WO2015098111A1 - METHOD FOR ESTABLISHING iPS CELLS AND METHOD FOR LONG-TERM MAINTENANCE OF STEM CELLS - Google Patents

METHOD FOR ESTABLISHING iPS CELLS AND METHOD FOR LONG-TERM MAINTENANCE OF STEM CELLS Download PDF

Info

Publication number
WO2015098111A1
WO2015098111A1 PCT/JP2014/006454 JP2014006454W WO2015098111A1 WO 2015098111 A1 WO2015098111 A1 WO 2015098111A1 JP 2014006454 W JP2014006454 W JP 2014006454W WO 2015098111 A1 WO2015098111 A1 WO 2015098111A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
serum
medium
ips
free
Prior art date
Application number
PCT/JP2014/006454
Other languages
French (fr)
Japanese (ja)
Inventor
哲治 岡本
佐知子 山崎
顕 嶋本
栄俊 田原
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014087314A external-priority patent/JP6516280B2/en
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Publication of WO2015098111A1 publication Critical patent/WO2015098111A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/44Thiols, e.g. mercaptoethanol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/46Amines, e.g. putrescine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1361Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from dental pulp or dental follicle stem cells

Definitions

  • the present invention relates to a method for establishing induced pluripotent stem cells (iPS cells) and a method for long-term maintenance of the undifferentiated state and differentiation pluripotency of stem cells. Specifically, the present invention relates to a method for inducing iPS cells under serum-free culture conditions without using feeder cells, and passage of stem cells by adding tumor growth factor- ⁇ (TGF- ⁇ ) to the medium. The present invention relates to a method for long-term maintenance of the undifferentiated state and differentiation pluripotency of stem cells, characterized by culturing.
  • TGF- ⁇ tumor growth factor- ⁇
  • embryonic stem cells embryonic stem cell: hereinafter referred to as ES cells
  • induced pluripotent stem cells induced pluripotent stem cell: hereinafter referred to as iPS cells
  • Stem cells are self-replicating and multipotent cells and have the ability to differentiate into various cell lineages. Since Yamanaka et al. Of Kyoto University reported the establishment of mouse iPS cells in 2006, it has attracted a great deal of attention as an alternative to ES cells that remain ethical problems using fertilized eggs.
  • iPS cells are also referred to as induced pluripotent stem cells.
  • Reprogramming genes (Oct3 / 4, Sox2, Klf4, c-Myc) are introduced into terminally differentiated cells such as skin using viruses, plasmid vectors, etc. By programming, it becomes a universal cell that can be differentiated into all cell types except for extraembryonic tissues.
  • These stem cells generally use an alternative serum-supplemented medium containing serum or animal-derived components, and increase feeder cells such as inactivated mouse embryonic fibroblasts (MEF) on the dish and support them. It has been cultured as. By the day before the passage of iPS cells, MEF cells were treated with mitomycin C or ⁇ -irradiated in advance to prepare feeder cells with suppressed proliferation (inactivated), and then seeded on gelatin-coated dishes. After sufficient adhesion and extension on the dish, iPS cells are seeded thereon and co-cultured. In addition, it is necessary to separate feeder cells and stem cells such as ES cells and iPS cells as much as possible during passage.
  • feeder cells such as ES cells and iPS cells
  • somatic differentiated cells before being induced by iPS cells are also cultured in a medium supplemented with fetal bovine serum, human serum or human autoserum.
  • somatic differentiated cells somatic cells
  • fetal bovine serum human serum or human autoserum.
  • the feeder cells to be used have a great variety, kind of treatment, and lot difference, and the state of the stem cells is considerably influenced. Therefore, it was impossible to culture the stem cells under stable conditions.
  • Stem cells cultured under conditions with many indeterminate elements contain many unknown factors in the medium, making standardization of basic research such as tissue / organ development and regeneration difficult, and maintaining undifferentiation. It is difficult to compare the functions of necessary growth factors and differentiation-inducing factors. In addition, due to the action of various components contained in the medium, it is difficult to induce differentiation into specific cells. Furthermore, considering clinical application to regenerative medicine, there are problems with safety such as contamination of unknown factors and risk factors such as pathogens. It becomes. Therefore, in order to eliminate these elements, it is necessary to standardize the culture method under the culture conditions whose composition is clear. In particular, development of a method for producing iPS cells using a serum-free medium with a clear composition has been desired.
  • Non-Patent Document 1 a tumor (transforming) growth factor (TGF) is also added to the medium.
  • TGF tumor growth factor
  • the serum-free medium used in Patent Document 1 does not contain TGF, and that used in Non-Patent Document 1 is a serum-containing medium, which is different from the present invention.
  • Stem cells cultured under conditions with many indefinite elements such as serum-containing medium contain many unknown factors in the medium, making standardization of basic research such as tissue and organ development and regeneration difficult and undifferentiated It is difficult to compare and examine the functions of growth factors and differentiation-inducing factors that are necessary for maintenance of cancer. In addition, it is difficult to induce differentiation into specific cells due to the action of various components contained in the medium. In addition, when considering clinical application to regenerative medicine, it is necessary to eliminate risk factors such as unknown factors and pathogens from the viewpoint of safety. There is. Therefore, in order to solve these problems, it is necessary to establish and standardize a culture method using a medium whose composition is clear and does not contain risk factors.
  • a specific problem to be solved by the present invention is to cultivate somatic cells before induction into iPS cells under a condition that does not include an uncertain element and a risk factor, and iPS under a condition that does not include an uncertain element and a risk factor. It was to produce cells and to maintain stem cells such as iPS cells in culture. Specifically, specific problems to be solved by the present invention include culturing somatic cells under serum-free culture conditions, producing iPS cells under serum-free culture conditions without using feeder cells, and feeders. It was to provide a culture method that can maintain the undifferentiation and differentiation pluripotency of stem cells such as iPS cells for a long period of time without using cells.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems, a method for serum-free culture of somatic cells before induction into iPS cells, and iPS cells by culturing without using feeder cells in a serum-free medium. Established the establishment method. In particular, it has been found preferable to use fibronectin as an adhesion factor. According to the method of the present invention, the induction efficiency of human iPS cells was 10 times or more that of the conventional method (culture conditions with serum). In addition, the present inventors have identified TGF- ⁇ as a cell growth factor capable of maintaining stem cell undifferentiation and pluripotency even after long-term passage in the above culture system. Based on these matters, the present invention has been completed.
  • the present invention provides the following: (1) Production of iPS cells characterized by inducing induced pluripotent stem cells (iPS cells) by culturing reprogrammed somatic cells without using feeder cells in a serum-free medium. Method. (2) The method according to (1), wherein fibronectin is used as an adhesion factor. (3) The method according to (1) or (2), wherein the reprogramming treatment of somatic cells is performed in a serum-free medium. (4) The method according to any one of (1) to (3), wherein the somatic cells before reprogramming are cultured from a primary culture in a serum-free medium. (5) The method according to any one of (1) to (4), wherein the iPS cell is a human iPS cell.
  • a serum-free culture substrate for inducing iPS cells containing fibronectin as an adhesion factor (however, the culture substrate does not contain feeder cells).
  • An undifferentiated state of a stem cell characterized in that a stem cell is subcultured by adding a protein belonging to the tumor growth factor- ⁇ (TGF- ⁇ ) family to a serum-free medium without using a feeder cell And methods of maintaining pluripotency.
  • TGF- ⁇ tumor growth factor- ⁇
  • the iPS cells obtained by the method according to any one of (1) to (5) are subcultured without using feeder cells in a serum-free medium to which a protein belonging to the TGF- ⁇ family is added.
  • a method for maintaining the undifferentiated state and pluripotency of iPS cells (12) Serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, including proteins belonging to the TGF- ⁇ family (however, the culture substrate does not include feeder cells) .
  • the culture substrate according to (12) or (13), wherein the stem cells are iPS cells.
  • a kit for producing a serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells comprising a serum-free medium component and a TGF- ⁇ family protein (however, The culture substrate does not contain feeder cells).
  • somatic cells are cultured using a serum-free medium with a clear component, and in the culture environment using a serum-free medium with a clear component, without using feeder cells,
  • a method for producing iPS cells by gene transfer and induction, etc., and a culture substrate material and a culture solution capable of maintaining and culturing stem cells such as ES cells and iPS cells while maintaining an undifferentiated state and differentiation pluripotency A method for culturing stem cells using the above is provided.
  • the method for producing iPS cells of the present invention it was found that iPS cells can be induced with an efficiency 10 times or more that of the conventional method using a serum-containing medium.
  • iPS cells can be induced with high efficiency in the present invention. And the undifferentiated state and differentiation pluripotency of a stem cell can be maintained over a long period of time.
  • the culture medium there are almost no unknown factors in the culture medium, and it is easy to standardize basic research such as tissue and organ development and regeneration, and the functions of growth factors and differentiation-inducing factors necessary for maintaining undifferentiation are compared. It is also easy to do.
  • the present invention since the types of components contained in the medium are relatively few and known, differentiation induction into specific cells is easy, and highly safe cells can be obtained considering clinical application to regenerative medicine. can get.
  • FIG. 1 is a microscopic image showing the morphology of TIG-3 cell-derived hiPS cells induced on various extracellular matrices using serum-free medium hESF9.
  • FIG. 1A shows the results of examining the influence of adhesion factors when inducing human iPS cells using a serum-free medium.
  • FIG. 1B shows the form of human iPS cells (hiPS cells) 2 days after seeding on each extracellular matrix using serum-free medium hESF9.
  • FIG. 1C is an ALP-stained image (36 days after infection) of hiPS cells on each extracellular matrix.
  • the scale bar in FIGS. 1A-C is 200 ⁇ m.
  • FIG. 2 is a microscopic image showing cell morphology on various extracellular matrices after induction.
  • FIG. 3 is a micrograph showing the examination results of serum-free culture conditions when virus infection is established and a graph showing virus infection efficiency. The results of transfection into PLAT-A using EGFP and infection into TIG-3 cells are shown.
  • FIG. 4 is a scheme and microscopic image showing the induction of hiPS cells using dental pulp-derived cells under serum-free culture conditions without using feeder cells.
  • FIG. 4A is a scheme showing an outline up to hiPS cell induction.
  • Day-7-7 Primary culture of dental pulp cells on type I collagen-coated dish using serum-free medium RD6F.
  • FIG. 4B is a phase contrast microscopic image of dental pulp cells in serum-free medium RD6F before introduction of reprogramming gene.
  • FIG. 4C is a phase-contrast microscope image of pulp cells that have been passaged 4 times on a type I collagen-coated dish using serum-free medium RD6F.
  • FIG. 4D is an ALP-stained image 43 days after infection.
  • FIG. 5 shows the results of analyzing the characteristics of human iPS cells derived from dental pulp-derived cells under culture conditions using serum-free medium hESF9 without using feeder cells.
  • FIG. 5A is a phase contrast image of human iPS cells maintained in serum-free medium hESF9 or hESF9T medium (serum-free medium obtained by adding TGF- ⁇ 1 to hESF9).
  • DP-A-iPS-CL1 Phase contrast image of cells maintained for 2 generations (passage 2) or 21 generations (passage 21) on fibronectin-coated dishes using serum-free medium hESF9.
  • the right side shows a phase contrast image of cells maintained for 5 generations (passage 5) on feeder cells using a serum-supplemented medium for human ES cells.
  • DP-F-iPS-CL4, -CL6, -CL16 Cells maintained in the 58s (passage 58), 59s (passage 59) or 21s (passage 21) on the fibronectin-coated dish using the serum-free medium hESF9T Phase contrast image.
  • the right side shows a phase contrast image of a cell (CL31) maintained for 19 generations (passage 19) on a feeder cell using a serum-supplemented medium for human ES cells.
  • the scale bar is 200 ⁇ m.
  • FIG. 5B shows flow cytometry using cells that have been passaged and maintained on a fibronectin-coated dish for a long time using serum-free medium hESF9 or hESF9T, and antibodies against Oct3 / 4 and SSEA-4 that are undifferentiated markers. The result of having analyzed by is shown.
  • FIG. 5C shows the results of comprehensive gene expression analysis. Cluster analysis using a microarray was performed. DP cell (dental pulp cell), DP-iPS cells (dental pulp-derived human iPS cells) maintained on a fibronectin-coated dish using serum-free medium hESF9 or hESF9T, and feeder medium using serum medium for human ES cells The maintained human iPS cells (Tic) were analyzed.
  • FIG. 6 shows the results of comprehensive gene expression analysis (scatter-plot analysis).
  • FIG. 7 shows the results of examining the effect of TGF- ⁇ 1 under serum-free culture conditions.
  • FIG. 7A shows the cell morphology when various concentrations of TGF- ⁇ 1 (0, 0.1, 1, 2, 5, 10 ng / ml) are added.
  • FIG. 7B shows the results of gene expression analysis of human iPS cells using Droplet® Digital-PCR when TGF- ⁇ 1 was added. Each expression intensity was corrected by GAPDH.
  • FIG. 8 shows the results of pluripotency analysis of human iPS cells induced and maintained under serum-free culture conditions.
  • FIG. 8A shows the results of studies on the expression of various differentiation markers.
  • FIG. 8B shows the results of examination of teratoma formation ability.
  • the scale bar is 100 ⁇ m.
  • FIG. 9 shows the results of cell proliferation ability and karyotype analysis.
  • FIG. 9A shows the results of examining the cell doubling time of human iPS cells induced under serum-free culture conditions and passaged and maintained for 21 passages with hESF9T.
  • FIG. 9B shows the result of karyotype simplified analysis of human iPS cells induced under serum-free culture conditions and maintained for 20 passages in serum-free medium hESF9T.
  • FIG. 10 shows the results of studies on universality in passage and maintenance of human iPS cells using serum-free culture conditions.
  • the scale bar is 200 ⁇ m.
  • the upper part of FIG. 10 shows a phase contrast microscopic image of human iPS cells maintained on fibronectin using hESF9T medium.
  • the lower panel shows a phase contrast microscopic image of human iPS cells maintained on fibronectin using DF8T medium. It is shown that both serum-free media maintain human ES cell-like morphology.
  • the present invention is characterized in that induced pluripotent stem cells (iPS cells) are induced by culturing somatic cells subjected to reprogramming treatment in a serum-free medium without using feeder cells.
  • iPS cells induced pluripotent stem cells
  • a method for producing iPS cells is provided.
  • an iPS cell refers to a cell that has been subjected to reprogramming by introducing a plurality of genes into a somatic cell to have differentiation pluripotency and self-replication ability.
  • iPS cells may be derived from somatic cells of any animal, and iPS cells derived from somatic cells such as humans, monkeys, mice, rats, dogs, cats, horses, pigs and the like are exemplified. However, the present invention is not limited to these.
  • Reprogramming is dedifferentiation of differentiated somatic cells to change them into undifferentiated cells, which is also called initialization. Differentiated cells become iPS cells by the reprogramming process. In general, four types of genes (Oct3 / 4, Sox2, Klf4, c-Myc (or L-Myc)), or some of these genes (for example, Nanog, Lin28, etc.) plus differentiated cells
  • the reprogramming process is performed by introducing into the above.
  • a vector is generally used for gene introduction, and for example, a retrovirus vector is used.
  • the reprogramming process is not limited to the above method, and can be performed using a method known to those skilled in the art.
  • the medium on which the reprogramming process is performed is not particularly limited, but in the present invention, the reprogramming process is preferably performed in a serum-free medium.
  • the feature of the present invention is to induce iPS cells by culturing somatic cells subjected to reprogramming treatment in a serum-free medium.
  • a serum-free medium concerns that uncertain elements, unknown factors, or risk factors exist in the medium can be eliminated, and various analyzes can be easily performed with good reproducibility.
  • a harmful factor derived from a serum-containing medium can be eliminated by using a serum-free medium, the safety of the obtained iPS cells is ensured.
  • Serum-free medium is a medium that does not contain serum.
  • a serum-free medium is a basic culture solution containing amino acids, inorganic salts, vitamins, trace elements, sugars, etc., with known hormones and protein factors such as insulin and iron-binding protein.
  • the basal medium for animal cell culture that does not contain serum include Dulbecco's modified Eagle medium (DMEM), minimum essential medium (MEM), Eagle basal medium (BME), RPMI 1640 medium, F12 medium, MCDB medium, In addition, mixed media thereof and the like are known.
  • Examples of preferable serum-free medium used in the iPS cell induction method of the present invention include hESF9 medium, hESF9T medium, RD8F medium, DME / F12-8F medium, RDF8F medium, and modified media thereof.
  • the serum-free medium used in the present invention is not limited to these media, and those skilled in the art can appropriately select and use known serum-free media, or can modify and use known serum-free media as appropriate.
  • fibronectin is used as an adhesion factor in the induction of iPS cells in a serum-free medium without feeder cells.
  • fibronectin as an adhesion factor, the induction efficiency of iPS cells can be dramatically increased, and iPS cell induction efficiency compared to the case of inducing iPS cells by a conventional method (in a serum-containing medium, using feeder cells). Rises about 10 times.
  • Fibronectin is a protein known to those skilled in the art. Various biological sources of fibronectin are known and can be used in the present invention.
  • the fibronectin used in the present invention may be isolated from cells or may be produced by a genetic engineering method such as a recombinant method.
  • the fibronectin used in the present invention may be full length or a fragment thereof.
  • the somatic cells that have undergone the reprogramming treatment are seeded in a culture vessel coated with fibronectin, and cultured to induce iPS cells.
  • reprogramming is performed in a medium other than a serum-free medium
  • somatic cells are seeded in a culture vessel coated with fibronectin together with the medium, and then cultured while exchanging the medium with the serum-free medium.
  • somatic cells are seeded in a culture vessel coated with fibronectin together with the serum-free medium, and then cultured while changing the medium to the same or different serum-free medium. Cells can be induced.
  • the culture temperature can be 30 to 40 ° C., preferably about 37 ° C., and for example, the culture can be performed in an incubator filled with air containing 5 to 10% carbon dioxide.
  • a method for coating fibronectin on a culture vessel is known to those skilled in the art.
  • the surface of the culture container is treated with poly-L-ornithine or poly-L-lysine, washed, and then the surface of the culture container is treated with a buffer containing fibronectin to coat fibronectin on the culture container. can do.
  • a person skilled in the art can easily determine the amount of fibronectin to be used.
  • an adhesion factor other than fibronectin may be used in combination with fibronectin.
  • Methods for coating culture vessels with fibronectin are known.
  • An example of a preferable coating method is as follows.
  • the culture vessel is coated with fibronectin at a concentration of 2 ⁇ g / cm 2 and allowed to stand at 37 ° C. for 3 hours or longer and overnight. If not used immediately, seal with parafilm to prevent the coating solution from drying, store at 4 ° C., and use within 1 week.
  • the fibronetin solution is aspirated and washed once with PBS before use.
  • subculture of somatic cells to be reprogrammed may be performed from primary culture in a serum-free medium, and somatic cell reprogramming may be performed in a serum-free medium.
  • Such embodiments are described in the Examples herein by conducting subculture of somatic cells from primary culture.
  • Primary culture and subculture of somatic cells can be performed by those skilled in the art by appropriately selecting the medium composition and culture conditions according to the type of somatic cells.
  • the present invention provides a serum-free culture substrate for inducing iPS cells, which contains fibronectin as an adhesion factor.
  • the culture substrate of this aspect of the invention includes a serum-free medium and fibronectin. Therefore, one specific example of the culture substrate of this aspect of the present invention is a serum-free medium containing fibronectin. Further embodiments of the culture substrate of this aspect of the invention may include a culture vessel coated with fibronectin and a serum-free medium contained therein. However, the culture substrate does not contain feeder cells.
  • the shape of the culture container includes a dish, a bottle, a tube, a flask, a bag and the like, and is not particularly limited.
  • the present invention provides a kit for producing a serum-free culture substrate for inducing iPS cells, comprising a serum-free medium component and fibronectin as essential components.
  • the culture substrate does not contain feeder cells.
  • the serum-free medium examples include those exemplified above and those obtained by modifying them.
  • the components are also known or can be appropriately selected by those skilled in the art.
  • the form of the serum-free medium component contained in the kit is not particularly limited. For example, it may be a liquid that can be transferred to a culture vessel as it is, may be in the form of a concentrate, or may be a solid such as a powder.
  • the serum-free medium components included in the kit may be included in the kit, for example, divided into vitamins, minerals, amino acids, saccharides and the like.
  • fibronectin contained in the kit of the present invention is not particularly limited.
  • the fibronectin may be a solid such as a powder or a liquid such as an aqueous fibronectin solution containing an appropriate buffer.
  • a culture vessel may be included in the kit of the present invention.
  • the culture vessel may be made of any material such as glass or plastic. There are no particular limitations on the shape of the plate, bottle, tube, flask, bag, or the like.
  • the culture container contained in the kit of the present invention may be coated with fibronectin in advance.
  • an instruction manual is attached to the kit.
  • the stem cell is subcultured by adding a tumor (transforming) growth factor- ⁇ (TGF- ⁇ ) superfamily protein to a serum-free medium without using feeder cells.
  • TGF- ⁇ tumor growth factor- ⁇
  • a method for maintaining the undifferentiated state and differentiation pluripotency of stem cells is provided.
  • the cells by adding a protein belonging to the TGF- ⁇ superfamily, particularly a protein belonging to the TGF- ⁇ family, to a serum-free medium, the cells can be passaged over a long period of time while maintaining the undifferentiated state and differentiation pluripotency of stem cells. It becomes possible to culture.
  • Proteins belonging to the TGF- ⁇ superfamily include TGF- ⁇ family, activin family, and bone morphogenetic protein (BMP) family proteins.
  • Preferred in the present invention are proteins belonging to the TGF- ⁇ family. Proteins belonging to the TGF- ⁇ family are known to those skilled in the art, and TGF- ⁇ forms a family with activin and BMP and is currently composed of 33 types of family molecules in humans, including TGF- ⁇ 1, Activin- A, BMP-2 and the like are exemplified.
  • a particularly preferred protein belonging to TGF- ⁇ used in the above method of the present invention is TGF- ⁇ 1.
  • the concentration of the TGF- ⁇ family protein in the serum-free medium is usually 1 ng / ml to 10 ng / ml, preferably 1 ng / ml to 5 ng / ml, but may be changed as appropriate. Can do.
  • the TGF- ⁇ family protein used may be one type or two or more types.
  • TGF- ⁇ family proteins are known to those skilled in the art. Various biological TGF- ⁇ family proteins are known and can be used in the present invention.
  • the TGF- ⁇ family protein used in the present invention may be isolated from cells or may be produced by a genetic engineering method such as a recombinant method. Further, the TGF- ⁇ family protein used in the present invention may be a full-length protein or a fragment thereof.
  • Preferred serum-free media used in the method for maintaining the undifferentiated state and differentiation pluripotency of the stem cells of the present invention include media such as hESF9 media, hESF9T media, RD8F media, DME / F12-8F media, RDF8F media, ESF7 media, etc. As well as their modified media.
  • fibronectin as an adhesion factor.
  • the method for coating fibronectin on the culture container and other explanations regarding fibronectin are as described above.
  • the stem cell to which the above-described method of the present invention can be applied is not particularly limited, and includes all stem cells including those exemplified below.
  • Stem cells are cells that have the ability to differentiate into cells of multiple lineages (differentiation pluripotency) and the ability to maintain differentiation pluripotency even after cell division (self-renewal ability).
  • Stem cells include embryonic stem cells (ES cells) produced from fertilized eggs, somatic stem cells present in in vivo tissues, and induced pluripotent stem cells (iPS cells) created by introducing a specific gene.
  • ES cells and iPS cells have the property of being able to differentiate into all types of cells (totipotency).
  • somatic stem cells include hematopoietic stem cells, neural stem cells, hepatic stem cells, skin stem cells, and reproductive stem cells.
  • the stem cells may be derived from any animal, and examples thereof include, but are not limited to, stem cells derived from humans, monkeys, mice, rats, dogs, cats, horses, pigs, and the like.
  • the methods for producing and obtaining these stem cells are known to those skilled in the art, and some are stored in research institutions and others are commercially available.
  • ES cells can be established by taking an inner cell mass from a blastocyst of a fertilized egg of a subject animal and culturing it on feeder cells such as fibroblasts. The method for producing iPS cells is as described above.
  • Subculture refers to the growth and maintenance of transferred cultured cells by transferring them to a new culture vessel.
  • Methods for subculturing stem cells are known to those skilled in the art.
  • a part of the cells can be detached from the culture vessel using a digestive enzyme such as trypsin, and subculture can be performed by culturing using a new culture vessel.
  • Selection of medium components and other culture conditions, timing of medium replacement, stripping conditions, culture time per passage, etc., techniques and techniques for subculture are appropriately determined by those skilled in the art according to the cells to be subcultured, You can choose.
  • the above method of the present invention is characterized in that stem cells are subcultured by adding TGF- ⁇ family protein in a serum-free medium without using feeder cells. Preparation and selection of a serum-free medium is easy for those skilled in the art. According to the method of the present invention, by adding a TGF- ⁇ family protein to the medium, even when many passages are repeated over a long period of time, the undifferentiated state and the differentiation level of the stem cells are stably maintained. Performance can be maintained.
  • Confirmation of the undifferentiated state of stem cells can be performed by examining the expression of undifferentiated markers such as Oct3 / 4, Nanog, Sox2, and SSEA-4 in addition to morphological observation.
  • the method for confirming the undifferentiated state of stem cells is not limited to the above method, and can be performed by methods known to those skilled in the art.
  • Confirmation of the differentiation pluripotency of stem cells can be performed by forming embryonic rods from passaged and maintained stem cells, inducing differentiation, and examining the expression of various differentiation markers.
  • the method for confirming the pluripotency of stem cells is not limited to the above method, and can be performed by methods known to those skilled in the art.
  • iPS cells obtained by the method for producing iPS cells of the present invention are passaged without using feeder cells in a serum-free medium supplemented with a protein belonging to the TGF- ⁇ family. By culturing, the undifferentiated state and pluripotency of iPS cells can be maintained.
  • the induction efficiency may decrease. It is preferred not to use family proteins.
  • the present invention provides a serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, which comprises a TGF- ⁇ family protein.
  • the culture substrate of this aspect of the invention includes a serum-free medium containing a TGF- ⁇ family protein.
  • a serum-free medium containing a TGF- ⁇ family protein may be provided as a liquid that can be used as it is by adding it to a culture vessel, or may be provided as a solid such as a concentrate or powder that can be prepared at the time of use. .
  • the culture substrate of this aspect of the invention may include a culture vessel and a serum-free medium containing the TGF- ⁇ family protein contained therein.
  • the kind of TGF- ⁇ family protein and the concentration in the serum-free medium are as described above.
  • the shape of the culture container includes a dish, a bottle, a tube, a flask, a bag and the like, and is not particularly limited.
  • the culture vessel is coated with fibronectin.
  • the culture substrate does not contain feeder cells.
  • the present invention provides a serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, comprising a serum-free medium component and a TGF- ⁇ family protein.
  • a serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, comprising a serum-free medium component and a TGF- ⁇ family protein.
  • Providing a kit for The concentration of the TGF- ⁇ family protein contained in the culture medium in the culture substrate is as described above. However, the culture substrate does not contain feeder cells.
  • the serum-free medium examples include those exemplified above and those obtained by modifying them.
  • the components are also known or can be appropriately selected by those skilled in the art.
  • the form of the serum-free medium component contained in the kit is not particularly limited. For example, it may be a liquid that can be transferred to a culture vessel as it is, may be in the form of a concentrate, or may be a solid such as a powder.
  • the serum-free medium components included in the kit may be included in the kit, for example, divided into vitamins, minerals, amino acids, saccharides and the like.
  • fibronectin is included as an adhesion factor.
  • the form of fibronectin contained in the kit of the present invention is not particularly limited.
  • the fibronectin may be a solid such as a powder or a liquid such as an aqueous fibronectin solution containing an appropriate buffer.
  • a culture vessel may be included in the kit of the present invention.
  • the culture vessel may be made of any material such as glass or plastic. There are no particular limitations on the shape of the plate, bottle, tube, flask, bag, or the like.
  • the culture container contained in the kit of the present invention may be coated with fibronectin in advance.
  • an instruction manual is attached to the kit.
  • Serum-free medium hESF9 (Furue MK, Na J, Okamoto T, et al. (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA -13414), each process until induction of iPS cells was examined under serum-free culture conditions. Furthermore, using human dental pulp-derived cells, we attempted to establish and maintain hiPS by performing the entire process from primary culture to viral infection and iPS cell establishment in a complete serum-free culture system.
  • Cell culture method 1-1 Cell culture solution 1) Serum-free medium The serum-free medium used contains hESF-GRO medium (Nipro) (L-ascorbic acid-2-phosphate (100 ⁇ g / ml)) developed for human ES cells.
  • hESF-GRO medium Nipro
  • Lipro L-ascorbic acid-2-phosphate (100 ⁇ g / ml)
  • the serum-free medium RD6F used for dental pulp cell culture was prepared by mixing RPMI1640 medium (Sigma) and DMEM medium (Sigma) at a ratio of 1: 1, bixillin (90 mg / ml) (Meiji, Japan), kanamycin (90 mg / day).
  • TIG-3 cells Human fetal lung-derived normal fibroblasts (TIG-3 cells) TIG-3 cells, which are Japanese fetal lung-derived fibroblasts established by the Tokyo Metropolitan Institute of Health and Longevity Medical Center, have 4 genes (Oct3 / 4, Sox2, Klf4, c) using retrovirus. -Myc) was introduced and human iPS cells were induced.
  • TIG-3 cells were prepared by adding 10% fetal bovine serum (Hyclone® Thermo Scientific, US) and 1% penicillin-streptomycin (GIBCO) to DMEM medium (Sigma) at a ratio of 1: 4 every 2-3 days. The cells were seeded on a 10 cm dish (Falcon) at a split ratio of 5% CO 2 /95% in a gas phase and cultured in a 37 ° C. incubator.
  • Retroviral Packaging that is capable of producing retrovirus structural proteins (gag, pol, env) stably for a long period of time. Retrovirus production was performed using Cell, amphotropic (PLAT-A: Cell Biolabs Inc. CA, USA).
  • transfection When transfection is performed, a medium in which 10% FBS is added to DMEM medium the day before is used, and 2 ⁇ 10 6 cells are seeded in a collagen-coated 25 cm 2 flask (BioCoat Collagen I Cellware, Falcon) After 16 to 24 hours, when the cells became 70% to 80% confluent, the cells were used for gene transfer (transfection), and the virus supernatant 48 to 72 hours after the start of transfection was collected and infected with target cells.
  • a medium in which 10% FBS is added to DMEM medium the day before the day before is used, and 2 ⁇ 10 6 cells are seeded in a collagen-coated 25 cm 2 flask (BioCoat Collagen I Cellware, Falcon) After 16 to 24 hours, when the cells became 70% to 80% confluent, the cells were used for gene transfer (transfection), and the virus supernatant 48 to 72 hours after the start of transfection was collected and infected with target cells.
  • Tic human iPS cell line
  • JCRB1331 its culturing method Tic
  • Tic was used as a control iPS cell. Inoculate Tic with 0.1% gelatin in advance on inactivated mouse fetal fibroblasts (Millipore: PMEF-H) seeded as feeder cells and culture using serum-supplemented ES cell medium. went. The cell dispersion was subcultured using Despase II (1 mg / ml) (Roche 4942078, Basel, Switzerland).
  • retrovirus 1-2 A retrovirus was prepared by introducing the reprogramming 4 gene into PLAT-A cells passaged and maintained according to the method of 2).
  • the plasmids used were pMXs- (hOct3 / 4), pMXs- (hSox2), pMXs- (hKlf4), pMXs- (hc-Myc) (Cell Biolabs Inc. CA, USA) prepared in Yamanaka Laboratory, Kyoto University. Was used.
  • TIG-3 cells were infected. In order to attenuate the toxicity of polybrene 4 hours after the infection, the same amount of medium as the virus supernatant was added. The medium was changed 24 hours after infection (Day 1), and culture was performed for 4 days (until Day 4). The medium was changed every 2 days. Four days after infection (Day 4), TIG-3 cells were dispersed into single cells by 0.05% trypsin / EDTA treatment.
  • PLAT-A cells were treated with pMXs- (hOct3 / 4), pMXs- (hSox2), pMXs- (hKlf4), pMXs- ( hc-Myc) each transfected virus supernatant mixture (equal to pMXs- (4F)), or pMXs- (4F) and pMXs- (EGFP) virus supernatant in a ratio of 3: 1 Infect the TIG-3 cells with each of the virus mixtures mixed in 1.
  • Retrovirus supernatant is collected in serum-free medium hESF9, and 24 hours after virus infection is established as serum-free medium hESF9. The effect was examined (Figure 3).
  • PLAT-A cells were transfected with pMXs- (EGFP) or pMXs-( ⁇ ) under serum-added culture conditions with 10% FBS added to DMEM medium, and serum medium conditions with 10% FBS added to DMEM medium ( The virus supernatant 24 to 48 hours after transfection was collected under each condition of condition A) or hESF9 serum-free medium condition (hereinafter referred to as condition B), and infected with TIG-3 cells as target cells. I let you.
  • the medium is exchanged every 2 to 3 days, and after cell growth by treatment with 0.05% trypsin / EDTA at the stage of growth to sub-confluence, 0.1% trypsin inhibitor is added to neutralize trypsin action, and the cells on the dish are neutralized. And subcultured every 3-4 days.
  • RD6F shown below was used as a serum-free medium. Specifically, DMEM medium (Sigma) and RPMI 1640 medium (Sigma) were mixed at a ratio of 1: 1, and bivicillin (90 mg / ml) (Meiji, Japan), kanamycin (90 mg / ml) (GIBCO), sodium pyruvate (110 mg / ml).
  • serum-free medium hESF9 An equal amount of serum-free medium hESF9 was added 4 hours after infection, the medium was changed 24 hours later, and each cell was dispersed into single cells by 0.05% trypsin-EDTA treatment 5 days after infection (Day 5). On a dish coated with fibronectin (2 ⁇ g / cm 2 ), seeding was performed so that the number of cells was 1.0 ⁇ 10 5 cells / 10 cm. After re-seeding, the medium was changed every 2 days using a serum-free medium hESF9 medium (FIG. 4).
  • iPS cells maintained in serum-free medium hESF9T containing TGF- ⁇ 1 could be subcultured while maintaining undifferentiation (FIG. 7A).
  • various concentrations (0, 0.1, 1, 2, 5, 10 ng / ml) of TGF- ⁇ 1 were added to hESF9 medium, and total RNA was recovered after 4 days of culture.
  • QX100 TM Droplet Digital Gene expression analysis was performed using TM PCR system (Bio-RAD).
  • Droplet Digital TM PCR uses ddPCR TM supermix (Bio Rad) according to the attached protocol, creates droplets with QX100 TM Droplet Generator (Bio Rad), amplifies it with PCR reaction, then QX100 TM Droplet Reader (Bio Rad) ) was used for analysis.
  • the number of cells that remained undifferentiated increased depending on the TGF- ⁇ 1 concentration, and the expression of Oct3 / 4 and Nanog undifferentiated marker genes was enhanced (FIG. 7B).
  • the TGF- ⁇ 1 concentration was 2 to 10 ng / ml, and the most undifferentiated marker was highly expressed. However, in the absence of TGF- ⁇ 1, the expression of the undifferentiated marker gene was remarkably reduced, and the mesoderm differentiation marker was positive.
  • differentiation markers such as minogen activator inhibitor-1 (PAI-1) and GATA-binding protein 4 (GATA4), which is an endoderm differentiation marker such as cardiac muscle.
  • PAI-1 minogen activator inhibitor-1
  • GATA4 GATA-binding protein 4
  • illustra RNA spin Mini Isolation kit (GE Healthcare UK Ltd, England) was used to extract total RNA of the cells cultured as described above according to the attached protocol. Nucleic acid quantification was performed using Nano Drop® (Nano Drop Technologies, Inc., USA).
  • RNA extracted from cells (1 ⁇ g) using High Capacity RNA-to-cDNA Master Mix (Applied Biosystems, CA, USA) and thermal cycler (PTC-0220 DNA Engine Dyad: MJ Japan, Tokyo)
  • a reverse transcription reaction was performed by incubation at 25 ° C. for 5 minutes, 42 ° C. for 30 minutes, and 85 ° C. for 5 minutes to synthesize cDNA.
  • RT-PCR is performed using KOD FX Neo (Toyobo, Osaka, Japan) under the conditions of denaturation reaction 98 ° C., 10 seconds, annealing 62 ° C., 30 seconds, extension reaction 68 ° C., 30 seconds. 35 cycles were performed to obtain a PCR product.
  • This PCR product was electrophoresed on a 1.5% agarose gel (Invitrogen) and then visualized with SYBR Safe DNA gel stain (Invitrogen).
  • the expression of undifferentiated marker genes of human ES cells, Sox2, Nanog, Oct3 / 4, Esg1, Rex-1 (Reduced-expression 1; Zfp42) was examined.
  • expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was examined (FIG. 7C).
  • Human iPS cells induced and maintained under serum-free culture conditions expressed undifferentiated markers, Sox2, Nanog, Oct3 / 4, Esg1, and Rex-1. On the other hand, these undifferentiated markers were not expressed in the pulp-derived cells before gene introduction (FIG. 7C).
  • the cells were seeded on a gelatin-coated plate, and differentiation induction was further performed for 10 days. Fluorescent immunostaining was performed on the cells 14 days after induction using various differentiation marker antibodies. Each antibody was visualized with Alexa Fluor (R) 594 and combined with nuclear staining with DAPI. As a result, neural stem cell line marker nestin, nerve cell marker ⁇ III-tubulin, mesoderm marker ⁇ -smooth muscle actin (SMA), Expression was observed for ⁇ -fetoprotein (AFP), an endoderm marker. On the other hand, the undifferentiated marker Oct3 / 4 was not expressed (FIG. 8A).
  • the sections showed ectoderm tissues such as epidermis and nerves, mesoderm tissues such as cartilage, muscle and connective tissue, and tissues that differentiated into endoderm such as the digestive tract and liver, and the excised tumor was shown to be teratoma. (FIG. 8B).
  • ectoderm tissues such as epidermis and nerves
  • mesoderm tissues such as cartilage, muscle and connective tissue
  • endoderm such as the digestive tract and liver
  • STR Short Tandem Repeat analysis Genomic DNA was extracted from dental pulp-derived cells collected from patients and human iPS cells prepared by introducing reprogramming genes under serum-free culture conditions. Powerplex 16 system (Promega Corporation , Madison, Wis.) And STR analysis using ABI PRISM® 3100 Genetic analyzer (Applied Biosystems) and Gene Mapper v3.5, allele patterns of 16 loci matched.
  • hypotonic solution was treated with a 0.075 M potassium chloride solution at 37 ° C. for 10 minutes, fixed with a Carnoy fixative, centrifuged, and fixed again with a Carnoy fixative. It was dropped on a slide glass, air-dried, stained with 4% Giemsa staining solution (Mudo Chemical, Tokyo, Japan), and then examined with an optical microscope for karyotype analysis.
  • stem cells such as ES cells and iPS cells are cultured under conditions containing inactivated feeder cells and animal-derived components such as serum.
  • animal-derived components such as serum.
  • various foreign antigens may be mixed, and it is difficult to apply to regenerative medicine. It is also very difficult to clarify the growth / differentiation control mechanism and its control factors of these stem cells.
  • human iPS cells can be induced for the first time by performing the entire process from primary culture to viral infection and human iPS cell establishment in a complete serum-free culture system.
  • the method of subculture while maintaining undifferentiation and pluripotency of the present invention is applicable not only to human iPS cells but also to stem cells of all animals.
  • the serum-free culture system of the present invention comprises only known factors, it is easy to identify and examine various factors that control the maintenance of proliferation and differentiation of stem cells, and to develop development, tissue, and organ regeneration. It becomes possible to elucidate the mechanism, apply it to drug discovery screening, and realize safe and reliable regenerative medicine.
  • the present invention can be used in the development of pharmaceuticals and medical materials, biochemical research fields, livestock industry, and the like.

Abstract

 The problem is to produce iPS cells under serum-free culture conditions without using feeder cells, and to provide a culture method capable of maintaining the undifferentiated state and pluripotent differentiation ability of iPS cells and other such stem cells over an extended period of time under serum-free culture conditions without using feeder cells. The present invention provides: a method for producing induced pluripotent stem cells (iPS cells), characterized in that iPS cells are induced by culturing reprogrammed somatic cells in serum-free medium without using feeder cells, preferably using fibronectin as an adhesion factor; and a method for maintaining the undifferentiated state and pluripotent differentiation ability of stem cells, characterized in that a protein belonging to the tumor growth factor-β (TGF-β) family is added and stem cells are subcultured in serum-free medium without using feeder cells.

Description

iPS細胞の樹立方法および幹細胞の長期維持方法iPS cell establishment method and stem cell long-term maintenance method
 本発明は、人工多能性幹細胞(iPS細胞)の樹立方法ならびに幹細胞の未分化状態および分化多能性の長期維持方法に関する。詳細には、本発明は、フィーダー細胞を用いずに、無血清培養条件下でiPS細胞を誘導する方法、ならびに培地中に腫瘍増殖因子-β(TGF-β)を添加して幹細胞を継代培養することを特徴とする、幹細胞の未分化状態および分化多能性の長期維持方法に関する。 The present invention relates to a method for establishing induced pluripotent stem cells (iPS cells) and a method for long-term maintenance of the undifferentiated state and differentiation pluripotency of stem cells. Specifically, the present invention relates to a method for inducing iPS cells under serum-free culture conditions without using feeder cells, and passage of stem cells by adding tumor growth factor-β (TGF-β) to the medium. The present invention relates to a method for long-term maintenance of the undifferentiated state and differentiation pluripotency of stem cells, characterized by culturing.
 近年、発生生物学や再生医学研究、創薬・疾患研究の分野において、胚性幹細胞(embryonic stem cell : 以下ES細胞という)や人工多能性幹細胞(induced pluripotent stem cell :以下 iPS細胞という)が注目されている。幹細胞は自己複製能と多分化能を有する細胞であり、様々な細胞系列へと分化する能力を持つ。2006年に京都大学の山中らがマウスiPS細胞の樹立を報告して以来、受精卵を用いるという倫理問題の残るES細胞の代替手段として、大きな注目を浴びている。iPS細胞は誘導多能性幹細胞とも訳され、皮膚などの最終分化した細胞に、ウイルスやプラスミドベクター等を用いて初期化遺伝子(Oct3/4、Sox2、Klf4、c-Myc)を導入し、リプログラムさせることで、胚体外組織を除く、全ての細胞種への分化可能な万能細胞となる。 In recent years, embryonic stem cells (embryonic stem cell: hereinafter referred to as ES cells) and induced pluripotent stem cells (induced pluripotent stem cell: hereinafter referred to as iPS cells) have been used in the fields of developmental biology, regenerative medicine research, drug discovery and disease research. Attention has been paid. Stem cells are self-replicating and multipotent cells and have the ability to differentiate into various cell lineages. Since Yamanaka et al. Of Kyoto University reported the establishment of mouse iPS cells in 2006, it has attracted a great deal of attention as an alternative to ES cells that remain ethical problems using fertilized eggs. iPS cells are also referred to as induced pluripotent stem cells. Reprogramming genes (Oct3 / 4, Sox2, Klf4, c-Myc) are introduced into terminally differentiated cells such as skin using viruses, plasmid vectors, etc. By programming, it becomes a universal cell that can be differentiated into all cell types except for extraembryonic tissues.
 これら幹細胞は一般的に、血清あるいは動物由来成分を含む代替血清添加培地を用い、不活性化したマウス胎児線維芽細胞(Mouse Embryonic Fibroblast : MEF)といったフィーダー細胞をディッシュ上に増やし、それを支持細胞として培養されている。iPS細胞の継代前日までに、MEF細胞にあらかじめマイトマイシンC処理やγ線照射などを行い、増殖を抑えた(不活化した)フィーダー細胞を調整後、ゼラチンコートディッシュ上に播種し、フィーダー細胞がディッシュ上に十分接着伸展したのち、その上に、iPS細胞を播種し、共培養を行う。また、継代の際にはできるだけフィーダー細胞とES細胞やiPS細胞などの幹細胞を分離する必要がある。このように、幹細胞を培養するだけでなく、フィーダー細胞の調整も必要なため、大変煩雑な操作が必要である。また、iPS細胞に誘導される前の体性分化細胞(体細胞)も牛胎児血清、ヒト血清やヒト自己血清が添加された培地で培養されている。さらに、このような培養条件では、血清あるいは動物由来成分を含む代替血清中の未知の成分の存在や、病原体混入の可能性もあり、ロット差が大きく、常に一定条件での培養は難しい。また、用いるフィーダー細胞も、種類や処理の仕方、ロット差も大きく、幹細胞の状態がかなり左右されるため、安定した条件で幹細胞を培養することは不可能であった。 These stem cells generally use an alternative serum-supplemented medium containing serum or animal-derived components, and increase feeder cells such as inactivated mouse embryonic fibroblasts (MEF) on the dish and support them. It has been cultured as. By the day before the passage of iPS cells, MEF cells were treated with mitomycin C or γ-irradiated in advance to prepare feeder cells with suppressed proliferation (inactivated), and then seeded on gelatin-coated dishes. After sufficient adhesion and extension on the dish, iPS cells are seeded thereon and co-cultured. In addition, it is necessary to separate feeder cells and stem cells such as ES cells and iPS cells as much as possible during passage. In this way, not only culturing stem cells but also adjustment of feeder cells is necessary, which requires very complicated operations. In addition, somatic differentiated cells (somatic cells) before being induced by iPS cells are also cultured in a medium supplemented with fetal bovine serum, human serum or human autoserum. Furthermore, under such culture conditions, there is a possibility of unknown components in the serum or alternative serum containing animal-derived components and the possibility of contamination with pathogens, so there are large lot differences, and culture under constant conditions is always difficult. Also, the feeder cells to be used have a great variety, kind of treatment, and lot difference, and the state of the stem cells is considerably influenced. Therefore, it was impossible to culture the stem cells under stable conditions.
 このように不定要素が多い条件で培養された幹細胞では、培地中に未知の因子が多く含まれるため、組織・臓器発生や再生などの、基礎研究の標準化が困難で、未分化性の維持に必要な増殖因子・分化誘導因子の機能を比較検討する事が難しい。また培地中に含まれる様々な成分の作用により、特定の細胞への分化誘導が難しく、さらには再生医療への臨床応用を考慮すると、未知因子や病原体などの危険因子の混入など安全性が問題となる。そこで、これらの要素を排除するため、組成の明らかな培養条件による培養法の標準化が必要である。特に、組成の明らかな無血清培地を用いるiPS細胞の製造方法の開発が望まれていた。 Stem cells cultured under conditions with many indeterminate elements contain many unknown factors in the medium, making standardization of basic research such as tissue / organ development and regeneration difficult, and maintaining undifferentiation. It is difficult to compare the functions of necessary growth factors and differentiation-inducing factors. In addition, due to the action of various components contained in the medium, it is difficult to induce differentiation into specific cells. Furthermore, considering clinical application to regenerative medicine, there are problems with safety such as contamination of unknown factors and risk factors such as pathogens. It becomes. Therefore, in order to eliminate these elements, it is necessary to standardize the culture method under the culture conditions whose composition is clear. In particular, development of a method for producing iPS cells using a serum-free medium with a clear composition has been desired.
 さらに、未分化状態および分化多能性を長期間にわたり保持したままiPS細胞などの幹細胞を継代・維持することも望まれていた。この点において、霊長類胚性幹細胞を未分化状態で維持するための培地組成について検討されている(特許文献1参照)。さらに、iPS細胞の未分化性を維持するために腫瘍(トランスフォーミング)増殖因子(TGF)を培地に添加することも行われている(非特許文献1参照)。しかしながら、特許文献1で用いられている無血清培地はTGFを含んでおらず、非特許文献1で用いられているのは血清含有培地であり、本発明とは異なる。 Furthermore, it has also been desired to passage and maintain stem cells such as iPS cells while maintaining an undifferentiated state and differentiation pluripotency over a long period of time. In this respect, a medium composition for maintaining primate embryonic stem cells in an undifferentiated state has been studied (see Patent Document 1). Furthermore, in order to maintain the undifferentiated nature of iPS cells, a tumor (transforming) growth factor (TGF) is also added to the medium (see Non-Patent Document 1). However, the serum-free medium used in Patent Document 1 does not contain TGF, and that used in Non-Patent Document 1 is a serum-containing medium, which is different from the present invention.
特表2009-542247号公報Special table 2009-542247 gazette
 血清含有培地のような不定要素が多い条件で培養された幹細胞では、培地中に未知の因子が多く含まれるため、組織・臓器発生や再生などの、基礎研究の標準化が困難で、未分化性の維持に必要な増殖因子・分化誘導因子の機能を比較検討することが難しい。また培地中に含まれる様々な成分の作用により、特定の細胞への分化誘導が難しく、さらには再生医療への臨床応用を考慮すると、安全面から未知因子や病原体などの危険因子を排除する必要がある。そこで、これらの問題を解消するためには、組成が明らかで、危険因子を含まない培地を用いる培養法の確立および標準化が必要である。 Stem cells cultured under conditions with many indefinite elements such as serum-containing medium contain many unknown factors in the medium, making standardization of basic research such as tissue and organ development and regeneration difficult and undifferentiated It is difficult to compare and examine the functions of growth factors and differentiation-inducing factors that are necessary for maintenance of cancer. In addition, it is difficult to induce differentiation into specific cells due to the action of various components contained in the medium. In addition, when considering clinical application to regenerative medicine, it is necessary to eliminate risk factors such as unknown factors and pathogens from the viewpoint of safety. There is. Therefore, in order to solve these problems, it is necessary to establish and standardize a culture method using a medium whose composition is clear and does not contain risk factors.
 したがって、本発明が解決すべき具体的課題は、不確定要素および危険因子を含まない条件でiPS細胞への誘導前の体細胞を培養し、かつ不確定要素および危険因子を含まない条件でiPS細胞を製造すること、さらにiPS細胞などの幹細胞を培養維持することであった。具体的には、本発明が解決すべき具体的課題は、体細胞を無血清培養条件下で培養し、フィーダー細胞を用いずに、無血清培養条件下でiPS細胞を製造すること、ならびにフィーダー細胞を用いずに、無血清培養条件下でiPS細胞などの幹細胞の未分化性および分化多能性を長期間維持できる培養法を提供することであった。 Therefore, a specific problem to be solved by the present invention is to cultivate somatic cells before induction into iPS cells under a condition that does not include an uncertain element and a risk factor, and iPS under a condition that does not include an uncertain element and a risk factor. It was to produce cells and to maintain stem cells such as iPS cells in culture. Specifically, specific problems to be solved by the present invention include culturing somatic cells under serum-free culture conditions, producing iPS cells under serum-free culture conditions without using feeder cells, and feeders. It was to provide a culture method that can maintain the undifferentiation and differentiation pluripotency of stem cells such as iPS cells for a long period of time without using cells.
 本発明者らは、上記課題を解決せんと鋭意研究を重ね、iPS細胞への誘導前の体細胞の無血清培養方法、および無血清培地中でフィーダー細胞を用いずに培養することによるiPS細胞の樹立方法を確立した。特に、フィブロネクチンを接着因子として用いることが好ましいことが判明した。本発明の方法によれば、ヒトiPS細胞の誘導効率は、従来法(血清添加培養条件)に比べて10倍以上となった。また本発明者らは、上記培養系において幹細胞の未分化性と多分化能を長期間継代後も維持可能とする細胞増殖因子としてTGF-βを同定した。これらのことに基づいて本発明が完成された。 The inventors of the present invention have made extensive studies to solve the above-mentioned problems, a method for serum-free culture of somatic cells before induction into iPS cells, and iPS cells by culturing without using feeder cells in a serum-free medium. Established the establishment method. In particular, it has been found preferable to use fibronectin as an adhesion factor. According to the method of the present invention, the induction efficiency of human iPS cells was 10 times or more that of the conventional method (culture conditions with serum). In addition, the present inventors have identified TGF-β as a cell growth factor capable of maintaining stem cell undifferentiation and pluripotency even after long-term passage in the above culture system. Based on these matters, the present invention has been completed.
 したがって、本発明は、下記のものを提供する:
 (1)リプログラミング処理を施した体細胞を、無血清培地中でフィーダー細胞を用いずに培養することにより人工多能性幹細胞(iPS細胞)を誘導することを特徴とする、iPS細胞の製造方法。
 (2)フィブロネクチンを接着因子として用いる、(1)に記載の方法。
 (3)体細胞のリプログラミング処理が無血清培地中で行われる、(1)または(2)に記載の方法。
 (4)リプログラミング前の体細胞が初代培養から無血清培地中で培養されたものである、(1)~(3)のいずれかに記載の方法。
 (5)iPS細胞がヒトiPS細胞である(1)~(4)のいずれかに記載の方法。
 (6)フィブロネクチンを接着因子として含む、iPS細胞を誘導するための無血清培養基材(ただし該培養基材はフィーダー細胞を含まない)。
 (7)無血清培地成分およびフィブロネクチンを構成成分として含む、iPS細胞を誘導するための無血清培養基材を製造するためのキット(ただし該培養基材はフィーダー細胞を含まない)。
 (8)フィーダー細胞を用いずに、無血清培地中に腫瘍増殖因子-β(TGF-β)ファミリーに属する蛋白を添加して幹細胞を継代培養することを特徴とする、幹細胞の未分化状態および分化多能性を維持する方法。
 (9)継代培養が、フィブロネクチンを接着因子として用いて行われる(8)に記載の方法。
 (10)幹細胞がiPS細胞である(8)または(9)に記載の方法。
 (11)(1)~(5)のいずれかに記載の方法により得られたiPS細胞を、TGF-βファミリーに属する蛋白を添加した無血清培地において、フィーダー細胞を用いずに継代培養することを特徴とする、iPS細胞の未分化状態および分化多能性を維持する方法。
 (12)TGF-βファミリーに属する蛋白を含む、幹細胞の未分化状態および分化多能性を維持するための継代培養用無血清培養基材(ただし該培養基材はフィーダー細胞を含まない)。
 (13)さらにフィブロネクチンを接着因子として含む、(12)に記載の培養基材。
 (14)幹細胞がiPS細胞である(12)または(13)に記載の培養基材。
 (15)無血清培地成分およびTGF-βファミリーの蛋白を含む、幹細胞の未分化状態および分化多能性を維持するための継代培養用無血清培養基材を製造するためのキット(ただし該培養基材はフィーダー細胞を含まない)。
 (16)さらにフィブロネクチンを接着因子として含む、(15)に記載のキット。
 (17)幹細胞がiPS細胞である(15)または(16)に記載のキット。
Accordingly, the present invention provides the following:
(1) Production of iPS cells characterized by inducing induced pluripotent stem cells (iPS cells) by culturing reprogrammed somatic cells without using feeder cells in a serum-free medium. Method.
(2) The method according to (1), wherein fibronectin is used as an adhesion factor.
(3) The method according to (1) or (2), wherein the reprogramming treatment of somatic cells is performed in a serum-free medium.
(4) The method according to any one of (1) to (3), wherein the somatic cells before reprogramming are cultured from a primary culture in a serum-free medium.
(5) The method according to any one of (1) to (4), wherein the iPS cell is a human iPS cell.
(6) A serum-free culture substrate for inducing iPS cells containing fibronectin as an adhesion factor (however, the culture substrate does not contain feeder cells).
(7) A kit for producing a serum-free culture substrate for inducing iPS cells, comprising a serum-free medium component and fibronectin as components (however, the culture substrate does not contain feeder cells).
(8) An undifferentiated state of a stem cell, characterized in that a stem cell is subcultured by adding a protein belonging to the tumor growth factor-β (TGF-β) family to a serum-free medium without using a feeder cell And methods of maintaining pluripotency.
(9) The method according to (8), wherein the subculture is performed using fibronectin as an adhesion factor.
(10) The method according to (8) or (9), wherein the stem cell is an iPS cell.
(11) The iPS cells obtained by the method according to any one of (1) to (5) are subcultured without using feeder cells in a serum-free medium to which a protein belonging to the TGF-β family is added. A method for maintaining the undifferentiated state and pluripotency of iPS cells,
(12) Serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, including proteins belonging to the TGF-β family (however, the culture substrate does not include feeder cells) .
(13) The culture substrate according to (12), further comprising fibronectin as an adhesion factor.
(14) The culture substrate according to (12) or (13), wherein the stem cells are iPS cells.
(15) A kit for producing a serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, comprising a serum-free medium component and a TGF-β family protein (however, The culture substrate does not contain feeder cells).
(16) The kit according to (15), further comprising fibronectin as an adhesion factor.
(17) The kit according to (15) or (16), wherein the stem cell is an iPS cell.
 本発明によれば、成分の明らかな無血清培地を用いて体細胞を培養し、フィーダー細胞を用いずに、成分の明らかな無血清培地を用いた培養環境下で、体細胞に山中4因子などの遺伝子導入および誘導を行い、iPS細胞を製造する方法、ならびにES細胞やiPS細胞などの幹細胞を、未分化状態および分化多能性を保持したまま維持・培養可能な培養基質材および培養液を用いた幹細胞の培養方法が提供される。本発明のiPS細胞の製造方法によれば、血清含有培地を用いる従来法に比べて10倍以上の効率でiPS細胞を誘導できることがわかった。 According to the present invention, somatic cells are cultured using a serum-free medium with a clear component, and in the culture environment using a serum-free medium with a clear component, without using feeder cells, A method for producing iPS cells by gene transfer and induction, etc., and a culture substrate material and a culture solution capable of maintaining and culturing stem cells such as ES cells and iPS cells while maintaining an undifferentiated state and differentiation pluripotency A method for culturing stem cells using the above is provided. According to the method for producing iPS cells of the present invention, it was found that iPS cells can be induced with an efficiency 10 times or more that of the conventional method using a serum-containing medium.
 したがって、本発明において高い効率でiPS細胞を誘導することができる。そして長期間にわたって幹細胞の未分化状態および分化多能性を維持することができる。しかも培地中には未知の因子が殆ど存在せず、組織・臓器発生や再生などの、基礎研究の標準化が容易で、未分化性の維持に必要な増殖因子・分化誘導因子の機能を比較検討することも容易である。また本発明においては、培地中に含まれる成分の種類が比較的少なく既知であるから、特定の細胞への分化誘導が容易であり、再生医療への臨床応用を考慮すると安全性が高い細胞が得られる。 Therefore, iPS cells can be induced with high efficiency in the present invention. And the undifferentiated state and differentiation pluripotency of a stem cell can be maintained over a long period of time. In addition, there are almost no unknown factors in the culture medium, and it is easy to standardize basic research such as tissue and organ development and regeneration, and the functions of growth factors and differentiation-inducing factors necessary for maintaining undifferentiation are compared. It is also easy to do. In the present invention, since the types of components contained in the medium are relatively few and known, differentiation induction into specific cells is easy, and highly safe cells can be obtained considering clinical application to regenerative medicine. can get.
図1は、無血清培地hESF9を用いて各種細胞外マトリックス上で誘導したTIG-3細胞由来hiPS細胞の形態を示す顕微鏡像である。 図1Aは、無血清培地を用いてヒトiPS細胞を誘導する際の接着因子の影響を検討した結果を示す。 図1Bは、無血清培地hESF9を用いて、各細胞外マトリックス上に播種2日後のヒトiPS細胞(hiPS細胞)形態を示す。 図1Cは、各細胞外マトリックス上のhiPS細胞のALP染色像(感染36日後)である。図1A~Cのスケールバーは200μmである。FIG. 1 is a microscopic image showing the morphology of TIG-3 cell-derived hiPS cells induced on various extracellular matrices using serum-free medium hESF9. FIG. 1A shows the results of examining the influence of adhesion factors when inducing human iPS cells using a serum-free medium. FIG. 1B shows the form of human iPS cells (hiPS cells) 2 days after seeding on each extracellular matrix using serum-free medium hESF9. FIG. 1C is an ALP-stained image (36 days after infection) of hiPS cells on each extracellular matrix. The scale bar in FIGS. 1A-C is 200 μm. 図2は、誘導後の各種細胞外マトリックス上での細胞形態を示す顕微鏡像である。 上段は、各種細胞外マトリックス上にて誘導したTIG-3細胞由来ヒトiPS細胞のコロニー回収前の細胞形態像である。 下段は、無血清培地hESF9を用いて、各細胞外マトリックス上に播種後の細胞形態像である。スケールバーは200μmである。FIG. 2 is a microscopic image showing cell morphology on various extracellular matrices after induction. The upper row is a cell morphology image of TIG-3 cell-derived human iPS cells induced on various extracellular matrices before colony recovery. The lower row is a cell morphology image after seeding on each extracellular matrix using serum-free medium hESF9. The scale bar is 200 μm. 図3は、ウイルス感染成立時における無血清培養条件の検討結果を示す顕微鏡像およびウイルス感染効率を示すグラフである。EGFPを用いたPLAT-AへのトランスフェクションおよびTIG-3細胞への感染結果を示す。 上段は、DMEM培地に10%FBSを加えた血清培養条件(左)あるいはhESF9無血清培養条件(右)の各条件にてpMXs-(EGFP)遺伝子導入した2日後の細胞形態を示す。 下段は、TIG-3細胞へのウイルス感染効率を示す。スケールバーは200μmである。FIG. 3 is a micrograph showing the examination results of serum-free culture conditions when virus infection is established and a graph showing virus infection efficiency. The results of transfection into PLAT-A using EGFP and infection into TIG-3 cells are shown. The top row shows the cell morphology two days after introduction of the pMXs- (EGFP) gene under the conditions of serum culture conditions (left) or hESF9 serum-free culture conditions (right) with 10% FBS added to DMEM medium. The lower row shows the virus infection efficiency to TIG-3 cells. The scale bar is 200 μm. 図4は、フィーダー細胞を用いない無血清培養条件下での、歯髄由来細胞を用いたhiPS細胞の誘導を示すスキームおよび顕微鏡像である。 図4Aは、hiPS細胞誘導までの概略を示すスキームである。 Day -7~0 :無血清培地RD6Fを用いたタイプIコラーゲンコートディッシュ上での歯髄細胞の初代培養。 Day 0~4:無血清培地hESF9を使用した、レトロウイルス感染による初期化遺伝子導入(Oct3/4,Sox2,KLF-4,c-Myc)。 Day 5: 無血清培地hESF9培地を用いたフィブロネクチンコートディッシュ上でのヒトiPS細胞誘導。 Day6~30: 隔日での培地交換。 図4Bは、初期化遺伝子導入前の無血清培地RD6Fでの歯髄細胞の位相差顕微鏡像である。 図4Cは、無血清培地RD6Fを用いてタイプIコラーゲンコートディッシュ上で4継代した歯髄細胞の位相差顕微鏡像である。図4Dは、感染43日後のALP染色像である。スケールバーは200μmである。FIG. 4 is a scheme and microscopic image showing the induction of hiPS cells using dental pulp-derived cells under serum-free culture conditions without using feeder cells. FIG. 4A is a scheme showing an outline up to hiPS cell induction. Day-7-7: Primary culture of dental pulp cells on type I collagen-coated dish using serum-free medium RD6F. Day 0 to 4: Reprogrammed gene transfer by retrovirus infection using serum-free medium hESF9 (Oct3 / 4, Sox2, KLF-4, c-Myc). Day 5: Induction of human iPS cells on a fibronectin-coated dish using a serum-free medium hESF9 medium. Day 6-30: Medium exchange every other day. FIG. 4B is a phase contrast microscopic image of dental pulp cells in serum-free medium RD6F before introduction of reprogramming gene. FIG. 4C is a phase-contrast microscope image of pulp cells that have been passaged 4 times on a type I collagen-coated dish using serum-free medium RD6F. FIG. 4D is an ALP-stained image 43 days after infection. The scale bar is 200 μm. 図5は、フィーダー細胞を用いないで、無血清培地hESF9を用いた培養条件下で歯髄由来細胞から誘導したヒトiPS細胞の特性を解析した結果を示す。 図5Aは、無血清培地hESF9あるいはhESF9T培地(hESF9にTGF-β1を加えた無血清培地)で維持したヒトiPS細胞の位相差像である。 DP-A-iPS-CL1:無血清培地hESF9を使用し、フィブロネクチンコートディッシュ上で2代(passage 2)あるいは21代維持(passage 21)した細胞の位相差像。なお、右側はヒトES細胞用血清添加培地を使用しフィーダー細胞上で5代維持(passage 5)した細胞の位相差像を示す。 DP-F-iPS-CL4、-CL6、-CL16:無血清培地hESF9Tを使用し、フィブロネクチンコートディッシュ上で58代(passage 58)、59代(passage 59)あるいは21代維持(passage 21)した細胞の位相差像。なお、右側はヒトES細胞用血清添加培地を使用し、フィーダー細胞上で19代維持(passage 19)した細胞(CL31)の位相差像を示す。 スケールバーは200μmである。 図5Bは、無血清培地hESF9あるいはhESF9Tを用いてフィブロネクチンコートディッシュ上で長期継代・維持した細胞を用いて、未分化マーカーであるOct3/4およびSSEA-4に対する各抗体を用いてフローサイトメトリーによる解析を行った結果を示す。 図5Cは、網羅的遺伝子発現解析結果を示す。マイクロアレイを用いたクラスター解析を行った。DP cell(歯髄細胞)、無血清培地hESF9あるいはhESF9Tを使用しフィブロネクチンコートディッシュ上で維持したDP-iPS細胞(歯髄細胞由来ヒトiPS細胞)、ヒトES細胞用血清添加培地を用いてフィーダー細胞上で維持したヒトiPS細胞(Tic)について解析を行った。図中のレーン1~7は以下のとおり。1. DP cell (DP-A) : passage 2 = before infection 2. DP cell (DP-F) : passage 4 = before infection 3. DP-A-iPS-CL1: passage 14 = serum-free condition (hESF9/on FN)4. DP-F-iPS-CL12: passage 36 = KSR-based condition (KSR/on MEF)5. DP-F-iPS-CL6: passage 37 = serum-free condition (hESF9T/on FN)6. DP-F-iPS-CL8: passage 35 = serum-free condition (hESF9T/on FN)7. Tic (hiPSC : JCRB1331): passage 58 = KSR-based condition (KSR/on MEF)FIG. 5 shows the results of analyzing the characteristics of human iPS cells derived from dental pulp-derived cells under culture conditions using serum-free medium hESF9 without using feeder cells. FIG. 5A is a phase contrast image of human iPS cells maintained in serum-free medium hESF9 or hESF9T medium (serum-free medium obtained by adding TGF-β1 to hESF9). DP-A-iPS-CL1: Phase contrast image of cells maintained for 2 generations (passage 2) or 21 generations (passage 21) on fibronectin-coated dishes using serum-free medium hESF9. The right side shows a phase contrast image of cells maintained for 5 generations (passage 5) on feeder cells using a serum-supplemented medium for human ES cells. DP-F-iPS-CL4, -CL6, -CL16: Cells maintained in the 58s (passage 58), 59s (passage 59) or 21s (passage 21) on the fibronectin-coated dish using the serum-free medium hESF9T Phase contrast image. The right side shows a phase contrast image of a cell (CL31) maintained for 19 generations (passage 19) on a feeder cell using a serum-supplemented medium for human ES cells. The scale bar is 200 μm. FIG. 5B shows flow cytometry using cells that have been passaged and maintained on a fibronectin-coated dish for a long time using serum-free medium hESF9 or hESF9T, and antibodies against Oct3 / 4 and SSEA-4 that are undifferentiated markers. The result of having analyzed by is shown. FIG. 5C shows the results of comprehensive gene expression analysis. Cluster analysis using a microarray was performed. DP cell (dental pulp cell), DP-iPS cells (dental pulp-derived human iPS cells) maintained on a fibronectin-coated dish using serum-free medium hESF9 or hESF9T, and feeder medium using serum medium for human ES cells The maintained human iPS cells (Tic) were analyzed. Lanes 1-7 in the figure are as follows. 1. DP cell (DP-A): passage 2 = before infection 2. DP cell (DP-F): passage 4 = before infection 3. DP-A-iPS-CL1: passage 14 = serum-free condition (hESF9 / on FN) 4. DP-F-iPS-CL12: passage 36 = KSR-based condition (KSR / on MEF) 5. DP-F-iPS-CL6: passage 37 = serum-free condition (hESF9T / on FN) 6 DP-F-iPS-CL8: Passage 35 = Serum-free condition (hESF9T / on FN) 7. Tic (hiPSC: JCRB1331): Passage 58 (= KSR-based condition (KSR / on MEF) 図6は、網羅的遺伝子発現解析(scatter plot解析)の結果を示す。FIG. 6 shows the results of comprehensive gene expression analysis (scatter-plot analysis). 図7は、無血清培養条件におけるTGF-β1の影響を調べた結果を示す。 図7Aは、各種濃度のTGF-β1(0,0.1,1,2,5,10ng/ml)添加時の細胞形態を示す。 図7Bは、Droplet Digital-PCRを用いたTGF-β1添加時におけるヒトiPS細胞の遺伝子発現解析の結果を示す。各発現強度はGAPDHにて補正した。 図7Cは、無血清培養条件下にて誘導・維持したヒトiPS細胞の未分化マーカー遺伝子発現解析の結果を示す。#1 : DP cell (DP-A) : passage 2 = before infection #2 : DP cell (DP-F) : passage 4 = before infection #3 : DP-A-iPS-CL1: passage 14 = serum-free condition (hESF9/on FN)#4 : DP-F-iPS-CL4: passage 37 = serum-free condition (hESF9T/on FN)#5 : DP-F-iPS-CL6: passage 35 = serum-free condition (hESF9T/on FN)#6 : DP-F-iPS-CL8: passage 35 = serum-free condition (hESF9T/on FN)#7 : DP-A-iPS-CL1: passage 8 = KSR-based condition (KSR/on MEF)#8 : DP-F-iPS-CL12: passage 36 = KSR-based condition (KSR/on MEF) #9 : Tic (hiPSC : JCRB1331): passage 103 = KSR-based condition (KSR/on MEF) 図7Dは、無血清培養条件下にて誘導し、hESF9T培地にて継代・維持したヒトiPS細胞の未分化マーカー蛋白の発現解析の結果を示す。 スケールバーは100μmである。FIG. 7 shows the results of examining the effect of TGF-β1 under serum-free culture conditions. FIG. 7A shows the cell morphology when various concentrations of TGF-β1 (0, 0.1, 1, 2, 5, 10 ng / ml) are added. FIG. 7B shows the results of gene expression analysis of human iPS cells using Droplet® Digital-PCR when TGF-β1 was added. Each expression intensity was corrected by GAPDH. FIG. 7C shows the results of undifferentiated marker gene expression analysis of human iPS cells induced and maintained under serum-free culture conditions. # 1: DP cell (DP-A): passage 2 = before infection # 2: DP cell (DP-F): passage 4 = before infection # 3: DP-A-iPS-CL1: passage 14 = serum-free condition (hESF9 / on FN) # 4: DP-F-iPS-CL4: passage 37 = serum-free condition (hESF9T / on FN) # 5: DP-F-iPS-CL6: passage 35 = serum-free condition (hESF9T / on FN) # 6: DP-F-iPS-CL8: passage 35 = serum-free condition (hESF9T / on FN) # 7: DP-A-iPS-CL1: passage 8 = KSR-based condition (KSR / on (MEF) # 8: DP-F-iPS-CL12: passage 36 = KSR-based condition (KSR / on MEF) # 9: Tic (hiPSC: JCRB1331): passage 103 = KSR-based condition (KSR / on MEF) Figure 7D shows the result of expression analysis of undifferentiated marker protein in human iPS cells induced under serum-free culture conditions and subcultured and maintained in hESF9T medium. The scale bar is 100 μm. 図8は、無血清培養条件下にて誘導・維持したヒトiPS細胞の分化多能性解析の結果を示す。 図8Aは各種分化マーカー発現の検討結果を示す。 図8Bはテラトーマ形成能の検討結果を示す。 スケールバーは100μmである。FIG. 8 shows the results of pluripotency analysis of human iPS cells induced and maintained under serum-free culture conditions. FIG. 8A shows the results of studies on the expression of various differentiation markers. FIG. 8B shows the results of examination of teratoma formation ability. The scale bar is 100 μm. 図9は、細胞増殖能および核型解析の結果を示す。 図9Aは、無血清培養条件にて誘導し、hESF9Tにて21代継代・維持したヒトiPS細胞の細胞倍加時間(population doubling time)を調べた結果を示す。 図9Bは、無血清培養条件にて誘導し、無血清培地hESF9Tにて20代継代維持したヒトiPS細胞の核型簡易解析を行った結果を示す。FIG. 9 shows the results of cell proliferation ability and karyotype analysis. FIG. 9A shows the results of examining the cell doubling time of human iPS cells induced under serum-free culture conditions and passaged and maintained for 21 passages with hESF9T. FIG. 9B shows the result of karyotype simplified analysis of human iPS cells induced under serum-free culture conditions and maintained for 20 passages in serum-free medium hESF9T. 図10は、無血清培養条件を用いたヒトiPS細胞の継代・維持における普遍性の検討結果を示す。スケールバーは200μmである。図10上段はhESF9T培地を用いてフィブロネクチン上で維持したヒトiPS細胞の位相差顕微鏡像を示す。また下段はDF8T培地を用いてフィブロネクチン上で維持したヒトiPS細胞の位相差顕微鏡像を示す。両無血清培地においてもヒトES細胞様の形態を維持していることが示される。FIG. 10 shows the results of studies on universality in passage and maintenance of human iPS cells using serum-free culture conditions. The scale bar is 200 μm. The upper part of FIG. 10 shows a phase contrast microscopic image of human iPS cells maintained on fibronectin using hESF9T medium. The lower panel shows a phase contrast microscopic image of human iPS cells maintained on fibronectin using DF8T medium. It is shown that both serum-free media maintain human ES cell-like morphology.
 本発明は、第1の態様において、リプログラミング処理を施した体細胞を、無血清培地中でフィーダー細胞を用いずに培養することにより人工多能性幹細胞(iPS細胞)を誘導することを特徴とする、iPS細胞の製造方法を提供する。なお、iPS細胞とは、以下に説明するように、体細胞に複数の遺伝子を導入してリプログラミングを行い、分化多能性と自己複製能を持たせた細胞をいう。本発明において、iPS細胞はあらゆる動物の体細胞に由来するものであってよく、ヒト、サル、マウス、ラット、イヌ、ネコ、ウマ、ブタ等の体細胞に由来するiPS細胞が例示されるが、これらのものに限定されない。 In the first aspect, the present invention is characterized in that induced pluripotent stem cells (iPS cells) are induced by culturing somatic cells subjected to reprogramming treatment in a serum-free medium without using feeder cells. A method for producing iPS cells is provided. As described below, an iPS cell refers to a cell that has been subjected to reprogramming by introducing a plurality of genes into a somatic cell to have differentiation pluripotency and self-replication ability. In the present invention, iPS cells may be derived from somatic cells of any animal, and iPS cells derived from somatic cells such as humans, monkeys, mice, rats, dogs, cats, horses, pigs and the like are exemplified. However, the present invention is not limited to these.
 リプログラミングとは、分化した体細胞を脱分化させて未分化な細胞に変化させることであり、初期化ともいわれる。リプログラミング処理によって分化細胞がiPS細胞になる。一般的には、4種の遺伝子(Oct3/4、Sox2、Klf4、c-Myc(またはL-Myc))、あるいはこれらにいくつかの遺伝子(例えばNanog、Lin28など)を加えたものを分化細胞に導入することによってリプログラミング処理が行われる。遺伝子の導入にはベクターを使用することが一般的であり、例えばレトロウイルスベクターなどが用いられる。リプログラミング処理は上記の方法に限定されず、当業者に公知の方法を用いて行うことができる。リプログラミング処理を行う培地は特に限定されないが、本発明においては無血清培地中でリプログラミング処理を行うことが好ましい。 Reprogramming is dedifferentiation of differentiated somatic cells to change them into undifferentiated cells, which is also called initialization. Differentiated cells become iPS cells by the reprogramming process. In general, four types of genes (Oct3 / 4, Sox2, Klf4, c-Myc (or L-Myc)), or some of these genes (for example, Nanog, Lin28, etc.) plus differentiated cells The reprogramming process is performed by introducing into the above. A vector is generally used for gene introduction, and for example, a retrovirus vector is used. The reprogramming process is not limited to the above method, and can be performed using a method known to those skilled in the art. The medium on which the reprogramming process is performed is not particularly limited, but in the present invention, the reprogramming process is preferably performed in a serum-free medium.
 本発明の特徴は、リプログラミング処理を施した体細胞を、無血清培地中で培養することによりiPS細胞を誘導することである。無血清培地を用いることで、培地中に不確定要素や未知因子あるいは危険因子が存在する懸念が払拭され、様々な解析を再現性よく、容易に行うことができる。また、無血清培地を用いることで、血清含有培地に由来する有害因子を排除できるので、得られるiPS細胞の安全性が確保される。 The feature of the present invention is to induce iPS cells by culturing somatic cells subjected to reprogramming treatment in a serum-free medium. By using a serum-free medium, concerns that uncertain elements, unknown factors, or risk factors exist in the medium can be eliminated, and various analyzes can be easily performed with good reproducibility. In addition, since a harmful factor derived from a serum-containing medium can be eliminated by using a serum-free medium, the safety of the obtained iPS cells is ensured.
 また、継代の際にiPS細胞とフィーダー細胞を分離することが必要であり操作が煩雑になること、フィーダー細胞に由来する様々な因子が培養に影響すること、フィーダー細胞自体のばらつきが大きくiPS細胞誘導の再現性が良くないことなどの問題も、フィーダー細胞を用いない本発明によって解決される。 In addition, it is necessary to separate iPS cells and feeder cells at the time of passage, the operation becomes complicated, various factors derived from the feeder cells affect the culture, and the variation of the feeder cells themselves is large. Problems such as poor reproducibility of cell induction are also solved by the present invention that does not use feeder cells.
 無血清培地とは血清を含まない培地をいう。具体的には、無血清培地とは、アミノ酸、無機塩類、ビタミン、微量元素、糖、などを含む基礎培養液に、インスリンや鉄結合蛋白などの既知のホルモンや蛋白因子などの成分の明らかな因子のみ含まれた培地で、細胞の増殖や分化やホルモン分泌能等の機能を生体内と同様に維持することが可能な培地をいう。このような血清を含まない動物細胞培養用の基礎培地としては、例えば、ダルベッコ改変イーグル培地(DMEM)、最小必須培地(MEM)、イーグル基礎培地(BME)、RPMI1640培地、F12培地、MCDB培地、ならびにそれらの混合培地などが知られている。 Serum-free medium is a medium that does not contain serum. Specifically, a serum-free medium is a basic culture solution containing amino acids, inorganic salts, vitamins, trace elements, sugars, etc., with known hormones and protein factors such as insulin and iron-binding protein. A medium containing only factors and capable of maintaining functions such as cell growth and differentiation and hormone secretion ability in the same manner as in vivo. Examples of the basal medium for animal cell culture that does not contain serum include Dulbecco's modified Eagle medium (DMEM), minimum essential medium (MEM), Eagle basal medium (BME), RPMI 1640 medium, F12 medium, MCDB medium, In addition, mixed media thereof and the like are known.
 本発明のiPS細胞の誘導方法に用いる好ましい無血清培地としては、hESF9培地、hESF9T培地、RD8F培地、DME/F12-8F培地、RDF8F培地などの培地、ならびにそれらの改変培地が例示される。本発明に用いる無血清培地はこれらの培地に限定されず、当業者は公知の無血清培地から適宜選択して用いることができ、あるいは公知の無血清培地を適宜改変して用いることもできる。 Examples of preferable serum-free medium used in the iPS cell induction method of the present invention include hESF9 medium, hESF9T medium, RD8F medium, DME / F12-8F medium, RDF8F medium, and modified media thereof. The serum-free medium used in the present invention is not limited to these media, and those skilled in the art can appropriately select and use known serum-free media, or can modify and use known serum-free media as appropriate.
 好ましくは、フィーダー細胞不含の無血清培地中でのiPS細胞の誘導において、フィブロネクチンを接着因子として用いる。フィブロネクチンを接着因子として用いることにより、iPS細胞の誘導効率を飛躍的に高めることができ、従来法(血清含有培地中、フィーダー細胞使用)によりiPS細胞を誘導する場合に比べて、iPS細胞誘導効率は約10倍に上昇する。 Preferably, fibronectin is used as an adhesion factor in the induction of iPS cells in a serum-free medium without feeder cells. By using fibronectin as an adhesion factor, the induction efficiency of iPS cells can be dramatically increased, and iPS cell induction efficiency compared to the case of inducing iPS cells by a conventional method (in a serum-containing medium, using feeder cells). Rises about 10 times.
 フィブロネクチンは当業者に公知の蛋白である。各種生物起源のフィブロネクチンが公知であり、本発明に使用可能である。本発明にて使用されるフィブロネクチンは、細胞から単離されたものであってもよく、組み換え法などの遺伝子工学的方法により製造されたものであってもよい。また、本発明にて使用されるフィブロネクチンは全長のものであってもよく、その断片であってもよい。 Fibronectin is a protein known to those skilled in the art. Various biological sources of fibronectin are known and can be used in the present invention. The fibronectin used in the present invention may be isolated from cells or may be produced by a genetic engineering method such as a recombinant method. The fibronectin used in the present invention may be full length or a fragment thereof.
 リプログラミング処理を施した体細胞を、フィブロネクチンをコートした培養容器に播種し、iPS細胞を誘導するために培養を行う。無血清培地以外の培地中でリプログラミング処理を行った場合は、体細胞を当該培地とともにフィブロネクチンをコートした培養容器に播種し、その後、無血清培地に培地交換しながら培養を続け、iPS細胞を誘導することができる。無血清培地中でリプログラミング処理を行った場合は、体細胞を当該無血清培地とともにフィブロネクチンをコートした培養容器に播種し、その後、同一または異なる無血清培地に培地交換しながら培養を続け、iPS細胞を誘導することができる。播種や培地交換の手法、iPS細胞の誘導のための培養条件は当業者に公知である。例えば、培養温度としては30~40℃、好ましくは約37℃とすることができ、例えば5~10%の二酸化炭素を含む空気を満たしたインキュベーター内で培養することができる。 The somatic cells that have undergone the reprogramming treatment are seeded in a culture vessel coated with fibronectin, and cultured to induce iPS cells. When reprogramming is performed in a medium other than a serum-free medium, somatic cells are seeded in a culture vessel coated with fibronectin together with the medium, and then cultured while exchanging the medium with the serum-free medium. Can be guided. When reprogramming is performed in a serum-free medium, somatic cells are seeded in a culture vessel coated with fibronectin together with the serum-free medium, and then cultured while changing the medium to the same or different serum-free medium. Cells can be induced. Methods of seeding and medium exchange, and culture conditions for induction of iPS cells are known to those skilled in the art. For example, the culture temperature can be 30 to 40 ° C., preferably about 37 ° C., and for example, the culture can be performed in an incubator filled with air containing 5 to 10% carbon dioxide.
 フィブロネクチンを培養容器にコートする方法は当業者に公知である。例えば、ポリ-L-オルニチンやポリ-L-リジンで培養容器の表面を処理した後、洗浄し、次いで、フィブロネクチンを含む緩衝液で培養容器の表面を処理することにより、フィブロネクチンを培養容器にコートすることができる。使用するフィブロネクチン量も当業者が容易に定めうる。また、本発明の上記方法において、フィブロネクチン以外の接着因子をフィブロネクチンと併用してもよい。 A method for coating fibronectin on a culture vessel is known to those skilled in the art. For example, the surface of the culture container is treated with poly-L-ornithine or poly-L-lysine, washed, and then the surface of the culture container is treated with a buffer containing fibronectin to coat fibronectin on the culture container. can do. A person skilled in the art can easily determine the amount of fibronectin to be used. In the above method of the present invention, an adhesion factor other than fibronectin may be used in combination with fibronectin.
 フィブロネクチンでの培養容器のコート方法は公知である。好ましいコート方法の一例は以下のようなものである。フィブロネクチンを2μg/cmの濃度で培養容器をコーティングし、37℃3時間以上、一晩までの時間で静置する。なお、直ちに使用しない場合にはコーティング液が乾かないようにパラフィルムで密封し、4℃で保存し、1週間以内に使用する。使用時は、フィブロネチン溶液を吸引し、PBSで一度洗浄後、使用する。 Methods for coating culture vessels with fibronectin are known. An example of a preferable coating method is as follows. The culture vessel is coated with fibronectin at a concentration of 2 μg / cm 2 and allowed to stand at 37 ° C. for 3 hours or longer and overnight. If not used immediately, seal with parafilm to prevent the coating solution from drying, store at 4 ° C., and use within 1 week. During use, the fibronetin solution is aspirated and washed once with PBS before use.
 本発明のiPS細胞の製造方法において、リプログラミングされるべき体細胞の継代培養を初代培養から無血清培地中で行い、かつ、体細胞のリプログラミング処理を無血清培地中で行ってもよい。体細胞の継代培養を初代培養から行うことにより、かかる実施態様は本願明細書の実施例に記載されている。体細胞の初代培養および継代培養は、当業者が体細胞の種類に応じて培地組成や培養条件を適宜選択して行うことができる。 In the method for producing iPS cells of the present invention, subculture of somatic cells to be reprogrammed may be performed from primary culture in a serum-free medium, and somatic cell reprogramming may be performed in a serum-free medium. . Such embodiments are described in the Examples herein by conducting subculture of somatic cells from primary culture. Primary culture and subculture of somatic cells can be performed by those skilled in the art by appropriately selecting the medium composition and culture conditions according to the type of somatic cells.
 本発明は、第2の態様において、フィブロネクチンを接着因子として含む、iPS細胞を誘導するための無血清培養基材を提供する。本発明のこの態様の培養基材は、無血清培地およびフィブロネクチンを含む。したがって、本発明のこの態様の培養基材の一具体例はフィブロネクチンを含む無血清培地である。本発明のこの態様の培養基材さらなる具体例は、フィブロネクチンをコートした培養容器およびそれに入った無血清培地を含むものであってもよい。ただし該培養基材はフィーダー細胞を含まない。培養容器の形状は皿、ボトル、チューブ、フラスコ、バッグ等があり、特に限定されない。 In the second aspect, the present invention provides a serum-free culture substrate for inducing iPS cells, which contains fibronectin as an adhesion factor. The culture substrate of this aspect of the invention includes a serum-free medium and fibronectin. Therefore, one specific example of the culture substrate of this aspect of the present invention is a serum-free medium containing fibronectin. Further embodiments of the culture substrate of this aspect of the invention may include a culture vessel coated with fibronectin and a serum-free medium contained therein. However, the culture substrate does not contain feeder cells. The shape of the culture container includes a dish, a bottle, a tube, a flask, a bag and the like, and is not particularly limited.
 本発明は第3の態様において、無血清培地成分およびフィブロネクチンを必須構成成分として含む、iPS細胞を誘導するための無血清培養基材を製造するためのキットを提供する。ただし当該培養基材はフィーダー細胞を含まない。 In the third aspect, the present invention provides a kit for producing a serum-free culture substrate for inducing iPS cells, comprising a serum-free medium component and fibronectin as essential components. However, the culture substrate does not contain feeder cells.
 無血清培地としては上で例示したものや、それらを改変したものが挙げられる。その成分も公知であるか、あるいは当業者が適宜選択することができるものである。キットに含まれる無血清培地成分の形態は特に限定されない。例えばそのまま培養容器に移して使用可能な液体であってもよく、濃縮液の形態であってもよく、あるいは粉末のごとき固体であってもよい。キットに含まれる無血清培地成分は、例えばビタミン類、ミネラル類、アミノ酸類、糖類などに分けてキットに含まれていてもよい。 Examples of the serum-free medium include those exemplified above and those obtained by modifying them. The components are also known or can be appropriately selected by those skilled in the art. The form of the serum-free medium component contained in the kit is not particularly limited. For example, it may be a liquid that can be transferred to a culture vessel as it is, may be in the form of a concentrate, or may be a solid such as a powder. The serum-free medium components included in the kit may be included in the kit, for example, divided into vitamins, minerals, amino acids, saccharides and the like.
 本発明のキットに含まれるフィブロネクチンの形態も特に限定されない。例えばフィブロネクチンは粉末のごとき固体であってもよく、適切なバッファーを含有するフィブロネクチン水溶液のごとき液体であってもよい。 The form of fibronectin contained in the kit of the present invention is not particularly limited. For example, the fibronectin may be a solid such as a powder or a liquid such as an aqueous fibronectin solution containing an appropriate buffer.
 所望により本発明のキットに培養容器が含まれていてもよい。培養容器はガラス、プラスチック等いずれの材質であってもよい。その形状も皿、ボトル、チューブ、フラスコ、バッグ等があり、特に限定されない。本発明のキットに含まれる培養容器は、予めフィブロネクチンにてコートされていてもよい。 If desired, a culture vessel may be included in the kit of the present invention. The culture vessel may be made of any material such as glass or plastic. There are no particular limitations on the shape of the plate, bottle, tube, flask, bag, or the like. The culture container contained in the kit of the present invention may be coated with fibronectin in advance.
 通常は、キットには取扱説明書が添付される。 Usually, an instruction manual is attached to the kit.
 本発明は第4の態様において、フィーダー細胞を用いずに、無血清培地中に腫瘍(トランスフォーミング)増殖因子-β(TGF-β)スーパーファミリーの蛋白を添加して幹細胞を継代培養することを特徴とする、幹細胞の未分化状態および分化多能性を維持する方法を提供する。本発明において、TGF-βスーパーファミリーに属する蛋白、とりわけTGF-βファミリーに属する蛋白を無血清培地に添加することにより、幹細胞の未分化状態および分化多能性を維持しつつ長期間にわたって継代培養することが可能となる。 In the fourth aspect of the present invention, the stem cell is subcultured by adding a tumor (transforming) growth factor-β (TGF-β) superfamily protein to a serum-free medium without using feeder cells. A method for maintaining the undifferentiated state and differentiation pluripotency of stem cells is provided. In the present invention, by adding a protein belonging to the TGF-β superfamily, particularly a protein belonging to the TGF-β family, to a serum-free medium, the cells can be passaged over a long period of time while maintaining the undifferentiated state and differentiation pluripotency of stem cells. It becomes possible to culture.
 TGF-βスーパーファミリーに属する蛋白は、TGF-βファミリー、アクチビンファミリー、および骨形成タンパク質(BMP)ファミリーの蛋白を包含する。本発明において好ましいのはTGF-βファミリーに属する蛋白である。TGF-βファミリーに属する蛋白は当業者に公知であり、TGF-βは、アクチビンやBMPとファミリーを形成し、現在ヒトにおいて、33種類のファミリー分子から構成されており、TGF-β1、Activin-A、BMP-2等が例示される。本発明の上記方法に用いられる特に好ましいTGF-βに属する蛋白はTGF-β1である。 Proteins belonging to the TGF-β superfamily include TGF-β family, activin family, and bone morphogenetic protein (BMP) family proteins. Preferred in the present invention are proteins belonging to the TGF-β family. Proteins belonging to the TGF-β family are known to those skilled in the art, and TGF-β forms a family with activin and BMP and is currently composed of 33 types of family molecules in humans, including TGF-β1, Activin- A, BMP-2 and the like are exemplified. A particularly preferred protein belonging to TGF-β used in the above method of the present invention is TGF-β1.
 本発明のこの態様の方法において、無血清培地中のTGF-βファミリーの蛋白の濃度は、通常1ng/ml~10ng/ml、好ましくは1ng/ml~5ng/mlであるが、適宜変更することができる。使用するTGF-βファミリーの蛋白は1種類であってもよく、2種類以上であってもよい。 In the method of this aspect of the present invention, the concentration of the TGF-β family protein in the serum-free medium is usually 1 ng / ml to 10 ng / ml, preferably 1 ng / ml to 5 ng / ml, but may be changed as appropriate. Can do. The TGF-β family protein used may be one type or two or more types.
 TGF-βファミリーの蛋白は当業者に公知である。各種生物起源のTGF-βファミリーの蛋白が公知であり、本発明に使用可能である。本発明にて使用されるTGF-βファミリーの蛋白は、細胞から単離されたものであってもよく、組み換え法などの遺伝子工学的方法により製造されたものであってもよい。また、本発明にて使用されるTGF-βファミリーの蛋白は全長のものであってもよく、その断片であってもよい。 TGF-β family proteins are known to those skilled in the art. Various biological TGF-β family proteins are known and can be used in the present invention. The TGF-β family protein used in the present invention may be isolated from cells or may be produced by a genetic engineering method such as a recombinant method. Further, the TGF-β family protein used in the present invention may be a full-length protein or a fragment thereof.
 本発明の幹細胞の未分化状態および分化多能性を維持する方法に用いる好ましい無血清培地としては、hESF9培地、hESF9T培地、RD8F培地、DME/F12-8F培地、RDF8F培地、ESF7培地などの培地、ならびにそれらの改変培地が例示される。 Preferred serum-free media used in the method for maintaining the undifferentiated state and differentiation pluripotency of the stem cells of the present invention include media such as hESF9 media, hESF9T media, RD8F media, DME / F12-8F media, RDF8F media, ESF7 media, etc. As well as their modified media.
 本発明の上記方法において、フィブロネクチンを接着因子として用いることが好ましい。培養容器へのフィブロネクチンのコート方法その他フィブロネクチンに関する説明は上記のとおりである。 In the above method of the present invention, it is preferable to use fibronectin as an adhesion factor. The method for coating fibronectin on the culture container and other explanations regarding fibronectin are as described above.
 本発明の上記方法を適用できる幹細胞は特に制限はなく、以下に例示する幹細胞を含めてあらゆる幹細胞が包含される。 The stem cell to which the above-described method of the present invention can be applied is not particularly limited, and includes all stem cells including those exemplified below.
 幹細胞は、複数系統の細胞に分化できる能力(分化多能性)と、 細胞分裂を経ても分化多能性を維持できる能力(自己複製能)を併せ持つ細胞である。幹細胞には受精卵から作られる胚性幹細胞(ES細胞)、生体内組織に存在する体性幹細胞、および特定の遺伝子を導入して作成される誘導多能性幹細胞(iPS細胞)がある。ES細胞、iPS細胞はあらゆる種類の細胞に分化できる性質(全能性)を有する。体性幹細胞の例としては、造血幹細胞、神経幹細胞、肝幹細胞、皮膚幹細胞、生殖幹細胞などがある。本発明において、幹細胞はあらゆる動物に由来するものであってよく、ヒト、サル、マウス、ラット、イヌ、ネコ、ウマ、ブタ等に由来する幹細胞が例示されるが、これらのものに限定されない。これらの幹細胞の製造、取得方法は当業者に公知であり、研究機関に保存されているもの、市販されているものもある。ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取り出し、これを線維芽細胞のごときフィーダー細胞上で培養することにより樹立することができる。iPS細胞の作成法については上述のとおりである。 Stem cells are cells that have the ability to differentiate into cells of multiple lineages (differentiation pluripotency) and the ability to maintain differentiation pluripotency even after cell division (self-renewal ability). Stem cells include embryonic stem cells (ES cells) produced from fertilized eggs, somatic stem cells present in in vivo tissues, and induced pluripotent stem cells (iPS cells) created by introducing a specific gene. ES cells and iPS cells have the property of being able to differentiate into all types of cells (totipotency). Examples of somatic stem cells include hematopoietic stem cells, neural stem cells, hepatic stem cells, skin stem cells, and reproductive stem cells. In the present invention, the stem cells may be derived from any animal, and examples thereof include, but are not limited to, stem cells derived from humans, monkeys, mice, rats, dogs, cats, horses, pigs, and the like. The methods for producing and obtaining these stem cells are known to those skilled in the art, and some are stored in research institutions and others are commercially available. ES cells can be established by taking an inner cell mass from a blastocyst of a fertilized egg of a subject animal and culturing it on feeder cells such as fibroblasts. The method for producing iPS cells is as described above.
 継代培養は、培養細胞を新たな培養容器へと移し替えて増殖、維持することをいう。幹細胞の継代培養方法は当業者に公知である。一般的には、細胞がコンフルエントになる前に、その一部をトリプシン等の消化酵素を用いて培養容器から剥離させ、新しい培養容器を用いて培養することにより、継代培養を行うことができる。培地成分その他の培養条件の選択、培地交換のタイミング、剥離条件、1代あたりの培養時間など、継代培養の手技、手法については、継代培養すべき細胞に応じて当業者が適宜決定、選択することができる。 Subculture refers to the growth and maintenance of transferred cultured cells by transferring them to a new culture vessel. Methods for subculturing stem cells are known to those skilled in the art. In general, before the cells become confluent, a part of the cells can be detached from the culture vessel using a digestive enzyme such as trypsin, and subculture can be performed by culturing using a new culture vessel. . Selection of medium components and other culture conditions, timing of medium replacement, stripping conditions, culture time per passage, etc., techniques and techniques for subculture are appropriately determined by those skilled in the art according to the cells to be subcultured, You can choose.
 本発明の上記方法において、フィーダー細胞を用いずに、無血清培地中にTGF-βファミリーの蛋白を添加して幹細胞を継代培養することが特徴である。無血清培地の作成、選択は当業者が容易に為すところである。本発明の方法によれば、培地中にTGF-βファミリーの蛋白を添加することにより、長期間にわたり多数の継代を繰り返した場合であっても、安定して幹細胞の未分化状態および分化多能性を維持することができる。 The above method of the present invention is characterized in that stem cells are subcultured by adding TGF-β family protein in a serum-free medium without using feeder cells. Preparation and selection of a serum-free medium is easy for those skilled in the art. According to the method of the present invention, by adding a TGF-β family protein to the medium, even when many passages are repeated over a long period of time, the undifferentiated state and the differentiation level of the stem cells are stably maintained. Performance can be maintained.
 幹細胞の未分化状態の確認は、形態観察のほか、Oct3/4、Nanog、Sox2、SSEA-4などの未分化マーカーの発現を調べることによって行われ得る。幹細胞の未分化状態の確認方法は上記方法に限定されず、当業者に公知の方法にて行うことができる。 Confirmation of the undifferentiated state of stem cells can be performed by examining the expression of undifferentiated markers such as Oct3 / 4, Nanog, Sox2, and SSEA-4 in addition to morphological observation. The method for confirming the undifferentiated state of stem cells is not limited to the above method, and can be performed by methods known to those skilled in the art.
 幹細胞の分化多能性の確認は、継代、維持されている幹細胞から胚樣体を形成させ、分化誘導を行って、各種分化マーカーの発現を調べることによって行われ得る。幹細胞の分化多能性の確認方法は上記方法に限定されず、当業者に公知の方法にて行うことができる。 Confirmation of the differentiation pluripotency of stem cells can be performed by forming embryonic rods from passaged and maintained stem cells, inducing differentiation, and examining the expression of various differentiation markers. The method for confirming the pluripotency of stem cells is not limited to the above method, and can be performed by methods known to those skilled in the art.
 本発明のこの態様の一具体例において、本発明のiPS細胞の製造方法により得られたiPS細胞を、TGF-βファミリーに属する蛋白を添加した無血清培地において、フィーダー細胞を用いずに継代培養することにより、iPS細胞の未分化状態および分化多能性を維持することができる。なお、本発明のiPS細胞の製造方法において、TGF-βファミリーの蛋白を含有する無血清培地を用いてiPS細胞を誘導すると、誘導効率が低下する場合があるので、iPS細胞誘導時にTGF-βファミリーの蛋白を用いないことが好ましい。 In one specific example of this aspect of the present invention, iPS cells obtained by the method for producing iPS cells of the present invention are passaged without using feeder cells in a serum-free medium supplemented with a protein belonging to the TGF-β family. By culturing, the undifferentiated state and pluripotency of iPS cells can be maintained. In the iPS cell production method of the present invention, when iPS cells are induced using a serum-free medium containing a TGF-β family protein, the induction efficiency may decrease. It is preferred not to use family proteins.
 本発明は第5の態様において、TGF-βファミリーの蛋白を含む、幹細胞の未分化状態および分化多能性を維持するための継代培養用無血清培養基材を提供する。本発明のこの態様の培養基材は、TGF-βファミリーの蛋白を含有する無血清培地を含む。したがって、本発明のこの態様の一具体例はTGF-βファミリーの蛋白を含有する無血清培地である。TGF-βファミリーの蛋白を含有する無血清培地は、そのまま培養容器に添加して使用可能な液体として提供されてもよく、使用時に調製可能な濃縮液あるいは粉末のごとき固体として提供されてもよい。本発明のこの態様の培養基材のさらなる具体例は、培養容器およびそれに入ったTGF-βファミリーの蛋白を含有する無血清培地を含むものであってもよい。TGF-βファミリーの蛋白の種類および無血清培地中の濃度は上で説明したとおりである。培養容器の形状は皿、ボトル、チューブ、フラスコ、バッグ等があり、特に限定されない。好ましくは、上記培養基材において、培養容器はフィブロネクチンにてコートされている。ただし該培養基材はフィーダー細胞を含まない。 In the fifth aspect, the present invention provides a serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, which comprises a TGF-β family protein. The culture substrate of this aspect of the invention includes a serum-free medium containing a TGF-β family protein. Thus, one specific example of this aspect of the invention is a serum-free medium containing a TGF-β family protein. A serum-free medium containing a TGF-β family protein may be provided as a liquid that can be used as it is by adding it to a culture vessel, or may be provided as a solid such as a concentrate or powder that can be prepared at the time of use. . Further specific examples of the culture substrate of this aspect of the invention may include a culture vessel and a serum-free medium containing the TGF-β family protein contained therein. The kind of TGF-β family protein and the concentration in the serum-free medium are as described above. The shape of the culture container includes a dish, a bottle, a tube, a flask, a bag and the like, and is not particularly limited. Preferably, in the culture substrate, the culture vessel is coated with fibronectin. However, the culture substrate does not contain feeder cells.
 本発明は第6の態様において、無血清培地成分およびTGF-βファミリーの蛋白を含む、幹細胞の未分化状態および分化多能性を維持するための継代培養用無血清培養基材を製造するためのキットを提供する。該培養基材中の培地に含まれるTGF-βファミリーの蛋白の濃度は上で説明したとおりである。ただし該培養基材はフィーダー細胞を含まない。 In a sixth aspect, the present invention provides a serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, comprising a serum-free medium component and a TGF-β family protein. Providing a kit for The concentration of the TGF-β family protein contained in the culture medium in the culture substrate is as described above. However, the culture substrate does not contain feeder cells.
 無血清培地としては上で例示したものや、それらを改変したものが挙げられる。その成分も公知であるか、あるいは当業者が適宜選択することができるものである。キットに含まれる無血清培地成分の形態は特に限定されない。例えばそのまま培養容器に移して使用可能な液体であってもよく、濃縮液の形態であってもよく、あるいは粉末のごとき固体であってもよい。キットに含まれる無血清培地成分は、例えばビタミン類、ミネラル類、アミノ酸類、糖類などに分けてキットに含まれていてもよい。 Examples of the serum-free medium include those exemplified above and those obtained by modifying them. The components are also known or can be appropriately selected by those skilled in the art. The form of the serum-free medium component contained in the kit is not particularly limited. For example, it may be a liquid that can be transferred to a culture vessel as it is, may be in the form of a concentrate, or may be a solid such as a powder. The serum-free medium components included in the kit may be included in the kit, for example, divided into vitamins, minerals, amino acids, saccharides and the like.
 本発明の上記キットにて作成される培養基材において、フィブロネクチンが接着因子として含まれていることが好ましい。本発明のキットに含まれるフィブロネクチンの形態も特に限定されない。例えばフィブロネクチンは粉末のごとき固体であってもよく、適切なバッファーを含有するフィブロネクチン水溶液のごとき液体であってもよい。 In the culture substrate prepared with the kit of the present invention, it is preferable that fibronectin is included as an adhesion factor. The form of fibronectin contained in the kit of the present invention is not particularly limited. For example, the fibronectin may be a solid such as a powder or a liquid such as an aqueous fibronectin solution containing an appropriate buffer.
 所望により本発明の上記キットに培養容器が含まれていてもよい。培養容器はガラス、プラスチック等いずれの材質であってもよい。その形状も皿、ボトル、チューブ、フラスコ、バッグ等があり、特に限定されない。本発明のキットに含まれる培養容器は、予めフィブロネクチンにてコートされていてもよい。 If desired, a culture vessel may be included in the kit of the present invention. The culture vessel may be made of any material such as glass or plastic. There are no particular limitations on the shape of the plate, bottle, tube, flask, bag, or the like. The culture container contained in the kit of the present invention may be coated with fibronectin in advance.
 通常は、キットには取扱説明書が添付される。 Usually, an instruction manual is attached to the kit.
 特に説明した用語を除き、本明細書にて使用される用語は、当業者が刊行物や教科書、辞書などを通じて通常理解している意味に解される。 ) Except for specially explained terms, the terms used in this specification are understood to have the meaning normally understood by those skilled in the art through publications, textbooks, dictionaries, and the like.
 以下に実施例を示して本発明をさらに詳細かつ具体的に説明するが、実施例は本発明を限定するものではない。 Hereinafter, the present invention will be described in more detail and specifically with reference to Examples, but the Examples are not intended to limit the present invention.
 全組成が明らかな無血清培地hESF9(Furue MK, Na J, Okamoto T, et al. (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA 105: 13409-13414)を用いて、iPS細胞の誘導までの各過程を無血清培養条件で検討を行った。さらに、ヒト歯髄由来細胞を用いて、初代培養からウイルス感染さらにiPS細胞の樹立までの全過程を完全無血清培養系にて行うことでhiPS樹立および維持を試みた。 Serum-free medium hESF9 (Furue MK, Na J, Okamoto T, et al. (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA -13414), each process until induction of iPS cells was examined under serum-free culture conditions. Furthermore, using human dental pulp-derived cells, we attempted to establish and maintain hiPS by performing the entire process from primary culture to viral infection and iPS cell establishment in a complete serum-free culture system.
1. 細胞培養法
1-1 細胞培養液
1)無血清培地
 使用した無血清培地はヒトES細胞用に開発されたhESF-GRO培地(Nipro)(L-アスコルビン酸-2-ホスフェート(100μg/ml)含有)(表1)に添加因子としてヒト組み換え型インスリン(10μg/ml)(CSTI 0105, Japan)、ヒトトランスフェリン(5μg/ml)(Sigma T-1147)、2-エタノールアミン(10 μM)(Sigma E-0135)、2-メルカプトエタノール(10μM)(Sigma M-7522)、セレン酸ナトリウム(20nM)(Sigma S-9133)、およびヒト組み換え型アルブミン(0.5mg/ml)(Cell Prime Albumin : Millipore 9301)に包含されたオレイン酸(4.7μg/ml)(Sigma O-1383)を加えたhESF6培地に、ヘパラン硫酸ナトリウム塩(100ng/ml)(Sigma H-7640)およびヒト組み換え型線維芽細胞増殖因子-2(10ng/ml)(FGF-2:R&D, 3718FB)を添加したhESF9培地(表2)を使用し、ウシ血漿由来フィブロネクチン(2μg/cm)(Sigma F-1141)でコートしたディッシュ上にて培養を行った。また、歯髄細胞の培養に使用した無血清培地RD6Fは、RPMI1640培地(Sigma)とDMEM培地(Sigma)を1:1で混合し、ビクシリン(90mg/ml)(Meiji, Japan)、カナマイシン(90mg/ml)(GIBCO)、ピルビン酸ナトリウム(110mg/ml)(Sigma)、15mM HEPES(Dojindo)、重炭酸ナトリウム(2g/L)(Sigma)を添加したRD培地を基礎培地として、6種類の添加因子(6F)つまり、ヒト組み換え型インスリン(10μg/ml)(CSTI 0105, Japan)、ヒトトランスフェリン(5μg/ml)(Sigma T-1147)、2-エタノールアミン(10μM)(Sigma E-0135)、2-メルカプトエタノール(10μM)(Sigma M-7522)、セレン酸ナトリウム(20nM)(Sigma S-9133)、およびヒト組み換え型アルブミン(500μg/ml)(Cell Prime Albumin : Millipore 9301)に包含されたオレイン酸(4.7μg/ml)(Sigma O-1383)を加えた培地であり、本培地を用いてタイプIコラーゲンコートディッシュ上で歯髄細胞の培養を行った。
1. Cell culture method 1-1 Cell culture solution 1) Serum-free medium The serum-free medium used contains hESF-GRO medium (Nipro) (L-ascorbic acid-2-phosphate (100 μg / ml)) developed for human ES cells. ) (Table 1), human recombinant insulin (10 μg / ml) (CSTI 0105, Japan), human transferrin (5 μg / ml) (Sigma T-1147), 2-ethanolamine (10 μM) (Sigma E -0135), 2-mercaptoethanol (10 μM) (Sigma M-7522), sodium selenate (20 nM) (Sigma S-9133), and human recombinant albumin (0.5 mg / ml) (Cell Prime Albumin: Millipore 9301 HESF6 medium supplemented with oleic acid (4.7 μg / ml) (Sigma O-1383) contained in) was added to heparan sulfate sodium salt (100 ng / ml) (Sigma H-7640) and Human recombinant fibroblast growth factor -2 (10ng / ml) (FGF -2: R & D, 3718FB) using hESF9 medium supplemented with (Table 2), bovine plasma-derived fibronectin (2 [mu] g / cm 2) (Sigma F -1141) was cultured on the dish coated. In addition, the serum-free medium RD6F used for dental pulp cell culture was prepared by mixing RPMI1640 medium (Sigma) and DMEM medium (Sigma) at a ratio of 1: 1, bixillin (90 mg / ml) (Meiji, Japan), kanamycin (90 mg / day). ml) (GIBCO), sodium pyruvate (110 mg / ml) (Sigma), 15 mM HEPES (Dojindo), sodium bicarbonate (2 g / L) (Sigma) as a basal medium, and six additional factors (6F) That is, human recombinant insulin (10 μg / ml) (CSTI 0105, Japan), human transferrin (5 μg / ml) (Sigma T-1147), 2-ethanolamine (10 μM) (Sigma E-0135), 2 Mercaptoethanol (10 μM) (Sigma M-7522), sodium selenate (20 nM) (Sigma S-9133), and human recombinant albumin (500 μg / ml) (Cell Prime Albumin: Millipore 9301) Inclusion oleic acid (4.7μg / ml) (Sigma O-1383) is a medium supplemented with, it was cultured in pulp cells on type I collagen coated dish using the culture medium.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2)ヒトES細胞用血清添加培地
 DMEM-F12(GIBCO 12660-012)培地に20% Knock Out Serum Replacement :KSR (Invitrogen 12828-028)、0.1mM 2-メルカプトエタノール(GIBCO 21985-023)、MEM non-essential amino acids (GIBCO 11140-050)、組み換え型ヒトFGF-2(4ng/ml)(R&D 3718FB)を添加した培地を用い、マイトマイシンC(10ug/ml)処理にて不活化したC57/BL6マウス胎仔線維芽細胞上(Millipore: EmbryoMax(R) PMEF-H)に播種し、培養を行った。
2) Serum supplemented medium for human ES cells 20% Knock Out Serum Replacement in DMEM-F12 (GIBCO 12660-012) medium: KSR (Invitrogen 12828-028), 0.1 mM 2-mercaptoethanol (GIBCO 21985-023), MEM C57 / BL6 inactivated by treatment with mitomycin C (10 ug / ml) using a medium supplemented with non-essential amino acids (GIBCO 11140-050) and recombinant human FGF-2 (4 ng / ml) (R & D 3718FB) The cells were seeded on mouse fetal fibroblasts (Millipore: EmbryoMax® PMEF-H) and cultured.
1-2 培養細胞株ならびに樹立ヒトiPS細胞株とその培養方法
1)ヒト胎児肺由来正常線維芽細胞(TIG-3細胞)
 地方独立行政法人東京都健康長寿医療センター研究所にて樹立された日本人胎児肺由来線維芽細胞であるTIG-3細胞に、レトロウイルスを用いて4遺伝子(Oct3/4,Sox2,Klf4,c-Myc)を遺伝子導入し、ヒトiPS細胞の誘導を試みた。TIG-3細胞はDMEM培地(Sigma)に10% ウシ胎児血清(Hyclone(R) Thermo Scientific, US)および1% ペニシリン-ストレプトマイシン(GIBCO)を添加した培地を用い、2~3日毎に1:4のスプリット比(split ratio)にて10cmディッシュ(Falcon)上に細胞を播種し、5%CO/95%気相下、37℃インキュベーター内で培養を行った。
1-2 Cultured cell line and established human iPS cell line and culture method 1) Human fetal lung-derived normal fibroblasts (TIG-3 cells)
TIG-3 cells, which are Japanese fetal lung-derived fibroblasts established by the Tokyo Metropolitan Institute of Health and Longevity Medical Center, have 4 genes (Oct3 / 4, Sox2, Klf4, c) using retrovirus. -Myc) was introduced and human iPS cells were induced. TIG-3 cells were prepared by adding 10% fetal bovine serum (Hyclone® Thermo Scientific, US) and 1% penicillin-streptomycin (GIBCO) to DMEM medium (Sigma) at a ratio of 1: 4 every 2-3 days. The cells were seeded on a 10 cm dish (Falcon) at a split ratio of 5% CO 2 /95% in a gas phase and cultured in a 37 ° C. incubator.
2)PLAT-Aウイルスパッケージング細胞株
 哺乳類への感染指向性を持ち、長期間安定してレトロウイルスの構造タンパク質(gag, pol, env)を産生可能なウイルスパッケージング細胞株Platinum-A Retroviral Packaging Cell, amphotropic (PLAT-A : Cell Biolabs Inc. CA, USA)を使用し、レトロウイルスの産生を行った。DMEM培地(Sigma)に10% FBS、1μg/ml ピューロマイシン(Sigma)および10μg/ml ブラスチシジン(Funakoshi, Tokyo, Japan)、1% ペニシリン-ストレプトマイシン(GIBCO)を添加した培地を用いて、2日毎に1:4のスプリット比(split ratio)にて10cmディッシュ(Falcon)上に細胞を播種し、5%CO/95%気相下、37℃のCOインキュベーター内で培養を行った。
 なお、トランスフェクションを行う際には、前日にDMEM培地に10% FBSを添加した培地を使用し、コラーゲンコートした25cmフラスコ(BioCoat Collagen I Cellware, Falcon)に2x10個の細胞を播種し、16~24時間後に細胞が70%~80%コンフルエントになったところで遺伝子導入(トランスフェクション)に使用し、トランスフェクション開始48~72時間後のウイルス上清を回収し、標的細胞に感染させた。
2) PLAT-A virus-packaging cell line Virus-packaging cell line Platinum-A Retroviral Packaging that is capable of producing retrovirus structural proteins (gag, pol, env) stably for a long period of time. Retrovirus production was performed using Cell, amphotropic (PLAT-A: Cell Biolabs Inc. CA, USA). Every two days using a medium supplemented with 10% FBS, 1 μg / ml puromycin (Sigma) and 10 μg / ml blasticidin (Funakoshi, Tokyo, Japan), 1% penicillin-streptomycin (GIBCO) in DMEM medium (Sigma) Cells were seeded on a 10 cm dish (Falcon) at a split ratio of 1: 4 and cultured in a CO 2 incubator at 37 ° C. in a 5% CO 2 /95% gas phase.
When transfection is performed, a medium in which 10% FBS is added to DMEM medium the day before is used, and 2 × 10 6 cells are seeded in a collagen-coated 25 cm 2 flask (BioCoat Collagen I Cellware, Falcon) After 16 to 24 hours, when the cells became 70% to 80% confluent, the cells were used for gene transfer (transfection), and the virus supernatant 48 to 72 hours after the start of transfection was collected and infected with target cells.
3)樹立ヒトiPS細胞株(Tic)とその培養方法
 コントロールのiPS細胞として、国立成育医療研究センターの梅澤らが樹立し、医薬基盤研究所より供与されたTic(JCRB1331)を用いた。Ticをあらかじめ0.1%ゼラチンにてコートしたフラスコに、フィーダー細胞として播種した不活化マウス胎仔線維芽細胞(Millipore: PMEF-H)上に播種し、血清添加ES細胞用培地を用いて培養を行った。なお、細胞分散はデスパーゼII(1mg/ml)(Roche 4942078, Basel, Switzerland)を用いて継代を行った。
3) Established human iPS cell line (Tic) and its culturing method Tic (JCRB1331), established by the National Center for Child Health and Development and established by the National Institute of Biomedical Innovation, was used as a control iPS cell. Inoculate Tic with 0.1% gelatin in advance on inactivated mouse fetal fibroblasts (Millipore: PMEF-H) seeded as feeder cells and culture using serum-supplemented ES cell medium. went. The cell dispersion was subcultured using Despase II (1 mg / ml) (Roche 4942078, Basel, Switzerland).
2.TIG-3細胞からのヒトiPS誘導における無血清培養条件の検討
 ヒト胎児肺線維芽細胞TIG-3細胞を用いて、Oct3/4、Sox2、Klf4、c-Mycの4遺伝子を、レトロウイルス(PLAT-Aパッケージング細胞)を用いて感染させ、ヒトiPS細胞を誘導した。
2. Examination of serum-free culture conditions for human iPS induction from TIG-3 cells Using human fetal lung fibroblast TIG-3 cells, 4 genes of Oct3 / 4, Sox2, Klf4 and c-Myc were converted into retrovirus (PLAT). -A packaging cells) were used to induce human iPS cells.
1)レトロウイルスの作製
 1-2 2)の方法に準じて継代維持したPLAT-A細胞に初期化4遺伝子を導入し、レトロウイルスを作成した。使用したプラスミドは京都大学 山中研究室にて作成されたpMXs-(hOct3/4)、pMXs-(hSox2)、pMXs-(hKlf4)、pMXs-(hc-Myc)(Cell Biolabs Inc. CA,USA)を用いた。
 トランスフェクション前日に、PLAT-A細胞をタイプIコラーゲン処理した25cmフラスコ(BioCoat Collagen I Cellware, Falcon)に2x10個の密度で細胞を播種し、16~24時間経過後に70%~80%コンフルエントになったところで、4μgのプラスミド溶液とトランスフェクション試薬をDMEM培地にて希釈した混合液を加えて、この複合体溶液をPLAT-A細胞を播種したフラスコに添加し、トランスフェクションした。さらに、4時間後に血清添加培地を加えて、翌日に10%FBS添加DMEM培地に交換し、トランスフェクション開始24~48時間後のウイルス上清を回収後、標的細胞に感染させた。なお、プラスミド毎にトランスフェクションするため計4枚の25cmフラスコを用意した。
1) Preparation of retrovirus 1-2 A retrovirus was prepared by introducing the reprogramming 4 gene into PLAT-A cells passaged and maintained according to the method of 2). The plasmids used were pMXs- (hOct3 / 4), pMXs- (hSox2), pMXs- (hKlf4), pMXs- (hc-Myc) (Cell Biolabs Inc. CA, USA) prepared in Yamanaka Laboratory, Kyoto University. Was used.
The day before transfection, cells were seeded at a density of 2 × 10 6 in 25 cm 2 flasks (BioCoat Collagen I Cellware, Falcon) treated with type I collagen from PLAT-A cells, and 70% -80% confluent after 16-24 hours. Then, a mixed solution obtained by diluting 4 μg of a plasmid solution and a transfection reagent in DMEM medium was added, and this complex solution was added to a flask seeded with PLAT-A cells, and transfection was performed. Further, serum-added medium was added after 4 hours, and the medium was replaced with DMEM medium supplemented with 10% FBS on the next day. The virus supernatant 24 to 48 hours after the start of transfection was collected, and then infected with target cells. A total of four 25 cm 2 flasks were prepared for transfection for each plasmid.
2)リプログラミング過程における無血清培養条件の検討
(1)ウイルス感染および細胞外マトリックス上への播種
 10%FBS添加DMEM培地で培養したPDL(集団細胞倍加数)24~40のTIG-3細胞に、レトロウイルスを感染させ4遺伝子を導入した。その後、無血清培地hESF9に培地交換し、各種細胞外マトリックス上に播種し、リプログラミング過程における無血清培養条件の検討を行った。
 ウイルス感染の前日(Day-1)に10%FBS添加DMEM培地で培養したTIG-3細胞を、3x10個の細胞数で6cmディッシュ上に播種した。翌日(Day0)、各ウイルス上清を等量混合したpMXs-(4F)を最終濃度8μg/mlとなるようにポリブレンを加えて、0.45μmフィルターで濾過した後、血清添加培地にて維持したTIG-3細胞へ感染させた。感染4時間後にポリブレンの毒性を弱めるため、ウイルス上清と等量の培地を加えた。感染24時間後(Day1)に培地交換し、4日間(Day4まで)培養を行った。なお、培地交換は2日毎に行った。感染4日後(Day4)にTIG-3細胞を0.05%トリプシン/EDTA処理により単一細胞に分散した。続いて、あらかじめ0.1%ゼラチン(Millipore ES-006B)あるいはタイプIコラーゲン(0.3mg/ml)(Nitta gelatin)あるいはフィブロネクチン(2μg/cm)(Sigma)の各種細胞外マトリックスにてコートした10cmディッシュ上に1x10/ディッシュの細胞数となるよう播種した。再播種翌日(Day5)に無血清培地hESF9に培地交換し、フィーダー細胞を用いず、各種細胞外マトリックス上に播種することでヒトiPS細胞の誘導を試み、リプログラミング過程における無血清培養条件の及ぼす影響について検討を行った(図1)。再播種後の培地交換は2日毎に行った。
 ゼラチン、タイプIコラーゲン、フィブロネクチンのいずれの細胞外マトリックス上においても、感染13日前後より、細胞質と比較して大きな核を持つ、小型で細胞境界が不明瞭なヒトES細胞様のコロニー形成を認めた(図1)。感染20日後より、顕微鏡下でピペットを用いてコロニーを回収し、あらかじめ各細胞外マトリックスでコートした4ウェルマルチディッシュ上に播種し、継代した。ゼラチン上に播種したディッシュでは細胞接着が弱く、接着したとしてもコロニーが著しい分化傾向にあった。さらにタイプIコラーゲン上に播種したディッシュではコロニーは接着するものの、辺縁より著しい分化傾向を示した。一方でフィブロネクチン上に播種したディッシュでは細胞接着後、ヒトiPS細胞の形態を保持し維持することが可能であった(図2)。また、感染36日後に未分化性の指標であるALP染色を行い、いずれのディッシュ上のコロニーも陽性反応を示した。フィブロネクチンおよびコラーゲン上に播種した細胞が、最も形態的にヒトiPS細胞に類似していた。
 コントロールとして、ウイルス感染4日後(Day4)のTIG-3細胞を、あらかじめマイトマイシンC(10μg/ml)にて不活性化したフィーダー細胞を播種した10cmディッシュ上で培養し、翌日(Day5)からヒトES細胞用血清培地に交換し、以後2日毎に培地交換を行った。本培養条件でもコロニーは出現したが、初期化が不完全なコロニーが多く、またフィーダー細胞を用いない無血清培養条件に比べてコロニー出現時期は遅延した(図1)。
2) Examination of serum-free culture conditions during the reprogramming process (1) Virus infection and seeding on the extracellular matrix PIG (population cell doubling number) 24-40 TIG-3 cells cultured in 10% FBS-added DMEM medium Infected with retrovirus, 4 genes were introduced. Thereafter, the medium was replaced with a serum-free medium hESF9, seeded on various extracellular matrices, and serum-free culture conditions in the reprogramming process were examined.
The day before the virus infection (Day-1), TIG-3 cells cultured in DMEM medium supplemented with 10% FBS were seeded on a 6 cm dish with 3 × 10 5 cells. The next day (Day 0), pMXs- (4F) mixed with an equal amount of each virus supernatant was added with polybrene to a final concentration of 8 μg / ml, filtered through a 0.45 μm filter, and then maintained in a serum-added medium. TIG-3 cells were infected. In order to attenuate the toxicity of polybrene 4 hours after the infection, the same amount of medium as the virus supernatant was added. The medium was changed 24 hours after infection (Day 1), and culture was performed for 4 days (until Day 4). The medium was changed every 2 days. Four days after infection (Day 4), TIG-3 cells were dispersed into single cells by 0.05% trypsin / EDTA treatment. Subsequently, 0.1% gelatin (Millipore ES-006B), type I collagen (0.3 mg / ml) (Nitta gelatin) or fibronectin (2 μg / cm 2 ) (Sigma) was coated with various extracellular matrices in advance. It seed | inoculated so that it might become the cell number of 1x10 < 5 > / dish on a 10 cm dish. The day after re-seeding (Day 5), the medium was changed to the serum-free medium hESF9, and the induction of human iPS cells was attempted by seeding on various extracellular matrices without using feeder cells. The effect was examined (Figure 1). Medium exchange after re-seeding was performed every 2 days.
On the extracellular matrix of any of gelatin, type I collagen, and fibronectin, from around 13 days after infection, human ES cell-like colony formation with a large nucleus compared to the cytoplasm and small cell boundaries was observed. (FIG. 1). From 20 days after the infection, colonies were collected using a pipette under a microscope, seeded on a 4-well multi-dish previously coated with each extracellular matrix, and subcultured. In the dishes seeded on gelatin, cell adhesion was weak, and even if they adhered, colonies tended to differentiate significantly. Furthermore, in the dishes seeded on type I collagen, colonies adhered, but showed a tendency to differentiate significantly from the edges. On the other hand, in the dish seeded on fibronectin, it was possible to maintain and maintain the morphology of human iPS cells after cell attachment (FIG. 2). In addition, ALP staining, which is an undifferentiated index, was performed 36 days after infection, and the colonies on any dish showed a positive reaction. Cells seeded on fibronectin and collagen were most morphologically similar to human iPS cells.
As a control, TIG-3 cells 4 days after virus infection (Day 4) were cultured on a 10 cm dish in which feeder cells previously inactivated with mitomycin C (10 μg / ml) were seeded, and human ES from the next day (Day 5). The serum medium for cells was changed, and thereafter the medium was changed every two days. Although colonies appeared even under the main culture conditions, many colonies were incompletely initialized, and the colony appearance time was delayed as compared to serum-free culture conditions without using feeder cells (FIG. 1).
(2)感染効率の評価(FACS解析)
 4遺伝子の感染と同時に、使用したレトロウイルスパッケージング細胞PLAT-Aの感染効率の評価のため、EGFPを用いFACS解析にて評価した。
(2) Evaluation of infection efficiency (FACS analysis)
Simultaneously with the infection of the 4 genes, FACS analysis was performed using EGFP in order to evaluate the infection efficiency of the retroviral packaging cell PLAT-A used.
 (i)1因子感染効率
 前述 2-1 1)および2)の方法に準じて、PLAT-A細胞にpMXs-(EGFP)あるいはpMXs-(-)をトランスフェクションし、各ウイルス上清を回収した後、各々TIG-3細胞に感染させ、4日後にTIG-3細胞をセルストレーナー付FACS用チューブ(BD Falcon)に回収し、フローサイトメーター(FACS CaliburTM, Beckton Dickinson)にて解析を行った。
(I) Factor 1 infection efficiency According to the method of 2-1 1) and 2) described above, PLAT-A cells were transfected with pMXs- (EGFP) or pMXs-(-), and each virus supernatant was collected. Thereafter, each TIG-3 cell was infected, and 4 days later, the TIG-3 cell was collected in a FACS tube with cell strainer (BD Falcon) and analyzed with a flow cytometer (FACS Calibur ™, Beckton Dickinson).
 (ii)4因子感染効率
 前述 2-1 1)および2)の方法に準じて、PLAT-A細胞にpMXs-(hOct3/4)、pMXs-(hSox2)、pMXs-(hKlf4)、pMXs-(hc-Myc)を各々トランスフェクションしたウイルス上清の等量混合液(以後pMXs-(4F)と表記)、あるいはpMXs-(4F)とpMXs-(EGFP)のウイルス上清を3:1の割合で混合したウイルス混合液を、各々TIG-3細胞に感染させ、4日後にTIG-3細胞をセルストレーナー付FACS用チューブ(BD Falcon)に回収し、フローサイトメーターにて解析を行い、便宜的に4因子感染効率とした。
 1因子感染効率をFACSにて評価したところ、平均43.4%であった。次に4因子感染効率として評価したところ、26.6%とやや感染効率は低下したが、平均的な効率が得られたため、本システムを用いてヒトiPS細胞(hiPS細胞)の誘導を試みた。
(Ii) Four-factor infection efficiency According to the method of 2-1 1) and 2) described above, PLAT-A cells were treated with pMXs- (hOct3 / 4), pMXs- (hSox2), pMXs- (hKlf4), pMXs- ( hc-Myc) each transfected virus supernatant mixture (equal to pMXs- (4F)), or pMXs- (4F) and pMXs- (EGFP) virus supernatant in a ratio of 3: 1 Infect the TIG-3 cells with each of the virus mixtures mixed in 1. After 4 days, collect the TIG-3 cells in a FACS tube with cell strainer (BD Falcon) and analyze with a flow cytometer. 4 factor infection efficiency.
When the single factor infection efficiency was evaluated by FACS, the average was 43.4%. Next, when the four-factor infection efficiency was evaluated, the infection efficiency was slightly reduced to 26.6%, but average efficiency was obtained, so we tried to induce human iPS cells (hiPS cells) using this system. .
3)ウイルス感染成立時における無血清培養条件の検討
 レトロウイルス上清を無血清培地hESF9にて回収し、ウイルス感染が成立する24時間を無血清培地hESF9として、ウイルス感染成立時における無血清培地の影響について検討を行った(図3)。
 DMEM培地に10%FBSを加えた血清添加培養条件下にてPLAT-A細胞にpMXs-(EGFP)あるいはpMXs-(-)をトランスフェクションし、DMEM培地に10%FBSを加えた血清培地条件(以後条件Aと表記)あるいはhESF9無血清培地条件(以後条件Bと表記)の各条件にてトランスフェクションの24~48時間後のウイルス上清を回収し、標的細胞であるTIG-3細胞に感染させた。ウイルス感染の成立する24時間を上記AあるいはB条件にて行い、以後は両条件とも血清添加培地A条件にて培養を行い、3日後にTIG-3細胞をセルストレーナー付FACS用チューブに回収し、フローサイトメーター(FACS CaliburTM, Beckton Dickinson)にて解析を行った。
 血清添加培養条件Aでは感染効率は62.6%、無血清培養条件Bでは感染効率は46.4%であった。条件Aに比べて、無血清培養条件Bは効率がやや低値を示したものの、一般的にhiPS誘導に必要なタイター(力価)は維持されていると考えられた。
3) Examination of serum-free culture conditions when virus infection is established Retrovirus supernatant is collected in serum-free medium hESF9, and 24 hours after virus infection is established as serum-free medium hESF9. The effect was examined (Figure 3).
PLAT-A cells were transfected with pMXs- (EGFP) or pMXs-(−) under serum-added culture conditions with 10% FBS added to DMEM medium, and serum medium conditions with 10% FBS added to DMEM medium ( The virus supernatant 24 to 48 hours after transfection was collected under each condition of condition A) or hESF9 serum-free medium condition (hereinafter referred to as condition B), and infected with TIG-3 cells as target cells. I let you. 24 hours after virus infection is established under the above conditions A or B, and thereafter, both conditions are cultured under the condition of serum-added medium A. Three days later, TIG-3 cells are collected in a FACS tube with a cell strainer. The analysis was performed with a flow cytometer (FACS Calibur ™, Beckton Dickinson).
In the serum-added culture condition A, the infection efficiency was 62.6%, and in the serum-free culture condition B, the infection efficiency was 46.4%. Although serum-free culture condition B showed a slightly lower efficiency than condition A, it was generally considered that the titer (titer) necessary for hiPS induction was maintained.
3. フィーダー細胞を用いない無血清培養条件での歯髄由来細胞からのヒトiPS細胞誘導
 これまでのTIG-3細胞を用いた実験結果をもとに、無血清培養条件下にてレトロウイルス上清を用いて、初代培養からウイルス感染を経てヒトiPS細胞誘導までの全過程を完全無血清培養系にて行い、ヒトiPS細胞が誘導可能であるか検討を行った(図4)。
3. Induction of human iPS cells from dental pulp-derived cells under serum-free culture conditions without feeder cells Based on the results of previous experiments using TIG-3 cells, retrovirus supernatant was used under serum-free culture conditions. Thus, the entire process from primary culture to viral iPS cell induction through human infection was performed in a complete serum-free culture system to examine whether human iPS cells could be induced (FIG. 4).
1)歯髄由来細胞の初代培養
 広島大学ヒトゲノム・遺伝子解析研究倫理審査委員会にて承認を得た研究計画に基づき、広島大学病院顎・口腔外科を受診し、同意の得られた患者の抜歯後の歯髄組織から歯髄由来細胞を分離し、explant培養法にて無血清培地を用いて初代培養を行った。
 下顎埋伏智歯の抜去歯牙より分離した歯髄を70%エタノールに浸漬後、細切し、以下に記載したRD6F培地を用い、タイプIコラーゲン(0.15mg/ml)(Nitta gelatin)にてコートしたディッシュ上に、5%CO/95%気相下、37℃下、COインキュベーター内で培養を行った。培地交換は2~3日毎に行い、サブコンフルエントまで増殖した段階で0.05% trypsin/EDTA処理により細胞分散後、0.1%trypsin inhibitorを加えてtrypsin作用を中和し、ディッシュ上に細胞を播種し、3~4日毎に継代を行った。
 無血清培地として以下に示すRD6Fを用いた。すなわち、DMEM培地(Sigma)とRPMI1640培地(Sigma)を1:1で混合し、ビクシリン(90mg/ml)(Meiji, Japan)、カナマイシン(90mg/ml)(GIBCO)、ピルビン酸ナトリウム(110mg/ml)(Sigma)、15mM HEPES(Dojindo)、重炭酸ナトリウム(2g/L)(Sigma)を添加したRD培地を基礎培地として、6種類の添加因子インスリン(10μg/ml)(CSTI 0105)、トランスフェリン(5μg/ml)(Sigma T-1147)、2-エタノールアミン(10μM)(Sigma E-0135)、2-メルカプトエタノール(10μM)(Sigma M-7522)、セレン酸ナトリウム(10nM)(Sigma S-9133)、および脂肪酸不含ウシ血清アルブミン(Sigma O-3008)に抱合されたオレイン酸(4.7μg/ml)を加えた培地をRD6Fとし、培養を行った。
1) Primary culture of dental pulp-derived cells Based on a research plan approved by the Hiroshima University Human Genome / Gene Analysis Research Ethics Committee, after undergoing jaw and oral surgery at Hiroshima University Hospital, after extraction of a patient with consent The pulp-derived cells were separated from the dental pulp tissue and primary culture was performed using the serum-free medium by the expand culture method.
Dish coated with type I collagen (0.15 mg / ml) (Nita gelatin) using the RD6F medium described below after immersing the pulp separated from the extracted tooth of the mandibular impacted dentition in 70% ethanol. On top, the cells were cultured in a CO 2 incubator at 37 ° C. in a 5% CO 2 /95% gas phase. The medium is exchanged every 2 to 3 days, and after cell growth by treatment with 0.05% trypsin / EDTA at the stage of growth to sub-confluence, 0.1% trypsin inhibitor is added to neutralize trypsin action, and the cells on the dish are neutralized. And subcultured every 3-4 days.
RD6F shown below was used as a serum-free medium. Specifically, DMEM medium (Sigma) and RPMI 1640 medium (Sigma) were mixed at a ratio of 1: 1, and bivicillin (90 mg / ml) (Meiji, Japan), kanamycin (90 mg / ml) (GIBCO), sodium pyruvate (110 mg / ml). ) (Sigma), 15 mM HEPES (Dojindo), sodium bicarbonate (2 g / L) (Sigma) added as a basal medium, 6 kinds of additive factors insulin (10 μg / ml) (CSTI 0105), transferrin ( 5 μg / ml) (Sigma T-1147), 2-ethanolamine (10 μM) (Sigma E-0135), 2-mercaptoethanol (10 μM) (Sigma M-7522), sodium selenate (10 nM) (Sigma S-9133) ) And oleic acid (4.7 μg / ml) conjugated to fatty acid-free bovine serum albumin (Sigma O-3008) and RD6F. , And culture was performed.
2)レトロウイルス感染およびヒトiPS細胞誘導
 無血清培地RD6Fにて初代培養を行った歯髄由来細胞に、全過程を通して無血清条件下にてウイルス感染させ、フィブロネクチン上に播種し、誘導を行った。
 初代培養開始から2週間程度継代培養を行った細胞を、ウイルス感染の前日(Day-1)に、3x10の細胞数で60mmディッシュ上に播種した。翌日(Day0)、無血清培地hESF9にて回収したレトロウイルス上清pMXs-(4F)にポリブレン(8μg/ml)を添加したのち、歯髄由来細胞に感染させた。感染4時間後に等量の無血清培地hESF9を追加し、24時間後に培地交換を行い、感染5日後(Day5)に各細胞を0.05%トリプシン-EDTA処理により単一細胞に分散し、あらかじめフィブロネクチン(2μg/cm)にてコートしたディッシュ上に、細胞数1.0x10個/10cmディッシュとなるよう播種した。再播種後は2日毎に無血清培地hESF9培地を用いて培地交換を行った(図4)。感染15日後よりiPS様のコロニーが出現し、感染20日後のコロニーを回収し、フィブロネクチンコートしたディッシュ上に播種し、無血清培地hESF9あるいはhESF9にTGF-β1(2ng/ml)を添加した培地hESF9Tを用いて継代培養を行った。完全無血清培養系ではALP活性陽性コロニー数が多く(図4D)、iPS細胞誘導効率が0.39%と高い誘導効率を示した。また、同一のベクターを使用した文献と比較しても高い誘導効率を示した(表3)。さらに、ウイルス感染5日後に再播種せず、培地のみhESF9に交換した条件についても検討を行ったが、細胞形態の変化が乏しく、コロニーは全く形成されなかった。なお、KSR添加培養条件にて誘導されたヒトiPS細胞様のコロニーは、マイトマイシンCにて不活性化したフィーダー細胞上に播種し、ヒトES細胞用血清培地を用いて培養を行い、分化前に顕微鏡下でコロニーを回収し、継代を行った。
2) Retrovirus infection and human iPS cell induction Dental pulp-derived cells that were primarily cultured in serum-free medium RD6F were virus-infected under serum-free conditions throughout the entire process, seeded on fibronectin, and induced.
Cells that had been subcultured for about 2 weeks from the start of the primary culture were seeded on a 60 mm dish at 3 × 10 5 cells on the day before virus infection (Day-1). The next day (Day 0), polybrene (8 μg / ml) was added to the retroviral supernatant pMXs- (4F) collected in the serum-free medium hESF9, and then infected with dental pulp-derived cells. An equal amount of serum-free medium hESF9 was added 4 hours after infection, the medium was changed 24 hours later, and each cell was dispersed into single cells by 0.05% trypsin-EDTA treatment 5 days after infection (Day 5). On a dish coated with fibronectin (2 μg / cm 2 ), seeding was performed so that the number of cells was 1.0 × 10 5 cells / 10 cm. After re-seeding, the medium was changed every 2 days using a serum-free medium hESF9 medium (FIG. 4). An iPS-like colony appeared 15 days after the infection, and the colony 20 days after the infection was collected, seeded on a fibronectin-coated dish, and medium hESF9T supplemented with serum-free medium hESF9 or hESF9 with TGF-β1 (2 ng / ml). Was used for subculture. In the complete serum-free culture system, the number of colonies positive for ALP activity was large (FIG. 4D), and iPS cell induction efficiency was as high as 0.39%. Moreover, high induction efficiency was also shown compared with the literature using the same vector (Table 3). Furthermore, the conditions were also examined in which the medium was replaced with hESF9 without re-seeding 5 days after virus infection, but the change in cell morphology was poor and no colonies were formed. In addition, human iPS cell-like colonies induced under KSR-added culture conditions are seeded on feeder cells inactivated with mitomycin C, cultured using serum medium for human ES cells, and before differentiation. Colonies were collected and subcultured under a microscope.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
3)歯髄細胞由来ヒトiPS細胞の未分化性の維持
(1)ヒトiPS細胞の増殖能および未分化性の維持に及ぼすTGF-β1の影響
 歯髄由来細胞から樹立したhiPS細胞を、マイクロピペットを用いて機械的に小さくした後、無血清培地hESF9あるいはTGF-β1を加えたhESF9T培地を用いてフィブロネクチンコートしたディッシュ上に播種した(図5A)。無血清培地hESF9で維持したhiPS細胞はディッシュに接着するものの、長期継代培養とともに未分化性を十分に維持することが困難となり、辺縁から次第に分化した細胞の遊走が観察された。一方、TGF-β1を含む無血清培地hESF9Tで維持したヒトiPS細胞は、未分化性を維持したまま継代培養することが可能であった(図7A)。また、hESF9培地に各種濃度(0、0.1、1、2、5、10ng/ml)のTGF-β1を添加し、培養4日後に全RNAを回収し、cDNA合成後、QX100TM Droplet DigitalTM PCR system (Bio-RAD)を用いて遺伝子発現解析を行った。Droplet DigitalTMPCRはddPCRTM supermix (Bio Rad)を用いて添付のプロトコールに準じ、QX100TMDroplet Generator (Bio Rad)にて液滴を作成しPCR反応にて増幅後、QX100TM Droplet Reader(Bio Rad)を用いて解析を行った。TGF-β1濃度依存的に未分化性を保持した細胞数は増加し、Oct3/4およびNanogの未分化マーカー遺伝子発現が増強した(図7B)。なお、TGF-β1濃度は2~10ng/mlでもっとも未分化マーカーが高発現していたが、TGF-β1非存在下では著しく未分化マーカー遺伝子の発現が低下するとともに、中胚葉分化マーカーのプラスミノーゲンアクチベーターインヒビター-1(PAI-1)および心筋などの内胚葉分化マーカーであるGATA結合タンパク質4(GATA4)といった分化マーカーの発現を認めた。また、無血清培地hESF9あるいはhESF9Tを用いて30代継代・維持されたヒトiPS細胞をフローサイトメトリーにて解析したところ、SSEA4陽性細胞率はhESF9T培地で91.7%でありhESF9培地での割合(12%)と比較し有意に高かった。また、Oct3/4陽性細胞率はhESF9T培地で67.5%であったが、hESF9培地では0.6%と低下していた(図5B)。無血清培地hESF9を用いることで、iPS細胞の樹立および短期間では未分化性を維持したヒトiPS細胞の継代・維持が可能であるが、TGF-β1を添加することで、未分化性を保持した細胞の長期継代・維持が可能となることが示された。
3) Maintenance of undifferentiated human iPS cells derived from dental pulp cells (1) Effect of TGF-β1 on maintenance of proliferative ability and undifferentiation of human iPS cells HiPS cells established from dental pulp-derived cells were used using a micropipette. After mechanical reduction, the seeds were plated on fibronectin-coated dishes using a serum-free medium hESF9 or hESF9T medium supplemented with TGF-β1 (FIG. 5A). Although the hiPS cells maintained in the serum-free medium hESF9 adhere to the dish, it became difficult to sufficiently maintain undifferentiation along with long-term subculture, and migration of cells gradually differentiated from the margin was observed. On the other hand, human iPS cells maintained in serum-free medium hESF9T containing TGF-β1 could be subcultured while maintaining undifferentiation (FIG. 7A). In addition, various concentrations (0, 0.1, 1, 2, 5, 10 ng / ml) of TGF-β1 were added to hESF9 medium, and total RNA was recovered after 4 days of culture. After cDNA synthesis, QX100 Droplet Digital Gene expression analysis was performed using TM PCR system (Bio-RAD). Droplet Digital TM PCR uses ddPCR TM supermix (Bio Rad) according to the attached protocol, creates droplets with QX100 TM Droplet Generator (Bio Rad), amplifies it with PCR reaction, then QX100 TM Droplet Reader (Bio Rad) ) Was used for analysis. The number of cells that remained undifferentiated increased depending on the TGF-β1 concentration, and the expression of Oct3 / 4 and Nanog undifferentiated marker genes was enhanced (FIG. 7B). The TGF-β1 concentration was 2 to 10 ng / ml, and the most undifferentiated marker was highly expressed. However, in the absence of TGF-β1, the expression of the undifferentiated marker gene was remarkably reduced, and the mesoderm differentiation marker was positive. Expression of differentiation markers such as minogen activator inhibitor-1 (PAI-1) and GATA-binding protein 4 (GATA4), which is an endoderm differentiation marker such as cardiac muscle, was observed. In addition, when human iPS cells passaged and maintained for 30 generations using serum-free medium hESF9 or hESF9T were analyzed by flow cytometry, the SSEA4 positive cell rate was 91.7% in hESF9T medium, and in hESF9 medium It was significantly higher than the percentage (12%). The Oct3 / 4 positive cell rate was 67.5% in the hESF9T medium, but decreased to 0.6% in the hESF9 medium (FIG. 5B). By using serum-free medium hESF9, it is possible to establish iPS cells and to pass through and maintain undifferentiated human iPS cells in a short period of time. However, by adding TGF-β1, undifferentiation can be achieved. It was shown that the retained cells can be passaged and maintained for a long time.
(2)TGF-β1添加培地hESF9Tにて継代したヒトiPS細胞の特性解析
 無血清培地hESF9あるいはhESF9Tを用いて、フィブロネクチン上で継代・維持したヒトiPS細胞からRNAを抽出し、Agilent Sure Print G3 Human GE 8x60K v2 MicroarrayにてGenespring12.0 (Agilent Technologies, Santa Clara, CA)を使用し遺伝子の網羅的発現解析(genome-wide gene expression profiling analysis)を行ったところ、ヒトES細胞用血清培地を用いてフィーダー細胞上で維持したヒトiPS細胞と比較して、概ね同一の遺伝子発現パターンを示した(図5C、図6)。一方でこれらのパスウェイ解析において、hESF9培地で継代・維持した細胞はhESF9T添加培地で培養した細胞と比較し、TGF-βシグナリングパスウェイ(WP560)、WNTシグナリングおよび多能性パスウェイ(WP399)、WNTシングナリングパスウェイ(WP428)およびアポトーシスモジュレーションおよびシグナリングパスウェイ(WP1772)において有意に異なる発現パターンを示していた。
 以上より、無血清培地hESF9Tを用いてフィブロネクチン上で継代・維持したヒトiPS細胞は、従来の血清添加培地を用いてフィーダー細胞上で維持したヒトiPS細胞培養と同様の遺伝子発現を示しており、未分化性が保持されていることが確証された。
(2) Characterization of human iPS cells passaged in medium hESF9T supplemented with TGF-β1 RNA was extracted from human iPS cells passaged and maintained on fibronectin using serum-free medium hESF9 or hESF9T, and Agilent Sure Print Gene-wide gene expression profiling analysis using Genespring 12.0 (Agilent Technologies, Santa Clara, CA) with G3 Human GE 8x60K v2 Microarray Compared with the human iPS cells used and maintained on the feeder cells, the gene expression pattern was almost the same (FIG. 5C, FIG. 6). On the other hand, in these pathway analyses, cells subcultured and maintained in hESF9 medium were compared with cells cultured in hESF9T-added medium, compared with TGF-β signaling pathway (WP560), WNT signaling and pluripotent pathway (WP399), WNT. It showed significantly different expression patterns in the Singnaring pathway (WP428) and apoptosis modulation and signaling pathway (WP1772).
From the above, human iPS cells passaged and maintained on fibronectin using serum-free medium hESF9T show the same gene expression as human iPS cell culture maintained on feeder cells using conventional serum-added medium. It was confirmed that the undifferentiation was retained.
4)歯髄細胞由来ヒトiPS細胞の特性解析
(1)未分化性の検討
 (i)蛍光免疫染色を用いた未分化マーカー蛋白発現解析
 無血清培地hESF9を使用しフィブロネクチンコートディッシュ上で誘導後、TGF-β1添加培地にて継代維持した細胞(DP-F-iPS-CL16 passage19)について、各種未分化マーカー抗体(Nanog、Oct3/4、SSEA-4、Tra-1-60およびTra-1-81)を使用して蛍光免疫染色を行うことにより未分化マーカーの発現解析を行った。各抗体はAlexa Fluor(R) 488にて可視化し、併せてDAPIにて核染色を行った。ヒトES細胞やiPS細胞の未分化マーカーであるOct3/4、Nanog、SSEA-4、TRA-1-60、TRA-1-81のすべてが発現していることを確認した(図7D)。
4) Characteristic analysis of dental pulp-derived human iPS cells (1) Examination of undifferentiation (i) Analysis of undifferentiated marker protein expression using fluorescent immunostaining After induction on fibronectin-coated dishes using serum-free medium hESF9, TGF -For cells (DP-F-iPS-CL16 passage19) maintained in passage with β1-added medium, various undifferentiated marker antibodies (Nanog, Oct3 / 4, SSEA-4, Tra-1-60 and Tra-1-81) ) Was used for fluorescent immunostaining to analyze expression of undifferentiated markers. Each antibody was visualized with Alexa Fluor (R) 488 and combined with nuclear staining with DAPI. It was confirmed that all of Oct3 / 4, Nanog, SSEA-4, TRA-1-60 and TRA-1-81, which are undifferentiated markers of human ES cells and iPS cells, were expressed (FIG. 7D).
 (ii)RT-PCR法を用いた未分化マーカー遺伝子発現の検討
 同培養条件にて継代維持した細胞からRNAを抽出し、各種未分化マーカー遺伝子の発現をRT-PCRにて解析した。RNA抽出は、illustra RNA spin Mini Isolation kit(GE Healthcare UK Ltd, England)を用いて添付のプロトコールに準じ、上記で培養した細胞の全RNAを抽出した。核酸の定量はNano Drop(R)(Nano Drop Technologies, Inc., USA)を使用した。細胞より抽出した各全RNA(1μg)をHigh Capacity RNA-to-cDNA Master Mix(Applied Biosystems, CA, USA)を用い、サーマルサイクラー(PTC-0220 DNA Engine Dyad : MJ Japan, Tokyo)を使用し、25℃下5分間、42℃下30分間、85℃下5分間インキュベーションし逆転写反応を行い、cDNAを合成した。RT-PCRはKOD FX Neo(Toyobo, Osaka, Japan)を用いて、変性反応98℃、10秒、アニーリング62℃、30秒、伸長反応68℃、30秒の条件で行い、これを1サイクルとして35サイクル行い、PCR産物を得た。このPCR産物を1.5%アガロースゲル(Invitrogen)にて電気泳動後、SYBR Safe DNA gel stain(Invitrogen)にて可視化した。
ヒトES細胞の未分化マーカー遺伝子であるSox2、Nanog、Oct3/4、Esg1、Rex-1(Reduced- expression 1; Zfp42)の発現を検討した。対照として、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(GAPDH)遺伝子の発現を検討した(図7C)。無血清培養条件下にて誘導・維持したヒトiPS細胞は未分化マーカーであるSox2、Nanog、Oct3/4、Esg1、Rex-1を発現していた。一方で、遺伝子導入前の歯髄由来細胞においては、これらの未分化マーカーは発現していなかった(図7C)。
(Ii) Examination of Undifferentiated Marker Gene Expression Using RT-PCR Method RNA was extracted from cells subcultured under the same culture conditions, and expression of various undifferentiated marker genes was analyzed by RT-PCR. For RNA extraction, illustra RNA spin Mini Isolation kit (GE Healthcare UK Ltd, England) was used to extract total RNA of the cells cultured as described above according to the attached protocol. Nucleic acid quantification was performed using Nano Drop® (Nano Drop Technologies, Inc., USA). Total RNA extracted from cells (1 μg) using High Capacity RNA-to-cDNA Master Mix (Applied Biosystems, CA, USA) and thermal cycler (PTC-0220 DNA Engine Dyad: MJ Japan, Tokyo) A reverse transcription reaction was performed by incubation at 25 ° C. for 5 minutes, 42 ° C. for 30 minutes, and 85 ° C. for 5 minutes to synthesize cDNA. RT-PCR is performed using KOD FX Neo (Toyobo, Osaka, Japan) under the conditions of denaturation reaction 98 ° C., 10 seconds, annealing 62 ° C., 30 seconds, extension reaction 68 ° C., 30 seconds. 35 cycles were performed to obtain a PCR product. This PCR product was electrophoresed on a 1.5% agarose gel (Invitrogen) and then visualized with SYBR Safe DNA gel stain (Invitrogen).
The expression of undifferentiated marker genes of human ES cells, Sox2, Nanog, Oct3 / 4, Esg1, Rex-1 (Reduced-expression 1; Zfp42) was examined. As a control, expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was examined (FIG. 7C). Human iPS cells induced and maintained under serum-free culture conditions expressed undifferentiated markers, Sox2, Nanog, Oct3 / 4, Esg1, and Rex-1. On the other hand, these undifferentiated markers were not expressed in the pulp-derived cells before gene introduction (FIG. 7C).
 (iii)ALP染色
 ヒトiPS細胞をALP固定液(4.5mMクエン酸、2.25mMクエン酸三ナトリウム、3mM塩化ナトリウム、65%メタノール、3%ホルムアルデヒド)にて固定後、アルカリフォスファターゼ基質キット(ヒストファイン ファーストレッドII基質キット Nichirei, Tokyo, Japan)にて遮光下、室温で15分間反応させた後、数回洗浄後、位相差顕微鏡(Nikon ECLIPSE TE300)にて観察を行った。
(Iii) ALP staining After fixing human iPS cells with ALP fixative (4.5 mM citrate, 2.25 mM trisodium citrate, 3 mM sodium chloride, 65% methanol, 3% formaldehyde), alkaline phosphatase substrate kit (hist Fine First Red II Substrate Kit (Nichirei, Tokyo, Japan) was allowed to react for 15 minutes at room temperature in the dark, washed several times, and then observed with a phase contrast microscope (Nikon ECLIPSE TE300).
(2)多分化能の検討
 (i)胚様体を用いた分化誘導
 無血清培養条件にてhESF9培地あるいはhESF9T培地にて継代・維持したヒトiPS細胞(hESF9培地で維持したDP-A-iPS細胞あるいはhESF9T培地で維持したDP-F-iPS細胞)から胚様体と呼ばれる疑似胚を形成させ分化誘導を行った。分化誘導培地としてDMEM培地に10%FBSを添加し、96穴細胞低吸着プレート(SUMILON Prime Surface(R) U plate, 住友ベークライト)に播種し、4日間浮遊培養を行い、胚様体を形成させた後、ゼラチンコートしたプレートに細胞を播種し、さらに10日間分化誘導を行った。誘導14日後の細胞に対して各種分化マーカー抗体を用いて蛍光免疫染色を行った。各抗体はAlexa Fluor(R) 594にて可視化し、併せてDAPIにて核染色を行った。その結果、神経幹細胞系のマーカーであるネスチンや神経細胞のマーカーであるβIII-チューブリン、中胚葉マーカーであるα-平滑筋アクチン(SMA)、
内胚葉マーカーであるα-フェトプロテイン(AFP)に対して発現を認めた。一方、未分化マーカーのOct3/4は発現していなかった(図8A)。
(2) Examination of pluripotency (i) Induction of differentiation using embryoid bodies Human iPS cells passaged and maintained in hESF9 medium or hESF9T medium under serum-free culture conditions (DP-A- maintained in hESF9 medium) A pseudo embryo called an embryoid body was formed from iPS cells or DP-F-iPS cells maintained in hESF9T medium) to induce differentiation. 10% FBS is added to the DMEM medium as a differentiation induction medium, seeded on a 96-well cell low adsorption plate (SUMILON Prime Surface (R) U plate, Sumitomo Bakelite), and suspended for 4 days to form embryoid bodies. Thereafter, the cells were seeded on a gelatin-coated plate, and differentiation induction was further performed for 10 days. Fluorescent immunostaining was performed on the cells 14 days after induction using various differentiation marker antibodies. Each antibody was visualized with Alexa Fluor (R) 594 and combined with nuclear staining with DAPI. As a result, neural stem cell line marker nestin, nerve cell marker βIII-tubulin, mesoderm marker α-smooth muscle actin (SMA),
Expression was observed for α-fetoprotein (AFP), an endoderm marker. On the other hand, the undifferentiated marker Oct3 / 4 was not expressed (FIG. 8A).
 (ii)免疫不全マウスを用いたテラトーマ(奇形腫)形成能の評価
 無血清培地、hESF9培地あるいはhESF9T培地にて継代・維持したヒトiPS細胞を、免疫不全マウス(CB17/Icr-Prkdcscid/CrlCrlj)の背部皮下に移植し、テラトーマの形成能を検討した。コントロールとしてヒトiPS細胞をKSR添加ES細胞培養用標準培地にてフィーダー細胞上にて誘導した細胞を用いた。各条件において、1×10個の細胞を50μlのPBSに懸濁し、同量のタイプIコラーゲンと混合し、50μlを免疫不全マウスの背部皮下に移植した。移植約10週間後に両条件とも腫瘤を形成したため、摘出した腫瘤を4%パラホルムアルデヒドにて4℃下一晩固定後、通法に従い脱脂、パラフィン包埋し、6μmの連続切片を作成し、2つのグループに分け、一方に対しては通法に従いヘマトキシリン・エオジン染色(HE染色)を行った。また、一方に対してアルシアンブルー/PAS染色を行った。脱パラフィン後、3%酢酸にて3分間処理し、pH2.5アルシアンブルー溶液(和光純薬、Osaka、Japan)にて30分間処理を行った。染色後水洗し、0.5%過ヨウ素酸溶液(和光純薬)にて5分間、コールドシッフ液(和光純薬)にて30分間処理を行い、亜硫酸水(和光純薬)で3分間処理を3回繰り返した後、水洗した。核染色をマイヤー・ヘマトキシリン溶液にて行い、脱水・封入後、顕微鏡にて観察を行った。切片では表皮や神経といった外胚葉の組織、軟骨や筋肉・結合組織といった中胚葉の組織、消化管や肝臓などの内胚葉に分化した組織を認め、摘出した腫瘤がテラトーマであることが示された(図8B)。なお、KSR添加ES細胞培養用標準培地にてフィーダー細胞上にて継代維持した細胞においても三胚葉へと分化した組織を認めた。
(Ii) Evaluation of teratoma (teratoma) formation ability using immunodeficient mice Human iPS cells subcultured and maintained in serum-free medium, hESF9 medium or hESF9T medium are treated with immunodeficient mice (CB17 / Icr-Prkdcscid / CrlCrlj). ) Was implanted subcutaneously in the back and examined for the ability to form teratomas. As a control, cells obtained by inducing human iPS cells on feeder cells with a standard medium for KSR-added ES cell culture were used. Under each condition, 1 × 10 6 cells were suspended in 50 μl PBS, mixed with the same amount of type I collagen, and 50 μl was implanted subcutaneously in the back of immunodeficient mice. Since tumors formed in both conditions about 10 weeks after transplantation, the excised tumors were fixed overnight at 4 ° C. with 4% paraformaldehyde, degreased and embedded in paraffin according to the usual method, and 6 μm serial sections were prepared. It was divided into two groups, and hematoxylin and eosin staining (HE staining) was performed on one group according to a common method. One side was stained with Alcian blue / PAS. After deparaffinization, it was treated with 3% acetic acid for 3 minutes and then with a pH 2.5 Alcian blue solution (Wako Pure Chemicals, Osaka, Japan) for 30 minutes. After dyeing, wash with water, treat with 0.5% periodic acid solution (Wako Pure Chemical Industries) for 5 minutes, cold Schiff solution (Wako Pure Chemical Industries) for 30 minutes, and treat with sulfurous acid (Wako Pure Chemical Industries) for 3 minutes. Was repeated three times and then washed with water. Nuclear staining was performed with Mayer's hematoxylin solution, dehydrated and sealed, and then observed with a microscope. The sections showed ectoderm tissues such as epidermis and nerves, mesoderm tissues such as cartilage, muscle and connective tissue, and tissues that differentiated into endoderm such as the digestive tract and liver, and the excised tumor was shown to be teratoma. (FIG. 8B). A tissue differentiated into three germ layers was also observed in the cells subcultured on the feeder cells in the KSR-added ES cell culture standard medium.
(3)STR(Short Tandem Repeat)解析
 患者より採取した歯髄由来細胞および、無血清培養条件下にて初期化遺伝子を導入し作製したヒトiPS細胞からゲノムDNAを抽出し、Powerplex 16 system (Promega Corporation, Madison, WI)を用いてABI PRISM (R)3100 Genetic analyzer(Applied Biosystems)およびGene Mapper v3.5を使用しSTR解析を行ったところ16遺伝子座のアレルパターンがすべて一致した。
(3) STR (Short Tandem Repeat) analysis Genomic DNA was extracted from dental pulp-derived cells collected from patients and human iPS cells prepared by introducing reprogramming genes under serum-free culture conditions. Powerplex 16 system (Promega Corporation , Madison, Wis.) And STR analysis using ABI PRISM® 3100 Genetic analyzer (Applied Biosystems) and Gene Mapper v3.5, allele patterns of 16 loci matched.
(4)細胞増殖能および核型解析
 無血清培養条件にて誘導し、hESF9Tにて21代継代・維持したヒトiPS細胞の細胞倍加時(population doubling time)は16.6±0.8時間であった(図9A)。
 無血清培地hESF9Tにて20代継代維持したヒトiPS細胞の核型解析を行った。培養中の細胞に対して、コルセミド溶液(Karyo Max(R), GIBCO)を最終濃度0.06μg/mlとなるように加え、6時間培養継続後、細胞を回収し、10μM Rockインヒビター(Y-27632:和光純薬)を添加したのち、細胞を分散した。続いて、37℃下10分間0.075M塩化カリウム溶液にて低張液処理し、カルノア固定液にて固定後、遠心し、再度カルノア固定液にて固定を繰り返したのち、細胞懸濁液をスライドガラス上に滴下し、風乾後、4%ギムザ染色液(武藤化学、Tokyo、Japan)にて染色後、光学顕微鏡にて検鏡し、核型解析を行った。無血清培地hESF9Tにて20代継代維持したヒトiPS細胞の核型簡易解析を行った結果、正常染色体数を示した。2n=46,XX(図9B)。
(4) Cell proliferation ability and karyotype analysis The population doubling time of human iPS cells induced in serum-free culture conditions and passaged and maintained for 21 passages in hESF9T was 16.6 ± 0.8 hours (FIG. 9A).
Karyotype analysis of human iPS cells maintained for 20 generations in serum-free medium hESF9T was performed. A colcemid solution (Karyo Max®, GIBCO) is added to the cells in culture to a final concentration of 0.06 μg / ml. After culturing for 6 hours, the cells are recovered, and 10 μM Rock inhibitor (Y- 27632: Wako Pure Chemicals) was added, and then the cells were dispersed. Subsequently, the hypotonic solution was treated with a 0.075 M potassium chloride solution at 37 ° C. for 10 minutes, fixed with a Carnoy fixative, centrifuged, and fixed again with a Carnoy fixative. It was dropped on a slide glass, air-dried, stained with 4% Giemsa staining solution (Mudo Chemical, Tokyo, Japan), and then examined with an optical microscope for karyotype analysis. A simple karyotype analysis of human iPS cells maintained for 20 passages in serum-free medium hESF9T showed the number of normal chromosomes. 2n = 46, XX (FIG. 9B).
4.本発明の無血清培養条件を用いたヒトiPS細胞の継代・維持における普遍性の検討
 上記の研究結果をもとに、無血清培地hESF9Tを用いて維持されたヒトiPS細胞を用いて、hESF-GROのかわりに基礎培地としてDulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham培地(1:1の比率で混合)を使用し、前述の6種類の添加因子にFGF-2、Heparin、TGF-β1を添加した、DF8FT培地による、未分化性の維持に関して検討を行った。無血清培地DF8FTを用いて、フィブロネクチン上にヒトiPS細胞を播種したところ、形態の変化なく、未分化性を保持したまま継代・維持が可能であった(図10)。
4). Examination of universality in passage and maintenance of human iPS cells using the serum-free culture conditions of the present invention Based on the above research results, using human iPS cells maintained using serum-free medium hESF9T, -Instead of GRO, Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12 Ham medium (mixed at a ratio of 1: 1) was used as the basal medium, and FGF-2, Heparin, TGF-β1 were added to the above six types of additive factors. The DF8FT medium supplemented with DF8FT was examined for maintenance of undifferentiation. When human iPS cells were seeded on fibronectin using serum-free medium DF8FT, passage and maintenance were possible without changing the morphology, while maintaining undifferentiation (FIG. 10).
5.まとめ
 一般的に、ES細胞やiPS細胞などの幹細胞は、不活性化したフィーダー細胞や血清などの動物由来成分を含む条件で培養されている。このような培養系では各種異種抗原の混入の恐れがあり、再生医療への応用は困難であり、さらにこれら幹細胞の増殖・分化制御機構やその制御因子を明らかにすることも非常に困難である。本発明によって、無血清培地培地を用いて、フィーダー細胞を用いず正常ヒト歯髄由来細胞から、ヒトiPS細胞を誘導することが可能となった。ヒトiPSコロニーは感染後約2週間で出現し、未分化性および多分化能を有していた。また、初代培養からウイルス感染を経てヒトiPS細胞樹立までの全過程を完全無血清培養系にて行い、初めてヒトiPS細胞を誘導できることも明らかとなった。また、本発明の未分化性および分化多能性を維持しつつ継代培養する方法は、ヒトiPS細胞のみならず、あらゆる動物の幹細胞に適用可能である。
5. Summary Generally, stem cells such as ES cells and iPS cells are cultured under conditions containing inactivated feeder cells and animal-derived components such as serum. In such a culture system, various foreign antigens may be mixed, and it is difficult to apply to regenerative medicine. It is also very difficult to clarify the growth / differentiation control mechanism and its control factors of these stem cells. . According to the present invention, it has become possible to induce human iPS cells from normal human dental pulp-derived cells without using feeder cells using a serum-free medium. Human iPS colonies appeared approximately 2 weeks after infection and were undifferentiated and multipotent. In addition, it was revealed that human iPS cells can be induced for the first time by performing the entire process from primary culture to viral infection and human iPS cell establishment in a complete serum-free culture system. In addition, the method of subculture while maintaining undifferentiation and pluripotency of the present invention is applicable not only to human iPS cells but also to stem cells of all animals.
 従来のヒトiPS細胞培養系を用いると、フィーダー細胞や動物由来成分の使用により、種々の既知および未知因子が混在し、培養法の標準化は難しく、未分化性の維持や特定組織・臓器への分化制御も困難である。さらに、動物由来蛋白等の混入により、感染症等の恐れもある。これに対し、本発明の無血清培養系では既知の因子のみから成るため、幹細胞の未分性の維持や増殖・分化を制御する各種因子の同定や検討が容易となり、発生・組織・臓器再生メカニズムの解明や、創薬スクリーニングへの応用、さらに安全で確実な再生医療の実現が可能となる。 When using conventional human iPS cell culture systems, various known and unknown factors coexist due to the use of feeder cells and animal-derived components, making it difficult to standardize culture methods, maintaining undifferentiation, and maintaining specific tissues and organs. Differentiation control is also difficult. Furthermore, there is a risk of infection due to contamination with animal-derived proteins. In contrast, since the serum-free culture system of the present invention comprises only known factors, it is easy to identify and examine various factors that control the maintenance of proliferation and differentiation of stem cells, and to develop development, tissue, and organ regeneration. It becomes possible to elucidate the mechanism, apply it to drug discovery screening, and realize safe and reliable regenerative medicine.
 本発明は、医薬品や医用材料の開発、生化学の研究分野、畜産業などにおいて利用可能である。 The present invention can be used in the development of pharmaceuticals and medical materials, biochemical research fields, livestock industry, and the like.

Claims (17)

  1.  リプログラミング処理を施した体細胞を、無血清培地中でフィーダー細胞を用いずに培養することにより人工多能性幹細胞(iPS細胞)を誘導することを特徴とするiPS細胞の製造方法。 A method for producing iPS cells, comprising inducing induced pluripotent stem cells (iPS cells) by culturing somatic cells subjected to reprogramming treatment in a serum-free medium without using feeder cells.
  2.  フィブロネクチンを接着因子として用いる、請求項1に記載のiPS細胞の製造方法。 The method for producing iPS cells according to claim 1, wherein fibronectin is used as an adhesion factor.
  3.  体細胞のリプログラミング処理が無血清培地中で行われる請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the reprogramming treatment of somatic cells is performed in a serum-free medium.
  4.  リプログラミング前の体細胞が初代培養から無血清培地中で培養されたものである請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the somatic cells before reprogramming are cultured from a primary culture in a serum-free medium.
  5.  iPS細胞がヒトiPS細胞である請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the iPS cell is a human iPS cell.
  6.  フィブロネクチンを接着因子として含む、iPS細胞を誘導するための無血清培養基材(ただし該培養基材はフィーダー細胞を含まない)。 Serum-free culture substrate for inducing iPS cells containing fibronectin as an adhesion factor (however, the culture substrate does not contain feeder cells).
  7.  無血清培地成分およびフィブロネクチンを構成成分として含む、iPS細胞を誘導するための無血清培養基材を製造するためのキット(ただし該培養基材はフィーダー細胞を含まない)。 A kit for producing a serum-free culture substrate for inducing iPS cells, comprising a serum-free medium component and fibronectin as constituent components (however, the culture substrate does not contain feeder cells).
  8.  フィーダー細胞を用いずに、無血清培地中に腫瘍増殖因子-β(TGF-β)ファミリーに属する蛋白を添加して幹細胞を継代培養することを特徴とする、幹細胞の未分化状態および分化多能性を維持する方法。 A stem cell is subcultured without adding feeder cells and subcultured with a protein belonging to the tumor growth factor-β (TGF-β) family in a serum-free medium. How to maintain performance.
  9.  継代培養が、フィブロネクチンを接着因子として用いて行われる請求項8に記載の方法。 The method according to claim 8, wherein the subculture is performed using fibronectin as an adhesion factor.
  10.  幹細胞がiPS細胞である請求項8または9に記載の方法。 The method according to claim 8 or 9, wherein the stem cell is an iPS cell.
  11.  請求項1~5のいずれか1項に記載の方法により得られたiPS細胞を、TGF-βファミリーに属する蛋白を添加した無血清培地において、フィーダー細胞を用いずに継代培養することを特徴とする、iPS細胞の未分化状態および分化多能性を維持する方法。 6. The iPS cells obtained by the method according to any one of claims 1 to 5 are subcultured without using feeder cells in a serum-free medium to which a protein belonging to the TGF-β family is added. And a method for maintaining the undifferentiated state and pluripotency of iPS cells.
  12.  TGF-βファミリーに属する蛋白を含む、幹細胞の未分化状態および分化多能性を維持するための継代培養用無血清培養基材(ただし該培養基材はフィーダー細胞を含まない)。 A serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, including proteins belonging to the TGF-β family (however, the culture substrate does not include feeder cells).
  13.  さらにフィブロネクチンを接着因子として含む請求項12に記載の培養基材。 The culture substrate according to claim 12, further comprising fibronectin as an adhesion factor.
  14.  幹細胞がiPS細胞である請求項12または13に記載の培養基材。 The culture substrate according to claim 12 or 13, wherein the stem cells are iPS cells.
  15.  無血清培地成分およびTGF-βファミリーの蛋白を含む、幹細胞の未分化状態および分化多能性を維持するための継代培養用無血清培養基材を製造するためのキット(ただし該培養基材はフィーダー細胞を含まない)。 A kit for producing a serum-free culture substrate for subculture for maintaining the undifferentiated state and differentiation pluripotency of stem cells, comprising a serum-free medium component and a TGF-β family protein (however, the culture substrate) Does not contain feeder cells).
  16.  さらにフィブロネクチンを接着因子として含む請求項15に記載のキット。 The kit according to claim 15, further comprising fibronectin as an adhesion factor.
  17.  幹細胞がiPS細胞である請求項15または16に記載のキット。 The kit according to claim 15 or 16, wherein the stem cell is an iPS cell.
PCT/JP2014/006454 2013-12-26 2014-12-25 METHOD FOR ESTABLISHING iPS CELLS AND METHOD FOR LONG-TERM MAINTENANCE OF STEM CELLS WO2015098111A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361920868P 2013-12-26 2013-12-26
US61/920,868 2013-12-26
JP2014087314A JP6516280B2 (en) 2013-12-26 2014-04-21 Method for establishing iPS cells and method for long-term maintenance of stem cells
JP2014-087314 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015098111A1 true WO2015098111A1 (en) 2015-07-02

Family

ID=53478007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006454 WO2015098111A1 (en) 2013-12-26 2014-12-25 METHOD FOR ESTABLISHING iPS CELLS AND METHOD FOR LONG-TERM MAINTENANCE OF STEM CELLS

Country Status (1)

Country Link
WO (1) WO2015098111A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939097A (en) * 2017-05-02 2022-08-26 田边刚士 Pharmaceutical composition and cosmetic composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169761A (en) * 1992-12-04 1994-06-21 Noevir Co Ltd Culture medium for serum-free culture of fibroblast derived from animal and method for culturing
JP2013510567A (en) * 2009-11-12 2013-03-28 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Medium, cell culture and method for culturing pluripotent stem cells in undifferentiated state

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169761A (en) * 1992-12-04 1994-06-21 Noevir Co Ltd Culture medium for serum-free culture of fibroblast derived from animal and method for culturing
JP2013510567A (en) * 2009-11-12 2013-03-28 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Medium, cell culture and method for culturing pluripotent stem cells in undifferentiated state

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, G. ET AL.: "Chemically defined conditions for human iPSC derivation and culture.", NAT. METHODS, vol. 8, no. 5, 2011, pages 424 - 429 *
HAYASHI, Y. ET AL.: "Reduction of N- Glycolylneuraminic Acid in Human Induced Pluripotent Stem Cells Generated or Cultured under Feeder- and Serum-Free Defined Conditions.", PLOS ONE, vol. 5, no. 11, 2010, pages E14099, PAGES 1 - 11 *
YAMASAKI, S. ET AL.: "Generation of Human Induced Pluripotent Stem (iPS) Cells in Serum- and Feeder-Free Defined Culture and TGF-beta1 Regulation of Pluripotency.", PLOS ONE, vol. 9, no. 1, 29 January 2014 (2014-01-29), pages E87151, PAGES 1 - 13 *
YAMASAKI, S. ET AL.: "Generation of Human Induced Pluripotent Stem (iPS) Cells in Serum- and Feeder-free Defined Culture from Fetal Lung Fibroblasts and Dental Pulp Cells Derived from a Patient with Cleidocranial Dysplasia.", VITRO CELL . DEV. BIOL. ANIM., vol. 48, no. SUPPL., 2012, pages 48 - 49 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939097A (en) * 2017-05-02 2022-08-26 田边刚士 Pharmaceutical composition and cosmetic composition

Similar Documents

Publication Publication Date Title
US20180355313A1 (en) Pluripotent stem cell that can be isolated from body tissue
CA2768238C (en) Pluripotent stem cell that can be isolated from body tissue
KR20080056181A (en) Method of deriving progenitor cell line
KR101861171B1 (en) Cardiomyocyte medium with dialyzed serum
WO2006091766A2 (en) Human trophoblast stem cells and use thereof
CN101978047A (en) Stem cell aggregates and methods for making and using
KR101656388B1 (en) A metabolites for the generation, maintenance, prolonged undifferentiated growth of pluripotent stem cells, composition comprising the same and method of culturing pluripotent stem cell using the same
JP2022513355A (en) Induced pluripotent cells containing controllable transgenes for conditional immortality
JP5751548B2 (en) Canine iPS cells and production method thereof
CN110713973A (en) Culture medium combination and method for inducing pluripotent stem cells to differentiate into mesenchymal stem cells
WO2012133942A1 (en) Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body
RU2399667C1 (en) Method for preparing pluripotent cells
KR20160063066A (en) Graphene oxide-polyethylenimine complex for gene delivery and uses thereof
Yamasaki et al. Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium.
WO2015098111A1 (en) METHOD FOR ESTABLISHING iPS CELLS AND METHOD FOR LONG-TERM MAINTENANCE OF STEM CELLS
JP6516280B2 (en) Method for establishing iPS cells and method for long-term maintenance of stem cells
EP1775340A1 (en) Method of cell transdifferentiation
CN109852587B (en) Preparation method of human Kekan syndrome specific adult stem cells
KR102137884B1 (en) High-efficiency cell culture medium additive including tauroursodeoxycholic acid
JP2005095138A (en) Method for inducing differentiation of cell having pluripotency
KR20190070254A (en) High-efficiency cell culture medium additive including sodium phenylbutyrate
CN117487743B (en) Chemical inducer for inducing chick embryo fibroblast to be chick pluripotent stem cell and induction method
CN117467599B (en) Chemical inducer for reprogramming gonadal somatic cells of chickens into pluripotent stem cells of chickens and reprogramming method
KR102137885B1 (en) High-efficiency cell culture medium additive including butylated hydroxyanisole
WO2013100140A1 (en) Induction of pluripotent stem cell cells from germ cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874069

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874069

Country of ref document: EP

Kind code of ref document: A1