WO2015098002A1 - Radiography system and method for controlling same - Google Patents

Radiography system and method for controlling same Download PDF

Info

Publication number
WO2015098002A1
WO2015098002A1 PCT/JP2014/006075 JP2014006075W WO2015098002A1 WO 2015098002 A1 WO2015098002 A1 WO 2015098002A1 JP 2014006075 W JP2014006075 W JP 2014006075W WO 2015098002 A1 WO2015098002 A1 WO 2015098002A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
fpd
ray
control unit
radiographic
Prior art date
Application number
PCT/JP2014/006075
Other languages
French (fr)
Japanese (ja)
Inventor
井上 仁司
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2015098002A1 publication Critical patent/WO2015098002A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • A61B6/544Control of apparatus or devices for radiation diagnosis involving control of exposure dependent on patient size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0492Positioning of patients; Tiltable beds or the like using markers or indicia for aiding patient positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/465Displaying means of special interest adapted to display user selection data, e.g. graphical user interface, icons or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]

Definitions

  • the present invention relates to a radiation imaging system for performing radiation imaging of a subject and a control method thereof.
  • a radiation imaging system for performing radiation imaging of a subject and a control method thereof.
  • X-rays are applied as radiation according to the present invention.
  • ⁇ -rays ⁇ -rays
  • ⁇ -rays etc.
  • Other radiation can also be applied.
  • FPD flat panel detector
  • a general feature of digital images is that image information can be transmitted accurately and at high speed without damage.
  • digital X-ray image data acquired with a battery-operated portable FPD can be wirelessly transmitted to a computer system for observing, storing, and managing the data.
  • a high degree of X-ray imaging is possible.
  • Patent Documents 1 to 3 an X-ray imaging system using a plurality of portable FPDs has been proposed due to simplification of handling and cost reduction of portable FPDs. .
  • X-ray imaging is performed by automatically detecting generated X-rays without connecting an X-ray generator and a synchronization signal line of a portable FPD. It is also possible to do.
  • Patent Documents 1 to 3 described above since it is necessary to synchronize the timing of X-ray generation and the timing of FPD operation, the synchronization signal output from the X-ray generator at the timing immediately before the X-ray generation is used. It needs to be transmitted to a specific FPD. Therefore, although a plurality of FPDs can be used in one X-ray imaging system, one of the usable FPDs desired by the user must be selected each time. And when changing FPD to be used, user operation for selecting FPD anew is needed.
  • the present invention has been made in view of such a problem, and in a radiography system including a plurality of radiographic image detectors, it is possible to avoid complication of control by the radiography system.
  • the radiation imaging system of the present invention includes a plurality of radiation image detectors that detect radiation transmitted through a subject to obtain a radiation image, a control unit that controls the plurality of radiation image detectors, and the plurality of radiations.
  • a communication unit that transmits to the second radiation image detector that the first radiation image detector of the image detectors has transitioned to a radiation detectable state, wherein the first radiation image detector detects radiation.
  • the second radiation image detector transitions to a radiation detectable state.
  • the present invention also includes a method for controlling the above-described radiation imaging system.
  • FIG. 1 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) according to a first embodiment of the present invention.
  • An example of schematic structure of FPD shown in FIG. 1 is shown.
  • An example of schematic structure of the system control part shown in FIG. 1 is shown.
  • It is a schematic diagram which shows an example of the state transition of FPD shown in FIG.
  • It is a sequence diagram which shows an example of the information communication content between the system control part shown in FIG. 1, 1st FPD, and 2nd FPD.
  • It is a figure for demonstrating the display and operation on the monitor shown in FIG.
  • It is a flowchart which shows an example of the process sequence in the control method of the X-ray imaging system (radiography system) which concerns on the 1st Embodiment of this invention.
  • An example of the data structure of the X-ray image data transmitted to the system control unit from the first FPD or the second FPD shown in FIG. 1 is shown.
  • An example of schematic structure of the X-ray imaging system (radiography system) which concerns on the 2nd Embodiment of this invention is shown.
  • An example of schematic structure of the X-ray imaging system (radiography system) which concerns on the 3rd Embodiment of this invention is shown.
  • the 4th Embodiment of this invention is shown and an example of schematic structure of FPD shown in FIG. 1 is shown.
  • An example of schematic structure of the X-ray imaging system (radiography system) which concerns on the 5th Embodiment of this invention is shown.
  • An example of schematic structure of the X-ray imaging system (radiography system) which concerns on the 6th Embodiment of this invention is shown.
  • FIG. 1 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) 100 according to the first embodiment of the present invention.
  • an X-ray imaging system 100 includes an X-ray generation unit 110, FPDs 120-1 to 120-2 that are a plurality of radiation image detectors, an X-ray generation control unit 130, an X-ray generation unit.
  • the irradiation button 140 and the system control unit 150 are included.
  • FPD 120 In the X-ray imaging system 100 shown in FIG. 1, an example is shown in which two FPDs 120-1 and 120-2 are provided as a plurality of radiation image detectors. However, the present embodiment is not limited to this. It is not a thing. For example, a form in which three or more FPDs 120 are provided as a plurality of radiation image detectors may be used. In the following description, in the case of the description common to the first FPD 120-1 (first radiation image detector) and the second FPD 120-2 (second radiation image detector), simply “ This will be described as “FPD 120”.
  • the X-ray generation unit (radiation generation unit) 110 irradiates the subject H with X-rays 111 as a kind of radiation based on the control of the X-ray generation control unit 130.
  • the X-ray generation unit 110 includes, for example, an X-ray source (X-ray tube) that generates X-rays under voltage control from the X-ray generation control unit 130, and an irradiation region of X-rays generated from the X-ray source. A collimator or the like for controlling the above.
  • the X-ray 111 that has passed through the subject H enters the FPD 120.
  • the FPD 120 is provided with a two-dimensional sensor in which pixels having sensitivity to X-rays are arranged in a two-dimensional matrix.
  • the two-dimensional sensor detects the incident X-ray 111 and detects X-ray image data (radiation). Image data). Specifically, in each pixel of the two-dimensional sensor, charges corresponding to the X-ray dose of incident X-rays are accumulated, and X-ray image data can be generated by reading out the charges accumulated in each pixel. . More specifically, the two-dimensional sensor of the FPD 120 detects the incident X-ray 111 and generates X-ray image data corresponding to the intensity distribution of the X-ray 111.
  • the first FPD 120-1 and the second FPD 120-2 can be, for example, portable FPDs.
  • the first FPD 120-1 includes an imaging preparation completion display unit (ready lamp) 120-11 indicating whether or not X-ray imaging is possible (that is, a state where preparation for radiation imaging is completed), and communication.
  • a wireless communication status display unit (link lamp) 120-12 indicating the status is provided.
  • the second FPD 120-2 includes an imaging preparation completion display unit (ready lamp) 120-21 indicating whether or not X-ray imaging is possible (that is, a state in which preparation for radiation imaging has been completed), and communication.
  • a wireless communication status display unit (link lamp) 120-22 indicating the status is provided.
  • the X-ray generation control unit (radiation generation control unit) 130 performs X-rays from the X-ray generation unit 110 to the subject H at the timing when the X-ray irradiation button 140 is operated based on the control of the system control unit 150. Control to irradiate 111 is performed.
  • the X-ray irradiation button (radiation irradiation button) 140 is a button operated when the operator performs X-ray imaging of the subject H.
  • the system control unit 150 comprehensively controls operations in the X-ray imaging system 100. For example, the system control unit 150 performs control to acquire X-ray image data from each FPD 120 by communicating with each FPD (each radiation image detector) 120 in the plurality of FPDs 120-1 to 120-2. Then, the system control unit 150 manages the X-ray image data acquired from each FPD 120 according to inspection information such as an inspection ID.
  • the system control unit 150 includes a PC (personal computer) 150a, an access point 150b, and a monitor 150c.
  • the access point 150 b is configured as one configuration of the system control unit 150, but may be provided as a configuration independent of the system control unit 150 without being configured as one configuration of the system control unit 150.
  • the PC 150a controls the overall operation of the X-ray imaging system 100, and is connected to an X-ray generation control unit 130, an access point 150b, and a monitor 150c.
  • the access point 150b communicates with the first FPD 120-1 and the second FPD 120-2 through a wireless LAN.
  • the main communication contents here are to transmit X-ray image data generated by each FPD 120 from each FPD 120 to the PC 150a, and to transmit information (status information) related to the state of each FPD 120 from each FPD 120 to the PC 150a. And transmitting a control command (state transition instruction command) for controlling each FPD 120 from the PC 150a to each FPD 120.
  • the first FPD 120-1 and the second FPD 120-2 function as members of a wireless LAN environment by the access point 150b, each is a physical address (MAC address: Media Access Control address) in the wireless LAN.
  • MAC address Media Access Control address
  • Differentiated and independent communication is possible.
  • the wireless communication method used here is not limited to wireless LAN communication.
  • Bluetooth registered trademark
  • it can be realized by an original wireless communication method such as ad hoc communication. The same effect as in the case of wireless LAN communication can be obtained.
  • status information is communicated between the first FPD 120-1 and the second FPD 120-2. Physically, the wireless LAN environment through the access point 150b is used. Done in In the following description, communication between the FPDs 120 is expressed.
  • the communication method between the PC 150a and the first FPD 120-1 and the second FPD 120-2 is wireless communication via the access point 150b. It is not limited to communication. For example, a form in which the PC 150a and the first FPD 120-1 and the second FPD 120-2 are connected by wire to perform wired communication is also applicable to the present invention. Similarly, in the communication between the FPDs 120, a form in which the first FPD 120-1 and the second FPD 120-2 are connected by wire to perform wired communication is also applicable to the present invention.
  • the monitor 150c has a graphical user interface (GUI) function, for example, an operation button realized by a touch panel and a function of displaying various information.
  • GUI graphical user interface
  • the monitor 150c displays for the operator an X-ray image based on the X-ray image data generated by the first FPD 120-1 and the second FPD 120-2 based on the control of the PC 150a.
  • FIG. 2 shows an example of a schematic configuration of the FPD 120 shown in FIG.
  • the FPD 120 includes a CPU 121, a storage unit 122, a power supply 123, a two-dimensional sensor 124, a display unit 125, an operation unit 126, a communication interface (communication I / F) 127, and a bus 128. It is configured.
  • the CPU 121 controls the operation of the FPD 120 using programs, data, and information stored in the storage unit 122, for example.
  • the storage unit 122 stores, for example, an operating system (OS), a program executed by the CPU 121, and data and information known in the FPD 120.
  • OS operating system
  • FPD 120 data and information known in the FPD 120.
  • the power source 123 supplies power for operating the FPD 120.
  • the two-dimensional sensor 124 is a pixel in which pixels having sensitivity to X-rays are arranged in a two-dimensional matrix.
  • the two-dimensional sensor 124 generates X-ray image data based on the incident X-ray 111. Specifically, in each pixel of the two-dimensional sensor, charges corresponding to the X-ray dose of incident X-rays are accumulated, and X-ray image data can be generated by reading out the charges accumulated in each pixel. .
  • the display unit 125 displays various information based on the control of the CPU 121, for example.
  • the operation unit 126 is an input device configured to be operable by the operator.
  • the communication I / F 127 controls transmission / reception of various data, various information, various signals, and the like performed between the FPD 120 and an external device.
  • the external device include another FPD 120 and a system control unit 150.
  • the bus 128 connects the CPU 121, the storage unit 122, the power supply 123, the two-dimensional sensor 124, the display unit 125, the operation unit 126, and the communication I / F 127 so that they can communicate with each other.
  • the shooting preparation completion display units (ready lamps) 120-11 and 120-21 shown in FIG. 1 the wireless communication status display unit (link lamp) 120-12, and 120-22 is configured.
  • FIG. 3 shows an example of a schematic configuration of the system control unit 150 shown in FIG.
  • the system control unit 150 includes a CPU 151, a storage unit 152, a power supply 153, a display unit 154, an operation unit 155, a communication interface (communication I / F) 156, and a bus 157. ing.
  • the CPU 151 controls the operation of the system control unit 150 using, for example, a program, data, or information stored in the storage unit 152.
  • the storage unit 152 stores, for example, an operating system (OS), a program executed by the CPU 151, and data and information known in the system control unit 150.
  • OS operating system
  • the storage unit 152 stores, for example, an operating system (OS), a program executed by the CPU 151, and data and information known in the system control unit 150.
  • the power source 153 supplies power for operating the system control unit 150.
  • the display unit 154 displays various images and various information based on the control of the CPU 151, for example.
  • the operation unit 155 is an input device configured to be operable by the operator.
  • the communication I / F 156 controls transmission / reception of various data, various information, various signals, and the like performed between the system control unit 150 and an external device.
  • an FPD 120 or the like can be cited as the external device.
  • the bus 157 connects the CPU 151, the storage unit 152, the power source 153, the display unit 154, the operation unit 155, and the communication I / F 156 so that they can communicate with each other.
  • the CPU 151, the storage unit 152, and the power source 153 shown in FIG. 3 constitute the PC 150a shown in FIG.
  • the access point 150b shown in FIG. 1 is configured from the communication I / F 156 shown in FIG.
  • the monitor 150c includes the display unit 154 and the operation unit 155 shown in FIG.
  • FIG. 4 is a schematic diagram showing an example of state transition of the FPD 120 shown in FIG.
  • a state 401 is a “power-off state” before the power source 123 is turned on
  • a state 402 is a “standby state” waiting for a command with low power consumption
  • a state 403 is an X-ray detectable state (radiation)
  • each FPD 120 in the plurality of FPDs 120-1 to 120-2 shown in FIG. 1 can transition to the activated state independently of the control by the system control unit 150, and can communicate with each other. It is configured.
  • a state 404 is an “X dose (charge) accumulation / reading state” in which X-ray image data is read from the two-dimensional sensor 124
  • a state 405 is an X obtained from the two-dimensional sensor 124.
  • This is an “X-ray image data transmission state” in which line image data is being transmitted to the system control unit 150.
  • the initial state of the FPD 120 shown in FIG. 4 is a power-off state 401, and when there is a power-on 406 in this state, the state transits to a standby state 402 and waits for a command. If there is a power shut-off 407 in this standby state 402, it returns to the power off state 401.
  • the state transits to the activated state 403 as a predetermined time elapses.
  • the predetermined time required for the transition to the activated state 403 is, for example, a time represented by T2 or T3 depending on the condition setting. That is, in the standby state 402, the transition is made to the activated state 403 by the automatic transition 408 after T2 / T3 time.
  • the process returns to the standby state 402.
  • the predetermined time required for the transition to the standby state 402 is, for example, a time represented by T1 depending on the condition setting. That is, in the activated state 403, the state transits to the standby state 402 by the automatic transition 409 after the time T1. In the activated state 403, if there is a power shutdown 410, the power off state 401 is restored.
  • the state transits to the X-ray dose (charge) accumulation / readout state 404.
  • the X-ray dose (charge) accumulation / reading state 404 when reading is completed 412, the state transits to the X-ray image data transmission state.
  • the process returns to the standby state 402.
  • FIG. 5 is a sequence diagram showing an example of the contents of information communication between the system control unit 150, the first FPD 120-1, and the second FPD 120-2 shown in FIG.
  • the system control unit 150 when performing information communication with the first FPD 120-1 and the second FPD 120-2, the system control unit 150 is mainly operated by the CPU 151 via the communication I / F 156 (access point 150b). The information communication process is performed.
  • the CPU 121 when the first FPD 120-1 performs information communication with the system control unit 150 and the second FPD 120-2, the CPU 121 mainly performs the information communication processing and the like via the communication I / F 127.
  • the CPU 121 When the second FPD 120-2 performs information communication with the system control unit 150 and the first FPD 120-1, the CPU 121 mainly performs the information communication processing and the like via the communication I / F 127. Do.
  • the sequence 501 is a sequence showing the operation of the system control unit 150 shown in FIG.
  • the sequence 502 is a sequence showing the operation of the first FPD 120-1 shown in FIG. 1
  • the sequence 503 is a sequence showing the operation of the second FPD 120-2 shown in FIG.
  • the part to be described is represented by a numerical value (for example, ⁇ s001>) surrounded by ⁇ > in FIG.
  • the CPU 121 of the first FPD 120-1 detects this. Then, the CPU 121 of the first FPD 120-1 performs initialization processing such as activation of a control microcomputer in the first FPD 120-1 ( ⁇ s003>). Thereafter, the CPU 121 of the first FPD 120-1 performs a process of setting the operation state of the first FPD 120-1 to the standby state ( ⁇ s009>).
  • the CPU 121 of the second FPD 120-2 detects this. Then, the CPU 121 of the second FPD 120-2 performs initialization processing such as activation of a control microcomputer in the second FPD 120-2 ( ⁇ s004>). Thereafter, the CPU 121 of the second FPD 120-2 performs processing for setting the operation state of the second FPD 120-2 to the standby state ( ⁇ s010>).
  • the CPU 121 of No. 2 performs processing for receiving a beacon signal periodically transmitted by the access point 150b in units of several tens to several hundreds of milliseconds via the communication I / F 127 ( ⁇ s005>).
  • the CPU 121 of the first FPD 120-1 When the beacon signal is received from the system control unit 150, the CPU 121 of the first FPD 120-1 performs a process of transmitting a connection request signal (connection request command) to the system control unit 150 ( ⁇ s006>). Specifically, the CPU 121 of the first FPD 120-1 confirms that the ID of the received beacon signal is a predetermined wireless LAN ID (Service Set Identifier: SSID). Thereafter, through a process such as password authentication, a process of transmitting a connection request command including a MAC address to the system control unit 150 at the radio frequency is performed.
  • the CPU 151 of the system control unit 150 receives the connection request signal (connection request command) from the first FPD 120-1, the CPU 151 performs a process of transmitting a connection permission signal to the first FPD 120-1 ( ⁇ s007>). ).
  • the CPU 121 of the first FPD 120-1 When the CPU 121 of the first FPD 120-1 receives the connection permission signal from the system control unit 150, the CPU 121 performs a wireless communication status display (hereinafter, “link lamp”) lighting process indicating that the wireless communication connection operation is completed. . As a result, the operator can know that the first FPD 120-1 is in a communicable state. Thereafter, the CPU 121 of the first FPD 120-1 performs processing for notifying the system control unit 150 of the standby state ( ⁇ s008>).
  • a wireless communication status display hereinafter, “link lamp”
  • the CPU 151 of the system control unit 150 When the CPU 151 of the system control unit 150 receives the notification of the standby state from the first FPD 120-1, the CPU 151 registers the first FPD 120-1 as being available.
  • the CPU 121 of the second FPD 120-2 when the CPU 121 of the second FPD 120-2 receives a beacon signal from the system control unit 150, the CPU 121 performs a process of transmitting a connection request signal (connection request command) to the system control unit 150. ( ⁇ S011>). Specifically, the CPU 121 of the second FPD 120-2 confirms that the ID of the received beacon signal is an ID (SSID) of a predetermined wireless LAN. Thereafter, through a process such as password authentication, a process of transmitting a connection request command including a MAC address to the system control unit 150 at the radio frequency is performed. When receiving the connection request signal (connection request command) from the second FPD 120-2, the CPU 151 of the system control unit 150 performs a process of transmitting a connection permission signal to the second FPD 120-2 ( ⁇ s012>). ).
  • the CPU 121 of the second FPD 120-2 receives the connection permission signal from the system control unit 150, the CPU 121 performs a link lamp lighting process indicating that the wireless communication connection operation is completed. As a result, the operator can know that the second FPD 120-2 is in a communicable state. Thereafter, the CPU 121 of the second FPD 120-2 performs processing for notifying the system control unit 150 of the standby state ( ⁇ s013>).
  • the CPU 151 of the system control unit 150 When the CPU 151 of the system control unit 150 receives the notification of the standby state from the second FPD 120-2, the CPU 151 registers the second FPD 120-2 as being available.
  • the CPU 121 of the first FPD 120-1 performs a process of automatically transitioning the operation state of the first FPD 120-1 to the activated state after waiting for a predetermined time ( ⁇ s014>). Then, the CPU 121 of the first FPD 120-1 performs a process of setting the activation state duration T1 ( ⁇ s018>). At this time, the CPU 121 of the first FPD 120-1 performs a process of notifying the system control unit 150 that the first FPD 120-1 is activated ( ⁇ s015>). The CPU 121 of the first FPD 120-1 also notifies the second FPD 120-2 that the first FPD 120-1 is activated substantially simultaneously with the notification to the system control unit 150. The notification process is performed ( ⁇ s016>).
  • the CPU 151 of the system control unit 150 When the CPU 151 of the system control unit 150 receives a notification from the first FPD 120-1 that it is in the activated state, the CPU 151 represents the contents of the X-ray imaging examination that the first FPD 120-1 can know in advance. A process of notifying the inspection ID as inspection information is performed ( ⁇ s017>). The examination ID is returned from the first FPD 120-1 to the system control unit 150 together with the image information obtained by the X-ray imaging after the X-ray imaging by the first FPD 120-1. Then, the CPU 151 of the system control unit 150 performs processing for confirming that the captured image data is intended X-ray image data based on the inspection ID returned from the first FPD 120-1.
  • an example of the inspection ID is given as the inspection information transmitted from the system control unit 150 to the first FPD 120-1.
  • the inspection information is not limited to the inspection ID, and any information may be used as long as the information is related to the X-ray imaging inspection. Is also acceptable.
  • Examples of the information related to the X-ray imaging examination include, in addition to the examination ID, the patient name, the patient's birthday, the examination name, the imaging part, the operator name in charge, the physical parameters related to the X-ray imaging conditions (radiation imaging conditions), and the like. Can be mentioned. Then, by including the above-described information together with the inspection ID as the inspection information returned from the first FPD 120-1 to the system control unit 150, it is possible to check the correctness of the captured image data in more detail.
  • the delay time T3 as a predetermined time until the transition to the activated state is made. Is set ( ⁇ s019>). Then, when the delay time T3 has elapsed, the CPU 121 of the second FPD 120-2 performs a transition process that activates the operation state of the second FPD 120-2 ( ⁇ s020>). At this time, the CPU 121 of the second FPD 120-2 performs a process of setting the activated state duration T1 ( ⁇ s026>).
  • the CPU 121 of the second FPD 120-2 performs a process of notifying the first FPD 120-1 that the second FPD 120-2 is activated ( ⁇ s021>) and the system Processing for notifying the control unit 150 is performed ( ⁇ s022>).
  • the CPU 151 of the system control unit 150 When the CPU 151 of the system control unit 150 receives a notification from the second FPD 120-2 that it is in an activated state, it notifies the second FPD 120-2 of the above-described inspection ID, as in ⁇ s017>. Is performed ( ⁇ s023>).
  • the CPU 121 of the first FPD 120-1 uses the dark current accumulated in the two-dimensional sensor 124 when X-ray imaging is not performed within the activation state duration T1 set in ⁇ s018>.
  • an automatic transition process is performed in which the operation state of the first FPD 120-1 is in a standby state ( ⁇ s024>). .
  • the CPU 121 of the first FPD 120-1 performs processing for setting the standby state duration T2 ( ⁇ s025>).
  • the CPU 121 of the first FPD 120-1 activates the operation state of the first FPD 120-1 in the activated state. ( ⁇ S027>). Then, the CPU 121 of the first FPD 120-1 performs a process of setting the activation state duration T1 ( ⁇ s031>). Further, the CPU 121 of the first FPD 120-1 performs a process of notifying the system control unit 150 that the first FPD 120-1 is in an activated state ( ⁇ s028>). Further, the CPU 121 of the first FPD 120-1 also notifies the second FPD 120-2 that the first FPD 120-1 is activated substantially simultaneously with the notification to the system control unit 150. The notification process is performed ( ⁇ s029>).
  • the CPU 151 of the system control unit 150 receives a notification from the first FPD 120-1 that it is in the activated state, it performs a process of notifying the inspection ID as in ⁇ s017> ( ⁇ s030>).
  • the CPU 121 of the second FPD 120-2 uses the dark current accumulated in the two-dimensional sensor 124 when X-ray imaging is not performed within the activation state duration T1 set in ⁇ s026>.
  • automatic transition processing is performed in which the operation state of the second FPD 120-2 is set to the standby state ( ⁇ s032>). .
  • the CPU 121 of the second FPD 120-2 performs a process of setting the standby state duration T2 ( ⁇ s033>).
  • the CPU 121 of the second FPD 120-2 activates the operation state of the second FPD 120-2 in the activated state. ( ⁇ S034>).
  • the CPU 121 of the second FPD 120-2 performs a process of setting the activated state duration T1.
  • the CPU 121 of the second FPD 120-2 performs a process of notifying the second FPD 120-2 to the fact that the second FPD 120-2 is activated ( ⁇ s035>) and the system Processing for notifying the control unit 150 is performed ( ⁇ s036>).
  • the CPU 151 of the system control unit 150 receives notification from the second FPD 120-2 that it is in the activated state, it performs a process of notifying the inspection ID as in ⁇ s023> ( ⁇ s037>).
  • the first FPD 120-1 when the first FPD 120-1 that is one FPD of the plurality of FPDs 120 transitions to the activated state, the first FPD 120-1
  • the second FPD 120-2 which is the other FPD other than the FPD 120-1, is notified of the transition to the activated state ( ⁇ s016>).
  • the second FPD 120-2 receives a notification ( ⁇ s016>) indicating that the activation state has changed from the first FPD 120-1, the activation state is delayed by a delay time T3 that is a predetermined time. ( ⁇ S019> to ⁇ s020>).
  • the second FPD 120-2 is in the activated state even when the first FPD 120-1 is in the standby state. That is, as shown in FIG. 5, in the X-ray imaging system 100 according to the present embodiment, at the time of X-ray imaging of the subject H, any one of the plurality of FPDs 120 is activated. Yes. Further, at a certain timing when X-ray imaging of the subject H is performed, two or more FPDs of the plurality of FPDs 120 (in the example shown in FIG.
  • the first FPD 120-1 and the second FPD 120-2 are simultaneously activated (for example, ⁇ s021>, ⁇ s029>, ⁇ s035>). In this case, the operator does not need to separately select the FPD 120 used for X-ray imaging using the user interface. In the present embodiment, as shown in FIG. 5, since one of the FPDs 120 is always in an activated state (X-ray detectable state (radiation detectable state)), no wasteful waiting time is generated.
  • X-ray detectable state radiation detectable state
  • the first FPD 120-1 is in an activated state, X-ray irradiation is performed by X-ray imaging, and the first FPD 120-1 stores “X dose (charge) accumulation as shown in FIG.
  • the state transitions to the “reading state” and then transitions to the “X-ray image data transmission state”, the state returns to the standby state, and X-ray imaging with the first FPD 120-1 becomes impossible.
  • the second FPD 120-2 independently repeats the activated state and the standby state. Therefore, even when the first FPD 120-1 is in a state where X-ray imaging is not possible, the second FPD 120-2 can perform independent X-ray imaging.
  • a command for requesting presentation of information on whether or not each other is in an activated state so that the first FPD 120-1 and the second FPD 120-2 can grasp each other's activated state. It is also possible to control such that at least one FPD 120 is always in an activated state.
  • a flag indicating the activation state / standby state of each FPD 120 is stored in the storage unit 152 of the system control unit 150, and the operation state of each FPD 120 is always monitored and updated in the system control unit 150. It can be adopted.
  • the first FPD 120-1 and the second FPD 120-2 can control the activation status through a command for knowing the flag stored in the storage unit 152.
  • the optimum state of the X-ray imaging system 100 as a whole is obtained by adaptively changing the delay time T3 in ⁇ s019> of FIG. Can keep.
  • FIG. 6 is a diagram for explaining display and operation on the monitor 150c shown in FIG.
  • the monitor 150c shown in FIG. 6 includes an image display area 601 that displays an X-ray image based on X-ray image data obtained by X-ray imaging with the FPD 120, and a GUI that can use information display, touch panel / mouse click, and the like.
  • a region 602 is provided.
  • the X-ray image displayed in the image display area 601 is, for example, the latest X-ray image obtained by X-ray imaging with the first FPD 120-1 or the second FPD 120-2.
  • Information displayed in the GUI area 602 includes patient information, examination order name, imaging part information, FPD model name, X-ray imaging conditions, imaging time, facility / operator information, and X-ray images obtained by past imaging. Reduced version (thumbnail).
  • what can be operated in the GUI area 602 includes image processing parameter adjustment such as gradation adjustment and sharpness adjustment of an X-ray image, and setting of an X-ray image cut-out area.
  • the operator confirms an X-ray image based on the X-ray image data sent from the first FPD 120-1 or the second FPD 120-2 displayed in the image display area 601 and operates the GUI area 602. Adjust the image processing parameters. Thereafter, the operator performs processing such as transferring the X-ray image data to a management server (not shown) as necessary.
  • FIG. 7 is a flowchart showing an example of a processing procedure in the control method of the X-ray imaging system (radiation imaging system) according to the first embodiment of the present invention.
  • step S701 the CPU 151 of the system control unit 150 performs registration processing of the first FPD 120-1 and the second FPD 120-2 that can be detected in the wireless LAN environment.
  • step S702 the CPU 121 of the first FPD 120-1 registered in step S701 performs a process of automatically transitioning the operation state of the first FPD 120-1 to the activated state.
  • the CPU 121 of the second FPD 120-2 registered in step S701 performs a process of automatically transitioning the operation state of the second FPD 120-2 to the activated state.
  • the CPU 121 of the first FPD 120-1 and the CPU 121 of the second FPD 120-2 may activate their own devices based on the control of the system control unit 150.
  • step S703 the CPU 151 of the system control unit 150 performs processing for transmitting a desired inspection ID (inspection information) to the first FPD 120-1 and the second FPD 120-2 registered in step S701. Do.
  • step S704 has the CPU 151 of the system control unit 150 received X-ray image data from any one of the first FPD 120-1 and the second FPD 120-2 registered in step S701? Judge whether or not.
  • step S701 If the result of this determination is that X-ray image data has not been received from any one of the first FPD 120-1 and the second FPD 120-2 registered in step S701, the process waits in step S704. .
  • step S704 if X-ray image data is received from any one of the first FPD 120-1 and the second FPD 120-2 registered in step S701, the process proceeds to step S705. .
  • step S705 the CPU 151 of the system control unit 150 determines whether or not the examination ID attached to the received X-ray image data matches the desired examination ID transmitted in step S703.
  • step S705 If it is determined in step S705 that the examination ID attached to the received X-ray image data does not match the desired examination ID transmitted in step S703, the process returns to step S704.
  • step S705 if the examination ID attached to the received X-ray image data matches the desired examination ID transmitted in step S703, the process proceeds to step S706.
  • step S706 the CPU 151 of the system control unit 150 performs a process of displaying an X-ray image based on the received X-ray image data on the display unit 154 (monitor 150c). Further, the CPU 151 of the system control unit 150 performs processing for storing the received X-ray image data in the storage unit 152 and the like.
  • step S706 When the process of step S706 is completed, the process returns to step S704, and the processes after step S704 are performed again.
  • FIG. 8 shows an example of the data configuration of the X-ray image data transmitted from the first FPD 120-1 or the second FPD 120-2 shown in FIG. 1 to the system control unit 150.
  • X-ray image data transmitted from the first FPD 120-1 or the second FPD 120-2 to the system control unit 150 includes header information 801 and image information 802 as shown in FIG.
  • the header information 801 is a part that is transmitted prior to the image information 802.
  • the header information 801 includes information such as FPD ID, shooting date and time, FPD model name, and image size (X, Y), including an inspection ID that is inspection information.
  • the inspection ID of the header information 801 is transmitted from the system control unit 150 to the FPD 120 prior to X-ray imaging.
  • the system control unit 150 can check whether the received X-ray image data is the desired X-ray image data by using the examination ID included in the header information 801 of the received X-ray image data. is there.
  • a plurality of radiation image detectors that detect radiation transmitted through the subject H and obtain a radiation image
  • a control unit that controls the plurality of radiation image detectors
  • a second radiographic image when the first radiographic image detector (first FPD 120-1) of the plurality of radiographic image detectors transitions to a radiation detectable state.
  • the detector (second FPD 120-2) shifts to a radiation detectable state.
  • the radiation imaging system 100 includes the first radiographic image detector (first FPD120-1) when the first radiographic image detector (first FPD120-1) transitions to a radiation detectable state. 1) includes a communication unit that transmits to the second radiation image detector (second FPD 120-2) that radiation detection is possible.
  • the second radiation image detector (second FPD 120-2) is brought into a radiation detectable state when it is transmitted that the first radiation image detector (first FPD 120-1) is in a radiation detectable state. Transition. Therefore, complicated control by the radiographic system can be avoided.
  • the communication unit may use the access point 150b. Moreover, you may have a communication part inside the 1st radiographic image detector and the 2nd radiographic image detector.
  • a method for registering the first FPD 120-1 and the second FPD 120-2 in the system control unit 150 a method corresponding to a beacon signal output from the access point 150b of the wireless LAN is adopted.
  • the same effect can be obtained with other methods.
  • the system A method in which the control unit 150 registers in response can also be employed.
  • the communication connection between the system control unit 150 and the first FPD 120-1 and the second FPD 120-2 is a wireless communication connection. Therefore, the present embodiment can be adopted.
  • one X-ray imaging system 100 has been described. However, even if a plurality of X-ray imaging systems that cooperate with each other are constructed, the same effect can be obtained, and therefore, this embodiment can be adopted. It is.
  • the FPD 120 assumes a method in which the detection of the X-ray 111 and the driving of the two-dimensional sensor 124 in the FPD 120 are synchronized by the automatic X-ray detection function. It may be.
  • each FPD 120 and the X-ray generation unit 110 are configured to be communicable by wiring or communication means.
  • Each FPD 120 receives timing information related to the timing of irradiating the subject H with the X-ray 111 from the X-ray generation unit 110, and detects the X-ray 111 transmitted through the subject H based on the timing information.
  • X-ray image data is generated. That is, by configuring each FPD 120 and the X-ray generation unit 110 to be communicable, each FPD 120 can also synchronize the detection timing of the X-ray 111 and the driving of the two-dimensional sensor 124 in each FPD 120. It can be adopted. In addition, the same effect can be obtained in a mode in which communication between each FPD 120 and the X-ray generation unit 110 described above is performed via the system control unit 150.
  • FIG. 9 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) 200 according to the second embodiment of the present invention.
  • the X-ray imaging system 200 according to the present embodiment includes the X-ray generation control unit 130, the X-ray irradiation button 140, and the system control unit 150 shown in FIG. 1. It shall be.
  • This embodiment uses a first FPD 920-1 (first radiological image detector) and a second FPD 920-2 (second radiological image detector) to smoothly move a plurality of parts of the subject H.
  • This is a form of X-ray imaging.
  • the description common to the first FPD 920-1 and the second FPD 920-2 will be simply described as “FPD 920”.
  • one X-ray generation unit 110 is moved to perform X-ray imaging using the first FPD 920-1 and the second FPD 920-2.
  • the subject H is in a fixed state lying on the bed.
  • the first FPD 920-1 and the second FPD 920-2 are disposed between the subject H and the bed.
  • the first display portion 921 and the second display portion 922 are the states of the first FPD 920-1 and the second FPD 920-2 (activated state (X-ray detectable state (radiation detectable state)), etc., respectively. ) Is displayed.
  • the first FPD 920-1 and the second FPD 920-2 according to the present embodiment are connected to the display unit 125 from the first FPD 120-1 and the second FPD 120-2 according to the first embodiment shown in FIG. The configuration is removed.
  • the first display unit is separate from the first FPD 920-1 and includes the imaging preparation completion display unit (ready lamp) 120-11 and the wireless communication status display unit (link lamp) 120-12 shown in FIG. 921 is provided.
  • a second display that is separate from the second FPD 920-2 and includes the imaging preparation completion display unit (ready lamp) 120-21 and the wireless communication status display unit (link lamp) 120-22 shown in FIG. A portion 922 is provided.
  • the communication connection between the first FPD 920-1 and the first display unit 921 and the communication connection between the second FPD 920-2 and the second display unit 922 are wired communication connections even if they are wireless communication connections. There may be. At this time, the communication connection may be connected via the system control unit 150.
  • the display unit is configured separately from the FPD 920. This prevents the FPD 920 from being hidden under the subject H, so that the imaging preparation completion display unit (ready lamp) and the wireless communication status display unit (link lamp) shown in FIG. Can do.
  • the operator arranges a first FPD 920-1 and a second FPD 920-2 in a predetermined position below the subject H in advance, and X-ray imaging of necessary parts as appropriate in an optimal order. Is performed while moving the X-ray generation unit 110. Specifically, when X-ray imaging using the first FPD 920-1 is performed, the subject H is irradiated with the X-ray 111 from the position of the X-ray generation unit 110 shown in FIG. Further, when X-ray imaging using the second FPD 920-2 is performed, the subject H is irradiated with X-rays 111 ′ from the position of the X-ray generation unit 110 ′ shown in FIG.
  • FIG. 9 shows an example in which one X-ray generation unit 110 is moved and X-ray imaging is performed by a plurality of FPDs 920.
  • the present embodiment is not limited to this example.
  • a plurality of X-ray generation units 110 may be provided corresponding to the number of FPDs 920.
  • the FPD 920 assumes a method in which the X-ray detection is synchronized with the driving of the two-dimensional sensor 124 in the FPD 920 by the X-ray automatic detection function.
  • other methods described below may be used.
  • each FPD 920 and the X-ray generation unit 110 are configured to be communicable by wiring or communication means.
  • Each FPD 920 receives timing information related to the timing of irradiating the subject H with the X-ray 111 from the X-ray generation unit 110, and detects the X-ray 111 that has passed through the subject H based on the timing information.
  • X-ray image data is generated. That is, by configuring each FPD 920 and the X-ray generator 110 to be communicable, each FPD 920 can also synchronize the detection timing of the X-ray 111 with the driving of the two-dimensional sensor 124 in each FPD 920. It can be adopted. Moreover, the same effect can be obtained by performing communication between each FPD 920 and the X-ray generation unit 110 described above via the system control unit 150.
  • FIG. 10 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) 300 according to the third embodiment of the present invention.
  • symbol is attached
  • the X-ray imaging system 300 according to the present embodiment includes the X-ray generation control unit 130, the X-ray irradiation button 140, and the system control unit 150 illustrated in FIG. 1. It shall be.
  • the first FPD 920-1 and the second FPD 920-2 are simultaneously irradiated with X-rays 111 from one X-ray generation unit 110, so that the first FPD 920-1 and the second FPD 920 are emitted.
  • X-ray image data is acquired simultaneously from -2.
  • the delay time T3 set in ⁇ s019> is set to 0, or the first FPD 920-1 and the second FPD 920-2 are simultaneously synchronized. Then, the time T3 is adaptively adjusted so as to be in the activated state (X-ray detectable state (radiation detectable state)).
  • the activated state X-ray detectable state (radiation detectable state)
  • the second FPD 920-2 receives a notification from the first FPD 920-1 that it has transitioned to the activated state, it transitions to the activated state substantially simultaneously with the reception of the notification. It will be.
  • the operator confirms the display units 921 and 922 provided separately, confirms that the first FPD 920-1 and the second FPD 920-2 are simultaneously activated, An operation of irradiating the X-ray 111 from the X-ray generation unit 110 is performed.
  • the X-ray generation unit 110 can simultaneously irradiate the X-ray 111 to a range covering the two FPDs 920 of the first FPD 920-1 and the second FPD 920-2.
  • a set of two pieces of X-ray image data is transmitted to the system control unit 150 by one irradiation of the X-rays 111.
  • the system control unit 150 sequentially displays two X-ray images based on a set of two X-ray image data, or combines the two X-ray images into a single composite X-ray.
  • a process of generating an image (composite radiation image) and displaying the composite X-ray image is performed. Combining two X-ray images into one is particularly effective when performing X-ray imaging over a wide range such as the spine and foot bones of a human body.
  • the present embodiment is limited to this. It is not a thing.
  • a form in which three or more FPDs 920 are provided as a plurality of radiation image detectors may be used.
  • the number of combined X-ray images is not limited to one, and a plurality of other combined X-ray images may be generated depending on the purpose.
  • FIG. 10 shows an example in which X-ray imaging is performed by irradiating a plurality of FPDs 920 with X-rays 111 from one X-ray generation unit 110.
  • the present embodiment is not limited to this.
  • a plurality of X-ray generation units 110 may be provided corresponding to the number of each FPD 920.
  • a plurality of X-ray image data obtained by a plurality of FPDs 920 can be transmitted to the system control unit 150 substantially simultaneously. This can be easily realized by, for example, time division transmission in units of packets in the wireless LAN system. At this time, by making the radio channels (frequencies) used by the plurality of FPDs 920 different from each other without interfering with each other, a plurality of X-ray image data can be transmitted substantially simultaneously.
  • the communication connection between the first FPD 920-1 and the first display unit 921 and the communication connection between the second FPD 920-2 and the second display unit 922 are wireless communication connections. Or a wired communication connection. At this time, the communication connection may be connected via the system control unit 150.
  • the FPD 920 assumes a method in which the X-ray detection is synchronized with the driving of the two-dimensional sensor 124 in the FPD 920 by the X-ray automatic detection function.
  • other methods described below may be used.
  • each FPD 920 and the X-ray generation unit 110 are configured to be communicable by wiring or communication means.
  • Each FPD 920 receives timing information related to the timing of irradiating the subject H with the X-ray 111 from the X-ray generation unit 110, and detects the X-ray 111 that has passed through the subject H based on the timing information.
  • X-ray image data is generated. That is, by configuring each FPD 920 and the X-ray generator 110 to be communicable, each FPD 920 can also synchronize the detection timing of the X-ray 111 with the driving of the two-dimensional sensor 124 in each FPD 920. It can be adopted. Moreover, the same effect can be obtained by performing communication between each FPD 920 and the X-ray generation unit 110 described above via the system control unit 150.
  • the FPD 120 when the FPD 120 enters the wireless communication environment of the X-ray imaging system 100, the FPD 120 is automatically registered.
  • registration of the FPD 120 becomes difficult.
  • a certain FPD 120 itself belongs to which X-ray imaging system 100 and what kind of X-ray imaging of an inspection object is to be performed. Therefore, in the present embodiment, the configuration of the FPD 120 has been devised in order to eliminate these problems.
  • the schematic configuration of the X-ray imaging system (radiation imaging system) according to the fourth embodiment is the same as the schematic configuration of the X-ray imaging system (radiation imaging system) 100 according to the first embodiment shown in FIG. It is.
  • FIG. 11 shows a fourth embodiment of the present invention and shows an example of a schematic configuration of the FPD 120 shown in FIG.
  • the FPD 120 in this embodiment includes a shooting preparation completion display unit (ready lamp) 1110, a wireless communication status display unit (link lamp) 1120, an FPD status display unit 1130, a selection button 1140, a power switch 1150, and , A cancel button 1160 is provided.
  • the imaging preparation completion display unit (ready lamp) 1110 indicates whether or not the FPD 120 is ready for X-ray imaging by, for example, lighting.
  • the photographing preparation completion display unit (ready lamp) 1110 has the same configuration as the photographing preparation completion display units (ready lamps) 120-11 and 120-21 shown in FIG.
  • the wireless communication status display unit (link lamp) 1120 indicates the wireless communication status of the FPD 120 by, for example, whether or not lighting is possible.
  • the wireless communication status display unit (link lamp) 1120 has the same configuration as the wireless communication status display units (link lamps) 120-12 and 120-22 shown in FIG.
  • the FPD status display unit 1130 displays the status of the FPD 120.
  • the FPD status display unit 1130 includes a first FPD status display region 1131 that indicates connectable X-ray imaging systems by SSID1 to SSID3, and a second FPD status display region 1132 for confirming the current imaging target. Configured.
  • the first FPD status display area 1131 is configured so that any one of SSID1 to SSID3 can be selected.
  • the second FPD state display area 1132 information on the X-ray imaging examination transmitted from the X-ray imaging system selected in the first FPD state display area 1131 is displayed.
  • the FPD state display unit 1130 having the second FPD state display region 1132 has a function of an examination information display unit.
  • the selection button 1140 is a button for setting the state of the FPD 120.
  • the power SW 1150 is a switch for switching the power source 123 on / off.
  • the cancel button 1160 is a button for removing the FPD 120 from the X-ray imaging target. That is, the cancel button 1160 is operated by the operator when the current imaging target or the current X-ray imaging system is not desired, and the cancel button 1160 is operated to establish a communication connection to the X-ray imaging system. Can be cut.
  • the FPD state display unit 1130 is configured from the display unit 125 and the operation unit 126 illustrated in FIG. 2.
  • a selection button 1140, a power supply SW 1150, and a cancel button 1160 are configured from the operation unit 126 illustrated in FIG.
  • the operator confirms the imaging preparation completion display unit (ready lamp) 1110 and the wireless communication status display unit (link lamp) 1120 to perform X-ray imaging, and to which X-ray imaging system the FPD 120 is currently connected.
  • the imaging preparation completion display unit (ready lamp) 1110 and the wireless communication status display unit (link lamp) 1120 to perform X-ray imaging, and to which X-ray imaging system the FPD 120 is currently connected.
  • a desired connection destination can be selected in the first FPD state display area 1131. ing.
  • the FPD status display unit 1130 is provided as one configuration of the FPD 120, but the configurations of the FPD 120 and the FPD status display unit 1130 in the present embodiment are not limited to this.
  • constructing the FPD status display unit 1130 separately from the FPD 120 is also applicable to this embodiment.
  • FIG. 12 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) according to the fifth embodiment of the present invention.
  • the same reference numerals are given to the same components as those of the X-ray imaging system 100 according to the first embodiment shown in FIG.
  • the X-ray imaging system according to the present embodiment includes, for example, the X-ray generation unit 110, the X-ray generation control unit 130, and the X-ray irradiation button 140 shown in FIG. It shall be configured.
  • This embodiment is a form in which X-ray imaging corresponding to a plurality of examination IDs is simultaneously performed with one X-ray imaging system.
  • three inspection requests inspection ID1, inspection ID2, inspection ID3 are made for a certain X-ray imaging system and are connected to the X-ray imaging system.
  • X-ray imaging is performed using the six FPDs 120-1 to 120-6.
  • FIG. 12 shows a system control unit 150 and a plurality of FPDs 120-1 to 120-6 corresponding to a plurality of examination IDs 1 to ID3.
  • the system control unit 150 divides the six FPDs 120-1 to 120-6 into three groups each including two, and each group has a different inspection ID (inspection ID1, inspection ID2, inspection ID3). ) And the assigned examination ID is transmitted.
  • the FPD 120-1 to 120-2 group is assigned to the examination ID 1
  • the FPD 120-3 to 120-4 group is assigned to the examination ID 2
  • the FPD 120-5 to 120-6 group is assigned. Is assigned to inspection ID3.
  • the specific operation of the X-ray imaging system is the same as that of the first embodiment described above.
  • the above-described first operation is performed.
  • the FPD 120 described in the fourth embodiment can be used.
  • the activation state duration T1, the standby state duration T2, the delay time T3, etc. so that the efficiency of X-ray imaging is optimized by appropriately communicating between the FPDs 120 in each group. Is adjusted adaptively.
  • system control unit 150 manages the X-ray image data acquired from each FPD 120 for each assigned inspection ID. Specifically, the system control unit 150 stores and manages the X-ray image data acquired from each FPD 120 in a unique folder for each examination ID.
  • FIG. 13 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) 600 according to the sixth embodiment of the present invention.
  • the X-ray imaging system 600 has a configuration in which a plurality of X-ray generation units (radiation generation units) 110 capable of X-ray irradiation substantially simultaneously are disposed. Specifically, two X-ray generation units 110-1 to 110-2 corresponding to the two FPDs 120-1 to 120-2 are provided.
  • the first X-ray generation unit 110-1 irradiates the subject H with the X-ray 111-1
  • the second X-ray generation unit 110-2 applies the X-ray 111 to the subject H. -2 is irradiated.
  • the X-ray generators 110-1 to 110-2 perform X-ray irradiation substantially simultaneously on the FPDs 120-1 to 120-2 via the subject H.
  • the X-rays 111-1 to 111-2 from the X-ray generation units 110-1 to 110-2 are irradiated to the same part of the human body as the subject H, but the first FPD 120-1 and the first FPD 120-1 Since the two FPDs 120-2 are arranged at different positions on the subject H, X-rays irradiated from different directions are incident on the first FPD 120-1 and the second FPD 120-2, respectively.
  • the first FPD 120-1 and the second FPD 120-2 generate X-ray image data substantially simultaneously and transmit them to the system control unit 150.
  • stereo X-ray imaging stereo radiation imaging
  • the monitor 150c is a stereo display that displays a set of two stereo X-ray images substantially simultaneously, and can project X-ray images independently to both eyes of the operator. .
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC
  • 100 X-ray imaging system 110 X-ray generation unit, 111 X-ray, 120-1 first FPD, 120-2 second FPD, 130 X-ray generation control unit, 140 X-ray irradiation button, 150 system control unit, 150a PC, 150b access point, 150c monitor, H subject

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 A radiography system (100) provided with a plurality of radiation image detectors (120) for detecting radiation passed through a subject (H) and obtaining a radiation image, a control unit (150a) for controlling the plurality of radiation image detectors (120), and a communication unit (150b) for notifying a second radiation image detector (120-2) that a first radiation image detector (120-1) of the plurality of radiation image detectors (120) has transitioned to a radiation detection-capable state, the second radiation image detector (120-2) transitioning to the radiation detection-capable state when the first radiation image detector (120-1) has transitioned to the radiation detection-capable state.

Description

放射線撮影システム及びその制御方法Radiation imaging system and control method thereof
 本発明は、被検体の放射線撮影を行う放射線撮影システム及びその制御方法に関するものである。なお、本明細書においては、本発明に係る放射線として、X線を適用した例について説明を行うが、本発明においては、このX線に限らず、例えばα線、β線、γ線等の他の放射線を適用することも可能である。 The present invention relates to a radiation imaging system for performing radiation imaging of a subject and a control method thereof. In this specification, an example in which X-rays are applied as radiation according to the present invention will be described. However, in the present invention, not only the X-rays but also α-rays, β-rays, γ-rays, etc. Other radiation can also be applied.
 近年、人体もしくは物体等の被検体を透過したX線のX線強度の空間分布を画像化することにより得られる、被検体の内部構造を観察するためのX線画像としては、デジタル画像が一般化している。特に、医療や非破壊検査の分野では、比較的大きな被検体の内部構造を観察するためのデジタル画像を取得するX線画像検出器として、フラット・パネル・ディテクター(Flat Panel Detector:以下、「FPD」と称する)が用いられている。このFPDでは、広範囲のX線強度分布をデジタル化したデジタルX線画像を得ることができる。 In recent years, digital images are generally used as X-ray images for observing the internal structure of a subject obtained by imaging the spatial distribution of the X-ray intensity of X-rays transmitted through the subject such as a human body or an object. It has become. In particular, in the field of medical and non-destructive testing, a flat panel detector (hereinafter referred to as “FPD”) is used as an X-ray image detector for acquiring a digital image for observing the internal structure of a relatively large subject. Is used). With this FPD, a digital X-ray image obtained by digitizing a wide range of X-ray intensity distribution can be obtained.
 デジタル画像の一般的な特徴は、画像情報を損傷することなく正確かつ高速に伝送できることである。また、近年の無線技術の発展により、バッテリ動作する可搬型FPDで取得されたデジタルX線画像データを観察・保存・管理するためのコンピュータシステムへ無線伝送することも可能となっており、より自由度の高いX線撮影が可能となっている。 A general feature of digital images is that image information can be transmitted accurately and at high speed without damage. In addition, with the recent development of wireless technology, digital X-ray image data acquired with a battery-operated portable FPD can be wirelessly transmitted to a computer system for observing, storing, and managing the data. A high degree of X-ray imaging is possible.
 近年、可搬型FPDの取り扱いの簡易化と低価格化により、例えば、下記の特許文献1~3に開示されているように、複数の可搬型FPDを利用したX線撮影システムも提案されている。 In recent years, for example, as disclosed in Patent Documents 1 to 3 below, an X-ray imaging system using a plurality of portable FPDs has been proposed due to simplification of handling and cost reduction of portable FPDs. .
 また、例えば、下記の特許文献4に開示されているように、X線発生装置と可搬型FPDの同期用信号線の接続を行うことなく、発生するX線を自動検知することでX線撮影をすることも可能となってきている。 Further, for example, as disclosed in Patent Document 4 below, X-ray imaging is performed by automatically detecting generated X-rays without connecting an X-ray generator and a synchronization signal line of a portable FPD. It is also possible to do.
特許第4708559号公報Japanese Patent No. 4708559 特開2011-235093号公報JP 2011-235093 A 特開2000-350718号公報JP 2000-350718 A 特開平11-155847号公報JP-A-11-155847
 上述した特許文献1~3では、X線発生のタイミングとFPD動作のタイミングとの同期をとる必要があるため、X線発生直前のタイミングでX線発生装置から出力される同期信号を、使用する特定のFPDに伝送する必要がある。そのため、1つのX線撮影システムにおいて複数のFPDが使用可能であるにも関わらず、ユーザが所望する使用可能なFPDの1つをその都度選択しなければならない。そして、使用するFPDを変更する場合には、改めてFPDを選択するためのユーザ操作が必要となる。 In Patent Documents 1 to 3 described above, since it is necessary to synchronize the timing of X-ray generation and the timing of FPD operation, the synchronization signal output from the X-ray generator at the timing immediately before the X-ray generation is used. It needs to be transmitted to a specific FPD. Therefore, although a plurality of FPDs can be used in one X-ray imaging system, one of the usable FPDs desired by the user must be selected each time. And when changing FPD to be used, user operation for selecting FPD anew is needed.
 また、上述した特許文献4では、可搬型FPDをX線検出可能状態(以下、「活性化状態」と称する)に設定する必要があるため、前記と同様に、使用する可搬型FPDを選択する必要がある。 In Patent Document 4 described above, since it is necessary to set the portable FPD to an X-ray detectable state (hereinafter referred to as “activated state”), the portable FPD to be used is selected as described above. There is a need.
 本発明は、このような問題点に鑑みてなされたものであり、複数の放射線画像検出器を含み構成された放射線撮影システムにおいて、当該放射線撮影システムによる制御の複雑化を回避することができる。 The present invention has been made in view of such a problem, and in a radiography system including a plurality of radiographic image detectors, it is possible to avoid complication of control by the radiography system.
 本発明の放射線撮影システムは、被検体を透過した放射線を検出して放射線画像を得る、複数の放射線画像検出器と、前記複数の放射線画像検出器の制御を行う制御部と、前記複数の放射線画像検出器のうちの第1の放射線画像検出器が放射線検出可能状態に遷移したことを第2の放射線画像検出器に伝達する通信部とを備え、前記第1の放射線画像検出器が放射線検出可能状態に遷移した際に、前記第2の放射線画像検出器は放射線検出可能状態に遷移する。 The radiation imaging system of the present invention includes a plurality of radiation image detectors that detect radiation transmitted through a subject to obtain a radiation image, a control unit that controls the plurality of radiation image detectors, and the plurality of radiations. A communication unit that transmits to the second radiation image detector that the first radiation image detector of the image detectors has transitioned to a radiation detectable state, wherein the first radiation image detector detects radiation. When transitioning to a possible state, the second radiation image detector transitions to a radiation detectable state.
 また、本発明は、上述した放射線撮影システムの制御方法を含む。 The present invention also includes a method for controlling the above-described radiation imaging system.
 本発明によれば、複数の放射線画像検出器を含み構成された放射線撮影システムにおいて、当該放射線撮影システムによる制御の複雑化を回避することができる。 According to the present invention, in a radiography system including a plurality of radiographic image detectors, it is possible to avoid complication of control by the radiography system.
本発明の第1の実施形態に係るX線撮影システム(放射線撮影システム)の概略構成の一例を示す。1 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) according to a first embodiment of the present invention. 図1に示すFPDの概略構成の一例を示す。An example of schematic structure of FPD shown in FIG. 1 is shown. 図1に示すシステム制御部の概略構成の一例を示す。An example of schematic structure of the system control part shown in FIG. 1 is shown. 図1に示すFPDの状態遷移の一例を示す模式図である。It is a schematic diagram which shows an example of the state transition of FPD shown in FIG. 図1に示すシステム制御部、第1のFPD及び第2のFPDの相互間の情報通信内容の一例を示すシーケンス図である。It is a sequence diagram which shows an example of the information communication content between the system control part shown in FIG. 1, 1st FPD, and 2nd FPD. 図1に示すモニタ上での表示及び操作について説明するための図である。It is a figure for demonstrating the display and operation on the monitor shown in FIG. 本発明の第1の実施形態に係るX線撮影システム(放射線撮影システム)の制御方法における処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence in the control method of the X-ray imaging system (radiography system) which concerns on the 1st Embodiment of this invention. 図1に示す第1のFPDまたは第2のFPDからシステム制御部に送信されるX線画像データのデータ構成の一例を示す。An example of the data structure of the X-ray image data transmitted to the system control unit from the first FPD or the second FPD shown in FIG. 1 is shown. 本発明の第2の実施形態に係るX線撮影システム(放射線撮影システム)の概略構成の一例を示す。An example of schematic structure of the X-ray imaging system (radiography system) which concerns on the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態に係るX線撮影システム(放射線撮影システム)の概略構成の一例を示す。An example of schematic structure of the X-ray imaging system (radiography system) which concerns on the 3rd Embodiment of this invention is shown. 本発明の第4の実施形態を示し、図1に示すFPDの概略構成の一例を示す。The 4th Embodiment of this invention is shown and an example of schematic structure of FPD shown in FIG. 1 is shown. 本発明の第5の実施形態に係るX線撮影システム(放射線撮影システム)の概略構成の一例を示す。An example of schematic structure of the X-ray imaging system (radiography system) which concerns on the 5th Embodiment of this invention is shown. 本発明の第6の実施形態に係るX線撮影システム(放射線撮影システム)の概略構成の一例を示す。An example of schematic structure of the X-ray imaging system (radiography system) which concerns on the 6th Embodiment of this invention is shown.
 以下に、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。 Hereinafter, embodiments (embodiments) for carrying out the present invention will be described with reference to the drawings.
(第1の実施形態)
 まず、本発明の第1の実施形態について説明する。
(First embodiment)
First, a first embodiment of the present invention will be described.
 図1は、本発明の第1の実施形態に係るX線撮影システム(放射線撮影システム)100の概略構成の一例を示す。 FIG. 1 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) 100 according to the first embodiment of the present invention.
 本実施形態に係るX線撮影システム100は、図1に示すように、X線発生部110、複数の放射線画像検出器であるFPD120-1~120-2、X線発生制御部130、X線照射ボタン140、及び、システム制御部150を有して構成されている。 As shown in FIG. 1, an X-ray imaging system 100 according to this embodiment includes an X-ray generation unit 110, FPDs 120-1 to 120-2 that are a plurality of radiation image detectors, an X-ray generation control unit 130, an X-ray generation unit. The irradiation button 140 and the system control unit 150 are included.
 なお、図1に示すX線撮影システム100では、複数の放射線画像検出器として、2つのFPD120-1~120-2を設ける例が示されているが、本実施形態においてはこれに限定されるものではない。例えば、複数の放射線画像検出器として、3つ以上のFPD120が設けられている形態であってもよい。また、以下の説明において、第1のFPD120-1(第1の放射線画像検出器)と第2のFPD120-2(第2の放射線画像検出器)に共通する説明の場合には、単に、「FPD120」として説明を行う。 In the X-ray imaging system 100 shown in FIG. 1, an example is shown in which two FPDs 120-1 and 120-2 are provided as a plurality of radiation image detectors. However, the present embodiment is not limited to this. It is not a thing. For example, a form in which three or more FPDs 120 are provided as a plurality of radiation image detectors may be used. In the following description, in the case of the description common to the first FPD 120-1 (first radiation image detector) and the second FPD 120-2 (second radiation image detector), simply “ This will be described as “FPD 120”.
 X線発生部(放射線発生部)110は、X線発生制御部130の制御に基づいて、被検体Hに対して、放射線の一種であるX線111を照射する。このX線発生部110は、例えば、X線発生制御部130からの電圧制御を受けてX線を発生するX線源(X線管)と、X線源から発生させたX線の照射領域を制御するコリメータ等を具備して構成されている。 The X-ray generation unit (radiation generation unit) 110 irradiates the subject H with X-rays 111 as a kind of radiation based on the control of the X-ray generation control unit 130. The X-ray generation unit 110 includes, for example, an X-ray source (X-ray tube) that generates X-rays under voltage control from the X-ray generation control unit 130, and an irradiation region of X-rays generated from the X-ray source. A collimator or the like for controlling the above.
 FPD120には、被検体Hを透過したX線111が入射する。FPD120には、X線に感度を持つ画素が2次元マトリックス状に配置された2次元センサが設けられており、この2次元センサは、入射したX線111を検出してX線画像データ(放射線画像データ)を生成する。具体的に、2次元センサの各画素には、入射したX線のX線量に応じた電荷が蓄積され、各画素に蓄積された電荷を読み出すことにより、X線画像データを生成することができる。より詳細に、FPD120の2次元センサは、入射したX線111を検出し、当該X線111の強度分布に応じたX線画像データを生成する。 The X-ray 111 that has passed through the subject H enters the FPD 120. The FPD 120 is provided with a two-dimensional sensor in which pixels having sensitivity to X-rays are arranged in a two-dimensional matrix. The two-dimensional sensor detects the incident X-ray 111 and detects X-ray image data (radiation). Image data). Specifically, in each pixel of the two-dimensional sensor, charges corresponding to the X-ray dose of incident X-rays are accumulated, and X-ray image data can be generated by reading out the charges accumulated in each pixel. . More specifically, the two-dimensional sensor of the FPD 120 detects the incident X-ray 111 and generates X-ray image data corresponding to the intensity distribution of the X-ray 111.
 ここで、図1に示すX線撮影システム100において、第1のFPD120-1及び第2のFPD120-2は、例えば可搬型のFPDとすることができる。第1のFPD120-1には、X線撮影可能な状態(即ち、放射線撮影の準備が完了した状態)であるか否かを示す撮影準備完了表示部(レディランプ)120-11、及び、通信状態を示す無線通信状態表示部(リンクランプ)120-12が設けられている。第2のFPD120-2には、X線撮影可能な状態(即ち、放射線撮影の準備が完了した状態)であるか否かを示す撮影準備完了表示部(レディランプ)120-21、及び、通信状態を示す無線通信状態表示部(リンクランプ)120-22が設けられている。 Here, in the X-ray imaging system 100 shown in FIG. 1, the first FPD 120-1 and the second FPD 120-2 can be, for example, portable FPDs. The first FPD 120-1 includes an imaging preparation completion display unit (ready lamp) 120-11 indicating whether or not X-ray imaging is possible (that is, a state where preparation for radiation imaging is completed), and communication. A wireless communication status display unit (link lamp) 120-12 indicating the status is provided. The second FPD 120-2 includes an imaging preparation completion display unit (ready lamp) 120-21 indicating whether or not X-ray imaging is possible (that is, a state in which preparation for radiation imaging has been completed), and communication. A wireless communication status display unit (link lamp) 120-22 indicating the status is provided.
 X線発生制御部(放射線発生制御部)130は、システム制御部150の制御に基づいて、X線照射ボタン140が操作されたタイミングで、X線発生部110から被検体Hに対してX線111を照射させる制御を行う。 The X-ray generation control unit (radiation generation control unit) 130 performs X-rays from the X-ray generation unit 110 to the subject H at the timing when the X-ray irradiation button 140 is operated based on the control of the system control unit 150. Control to irradiate 111 is performed.
 X線照射ボタン(放射線照射ボタン)140は、操作者が被検体HのX線撮影を行う際に操作するボタンである。 The X-ray irradiation button (radiation irradiation button) 140 is a button operated when the operator performs X-ray imaging of the subject H.
 システム制御部150は、X線撮影システム100における動作を統括的に制御する。例えば、システム制御部150は、複数のFPD120-1~120-2における各FPD(各放射線画像検出器)120と通信を行って各FPD120からX線画像データを取得する制御を行う。そして、システム制御部150は、各FPD120から取得したX線画像データを、検査ID等の検査情報に応じて管理する。 The system control unit 150 comprehensively controls operations in the X-ray imaging system 100. For example, the system control unit 150 performs control to acquire X-ray image data from each FPD 120 by communicating with each FPD (each radiation image detector) 120 in the plurality of FPDs 120-1 to 120-2. Then, the system control unit 150 manages the X-ray image data acquired from each FPD 120 according to inspection information such as an inspection ID.
 このシステム制御部150は、PC(パーソナル・コンピュータ)150a、アクセスポイント150b、及び、モニタ150cを具備して構成されている。なお、本例では、アクセスポイント150bは、システム制御部150の一構成としているが、システム制御部150の一構成とはせずにシステム制御部150から独立した構成として設けられていてもよい。 The system control unit 150 includes a PC (personal computer) 150a, an access point 150b, and a monitor 150c. In this example, the access point 150 b is configured as one configuration of the system control unit 150, but may be provided as a configuration independent of the system control unit 150 without being configured as one configuration of the system control unit 150.
 PC150aは、X線撮影システム100の全般に亘る動作を制御するものであり、X線発生制御部130、アクセスポイント150b、及び、モニタ150cが接続されている。 The PC 150a controls the overall operation of the X-ray imaging system 100, and is connected to an X-ray generation control unit 130, an access point 150b, and a monitor 150c.
 アクセスポイント150bは、第1のFPD120-1及び第2のFPD120-2と無線LANを通じて通信を行うものである。ここでの主な通信内容は、各FPD120で生成されたX線画像データを当該各FPD120からPC150aへ伝送することや、各FPD120の状態に係る情報(ステータス情報)を当該各FPD120からPC150aへ伝送すること、及び、各FPD120を制御するための制御コマンド(状態遷移指示コマンド)をPC150aから当該各FPD120へ伝送すること等である。 The access point 150b communicates with the first FPD 120-1 and the second FPD 120-2 through a wireless LAN. The main communication contents here are to transmit X-ray image data generated by each FPD 120 from each FPD 120 to the PC 150a, and to transmit information (status information) related to the state of each FPD 120 from each FPD 120 to the PC 150a. And transmitting a control command (state transition instruction command) for controlling each FPD 120 from the PC 150a to each FPD 120.
 ここで、第1のFPD120-1及び第2のFPD120-2は、アクセスポイント150bによる無線LAN環境の一員として機能するため、それぞれが無線LAN内の物理アドレス(MACアドレス:Media Access Control address)で区別され、独立した通信が可能となっている。なお、ここで用いる無線通信方式は、無線LAN通信に限定されるものではなく、例えば、Bluetooth(登録商標)規格通信などを用いる他、アドホックな通信など、独自の無線通信方式でも実現可能であり、無線LAN通信の場合と同様の効果が得られる。 Here, since the first FPD 120-1 and the second FPD 120-2 function as members of a wireless LAN environment by the access point 150b, each is a physical address (MAC address: Media Access Control address) in the wireless LAN. Differentiated and independent communication is possible. Note that the wireless communication method used here is not limited to wireless LAN communication. For example, in addition to using Bluetooth (registered trademark) standard communication or the like, it can be realized by an original wireless communication method such as ad hoc communication. The same effect as in the case of wireless LAN communication can be obtained.
 また、ここで特筆すべきは、第1のFPD120-1と第2のFPD120-2との間でもステータス情報の通信が行われることであるが、物理的にはアクセスポイント150bを通じた無線LAN環境で行われる。以下の説明においては、FPD120同士の通信という表現をする。 It should also be noted that status information is communicated between the first FPD 120-1 and the second FPD 120-2. Physically, the wireless LAN environment through the access point 150b is used. Done in In the following description, communication between the FPDs 120 is expressed.
 なお、本実施形態においては、PC150aと第1のFPD120-1及び第2のFPD120-2との間の通信方式は、アクセスポイント150bを介した無線通信としているが、本発明においては、この無線通信に限定されるものではない。例えば、PC150aと第1のFPD120-1及び第2のFPD120-2との間を有線で接続し、有線通信を行う形態も本発明に適用可能である。同様に、FPD120同士の通信においても、第1のFPD120-1と第2のFPD120-2との間を有線で接続し、有線通信を行う形態も本発明に適用可能である。 In the present embodiment, the communication method between the PC 150a and the first FPD 120-1 and the second FPD 120-2 is wireless communication via the access point 150b. It is not limited to communication. For example, a form in which the PC 150a and the first FPD 120-1 and the second FPD 120-2 are connected by wire to perform wired communication is also applicable to the present invention. Similarly, in the communication between the FPDs 120, a form in which the first FPD 120-1 and the second FPD 120-2 are connected by wire to perform wired communication is also applicable to the present invention.
 モニタ150cは、グラフィカル・ユーザ・インターフェース(GUI)機能を備え、例えばタッチパネルで実現される操作ボタン及び各種の情報を表示する機能を持つ。また、モニタ150cは、PC150aの制御に基づいて、第1のFPD120-1及び第2のFPD120-2で生成されたX線画像データに基づくX線画像を操作者のために表示する。 The monitor 150c has a graphical user interface (GUI) function, for example, an operation button realized by a touch panel and a function of displaying various information. The monitor 150c displays for the operator an X-ray image based on the X-ray image data generated by the first FPD 120-1 and the second FPD 120-2 based on the control of the PC 150a.
 次に、図1に示すFPD120の概略構成(内部構成)について説明する。 Next, a schematic configuration (internal configuration) of the FPD 120 shown in FIG. 1 will be described.
 図2は、図1に示すFPD120の概略構成の一例を示す。 FIG. 2 shows an example of a schematic configuration of the FPD 120 shown in FIG.
 FPD120は、図2に示すように、CPU121、記憶部122、電源123、2次元センサ124、表示部125、操作部126、通信インターフェース(通信I/F)127、及び、バス128を有して構成されている。 As shown in FIG. 2, the FPD 120 includes a CPU 121, a storage unit 122, a power supply 123, a two-dimensional sensor 124, a display unit 125, an operation unit 126, a communication interface (communication I / F) 127, and a bus 128. It is configured.
 CPU121は、例えば、記憶部122に記憶されたプログラムやデータや情報を用いて、当該FPD120の動作を制御するものである。 The CPU 121 controls the operation of the FPD 120 using programs, data, and information stored in the storage unit 122, for example.
 記憶部122は、例えば、オペレーティングシステム(OS)やCPU121が実行するプログラム、更には、当該FPD120において既知としているデータや情報等を記憶している。 The storage unit 122 stores, for example, an operating system (OS), a program executed by the CPU 121, and data and information known in the FPD 120.
 電源123は、当該FPD120を動作させるための電力を供給するものである。 The power source 123 supplies power for operating the FPD 120.
 2次元センサ124は、X線に感度を持つ画素が2次元マトリックス状に配置されたものである。この2次元センサ124は、入射したX線111に基づくX線画像データを生成する。具体的に、2次元センサの各画素には、入射したX線のX線量に応じた電荷が蓄積され、各画素に蓄積された電荷を読み出すことにより、X線画像データを生成することができる。 The two-dimensional sensor 124 is a pixel in which pixels having sensitivity to X-rays are arranged in a two-dimensional matrix. The two-dimensional sensor 124 generates X-ray image data based on the incident X-ray 111. Specifically, in each pixel of the two-dimensional sensor, charges corresponding to the X-ray dose of incident X-rays are accumulated, and X-ray image data can be generated by reading out the charges accumulated in each pixel. .
 表示部125は、例えばCPU121の制御に基づいて、各種の情報等を表示する。 The display unit 125 displays various information based on the control of the CPU 121, for example.
 操作部126は、操作者が操作可能に構成された入力デバイスである。 The operation unit 126 is an input device configured to be operable by the operator.
 通信I/F127は、当該FPD120と外部装置との間で行われる各種のデータや各種の情報、各種の信号等の送受信を司るものである。ここで、外部装置としては、他のFPD120やシステム制御部150等が挙げられる。 The communication I / F 127 controls transmission / reception of various data, various information, various signals, and the like performed between the FPD 120 and an external device. Here, examples of the external device include another FPD 120 and a system control unit 150.
 バス128は、CPU121、記憶部122、電源123、2次元センサ124、表示部125、操作部126、及び、通信I/F127を相互に通信可能に接続する。 The bus 128 connects the CPU 121, the storage unit 122, the power supply 123, the two-dimensional sensor 124, the display unit 125, the operation unit 126, and the communication I / F 127 so that they can communicate with each other.
 ここで、例えば、図2に示す表示部125から、図1に示す撮影準備完了表示部(レディランプ)120-11及び120-21、並びに、無線通信状態表示部(リンクランプ)120-12及び120-22が構成される。 Here, for example, from the display unit 125 shown in FIG. 2, the shooting preparation completion display units (ready lamps) 120-11 and 120-21 shown in FIG. 1, the wireless communication status display unit (link lamp) 120-12, and 120-22 is configured.
 次に、図1に示すシステム制御部150の概略構成について説明する。 Next, a schematic configuration of the system control unit 150 shown in FIG. 1 will be described.
 図3は、図1に示すシステム制御部150の概略構成の一例を示す。 FIG. 3 shows an example of a schematic configuration of the system control unit 150 shown in FIG.
 システム制御部150は、図3に示すように、CPU151、記憶部152、電源153、表示部154、操作部155、通信インターフェース(通信I/F)156、及び、バス157を有して構成されている。 As shown in FIG. 3, the system control unit 150 includes a CPU 151, a storage unit 152, a power supply 153, a display unit 154, an operation unit 155, a communication interface (communication I / F) 156, and a bus 157. ing.
 CPU151は、例えば、記憶部152に記憶されたプログラムやデータや情報を用いて、当該システム制御部150の動作を制御するものである。 The CPU 151 controls the operation of the system control unit 150 using, for example, a program, data, or information stored in the storage unit 152.
 記憶部152は、例えば、オペレーティングシステム(OS)やCPU151が実行するプログラム、更には、当該システム制御部150において既知としているデータや情報等を記憶している。 The storage unit 152 stores, for example, an operating system (OS), a program executed by the CPU 151, and data and information known in the system control unit 150.
 電源153は、当該システム制御部150を動作させるための電力を供給するものである。 The power source 153 supplies power for operating the system control unit 150.
 表示部154は、例えばCPU151の制御に基づいて、各種の画像や各種の情報等を表示する。 The display unit 154 displays various images and various information based on the control of the CPU 151, for example.
 操作部155は、操作者が操作可能に構成された入力デバイスである。 The operation unit 155 is an input device configured to be operable by the operator.
 通信I/F156は、当該システム制御部150と外部装置との間で行われる各種のデータや各種の情報、各種の信号等の送受信を司るものである。ここで、外部装置としては、FPD120等が挙げられる。 The communication I / F 156 controls transmission / reception of various data, various information, various signals, and the like performed between the system control unit 150 and an external device. Here, as the external device, an FPD 120 or the like can be cited.
 バス157は、CPU151、記憶部152、電源153、表示部154、操作部155、及び、通信I/F156を相互に通信可能に接続する。 The bus 157 connects the CPU 151, the storage unit 152, the power source 153, the display unit 154, the operation unit 155, and the communication I / F 156 so that they can communicate with each other.
 ここで、例えば、図3に示すCPU151、記憶部152及び電源153から、図1に示すPC150aが構成される。また、例えば、図3に示す通信I/F156から、図1に示すアクセスポイント150bが構成される。また、例えば、図3に示す表示部154及び操作部155から、モニタ150cが構成される。 Here, for example, the CPU 151, the storage unit 152, and the power source 153 shown in FIG. 3 constitute the PC 150a shown in FIG. Further, for example, the access point 150b shown in FIG. 1 is configured from the communication I / F 156 shown in FIG. Further, for example, the monitor 150c includes the display unit 154 and the operation unit 155 shown in FIG.
 次に、図1に示すFPD120の状態遷移について説明する。 Next, the state transition of the FPD 120 shown in FIG. 1 will be described.
 図4は、図1に示すFPD120の状態遷移の一例を示す模式図である。 FIG. 4 is a schematic diagram showing an example of state transition of the FPD 120 shown in FIG.
 図4において、状態401は、電源123を投入する前の「電源オフ状態」であり、状態402は、低消費電力でコマンドを待つ「待機状態」、状態403は、X線検出可能状態(放射線検出可能状態)である「活性化状態」を表している。ここで、図1に示す複数のFPD120-1~120-2における各FPD120は、システム制御部150による制御とは独立して活性化状態に遷移することが可能であり、且つ、互いに通信可能に構成されている。 In FIG. 4, a state 401 is a “power-off state” before the power source 123 is turned on, a state 402 is a “standby state” waiting for a command with low power consumption, and a state 403 is an X-ray detectable state (radiation) This represents an “activated state” that is a detectable state. Here, each FPD 120 in the plurality of FPDs 120-1 to 120-2 shown in FIG. 1 can transition to the activated state independently of the control by the system control unit 150, and can communicate with each other. It is configured.
 また、図4において、状態404は、2次元センサ124からX線画像データを読み出している「X線量(電荷)蓄積・読み出し状態」であり、状態405は、2次元センサ124から得られたX線画像データをシステム制御部150へ送信している「X線画像データ送信状態」である。 Further, in FIG. 4, a state 404 is an “X dose (charge) accumulation / reading state” in which X-ray image data is read from the two-dimensional sensor 124, and a state 405 is an X obtained from the two-dimensional sensor 124. This is an “X-ray image data transmission state” in which line image data is being transmitted to the system control unit 150.
 図4に示すFPD120の初期状態は、電源オフ状態401であり、この状態で電源投入406があると待機状態402に遷移し、コマンドを待つ状態になる。この待機状態402で電源遮断407があると、電源オフ状態401に戻る。 The initial state of the FPD 120 shown in FIG. 4 is a power-off state 401, and when there is a power-on 406 in this state, the state transits to a standby state 402 and waits for a command. If there is a power shut-off 407 in this standby state 402, it returns to the power off state 401.
 また、待機状態402においては、所定時間の経過に従って、活性化状態403に遷移する。ここでは、活性化状態403への遷移に要する所定時間は、例えば、条件設定によって、T2もしくはT3で表される時間とする。即ち、待機状態402において、T2/T3時間後の自動遷移408によって、活性化状態403に遷移する。 In the standby state 402, the state transits to the activated state 403 as a predetermined time elapses. Here, the predetermined time required for the transition to the activated state 403 is, for example, a time represented by T2 or T3 depending on the condition setting. That is, in the standby state 402, the transition is made to the activated state 403 by the automatic transition 408 after T2 / T3 time.
 活性化状態403においては、暗電流の蓄積があるため所定時間X線照射が行われない場合には、待機状態402に戻る。ここで、待機状態402への遷移に要する所定時間は、例えば、条件設定によって、T1で表される時間とする。即ち、活性化状態403において、T1時間後の自動遷移409によって、待機状態402に遷移する。また、活性化状態403において、電源遮断410があると、電源オフ状態401に戻る。 In the activated state 403, since dark current is accumulated, if the X-ray irradiation is not performed for a predetermined time, the process returns to the standby state 402. Here, the predetermined time required for the transition to the standby state 402 is, for example, a time represented by T1 depending on the condition setting. That is, in the activated state 403, the state transits to the standby state 402 by the automatic transition 409 after the time T1. In the activated state 403, if there is a power shutdown 410, the power off state 401 is restored.
 また、活性化状態403において、2次元センサ124でX線照射検知411があると、X線量(電荷)蓄積・読み出し状態404に遷移する。このX線量(電荷)蓄積・読み出し状態404において、読み出し完了412となると、X線画像データ送信状態に遷移する。そして、このX線画像データ送信状態において、X線画像データ送信完了413となると、待機状態402に戻る。 In the activated state 403, if there is an X-ray irradiation detection 411 by the two-dimensional sensor 124, the state transits to the X-ray dose (charge) accumulation / readout state 404. In the X-ray dose (charge) accumulation / reading state 404, when reading is completed 412, the state transits to the X-ray image data transmission state. In this X-ray image data transmission state, when the X-ray image data transmission is completed 413, the process returns to the standby state 402.
 次に、図1に示すシステム制御部150、第1のFPD120-1及び第2のFPD120-2の相互間の情報通信内容について説明する。 Next, information communication contents between the system control unit 150, the first FPD 120-1, and the second FPD 120-2 shown in FIG. 1 will be described.
 図5は、図1に示すシステム制御部150、第1のFPD120-1及び第2のFPD120-2の相互間の情報通信内容の一例を示すシーケンス図である。ここで、システム制御部150は、第1のFPD120-1及び第2のFPD120-2と情報通信を行う際には、通信I/F156(アクセスポイント150b)を介して、CPU151が主体となって当該情報通信処理等を行う。また、第1のFPD120-1は、システム制御部150及び第2のFPD120-2と情報通信を行う際には、通信I/F127を介して、CPU121が主体となって当該情報通信処理等を行う。また、第2のFPD120-2は、システム制御部150及び第1のFPD120-1と情報通信を行う際には、通信I/F127を介して、CPU121が主体となって当該情報通信処理等を行う。 FIG. 5 is a sequence diagram showing an example of the contents of information communication between the system control unit 150, the first FPD 120-1, and the second FPD 120-2 shown in FIG. Here, when performing information communication with the first FPD 120-1 and the second FPD 120-2, the system control unit 150 is mainly operated by the CPU 151 via the communication I / F 156 (access point 150b). The information communication process is performed. In addition, when the first FPD 120-1 performs information communication with the system control unit 150 and the second FPD 120-2, the CPU 121 mainly performs the information communication processing and the like via the communication I / F 127. Do. When the second FPD 120-2 performs information communication with the system control unit 150 and the first FPD 120-1, the CPU 121 mainly performs the information communication processing and the like via the communication I / F 127. Do.
 シーケンス501は、図1に示すシステム制御部150の動作を示すシーケンスである。また、シーケンス502は、図1に示す第1のFPD120-1の動作を示すシーケンスであり、シーケンス503は、図1に示す第2のFPD120-2の動作を示すシーケンスである。図5に示すシーケンス図の説明においては、図5中の< >で囲まれた数値(例えば、<s001>)で、説明する部分を表記する。 The sequence 501 is a sequence showing the operation of the system control unit 150 shown in FIG. The sequence 502 is a sequence showing the operation of the first FPD 120-1 shown in FIG. 1, and the sequence 503 is a sequence showing the operation of the second FPD 120-2 shown in FIG. In the description of the sequence diagram shown in FIG. 5, the part to be described is represented by a numerical value (for example, <s001>) surrounded by <> in FIG.
 まず、第1のFPD120-1において、電源123が投入されると(<s001>)、第1のFPD120-1のCPU121はこれを検知する。そして、第1のFPD120-1のCPU121は、例えば当該第1のFPD120-1における制御マイクロコンピュータの起動などの初期化処理を行う(<s003>)。その後、第1のFPD120-1のCPU121は、当該第1のFPD120-1の動作状態を待機状態とする処理を行う(<s009>)。 First, when the power supply 123 is turned on in the first FPD 120-1 (<s001>), the CPU 121 of the first FPD 120-1 detects this. Then, the CPU 121 of the first FPD 120-1 performs initialization processing such as activation of a control microcomputer in the first FPD 120-1 (<s003>). Thereafter, the CPU 121 of the first FPD 120-1 performs a process of setting the operation state of the first FPD 120-1 to the standby state (<s009>).
 同様に、第2のFPD120-2において、電源123が投入されると(<s002>)、第2のFPD120-2のCPU121はこれを検知する。そして、第2のFPD120-2のCPU121は、例えば当該第2のFPD120-2における制御マイクロコンピュータの起動などの初期化処理を行う(<s004>)。その後、第2のFPD120-2のCPU121は、当該第2のFPD120-2の動作状態を待機状態とする処理を行う(<s010>)。 Similarly, when the power supply 123 is turned on in the second FPD 120-2 (<s002>), the CPU 121 of the second FPD 120-2 detects this. Then, the CPU 121 of the second FPD 120-2 performs initialization processing such as activation of a control microcomputer in the second FPD 120-2 (<s004>). Thereafter, the CPU 121 of the second FPD 120-2 performs processing for setting the operation state of the second FPD 120-2 to the standby state (<s010>).
 第1のFPD120-1及び第2のFPD120-2がシステム制御部150のアクセスポイント150bの電波が到達する範囲のいわゆる無線LAN環境下にある場合、第1のFPD120-1及び第2のFPD120-2のCPU121は、通信I/F127を介して、アクセスポイント150bが数十~数百ミリ秒単位で定期的に電波発信するビーコン信号を受信する処理を行う(<s005>)。 When the first FPD 120-1 and the second FPD 120-2 are in a so-called wireless LAN environment in a range where radio waves of the access point 150b of the system control unit 150 reach, the first FPD 120-1 and the second FPD 120- The CPU 121 of No. 2 performs processing for receiving a beacon signal periodically transmitted by the access point 150b in units of several tens to several hundreds of milliseconds via the communication I / F 127 (<s005>).
 第1のFPD120-1のCPU121は、システム制御部150からビーコン信号を受信すると、システム制御部150に対して、接続要求信号(接続要求コマンド)を送信する処理を行う(<s006>)。具体的に、第1のFPD120-1のCPU121は、受信したビーコン信号のIDが所定の無線LANのID(Service Set Identifier:SSID)であることを確認する。その後、パスワード認証等の処置を経て、当該無線周波数にてシステム制御部150に対してMACアドレスを含む接続要求コマンドを送信する処理を行う。システム制御部150のCPU151は、第1のFPD120-1から接続要求信号(接続要求コマンド)を受信すると、第1のFPD120-1に対して、接続許可信号を送信する処理を行う(<s007>)。 When the beacon signal is received from the system control unit 150, the CPU 121 of the first FPD 120-1 performs a process of transmitting a connection request signal (connection request command) to the system control unit 150 (<s006>). Specifically, the CPU 121 of the first FPD 120-1 confirms that the ID of the received beacon signal is a predetermined wireless LAN ID (Service Set Identifier: SSID). Thereafter, through a process such as password authentication, a process of transmitting a connection request command including a MAC address to the system control unit 150 at the radio frequency is performed. When the CPU 151 of the system control unit 150 receives the connection request signal (connection request command) from the first FPD 120-1, the CPU 151 performs a process of transmitting a connection permission signal to the first FPD 120-1 (<s007>). ).
 そして、第1のFPD120-1のCPU121は、システム制御部150から接続許可信号を受信すると、無線通信接続操作が完了した旨を示す無線通信状態表示(以下、「リンクランプ」)点灯処理を行う。これにより、操作者は、第1のFPD120-1が通信可能状態になったことを知ることができる。その後、第1のFPD120-1のCPU121は、システム制御部150に対して待機状態を通知する処理を行う(<s008>)。 When the CPU 121 of the first FPD 120-1 receives the connection permission signal from the system control unit 150, the CPU 121 performs a wireless communication status display (hereinafter, “link lamp”) lighting process indicating that the wireless communication connection operation is completed. . As a result, the operator can know that the first FPD 120-1 is in a communicable state. Thereafter, the CPU 121 of the first FPD 120-1 performs processing for notifying the system control unit 150 of the standby state (<s008>).
 システム制御部150のCPU151は、第1のFPD120-1から待機状態の通知を受けると、第1のFPD120-1が使用可能状態であるとして登録する処理を行う。 When the CPU 151 of the system control unit 150 receives the notification of the standby state from the first FPD 120-1, the CPU 151 registers the first FPD 120-1 as being available.
 第1のFPD120-1における情報通信内容(<s005>~<s008>)と同様に、第2のFPD120-2においても情報通信が行われる。 In the same way as the information communication contents (<s005> to <s008>) in the first FPD 120-1, information communication is also performed in the second FPD 120-2.
 具体的には、まず、第2のFPD120-2のCPU121は、システム制御部150からビーコン信号を受信すると、システム制御部150に対して、接続要求信号(接続要求コマンド)を送信する処理を行う(<s011>)。具体的に、第2のFPD120-2のCPU121は、受信したビーコン信号のIDが所定の無線LANのID(SSID)であることを確認する。その後、パスワード認証等の処置を経て、当該無線周波数にてシステム制御部150に対してMACアドレスを含む接続要求コマンドを送信する処理を行う。システム制御部150のCPU151は、第2のFPD120-2から接続要求信号(接続要求コマンド)を受信すると、第2のFPD120-2に対して、接続許可信号を送信する処理を行う(<s012>)。 Specifically, first, when the CPU 121 of the second FPD 120-2 receives a beacon signal from the system control unit 150, the CPU 121 performs a process of transmitting a connection request signal (connection request command) to the system control unit 150. (<S011>). Specifically, the CPU 121 of the second FPD 120-2 confirms that the ID of the received beacon signal is an ID (SSID) of a predetermined wireless LAN. Thereafter, through a process such as password authentication, a process of transmitting a connection request command including a MAC address to the system control unit 150 at the radio frequency is performed. When receiving the connection request signal (connection request command) from the second FPD 120-2, the CPU 151 of the system control unit 150 performs a process of transmitting a connection permission signal to the second FPD 120-2 (<s012>). ).
 そして、第2のFPD120-2のCPU121は、システム制御部150から接続許可信号を受信すると、無線通信接続操作が完了した旨を示すリンクランプ点灯処理を行う。これにより、操作者は、第2のFPD120-2が通信可能状態になったことを知ることができる。その後、第2のFPD120-2のCPU121は、システム制御部150に対して待機状態を通知する処理を行う(<s013>)。 Then, when the CPU 121 of the second FPD 120-2 receives the connection permission signal from the system control unit 150, the CPU 121 performs a link lamp lighting process indicating that the wireless communication connection operation is completed. As a result, the operator can know that the second FPD 120-2 is in a communicable state. Thereafter, the CPU 121 of the second FPD 120-2 performs processing for notifying the system control unit 150 of the standby state (<s013>).
 システム制御部150のCPU151は、第2のFPD120-2から待機状態の通知を受けると、第2のFPD120-2が使用可能状態であるとして登録する処理を行う。 When the CPU 151 of the system control unit 150 receives the notification of the standby state from the second FPD 120-2, the CPU 151 registers the second FPD 120-2 as being available.
 続いて、第1のFPD120-1のCPU121は、図4において上述したように、所定時間を待って、当該第1のFPD120-1の動作状態を活性化状態に自動遷移する処理を行う(<s014>)。そして、第1のFPD120-1のCPU121は、活性化状態持続時間T1を設定する処理を行う(<s018>)。この際、第1のFPD120-1のCPU121は、システム制御部150に対して、当該第1のFPD120-1が活性化状態である旨を通知する処理を行う(<s015>)。また、第1のFPD120-1のCPU121は、システム制御部150に対する通知と実質的に同時に、第2のFPD120-2に対しても、当該第1のFPD120-1が活性化状態である旨を通知する処理を行う(<s016>)。 Subsequently, as described above with reference to FIG. 4, the CPU 121 of the first FPD 120-1 performs a process of automatically transitioning the operation state of the first FPD 120-1 to the activated state after waiting for a predetermined time (< s014>). Then, the CPU 121 of the first FPD 120-1 performs a process of setting the activation state duration T1 (<s018>). At this time, the CPU 121 of the first FPD 120-1 performs a process of notifying the system control unit 150 that the first FPD 120-1 is activated (<s015>). The CPU 121 of the first FPD 120-1 also notifies the second FPD 120-2 that the first FPD 120-1 is activated substantially simultaneously with the notification to the system control unit 150. The notification process is performed (<s016>).
 システム制御部150のCPU151は、第1のFPD120-1から活性化状態である旨の通知を受けると、第1のFPD120-1に対して、予め知り得た、X線撮影検査の内容を表す検査情報である検査IDを通知する処理を行う(<s017>)。この検査IDは、第1のFPD120-1によるX線撮影後、当該X線撮影により得られた画像情報とともに、第1のFPD120-1からシステム制御部150に返信される。そして、システム制御部150のCPU151は、第1のFPD120-1から返信された検査IDによって、撮影画像データが目的とするX線画像データであることを確認する処理を行う。 When the CPU 151 of the system control unit 150 receives a notification from the first FPD 120-1 that it is in the activated state, the CPU 151 represents the contents of the X-ray imaging examination that the first FPD 120-1 can know in advance. A process of notifying the inspection ID as inspection information is performed (<s017>). The examination ID is returned from the first FPD 120-1 to the system control unit 150 together with the image information obtained by the X-ray imaging after the X-ray imaging by the first FPD 120-1. Then, the CPU 151 of the system control unit 150 performs processing for confirming that the captured image data is intended X-ray image data based on the inspection ID returned from the first FPD 120-1.
 ここでは、システム制御部150から第1のFPD120-1に送信する検査情報として検査IDの例を挙げたが、検査情報は、検査IDに限らず、X線撮影検査に関する情報であれば如何なるものも許容できる。このX線撮影検査に関する情報としては、例えば、検査IDの他、患者名、患者の誕生日、検査名称、撮影部位、担当操作者名、X線撮影条件(放射線撮影条件)に関する物理パラメータなどが挙げられる。そして、第1のFPD120-1からシステム制御部150に返信する検査情報として、検査IDとともに上述した情報を含めることにより、より詳細な撮影画像データの正誤確認が可能となる。 Here, an example of the inspection ID is given as the inspection information transmitted from the system control unit 150 to the first FPD 120-1. However, the inspection information is not limited to the inspection ID, and any information may be used as long as the information is related to the X-ray imaging inspection. Is also acceptable. Examples of the information related to the X-ray imaging examination include, in addition to the examination ID, the patient name, the patient's birthday, the examination name, the imaging part, the operator name in charge, the physical parameters related to the X-ray imaging conditions (radiation imaging conditions), and the like. Can be mentioned. Then, by including the above-described information together with the inspection ID as the inspection information returned from the first FPD 120-1 to the system control unit 150, it is possible to check the correctness of the captured image data in more detail.
 また、第2のFPD120-2のCPU121は、第1のFPD120-1から活性化状態である旨の通知(<s016>)を受けると、活性化状態に遷移するまでの所定時間として遅延時間T3を設定する処理を行う(<s019>)。そして、第2のFPD120-2のCPU121は、遅延時間T3が経過すると、当該第2のFPD120-2の動作状態を活性化状態とする遷移処理を行う(<s020>)。この際、第2のFPD120-2のCPU121は、活性化状態持続時間T1を設定する処理を行う(<s026>)。また、第2のFPD120-2のCPU121は、当該第2のFPD120-2が活性化状態である旨を、第1のFPD120-1に対して通知する処理を行う(<s021>)とともに、システム制御部150に対して通知する処理を行う(<s022>)。 Further, when the CPU 121 of the second FPD 120-2 receives the notification (<s016>) indicating that it is in the activated state from the first FPD 120-1, the delay time T3 as a predetermined time until the transition to the activated state is made. Is set (<s019>). Then, when the delay time T3 has elapsed, the CPU 121 of the second FPD 120-2 performs a transition process that activates the operation state of the second FPD 120-2 (<s020>). At this time, the CPU 121 of the second FPD 120-2 performs a process of setting the activated state duration T1 (<s026>). In addition, the CPU 121 of the second FPD 120-2 performs a process of notifying the first FPD 120-1 that the second FPD 120-2 is activated (<s021>) and the system Processing for notifying the control unit 150 is performed (<s022>).
 システム制御部150のCPU151は、第2のFPD120-2から活性化状態である旨の通知を受けると、第2のFPD120-2に対して、<s017>と同様に、上述した検査IDを通知する処理を行う(<s023>)。 When the CPU 151 of the system control unit 150 receives a notification from the second FPD 120-2 that it is in an activated state, it notifies the second FPD 120-2 of the above-described inspection ID, as in <s017>. Is performed (<s023>).
 また、第1のFPD120-1のCPU121は、<s018>で設定した活性化状態持続時間T1内にX線撮影が行われなかった場合には、2次元センサ124に蓄積された暗電流などを消去するためと消費電力をおさえてバッテリを温存させるため、もしくは必要以上の発熱を避けるために、当該第1のFPD120-1の動作状態を待機状態とする自動遷移処理を行う(<s024>)。そして、第1のFPD120-1のCPU121は、待機状態持続時間T2を設定する処理を行う(<s025>)。 In addition, the CPU 121 of the first FPD 120-1 uses the dark current accumulated in the two-dimensional sensor 124 when X-ray imaging is not performed within the activation state duration T1 set in <s018>. In order to save the battery by erasing and reducing power consumption, or to avoid excessive heat generation, an automatic transition process is performed in which the operation state of the first FPD 120-1 is in a standby state (<s024>). . Then, the CPU 121 of the first FPD 120-1 performs processing for setting the standby state duration T2 (<s025>).
 そして、第1のFPD120-1のCPU121は、<s025>で設定した所定時間である待機状態持続時間T2が経過すると、当該第1のFPD120-1の動作状態を活性化状態とする自動遷移処理を行う(<s027>)。そして、第1のFPD120-1のCPU121は、活性化状態持続時間T1を設定する処理を行う(<s031>)。また、第1のFPD120-1のCPU121は、システム制御部150に対して、当該第1のFPD120-1が活性化状態である旨を通知する処理を行う(<s028>)。さらに、第1のFPD120-1のCPU121は、システム制御部150に対する通知と実質的に同時に、第2のFPD120-2に対しても、当該第1のFPD120-1が活性化状態である旨を通知する処理を行う(<s029>)。 Then, when the standby state duration T2, which is the predetermined time set in <s025>, elapses, the CPU 121 of the first FPD 120-1 activates the operation state of the first FPD 120-1 in the activated state. (<S027>). Then, the CPU 121 of the first FPD 120-1 performs a process of setting the activation state duration T1 (<s031>). Further, the CPU 121 of the first FPD 120-1 performs a process of notifying the system control unit 150 that the first FPD 120-1 is in an activated state (<s028>). Further, the CPU 121 of the first FPD 120-1 also notifies the second FPD 120-2 that the first FPD 120-1 is activated substantially simultaneously with the notification to the system control unit 150. The notification process is performed (<s029>).
 そして、システム制御部150のCPU151は、第1のFPD120-1から活性化状態である旨の通知を受けると、<s017>と同様に、検査IDを通知する処理を行う(<s030>)。 Then, when the CPU 151 of the system control unit 150 receives a notification from the first FPD 120-1 that it is in the activated state, it performs a process of notifying the inspection ID as in <s017> (<s030>).
 また、第2のFPD120-2のCPU121は、<s026>で設定した活性化状態持続時間T1内にX線撮影が行われなかった場合には、2次元センサ124に蓄積された暗電流などを消去するためと消費電力をおさえてバッテリを温存させるため、もしくは必要以上の発熱を避けるために、当該第2のFPD120-2の動作状態を待機状態とする自動遷移処理を行う(<s032>)。そして、第2のFPD120-2のCPU121は、待機状態持続時間T2を設定する処理を行う(<s033>)。 In addition, the CPU 121 of the second FPD 120-2 uses the dark current accumulated in the two-dimensional sensor 124 when X-ray imaging is not performed within the activation state duration T1 set in <s026>. In order to save the battery by erasing and conserving power, or to avoid excessive heat generation, automatic transition processing is performed in which the operation state of the second FPD 120-2 is set to the standby state (<s032>). . Then, the CPU 121 of the second FPD 120-2 performs a process of setting the standby state duration T2 (<s033>).
 そして、第2のFPD120-2のCPU121は、<s033>で設定した所定時間である待機状態持続時間T2が経過すると、当該第2のFPD120-2の動作状態を活性化状態とする自動遷移処理を行う(<s034>)。この際、第2のFPD120-2のCPU121は、活性化状態持続時間T1を設定する処理を行う。また、第2のFPD120-2のCPU121は、当該第2のFPD120-2が活性化状態である旨を、第2のFPD120-2に対して通知する処理を行う(<s035>)とともに、システム制御部150に対して通知する処理を行う(<s036>)。 Then, when the standby state duration T2, which is the predetermined time set in <s033>, elapses, the CPU 121 of the second FPD 120-2 activates the operation state of the second FPD 120-2 in the activated state. (<S034>). At this time, the CPU 121 of the second FPD 120-2 performs a process of setting the activated state duration T1. Further, the CPU 121 of the second FPD 120-2 performs a process of notifying the second FPD 120-2 to the fact that the second FPD 120-2 is activated (<s035>) and the system Processing for notifying the control unit 150 is performed (<s036>).
 そして、システム制御部150のCPU151は、第2のFPD120-2から活性化状態である旨の通知を受けると、<s023>と同様に、検査IDを通知する処理を行う(<s037>)。 Then, when the CPU 151 of the system control unit 150 receives notification from the second FPD 120-2 that it is in the activated state, it performs a process of notifying the inspection ID as in <s023> (<s037>).
 以降、上述した処理を繰り返し行う。 Thereafter, the above processing is repeated.
 本実施形態に係るX線撮影システム100では、複数のFPD120のうちの1つのFPDである第1のFPD120-1が活性化状態に遷移した際に、第1のFPD120-1は、当該第1のFPD120-1を除く他のFPDである第2のFPD120-2に対して活性化状態に遷移した旨を通知するようにしている(<s016>)。そして、第2のFPD120-2は、第1のFPD120-1から活性化状態の遷移した旨の通知(<s016>)を受信した場合、所定時間である遅延時間T3だけ遅延して活性化状態に遷移するようになっている(<s019>~<s020>)。このため、例えば、T1>T3>T2の関係があれば、第1のFPD120-1が待機状態の場合でも、第2のFPD120-2は、活性化状態である。即ち、図5に示すように、本実施形態に係るX線撮影システム100では、被検体HのX線撮影の際には、複数のFPD120のうちのいずれかのFPDが活性化状態となっている。さらに、被検体HのX線撮影の際の或るタイミングでは、複数のFPD120のうちの2つ以上のFPD(図1に示す例では、第1のFPD120-1及び第2のFPD120-2の両者)が同時に活性化状態となっている場合もある(例えば、<s021>、<s029>、<s035>)。この場合、操作者は、別途、ユーザ・インターフェースを用いてX線撮影に使用するFPD120を選定する必要はない。本実施形態では、図5に示すように、常にどちらかのFPD120が活性化状態(X線検出可能状態(放射線検出可能状態))であることから、無駄な待ち時間を生ずることがない。 In the X-ray imaging system 100 according to the present embodiment, when the first FPD 120-1 that is one FPD of the plurality of FPDs 120 transitions to the activated state, the first FPD 120-1 The second FPD 120-2, which is the other FPD other than the FPD 120-1, is notified of the transition to the activated state (<s016>). When the second FPD 120-2 receives a notification (<s016>) indicating that the activation state has changed from the first FPD 120-1, the activation state is delayed by a delay time T3 that is a predetermined time. (<S019> to <s020>). Therefore, for example, if there is a relationship of T1> T3> T2, the second FPD 120-2 is in the activated state even when the first FPD 120-1 is in the standby state. That is, as shown in FIG. 5, in the X-ray imaging system 100 according to the present embodiment, at the time of X-ray imaging of the subject H, any one of the plurality of FPDs 120 is activated. Yes. Further, at a certain timing when X-ray imaging of the subject H is performed, two or more FPDs of the plurality of FPDs 120 (in the example shown in FIG. 1, the first FPD 120-1 and the second FPD 120-2 In some cases, both of them are simultaneously activated (for example, <s021>, <s029>, <s035>). In this case, the operator does not need to separately select the FPD 120 used for X-ray imaging using the user interface. In the present embodiment, as shown in FIG. 5, since one of the FPDs 120 is always in an activated state (X-ray detectable state (radiation detectable state)), no wasteful waiting time is generated.
 また、仮に、第1のFPD120-1が活性化状態の際に、X線撮影によるX線照射が行われ、図4に示すように、第1のFPD120-1が「X線量(電荷)蓄積・読み出し状態」に遷移し、次いで、「X線画像データ送信状態」に遷移した場合には、その後、待機状態に戻るため、第1のFPD120-1でのX線撮影は不可能となるが、その間に、第2のFPD120-2は、独立して、活性化状態と待機状態とを繰り返している。したがって、第1のFPD120-1が上述したX線撮影不可能な状態であっても、第2のFPD120-2において、別途独立したX線撮影を行うことができる。 Further, if the first FPD 120-1 is in an activated state, X-ray irradiation is performed by X-ray imaging, and the first FPD 120-1 stores “X dose (charge) accumulation as shown in FIG. When the state transitions to the “reading state” and then transitions to the “X-ray image data transmission state”, the state returns to the standby state, and X-ray imaging with the first FPD 120-1 becomes impossible. In the meantime, the second FPD 120-2 independently repeats the activated state and the standby state. Therefore, even when the first FPD 120-1 is in a state where X-ray imaging is not possible, the second FPD 120-2 can perform independent X-ray imaging.
 また、図5では図示していないが、第1のFPD120-1と第2のFPD120-2とが互いの活性化状態を把握できるように、互いに活性化状態かどうかの情報提示を要求するコマンドを通信し、常に、少なくとも一方のFPD120が活性化状態になるように制御することも可能である。 Further, although not shown in FIG. 5, a command for requesting presentation of information on whether or not each other is in an activated state so that the first FPD 120-1 and the second FPD 120-2 can grasp each other's activated state. It is also possible to control such that at least one FPD 120 is always in an activated state.
 また、システム制御部150の記憶部152に、各FPD120の活性化状態/待機状態を示すフラグを記憶しておき、常に、システム制御部150において、各FPD120の動作状態を監視・更新する形態も採用可能である。この場合、第1のFPD120-1及び第2のFPD120-2は、記憶部152に記憶されている上述したフラグを知るコマンドを通じて、活性化状況を制御できる。ここで、具体的な制御方法としては、図5の<s019>における遅延時間T3を、お互いの状態を見ながら、適応的に変更することにより、X線撮影システム100全体としての最適な状態を保つことができる。 In addition, a flag indicating the activation state / standby state of each FPD 120 is stored in the storage unit 152 of the system control unit 150, and the operation state of each FPD 120 is always monitored and updated in the system control unit 150. It can be adopted. In this case, the first FPD 120-1 and the second FPD 120-2 can control the activation status through a command for knowing the flag stored in the storage unit 152. Here, as a specific control method, the optimum state of the X-ray imaging system 100 as a whole is obtained by adaptively changing the delay time T3 in <s019> of FIG. Can keep.
 次に、図1に示すモニタ150c上での表示及び操作について説明する。 Next, display and operation on the monitor 150c shown in FIG. 1 will be described.
 図6は、図1に示すモニタ150c上での表示及び操作について説明するための図である。 FIG. 6 is a diagram for explaining display and operation on the monitor 150c shown in FIG.
 図6に示すモニタ150cには、FPD120でのX線撮影により得られたX線画像データに基づくX線画像を表示する画像表示領域601と、情報表示及びタッチパネル/マウスクリックなどを利用可能なGUI領域602が設けられている。ここで、画像表示領域601に表示されるX線画像は、例えば、第1のFPD120-1または第2のFPD120-2でのX線撮影により得られた最新のX線画像である。GUI領域602に表示される情報としては、患者情報、検査オーダ名称、撮影部位情報、FPDモデル名、X線撮影条件、撮影時刻、施設/操作者情報、過去の撮影により得られたX線画像の縮小版(サムネイル)等が挙げられる。また、GUI領域602で操作可能なものとしては、X線画像の階調調整や先鋭度調整などの画像処理パラメータ調整や、X線画像の切り出し領域の設定などである。 The monitor 150c shown in FIG. 6 includes an image display area 601 that displays an X-ray image based on X-ray image data obtained by X-ray imaging with the FPD 120, and a GUI that can use information display, touch panel / mouse click, and the like. A region 602 is provided. Here, the X-ray image displayed in the image display area 601 is, for example, the latest X-ray image obtained by X-ray imaging with the first FPD 120-1 or the second FPD 120-2. Information displayed in the GUI area 602 includes patient information, examination order name, imaging part information, FPD model name, X-ray imaging conditions, imaging time, facility / operator information, and X-ray images obtained by past imaging. Reduced version (thumbnail). Further, what can be operated in the GUI area 602 includes image processing parameter adjustment such as gradation adjustment and sharpness adjustment of an X-ray image, and setting of an X-ray image cut-out area.
 操作者は、画像表示領域601に表示される、第1のFPD120-1または第2のFPD120-2から送られてくるX線画像データに基づくX線画像を確認し、GUI領域602を操作して画像処理パラメータ等を調整する。その後、操作者は、必要に応じて、当該X線画像データを管理サーバ(不図示)に転送するなどの処理を行う。 The operator confirms an X-ray image based on the X-ray image data sent from the first FPD 120-1 or the second FPD 120-2 displayed in the image display area 601 and operates the GUI area 602. Adjust the image processing parameters. Thereafter, the operator performs processing such as transferring the X-ray image data to a management server (not shown) as necessary.
 次に、本実施形態に係るX線撮影システム100の制御方法における処理手順について説明する。 Next, a processing procedure in the control method of the X-ray imaging system 100 according to the present embodiment will be described.
 図7は、本発明の第1の実施形態に係るX線撮影システム(放射線撮影システム)の制御方法における処理手順の一例を示すフローチャートである。 FIG. 7 is a flowchart showing an example of a processing procedure in the control method of the X-ray imaging system (radiation imaging system) according to the first embodiment of the present invention.
 まず、ステップS701において、システム制御部150のCPU151は、無線LAN環境において検知できた第1のFPD120-1及び第2のFPD120-2の登録処理を行う。 First, in step S701, the CPU 151 of the system control unit 150 performs registration processing of the first FPD 120-1 and the second FPD 120-2 that can be detected in the wireless LAN environment.
 続いて、ステップS702において、ステップS701で登録された第1のFPD120-1のCPU121は、当該第1のFPD120-1の動作状態を活性化状態に自動遷移する処理を行う。同様に、ステップS701で登録された第2のFPD120-2のCPU121は、当該第2のFPD120-2の動作状態を活性化状態に自動遷移する処理を行う。この際、第1のFPD120-1のCPU121及び第2のFPD120-2のCPU121は、システム制御部150の制御に基づいて、自装置を活性化状態としてもよい。 Subsequently, in step S702, the CPU 121 of the first FPD 120-1 registered in step S701 performs a process of automatically transitioning the operation state of the first FPD 120-1 to the activated state. Similarly, the CPU 121 of the second FPD 120-2 registered in step S701 performs a process of automatically transitioning the operation state of the second FPD 120-2 to the activated state. At this time, the CPU 121 of the first FPD 120-1 and the CPU 121 of the second FPD 120-2 may activate their own devices based on the control of the system control unit 150.
 続いて、ステップS703において、システム制御部150のCPU151は、ステップS701で登録した第1のFPD120-1及び第2のFPD120-2に対して、所望の検査ID(検査情報)を送信する処理を行う。 Subsequently, in step S703, the CPU 151 of the system control unit 150 performs processing for transmitting a desired inspection ID (inspection information) to the first FPD 120-1 and the second FPD 120-2 registered in step S701. Do.
 続いて、ステップS704において、システム制御部150のCPU151は、ステップS701で登録した第1のFPD120-1及び第2のFPD120-2のうちのいずれかのFPD120から、X線画像データを受信したか否かを判断する。 Subsequently, in step S704, has the CPU 151 of the system control unit 150 received X-ray image data from any one of the first FPD 120-1 and the second FPD 120-2 registered in step S701? Judge whether or not.
 この判断の結果、ステップS701で登録した第1のFPD120-1及び第2のFPD120-2のうちのいずれかのFPD120からもX線画像データを受信していない場合には、ステップS704で待機する。 If the result of this determination is that X-ray image data has not been received from any one of the first FPD 120-1 and the second FPD 120-2 registered in step S701, the process waits in step S704. .
 一方、ステップS704の判断の結果、ステップS701で登録した第1のFPD120-1及び第2のFPD120-2のうちのいずれかのFPD120からX線画像データを受信した場合には、ステップS705に進む。 On the other hand, as a result of the determination in step S704, if X-ray image data is received from any one of the first FPD 120-1 and the second FPD 120-2 registered in step S701, the process proceeds to step S705. .
 ステップS705に進むと、システム制御部150のCPU151は、受信したX線画像データに添付されている検査IDが、ステップS703で送信した所望の検査IDと一致するか否かを判断する。 In step S705, the CPU 151 of the system control unit 150 determines whether or not the examination ID attached to the received X-ray image data matches the desired examination ID transmitted in step S703.
 ステップS705の判断の結果、受信したX線画像データに添付されている検査IDが、ステップS703で送信した所望の検査IDと一致しない場合には、ステップS704に戻る。 If it is determined in step S705 that the examination ID attached to the received X-ray image data does not match the desired examination ID transmitted in step S703, the process returns to step S704.
 一方、ステップS705の判断の結果、受信したX線画像データに添付されている検査IDが、ステップS703で送信した所望の検査IDと一致する場合には、ステップS706に進む。 On the other hand, as a result of the determination in step S705, if the examination ID attached to the received X-ray image data matches the desired examination ID transmitted in step S703, the process proceeds to step S706.
 ステップS706に進むと、システム制御部150のCPU151は、受信したX線画像データに基づくX線画像を表示部154(モニタ150c)に表示する処理を行う。さらに、システム制御部150のCPU151は、受信したX線画像データを記憶部152に保存する処理等を行う。 In step S706, the CPU 151 of the system control unit 150 performs a process of displaying an X-ray image based on the received X-ray image data on the display unit 154 (monitor 150c). Further, the CPU 151 of the system control unit 150 performs processing for storing the received X-ray image data in the storage unit 152 and the like.
 ステップS706の処理が終了すると、ステップS704に戻り、ステップS704以降の処理を再度行う。 When the process of step S706 is completed, the process returns to step S704, and the processes after step S704 are performed again.
 ここで、第1のFPD120-1または第2のFPD120-2からシステム制御部150に送信されるX線画像データのデータ構成について説明する。 Here, the data structure of the X-ray image data transmitted from the first FPD 120-1 or the second FPD 120-2 to the system control unit 150 will be described.
 図8は、図1に示す第1のFPD120-1または第2のFPD120-2からシステム制御部150に送信されるX線画像データのデータ構成の一例を示す。 FIG. 8 shows an example of the data configuration of the X-ray image data transmitted from the first FPD 120-1 or the second FPD 120-2 shown in FIG. 1 to the system control unit 150.
 第1のFPD120-1または第2のFPD120-2からシステム制御部150に送信されるX線画像データは、図8に示すように、ヘッダー情報801と、画像情報802から構成されている。ヘッダー情報801は、画像情報802に先立って送信される部分である。ヘッダー情報801には、図8に示すように、検査情報である検査IDを含め、FPD ID、撮影日時、FPDモデル名、画像サイズ(X,Y)等の情報が含まれている。ここで、ヘッダー情報801の検査IDは、X線撮影に先立ってシステム制御部150からFPD120に送信されたものである。 X-ray image data transmitted from the first FPD 120-1 or the second FPD 120-2 to the system control unit 150 includes header information 801 and image information 802 as shown in FIG. The header information 801 is a part that is transmitted prior to the image information 802. As shown in FIG. 8, the header information 801 includes information such as FPD ID, shooting date and time, FPD model name, and image size (X, Y), including an inspection ID that is inspection information. Here, the inspection ID of the header information 801 is transmitted from the system control unit 150 to the FPD 120 prior to X-ray imaging.
 システム制御部150は、受信したX線画像データのヘッダー情報801に含まれる検査IDを用いて、受信したX線画像データが所望のX線画像データであるかどうかの確認を行うことが可能である。 The system control unit 150 can check whether the received X-ray image data is the desired X-ray image data by using the examination ID included in the header information 801 of the received X-ray image data. is there.
 本実施形態の放射線撮影システム100では、被検体Hを透過した放射線を検出して放射線画像を得る、複数の放射線画像検出器(FPD)と、複数の放射線画像検出器の制御を行う制御部(システム制御部150)とを有し、複数の放射線画像検出器のうちの第1の放射線画像検出器(第1のFPD120-1)が放射線検出可能状態に遷移した際に、第2の放射線画像検出器(第2のFPD120-2)は放射線検出可能状態に遷移する。具体的には、放射線撮影システム100は、第1の放射線画像検出器(第1のFPD120-1)が放射線検出可能状態に遷移した際に、第1の放射線画像検出器(第1のFPD120-1)が放射線検出可能状態であることを第2の放射線画像検出器(第2のFPD120-2)に伝達する通信部を備える。第2の放射線画像検出器(第2のFPD120-2)は、第1の放射線画像検出器(第1のFPD120-1)が放射線検出可能状態であることが伝達されると放射線検出可能状態に遷移する。よって、放射線撮影システムによる制御の複雑化を回避することができる。なお、通信部は、アクセスポイント150bを利用してもよい。また、第1の放射線画像検出器と第2の放射線画像検出器の内部に通信部を有していてもよい。 In the radiation imaging system 100 of the present embodiment, a plurality of radiation image detectors (FPD) that detect radiation transmitted through the subject H and obtain a radiation image, and a control unit that controls the plurality of radiation image detectors ( A second radiographic image when the first radiographic image detector (first FPD 120-1) of the plurality of radiographic image detectors transitions to a radiation detectable state. The detector (second FPD 120-2) shifts to a radiation detectable state. Specifically, the radiation imaging system 100 includes the first radiographic image detector (first FPD120-1) when the first radiographic image detector (first FPD120-1) transitions to a radiation detectable state. 1) includes a communication unit that transmits to the second radiation image detector (second FPD 120-2) that radiation detection is possible. The second radiation image detector (second FPD 120-2) is brought into a radiation detectable state when it is transmitted that the first radiation image detector (first FPD 120-1) is in a radiation detectable state. Transition. Therefore, complicated control by the radiographic system can be avoided. Note that the communication unit may use the access point 150b. Moreover, you may have a communication part inside the 1st radiographic image detector and the 2nd radiographic image detector.
 また、本実施形態では、システム制御部150に、第1のFPD120-1及び第2のFPD120-2を登録する方法として、無線LANのアクセスポイント150bが出力するビーコン信号に呼応する方式を採用したが、他の方式でも同様の効果が得られる。例えば、他の入力手段によって第1のFPD120-1及び第2のFPD120-2を登録する方法や、第1のFPD120-1もしくは第2のFPD120-2が発信する接続要求信号に応じて、システム制御部150が呼応して登録する方法等も採用可能である。 Further, in the present embodiment, as a method for registering the first FPD 120-1 and the second FPD 120-2 in the system control unit 150, a method corresponding to a beacon signal output from the access point 150b of the wireless LAN is adopted. However, the same effect can be obtained with other methods. For example, in accordance with a method for registering the first FPD 120-1 and the second FPD 120-2 by other input means, or a connection request signal transmitted from the first FPD 120-1 or the second FPD 120-2, the system A method in which the control unit 150 registers in response can also be employed.
 また、本実施形態では、システム制御部150と第1のFPD120-1及び第2のFPD120-2との通信接続は無線通信接続としたが、有線通信接続する形態であっても同様の効果が得られるため、本実施形態に採用可能である。 In the present embodiment, the communication connection between the system control unit 150 and the first FPD 120-1 and the second FPD 120-2 is a wireless communication connection. Therefore, the present embodiment can be adopted.
 また、本実施形態では、1つのX線撮影システム100について説明を行ったが、互いに協調し合う複数のX線撮影システムを構築しても同様の効果が得られるため、本実施形態に採用可能である。 Further, in the present embodiment, one X-ray imaging system 100 has been described. However, even if a plurality of X-ray imaging systems that cooperate with each other are constructed, the same effect can be obtained, and therefore, this embodiment can be adopted. It is.
 また、本実施形態では、FPD120は、X線自動検知機能によってX線111の検知と当該FPD120内の2次元センサ124の駆動との同期を採る方式を想定しているが、以下の他の方式であってもよい。 In the present embodiment, the FPD 120 assumes a method in which the detection of the X-ray 111 and the driving of the two-dimensional sensor 124 in the FPD 120 are synchronized by the automatic X-ray detection function. It may be.
 例えば、別途、各FPD120とX線発生部110とを配線もしくは通信手段によって通信可能に構成する。そして、各FPD120は、X線発生部110から被検体HにX線111を照射するタイミングに係るタイミング情報を受信し、当該タイミング情報に基づいて被検体Hを透過したX線111を検出してX線画像データを生成する。即ち、各FPD120とX線発生部110とを通信可能に構成することによって、各FPD120は、X線111の検知のタイミングと当該各FPD120内の2次元センサ124の駆動との同期を採る方式も採用可能である。また、上述した各FPD120とX線発生部110との通信をシステム制御部150を介して行う形態も、同様の効果が得られる。 For example, separately, each FPD 120 and the X-ray generation unit 110 are configured to be communicable by wiring or communication means. Each FPD 120 receives timing information related to the timing of irradiating the subject H with the X-ray 111 from the X-ray generation unit 110, and detects the X-ray 111 transmitted through the subject H based on the timing information. X-ray image data is generated. That is, by configuring each FPD 120 and the X-ray generation unit 110 to be communicable, each FPD 120 can also synchronize the detection timing of the X-ray 111 and the driving of the two-dimensional sensor 124 in each FPD 120. It can be adopted. In addition, the same effect can be obtained in a mode in which communication between each FPD 120 and the X-ray generation unit 110 described above is performed via the system control unit 150.
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described.
 図9は、本発明の第2の実施形態に係るX線撮影システム(放射線撮影システム)200の概略構成の一例を示す。図9において、図1に示す第1の実施形態に係るX線撮影システム100と同様の構成については同じ符号を付している。また、図9では不図示であるが、本実施形態に係るX線撮影システム200には、図1に示すX線発生制御部130、X線照射ボタン140、及び、システム制御部150も構成されているものとする。 FIG. 9 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) 200 according to the second embodiment of the present invention. In FIG. 9, the same components as those in the X-ray imaging system 100 according to the first embodiment shown in FIG. Although not shown in FIG. 9, the X-ray imaging system 200 according to the present embodiment includes the X-ray generation control unit 130, the X-ray irradiation button 140, and the system control unit 150 shown in FIG. 1. It shall be.
 本実施形態は、第1のFPD920-1(第1の放射線画像検出器)と第2のFPD920-2(第2の放射線画像検出器)を使って、被検体Hの複数の部位を円滑にX線撮影する形態である。なお、以下の説明において、第1のFPD920-1と第2のFPD920-2に共通する説明の場合には、単に、「FPD920」として説明を行う。 This embodiment uses a first FPD 920-1 (first radiological image detector) and a second FPD 920-2 (second radiological image detector) to smoothly move a plurality of parts of the subject H. This is a form of X-ray imaging. In the following description, the description common to the first FPD 920-1 and the second FPD 920-2 will be simply described as “FPD 920”.
 本実施形態では、1つのX線発生部110を移動させて、第1のFPD920-1及び第2のFPD920-2によるX線撮影を行う。 In this embodiment, one X-ray generation unit 110 is moved to perform X-ray imaging using the first FPD 920-1 and the second FPD 920-2.
 被検体Hは、ベッドに横たわって固定された状態となっている。第1のFPD920-1及び第2のFPD920-2は、被検体Hとベッドとの間に配設されている。第1の表示部921及び第2の表示部922は、それぞれ、第1のFPD920-1及び第2のFPD920-2の状態(活性化状態(X線検出可能状態(放射線検出可能状態))等)を表示するものである。本実施形態の第1のFPD920-1及び第2のFPD920-2は、それぞれ、図2に示す第1の実施形態における第1のFPD120-1及び第2のFPD120-2から、表示部125を取り除いた構成となっている。即ち、第1のFPD920-1とは別体で、図1に示す撮影準備完了表示部(レディランプ)120-11及び無線通信状態表示部(リンクランプ)120-12を含む第1の表示部921が設けられている。同様に、第2のFPD920-2とは別体で、図1に示す撮影準備完了表示部(レディランプ)120-21及び無線通信状態表示部(リンクランプ)120-22を含む第2の表示部922が設けられている。第1のFPD920-1と第1の表示部921との通信接続、及び、第2のFPD920-2と第2の表示部922との通信接続は、無線通信接続であっても有線通信接続であってもよい。この際、当該通信接続は、システム制御部150を介して接続される形態であってもよい。 The subject H is in a fixed state lying on the bed. The first FPD 920-1 and the second FPD 920-2 are disposed between the subject H and the bed. The first display portion 921 and the second display portion 922 are the states of the first FPD 920-1 and the second FPD 920-2 (activated state (X-ray detectable state (radiation detectable state)), etc., respectively. ) Is displayed. The first FPD 920-1 and the second FPD 920-2 according to the present embodiment are connected to the display unit 125 from the first FPD 120-1 and the second FPD 120-2 according to the first embodiment shown in FIG. The configuration is removed. That is, the first display unit is separate from the first FPD 920-1 and includes the imaging preparation completion display unit (ready lamp) 120-11 and the wireless communication status display unit (link lamp) 120-12 shown in FIG. 921 is provided. Similarly, a second display that is separate from the second FPD 920-2 and includes the imaging preparation completion display unit (ready lamp) 120-21 and the wireless communication status display unit (link lamp) 120-22 shown in FIG. A portion 922 is provided. The communication connection between the first FPD 920-1 and the first display unit 921 and the communication connection between the second FPD 920-2 and the second display unit 922 are wired communication connections even if they are wireless communication connections. There may be. At this time, the communication connection may be connected via the system control unit 150.
 本実施形態では、上述したように、表示部をFPD920から別体で構成している。これにより、FPD920が被検体Hの下部に隠れてしまうため、図1に示す撮影準備完了表示部(レディランプ)及び無線通信状態表示部(リンクランプ)が操作者から確認できなくなることを防ぐことができる。 In the present embodiment, as described above, the display unit is configured separately from the FPD 920. This prevents the FPD 920 from being hidden under the subject H, so that the imaging preparation completion display unit (ready lamp) and the wireless communication status display unit (link lamp) shown in FIG. Can do.
 図9において、操作者は、第1のFPD920-1及び第2のFPD920-2を被検体Hの下部のそれぞれ所定の位置に予め配設し、最適な順序で適宜必要な部位のX線撮影を、X線発生部110を移動させながら行う。具体的に、第1のFPD920-1を用いたX線撮影を行う場合には、図9に示すX線発生部110の位置からX線111を被検体Hに対して照射させる。また、第2のFPD920-2を用いたX線撮影を行う場合には、図9に示すX線発生部110'の位置からX線111'を被検体Hに対して照射させる。 In FIG. 9, the operator arranges a first FPD 920-1 and a second FPD 920-2 in a predetermined position below the subject H in advance, and X-ray imaging of necessary parts as appropriate in an optimal order. Is performed while moving the X-ray generation unit 110. Specifically, when X-ray imaging using the first FPD 920-1 is performed, the subject H is irradiated with the X-ray 111 from the position of the X-ray generation unit 110 shown in FIG. Further, when X-ray imaging using the second FPD 920-2 is performed, the subject H is irradiated with X-rays 111 ′ from the position of the X-ray generation unit 110 ′ shown in FIG.
 例えば、1つのFPD920のみを用いて被検体Hにおける複数の部位のX線撮影を行う場合には、X線撮影ごとに当該1つのFPD920の位置を変更する必要があり、操作者及び被検体Hに過度の負担がかかるとともに、X線撮影に時間がかかってしまう。 For example, when performing X-ray imaging of a plurality of parts in the subject H using only one FPD 920, it is necessary to change the position of the one FPD 920 for each X-ray imaging, and the operator and the subject H In addition, an excessive burden is placed on the X-ray imaging.
 これに対して、本実施形態では、複数のFPD920を配設し、これらの相互通信によってX線撮影を行うため、操作者及び被検体Hに過度の負担を与えること無く、X線撮影を行うことができる。また、本実施形態も、上述した第1の実施形態と同様に、複数のFPD920のうちのいずれか一方を常に活性化状態とすることができるため、比較的迅速に連続して被検体Hの異なる部位のX線撮影が可能となる。 On the other hand, in the present embodiment, since a plurality of FPDs 920 are arranged and X-ray imaging is performed by their mutual communication, X-ray imaging is performed without imposing an excessive burden on the operator and the subject H. be able to. Further, in the present embodiment as well, as in the first embodiment described above, since any one of the plurality of FPDs 920 can be always activated, the subject H can be continuously and relatively quickly. X-ray imaging of different parts is possible.
 なお、図9に示すX線撮影システム200では、複数の放射線画像検出器として、2つのFPD920-1~920-2を設ける例が示されているが、本実施形態においてはこれに限定されるものではない。例えば、複数の放射線画像検出器として、3つ以上のFPD920が設けられている形態であってもよい。 In the X-ray imaging system 200 shown in FIG. 9, an example in which two FPDs 920-1 to 920-2 are provided as a plurality of radiation image detectors is shown. However, the present embodiment is limited to this. It is not a thing. For example, a form in which three or more FPDs 920 are provided as a plurality of radiation image detectors may be used.
 また、図9には、1つのX線発生部110を移動させて、複数のFPD920によるX線撮影を行う例が示されているが、本実施形態においてはこれに限定されず、例えば、各FPD920の数に対応して複数のX線発生部110を設けてもよい。 FIG. 9 shows an example in which one X-ray generation unit 110 is moved and X-ray imaging is performed by a plurality of FPDs 920. However, the present embodiment is not limited to this example. A plurality of X-ray generation units 110 may be provided corresponding to the number of FPDs 920.
 また、本実施形態では、第1の実施形態と同様に、FPD920は、X線自動検知機能によってX線の検知と当該FPD920内の2次元センサ124の駆動との同期を採る方式を想定しているが、以下の他の方式であってもよい。 In the present embodiment, as in the first embodiment, the FPD 920 assumes a method in which the X-ray detection is synchronized with the driving of the two-dimensional sensor 124 in the FPD 920 by the X-ray automatic detection function. However, other methods described below may be used.
 例えば、別途、各FPD920とX線発生部110とを配線もしくは通信手段によって通信可能に構成する。そして、各FPD920は、X線発生部110から被検体HにX線111を照射するタイミングに係るタイミング情報を受信し、当該タイミング情報に基づいて被検体Hを透過したX線111を検出してX線画像データを生成する。即ち、各FPD920とX線発生部110とを通信可能に構成することによって、各FPD920は、X線111の検知のタイミングと当該各FPD920内の2次元センサ124の駆動との同期を採る方式も採用可能である。また、上述した各FPD920とX線発生部110との通信をシステム制御部150を介して行う形態も、同様の効果が得られる。 For example, separately, each FPD 920 and the X-ray generation unit 110 are configured to be communicable by wiring or communication means. Each FPD 920 receives timing information related to the timing of irradiating the subject H with the X-ray 111 from the X-ray generation unit 110, and detects the X-ray 111 that has passed through the subject H based on the timing information. X-ray image data is generated. That is, by configuring each FPD 920 and the X-ray generator 110 to be communicable, each FPD 920 can also synchronize the detection timing of the X-ray 111 with the driving of the two-dimensional sensor 124 in each FPD 920. It can be adopted. Moreover, the same effect can be obtained by performing communication between each FPD 920 and the X-ray generation unit 110 described above via the system control unit 150.
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described.
 図10は、本発明の第3の実施形態に係るX線撮影システム(放射線撮影システム)300の概略構成の一例を示す。図10において、図9に示す第2の実施形態に係るX線撮影システム200と同様の構成については同じ符号を付している。また、図10では不図示であるが、本実施形態に係るX線撮影システム300には、図1に示すX線発生制御部130、X線照射ボタン140、及び、システム制御部150も構成されているものとする。 FIG. 10 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) 300 according to the third embodiment of the present invention. 10, the same code | symbol is attached | subjected about the structure similar to the X-ray imaging system 200 which concerns on 2nd Embodiment shown in FIG. Although not illustrated in FIG. 10, the X-ray imaging system 300 according to the present embodiment includes the X-ray generation control unit 130, the X-ray irradiation button 140, and the system control unit 150 illustrated in FIG. 1. It shall be.
 本実施形態では、1つのX線発生部110から、第1のFPD920-1及び第2のFPD920-2に対して同時にX線111を照射して、第1のFPD920-1及び第2のFPD920-2から同時にX線画像データを取得する。 In the present embodiment, the first FPD 920-1 and the second FPD 920-2 are simultaneously irradiated with X-rays 111 from one X-ray generation unit 110, so that the first FPD 920-1 and the second FPD 920 are emitted. X-ray image data is acquired simultaneously from -2.
 本実施形態の場合、上述した図5に示すシーケンス図において、<s019>で行う遅延時間T3の設定を0とするか、もしくは、第1のFPD920-1及び第2のFPD920-2が同時に同期して活性化状態(X線検出可能状態(放射線検出可能状態))になるように、時間T3を適応的に調整する。この場合、例えば、第2のFPD920-2は、第1のFPD920-1から活性化状態に遷移した旨の通知を受信すると、当該通知を受信するのと実質的に同時に活性化状態に遷移することになる。いずれにしても、操作者は、別体に設けられた表示部921及び922を確認し、第1のFPD920-1及び第2のFPD920-2が同時に活性化状態であることを確認して、X線発生部110からX線111を照射する操作を行う。 In the case of the present embodiment, in the sequence diagram shown in FIG. 5 described above, the delay time T3 set in <s019> is set to 0, or the first FPD 920-1 and the second FPD 920-2 are simultaneously synchronized. Then, the time T3 is adaptively adjusted so as to be in the activated state (X-ray detectable state (radiation detectable state)). In this case, for example, when the second FPD 920-2 receives a notification from the first FPD 920-1 that it has transitioned to the activated state, it transitions to the activated state substantially simultaneously with the reception of the notification. It will be. In any case, the operator confirms the display units 921 and 922 provided separately, confirms that the first FPD 920-1 and the second FPD 920-2 are simultaneously activated, An operation of irradiating the X-ray 111 from the X-ray generation unit 110 is performed.
 図10において、X線発生部110からは、第1のFPD920-1及び第2のFPD920-2の2つのFPD920をカバーする範囲に同時にX線111が照射可能となっている。図10に示す例では、1回のX線111の照射で2枚1組のX線画像データがシステム制御部150に送信されることになる。 In FIG. 10, the X-ray generation unit 110 can simultaneously irradiate the X-ray 111 to a range covering the two FPDs 920 of the first FPD 920-1 and the second FPD 920-2. In the example shown in FIG. 10, a set of two pieces of X-ray image data is transmitted to the system control unit 150 by one irradiation of the X-rays 111.
 そして、この場合、システム制御部150では、2枚1組のX線画像データに基づく2枚のX線画像を順次表示するか、2枚のX線画像を1枚に合成して合成X線画像(合成放射線画像)を生成して当該合成X線画像を表示する処理を行う。2枚のX線画像を1枚に合成することは、特に人体の背骨や足骨などの広範囲のX線撮影を行う場合に有効である。 In this case, the system control unit 150 sequentially displays two X-ray images based on a set of two X-ray image data, or combines the two X-ray images into a single composite X-ray. A process of generating an image (composite radiation image) and displaying the composite X-ray image is performed. Combining two X-ray images into one is particularly effective when performing X-ray imaging over a wide range such as the spine and foot bones of a human body.
 なお、図10に示すX線撮影システム300では、複数の放射線画像検出器として、2つのFPD920-1~920-2を設ける例が示されているが、本実施形態においてはこれに限定されるものではない。例えば、複数の放射線画像検出器として、3つ以上のFPD920が設けられている形態であってもよい。この場合、合成X線画像も1つに限らず、目的によって別の複数の合成X線画像を生成してもよい。 In the X-ray imaging system 300 shown in FIG. 10, an example in which two FPDs 920-1 to 920-2 are provided as a plurality of radiation image detectors is shown. However, the present embodiment is limited to this. It is not a thing. For example, a form in which three or more FPDs 920 are provided as a plurality of radiation image detectors may be used. In this case, the number of combined X-ray images is not limited to one, and a plurality of other combined X-ray images may be generated depending on the purpose.
 また、図10には、1つのX線発生部110から複数のFPD920にX線111を照射してX線撮影を行う例が示されているが、本実施形態においてはこれに限定されず、例えば、各FPD920の数に対応して複数のX線発生部110を設けてもよい。 FIG. 10 shows an example in which X-ray imaging is performed by irradiating a plurality of FPDs 920 with X-rays 111 from one X-ray generation unit 110. However, the present embodiment is not limited to this. For example, a plurality of X-ray generation units 110 may be provided corresponding to the number of each FPD 920.
 本実施形態においては、複数のFPD920で得られた複数のX線画像データを、システム制御部150に対して実質的に同時に送信することが可能である。これは、例えば、無線LANシステムにおけるパケット単位での時分割送信などで容易に実現可能である。この際、複数のFPD920で用いる無線チャンネル(周波数)を互いに干渉しない異なるものにすることにより、さらに効率よく複数のX線画像データを実質的に同時に送信できる。 In the present embodiment, a plurality of X-ray image data obtained by a plurality of FPDs 920 can be transmitted to the system control unit 150 substantially simultaneously. This can be easily realized by, for example, time division transmission in units of packets in the wireless LAN system. At this time, by making the radio channels (frequencies) used by the plurality of FPDs 920 different from each other without interfering with each other, a plurality of X-ray image data can be transmitted substantially simultaneously.
 また、本実施形態においては、第1のFPD920-1と第1の表示部921との通信接続、及び、第2のFPD920-2と第2の表示部922との通信接続は、無線通信接続であっても有線通信接続であってもよい。この際、当該通信接続は、システム制御部150を介して接続される形態であってもよい。 In the present embodiment, the communication connection between the first FPD 920-1 and the first display unit 921 and the communication connection between the second FPD 920-2 and the second display unit 922 are wireless communication connections. Or a wired communication connection. At this time, the communication connection may be connected via the system control unit 150.
 また、本実施形態では、第1の実施形態と同様に、FPD920は、X線自動検知機能によってX線の検知と当該FPD920内の2次元センサ124の駆動との同期を採る方式を想定しているが、以下の他の方式であってもよい。 In the present embodiment, as in the first embodiment, the FPD 920 assumes a method in which the X-ray detection is synchronized with the driving of the two-dimensional sensor 124 in the FPD 920 by the X-ray automatic detection function. However, other methods described below may be used.
 例えば、別途、各FPD920とX線発生部110とを配線もしくは通信手段によって通信可能に構成する。そして、各FPD920は、X線発生部110から被検体HにX線111を照射するタイミングに係るタイミング情報を受信し、当該タイミング情報に基づいて被検体Hを透過したX線111を検出してX線画像データを生成する。即ち、各FPD920とX線発生部110とを通信可能に構成することによって、各FPD920は、X線111の検知のタイミングと当該各FPD920内の2次元センサ124の駆動との同期を採る方式も採用可能である。また、上述した各FPD920とX線発生部110との通信をシステム制御部150を介して行う形態も、同様の効果が得られる。 For example, separately, each FPD 920 and the X-ray generation unit 110 are configured to be communicable by wiring or communication means. Each FPD 920 receives timing information related to the timing of irradiating the subject H with the X-ray 111 from the X-ray generation unit 110, and detects the X-ray 111 that has passed through the subject H based on the timing information. X-ray image data is generated. That is, by configuring each FPD 920 and the X-ray generator 110 to be communicable, each FPD 920 can also synchronize the detection timing of the X-ray 111 with the driving of the two-dimensional sensor 124 in each FPD 920. It can be adopted. Moreover, the same effect can be obtained by performing communication between each FPD 920 and the X-ray generation unit 110 described above via the system control unit 150.
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described.
 上述した第1の実施形態では、FPD120がX線撮影システム100の無線通信環境に入ることで自動的に当該FPD120を登録するものであった。しかしながら、例えば、X線撮影システム100が複数存在し、それぞれの無線通信環境が重なっている場合には、FPD120の登録が困難になる。また、あるFPD120自体がどのX線撮影システム100に属し、どのような検査対象のX線撮影を行うかが不明になる場合も想定される。そこで、本実施形態では、これらの不具合を解消すべく、FPD120の構成を工夫した。 In the first embodiment described above, when the FPD 120 enters the wireless communication environment of the X-ray imaging system 100, the FPD 120 is automatically registered. However, for example, when there are a plurality of X-ray imaging systems 100 and their wireless communication environments overlap, registration of the FPD 120 becomes difficult. In addition, it may be assumed that a certain FPD 120 itself belongs to which X-ray imaging system 100 and what kind of X-ray imaging of an inspection object is to be performed. Therefore, in the present embodiment, the configuration of the FPD 120 has been devised in order to eliminate these problems.
 ここで、第4の実施形態に係るX線撮影システム(放射線撮影システム)の概略構成は、図1に示す第1の実施形態に係るX線撮影システム(放射線撮影システム)100の概略構成と同様である。 Here, the schematic configuration of the X-ray imaging system (radiation imaging system) according to the fourth embodiment is the same as the schematic configuration of the X-ray imaging system (radiation imaging system) 100 according to the first embodiment shown in FIG. It is.
 図11は、本発明の第4の実施形態を示し、図1に示すFPD120の概略構成の一例を示す。 FIG. 11 shows a fourth embodiment of the present invention and shows an example of a schematic configuration of the FPD 120 shown in FIG.
 本実施形態におけるFPD120は、図11に示すように、撮影準備完了表示部(レディランプ)1110、無線通信状態表示部(リンクランプ)1120、FPD状態表示部1130、選択ボタン1140、電源SW1150、及び、キャンセルボタン1160を有して構成されている。 As shown in FIG. 11, the FPD 120 in this embodiment includes a shooting preparation completion display unit (ready lamp) 1110, a wireless communication status display unit (link lamp) 1120, an FPD status display unit 1130, a selection button 1140, a power switch 1150, and , A cancel button 1160 is provided.
 撮影準備完了表示部(レディランプ)1110は、当該FPD120がX線撮影可能な状態であるか否かを、例えば点灯の可否によって示すものである。この撮影準備完了表示部(レディランプ)1110は、図1に示す撮影準備完了表示部(レディランプ)120-11及び120-21と同様の構成である。 The imaging preparation completion display unit (ready lamp) 1110 indicates whether or not the FPD 120 is ready for X-ray imaging by, for example, lighting. The photographing preparation completion display unit (ready lamp) 1110 has the same configuration as the photographing preparation completion display units (ready lamps) 120-11 and 120-21 shown in FIG.
 無線通信状態表示部(リンクランプ)1120は、当該FPD120の無線通信状態を、例えば点灯の可否によって示すものである。この無線通信状態表示部(リンクランプ)1120は、図1に示す無線通信状態表示部(リンクランプ)120-12及び120-22と同様の構成である。 The wireless communication status display unit (link lamp) 1120 indicates the wireless communication status of the FPD 120 by, for example, whether or not lighting is possible. The wireless communication status display unit (link lamp) 1120 has the same configuration as the wireless communication status display units (link lamps) 120-12 and 120-22 shown in FIG.
 FPD状態表示部1130は、当該FPD120の状態を表示するものである。このFPD状態表示部1130は、接続可能なX線撮影システムをSSID1~SSID3で示す第1のFPD状態表示領域1131と、現在の撮影対象を確認するための第2のFPD状態表示領域1132を有して構成されている。第1のFPD状態表示領域1131は、SSID1~SSID3のうちのいずれか1つを選択可能に構成されている。第2のFPD状態表示領域1132には、第1のFPD状態表示領域1131で選択されたX線撮影システムから送信されるX線撮影検査に関する情報が表示される。具体的に、第2のFPD状態表示領域1132には、対応検査ID、患者名、検査名称、及び撮影部位などの情報が表示され、操作者は、これらの情報をX線撮影前に見ることにより、X線撮影に間違いが無いことを容易に確認できる。この第2のFPD状態表示領域1132を有するFPD状態表示部1130は、検査情報表示部の機能を有する。 The FPD status display unit 1130 displays the status of the FPD 120. The FPD status display unit 1130 includes a first FPD status display region 1131 that indicates connectable X-ray imaging systems by SSID1 to SSID3, and a second FPD status display region 1132 for confirming the current imaging target. Configured. The first FPD status display area 1131 is configured so that any one of SSID1 to SSID3 can be selected. In the second FPD state display area 1132, information on the X-ray imaging examination transmitted from the X-ray imaging system selected in the first FPD state display area 1131 is displayed. Specifically, information such as the corresponding examination ID, patient name, examination name, and imaging region is displayed in the second FPD state display area 1132, and the operator views these information before X-ray imaging. Thus, it can be easily confirmed that there is no mistake in X-ray imaging. The FPD state display unit 1130 having the second FPD state display region 1132 has a function of an examination information display unit.
 選択ボタン1140は、FPD120の状態設定を行うためのボタンである。 The selection button 1140 is a button for setting the state of the FPD 120.
 電源SW1150は、電源123のオン/オフを切り替えるためのスイッチである。 The power SW 1150 is a switch for switching the power source 123 on / off.
 キャンセルボタン1160は、当該FPD120をX線撮影の対象から外すためのボタンである。即ち、キャンセルボタン1160は、現在の撮影対象や現在のX線撮影システムが所望のものではない場合に操作者によって操作され、キャンセルボタン1160を操作することによって、X線撮影システムへの通信接続を切断することができる。 The cancel button 1160 is a button for removing the FPD 120 from the X-ray imaging target. That is, the cancel button 1160 is operated by the operator when the current imaging target or the current X-ray imaging system is not desired, and the cancel button 1160 is operated to establish a communication connection to the X-ray imaging system. Can be cut.
 ここで、例えば、図2に示す表示部125から、図11に示す撮影準備完了表示部(レディランプ)1110、及び、無線通信状態表示部(リンクランプ)1120が構成される。また、例えば、図2に示す表示部125及び操作部126から、FPD状態表示部1130が構成される。また、例えば、図2に示す操作部126から、選択ボタン1140、電源SW1150、及び、キャンセルボタン1160が構成される。 Here, for example, from the display unit 125 shown in FIG. 2, a photographing preparation completion display unit (ready lamp) 1110 and a wireless communication state display unit (link lamp) 1120 shown in FIG. Further, for example, the FPD state display unit 1130 is configured from the display unit 125 and the operation unit 126 illustrated in FIG. 2. Further, for example, a selection button 1140, a power supply SW 1150, and a cancel button 1160 are configured from the operation unit 126 illustrated in FIG.
 操作者は、撮影準備完了表示部(レディランプ)1110、及び、無線通信状態表示部(リンクランプ)1120を確認してX線撮影を行うが、当該FPD120が現在どのX線撮影システムに接続しているのかを第1のFPD状態表示領域1131の表示で確認することができ、所望のX線撮影システムではない場合、第1のFPD状態表示領域1131において所望の接続先を選択できる仕組みとなっている。 The operator confirms the imaging preparation completion display unit (ready lamp) 1110 and the wireless communication status display unit (link lamp) 1120 to perform X-ray imaging, and to which X-ray imaging system the FPD 120 is currently connected. In the first FPD state display area 1131, and if it is not a desired X-ray imaging system, a desired connection destination can be selected in the first FPD state display area 1131. ing.
 図11に示す例では、FPD120の一構成としてFPD状態表示部1130が設けられているが、本実施形態におけるFPD120及びFPD状態表示部1130の構成はこれに限定されるものではない。例えば、FPD120と同期した別体でFPD状態表示部1130を構築することも、本実施形態に適用可能である。 In the example shown in FIG. 11, the FPD status display unit 1130 is provided as one configuration of the FPD 120, but the configurations of the FPD 120 and the FPD status display unit 1130 in the present embodiment are not limited to this. For example, constructing the FPD status display unit 1130 separately from the FPD 120 is also applicable to this embodiment.
(第5の実施形態)
 次に、本発明の第5の実施形態について説明する。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described.
 図12は、本発明の第5の実施形態に係るX線撮影システム(放射線撮影システム)の概略構成の一例を示す。図12において、図1に示す第1の実施形態に係るX線撮影システム100と同様の構成については同じ符号を付している。また、図12では不図示であるが、本実施形態に係るX線撮影システムには、例えば、図1に示すX線発生部110、X線発生制御部130、及び、X線照射ボタン140も構成されているものとする。 FIG. 12 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) according to the fifth embodiment of the present invention. In FIG. 12, the same reference numerals are given to the same components as those of the X-ray imaging system 100 according to the first embodiment shown in FIG. Although not shown in FIG. 12, the X-ray imaging system according to the present embodiment includes, for example, the X-ray generation unit 110, the X-ray generation control unit 130, and the X-ray irradiation button 140 shown in FIG. It shall be configured.
 本実施形態は、1つのX線撮影システムで同時に複数の検査IDに対応したX線撮影を行う形態である。図12に示す例では、ある1つのX線撮影システムに対して、3つの検査要求(検査ID1、検査ID2、検査ID3)がなされた場合を想定しており、当該X線撮影システムに接続されている6つのFPD120-1~120-6を用いてX線撮影を行う。 This embodiment is a form in which X-ray imaging corresponding to a plurality of examination IDs is simultaneously performed with one X-ray imaging system. In the example shown in FIG. 12, it is assumed that three inspection requests (inspection ID1, inspection ID2, inspection ID3) are made for a certain X-ray imaging system and are connected to the X-ray imaging system. X-ray imaging is performed using the six FPDs 120-1 to 120-6.
 図12には、システム制御部150と、複数の検査ID1~ID3に対応した複数のFPD120-1~120-6が示されている。図12に示す例では、システム制御部150は、6つのFPD120-1~120-6を2つずつの3グループに分け、グループごとに、別個の異なる検査ID(検査ID1、検査ID2、検査ID3)を割り当てて、当該割り当てた検査IDを送信している。具体的に、図12に示す例では、FPD120-1~120-2のグループを検査ID1に割り当て、FPD120-3~120-4のグループを検査ID2に割り当て、FPD120-5~120-6のグループを検査ID3に割り当てている。 FIG. 12 shows a system control unit 150 and a plurality of FPDs 120-1 to 120-6 corresponding to a plurality of examination IDs 1 to ID3. In the example shown in FIG. 12, the system control unit 150 divides the six FPDs 120-1 to 120-6 into three groups each including two, and each group has a different inspection ID (inspection ID1, inspection ID2, inspection ID3). ) And the assigned examination ID is transmitted. Specifically, in the example shown in FIG. 12, the FPD 120-1 to 120-2 group is assigned to the examination ID 1, the FPD 120-3 to 120-4 group is assigned to the examination ID 2, and the FPD 120-5 to 120-6 group is assigned. Is assigned to inspection ID3.
 具体的なX線撮影システムの動作については、上述した第1の実施形態と同様であるが、この場合、どのFPD120がどの検査IDに対応しているのかを明確にするために、上述した第4の実施形態で説明したFPD120を用いることができる。 The specific operation of the X-ray imaging system is the same as that of the first embodiment described above. In this case, in order to clarify which FPD 120 corresponds to which examination ID, the above-described first operation is performed. The FPD 120 described in the fourth embodiment can be used.
 本実施形態の場合、各グループ内でのFPD120同士が適宜通信を行うことにより、X線撮影の効率が最適になるように、活性化状態持続時間T1、待機状態持続時間T2、遅延時間T3等を適応的に調整する。 In the case of this embodiment, the activation state duration T1, the standby state duration T2, the delay time T3, etc. so that the efficiency of X-ray imaging is optimized by appropriately communicating between the FPDs 120 in each group. Is adjusted adaptively.
 また、本実施形態に係るシステム制御部150は、各FPD120から取得したX線画像データを、割り当てた検査IDごとに管理する。具体的に、システム制御部150は、各FPD120から取得したX線画像データを検査IDごとに固有のフォルダに保管して管理する。 Further, the system control unit 150 according to the present embodiment manages the X-ray image data acquired from each FPD 120 for each assigned inspection ID. Specifically, the system control unit 150 stores and manages the X-ray image data acquired from each FPD 120 in a unique folder for each examination ID.
(第6の実施形態)
 次に、本発明の第6の実施形態について説明する。
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described.
 図13は、本発明の第6の実施形態に係るX線撮影システム(放射線撮影システム)600の概略構成の一例を示す。図13において、図1に示す第1の実施形態に係るX線撮影システム100と同様の構成については同じ符号を付している。 FIG. 13 shows an example of a schematic configuration of an X-ray imaging system (radiation imaging system) 600 according to the sixth embodiment of the present invention. In FIG. 13, the same components as those in the X-ray imaging system 100 according to the first embodiment shown in FIG.
 本実施形態に係るX線撮影システム600は、図13に示すように、実質的に同時にX線照射可能な複数のX線発生部(放射線発生部)110を配設した構成となっている。具体的には、2つのFPD120-1~120-2に対応した、2つのX線発生部110-1~110-2が設けられている。ここで、第1のX線発生部110-1は、被検体HにX線111-1を照射するものであり、第2のX線発生部110-2は、被検体HにX線111-2を照射するものである。 As shown in FIG. 13, the X-ray imaging system 600 according to this embodiment has a configuration in which a plurality of X-ray generation units (radiation generation units) 110 capable of X-ray irradiation substantially simultaneously are disposed. Specifically, two X-ray generation units 110-1 to 110-2 corresponding to the two FPDs 120-1 to 120-2 are provided. Here, the first X-ray generation unit 110-1 irradiates the subject H with the X-ray 111-1, and the second X-ray generation unit 110-2 applies the X-ray 111 to the subject H. -2 is irradiated.
 X線発生部110-1~110-2は、被検体Hを介してFPD120-1~120-2に実質的に同時にX線照射を行う。この場合、X線発生部110-1~110-2からのX線111-1~111-2は、被検体Hである人体の同じ部位に照射されるが、第1のFPD120-1及び第2のFPD120-2は被検体Hの異なる位置に配置されているため、第1のFPD120-1及び第2のFPD120-2には、それぞれ異なる方向から照射されたX線が入射する。そして、第1のFPD120-1及び第2のFPD120-2では、実質的に同時にX線画像データが生成され、システム制御部150に送信される。この図13に示すX線撮影システム600の構成により、異なる方向からの2つのX線画像を用いるステレオX線撮影(ステレオ放射線撮影)が実現できる。 The X-ray generators 110-1 to 110-2 perform X-ray irradiation substantially simultaneously on the FPDs 120-1 to 120-2 via the subject H. In this case, the X-rays 111-1 to 111-2 from the X-ray generation units 110-1 to 110-2 are irradiated to the same part of the human body as the subject H, but the first FPD 120-1 and the first FPD 120-1 Since the two FPDs 120-2 are arranged at different positions on the subject H, X-rays irradiated from different directions are incident on the first FPD 120-1 and the second FPD 120-2, respectively. Then, the first FPD 120-1 and the second FPD 120-2 generate X-ray image data substantially simultaneously and transmit them to the system control unit 150. With the configuration of the X-ray imaging system 600 shown in FIG. 13, stereo X-ray imaging (stereo radiation imaging) using two X-ray images from different directions can be realized.
 本実施形態の場合、モニタ150cは、1組2枚のステレオX線画像を実質的に同時に表示するステレオディスプレイであり、操作者の両眼それぞれに対して独立にX線画像を投影可能である。 In the case of the present embodiment, the monitor 150c is a stereo display that displays a set of two stereo X-ray images substantially simultaneously, and can project X-ray images independently to both eyes of the operator. .
(その他の実施形態)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(Other embodiments)
The present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 なお、上述した本発明の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。 Note that the above-described embodiments of the present invention are merely examples of implementation in practicing the present invention, and the technical scope of the present invention should not be construed as being limited thereto. It is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
 この出願は2013年12月27日に出願された日本国特許出願第2013-273191からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。 This application claims priority from Japanese Patent Application No. 2013-273191 filed on Dec. 27, 2013, the contents of which are incorporated herein by reference.
 100 X線撮影システム、110 X線発生部、111 X線、120-1 第1のFPD、120-2 第2のFPD、130 X線発生制御部、140 X線照射ボタン、150 システム制御部、150a PC、150b アクセスポイント、150c モニタ、H 被検体 100 X-ray imaging system, 110 X-ray generation unit, 111 X-ray, 120-1 first FPD, 120-2 second FPD, 130 X-ray generation control unit, 140 X-ray irradiation button, 150 system control unit, 150a PC, 150b access point, 150c monitor, H subject

Claims (17)

  1.  被検体を透過した放射線を検出して放射線画像を得る、複数の放射線画像検出器と、
     前記複数の放射線画像検出器の制御を行う制御部と、
     前記複数の放射線画像検出器のうちの第1の放射線画像検出器が放射線検出可能状態に遷移したことを第2の放射線画像検出器に伝達する通信部と
    を備え、
     前記第1の放射線画像検出器が放射線検出可能状態に遷移した際に、前記第2の放射線画像検出器は放射線検出可能状態に遷移することを特徴とする放射線撮影システム。
    A plurality of radiation image detectors for detecting radiation transmitted through the subject and obtaining radiation images;
    A control unit for controlling the plurality of radiation image detectors;
    A communication unit that transmits to the second radiation image detector that the first radiation image detector of the plurality of radiation image detectors has transitioned to a radiation detectable state;
    The radiation imaging system, wherein when the first radiological image detector transitions to a radiation detectable state, the second radiological image detector transitions to a radiation detectable state.
  2.  前記第2の放射線画像検出器は、前記通信部による前記伝達を受けてから所定時間だけ遅延して前記放射線検出可能状態に遷移すること特徴とする請求項1に記載の放射線撮影システム。 The radiation imaging system according to claim 1, wherein the second radiation image detector transitions to the radiation detectable state with a delay of a predetermined time after receiving the transmission by the communication unit.
  3.  前記第2の放射線画像検出器は、前記通信部による前記伝達を受けると同時に前記放射線検出可能状態に遷移すること特徴とする請求項1に記載の放射線撮影システム。 The radiation imaging system according to claim 1, wherein the second radiation image detector transitions to the radiation detectable state simultaneously with receiving the transmission by the communication unit.
  4.  前記第1の放射線画像検出器および前記第2の放射線画像検出器は、前記制御部による制御とは独立して前記放射線検出可能状態に遷移すること特徴とする請求項1乃至3のいずれか1項に記載の放射線撮影システム。 The first radiation image detector and the second radiation image detector transition to the radiation detectable state independently of the control by the control unit. The radiation imaging system according to item.
  5.  前記制御部は、前記複数の放射線画像検出器における各放射線画像検出器から前記放射線画像を取得する制御を行うことを特徴とする請求項1乃至4のいずれか1項に記載の放射線撮影システム。 The radiographic system according to any one of claims 1 to 4, wherein the control unit performs control to acquire the radiographic image from each radiographic image detector in the plurality of radiographic image detectors.
  6.  前記被検体の放射線撮影の際には、前記複数の放射線画像検出器のうちのいずれかの放射線画像検出器が前記放射線検出可能状態となっていることを特徴とする請求項1に記載の放射線撮影システム。 2. The radiation according to claim 1, wherein at the time of radiography of the subject, any one of the plurality of radiological image detectors is in a state where the radiation can be detected. Shooting system.
  7.  前記被検体の放射線撮影の際の或るタイミングでは、前記複数の放射線画像検出器のうちの2つ以上の放射線画像検出器が前記放射線検出可能状態となっていることを特徴とする請求項1に記載の放射線撮影システム。 2. The radiographic image detection apparatus according to claim 1, wherein two or more radiographic image detectors among the plurality of radiographic image detectors are in the radiation detectable state at a certain timing when radiographing the subject. The radiation imaging system described in 1.
  8.  前記複数の放射線画像検出器における各放射線画像検出器には、放射線撮影の準備が完了しているかどうかを示す撮影準備完了表示部が設けられていることを特徴とする請求項1乃至7のいずれか1項に記載の放射線撮影システム。 The radiographic image detector in the plurality of radiographic image detectors is provided with an imaging preparation completion display unit that indicates whether or not preparation for radiographic imaging is completed. The radiation imaging system according to claim 1.
  9.  前記複数の放射線画像検出器における各放射線画像検出器に対応して設けられ、対応する放射線画像検出器が放射線撮影の準備が完了しているかどうかを示す撮影準備完了表示部を更に有することを特徴とする請求項1乃至7のいずれか1項に記載の放射線撮影システム。 The radiographic image detector further includes an imaging preparation completion display unit provided corresponding to each radiographic image detector in the plurality of radiographic image detectors, and indicating whether the corresponding radiographic image detector is ready for radiography. The radiation imaging system according to any one of claims 1 to 7.
  10.  前記被検体に対して放射線を照射する放射線発生部を更に有し、
     前記複数の放射線画像検出器における各放射線画像検出器は、前記放射線発生部と通信可能に構成されており、前記放射線発生部から、前記被検体に放射線を照射するタイミングに係るタイミング情報を受信し、当該タイミング情報に基づいて前記被検体を透過した放射線を検出して前記放射線画像を得ることを特徴とする請求項1乃至9のいずれか1項に記載の放射線撮影システム。
    A radiation generator for irradiating the subject with radiation;
    Each of the radiation image detectors in the plurality of radiation image detectors is configured to be communicable with the radiation generator, and receives timing information related to the timing of irradiating the subject with radiation from the radiation generator. The radiation imaging system according to claim 1, wherein the radiation image is obtained by detecting radiation transmitted through the subject based on the timing information.
  11.  前記制御部は、前記複数の放射線画像検出器における各放射線画像検出器に対して前記被検体の検査情報を送信し、
     前記各放射線画像検出器は、当該被検体の前記放射線画像とともに前記検査情報を前記制御部に送信することを特徴とする請求項1乃至10のいずれか1項に記載の放射線撮影システム。
    The control unit transmits examination information of the subject to each radiation image detector in the plurality of radiation image detectors,
    11. The radiation imaging system according to claim 1, wherein each of the radiological image detectors transmits the examination information together with the radiographic image of the subject to the control unit.
  12.  前記各放射線画像検出器には、前記検査情報を表示する検査情報表示部が設けられていることを特徴とする請求項11に記載の放射線撮影システム。 12. The radiation imaging system according to claim 11, wherein each radiation image detector is provided with an inspection information display unit for displaying the inspection information.
  13.  前記制御部は、前記複数の放射線画像検出器を複数のグループに分け、前記グループごとに異なる前記検査情報を送信することを特徴とする請求項11または12に記載の放射線撮影システム。 The radiographic imaging system according to claim 11 or 12, wherein the control unit divides the plurality of radiation image detectors into a plurality of groups and transmits the examination information different for each group.
  14.  前記制御部は、前記各放射線画像検出器から取得した前記放射線画像を、前記検査情報に応じて管理することを特徴とする請求項13に記載の放射線撮影システム。 The radiographic system according to claim 13, wherein the control unit manages the radiographic images acquired from the radiological image detectors according to the examination information.
  15.  前記被検体に対して放射線を照射する放射線発生部を更に有し、
     前記放射線発生部から前記被検体を介して前記複数の放射線画像検出器に放射線を照射し、前記複数の放射線画像検出器において複数の前記放射線画像を得ることを特徴とする請求項1乃至14のいずれか1項に記載の放射線撮影システム。
    A radiation generator for irradiating the subject with radiation;
    15. The plurality of radiation images are obtained by irradiating the plurality of radiation image detectors from the radiation generation unit via the subject, and the plurality of radiation image detectors. The radiography system of any one of Claims.
  16.  前記制御部は、前記複数の放射線画像検出器から前記複数の放射線画像を取得し、当該複数の放射線画像を合成して、合成放射線画像を生成することを特徴とする請求項15に記載の放射線撮影システム。 The radiation according to claim 15, wherein the control unit acquires the plurality of radiation images from the plurality of radiation image detectors and combines the plurality of radiation images to generate a composite radiation image. Shooting system.
  17.  被検体を透過した放射線を検出して放射線画像を得る、複数の放射線画像検出器と、前記複数の放射線画像検出器の制御を行う制御部と、前記複数の放射線画像検出器のうちの第1の放射線画像検出器が放射線検出可能状態に遷移したことを第2の放射線画像検出器に伝達する通信部とを有して構成された放射線撮影システムの制御方法であって、
     通信部によって、前記複数の放射線画像検出器のうちの第1の放射線画像検出器が放射線検出可能状態に遷移したことを第2の放射線画像検出器に伝達することと、
     前記第1の放射線画像検出器が放射線検出可能状態に遷移した際に、前記第2の放射線画像検出器を放射線検出可能状態に遷移させることと
     を含むことを特徴とする放射線撮影システムの制御方法。
    A plurality of radiation image detectors that detect radiation transmitted through the subject to obtain a radiation image, a control unit that controls the plurality of radiation image detectors, and a first of the plurality of radiation image detectors A radiographic imaging system control method configured to include a communication unit that transmits to the second radiographic image detector that the radiographic image detector has transitioned to a radiation detectable state,
    Transmitting to the second radiation image detector that the first radiation image detector of the plurality of radiation image detectors has transitioned to a radiation detectable state by the communication unit;
    When the first radiation image detector transitions to a radiation detectable state, the second radiation image detector transitions to a radiation detectable state. The method of controlling a radiation imaging system, comprising: .
PCT/JP2014/006075 2013-12-27 2014-12-04 Radiography system and method for controlling same WO2015098002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013273191A JP6373004B2 (en) 2013-12-27 2013-12-27 Radiation imaging system and control method thereof
JP2013-273191 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098002A1 true WO2015098002A1 (en) 2015-07-02

Family

ID=53477909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006075 WO2015098002A1 (en) 2013-12-27 2014-12-04 Radiography system and method for controlling same

Country Status (2)

Country Link
JP (1) JP6373004B2 (en)
WO (1) WO2015098002A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540401B2 (en) * 2015-09-09 2019-07-10 株式会社島津製作所 X-ray imaging system, X-ray imaging apparatus, and X-ray detector
JP2017136214A (en) * 2016-02-04 2017-08-10 コニカミノルタ株式会社 Radiation image photographing system
JP6881907B2 (en) * 2016-07-22 2021-06-02 キヤノン株式会社 Radiation imaging equipment, radiography systems, radiography methods, and programs
JP2023049842A (en) * 2021-09-29 2023-04-10 キヤノン株式会社 Radiographic apparatus, radiographic system, and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200064A (en) * 2000-12-28 2002-07-16 Canon Inc Imaging device, imaging system, imaging method, and recording medium
JP2005013272A (en) * 2003-06-23 2005-01-20 Canon Inc Radiography apparatus and radiography method
JP2011030660A (en) * 2009-07-30 2011-02-17 Fujifilm Corp System and method for radiographic imaging management
JP2011072775A (en) * 2009-09-03 2011-04-14 Fujifilm Corp Radiography system
WO2011145171A1 (en) * 2010-05-18 2011-11-24 キヤノン株式会社 Imaging system and method for controlling same
JP2012045159A (en) * 2010-08-26 2012-03-08 Fujifilm Corp Radiographic imaging system and radiographic imaging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200064A (en) * 2000-12-28 2002-07-16 Canon Inc Imaging device, imaging system, imaging method, and recording medium
JP2005013272A (en) * 2003-06-23 2005-01-20 Canon Inc Radiography apparatus and radiography method
JP2011030660A (en) * 2009-07-30 2011-02-17 Fujifilm Corp System and method for radiographic imaging management
JP2011072775A (en) * 2009-09-03 2011-04-14 Fujifilm Corp Radiography system
WO2011145171A1 (en) * 2010-05-18 2011-11-24 キヤノン株式会社 Imaging system and method for controlling same
JP2012045159A (en) * 2010-08-26 2012-03-08 Fujifilm Corp Radiographic imaging system and radiographic imaging method

Also Published As

Publication number Publication date
JP6373004B2 (en) 2018-08-15
JP2015126806A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
US8275835B2 (en) Radiographic image capturing system
WO2015098002A1 (en) Radiography system and method for controlling same
US8891731B2 (en) System and method for controlling a portable X-ray system
CN103917163A (en) Radiographic system, radiographic system communication method, and radiograph-detecting equipment
WO2005096944A1 (en) Radiation image capturing system and radiation image capturing program
JP4633427B2 (en) Method for positioning mobile X-ray detector unit of X-ray system, X-ray system and mobile X-ray detector unit
KR20160010222A (en) X-ray detector and a method for configuration thereof
JP6434733B2 (en) Radiation imaging system, radiation imaging apparatus, control method thereof, and program
KR100780848B1 (en) X-ray scanning system performing synchronization with wireless signal
JP2010057707A (en) Radiological imaging system
US8737566B2 (en) X-ray imaging system, x-ray imaging method, and storage medium
US20200187892A1 (en) X-ray imaging device, x-ray detector, and x-ray imaging system
JP6824106B2 (en) Radiographers, controls, their control methods and programs
US20210169435A1 (en) Radiography system, radiography apparatus used in the radiography system, and control apparatus used in the radiography system
WO2018070272A1 (en) Radiation imaging system and control method therefor, control device and control method therefor, and computer program
JP2011062425A (en) Radiation image photographing system
JP6840519B2 (en) Radiation imaging equipment, radiography systems, radiography methods, and programs
JP2018089307A (en) Device for controlling radiographic system
WO2010001635A1 (en) Radiation image capturing system
JP6666984B2 (en) Radiation imaging system, imaging apparatus, control method of radiation imaging system, and program
JP2009204671A (en) Radiographic system
WO2023054160A1 (en) Radiation imaging apparatus, radiation imaging system, and control method
JP2020028674A (en) Radiographic system, radiographic apparatus used for the radiographic system, and control apparatus used for the radiographic system
JP2020028675A (en) Radiographic system, radiographic apparatus used for the radiographic system, and control apparatus used for the radiographic system
JP2020028673A (en) Radiographic system, radiographic apparatus used for the radiographic system, and control apparatus used for the radiographic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875610

Country of ref document: EP

Kind code of ref document: A1