WO2012133942A1 - Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body - Google Patents

Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body Download PDF

Info

Publication number
WO2012133942A1
WO2012133942A1 PCT/JP2012/059422 JP2012059422W WO2012133942A1 WO 2012133942 A1 WO2012133942 A1 WO 2012133942A1 JP 2012059422 W JP2012059422 W JP 2012059422W WO 2012133942 A1 WO2012133942 A1 WO 2012133942A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
negative
cell
pluripotent stem
muse
Prior art date
Application number
PCT/JP2012/059422
Other languages
French (fr)
Japanese (ja)
Inventor
真理 出澤
正順 吉田
Original Assignee
株式会社Clio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Clio filed Critical 株式会社Clio
Priority to CN2012800170872A priority Critical patent/CN103459590A/en
Publication of WO2012133942A1 publication Critical patent/WO2012133942A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0605Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources

Definitions

  • the present invention relates to a pluripotent stem cell derived from a living umbilical cord or adipose tissue.
  • a bone marrow mesenchymal cell fraction having differentiation ability into various cells such as bone, cartilage, adipocyte, nerve cell, skeletal muscle by inducing differentiation ( MSC (Bone marrow stromal cell) has been reported (see Non-Patent Documents 1 and 2).
  • MSC Breast marrow stromal cell
  • the bone marrow mesenchymal cell fraction is a group of cells containing a plurality of cell types, and the differentiation efficiency when induction is not high. Although it has been assumed that some cells in the MSC are responsible for differentiation, the body of such cells is not clear and has been debated for a long time.
  • iPS cells induced pluripotent stem cells
  • somatic cells as adult-derived pluripotent stem cells
  • SSEA-3 stage-specific embryonic antigen-3
  • An object of the present invention is to provide a method for directly obtaining pluripotent stem cells without artificial manipulation such as gene transfer from the umbilical cord or adipose tissue of a living body, and to provide pluripotent stem cells obtained by the method.
  • the present inventors isolated stem cells that are positive for SSEA-3 from dermal fibroblasts and bone marrow cells and have an antigen expression pattern that is not found in conventional stem cells, and Muse (Multilineage-differentiating Stress Ending cells) cells and (International publication pamphlet of International Publication No. WO2011 / 007900, Proc. Natl. Acad. Sci USA, 107 (19): 8639-43, 2010).
  • SSEA-3 positive and CD105 positive pluripotent stem cells having all of the following properties that can be isolated from living umbilical cord or adipose tissue using SSEA-3 expression as an index: (I) low or no telomerase activity; (Ii) has the ability to differentiate into cells of any germ layer of the three germ layers; (Iii) no neoplastic growth; and (iv) self-replicating ability (self-renewal ability).
  • the pluripotent stem cell according to [1] which can be isolated directly from the umbilical cord or adipose tissue of a living body using the expression of SSEA-3 as an index.
  • HDSC human adipose-derived stem cells
  • the pluripotent stem cell according to any one of [1] to [3] which is proliferated by culture combining suspension culture and adhesion culture.
  • a cell population comprising the pluripotent stem cell according to any one of [1] to [7].
  • pluripotent stem cells are isolated using at least one of the following characteristics (i) to (v) as an index: (I) CD105 positive; (Ii) CD117 negative and CD146 negative; (Iii) CD117 negative, CD146 negative, NG2 negative, CD34 negative, vWF negative and CD271 negative; and (iv) CD34 negative, CD117 negative, CD146 negative, CD271 negative, NG2 negative, vWF negative, Sox10 negative, Snail negative, Slug Negative, Tyrp1 negative and Dct negative.
  • [11] A method for isolating pluripotent stem cells according to any one of [1] to [7], which comprises trypsinizing umbilical cord or adipose tissue-derived mesenchymal cells and recovering surviving cells.
  • This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2011-0776635, which is the basis of the priority of the present application.
  • FIG. 1 is a diagram showing the results of FACS analysis using anti-SSEA-3 antibody for mesenchymal cells established from primary culture of human subcutaneous adipose tissue. A: No staining, B: Secondary antibody only, C: SSEA-3 stained.
  • FIG. 2 is a diagram for explaining primer sequences used in RT-PCT and positive control and negative control samples set in each.
  • FIG. 3 is a diagram showing the morphology of human subcutaneous adipose tissue (A) and mesenchymal cells (B) established from the tissue.
  • FIG. 4 is a diagram showing expression of SSEA-3 in commercially available adipose-derived mesenchymal cells (HADSC) (A) and HADSC (B) established from the subcutaneous fat tissue of FIG.
  • HDSC adipose-derived mesenchymal cells
  • FIG. 5 is a photograph showing the morphology of Muse-derived embryoid body-like cell mass (M-cluster) collected from adipose tissue.
  • FIG. 5A shows the morphology of a Muse-derived embryoid body-like cell cluster (M-cluster) obtained from a commercially available HADSC
  • FIG. 5B shows a Muse-derived embryoid body-like cell cluster obtained from HADSC established from subcutaneous adipose tissue ( M-cluster) is shown.
  • FIG. 6 is a photograph of RT-PCR results showing differentiation of Muse-derived embryoid body-like cell mass (M-cluster).
  • M-cluster I represents the differentiation of Muse-derived embryoid body-like cell mass (M-cluster) obtained from commercially available HADSC
  • M-cluster II represents the Muse-derived embryoid body-like cell mass obtained from established HADSC. (M-cluster) differentiation is shown.
  • FIG. 7 is a photograph showing an immunostained image showing that an embryoid body-like cell cluster (M-cluster) formed from a commercially available HADSC-derived Muse cell differentiates into a trioderm cell in gelatin culture. is there.
  • NF neuroofilament; ectoderm
  • CK7 Cytokeratin 7; endoderm
  • SMA smooth muscle actin; mesoderm
  • FIG. 8 is a photograph showing the expression of pluripotent factors in embryoid body-like cell mass (M-cluster) formed from commercially available HADSC-derived Muse cells.
  • FIG. 9 is a photograph showing that Muse cells do not have tumorigenicity. Testes transplanted with Muse cells are the same size as normal testes even after 4 months, and no signs of tumor formation are seen, but those transplanted with mouse ES cells form a huge tumor in 8 weeks.
  • FIG. 10 is a photograph showing an HE-stained image of mouse ES cell-derived teratoma. In the figure, I indicates intestinal epithelium (endoderm), II indicates epidermis (ectodermal), and III indicates smooth muscle (mesoderm). It is a photograph 8 weeks after transplantation.
  • FIG. 11 is a photograph showing a tissue image of a mouse testis transplanted with Muse cells. It is a photograph 4 months after transplantation. Normal seminiferous tubules constitute the tissue and no image showing tumor formation is seen.
  • FIG. 12 is a diagram showing that isolated Muse cells have a self-renewal ability. An example with fat derived Muse cells is shown.
  • FIG. 13 is a diagram showing the morphology of mesenchymal cells obtained from the umbilical cord.
  • FIG. 14 is a diagram showing expression of SSEA-3 in mesenchymal cells obtained from the umbilical cord.
  • FIG. 15 shows the morphology of Muse cell-derived embryoid body-like cell clusters (M-cluster) formed from SSEA-3 positive cells isolated from the umbilical cord.
  • M-cluster Muse cell-derived embryoid body-like cell clusters
  • FIG. 16 shows Muse cell ⁇ -fetoprotein ( ⁇ -FP; endoderm), GATA6 (endoderm), MAP-2 (ectoderm) and Nkx2.5 (mesoderm) isolated from the umbilical cord. ) Shows the results of RT-PCR analysis.
  • the present invention relates to a pluripotent stem cell or pluripotent stem cell fraction that can be obtained directly from the umbilical cord or adipose tissue of a living body, and a method for isolating the pluripotent stem cell or the pluripotent stem cell fraction, And a pluripotent stem cell or pluripotent stem cell fraction derived from the umbilical cord or adipose tissue obtained by the method.
  • the pluripotent stem cells of the present invention are referred to as Muse cells (multilineage differentiating stress-ending cells).
  • the term “cell fraction” refers to a cell group containing at least a certain amount of cells to be isolated.
  • the pluripotent stem cell fraction includes a group of cells containing 1% or more, 10% or more, 30% or more, 50% or more, 70% or more, 90% or more, or 95% or more of pluripotent stem cells.
  • a cell cluster obtained by culturing pluripotent stem cells and a cell group enriched with pluripotent stem cells are included.
  • the cell fraction may be referred to as a substantially uniform cell fraction.
  • the umbilical cord is a mammalian umbilical cord.
  • the umbilical cord is composed of epithelium, blood vessels, blood, and mesenchymal tissue, among which the mesenchymal tissue is the source of umbilical cord-derived mesenchymal cells.
  • Adipose tissue-derived pluripotent stem cells can be suitably isolated from adipose-derived stem cells (ADSC), which are mesenchymal cells contained in adipose tissue.
  • ADSC can use commercially available human fat-derived stem cells such as Lonza, and can also obtain adipose stem cell fraction by a known method from surgically collected subcutaneous adipose tissue or subcutaneous lipoaspirate. .
  • mesenchymal cells established from adipose tissue by the method of Estes BT et al. (Ests BT., Et al. Nat Protoc. 2010 Jul: 5 (7): 1294-1311) can be used.
  • the cell surface antigens of adipose stem cells are CD13 positive, CD29 positive, CD44 positive, CD73 positive, CD90 positive, CD105 positive, CD166 positive, CD14 negative, CD31 negative, and CD45 negative.
  • the umbilical cord and adipose tissue that have been collected and cryopreserved can also be used. Mammals include, but are not limited to, primates such as humans and monkeys, rodents such as mice, rats, rabbits, guinea pigs, cats, dogs, sheep, pigs, cows, horses, donkeys, goats, ferrets, etc. .
  • the pluripotent stem cells of the present invention are clearly distinguished from embryonic stem cells (ES cells) and embryonic germ stem cells (EG cells) in that they can be obtained directly from a living umbilical cord or adipose tissue. That cells can be obtained directly from umbilical cord or adipose tissue can be isolated directly from umbilical cord or adipose tissue, or mesenchymal cells can be once cultured from these tissues and isolated therefrom It means that it can be obtained without an artificial induction operation such as compound treatment such as introduction of a foreign gene or protein or administration of a compound.
  • ES cells embryonic stem cells
  • EG cells embryonic germ stem cells
  • the foreign gene is not limited, but refers to a gene that can initialize the nucleus of a somatic cell, for example, an Oct family gene such as an Oct3 / 4 gene, a Klf family gene such as a Klf gene, a c-Myc gene, etc.
  • Examples include Sox family genes such as Myc family genes and Sox2 genes.
  • Examples of foreign proteins include proteins and cytokines encoded by these genes.
  • examples of the compound include a low molecular weight compound that induces the expression of a gene that can reprogram the somatic cell nucleus, DMSO, a compound that functions as a reducing agent, a DNA methylating agent, and the like.
  • the pluripotent stem cells of the present invention are clearly distinguished from iPS (Induced Primitive Stem Cell) cells and ES cells in that they can be obtained directly from the umbilical cord or adipose tissue of a living body.
  • iPS Induced Primitive Stem Cell
  • ES cells in that they can be obtained directly from the umbilical cord or adipose tissue of a living body.
  • the pluripotent cell of the present invention may be obtained without requiring reprogramming or induction of dedifferentiation.
  • a pluripotent stem cell means a cell having pluripotency, and has the following characteristics. (1) It expresses pluripotent markers such as Nanog, Oct3 / 4, SSEA-3, PAR-4, and Sox2.
  • the pluripotent stem cell of the present invention is clearly distinguished from adult stem cells such as neural stem cells and hematopoietic stem cells and tissue stem cells, which are generally known, in that they have pluripotency.
  • the pluripotent stem cell of the present invention is isolated as a single cell or a plurality of cells having pluripotency, so that it is a bone marrow mesenchymal (stem) cell or a fat-derived mesenchymal (stem) It is clearly distinguished from general mesenchymal cell fractions such as cells.
  • the pluripotent stem cell of this invention has the following characteristics.
  • the growth rate is relatively slow and the division cycle is 1 day or longer, for example, 1.2 to 1.5 days. However, it does not show infinite proliferation as shown by ES cells and iPS cells.
  • ES cells and iPS cells when transplanted into immunodeficient mice, teratomas including endoderm, mesodermal, and ectoderm components are observed in a short period of time, whereas in Muse cells, more than half a year Characterized by the absence of teratoma.
  • a Muse-derived embryoid body-like cell mass is formed from one cell by suspension culture.
  • Embryoid body-like cell clusters are formed in suspension culture, and the growth stops in about 10 to 14 days. Thereafter, it is re-growth by moving to an adherent culture.
  • V Accompanying asymmetric division during growth.
  • the karyotype is normal.
  • telomerase activity no or low telomerase activity.
  • the absence or low telomerase activity means that it cannot be detected or is low when telomerase activity is detected using, for example, TRAPEZE XL telomerase detection kit (Millipore).
  • Low telomerase activity means, for example, telomerase activity comparable to that of human fibroblasts, or telomerase activity of 1/5 or less, preferably 1/10 or less that of Hela cells. That means.
  • Viii) Regarding the methylation status, the demethylation of the promoter region of Nanog and Oct3 / 4 is high for iPS cells derived from Muse cells.
  • Ix High phagocytic ability.
  • X Does not show neoplastic growth.
  • the cell of the present invention is, for example, the following pluripotent stem cell.
  • C The pluripotent stem cell according to (A), which does not form a tumor for at least half a year when transplanted to the testis.
  • D The pluripotent stem cell of (A), which does not show infinite proliferation like ES cells and iPS cells.
  • E A pluripotent stem cell derived from a umbilical cord or adipose tissue of a living body, which survives when cells of the umbilical cord or adipose tissue of the living body are treated with a protease, and is resistant to protease.
  • Muse cells that are pluripotent stem cells derived from the umbilical cord or adipose tissue of the present invention can be performed using cell surface markers that are highly expressed on the surface of Muse cells. For example, expression of SSEA-3 is used as an index. It can be isolated.
  • the pluripotent stem cell of the present invention is sometimes referred to as an SSEA-3-positive Muse cell.
  • Muse cells express CD105, which is a mesenchymal marker, are positive for SSEA-3, and positive for CD105. Therefore, it can be isolated using SSEA-3 expression as an indicator. Moreover, the expression of both SSEA-3 and CD105 can be isolated using as an index.
  • the pluripotent stem cell of the present invention can be isolated as a single cell, and the isolated single cell can be grown by culture.
  • this invention shall also include the pluripotent stem cell which can be isolated from the biological tissue of mammals other than a human by the marker equivalent to SSEA-3.
  • Muse cells are negative for NG2, CD34, vWF (von Willebrand factor), c-kit (CD117), CD146, CD271 (NGFR).
  • Sox10, Snai1, Slug, Tyrp1, and Dct are negative.
  • surface antigens such as NG2, CD34, vWF, CD117, CD146, and CD271 are negative or weakly expressed is an antibody reaction against these antigens, and cells using antibodies labeled with chromogenic enzymes, fluorescent compounds, etc. Can be determined by measuring with a microscope or the like. For example, cells can be immunostained using these antibodies to determine the presence or absence of surface antigens, or can be determined using magnetic beads to which the antibodies are bound. It can also be determined whether there is a surface antigen using a FACS or flow cytometer.
  • FACSAria manufactured by Becton Dickinson
  • FACS vantage manufactured by Becton Dickinson
  • FACS Calibur manufactured by Becton Dickinson
  • MACS magnetic cell separation method
  • these surface antigens are negative, when analyzed using FACS as described above, it means that they are not sorted as positive cells, or expression is not observed when expression is examined by RT-PCR, Even if it is expressed to such an extent that it cannot be detected by these techniques, it is considered negative in the present invention.
  • measurement is performed simultaneously with cells such as hematopoietic stem cells that are known to be positive for the above-mentioned marker, and compared to these positive cells, it is hardly detected or may be negative when the expression level is significantly low.
  • the cells of the present invention can be isolated based on the antigenic properties of these cell surfaces. As described above, Muse cells can be isolated using SSEA-3 positivity as an indicator.
  • Muse cells that can form Muse-derived embryoid body-like cell clusters (M-cluster).
  • M-cluster Muse-derived embryoid body-like cell clusters
  • NG2 Muse-derived embryoid body-like cell clusters
  • vWF von Willebrand factor
  • c-kit CD117
  • CD146 CD271
  • Sox10 Sox10
  • 11 markers selected from the group consisting of Snai1, Slug, Tyrp1 and Dct, for example 2, 3, 4, 5, 6, 7, 8, 9, Non-expression of 10 or 11 markers can be isolated using as an indicator.
  • CD117 and CD146 non-expression can be isolated as an index
  • CD117, CD146, NG2, CD34, vWF and CD271 non-expression can be isolated as an index.
  • the non-expression of the marker can be isolated using as an indicator.
  • isolation using a surface marker it is possible to directly isolate one or a plurality of pluripotent stem cells of the present invention from the umbilical cord or adipose tissue of a living body without undergoing culture or the like.
  • the pluripotent stem cell or pluripotent cell fraction of the present invention is also characterized by high expression of other specific factors.
  • Muse cells which are the pluripotent stem cells of the present invention, are obtained from the umbilical cord or adipose tissue of a living body, and further, the Muse cell-derived embryoid body (EB) -like cell mass is obtained by culturing the Muse cells.
  • EB Muse cell-derived embryoid body
  • factors expressed in Muse cells mesenchymal cells that are the original population of Muse cells, Muse-derived embryoid body-like cell clusters, and human ES cells, factors that are highly expressed in Muse cells Recognize.
  • factors include gene transcripts, proteins, lipids, and sugars.
  • the following 18 factors are highly expressed.
  • the high expression of 13, 14, 15, 16, 17 or 18, is characterized by the high expression of 13, 14, 15, 16, 17 or 18, and can be isolated using as an index the high expression of at least two factors. Moreover, in the following 20 factors, the ratio of the expression level of the Muse cell of the present invention to the human ES cell is high.
  • A matrix metallopeptidase 1 (interstitial collagenase)
  • B epiregulin
  • C chitinase 3-like 1 (cartile glycoprotein-39)
  • D Transscribed locus
  • E chitinase 3-like 1 (cartile glycoprotein-39)
  • F serlycin
  • G MRNA full length insert cDNA clone EUROIMAGE 1913076 (H) Ras and Rab interactor 2
  • I lumican
  • J CLCA family member 2
  • Chloride channel regulator K
  • interleukin 8 L
  • M dermatopontin
  • N EGF, latrophilin and seven transmembrane domain containing 1
  • O Insulin-like growth factor binding protein 1
  • P solid carrier family 16, member 4 (monocarboxic acid transporter 5)
  • Q serlycin
  • R gremlin 2
  • cysteine knot superfamily homolog
  • Xenopus laevis insulin-like growth factor binding protein
  • the pluripotent stem cell or pluripotent stem cell fraction of the present invention expresses factors of the odorant receptor (olfactory receptor) group and the chemokine receptor group other than the pluripotency marker. That is, it is characterized by being positive for a specific odorant receptor or chemokine receptor.
  • Examples of the odorant receptor expressed in the pluripotent stem cell or pluripotent stem cell fraction of the present invention include the following 22 receptors. olfactory receptor, family 8, subfamily G, member 2 (OR8G2); olfactory receptor, family 7, subfamily G, member 3 (OR7G3); olfactory receptor, family 4, subfamily D, member 5 (OR4D5); olfactory receptor, family 5, subfamily AP, member 2 (OR5AP2); olfactory receptor, family 10, subfamily H, member 4 (OR10H4); olfactory receptor, family 10, subfamily T, member 2 (OR10T2); olfactory receptor, family 2, subfamily M, member 2 (OR2M2); olfactory receptor, family 2, subfamily T, member 5 (OR2T5); olfactory receptor, family 7, subfamily D, member 4 (OR7D4); olfactory receptor, family 1, subfamily L, member 3 (OR1L3); olfactory receptor, family
  • the pluripotent stem cell or pluripotent stem cell fraction of the present invention expresses at least one of the olfactory receptors, or expresses at least one of the chemokine receptors.
  • Muse cells which are the pluripotent stem cells of the present invention, migrate to damaged tissues by the action of migration factors that bind to these odorant receptors and chemokine receptors and receptors, and differentiate according to the location.
  • migration factors that bind to these odorant receptors and chemokine receptors and receptors, and differentiate according to the location.
  • the specific migratory factor and the odorant receptor expressed on the cell surface migrate to and engraft each tissue, the liver (endoderm), Differentiated into skin (ectodermal), spinal cord (ectodermal), muscle (mesoderm) cells, and tissue can be regenerated.
  • Muse cell fraction rich in Muse cells that are pluripotent stem cells of the present invention increased expression of Rex1, Sox2, KLF-4, c-Myc, DPPA2, ERAS, GRB7, SPAG9, TDGF1, etc.
  • the expression of DAZL, DDX4, DPPA4, Stella, Hoxb1, PRDM1, and SPRY2 is increased in the cell mass of Muse cells.
  • the expression of CD34 and CD117, which are hematopoietic stem cell markers, is not observed or the expression is extremely low.
  • the pluripotent stem cells of the present invention can be increased in content by applying cell stress to cells of the umbilical cord or adipose tissue of the living body and collecting the surviving cells.
  • cell stress refers to external stress, including protease treatment, culture under low oxygen conditions, culture under low phosphate conditions, culture under serum starvation conditions, culture under sugar starvation conditions, under radiation exposure Exposure to stress by culturing in the presence of heat shock, culturing in the presence of toxic substances, culturing in the presence of harmful substances, culturing in the presence of active oxygen, culturing under mechanical stimulation, culturing under pressure treatment, etc. That means.
  • protease treatment that is, culture in the presence of protease is preferable.
  • the protease is not limited, and serine proteases such as trypsin and chymotrypsin, aspartic proteases such as pepsin, cysteine proteases such as papain and chymopapain, metalloproteases such as thermolysin, glutamate protease, N-terminal threonine protease, and the like can be used.
  • the concentration at which protease is added to the culture is not limited, and it may be used at a concentration generally used when peeling adherent cells cultured in a petri dish or the like.
  • the Muse cell which is the pluripotent stem cell of the present invention can be said to be a stem cell resistant to the above external stress, for example, a cell resistant to trypsin. Most of the cells subjected to various stresses described above are killed, and the surviving cells include Muse cells that are the pluripotent stem cells of the present invention. It is necessary to remove dead cells after applying stress to the cells. When protease is used, these dead cells are degraded by the action of the protease. Further, after applying stress to the cells, the cells that have been subjected to a physical impact on the cells and have become fragile may be removed. The physical impact can be applied, for example, by vigorous pipetting, vigorous stirring, vortexing or the like.
  • Muse cells that are pluripotent stem cells of the present invention are obtained by subjecting cells to cell stress and subjecting them to physical impact as necessary, and then centrifuging the cells to obtain and collect the surviving cells as pellets. The content of can be increased. Moreover, the pluripotent stem cell or pluripotent cell fraction of the present invention can be further isolated from the cells thus obtained using the following surface marker as an index. As an example, a method for treating these cells with trypsin will be described.
  • the trypsin concentration at this time is not limited. For example, in the normal culture of adherent cells, the trypsin concentration may be used within the concentration range used when peeling the adherent culture adhered to the culture vessel, and is 0.1 to 1%, preferably 0.
  • 1 to 0.5% is exemplified.
  • cells derived from a umbilical cord or adipose tissue of a living body containing 100,000 to 500,000 cells can be exposed to external stress by incubating in 5 ml of a trypsin solution having the above concentration.
  • the trypsin treatment time is about 5 to 24 hours, preferably about 5 to 20 hours.
  • trypsin treatment for 8 hours or more, for example, treatment for 8 hours or 16 hours is referred to as long-time trypsin treatment.
  • a gel such as methylcellulose gel.
  • Poly (2-hydroxyethyl methacrylate) or the like When cells exposed to external stress are collected by centrifugation and subjected to suspension culture, cell clusters (cell clusters) are formed. The size of this cell mass is about 25 ⁇ m to 150 ⁇ m in diameter.
  • the pluripotent stem cells (Muse cells) of the present invention are contained in a concentrated state in the cell population that survived this external stress. This cell population is referred to as the Muse enriched population.
  • the abundance of Muse cells in the rich Muse cell fraction varies depending on the stress treatment method.
  • the medium and culture conditions used for culturing cells derived from the umbilical cord or adipose tissue of a living body may be the same as those used for normal animal cell culture. Further, a known stem cell culture medium may be used. To the medium, serum such as fetal bovine serum, antibiotics such as penicillin and streptomycin, and various physiologically active substances may be appropriately added.
  • the present invention also includes pluripotent stem cells that are derived or derived cells of pluripotent stem cells that can be obtained directly from the umbilical cord or adipose tissue of the living body of the present invention.
  • Derived cells or induced cells refer to cells or cell groups obtained by culturing the pluripotent stem cells, or cells obtained by performing artificial induction operations such as introduction of foreign genes into the pluripotent stem cells, and progeny Includes cells.
  • the iPS cells reported at the time of the present invention are said to be cells induced by pluripotent stem cells as a result of reprogramming by introducing a foreign gene into a differentiated cell of biological tissue such as skin fibroblasts.
  • the cells that can be directly obtained from the umbilical cord or adipose tissue of the present invention and have already been subjected to an artificial induction operation such as introduction of a foreign gene into cells having the properties as pluripotent stem cells are iPS cells.
  • iPS cells Distinguished from Embryoid body-like (Embody) -like cell clusters can be obtained by suspension culture of the pluripotent stem cells of the present invention, and the present invention relates to these embryoid body-like cell clusters and embryoid body-like cells.
  • the cells contained in the mass are also included.
  • the embryoid body is formed as a cell mass by suspension culture of the pluripotent stem cells of the present invention.
  • an embryoid body obtained by culturing the pluripotent stem cell of the present invention may be referred to as a Muse cell-derived embryoid body-like cell mass (referred to as an M cluster).
  • M cluster Muse cell-derived embryoid body-like cell mass
  • As a suspension culture method for forming embryoid body-like cell clusters culture using a medium containing a water-soluble polymer such as methylcellulose (Nakahata, T. et al., Blood 60, 352-361 (1982)). And hanging drop culture (Keller, J. Physiol. (Lond) 168: 131-139, 1998).
  • the present invention also includes an embryoid body-like cell cluster obtained by self-renewal from the embryoid body-like cell cluster, cells contained in the embryoid body-like cell cluster, and pluripotent stem cells.
  • self-renewal refers to culturing cells contained in an embryoid body-like cell cluster to form an embryoid body-like cell cluster again. The self-renewal may be repeated one to several times.
  • the present invention also includes cells and tissues differentiated from any of the embryoid body-like cell clusters and cells contained in the embryoid body-like cell cluster.
  • the present invention includes not only Muse cells but also cell populations enriched with Muse cells, cell populations with expanded Muse cells, and cell populations with differentiated Muse cells, and further include Muse cells and cells derived from Muse cells. Includes research kits, cell chips, and therapeutic devices.
  • the pluripotent stem cell of the present invention has pluripotency, and can differentiate into any tissue.
  • the pluripotent stem cell or pluripotent cell fraction can be used for regenerative medicine and the like. For example, it can be used for regeneration of various tissues and various organs. Specific examples include skin, cerebral spinal cord, liver, and muscle.
  • the pluripotent stem cell By administering the pluripotent stem cell or pluripotent stem cell fraction of the present invention directly or nearby to a damaged or damaged tissue, organ, etc., the pluripotent stem cell enters the tissue, organ, It can differentiate into cells peculiar to the tissue and contribute to regeneration and reconstruction of the tissue and organs. Further, systemic administration may be performed by intravenous administration or the like. In this case, for example, the pluripotent stem cell is directed to a damaged tissue or organ by homing or the like, reaches / invades, and then differentiates into a cell of the tissue or organ to regenerate the tissue or organ. , Can contribute to reconstruction.
  • Administration can be performed, for example, by parenteral or oral administration such as subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, or intrauterine injection into an embryo. Moreover, local administration or systemic administration may be sufficient. Local administration can be performed using a catheter, for example. The dose can be appropriately determined depending on the type and size of the organ or tissue to be regenerated.
  • the organ to be regenerated is not limited, but bone marrow, spinal cord, blood, spleen, liver, lung, intestinal tract, eye, brain, immune system, circulatory system, bone, connective tissue, muscle, heart, blood vessel, pancreas, central nervous system , Peripheral nervous system, kidney, bladder, skin, epithelial appendages, breast-mammary gland, adipose tissue, cornea, and mucous membranes including mouth, esophagus, vagina, anus, and the like.
  • Diseases to be treated include cancer, cardiovascular disease, metabolic disease, liver disease, diabetes, hepatitis, hemophilia, blood system disease, degenerative or traumatic neurological diseases such as spinal cord injury, autoimmune disease, genetic Examples include defects, connective tissue diseases, anemia, infections, transplant rejection, ischemia, inflammation, and skin and muscle damage.
  • the cells may be administered with a pharmaceutically acceptable substrate.
  • the substrate is made of, for example, collagen, a highly biocompatible substance, or a biodegradable substance, and may be in the form of particles, plates, cylinders, containers, and the like. What is necessary is just to couple
  • the pluripotent stem cell of the present invention may be induced to differentiate in vitro, a tissue may be constructed using the differentiated cell, and the differentiated cell or the tissue may be transplanted. Since the pluripotent stem cell of the present invention does not become a tumor, even if the transplanted differentiated cell or the tissue contains the pluripotent stem cell of the present invention undifferentiated, the possibility of canceration is low and safe. is there.
  • mesoderm tissue or mesenchymal tissue is collected from a patient who is going to receive regenerative medicine, and the present invention is obtained from the tissue.
  • the pluripotent stem cell or pluripotent stem cell fraction of the present invention can be used for the treatment of diseases caused by tissue degeneration or dysfunction.
  • the pluripotent stem cell or pluripotent stem cell fraction of the present invention may be concentrated ex vivo, proliferated, or differentiated and returned to the body. What is necessary is just to differentiate into a cell and to transplant this cell to the tissue which is going to be treated. In situ cell therapy can also be performed by cell transplantation.
  • target cells include liver cells, nervous cells such as nerve cells and glial cells, muscle cells such as skin cells and skeletal muscle cells, and the pluripotent stem cells of the present invention are differentiated into these cells.
  • Parkinson's disease, cerebral infarction, spinal cord injury, muscle degenerative disease and the like can be treated.
  • the pluripotent stem cell of the present invention does not become a tumor, even if it is used for such treatment, the possibility of canceration is low and it is safe.
  • blood and blood components can be formed ex vivo and in vitro by differentiating the pluripotent stem cells of the present invention to form blood and blood components.
  • red blood cells red blood cells, white blood cells, and platelets Etc.
  • the blood and blood components formed in this way can be used for autologous blood transfusion or transfusion.
  • the pluripotent stem cell or pluripotent stem cell fraction of the present invention when used for treatment, it may be differentiated ex vivo, in vivo, or in vitro.
  • the pluripotent stem cells of the present invention include, for example, osteoblasts, chondrocytes, adipocytes, fibroblasts, bone marrow stroma, skeletal muscle, smooth muscle, myocardium, eyes, endothelium, epithelium, liver, pancreas, hematopoiesis, glia Differentiate into neurons, oligodendrocytes, etc. Differentiation of the pluripotent stem cell of the present invention can be achieved by culturing in the presence of a differentiation factor.
  • Differentiation factors include basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), dimethyl sulfoxide (DMSO) and isoproterenol; or fibroblast growth factor 4 (FGF4), hepatocyte growth factor (HGF) and the like.
  • the present invention also includes cells differentiated from the pluripotent stem cells of the present invention.
  • a gene encoding a proteinaceous anticancer substance or physiologically active substance may be introduced.
  • the pluripotent stem cell of this invention also has the delivery function of a therapeutic agent.
  • An example of such a substance is an anti-angiogenic drug.
  • the present invention relates to a cell transplantation treatment material comprising a Muse cell, an embryoid body-like cell mass made of Muse cells, and a cell or tissue / organ obtained by differentiation from the Muse cell or the embryoid body-like cell mass Alternatively, it includes a composition for cell transplantation treatment, or a material for regenerative medicine or a composition for regenerative medicine.
  • the composition is pharmaceutically acceptable in addition to Muse cells, embryoid body-like cell masses made from Muse cells, or cells or tissues / organs obtained by differentiation from Muse cells or the embryoid body-like cell masses. Including buffer solution and diluent.
  • the Muse cell of the present invention can be collected from the umbilical cord or adipose tissue of the patient, the Muse cell can be isolated, and used for various diagnoses using the Muse cell.
  • the Muse cell can be collected a patient gene from Muse cells, obtain genetic information, and perform an accurate diagnosis reflecting the information.
  • Muse cells derived from a subject's cells cells of each tissue / organ having the same genetic background as the subject can be obtained. And diagnosis of side effects, etc., it is possible to make an appropriate diagnosis according to the characteristics of each subject.
  • Muse cells, embryoid body-like cell masses made from Muse cells, and cells or tissues / organs obtained by differentiation from Muse cells or the embryoid body-like cell masses can be used as diagnostic materials,
  • the present invention diagnoses a disease or the like of a subject using a tissue or organ having the same genetic background as the subject obtained by isolating a Muse cell from the subject and differentiating the Muse cell or the Muse cell.
  • somatic cells can be obtained in large quantities by differentiating Muse cells, basic research such as elucidation of disease mechanisms, therapeutic drug development, screening of drug effects and toxicity, drug evaluation, etc. can be performed. .
  • Muse cells, embryoid body-like cell masses made from Muse cells, and cells or tissues / organs obtained by differentiation from Muse cells or the embryoid body-like cell masses are used as materials for drug evaluation and drug screening.
  • the present invention includes a method for screening and evaluating drugs by differentiating and proliferating Muse cells, obtaining somatic cells, administering a candidate drug to the somatic cells, and examining the response of the somatic cells.
  • a Muse cell bank in which various (for example, various HLA types) Muse cells are made into a library, a system capable of providing cells in the above Muse cell utilization scene as needed can be realized.
  • the present invention includes a method for producing a library of Muse cells having different gene characteristics, that is, a Muse cell bank, by isolating and collecting Muse cells having various gene characteristics.
  • a Muse cell bank a method for producing a library of Muse cells having different gene characteristics.
  • Muse cells embryoid body-like cell masses made from Muse cells, and cells or tissues / organs obtained by differentiation from Muse cells or the embryoid body-like cell masses are obtained in libraries or banks. Can also be built.
  • an embryoid body-like cell mass made from these Muse cells, and cells or tissues / organs obtained by differentiating from the Muse cells and the embryoid body-like cell mass are also used as libraries and banks. It is called a cell library or cell bank.
  • the present invention includes the cell library or cell bank thus prepared.
  • the cell library or cell bank is composed of, for example, a container such as a plurality of tubes in which cells having different genetic characteristics are stored, and the cells may be frozen. For example, when it becomes necessary to transplant or regenerate a tissue or organ in a subject, a cell suitable for the genetic background or the like is selected from the cell library or cell bank. Can be used for transplantation and regenerative treatment.
  • the present invention provides administration of a therapeutically effective amount of the pluripotent stem cells of the present invention, the cell fraction, derivative cells derived from the cells, or induced cells to a patient in need of treatment for the treatment of a disease.
  • a therapeutic method comprising:
  • the effective amount can be specified by, for example, the number of cells to be administered, and can be appropriately determined depending on the type and severity of the disease.
  • the pluripotent stem cells of the present invention do not form teratomas (teratomas), and thus teratomas are not formed in patients.
  • Muse cells can be a source of iPS cells (induced pluripotent stem cells). The production efficiency of iPS cells using Muse cells as a source is much higher (at least 25 times or more than when using other cells (for example, skin fibroblasts not fractionated using SSEA-3 expression as an index)). )high.
  • An iPS cell can be produced by introducing a specific gene into a Muse cell or changing a cytoplasm by introducing a specific compound.
  • the change in cytoplasm includes reprogramming, infinite growth ability and tumorigenicity, and any currently known method or any method established in the future can be used.
  • a gene can be introduced into Muse cells as described in Japanese Patent No. 4182742, or iPS cells can be established from Muse cells as described in FIG.
  • iPS cells can be established by introducing a chemical substance, a foreign gene or a foreign protein.
  • Establishment of iPS cells from Muse cells can be performed, for example, by the method described in Examples described later.
  • the iPS cell obtained from the Muse cell may be referred to as a Muse-derived iPS cell (Muse-iPSC), and the present invention also includes the Muse-derived iPS cell.
  • Muse-derived iPS cells can be referred to as Muse cell-derived pluripotent stem cells having infinite proliferative properties.
  • mesenchymal cells derived from human adipose tissue two commercially available cultured cells and mesenchymal cells established from primary culture of human subcutaneous adipose tissue were used.
  • Commercially available cells are Lonza's Human Adipose-Derived Stem Cell (HADSC: 3 lots of Lot. 7F4308, 7F4089, and 7F4205), and Dulbecco's modified Eagle EM medium-H liquid (1 ⁇ ); Invitrogen Cat.
  • Phosphate-Buffered Saline PBS, magnesium chloride, calcium chloride-free
  • PBS magnesium chloride, calcium chloride-free
  • 1 mg / mL collagenase Type I 100 mg; Worthington Biochemical Cat. LS004194]
  • 1% (wt / vol) BSA nacalai Cat. 15111-45] was added to make an enzyme solution.
  • the cut adipose tissue and an equal amount of enzyme solution were mixed in a 50 mL centrifuge tube and reacted at 37 ° C. for 2 hours to digest the extracellular matrix.
  • Mouse ES cells were prepared by using 15% (vol / vol) FBS [ES cell grade; HyClone], 0.1 mg / mL kanamycin sulfate [liquid (100 ⁇ ); Invitrogen Cat. 15160-054], 0.1 mM MEM Non-Essential Amino Acids Solution [NEAA, liquid 10 mM (100 ⁇ ); Invitrogen Cat. 11140-050], sodium pyruvic acid solution 1 mM [SP, liquid 100 mM (100 ⁇ ); Invitrogen Cat.
  • FACS FACS analysis was performed on cultured cells commercially available as human adipose tissue-derived mesenchymal cells and mesenchymal cells established from primary cultures of human subcutaneous adipose tissue. Cells used for FACS were used when they reached 100% confluence.
  • the medium was removed from the dish, 3 mL of trypsin-EDTA was added, and the whole cell was spread, followed by incubation at 37 ° C. for 10 minutes. After confirming that the cells were detached from the dish, 1 mL of FBS was added to form a single cell by pipetting, and the number of cells was collected and counted.
  • FACS buffer [0.02M PBS, 0.5% (wt / Vol) BSA, 2 mM EDTA] was used to suspend cells to 1 million cells per 100 ⁇ L, and incubated with 10% inactivated human serum for 20 minutes (on ice) to perform FcR blocking.
  • FIG. 1 shows the results of mesenchymal cells established from primary cultures of human subcutaneous adipose tissue. At this time, the peaks of the secondary antibody-only sample (FIG. 1B) and the sample stained with SSEA-3 (FIG.
  • Muse-derived embryoid body-like cell mass was measured. 4). 2. Differentiation of Muse-derived embryoid body-like cell mass (M-cluster) in vitro.
  • the sample was embedded in a compound, and a frozen section was prepared and used for immunostaining.
  • M-cluster Muse-derived embryoid body-like cell mass differentiated on a gelatin-coated cover glass
  • the cover glass and the cells are fixed with 4% (vol / vol) paraformaldehyde / 0.01 M PBS, and immunized. Used for staining.
  • SSEA-3 [1:50, Millipore], Nanog (1: 100, Millipore), Oct3 / 4 [1: 100, Santa Cruz], Sox2 (1: 1000, Millipore), PAR4 (1: 100) , Santa Cruz), Smooth Muscle Actin (SMA, 1: 100, Lab Vision), Neurofilament-M (1: 100, Millipore), Cytokeratin 7 (CK7, 1: 100, Millipore), and using these primary antibodies.
  • RT-PCR 4 4).
  • SSEA-3 positive cell group was fixed by perfusion 4 months after transplantation, and the mouse ES cell and PBS groups were fixed by perfusion 8 weeks after transplantation. 8).
  • Study of self-renewal ability self-replicating ability
  • FIG. Results An overview of the method is shown in FIG. Results
  • two types of sources were used, cells commercially available as human adipose tissue-derived mesenchymal cells and mesenchymal cells established by the present inventors from human subcutaneous adipose tissue.
  • mesenchymal cells obtained from human subcutaneous adipose tissue (FIG. 3A) having a volume of 15.4 cm 3 were cultured for 16 days, and 1960 was obtained as human adipose tissue-derived mesenchymal cells (FIG.
  • FIG. 4A shows the results of commercially available HADSC
  • FIG. 4B shows the expression of SSEA-3 in HADSC established from human subcutaneous adipose tissue.
  • Muse cells form a Muse-derived embryoid body-like cell mass (M-cluster) resembling the embryoid body of human ES cells from one cell by suspension culture.
  • M-cluster Muse-derived embryoid body-like cell mass
  • FIG. 5 shows the morphology of the Muse-derived embryoid body-like cell cluster (M-cluster).
  • FIG. 5A shows the morphology of a Muse-derived embryoid body-like cell mass (M-cluster) obtained from a commercially available HADSC
  • FIG. 5B shows a Muse-derived embryoid body-like cell mass obtained from HADSC established from human subcutaneous adipose tissue. The form of (M-cluster) is shown.
  • M-cluster Muse-derived embryoid body-like cell mass
  • MAP-2 microtubule-associated protein-2
  • GATA6 Endoderm
  • AFP endoderm
  • Nkxr2.5 meoderm
  • M-cluster I was obtained from differentiation of Muse-derived embryoid body-like cell mass (M-cluster) obtained from commercially available HADSC
  • M-cluster II was obtained from HADSC established from human subcutaneous adipose tissue.
  • the differentiation of Muse-derived embryoid body-like cell mass (M-cluster) is shown.
  • NF Neuro filament-M
  • CK7 Cytokeratin 7
  • SMA Smooth Muscle Actin
  • M-cluster differentiated into tridermal cells (FIG. 7).
  • the blue reaction that looks like an ellipse indicates the nucleus of the DAPI-stained cell
  • the red fluorescence indicates the anti-NF antibody or anti-SMA antibody
  • the green fluorescence indicates the anti-CK7 antibody.
  • the formed Muse-derived embryoid body-like cell mass may also express pluripotent stem cell markers such as Nanog, Oct3 / 4, PAR4, Sox2, SSEA-3, alkaline phosphatase (ALP), etc.
  • Muse cells isolated from HADSC were confirmed (Figure 8), and from these facts, they express pluripotency markers and can differentiate into trioderm cells, and thus have pluripotency. Proved.
  • the DAPI-stained image in the left panel shows the nucleus and is stained blue
  • the center panel is an immunostained image using antibodies against Nanog, Oct3 / 4, PAR4, Sox2 and SSEA-3 from the top. The localization of these markers is stained green.
  • the right panel is an image obtained by superimposing a DAPI stained image and a stained image of each antibody.
  • the ALP in the bottom panel shows a red positive reaction in the alkaline phosphatase stained image.
  • FIG. 9 A shows the result of control (Intact, no transplantation) and the result of transplantation of Muse cells (4 months), and B shows the result of transplanting mouse ES cells (8 weeks) and PBS. The results are shown (8 weeks). Moreover, it was confirmed by the HE-stained image that mouse ES cells formed a teratoma containing a trioderm tissue (FIG. 10). In FIG.
  • Muse cells were isolated using SSEA-3 expression as an index in the same manner as described in 1. More specific description will be given below.
  • the umbilical cord obtained with the consent of the patient was used. After the umbilical cord was disinfected, only the mesenchymal tissues in the middle were removed except for blood vessels and surface epithelium, and they were cut into 5 mm squares.
  • Mesenchymal cells were obtained by adherent culture of fine umbilical cord mesenchymal tissue. As in the case of adipose-derived mesenchymal cells, MUSE cells are collected as SSEA-3 positive cells by FACS, and embryoid body-like cell masses are made as single cell suspension cells.
  • FIG. 13 shows the morphology of mesenchymal cells obtained from the umbilical cord.
  • FIG. 14 shows the expression of SSEA-3 in mesenchymal cells obtained from the umbilical cord. This result is the same as that of Example 1. This is a result of FACS analysis performed by the same method as described in 1.
  • FIG. 15 shows the morphology of Muse cell-derived embryoid body-like cell clusters (M-cluster) formed from SSEA-3 positive cells (Muse cells) isolated from the umbilical cord. Further, FIG.
  • Muse cells which are pluripotent stem cells, are inherent in human adipose tissue-derived mesenchymal cells. Muse cells express a pluripotent stem cell marker and have the ability to differentiate from one cell to a three germ layer cell, so human adipose tissue is very useful as a cell source in autologous cell transplantation therapy. .
  • Muse cells isolated from human adipose tissue-derived mesenchymal cells are also cells derived from living bodies, unlike human ES cells and human iPS cells. Therefore, special operations such as gene transfer are not required to acquire pluripotency. In addition, we can fully expect the possibility of solving problems such as the effects of gene transfer and the risk of tumorigenesis, which are currently faced by other pluripotent stem cell research.
  • adipose tissue-derived Muse cells also have no tumorigenicity is inherent in mesenchymal cells obtained from adult human adipose tissue, and human adipose tissue-derived mesenchymal cells are mainly This is also a convincing result because it is a cell source 10) for turning over adipose tissue and its vascular system.
  • human adipose tissue-derived mesenchymal cells are mainly This is also a convincing result because it is a cell source 10.
  • human adipose tissue-derived mesenchymal cells are mainly This is also a convincing result because it is a cell source 10.
  • the practicality and future potential of human adipose tissue has been widely recognized, and this research result that natural human pluripotent stem cells Muse cells exist among them is considered to have great significance in regenerative medicine. The same can be said for Muse cells isolated from umbilical cord-derived mesenchymal cells.
  • pluripotent stem cells are obtained from umbilical cord or adipose tissue without using germ cells or early embryos and without undergoing artificial induction operations such as introduction of foreign genes or introduction of specific compounds. Can do. Since no artificial manipulation such as introduction of a foreign gene is required, the pluripotent stem cell of the present invention can be efficiently produced, and can be used safely even when used for treatment. Furthermore, the pluripotent stem cells of the present invention can be used for regenerative medicine, treatment of dysfunctional tissues, and the like, and further can be used for studies of cell differentiation and tissue regeneration. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Abstract

The present invention provides a method for directly obtaining a pluripotent stem cell from the fat tissue or the umbilical cord of a biological body, and the pluripotent stem cell obtained by means of the aforementioned method. A SSEA-3 positive and CD105 positive pluripotent stem cell which is capable of being isolated from the fat tissue or the umbilical cord of a biological body by using the expression of SSEA-3 as an index and which has all of the following properties: (i) has little or no telomerase activity; (ii) is capable of differentiating into any of the triploblastic cells; (iii) does not exhibit neoplastic propagation; and (iv) exerts replication competence (self-renewal abilities).

Description

生体の臍帯又は脂肪組織から単離できる多能性幹細胞Pluripotent stem cells that can be isolated from living umbilical cord or adipose tissue
 本発明は生体の臍帯又は脂肪組織由来の多能性幹細胞に関する。 The present invention relates to a pluripotent stem cell derived from a living umbilical cord or adipose tissue.
 近年、組織再生に貢献し得る成人幹細胞又は組織幹細胞が注目されている。
 成体から得られる分化能を有する細胞として、例えば分化誘導をかけることによって骨、軟骨、脂肪細胞、神経細胞、骨格筋等への多様な細胞への分化能を有する骨髄間葉系細胞画分(MSC:Bone marrow stromal cell)が報告されている(非特許文献1及び2を参照)。しかしながら、骨髄間葉系細胞画分は複数の細胞種を含む細胞群であり、誘導をかけたときの分化効率は高いものではない。MSCの中の一部の細胞が分化を担っていると想定されてきたが、そのような細胞の本体は明らかではなく、長い間議論となっていた。また特定の細胞に分化させるために特定の化合物による刺激や遺伝子導入等が必要であり、分化誘導システムを構築する必要があった。
 さらに、成体由来の多能性幹細胞として体細胞から人為的に作成するiPS細胞(induced pluripotent stem cell)(特許文献1、特許文献2、非特許文献3等を参照)が報告されていた。しかしながら、iPS細胞の樹立には、間葉系細胞である皮膚線維芽細胞画分(dermal fibroblast)に特定の遺伝子や特定の化合物を体細胞に導入するという特定の物質を用いた誘導操作が必要である。
 また、生体組織から単離できるstage specific embryonic antigen−3(SSEA−3)陽性の多能性幹細胞であって、それまで知られていなかった生体由来の幹細胞についての報告があった(特許文献3及び非特許文献4等を参照)。
In recent years, adult stem cells or tissue stem cells that can contribute to tissue regeneration have attracted attention.
As a cell having differentiation ability obtained from an adult, for example, a bone marrow mesenchymal cell fraction having differentiation ability into various cells such as bone, cartilage, adipocyte, nerve cell, skeletal muscle by inducing differentiation ( MSC (Bone marrow stromal cell) has been reported (see Non-Patent Documents 1 and 2). However, the bone marrow mesenchymal cell fraction is a group of cells containing a plurality of cell types, and the differentiation efficiency when induction is not high. Although it has been assumed that some cells in the MSC are responsible for differentiation, the body of such cells is not clear and has been debated for a long time. In addition, in order to differentiate into a specific cell, stimulation with a specific compound, gene introduction, or the like is necessary, and a differentiation induction system has to be constructed.
Furthermore, iPS cells (induced pluripotent stem cells) artificially created from somatic cells as adult-derived pluripotent stem cells (see Patent Document 1, Patent Document 2, Non-Patent Document 3, etc.) have been reported. However, in order to establish iPS cells, an induction operation using a specific substance is required to introduce a specific gene or a specific compound into a somatic cell into a dermal fibroblast fraction (dermal fibroblast) that is a mesenchymal cell. It is.
In addition, there has been a report on stage-specific embryonic antigen-3 (SSEA-3) -positive pluripotent stem cells that can be isolated from biological tissues, and have not been known so far (Patent Document 3). And non-patent document 4).
特許第4183742号公報Japanese Patent No. 4183742 特開2008−307007号公報JP 2008-307007 A 国際公開第WO2011/007900号国際公開パンフレットInternational Publication No. WO2011 / 007900 International Publication Pamphlet
 本発明は、生体の臍帯又は脂肪組織から遺伝子導入などの人為的操作をすることなく、直接多能性幹細胞を得る方法の提供及びその方法により得られた多能性幹細胞の提供を目的とする。
 本発明者らは、皮膚線維芽細胞及び骨髄細胞よりSSEA−3陽性であり、従来の幹細胞には認められない抗原発現パターンを有する幹細胞を単離し、Muse(Multilineage−differentiating Stress Enduring cells)細胞と名付けた(国際公開第WO2011/007900号国際公開パンフレット、Proc.Natl.Acad.Sci USA,107(19):8639−43,2010)。
 さらに、検討を行い臍帯、及び脂肪組織よりMuse細胞を単離し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
[1] 生体の臍帯又は脂肪組織からSSEA−3の発現を指標に単離できる、以下の性質のすべてを有する、SSEA−3陽性及びCD105陽性の多能性幹細胞:
(i) テロメラーゼ活性が低いか又は無い;
(ii) 三胚葉のいずれの胚葉の細胞へも分化する能力を持つ;
(iii) 腫瘍性増殖を示さない;及び
(iv) 自己複製能(セルフリニューアル能)を持つ。
[2] 生体の臍帯又は脂肪組織からSSEA−3の発現を指標に直接単離できる、[1]の多能性幹細胞。
[3] ヒト脂肪由来幹細胞(HADSC)から単離できる、[1]又は[2]の多能性幹細胞。
[4] 浮遊培養及び接着培養を組合わせた培養により増殖する、[1]~[3]のいずれかの多能性幹細胞。
[5] CD117陰性及びCD146陰性の[1]~[4]のいずれかの多能性幹細胞。
[6] CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性及びCD271陰性の[1]~[4]のいずれかの多能性幹細胞。
[7] CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snail陰性、Slug陰性、Tyrp1陰性及びDct陰性の[1]~[4]のいずれかの多能性幹細胞。
[8] [1]~[7]のいずれかの多能性幹細胞を含む細胞集団。
[9] 臍帯又は脂肪組織からSSEA−3の発現を指標に[1]~[7]のいずれかの多能性幹細胞を単離し培養し増殖させる方法。
[10] さらに、以下の(i)~(v)の特性の少なくとも1つの特性を指標に多能性幹細胞を単離する、[9]の方法:
(i) CD105陽性;
(ii) CD117陰性及びCD146陰性;
(iii) CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性及びCD271陰性;並びに
(iv) CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snail陰性、Slug陰性、Tyrp1陰性及びDct陰性。
[11] 臍帯又は脂肪組織由来間葉系細胞をトリプシン処理し生き残った細胞を回収することを含む[1]~[7]のいずれかの多能性幹細胞を単離する方法。
 本明細書は本願の優先権の基礎である日本国特許出願2011−076635号の明細書および/または図面に記載される内容を包含する。
An object of the present invention is to provide a method for directly obtaining pluripotent stem cells without artificial manipulation such as gene transfer from the umbilical cord or adipose tissue of a living body, and to provide pluripotent stem cells obtained by the method. .
The present inventors isolated stem cells that are positive for SSEA-3 from dermal fibroblasts and bone marrow cells and have an antigen expression pattern that is not found in conventional stem cells, and Muse (Multilineage-differentiating Stress Ending cells) cells and (International publication pamphlet of International Publication No. WO2011 / 007900, Proc. Natl. Acad. Sci USA, 107 (19): 8639-43, 2010).
Furthermore, investigation was performed and Muse cells were isolated from the umbilical cord and adipose tissue, and the present invention was completed.
That is, the present invention is as follows.
[1] SSEA-3 positive and CD105 positive pluripotent stem cells having all of the following properties that can be isolated from living umbilical cord or adipose tissue using SSEA-3 expression as an index:
(I) low or no telomerase activity;
(Ii) has the ability to differentiate into cells of any germ layer of the three germ layers;
(Iii) no neoplastic growth; and (iv) self-replicating ability (self-renewal ability).
[2] The pluripotent stem cell according to [1], which can be isolated directly from the umbilical cord or adipose tissue of a living body using the expression of SSEA-3 as an index.
[3] The pluripotent stem cell according to [1] or [2], which can be isolated from human adipose-derived stem cells (HADSC).
[4] The pluripotent stem cell according to any one of [1] to [3], which is proliferated by culture combining suspension culture and adhesion culture.
[5] The pluripotent stem cell of any one of [1] to [4], which is CD117 negative and CD146 negative.
[6] The pluripotent stem cell of any one of [1] to [4], which is CD117 negative, CD146 negative, NG2 negative, CD34 negative, vWF negative and CD271 negative.
[7] Pluripotency of any of [1] to [4] of CD34 negative, CD117 negative, CD146 negative, CD271 negative, NG2 negative, vWF negative, Sox10 negative, Snail negative, Slug negative, Tyrp1 negative and Dct negative Stem cells.
[8] A cell population comprising the pluripotent stem cell according to any one of [1] to [7].
[9] A method of isolating, culturing and proliferating the pluripotent stem cell of any one of [1] to [7] using the expression of SSEA-3 as an index from umbilical cord or adipose tissue.
[10] Furthermore, the method of [9], wherein pluripotent stem cells are isolated using at least one of the following characteristics (i) to (v) as an index:
(I) CD105 positive;
(Ii) CD117 negative and CD146 negative;
(Iii) CD117 negative, CD146 negative, NG2 negative, CD34 negative, vWF negative and CD271 negative; and (iv) CD34 negative, CD117 negative, CD146 negative, CD271 negative, NG2 negative, vWF negative, Sox10 negative, Snail negative, Slug Negative, Tyrp1 negative and Dct negative.
[11] A method for isolating pluripotent stem cells according to any one of [1] to [7], which comprises trypsinizing umbilical cord or adipose tissue-derived mesenchymal cells and recovering surviving cells.
This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2011-0776635, which is the basis of the priority of the present application.
 図1は、ヒト皮下脂肪組織の初代培養から樹立した間葉系細胞の抗SSEA−3抗体を用いたFACS分析の結果を示す図である。A:染色なし、B:二次抗体のみ、C:SSEA−3染色したもの。
 図2は、RT−PCTで用いたプライマーの配列およびそれぞれにおいて設定したポジティブコントロールとネガティブコントロールのサンプルについてを説明する図である。
 図3は、ヒト皮下脂肪組織(A)及びその組織から樹立された間葉系細胞(B)の形態を示す図である。
 図4は、市販の脂肪由来間葉系細胞(HADSC)(A)及び図3の皮下脂肪組織から樹立したHADSC(B)におけるSSEA−3の発現を示す図である。
 図5は、脂肪組織から採取したMuse由来胚様体様細胞塊(M−cluster)の形態を示す写真である。図5Aは市販のHADSCから得られたMuse由来胚様体様細胞塊(M−cluster)の形態を、図5Bは皮下脂肪組織から樹立したHADSCから得られたMuse由来胚様体様細胞塊(M−cluster)の形態を示す。
 図6は、Muse由来胚様体様細胞塊(M−cluster)の分化を示すRT−PCRの結果の写真である。図中、M−clusterIは市販のHADSCから得られたMuse由来胚様体様細胞塊(M−cluster)の分化を、M−clusterIIは樹立したHADSCから得られたMuse由来胚様体様細胞塊(M−cluster)の分化を示す。
 図7は、市販のHADSC由来のMuse細胞1細胞から形成された胚様体様細胞塊(M−cluster)がゲラチン培養において三胚葉性の細胞へ分化することを示す免疫染色像を示す写真である。NF(neurofilament;外胚葉)、CK7(Cytokeratin7;内胚葉)、SMA(smooth muscle actin;中胚葉)。
 図8は、市販のHADSC由来のMuse細胞1細胞から形成された胚様体様細胞塊(M−cluster)における多能性因子の発現を示す写真である。
 図9は、Muse細胞が腫瘍形成能を有しないことを示す写真である。Muse細胞を移植した精巣は4カ月経過しても正常の精巣と同じ大きさで腫瘍形成の兆候はみられないが、マウスES細胞を移植したものでは8週で巨大な腫瘍を形成する。
 図10は、マウスES細胞由来奇形腫のHE染色像を示す写真である。図中、Iは腸上皮(内胚葉)、IIは表皮(外胚葉)、IIIは平滑筋(中胚葉)を示す。移植8週後の写真である。
 図11は、Muse細胞を移植したマウス精巣の組織像を示す写真である。移植4ヶ月後の写真である。正常な精細管が組織を構成しており腫瘍形成を示す像は見られない。
 図12は、単離したMuse細胞がセルフリニューアル能を有することを示す図である。脂肪由来のMuse細胞での例を示す。
 図13は、臍帯から得られた間葉系細胞の形態を示す図である。
 図14は、臍帯から得られた間葉系細胞におけるSSEA−3の発現を示す図である。
 図15は、臍帯より単離したSSEA−3陽性細胞から形成されたMuse細胞由来胚様体様細胞塊(M−cluster)の形態を示す。
 図16は、臍帯より単離した多能性幹細胞であるMuse細胞のα−フェトプロテイン(α−FP;内胚葉)、GATA6(内胚葉)、MAP−2(外胚葉)及びNkx2.5(中胚葉)のRT−PCR分析の結果を示す図である。
FIG. 1 is a diagram showing the results of FACS analysis using anti-SSEA-3 antibody for mesenchymal cells established from primary culture of human subcutaneous adipose tissue. A: No staining, B: Secondary antibody only, C: SSEA-3 stained.
FIG. 2 is a diagram for explaining primer sequences used in RT-PCT and positive control and negative control samples set in each.
FIG. 3 is a diagram showing the morphology of human subcutaneous adipose tissue (A) and mesenchymal cells (B) established from the tissue.
FIG. 4 is a diagram showing expression of SSEA-3 in commercially available adipose-derived mesenchymal cells (HADSC) (A) and HADSC (B) established from the subcutaneous fat tissue of FIG.
FIG. 5 is a photograph showing the morphology of Muse-derived embryoid body-like cell mass (M-cluster) collected from adipose tissue. FIG. 5A shows the morphology of a Muse-derived embryoid body-like cell cluster (M-cluster) obtained from a commercially available HADSC, and FIG. 5B shows a Muse-derived embryoid body-like cell cluster obtained from HADSC established from subcutaneous adipose tissue ( M-cluster) is shown.
FIG. 6 is a photograph of RT-PCR results showing differentiation of Muse-derived embryoid body-like cell mass (M-cluster). In the figure, M-cluster I represents the differentiation of Muse-derived embryoid body-like cell mass (M-cluster) obtained from commercially available HADSC, and M-cluster II represents the Muse-derived embryoid body-like cell mass obtained from established HADSC. (M-cluster) differentiation is shown.
FIG. 7 is a photograph showing an immunostained image showing that an embryoid body-like cell cluster (M-cluster) formed from a commercially available HADSC-derived Muse cell differentiates into a trioderm cell in gelatin culture. is there. NF (neurofilament; ectoderm), CK7 (Cytokeratin 7; endoderm), SMA (smooth muscle actin; mesoderm).
FIG. 8 is a photograph showing the expression of pluripotent factors in embryoid body-like cell mass (M-cluster) formed from commercially available HADSC-derived Muse cells.
FIG. 9 is a photograph showing that Muse cells do not have tumorigenicity. Testes transplanted with Muse cells are the same size as normal testes even after 4 months, and no signs of tumor formation are seen, but those transplanted with mouse ES cells form a huge tumor in 8 weeks.
FIG. 10 is a photograph showing an HE-stained image of mouse ES cell-derived teratoma. In the figure, I indicates intestinal epithelium (endoderm), II indicates epidermis (ectodermal), and III indicates smooth muscle (mesoderm). It is a photograph 8 weeks after transplantation.
FIG. 11 is a photograph showing a tissue image of a mouse testis transplanted with Muse cells. It is a photograph 4 months after transplantation. Normal seminiferous tubules constitute the tissue and no image showing tumor formation is seen.
FIG. 12 is a diagram showing that isolated Muse cells have a self-renewal ability. An example with fat derived Muse cells is shown.
FIG. 13 is a diagram showing the morphology of mesenchymal cells obtained from the umbilical cord.
FIG. 14 is a diagram showing expression of SSEA-3 in mesenchymal cells obtained from the umbilical cord.
FIG. 15 shows the morphology of Muse cell-derived embryoid body-like cell clusters (M-cluster) formed from SSEA-3 positive cells isolated from the umbilical cord.
FIG. 16 shows Muse cell α-fetoprotein (α-FP; endoderm), GATA6 (endoderm), MAP-2 (ectoderm) and Nkx2.5 (mesoderm) isolated from the umbilical cord. ) Shows the results of RT-PCR analysis.
 以下、本発明を詳細に説明する。
 本発明は、生体の臍帯又は脂肪組織から直接得ることができる多能性(pluripotent)幹細胞又は多能性幹細胞画分及び該多能性幹細胞又は該多能性幹細胞画分を単離する方法、並びに該方法により得られた臍帯又は脂肪組織由来の多能性幹細胞又は多能性幹細胞画分である。本発明の多能性幹細胞をMuse細胞(multilineage differentiating stress enduring cells)という。
 本発明において、細胞画分というときは、単離したい細胞を少なくとも一定量含む細胞群のことをいう。例えば、多能性幹細胞画分とは、多能性幹細胞を1%以上、10%以上、30%以上、50%以上、70%以上、90%以上、又は95%以上含む細胞群が挙げられ、多能性幹細胞の培養によって得られる細胞塊や多能性幹細胞を濃縮した細胞群を含む。また、前記細胞画分を実質的に均一な細胞画分ということもある。
 臍帯は、哺乳動物の臍帯である。臍帯は上皮、血管、血液、間葉組織が構成するが、この中でも間葉組織が臍帯由来間葉系細胞の元となる。
 脂肪組織由来の多能性幹細胞は、脂肪組織中に含まれる間葉系細胞である脂肪幹細胞(脂肪由来幹細胞)(adipose−derived stem cell;ADSC)から好適に単離することができる。ADSCは市販のもの、例えばLonza社のヒト脂肪由来幹細胞を利用することができ、また、外科的に採取した皮下脂肪組織あるいは皮下脂肪吸引物から公知の方法で脂肪幹細胞画分を得ることができる。例えば、脂肪組織から、Estes BTらの方法(Estes BT.,et al.Nat Protoc.2010 Jul:5(7):1294−1311)により樹立した間葉系細胞を用いることができる。脂肪幹細胞の細胞表面抗原はCD13陽性、CD29陽性、CD44陽性、CD73陽性、CD90陽性、CD105陽性、CD166陽性、CD14陰性、CD31陰性、CD45陰性である。
 臍帯、脂肪組織共に採取後、凍結保存しておいたものも用いることができる。
 哺乳動物は限定されないが、例えばヒト、サル等の霊長類、マウス、ラット、ウサギ、モルモット等のげっ歯類、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ、フェレット等が含まれる。本発明の多能性幹細胞は、生体の臍帯又は脂肪組織から直接得られる点で、胚性幹細胞(ES細胞)や胚性生殖幹細胞(EG細胞)と明確に区別される。
 細胞が臍帯又は脂肪組織から直接得ることができるとは、臍帯又は脂肪組織から直接単離することができる、あるいは一旦これらの組織から間葉系細胞を培養し、そこから単離することができ、外来遺伝子や外来タンパク質の導入又は化合物の投与などの化合物処理等の人為的な誘導操作を経ずに得られることを意味する。ここで、外来遺伝子は、限定されないが、例えば体細胞の核を初期化し得る遺伝子をいい、例えば、Oct3/4遺伝子等のOctファミリー遺伝子、Klf遺伝子等のKlfファミリー遺伝子、c−Myc遺伝子等のMycファミリー遺伝子、Sox2遺伝子等のSoxファミリー遺伝子が挙げられる。また、外来タンパク質としてはこれらの遺伝子がコードするタンパク質やサイトカインが挙げられる。さらに、化合物としては、例えば、上記の体細胞の核を初期化し得る遺伝子の発現を誘導する低分子化合物やDMSO、還元剤として機能する化合物、DNAメチル化剤等が挙げられる。本発明の多能性幹細胞は、生体の臍帯又は脂肪組織から直接得ることができるという点で、iPS(induced pluripotent stem cell)細胞及びES細胞とは明確に区別される。なお、本発明においては、細胞の培養、細胞の表面マーカーを指標に細胞又は細胞画分を単離すること、細胞を細胞ストレスに曝露すること、及び細胞に物理的衝撃を与えることは、人為的な誘導操作には含まれない。また、本発明の多能性細胞は、リプログラミング又は脱分化の誘導を必要とせずに得られることを特徴としてもよい。
 多能性幹細胞とは、pluripotencyを有している細胞をいい、以下の特性を有する。
(1) Nanog、Oct3/4、SSEA−3、PAR−4及びSox2等の多能性マーカー(Pluripotent marker)を発現する。
(2) 1細胞から増殖し、自己のクローンを作り続けるクローナリティー(Clonality)を有する。
(3) 自己複製(セルフリニューアル)能を有する。
(4) 3胚葉系(内胚葉系、中胚葉系及び外胚葉系)へin vitro及びin vivoで分化し得る。
(5) マウスの精巣や皮下に移植した場合、腫瘍を形成しない。
(6) アルカリフォスファターゼ染色で陽性となる。
 本発明の多能性幹細胞は、pluripotencyを有している点で、通常知られている神経幹細胞や造血幹細胞のような成人幹細胞、組織幹細胞とは明確に区別される。また、本発明の多能性幹細胞は、pluripotencyを有している単一の又は複数の細胞として単離されている点で、骨髄間葉系(幹)細胞、脂肪由来間葉系(幹)細胞等の一般的な間葉系細胞画分とは明確に区別される。
 さらに、本発明の多能性幹細胞は、以下の特性を有する。
(i) 増殖速度が比較的緩やかで、分裂周期が1日以上、例えば1.2~1.5日である。ただし、ES細胞やiPS細胞が示すような無限増殖は示さない。
(ii) ES細胞やiPS細胞では免疫不全マウスに移植した場合に内胚葉系、中胚葉系及び外胚葉系の要素を含む奇形腫形成が短期間で見られるのに比べ、Muse細胞では半年以上奇形腫が形成されないことを特徴とする。
(iii) 浮遊培養により1細胞からMuse由来胚様体様細胞塊を形成する。
(iv) 浮遊培養にて胚様体様細胞塊を形成し、10~14日程度で増殖が停止する。その後、接着培養に移動させることにより再増殖する。
(v) 増殖の際に非対称分裂を伴う。
(vi) 核型は正常である。
(vii) テロメラーゼ活性が無いか又は低い。ここで、テロメラーゼ活性が無いか又は低いとは、例えばTRAPEZE XL telomerase detection kit(Millipore社)を用いてテロメラーゼ活性を検出した場合に検出できないか又は低いことをいう。テロメラーゼ活性が低いとは、例えば、ヒト線維芽細胞と同程度のテロメラーゼ活性を有しているか、あるいはHela細胞に比べて1/5以下、好ましくは1/10以下のテロメラーゼ活性を有していることをいう。
(viii) メチル化の状態については、Muse細胞から誘導したiPS細胞に関してはNanogおよびOct3/4のプロモータ領域の脱メチル化が高い。
(ix) 貪食能が高い。
(x) 腫瘍性増殖を示さない。ここで、腫瘍性増殖を示さないとは、浮遊培養を行った場合、一定の大きさの細胞塊(クラスター)に達すると増殖が止まり、無限増殖しないことをいう。また免疫不全マウスの精巣に移植しても奇形腫を形成しないことである。なお、上記(i)~(iv)等も腫瘍性増殖を示さないことに関連する。
 すなわち、本発明の細胞は、例えば以下の多能性幹細胞である。
(A) 生体の臍帯又は脂肪組織から得られる細胞であって、当該細胞内に化学物質、外来遺伝子又は外来タンパク質を導入することなく直接得ることができる多能性幹細胞。
(B) リプログラミングまたは脱分化を誘導することなく得ることができる、上記(A)の多能性幹細胞。
(C) 精巣へ移植した場合に、少なくとも半年間は腫瘍形成しない、上記(A)の多能性幹細胞。
(D) ES細胞、iPS細胞のように無限増殖を示さない、上記(A)の多能性幹細胞。
(E) 生体の臍帯又は脂肪組織由来の多能性幹細胞であって、生体の臍帯又は脂肪組織の細胞をプロテアーゼで処理したときに生き残る、プロテアーゼに耐性である多能性幹細胞。
 本発明の臍帯又は脂肪組織由来の多能性幹細胞であるMuse細胞は、Muse細胞の表面に多く発現している細胞表面マーカーを利用して行うことができ、例えばSSEA−3の発現を指標に単離することができる。本発明の多能性幹細胞をSSEA−3陽性Muse細胞ということもある。さらに、Muse細胞は間葉系マーカーであるCD105を発現しており、SSEA−3陽性であり、CD105陽性である。従って、SSEA−3の発現を指標に単離することができる。また、SSEA−3及びCD105の両方の発現を指標に単離することができる。これらの細胞表面マーカーを利用することにより、本発明の多能性幹細胞を単一細胞として単離でき、単離した単一細胞を、培養により増殖させることができる。なお、本発明は、ヒト以外の哺乳動物の生体組織からSSEA−3に相当するマーカーによって単離できる多能性幹細胞をも含むものとする。
 一方、Muse細胞は、NG2、CD34、vWF(フォンビルブランド因子)、c−kit(CD117)、CD146、CD271(NGFR)が陰性である。さらに、Sox10、Snai1、Slug、Tyrp1、Dctが陰性である。
 NG2、CD34、vWF、CD117、CD146、CD271などの表面抗原が陰性かどうか、発現が弱いかどうかはこれらの抗原に対する抗体反応であって、発色酵素、蛍光化合物等で標識した抗体を用いて細胞が染色されたか否かを顕微鏡観察等により測定することにより決定することができる。例えば、これらの抗体を用いて細胞を免疫染色して、表面抗原の有無を決定することができ、また該抗体を結合させた磁性ビーズを用いても決定することができる。また、FACS又はフローサイトメーターを用いても表面抗原があるかどうか決定することができる。フローサイトメーターとしては例えばFACSAria(ベクトン・ディッキンソン社製)、FACS vantage(ベクトン・ディッキンソン社製)、FACS Calibur(ベクトン・ディッキンソン社製)、MACS(磁気細胞分離法)等を用いることができる。
 また、Sox10、Snai1、Slug、Tyrp1、Dctなどの転写因子に関してはRT−PCR等の手法により発現を調べることもできる。
 これらの表面抗原が陰性とは、上記のようにFACSを用いて分析した場合に、陽性細胞としてソーティングされないこと、あるいはRT−PCRにより発現を調べた場合に、発現が認められないことをいい、これらの手法により検出できない程度発現していたとしても、本発明においては陰性とする。また、上記マーカーが陽性であることが公知の造血幹細胞等の細胞と同時に測定を行い、これらの陽性細胞と比較して、ほとんど検出されないか、あるいは有意に発現量が低い場合に陰性としてもよい。
 本発明の細胞は、これらの細胞表面の抗原特性に基づいて単離することができる。
 上記のように、Muse細胞は、SSEA−3陽性を指標に単離することができる。例えば、HADSCからSSEA−3陽性を指標に単離した細胞の40~70%の細胞がMuse由来胚様体様細胞塊(M−cluster)を形成し得るMuse細胞である。さらにSSEA−3とCD105の共発現を指標に単離することができるが、さらに、NG2、CD34、vWF(フォンビルブランド因子)、c−kit(CD117)、CD146、CD271(NGFR)、Sox10、Snai1、Slug、Tyrp1及びDctからなる群から選択される11個のマーカーのうち少なくとも1個、例えば、2個、3個、4個、5個、6個、7個、8個、9個、10個又は11個のマーカーの非発現を指標に単離することができる。例えば、CD117及びCD146の非発現を指標に単離することができ、さらに、CD117、CD146、NG2、CD34、vWF及びCD271の非発現を指標に単離することができ、さらに、上記の11個のマーカーの非発現を指標に単離することができる。
 表面マーカーを用いて単離する場合、生体の臍帯又は脂肪組織から1個又は複数個の本発明の多能性幹細胞を、培養等を経ることなく直接単離することが可能である。
 また、上記のマーカーに加えて、本発明の多能性幹細胞又は多能性細胞画分は、他の特定の因子の高発現によっても特徴付けられる。
 生体の臍帯又は脂肪組織から本発明の多能性幹細胞であるMuse細胞が得られ、さらにMuse細胞を培養することによりMuse細胞由来の胚様体(EB)様細胞塊が得られる。Muse細胞、Muse細胞の元集団である間葉系細胞、Muse由来胚様体様細胞塊及びヒトES細胞において発現している因子を比較検討することにより、Muse細胞で高発現している因子がわかる。ここで、因子とは遺伝子転写産物、タンパク質、脂質、糖を含む。
 本発明のMuse細胞においては、以下の18個の因子が高発現している。
(i)SSEA−3
(ii)v−fos FBJ murine osteosarcoma viral oncogene homolog
(iii)solute carrier family 16,member 6(monocarboxylic acid transporter 7)
(iv)tyrosinase−related protein 1
(v)Calcium channel,voltage−dependent,P/Q type,alpha 1A subunit
(vi)chromosome 16 open reading frame 81
(vii)chitinase 3−like 1(cartilage glycoprotein−39)
(viii)protease,serine,35
(ix)kynureninase(L−kynurenine hydrolase)
(x)solute carrier family 16,member 6(monocarboxylic acid transporter 7)
(xi)apolipoprotein E
(xii)synaptotagmin−like 5
(xiii)chitinase 3−like 1(cartilage glycoprotein−39)
(xiv)ATP−binding cassette,sub−family A(ABC1),member 13
(xv)angiopoietin−like 4
(xvi)prostaglandin−endoperoxide synthase 2(prostaglandin G/H synthase and cyclooxygenase)
(xvii)stanniocalcin 1
(xviii)coiled−coil domain containing 102B
 本発明の多能性幹細胞又は多能性幹細胞画分は、上記因子の少なくとも2つ、3つ、4つ、5つ、6つ、7つ、8つ、9つ、10、11、12、13、14、15、16、17又は18が高発現していることを特徴として、少なくとも2つの因子が高発現していることを指標に単離することができる。
 また、以下の20個の因子において、ヒトES細胞に対する本発明のMuse細胞の発現量の比が高い。
(a)matrix metallopeptidase 1(interstitial collagenase)
(b)epiregulin
(c)chitinase 3−like 1(cartilage glycoprotein−39)
(d)Transcribed locus
(e)chitinase 3−like 1(cartilage glycoprotein−39)
(f)serglycin
(g)MRNA full length insert cDNA clone EUROIMAGE 1913076
(h)Ras and Rab interactor 2
(i)lumican
(j)CLCA family member 2,chloride channel regulator
(k)interleukin 8
(l)Similar to LOC166075
(m)dermatopontin
(n)EGF,latrophilin and seven transmembrane domain containing 1
(o)insulin−like growth factor binding protein 1
(p)solute carrier family 16,member 4(monocarboxylic acid transporter 5)
(q)serglycin
(r)gremlin 2,cysteine knot superfamily,homolog(Xenopus laevis)
(s)insulin−like growth factor binding protein 5
(t)sulfide quinone reductase−like(yeast)
 本発明の多能性幹細胞又は多能性幹細胞画分は、上記因子の少なくとも2つ、3つ、4つ、5つ、6つ、7つ、8つ、9つ、10、11、12、13、14、15、16、17、18、19又は20が高発現していることを特徴として、少なくとも2つの因子が高発現していることを指標に単離することができる。
 さらに、本発明の多能性幹細胞又は多能性幹細胞画分は、上記(i)~(xviii)の因子の少なくとも2つと上記(a)~(t)の因子の少なくとも2つが同時に高発現していてもよく、これらの遺伝子が高発現していることを指標に単離することができる。
 さらに、本発明の多能性幹細胞又は多能性幹細胞画分は多能性マーカー以外のオドラント(odorant)受容体(オルファクトリーレセプター;olfactory receptor)群及びケモカイン(chemokine)受容体群の因子を発現していること、すなわち特定のオドラント受容体やケモカイン受容体陽性であることを特徴とする。
 本発明の多能性幹細胞又は多能性幹細胞画分で発現しているオドラント受容体として例えば、以下の22個の受容体が挙げられる。
olfactory receptor,family 8,subfamily G,member 2(OR8G2);
olfactory receptor,family 7,subfamily G,member 3(OR7G3);
olfactory receptor,family 4,subfamily D,member 5(OR4D5);
olfactory receptor,family 5,subfamily AP,member 2(OR5AP2);
olfactory receptor,family 10,subfamily H,member 4(OR10H4);
olfactory receptor,family 10,subfamily T,member 2(OR10T2);
olfactory receptor,family 2,subfamily M,member 2(OR2M2);
olfactory receptor,family 2,subfamily T,member 5(OR2T5);
olfactory receptor,family 7,subfamily D,member 4(OR7D4);
olfactory receptor,family 1,subfamily L,member 3(OR1L3);
olfactory receptor,family 4,subfamily N,member 4(OR4N4);
olfactory receptor,family 2,subfamily A,member 7(OR2A7);
guanine nucleotide binding protein(G protein),alpha activating activity polypeptide,olfactory type(GNAL);
olfactory receptor,family 6,subfamily A,member 2(OR6A2);
olfactory receptor,family 2,subfamily B,member 6(OR2B6);
olfactory receptor,family 2,subfamily C,member 1(OR2C1);
olfactory receptor,family 52,subfamily A,member 1(OR52A1);
olfactory receptor,family 10,subfamily H,member 3(OR10H3);
olfactory receptor,family 10,subfamily H,member 2(OR10H2);
olfactory receptor,family 51,subfamily E,member 2(OR51E2);
olfactory receptor,family 5,subfamily P,member 2(OR5P2);及び
olfactory receptor,family 10,subfamily P,member 1(OR10P1)
 本発明の多能性幹細胞又は多能性幹細胞画分で発現しているケモカイン受容体としては以下の5個の受容体が挙げられる。
chemokine(C−C motif)receptor 5(CCR5);
chemokine(C−X−C motif)receptor 4(CXCR4);
chemokine(C−C motif)receptor 1(CCR1);
Duffy blood group,chemokine receptor(DARC);及び
chemokine(C−X−C motif)receptor 7(CXCR7)
 本発明の多能性幹細胞又は多能性幹細胞画分は、上記の嗅覚受容体の少なくとも1個を発現しており、あるいは、上記のケモカイン受容体の少なくとも1個を発現している。
 これらのオドラント受容体やケモカイン受容体と受容体に結合する遊走因子の作用で本発明の多能性幹細胞であるMuse細胞は、損傷組織へ遊走し、生着し、その場に応じて分化する。例えば、肝臓、皮膚、脊髄、筋肉が損傷した場合、特定の遊走因子と細胞表面に発現しているオドラント受容体の働きで、それぞれの組織に遊走し、生着し、肝臓(内胚葉)、皮膚(外胚葉)、脊髄(外胚葉)、筋肉(中胚葉)細胞に分化し、組織を再生することができる。
 さらに、本発明の多能性幹細胞であるMuse細胞が豊富に含まれる富Muse細胞画分において、Rex1、Sox2、KLF−4、c−Myc、DPPA2、ERAS、GRB7、SPAG9、TDGF1等の発現上昇が認められ、Muse細胞の細胞塊において、DAZL、DDX4、DPPA4、Stella、Hoxb1、PRDM1、SPRY2等の発現上昇がみられる。
 また、本発明の多能性幹細胞又は多能性幹細胞画分においては、造血幹細胞マーカーであるCD34及びCD117の発現は認めらないか又は発現が極めて低い。
 さらに、本発明の多能性幹細胞は、生体の臍帯又は脂肪組織の細胞に細胞ストレスをかけ、生き残った細胞を回収することにより含有率を高めることができる。ここで、細胞ストレスとは外的ストレスをいい、プロテアーゼ処理、低酸素条件下での培養、低リン酸条件下での培養、血清飢餓状態での培養、糖飢餓状態での培養、放射線曝露下での培養、熱ショックへの曝露下での培養、有害物質存在下での培養、活性酸素存在下での培養、機械的刺激下での培養、圧力処理下での培養等によりストレスに曝露することをいう。この中でもプロテアーゼ処理、すなわちプロテアーゼ存在下での培養が好ましい。プロテアーゼは限定されず、トリプシン、キモトリプシン等のセリンプロテアーゼ、ペプシン等のアスパラギン酸プロテアーゼ、パパイン、キモパパイン等のシステインプロテアーゼ、サーモリシン等の金属プロテアーゼ、グルタミン酸プロテアーゼ、N−末端スレオニンプロテアーゼなどを用いることができる。プロテアーゼを培養に添加する際の添加濃度は限定されず、一般的にシャーレ等で培養した付着細胞を剥がすときに用いる濃度で用いればよい。本発明の多能性幹細胞であるMuse細胞は、上記外的ストレスに耐性を有する幹細胞、例えば、トリプシンに耐性を有する細胞ということができる。
 上記の各種のストレスを受けた細胞の大部分は死滅し、生き残った細胞中に本発明の多能性幹細胞であるMuse細胞が含まれる。細胞にストレスをかけたのち、死細胞を除去する必要があるが、プロテアーゼを用いた場合は、これらの死細胞はプロテアーゼの作用により分解される。
 また、細胞にストレスをかけた後に、細胞に物理的衝撃を与え壊れ易くなった細胞を除去してもよい。物理的衝撃は、例えば激しいピペッティング、激しい攪拌、ボルテックス等により与えることができる。
 細胞に細胞ストレスをかけ、必要に応じて物理的衝撃を与えた後に、細胞群を遠心分離にかけ、生き残った細胞をペレットとして得て回収することにより、本発明の多能性幹細胞であるMuse細胞の含有率を高めることができる。また、このようにして得られた細胞からさらに、下記の表面マーカーを指標に本発明の多能性幹細胞又は多能性細胞画分を単離することもできる。
 一例として、これらの細胞をトリプシン処理する方法について説明する。このときのトリプシン濃度は、限定されないが、例えば接着細胞の通常の培養において、培養容器に接着した接着培養を剥がすときに用いられる濃度範囲で用いればよく、0.1~1%、好ましくは0.1~0.5%が例示される。例えば、10~50万個の細胞を含む生体の臍帯又は脂肪組織由来の細胞を上記濃度のトリプシン溶液5ml中でインキュベーションすることにより外的ストレスに曝すことができる。トリプシン処理時間は、5~24時間、好ましくは5~20時間程度である。本発明においては、8時間以上のトリプシン処理、例えば8時間又は16時間の処理を長時間トリプシン処理という。
 トリプシン処理後、上記のように、ピペッティング、攪拌、ボルテックス等により物理的衝撃を与えることが望ましい。それは死んだ細胞あるいは死にかけている細胞を破壊除去するためである。
 トリプシン処理後の浮遊培養の際には細胞同士の凝集を防ぐために、例えば、メチルセルロースゲル等のゲル中でインキュベーションするのが望ましい。また、細胞の培養容器への付着を防ぎ浮遊状態を維持するために、容器をPoly(2−hydroxyethyl methacrylate)等でコートしておくことが望ましい。
 外的ストレスに曝した細胞を遠心分離により集め浮遊培養を行うと細胞塊(細胞クラスター)を形成する。この細胞塊の大きさは直径25μmから150μm程度である。本発明の多能性幹細胞(Muse細胞)は、この外的ストレスに曝して生き残った細胞集団中に濃縮した状態で含まれる。この細胞集団を富Muse細胞画分(Muse enriched population)と呼ぶ。富Muse細胞画分中のMuse細胞の存在割合は、ストレス処理の方法により異なる。
 このように本発明の多能性幹細胞又は多能性幹細胞画分がストレスをかけた後も生存することは、本発明の多能性幹細胞又は多能性幹細胞画分がストレス耐性であることを示している。
 生体の臍帯又は脂肪組織由来の細胞の培養に用いる培地、培養条件は通常の動物細胞の培養で用いる培地、培養条件を採用すればよい。また、公知の幹細胞培養用培地を用いてもよい。培地には、適宜ウシ胎児血清等の血清やペニシリン、ストレプトマイシン等の抗生物質及び種々の生理活性物質を添加してもよい。
 さらに、本発明は、本発明の生体の臍帯又は脂肪組織から直接得ることができる多能性幹細胞の派生細胞又は誘導細胞である多能性幹細胞も含む。派生細胞又は誘導細胞とは前記多能性幹細胞を培養して得られる細胞又は細胞群、あるいは前記多能性幹細胞に外来遺伝子の導入等の人為的な誘導操作を行い得られる細胞をいい、子孫細胞も含む。なお、本発明時点において報告されているiPS細胞は、皮膚線維芽細胞などの生体組織の分化した細胞に外来遺伝子導入等することによりリプログラミングした結果、多能性幹細胞に誘導された細胞といわれており、本発明の臍帯又は脂肪組織由来から直接得ることができ、すでに多能性幹細胞としての性質を有する細胞に外来遺伝子導入等の人為的な誘導操作を行い得られた細胞は、iPS細胞と区別される。
 本発明の多能性幹細胞を浮遊培養することにより、胚様体様(Embryoid body(EBbody)−like)細胞塊が得られるが、本発明はこの胚様体様細胞塊及び胚様体様細胞塊に含まれる細胞も包含する。胚様体は、本発明の多能性幹細胞を浮遊培養することにより、細胞塊として形成される。この際、本発明においては、本発明の多能性幹細胞を培養することにより得られる胚様体をMuse細胞由来胚様体様細胞塊と呼ぶことがある(Mクラスター(M−cluster)と呼ぶこともある)。胚様体様細胞塊を形成するための浮遊培養の方法として、メチルセルロース等の水溶性ポリマーを含有した培地を用いた培養(Nakahata,T.et al.,Blood 60,352−361(1982))やハンギングドロップ培養(Keller,J.Physiol.(Lond)168:131−139,1998)等が挙げられる。本発明は前記胚様体様細胞塊からセルフリニューアルして得られる胚様体様細胞塊及び胚様体様細胞塊に含まれる細胞及び多能性幹細胞も包含する。ここで、セルフリニューアルとは、胚様体様細胞塊に含まれる細胞を培養し、再度胚様体様細胞塊を形成させることをいう。セルフリニューアルは1~複数回のサイクルを繰り返せばよい。また、本発明は前記いずれかの胚様体様細胞塊及び胚様体様細胞塊に含まれる細胞から分化した細胞及び組織も包含する。
 本発明は、Muse細胞のみならず、Muse細胞を濃縮した細胞集団、Muse細胞を増殖させた細胞集団、Muse細胞を分化させた細胞集団を含み、さらに、Muse細胞やMuse細胞由来の細胞を含む研究用キット、細胞チップ、治療用デバイスも含む。
 本発明の多能性幹細胞は、pluripotencyを有しており、あらゆる組織へと分化し得る。該多能性幹細胞又は多能性細胞画分は、再生医療等に用いることができる。例えば、各種組織、各種器官等の再生に用いることができる。具体的には皮膚、脳脊髄、肝臓、筋肉等が挙げられる。本発明の多能性幹細胞又は多能性幹細胞画分を損傷あるいは障害を受けた組織、器官等に直接あるいは近傍に投与することにより、該多能性幹細胞はその組織、器官内に侵入し、その組織特有の細胞に分化し、組織、器官の再生、再建に貢献し得る。また、静脈投与等により全身投与してもよい。この場合、該多能性幹細胞は、例えば、損傷を受けた組織や器官をホーミング等により指向し、そこに到達・侵入した上で、その組織や器官の細胞に分化し、組織、器官の再生、再建に貢献し得る。
 投与は、例えば皮下注、静注、筋注、腹腔内注等の非経口投与や経口投与、あるいは胚への子宮内注射等により行うことができる。また、局所投与でも全身投与でもよい。局所投与は例えばカテーテルを利用して行うことができる。投与量は、再生しようとする器官、組織の種類や、サイズにより適宜決定することができる。
 再生しようとする器官は限定されず、骨髄、脊髄、血液、脾臓、肝臓、肺、腸管、眼、脳、免疫系、循環系、骨、結合組織、筋、心臓、血管、膵臓、中枢神経系、末梢神経系、腎臓、膀胱、皮膚、上皮付属器、乳房−乳腺、脂肪組織、角膜、および口、食道、膣、肛門を含む粘膜等を含む。また、治療対象となる疾患として、癌、心血管疾患、代謝疾患、肝疾患、糖尿病、肝炎、血友病、血液系疾患、脊髄損傷等の変性または外傷性神経疾患、自己免疫疾患、遺伝的欠陥、結合組織疾患、貧血、感染症、移植拒絶、虚血、炎症、皮膚や筋肉の損傷等が挙げられる。
 細胞は医薬として許容される基材と共に投与してもよい。該基材は例えばコラーゲン等でできた生体親和性が高い物質や、生分解性の物質できており、粒子状、板状、筒状、容器状等の形状とすればよく、細胞を該基材に結合させあるいは該基材中に収容して投与すればよい。
 また、本発明の多能性幹細胞をin vitroで分化誘導し、さらに分化した細胞を用いて組織を構築させ、該分化した細胞又は該組織を移植してもよい。本発明の多能性幹細胞は、腫瘍化しないので、移植した前記分化した細胞又は該組織に本発明の多能性幹細胞が未分化のまま含まれていても癌化の可能性が低く安全である。これらの再生医療において、移植した細胞又は組織のレシピエントによる拒絶を避けるためには、再生医療を受けようとする患者から中胚葉系組織又は間葉系組織等を採取し、該組織から本発明の多能性幹細胞又は多能性細胞画分を単離し、利用することが望ましい。さらに、本発明の多能性幹細胞又は多能性幹細胞画分を組織の変性や機能不全を原因とする疾患の治療に用いることができる。この場合、例えば、本発明の多能性幹細胞又は多能性幹細胞画分をex vivoで濃縮し、増殖させ、あるいは分化させて体内に戻せばよく、例えば、多能性幹細胞を特定の組織の細胞に分化させ、該細胞を治療しようとする組織に移植すればよい。また、細胞の移植により、in situ細胞治療を行うこともできる。この場合、対象細胞の例として、肝臓細胞、神経細胞やグリア細胞などの神経系細胞、皮膚細胞、骨格筋細胞などの筋肉細胞が挙げられ、本発明の多能性幹細胞をこれらの細胞に分化させ、移植し、in situで治療を行うことができる。該治療により、例えば、パーキンソン病、脳梗塞、脊髄損傷、筋変性疾患などを治療することができる。本発明の多能性幹細胞は、腫瘍化しないので、このような治療に用いても癌化の可能性が低く安全である。
 また、本発明の多能性幹細胞を、分化させて血液や血液成分を形成させることにより、血液や血液成分をex vivo、in vitroで形成させることができる、血液成分として、赤血球、白血球、血小板等が挙げられる。このようにして形成させた血液や血液成分を、自家輸血や他家輸血に用いることができる。
 上記のように、本発明の多能性幹細胞又は多能性幹細胞画分を治療に用いる場合、ex vivo、in vivo、in vitroのいずれで分化させてもよい。本発明の多能性幹細胞は、例えば、骨芽細胞、軟骨細胞、脂肪細胞、線維芽細胞、骨髄間質、骨格筋、平滑筋、心筋、眼、内皮、上皮、肝、膵、造血、グリア、神経細胞、稀突起膠細胞等に分化する。本発明の多能性幹細胞の分化は、分化因子の存在下で、培養することにより達成することができる。分化因子としては、塩基性繊維芽細胞成長因子(bFGF)、血管内皮成長因子(VEGF)、ジメチルスルホキシド(DMSO)およびイソプロテレノール;あるいは繊維芽細胞成長因子4(FGF4)、肝細胞成長因子(HGF)等が挙げられる。本発明は、本発明の多能性幹細胞から分化した細胞も包含する。
 本発明の多能性幹細胞を治療に用いる場合、タンパク質性の抗癌物質や生理活性物質等をコードする遺伝子を導入してもよい。これにより、本発明の多能性幹細胞は、治療薬のデリバリー機能も有することになる。このような物質として例えば、抗血管新生薬が挙げられる。
 本発明は、Muse細胞、Muse細胞からできた胚様体様細胞塊、及びMuse細胞や前記胚様体様細胞塊から分化させて得られた細胞若しくは組織・器官を含む、細胞移植治療用材料若しくは細胞移植治療用組成物、又は再生医療用材料若しくは再生医療用組成物を包含する。該組成物はMuse細胞、Muse細胞からできた胚様体様細胞塊、又はMuse細胞や前記胚様体様細胞塊から分化させて得られた細胞若しくは組織・器官に加えて、医薬的に許容される緩衝液や希釈液等を含む。
 さらに、患者の臍帯又は脂肪組織から本発明のMuse細胞を採取し、Muse細胞を単離し、該Muse細胞を用いて種々の診断に用いることができる。例えば、Muse細胞から患者の遺伝子を採取し、遺伝子情報を得て、該情報を反映させた正確な診断が可能になる。例えば、被験体の細胞由来のMuse細胞を分化させることで、被験者と同じ遺伝子背景などの性質を持った各組織・器官の細胞を得ることができるため、疾病の診断や病態解明、薬剤の効果や副作用の診断、などに関し、各々の被験者の性質に合わせ適切な診断を行うことができる。すなわち、Muse細胞、Muse細胞からできた胚様体様細胞塊、及びMuse細胞や前記胚様体様細胞塊から分化させて得られた細胞若しくは組織・器官は診断用材料として用いることができ、例えば、本発明は、被験体からMuse細胞を単離し、該Muse細胞又はMuse細胞から分化させて得られた、被験体と同じ遺伝子背景を有する組織や器官を用いて被験体の疾病等を診断する方法を包含する。
 また、Muse細胞を分化させることで体細胞を大量に得ることができるため、疾病のメカニズム解明等の基礎的研究、治療薬開発、薬剤の効果や毒性に関するスクリーニング、薬剤評価などを行うことができる。すなわち、Muse細胞、Muse細胞からできた胚様体様細胞塊、及びMuse細胞や前記胚様体様細胞塊から分化させて得られた細胞若しくは組織・器官を薬剤評価や薬剤スクリーニングの材料として用いることができる。例えば、本発明はMuse細胞を分化・増殖させ、体細胞を得て、該体細胞に候補薬剤を投与し、体細胞の応答を調べることにより、薬剤のスクリーニングや薬剤評価を行う方法を包含する。
 また、種々の(例えば様々なHLA型の)Muse細胞をライブラリー化したMuse細胞バンクを構築することで、上記のMuse細胞利用場面における細胞を必要に応じて提供できる体制を実現でき、例えば、上記に挙げた目的の他、緊急に要する細胞移植治療のための拒絶反応の無い(少ない)細胞提供、などを行うことができる。すなわち、本発明は種々の遺伝子特性を有するMuse細胞を単離し、集めることにより、異なる遺伝子特性を有するMuse細胞のライブラリー、すなわちMuse細胞バンクを作製する方法を包含する。また、Muse細胞だけでなく、Muse細胞からできた胚様体様細胞塊、及びMuse細胞や前記胚様体様細胞塊から分化させて得られた細胞若しくは組織・器官を得てライブラリーやバンクを構築することもできる。本発明においては、これらのMuse細胞からできた胚様体様細胞塊、及びMuse細胞や前記胚様体様細胞塊から分化させて得られた細胞若しくは組織・器官を得てライブラリーやバンクも細胞ライブラリー又は細胞バンクと称する。本発明は、このようにして作製した細胞ライブラリー又は細胞バンクを包含する。該細胞ラブラリー又は細胞バンクは例えば、異なる遺伝的特性を有する細胞等が収納された複数のチューブ等の容器からなり、該細胞は凍結されていてもよい。例えば、被験体において、組織や器官を移植し、あるいは再生する必要が生じた場合に、上記細胞ライブラリー又は細胞バンクから、前記被験体に遺伝的背景等に関して適合した細胞を選択し、該細胞を用いて移植や再生治療を行うことができる。
 本発明は、疾患の治療のために、本発明の多能性幹細胞や該細胞画分や該細胞由来の派生細胞や誘導細胞の治療上有効な量を治療を必要としている患者に投与することを含む治療方法を包含する。ここで、有効な量とは、例えば、投与する細胞数で特定することができ、疾患の種類や重篤度により適宜決定することができる。上記治療法においては、本発明の多能性幹細胞は、テラトーマ(奇形腫)を形成しないため、患者にテラトーマが形成されない。また、自己細胞由来のMuse細胞を投与する場合、患者を放射線照射や化学療法等の処置により骨髄機能を欠損させる必要はないが、自己細胞ではないMuse細胞を用いる場合は、上記処置を行えばよい。
 さらに、Muse細胞は、iPS細胞(induced pluripotent stem cell)のソースとなり得る。Muse細胞をソースとしたiPS細胞の作製効率は他の細胞(例えば、SSEA−3発現を指標に分画していない皮膚線維芽細胞)をソースとした場合に比べ、はるかに(少なくとも25倍以上)高い。
 Muse細胞に特定の遺伝子を導入し、あるいは特定の化合物を導入すること等により細胞形質を変化させることによりiPS細胞を作製することができる。細胞形質の変化は、リプログラミング、無限増殖能や腫瘍形成能を含み、現在知られている方法、あるいは将来的に確立されるあらゆる方法を用いることができる。
 例えば、特許4182742号の記載に従って遺伝子をMuse細胞に導入し、あるいは図27の記載に従って、Muse細胞からiPS細胞を確立することができる。また、図27に記載の方法以外に、化学物質、外来遺伝子又は外来タンパク質を導入して、iPS細胞を樹立することが可能であるといえる。Muse細胞からのiPS細胞の確立は、例えば後述の実施例に記載の方法で行うことができる。
 このようにしてMuse細胞から得られたiPS細胞をMuse由来iPS細胞(Muse−iPSC)と呼ぶことがあり、本発明は該Muse由来iPS細胞をも包含する。Muse由来iPS細胞は、Muse細胞由来の無限増殖性を有する多能性幹細胞ということができる。
 以下、本発明を実施例に基づき具体的に説明するが、本発明は下記実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail.
The present invention relates to a pluripotent stem cell or pluripotent stem cell fraction that can be obtained directly from the umbilical cord or adipose tissue of a living body, and a method for isolating the pluripotent stem cell or the pluripotent stem cell fraction, And a pluripotent stem cell or pluripotent stem cell fraction derived from the umbilical cord or adipose tissue obtained by the method. The pluripotent stem cells of the present invention are referred to as Muse cells (multilineage differentiating stress-ending cells).
In the present invention, the term “cell fraction” refers to a cell group containing at least a certain amount of cells to be isolated. For example, the pluripotent stem cell fraction includes a group of cells containing 1% or more, 10% or more, 30% or more, 50% or more, 70% or more, 90% or more, or 95% or more of pluripotent stem cells. In addition, a cell cluster obtained by culturing pluripotent stem cells and a cell group enriched with pluripotent stem cells are included. In addition, the cell fraction may be referred to as a substantially uniform cell fraction.
The umbilical cord is a mammalian umbilical cord. The umbilical cord is composed of epithelium, blood vessels, blood, and mesenchymal tissue, among which the mesenchymal tissue is the source of umbilical cord-derived mesenchymal cells.
Adipose tissue-derived pluripotent stem cells can be suitably isolated from adipose-derived stem cells (ADSC), which are mesenchymal cells contained in adipose tissue. ADSC can use commercially available human fat-derived stem cells such as Lonza, and can also obtain adipose stem cell fraction by a known method from surgically collected subcutaneous adipose tissue or subcutaneous lipoaspirate. . For example, mesenchymal cells established from adipose tissue by the method of Estes BT et al. (Ests BT., Et al. Nat Protoc. 2010 Jul: 5 (7): 1294-1311) can be used. The cell surface antigens of adipose stem cells are CD13 positive, CD29 positive, CD44 positive, CD73 positive, CD90 positive, CD105 positive, CD166 positive, CD14 negative, CD31 negative, and CD45 negative.
The umbilical cord and adipose tissue that have been collected and cryopreserved can also be used.
Mammals include, but are not limited to, primates such as humans and monkeys, rodents such as mice, rats, rabbits, guinea pigs, cats, dogs, sheep, pigs, cows, horses, donkeys, goats, ferrets, etc. . The pluripotent stem cells of the present invention are clearly distinguished from embryonic stem cells (ES cells) and embryonic germ stem cells (EG cells) in that they can be obtained directly from a living umbilical cord or adipose tissue.
That cells can be obtained directly from umbilical cord or adipose tissue can be isolated directly from umbilical cord or adipose tissue, or mesenchymal cells can be once cultured from these tissues and isolated therefrom It means that it can be obtained without an artificial induction operation such as compound treatment such as introduction of a foreign gene or protein or administration of a compound. Here, the foreign gene is not limited, but refers to a gene that can initialize the nucleus of a somatic cell, for example, an Oct family gene such as an Oct3 / 4 gene, a Klf family gene such as a Klf gene, a c-Myc gene, etc. Examples include Sox family genes such as Myc family genes and Sox2 genes. Examples of foreign proteins include proteins and cytokines encoded by these genes. Furthermore, examples of the compound include a low molecular weight compound that induces the expression of a gene that can reprogram the somatic cell nucleus, DMSO, a compound that functions as a reducing agent, a DNA methylating agent, and the like. The pluripotent stem cells of the present invention are clearly distinguished from iPS (Induced Primitive Stem Cell) cells and ES cells in that they can be obtained directly from the umbilical cord or adipose tissue of a living body. In the present invention, cell culture, isolation of cells or cell fractions using cell surface markers as indicators, exposure of cells to cell stress, and physical impact on cells It is not included in typical guidance operations. The pluripotent cell of the present invention may be obtained without requiring reprogramming or induction of dedifferentiation.
A pluripotent stem cell means a cell having pluripotency, and has the following characteristics.
(1) It expresses pluripotent markers such as Nanog, Oct3 / 4, SSEA-3, PAR-4, and Sox2.
(2) It has a clonality that grows from one cell and continues to make its own clones.
(3) Has the ability to self-replicate (self-renewal).
(4) It can differentiate into three germ layers (endoderm, mesoderm and ectoderm) in vitro and in vivo.
(5) When transplanted into the mouse testis or subcutaneously, no tumor is formed.
(6) Positive by alkaline phosphatase staining.
The pluripotent stem cell of the present invention is clearly distinguished from adult stem cells such as neural stem cells and hematopoietic stem cells and tissue stem cells, which are generally known, in that they have pluripotency. In addition, the pluripotent stem cell of the present invention is isolated as a single cell or a plurality of cells having pluripotency, so that it is a bone marrow mesenchymal (stem) cell or a fat-derived mesenchymal (stem) It is clearly distinguished from general mesenchymal cell fractions such as cells.
Furthermore, the pluripotent stem cell of this invention has the following characteristics.
(I) The growth rate is relatively slow and the division cycle is 1 day or longer, for example, 1.2 to 1.5 days. However, it does not show infinite proliferation as shown by ES cells and iPS cells.
(Ii) In ES cells and iPS cells, when transplanted into immunodeficient mice, teratomas including endoderm, mesodermal, and ectoderm components are observed in a short period of time, whereas in Muse cells, more than half a year Characterized by the absence of teratoma.
(Iii) A Muse-derived embryoid body-like cell mass is formed from one cell by suspension culture.
(Iv) Embryoid body-like cell clusters are formed in suspension culture, and the growth stops in about 10 to 14 days. Thereafter, it is re-growth by moving to an adherent culture.
(V) Accompanying asymmetric division during growth.
(Vi) The karyotype is normal.
(Vii) no or low telomerase activity. Here, the absence or low telomerase activity means that it cannot be detected or is low when telomerase activity is detected using, for example, TRAPEZE XL telomerase detection kit (Millipore). Low telomerase activity means, for example, telomerase activity comparable to that of human fibroblasts, or telomerase activity of 1/5 or less, preferably 1/10 or less that of Hela cells. That means.
(Viii) Regarding the methylation status, the demethylation of the promoter region of Nanog and Oct3 / 4 is high for iPS cells derived from Muse cells.
(Ix) High phagocytic ability.
(X) Does not show neoplastic growth. Here, not exhibiting neoplastic growth means that when suspension culture is performed, the growth stops when the cell mass (cluster) of a certain size is reached, and does not grow infinitely. Also, teratomas do not form when transplanted into the testis of immunodeficient mice. The above (i) to (iv) and the like are also related to not showing neoplastic growth.
That is, the cell of the present invention is, for example, the following pluripotent stem cell.
(A) A pluripotent stem cell obtained from a living umbilical cord or adipose tissue, which can be directly obtained without introducing a chemical substance, a foreign gene or a foreign protein into the cell.
(B) The pluripotent stem cell according to (A), which can be obtained without inducing reprogramming or dedifferentiation.
(C) The pluripotent stem cell according to (A), which does not form a tumor for at least half a year when transplanted to the testis.
(D) The pluripotent stem cell of (A), which does not show infinite proliferation like ES cells and iPS cells.
(E) A pluripotent stem cell derived from a umbilical cord or adipose tissue of a living body, which survives when cells of the umbilical cord or adipose tissue of the living body are treated with a protease, and is resistant to protease.
Muse cells that are pluripotent stem cells derived from the umbilical cord or adipose tissue of the present invention can be performed using cell surface markers that are highly expressed on the surface of Muse cells. For example, expression of SSEA-3 is used as an index. It can be isolated. The pluripotent stem cell of the present invention is sometimes referred to as an SSEA-3-positive Muse cell. Furthermore, Muse cells express CD105, which is a mesenchymal marker, are positive for SSEA-3, and positive for CD105. Therefore, it can be isolated using SSEA-3 expression as an indicator. Moreover, the expression of both SSEA-3 and CD105 can be isolated using as an index. By using these cell surface markers, the pluripotent stem cell of the present invention can be isolated as a single cell, and the isolated single cell can be grown by culture. In addition, this invention shall also include the pluripotent stem cell which can be isolated from the biological tissue of mammals other than a human by the marker equivalent to SSEA-3.
On the other hand, Muse cells are negative for NG2, CD34, vWF (von Willebrand factor), c-kit (CD117), CD146, CD271 (NGFR). Furthermore, Sox10, Snai1, Slug, Tyrp1, and Dct are negative.
Whether surface antigens such as NG2, CD34, vWF, CD117, CD146, and CD271 are negative or weakly expressed is an antibody reaction against these antigens, and cells using antibodies labeled with chromogenic enzymes, fluorescent compounds, etc. Can be determined by measuring with a microscope or the like. For example, cells can be immunostained using these antibodies to determine the presence or absence of surface antigens, or can be determined using magnetic beads to which the antibodies are bound. It can also be determined whether there is a surface antigen using a FACS or flow cytometer. As the flow cytometer, for example, FACSAria (manufactured by Becton Dickinson), FACS vantage (manufactured by Becton Dickinson), FACS Calibur (manufactured by Becton Dickinson), MACS (magnetic cell separation method) and the like can be used.
In addition, expression of transcription factors such as Sox10, Snai1, Slug, Tyrp1, and Dct can be examined by a technique such as RT-PCR.
When these surface antigens are negative, when analyzed using FACS as described above, it means that they are not sorted as positive cells, or expression is not observed when expression is examined by RT-PCR, Even if it is expressed to such an extent that it cannot be detected by these techniques, it is considered negative in the present invention. In addition, measurement is performed simultaneously with cells such as hematopoietic stem cells that are known to be positive for the above-mentioned marker, and compared to these positive cells, it is hardly detected or may be negative when the expression level is significantly low. .
The cells of the present invention can be isolated based on the antigenic properties of these cell surfaces.
As described above, Muse cells can be isolated using SSEA-3 positivity as an indicator. For example, 40 to 70% of cells isolated from HADSC using SSEA-3 positivity as an index are Muse cells that can form Muse-derived embryoid body-like cell clusters (M-cluster). Furthermore, although it can be isolated using the co-expression of SSEA-3 and CD105 as an index, NG2, CD34, vWF (von Willebrand factor), c-kit (CD117), CD146, CD271 (NGFR), Sox10, At least one of 11 markers selected from the group consisting of Snai1, Slug, Tyrp1 and Dct, for example 2, 3, 4, 5, 6, 7, 8, 9, Non-expression of 10 or 11 markers can be isolated using as an indicator. For example, CD117 and CD146 non-expression can be isolated as an index, and CD117, CD146, NG2, CD34, vWF and CD271 non-expression can be isolated as an index. The non-expression of the marker can be isolated using as an indicator.
In the case of isolation using a surface marker, it is possible to directly isolate one or a plurality of pluripotent stem cells of the present invention from the umbilical cord or adipose tissue of a living body without undergoing culture or the like.
In addition to the above markers, the pluripotent stem cell or pluripotent cell fraction of the present invention is also characterized by high expression of other specific factors.
Muse cells, which are the pluripotent stem cells of the present invention, are obtained from the umbilical cord or adipose tissue of a living body, and further, the Muse cell-derived embryoid body (EB) -like cell mass is obtained by culturing the Muse cells. By comparing the factors expressed in Muse cells, mesenchymal cells that are the original population of Muse cells, Muse-derived embryoid body-like cell clusters, and human ES cells, factors that are highly expressed in Muse cells Recognize. Here, factors include gene transcripts, proteins, lipids, and sugars.
In the Muse cell of the present invention, the following 18 factors are highly expressed.
(I) SSEA-3
(Ii) v-fos FBJ murine osteosarcoma virtual oncogene homolog
(Iii) solid carrier family 16, member 6 (monocarboxylic acid transporter 7)
(Iv) tyrosinase-related protein 1
(V) Calcium channel, voltage-dependent, P / Q type, alpha 1A subunit
(Vi) chromosome 16 open reading frame 81
(Vii) chitinase 3-like 1 (cartile glycoprotein-39)
(Viii) protease, serine, 35
(Ix) kynureninease (L-kynurenine hydrolase)
(X) solid carrier family 16, member 6 (monocarboxylic acid transporter 7)
(Xi) apolipoprotein E
(Xii) synaptotagmin-like 5
(Xiii) chitinase 3-like 1 (cartile glycoprotein-39)
(Xiv) ATP-binding cassette, sub-family A (ABC1), member 13
(Xv) angiopoietin-like 4
(Xvi) prostaglandin-endoperoxide synthase 2 (prostaglandin G / H synthase and cyclooxygenase)
(Xvii) stanniocalcin 1
(Xviii) coiled-coil domain containing 102B
The pluripotent stem cell or pluripotent stem cell fraction of the present invention comprises at least two, three, four, five, six, seven, eight, nine, ten, eleven, twelve of the above factors. It is characterized by the high expression of 13, 14, 15, 16, 17 or 18, and can be isolated using as an index the high expression of at least two factors.
Moreover, in the following 20 factors, the ratio of the expression level of the Muse cell of the present invention to the human ES cell is high.
(A) matrix metallopeptidase 1 (interstitial collagenase)
(B) epiregulin
(C) chitinase 3-like 1 (cartile glycoprotein-39)
(D) Transscribed locus
(E) chitinase 3-like 1 (cartile glycoprotein-39)
(F) serlycin
(G) MRNA full length insert cDNA clone EUROIMAGE 1913076
(H) Ras and Rab interactor 2
(I) lumican
(J) CLCA family member 2, Chloride channel regulator
(K) interleukin 8
(L) Similar to LOC166075
(M) dermatopontin
(N) EGF, latrophilin and seven transmembrane domain containing 1
(O) Insulin-like growth factor binding protein 1
(P) solid carrier family 16, member 4 (monocarboxic acid transporter 5)
(Q) serlycin
(R) gremlin 2, cysteine knot superfamily, homolog (Xenopus laevis)
(S) insulin-like growth factor binding protein 5
(T) sulfide quinone reductase-like (yeast)
The pluripotent stem cell or pluripotent stem cell fraction of the present invention comprises at least two, three, four, five, six, seven, eight, nine, ten, eleven, twelve of the above factors. It is characterized by the high expression of 13, 14, 15, 16, 17, 18, 19 or 20, and can be isolated using as an index the high expression of at least two factors.
Furthermore, in the pluripotent stem cell or pluripotent stem cell fraction of the present invention, at least two of the above factors (i) to (xviii) and at least two of the above factors (a) to (t) are simultaneously highly expressed. It can be isolated using as an indicator that these genes are highly expressed.
Furthermore, the pluripotent stem cell or pluripotent stem cell fraction of the present invention expresses factors of the odorant receptor (olfactory receptor) group and the chemokine receptor group other than the pluripotency marker. That is, it is characterized by being positive for a specific odorant receptor or chemokine receptor.
Examples of the odorant receptor expressed in the pluripotent stem cell or pluripotent stem cell fraction of the present invention include the following 22 receptors.
olfactory receptor, family 8, subfamily G, member 2 (OR8G2);
olfactory receptor, family 7, subfamily G, member 3 (OR7G3);
olfactory receptor, family 4, subfamily D, member 5 (OR4D5);
olfactory receptor, family 5, subfamily AP, member 2 (OR5AP2);
olfactory receptor, family 10, subfamily H, member 4 (OR10H4);
olfactory receptor, family 10, subfamily T, member 2 (OR10T2);
olfactory receptor, family 2, subfamily M, member 2 (OR2M2);
olfactory receptor, family 2, subfamily T, member 5 (OR2T5);
olfactory receptor, family 7, subfamily D, member 4 (OR7D4);
olfactory receptor, family 1, subfamily L, member 3 (OR1L3);
olfactory receptor, family 4, subfamily N, member 4 (OR4N4);
olfactory receptor, family 2, subfamily A, member 7 (OR2A7);
guanine nucleotide binding protein (G protein), alpha activating activity polypeptide, olfactory type (GNAL);
olfactory receptor, family 6, subfamily A, member 2 (OR6A2);
olfactory receptor, family 2, subfamily B, member 6 (OR2B6);
olfactory receptor, family 2, subfamily C, member 1 (OR2C1);
olfactory receptor, family 52, subfamily A, member 1 (OR52A1);
olfactory receptor, family 10, subfamily H, member 3 (OR10H3);
olfactory receptor, family 10, subfamily H, member 2 (OR10H2);
olfactory receptor, family 51, subfamily E, member 2 (OR51E2);
olfactory receptor, family 5, subfamily P, member 2 (OR5P2); and
olfactory receptor, family 10, subfamily P, member 1 (OR10P1)
Examples of the chemokine receptor expressed in the pluripotent stem cell or pluripotent stem cell fraction of the present invention include the following five receptors.
chemokine (C-C motif) receptor 5 (CCR5);
chemokine (C-X-C motif) receptor 4 (CXCR4);
chemokine (C-C motif) receptor 1 (CCR1);
Duffy blood group, chemokine receptor (DARC); and
chemokine (C-X-C motif) receptor 7 (CXCR7)
The pluripotent stem cell or pluripotent stem cell fraction of the present invention expresses at least one of the olfactory receptors, or expresses at least one of the chemokine receptors.
Muse cells, which are the pluripotent stem cells of the present invention, migrate to damaged tissues by the action of migration factors that bind to these odorant receptors and chemokine receptors and receptors, and differentiate according to the location. . For example, when the liver, skin, spinal cord, or muscle is damaged, the specific migratory factor and the odorant receptor expressed on the cell surface migrate to and engraft each tissue, the liver (endoderm), Differentiated into skin (ectodermal), spinal cord (ectodermal), muscle (mesoderm) cells, and tissue can be regenerated.
Further, in the Muse cell fraction rich in Muse cells that are pluripotent stem cells of the present invention, increased expression of Rex1, Sox2, KLF-4, c-Myc, DPPA2, ERAS, GRB7, SPAG9, TDGF1, etc. The expression of DAZL, DDX4, DPPA4, Stella, Hoxb1, PRDM1, and SPRY2 is increased in the cell mass of Muse cells.
Moreover, in the pluripotent stem cell or pluripotent stem cell fraction of the present invention, the expression of CD34 and CD117, which are hematopoietic stem cell markers, is not observed or the expression is extremely low.
Furthermore, the pluripotent stem cells of the present invention can be increased in content by applying cell stress to cells of the umbilical cord or adipose tissue of the living body and collecting the surviving cells. Here, cell stress refers to external stress, including protease treatment, culture under low oxygen conditions, culture under low phosphate conditions, culture under serum starvation conditions, culture under sugar starvation conditions, under radiation exposure Exposure to stress by culturing in the presence of heat shock, culturing in the presence of toxic substances, culturing in the presence of harmful substances, culturing in the presence of active oxygen, culturing under mechanical stimulation, culturing under pressure treatment, etc. That means. Among these, protease treatment, that is, culture in the presence of protease is preferable. The protease is not limited, and serine proteases such as trypsin and chymotrypsin, aspartic proteases such as pepsin, cysteine proteases such as papain and chymopapain, metalloproteases such as thermolysin, glutamate protease, N-terminal threonine protease, and the like can be used. The concentration at which protease is added to the culture is not limited, and it may be used at a concentration generally used when peeling adherent cells cultured in a petri dish or the like. The Muse cell which is the pluripotent stem cell of the present invention can be said to be a stem cell resistant to the above external stress, for example, a cell resistant to trypsin.
Most of the cells subjected to various stresses described above are killed, and the surviving cells include Muse cells that are the pluripotent stem cells of the present invention. It is necessary to remove dead cells after applying stress to the cells. When protease is used, these dead cells are degraded by the action of the protease.
Further, after applying stress to the cells, the cells that have been subjected to a physical impact on the cells and have become fragile may be removed. The physical impact can be applied, for example, by vigorous pipetting, vigorous stirring, vortexing or the like.
Muse cells that are pluripotent stem cells of the present invention are obtained by subjecting cells to cell stress and subjecting them to physical impact as necessary, and then centrifuging the cells to obtain and collect the surviving cells as pellets. The content of can be increased. Moreover, the pluripotent stem cell or pluripotent cell fraction of the present invention can be further isolated from the cells thus obtained using the following surface marker as an index.
As an example, a method for treating these cells with trypsin will be described. The trypsin concentration at this time is not limited. For example, in the normal culture of adherent cells, the trypsin concentration may be used within the concentration range used when peeling the adherent culture adhered to the culture vessel, and is 0.1 to 1%, preferably 0. 1 to 0.5% is exemplified. For example, cells derived from a umbilical cord or adipose tissue of a living body containing 100,000 to 500,000 cells can be exposed to external stress by incubating in 5 ml of a trypsin solution having the above concentration. The trypsin treatment time is about 5 to 24 hours, preferably about 5 to 20 hours. In the present invention, trypsin treatment for 8 hours or more, for example, treatment for 8 hours or 16 hours is referred to as long-time trypsin treatment.
After the trypsin treatment, it is desirable to give a physical impact by pipetting, stirring, vortexing or the like as described above. This is to destroy and remove dead or dying cells.
In suspension culture after trypsin treatment, in order to prevent aggregation between cells, it is desirable to incubate in a gel such as methylcellulose gel. In order to prevent the cells from adhering to the culture container and maintain the floating state, it is desirable to coat the container with Poly (2-hydroxyethyl methacrylate) or the like.
When cells exposed to external stress are collected by centrifugation and subjected to suspension culture, cell clusters (cell clusters) are formed. The size of this cell mass is about 25 μm to 150 μm in diameter. The pluripotent stem cells (Muse cells) of the present invention are contained in a concentrated state in the cell population that survived this external stress. This cell population is referred to as the Muse enriched population. The abundance of Muse cells in the rich Muse cell fraction varies depending on the stress treatment method.
Thus, the survival of the pluripotent stem cell or pluripotent stem cell fraction of the present invention even after stress is applied to the fact that the pluripotent stem cell or pluripotent stem cell fraction of the present invention is stress resistant. Show.
The medium and culture conditions used for culturing cells derived from the umbilical cord or adipose tissue of a living body may be the same as those used for normal animal cell culture. Further, a known stem cell culture medium may be used. To the medium, serum such as fetal bovine serum, antibiotics such as penicillin and streptomycin, and various physiologically active substances may be appropriately added.
Furthermore, the present invention also includes pluripotent stem cells that are derived or derived cells of pluripotent stem cells that can be obtained directly from the umbilical cord or adipose tissue of the living body of the present invention. Derived cells or induced cells refer to cells or cell groups obtained by culturing the pluripotent stem cells, or cells obtained by performing artificial induction operations such as introduction of foreign genes into the pluripotent stem cells, and progeny Includes cells. The iPS cells reported at the time of the present invention are said to be cells induced by pluripotent stem cells as a result of reprogramming by introducing a foreign gene into a differentiated cell of biological tissue such as skin fibroblasts. The cells that can be directly obtained from the umbilical cord or adipose tissue of the present invention and have already been subjected to an artificial induction operation such as introduction of a foreign gene into cells having the properties as pluripotent stem cells are iPS cells. Distinguished from
Embryoid body-like (Embody) -like cell clusters can be obtained by suspension culture of the pluripotent stem cells of the present invention, and the present invention relates to these embryoid body-like cell clusters and embryoid body-like cells. The cells contained in the mass are also included. The embryoid body is formed as a cell mass by suspension culture of the pluripotent stem cells of the present invention. At this time, in the present invention, an embryoid body obtained by culturing the pluripotent stem cell of the present invention may be referred to as a Muse cell-derived embryoid body-like cell mass (referred to as an M cluster). Sometimes). As a suspension culture method for forming embryoid body-like cell clusters, culture using a medium containing a water-soluble polymer such as methylcellulose (Nakahata, T. et al., Blood 60, 352-361 (1982)). And hanging drop culture (Keller, J. Physiol. (Lond) 168: 131-139, 1998). The present invention also includes an embryoid body-like cell cluster obtained by self-renewal from the embryoid body-like cell cluster, cells contained in the embryoid body-like cell cluster, and pluripotent stem cells. Here, self-renewal refers to culturing cells contained in an embryoid body-like cell cluster to form an embryoid body-like cell cluster again. The self-renewal may be repeated one to several times. The present invention also includes cells and tissues differentiated from any of the embryoid body-like cell clusters and cells contained in the embryoid body-like cell cluster.
The present invention includes not only Muse cells but also cell populations enriched with Muse cells, cell populations with expanded Muse cells, and cell populations with differentiated Muse cells, and further include Muse cells and cells derived from Muse cells. Includes research kits, cell chips, and therapeutic devices.
The pluripotent stem cell of the present invention has pluripotency, and can differentiate into any tissue. The pluripotent stem cell or pluripotent cell fraction can be used for regenerative medicine and the like. For example, it can be used for regeneration of various tissues and various organs. Specific examples include skin, cerebral spinal cord, liver, and muscle. By administering the pluripotent stem cell or pluripotent stem cell fraction of the present invention directly or nearby to a damaged or damaged tissue, organ, etc., the pluripotent stem cell enters the tissue, organ, It can differentiate into cells peculiar to the tissue and contribute to regeneration and reconstruction of the tissue and organs. Further, systemic administration may be performed by intravenous administration or the like. In this case, for example, the pluripotent stem cell is directed to a damaged tissue or organ by homing or the like, reaches / invades, and then differentiates into a cell of the tissue or organ to regenerate the tissue or organ. , Can contribute to reconstruction.
Administration can be performed, for example, by parenteral or oral administration such as subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, or intrauterine injection into an embryo. Moreover, local administration or systemic administration may be sufficient. Local administration can be performed using a catheter, for example. The dose can be appropriately determined depending on the type and size of the organ or tissue to be regenerated.
The organ to be regenerated is not limited, but bone marrow, spinal cord, blood, spleen, liver, lung, intestinal tract, eye, brain, immune system, circulatory system, bone, connective tissue, muscle, heart, blood vessel, pancreas, central nervous system , Peripheral nervous system, kidney, bladder, skin, epithelial appendages, breast-mammary gland, adipose tissue, cornea, and mucous membranes including mouth, esophagus, vagina, anus, and the like. Diseases to be treated include cancer, cardiovascular disease, metabolic disease, liver disease, diabetes, hepatitis, hemophilia, blood system disease, degenerative or traumatic neurological diseases such as spinal cord injury, autoimmune disease, genetic Examples include defects, connective tissue diseases, anemia, infections, transplant rejection, ischemia, inflammation, and skin and muscle damage.
The cells may be administered with a pharmaceutically acceptable substrate. The substrate is made of, for example, collagen, a highly biocompatible substance, or a biodegradable substance, and may be in the form of particles, plates, cylinders, containers, and the like. What is necessary is just to couple | bond with a material or to accommodate in this base material and to administer.
Alternatively, the pluripotent stem cell of the present invention may be induced to differentiate in vitro, a tissue may be constructed using the differentiated cell, and the differentiated cell or the tissue may be transplanted. Since the pluripotent stem cell of the present invention does not become a tumor, even if the transplanted differentiated cell or the tissue contains the pluripotent stem cell of the present invention undifferentiated, the possibility of canceration is low and safe. is there. In these regenerative medicine, in order to avoid rejection of the transplanted cells or tissues by the recipient, mesoderm tissue or mesenchymal tissue is collected from a patient who is going to receive regenerative medicine, and the present invention is obtained from the tissue. It is desirable to isolate and utilize pluripotent stem cells or pluripotent cell fractions. Furthermore, the pluripotent stem cell or pluripotent stem cell fraction of the present invention can be used for the treatment of diseases caused by tissue degeneration or dysfunction. In this case, for example, the pluripotent stem cell or pluripotent stem cell fraction of the present invention may be concentrated ex vivo, proliferated, or differentiated and returned to the body. What is necessary is just to differentiate into a cell and to transplant this cell to the tissue which is going to be treated. In situ cell therapy can also be performed by cell transplantation. In this case, examples of target cells include liver cells, nervous cells such as nerve cells and glial cells, muscle cells such as skin cells and skeletal muscle cells, and the pluripotent stem cells of the present invention are differentiated into these cells. Can be transplanted and treated in situ. By this treatment, for example, Parkinson's disease, cerebral infarction, spinal cord injury, muscle degenerative disease and the like can be treated. Since the pluripotent stem cell of the present invention does not become a tumor, even if it is used for such treatment, the possibility of canceration is low and it is safe.
In addition, blood and blood components can be formed ex vivo and in vitro by differentiating the pluripotent stem cells of the present invention to form blood and blood components. As blood components, red blood cells, white blood cells, and platelets Etc. The blood and blood components formed in this way can be used for autologous blood transfusion or transfusion.
As described above, when the pluripotent stem cell or pluripotent stem cell fraction of the present invention is used for treatment, it may be differentiated ex vivo, in vivo, or in vitro. The pluripotent stem cells of the present invention include, for example, osteoblasts, chondrocytes, adipocytes, fibroblasts, bone marrow stroma, skeletal muscle, smooth muscle, myocardium, eyes, endothelium, epithelium, liver, pancreas, hematopoiesis, glia Differentiate into neurons, oligodendrocytes, etc. Differentiation of the pluripotent stem cell of the present invention can be achieved by culturing in the presence of a differentiation factor. Differentiation factors include basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), dimethyl sulfoxide (DMSO) and isoproterenol; or fibroblast growth factor 4 (FGF4), hepatocyte growth factor ( HGF) and the like. The present invention also includes cells differentiated from the pluripotent stem cells of the present invention.
When the pluripotent stem cell of the present invention is used for treatment, a gene encoding a proteinaceous anticancer substance or physiologically active substance may be introduced. Thereby, the pluripotent stem cell of this invention also has the delivery function of a therapeutic agent. An example of such a substance is an anti-angiogenic drug.
The present invention relates to a cell transplantation treatment material comprising a Muse cell, an embryoid body-like cell mass made of Muse cells, and a cell or tissue / organ obtained by differentiation from the Muse cell or the embryoid body-like cell mass Alternatively, it includes a composition for cell transplantation treatment, or a material for regenerative medicine or a composition for regenerative medicine. The composition is pharmaceutically acceptable in addition to Muse cells, embryoid body-like cell masses made from Muse cells, or cells or tissues / organs obtained by differentiation from Muse cells or the embryoid body-like cell masses. Including buffer solution and diluent.
Furthermore, the Muse cell of the present invention can be collected from the umbilical cord or adipose tissue of the patient, the Muse cell can be isolated, and used for various diagnoses using the Muse cell. For example, it is possible to collect a patient gene from Muse cells, obtain genetic information, and perform an accurate diagnosis reflecting the information. For example, by differentiating Muse cells derived from a subject's cells, cells of each tissue / organ having the same genetic background as the subject can be obtained. And diagnosis of side effects, etc., it is possible to make an appropriate diagnosis according to the characteristics of each subject. That is, Muse cells, embryoid body-like cell masses made from Muse cells, and cells or tissues / organs obtained by differentiation from Muse cells or the embryoid body-like cell masses can be used as diagnostic materials, For example, the present invention diagnoses a disease or the like of a subject using a tissue or organ having the same genetic background as the subject obtained by isolating a Muse cell from the subject and differentiating the Muse cell or the Muse cell. To include a method.
In addition, because somatic cells can be obtained in large quantities by differentiating Muse cells, basic research such as elucidation of disease mechanisms, therapeutic drug development, screening of drug effects and toxicity, drug evaluation, etc. can be performed. . That is, Muse cells, embryoid body-like cell masses made from Muse cells, and cells or tissues / organs obtained by differentiation from Muse cells or the embryoid body-like cell masses are used as materials for drug evaluation and drug screening. be able to. For example, the present invention includes a method for screening and evaluating drugs by differentiating and proliferating Muse cells, obtaining somatic cells, administering a candidate drug to the somatic cells, and examining the response of the somatic cells. .
In addition, by constructing a Muse cell bank in which various (for example, various HLA types) Muse cells are made into a library, a system capable of providing cells in the above Muse cell utilization scene as needed can be realized. In addition to the above-mentioned purposes, it is possible to provide (without) rejection-free cells for urgent cell transplantation treatment. That is, the present invention includes a method for producing a library of Muse cells having different gene characteristics, that is, a Muse cell bank, by isolating and collecting Muse cells having various gene characteristics. In addition to Muse cells, embryoid body-like cell masses made from Muse cells, and cells or tissues / organs obtained by differentiation from Muse cells or the embryoid body-like cell masses are obtained in libraries or banks. Can also be built. In the present invention, an embryoid body-like cell mass made from these Muse cells, and cells or tissues / organs obtained by differentiating from the Muse cells and the embryoid body-like cell mass are also used as libraries and banks. It is called a cell library or cell bank. The present invention includes the cell library or cell bank thus prepared. The cell library or cell bank is composed of, for example, a container such as a plurality of tubes in which cells having different genetic characteristics are stored, and the cells may be frozen. For example, when it becomes necessary to transplant or regenerate a tissue or organ in a subject, a cell suitable for the genetic background or the like is selected from the cell library or cell bank. Can be used for transplantation and regenerative treatment.
The present invention provides administration of a therapeutically effective amount of the pluripotent stem cells of the present invention, the cell fraction, derivative cells derived from the cells, or induced cells to a patient in need of treatment for the treatment of a disease. A therapeutic method comprising: Here, the effective amount can be specified by, for example, the number of cells to be administered, and can be appropriately determined depending on the type and severity of the disease. In the above treatment method, the pluripotent stem cells of the present invention do not form teratomas (teratomas), and thus teratomas are not formed in patients. In addition, when administering Muse cells derived from autologous cells, it is not necessary for the patient to lose bone marrow function by treatment such as irradiation or chemotherapy, but when Muse cells that are not autologous cells are used, the above treatment is performed. Good.
Furthermore, Muse cells can be a source of iPS cells (induced pluripotent stem cells). The production efficiency of iPS cells using Muse cells as a source is much higher (at least 25 times or more than when using other cells (for example, skin fibroblasts not fractionated using SSEA-3 expression as an index)). )high.
An iPS cell can be produced by introducing a specific gene into a Muse cell or changing a cytoplasm by introducing a specific compound. The change in cytoplasm includes reprogramming, infinite growth ability and tumorigenicity, and any currently known method or any method established in the future can be used.
For example, a gene can be introduced into Muse cells as described in Japanese Patent No. 4182742, or iPS cells can be established from Muse cells as described in FIG. In addition to the method shown in FIG. 27, it can be said that iPS cells can be established by introducing a chemical substance, a foreign gene or a foreign protein. Establishment of iPS cells from Muse cells can be performed, for example, by the method described in Examples described later.
Thus, the iPS cell obtained from the Muse cell may be referred to as a Muse-derived iPS cell (Muse-iPSC), and the present invention also includes the Muse-derived iPS cell. Muse-derived iPS cells can be referred to as Muse cell-derived pluripotent stem cells having infinite proliferative properties.
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to the following Example.
 脂肪組織からの多能性幹細胞の単離
方法及び材料
1.細胞材料
 ヒト脂肪組織由来間葉系細胞として、市販されている培養細胞とヒト皮下脂肪組織の初代培養から樹立した間葉系細胞の2つを用いた。市販されている細胞は、Lonza社 Human Adipose−Derived Stem Cell(HADSC:ヒト脂肪由来幹細胞)(Lot.7F4308、7F4089及び7F4205の3ロット)を用い、Dulbecco’s modified Eagle medium−High Glucose[DMEM,liquid(1×);Invitrogen Cat.11965−092]に15%(vol/vol)FBS[ES cell grade;HyClone]、0.1mg/mL Kanamycin sulfate[liquid(100×);Invitrogen Cat.15160−054]を添加、37℃で培養を行った。
 皮下脂肪組織からの脂肪組織由来間葉系細胞の樹立は、日本国国立大学法人東北大学病院皮膚科から患者の同意を得て提供していただいた脂肪組織を用い、Estes BTらの方法(Estes BT.,et al.Nat Protoc.2010 Jul:5(7):1294−1311)を一部改変して行った。まず、無菌的に採取された皮下脂肪組織を細かく裁断した。また、Phosphate−Buffered Saline[PBS,塩化マグネシウム、塩化カルシウム不含]に1mg/mL コラゲナーゼType I[100mg;Worthington Biochemical Cat.LS004194]、1%(wt/vol)BSA[nacalai Cat.15111−45]を加え酵素溶液を作成した。裁断した脂肪組織と等量の酵素溶液を50mL遠沈管で混合し、37℃で2時間反応させ細胞外基質を消化した。2時間後、300gで5分間遠心し沈殿物と浮遊物との間の液相を吸引し、沈殿物と浮遊物から100μmセルストレーナーを用いて未消化の細胞外基質を除去した。その後、DMEM[15%(vol/vol)FBS、0.1mg/mL 硫酸カナマイシン]を加えて300gで5分間遠心、上清を除去し沈殿を培地に懸濁、播種した。播種してから24時間後に培地交換を行った。市販の細胞、樹立した細胞は共に2日ごとに培地交換を行い、90%コンフルエントに達した時点で1:2に継代した。マウスES細胞(TT2細胞)は、DMEMに15%(vol/vol)FBS[ES cell grade;HyClone]、0.1mg/mL 硫酸カナマイシン[liquid(100×);Invitrogen Cat.15160−054]、0.1mM MEM Non−Essential Amino Acids Solution[NEAA,liquid 10mM(100×);Invitrogen Cat.11140−050]、Sodium ピルビン酸溶液 1mM[SP,liquid 100mM(100×);Invitrogen Cat.11360−070]、1000U/mL Leukemia Inhibitory Factor[LIF,ESGRO]、100μM 2−メルカプトエタノールを添加した培地を用い、マイトマイシンC処理したマウス胎仔繊維芽細胞(MEF)をフィーダー細胞として使用した。MEFは、12.5日齢C57BL/6マウス胎児から作成されたものを使用した。
2.FACS
 1.のヒト脂肪組織由来間葉系細胞として市販されている培養細胞とヒト皮下脂肪組織の初代培養から樹立した間葉系細胞についてFACS分析を行った。FACSに用いる細胞は、100%コンフルエントに達した時点で使用した。まず、ディッシュから培地を除去しトリプシン−EDTAを3mL加え、細胞全体に広げた後37℃で10分間インキュベートした。確実に、細胞がディッシュから剥がれたことを確認し、FBS 1mLを加えピペッティングによって単一細胞の状態にしてから回収し細胞数を計測、FACSバッファー[0.02M PBS,0.5%(wt/vol)BSA,2mM EDTA]を用いて100μL当り100万細胞になるように細胞を懸濁し、10%非働化済みヒト血清で20分間(氷上)インキュベートしFcRブロッキングを行った。その後、一次抗体として抗SSEA−3抗体(1:50,Millipore)、二次抗体としてFITC標識抗ラットIgM抗体(1:100,Jackson Immunoresearch)を用い、それぞれ1時間(氷上)インキュベートし染色を行った。染色後、Special Order Research Products FACS AriaII(Becton Dickinson)を用いて解析およびソーティングを行った。結果を図1に示す。図1には、ヒト皮下脂肪組織の初代培養から樹立した間葉系細胞の結果を示す。この際、無染色サンプル(図1A)のFITCのピークと同じ位置になるように、二次抗体のみのサンプル(図1B)とSSEA−3で染色したサンプル(図1C)のピークを調節した。その後、無染色サンプルとほぼ同じFITC強度の細胞集団を非Muse細胞(non−Muse)(図1CのP6エリア)、二次抗体のみのサンプルよりFITC強度の高い細胞集団をMuse細胞(図1CのP3エリア)として回収した。
3.単一細胞浮遊培養
 1.のヒト脂肪組織由来間葉系細胞として市販されている細胞とヒト皮下脂肪組織の初代培養から樹立した間葉系細胞より上記2.の方法でFACSを用いてソーティングした細胞をトリパンブルーで染色し、生細胞数を計測した。1ウェルあたり1細胞ずつ入るように限界希釈し、poly−HEMAコート済み96ウェルディッシュを用いてα MEMに15%(vol/vol)FBSを添加し懸濁、播種した。7~10日間浮遊培養を行い、Muse由来胚様体様細胞塊(M−cluster)の形成率を計測した。
4.In vitroにおけるMuse由来胚様体様細胞塊(M−cluster)の分化
 3.の単一細胞浮遊培養で、7~10日間培養したMuse由来胚様体様細胞塊(M−cluster)を0.1%ゼラチンで培養皿をコート済み24ウェルディッシュにα MEM 300μL[15%(vol/vol)FBS]を入れ、1ウェル当り1細胞塊(cluster)になるよう移した。数時間後に、培地を200μL追加した。1~2週間培養し、免疫細胞化学又はRT−PCRで解析した。
5.免疫細胞化学
 3.で得られたMuse由来胚様体様細胞塊(M−cluster)は、4%(vol/vol)パラホルムアルデヒド/0.01MPBSで固定し、O.C.T.コンパウンドで包埋し、凍結切片を作成し免疫染色に用いた。ゼラチンコート済みカバーガラス上で分化させたMuse由来胚様体様細胞塊(M−cluster)の場合は4%(vol/vol)パラホルムアルデヒド/0.01M PBSでカバーガラスと細胞ごと固定し、免疫染色に用いた。一次抗体として、SSEA−3[1:50,Millipore],Nanog(1:100,Millipore),Oct3/4[1:100,Santa Cruz],Sox2(1:1000,Millipore),PAR4(1:100,Santa Cruz),Smooth Muscle Actin(SMA,1:100,Lab Vision),Neurofilament−M(1:100,Millipore),Cytokeratin 7(CK7,1:100,Millipore)に対する抗体を用い、これら一次抗体をFITC−,Alexa−488−又はAlexa−568−標識anti−rabbitIgG,anti−mouseIgG,anti−mouseIgM抗体(1:500,Molecular Probes)で検出した。
6.RT−PCR
 4.に記載の方法でin vitroで分化させたMuse由来胚様体様細胞塊(M−cluster)から、Nucleo Spin RNA XS(Macherey−Nagel)を用いてトータルRNAを抽出した。抽出したトータルRNAから、Super Script VILO cDNA Synthesis Kit(Invitrogen)を用いて逆転写しcDNAを得た。PCRには、Ex Taq DNA polymerase(TaKaRa Bio,Inc.)を用い、α−フェトプロテイン(AFP,内胚葉のマーカー)、GATA6(内胚葉のマーカー)、micro tubule−associated protein−2(MAP−2,外胚葉のマーカー)、Nkx2.5(中胚葉のマーカー)の発現を確認した。用いた各種プライマー配列は図2に示した。コントロールとして、Human whole embryo,Human fetus liver,Human adult brain,Human adult liverを用い、詳細は下記に示した。
7.免疫不全マウス精巣への移植
 2.の方法によりFACSを用いてソーティングしたSSEA−3陽性細胞をトリパンブルーで染色し、生細胞数を計測した。計測後、1.5×10細胞/μLになるようにPBSで懸濁し、8週齢のCB17/Icr−Prkdc scid/CrlCrlj(SCID)雄の片側の精巣へ1×10細胞移植した。ポジティブコントロールとしてマウスES細胞を1×10細胞、ネガティブコントロールとしてPBSを投与した。SSEA−3陽性細胞グループは移植後4ヶ月で灌流固定し、マウスES細胞、PBSグループは移植後8週後に灌流固定した。
8.セルフリニューアル能(自己複製能)の検討
 2.の方法によりFACSを用いてソーティングしたヒト皮下脂肪組織の初代培養から樹立した間葉系細胞から単離したSSEA−3陽性細胞を4.に記載の単一細胞浮遊培養の結果得られた1世代目のMuse由来胚様体様細胞塊(M−cluster)を0.1%ゼラチンコート済みディッシュにαMEM300μL[15%(vol/vol)FBS]を入れたものを用いて接着培養を行い、細胞を増殖させる。一旦増えた細胞をトリプシン−EDTAを添加し剥がし、再度単一細胞浮遊細胞を行い2世代目のMuse由来胚様体様細胞塊(M−cluster)を形成させた。方法の概要を図12に示す。
結果
 本実施例では、ヒト脂肪組織由来間葉系細胞として市販されている細胞と本発明者らがヒト皮下脂肪組織より樹立した間葉系細胞の2種類のソースを用いた。本実施例の方法で、体積15.4cmのヒト皮下脂肪組織(図3A)から得られた間葉系細胞を16日間培養を行い、ヒト脂肪組織由来間葉系細胞(図3B)として1960万細胞の樹立細胞を得ることができた。
 FACS解析の結果、それぞれの細胞集団の中にSSEA−3をマーカーとして単離できるMuse細胞が内在していることが確認された。それぞれの細胞集団の中に、市販の細胞では4.3±0.36%、初代培養から樹立した細胞では7.3±0.37%のMuse細胞が内在していることが確認された(図4)。図4Aは市販のHADSCの結果を、図4Bはヒト皮下脂肪組織から樹立したHADSCにおけるSSEA−3の発現を示す。
 Muse細胞は、浮遊培養を行うことで1細胞からヒトES細胞の胚様体に似たMuse由来胚様体様細胞塊(M−cluster)を形成する)。そこで、SSEA−3陽性のMuse細胞とSSEA−3陰性の非Muse細胞を回収しそれぞれ単一細胞浮遊培養を行った。その結果、Muse細胞においてのみ1細胞からMuse由来胚様体様細胞塊(M−cluster)を形成することが確認された。非Muse細胞からは形成されなかった。市販のHADSCから単離したSSEA−3陽性細胞のうち65~66%、ヒト皮下脂肪組織から樹立したHADSCから単離したSSEA−3陽性細胞のうち44.2%がクラスターを形成した。図5にMuse由来胚様体様細胞塊(M−cluster)の形態を示す。図5Aは市販のHADSCから得られたMuse由来胚様体様細胞塊(M−cluster)の形態を、図5Bはヒト皮下脂肪組織から樹立したHADSCから得られたMuse由来胚様体様細胞塊(M−cluster)の形態を示す。
 また、形成されたMuse由来胚様体様細胞塊(M−cluster)をゼラチンコートしたディッシュの上でin vitro培養することで、microtubule−associated protein−2(MAP−2,外胚葉)、GATA6(内胚葉)、α−feto protein(AFP,内胚葉)、Nkxr2.5(中胚葉)の発現がRT−PCRにより確認され、HADSC由来のMuse由来胚様体様細胞塊(M−cluster)が三胚葉性の細胞への自発的分化が確認された(図6)。図6中、M−cluster Iは市販のHADSCから得られたMuse由来胚様体様細胞塊(M−cluster)の分化を、M−cluster IIはヒト皮下脂肪組織から樹立したHADSCから得られたMuse由来胚様体様細胞塊(M−cluster)の分化を示す。
 さらに、Neuro filament−M(NF,外胚葉神経)、Cytokeratin7(CK7,内胚葉胆道系)、Smooth Muscle Actin(SMA,中胚葉平滑筋)の抗体を用いた免疫染色においても、HADSC由来のMuse由来胚様体様細胞塊(M−cluster)が三胚葉性の細胞へ分化することが証明された(図7)。図7中、楕円形に見える青い反応はDAPI染色された細胞の核を示し、赤い蛍光が抗NF抗体あるいは抗SMA抗体、また緑の蛍光が抗CK7抗体、を示している。
 形成されたMuse由来胚様体様細胞塊(M−cluster)はNanog、Oct3/4、PAR4、Sox2、SSEA−3、アルカリフォスファターゼ(ALP)等の多能性幹細胞マーカーを発現していることも確認され(図8)、これらのことからHADSCから単離されたMuse細胞は多能性マーカーを発現し、かつ、三胚葉性の細胞へと分化でき、従って多能性を持っていることが証明された。図8において、左のパネルのDAPI染色像は核を示し青く染色されている、中央のパネルは上からNanog、Oct3/4、PAR4、Sox2及びSSEA−3に対する抗体を用いた免疫染色像であり、これらのマーカーの局在が緑色に染色されている。右のパネルはDAPI染色像と各抗体の染色像を重ね合わせた像である。最下部のパネルのALPはアルカリフォスファターゼ染色像で赤い陽性の反応を示している。
 さらにマウス精巣への細胞移植においては、マウスES細胞では移植後8週間で奇形腫が形成されたのに対し、Muse細胞は移植後4ヶ月経過しても奇形腫を形成しなかったことから、HADSC由来のMuse細胞に腫瘍性がないことが証明された(図9)。図9中、Aはコントロール(Intact、移植も何もしないもの)の結果及びMuse細胞(4ヶ月)を移植した結果を示し、BはマウスES細胞を移植したもの(8週)とPBSを投与したもの(8週)の結果を示す。
 また、HE染色像により三胚葉性の組織を含んだ奇形腫をマウスES細胞が形成したことが確認された(図10)。図10中、Iは消化管(内胚葉)、IIは神経系(外胚葉)、IIIは平滑筋(中胚葉)を示す。一方、Muse細胞を移植した精巣ではHE染色でも腫瘍が形成されず、正常な精細管が確認された(図11)。
 方法の8.に示す方法で、セルフリニューアル能を行ったところ、1世代目のMuse由来胚様体様細胞塊(M−cluster)の形成率は35.5%であり、2世代目のMuse由来胚様体様細胞塊(M−cluster)の形成率は29.7%であった(図12)。この結果は、得られたMuse細胞がセルフリニューアル能を有していることを示している。
Method and material for isolation of pluripotent stem cells from adipose tissue Cell materials As mesenchymal cells derived from human adipose tissue, two commercially available cultured cells and mesenchymal cells established from primary culture of human subcutaneous adipose tissue were used. Commercially available cells are Lonza's Human Adipose-Derived Stem Cell (HADSC: 3 lots of Lot. 7F4308, 7F4089, and 7F4205), and Dulbecco's modified Eagle EM medium-H liquid (1 ×); Invitrogen Cat. 1965-092] to 15% (vol / vol) FBS [ES cell grade; HyClone], 0.1 mg / mL Kanamicin sulfate [liquid (100 ×); Invitrogen Cat. 15160-054] was added and cultured at 37 ° C.
Establishing adipose tissue-derived mesenchymal cells from subcutaneous adipose tissue using the adipose tissue provided with the consent of the patient from Tohoku University Hospital, Japan National University Corporation, using the method of Estes BT et al. BT., Et al. Nat Proto. 2010 Jul: 5 (7): 1294-1311). First, aseptically collected subcutaneous adipose tissue was finely cut. In addition, Phosphate-Buffered Saline [PBS, magnesium chloride, calcium chloride-free] 1 mg / mL collagenase Type I [100 mg; Worthington Biochemical Cat. LS004194], 1% (wt / vol) BSA [nacalai Cat. 15111-45] was added to make an enzyme solution. The cut adipose tissue and an equal amount of enzyme solution were mixed in a 50 mL centrifuge tube and reacted at 37 ° C. for 2 hours to digest the extracellular matrix. After 2 hours, centrifugation was performed at 300 g for 5 minutes to suck the liquid phase between the precipitate and the suspended matter, and the undigested extracellular substrate was removed from the precipitate and the suspended matter using a 100 μm cell strainer. Thereafter, DMEM [15% (vol / vol) FBS, 0.1 mg / mL kanamycin sulfate] was added, centrifuged at 300 g for 5 minutes, the supernatant was removed, the precipitate was suspended in the medium and seeded. The medium was changed 24 hours after seeding. Both commercially available cells and established cells were changed medium every two days, and were passaged 1: 2 when 90% confluent was reached. Mouse ES cells (TT2 cells) were prepared by using 15% (vol / vol) FBS [ES cell grade; HyClone], 0.1 mg / mL kanamycin sulfate [liquid (100 ×); Invitrogen Cat. 15160-054], 0.1 mM MEM Non-Essential Amino Acids Solution [NEAA, liquid 10 mM (100 ×); Invitrogen Cat. 11140-050], sodium pyruvic acid solution 1 mM [SP, liquid 100 mM (100 ×); Invitrogen Cat. 11360-070], 1000 U / mL Leukemia Inhibitory Factor [LIF, ESGRO], medium supplemented with 100 μM 2-mercaptoethanol, and mouse embryo fibroblasts (MEF) treated with mitomycin C were used as feeder cells. The MEF prepared from a 12.5 day-old C57BL / 6 mouse fetus was used.
2. FACS
1. FACS analysis was performed on cultured cells commercially available as human adipose tissue-derived mesenchymal cells and mesenchymal cells established from primary cultures of human subcutaneous adipose tissue. Cells used for FACS were used when they reached 100% confluence. First, the medium was removed from the dish, 3 mL of trypsin-EDTA was added, and the whole cell was spread, followed by incubation at 37 ° C. for 10 minutes. After confirming that the cells were detached from the dish, 1 mL of FBS was added to form a single cell by pipetting, and the number of cells was collected and counted. FACS buffer [0.02M PBS, 0.5% (wt / Vol) BSA, 2 mM EDTA] was used to suspend cells to 1 million cells per 100 μL, and incubated with 10% inactivated human serum for 20 minutes (on ice) to perform FcR blocking. Subsequently, using anti-SSEA-3 antibody (1:50, Millipore) as the primary antibody and FITC-labeled anti-rat IgM antibody (1: 100, Jackson Immunoresearch) as the secondary antibody, each was incubated for 1 hour (on ice) and stained. It was. After staining, analysis and sorting were performed using Special Order Research Products FACS Aria II (Becton Dickinson). The results are shown in FIG. FIG. 1 shows the results of mesenchymal cells established from primary cultures of human subcutaneous adipose tissue. At this time, the peaks of the secondary antibody-only sample (FIG. 1B) and the sample stained with SSEA-3 (FIG. 1C) were adjusted so as to be in the same position as the FITC peak of the unstained sample (FIG. 1A). After that, a cell population having almost the same FITC intensity as that of the unstained sample was obtained as a non-Muse cell (non-Muse) (P6 area in FIG. 1C), and a cell population having a FITC intensity higher than that of the secondary antibody-only sample was designated as a Muse cell (FIG. (P3 area).
3. Single cell suspension culture 2. From the cells commercially available as human adipose tissue-derived mesenchymal cells and mesenchymal cells established from primary cultures of human subcutaneous adipose tissue. Cells sorted using FACS by the above method were stained with trypan blue, and the number of viable cells was counted. Limit dilution was performed so that one cell per well was added, and 15% (vol / vol) FBS was added to α MEM using a poly-HEMA-coated 96-well dish, which was suspended and seeded. The suspension culture was performed for 7 to 10 days, and the formation rate of Muse-derived embryoid body-like cell mass (M-cluster) was measured.
4). 2. Differentiation of Muse-derived embryoid body-like cell mass (M-cluster) in vitro. Muse-derived embryoid body-like cell mass (M-cluster) cultured for 7 to 10 days in a single cell suspension culture of 0.1% gelatin and a culture dish coated in a 24 well dish, α MEM 300 μL [15% ( vol / vol) FBS] was added and transferred to a cell cluster per well. After several hours, 200 μL of medium was added. The cells were cultured for 1 to 2 weeks and analyzed by immunocytochemistry or RT-PCR.
5. 2. Immunocytochemistry The Muse-derived embryoid body-like cell mass (M-cluster) obtained in Step 3 was fixed with 4% (vol / vol) paraformaldehyde / 0.01 M PBS, and the O.D. C. T.A. The sample was embedded in a compound, and a frozen section was prepared and used for immunostaining. In the case of a Muse-derived embryoid body-like cell mass (M-cluster) differentiated on a gelatin-coated cover glass, the cover glass and the cells are fixed with 4% (vol / vol) paraformaldehyde / 0.01 M PBS, and immunized. Used for staining. As primary antibodies, SSEA-3 [1:50, Millipore], Nanog (1: 100, Millipore), Oct3 / 4 [1: 100, Santa Cruz], Sox2 (1: 1000, Millipore), PAR4 (1: 100) , Santa Cruz), Smooth Muscle Actin (SMA, 1: 100, Lab Vision), Neurofilament-M (1: 100, Millipore), Cytokeratin 7 (CK7, 1: 100, Millipore), and using these primary antibodies. FITC-, Alexa-488- or Alexa-568-labeled anti-rabbit IgG, anti-mouse IgG, anti-mouse IgM antibody (1: 500, Molle Was detected in the ular Probes).
6). RT-PCR
4). Total RNA was extracted from Muse-derived embryoid body-like cell clusters (M-cluster) differentiated in vitro by the method described in (1) above using Nucleo Spin RNA XS (Macherey-Nagel). From the extracted total RNA, cDNA was obtained by reverse transcription using Super Script VILO cDNA Synthesis Kit (Invitrogen). For the PCR, Ex Taq DNA polymerase (TaKaRa Bio, Inc.) was used, α-fetoprotein (AFP, endoderm marker), GATA6 (endoderm marker), micro tube-associated protein-2 (MAP-2, MAP-2, Expression of ectoderm marker) and Nkx2.5 (mesoderm marker) was confirmed. The various primer sequences used are shown in FIG. As controls, human whole embryo, human fetus river, human adult brain, and human adult river were used, and the details are shown below.
7. 1. Transplant to immunodeficient mouse testis SSEA-3 positive cells sorted using FACS by the above method were stained with trypan blue, and the number of viable cells was counted. After the measurement, the suspension was suspended in PBS so as to be 1.5 × 10 5 cells / μL, and 1 × 10 5 cells were transplanted into one testis of an 8-week-old CB17 / Icr-Prkdc scid / CrlCrlj (SCID) male. Mouse ES cells were administered at 1 × 10 6 cells as a positive control, and PBS was administered as a negative control. The SSEA-3 positive cell group was fixed by perfusion 4 months after transplantation, and the mouse ES cell and PBS groups were fixed by perfusion 8 weeks after transplantation.
8). 1. Study of self-renewal ability (self-replicating ability) 3. SSEA-3 positive cells isolated from mesenchymal cells established from primary cultures of human subcutaneous adipose tissue sorted using FACS by the method of The first generation Muse-derived embryoid body-like cell mass (M-cluster) obtained as a result of the single cell suspension culture described in 1) is added to 0.1% gelatin-coated dish and αMEM 300 μL [15% (vol / vol) FBS ] Is used to grow cells by adhesion culture. Once the cells increased, trypsin-EDTA was added and detached, and single cell suspension cells were again formed to form a second generation Muse-derived embryoid body-like cell mass (M-cluster). An overview of the method is shown in FIG.
Results In this example, two types of sources were used, cells commercially available as human adipose tissue-derived mesenchymal cells and mesenchymal cells established by the present inventors from human subcutaneous adipose tissue. In the method of this example, mesenchymal cells obtained from human subcutaneous adipose tissue (FIG. 3A) having a volume of 15.4 cm 3 were cultured for 16 days, and 1960 was obtained as human adipose tissue-derived mesenchymal cells (FIG. 3B). Ten million established cells could be obtained.
As a result of FACS analysis, it was confirmed that Muse cells capable of being isolated using SSEA-3 as a marker were inherent in each cell population. In each cell population, it was confirmed that 4.3 ± 0.36% of Muse cells were inherent in commercially available cells and 7.3 ± 0.37% of Muse cells were established in cells established from primary culture ( FIG. 4). FIG. 4A shows the results of commercially available HADSC, and FIG. 4B shows the expression of SSEA-3 in HADSC established from human subcutaneous adipose tissue.
Muse cells form a Muse-derived embryoid body-like cell mass (M-cluster) resembling the embryoid body of human ES cells from one cell by suspension culture. Therefore, SSEA-3-positive Muse cells and SSEA-3-negative non-Muse cells were collected and subjected to single cell suspension culture. As a result, it was confirmed that a Muse-derived embryoid body-like cell mass (M-cluster) was formed from 1 cell only in Muse cells. It was not formed from non-Muse cells. 65 to 66% of SSEA-3 positive cells isolated from commercially available HADSCs and 44.2% of SSEA-3 positive cells isolated from HADSCs established from human subcutaneous adipose tissue formed clusters. FIG. 5 shows the morphology of the Muse-derived embryoid body-like cell cluster (M-cluster). FIG. 5A shows the morphology of a Muse-derived embryoid body-like cell mass (M-cluster) obtained from a commercially available HADSC, and FIG. 5B shows a Muse-derived embryoid body-like cell mass obtained from HADSC established from human subcutaneous adipose tissue. The form of (M-cluster) is shown.
In addition, the formed Muse-derived embryoid body-like cell mass (M-cluster) is cultured in vitro on a gelatin-coated dish, so that microtubule-associated protein-2 (MAP-2, ectoderm), GATA6 ( Endoderm), α-feto protein (AFP, endoderm), Nkxr2.5 (mesoderm) expression was confirmed by RT-PCR, and HADSC-derived Muse-derived embryoid body-like cell mass (M-cluster) Spontaneous differentiation into germinal cells was confirmed (FIG. 6). In FIG. 6, M-cluster I was obtained from differentiation of Muse-derived embryoid body-like cell mass (M-cluster) obtained from commercially available HADSC, and M-cluster II was obtained from HADSC established from human subcutaneous adipose tissue. The differentiation of Muse-derived embryoid body-like cell mass (M-cluster) is shown.
Furthermore, in the immunostaining using the antibodies of Neuro filament-M (NF, ectoderm nerve), Cytokeratin 7 (CK7, endoderm biliary system), and Smooth Muscle Actin (SMA, mesoderm smooth muscle), it is derived from HADSC-derived Muse. It was proved that the embryoid body-like cell cluster (M-cluster) differentiated into tridermal cells (FIG. 7). In FIG. 7, the blue reaction that looks like an ellipse indicates the nucleus of the DAPI-stained cell, the red fluorescence indicates the anti-NF antibody or anti-SMA antibody, and the green fluorescence indicates the anti-CK7 antibody.
The formed Muse-derived embryoid body-like cell mass (M-cluster) may also express pluripotent stem cell markers such as Nanog, Oct3 / 4, PAR4, Sox2, SSEA-3, alkaline phosphatase (ALP), etc. Muse cells isolated from HADSC were confirmed (Figure 8), and from these facts, they express pluripotency markers and can differentiate into trioderm cells, and thus have pluripotency. Proved. In FIG. 8, the DAPI-stained image in the left panel shows the nucleus and is stained blue, and the center panel is an immunostained image using antibodies against Nanog, Oct3 / 4, PAR4, Sox2 and SSEA-3 from the top. The localization of these markers is stained green. The right panel is an image obtained by superimposing a DAPI stained image and a stained image of each antibody. The ALP in the bottom panel shows a red positive reaction in the alkaline phosphatase stained image.
Furthermore, in cell transplantation into mouse testis, teratomas were formed in mouse ES cells 8 weeks after transplantation, whereas Muse cells did not form teratomas even 4 months after transplantation. It was demonstrated that HADSC-derived Muse cells are non-neoplastic (FIG. 9). In FIG. 9, A shows the result of control (Intact, no transplantation) and the result of transplantation of Muse cells (4 months), and B shows the result of transplanting mouse ES cells (8 weeks) and PBS. The results are shown (8 weeks).
Moreover, it was confirmed by the HE-stained image that mouse ES cells formed a teratoma containing a trioderm tissue (FIG. 10). In FIG. 10, I indicates the digestive tract (endoderm), II indicates the nervous system (ectodermal), and III indicates smooth muscle (mesoderm). On the other hand, in testis transplanted with Muse cells, no tumor was formed even with HE staining, and normal seminiferous tubules were confirmed (FIG. 11).
Method 8 When the self-renewal ability was performed by the method shown in FIG. 2, the formation rate of the first generation Muse-derived embryoid body-like cell mass (M-cluster) was 35.5%, and the second generation Muse-derived embryoid body The formation rate of the cell-like mass (M-cluster) was 29.7% (FIG. 12). This result indicates that the obtained Muse cells have a self-renewal ability.
 ヒト臍帯からの多能性幹細胞の単離
 ヒト臍帯から実施例1の1.~3.に記載の方法と同様の方法でSSEA−3発現を指標にMuse細胞を単離した。
 より具体的に以下に説明する。臍帯は、患者の同意を得て入手した臍帯を使用した。臍帯は消毒の後、血管や表面の上皮を除き中の間葉系組織のみを取り出し、それらを5mm角ぐらいに細切した。細かくなった臍帯間葉系組織を接着培養することによって間葉系細胞が得られた。これらの細胞を脂肪由来間葉系細胞の時と同様にFACSでSSEA−3陽性細胞としてMuse細胞を採取し、単一浮遊細胞(single cell suspension culture)で胚葉体様細胞塊を作らせ、RT−PCRや免疫染色によって解析を行った。図13に臍帯から得られた間葉系細胞の形態を示す。図14に臍帯から得られた間葉系細胞におけるSSEA−3の発現を示す。この結果は、実施例1の2.に記載の方法と同様の方法でFACS分析を行った結果である。また、図15に臍帯より単離したSSEA−3陽性細胞(Muse細胞)から形成されたMuse細胞由来胚様体様細胞塊(M−cluster)の形態を示す。さらに、図16に実施例1の6.に記載の方法と同様の方法でRT−PCRで測定したα−フェトプロテイン(AFP,内胚葉のマーカー)、GATA6(内胚葉のマーカー)、micro tubule−associated protein−2(MAP−2,外胚葉のマーカー)、Nkx2.5(中胚葉のマーカー)の発現を示す。
 ヒト脂肪組織由来間葉系細胞にも多能性幹細胞であるMuse細胞が内在していることが確認された。Muse細胞は多能性幹細胞マーカーを発現し、1細胞から三胚葉性の細胞へ分化できる能力を有していることから、自己細胞移植治療における細胞ソースとしてヒト脂肪組織は大変有用であると言える。実際の医療を考えた場合、レシピエントから脂肪組織を採取することは骨髄や皮膚を採取する比較して容易に行うことが可能であり、また、本研究で用いた樹立方法では、体積15.4cmのヒト脂肪組織から細胞を採取して16日間培養を行い、間葉系細胞として1960万細胞が得られ、SSEA−3陽性率を5%と仮定した場合、脂肪組織から得られた1960万細胞のうち98万細胞がMuse細胞であると試算できる。比較的、少ない量の組織からでも短い培養期間で細胞数の確保が可能であることは、自己細胞移植治療において大変望ましい。ヒト脂肪組織由来間葉系細胞から単離されたMuse細胞も、ヒトES細胞やヒトiPS細胞とは違い生体由来の細胞である。その為、多能性を獲得する為に遺伝子導入等の特別な操作を必要としない。また、現在、他の多能性幹細胞の研究が直面している、遺伝子導入による影響や腫瘍化の危険性といった課題を解決する可能性が十分に期待できる。脂肪組織由来Muse細胞もまた腫瘍形成能を持たないことは、本来、それらが成体のヒト脂肪組織から得られた間葉系細胞に内在しており、ヒト脂肪組織由来間葉系細胞が主に脂肪組織とその血管系のターンオーバーを行う為の細胞供給源10)であることからも納得のできる結果である。既に、ヒト脂肪組織の実用性、将来性は大きく認識されており、その中に天然のヒト多能性幹細胞Muse細胞が存在するという本研究成果は再生医療において大きな意義があると思われる。
 また、同様のことが臍帯由来の間葉系細胞から単離されたMuse細胞にもいうことができる。
Isolation of pluripotent stem cells from human umbilical cord ~ 3. Muse cells were isolated using SSEA-3 expression as an index in the same manner as described in 1.
More specific description will be given below. The umbilical cord obtained with the consent of the patient was used. After the umbilical cord was disinfected, only the mesenchymal tissues in the middle were removed except for blood vessels and surface epithelium, and they were cut into 5 mm squares. Mesenchymal cells were obtained by adherent culture of fine umbilical cord mesenchymal tissue. As in the case of adipose-derived mesenchymal cells, MUSE cells are collected as SSEA-3 positive cells by FACS, and embryoid body-like cell masses are made as single cell suspension cells. -Analysis was performed by PCR or immunostaining. FIG. 13 shows the morphology of mesenchymal cells obtained from the umbilical cord. FIG. 14 shows the expression of SSEA-3 in mesenchymal cells obtained from the umbilical cord. This result is the same as that of Example 1. This is a result of FACS analysis performed by the same method as described in 1. FIG. 15 shows the morphology of Muse cell-derived embryoid body-like cell clusters (M-cluster) formed from SSEA-3 positive cells (Muse cells) isolated from the umbilical cord. Further, FIG. Α-fetoprotein (AFP, endoderm marker), GATA6 (endoderm marker), micro tube-associated protein-2 (MAP-2, ectoderm) measured by RT-PCR in the same manner as described in 1. Marker), Nkx2.5 (mesoderm marker) expression.
It was confirmed that Muse cells, which are pluripotent stem cells, are inherent in human adipose tissue-derived mesenchymal cells. Muse cells express a pluripotent stem cell marker and have the ability to differentiate from one cell to a three germ layer cell, so human adipose tissue is very useful as a cell source in autologous cell transplantation therapy. . Considering actual medical care, it is easier to collect adipose tissue from the recipient than to collect bone marrow or skin, and the establishment method used in this study has a volume of 15. When cells were collected from 4 cm 3 of human adipose tissue and cultured for 16 days, 19.6 million cells were obtained as mesenchymal cells, and when the SSEA-3 positive rate was assumed to be 5%, 1960 obtained from adipose tissue It can be estimated that 980,000 cells out of 10,000 cells are Muse cells. It is very desirable in autologous cell transplantation treatment to secure the number of cells in a short culture period even from a relatively small amount of tissue. Muse cells isolated from human adipose tissue-derived mesenchymal cells are also cells derived from living bodies, unlike human ES cells and human iPS cells. Therefore, special operations such as gene transfer are not required to acquire pluripotency. In addition, we can fully expect the possibility of solving problems such as the effects of gene transfer and the risk of tumorigenesis, which are currently faced by other pluripotent stem cell research. The fact that adipose tissue-derived Muse cells also have no tumorigenicity is inherent in mesenchymal cells obtained from adult human adipose tissue, and human adipose tissue-derived mesenchymal cells are mainly This is also a convincing result because it is a cell source 10) for turning over adipose tissue and its vascular system. Already, the practicality and future potential of human adipose tissue has been widely recognized, and this research result that natural human pluripotent stem cells Muse cells exist among them is considered to have great significance in regenerative medicine.
The same can be said for Muse cells isolated from umbilical cord-derived mesenchymal cells.
 本発明により、生殖細胞や初期胚を利用することなく、かつ外来遺伝子の導入や特定の化合物の導入等の人為的な誘導操作を経ずに、臍帯又は脂肪組織から多能性幹細胞を得ることができる。外来遺伝子の導入等の人為的操作を経ないために、本発明の多能性幹細胞は効率的に作製することが可能であり、治療に用いる場合であっても安全に用いることができる。また、本発明の多能性幹細胞は、再生医療や機能不全組織の治療等に用いることができ、さらに、細胞分化や組織再生の研究等に用いることができる。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
According to the present invention, pluripotent stem cells are obtained from umbilical cord or adipose tissue without using germ cells or early embryos and without undergoing artificial induction operations such as introduction of foreign genes or introduction of specific compounds. Can do. Since no artificial manipulation such as introduction of a foreign gene is required, the pluripotent stem cell of the present invention can be efficiently produced, and can be used safely even when used for treatment. Furthermore, the pluripotent stem cells of the present invention can be used for regenerative medicine, treatment of dysfunctional tissues, and the like, and further can be used for studies of cell differentiation and tissue regeneration.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
1~10 プライマー
1-10 primer

Claims (11)

  1.  生体の臍帯又は脂肪組織からSSEA−3の発現を指標に単離できる、以下の性質のすべてを有する、SSEA−3陽性及びCD105陽性の多能性幹細胞:
    (i) テロメラーゼ活性が低いか又は無い;(ii) 三胚葉のいずれの胚葉の細胞へも分化する能力を持つ;
    (iii) 腫瘍性増殖を示さない;及び
    (iv) 自己複製能(セルフリニューアル能)を持つ。
    SSEA-3 positive and CD105 positive pluripotent stem cells having all of the following properties that can be isolated from living umbilical cord or adipose tissue using SSEA-3 expression as an indicator:
    (I) low or no telomerase activity; (ii) capable of differentiating into cells of any germ layer of the three germ layers;
    (Iii) no neoplastic growth; and (iv) self-replicating ability (self-renewal ability).
  2.  生体の臍帯又は脂肪組織からSSEA−3の発現を指標に直接単離できる、請求項1記載の多能性幹細胞。 The pluripotent stem cell according to claim 1, which can be isolated directly from the umbilical cord or adipose tissue of a living body using the expression of SSEA-3 as an index.
  3.  ヒト脂肪由来幹細胞(HADSC)から単離できる、請求項1又は2に記載の多能性幹細胞。 The pluripotent stem cell according to claim 1 or 2, which can be isolated from human adipose-derived stem cells (HADSC).
  4.  浮遊培養及び接着培養を組合わせた培養により増殖する、請求項1~3のいずれか1項に記載の多能性幹細胞。 The pluripotent stem cell according to any one of claims 1 to 3, which is proliferated by culture combining suspension culture and adhesion culture.
  5.  CD117陰性及びCD146陰性の請求項1~4のいずれか1項に記載の多能性幹細胞。 The pluripotent stem cell according to any one of claims 1 to 4, which is CD117 negative and CD146 negative.
  6.  CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性及びCD271陰性の請求項1~4のいずれか1項に記載の多能性幹細胞。 The pluripotent stem cell according to any one of claims 1 to 4, which is CD117 negative, CD146 negative, NG2 negative, CD34 negative, vWF negative and CD271 negative.
  7.  CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snail陰性、Slug陰性、Tyrp1陰性及びDct陰性の請求項1~4のいずれか1項に記載の多能性幹細胞。 The pluripotent stem cell according to any one of claims 1 to 4, which is CD34 negative, CD117 negative, CD146 negative, CD271 negative, NG2 negative, vWF negative, Sox10 negative, Snail negative, Slug negative, Tyrp1 negative and Dct negative. .
  8.  請求項1~7のいずれか1項に記載の多能性幹細胞を含む細胞集団。 A cell population comprising the pluripotent stem cells according to any one of claims 1 to 7.
  9.  臍帯又は脂肪組織からSSEA−3の発現を指標に請求項1~7のいずれか1項に記載の多能性幹細胞を単離し培養し増殖させる方法。 A method for isolating, culturing and proliferating the pluripotent stem cell according to any one of claims 1 to 7, using SSEA-3 expression as an index from umbilical cord or adipose tissue.
  10.  さらに、以下の(i)~(v)の特性の少なくとも1つの特性を指標に多能性幹細胞を単離する、請求項9記載の方法:
    (i) CD105陽性;
    (ii) CD117陰性及びCD146陰性;
    (iii) CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性及びCD271陰性;
    (iv) CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snail陰性、Slug陰性、Tyrp1陰性及びDct陰性;並びに
    (vi) テロメラーゼ活性が低いか又は無い。
    The method according to claim 9, further comprising isolating pluripotent stem cells using at least one of the following characteristics (i) to (v) as an index:
    (I) CD105 positive;
    (Ii) CD117 negative and CD146 negative;
    (Iii) CD117 negative, CD146 negative, NG2 negative, CD34 negative, vWF negative and CD271 negative;
    (Iv) CD34 negative, CD117 negative, CD146 negative, CD271 negative, NG2 negative, vWF negative, Sox10 negative, Snail negative, Slug negative, Tyrp1 negative and Dct negative; and (vi) Low or no telomerase activity.
  11.  臍帯又は脂肪組織由来間葉系細胞をトリプシン処理し生き残った細胞を回収することを含む請求項1~7のいずれか1項に記載の多能性幹細胞の含有率を高める方法。 The method for increasing the content of pluripotent stem cells according to any one of claims 1 to 7, which comprises trypsinizing umbilical cord or adipose tissue-derived mesenchymal cells and recovering the surviving cells.
PCT/JP2012/059422 2011-03-30 2012-03-30 Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body WO2012133942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012800170872A CN103459590A (en) 2011-03-30 2012-03-30 Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011076635A JP2014132830A (en) 2011-03-30 2011-03-30 Pluripotent stem cell that can be isolated from umbilical cord or adipose tissue of living body
JP2011-076635 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133942A1 true WO2012133942A1 (en) 2012-10-04

Family

ID=46931615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059422 WO2012133942A1 (en) 2011-03-30 2012-03-30 Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body

Country Status (3)

Country Link
JP (1) JP2014132830A (en)
CN (1) CN103459590A (en)
WO (1) WO2012133942A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190150A1 (en) 2013-05-22 2014-11-27 The Regents Of The University Of California Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
WO2015033558A1 (en) * 2013-09-04 2015-03-12 株式会社大塚製薬工場 Method for preparing pluripotent stem cells
JP2020167956A (en) * 2019-04-03 2020-10-15 学校法人東京医科大学 Method for producing mature tissue, and method for producing organ
CN112226406A (en) * 2020-10-19 2021-01-15 中国医学科学院北京协和医院 Preparation method of human perivascular adipose tissue single cell suspension
WO2021201286A1 (en) * 2020-04-02 2021-10-07 国立大学法人東北大学 High-potential pluripotent stem cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3067963A1 (en) * 2017-06-19 2018-12-27 National University Corporation Hokkaido University Treatment agent for epidermolysis bullosa
CN115025288B (en) * 2022-06-17 2023-06-13 中南大学湘雅医院 Exosome hydrogel mixed system and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007900A1 (en) * 2009-07-15 2011-01-20 Dezawa Mari Pluripotent stem cell that can be isolated from body tissue

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575921B2 (en) * 1999-12-30 2009-08-18 Vbi Technologies, L.L.C. Spore-like cells and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007900A1 (en) * 2009-07-15 2011-01-20 Dezawa Mari Pluripotent stem cell that can be isolated from body tissue

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JO C H ET AL.: "Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion.", CELL TISSUE RES., vol. 334, no. 3, 22 October 2008 (2008-10-22), pages 423 - 433, XP019716547 *
KURODA Y ET AL.: "Unique multipotent cells in adult human mesenchymal cell populations.", PROC NATL ACAD SCI U S A., vol. 107, no. 19, 11 May 2010 (2010-05-11), pages 8639 - 8643, XP008152782, DOI: doi:10.1073/pnas.0911647107 *
MARI DEZAWA: "Hifu / Kotsuzui Yurai Kansaibo ''Muse''", RINSHO HYOKA (CLINICAL EVALUATION), vol. 38, no. 4, 1 March 2011 (2011-03-01), pages 749 - 760 *
MARI DEZAWA: "Hito Seitai Yurai no Tanosei Kansaibo no Hakken to Shinkei Saisei Iryo eno Oyo no Kanosei", REGENERATIVE MEDICINE, vol. 10, 1 February 2011 (2011-02-01), pages 107 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131880B2 (en) 2013-05-22 2018-11-20 The Regents Of The University Of California Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
US11913027B2 (en) 2013-05-22 2024-02-27 The Regents Of The University Of California Methods of treatment using pluripotent human adipose adult stem cells
JP2016519939A (en) * 2013-05-22 2016-07-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
EP2999780A4 (en) * 2013-05-22 2016-11-16 Univ California Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
WO2014190150A1 (en) 2013-05-22 2014-11-27 The Regents Of The University Of California Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
US11066647B2 (en) 2013-05-22 2021-07-20 The Regents Of The University Of California Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
EP3613846A1 (en) * 2013-05-22 2020-02-26 The Regents of the University of California Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
JPWO2015033558A1 (en) * 2013-09-04 2017-03-02 株式会社大塚製薬工場 Method for preparing pluripotent stem cells
US10370639B2 (en) 2013-09-04 2019-08-06 Otsuka Pharmaceutical Factory, Inc. Method for preparing pluripotent stem cells
JP2018023401A (en) * 2013-09-04 2018-02-15 株式会社大塚製薬工場 Methods for preparing pluripotent stem cells
US9765296B2 (en) 2013-09-04 2017-09-19 Otsuka Pharmaceutical Factory, Inc. Method for preparing pluripotent stem cells
US11155782B2 (en) 2013-09-04 2021-10-26 Otsuka Pharmaceutical Factory, Inc. Method for preparing pluripotent stem cells
WO2015033558A1 (en) * 2013-09-04 2015-03-12 株式会社大塚製薬工場 Method for preparing pluripotent stem cells
JP2020167956A (en) * 2019-04-03 2020-10-15 学校法人東京医科大学 Method for producing mature tissue, and method for producing organ
WO2021201286A1 (en) * 2020-04-02 2021-10-07 国立大学法人東北大学 High-potential pluripotent stem cells
CN112226406A (en) * 2020-10-19 2021-01-15 中国医学科学院北京协和医院 Preparation method of human perivascular adipose tissue single cell suspension

Also Published As

Publication number Publication date
JP2014132830A (en) 2014-07-24
CN103459590A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP6937821B2 (en) Pluripotent stem cells that can be isolated from living tissues
US11261426B2 (en) Pluripotent stem cell that can be isolated from body tissue
WO2012133948A1 (en) Composition for allotransplantation cell therapy, said composition containing ssea-3 positive pluripotent stem cell capable of being isolated from body tissue
WO2012133942A1 (en) Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body
US11920180B2 (en) Method for inducing differentiation of pluripotent stem cells in vitro

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.01.2014).

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12764442

Country of ref document: EP

Kind code of ref document: A1