WO2015119119A1 - Air conditioning system, air conditioning device, air conditioning control method and program - Google Patents

Air conditioning system, air conditioning device, air conditioning control method and program Download PDF

Info

Publication number
WO2015119119A1
WO2015119119A1 PCT/JP2015/053003 JP2015053003W WO2015119119A1 WO 2015119119 A1 WO2015119119 A1 WO 2015119119A1 JP 2015053003 W JP2015053003 W JP 2015053003W WO 2015119119 A1 WO2015119119 A1 WO 2015119119A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
heat load
air
information
unit
Prior art date
Application number
PCT/JP2015/053003
Other languages
French (fr)
Japanese (ja)
Inventor
清高 松江
和人 久保田
明弘 長岩
酢山 明弘
恭介 片山
卓久 和田
俊昭 枝広
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2015119119A1 publication Critical patent/WO2015119119A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • Embodiment of this invention is related with an air-conditioning control technique.
  • Patent Document 1 an air conditioning control technique disclosed in Patent Document 1 is known.
  • the movement of a resident is detected by a human detection sensor, and the mode of air conditioning operation is changed based on the result. For example, when the movement of the occupant in the door direction and the presence of the survivor are detected at the same time, the operation mode of the air conditioner is changed from the normal operation to the exit operation. After a certain period of time has elapsed, the operation mode is returned from the exit-response operation to the normal operation.
  • Patent Document 1 since air conditioning is controlled only for a certain period of time based on the presence / absence of a resident, it is difficult to follow a change in room temperature, and sufficient comfort for the resident is not always obtained. .
  • the air conditioner is controlled by feedback control that reduces the difference between the sensor value of the indoor temperature sensor and the target value. Therefore, if the location of the temperature sensor and the occupant's location are separated, the desired comfort is achieved. Sexuality may not be obtained. In the first place, even if the fact that the room temperature has changed is fed back, it takes a considerable amount of time for the room temperature to reach a desired value. Some technological innovation is awaited.
  • the purpose is to provide an air conditioning system, an air conditioner, an air conditioning control method, and a program that further enhance comfort.
  • the air conditioning system can be applied to a building whose energy is managed by the energy management system.
  • the air conditioning system includes an acquisition unit, an estimation unit, and a control unit.
  • the acquisition unit acquires information that can be collected by the energy management system.
  • An estimation part estimates the heat load in an air-conditioning area based on the acquired information.
  • the control unit controls the air conditioner in the air conditioning area based on the estimated heat load.
  • FIG. 2 is a functional block diagram illustrating an example of the home gateway 122 according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of a processing procedure related to estimation of heat load by the home gateway 122.
  • FIG. 4 is a flowchart illustrating an example of a processing procedure related to determination of the air conditioning control amount by the home gateway 122.
  • FIG. 5 is a diagram schematically showing the flow of heat and various information in the home 101.
  • FIG. 6 is a flowchart schematically showing a processing flow in the embodiment.
  • FIG. 7 is a functional block diagram illustrating an example of an air conditioning system according to the second embodiment.
  • FIG. 8 is a diagram schematically showing the flow of information in the second embodiment.
  • FIG. 9 is a functional block diagram illustrating an example of an air conditioner according to the third embodiment.
  • FIG. 1 is a diagram illustrating an example of an air conditioning system according to an embodiment.
  • electric power (AC voltage) supplied from an electric power system 6 as a distribution network is distributed to each user's home (home) 101 through a transformer 61 of a utility pole.
  • the distributed power is connected to a distribution board 113 via a watt-hour meter (smart meter) 112.
  • the watt-hour meter 112 has a function of measuring various types of power.
  • the amount of power that can be measured includes the amount of power generated by the renewable energy power generation system provided in the home 101, the amount of power consumed by the home 101, the amount of power flowing from the power system 6 to the home 101, or the reverse power flow from the home 101 to the power system 6.
  • the amount of power to be (reverse flow) can be mentioned.
  • the distribution board 113 supplies power to home appliances (air conditioner 123, lighting 124, refrigerator 125, television 126, heat pump type water heater (not shown), etc.) and power conditioner (Power ⁇ ⁇ ⁇ Conditioning System: PCS) 114 via the power line 111. Supply.
  • the distribution board 113 may include a measuring device that measures the amount of power for each feeder.
  • the PV unit 115 is installed on the roof or outer wall of the home 101.
  • the DC power generated by the PV unit 115 is supplied to the power conditioner 114.
  • the power conditioner 114 applies this DC power to the storage battery 116 in order to charge the storage battery 116.
  • the home 101 includes a home gateway (Home Gateway: HGW) 122 as a main device.
  • a HEMS Home Energy Management System
  • the HEMS manages the energy of the home 101.
  • the home gateway 122 can be understood as being almost synonymous with HEMS.
  • the home gateway 122 can be understood as part of the HEMS.
  • the home gateway 122 is connected to a cloud computing system (hereinafter abbreviated as “cloud”) 200.
  • the cloud 200 is a distributed processing system formed using an information communication network such as the Internet or VPN (Virtual Private Network).
  • the cloud 200 includes a server device 10 and a database 20.
  • the home gateway 122 can communicate with the server device 10 of the cloud 200 and exchange data with the database 20.
  • the home gateway 122 is connected to the terminal 105.
  • the terminal 105 may be, for example, a general-purpose portable information device, a personal computer, or a tablet terminal in addition to a touch panel.
  • the terminal 105 displays the operating status and power consumption of each home appliance, fuel cell 119, storage battery 116, and PV unit 115 on, for example, an LCD (Liquid Crystal Display) or informs the user by voice guidance or the like.
  • the terminal 105 includes an operation panel and accepts various operations and setting inputs by the user.
  • the home 101 is formed with a home network 121 such as a LAN (Local Area Network).
  • the home gateway 122 can communicate with the watt hour meter 112, the distribution board 113, the power conditioner 114, and each home appliance via the home network 121.
  • the home network 121 may be a wired link or a wireless link. Further, an image sensor 127 that acquires indoor image data is connected to the home network 121.
  • the image sensor 127 can be supplied with power from a home network 121 by wire, for example.
  • the image sensor 127 also has a function of analyzing the acquired image data. With this function, the image sensor 127 calculates, for example, information indicating the presence / absence of a person in a room (referred to as person presence / absence information).
  • ECHONET registered trademark
  • ECHONET Lite registered trademark
  • ZigBee registered trademark
  • Z-Wave registered trademark
  • KNX registered trademark
  • the cloud 200 can include a wireless or wired communication infrastructure for forming a bidirectional communication environment between the home gateway 122 and the server device 10.
  • the HEMS in the embodiment has a function of collecting information related to home appliances (such as an air conditioner 123, a lighting 124, a refrigerator 125, and a television 126) provided in the home 101.
  • home appliances such as an air conditioner 123, a lighting 124, a refrigerator 125, and a television 1266 provided in the home 101.
  • the air conditioning environment of the home 101 is made comfortable by controlling the air conditioner 123 using the function of the HEMS.
  • the air conditioner 123 is an air conditioner that is provided in the air conditioning area and performs air conditioning in the air conditioning area.
  • the air conditioner 123 in the embodiment, it is also possible to assume a whole-building air conditioner including a duct connected to each room and a blower fan as the air conditioner 123.
  • the air conditioner 123 in the embodiment has not only a temperature control function but also a humidity control function. That is, the air conditioner 123 also has functions as a humidifier and a dehumidifier.
  • FIG. 2 is a functional block diagram illustrating an example of the home gateway 122 according to the first embodiment.
  • the home gateway 122 is a computer including a CPU (Central Processing Unit) 12.
  • a software module for realizing the function according to the embodiment is installed in the home gateway 122.
  • the home gateway 122 includes a communication unit 11, a CPU 12, a program memory 13, and a storage unit 14. That is, the home gateway 122 is a computer that realizes its function through arithmetic processing of the CPU 12 based on programs and data stored in hardware.
  • the communication unit 11 is connected to the home network 121 and the cloud 200, and functions as a communication interface. That is, the communication unit 11 has functions for communicating with the server device 10, exchanging data with the database 20, and communicating with home appliances connected to the HEMS.
  • the program memory 13 stores an acquisition program 13a, an estimation program 13b, and a control program 13c as programs including instructions necessary for processing functions according to this embodiment.
  • the acquisition program 13a, the estimation program 13b, and the control program 13c can be recorded on a removable medium (recording medium) such as a CD-ROM.
  • these programs can be downloaded to the home gateway 122 via a communication line.
  • the CPU 12 reads each program from the program memory 13 and performs arithmetic processing by hardware.
  • the CPU 12 includes an acquisition unit 12a, an estimation unit 12b, and a control unit 12c as processing functions.
  • the acquisition unit 12a acquires information that can be collected by the HEMS via the home network 121.
  • the estimation unit 12b estimates the heat load in the air-conditioning area based on the information acquired by the acquisition unit 12a.
  • the control unit 12c controls the air conditioner 123 based on the thermal load estimated by the estimation unit 12b.
  • the storage unit 14 is a storage device such as a hard disk drive (HDD) or a semiconductor memory, and stores the chassis information 14a, the PV power generation history 14b, and the parameter group 14c.
  • HDD hard disk drive
  • the storage unit 14 stores the chassis information 14a, the PV power generation history 14b, and the parameter group 14c.
  • Body information 14a is information indicating the characteristics of the building of the home 101, and its contents are diverse.
  • information such as the material of the outer wall, the material of the inner wall, the material of the roof, or the heat insulating performance of the window glass is considered as the contents of the frame information 14a.
  • Information such as the structure, design, and material of the building of the home 101 is also included in the housing information 14a.
  • the frame information 14a includes, for example, structural information such as ceiling height, width, and depth of each room, the material and orientation of the window glass, the heat transmission rate of the glass, the outer wall area, the roof area, the wall thickness, and the member. Includes information. Of course, the information is not limited to this.
  • the PV power generation amount history 14 b is data indicating a history of the power generation amount of the PV unit 115.
  • the power generation amount of the PV unit 115 is measured from time to time by a power conditioner 114 at predetermined intervals (1 minute interval, 30 minute interval, 1 hour interval, etc.), for example.
  • the power conditioner 114 stores this measured value in the storage unit of the home gateway 122 as the PV power generation history 14b.
  • the parameter group 14c includes various setting information, constants, coefficients, and other values necessary for the arithmetic processing of the CPU 12. Next, the operation of the above configuration will be described in detail.
  • FIG. 3 is a flowchart showing an example of a processing procedure related to estimation of thermal load by the home gateway 122.
  • the acquisition part 12a acquires the information required for calculating the thermal load in the air-conditioned space from the HEMS via the home network 121 (step S1).
  • Information to be acquired includes, for example, PV power generation amount, home appliance power consumption amount, person presence / absence information, temperature information (room temperature, target temperature), humidity information, and housing information (outer wall, inner wall, roof, window glass Various information).
  • Each piece of information is acquired periodically, irregularly, or in real time based on its nature (real time value).
  • the power consumption of home appliances can be collected from the distribution board 113 and acquired.
  • PV power generation amount (PV) is the power generation amount of the PV unit 115.
  • the PV power generation amount PV is acquired from the power conditioner 114, for example.
  • the PV power generation amount may be expressed as PV (t) as a function of time t.
  • the unit of time t is hour, minute, second, and the like.
  • the home appliance power consumption is the power consumption of each home appliance.
  • home appliance power consumption is denoted as PAP .
  • the subscript AP indicates appliances (home appliance).
  • P AP home appliances power consumption is information that can be obtained from the HEMS. That is Appliances power P AP communication function and provided in home appliances, electrical outlets (outlet) to provided a communication function, or by the power management functions for each tap of the distribution board 113, possible that the home gateway 122 acquires the real-time Information.
  • by analyzing the current (or voltage) of the power line 111 by harmonic analysis it is possible to grasp in real time which home appliance is operating at what power level.
  • the home appliance power consumption PAP is known as a specification value (specification) for each home appliance, and may be stored in the storage unit 14 as a parameter. In this way, the home appliance power consumption PAP can be acquired simply by reading it from the storage unit 14 without measuring the actual value, and thus there is an effect of shortening the processing time.
  • Person presence / absence information can be acquired from the image sensor 127.
  • the presence / absence information may be generated by obtaining image data from the image sensor 127 and processing the image data by the home gateway 122.
  • the temperature information is, for example, outside air temperature and room temperature.
  • the outside air temperature can be measured by a temperature sensor (such as a Peltier element) attached to the outer wall, and the room temperature can be measured by a temperature sensor provided in the air conditioner 123, for example.
  • the acquisition unit 12a also acquires a target temperature as a control target value (step S2).
  • the target temperature is a set value given to the system using the terminal 105, for example, and is stored in the storage unit 14 of the home gateway 122, for example.
  • Humidity information is indoor humidity and can be measured by a humidity sensor.
  • the estimation unit 12b estimates the heat load of a space (such as a room) that is subject to air conditioning control.
  • a space such as a room
  • four types of heat loads are considered: a heat load from the window glass, a heat load from the outer wall / roof, a heat load from the inner wall / ceiling / floor, and an internal heat load.
  • the estimation part 12b estimates the heat load from a window glass (step S3).
  • the procedure will be described in detail below.
  • ⁇ Estimation of heat load from window glass> There are two possible heat loads from the window glass: a once-through heat load transmitted from the outside to the room through the window glass, and a solar heat load.
  • the once-through heat load q GK (unit [W]) is expressed by any one of the formulas (1) to (3).
  • Equation (1) shows the once-through heat load when the room temperature is lower than the outside air (that is, during cooling operation).
  • Equation (2) shows the once-through heat load when the room temperature is higher than the outside air (that is, during heating operation).
  • Expression (3) is an expression in which a term considering radiation cooling is added to Expression (2).
  • the glass heat transfer rate K G , the glass area A G , the indoor set temperature t R , the orientation coefficient k 1 , the extra coefficient k 2 due to the ceiling height, and the temperature ⁇ t n due to radiative cooling of the air are given as parameters. Can be done. These parameters are stored in advance in the storage unit 14 of the home gateway 122, and are read out to the register of the CPU 12 at the time of calculation.
  • the heat transfer coefficient K G of the glass, the single-layer glass about 6.3, the insulating glass can be applied a value of about 3.5.
  • the orientation coefficient k 1 values such as 1.1 for the north, northwest and west, 1.05 for the southeast, east, northeast and southwest, 1.0 for the south, and the like can be applied.
  • a value of about 1.0 can be applied under the condition of a ceiling height of 5 m and natural convection heating.
  • the coefficient k 2 can be handled as an option.
  • the temperature ⁇ t n due to radiative cooling of the air is a term considering radiative cooling. For example, a value of 0 can be applied to windows and outer walls on the third floor and below.
  • the solar heat load q GI only needs to be considered during cooling operation, and is expressed by equation (4).
  • glass shielding coefficient SC a value of about 1.0 to 0.58 can be applied to a single layer glass, and about 0.89 to 0.56 can be applied to a double layer glass.
  • This coefficient SC can also be given as a parameter as described above.
  • Standard solar heat gain I G of a glass window of the formula (5), is calculated using (6) and Table 1.
  • the estimation unit 12b first calculates the PV power generation ratio PV RATE based on the equation (5).
  • the PV power generation rate PV RATE can be used as an indicator for estimating the weather. That is, it can be inferred that the PV power generation ratio PV RATE is close to 1.0 when it is clear, cloudy at 0.5, and when it is 0, it is rainy or nighttime. This information can be used to calculate the once-through heat load q GK and the solar heat load q GI . Further, by using Expression (5), it is possible to cope with a change in the installation capacity of the PV panel, aged deterioration of the PV panel, and the like.
  • the PV power generation amount PV of the numerator of Formula (5) can be obtained from the power conditioner 114 of HEMS.
  • the maximum PV power generation value PV MAX shown in the denominator of Expression (5) can be acquired from the PV power generation history stored in the storage unit 14. Any of the maximum value of annual power generation, the maximum value of seasonal power generation, and the maximum value of each month can be used as PV MAX .
  • PV RATE may be expressed as PV RATE (t) as a function of time (t).
  • Solar heat gain coefficient I G can be obtained by equation (6) using the PV power ratio PV RATE.
  • the basic value I G_Para of the solar heat acquisition coefficient in equation (6) can be given as a parameter.
  • the basic value I G_Para varies depending on the location, time, direction, time, material of the window glass, and the like.
  • the values shown in Table 1 can be used.
  • correction coefficient k 3 and the correction coefficient k 4 in Expression (6) are correction coefficients for adjusting the calculated values in accordance with conditions such as the installation location. Either can be given as a parameter. These correction coefficients can also be expressed as a correction coefficient k 3 (t) and a correction coefficient k 4 (t) as a function of time (t).
  • the estimation part 12b estimates the heat load from an outer wall and a roof (step S4).
  • the procedure will be described in detail below.
  • the thermal load q W on the outer wall / roof can be calculated using any one of formulas (7) to (9).
  • ETD shown in Equation (7) means (Equivalent Temperature Difference) and is called effective temperature difference.
  • ETD is a temperature difference that takes into account the effects of solar radiation and time delays. As shown in Tables 2 and 3, the ETD varies depending on the region, season, orientation, and wall type.
  • d is the wall thickness.
  • the wall can be divided into, for example, four types, type I to type IV, and the wall thickness d varies depending on the material (ordinary concrete, cellular concrete).
  • the effective temperature difference ETD varies depending on, for example, time (season), wall type, orientation, and time.
  • the area A W of the outer wall / roof can be given as a parameter.
  • the heat passage rate K W is calculated using Equation (10).
  • the outer surface heat transfer coefficient ⁇ 0 in equation (10) can be given as a parameter.
  • the value of the outer surface heat transfer coefficient ⁇ 0 varies depending on the surface position and season. For example, if the surface position is “vertical outer wall surface” and the season is “summer”, 17 can be applied, and if it is “winter”, 23 can be applied. If the surface position “roof surface” is “summer”, 23 can be applied, and if “winter”, 35 can be applied.
  • the thickness d i of the member i can be given as a parameter.
  • Thermal conductivity lambda i members i may be given as a parameter. The value varies depending on the member. For example, 1.4 can be applied to ordinary concrete, 1.5 to mortar, 0.17 to gypsum, 1.3 to tile, 0.17 to wood, and so on.
  • the heat transfer coefficient ⁇ i of the inner surface can be given as a parameter.
  • the value of the heat transfer coefficient ⁇ i on the inner surface varies depending on the surface position and the heat transfer direction. For example, the value 9 can be applied to the heat transfer coefficient of the surface position “horizontal” and “upward”. A value of 6 can be applied to the heat transfer coefficient of the surface position “horizontal” and “downward”. A value of 8 can be applied to the heat transfer coefficient in the “horizontal” direction at the surface position “vertical”.
  • the heat transfer rate K W and the heat load q W of the outer wall / roof can be obtained by calculation using only parameters given in advance.
  • the estimation unit 12b estimates the heat load from the inner wall, ceiling, and floor (step S5). That is, the estimation unit 12b estimates at least one of the heat load from the inner wall, the heat load from the ceiling, and the heat load from the floor (step S5). The procedure will be described in detail below.
  • the heat transfer rate KIW of the inner wall / ceiling / floor in equation (11) can be calculated in the same manner as equation (10). It is preferable to use a real-time value as the outside air temperature t 0 .
  • the inner wall / ceiling / floor area A IW and the indoor set temperature t R can be given as parameters.
  • the temperature difference coefficient f IW can also be given as a parameter. For example, in an environment of a non-air-conditioned room, 0.9 can be applied to the temperature difference coefficient f IW during the cooling operation and 0.6 to the value during the heating operation. Moreover, 0.7 can be applied during the cooling operation in the hallway, and 0.6 can be applied during the heating operation.
  • the estimation part 12b estimates the heat load by a draft (step S6).
  • the procedure will be described in detail below.
  • the sensible heat load q IFS caused by the draft air can be divided into a sensible heat load during cooling and a sensible heat load during heating, and can be calculated using equations (12) and (14), respectively.
  • the latent heat load q IFL caused by the draft air can also be divided into a latent heat load during cooling and a latent heat load during heating, and can be calculated using equations (13) and (15), respectively.
  • the air volume Q IF of the clearance air can be calculated by Expression (16).
  • the specific heat C pa of air, the specific weight ⁇ a of air, and the latent heat of vaporization r 0 of water vapor at 0 ° can all be included in the parameter group 14 c stored in the storage unit 14.
  • the volume VR of the room (air-conditioning area) can be included in the enclosure information 14a.
  • the outside air temperature t 0 , the indoor temperature t R , the absolute humidity x 0 of the outdoor air, and the absolute humidity x R of the room are all information that can be collected by the HEMS and are acquired by the acquisition unit 12a.
  • the coefficient 1000/3600 can also be included in the parameter group 14c.
  • the estimation part 12b estimates an internal heat load (step S7).
  • the procedure will be described in detail below.
  • the internal heat load includes three items: a heat load generated from a resident (person) (a person's heat load), a heat load generated from a home appliance, and a heat load generated from a gas appliance.
  • the human thermal load q H is expressed by the equation (17).
  • Estimating unit 12b calculates the thermal load q H people using Equation (17).
  • the values of the human latent heat load SH and the human sensible heat load LH in the equation (17) can be determined based on the work contents of the person and the room temperature.
  • Table 4 shows an example of the amount of heat generated by a person. In Table 4, the values of SH and LH in the sitting state are shown for several room temperatures.
  • the number of persons P in Expression (17) can be calculated by analyzing image data acquired by the image sensor 127, for example.
  • the number P can be estimated based on the operating state of the home appliance.
  • the thermal load q EM of the home appliance is expressed by Expression (18).
  • the estimation unit 12b calculates the thermal load q EM of the home appliance using Equation (18).
  • the heat generation ratio fAP of the home appliance has a different value for each home appliance and can be given as a parameter. If unknown, 1.0 can be applied.
  • the ratio ⁇ H radiated from the hooded home appliance (such as hooded lighting) into the room as radiation can be given as a parameter. For devices without a hood, 1.0 can be applied.
  • the thermal load q G of the gas appliance is expressed by Expression (19).
  • the estimation unit 12b calculates the thermal load q G of the gas appliance using the equation (19).
  • the amount G of gas used can be obtained from HEMS.
  • the heating rate f G of the gas appliance has a different value for each gas appliance and can be given as a parameter. If unknown, 1.0 can be applied.
  • the ratio ⁇ HG radiated as radiation from a hooded appliance (such as a gas stove directly under the range hood) into the room can be given as a parameter.
  • a hooded appliance such as a gas stove directly under the range hood
  • 1.0 can be applied.
  • the internal heat load is calculated by the estimation unit 12b based on the above formula.
  • the estimation unit 12b determines the necessary heat quantity Q ALL (step S8).
  • the required heat quantity Q ALL means the total amount of heat load generated from the heat source in the room.
  • the once-through heat load q GK the solar heat load q GI , the heat load q W on the outer wall / roof, Internal wall / ceiling / floor heat load qIW, sensible heat load q IFS by draft air, latent heat load q IFL by draft air, human heat load q H , home appliance heat load q EM , and gas appliance heat load q G Given as a sum.
  • the control unit 12c compares the necessary heat amount Q ALL with the set temperature, and generates a control instruction for generating a heat amount (cooling amount) necessary to cancel the necessary heat amount Q ALL .
  • This control instruction is given to the air conditioner 123 via the HEMS. As a result, the air conditioner 123 starts to blow the amount of heat required to cancel the heat load, and the control for bringing the indoor temperature close to the set temperature is realized.
  • FIG. 4 is a flowchart illustrating an example of a processing procedure related to determination of the air conditioning control amount by the home gateway 122.
  • the control unit 12c acquires the necessary heat quantity Q ALL from the estimation unit 12b (step S10).
  • the control unit 12c compares the acquired necessary heat amount Q ALL with the set temperature of the air conditioning area, and determines the control amount (air conditioning control amount) of the air conditioner 123 necessary to cancel the necessary heat amount Q ALL (step S11). ).
  • the control unit 12c determines in detail air conditioning operation amounts such as the air conditioner blowout temperature, air flow rate, and air blowing direction of the air conditioner 123 based on the air conditioning control amount (step S12).
  • a control command is issued to the air conditioner based on the amount (step S13).
  • the air conditioner 123 given this control command starts an operation for canceling the indoor heat load.
  • control unit 12c determines the control amount of the humidifier / dehumidifier provided in the air conditioner 123 based on the acquired necessary heat amount Q ALL and humidity information (step S14).
  • control amount is determined
  • the control unit 12c determines the operation amount of the humidifier / dehumidifier such as the air blower humidity of the air conditioner 123, the air flow rate, and the air blowing direction (step S15), and controls the humidifier and the dehumidifier. (Step S16).
  • FIG. 5 is a diagram schematically showing the flow of heat and various information in the home 101.
  • the HEMS acquires information such as the amount of PV power generation and the amount of power consumed by home appliances. Further, the HEMS acquires the chassis information, the target temperature set by the user, and the like as information necessary for determining the control amount. Further, the HEMS acquires the presence / absence information of a human (which may include a pet or the like) from an image sensor or an infrared sensor.
  • the HEMS estimates the heat load generated in the air-conditioning area.
  • the HEMS is, for example, the heat load from the window glass, the heat load from the outer wall / roof, the heat load from the inner wall / ceiling / floor, and the internal heat load (from the heat generated by the lighting 124 and the TV 126, humans / pets, etc. Fever) is estimated individually. These values are summed to obtain the total heat load.
  • the HEMS determines a control amount for the air conditioner 123 based on the total heat load, and gives a control command corresponding to the control amount to the air conditioner 123.
  • FIG. 6 is a flowchart schematically showing a processing flow in the embodiment.
  • the target temperature is set by the user (step S20).
  • the amount of PV power generation, the amount of electric power consumption of home appliances, the presence / absence information of the person, and the body information are collected by the HEMS (step S21).
  • the thermal load is estimated based on the collected information and various setting values and parameters stored in the storage unit 14 (step S22).
  • the control amount (temperature, air volume, etc.) of the air conditioner is determined based on the heat load (step S23), and the air conditioner (entire air conditioner (including ducts, fans, etc.) to be controlled) is controlled.
  • a control command based on the quantity is given (step S24).
  • the temperature of the air conditioning area and the temperature of the air outlet are appropriately measured and utilized for the next heat load estimation process (step S25).
  • control amount in step S23 is only determined based on the temperature, the air volume, or the humidity as a result of the control (feedback control).
  • the heat load in the air-conditioning area is estimated based on information such as the PV power generation amount, the home appliance power consumption amount, and the presence / absence information collected in step S21.
  • the air conditioning control amount is determined based on these estimated values. That is, according to the embodiment, a control system is constructed in which the existing feedback control is combined with the feedforward control based on the thermal load estimation. Therefore, it is possible to determine a more accurate air conditioning control amount and realize the targeted air conditioning control.
  • the heat load in the room due to heat generation from home appliances or solar radiation from sunlight is estimated, and the air conditioner is controlled based on the estimated value. Therefore, control (so-called feedforward control) for controlling the air conditioner before the room temperature fluctuates is realized. Therefore, the comfort of the occupants can be improved. Therefore, it is possible to provide an air conditioning system, an air conditioner, an air conditioning control method, and a program that further enhance the comfort.
  • FIG. 7 is a functional block diagram illustrating an example of an air conditioning system according to the second embodiment.
  • parts common to those in FIGS. 1 and 2 are given the same reference numerals, and only different parts will be described here.
  • a part of the function of the home gateway 122 in the first embodiment is implemented in the air conditioner 123 as an air conditioner.
  • the housing information 14 a of the home 101, the PV power generation history 14 b, and the parameter group 14 c are stored in the database 20 of the cloud 200.
  • the home gateway 122 can communicate with the air conditioner 123 via the home network 121.
  • the home gateway 122 includes a notification unit 12d as a control function realized by the notification program 13d stored in the program memory 13.
  • the notification unit 12d notifies the information acquired by the acquisition unit 12a from the communication unit 11 to the air conditioner 123 via the home network 121.
  • the air conditioner 123 includes a mechanical part 123a and a substrate part 123b.
  • the machine unit 123a has a function as an air conditioning unit that performs air conditioning in an air conditioning area, and includes a refrigerator, a heat source unit, a humidifier, a dehumidifier, and the like.
  • the substrate unit 123b is mounted with the CPU 30, the program memory 40, the communication unit 50, and the like.
  • the communication unit 50 receives the information notified from the home gateway 122.
  • the estimation unit 12b estimates the heat load in the air-conditioning area by the same calculation as that of the first embodiment based on the received information.
  • the housing information 14a, the PV power generation history 14b, and the parameter group 14c necessary for the calculation are acquired from the database 20 by the home gateway 122 and notified to the air conditioner 123.
  • the control unit 12c controls the mechanical unit 123a based on the estimated heat load to adjust the air environment in the air-conditioning area.
  • the function of the estimation unit 12b is realized by the estimation program 13b of the program memory 40, and the function of the control unit 12c is realized by the control program 13c of the program memory 40.
  • the HEMS notifies the air conditioner 123 of information collected from the sensors of the home 101, the cloud 200, and the like. Calculation of the internal heat load generated from the lighting 124 and the television 126 is executed by the CPU 30 of the air conditioner 123.
  • the same effect as that of the first embodiment can be obtained, and the processing load of the home gateway 122 can be reduced.
  • the processing load of the home gateway 122 can be reduced.
  • hardware resources in the home 101 can be reduced.
  • FIG. 9 is a functional block diagram illustrating an example of an air conditioner according to the third embodiment.
  • parts that are the same as those in FIGS. 1, 2, and 8 are given the same reference numerals, and only different parts will be described here.
  • the function of the home gateway 122 in the first embodiment is implemented in the air conditioner 123.
  • the housing information 14a of the home 101, the PV power generation history 14b, and the parameter group 14c are stored in the database 20 of the cloud 200, as in the second embodiment.
  • the air conditioner 123 can communicate with the cloud 200 via the home network 121.
  • the air conditioner 123 includes an acquisition unit 12a, an estimation unit 12b, and a control unit 12c as processing functions of the CPU 30. These functions are realized by the acquisition program 13a, the estimation program 13b, and the control program 13c in the program memory 40.
  • the acquisition unit 12a acquires sensor data collected by the HEMS from the home network 121, and acquires parameters and setting information necessary for calculation from the database 20 of the cloud 200.
  • the estimation unit 12b estimates the heat load in the air-conditioning area by the same calculation as in the first embodiment based on the acquired information.
  • the control part 12c controls the machine part 123a based on the estimated heat load, and adjusts the air environment of an air-conditioning area.
  • FIG. 5 it is possible to include not only humans but also animals such as pets as one of the heat sources that cause heat load.
  • sensing of animal body temperature is compatible with an infrared sensor.
  • the average number of stays (number of people) of animals including humans can be stored in advance in the storage unit 14 as one of the parameters, and this can be read to estimate the internal heat load.
  • the position information of the heat source can be used as information for air conditioning control.
  • the sensor data can be used to calculate the internal heat load.
  • the wearable sensor attached to a human arm or the like can be used to grasp the position and number of people.
  • the location of home appliances that are almost fixed is also important as location information for heat sources.
  • the installation location of the home appliance can be roughly determined by measuring the power in the branch circuit unit of the distribution board 113.
  • an outlet smart tap
  • the location of the home appliance can be specified by setting the use location of the home appliance to the user and storing it in the storage unit 14, for example. If you can identify which home appliances are in which places, you can greatly help in calculating the heat load.
  • the processing circuit may be realized as a processor including an electronic circuit.
  • the processing circuit includes a processor that functions by a program.
  • the processing circuit can include an ASIC (application specific integrated circuit) or a conventional circuit element for executing the above functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The air conditioning system of this embodiment can be used in buildings in which energy is managed by an energy management system. The air conditioning system is equipped with an acquisition unit, an estimation unit, and a control unit. The acquisition unit acquires information that can be collected by the energy management system. The estimation unit estimates the heat load in an air conditioning area on the basis of the acquired information. The control unit controls an air conditioning device in the air conditioning area on the basis of the estimated heat load.

Description

空調システム、空調装置、空調制御方法およびプログラムAir conditioning system, air conditioner, air conditioning control method, and program
 本発明の実施形態は、空調制御技術に関する。 Embodiment of this invention is related with an air-conditioning control technique.
 近年、快適な居住環境へのニーズが高まってきている。人の感じる快適性を数値で表すPMV(Predicted Mean Vote)などの指標が知られるようになってきている。空調制御技術が注目されている(非特許文献1を参照)。 In recent years, the need for a comfortable living environment has increased. Indices such as PMV (Predicted Mean Vote) that expresses the comfort felt by people are becoming known. Air conditioning control technology has attracted attention (see Non-Patent Document 1).
 例えば特許文献1に開示される空調制御技術が知られている。特許文献1では人検知センサにより居住者の移動を検知し、その結果に基づいて空調運転のモードが変更される。例えば居室者のドア方向への移動と残存者の存在とが同時に検知されると、通常運転から退出対応運転へと空調装置の運転モードが変更される。その後一定時間が経過すると運転モードは退出対応運転から通常運転に戻される。 For example, an air conditioning control technique disclosed in Patent Document 1 is known. In Patent Document 1, the movement of a resident is detected by a human detection sensor, and the mode of air conditioning operation is changed based on the result. For example, when the movement of the occupant in the door direction and the presence of the survivor are detected at the same time, the operation mode of the air conditioner is changed from the normal operation to the exit operation. After a certain period of time has elapsed, the operation mode is returned from the exit-response operation to the normal operation.
特開2012-52769号公報JP 2012-52769 A
 特許文献1では、居住者の在/不在に基づいて一定時間だけ空調を制御するようにしているので室温の変化に追従することが難しく、居住者にとって十分な快適性を得られるとは限らない。既存の技術では室内の温度センサのセンサ値と目標値との差を減少させるフィードバック制御により空調装置が制御されるので、温度センサの設置場所と居住者の居場所とが離れていると所望の快適性を得られないことがある。そもそも室温が変化したことをフィードバックしても室温が所望値になるまでに相当の時間を要するので、その間、居住者の快適性は損なわれることとなる。何らかの技術革新が待たれている。 In Patent Document 1, since air conditioning is controlled only for a certain period of time based on the presence / absence of a resident, it is difficult to follow a change in room temperature, and sufficient comfort for the resident is not always obtained. . In the existing technology, the air conditioner is controlled by feedback control that reduces the difference between the sensor value of the indoor temperature sensor and the target value. Therefore, if the location of the temperature sensor and the occupant's location are separated, the desired comfort is achieved. Sexuality may not be obtained. In the first place, even if the fact that the room temperature has changed is fed back, it takes a considerable amount of time for the room temperature to reach a desired value. Some technological innovation is awaited.
 目的は、快適性をさらに高めた空調システム、空調装置、空調制御方法およびプログラムを提供することにある。 The purpose is to provide an air conditioning system, an air conditioner, an air conditioning control method, and a program that further enhance comfort.
 実施形態によれば、空調システムは、エネルギー管理システムによりエネルギーを管理される建物に適用可能である。この空調システムは、取得部と、推定部と、制御部とを具備する。取得部は、エネルギー管理システムにより収集可能な情報を取得する。推定部は、取得された情報に基づいて空調エリアにおける熱負荷を推定する。制御部は、空調エリアの空調装置を、推定された熱負荷に基づいて制御する。 According to the embodiment, the air conditioning system can be applied to a building whose energy is managed by the energy management system. The air conditioning system includes an acquisition unit, an estimation unit, and a control unit. The acquisition unit acquires information that can be collected by the energy management system. An estimation part estimates the heat load in an air-conditioning area based on the acquired information. The control unit controls the air conditioner in the air conditioning area based on the estimated heat load.
図1は、実施形態に係る空調システムの一例を示す図である。Drawing 1 is a figure showing an example of an air-conditioning system concerning an embodiment. 図2は、第1の実施形態に係わるホームゲートウェイ122の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram illustrating an example of the home gateway 122 according to the first embodiment. 図3は、ホームゲートウェイ122による熱負荷の推定に係る処理手順の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of a processing procedure related to estimation of heat load by the home gateway 122. 図4は、ホームゲートウェイ122による空調制御量の決定に係る処理手順の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of a processing procedure related to determination of the air conditioning control amount by the home gateway 122. 図5は、ホーム101における熱および各種情報の流れを模式的に示す図である。FIG. 5 is a diagram schematically showing the flow of heat and various information in the home 101. 図6は、実施形態における処理の流れを模式的に示すフローチャートである。FIG. 6 is a flowchart schematically showing a processing flow in the embodiment. 図7は、第2の実施形態に係わる空調システムの一例を示す機能ブロック図である。FIG. 7 is a functional block diagram illustrating an example of an air conditioning system according to the second embodiment. 図8は、第2の実施形態における情報の流れを模式的に示す図である。FIG. 8 is a diagram schematically showing the flow of information in the second embodiment. 図9は、第3の実施形態に係わる空調装置の一例を示す機能ブロック図である。FIG. 9 is a functional block diagram illustrating an example of an air conditioner according to the third embodiment.
 図1は、実施形態に係る空調システムの一例を示す図である。図1において、配電網としての電力系統6から供給される電力(交流電圧)は、電柱の変圧器61などを経て各ユーザ宅(ホーム)101に分配される。分配された電力は、電力量計(スマートメータ)112を経て分電盤113に接続される。電力量計112は、各種の電力量を計測する機能を備える。計測可能な電力量には、ホーム101に備わる再生可能エネルギー発電システムの発電量、ホーム101の消費電力量、電力系統6からホーム101に流れ込む電力量、あるいは、ホーム101から電力系統6に逆潮流(reverse flow)する電力量などを挙げることができる。 FIG. 1 is a diagram illustrating an example of an air conditioning system according to an embodiment. In FIG. 1, electric power (AC voltage) supplied from an electric power system 6 as a distribution network is distributed to each user's home (home) 101 through a transformer 61 of a utility pole. The distributed power is connected to a distribution board 113 via a watt-hour meter (smart meter) 112. The watt-hour meter 112 has a function of measuring various types of power. The amount of power that can be measured includes the amount of power generated by the renewable energy power generation system provided in the home 101, the amount of power consumed by the home 101, the amount of power flowing from the power system 6 to the home 101, or the reverse power flow from the home 101 to the power system 6. The amount of power to be (reverse flow) can be mentioned.
 分電盤113は電力線111を介して家電機器(エアコン123、照明124、冷蔵庫125、テレビ126、ヒートポンプ式給湯器(図示せず)など)やパワーコンディショナ(Power Conditioning System:PCS)114に電力を供給する。なお分電盤113はフィーダごとの電力量を計測する計測装置を備えていてもよい。 The distribution board 113 supplies power to home appliances (air conditioner 123, lighting 124, refrigerator 125, television 126, heat pump type water heater (not shown), etc.) and power conditioner (Power パ ワ ー Conditioning System: PCS) 114 via the power line 111. Supply. The distribution board 113 may include a measuring device that measures the amount of power for each feeder.
 PVユニット115が、ホーム101の屋根や外壁に設置される。PVユニット115で生成された直流電力は、パワーコンディショナ114に供給される。パワーコンディショナ114は蓄電池116を充電すべく、この直流電力を蓄電池116に与える。 The PV unit 115 is installed on the roof or outer wall of the home 101. The DC power generated by the PV unit 115 is supplied to the power conditioner 114. The power conditioner 114 applies this DC power to the storage battery 116 in order to charge the storage battery 116.
 ところで、ホーム101は、主装置としてのホームゲートウェイ(Home Gateway:HGW)122を備える。ホームゲートウェイ122を中核として、エネルギー管理システムとしてのHEMS(Home Energy Management System)が形成される。HEMSはホーム101のエネルギーを管理する。ホームゲートウェイ122は、HEMSとほぼ同義として理解され得る。あるいは、HEMSの一部としてホームゲートウェイ122を理解することも可能である。 Incidentally, the home 101 includes a home gateway (Home Gateway: HGW) 122 as a main device. With the home gateway 122 as a core, a HEMS (Home Energy Management System) is formed as an energy management system. The HEMS manages the energy of the home 101. The home gateway 122 can be understood as being almost synonymous with HEMS. Alternatively, the home gateway 122 can be understood as part of the HEMS.
 ホームゲートウェイ122はクラウドコンピューティングシステム(以下、クラウドと略称する)200に接続される。クラウド200は、例えばインターネットやVPN(Virtual Private Network)などの情報通信ネットワークを利用して形成される、分散処理システムである。クラウド200はサーバ装置10およびデータベース20を備える。ホームゲートウェイ122はクラウド200のサーバ装置10と通信したり、データベース20とデータを授受したりすることができる。 The home gateway 122 is connected to a cloud computing system (hereinafter abbreviated as “cloud”) 200. The cloud 200 is a distributed processing system formed using an information communication network such as the Internet or VPN (Virtual Private Network). The cloud 200 includes a server device 10 and a database 20. The home gateway 122 can communicate with the server device 10 of the cloud 200 and exchange data with the database 20.
 さらに、ホームゲートウェイ122は端末105に接続される。端末105はタッチパネルなどのほか、例えば汎用的な携帯情報機器やパーソナルコンピュータ、あるいはタブレット端末などでもよい。端末105は各家電機器、燃料電池119、蓄電池116、PVユニット115の稼働状況や消費電力量を例えばLCD(Liquid Crystal Display)に表示したり、音声ガイダンスなどでユーザに報知する。また端末105は操作パネルを備え、ユーザによる各種の操作や設定入力を受け付ける。 Furthermore, the home gateway 122 is connected to the terminal 105. The terminal 105 may be, for example, a general-purpose portable information device, a personal computer, or a tablet terminal in addition to a touch panel. The terminal 105 displays the operating status and power consumption of each home appliance, fuel cell 119, storage battery 116, and PV unit 115 on, for example, an LCD (Liquid Crystal Display) or informs the user by voice guidance or the like. The terminal 105 includes an operation panel and accepts various operations and setting inputs by the user.
 ホーム101にはLAN(Local Area Network)などのホームネットワーク121が形成される。ホームゲートウェイ122はホームネットワーク121を介して電力量計112、分電盤113、パワーコンディショナ114、および各家電機器と相互に通信可能である。 The home 101 is formed with a home network 121 such as a LAN (Local Area Network). The home gateway 122 can communicate with the watt hour meter 112, the distribution board 113, the power conditioner 114, and each home appliance via the home network 121.
 ホームネットワーク121は有線リンク、あるいは無線リンクのいずれでも良い。さらに、室内の画像データを取得する画像センサ127が、ホームネットワーク121に接続される。画像センサ127は例えばホームネットワーク121から有線で給電されることが可能である。画像センサ127は、取得した画像データを解析する機能も備える。この機能により、画像センサ127は、例えば室内における人物の在/不在を示す情報(人物在/不在情報と称する)を算出する。 The home network 121 may be a wired link or a wireless link. Further, an image sensor 127 that acquires indoor image data is connected to the home network 121. The image sensor 127 can be supplied with power from a home network 121 by wire, for example. The image sensor 127 also has a function of analyzing the acquired image data. With this function, the image sensor 127 calculates, for example, information indicating the presence / absence of a person in a room (referred to as person presence / absence information).
 ECHONET(登録商標)、ECHONET Lite(登録商標)、ZigBee(登録商標)、Z-Wave(登録商標)、KNX(登録商標)などを、ホーム101における宅内通信プロトコルとして使用することができる。プロトコルの下位レイヤにはイーサネット(登録商標)などの有線LAN、電力線通信(PLC)、無線LAN、Bluetooth(登録商標)などを使用することができる。なおクラウド200は、ホームゲートウェイ122とサーバ装置10との間に双方向の通信環境を形成するための、無線または有線の通信インフラストラクチャを含むことができる。 ECHONET (registered trademark), ECHONET Lite (registered trademark), ZigBee (registered trademark), Z-Wave (registered trademark), KNX (registered trademark), or the like can be used as a home communication protocol in the home 101. For the lower layer of the protocol, a wired LAN such as Ethernet (registered trademark), power line communication (PLC), wireless LAN, Bluetooth (registered trademark), or the like can be used. The cloud 200 can include a wireless or wired communication infrastructure for forming a bidirectional communication environment between the home gateway 122 and the server device 10.
 実施形態におけるHEMSは、ホーム101に備わる家電機器(エアコン123、照明124、冷蔵庫125、テレビ126など)に係わる情報を収集する機能を有する。実施形態ではHEMSの機能を利用してエアコン123を制御することで、ホーム101の空調環境を快適にする。 The HEMS in the embodiment has a function of collecting information related to home appliances (such as an air conditioner 123, a lighting 124, a refrigerator 125, and a television 126) provided in the home 101. In the embodiment, the air conditioning environment of the home 101 is made comfortable by controlling the air conditioner 123 using the function of the HEMS.
 すなわちエアコン123は、空調エリアに設けられ、空調エリアの空気調和を行う空調装置である。特に実施形態では、エアコン123として、各部屋に接続されるダクトおよび送風ファンを備える全館空調機、を想定することも可能である。さらに、実施形態におけるエアコン123は温度制御機能だけでなく、調湿機能をも備える。つまりエアコン123は加湿器および除湿器としての機能も備える。次に、上記構成を基礎として複数の実施形態を説明する。 That is, the air conditioner 123 is an air conditioner that is provided in the air conditioning area and performs air conditioning in the air conditioning area. In particular, in the embodiment, it is also possible to assume a whole-building air conditioner including a duct connected to each room and a blower fan as the air conditioner 123. Furthermore, the air conditioner 123 in the embodiment has not only a temperature control function but also a humidity control function. That is, the air conditioner 123 also has functions as a humidifier and a dehumidifier. Next, a plurality of embodiments will be described based on the above configuration.
 [第1の実施形態]
 図2は、第1の実施形態に係わるホームゲートウェイ122の一例を示す機能ブロック図である。図2において、ホームゲートウェイ122はCPU(Central Processing Unit)12を備えるコンピュータである。クラウド200との通信機能などに加えて、実施形態に係る機能を実現するためのソフトウェアモジュールが、ホームゲートウェイ122にインストールされる。
[First Embodiment]
FIG. 2 is a functional block diagram illustrating an example of the home gateway 122 according to the first embodiment. In FIG. 2, the home gateway 122 is a computer including a CPU (Central Processing Unit) 12. In addition to the communication function with the cloud 200, a software module for realizing the function according to the embodiment is installed in the home gateway 122.
 ホームゲートウェイ122は通信部11、CPU12、プログラムメモリ13、および記憶部14を備える。すなわちホームゲートウェイ122は、ハードウェアに記憶されるプログラムやデータに基づくCPU12の演算処理によりその機能を実現する、コンピュータである。 The home gateway 122 includes a communication unit 11, a CPU 12, a program memory 13, and a storage unit 14. That is, the home gateway 122 is a computer that realizes its function through arithmetic processing of the CPU 12 based on programs and data stored in hardware.
 通信部11はホームネットワーク121およびクラウド200に接続され、通信インタフェースとしての機能を担う。すなわち通信部11はサーバ装置10と通信したり、データベース20とデータを授受したり、HEMSに接続される家電機器と通信したりするための機能を備える。 The communication unit 11 is connected to the home network 121 and the cloud 200, and functions as a communication interface. That is, the communication unit 11 has functions for communicating with the server device 10, exchanging data with the database 20, and communicating with home appliances connected to the HEMS.
 プログラムメモリ13はこの実施形態に係わる処理機能に必要な命令を含むプログラムとしての、取得プログラム13a、推定プログラム13b、および制御プログラム13cを記憶する。取得プログラム13a、推定プログラム13b、および制御プログラム13cはCD-ROMなどのリムーバブルメディア(記録媒体)に記録されることが可能である。あるいは、これらのプログラムは、通信回線を介してホームゲートウェイ122にダウンロードされることも可能である。 The program memory 13 stores an acquisition program 13a, an estimation program 13b, and a control program 13c as programs including instructions necessary for processing functions according to this embodiment. The acquisition program 13a, the estimation program 13b, and the control program 13c can be recorded on a removable medium (recording medium) such as a CD-ROM. Alternatively, these programs can be downloaded to the home gateway 122 via a communication line.
 CPU12はプログラムメモリ13から各プログラムを読み出してハードウェアによる演算処理を行う。CPU12は処理機能として、取得部12a、推定部12b、および制御部12cを備える。 The CPU 12 reads each program from the program memory 13 and performs arithmetic processing by hardware. The CPU 12 includes an acquisition unit 12a, an estimation unit 12b, and a control unit 12c as processing functions.
 取得部12aは、HEMSにより収集可能な情報をホームネットワーク121経由で取得する。 
 推定部12bは、取得部12aにより取得された情報に基づいて空調エリアにおける熱負荷(heat load)を推定(estimate)する。
The acquisition unit 12a acquires information that can be collected by the HEMS via the home network 121.
The estimation unit 12b estimates the heat load in the air-conditioning area based on the information acquired by the acquisition unit 12a.
 制御部12cは、推定部12bにより推定された熱負荷に基づいて、エアコン123を制御する。 The control unit 12c controls the air conditioner 123 based on the thermal load estimated by the estimation unit 12b.
 記憶部14は、ハードディスクドライブ(HDD)や半導体メモリなどのストレージデバイスであり、躯体情報14a、PV発電量履歴14b、およびパラメータ群14cを記憶する。 The storage unit 14 is a storage device such as a hard disk drive (HDD) or a semiconductor memory, and stores the chassis information 14a, the PV power generation history 14b, and the parameter group 14c.
 躯体情報14aはホーム101の建物の特徴を示す情報であり、その内容は多岐にわたる。実施形態では躯体情報14aの内容として、例えば外壁の材質、内壁の材質、屋根の素材、あるいは窓ガラスの断熱性能などの情報が考慮される。ホーム101の建物の構造、設計、材料などの情報も躯体情報14aに含まれる。また躯体情報14aは、例えば、各部屋の天井高、幅、奥行きなどの構造的な情報、窓ガラスの材質、方位、ガラスの熱通過率、外壁面積、屋根面積、壁の厚み、部材などの情報も含む。もちろんこれらの情報に限られるものではない。 Body information 14a is information indicating the characteristics of the building of the home 101, and its contents are diverse. In the embodiment, information such as the material of the outer wall, the material of the inner wall, the material of the roof, or the heat insulating performance of the window glass is considered as the contents of the frame information 14a. Information such as the structure, design, and material of the building of the home 101 is also included in the housing information 14a. Further, the frame information 14a includes, for example, structural information such as ceiling height, width, and depth of each room, the material and orientation of the window glass, the heat transmission rate of the glass, the outer wall area, the roof area, the wall thickness, and the member. Includes information. Of course, the information is not limited to this.
 PV発電量履歴14bは、PVユニット115の発電量の履歴を示すデータである。PVユニット115の発電量は例えばパワーコンディショナ114により既定の間隔(1分間隔、30分間隔、1時間間隔など)で時々刻々と計測される。パワーコンディショナ114はこの計測値をホームゲートウェイ122の記憶部に、PV発電量履歴14bとして記憶させる。 
 パラメータ群14cは、CPU12の演算処理に必要になる各種の設定情報や定数、係数などの値を含む。次に、上記構成における作用を詳しく説明する。
The PV power generation amount history 14 b is data indicating a history of the power generation amount of the PV unit 115. The power generation amount of the PV unit 115 is measured from time to time by a power conditioner 114 at predetermined intervals (1 minute interval, 30 minute interval, 1 hour interval, etc.), for example. The power conditioner 114 stores this measured value in the storage unit of the home gateway 122 as the PV power generation history 14b.
The parameter group 14c includes various setting information, constants, coefficients, and other values necessary for the arithmetic processing of the CPU 12. Next, the operation of the above configuration will be described in detail.
 図3は、ホームゲートウェイ122による熱負荷の推定(estimation)に係る処理手順の一例を示すフローチャートである。図3において、取得部12aは、空調空間における熱負荷を算出するのに要する情報を、ホームネットワーク121を介してHEMSから取得する(ステップS1)。取得すべき情報は、例えば、PV発電量、家電機器消費電力量、人物在/不在情報、温度情報(室温、目標温度)、湿度情報、および、躯体情報(外壁、内壁、屋根、窓ガラスの各種情報)などである。各情報はその性質に基づいて定期的、不定期的、あるいはリアルタイムに取得される(リアルタイム値)。例えば家電機器の消費電力量は、分電盤113から収集され、取得されることが可能である。 FIG. 3 is a flowchart showing an example of a processing procedure related to estimation of thermal load by the home gateway 122. In FIG. 3, the acquisition part 12a acquires the information required for calculating the thermal load in the air-conditioned space from the HEMS via the home network 121 (step S1). Information to be acquired includes, for example, PV power generation amount, home appliance power consumption amount, person presence / absence information, temperature information (room temperature, target temperature), humidity information, and housing information (outer wall, inner wall, roof, window glass Various information). Each piece of information is acquired periodically, irregularly, or in real time based on its nature (real time value). For example, the power consumption of home appliances can be collected from the distribution board 113 and acquired.
 PV発電量(PV)はPVユニット115の発電量である。PV発電量PVは、例えばパワーコンディショナ114から取得される。なおPV発電量を時刻tの関数としてPV(t)と表しても良い。時刻tの単位は時、分、秒などである。 PV power generation amount (PV) is the power generation amount of the PV unit 115. The PV power generation amount PV is acquired from the power conditioner 114, for example. The PV power generation amount may be expressed as PV (t) as a function of time t. The unit of time t is hour, minute, second, and the like.
 家電機器消費電力はそれぞれの家電機器の消費電力量である。実施形態では家電機器消費電力をPAPと表記する。添え字APはappliances(家電機器)を示す。家電機器消費電力をPAPはHEMSから取得可能な情報である。つまり家電機器消費電力PAPは家電機器に備わる通信機能や、コンセント(outlet)に備わる通信機能、あるいは分電盤113のタップごとの電力管理機能により、ホームゲートウェイ122がリアルタイムに取得することの可能な情報である。このほか、電力線111の電流(あるいは電圧)を高調波分析することなどによっても、どの家電機器がどの程度の電力で稼働しているかをリアルタイムに把握することが可能である。 The home appliance power consumption is the power consumption of each home appliance. In the embodiment, home appliance power consumption is denoted as PAP . The subscript AP indicates appliances (home appliance). P AP home appliances power consumption is information that can be obtained from the HEMS. That is Appliances power P AP communication function and provided in home appliances, electrical outlets (outlet) to provided a communication function, or by the power management functions for each tap of the distribution board 113, possible that the home gateway 122 acquires the real-time Information. In addition, by analyzing the current (or voltage) of the power line 111 by harmonic analysis, it is possible to grasp in real time which home appliance is operating at what power level.
 なお家電機器消費電力PAPは、家電機器ごとの仕様値(諸元)として既知であるので、パラメータとして記憶部14に記憶させても良い。このようにすれば実際の値を計測しなくても記憶部14から読み出すだけで家電機器消費電力PAPを取得できるので、処理時間の短縮などの効果がある。 The home appliance power consumption PAP is known as a specification value (specification) for each home appliance, and may be stored in the storage unit 14 as a parameter. In this way, the home appliance power consumption PAP can be acquired simply by reading it from the storage unit 14 without measuring the actual value, and thus there is an effect of shortening the processing time.
 人物在/不在情報は画像センサ127から取得されることが可能である。なお画像センサ127から画像データを取得し、ホームゲートウェイ122がこの画像データを処理することで人物在/不在情報を生成してもよい。 Person presence / absence information can be acquired from the image sensor 127. Note that the presence / absence information may be generated by obtaining image data from the image sensor 127 and processing the image data by the home gateway 122.
 温度情報は例えば外気温および室温である。外気温は外壁に取り付けられた温度センサ(ペルチェ素子など)で計測できるし、室温は例えばエアコン123に備わる温度センサにより計測可能である。特に取得部12aは、制御目標値としての目標温度も取得する(ステップS2)。目標温度は例えば端末105を用いてシステムに与えられる設定値であり、例えばホームゲートウェイ122の記憶部14に記憶される。湿度情報は室内の湿度であり、湿度センサにより計測することが可能である。 The temperature information is, for example, outside air temperature and room temperature. The outside air temperature can be measured by a temperature sensor (such as a Peltier element) attached to the outer wall, and the room temperature can be measured by a temperature sensor provided in the air conditioner 123, for example. In particular, the acquisition unit 12a also acquires a target temperature as a control target value (step S2). The target temperature is a set value given to the system using the terminal 105, for example, and is stored in the storage unit 14 of the home gateway 122, for example. Humidity information is indoor humidity and can be measured by a humidity sensor.
 次に、推定部12bは、空調制御の対象となる空間(室内など)の熱負荷を推定する。実施形態では、窓ガラスからの熱負荷、外壁・屋根からの熱負荷、内壁・天井・床からの熱負荷・および内部熱負荷の、4種類の熱負荷が考慮される。 Next, the estimation unit 12b estimates the heat load of a space (such as a room) that is subject to air conditioning control. In the embodiment, four types of heat loads are considered: a heat load from the window glass, a heat load from the outer wall / roof, a heat load from the inner wall / ceiling / floor, and an internal heat load.
 先ず、推定部12bは、窓ガラスからの熱負荷を推定する(ステップS3)。以下にその手順を詳しく説明する。 
 <窓ガラスからの熱負荷の推定>
 窓ガラスからの熱負荷には、外部から窓ガラスを通じて室内へと伝わる貫流熱負荷と、日射熱負荷との2項目が考えられる。このうち貫流熱負荷qGK(単位[W])は、式(1)~(3)のいずれかで表される。
Figure JPOXMLDOC01-appb-M000001
First, the estimation part 12b estimates the heat load from a window glass (step S3). The procedure will be described in detail below.
<Estimation of heat load from window glass>
There are two possible heat loads from the window glass: a once-through heat load transmitted from the outside to the room through the window glass, and a solar heat load. Of these, the once-through heat load q GK (unit [W]) is expressed by any one of the formulas (1) to (3).
Figure JPOXMLDOC01-appb-M000001
 式(1)は外気よりも室内温度のほうが低い状態(つまり冷房運転時)での貫流熱負荷を示す。式(2)は外気よりも室内温度のほうが高い状態(つまり暖房運転時)での貫流熱負荷を示す。式(3)は式(2)に放射冷却を考慮する項を追加した式である。 Equation (1) shows the once-through heat load when the room temperature is lower than the outside air (that is, during cooling operation). Equation (2) shows the once-through heat load when the room temperature is higher than the outside air (that is, during heating operation). Expression (3) is an expression in which a term considering radiation cooling is added to Expression (2).
 式(1)~(3)の外気温t0としてはリアルタイム値を用いるのが好ましい。一方、ガラスの熱通過率KG、ガラス面積AG、室内設定温度tR、方位係数k1、天井高による割り増し係数k2、および、対気の放射冷却による温度Δtnは、パラメータとして与えられることができる。これらのパラメータはホームゲートウェイ122の記憶部14に予め記憶され、演算に際してCPU12のレジスタに読み出される。 It is preferable to use a real-time value as the outside air temperature t 0 in the expressions (1) to (3). On the other hand, the glass heat transfer rate K G , the glass area A G , the indoor set temperature t R , the orientation coefficient k 1 , the extra coefficient k 2 due to the ceiling height, and the temperature Δt n due to radiative cooling of the air are given as parameters. Can be done. These parameters are stored in advance in the storage unit 14 of the home gateway 122, and are read out to the register of the CPU 12 at the time of calculation.
 ガラスの熱通過率KGとしては、単層ガラスには約6.3、複層ガラスには約3.5程度の値を適用できる。方位係数k1としては、北、北西および西に1.1、南東、東、北東および南西に1.05、南に1.0などの値を適用できる。 The heat transfer coefficient K G of the glass, the single-layer glass about 6.3, the insulating glass can be applied a value of about 3.5. As the orientation coefficient k 1 , values such as 1.1 for the north, northwest and west, 1.05 for the southeast, east, northeast and southwest, 1.0 for the south, and the like can be applied.
 天井高による割り増し係数k2としては、天井高5mおよび自然対流暖房という条件下では1.0程度の値を適用できる。なおこの係数k2はオプションとして取り扱うこともできる。 
 対気の放射冷却による温度Δtnは放射冷却を考慮した項である。例えば3階以下の窓・外壁に対しては値0を適用できる。
As the extra coefficient k 2 due to the ceiling height, a value of about 1.0 can be applied under the condition of a ceiling height of 5 m and natural convection heating. The coefficient k 2 can be handled as an option.
The temperature Δt n due to radiative cooling of the air is a term considering radiative cooling. For example, a value of 0 can be applied to windows and outer walls on the third floor and below.
 日射熱負荷qGIは冷房運転時だけを考慮すればよく、式(4)で表される。 
Figure JPOXMLDOC01-appb-M000002
The solar heat load q GI only needs to be considered during cooling operation, and is expressed by equation (4).
Figure JPOXMLDOC01-appb-M000002
 ガラスの遮蔽係数SCとしては、単層ガラスには約1.0~0.58、複層ガラスには約0.89~0.56程度の値を適用できる。この係数SCも上記と同様にパラメータとして与えられることができる。 
 ガラス窓の標準日射熱取得IGは、式(5)、(6)および表1を用いて算出される。推定部12bは、先ず式(5)に基づいてPV発電割合PVRATEを算出する。
Figure JPOXMLDOC01-appb-M000003
As the glass shielding coefficient SC, a value of about 1.0 to 0.58 can be applied to a single layer glass, and about 0.89 to 0.56 can be applied to a double layer glass. This coefficient SC can also be given as a parameter as described above.
Standard solar heat gain I G of a glass window of the formula (5), is calculated using (6) and Table 1. The estimation unit 12b first calculates the PV power generation ratio PV RATE based on the equation (5).
Figure JPOXMLDOC01-appb-M000003
 式(5)に示されるように、PV発電割合PVRATEは天候を推定するための指標として用いられることができる。つまりPV発電割合PVRATEの値が1.0に近ければ晴天、0.5で曇り、0になれば雨天や夜間であると推測できる。この情報は貫流熱負荷qGKや日射熱負荷qGIを算出するのに役立てることができる。また、式(5)を用いることでPVパネルの設置容量の変化やPVパネルの経年劣化などに対応することも可能になる。 As shown in Equation (5), the PV power generation rate PV RATE can be used as an indicator for estimating the weather. That is, it can be inferred that the PV power generation ratio PV RATE is close to 1.0 when it is clear, cloudy at 0.5, and when it is 0, it is rainy or nighttime. This information can be used to calculate the once-through heat load q GK and the solar heat load q GI . Further, by using Expression (5), it is possible to cope with a change in the installation capacity of the PV panel, aged deterioration of the PV panel, and the like.
 式(5)の分子のPV発電量PVはHEMSのパワーコンディショナ114から取得できる。式(5)の分母に示されるPV発電量の最大値PVMAXは、記憶部14に記憶されるPV発電量履歴から取得可能である。年間発電量の最大値、季節ごとの発電量の最大値、および月ごとの最大値のいずれもPVMAXとして用いることができる。なお、PVRATEを時刻(t)の関数としてPVRATE(t)と表記しても良い。 The PV power generation amount PV of the numerator of Formula (5) can be obtained from the power conditioner 114 of HEMS. The maximum PV power generation value PV MAX shown in the denominator of Expression (5) can be acquired from the PV power generation history stored in the storage unit 14. Any of the maximum value of annual power generation, the maximum value of seasonal power generation, and the maximum value of each month can be used as PV MAX . PV RATE may be expressed as PV RATE (t) as a function of time (t).
 日射熱取得係数IGは、PV発電割合PVRATEを用いて式(6)により求めることができる。
Figure JPOXMLDOC01-appb-M000004
Solar heat gain coefficient I G can be obtained by equation (6) using the PV power ratio PV RATE.
Figure JPOXMLDOC01-appb-M000004
 式(6)における日射熱取得係数の基本値IG_Paraは、パラメータとして与えられることができる。基本値IG_Paraは、地点、時期、方位、時刻、窓ガラスの材質などによって異なる。基本値IG_Paraの一例として表1に示される値を用いることができる。
Figure JPOXMLDOC01-appb-T000005
The basic value I G_Para of the solar heat acquisition coefficient in equation (6) can be given as a parameter. The basic value I G_Para varies depending on the location, time, direction, time, material of the window glass, and the like. As an example of the basic value I G_Para, the values shown in Table 1 can be used.
Figure JPOXMLDOC01-appb-T000005
 式(6)における補正係数k3、補正係数k4は、設置場所などの条件に合わせて計算値を調整するための補正係数である。いずれもパラメータとして与えられることができる。なおこれらの補正係数を時刻(t)の関数として補正係数k3(t)、補正係数k4(t)と表すこともできる。 The correction coefficient k 3 and the correction coefficient k 4 in Expression (6) are correction coefficients for adjusting the calculated values in accordance with conditions such as the installation location. Either can be given as a parameter. These correction coefficients can also be expressed as a correction coefficient k 3 (t) and a correction coefficient k 4 (t) as a function of time (t).
 次に推定部12bは、外壁・屋根からの熱負荷を推定する(ステップS4)。以下にその手順を詳しく説明する。 
 <外壁・屋根の熱負荷の推定>
 外壁・屋根の熱負荷qWは、式(7)~(9)のいずれかを用いて算出できる。
Figure JPOXMLDOC01-appb-M000006
Next, the estimation part 12b estimates the heat load from an outer wall and a roof (step S4). The procedure will be described in detail below.
<Estimation of heat load on outer wall / roof>
The thermal load q W on the outer wall / roof can be calculated using any one of formulas (7) to (9).
Figure JPOXMLDOC01-appb-M000006
 式(7)に示されるETDは(Equivalent Temperature Difference)を意味し、実効温度差と称される。ETDは、日射の影響と時間遅れを見込んだ温度差である。表2および表3に示されるように、ETDは地域、季節、方位、壁タイプにより異なる。
Figure JPOXMLDOC01-appb-T000007
ETD shown in Equation (7) means (Equivalent Temperature Difference) and is called effective temperature difference. ETD is a temperature difference that takes into account the effects of solar radiation and time delays. As shown in Tables 2 and 3, the ETD varies depending on the region, season, orientation, and wall type.
Figure JPOXMLDOC01-appb-T000007
 表2におけるdは壁の厚さである。壁は例えばタイプI~タイプIVの4つのタイプに分けることができ、材質(普通コンクリート、気泡コンクリート)により壁の厚さdが変わる。
Figure JPOXMLDOC01-appb-T000008
In Table 2, d is the wall thickness. The wall can be divided into, for example, four types, type I to type IV, and the wall thickness d varies depending on the material (ordinary concrete, cellular concrete).
Figure JPOXMLDOC01-appb-T000008
 表3に示されるように、実効温度差ETDは例えば時期(季節)、壁タイプ、方位および時刻により変化する。 As shown in Table 3, the effective temperature difference ETD varies depending on, for example, time (season), wall type, orientation, and time.
 外壁・屋根の面積AWは、パラメータとして与えられることができる。熱通過率KWは、式(10)を用いて算出される。
Figure JPOXMLDOC01-appb-M000009
The area A W of the outer wall / roof can be given as a parameter. The heat passage rate K W is calculated using Equation (10).
Figure JPOXMLDOC01-appb-M000009
 式(10)における外表面熱伝達率α0は、パラメータとして与えられることができる。外表面熱伝達率α0の値は表面位置や季節により異なる。例えば、表面位置「垂直外壁面」で季節が「夏」であれば17を、「冬」であれば23を適用できる。また、表面位置「屋根面」で「夏」であれば23を、「冬」であれば35を適用できる。 The outer surface heat transfer coefficient α 0 in equation (10) can be given as a parameter. The value of the outer surface heat transfer coefficient α 0 varies depending on the surface position and season. For example, if the surface position is “vertical outer wall surface” and the season is “summer”, 17 can be applied, and if it is “winter”, 23 can be applied. If the surface position “roof surface” is “summer”, 23 can be applied, and if “winter”, 35 can be applied.
 部材iの厚さdiは、パラメータとして与えられることができる。 
 部材iの熱伝導率λiは、パラメータとして与えられることができる。その値は部材によって異なる。例えば普通コンクリートには1.4を、モルタルには1.5を、石こう板には0.17を、タイルには1.3を、木材には0.17などの値をそれぞれ適用できる。
The thickness d i of the member i can be given as a parameter.
Thermal conductivity lambda i members i may be given as a parameter. The value varies depending on the member. For example, 1.4 can be applied to ordinary concrete, 1.5 to mortar, 0.17 to gypsum, 1.3 to tile, 0.17 to wood, and so on.
 内表面の熱伝達率αiは、パラメータとして与えられることができる。内表面の熱伝達率αiの値は表面位置や熱伝達方向により異なる。例えば表面位置「水平」で「上向き」の熱伝達率には、値9を適用できる。表面位置「水平」で「下向き」の熱伝達率には、値6を適用できる。表面位置「垂直」で「水平」方向の熱伝達率には、値8を適用できる。 The heat transfer coefficient α i of the inner surface can be given as a parameter. The value of the heat transfer coefficient α i on the inner surface varies depending on the surface position and the heat transfer direction. For example, the value 9 can be applied to the heat transfer coefficient of the surface position “horizontal” and “upward”. A value of 6 can be applied to the heat transfer coefficient of the surface position “horizontal” and “downward”. A value of 8 can be applied to the heat transfer coefficient in the “horizontal” direction at the surface position “vertical”.
 このように、熱通過率KW、および外壁・屋根の熱負荷qWは、予め与えられるパラメータだけを用いた計算で求めることができる。 As described above, the heat transfer rate K W and the heat load q W of the outer wall / roof can be obtained by calculation using only parameters given in advance.
 次に推定部12bは、内壁・天井・床からの熱負荷を推定する(ステップS5)。つまり推定部12bは、内壁からの熱負荷、天井からの熱負荷、および床からの熱負荷の少なくともいずれか1つを推定する(ステップS5)。以下にその手順を詳しく説明する。 Next, the estimation unit 12b estimates the heat load from the inner wall, ceiling, and floor (step S5). That is, the estimation unit 12b estimates at least one of the heat load from the inner wall, the heat load from the ceiling, and the heat load from the floor (step S5). The procedure will be described in detail below.
 <内壁・天井・床の熱負荷の推定>
 内壁・天井・床の貫流熱負荷qIWは、式(11)を用いて算出できる。
Figure JPOXMLDOC01-appb-M000010
<Estimation of heat load on inner wall, ceiling, and floor>
The once-through heat load qIW of the inner wall / ceiling / floor can be calculated using Equation (11).
Figure JPOXMLDOC01-appb-M000010
 式(11)における内壁・天井・床の熱通過率KIWは、式(10)と同様にして算出できる。外気温t0としてはリアルタイムの値を用いるのが好ましい。内壁・天井・床の面積AIW、および室内設定温度tRは、パラメータとして与えられることができる。また温度差係数fIWも、パラメータとして与えられることができる。例えば非空調室という環境下では、冷房運転時の温度差係数fIWに0.9を、暖房運転時の値に0.6を適用することができる。また廊下における冷房運転時には0.7を、暖房運転時には0.6を適用することができる。 The heat transfer rate KIW of the inner wall / ceiling / floor in equation (11) can be calculated in the same manner as equation (10). It is preferable to use a real-time value as the outside air temperature t 0 . The inner wall / ceiling / floor area A IW and the indoor set temperature t R can be given as parameters. The temperature difference coefficient f IW can also be given as a parameter. For example, in an environment of a non-air-conditioned room, 0.9 can be applied to the temperature difference coefficient f IW during the cooling operation and 0.6 to the value during the heating operation. Moreover, 0.7 can be applied during the cooling operation in the hallway, and 0.6 can be applied during the heating operation.
 次に推定部12bは、すきま風による熱負荷を推定する(ステップS6)。以下にその手順を詳しく説明する。 
 <すきま風による熱負荷の算出>
 すきま風による顕熱負荷qIFSは、冷房時における顕熱負荷と、暖房時における顕熱負荷とに分けることができ、それぞれ式(12)、(14)を用いて算出できる。すきま風による潜熱負荷qIFLも、冷房時における潜熱負荷と、暖房時における潜熱負荷とに分けることができ、それぞれ式(13)、(15)を用いて算出できる。なお、すきま風の風量QIFは式(16)により算出できる。
Figure JPOXMLDOC01-appb-M000011
Next, the estimation part 12b estimates the heat load by a draft (step S6). The procedure will be described in detail below.
<Calculation of heat load due to draft air>
The sensible heat load q IFS caused by the draft air can be divided into a sensible heat load during cooling and a sensible heat load during heating, and can be calculated using equations (12) and (14), respectively. The latent heat load q IFL caused by the draft air can also be divided into a latent heat load during cooling and a latent heat load during heating, and can be calculated using equations (13) and (15), respectively. Note that the air volume Q IF of the clearance air can be calculated by Expression (16).
Figure JPOXMLDOC01-appb-M000011
 空気の比熱Cpa、空気の比重量ρa、0°における水蒸気の蒸発潜熱r0は、いずれも記憶部14に記憶されるパラメータ群14cに含めることができる。部屋(空調エリア)の体積VRは躯体情報14aに含めることができる。外気温t0、室内の温度tR、外気の絶対湿度x0、室内の絶対湿度xRはいずれもHEMSにより収集可能な情報であり、取得部12aにより取得される。係数1000/3600もパラメータ群14cに含めることができる。 The specific heat C pa of air, the specific weight ρ a of air, and the latent heat of vaporization r 0 of water vapor at 0 ° can all be included in the parameter group 14 c stored in the storage unit 14. The volume VR of the room (air-conditioning area) can be included in the enclosure information 14a. The outside air temperature t 0 , the indoor temperature t R , the absolute humidity x 0 of the outdoor air, and the absolute humidity x R of the room are all information that can be collected by the HEMS and are acquired by the acquisition unit 12a. The coefficient 1000/3600 can also be included in the parameter group 14c.
 次に推定部12bは、内部熱負荷を推定する(ステップS7)。以下にその手順を詳しく説明する。 
 <内部熱負荷の算出>
 内部熱負荷には、居住者(人)から発生する熱負荷(人の熱負荷)と、家電機器から発生する熱負荷と、ガス器具から発生する熱負荷との3項目が考えられる。このうち人の熱負荷qHは、式(17)で表される。推定部12bは式(17)を用いて人の熱負荷qHを算出する。
Figure JPOXMLDOC01-appb-M000012
Next, the estimation part 12b estimates an internal heat load (step S7). The procedure will be described in detail below.
<Calculation of internal heat load>
The internal heat load includes three items: a heat load generated from a resident (person) (a person's heat load), a heat load generated from a home appliance, and a heat load generated from a gas appliance. Of these, the human thermal load q H is expressed by the equation (17). Estimating unit 12b calculates the thermal load q H people using Equation (17).
Figure JPOXMLDOC01-appb-M000012
 式(17)における、人の潜熱負荷SH、および人の顕熱負荷LHは、人物の作業内容および室温に基づいてその値を決定することができる。表4に、人の発熱量の一例を示す。表4においてはいくつかの室温毎に、静座の状態におけるSHの値およびLHの値が示される。
Figure JPOXMLDOC01-appb-T000013
The values of the human latent heat load SH and the human sensible heat load LH in the equation (17) can be determined based on the work contents of the person and the room temperature. Table 4 shows an example of the amount of heat generated by a person. In Table 4, the values of SH and LH in the sitting state are shown for several room temperatures.
Figure JPOXMLDOC01-appb-T000013
 式(17)における人数Pは、例えば画像センサ127で取得された画像データを解析して算出することができる。このほか家電機器の稼働状態に基づいて人数Pを推定することも可能である。 The number of persons P in Expression (17) can be calculated by analyzing image data acquired by the image sensor 127, for example. In addition, the number P can be estimated based on the operating state of the home appliance.
 家電機器の熱負荷qEMは、式(18)で表される。推定部12bは式(18)を用いて家電機器の熱負荷qEMを算出する。
Figure JPOXMLDOC01-appb-M000014
The thermal load q EM of the home appliance is expressed by Expression (18). The estimation unit 12b calculates the thermal load q EM of the home appliance using Equation (18).
Figure JPOXMLDOC01-appb-M000014
 家電機器の発熱比率fAPは家電機器ごとに異なる値を持ち、パラメータとして与えられることが可能である。不明であれば1.0を適用することが可能である。フード付きの家電機器(フード付き照明など)から室内に輻射として放熱される割合ΦHは、パラメータとして与えられることができる。フードなしの機器については1.0を適用することが可能である。 The heat generation ratio fAP of the home appliance has a different value for each home appliance and can be given as a parameter. If unknown, 1.0 can be applied. The ratio Φ H radiated from the hooded home appliance (such as hooded lighting) into the room as radiation can be given as a parameter. For devices without a hood, 1.0 can be applied.
 ガス器具の熱負荷qGは、式(19)で表される。推定部12bは式(19)を用いてガス器具の熱負荷qGを算出する。
Figure JPOXMLDOC01-appb-M000015
The thermal load q G of the gas appliance is expressed by Expression (19). The estimation unit 12b calculates the thermal load q G of the gas appliance using the equation (19).
Figure JPOXMLDOC01-appb-M000015
 ガスの使用量Gは、HEMSから取得することができる。ガス器具の発熱比率fGは、ガス器具ごとに異なる値を持ち、パラメータとして与えられることが可能である。不明であれば1.0を適用することが可能である。 The amount G of gas used can be obtained from HEMS. The heating rate f G of the gas appliance has a different value for each gas appliance and can be given as a parameter. If unknown, 1.0 can be applied.
 フード付き器具(レンジフード直下のガスコンロなど)から室内に輻射として放熱される割合ΦHGは、パラメータとして与えられることができる。フードなしの機器については1.0を適用することが可能である。内部熱負荷は、以上のような式に基づいて推定部12bにより算出される。 The ratio Φ HG radiated as radiation from a hooded appliance (such as a gas stove directly under the range hood) into the room can be given as a parameter. For devices without a hood, 1.0 can be applied. The internal heat load is calculated by the estimation unit 12b based on the above formula.
 次に推定部12bは、必要熱量QALLを決定する(ステップS8)。必要熱量QALLは室内における熱源から発生する熱負荷の総量を意味し、式(20)に示されるように、貫流熱負荷qGK、日射熱負荷qGI、外壁・屋根の熱負荷qW、内壁・天井・床の熱負荷qIW、すきま風による顕熱負荷qIFS、すきま風による潜熱負荷qIFL、人の熱負荷qH、家電機器の熱負荷qEM、および、ガス器具の熱負荷qGの総和として与えられる。
Figure JPOXMLDOC01-appb-M000016
Next, the estimation unit 12b determines the necessary heat quantity Q ALL (step S8). The required heat quantity Q ALL means the total amount of heat load generated from the heat source in the room. As shown in the equation (20), the once-through heat load q GK , the solar heat load q GI , the heat load q W on the outer wall / roof, Internal wall / ceiling / floor heat load qIW, sensible heat load q IFS by draft air, latent heat load q IFL by draft air, human heat load q H , home appliance heat load q EM , and gas appliance heat load q G Given as a sum.
Figure JPOXMLDOC01-appb-M000016
 制御部12cは、必要熱量QALLと設定温度とを比較し、必要熱量QALLを打ち消すために必要になる熱量(冷却量)を発生するための制御指示を生成する。この制御指示はHEMSを介してエアコン123に与えられる。その結果、エアコン123は熱負荷を打ち消すのに要する熱量の送風を開始し、室内の温度を設定温度に近づけるための制御が実現される。 The control unit 12c compares the necessary heat amount Q ALL with the set temperature, and generates a control instruction for generating a heat amount (cooling amount) necessary to cancel the necessary heat amount Q ALL . This control instruction is given to the air conditioner 123 via the HEMS. As a result, the air conditioner 123 starts to blow the amount of heat required to cancel the heat load, and the control for bringing the indoor temperature close to the set temperature is realized.
 図4は、ホームゲートウェイ122による空調制御量の決定に係る処理手順の一例を示すフローチャートである。制御部12cは、推定部12bから必要熱量QALLを取得する(ステップS10)。次に制御部12cは、取得した必要熱量QALLと空調エリアの設定温度とを比較し、必要熱量QALLを打ち消すために必要なエアコン123の制御量(空調制御量)を決定する(ステップS11)。 FIG. 4 is a flowchart illustrating an example of a processing procedure related to determination of the air conditioning control amount by the home gateway 122. The control unit 12c acquires the necessary heat quantity Q ALL from the estimation unit 12b (step S10). Next, the control unit 12c compares the acquired necessary heat amount Q ALL with the set temperature of the air conditioning area, and determines the control amount (air conditioning control amount) of the air conditioner 123 necessary to cancel the necessary heat amount Q ALL (step S11). ).
 空調制御量が算出されると、制御部12cは空調制御量に基づいて、エアコン123の空調機吹き出し温度、送風量、送風方向などの空調操作量を詳細に決定し(ステップS12)、空調操作量に基づいて空調機器に制御指令を出す(ステップS13)。この制御指令を与えられたエアコン123は、室内の熱負荷を打ち消すための運転を開始する。 When the air conditioning control amount is calculated, the control unit 12c determines in detail air conditioning operation amounts such as the air conditioner blowout temperature, air flow rate, and air blowing direction of the air conditioner 123 based on the air conditioning control amount (step S12). A control command is issued to the air conditioner based on the amount (step S13). The air conditioner 123 given this control command starts an operation for canceling the indoor heat load.
 次に制御部12cは、エアコン123に備わる加湿器・除湿器の制御量を、取得した必要熱量QALL、湿度情報に基づいて決定する(ステップS14)。制御量が決まると、制御部12cはエアコン123の空調機吹き出し湿度、送風量、送風方向などの、加湿器・除湿器の操作量を決定し(ステップS15)、加湿器、除湿器に制御指令を与える(ステップS16)。 Next, the control unit 12c determines the control amount of the humidifier / dehumidifier provided in the air conditioner 123 based on the acquired necessary heat amount Q ALL and humidity information (step S14). When the control amount is determined, the control unit 12c determines the operation amount of the humidifier / dehumidifier such as the air blower humidity of the air conditioner 123, the air flow rate, and the air blowing direction (step S15), and controls the humidifier and the dehumidifier. (Step S16).
 図5は、ホーム101における熱および各種情報の流れを模式的に示す図である。図5において、HEMSは、PV発電量や家電機器消費電力量などの情報を取得する。また、HEMSは、躯体情報、ユーザにより設定される目標温度などを、制御量の決定に必要な情報として取得する。さらに、HEMSは、人間(ペットなどを含めても良い)の在/不在情報を、画像センサや赤外線センサから取得する。 FIG. 5 is a diagram schematically showing the flow of heat and various information in the home 101. In FIG. 5, the HEMS acquires information such as the amount of PV power generation and the amount of power consumed by home appliances. Further, the HEMS acquires the chassis information, the target temperature set by the user, and the like as information necessary for determining the control amount. Further, the HEMS acquires the presence / absence information of a human (which may include a pet or the like) from an image sensor or an infrared sensor.
 必要な情報が取得されると、HEMSは、空調エリア内に生じる熱負荷を推定する。HEMSは、例えば、窓ガラスからの熱負荷、外壁・屋根からの熱負荷、内壁・天井・床からの熱負荷、および、内部熱負荷(照明124やテレビ126による発熱や人間・ペットなどからの発熱)を個別に推定する。これらの値を合計して全体の熱負荷量が求められる。HEMSは、このトータルでの熱負荷に基づいてエアコン123への制御量を決定し、制御量に応じた制御指令をエアコン123に与える。 When the necessary information is acquired, the HEMS estimates the heat load generated in the air-conditioning area. The HEMS is, for example, the heat load from the window glass, the heat load from the outer wall / roof, the heat load from the inner wall / ceiling / floor, and the internal heat load (from the heat generated by the lighting 124 and the TV 126, humans / pets, etc. Fever) is estimated individually. These values are summed to obtain the total heat load. The HEMS determines a control amount for the air conditioner 123 based on the total heat load, and gives a control command corresponding to the control amount to the air conditioner 123.
 図6は、実施形態における処理の流れを模式的に示すフローチャートである。先ず、ユーザにより目標温度が設定される(ステップS20)。一方、PV発電量、家電機器消費電力量、人物の在/不在情報、躯体情報がHEMSにより収集される(ステップS21)。次に、収集された情報や、記憶部14に記憶される各種設定値やパラメータなどに基づいて、熱負荷が推定される(ステップS22)。次に、空調装置の制御量(温度、風量など)が熱負荷に基づいて決定され(ステップS23)、制御対象である空調装置(全館空調機(ダクト、ファンなどを含む)など)に、制御量に基づく制御指令が与えられる(ステップS24)。空調エリアの温度や吹き出し口の温度は適宜測定され、次の熱負荷推定処理に活かされる(ステップS25)。 FIG. 6 is a flowchart schematically showing a processing flow in the embodiment. First, the target temperature is set by the user (step S20). On the other hand, the amount of PV power generation, the amount of electric power consumption of home appliances, the presence / absence information of the person, and the body information are collected by the HEMS (step S21). Next, the thermal load is estimated based on the collected information and various setting values and parameters stored in the storage unit 14 (step S22). Next, the control amount (temperature, air volume, etc.) of the air conditioner is determined based on the heat load (step S23), and the air conditioner (entire air conditioner (including ducts, fans, etc.) to be controlled) is controlled. A control command based on the quantity is given (step S24). The temperature of the air conditioning area and the temperature of the air outlet are appropriately measured and utilized for the next heat load estimation process (step S25).
 既存の技術にはステップS21およびステップS22の処理が無かった。よって、ステップS23における制御量は、制御の結果としての温度、風量あるいは湿度などに基づいて決定されるに過ぎなかった(フィードバック制御)。 The existing technology did not have Steps S21 and S22. Therefore, the control amount in step S23 is only determined based on the temperature, the air volume, or the humidity as a result of the control (feedback control).
 これに対し第1の実施形態によれば、例えばステップS21で収集されたPV発電量、家電機器消費電力量、人物在/不在情報などの情報に基づいて空調エリアの熱負荷が推定される。空調制御量は、これらの推定値に基づいて決定される。つまり実施形態によれば、既存のフィードバック制御に、熱負荷推定によるフィードフォワード制御を組み合わせた制御システムが構築される。従って、より正確な空調制御量を決定し、的を射た空調制御を実現することが可能になる。 On the other hand, according to the first embodiment, for example, the heat load in the air-conditioning area is estimated based on information such as the PV power generation amount, the home appliance power consumption amount, and the presence / absence information collected in step S21. The air conditioning control amount is determined based on these estimated values. That is, according to the embodiment, a control system is constructed in which the existing feedback control is combined with the feedforward control based on the thermal load estimation. Therefore, it is possible to determine a more accurate air conditioning control amount and realize the targeted air conditioning control.
 すなわち第1の実施形態では、家電機器からの発熱や太陽光からの日射などによる室内の熱負荷を推定し、その推定値をもとに空調装置を制御するようにしている。よって、室温が変動する前に空調機を制御する制御(いわばフィードフォワード制御)が実現される。これらのことから居住者の快適性を向上させることができ、従って、快適性をさらに高めた空調システム、空調装置、空調制御方法およびプログラムを提供することが可能となる。 That is, in the first embodiment, the heat load in the room due to heat generation from home appliances or solar radiation from sunlight is estimated, and the air conditioner is controlled based on the estimated value. Therefore, control (so-called feedforward control) for controlling the air conditioner before the room temperature fluctuates is realized. Therefore, the comfort of the occupants can be improved. Therefore, it is possible to provide an air conditioning system, an air conditioner, an air conditioning control method, and a program that further enhance the comfort.
 [第2の実施形態]
 図7は、第2の実施形態に係わる空調システムの一例を示す機能ブロック図である。図7において図1、図2と共通する部分には同じ符号を付して示し、ここでは異なる部分についてのみ説明する。
[Second Embodiment]
FIG. 7 is a functional block diagram illustrating an example of an air conditioning system according to the second embodiment. In FIG. 7, parts common to those in FIGS. 1 and 2 are given the same reference numerals, and only different parts will be described here.
 第2の実施形態では、第1の実施形態におけるホームゲートウェイ122の機能の一部が、空調装置としてのエアコン123にインプリメントされる。また、ホーム101の躯体情報14a、PV発電量履歴14b、およびパラメータ群14cが、クラウド200のデータベース20に記憶される。 In the second embodiment, a part of the function of the home gateway 122 in the first embodiment is implemented in the air conditioner 123 as an air conditioner. In addition, the housing information 14 a of the home 101, the PV power generation history 14 b, and the parameter group 14 c are stored in the database 20 of the cloud 200.
 図7において、ホームゲートウェイ122はホームネットワーク121を介してエアコン123と互いに通信可能である。ホームゲートウェイ122は、プログラムメモリ13に記憶される通知プログラム13dにより実現される制御機能としての、通知部12dを備える。通知部12dは取得部12aにより取得された情報を、通信部11からホームネットワーク121を介してエアコン123に通知する。 In FIG. 7, the home gateway 122 can communicate with the air conditioner 123 via the home network 121. The home gateway 122 includes a notification unit 12d as a control function realized by the notification program 13d stored in the program memory 13. The notification unit 12d notifies the information acquired by the acquisition unit 12a from the communication unit 11 to the air conditioner 123 via the home network 121.
 エアコン123は、機械部123aおよび基板部123bを備える。機械部123aは空調エリアにおける空気調和を行う空調部としての機能を持ち、冷凍機、熱源機、加湿器および除湿器などを備える。基板部123bは、CPU30、プログラムメモリ40および通信部50などを搭載する。 The air conditioner 123 includes a mechanical part 123a and a substrate part 123b. The machine unit 123a has a function as an air conditioning unit that performs air conditioning in an air conditioning area, and includes a refrigerator, a heat source unit, a humidifier, a dehumidifier, and the like. The substrate unit 123b is mounted with the CPU 30, the program memory 40, the communication unit 50, and the like.
 通信部50は、ホームゲートウェイ122から通知された情報を受信する。推定部12bは、受信された情報に基づいて第1の実施形態と同様の計算により空調エリアにおける熱負荷を推定する。なお、計算に必要な躯体情報14a、PV発電量履歴14bおよびパラメータ群14cはホームゲートウェイ122によりデータベース20から取得され、エアコン123に通知される。 The communication unit 50 receives the information notified from the home gateway 122. The estimation unit 12b estimates the heat load in the air-conditioning area by the same calculation as that of the first embodiment based on the received information. The housing information 14a, the PV power generation history 14b, and the parameter group 14c necessary for the calculation are acquired from the database 20 by the home gateway 122 and notified to the air conditioner 123.
 制御部12cは、推定された熱負荷に基づいて機械部123aを制御し、空調エリアの空気環境を調整する。推定部12bの機能はプログラムメモリ40の推定プログラム13bにより実現され、制御部12cの機能はプログラムメモリ40の制御プログラム13cにより実現される。 The control unit 12c controls the mechanical unit 123a based on the estimated heat load to adjust the air environment in the air-conditioning area. The function of the estimation unit 12b is realized by the estimation program 13b of the program memory 40, and the function of the control unit 12c is realized by the control program 13c of the program memory 40.
 図8に示されるように、HEMSはホーム101のセンサやクラウド200などから収集した情報をエアコン123に通知する。照明124やテレビ126から発生する内部熱負荷などの計算は、エアコン123のCPU30により実行される。 As shown in FIG. 8, the HEMS notifies the air conditioner 123 of information collected from the sensors of the home 101, the cloud 200, and the like. Calculation of the internal heat load generated from the lighting 124 and the television 126 is executed by the CPU 30 of the air conditioner 123.
 このような構成によれば、第1の実施形態と同様の効果を得られるのに加え、ホームゲートウェイ122の処理負荷を減らすことが可能になる。また、一部のデータをクラウド側に記憶させるようにしているので、ホーム101におけるハードウェアリソースを削減することが可能になる。 According to such a configuration, the same effect as that of the first embodiment can be obtained, and the processing load of the home gateway 122 can be reduced. In addition, since some data is stored on the cloud side, hardware resources in the home 101 can be reduced.
 [第3の実施形態]
 図9は、第3の実施形態に係わる空調装置の一例を示す機能ブロック図である。図9において図1、図2、図8と共通する部分には同じ符号を付して示し、ここでは異なる部分についてのみ説明する。
[Third Embodiment]
FIG. 9 is a functional block diagram illustrating an example of an air conditioner according to the third embodiment. In FIG. 9, parts that are the same as those in FIGS. 1, 2, and 8 are given the same reference numerals, and only different parts will be described here.
 第3の実施形態では、第1の実施形態におけるホームゲートウェイ122の機能が、エアコン123にインプリメントされる。ホーム101の躯体情報14a、PV発電量履歴14b、およびパラメータ群14cがクラウド200のデータベース20に記憶されることは、第2の実施形態と同様である。 In the third embodiment, the function of the home gateway 122 in the first embodiment is implemented in the air conditioner 123. The housing information 14a of the home 101, the PV power generation history 14b, and the parameter group 14c are stored in the database 20 of the cloud 200, as in the second embodiment.
 図9において、エアコン123は、ホームネットワーク121経由でクラウド200と通信可能である。エアコン123はCPU30の処理機能として、取得部12a、推定部12bおよび制御部12cを備える。これらの機能は、プログラムメモリ40の取得プログラム13a、推定プログラム13b、制御プログラム13cにより実現される。 In FIG. 9, the air conditioner 123 can communicate with the cloud 200 via the home network 121. The air conditioner 123 includes an acquisition unit 12a, an estimation unit 12b, and a control unit 12c as processing functions of the CPU 30. These functions are realized by the acquisition program 13a, the estimation program 13b, and the control program 13c in the program memory 40.
 取得部12aは、HEMSにより取集されたセンサデータをホームネットワーク121から取得し、計算に必要なパラメータや設定情報などをクラウド200のデータベース20から取得する。推定部12bは、取得された情報に基づいて第1の実施形態と同様の計算により空調エリアにおける熱負荷を推定する。制御部12cは、推定された熱負荷に基づいて機械部123aを制御し、空調エリアの空気環境を調整する。 The acquisition unit 12a acquires sensor data collected by the HEMS from the home network 121, and acquires parameters and setting information necessary for calculation from the database 20 of the cloud 200. The estimation unit 12b estimates the heat load in the air-conditioning area by the same calculation as in the first embodiment based on the acquired information. The control part 12c controls the machine part 123a based on the estimated heat load, and adjusts the air environment of an air-conditioning area.
 このような構成によれば、第1の実施形態と同様の効果を得られるのに加え、ホームゲートウェイ122の処理負荷を、第2の実施形態よりもさらに減らすことが可能になる。 According to such a configuration, in addition to obtaining the same effect as in the first embodiment, it is possible to further reduce the processing load of the home gateway 122 than in the second embodiment.
 なおこの発明は上記実施形態に限定されるものではない。例えば、ホーム101の置かれる環境条件に応じて式(20)の右辺のいずれかの項を排除したり、新たな項を追加することが可能である。 Note that the present invention is not limited to the above embodiment. For example, it is possible to eliminate any term on the right side of Expression (20) or add a new term depending on the environmental condition where the home 101 is placed.
 また、図5に示されるように、熱負荷をもたらす熱源の一つとして人間だけでなくペットなどの動物も含めることが可能である。要するに体温を持つ恒温動物の在/不在や、その体温などを、演算処理に係わる情報通して取り扱うことが可能である。特に、動物の体温のセンシングは赤外線センサと相性が良いと言える。 Also, as shown in FIG. 5, it is possible to include not only humans but also animals such as pets as one of the heat sources that cause heat load. In short, it is possible to handle the presence / absence of a thermostat having a body temperature, the body temperature, and the like through information related to arithmetic processing. In particular, it can be said that sensing of animal body temperature is compatible with an infrared sensor.
 また人間を含む動物の平均滞在数(人数)をパラメータの一つとして記憶部14に予め記憶させておき、これを読み出して内部熱負荷を推定することも可能である。 Also, the average number of stays (number of people) of animals including humans can be stored in advance in the storage unit 14 as one of the parameters, and this can be read to estimate the internal heat load.
 さらに、熱源の位置情報を空調制御のための情報として利用することも可能である。例えばドア付近に取り付けられた人感センサにより部屋(空調エリア)への人の出入りを検知できるので、そのセンサデータを内部熱負荷の計算に利用することができる。また、人間の腕などに取り付けられたウェアラブルセンサにより、人間の位置や人数などを把握することもできる。 Furthermore, the position information of the heat source can be used as information for air conditioning control. For example, since a human sensor that is installed near the door can detect a person entering and exiting a room (air-conditioning area), the sensor data can be used to calculate the internal heat load. In addition, the wearable sensor attached to a human arm or the like can be used to grasp the position and number of people.
 移動する人間のほか、ほぼ固定されている家電機器の位置も熱源の位置情報として重要である。例えば分電盤113の分岐回路単位での電力測定により、家電機器の設置場所を大まかに決定することができる。また、センサ機能を備えるコンセント(スマートタップ)を用いれば、接続されている家電機器を特定し、その位置を把握することができる。さらに、家電機器の使用場所をユーザに設定させ例えば記憶部14に記憶させておくことで、家電機器の場所を特定することもできる。どの場所にどの家電機器があるかを特定できれば、熱負荷の計算に大いに役立てることができる。 ほ か In addition to moving humans, the location of home appliances that are almost fixed is also important as location information for heat sources. For example, the installation location of the home appliance can be roughly determined by measuring the power in the branch circuit unit of the distribution board 113. Moreover, if an outlet (smart tap) provided with a sensor function is used, it is possible to identify a connected home appliance and grasp its position. Furthermore, the location of the home appliance can be specified by setting the use location of the home appliance to the user and storing it in the storage unit 14, for example. If you can identify which home appliances are in which places, you can greatly help in calculating the heat load.
 上記実施形態で説明された各機能は、1または複数の処理回路に実装されることができる。処理回路は、電子回路を含むプロセッサとして実現されても良い。処理回路はプログラムにより機能するプロセッサを含む。また処理回路は、上記の各機能を実行するためのASIC(application specific integrated circuit)や従来の回路要素を含むことができる。 Each function described in the above embodiment can be implemented in one or a plurality of processing circuits. The processing circuit may be realized as a processor including an electronic circuit. The processing circuit includes a processor that functions by a program. In addition, the processing circuit can include an ASIC (application specific integrated circuit) or a conventional circuit element for executing the above functions.
 本発明の実施形態を説明したが、この実施形態は例として提示するものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (21)

  1.  エネルギー管理システムによりエネルギーを管理される建物に適用可能な空調システムであって、
     前記エネルギー管理システムにより収集可能な情報を取得する取得部と、
     前記取得された情報に基づいて空調エリアにおける熱負荷を推定する推定部と、
     前記空調エリアの空調装置を前記推定された熱負荷に基づいて制御する制御部とを具備することを特徴とする、空調システム。
    An air conditioning system applicable to a building whose energy is managed by an energy management system,
    An acquisition unit for acquiring information that can be collected by the energy management system;
    An estimation unit for estimating a heat load in the air-conditioning area based on the acquired information;
    An air conditioning system comprising: a control unit that controls the air conditioner in the air conditioning area based on the estimated thermal load.
  2.  前記取得部は、前記建物に備わる太陽光発電装置による発電量、前記建物に備わる家電機器の消費電力量、当該家電機器の設置位置を示す位置情報、前記空調エリアにおける恒温動物の在/不在を示す在/不在情報、前記恒温動物の位置を示す位置情報、前記空調エリアにおける温度を示す温度情報、前記空調エリアにおける湿度を示す湿度情報、前記建物の躯体情報、および前記空調エリアに対する目標温度の少なくともいずれか1つの情報を取得することを特徴とする、請求項1に記載の空調システム。 The acquisition unit is configured to determine the amount of power generated by a photovoltaic power generation device provided in the building, the amount of power consumed by the home appliances provided in the building, the location information indicating the installation position of the home appliances, and the presence / absence of a constant temperature animal in the air conditioning area. Presence / absence information indicating, position information indicating the position of the thermostatic animal, temperature information indicating temperature in the air-conditioned area, humidity information indicating humidity in the air-conditioned area, housing information of the building, and target temperature for the air-conditioned area The air conditioning system according to claim 1, wherein at least one piece of information is acquired.
  3.  前記推定部は、窓ガラスからの熱負荷、外壁と屋根との少なくともいずれか1つからの熱負荷、内壁と天井と床との少なくともいずれか1つからの熱負荷、すきま風による熱負荷、および内部熱負荷の少なくともいずれか1つの熱負荷を、前記取得された情報に基づいて推定することを特徴とする、請求項2に記載の空調システム。 The estimation unit includes a heat load from a window glass, a heat load from at least one of an outer wall and a roof, a heat load from at least one of an inner wall, a ceiling, and a floor, a heat load due to a draft, and The air conditioning system according to claim 2, wherein at least one of the internal heat loads is estimated based on the acquired information.
  4.  さらに、前記発電量の履歴データを記憶する記憶部を具備し、
     前記取得部は、前記発電量の履歴データを前記記憶部から取得し、
     前記推定部は、前記取得された履歴データに基づいて前記窓ガラスからの日射熱負荷を算出することを特徴とする、請求項3に記載の空調システム。
    Furthermore, it comprises a storage unit that stores history data of the power generation amount,
    The acquisition unit acquires history data of the power generation amount from the storage unit,
    The air conditioning system according to claim 3, wherein the estimating unit calculates a solar heat load from the window glass based on the acquired history data.
  5.  前記取得部は、前記発電量のリアルタイム値を取得し、
     前記推定部は、前記発電量のリアルタイム値に基づいて前記窓ガラスからの日射熱負荷を算出することを特徴とする、請求項3に記載の空調システム。
    The acquisition unit acquires a real-time value of the power generation amount,
    The air conditioning system according to claim 3, wherein the estimating unit calculates a solar heat load from the window glass based on a real-time value of the power generation amount.
  6.  さらに、前記発電量の履歴データを記憶する記憶部を具備し、
     前記取得部は、前記発電量の履歴データを前記記憶部から取得し、
     前記取得部は、前記発電量のリアルタイム値を取得し、
     前記推定部は、前記取得された履歴データと前記取得されたリアルタイム値とに基づいて前記窓ガラスからの日射熱負荷を算出することを特徴とする、請求項3に記載の空調システム。
    Furthermore, it comprises a storage unit that stores history data of the power generation amount,
    The acquisition unit acquires history data of the power generation amount from the storage unit,
    The acquisition unit acquires a real-time value of the power generation amount,
    The air conditioning system according to claim 3, wherein the estimating unit calculates a solar heat load from the window glass based on the acquired history data and the acquired real-time value.
  7.  さらに、前記消費電力量の仕様値を前記家電機器ごとに記憶する記憶部を具備し、
     前記取得部は、前記消費電力量の仕様値を前記記憶部から取得し、
     前記推定部は、前記取得された仕様値に基づいて前記内部熱負荷を算出することを特徴とする、請求項3に記載の空調システム。
    Furthermore, it comprises a storage unit that stores the specification value of the power consumption for each home appliance,
    The acquisition unit acquires a specification value of the power consumption from the storage unit,
    The air conditioning system according to claim 3, wherein the estimation unit calculates the internal heat load based on the acquired specification value.
  8.  前記取得部は、前記消費電力量のリアルタイム値を取得し、
     前記推定部は、前記消費電力量のリアルタイム値に基づいて前記内部熱負荷を算出することを特徴とする、請求項3に記載の空調システム。
    The acquisition unit acquires a real-time value of the power consumption amount,
    The air conditioning system according to claim 3, wherein the estimating unit calculates the internal heat load based on a real-time value of the power consumption.
  9.  前記空調装置は、加湿器および除湿器の少なくともいずれか一方を備え、
     前記取得部は、前記湿度情報を取得し、
     前記制御部は、前記取得された湿度情報に基づいて前記加湿器および前記除湿器の少なくともいずれか一方を制御することを特徴とする、請求項2に記載の空調システム。
    The air conditioner includes at least one of a humidifier and a dehumidifier,
    The acquisition unit acquires the humidity information,
    The air conditioning system according to claim 2, wherein the control unit controls at least one of the humidifier and the dehumidifier based on the acquired humidity information.
  10.  エネルギー管理システムによりエネルギーを管理される建物に適用可能な空調システムであって、
     主装置と、前記主装置と通信可能な空調装置とを具備し、
     前記主装置は、
      前記エネルギー管理システムにより収集可能な情報を取得する取得部と、
      前記取得された情報を前記空調装置に通知する通知部とを具備し、
     前記空調装置は、
     前記空調エリアにおける空気調和を行う空調部と、
     前記通知された情報を受信する受信部と、
     前記受信された情報に基づいて空調エリアにおける熱負荷を推定する推定部と、
     前記推定された熱負荷に基づいて前記空調部を制御する制御部とを具備することを特徴とする、空調システム。
    An air conditioning system applicable to a building whose energy is managed by an energy management system,
    A main device and an air conditioner capable of communicating with the main device;
    The main unit is
    An acquisition unit for acquiring information that can be collected by the energy management system;
    A notification unit for notifying the air conditioner of the acquired information,
    The air conditioner
    An air conditioning unit for air conditioning in the air conditioning area;
    A receiving unit for receiving the notified information;
    An estimation unit for estimating a heat load in the air-conditioning area based on the received information;
    An air conditioning system comprising: a control unit that controls the air conditioning unit based on the estimated thermal load.
  11.  エネルギー管理システムによりエネルギーを管理される建物に適用可能な空調装置であって、
     前記空調エリアにおける空気調和を行う空調部と、
     前記エネルギー管理システムにより収集可能な情報を取得する取得部と、
     前記取得された情報に基づいて空調エリアにおける熱負荷を推定する推定部と、
     前記推定された熱負荷に基づいて前記空調部を制御する制御部とを具備することを特徴とする、空調装置。
    An air conditioner applicable to a building whose energy is managed by an energy management system,
    An air conditioning unit for air conditioning in the air conditioning area;
    An acquisition unit for acquiring information that can be collected by the energy management system;
    An estimation unit for estimating a heat load in the air-conditioning area based on the acquired information;
    An air conditioner comprising: a control unit that controls the air conditioning unit based on the estimated thermal load.
  12.  エネルギー管理システムによりエネルギーを管理される建物に適用可能な空調装置をコンピュータにより制御する空調制御方法であって、
     前記エネルギー管理システムにより収集可能な情報を前記コンピュータが取得し、
     前記取得された情報に基づいて空調エリアにおける熱負荷を前記コンピュータが推定し、
     前記推定された熱負荷に基づいて前記空調装置を前記コンピュータが制御することを特徴とする、空調制御方法。
    An air conditioning control method for controlling an air conditioning apparatus applicable to a building whose energy is managed by an energy management system by a computer,
    The computer obtains information that can be collected by the energy management system;
    The computer estimates the heat load in the air-conditioning area based on the acquired information,
    The air conditioning control method, wherein the computer controls the air conditioner based on the estimated thermal load.
  13.  前記取得することは、前記建物に備わる太陽光発電装置による発電量、前記建物に備わる家電機器の消費電力量、前記空調エリアにおける恒温動物の在/不在を示す在/不在情報、前記空調エリアにおける温度を示す温度情報、前記空調エリアにおける湿度を示す湿度情報、前記建物の躯体情報、および前記空調エリアに対する目標温度の少なくともいずれか1つの情報を取得することを特徴とする、請求項12に記載の空調制御方法。 The acquisition includes the amount of power generated by a photovoltaic power generation device provided in the building, the amount of power consumed by home appliances provided in the building, the presence / absence information indicating the presence / absence of a constant temperature animal in the air-conditioned area, The temperature information indicating the temperature, the humidity information indicating the humidity in the air-conditioning area, the building body information of the building, and the target temperature for the air-conditioning area are acquired. Air conditioning control method.
  14.  前記推定することは、窓ガラスからの熱負荷、外壁と屋根との少なくともいずれか1つからの熱負荷、内壁と天井と床との少なくともいずれか1つからの熱負荷、すきま風による熱負荷、および内部熱負荷の少なくともいずれか1つの熱負荷を、前記取得された情報に基づいて推定することを特徴とする、請求項13に記載の空調制御方法。 The estimation includes the heat load from the window glass, the heat load from at least one of the outer wall and the roof, the heat load from at least one of the inner wall, the ceiling, and the floor, the heat load from the draft air, The air conditioning control method according to claim 13, wherein at least one of the internal heat load and the internal heat load is estimated based on the acquired information.
  15.  前記取得することは、前記発電量の履歴データを記憶する記憶部から前記発電量の履歴データを取得し、
     前記推定することは、前記取得された履歴データに基づいて前記窓ガラスからの日射熱負荷を算出することを特徴とする、請求項14に記載の空調制御方法。
    The obtaining acquires the power generation amount history data from a storage unit storing the power generation amount history data;
    The air conditioning control method according to claim 14, wherein the estimating calculates a solar heat load from the window glass based on the acquired history data.
  16.  前記取得することは、前記発電量のリアルタイム値を取得し、
     前記推定することは、前記発電量のリアルタイム値に基づいて前記窓ガラスからの日射熱負荷を算出することを特徴とする、請求項14に記載の空調制御方法。
    The obtaining acquires a real-time value of the power generation amount,
    The air conditioning control method according to claim 14, wherein the estimating calculates a solar heat load from the window glass based on a real-time value of the power generation amount.
  17.  前記取得することは、前記発電量の履歴データを記憶する記憶部から前記発電量の履歴データを取得し、
     前記取得することは、前記発電量のリアルタイム値を取得し、
     前記推定することは、前記取得された履歴データと前記取得されたリアルタイム値とに基づいて前記窓ガラスからの日射熱負荷を算出することを特徴とする、請求項14に記載の空調制御方法。
    The obtaining acquires the power generation amount history data from a storage unit storing the power generation amount history data;
    The obtaining acquires a real-time value of the power generation amount,
    The air conditioning control method according to claim 14, wherein the estimating calculates a solar heat load from the window glass based on the acquired history data and the acquired real-time value.
  18.  前記取得することは、前記消費電力量の仕様値を前記家電機器ごとに記憶する記憶部から前記消費電力量の仕様値を取得し、
     前記推定することは、前記取得された仕様値に基づいて前記内部熱負荷を算出することを特徴とする、請求項14に記載の空調制御方法。
    The obtaining acquires the specification value of the power consumption amount from a storage unit that stores the specification value of the power consumption amount for each home appliance,
    The air conditioning control method according to claim 14, wherein the estimating calculates the internal heat load based on the acquired specification value.
  19.  前記取得することは、前記消費電力量のリアルタイム値を取得し、
     前記推定することは、前記消費電力量のリアルタイム値に基づいて前記内部熱負荷を算出することを特徴とする、請求項14に記載の空調制御方法。
    Obtaining the real-time value of the power consumption,
    15. The air conditioning control method according to claim 14, wherein the estimating calculates the internal heat load based on a real-time value of the power consumption.
  20.  前記空調装置は、加湿器および除湿器の少なくともいずれか一方を備え、
     前記取得することは、前記湿度情報を取得し、
     前記制御することは、前記取得された湿度情報に基づいて前記加湿器および前記除湿器の少なくともいずれか一方を制御することを特徴とする、請求項13に記載の空調制御方法。
    The air conditioner includes at least one of a humidifier and a dehumidifier,
    Acquiring the humidity information;
    The air conditioning control method according to claim 13, wherein the controlling controls at least one of the humidifier and the dehumidifier based on the acquired humidity information.
  21.  請求項12乃至20のいずれか1項に記載の方法を前記コンピュータに実行させるための命令を含むことを特徴とする、プログラム。 A program comprising instructions for causing the computer to execute the method according to any one of claims 12 to 20.
PCT/JP2015/053003 2014-02-07 2015-02-03 Air conditioning system, air conditioning device, air conditioning control method and program WO2015119119A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-022789 2014-02-07
JP2014022789A JP2015148417A (en) 2014-02-07 2014-02-07 Air conditioning system, air conditioning apparatus, air conditioning control method, and program

Publications (1)

Publication Number Publication Date
WO2015119119A1 true WO2015119119A1 (en) 2015-08-13

Family

ID=53777923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053003 WO2015119119A1 (en) 2014-02-07 2015-02-03 Air conditioning system, air conditioning device, air conditioning control method and program

Country Status (2)

Country Link
JP (1) JP2015148417A (en)
WO (1) WO2015119119A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029755A1 (en) * 2015-08-20 2017-02-23 三菱電機株式会社 Air conditioning operation analysis device and program
CN112762583A (en) * 2021-01-05 2021-05-07 青岛海尔空调电子有限公司 Control method of air conditioning unit
WO2023124042A1 (en) * 2021-12-28 2023-07-06 珠海格力电器股份有限公司 Photovoltaic air conditioner and electric energy distribution method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727446B2 (en) * 2017-08-17 2020-07-22 三菱電機株式会社 Air conditioning system and air conditioning method
JP7482901B2 (en) * 2019-12-25 2024-05-14 三菱電機株式会社 Air conditioning control device, air conditioning control system, and air conditioning control method
WO2023189067A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Setting method, program, and setting system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274778A (en) * 1999-03-26 2000-10-06 Matsushita Electric Ind Co Ltd Energy management apparatus
JP2006331372A (en) * 2005-05-30 2006-12-07 Ipsquare Inc Agent device, management manager device, and environment energy management system
JP2007010204A (en) * 2005-06-29 2007-01-18 Mitsubishi Electric Corp Energy management device for facility
JP2009210237A (en) * 2008-03-06 2009-09-17 Yamatake Corp Energy calculating device, method, and program
JP2012175855A (en) * 2011-02-23 2012-09-10 Toshiba Corp Area energy management system, and area energy integrated management apparatus and area energy integrated management method used therefor
JP2013124834A (en) * 2011-12-15 2013-06-24 Toyota Home Kk Living environmental control system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597839A (en) * 1982-07-02 1984-01-17 Hitachi Ltd Air conditioning control device
JP2008298296A (en) * 2007-05-29 2008-12-11 Meidensha Corp Air-conditioning control device
JP5389211B2 (en) * 2012-03-27 2014-01-15 三菱電機株式会社 Air conditioning control method and air conditioner
JP5642121B2 (en) * 2012-07-19 2014-12-17 三菱電機株式会社 Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274778A (en) * 1999-03-26 2000-10-06 Matsushita Electric Ind Co Ltd Energy management apparatus
JP2006331372A (en) * 2005-05-30 2006-12-07 Ipsquare Inc Agent device, management manager device, and environment energy management system
JP2007010204A (en) * 2005-06-29 2007-01-18 Mitsubishi Electric Corp Energy management device for facility
JP2009210237A (en) * 2008-03-06 2009-09-17 Yamatake Corp Energy calculating device, method, and program
JP2012175855A (en) * 2011-02-23 2012-09-10 Toshiba Corp Area energy management system, and area energy integrated management apparatus and area energy integrated management method used therefor
JP2013124834A (en) * 2011-12-15 2013-06-24 Toyota Home Kk Living environmental control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUCHO FUKA, SHOKYU HYOJUN TEXT REITO KUCHO GIJUTSU, 20 January 1987 (1987-01-20), pages 182 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029755A1 (en) * 2015-08-20 2017-02-23 三菱電機株式会社 Air conditioning operation analysis device and program
JPWO2017029755A1 (en) * 2015-08-20 2018-03-29 三菱電機株式会社 Air conditioning operation analysis device and program
CN107923645A (en) * 2015-08-20 2018-04-17 三菱电机株式会社 Air adjustment operating analysis device and program
US10731890B2 (en) 2015-08-20 2020-08-04 Mitsubishi Electric Corporation Air conditioning operation analysis device and non-transitory computer-readable recording medium storing program
CN107923645B (en) * 2015-08-20 2021-04-09 三菱电机株式会社 Air conditioning operation analysis device and non-transitory computer-readable recording medium having program recorded thereon
CN112762583A (en) * 2021-01-05 2021-05-07 青岛海尔空调电子有限公司 Control method of air conditioning unit
WO2023124042A1 (en) * 2021-12-28 2023-07-06 珠海格力电器股份有限公司 Photovoltaic air conditioner and electric energy distribution method therefor

Also Published As

Publication number Publication date
JP2015148417A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
WO2015119119A1 (en) Air conditioning system, air conditioning device, air conditioning control method and program
US10107513B2 (en) Thermodynamic modeling for enclosures
WO2017134847A9 (en) Air conditioning control evaluation device, air conditioning system, air conditioning control evaluation method and program
US20160018124A1 (en) Air-conditioning control system and air-conditioning control method
RU2389949C1 (en) Building climate control method and system
JP5637377B2 (en) Air conditioning control device, air conditioning control method, air conditioning control program
WO2014203311A1 (en) Air conditioning system control device and air conditioning system control method
JP2014009939A (en) Method of operating environment control system for zone of building
EP3497378A1 (en) Controller for hvac unit
JP2013057476A (en) Pmv estimating device and program thereof
JP2011069601A (en) Apparatus management device and program
CN103513632A (en) Energy management system
JP6053440B2 (en) Temperature adjustment system, temperature adjustment method, system controller, and program
JP6937261B2 (en) Air conditioning control device, air conditioning control method and computer program
Sarbu et al. Experimental and numerical investigations of the energy efficiency of conventional air conditioning systems in cooling mode and comfort assurance in office buildings
Biyik et al. Cloud-based model predictive building thermostatic controls of commercial buildings: Algorithm and implementation
JP2010133665A (en) Air-conditioning monitoring controlling system
JP2019086268A (en) Indoor environment adjustment system, server, and indoor environment adjustment method and program
JP6343499B2 (en) Energy management system
WO2019176546A1 (en) Air-conditioning control device, air-conditioning system, air-conditioning control method, and program
JP2017003192A (en) Energy management device, energy management method and energy management program
Ito et al. A practical case study of HVAC control with MET measuring in HEMS environment
WO2016075877A1 (en) Heat insulating performance estimation device and program
JP2001082782A (en) Airconditioning controller
WO2020066581A1 (en) Air-conditioning system, controller, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746560

Country of ref document: EP

Kind code of ref document: A1