offset distance is preferably a few cm to 1 m or less. In particular, the offset distance is the moving speed v (m / s) of the power transmission target, and the delay time t (s) from when the power transmission control unit 106 causes the foreign object detection unit 105 to start the foreign object detection processing until the detection result is received. It is preferable that the offset distance v v (m / s) x t (s).
 送電対象の移動速度は、位置検出部109にタイマーを備えておき、位置検出を2度以上実行した際の送電対象の相対位置の差分を、位置検出間隔(ステップS70における所定時間)によって除算することにより算出することができる。また、送電対象が速度計測器を備える場合には、送電装置100は、受電装置200を介して速度計測器から送電対象の移動速度を取得してもよい。 The moving speed of the power transmission target is provided with a timer in the position detection unit 109, and the difference of the relative position of the power transmission target when position detection is performed twice or more is divided by the position detection interval (predetermined time in step S70). It can be calculated by When the power transmission target includes the speed measurement device, the power transmission device 100 may acquire the moving speed of the power transmission target from the speed measurement device via the power reception device 200.
 送電制御部106は、送電対象が第3の検出範囲に進入したと判定すると(ステップS75のYes)、異物検出部105に送電前異物検出開始信号を送信する(ステップS4)。異物検出部105は、送電前異物検出開始信号を受信すると(ステップS5)、異物検出を所定の回数だけ実施し、検出結果を送信した後(ステップS6)、送電前異物検出処理を終了する(ステップS12)。異物検出部105が異物検出を実行する回数は、オフセット距離に応じて決まり、送電対象が誤検出範囲に進入する前に、送電前異物検出処理が終了するように決定される。例えば、オフセット距離=v(m/s)×t(s)の場合、異物検出結果を一回受け取るまでの遅延時間内には、少なくとも誤検出範囲に送電対象が進入することはないため、異物検出は一回だけ行われる。送電制御部106は、異物が検出された場合、送電不可能状態M3に遷移し、異物が検出されなかった場合、位置検出処理及び異物検出処理を終了し、送電可能状態M4に遷移する。 If the power transmission control unit 106 determines that the power transmission target has entered the third detection range (Yes in step S75), the power transmission control unit 106 transmits a foreign object detection start signal before power transmission to the foreign object detection unit 105 (step S4). When the foreign object detection unit 105 receives the foreign object detection start signal before power transmission (step S5), the foreign object detection unit 105 performs foreign object detection a predetermined number of times, transmits the detection result (step S6), and ends the foreign object detection process before power transmission ( Step S12). The number of times the foreign object detection unit 105 executes foreign object detection is determined according to the offset distance, and the foreign object detection process before power transmission is determined to end before the power transmission target enters the erroneous detection range. For example, in the case of offset distance = v (m / s) × t (s), the object to be transmitted does not enter at least the erroneous detection range within the delay time until the foreign matter detection result is received once. Detection is performed only once. When a foreign object is detected, the power transmission control unit 106 transitions to the power transmission impossible state M3. When no foreign object is detected, the power transmission control unit 106 ends the position detection process and the foreign object detection process, and transitions to the power transmittable state M4.
 以上説明した通り、本実施形態によれば、送電前異物検出処理は、送電対象が第3の検出範囲に進入した時点で開始され、誤検出範囲に進入する前に終了する。したがって、送電対象が第2の検出範囲に進入したか否かの判定と異物検出処理とを同時に実行する第4実施形態に比べて、処理を簡易化することが可能となる。 As described above, according to the present embodiment, the foreign object detection processing before power transmission starts when the power transmission target enters the third detection range, and ends before entering the erroneous detection range. Therefore, the process can be simplified as compared with the fourth embodiment in which the determination as to whether or not the power transmission target has entered the second detection range and the foreign object detection process are simultaneously performed.
 なお、本実施形態において、送電制御部106は、送電対象が第3の検出範囲に進入したと判定した時点で位置検出処理を終了させてもよい。 In the present embodiment, the power transmission control unit 106 may end the position detection process when it is determined that the power transmission target has entered the third detection range.
(第6実施形態)
 以下、第6実施形態に係る送受電システムについて、図28及び図29を参照して説明する。ここで、図28は、本実施形態に係る送電装置100の構成を示すブロック図である。図28に示すように、本実施形態において、第1送電対象検出部104及び第2送電対象検出部108は、いずれも位置検出部109と送電制御部106とにより構成されている。なお、他の構成は上述の実施形態と同様である。
Sixth Embodiment
The power transmission and reception system according to the sixth embodiment will be described below with reference to FIGS. 28 and 29. Here, FIG. 28 is a block diagram showing a configuration of the power transmission device 100 according to the present embodiment. As shown in FIG. 28, in the present embodiment, the first power transmission target detection unit 104 and the second power transmission target detection unit 108 are both configured by the position detection unit 109 and the power transmission control unit 106. In addition, the other structure is the same as that of the above-mentioned embodiment.
 図29は、送電制御部106が待機状態M1から送電前異物検出状態M2に遷移するまでの送受電システムの動作を示すフローチャートである。図29に示すように、位置検出部109は位置検出処理を常時実行しており(ステップS76,S77)、送電制御部106は、所定の時間間隔で位置検出部109から検出結果を受信している(ステップS78)。送電制御部106は、送電対象の位置検出が可能であった場合(ステップS79のYes)、送電対象が第1の検出範囲に進入したと判定し(ステップS80)、送電前異物検出状態M2に遷移する。すなわち、本実施形態において、第1の検出範囲は、位置検出部109の検出可能範囲となる。以降の動作は第5実施形態と同様である。 FIG. 29 is a flowchart showing an operation of the power transmission and reception system until the power transmission control unit 106 transitions from the standby state M1 to the foreign object detection state M2 before power transmission. As shown in FIG. 29, the position detection unit 109 always executes position detection processing (steps S76 and S77), and the power transmission control unit 106 receives detection results from the position detection unit 109 at predetermined time intervals. (Step S78). When the position detection of the power transmission target is possible (Yes at step S79), the power transmission control unit 106 determines that the power transmission target has entered the first detection range (step S80), and sets the foreign object detection state before power transmission M2. Transition. That is, in the present embodiment, the first detection range is a detectable range of the position detection unit 109. The subsequent operation is the same as that of the fifth embodiment.
 以上説明した通り、本実施形態において、位置検出部109と送電制御部106とにより第1送電対象検出部104及び第2送電対象検出部108とが構成される。したがって、送電装置100の構成を簡易化することができる。 As described above, in the present embodiment, the position detection unit 109 and the power transmission control unit 106 constitute a first power transmission object detection unit 104 and a second power transmission object detection unit 108. Therefore, the configuration of power transmission device 100 can be simplified.
 なお、本実施形態において、第1の検出範囲を位置検出部109からの相対位置により設定してもよい。この場合、送電制御部106は、位置検出部109により検出された送電対象の相対位置と予め設定された第1の検出範囲とを比較することにより、送電対象が第1の検出範囲に進入したか否か判定することができる。また、位置検出部109と送電制御部106とから構成された第2送電対象検出部108により、第2の検出範囲又は第3の検出範囲に送電対象が進入したか否か判定する構成も可能である。 In the present embodiment, the first detection range may be set by the relative position from the position detection unit 109. In this case, the power transmission control unit 106 has entered the first detection range by comparing the relative position of the power transmission target detected by the position detection unit 109 with the first detection range set in advance. It can be determined whether or not. In addition, it is possible to determine whether the power transmission target has entered the second detection range or the third detection range by the second power transmission target detection unit 108 configured by the position detection unit 109 and the power transmission control unit 106. It is.
(第7実施形態)
 以下、第7実施形態に係る送受電システムについて、図30及び図31を参照して説明する。ここで、図30は、本実施形態に係る送受電システムの構成を示すブロック図である。図30に示すように、本実施形態において、第2送電対象検出部108は、受電装置200に設けられている。第2送電対象検出部108は、送電対象が第2の検出範囲に進入したことを検出すると、通信部205を介して、送電制御部106に通知する。なお、他の構成は上述の実施形態と同様である。
Seventh Embodiment
The power transmission and reception system according to the seventh embodiment will be described below with reference to FIGS. 30 and 31. Here, FIG. 30 is a block diagram showing a configuration of a power transmission and reception system according to the present embodiment. As shown in FIG. 30, in the present embodiment, the second power transmission target detection unit 108 is provided in the power receiving device 200. When detecting that the power transmission target has entered the second detection range, the second power transmission target detection unit 108 notifies the power transmission control unit 106 via the communication unit 205. In addition, the other structure is the same as that of the above-mentioned embodiment.
 図31は、送電制御部106が送電前異物検出状態M2から送電不可能状態M3又は送電可能状態M4に遷移するまでの送受電システムの動作を示すフローチャートである。図31に示すように、送電制御部106は、送電前異物検出状態M2において、受電装置200に設けられた第2送電対象検出部108に送電対象検出処理を開始させ、所定の時間間隔で検出結果を受信する(ステップS59~S63)。以降の動作は図24と同様である。 FIG. 31 is a flowchart showing an operation of the power transmission and reception system until the power transmission control unit 106 transitions from the pre-power transmission foreign object detection state M2 to the power non-transmission possible state M3 or the power transmission possible state M4. As shown in FIG. 31, the power transmission control unit 106 causes the second power transmission object detection unit 108 provided in the power receiving device 200 to start power transmission object detection processing in the foreign object detection state before power transmission 200 and detects at predetermined time intervals. The result is received (steps S59 to S63). The subsequent operation is the same as that of FIG.
 このような動作を可能にするために、送電制御部106は、通信部107を介して予め受電装置200と通信を確立する。例えば、図22で説明したように、送電制御部106と受電装置200との間で認証処理を実行することにより、通信を確立してもよい。また、送電前異物検出状態M2に遷移した時点で、送電制御部106と受電装置200との間の通信が確立されてもよい。 In order to enable such an operation, the power transmission control unit 106 establishes communication with the power receiving device 200 in advance via the communication unit 107. For example, as described in FIG. 22, communication may be established by performing authentication processing between the power transmission control unit 106 and the power receiving apparatus 200. Also, at the time of transition to the foreign object detection state M2 before power transmission, communication between the power transmission control unit 106 and the power receiving device 200 may be established.
 本実施形態において、受電装置200に第2送電対象検出部108が設けられたが、第1送電対象検出物104が受電装置200に設けられてもよいし、第1送電対象検出部及び第2送電対象検出部108の両方が受電装置200に設けられてもよい。 In the present embodiment, the second power transmission target detection unit 108 is provided in the power reception device 200, but the first power transmission target detection object 104 may be provided in the power reception device 200, or the first power transmission target detection unit and the second Both of the power transmission target detection units 108 may be provided in the power receiving apparatus 200.
 また、第2送電対象検出部108の代わりに、位置検出部109が受電装置200に設けられてもよい。この場合、受電装置200に設けられた位置検出部109と、送電装置100に設けられた送電制御部106とにより第1送電対象検出部104及び第2送電対象検出部108の少なくとも一方が構成されてもよい。すなわち、受電装置200に設けられた位置検出部109から受信した送電対象の相対位置情報に基づいて、送電制御部106は、送電対象が第1の検出範囲(第2の検出範囲)進入したことを検出してもよい。 Further, instead of the second power transmission target detection unit 108, the position detection unit 109 may be provided in the power reception device 200. In this case, at least one of the first power transmission object detection unit 104 and the second power transmission object detection unit 108 is configured by the position detection unit 109 provided in the power reception device 200 and the power transmission control unit 106 provided in the power transmission device 100. May be That is, based on the relative position information of the power transmission target received from the position detection unit 109 provided in the power reception device 200, the power transmission control unit 106 has entered the first detection range (second detection range). May be detected.
 さらに、受電装置200に設けられた位置検出部109と受電制御部204とにより第1送電対象検出部104及び第2送電対象検出部108の少なくとも一方が構成されてもよい。この場合、受電制御部204は、位置検出部109により検出した送電対象の相対位置情報に基づいて送電対象が第1の検出範囲(第2の検出範囲)に進入したことを検出し、送電対象検出信号を送電制御部106に送信すればよい。 Furthermore, at least one of the first power transmission object detection unit 104 and the second power transmission object detection unit 108 may be configured by the position detection unit 109 and the power reception control unit 204 provided in the power reception device 200. In this case, the power reception control unit 204 detects that the power transmission target has entered the first detection range (second detection range) based on the relative position information of the power transmission target detected by the position detection unit 109, and transmits power. The detection signal may be transmitted to the power transmission control unit 106.
 なお、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above embodiments as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention. In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in the above-described embodiments. Further, for example, a configuration in which some components are removed from all the components shown in each embodiment is also conceivable. Furthermore, the components described in different embodiments may be combined as appropriate.
100:送電装置,101:送電部,102:送電回路,103:送電コイル,104:第1送電対象検出部,105:異物検出部,106:送電制御部,107:通信部,108:第2送電対象検出部,109:位置検出部,110:電源,200:受電装置,201:受電部,202:受電コイル,203:受電回路,204:受電制御部,205:通信部,206:負荷 100: power transmission device, 101: power transmission unit, 102: power transmission circuit, 103: power transmission coil, 104: first power transmission object detection unit, 105: foreign object detection unit, 106: power transmission control unit, 107: communication unit, 108: second Power transmission object detection unit 109: position detection unit 110: power supply 200: power reception device 201: power reception unit 202: power reception coil 203: power reception circuit 204: power reception control unit 205: communication unit 206: load

Claims (24)

  1.  送電対象に非接触で電力を送電する送電部と、
     前記送電部を含む予め定められた検出範囲に前記送電対象が進入したことを検出する送電対象検出部と、
     前記検出範囲内において、前記送電部による送電を妨げる異物を検出する異物検出部と、
    を備え、
     前記異物検出部は、前記送電対象検出部による検出結果に基づいて、異物の検出を開始又は終了する非接触送電装置。
    A power transmission unit that transmits power without contact to the power transmission target;
    A power transmission target detection unit that detects that the power transmission target has entered a predetermined detection range including the power transmission unit;
    In the detection range, a foreign matter detection unit that detects foreign matter that impedes power transmission by the power transmission unit;
    Equipped with
    The non-contact power transmission device, wherein the foreign matter detection unit starts or ends detection of a foreign matter based on a detection result by the power transmission target detection unit.
  2.  前記送電対象検出部は、前記送電対象が第1の検出範囲に進入したことを検出する第1送電対象検出部を含み、
     前記異物検出部は、前記第1送電対象検出部により前記送電対象が前記第1の検出範囲に進入したことが検出されると異物の検出を開始する請求項1に記載の非接触送電装置。
    The power transmission target detection unit includes a first power transmission target detection unit that detects that the power transmission target has entered a first detection range.
    The non-contact power transmission device according to claim 1, wherein the foreign matter detection unit starts the detection of a foreign matter when the first power transmission object detection unit detects that the power transmission object has entered the first detection range.
  3.  前記異物検出部は、送電対象を異物として誤検出する可能性がある範囲として予め設定された誤検出範囲に前記送電対象が進入する前に異物の検出を終了する請求項1又は請求項2に記載の非接触送電装置。 3. The foreign matter detection unit according to claim 1, wherein the foreign matter detection unit terminates the detection of the foreign matter before the power transmission target enters an erroneous detection range preset as a range in which the power transmission target may be erroneously detected as the foreign matter. Contactless power transmission device as described.
  4.  前記送電対象検出部は、第2の検出範囲に前記送電対象が進入したことを検出する第2送電対象検出部を含み、
     前記異物検出部は、前記第2送電対象検出部により前記送電対象が前記第2の検出範囲に進入したことが検出されると異物の検出を終了する請求項2又は請求項3に記載の非接触送電装置。
    The power transmission target detection unit includes a second power transmission target detection unit that detects that the power transmission target has entered the second detection range,
    The foreign matter detection unit according to claim 2 or 3, wherein the foreign matter detection unit terminates the detection of the foreign matter when the second power transmission object detection unit detects that the power transmission object has entered the second detection range. Contact power transmission device.
  5.  前記第1の検出範囲は、前記誤検出範囲を含む請求項3に記載の非接触送電装置。 The non-contact power transmission device according to claim 3, wherein the first detection range includes the false detection range.
  6.  前記第2の検出範囲は、前記誤検出範囲を含む請求項4又は請求項5に記載の非接触送電装置。 The non-contact power transmission device according to claim 4 or 5, wherein the second detection range includes the false detection range.
  7.  前記第1の検出範囲は、前記第2の検出範囲を含む請求項4~請求項6のいずれか1項に記載の非接触送電装置。 The non-contact power transmission device according to any one of claims 4 to 6, wherein the first detection range includes the second detection range.
  8.  前記誤検出範囲は、前記異物検出部からの相対位置に応じて設定される請求項3~請求項7のいずれか1項に記載の非接触送電装置。 The non-contact power transmission device according to any one of claims 3 to 7, wherein the erroneous detection range is set according to the relative position from the foreign matter detection unit.
  9.  前記誤検出範囲は、前記異物検出部により前記送電対象が異物として誤検出された際の前記送電対象の相対位置に応じて設定される請求項3~請求項8のいずれか1項に記載の非接触送電装置。 The erroneous detection range is set according to the relative position of the power transmission target when the power transmission target is erroneously detected as a foreign substance by the foreign substance detection unit. Contactless power transmission device.
  10.  前記異物検出部は、前記送電部による前記送電対象への送電中に異物検出を行う請求項1~請求項9のいずれか1項に記載の非接触送電装置。 The non-contact power transmission device according to any one of claims 1 to 9, wherein the foreign matter detection unit performs foreign matter detection during power transmission to the power transmission target by the power transmission unit.
  11.  前記異物検出部により異物が検出されたことを通知する異物検出通知手段をさらに備える請求項1~請求項10のいずれか1項に記載の非接触送電装置。 The non-contact power transmission device according to any one of claims 1 to 10, further comprising: a foreign matter detection and notification means for notifying that the foreign matter is detected by the foreign matter detection unit.
  12.  前記異物検出部は、送電開始前の異物検出と送電中の異物検出とで、異なる方式又はパラメータを使用して異物を検出する請求項10又は請求項11に記載の非接触送電装置。 The non-contact power transmission device according to claim 10, wherein the foreign matter detection unit detects foreign matter using different methods or parameters for foreign matter detection before power transmission start and foreign matter detection during power transmission.
  13.  前記送電対象検出部により検出された前記送電対象が、前記送電部により送電可能な送電対象か否か判定する送電対象認証手段をさらに備える請求項1~請求項12のいずれか1項に記載の非接触送電装置。 The power transmission target authentication unit according to any one of claims 1 to 12, further comprising: a power transmission target authentication unit that determines whether the power transmission target detected by the power transmission target detection unit is a power transmission target that can transmit power by the power transmission unit. Contactless power transmission device.
  14.  前記送電対象検出部は、前記送電対象の相対位置を検出する位置検出部を備え、前記位置検出部により検出された前記送電対象の相対位置情報に基づいて、前記送電対象が前記検出範囲に進入したことを検出する請求項1~請求項13のいずれか1項に記載の非接触送電装置。 The power transmission target detection unit includes a position detection unit that detects the relative position of the power transmission target, and the power transmission target enters the detection range based on the relative position information of the power transmission target detected by the position detection unit. The non-contact power transmission device according to any one of claims 1 to 13, which detects an event.
  15.  前記第2送電対象検出部は、前記第1送電対象検出部により前記送電対象が検出されると、前記送電対象の検出を開始する請求項4~請求項14のいずれか1項に記載の非接触送電装置。 The second power transmission target detection unit according to any one of claims 4 to 14, wherein when the power transmission target is detected by the first power transmission target detection unit, detection of the power transmission target is started. Contact power transmission device.
  16.  前記送電部は、磁界共振方式、電磁誘導方式、又は電波方式で電力を送電する請求項1~請求項15のいずれか1項に記載の非接触送電装置。 The non-contact power transmission device according to any one of claims 1 to 15, wherein the power transmission unit transmits power by a magnetic field resonance method, an electromagnetic induction method, or a radio wave method.
  17.  外部機器と無線通信を可能にする通信部をさらに備える請求項1~請求項16のいずれか1項に記載の非接触送電装置。 The non-contact power transmission device according to any one of claims 1 to 16, further comprising a communication unit that enables wireless communication with an external device.
  18.  非接触で電力を送電される送電対象に搭載され、
     非接触で電力を受電する受電部と、
     前記送電対象に関する情報を取得する受電制御部と、
     外部機器との通信を可能にする通信部と、
    を備える非接触受電装置。
    It is mounted on a power transmission target that transmits power without contact.
    A power receiving unit that receives power without contact;
    A power reception control unit that acquires information on the power transmission target;
    A communication unit that enables communication with an external device;
    Non-contact power receiving device comprising
  19.  前記受電制御部は、前記送電対象の制御手段から前記送電対象が停止したことを示す情報を取得し、
     前記情報に基づいて、前記送電対象が停止したことを通知する停止信号を、前記通信部を介して外部機器に送信する請求項18に記載の非接触受電装置。
    The power reception control unit acquires, from the control unit of the power transmission target, information indicating that the power transmission target has stopped,
    The non-contact power receiving device according to claim 18, wherein a stop signal notifying that the power transmission target has stopped is transmitted to the external device via the communication unit based on the information.
  20.  前記受電部は、受電した電力を前記送電対象が備えるバッテリに充電する請求項18又は請求項19に記載の非接触受電装置。 The non-contact power reception device according to claim 18, wherein the power reception unit charges the received power to a battery included in the power transmission target.
  21.  前記受電制御部は、前記通信部を介して前記送電対象が非接触で受電可能なことを示す認証情報を外部機器に送信する請求項18~請求項20のいずれか1項に記載の非接触受電装置。 The non-contact according to any one of claims 18 to 20, wherein the power reception control unit transmits authentication information indicating that the power transmission target can receive power without contact via the communication unit to an external device. Power receiving device.
  22.  前記送電対象に関する情報には、前記送電対象の移動速度を示す情報が含まれる請求項18~請求項21のいずれか1項に記載の非接触受電装置。 The non-contact power receiving device according to any one of claims 18 to 21, wherein the information on the power transmission target includes information indicating a moving speed of the power transmission target.
  23.  予め定められた検出範囲に前記送電対象が進入したことを検出する送電対象検出部をさらに備え、
     前記受電制御部は、前記通信部を介して前記送電対象が前記検出範囲に進入したことを外部機器に通知する請求項18~請求項22のいずれか1項に記載の非接触受電装置。
    It further comprises a power transmission object detection unit that detects that the power transmission object has entered into a predetermined detection range,
    The non-contact power receiving device according to any one of claims 18 to 22, wherein the power reception control unit notifies an external device that the power transmission target has entered the detection range via the communication unit.
  24.  送電対象に非接触で電力を送電する送電部と、前記送電部を含む予め定められた検出範囲に前記送電対象が進入したことを検出する送電対象検出部と、前記検出範囲内において、前記送電部による送電を妨げる異物を検出する異物検出部とを備え、前記異物検出部は、前記送電対象検出部による検出結果に基づいて、異物の検出を開始又は終了する非接触送電装置と、
     前記送電対象に搭載され、非接触で電力を受電する受電部と、前記送電対象に関する情報を取得する受電制御部と、外部機器との通信を可能にする通信部とを備える非接触受電装置と、
    を備える非接触送受電システム。
    A power transmission unit for transmitting power without contact to the power transmission target; a power transmission target detection unit for detecting that the power transmission target has entered a predetermined detection range including the power transmission unit; and the power transmission within the detection range And a non-contact power transmission device for starting or ending detection of a foreign object based on a detection result by the power transmission target detection unit.
    A non-contact power receiving device comprising: a power receiving unit mounted on the power transmission target and receiving power without contact; a power reception control unit acquiring information on the power transmission target; and a communication unit enabling communication with an external device ,
    Contactless power transmission and reception system comprising
PCT/JP2014/053251 2014-02-13 2014-02-13 Wireless power transmission device, wireless power reception device, and wireless power transmission and reception system WO2015121934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/053251 WO2015121934A1 (en) 2014-02-13 2014-02-13 Wireless power transmission device, wireless power reception device, and wireless power transmission and reception system
JP2015562595A JP6343292B2 (en) 2014-02-13 2014-02-13 Non-contact power transmission device, non-contact power reception device, and non-contact power transmission / reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053251 WO2015121934A1 (en) 2014-02-13 2014-02-13 Wireless power transmission device, wireless power reception device, and wireless power transmission and reception system

Publications (1)

Publication Number Publication Date
WO2015121934A1 true WO2015121934A1 (en) 2015-08-20

Family

ID=53799703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053251 WO2015121934A1 (en) 2014-02-13 2014-02-13 Wireless power transmission device, wireless power reception device, and wireless power transmission and reception system

Country Status (2)

Country Link
JP (1) JP6343292B2 (en)
WO (1) WO2015121934A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074660A (en) * 2016-10-25 2018-05-10 富士ゼロックス株式会社 Power reception apparatus and wireless power supply system
JP2019022283A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Electric power transmission device and electric power transmission system
WO2019042626A1 (en) * 2017-08-28 2019-03-07 Robert Bosch Gmbh Method for wireless energy transmission from an energy transmission device to a consumer and wireless energy transmission device for carrying out the method
CN111146877A (en) * 2018-11-06 2020-05-12 丰田自动车株式会社 Notification system and notification method
US11011944B2 (en) 2017-02-14 2021-05-18 Ihi Corporation Foreign matter detection device for non-contact power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206231A (en) * 2007-02-16 2008-09-04 Seiko Epson Corp Power reception controller, power transmission controller, non-contact point power transmission system, power receiver, power transmitter, and electronic apparatus
JP2012249400A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708563B2 (en) * 2012-06-04 2015-04-30 トヨタ自動車株式会社 Power receiving device, vehicle including the same, power transmitting device, and power transmission system
JP2014230299A (en) * 2013-05-17 2014-12-08 株式会社東芝 Foreign substance detector device and non-contact power transmission device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206231A (en) * 2007-02-16 2008-09-04 Seiko Epson Corp Power reception controller, power transmission controller, non-contact point power transmission system, power receiver, power transmitter, and electronic apparatus
JP2012249400A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074660A (en) * 2016-10-25 2018-05-10 富士ゼロックス株式会社 Power reception apparatus and wireless power supply system
US11011944B2 (en) 2017-02-14 2021-05-18 Ihi Corporation Foreign matter detection device for non-contact power supply system
JP2019022283A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Electric power transmission device and electric power transmission system
WO2019042626A1 (en) * 2017-08-28 2019-03-07 Robert Bosch Gmbh Method for wireless energy transmission from an energy transmission device to a consumer and wireless energy transmission device for carrying out the method
CN111146877A (en) * 2018-11-06 2020-05-12 丰田自动车株式会社 Notification system and notification method
JP2020078123A (en) * 2018-11-06 2020-05-21 トヨタ自動車株式会社 Notification system and notification method

Also Published As

Publication number Publication date
JP6343292B2 (en) 2018-06-13
JPWO2015121934A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
WO2015121934A1 (en) Wireless power transmission device, wireless power reception device, and wireless power transmission and reception system
JP5979377B2 (en) Non-contact charging system, control device, wireless communication device, and non-contact charging device
JP6411166B2 (en) Wireless charging control method according to smart key position
JP5810632B2 (en) Non-contact power feeding device
US9346436B2 (en) Electronic key system
JP5372537B2 (en) Electronic device charging system, charger, and electronic device
WO2015097968A1 (en) Contactless power transfer system and method of controlling the same
JP5892234B2 (en) Power transmission device and power transmission / reception system
KR20120024380A (en) Abnormality detection system
US20170282858A1 (en) Keyless Entry Systems
JP6056778B2 (en) Non-contact power transmission system
JP2014187795A (en) Transmission apparatus, transmission and reception apparatus, reception apparatus detection method, reception apparatus detection program, and semiconductor device
US11088574B2 (en) Notification system and notification method
JP2014093818A (en) Contactless charger
KR20160101936A (en) Resonant power-transfer system and resonant power-transmission device
WO2015083573A1 (en) Contactless power transmission system and electric transmission device
JP6186990B2 (en) Vehicle control system, vehicle control device, and portable communication terminal
US20180175669A1 (en) Wireless power supply system and wireless power reception device
WO2015129458A1 (en) Contactless power transmission system and power-receiving device
JPWO2017203579A1 (en) Method for detecting coil position of non-contact power feeding system and non-contact power feeding system
JP2016007107A (en) Non-contact power transmission device
JP2014034768A (en) Wireless key communication system for vehicle
JP6428420B2 (en) Contactless power supply system
US11909220B2 (en) Wireless power Tx to Tx conflict and protection
JP2015208100A (en) Non-contact power transmission device and power transmission equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882506

Country of ref document: EP

Kind code of ref document: A1