JP2013162597A - Assembled battery discharge control system and assembled battery discharge control method - Google Patents

Assembled battery discharge control system and assembled battery discharge control method Download PDF

Info

Publication number
JP2013162597A
JP2013162597A JP2012021633A JP2012021633A JP2013162597A JP 2013162597 A JP2013162597 A JP 2013162597A JP 2012021633 A JP2012021633 A JP 2012021633A JP 2012021633 A JP2012021633 A JP 2012021633A JP 2013162597 A JP2013162597 A JP 2013162597A
Authority
JP
Japan
Prior art keywords
battery
assembled battery
discharge
voltage
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012021633A
Other languages
Japanese (ja)
Inventor
Riichi Kitano
利一 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2012021633A priority Critical patent/JP2013162597A/en
Publication of JP2013162597A publication Critical patent/JP2013162597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize stored energy by extending an overall discharge time of an assembled battery even if there is an anomalous secondary battery.SOLUTION: An assembled battery discharge control system includes: diodes 3 connected in parallel with respective cells 2 to permit only a flow of current in a direction of discharge from an assembled battery 20; disconnection switches 4 disposed for the respective cells 2 to disconnect the cells 2 from the assembled battery 20; and a controller 5 for monitoring battery states of the respective cells 2 including voltage and temperature, and when the battery state of a certain cell 2 reaches a predetermined anomalous state during discharge, disconnecting the cell 2 from the assembled battery 20 by means of the disconnection switch 4.

Description

この発明は、二次電池を複数直列に接続した組電池の放電を制御する、組電池放電制御システムおよび組電池放電制御方法に関する。   The present invention relates to an assembled battery discharge control system and an assembled battery discharge control method for controlling discharge of an assembled battery in which a plurality of secondary batteries are connected in series.

例えば、リチウムイオン二次電池は、エネルギー密度が高い、自己放電量が少ない、などという利点を有し、これまで、携帯電話やラップトップパソコン等の小型電子機器用の電源として使用されてきた。さらに、近年では、電気自動車用電池として有力視されており、産業用のバックアップ電池としての用途も広がりつつある。使用に当たっては、使用目的に応じた電圧や容量を得るために、単電池であるリチウムイオンセルを複数直列に接続して組電池を構成したり、さらに、それらの組電池を並列に接続して使用したりする場合がある。   For example, lithium ion secondary batteries have advantages such as high energy density and low self-discharge, and have been used as power sources for small electronic devices such as mobile phones and laptop computers. Furthermore, in recent years, it has been regarded as a promising battery for electric vehicles, and its use as an industrial backup battery is expanding. In use, in order to obtain a voltage and capacity according to the purpose of use, a plurality of lithium ion cells, which are single cells, are connected in series to form an assembled battery, and further, these assembled batteries are connected in parallel. It may be used.

このような組電池を充電する場合、各リチウムイオンセルの電圧にバラツキが生じる場合がある。すなわち、一部のリチウムイオンセルの充電電圧が高く過充電状態となり、他の一部のリチウムイオンセルでは充電電圧が低い充電不足状態(満充電に至らない状態)となる場合がある。このため、バラツキをなくして各リチウムイオンセルを適正に充電するために、バイパス回路(抵抗)を設ける技術が知られている(例えば、特許文献1参照。)。この技術では、直列に接続された各リチウムイオンセルにバイパス回路が設けられ、充電時に、あるリチウムイオンセルの電圧が適正な充電電圧範囲(許容充電電圧範囲)の上限を超えた場合に、このセルに対応するバイパス回路によって、このセルへの充電電流をバイパスし、かつこのセルを放電(バイパス放電)させる。これにより、充電電圧が高いリチウムイオンセルの電圧を下げ、電圧が低いリチウムイオンセルの充電を促進する、というものである。   When charging such an assembled battery, the voltage of each lithium ion cell may vary. That is, the charge voltage of some lithium ion cells is high and the battery is overcharged, and in some other lithium ion cells, the charge voltage is low and the battery is undercharged (not fully charged). For this reason, a technique of providing a bypass circuit (resistance) in order to properly charge each lithium ion cell without variation is known (see, for example, Patent Document 1). In this technology, each lithium ion cell connected in series is provided with a bypass circuit, and when the voltage of a certain lithium ion cell exceeds the upper limit of an appropriate charging voltage range (allowable charging voltage range) during charging, By the bypass circuit corresponding to the cell, the charging current to the cell is bypassed, and the cell is discharged (bypass discharge). Thereby, the voltage of the lithium ion cell having a high charging voltage is lowered, and the charging of the lithium ion cell having a low voltage is promoted.

特開2002−064947号公報Japanese Patent Application Laid-Open No. 2002-064947

ところで、組電池を放電させる場合、従来、放電中にいずれかのセル(特定セル)の電圧が放電終止電圧(放電を終了すべき電圧)に達すると、組電池全体の放電を終了させていた。なぜなら、その後も放電を継続すると、特定セルが過放電状態となり、異常加熱などが生じるおそれがあるからである。一方、劣化度のバラツキや製造上のバラツキなどにより、組電池のなかには充電状態(SOC:State Of Charge)が低く、放電時の電圧降下が大きい(早い)リチウムイオンセルが存在する場合がある。そして、放電中にこのようなセルの電圧が早期に放電終止電圧に達した場合、他の健全なセルの電圧が放電終止電圧に達していないにもかかわらず、組電池全体の放電を終了しなければならず、放電容量・放電時間が低下してしまい、他の健全なセルに放電可能なエネルギーが残される結果となり、組電池として効率的な運用ができない、という問題が生じていた。   By the way, when discharging the assembled battery, conventionally, when the voltage of any cell (specific cell) reaches the discharge end voltage (voltage at which discharge should be terminated) during the discharge, the discharge of the entire assembled battery is terminated. . This is because if the discharge is continued after that, the specific cell may be in an overdischarged state and abnormal heating or the like may occur. On the other hand, due to variations in the degree of deterioration, manufacturing variations, and the like, there may be lithium ion cells in which the state of charge (SOC) is low and the voltage drop during discharge is large (fast). If the voltage of such a cell reaches the discharge end voltage early during discharge, the discharge of the entire assembled battery is terminated even though the voltage of other healthy cells has not reached the discharge end voltage. As a result, the discharge capacity and discharge time are reduced, and energy that can be discharged is left in other healthy cells, resulting in a problem that the battery pack cannot be efficiently operated.

例えば、バックアップ用の組電池の場合、特定セルの電圧が放電終止電圧に達した時点で、組電池を系統から切り離さなければならず、バックアップ時間が著しく短縮されてしまう。殊に、1組の組電池しか設置されていない場合には、バックアップ機能が失われ、設備の運用に大きな支障をきたすことになる。また、より多くのセルで構成され、高電圧の組電池を必要とするHVDC(高電圧直流)給電システムや無停電電源装置(UPS:Uninterruptible Power Supply)では、大きな問題となる。さらに、このような問題は、特定セルの電圧が早期に放電終止電圧に達した場合のみならず、一部のセルの異常(温度上昇など)のために組電池全体の放電を終了しなければならない、という場合にも生じるものであった。   For example, in the case of an assembled battery for backup, when the voltage of a specific cell reaches the discharge end voltage, the assembled battery must be disconnected from the system, and the backup time is significantly shortened. In particular, when only one set of assembled batteries is installed, the backup function is lost, which greatly impedes the operation of the facility. In addition, it becomes a big problem in an HVDC (High Voltage Direct Current) power supply system and an uninterruptible power supply (UPS) that are composed of more cells and require a high voltage assembled battery. Furthermore, such a problem occurs not only when the voltage of a specific cell reaches the end-of-discharge voltage at an early stage, but also when the discharge of the entire assembled battery has to be terminated due to an abnormality (such as a temperature rise) of some cells. It also occurred when it was not possible.

そこでこの発明は、異常な二次電池が存在する場合であっても、組電池全体の放電時間を延命・延長させ、蓄積されたエネルギーを有効活用できる組電池放電制御システムおよび組電池放電制御方法を提供することを目的とする。   Therefore, the present invention provides an assembled battery discharge control system and an assembled battery discharge control method capable of extending and extending the discharge time of the entire assembled battery and effectively utilizing the accumulated energy even when an abnormal secondary battery exists. The purpose is to provide.

上記目的を達成するために請求項1に記載の発明は、二次電池が複数直列に接続された組電池の放電を制御する組電池放電制御システムであって、前記各二次電池に対して並列に接続され、前記組電池からの放電方向の電流の流れのみを許容するバイパス経路と、前記各二次電池に対して設けられ、該二次電池を前記組電池から切り離す切離手段と、前記各二次電池の電圧や温度を含む電池状態を監視し、放電中に前記二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記切離手段によって前記組電池から切り離す制御手段と、を備えることを特徴とする。   In order to achieve the above object, the invention described in claim 1 is an assembled battery discharge control system for controlling discharge of an assembled battery in which a plurality of secondary batteries are connected in series, and for each of the secondary batteries. A bypass path connected in parallel and allowing only a current flow in the discharge direction from the assembled battery; and a disconnecting means provided for each of the secondary batteries, and separating the secondary battery from the assembled battery; The battery state including the voltage and temperature of each secondary battery is monitored, and when the battery state of the secondary battery reaches a predetermined abnormal state during discharging, the secondary battery is assembled by the disconnecting means. And a control means for separating from the battery.

この発明によれば、放電中に二次電池の電池状態が所定の異常状態になると、例えば、電圧が放電終止電圧に達すると、この二次電池が切離手段によって組電池から切り離され、この二次電池のバイパス経路を経由して、他の二次電池からの放電電流が流れる。   According to this invention, when the battery state of the secondary battery becomes a predetermined abnormal state during discharge, for example, when the voltage reaches the discharge end voltage, the secondary battery is disconnected from the assembled battery by the disconnecting means, A discharge current from another secondary battery flows through the bypass path of the secondary battery.

請求項2に記載の発明は、二次電池が複数直列に接続された組電池の放電を制御する組電池放電制御方法であって、前記各二次電池に対して、前記組電池からの放電方向の電流の流れのみを許容するバイパス経路を、並列に接続し、前記各二次電池を前記組電池から切り離し可能に接続し、前記各二次電池の電圧や温度を含む電池状態を監視し、放電中に前記二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記組電池から切り離す、ことを特徴とする。   The invention according to claim 2 is an assembled battery discharge control method for controlling discharge of an assembled battery in which a plurality of secondary batteries are connected in series, wherein the discharge from the assembled battery is performed for each of the secondary batteries. A bypass path that allows only a current flow in the direction is connected in parallel, each secondary battery is detachably connected from the assembled battery, and the battery state including the voltage and temperature of each secondary battery is monitored. When the battery state of the secondary battery reaches a predetermined abnormal state during discharging, the secondary battery is disconnected from the assembled battery.

請求項1、2に記載の発明によれば、放電中に二次電池の電池状態が所定の異常状態になると、この二次電池が組電池から切り離されるため、残りの二次電池による放電を継続させることができる。つまり、異常な二次電池が早期に放電終止電圧に達するなどのために組電池全体の放電を終了しなければならない、という事態を回避することができ、異常な二次電池が存在する場合であっても、組電池全体の放電時間を延命させ、蓄積されたエネルギーを有効活用することができるとともに、給電信頼性を高めることができる。しかも、二次電池に対してバイパス経路が並列に接続されているため、二次電池を組電池から切り離した際に、瞬断なく放電を継続させることができる。   According to the first and second aspects of the present invention, when the battery state of the secondary battery becomes a predetermined abnormal state during discharging, the secondary battery is disconnected from the assembled battery, so that the remaining secondary batteries are discharged. Can continue. In other words, it is possible to avoid the situation where the discharge of the entire assembled battery has to be terminated due to the abnormal secondary battery reaching the end-of-discharge voltage at an early stage, and when there is an abnormal secondary battery. Even in this case, the discharge time of the entire assembled battery can be extended, the stored energy can be used effectively, and the power supply reliability can be improved. Moreover, since the bypass path is connected in parallel to the secondary battery, when the secondary battery is disconnected from the assembled battery, the discharge can be continued without instantaneous interruption.

この発明の実施の形態に係る組電池放電制御システムを直流電源システムに適用した状態を示す概略構成図である。It is a schematic block diagram which shows the state which applied the assembled battery discharge control system which concerns on embodiment of this invention to the DC power supply system. この発明の実施の形態において、組電池を放電した初期状態を示す図(a)と、放電が進んだ状態を示す図(b)である。In embodiment of this invention, it is the figure (a) which shows the initial state which discharged the assembled battery, and the figure (b) which shows the state which discharge advanced. 図2(b)の状態から放電がさらに進んで、第1のセルの電圧が放電終止電圧に達した状態を示す図(a)と、このセルの切離スイッチがオフされた状態を示す図(b)である。FIG. 2A shows a state where the discharge has further progressed from the state of FIG. 2B and the voltage of the first cell has reached the discharge end voltage, and FIG. 2B shows a state where the disconnect switch of this cell is turned off. (B). 図3(b)の状態から整流器が復電して、すべての切離スイッチがオンされた状態を示す図である。FIG. 4 is a diagram showing a state in which all the disconnect switches are turned on after the rectifier has recovered from the state of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1は、この発明の実施の形態に係る組電池放電制御システム1を直流電源システムに適用した状態を示す概略構成図である。この組電池放電制御システム1は、単電池であるリチウムイオンセル(リチウムイオン二次電池)2が複数直列に接続されたリチウムイオン組電池20の放電を制御するシステムであり、主として、各リチウムイオンセル2に設けられたダイオード(バイパス経路)3および切離スイッチ(切離手段)4と、コントローラ(制御手段)5とを備えている。また、各切離スイッチ4とセルコントローラ5とは、通信(信号伝送)可能に接続されている。   FIG. 1 is a schematic configuration diagram showing a state in which an assembled battery discharge control system 1 according to an embodiment of the present invention is applied to a DC power supply system. This assembled battery discharge control system 1 is a system that controls the discharge of a lithium ion assembled battery 20 in which a plurality of lithium ion cells (lithium ion secondary batteries) 2 that are unit cells are connected in series. A diode (bypass path) 3 and a disconnect switch (disconnect means) 4 provided in the cell 2 and a controller (control means) 5 are provided. Each disconnect switch 4 and the cell controller 5 are connected so that communication (signal transmission) is possible.

ここで、組電池20は、整流器101に接続され、商用電源100からの電力が整流器101で直流に変換されて、組電池20に供給されるようになっている。また、整流器101には直流負荷装置102が接続され、同様に直流電力が直流負荷装置102に供給される。   Here, the assembled battery 20 is connected to the rectifier 101, and the electric power from the commercial power supply 100 is converted into direct current by the rectifier 101 and supplied to the assembled battery 20. Further, a DC load device 102 is connected to the rectifier 101, and DC power is similarly supplied to the DC load device 102.

ダイオード3は、後述するようにして直列に接続されたリチウムイオンセル2と切離スイッチ4とに対して並列に接続され、組電池20からの放電方向の電流の流れのみを許容する機能を備えている。すなわち、直流負荷装置102側への電流(放電電流)の流れのみを許容し、整流器101側からの電流(充電電流)の流れを許容しないようになっている。   The diode 3 is connected in parallel to the lithium ion cell 2 and the disconnect switch 4 connected in series as will be described later, and has a function of allowing only a current flow in the discharge direction from the assembled battery 20. ing. That is, only the flow of current (discharge current) to the DC load device 102 side is allowed, and the flow of current (charge current) from the rectifier 101 side is not allowed.

切離スイッチ4は、リチウムイオンセル2に対して直列に接続され、該当するセル2を組電池20から切り離すスイッチである。すなわち、この切離スイッチ4がオンされている状態では、このセル2が組電池20に接続され、切離スイッチ4がオフされると、このセル2が組電池20から切り離される(バイパスされる。)。そして、通常時はすべての切離スイッチ4がオンされ、コントローラ5によって後述するように制御されるようになっている。   The disconnect switch 4 is a switch that is connected in series to the lithium ion cell 2 and disconnects the corresponding cell 2 from the assembled battery 20. That is, in a state where the disconnect switch 4 is turned on, the cell 2 is connected to the assembled battery 20, and when the disconnect switch 4 is turned off, the cell 2 is disconnected from the assembled battery 20 (bypassed). .) In a normal state, all the disconnect switches 4 are turned on and are controlled by the controller 5 as described later.

コントローラ5は、各リチウムイオンセル2の電圧や温度を含む電池状態を常時測定、監視し、各セル2の電池状態に基づいて、各切離スイッチ4などを制御する制御装置である。すなわち、各セル2の電圧や温度などを計測する計測器を備え、放電中にセル2の電池状態が所定の異常状態に達した場合に、このセル2を該当する切離スイッチ4によって組電池20から切り離す。ここで、所定の異常状態には、セル2の電圧が放電終止電圧に達した状態や、放電途中における電圧が極端・異常に低い(急降下する)状態の他、異常な温度上昇、異常な圧力(内圧)上昇などが含まれる。   The controller 5 is a control device that constantly measures and monitors the battery state including the voltage and temperature of each lithium ion cell 2 and controls each disconnect switch 4 and the like based on the battery state of each cell 2. That is, a measuring instrument that measures the voltage, temperature, and the like of each cell 2 is provided, and when the battery state of the cell 2 reaches a predetermined abnormal state during discharge, the cell 2 is assembled by the corresponding disconnect switch 4. Separate from 20. Here, the predetermined abnormal state includes a state in which the voltage of the cell 2 has reached the end-of-discharge voltage, a state in which the voltage in the middle of the discharge is extremely low or extremely low (a sudden drop), an abnormal temperature rise, and an abnormal pressure. Includes (internal pressure) rise.

さらに、コントローラ5は、整流器101と通信可能に接続され、放電中に整流器101の出力電圧が組電池20の総電圧以上になった場合、つまり商用電源100・整流器101が停電から復旧・復電した場合に、すべての切離スイッチ4(オフ中の切離スイッチ4)をオンし、全セル2を充電するものである。   Further, the controller 5 is communicably connected to the rectifier 101, and when the output voltage of the rectifier 101 becomes equal to or higher than the total voltage of the assembled battery 20 during discharging, that is, the commercial power supply 100 / rectifier 101 is recovered / recovered from a power failure. In this case, all the separation switches 4 (the separation switches 4 being turned off) are turned on to charge all the cells 2.

次に、このような構成の組電池放電制御システム1の作用や、この組電池放電制御システム1による組電池放電制御方法などについて説明する。ここで、リチウムイオンセル2の満充電電圧が4.1Vで、12セルで組電池20が構成されているものとし、また、直流負荷装置102は、定電力負荷でその負荷電力値をQとする。さらに、第1のセル2の充電状態・SOCが低く、放電時の電圧降下が早いものとする。 Next, an operation of the assembled battery discharge control system 1 having such a configuration, an assembled battery discharge control method by the assembled battery discharge control system 1, and the like will be described. Here, it is assumed that the fully charged voltage of the lithium ion cell 2 is 4.1 V, and the assembled battery 20 is composed of 12 cells. The DC load device 102 is a constant power load, and the load power value is Q. To do. Furthermore, the first cell 2 1 in the state of charge · SOC is low, the voltage drop during discharge and QUICKLY.

まず、すべての切離スイッチ4がオンされ、全セル2が組電池20に接続された状態で、商用電源100・整流器101が停電すると、組電池20の放電が開始される。このとき、図2(a)に示すように、各セル2の電圧が例えば4.0Vで、組電池20の総電圧が48Vの場合、放電電流値Iは次のようになる。
放電電流値I=負荷電力Q÷48V
First, when the commercial power supply 100 and the rectifier 101 are powered down in a state where all the disconnect switches 4 are turned on and all the cells 2 are connected to the assembled battery 20, the discharge of the assembled battery 20 is started. At this time, as shown in FIG. 2A, when the voltage of each cell 2 is 4.0 V, for example, and the total voltage of the assembled battery 20 is 48 V, the discharge current value I 0 is as follows.
Discharge current value I 0 = Load power Q ÷ 48V

この放電状態では、コントローラ5によって各セル2の電池状態がリアルタイムに監視され、放電が進行すると、図2(b)に示すように、例えば第1のセル2の電圧が3.2V、他のセル2の電圧が3.5Vで、組電池20の総電圧が41.7Vに達する。この時点での放電電流値Iは次のようになる(I>I)。
放電電流値I=負荷電力Q÷41.7V
In this discharge state, the battery state of each cell 2 is monitored in real time by the controller 5, the discharge progresses, as shown in FIG. 2 (b), for example, the first cell 2 1 voltage is 3.2 V, the other The voltage of the cell 2 is 3.5V, and the total voltage of the assembled battery 20 reaches 41.7V. The discharge current value I 1 at this time is as follows (I 1 > I 0 ).
Discharge current value I 1 = Load power Q ÷ 41.7V

さらに放電が進行すると、図3(a)に示すように、第1のセル2の電圧が放電終止電圧である3.0Vに達し、例えば他のセル2の電圧が3.3Vで、組電池20の総電圧が39.3Vに達する。この時点での放電電流値Iは次のようになる(I>I>I)。
放電電流値I=負荷電力Q÷39.3V
Further discharge progresses, as shown in FIG. 3 (a), in reaching 3.0V first cell 2 1 voltage is final discharge voltage, for example, a voltage of the other cell 2 3.3V, the set The total voltage of the battery 20 reaches 39.3V. The discharge current value I 2 at this time is as follows (I 2 > I 1 > I 0 ).
Discharge current value I 2 = Load power Q ÷ 39.3V

このように第1のセル2の電圧が放電終止電圧に達すると、上記のようにコントローラ5によって、図3(b)に示すように、このセル2の切離スイッチ4がオフされる。これにより、第1のセル2が組電池20から切り離されて放電が終了され、他のセル2からの放電電流が、第1のセル2のダイオード3を介して直流負荷装置102に流れる。つまり、第1のセル2が、ダイオード3を介して短絡状態となる。このとき、ダイオード3による電圧降下を0.5Vとすると、組電池20の総電圧が35.8Vとなり、放電電流値Iは次のようになる(I>I>I>I)。
放電電流値I=負荷電力Q÷35.8V
With such first cell 2 1 voltage reaches the discharge cutoff voltage, the controller 5 as described above, as shown in FIG. 3 (b), disconnecting switches 4 of cells 2 are turned off. Thus, the first cell 2 1 is ended discharge is separated from the assembled battery 20, the discharge current from the other cells 2, flows to the DC load device 102 via a first cell 2 first diode 3 . That is, the first cell 2 1, a short-circuit state through the diode 3. At this time, when a voltage drop due to the diode 3 and 0.5V, the total voltage is 35.8V next battery pack 20, the discharge current value I 3 is as follows (I 3> I 2> I 1> I 0 ).
Discharge current value I 3 = Load power Q ÷ 35.8V

このように第1のセル2が切り離された状態で、その後、残りのセル2による放電が継続される。続いて、いずれかのセル2の電圧が放電終止電圧に達すると、同様にしてこのセル2が組電池20から切り離され、このような制御が、整流器101が復電するまで、あるいは組電池20の総電圧が所定の電圧に達するまで継続される。また、いずれかのセル2の電池状態が上記のような異常状態に達した場合(例えば、異常に温度上昇した場合)にも、同様にしてこのセル2が組電池20から切り離され、残りのセル2による放電が継続される。 In a state where the first cell 2 1 is disconnected, then, is discharged by the remaining cells 2 is continued. Subsequently, when the voltage of any one of the cells 2 reaches the end-of-discharge voltage, the cell 2 is similarly disconnected from the assembled battery 20, and such control is performed until the rectifier 101 returns to power or the assembled battery 20. Until the total voltage reaches a predetermined voltage. Also, when the battery state of any of the cells 2 reaches the abnormal state as described above (for example, when the temperature rises abnormally), the cell 2 is similarly disconnected from the assembled battery 20 and the remaining Discharging by the cell 2 is continued.

一方、放電中に商用電源100・整流器101が復旧・復電すると、上記のようにしてコントローラ5によって、図4に示すように、すべての切離スイッチ4がオンされ、全セル2の充電が開始されるものである。   On the other hand, when the commercial power source 100 and the rectifier 101 are restored and restored during discharging, the controller 5 turns on all the disconnect switches 4 as shown in FIG. 4 to charge all the cells 2 as described above. It will be started.

以上のように、この組電池放電制御システム1および組電池放電制御方法によれば、放電中にいずれかのセル2の電圧が放電終止電圧に達すると、このセル2が組電池20から切り離されるため、このセル2の過放電などを防止して、残りのセル2による放電を継続することができる。つまり、一部のセル2が早期に放電終止電圧に達するために組電池20全体の放電を終了しなければならない、という事態を回避することができ、異常なセル2が存在する場合であっても、組電池20全体の放電時間を延命させ、蓄積されたエネルギーを有効活用することができるとともに、給電信頼性を高めることができる。   As described above, according to the assembled battery discharge control system 1 and the assembled battery discharge control method, when the voltage of any cell 2 reaches the discharge end voltage during discharging, the cell 2 is disconnected from the assembled battery 20. Therefore, the overdischarge of the cell 2 can be prevented and the discharge by the remaining cells 2 can be continued. That is, it is possible to avoid a situation in which the discharge of the entire assembled battery 20 has to be terminated in order for some of the cells 2 to reach the end-of-discharge voltage early, and there is an abnormal cell 2. In addition, the discharge time of the assembled battery 20 as a whole can be extended, the stored energy can be used effectively, and the power supply reliability can be improved.

同様に、いずれかのセル2が上記のような異常状態になった場合にも、このセル2が組電池20から切り離されて、残りのセル2による放電が継続される。このように、一部のセル2に異常が生じても、異常なセル2の過放電などを防止しつつ、残りのセル2による放電を継続することができ、給電信頼性を高めることができる。   Similarly, when any one of the cells 2 is in an abnormal state as described above, the cell 2 is disconnected from the assembled battery 20 and the discharge by the remaining cells 2 is continued. As described above, even if some of the cells 2 are abnormal, discharge by the remaining cells 2 can be continued while preventing overdischarge of the abnormal cells 2 and the reliability of power supply can be improved. .

しかも、各セル2に対してダイオード3が並列に接続されているため、切離スイッチ4をオフしてセル2を組電池20から切り離した際に、残りのセル2による放電を瞬断なく継続させることができる。   Moreover, since the diodes 3 are connected in parallel to each cell 2, when the switch 2 is turned off and the cell 2 is disconnected from the assembled battery 20, the discharge by the remaining cells 2 continues without interruption. Can be made.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、組電池放電制御システム1を直流電源システムに適用した場合について説明したが、無停電電源装置やHVDC給電システム、電気自動車などにも適用することができる。例えば、無停電電源装置に適用する場合、数十から百以上の多数のセル2によって組電池20が構成されているため、数セルを組電池20から切り離したとしても、組電池20全体の容量低下は少なく、組電池20全体の放電時間をより延命させ、蓄積されたエネルギーをより有効活用することができるとともに、給電信頼性を高めることができる。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the case where the assembled battery discharge control system 1 is applied to a DC power supply system has been described, but the present invention can also be applied to an uninterruptible power supply device, an HVDC power supply system, an electric vehicle, and the like. For example, when applied to an uninterruptible power supply, the assembled battery 20 is composed of a large number of cells 2 from several tens to a hundred or more, so even if several cells are separated from the assembled battery 20, the capacity of the entire assembled battery 20 The decrease is small, the discharge time of the entire assembled battery 20 can be extended, the accumulated energy can be used more effectively, and the power supply reliability can be improved.

さらに、リチウムイオンセル2に限らず、鉛蓄電池など、広く二次電池一般に適用することができ、また、直流負荷装置102が定電力負荷でなくてもよいことは勿論である。   Furthermore, it is not limited to the lithium ion cell 2 and can be widely applied to secondary batteries in general, such as a lead storage battery, and the DC load device 102 may not be a constant power load.

1 組電池放電制御システム
2 リチウムイオンセル(リチウムイオン二次電池)
20 リチウムイオン組電池
3 ダイオード(バイパス経路)
4 切離スイッチ(切離手段)
5 コントローラ(制御手段)
1 Battery pack discharge control system 2 Lithium ion cell (lithium ion secondary battery)
20 Lithium-ion battery pack 3 Diode (bypass path)
4 Disconnect switch (Disconnect means)
5 Controller (control means)

Claims (2)

二次電池が複数直列に接続された組電池の放電を制御する組電池放電制御システムであって、
前記各二次電池に対して並列に接続され、前記組電池からの放電方向の電流の流れのみを許容するバイパス経路と、
前記各二次電池に対して設けられ、該二次電池を前記組電池から切り離す切離手段と、
前記各二次電池の電圧や温度を含む電池状態を監視し、放電中に前記二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記切離手段によって前記組電池から切り離す制御手段と、
を備えることを特徴とする組電池放電制御システム。
An assembled battery discharge control system for controlling discharge of an assembled battery in which a plurality of secondary batteries are connected in series,
A bypass path connected in parallel to each of the secondary batteries and allowing only a current flow in the discharge direction from the assembled battery;
A separation means provided for each of the secondary batteries, for separating the secondary battery from the assembled battery;
The battery state including the voltage and temperature of each secondary battery is monitored, and when the battery state of the secondary battery reaches a predetermined abnormal state during discharging, the secondary battery is assembled by the disconnecting means. Control means for disconnecting from the battery;
An assembled battery discharge control system comprising:
二次電池が複数直列に接続された組電池の放電を制御する組電池放電制御方法であって、
前記各二次電池に対して、前記組電池からの放電方向の電流の流れのみを許容するバイパス経路を、並列に接続し、
前記各二次電池を前記組電池から切り離し可能に接続し、
前記各二次電池の電圧や温度を含む電池状態を監視し、
放電中に前記二次電池の電池状態が所定の異常状態に達した場合に、該二次電池を前記組電池から切り離す、
ことを特徴とする組電池放電制御方法。
A battery pack discharge control method for controlling discharge of a battery pack in which a plurality of secondary batteries are connected in series,
For each secondary battery, a bypass path that allows only a current flow in the discharge direction from the assembled battery is connected in parallel,
Each of the secondary batteries is detachably connected from the assembled battery,
Monitor battery status including voltage and temperature of each secondary battery,
When the battery state of the secondary battery reaches a predetermined abnormal state during discharging, the secondary battery is disconnected from the assembled battery;
And a battery pack discharge control method.
JP2012021633A 2012-02-03 2012-02-03 Assembled battery discharge control system and assembled battery discharge control method Pending JP2013162597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021633A JP2013162597A (en) 2012-02-03 2012-02-03 Assembled battery discharge control system and assembled battery discharge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021633A JP2013162597A (en) 2012-02-03 2012-02-03 Assembled battery discharge control system and assembled battery discharge control method

Publications (1)

Publication Number Publication Date
JP2013162597A true JP2013162597A (en) 2013-08-19

Family

ID=49174443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021633A Pending JP2013162597A (en) 2012-02-03 2012-02-03 Assembled battery discharge control system and assembled battery discharge control method

Country Status (1)

Country Link
JP (1) JP2013162597A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752640A (en) * 2013-12-11 2015-07-01 三菱自动车工业株式会社 A power supply control device and a packed cell
EP3069919A1 (en) * 2015-03-16 2016-09-21 Thunder Power Hong Kong Ltd. Battery pack and connecting circuits of battery modules
US9954260B2 (en) 2015-03-16 2018-04-24 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
JP2018107920A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Controller of battery module
US10173687B2 (en) 2015-03-16 2019-01-08 Wellen Sham Method for recognizing vehicle driver and determining whether driver can start vehicle
US10384533B2 (en) 2015-03-16 2019-08-20 Thunder Power New Energy Vehicle Development Company Limited Fastening method for components
US10450007B2 (en) 2015-03-16 2019-10-22 Thunder Power New Energy Vehicle Development Company Limited Underbody manufacturing method and vehicle underbody
US10500919B2 (en) 2015-03-16 2019-12-10 Thunder Power New Energy Vehicle Development Company Limited Fastening method for components
US10703211B2 (en) 2015-03-16 2020-07-07 Thunder Power New Energy Vehicle Development Company Limited Battery pack, battery charging station, and charging method
CN112975315A (en) * 2021-02-05 2021-06-18 扬州京柏自动化科技有限公司 Key assembling equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283210A (en) * 1993-01-29 1994-10-07 Canon Inc Storage battery device and power system
JP2000354333A (en) * 1999-06-08 2000-12-19 Sony Corp Power unit and battery unit
JP2002272010A (en) * 2001-03-08 2002-09-20 Kyushu Electric Power Co Inc Charging and discharging circuit of group of batteries connected in series
JP2011155774A (en) * 2010-01-27 2011-08-11 Toyota Motor Corp Control device of power storage element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283210A (en) * 1993-01-29 1994-10-07 Canon Inc Storage battery device and power system
JP2000354333A (en) * 1999-06-08 2000-12-19 Sony Corp Power unit and battery unit
JP2002272010A (en) * 2001-03-08 2002-09-20 Kyushu Electric Power Co Inc Charging and discharging circuit of group of batteries connected in series
JP2011155774A (en) * 2010-01-27 2011-08-11 Toyota Motor Corp Control device of power storage element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752640A (en) * 2013-12-11 2015-07-01 三菱自动车工业株式会社 A power supply control device and a packed cell
EP3069919A1 (en) * 2015-03-16 2016-09-21 Thunder Power Hong Kong Ltd. Battery pack and connecting circuits of battery modules
US9954260B2 (en) 2015-03-16 2018-04-24 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
US10173687B2 (en) 2015-03-16 2019-01-08 Wellen Sham Method for recognizing vehicle driver and determining whether driver can start vehicle
US10384533B2 (en) 2015-03-16 2019-08-20 Thunder Power New Energy Vehicle Development Company Limited Fastening method for components
US10450007B2 (en) 2015-03-16 2019-10-22 Thunder Power New Energy Vehicle Development Company Limited Underbody manufacturing method and vehicle underbody
US10500919B2 (en) 2015-03-16 2019-12-10 Thunder Power New Energy Vehicle Development Company Limited Fastening method for components
US10703211B2 (en) 2015-03-16 2020-07-07 Thunder Power New Energy Vehicle Development Company Limited Battery pack, battery charging station, and charging method
JP2018107920A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Controller of battery module
CN112975315A (en) * 2021-02-05 2021-06-18 扬州京柏自动化科技有限公司 Key assembling equipment
CN112975315B (en) * 2021-02-05 2023-02-10 扬州京柏自动化科技有限公司 Key assembling equipment

Similar Documents

Publication Publication Date Title
JP2013162597A (en) Assembled battery discharge control system and assembled battery discharge control method
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
JP6955972B2 (en) Control devices, control systems, power storage devices and programs
US20110181245A1 (en) Unitized charging and discharging battery management system and programmable battery management module thereof
JP5916429B2 (en) Battery pack control system and battery pack control method
US20140266049A1 (en) Detection and prevention of short formation in battery cells
JP2013192389A (en) Discharge control system and discharge control method for battery pack
JP2008043009A (en) Battery pack and control method
JP5361529B2 (en) Lithium-ion battery charge control device and lithium-ion battery system
JP5868013B2 (en) Lithium ion battery pack charge control device, control method, and lithium ion battery pack system
WO2020080543A1 (en) Power storage system
CN112655131A (en) Power storage device and charging method
WO2015112178A2 (en) Voltage regulation for battery strings
JP7466198B2 (en) Energy Storage System
JP4633615B2 (en) Battery pack and method of charging the battery pack
JP2006223050A (en) Power supply system
KR20170060849A (en) Battery Pack and Electric Vehicle Including The Same
JP2011029010A (en) Lithium ion secondary battery system and power supply method to management device
JP5409163B2 (en) Lithium-ion battery management device, management method, and lithium-ion battery system
JP2005253273A (en) Dc power supply system
JP6214131B2 (en) Battery pack charging system and battery pack charging method
JP5541682B2 (en) Lithium-ion battery charging system and charging method
KR20120127935A (en) System for energy storage and method for control the same
JP2013146159A (en) Charge control system and charge control method of battery pack
KR102222119B1 (en) battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201