WO2015119011A1 - Power storage device and uninterruptible power supply device - Google Patents

Power storage device and uninterruptible power supply device Download PDF

Info

Publication number
WO2015119011A1
WO2015119011A1 PCT/JP2015/052320 JP2015052320W WO2015119011A1 WO 2015119011 A1 WO2015119011 A1 WO 2015119011A1 JP 2015052320 W JP2015052320 W JP 2015052320W WO 2015119011 A1 WO2015119011 A1 WO 2015119011A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
storage device
power storage
charging
secondary batteries
Prior art date
Application number
PCT/JP2015/052320
Other languages
French (fr)
Japanese (ja)
Inventor
亮仁 大和
神谷 岳
直樹 藤井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015119011A1 publication Critical patent/WO2015119011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device and an uninterruptible power supply including the same.
  • a power storage device including a secondary battery is connected to a power line of a computer device such as a data center server (see, for example, Patent Document 1).
  • a power storage device is connected between an AC-DC converter connected to a power source and a motherboard.
  • the power storage device is required to be able to stably supply power within a predetermined voltage range.
  • the power storage device includes a plurality of secondary batteries.
  • the plurality of secondary batteries are connected in series.
  • the plurality of secondary batteries include a plurality of types of secondary batteries having different charge curve shapes and different capacities.
  • the plurality of secondary batteries may include a first secondary battery and a second secondary battery.
  • the slope of the charging curve at the charging rate of 100% of the second secondary battery is larger than the slope of the charging curve of the first secondary battery.
  • the capacity of the second secondary battery is larger than the capacity of the first secondary battery.
  • the charging curve of the second secondary battery may have a region with a larger slope than the other region in the portion with the charging rate of 100%.
  • the charging rate of the second secondary battery when the charging rate of the first secondary battery reaches 100% is located in a region where the slope is larger than other regions of the charging curve of the second secondary battery.
  • the capacity of the second secondary battery is larger than the capacity of the first secondary battery.
  • the plurality of secondary batteries include two or more types of secondary batteries among the following secondary batteries.
  • the power storage device may further include a power supply terminal and a ground terminal.
  • the secondary battery having relatively inferior high-temperature characteristics is connected to the ground terminal side than the secondary battery having relatively superior high-temperature characteristics.
  • the power storage device may further include a fuse.
  • a fuse is connected between the secondary battery having relatively high temperature characteristics and the power supply terminal.
  • the minimum value of the slope of the charge curve within the range of 10% to 100% of the charge rate of one or more secondary batteries constituting the power storage device is 2 mV / charge rate% or more. It is preferable that
  • the power storage device may include a control unit.
  • the control unit detects a slope of a charging curve of the secondary battery constituting the power storage device, and calculates a remaining capacity of the power storage device from the slope.
  • the control unit preferably balances the plurality of secondary batteries by detecting at least one of the capacity, voltage, and temperature of each of the plurality of secondary batteries.
  • the uninterruptible power supply according to the present invention includes the power storage device according to the present invention, an AC power input unit, and an AC-DC converter.
  • the AC-DC converter is connected between the AC power input unit and the power storage device.
  • FIG. 1 is a schematic circuit diagram of a power storage device according to an embodiment of the present invention.
  • FIG. 2 is a charging curve of the first secondary battery in the first example of one embodiment of the present invention.
  • FIG. 3 is a charging curve of the second secondary battery in the first example of one embodiment of the present invention.
  • FIG. 4 is a charging curve of the power storage device in the first example of the embodiment of the present invention.
  • FIG. 5 is a charging curve of the power storage device in the reference example.
  • FIG. 6 is a charge curve of each of the first secondary battery, the second secondary battery, and the power storage device in the second example of one embodiment of the present invention.
  • FIG. 7 is a schematic circuit diagram of the uninterruptible power supply device according to the embodiment of the present invention.
  • FIG. 1 is a schematic circuit diagram of a power storage device according to this embodiment.
  • the power storage device 1 includes a plurality of secondary batteries 10.
  • the plurality of secondary batteries 10 are connected in series between the power supply terminal 11 and the ground terminal 12.
  • the plurality of secondary batteries 10 include a secondary battery 10a, a secondary battery 10b, a secondary battery 10c, and a secondary battery 10d. Between the power terminal 11 and the ground terminal 12, the secondary battery 10a, the secondary battery 10b, the secondary battery 10c, and the secondary battery 10d are connected in this order from the power terminal 11 side.
  • a plurality of secondary batteries 10 include a plurality of types of secondary batteries having different charging curves and different capacities. That is, in the power storage device 1, a plurality of types of secondary batteries having different charging curves and different capacities are connected in series. By adopting such a configuration, it is possible to realize the power storage device 1 capable of stably supplying power within a predetermined voltage range. More specifically, power storage device 1 can output power within a predetermined voltage range within a wide range of charging rates of power storage device 1.
  • this reason will be described in detail with a specific example. In the description of the following examples, members having substantially the same functions as those of the embodiments are referred to by the same reference numerals.
  • a total of four secondary batteries of the secondary battery 10a, the secondary battery 10b, the secondary battery 10c, and the secondary battery 10d are connected in series.
  • the secondary battery 10a, the secondary battery 10b, the secondary battery 10c, and the secondary battery 10d all have the same capacity.
  • the secondary battery 10a and the secondary battery 10d are formed by the first secondary battery having the charging curve shown in FIG. It is configured.
  • the secondary battery 10b and the secondary battery 10c are configured by a second secondary battery having a charging curve shown in FIG.
  • the charging curve of the first secondary battery has a region A12 having a larger slope than the other region A11 in the portion on the charge rate 0% side.
  • the charging curve of the second secondary battery has a region A22 having a larger slope than the other region A21 in the portion on the charging rate 100% side.
  • the shape of the charging curve is different means that when the same scale capacity vs. voltage graph is created and the points at the charging rate of 0% in each graph are matched, the graphs overlap each other. It means not to be.
  • the secondary battery 10a and the secondary battery 10d are configured by the first secondary battery, and the secondary battery 10b and the secondary battery 10c are configured by the second secondary battery.
  • the charging curve of the entire power storage device 1 is a graph having a shape obtained by combining the charging curve of the first secondary battery and the charging curve of the second secondary battery.
  • the charging curve of the entire power storage device is a graph having a shape obtained by synthesizing a plurality of charging curves of the first secondary battery shown in FIG. Accordingly, the charging curve of the entire power storage device of the reference example is a curve having a shape in which the charging curve of the first secondary battery is generally steep. For this reason, since the range of the charging rate within the voltage range (V1-V2) in which the power storage device of the reference example can be used is narrow, the discharge duration in which power can be stably supplied is short.
  • the first secondary battery and the second secondary battery having different charging curves are connected in series.
  • the charging curve of the power storage device of the first example is less steep than the charging curve of the power storage device of the reference example. Therefore, since the range of the charging rate within the voltage range (V1-V2) that can be used by the power storage device of the first example is wider than that of the reference example, the discharge duration in which power can be stably supplied is long.
  • the second example is different from the first example in the following points.
  • the secondary battery 10b and the secondary battery 10c have the same capacity.
  • the secondary battery 10a and the secondary battery 10d have the same capacity.
  • the capacities of the secondary battery 10b and the secondary battery 10c are larger than the capacities of the secondary battery 10a and the secondary battery 10d, respectively.
  • the charging curve of the power storage device of the second example has a shape as shown in FIG.
  • the region A22 having a steep discharge curve of the second secondary battery is located on the higher charge rate side than the discharge curve of the first secondary battery.
  • the power storage device of the second example can have a wider usable voltage range (V1-V2) than the first power storage device, and can increase the discharge duration in which power can be stably supplied. Can do.
  • the energy storage device 1 since the amount of discharge at a voltage within a predetermined voltage range increases, the ratio of the amount of usable electric power to the capacity is high. Therefore, the energy storage device 1 with high energy efficiency, small size, and low cost can be realized.
  • the capacity of the secondary battery having the largest capacity is preferably 1 to 5 times the capacity of the secondary battery having the smallest capacity. More preferably.
  • the slope of the charging curve at a charging rate of 100% is more than that of the first secondary battery. It is preferable to make the capacity of the large second secondary battery larger than the capacity of the first secondary battery.
  • the second secondary battery charging rate becomes 100%.
  • the capacity of the second secondary battery is that of the first secondary battery so that the charging rate of the secondary battery is located in a region where the slope is larger than the other region of the charging curve of the second secondary battery. It is preferable to be larger than the capacity.
  • the charging curve of the power storage device becomes steep after the charging rate of the first secondary battery reaches 100% until the charging rate of the entire power storage device reaches 100%. For this reason, for example, even when the voltage of the power source that supplies power to the power storage device fluctuates high, the charging rate of the entire power storage device is unlikely to increase. Therefore, overcharge to the first secondary battery is easily suppressed.
  • the high-temperature characteristics of secondary batteries generally differ depending on the type of secondary battery.
  • a secondary battery having relatively high high temperature characteristics is a secondary battery having relatively high high temperature characteristics. It is preferable to connect outside the battery (near the terminal). In that case, the secondary battery having inferior high-temperature characteristics is efficiently cooled via the wiring. For this reason, the temperature of the secondary battery having inferior high-temperature characteristics is unlikely to rise. Therefore, it is possible to realize the power storage device 1 that is excellent in high-temperature characteristics.
  • a fuse 13 is connected in series with the secondary battery 10.
  • the fuse 13 is connected between the secondary battery 10 and the power supply terminal 11 which are relatively inferior in high temperature temperature characteristics. That is, the fuse 13 is not connected between the secondary battery 10 and the ground terminal 12 that are relatively inferior in high temperature temperature characteristics. For this reason, the heat of the secondary battery 10 having relatively inferior high-temperature characteristics is easily radiated via the ground terminal 12. Therefore, the inhibition of heat dissipation by the fuse 13 can be suppressed.
  • the power storage device 1 further includes a control unit 14.
  • the control unit 14 is connected to each of the plurality of secondary batteries 10.
  • Control unit 14 detects the slope of the charging curve of power storage device 1 during charging.
  • Control unit 14 calculates the remaining capacity of power storage device 1 from the slope of the current charging curve of power storage device 1. Specifically, control unit 14 calculates the current charging rate by comparing the charging curve of power storage device 1 stored in a memory (not shown) with the detected current slope.
  • Control unit 14 calculates the remaining capacity of power storage device 1 based on the calculated current charging rate.
  • the minimum value of the slope of the charging curve of the power storage device is within 2 mV / charge rate% or more, more preferably 4 mV, within the range of 10% to 100% of the charging rate of the power storage device. / It is preferable that the secondary battery 10 is selected so that the charging rate is% or more.
  • the charging curve of the specific charging rate range for that secondary battery is It is preferable to connect secondary batteries having a non-zero slope in series so that the minimum value of the slope of the charge curve of the power storage device is 2 mV / charge rate% or more, more preferably 4 mV / charge rate% or more.
  • the control unit 14 detects at least one of the capacity, voltage, and temperature of each of the plurality of secondary batteries 10 and balances the plurality of secondary batteries 10 based on the capacity.
  • balancing of secondary batteries connected in series is performed based on the voltage of each secondary battery.
  • the power storage device 1 includes a plurality of types of secondary batteries 10. For this reason, it is difficult to perform balancing based on the voltage of the secondary battery. By performing balancing based on the capacities of the plurality of secondary batteries 10, suitable balancing can be performed.
  • control unit 14 may be provided outside the power storage device 1.
  • the power storage device 1 is not necessarily provided with the control unit 14.
  • the secondary battery 10 various secondary batteries can be used.
  • the following secondary batteries can be exemplified.
  • the power storage device 1 may further include a fuel cell or the like connected in series or in parallel to a plurality of secondary batteries connected in series.
  • the number of secondary batteries 10 connected in series in the power storage device 1 is not particularly limited.
  • the number of secondary batteries 10 connected in series in power storage device 1 can be appropriately determined according to the output voltage required for power storage device 1, the output voltage of secondary battery 10, and the like.
  • the number of secondary batteries 10 connected in series in the power storage device 1 is preferably 3 to 6, more preferably 4 to 5.
  • LFP lithium iron phosphate
  • LTO lithium titanate
  • NMC lithium composite oxide containing at least one of nickel, manganese, and cobalt
  • LMO lithium manganese oxide
  • Gr Graphite is shown.
  • a battery using graphite as the negative electrode and lithium iron phosphate as the positive electrode is expressed as Gr / LFP.
  • LTO / LMO and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • the charge capacity ratio is preferably 5 times or less than Gr / LFP.
  • LTO LMO, Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side.
  • the charge capacity ratio is preferably 5 times or less with respect to LTO / LMO of 1.
  • Gr / NMC and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • the charge capacity ratio is preferably 5 times or less than Gr / LFP.
  • Gr / LFP, LTO / LMO, and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • LTO / LMO, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / NMC, LTO / LMO, and Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
  • Gr / NMC, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / LFP (When connecting 4 secondary batteries in series) Gr / LFP, LTO / LMO, Gr / LFP, and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / NMC, LTO / LMO, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / NMC, LTO / LMO, LTO / LMO, and Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
  • Gr / LFP, LTO / LMO, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / NMC, LTO / LMO, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / LFP, Gr / NMC, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / NMC, LTO / LMO, Gr / NMC, Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
  • Gr / LFP, Gr / LFP, LTO / LMO, Gr / LFP, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / LFP, Gr / NMC, LTO / LMO, Gr / LFP, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / LFP, Gr / NMC, Gr / NMC, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / LFP, LTO / LMO, LTO / LMO, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
  • LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
  • Gr / LFP, Gr / LFP, LTO / LMO, LTO / LMO, Gr / LFP, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / LFP, LTO / LMO, LTO / LMO, LTO / LMO, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • Gr / NMC, LTO / LMO, LTO / LMO, LTO / LMO, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side.
  • Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
  • FIG. 7 is a schematic circuit diagram of the uninterruptible power supply in this embodiment.
  • the uninterruptible power supply (UPS) 2 includes a power storage device 1.
  • An AC-DC converter 22 is connected between the power storage device 1 and the AC power input unit 21.
  • the AC power input from the AC power input unit 21 is converted into DC power by the AC-DC converter 22.
  • the DC power is charged in the power storage device 1.
  • DC power is output from the first output unit 23 connected to the AC-DC converter 22.
  • DC power is output from the power storage device 1 via the second output unit 24.
  • the uninterruptible power supply 2 includes the power storage device 1, even when the power supply from the AC power input unit 21 is stopped, it can stably supply power within a predetermined voltage range. it can.
  • the explanation is made for adjusting the slope of the charging curve on the charging side.
  • the slope of the discharging curve can be similarly adjusted on the discharging side. Therefore, it is more preferable to perform both adjustment of the slope of the charging curve on the charging side and adjustment of the slope of the charging curve on the discharging side because it becomes easy to obtain characteristics suitable for the intended use.
  • power storage device 2 uninterruptible power supply 10
  • 10a, 10b, 10c, 10d secondary battery 11
  • power supply terminal 12 ground terminal 13: fuse 14: control unit 21: AC power input unit 22: converter 23: first 1 output unit 24: second output unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power storage device (1) comprising a plurality of secondary batteries (10). The plurality of secondary batteries (10) are connected in series. The plurality of secondary batteries (10) include a plurality of types of secondary batteries having charging curves of different shapes and having different capacities.

Description

蓄電装置及び無停電電源装置Power storage device and uninterruptible power supply
 本発明は、本発明は、蓄電装置及びそれを備える無停電電源装置に関する。 The present invention relates to a power storage device and an uninterruptible power supply including the same.
 従来、データセンターのサーバ等のコンピューター機器の電源ラインに、二次電池を含む蓄電装置が接続されている(例えば、特許文献1を参照)。特許文献1に記載の装置では、電源に接続されたAC-DCコンバーターとマザーボードとの間に蓄電装置が接続されている。 Conventionally, a power storage device including a secondary battery is connected to a power line of a computer device such as a data center server (see, for example, Patent Document 1). In the device described in Patent Document 1, a power storage device is connected between an AC-DC converter connected to a power source and a motherboard.
米国特許出願公開第2008/0030078号明細書US Patent Application Publication No. 2008/0030078
 ところで、コンピューター機器の給電電圧の規格として、12V±5%という規格がある。この規格に適合したコンピューター機器には、一般的に、約12Vの電源が接続されている。従って、コンピューター機器に接続される蓄電装置には、12Vの電源で充電可能であり、かつ、電圧が12V±5%の範囲内の電力を安定的に供給できることが求められる。 By the way, there is a standard of 12V ± 5% as a standard for the power supply voltage of computer equipment. Generally, a power supply of about 12V is connected to a computer device that conforms to this standard. Therefore, a power storage device connected to a computer device is required to be able to be charged with a 12 V power source and to be able to stably supply power within a voltage range of 12 V ± 5%.
 この例のように、用途によっては、予め定められた電圧の範囲内の電力を安定的に供給できることが蓄電装置に求められる。 As in this example, depending on the application, the power storage device is required to be able to stably supply power within a predetermined voltage range.
 本発明の主な目的は、予め定められた電圧の範囲内の電力を安定的に供給できる蓄電装置を提供することにある。 It is a main object of the present invention to provide a power storage device that can stably supply power within a predetermined voltage range.
 本発明に係る蓄電装置は、複数の二次電池を備える。複数の二次電池は、直列に接続されている。複数の二次電池は、充電カーブの形状が異なり、かつ、容量が異なる複数種類の二次電池を含む。 The power storage device according to the present invention includes a plurality of secondary batteries. The plurality of secondary batteries are connected in series. The plurality of secondary batteries include a plurality of types of secondary batteries having different charge curve shapes and different capacities.
 本発明に係る蓄電装置では、複数の二次電池は、第1の二次電池と、第2の二次電池とを含んでいてもよい。第2の二次電池の充電率100%における充電カーブの傾きが第1の二次電池の充電カーブの傾きよりも大きい。第2の二次電池の容量は、第1の二次電池の容量よりも大きい。 In the power storage device according to the present invention, the plurality of secondary batteries may include a first secondary battery and a second secondary battery. The slope of the charging curve at the charging rate of 100% of the second secondary battery is larger than the slope of the charging curve of the first secondary battery. The capacity of the second secondary battery is larger than the capacity of the first secondary battery.
 本発明に係る蓄電装置では、第2の二次電池の充電カーブが、充電率100%側部分に、他の領域よりも傾きが大きな領域を有していてもよい。第1の二次電池の充電率が100%となったときの第2の二次電池の充電率が、第2の二次電池の充電カーブの他の領域よりも傾きが大きな領域内に位置するように、第2の二次電池の容量が第1の二次電池の容量よりも大きくされていることが好ましい。 In the power storage device according to the present invention, the charging curve of the second secondary battery may have a region with a larger slope than the other region in the portion with the charging rate of 100%. The charging rate of the second secondary battery when the charging rate of the first secondary battery reaches 100% is located in a region where the slope is larger than other regions of the charging curve of the second secondary battery. Thus, it is preferable that the capacity of the second secondary battery is larger than the capacity of the first secondary battery.
 本発明に係る蓄電装置では、複数の二次電池が、以下の二次電池のうちの2種以上の二次電池を含むことが好ましい。 In the power storage device according to the present invention, it is preferable that the plurality of secondary batteries include two or more types of secondary batteries among the following secondary batteries.
 リチウム、ホウ素、炭素、アルミニウム、ケイ素、リン、チタン、バナジウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ジルコニウム、銀、カドニウム、インジウム、スズ、アンチモン、鉛、ビスマス及びランタンのうちの少なくとも一種を含有する化合物を含む負極を有する二次電池
 ナトリウム、マグネシウム、アルミニウム、カルシウム、マンガン、鉄、コバルト及びニッケルのうちの少なくとも一種を含有する複合酸化物、リン酸化合物、フッ素化合物又はシリケート化合物を含む正極を有する二次電池
 リチウムを可逆的に脱離保持可能は有機化合物を含む正極を有する二次電池
 ニッケルを含有する水酸化物を含む正極を有する二次電池
 鉛蓄電池
 本発明に係る蓄電装置では、二次電池が3つ以上直列に接続されていてもよい。その場合、高温温度特性が相対的に劣る二次電池が、高温温度特性が相対的に優れた二次電池よりも外側に接続されていることが好ましい。
Lithium, boron, carbon, aluminum, silicon, phosphorus, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, silver, cadmium, indium, tin, antimony, lead, bismuth and lanthanum Secondary battery having a negative electrode containing a compound containing at least one of them, complex oxide, phosphoric acid compound, fluorine compound containing at least one of sodium, magnesium, aluminum, calcium, manganese, iron, cobalt and nickel Secondary battery having a positive electrode containing a silicate compound Rechargeable battery having a positive electrode containing an organic compound capable of reversibly desorbing and retaining lithium Secondary battery having a positive electrode containing a hydroxide containing nickel In such a power storage device, three or more secondary batteries It may be connected to. In that case, it is preferable that the secondary battery with relatively inferior high-temperature characteristics is connected to the outside of the secondary battery with relatively superior high-temperature characteristics.
 本発明に係る蓄電装置は、電源端子と、グランド端子とをさらに備えていてもよい。その場合、高温温度特性が相対的に劣る二次電池が、高温温度特性が相対的に優れた二次電池よりもグランド端子側に接続されていることが好ましい。 The power storage device according to the present invention may further include a power supply terminal and a ground terminal. In that case, it is preferable that the secondary battery having relatively inferior high-temperature characteristics is connected to the ground terminal side than the secondary battery having relatively superior high-temperature characteristics.
 本発明に係る蓄電装置は、ヒューズをさらに備えていてもよい。その場合、高温温度特性が相対的に劣る二次電池と電源端子との間にヒューズが接続されていることが好ましい。 The power storage device according to the present invention may further include a fuse. In that case, it is preferable that a fuse is connected between the secondary battery having relatively high temperature characteristics and the power supply terminal.
 本発明に係る蓄電装置では、蓄電装置を構成する二次電池の一つ以上の二次電池の充電率10%~100%の範囲内の充電カーブの傾きの最小値が2mV/充電率%以上であることが好ましい。 In the power storage device according to the present invention, the minimum value of the slope of the charge curve within the range of 10% to 100% of the charge rate of one or more secondary batteries constituting the power storage device is 2 mV / charge rate% or more. It is preferable that
 本発明に係る蓄電装置は、制御部を備えていてもよい。制御部は、蓄電装置を構成する二次電池の充電カーブの傾きを検出し、当該傾きから蓄電装置の残容量を計算することが好ましい。制御部は、複数の二次電池のそれぞれの容量、電圧及び温度のうちの少なくともひとつを検出して複数の二次電池のバランシングを行うことが好ましい。 The power storage device according to the present invention may include a control unit. Preferably, the control unit detects a slope of a charging curve of the secondary battery constituting the power storage device, and calculates a remaining capacity of the power storage device from the slope. The control unit preferably balances the plurality of secondary batteries by detecting at least one of the capacity, voltage, and temperature of each of the plurality of secondary batteries.
 本発明に係る蓄電装置では、二次電池が、3~6個直列に接続されていることが好ましい。 In the power storage device according to the present invention, it is preferable that 3 to 6 secondary batteries are connected in series.
 本発明に係る無停電電源装置は、本発明に係る蓄電装置と、交流電力入力部と、AC-DCコンバーターとを備えている。AC-DCコンバーターは、交流電力入力部と蓄電装置との間に接続されている。 The uninterruptible power supply according to the present invention includes the power storage device according to the present invention, an AC power input unit, and an AC-DC converter. The AC-DC converter is connected between the AC power input unit and the power storage device.
 本発明によれば、予め定められた電圧の範囲内の電力を安定的に供給できる蓄電装置を提供することができる。 According to the present invention, it is possible to provide a power storage device that can stably supply power within a predetermined voltage range.
図1は、本発明の一実施形態に係る蓄電装置の模式的回路図である。FIG. 1 is a schematic circuit diagram of a power storage device according to an embodiment of the present invention. 図2は、本発明の一実施形態の第1の例における第1の二次電池の充電カーブである。FIG. 2 is a charging curve of the first secondary battery in the first example of one embodiment of the present invention. 図3は、本発明の一実施形態の第1の例における第2の二次電池の充電カーブである。FIG. 3 is a charging curve of the second secondary battery in the first example of one embodiment of the present invention. 図4は、本発明の一実施形態の第1の例における蓄電装置の充電カーブである。FIG. 4 is a charging curve of the power storage device in the first example of the embodiment of the present invention. 図5は、参考例における蓄電装置の充電カーブである。FIG. 5 is a charging curve of the power storage device in the reference example. 図6は、本発明の一実施形態の第2の例における第1の二次電池、第2の二次電池及び蓄電装置のそれぞれの充電カーブである。FIG. 6 is a charge curve of each of the first secondary battery, the second secondary battery, and the power storage device in the second example of one embodiment of the present invention. 図7は、本発明の一実施形態における無停電電源装置の模式的回路図である。FIG. 7 is a schematic circuit diagram of the uninterruptible power supply device according to the embodiment of the present invention.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 図1は、本実施形態に係る蓄電装置の模式的回路図である。図1に示されるように、蓄電装置1は、複数の二次電池10を備えている。複数の二次電池10は、電源端子11とグランド端子12との間において直列に接続されている。具体的には、複数の二次電池10は、二次電池10a、二次電池10b、二次電池10c及び二次電池10dを含む。電源端子11とグランド端子12との間に、電源端子11側から、二次電池10a、二次電池10b、二次電池10c及び二次電池10dの順番で接続されている。 FIG. 1 is a schematic circuit diagram of a power storage device according to this embodiment. As shown in FIG. 1, the power storage device 1 includes a plurality of secondary batteries 10. The plurality of secondary batteries 10 are connected in series between the power supply terminal 11 and the ground terminal 12. Specifically, the plurality of secondary batteries 10 include a secondary battery 10a, a secondary battery 10b, a secondary battery 10c, and a secondary battery 10d. Between the power terminal 11 and the ground terminal 12, the secondary battery 10a, the secondary battery 10b, the secondary battery 10c, and the secondary battery 10d are connected in this order from the power terminal 11 side.
 蓄電装置1では、複数の二次電池10が、充電カーブの形状が異なり、かつ、容量が異なる複数種類の二次電池を含んでいる。すなわち、蓄電装置1では、充電カーブの形状が異なり、かつ、容量が異なる複数種類の二次電池が直列に接続されている。このような構成を採用することにより、予め定められた電圧の範囲内の電力を安定的に供給できる蓄電装置1を実現することができる。より詳細には、蓄電装置1は、蓄電装置1の広い充電率の範囲内で、予め定められた電圧の範囲内の電力を出力することができる。以下、この理由について、具体例を挙げて詳細に説明する。なお、以下の例の説明においても、実施形態と実質的に共通の機能を有する部材を共通の符号で参照する。 In the power storage device 1, a plurality of secondary batteries 10 include a plurality of types of secondary batteries having different charging curves and different capacities. That is, in the power storage device 1, a plurality of types of secondary batteries having different charging curves and different capacities are connected in series. By adopting such a configuration, it is possible to realize the power storage device 1 capable of stably supplying power within a predetermined voltage range. More specifically, power storage device 1 can output power within a predetermined voltage range within a wide range of charging rates of power storage device 1. Hereinafter, this reason will be described in detail with a specific example. In the description of the following examples, members having substantially the same functions as those of the embodiments are referred to by the same reference numerals.
 第1の例では、二次電池10a、二次電池10b、二次電池10c及び二次電池10dの合計4つの二次電池が直列に接続されている。二次電池10a、二次電池10b、二次電池10c及び二次電池10dは、全て同じ容量を有しているものとする。 In the first example, a total of four secondary batteries of the secondary battery 10a, the secondary battery 10b, the secondary battery 10c, and the secondary battery 10d are connected in series. The secondary battery 10a, the secondary battery 10b, the secondary battery 10c, and the secondary battery 10d all have the same capacity.
 二次電池10a、二次電池10b、二次電池10c及び二次電池10dのうち、二次電池10aと二次電池10dとは、図2に示される充電カーブを有する第1の二次電池により構成されている。二次電池10bと二次電池10cとは、図3に示される充電カーブを有する第2の二次電池により構成されている。 Of the secondary battery 10a, the secondary battery 10b, the secondary battery 10c, and the secondary battery 10d, the secondary battery 10a and the secondary battery 10d are formed by the first secondary battery having the charging curve shown in FIG. It is configured. The secondary battery 10b and the secondary battery 10c are configured by a second secondary battery having a charging curve shown in FIG.
 図2に示されるように、第1の二次電池の充電カーブは、充電率0%側の部分に、他の領域A11よりも傾きが大きな領域A12を有している。一方、第2の二次電池の充電カーブは、図3に示されるように、充電率100%側の部分に、他の領域A21よりも傾きが大きな領域A22を有している。このように、第1の二次電池の充電カーブの形状と、第2の二次電池の充電カーブの形状とは、互いに異なる。 As shown in FIG. 2, the charging curve of the first secondary battery has a region A12 having a larger slope than the other region A11 in the portion on the charge rate 0% side. On the other hand, as shown in FIG. 3, the charging curve of the second secondary battery has a region A22 having a larger slope than the other region A21 in the portion on the charging rate 100% side. Thus, the shape of the charging curve of the first secondary battery and the shape of the charging curve of the second secondary battery are different from each other.
 なお、本発明において、「充電カーブの形状が異なる」とは、同じ縮尺の容量対電圧グラフを作成し、互いのグラフの充電率0%におけるポイントを一致させたときに、互いのグラフが重ならないことを意味する。 In the present invention, “the shape of the charging curve is different” means that when the same scale capacity vs. voltage graph is created and the points at the charging rate of 0% in each graph are matched, the graphs overlap each other. It means not to be.
 上述のように、二次電池10aと二次電池10dとが第1の二次電池により構成されており、二次電池10bと二次電池10cとが第2の二次電池により構成されている。このため、図4に示されるように、蓄電装置1全体の充電カーブは、第1の二次電池の充電カーブと第2の二次電池の充電カーブとを合成した形状のグラフとなる。 As described above, the secondary battery 10a and the secondary battery 10d are configured by the first secondary battery, and the secondary battery 10b and the secondary battery 10c are configured by the second secondary battery. . For this reason, as shown in FIG. 4, the charging curve of the entire power storage device 1 is a graph having a shape obtained by combining the charging curve of the first secondary battery and the charging curve of the second secondary battery.
 それに対する参考例として、二次電池10a、二次電池10b、二次電池10c及び二次電池10dの全てを第1の二次電池で構成した例を考える。この例では、図5に示されるように、蓄電装置全体の充電カーブは、図2に示される第1の二次電池の充電カーブを複数合成した形状のグラフとなる。従って、参考例の蓄電装置全体の充電カーブは、第1の二次電池の充電カーブが全体的に急峻になった形状のカーブとなる。このため、参考例の蓄電装置が使用可能な電圧範囲(V1-V2)内の充電率の範囲は狭いため、電力を安定的に供給可能な放電持続時間は短い。 As a reference example for this, consider an example in which the secondary battery 10a, the secondary battery 10b, the secondary battery 10c, and the secondary battery 10d are all configured by the first secondary battery. In this example, as shown in FIG. 5, the charging curve of the entire power storage device is a graph having a shape obtained by synthesizing a plurality of charging curves of the first secondary battery shown in FIG. Accordingly, the charging curve of the entire power storage device of the reference example is a curve having a shape in which the charging curve of the first secondary battery is generally steep. For this reason, since the range of the charging rate within the voltage range (V1-V2) in which the power storage device of the reference example can be used is narrow, the discharge duration in which power can be stably supplied is short.
 それに対して、図4に示されるように、第1の例では、異なる充電カーブを有する第1の二次電池と第2の二次電池とが直列に接続されている。このため、第1の例の蓄電装置の充電カーブは、参考例の蓄電装置の充電カーブよりも急峻性が低くなる。よって、第1の例の蓄電装置が使用可能な電圧範囲(V1-V2)内の充電率の範囲は、参考例よりも広いため、電力を安定的に供給可能な放電持続時間は長い。 On the other hand, as shown in FIG. 4, in the first example, the first secondary battery and the second secondary battery having different charging curves are connected in series. For this reason, the charging curve of the power storage device of the first example is less steep than the charging curve of the power storage device of the reference example. Therefore, since the range of the charging rate within the voltage range (V1-V2) that can be used by the power storage device of the first example is wider than that of the reference example, the discharge duration in which power can be stably supplied is long.
 次に、第2の例について説明する。第2の例は、以下の点において第1の例と異なる。第2の例は、二次電池10bと二次電池10cとは、同じ容量を有している。二次電池10aと二次電池10dとは、同じ容量を有している。二次電池10b及び二次電池10cのそれぞれの容量は、二次電池10a及び二次電池10dのそれぞれの容量よりも大きい。このため、第2の例の蓄電装置の充電カーブは、図6に示されるような形状を有する。第2の例では、第2の二次電池の放電カーブの急峻な領域A22が、第1の二次電池の放電カーブに対してより高充電率側に位置する。このため、第2の例の蓄電装置の充電カーブの、使用可能な電圧の範囲(V1-V2)内に位置する部分が広くなる。従って、第2の例の蓄電装置は、第1の蓄電装置よりも使用可能な電圧範囲(V1-V2)を広くすることができ、電力を安定的に供給可能な放電持続時間を長くすることができる。 Next, a second example will be described. The second example is different from the first example in the following points. In the second example, the secondary battery 10b and the secondary battery 10c have the same capacity. The secondary battery 10a and the secondary battery 10d have the same capacity. The capacities of the secondary battery 10b and the secondary battery 10c are larger than the capacities of the secondary battery 10a and the secondary battery 10d, respectively. For this reason, the charging curve of the power storage device of the second example has a shape as shown in FIG. In the second example, the region A22 having a steep discharge curve of the second secondary battery is located on the higher charge rate side than the discharge curve of the first secondary battery. For this reason, the part located in the range (V1-V2) of the voltage which can be used of the charge curve of the electrical storage apparatus of a 2nd example becomes large. Therefore, the power storage device of the second example can have a wider usable voltage range (V1-V2) than the first power storage device, and can increase the discharge duration in which power can be stably supplied. Can do.
 以上の説明から理解されるように、充電カーブの形状のみならず、容量が異なる複数種類の二次電池を直列に接続することにより、広い充電率の範囲内で、予め定められた電圧の範囲内の電力を出力することができる蓄電装置を実現し得る。 As understood from the above description, not only the shape of the charging curve but also a plurality of types of secondary batteries having different capacities are connected in series, so that a predetermined voltage range can be obtained within a wide charging rate range. It is possible to realize a power storage device that can output the power of the power.
 また、予め定められた電圧の範囲内の電圧での放電量が多くなるため、容量に対する使用可能な電力量の割合が高い。よって、エネルギー効率が高く、小型且つ低コストな蓄電装置1を実現し得る。 Also, since the amount of discharge at a voltage within a predetermined voltage range increases, the ratio of the amount of usable electric power to the capacity is high. Therefore, the energy storage device 1 with high energy efficiency, small size, and low cost can be realized.
 但し、直列接続された二次電池の容量が異なりすぎると、エネルギー効率がかえって悪くなることも考えられる。従って、直列接続された二次電池のうち、最も容量の大きな二次電池の容量が、最も容量の小さな二次電池の容量の1倍~5倍であることが好ましく、1倍~3倍であることがより好ましい。 However, if the capacities of the secondary batteries connected in series are too different, the energy efficiency may be deteriorated. Therefore, among the secondary batteries connected in series, the capacity of the secondary battery having the largest capacity is preferably 1 to 5 times the capacity of the secondary battery having the smallest capacity. More preferably.
 より広い充電率の範囲内で、予め定められた電圧の範囲内の電力を出力することができるようにする観点からは、充電率100%における充電カーブの傾きが第1の二次電池よりも大きな第2の二次電池の容量を第1の二次電池の容量よりも大きくすることが好ましい。 From the viewpoint of being able to output power within a predetermined voltage range within a wider range of charging rate, the slope of the charging curve at a charging rate of 100% is more than that of the first secondary battery. It is preferable to make the capacity of the large second secondary battery larger than the capacity of the first secondary battery.
 また、第2の二次電池の充電カーブが、他の領域A21よりも傾きが大きな領域A22を有する場合には、第1の二次電池の充電率が100%となったときの第2の二次電池の充電率が、第2の二次電池の充電カーブの他の領域よりも傾きが大きな領域内に位置するように、第2の二次電池の容量が第1の二次電池の容量よりも大きくされていることが好ましい。この場合、第1の二次電池の充電率が100%となってから蓄電装置全体の充電率が100%となるまでの間における蓄電装置の充電カーブが急峻となる。このため、例えば、蓄電装置に電力を供給する電源の電圧が高く変動した場合であっても、蓄電装置全体の充電率が上昇しにくい。よって、第1の二次電池への過充電が抑制されやすい。 Further, when the charging curve of the second secondary battery has a region A22 having a larger slope than the other region A21, the second secondary battery charging rate becomes 100%. The capacity of the second secondary battery is that of the first secondary battery so that the charging rate of the secondary battery is located in a region where the slope is larger than the other region of the charging curve of the second secondary battery. It is preferable to be larger than the capacity. In this case, the charging curve of the power storage device becomes steep after the charging rate of the first secondary battery reaches 100% until the charging rate of the entire power storage device reaches 100%. For this reason, for example, even when the voltage of the power source that supplies power to the power storage device fluctuates high, the charging rate of the entire power storage device is unlikely to increase. Therefore, overcharge to the first secondary battery is easily suppressed.
 ところで、二次電池の高温温度特性は、二次電池の種類によって異なるのが一般的である。例えば蓄電装置1のように、3つ以上の二次電池10が直列に接続されている場合は、高温温度特性が相対的に劣る二次電池を、高温温度特性が相対的に優れた二次電池よりも外側(端子の近く)に接続することが好ましい。その場合、配線を経由して高温温度特性の劣る二次電池が効率的に冷却される。このため、高温温度特性の劣る二次電池の温度が上昇しにくい。従って、高温温度特性に優れた蓄電装置1を実現することができる。 By the way, the high-temperature characteristics of secondary batteries generally differ depending on the type of secondary battery. For example, when three or more secondary batteries 10 are connected in series like the power storage device 1, a secondary battery having relatively high high temperature characteristics is a secondary battery having relatively high high temperature characteristics. It is preferable to connect outside the battery (near the terminal). In that case, the secondary battery having inferior high-temperature characteristics is efficiently cooled via the wiring. For this reason, the temperature of the secondary battery having inferior high-temperature characteristics is unlikely to rise. Therefore, it is possible to realize the power storage device 1 that is excellent in high-temperature characteristics.
 さらに優れた高温温度特性を実現する観点からは、高温温度特性が劣る二次電池を、高温温度特性が優れた二次電池よりもグランド端子12側に接続することが好ましい。グランド端子12を経由した放熱効率の方が、電源端子11を経由した放熱効率よりも通常高いためである。 Further, from the viewpoint of realizing superior high temperature temperature characteristics, it is preferable to connect a secondary battery with poor high temperature temperature characteristics to the ground terminal 12 side than a secondary battery with excellent high temperature characteristics. This is because the heat dissipation efficiency via the ground terminal 12 is usually higher than the heat dissipation efficiency via the power supply terminal 11.
 蓄電装置1では、二次電池10と直列にヒューズ13が接続されている。ヒューズ13は、高温温度特性が相対的に劣る二次電池10と電源端子11との間に接続されている。すなわち、ヒューズ13が、高温温度特性が相対的に劣る二次電池10とグランド端子12との間に接続されていない。このため、高温温度特性が相対的に劣る二次電池10の熱が、グランド端子12を経由して放熱されやすい。従って、ヒューズ13による放熱の阻害を抑制することができる。 In the power storage device 1, a fuse 13 is connected in series with the secondary battery 10. The fuse 13 is connected between the secondary battery 10 and the power supply terminal 11 which are relatively inferior in high temperature temperature characteristics. That is, the fuse 13 is not connected between the secondary battery 10 and the ground terminal 12 that are relatively inferior in high temperature temperature characteristics. For this reason, the heat of the secondary battery 10 having relatively inferior high-temperature characteristics is easily radiated via the ground terminal 12. Therefore, the inhibition of heat dissipation by the fuse 13 can be suppressed.
 蓄電装置1は、制御部14をさらに備えている。制御部14は、複数の二次電池10のそれぞれに対して接続されている。制御部14は、充電時における蓄電装置1の充電カーブの傾きを検出する。制御部14は、現在の蓄電装置1の充電カーブの傾きから蓄電装置1の残容量を計算する。具体的には、制御部14は、図示しないメモリに記憶された蓄電装置1の充電カーブと、検出された現在の傾きとを比較することにより、現在の充電率を算出する。制御部14は、算出された現在の充電率に基づいて蓄電装置1の残容量を算出する。 The power storage device 1 further includes a control unit 14. The control unit 14 is connected to each of the plurality of secondary batteries 10. Control unit 14 detects the slope of the charging curve of power storage device 1 during charging. Control unit 14 calculates the remaining capacity of power storage device 1 from the slope of the current charging curve of power storage device 1. Specifically, control unit 14 calculates the current charging rate by comparing the charging curve of power storage device 1 stored in a memory (not shown) with the detected current slope. Control unit 14 calculates the remaining capacity of power storage device 1 based on the calculated current charging rate.
 充電カーブの傾きがゼロである部分があると、蓄電装置1の残容量を高精度に算出することが困難となる。このため、残容量を高精度に算出したい、蓄電装置の充電率10%~100%の範囲内における、蓄電装置の充電カーブの傾きの最小値が2mV/充電率%以上、より好ましくは、4mV/充電率%以上となるように、二次電池10が選択されていることが好ましい。例えば、蓄電装置の特定の充電率の範囲において充電カーブの傾きが実質的にゼロである二次電池を用いる場合は、その二次電池に対して、その特定の充電率の範囲において充電カーブの傾きがゼロでない二次電池を直列に接続し、蓄電装置の充電カーブの傾きの最小値を2mV/充電率%以上、より好ましくは、4mV/充電率%以上となるようにすることが好ましい。 If there is a portion where the slope of the charging curve is zero, it is difficult to calculate the remaining capacity of the power storage device 1 with high accuracy. Therefore, when the remaining capacity is to be calculated with high accuracy, the minimum value of the slope of the charging curve of the power storage device is within 2 mV / charge rate% or more, more preferably 4 mV, within the range of 10% to 100% of the charging rate of the power storage device. / It is preferable that the secondary battery 10 is selected so that the charging rate is% or more. For example, in the case of using a secondary battery whose charge curve slope is substantially zero in a specific charging rate range of the power storage device, the charging curve of the specific charging rate range for that secondary battery is It is preferable to connect secondary batteries having a non-zero slope in series so that the minimum value of the slope of the charge curve of the power storage device is 2 mV / charge rate% or more, more preferably 4 mV / charge rate% or more.
 制御部14は、複数の二次電池10のそれぞれの容量、電圧及び温度のうちの少なくともひとつを検出し、当該容量に基づいて複数の二次電池10のバランシングを行う。一般的には、直列接続された二次電池のバランシングは、各二次電池の電圧に基づいて行われる。しかしながら、蓄電装置1は、複数種類の二次電池10を備えている。このため、二次電池の電圧に基づいてバランシングすることは困難である。複数の二次電池10の容量に基づいてバランシングを行うことにより、好適なバランシングを実施することができる。 The control unit 14 detects at least one of the capacity, voltage, and temperature of each of the plurality of secondary batteries 10 and balances the plurality of secondary batteries 10 based on the capacity. In general, balancing of secondary batteries connected in series is performed based on the voltage of each secondary battery. However, the power storage device 1 includes a plurality of types of secondary batteries 10. For this reason, it is difficult to perform balancing based on the voltage of the secondary battery. By performing balancing based on the capacities of the plurality of secondary batteries 10, suitable balancing can be performed.
 なお、制御部14は、蓄電装置1外に設けられていてもよい。蓄電装置1は、制御部14を備えている必要は必ずしもない。 Note that the control unit 14 may be provided outside the power storage device 1. The power storage device 1 is not necessarily provided with the control unit 14.
 二次電池10としては、種々の二次電池を用いることができる。例えば、以下の二次電池を例示することができる。 As the secondary battery 10, various secondary batteries can be used. For example, the following secondary batteries can be exemplified.
 リチウム、ホウ素、炭素、アルミニウム、ケイ素、リン、チタン、バナジウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ジルコニウム、銀、カドニウム、インジウム、スズ、アンチモン、鉛、ビスマス及びランタンのうちの少なくとも一種を含有する化合物を含む負極を有する二次電池
 ナトリウム、マグネシウム、アルミニウム、カルシウム、マンガン、鉄、コバルト及びニッケルのうちの少なくとも一種を含有する複合酸化物、リン酸化合物、フッ素化合物又はシリケート化合物を含む正極を有する二次電池
 リチウムを可逆的に脱離保持可能は有機化合物を含む正極を有する二次電池
 ニッケルを含有する水酸化物を含む正極を有する二次電池
 鉛蓄電池
 これらのうちの二種の二次電池を直列に接続してもよいし、三種以上の二次電池を直列に接続してもよい。
Lithium, boron, carbon, aluminum, silicon, phosphorus, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, silver, cadmium, indium, tin, antimony, lead, bismuth and lanthanum Secondary battery having a negative electrode containing a compound containing at least one of them, complex oxide, phosphoric acid compound, fluorine compound containing at least one of sodium, magnesium, aluminum, calcium, manganese, iron, cobalt and nickel Secondary battery having a positive electrode containing a silicate compound Secondary battery having a positive electrode containing an organic compound capable of reversibly desorbing and holding lithium Secondary battery having a positive electrode containing a hydroxide containing nickel Lead acid battery Even if two types of secondary batteries are connected in series Stone, may be connected to three or more secondary batteries in series.
 また、蓄電装置1は、直列に接続された複数の二次電池に直列又は並列に接続されている燃料電池等をさらに備えていてもよい。 The power storage device 1 may further include a fuel cell or the like connected in series or in parallel to a plurality of secondary batteries connected in series.
 蓄電装置1において直列に接続されている二次電池10の数は、特に限定されない。蓄電装置1において直列に接続されている二次電池10の数は、蓄電装置1に対して要求される出力電圧、二次電池10の出力電圧等に応じて適宜決定することができる。蓄電装置1において直列に接続されている二次電池10の数は、例えば、3~6個であることが好ましく、4~5個であることがより好ましい。 The number of secondary batteries 10 connected in series in the power storage device 1 is not particularly limited. The number of secondary batteries 10 connected in series in power storage device 1 can be appropriately determined according to the output voltage required for power storage device 1, the output voltage of secondary battery 10, and the like. For example, the number of secondary batteries 10 connected in series in the power storage device 1 is preferably 3 to 6, more preferably 4 to 5.
 以下、蓄電装置1の好ましい構成例の具体例を記載する。以下の説明において、LFPは、リン酸鉄リチウム、LTOは、チタン酸リチウム、NMCは、ニッケル、マンガン及びコバルトのうちの少なくとも一種を含有するリチウム複合酸化物、LMOはリチウムマンガン酸化物、Grは黒鉛を示す。例えば、負極に黒鉛、正極にリン酸鉄リチウムを用いた電池をGr/LFPの様に表記する。 Hereinafter, specific examples of preferable configuration examples of the power storage device 1 will be described. In the following description, LFP is lithium iron phosphate, LTO is lithium titanate, NMC is a lithium composite oxide containing at least one of nickel, manganese, and cobalt, LMO is lithium manganese oxide, and Gr is Graphite is shown. For example, a battery using graphite as the negative electrode and lithium iron phosphate as the positive electrode is expressed as Gr / LFP.
 (2つの二次電池を直列に接続する場合)
電源端子側から、グランド端子側に向けて、LTO/LMO、Gr/LFPをこの順番で直列に接続する。充電容量比をGr/LFPに対して5倍以下とすることが好ましい。
(When connecting two secondary batteries in series)
LTO / LMO and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. The charge capacity ratio is preferably 5 times or less than Gr / LFP.
 電源端子側から、グランド端子側に向けて、LTO:LMO、Gr/NMCをこの順番で直列に接続する。充電容量比をLTO/LMOが1に対して5倍以下とすることが好ましい。 LTO: LMO, Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side. The charge capacity ratio is preferably 5 times or less with respect to LTO / LMO of 1.
 電源端子側から、グランド端子側に向けて、Gr/NMC、Gr/LFPをこの順番で直列に接続する。充電容量比をGr/LFPに対して5倍以下とすることが好ましい。 Gr / NMC and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. The charge capacity ratio is preferably 5 times or less than Gr / LFP.
 (3つの二次電池を直列に接続する場合)
 電源端子側から、グランド端子側に向けて、Gr/LFP、LTO/LMO、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。
(When connecting 3 secondary batteries in series)
Gr / LFP, LTO / LMO, and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けて、LTO/LMO、LTO/LMO、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 LTO / LMO, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けて、Gr/NMC、LTO/LMO、Gr/NMCをこの順番で直列に接続する。それぞれの充電容量比をLTO/LMOが1に対して5倍以下とすることが好ましい。 Gr / NMC, LTO / LMO, and Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side. Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
 電源端子側から、グランド端子側に向けて、Gr/NMC、LTO/LMO、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / NMC, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 (4つの二次電池を直列に接続する場合)
 電源端子側から、グランド端子側に向けてGr/LFP、LTO/LMO、Gr/LFP、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。
(When connecting 4 secondary batteries in series)
Gr / LFP, LTO / LMO, Gr / LFP, and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/NMC、LTO/LMO、LTO/LMO、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / NMC, LTO / LMO, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/NMC、LTO/LMO、LTO/LMO、Gr/NMCをこの順番で直列に接続する。それぞれの充電容量比をLTO/LMOが1に対して5倍以下とすることが好ましい。 Gr / NMC, LTO / LMO, LTO / LMO, and Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side. Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
 電源端子側から、グランド端子側に向けてGr/LFP、LTO/LMO、Gr/NMC、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / LFP, LTO / LMO, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/NMC、LTO/LMO,Gr/NMC、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / NMC, LTO / LMO, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/LFP、Gr/NMC、Gr/NMC、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / LFP, Gr / NMC, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/NMC、LTO/LMO、Gr/NMC、Gr/NMCをこの順番で直列に接続する。それぞれの充電容量比をLTO/LMOが1に対して5倍以下とすることが好ましい。 Gr / NMC, LTO / LMO, Gr / NMC, Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side. Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
 (5つの二次電池を直列に接続する場合)
 電源端子側から、グランド端子側に向けてGr/LFP、Gr/LFP、LTO/LMO、Gr/LFP、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。
(When connecting 5 secondary batteries in series)
Gr / LFP, Gr / LFP, LTO / LMO, Gr / LFP, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/LFP、Gr/NMC、LTO/LMO、Gr/LFP、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / LFP, Gr / NMC, LTO / LMO, Gr / LFP, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/LFP、Gr/NMC、Gr/NMC、Gr/NMC、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / LFP, Gr / NMC, Gr / NMC, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてLTO/LMO、LTO/LMO、LTO/LMO、LTO/LMO、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/LFP、LTO/LMO、LTO/LMO、LTO/LMO、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / LFP, LTO / LMO, LTO / LMO, LTO / LMO, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてLTO/LMO、LTO/LMO、LTO/LMO、LTO/LMO、Gr/NMCをこの順番で直列に接続する。それぞれの充電容量比をLTO/LMOが1に対して5倍以下とすることが好ましい。 LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side. Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
 (6つの二次電池を直列に接続する場合)
電源端子側から、グランド端子側に向けてLTO/LMO、LTO/LMO、LTO/LMO、LTO/LMO、LTO/LMO、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。
(When connecting 6 secondary batteries in series)
LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, and Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてLTO/LMO、LTO/LMO、LTO/LMO、LTO/LMO、LTO/LMO、Gr/NMCをこの順番で直列に接続する。それぞれの充電容量比をLTO/LMOが1に対して5倍以下とすることが好ましい。 LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, LTO / LMO, Gr / NMC are connected in series in this order from the power supply terminal side to the ground terminal side. Each charge capacity ratio is preferably 5 times or less of LTO / LMO of 1.
 電源端子側から、グランド端子側に向けてGr/LFP、Gr/LFP、LTO/LMO、LTO/LMO、Gr/LFP、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / LFP, Gr / LFP, LTO / LMO, LTO / LMO, Gr / LFP, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/LFP、LTO/LMO、LTO/LMO、LTO/LMO、Gr/NMC、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / LFP, LTO / LMO, LTO / LMO, LTO / LMO, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 電源端子側から、グランド端子側に向けてGr/NMC、LTO/LMO、LTO/LMO、LTO/LMO、Gr/NMC、Gr/LFPをこの順番で直列に接続する。それぞれの充電容量比をGr/LFPが1に対して5倍以下とすることが好ましい。 Gr / NMC, LTO / LMO, LTO / LMO, LTO / LMO, Gr / NMC, Gr / LFP are connected in series in this order from the power supply terminal side to the ground terminal side. Each charging capacity ratio is preferably 5 times or less with respect to Gr / LFP of 1.
 図7は、本実施形態における無停電電源装置の模式的回路図である。図7に示されるように、無停電電源装置(Uninterruptible Power Supply:UPS)2は、蓄電装置1を備えている。蓄電装置1と交流電力入力部21との間には、AC-DCコンバーター22が接続されている。交流電力入力部21から入力された交流電力は、AC-DCコンバーター22によって直流電力に変換される。直流電力は、蓄電装置1に充電される。交流電力入力部21から電力が供給されているときは、AC-DCコンバーター22に接続された第1の出力部23から直流電力が出力される。一方、交流電力入力部21からの電力供給が停止したときには、蓄電装置1から、第2の出力部24を経由して直流電力が出力される。 FIG. 7 is a schematic circuit diagram of the uninterruptible power supply in this embodiment. As shown in FIG. 7, the uninterruptible power supply (UPS) 2 includes a power storage device 1. An AC-DC converter 22 is connected between the power storage device 1 and the AC power input unit 21. The AC power input from the AC power input unit 21 is converted into DC power by the AC-DC converter 22. The DC power is charged in the power storage device 1. When power is supplied from the AC power input unit 21, DC power is output from the first output unit 23 connected to the AC-DC converter 22. On the other hand, when power supply from the AC power input unit 21 is stopped, DC power is output from the power storage device 1 via the second output unit 24.
 無停電電源装置2は、蓄電装置1を備えているため、交流電力入力部21からの電力供給が停止したときにも、予め定められた電圧の範囲内の電力を安定的に供給することができる。 Since the uninterruptible power supply 2 includes the power storage device 1, even when the power supply from the AC power input unit 21 is stopped, it can stably supply power within a predetermined voltage range. it can.
 なお、実施例では、充電側について充電カーブの傾きを調整する説明を行ったが、放電側でも同様に放電カーブの傾きの調整が可能である。したがって、充電側で充電カーブの傾きの調整、放電側で充電カーブの傾きの調整の両方を行うと、使用目的に適した特性を得ることが容易になるためさらに好ましい。 In the embodiment, the explanation is made for adjusting the slope of the charging curve on the charging side. However, the slope of the discharging curve can be similarly adjusted on the discharging side. Therefore, it is more preferable to perform both adjustment of the slope of the charging curve on the charging side and adjustment of the slope of the charging curve on the discharging side because it becomes easy to obtain characteristics suitable for the intended use.
1:蓄電装置
2:無停電電源装置
10,10a,10b,10c,10d:二次電池
11:電源端子
12:グランド端子
13:ヒューズ
14:制御部
21:交流電力入力部
22:コンバーター
23:第1の出力部
24:第2の出力部
1: power storage device 2: uninterruptible power supply 10, 10a, 10b, 10c, 10d: secondary battery 11: power supply terminal 12: ground terminal 13: fuse 14: control unit 21: AC power input unit 22: converter 23: first 1 output unit 24: second output unit

Claims (12)

  1.  直列に接続された複数の二次電池を備え、
     前記複数の二次電池は、充電カーブの形状が異なり、かつ、容量が異なる複数種類の二次電池を含む、蓄電装置。
    A plurality of secondary batteries connected in series;
    The plurality of secondary batteries include a plurality of types of secondary batteries having different charge curves and different capacities.
  2.  前記複数の二次電池は、
     第1の二次電池と、
     充電率100%における充電カーブの傾きが前記第1の二次電池よりも大きく、かつ、前記第1の二次電池よりも容量が大きな第2の二次電池と、
    を含む、請求項1に記載の蓄電装置。
    The plurality of secondary batteries are:
    A first secondary battery;
    A second secondary battery having a charging curve slope at a charging rate of 100% larger than that of the first secondary battery and having a capacity larger than that of the first secondary battery;
    The power storage device according to claim 1, comprising:
  3.  前記第2の二次電池の充電カーブは、充電率100%側部分に、他の領域よりも傾きが大きな領域を有し、
     前記第1の二次電池の充電率が100%となったときの前記第2の二次電池の充電率が、前記第2の二次電池の充電カーブの前記他の領域よりも傾きが大きな領域内に位置するように、前記第2の二次電池の容量が前記第1の二次電池の容量よりも大きくされている、請求項2に記載の蓄電装置。
    The charging curve of the second secondary battery has a region with a larger slope than the other regions in the portion with a charging rate of 100%.
    The charging rate of the second secondary battery when the charging rate of the first secondary battery reaches 100% has a larger slope than the other region of the charging curve of the second secondary battery. The power storage device according to claim 2, wherein a capacity of the second secondary battery is larger than a capacity of the first secondary battery so as to be located in the region.
  4.  前記複数の二次電池は、
     リチウム、ホウ素、炭素、アルミニウム、ケイ素、リン、チタン、バナジウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ジルコニウム、銀、カドニウム、インジウム、スズ、アンチモン、鉛、ビスマス及びランタンのうちの少なくとも一種を含有する化合物を含む負極を有する二次電池と、
     ナトリウム、マグネシウム、アルミニウム、カルシウム、マンガン、鉄、コバルト及びニッケルのうちの少なくとも一種を含有する複合酸化物、リン酸化合物、フッ素化合物又はシリケート化合物を含む正極を有する二次電池と、
     リチウムを可逆的に脱離保持可能は有機化合物を含む正極を有する二次電池と、
     ニッケルを含有する水酸化物を含む正極を有する二次電池と、
     鉛蓄電池とからなる群から選ばれた少なくとも二種の二次電池を含む、請求項1~3のいずれか一項に記載の蓄電装置。
    The plurality of secondary batteries are:
    Lithium, boron, carbon, aluminum, silicon, phosphorus, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, silver, cadmium, indium, tin, antimony, lead, bismuth and lanthanum A secondary battery having a negative electrode containing a compound containing at least one of them,
    A secondary battery having a positive electrode including a composite oxide containing at least one of sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, and nickel, a phosphate compound, a fluorine compound, or a silicate compound;
    A rechargeable battery having a positive electrode containing an organic compound capable of reversibly desorbing and holding lithium;
    A secondary battery having a positive electrode comprising a hydroxide containing nickel;
    The power storage device according to any one of claims 1 to 3, comprising at least two types of secondary batteries selected from the group consisting of lead-acid batteries.
  5.  前記二次電池が3つ以上直列に接続されており、高温温度特性が相対的に劣る二次電池が、高温温度特性が相対的に優れた二次電池よりも外側に接続されている、請求項1~4のいずれか一項に記載の蓄電装置。 Three or more secondary batteries are connected in series, and a secondary battery with relatively poor high-temperature characteristics is connected to the outside of a secondary battery with relatively high-temperature characteristics. Item 5. The power storage device according to any one of Items 1 to 4.
  6.  電源端子と、グランド端子とをさらに備え、
     前記高温温度特性が相対的に劣る二次電池が、前記高温温度特性が相対的に優れた二次電池よりも前記グランド端子側に接続されている、請求項5に記載の蓄電装置。
    A power terminal and a ground terminal;
    The power storage device according to claim 5, wherein the secondary battery having relatively low high temperature characteristics is connected to the ground terminal side than the secondary battery having relatively high temperature characteristics.
  7.  前記高温温度特性が相対的に劣る二次電池と前記電源端子との間に接続されたヒューズをさらに備える、請求項6に記載の蓄電装置。 The power storage device according to claim 6, further comprising a fuse connected between the secondary battery having relatively high temperature characteristics and the power supply terminal.
  8.  前記蓄電装置の充電率10%~100%の範囲内における、前記蓄電装置の充電カーブの傾きの最小値が2mV/充電率%以上である、請求項1~7のいずれか一項に記載の蓄電装置。 The minimum value of the charging curve of the power storage device within a range of 10% to 100% of the charge rate of the power storage device is 2 mV / charge rate% or more. Power storage device.
  9.  前記蓄電装置を構成する二次電池の充電カーブの傾きを検出し、当該傾きから前記蓄電装置の残容量を計算する制御部をさらに備える、請求項8に記載の蓄電装置。 The power storage device according to claim 8, further comprising a control unit that detects a slope of a charging curve of the secondary battery constituting the power storage device and calculates a remaining capacity of the power storage device from the slope.
  10.  前記複数の二次電池のそれぞれの容量、電圧及び温度のうちの少なくともひとつを検出して前記複数の二次電池のバランシングを行う制御部を備える、請求項1~9のいずれか一項に記載の蓄電装置。 The control unit according to any one of claims 1 to 9, further comprising a control unit that detects at least one of a capacity, a voltage, and a temperature of each of the plurality of secondary batteries and performs balancing of the plurality of secondary batteries. Power storage device.
  11.  前記二次電池が、3~6個直列に接続されている、請求項1~10のいずれか一項に記載の蓄電装置。 The power storage device according to any one of claims 1 to 10, wherein 3 to 6 secondary batteries are connected in series.
  12.  請求項1~11のいずれか一項に記載の蓄電装置と、
     交流電力入力部と、
     前記交流電力入力部と前記蓄電装置との間に接続されたAC-DCコンバーターと、を備える無停電電源装置。
    The power storage device according to any one of claims 1 to 11,
    AC power input section,
    An uninterruptible power supply comprising: an AC-DC converter connected between the AC power input unit and the power storage device.
PCT/JP2015/052320 2014-02-06 2015-01-28 Power storage device and uninterruptible power supply device WO2015119011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021376 2014-02-06
JP2014021376 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015119011A1 true WO2015119011A1 (en) 2015-08-13

Family

ID=53777818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052320 WO2015119011A1 (en) 2014-02-06 2015-01-28 Power storage device and uninterruptible power supply device

Country Status (1)

Country Link
WO (1) WO2015119011A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150567A (en) * 1979-05-11 1980-11-22 Matsushita Electric Ind Co Ltd Actuation of nickel-iron battery group
JPH09180767A (en) * 1995-12-27 1997-07-11 Sanyo Electric Co Ltd Accumulator system
JPH09331636A (en) * 1996-06-11 1997-12-22 Oki Electric Ind Co Ltd Charger of secondary battery
JP2009072039A (en) * 2007-09-18 2009-04-02 Panasonic Corp Power system
JP2011150876A (en) * 2010-01-21 2011-08-04 Sony Corp Assembled battery and method for controlling the same
JP2012169093A (en) * 2011-02-11 2012-09-06 Denso Corp Battery pack
JP2013110813A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150567A (en) * 1979-05-11 1980-11-22 Matsushita Electric Ind Co Ltd Actuation of nickel-iron battery group
JPH09180767A (en) * 1995-12-27 1997-07-11 Sanyo Electric Co Ltd Accumulator system
JPH09331636A (en) * 1996-06-11 1997-12-22 Oki Electric Ind Co Ltd Charger of secondary battery
JP2009072039A (en) * 2007-09-18 2009-04-02 Panasonic Corp Power system
JP2011150876A (en) * 2010-01-21 2011-08-04 Sony Corp Assembled battery and method for controlling the same
JP2012169093A (en) * 2011-02-11 2012-09-06 Denso Corp Battery pack
JP2013110813A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Vehicle

Similar Documents

Publication Publication Date Title
US10141551B2 (en) Battery system
US9362757B2 (en) Solid-state active switch matrix for high energy, moderate power battery systems
US8806240B2 (en) Battery management system, method of controlling the same, and energy storage system including the battery management system
JP5682583B2 (en) Lithium ion secondary battery charge / discharge method and charge / discharge system
EP3078073B1 (en) Device and method for controlling a plurality of cells of a battery
US20120274145A1 (en) Circuit for Rendering Energy Storage Devices Parallelable
US20130022843A1 (en) Assembled battery and method of controlling assembled battery
US20160156202A1 (en) Battery pack and method for controlling the same
US20150288219A1 (en) Portable Power Bank
US20110181245A1 (en) Unitized charging and discharging battery management system and programmable battery management module thereof
CN105518924A (en) Battery apparatus and electric vehicle
JP2014511095A (en) Rechargeable battery system and method of operating the same
US20110175564A1 (en) Battery pack including sensing board and power storage system employing the same
JP2009183105A (en) Charge control circuit, battery pack, and charging system
KR102429438B1 (en) A Hybrid Method with Serial and Parallel Charging Apparatus for Balanced Charging of EV Batteries
JP6439866B2 (en) Power storage device and connection control method
JP2012130158A (en) Power supply device
JPWO2013038764A1 (en) Secondary battery system and secondary battery operation method
US20060250112A1 (en) Battery charger
JP2013162597A (en) Assembled battery discharge control system and assembled battery discharge control method
JP2016208832A (en) Battery control apparatus, battery module, battery pack, and battery control method
JP2013042598A (en) Charge/discharge controller
US20160164320A1 (en) Charging system with an enhanced charging efficiency and charging device and power storage equipment
JP2013146159A (en) Charge control system and charge control method of battery pack
WO2015119011A1 (en) Power storage device and uninterruptible power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP