WO2015064712A1 - Method for producing methylene-disulfonic acid compound - Google Patents

Method for producing methylene-disulfonic acid compound Download PDF

Info

Publication number
WO2015064712A1
WO2015064712A1 PCT/JP2014/078961 JP2014078961W WO2015064712A1 WO 2015064712 A1 WO2015064712 A1 WO 2015064712A1 JP 2014078961 W JP2014078961 W JP 2014078961W WO 2015064712 A1 WO2015064712 A1 WO 2015064712A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
methylene
acid
disulfonic acid
compound represented
Prior art date
Application number
PCT/JP2014/078961
Other languages
French (fr)
Japanese (ja)
Inventor
真耶 村上
悟士 八軒
武寛 檜山
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2015064712A1 publication Critical patent/WO2015064712A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/04Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups
    • C07C303/08Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups by reaction with halogenosulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms

Definitions

  • the present invention relates to a method for producing a methylene disulfonic acid compound using a carboxylic acid halide compound.
  • Methylene disulfonic acid compounds are known as intermediates for synthesizing methylene disulfonate compounds useful in various fields such as pharmaceuticals such as animal leukemia therapeutic agents and additives for secondary battery electrolytes.
  • a method for producing a methylene disulfonic acid compound sulfonation of dihalogenated methylene is known.
  • a method for producing a methylene disulfonic acid compound by reacting an aqueous sodium sulfite solution with dibromomethane in the presence of potassium iodide and tetrabutylammonium bromide (Patent Document 1).
  • the method (nonpatent literature 1) etc. which are manufactured by hydrolysis of thioacetic acid alkylester are known.
  • Patent Document 2 there are known methods for obtaining alkanedisulfonic acid hydrates by adding an excess amount of water to alkanedisulfonyl halide, and methods for dehydrating alkanedisulfonic acid hydrates with a dehydrating agent (thionyl chloride).
  • Non-Patent Document 1 a methylene disulfonic acid compound can be easily obtained.
  • thioacetic acid alkyl ester as raw material, it is necessary to use odorous thioacetic acid, so it is necessary to take sufficient deodorizing measures. May be required.
  • Patent Document 2 it is a method of producing a methylene disulfonic acid compound by adding an excess amount of water to the methylene disulfonyl chloride compound. Any water present must be removed. Furthermore, when obtaining the methylene disulfonyl chloride compound which is a raw material, the reaction using specific carboxylic acid, chlorosulfonic acid, and phosphoryl trichloride is used (nonpatent literature 2). In these reactions, an insoluble by-product is generated during the reaction, which causes poor stirring of the raw materials and clogging of the apparatus. Therefore, it is not preferable to industrially produce a methylene disulfonyl chloride compound.
  • the conventional method for obtaining a methylene disulfonic acid compound has a problem that it is not preferable from an industrial point of view, such as complicated equipment and facilities and a long process. Furthermore, when manufacturing via a methylene disulfonyl chloride compound, since many poisonous substances, such as phosphoryl trichloride, are used at the time of manufacture of a methylene disulfonyl chloride compound, it improves on industrial implementation, such as an increase in waste water. There was a problem.
  • the object of the present invention is to efficiently produce a methylene disulfonic acid compound by an industrially advantageous method.
  • the present invention includes, for example, the subject matters described in the following sections.
  • R 1 R 2 CHCOX (1) (Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, and X represents a halogen atom).
  • the following formula (3) including the step of reacting the carboxylic acid halide compound represented by) and chlorosulfonic acid, and the step of (B) mixing the reaction solution obtained in the step (A) and water:
  • R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
  • Item 2. The process for producing a methylene disulfonic acid compound according to Item 1, wherein in the step (A), the amount of chlorosulfonic acid used per 1 mol of the carboxylic acid halide compound represented by the formula (1) is 2 mol or more and 6 mol or less. Method.
  • the amount of water used is 100 parts by mass or more and 1200 parts by mass or less with respect to 100 parts by mass of the carboxylic acid halide compound represented by the formula (1) used in the step (A).
  • Item 3. A method for producing a methylene disulfonic acid compound according to Item 1 or 2.
  • Item 4 The step of obtaining a methylene disulfonic acid compound represented by the formula (3) by the production method according to any one of items 1 to 3, and (C) a methylene disulfonic acid compound represented by the formula (3), Formula (4) including the step of mixing and reacting a dehydrating agent and at least one compound selected from the group consisting of formaldehyde, trioxane and paraformaldehyde:
  • R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
  • a reaction solution obtained by reacting a carboxylic acid halide compound and chlorosulfonic acid is further mixed with water in an industrially advantageous manner.
  • the manufacturing method which can obtain a methylene disulfonic acid compound directly from a carboxylic acid halide compound can be provided.
  • the methylene disulfonate compound can be obtained in a high yield by an industrially advantageous method (particularly, without using phosphoryl trichloride).
  • the production method of the present invention comprises: (A) A step of reacting the carboxylic acid halide compound represented by the formula (1) with chlorosulfonic acid, and (B) a step of mixing the reaction solution obtained in the step (A) and water.
  • the step of reacting the carboxylic acid halide compound represented by the formula (1) and chlorosulfonic acid is the step (A), the step of mixing the reaction solution obtained in the step (A) and water (B ) Process.
  • R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
  • the reaction liquid containing the chlorosulfonyl methylene sulfonic acid compound represented by this can be obtained.
  • R 1 R 2 CHCOX (1) (Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, and X represents a halogen atom). ) It is a compound represented by these.
  • the alkyl group having 1 to 4 carbon atoms may be linear or branched. Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an isopropyl group.
  • the hydrogen atom of the alkyl group may be substituted with a halogen atom.
  • the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, more preferably a chlorine atom.
  • the number of hydrogen atoms substituted with halogen atoms is preferably 1, 2, 3, or 4, more preferably 1 or 2.
  • an unsubstituted or monosubstituted product in which one of R 1 and R 2 is hydrogen and the other is an alkyl group having 1 to 4 carbon atoms which may be substituted with hydrogen or a halogen atom is preferable.
  • the alkyl group having 1 to 4 carbon atoms which may be substituted with a monosubstituted halogen atom is preferably a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group or an n-butyl group.
  • examples of the halogen atom represented by X include a chlorine atom, a bromine atom and an iodine atom.
  • a chlorine atom is preferable from the viewpoints of easy availability and safety.
  • carboxylic acid halide compound of the formula (1) include chlorides such as acetic acid chloride, propionic acid chloride, butyric acid chloride, valeric acid chloride, isobutyric acid chloride, and isovaleric acid chloride; and acetic acid bromide and propione.
  • chlorides such as acetic acid chloride, propionic acid chloride, butyric acid chloride, valeric acid chloride, isobutyric acid chloride, and isovaleric acid chloride
  • acetic acid bromide and propione examples include bromides such as acid bromide, butyric acid bromide, valeric acid bromide, isobutyric acid bromide, and isovaleric acid bromide.
  • chlorides are preferable from the viewpoint of availability, safety, and the like, more preferably acetic acid chloride, propionic acid chloride, and butyric acid chloride, and particularly preferable are acetic acid chloride and propionic acid chloride.
  • carboxylic acid halide compounds By using these carboxylic acid halide compounds, methylene disulfonic acid compounds can be obtained with high yield.
  • carboxylic acid halide compound Commercially available products may be used as the carboxylic acid halide compound. Moreover, you may use what was manufactured in accordance with the conventional method, for example, what was manufactured by making carboxylic acid, thionyl chloride, or thionyl bromide react can be used.
  • the amount of the chlorosulfonic acid used is preferably 2 mol or more and 6 mol or less with respect to 1 mol of the carboxylic acid halide compound. , More preferably 2 mol or more and 4 mol or less.
  • the amount used is 6 mol or less, generation of sulfuric acid due to side reaction can be suppressed, so that decomposition of the chlorosulfonylmethylenesulfonic acid compound by sulfuric acid can be suppressed.
  • the said usage-amount is 2 mol or more, reaction advances efficiently and the yield of the said chlorosulfonyl methylene sulfonic acid compound can be improved more.
  • the method of mixing the carboxylic acid halide compound and chlorosulfonic acid is not particularly limited, and examples thereof include a method of adding chlorosulfonic acid to the carboxylic acid halide compound.
  • the method of dripping chlorosulfonic acid from a viewpoint of safety etc. is preferable.
  • the temperature at the time of dropping is preferably 0 to 20 ° C. If a reaction liquid is 20 degrees C or less, the production
  • the dropping time is preferably 0.5 to 3.0 hours. By dropping over 0.5 hours or more, heat generation can be suppressed and a rapid temperature rise of the reaction solution can be prevented, so that the reaction can be performed more safely. In addition, if the dropping time is 3.0 hours or less, the heat generated by dropping can be used efficiently, so that the time required for temperature rise can be saved during subsequent heating, which is economical for industrialization. .
  • the temperature at which the reaction solution is heated and reacted after mixing the carboxylic acid halide compound and chlorosulfonic acid is preferably 70 to 140 ° C., more preferably 90 to 120 ° C.
  • the reaction temperature is 70 ° C. or higher, the reaction proceeds at an appropriate reaction rate and the efficiency is good. Moreover, if it is 140 degrees C or less, the production
  • the reaction time is usually 10 to 20 hours.
  • reaction may be performed without a solvent, but a solvent may be used as necessary.
  • reaction is performed in an inert atmosphere such as nitrogen or argon as necessary.
  • chlorosulfonylmethylenesulfonic acid compound represented by the formula (2) include, for example, chlorosulfonylmethylenesulfonic acid, 1,1-chlorosulfonylethylenesulfonic acid, 1,1-chlorosulfonylpropanesulfonic acid, 1 1,2-chlorosulfonylbutanesulfonic acid, 2,2-chlorosulfonylpropanesulfonic acid, 2-methyl-1,1-chlorosulfonylpropanesulfonic acid, and the like.
  • chlorosulfonylmethylenesulfonic acid, 1,1-chlorosulfonylethylenesulfonic acid, and 1,1-chlorosulfonylpropanesulfonic acid are preferable, and chlorosulfonylmethylenesulfonic acid and 1,1-chlorosulfonylethylenesulfonic acid are particularly preferable.
  • the methylene disulfonic acid compound can be industrially advantageously obtained by mixing (preferably mixing and heating) the reaction solution obtained in the process (A) and water.
  • the reaction solution obtained in the step (A) is not limited to a reaction solution obtained by reacting a carboxylic acid halide compound and chlorosulfonic acid, but a carboxylic acid halide compound and chlorosulfonic acid.
  • a concentrated reaction liquid obtained by further concentrating the reaction liquid obtained by the reaction by distillation or the like is also included.
  • the resulting methylene disulfonic acid compound has the following formula (3):
  • R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively). It is a methylene disulfonic acid compound represented by these.
  • R 1 and R 2 in the formula (3) include those exemplified in R 1 and R 2 in Formula (1).
  • methylene disulfonic acid compound of the formula (3) include, for example, methane disulfonic acid, ethane-1,1-disulfonic acid, propane-1,1-disulfonic acid, butane-1,1-disulfonic acid, propane -2,2-disulfonic acid, 2-methyl-propane-1,1-disulfonic acid and the like.
  • methanedisulfonic acid, ethane-1,1-disulfonic acid, and propane-1,1-disulfonic acid are preferable, and methanedisulfonic acid and ethane-1,1-disulfonic acid are particularly preferable.
  • the amount of water used is 100 parts by mass of the carboxylic acid halide compound.
  • the amount is preferably 100 to 1200 parts by mass, and more preferably 400 to 600 parts by mass.
  • the amount of water used is 100 parts by mass or more, the reaction proceeds efficiently, the chlorosulfonylmethylene sulfonic acid compound does not become unreacted, and the reaction proceeds with higher yield. Moreover, if it is 1200 mass parts or less, the removal of the excess water is easier and efficient.
  • the method of mixing the reaction solution obtained in the step (A) and water is not particularly limited.
  • water is charged in a flask and obtained in the step (A) while bathing in an ice bath.
  • the reaction solution (preferably a concentrated reaction solution obtained by concentrating the reaction solution obtained in the above reaction) is added, and then the temperature is raised.
  • produce when adding a reaction liquid the method of dripping a reaction liquid from a safety viewpoint etc. is preferable.
  • the temperature at the time of dropping is preferably 0 to 20 ° C., and the dropping time is preferably 0.5 to 3.0 hours. Heat generation can be suppressed by dripping within a predetermined time. If it is within 3.0 hours, the time required for production can be shortened, which is economical in the case of industrialization.
  • the temperature for heating and reacting the mixture is preferably 70 to 100 ° C., more preferably 90 to 100 ° C. If reaction temperature is 70 degreeC or more, it will prevent that an unreacted chlorosulfonyl methylene sulfonic acid compound remains, and reaction will progress with a sufficient yield.
  • the reaction time is usually 1 to 2 hours.
  • the production method of the present invention may include additional steps as long as the effects of the present invention are not impaired.
  • Examples of the additional step include a step of removing excess chlorosulfonic acid as shown below.
  • the reaction liquid containing the chlorosulfonylmethylenesulfonic acid compound obtained in the step (A) usually contains an excess of chlorosulfonic acid together with the chlorosulfonylmethylenesulfonic acid compound represented by the formula (2). Therefore, it is preferable to remove excess chlorosulfonic acid from the reaction solution.
  • Examples of the method for removing excess chlorosulfonic acid from the reaction solution include a method of concentrating the reaction solution by a method such as distillation before the subsequent step (B) to remove the excess chlorosulfonic acid.
  • the mixture is reacted with water as it is in the step (B) to hydrolyze the excess chlorosulfonic acid to obtain sulfuric acid.
  • the method for removing sulfuric acid after hydrolysis include a method for removing barium sulfate by adding barium chloride and water.
  • chlorosulfonic acid When chlorosulfonic acid is removed from the reaction solution by distillation or the like, it may be performed after the step (A) and before the step (B). When the chlorosulfonic acid is hydrolyzed and then removed as sulfuric acid, it may be carried out after the step (B). These methods may be performed alone or in combination.
  • barium chloride When removing excess chlorosulfonic acid as sulfuric acid, after heating and reacting the mixture of the reaction solution and water, barium chloride is added and filtered to remove sulfuric acid as barium sulfate.
  • the temperature in this operation is not limited, but after adding barium chloride, it is preferable to keep the temperature once at 70 to 90 ° C. and then cool to 0 to 20 ° C. and then filter.
  • the amount of barium chloride used is not limited, but for example, it is preferably about 0.9 to 1.2 mol with respect to 1 mol of sulfuric acid present in the mixed solution.
  • the quantification of sulfuric acid present in the mixed solution is not particularly limited, and examples thereof include an ion chromatographic method because it is simple and can be analyzed in a small amount.
  • the ion chromatograph method used in the present invention may be a commercially available ion chromatograph apparatus, and the column used is not particularly limited.
  • the measurement conditions such as the measurement temperature and elution conditions may be set appropriately as long as the objective is achieved.
  • the methylene disulfonic acid compound represented by the formula (3) contains an excess amount of water. Therefore, a methylene disulfonic acid compound with a low water content can be obtained by distilling off excess water.
  • the methylene disulfonic acid compound represented by the formula (3) is usually considered to form hydrogen bonds with water molecules. Since an excessive amount of water is reacted in the above production method, the obtained methylene disulfonic acid compound is considered to form hydrogen bonds with water molecules. Although this state is sometimes described as the formation of a hydrate of a methylene disulfonic acid compound, it is described in this specification that water is present in the methylene disulfonic acid compound.
  • Water in the methylene disulfonic acid compound may inhibit the dehydration condensation reaction particularly in the reaction of synthesizing the methylene disulfonate compound by the steps described below. Therefore, it is desirable to remove water from the methylene disulfonic acid compound according to the present invention as much as possible.
  • the content of water in the methylene disulfonic acid compound is preferably about 5% by mass or less. More preferably, it is 4 mass% or less.
  • water can be efficiently removed by bringing the obtained methylene disulfonic acid compound to a high temperature (for example, about 120 ° C. or higher) under reduced pressure conditions.
  • Water contained in the methylene disulfonic acid compound can be removed by a simple method.
  • the water content in the methylene disulfonic acid compound can be reduced to about 5% by mass or less by adjusting the temperature to 140 ° C. and 5 mmHg or less.
  • water when the method of the present invention is used, water can be sufficiently distilled off only by distilling off water from the obtained methylenedisulfonic acid compound under heating and reduced pressure conditions.
  • a polar organic solvent preferably an aprotic polar organic solvent such as dimethyl sulfoxide, sulfolane, methylpyrrolidine, dimethylformamide, etc.
  • the polar organic solvent can be used as it is as a solvent when a methylene disulfonate compound is synthesized by the steps described below.
  • a cyclic methylene disulfonate compound can be synthesized from the methylene disulfonic acid compound represented by the above formula (3) produced by the above-described method by a known method.
  • the known method for example, the method described in International Publication No. WO2007 / 125736 is preferably exemplified. Specifically, it is a method of synthesizing a cyclic methylene disulfonate compound by reacting a methylene disulfonic acid compound and a formaldehyde compound in the presence of a dehydrating agent.
  • R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
  • the methylene disulfonate compound represented by these can be manufactured.
  • R 1 and R 2 in Formula (4) include those exemplified in R 1 and R 2 in Formula (1).
  • the dehydrating agent used here is not particularly limited, and examples thereof include phosphorus pentoxide, phosphorus pentachloride, phosphorus oxychloride, thionyl chloride, acetyl chloride, and acetic anhydride. Among these, phosphorus pentoxide is preferable from the viewpoint of high reactivity.
  • These dehydrating agents can be used singly or in combination of two or more.
  • the amount of the dehydrating agent to be used is not particularly limited, but is preferably 0.6 to 10 mol, more preferably 0.8 to 3 mol with respect to 1 mol of the methylene disulfonic acid compound.
  • the amount of at least one compound selected from the group consisting of formaldehyde, trioxane, and paraformaldehyde is not particularly limited, but is equivalent to formaldehyde with respect to 1 mole of methylene disulfonic acid compound. And preferably 0.2 to 10 mol, more preferably 0.3 to 3 mol.
  • the reaction temperature is not particularly limited, but is preferably 0 to 200 ° C., more preferably 50 to 150 ° C., for example.
  • the reaction time varies depending on the reaction temperature, but is about 0.1 to 15 hours, for example.
  • the methylene disulfonate compound represented by the formula (4) obtained as described above is separated from the reaction mixture by a conventional separation means and purified.
  • separation and purification means include distillation, recrystallization, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, preparative thin layer chromatography, solvent extraction, and the like. it can.
  • Example 1 A 100 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel was charged with 27.8 g (0.30 mol) of propionic acid chloride under a nitrogen stream and cooled to 5 ° C. by bathing in an ice bath. did. 69.6 g (0.60 mol) of chlorosulfonic acid was added dropwise over 30 minutes while maintaining the temperature at 10 ° C. with a dropping funnel. Next, the temperature of the reaction solution was raised to 110 ° C. over an hour using an oil bath. The reaction solution was kept at 110 ° C. for 10 hours.
  • This reaction solution was distilled off under reduced pressure at 100 ° C./3 mmHg, and the resulting concentrated solution was charged with 120.0 g of water charged in a 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel. The solution was added dropwise at 5 ° C. for 0.5 hours while cooling in an ice bath. After dropping, the temperature was raised to 100 ° C. by an oil bath and kept for 1 hour. When this reaction solution was quantified by ion chromatography, 0.12 mol of sulfate ion was present.
  • Example 2 In the same manner as in Example 1 except that 104.4 g (0.90 mol) of chlorosulfonic acid was used instead of 69.6 g (0.60 mol) of chlorosulfonic acid, ethane-1, 11.6 g (0.06 mol, water content 3.8% by mass) of 1-disulfonic acid was obtained. The yield was 20.4%.
  • Example 3 In Example 1, instead of 27.8 g (0.30 mol) of propionic acid chloride, 23.6 g (0.30 mol) of acetic acid chloride was used in the same manner as in Example 1, except that methanedisulfonic acid. 8 g (0.05 mol, moisture content 3.2% by mass) was obtained. The yield was 16.6%.
  • Comparative Example 1 A 500 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel was charged with 184.0 g (1.20 mol) of phosphoryl trichloride under a nitrogen stream and cooled to 5 ° C. by bathing in an ice bath. did. 76.9 g (0.66 mol) of chlorosulfonic acid was added dropwise over 30 minutes while maintaining the temperature at 10 ° C. with a dropping funnel. Further, 22.2 g (0.30 mol) of propionic acid was added dropwise over 30 minutes while maintaining at 10 ° C. Next, the temperature of the reaction solution was raised to 110 ° C. over an hour using an oil bath.
  • Table 1 summarizes the conditions and results of the above Examples and Comparative Examples.
  • Example 4 A 300 mL four-necked flask equipped with a stirrer, a condenser and a thermometer was charged with 18.6 g (0.098 mol) of ethane-1,1-disulfonic acid and 77.6 g of sulfolane under a nitrogen stream. The temperature was raised to 100 ° C. After the temperature increase, 4.1 g of paraformaldehyde (0.136 mol in terms of formaldehyde) and 27.8 g of diphosphorus pentoxide (0.196 mol) were added, and the temperature was kept for 12 hours.

Abstract

The purpose of the present invention is to efficiently produce a methylene-disulfonic acid compound by using a carboxylic acid chloride compound and by using an industrially advantageous method. Provided is a method for producing a methylene-disulfonic acid compound represented by formula (3) (in formula (3), R1 and R2 are the same as R1 and R2 in formula (1)) includes the following: (A) a step of reacting a carboxylic acid halide compound represented by formula (1): R1R2CHCOX (1) (in formula (1), R1 and R2 are each independently a hydrogen atom or a C1-C4 alkyl group in which a hydrogen atom may be substituted with a halogen atom, and X is a halogen atom) with chlorosulfonic acid; and (B) a step of mixing water with the reaction liquid obtained in step (A).

Description

メチレンジスルホン酸化合物の製造方法Method for producing methylene disulfonic acid compound
 本発明は、カルボン酸ハライド化合物を用いたメチレンジスルホン酸化合物の製造方法に関する。 The present invention relates to a method for producing a methylene disulfonic acid compound using a carboxylic acid halide compound.
 メチレンジスルホン酸化合物は、動物の白血病治療薬等の医薬品や二次電池用電解液の添加剤等、様々な分野で有用なメチレンジスルホネート化合物を合成するための中間体として知られている。 Methylene disulfonic acid compounds are known as intermediates for synthesizing methylene disulfonate compounds useful in various fields such as pharmaceuticals such as animal leukemia therapeutic agents and additives for secondary battery electrolytes.
 メチレンジスルホン酸化合物の製造方法としては、ジハロゲン化メチレンのスルホン化が知られている。例えば、亜硫酸ナトリウム水溶液にヨウ化カリウム、及びテトラブチルアンモニウムブロマイド存在下でジブロモメタンを反応させることによりメチレンジスルホン酸化合物を製造する方法(特許文献1)等がある。また、チオ酢酸アルキルエステルの加水分解により製造する方法(非特許文献1)等が知られている。その他に、アルカンジスルホニルハライドに、過剰量の水を加えることでアルカンジスルホン酸の水和物を得る方法や、アルカンジスルホン酸の水和物を脱水剤(塩化チオニル)により脱水する方法が知られている(特許文献2)。 As a method for producing a methylene disulfonic acid compound, sulfonation of dihalogenated methylene is known. For example, there is a method for producing a methylene disulfonic acid compound by reacting an aqueous sodium sulfite solution with dibromomethane in the presence of potassium iodide and tetrabutylammonium bromide (Patent Document 1). Moreover, the method (nonpatent literature 1) etc. which are manufactured by hydrolysis of thioacetic acid alkylester are known. In addition, there are known methods for obtaining alkanedisulfonic acid hydrates by adding an excess amount of water to alkanedisulfonyl halide, and methods for dehydrating alkanedisulfonic acid hydrates with a dehydrating agent (thionyl chloride). (Patent Document 2).
 非特許文献1の方法によると、容易にメチレンジスルホン酸化合物を取得することができる。しかし、原料であるチオ酢酸アルキルエステルを合成する際に悪臭物質であるチオ酢酸を用いる必要があることから十分な防臭対策を施す必要がある等、装置や設備が複雑になり、高度な反応操作が求められる場合がある。 According to the method of Non-Patent Document 1, a methylene disulfonic acid compound can be easily obtained. However, when synthesizing thioacetic acid alkyl ester as raw material, it is necessary to use odorous thioacetic acid, so it is necessary to take sufficient deodorizing measures. May be required.
 更に、特許文献2等の方法によると、メチレンジスルホニルクロライド化合物に、過剰量の水を加えることでメチレンジスルホン酸化合物を製造する方法であるが、この方法によると、反応終了時に反応液中に存在する水を除去しなければならない。更に、原料であるメチレンジスルホニルクロライド化合物を得る際には、特定のカルボン酸と、クロロスルホン酸と、三塩化ホスホリルを用いる反応を用いている(非特許文献2)。これらの反応は、反応途中で不溶性の副生成物が生じ、これにより原料の攪拌不良や装置の目詰まりなどが起こるため、工業的にメチレンジスルホニルクロライド化合物を製造するのは好ましくない。 Furthermore, according to the method of Patent Document 2, etc., it is a method of producing a methylene disulfonic acid compound by adding an excess amount of water to the methylene disulfonyl chloride compound. Any water present must be removed. Furthermore, when obtaining the methylene disulfonyl chloride compound which is a raw material, the reaction using specific carboxylic acid, chlorosulfonic acid, and phosphoryl trichloride is used (nonpatent literature 2). In these reactions, an insoluble by-product is generated during the reaction, which causes poor stirring of the raw materials and clogging of the apparatus. Therefore, it is not preferable to industrially produce a methylene disulfonyl chloride compound.
米国特許第2006/0155142号明細書US 2006/0155142 specification 特開2005-336155号公報JP 2005-336155 A
 メチレンジスルホン酸化合物を得る従来の方法では、装置や設備が複雑であったり、工程が長い等工業的には好ましくないという問題があった。更に、メチレンジスルホニルクロライド化合物を経由して製造する場合、メチレンジスルホニルクロライド化合物の製造時に三塩化ホスホリル等の毒物を多く使用するため、廃水が増加する等といった工業的に実施する上で改善すべき問題があった。 The conventional method for obtaining a methylene disulfonic acid compound has a problem that it is not preferable from an industrial point of view, such as complicated equipment and facilities and a long process. Furthermore, when manufacturing via a methylene disulfonyl chloride compound, since many poisonous substances, such as phosphoryl trichloride, are used at the time of manufacture of a methylene disulfonyl chloride compound, it improves on industrial implementation, such as an increase in waste water. There was a problem.
 本発明は、工業的に有利な方法で、効率よくメチレンジスルホン酸化合物を製造することを目的とする。 The object of the present invention is to efficiently produce a methylene disulfonic acid compound by an industrially advantageous method.
 本発明者らは、前記課題を解決すべく鋭意検討の結果、カルボン酸ハライド化合物と、クロロスルホン酸とを反応させる(A)工程、及び前記(A)工程で得られた反応液と水とを混合する(B)工程を経ることにより、メチレンジスルホン酸化合物を製造できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have made a reaction between the carboxylic acid halide compound and chlorosulfonic acid (A), and the reaction solution obtained in the above (A) and water. Through the step (B) of mixing, it was found that a methylene disulfonic acid compound can be produced, and the present invention has been completed.
 即ち、本発明は例えば以下の項に記載の主題を包含する。 That is, the present invention includes, for example, the subject matters described in the following sections.
 項1. (A)下記式(1):
CHCOX    (1)
(式中、R及びRは、それぞれ独立して、水素原子、または水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示し、Xはハロゲン原子を示す。)で表されるカルボン酸ハライド化合物とクロロスルホン酸とを反応させる工程、及び
(B)前記(A)工程で得られた反応液と水とを混合する工程
を含む下記式(3):
Item 1. (A) The following formula (1):
R 1 R 2 CHCOX (1)
(Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, and X represents a halogen atom). The following formula (3) including the step of reacting the carboxylic acid halide compound represented by) and chlorosulfonic acid, and the step of (B) mixing the reaction solution obtained in the step (A) and water:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
で表されるメチレンジスルホン酸化合物の製造方法。
(In the formula, R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
The manufacturing method of the methylene disulfonic acid compound represented by these.
 項2. 前記(A)工程において、前記式(1)で表されるカルボン酸ハライド化合物 1モルに対するクロロスルホン酸の使用量が2モル以上6モル以下である前記項1に記載のメチレンジスルホン酸化合物の製造方法。 Item 2. Item 2. The process for producing a methylene disulfonic acid compound according to Item 1, wherein in the step (A), the amount of chlorosulfonic acid used per 1 mol of the carboxylic acid halide compound represented by the formula (1) is 2 mol or more and 6 mol or less. Method.
 項3. 前記(B)工程において、水の使用量が、前記(A)工程において使用した前記式(1)で表されるカルボン酸ハライド化合物 100質量部に対して、100質量部以上1200質量部以下である、前記項1又は2に記載のメチレンジスルホン酸化合物の製造方法。 Item 3. In the step (B), the amount of water used is 100 parts by mass or more and 1200 parts by mass or less with respect to 100 parts by mass of the carboxylic acid halide compound represented by the formula (1) used in the step (A). Item 3. A method for producing a methylene disulfonic acid compound according to Item 1 or 2.
 項4. 前記項1~3のいずれかに記載の製造方法により前記式(3)で表されるメチレンジスルホン酸化合物を得る工程、及び
(C)前記式(3)で表されるメチレンジスルホン酸化合物に、脱水剤、並びにホルムアルデヒド、トリオキサン及びパラホルムアルデヒドからなる群より選択される少なくとも一種の化合物を混合し、反応させる工程を含む下記式(4):
Item 4. The step of obtaining a methylene disulfonic acid compound represented by the formula (3) by the production method according to any one of items 1 to 3, and (C) a methylene disulfonic acid compound represented by the formula (3), Formula (4) including the step of mixing and reacting a dehydrating agent and at least one compound selected from the group consisting of formaldehyde, trioxane and paraformaldehyde:
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
で表されるメチレンジスルホネート化合物の製造方法。
(In the formula, R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
The manufacturing method of the methylene disulfonate compound represented by these.
 本発明のメチレンジスルホン酸化合物の製造方法によれば、カルボン酸ハライド化合物とクロロスルホン酸とを反応させて得られた反応液を、更に水と混合することにより、工業的に有利な方法で、メチレンジスルホン酸化合物をカルボン酸ハライド化合物から直接得られる製造方法を提供することが出来る。 According to the method for producing a methylene disulfonic acid compound of the present invention, a reaction solution obtained by reacting a carboxylic acid halide compound and chlorosulfonic acid is further mixed with water in an industrially advantageous manner. The manufacturing method which can obtain a methylene disulfonic acid compound directly from a carboxylic acid halide compound can be provided.
 また、本発明によれば、メチレンジスルホネート化合物を工業的に有利な方法(特に、三塩化ホスホリルを用いることなく)で、高い収率によって取得することができる。 Further, according to the present invention, the methylene disulfonate compound can be obtained in a high yield by an industrially advantageous method (particularly, without using phosphoryl trichloride).
 1.メチレンジスルホン酸化合物の製造
 本発明の製造方法は、
(A)式(1)で表されるカルボン酸ハライド化合物とクロロスルホン酸とを反応させる工程、及び
(B)前記(A)工程で得られた反応液と水とを混合する工程
を含む。以下、式(1)で表されるカルボン酸ハライド化合物とクロロスルホン酸とを反応させる工程を(A)工程、前記(A)工程で得られた反応液と水とを混合する工程を(B)工程とすることもある。
1. Production of methylene disulfonic acid compound The production method of the present invention comprises:
(A) A step of reacting the carboxylic acid halide compound represented by the formula (1) with chlorosulfonic acid, and (B) a step of mixing the reaction solution obtained in the step (A) and water. Hereinafter, the step of reacting the carboxylic acid halide compound represented by the formula (1) and chlorosulfonic acid is the step (A), the step of mixing the reaction solution obtained in the step (A) and water (B ) Process.
 1.1.(A)工程
 本発明の(A)工程では、下記式(1):
CHCOX   (1)
(式中、R及びRは、それぞれ独立して、水素原子、または水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示し、Xはハロゲン原子を示す。)
で表されるカルボン酸ハライド化合物とクロロスルホン酸とを反応させる。これによって、下記式(2):
1.1. (A) Process In the (A) process of the present invention, the following formula (1):
R 1 R 2 CHCOX (1)
(Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, and X represents a halogen atom). )
Is reacted with a chlorosulfonic acid. Thereby, the following formula (2):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
で表されるクロロスルホニルメチレンスルホン酸化合物を含む反応液を得ることができる。
(In the formula, R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
The reaction liquid containing the chlorosulfonyl methylene sulfonic acid compound represented by this can be obtained.
 本発明にかかるカルボン酸ハライド化合物としては、下記式(1):
CHCOX   (1)
(式中、R及びRは、それぞれ独立して、水素原子、または水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示し、Xはハロゲン原子を示す。)
で表される化合物である。
As a carboxylic acid halide compound concerning this invention, following formula (1):
R 1 R 2 CHCOX (1)
(Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, and X represents a halogen atom). )
It is a compound represented by these.
 前記炭素数1~4のアルキル基は、直鎖又は分岐鎖であってもよい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基等が好ましく例示される。上記のとおり、当該アルキル基の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子は好ましくはフッ素原子、塩素原子、臭素原子、又はヨウ素原子であり、より好ましくは塩素原子である。また、ハロゲン原子で置換される水素原子数は、好ましくは1、2、3、又や4個であり、より好ましくは1又は2個である。これらの中でも、R及びRのどちらか一方が水素であり、他方が水素又はハロゲン原子で置換されていてもよい炭素数1~4のアルキル基である無置換体又は一置換体が好ましい。一置換体のハロゲン原子で置換されていてもよい炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基のような直鎖のアルキル基が好ましい。 The alkyl group having 1 to 4 carbon atoms may be linear or branched. Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an isopropyl group. As described above, the hydrogen atom of the alkyl group may be substituted with a halogen atom. The halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, more preferably a chlorine atom. In addition, the number of hydrogen atoms substituted with halogen atoms is preferably 1, 2, 3, or 4, more preferably 1 or 2. Among these, an unsubstituted or monosubstituted product in which one of R 1 and R 2 is hydrogen and the other is an alkyl group having 1 to 4 carbon atoms which may be substituted with hydrogen or a halogen atom is preferable. . The alkyl group having 1 to 4 carbon atoms which may be substituted with a monosubstituted halogen atom is preferably a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group or an n-butyl group.
 前記式(1)において、Xで示されるハロゲン原子としては、たとえば、塩素原子、臭素原子およびヨウ素原子等を挙げることができる。これらの中でも塩素原子が入手の容易さ、安全性等の観点から好ましい。 In the formula (1), examples of the halogen atom represented by X include a chlorine atom, a bromine atom and an iodine atom. Among these, a chlorine atom is preferable from the viewpoints of easy availability and safety.
 前記式(1)のカルボン酸ハライド化合物の具体例としては、例えば、酢酸クロライド、プロピオン酸クロライド、酪酸クロライド、吉草酸クロライド、イソ酪酸クロライド、イソ吉草酸クロライド等の塩化物;及び酢酸ブロマイド、プロピオン酸ブロマイド、酪酸ブロマイド、吉草酸ブロマイド、イソ酪酸ブロマイド、イソ吉草酸ブロマイド等の臭化物が挙げられる。これらの中でも、塩化物が入手の容易さ、安全性等の観点から好ましく、酢酸クロライド、プロピオン酸クロライド、酪酸クロライドであることがより好ましく、酢酸クロライド、プロピオン酸クロライドであることが特に好ましい。これらのカルボン酸ハライド化合物を使用することで、高い収率でメチレンジスルホン酸化合物を得ることが出来る。 Specific examples of the carboxylic acid halide compound of the formula (1) include chlorides such as acetic acid chloride, propionic acid chloride, butyric acid chloride, valeric acid chloride, isobutyric acid chloride, and isovaleric acid chloride; and acetic acid bromide and propione. Examples thereof include bromides such as acid bromide, butyric acid bromide, valeric acid bromide, isobutyric acid bromide, and isovaleric acid bromide. Among these, chlorides are preferable from the viewpoint of availability, safety, and the like, more preferably acetic acid chloride, propionic acid chloride, and butyric acid chloride, and particularly preferable are acetic acid chloride and propionic acid chloride. By using these carboxylic acid halide compounds, methylene disulfonic acid compounds can be obtained with high yield.
 前記カルボン酸ハライド化合物は、市販品を用いてもよい。また、常法に従って製造されたものを用いてもよく、例えば、カルボン酸と塩化チオニル又は臭化チオニルとを反応させて製造されたもの等を用いることができる。 Commercially available products may be used as the carboxylic acid halide compound. Moreover, you may use what was manufactured in accordance with the conventional method, for example, what was manufactured by making carboxylic acid, thionyl chloride, or thionyl bromide react can be used.
 当該製造方法において、カルボン酸ハライド化合物とクロロスルホン酸とを反応させる工程において、前記クロロスルホン酸の使用量は、前記カルボン酸ハライド化合物 1モルに対して2モル以上6モル以下であることが好ましく、 2モル以上4モル以下であることがより好ましい。当該使用量が6モル以下である場合には副反応による硫酸の生成を抑えることができるため、硫酸による前記クロロスルホニルメチレンスルホン酸化合物の分解を抑えることができる。また、当該使用量が2モル以上である場合には効率的に反応が進行し、前記クロロスルホニルメチレンスルホン酸化合物の収率をより向上することができる。 In the production method, in the step of reacting the carboxylic acid halide compound and chlorosulfonic acid, the amount of the chlorosulfonic acid used is preferably 2 mol or more and 6 mol or less with respect to 1 mol of the carboxylic acid halide compound. , More preferably 2 mol or more and 4 mol or less. When the amount used is 6 mol or less, generation of sulfuric acid due to side reaction can be suppressed, so that decomposition of the chlorosulfonylmethylenesulfonic acid compound by sulfuric acid can be suppressed. Moreover, when the said usage-amount is 2 mol or more, reaction advances efficiently and the yield of the said chlorosulfonyl methylene sulfonic acid compound can be improved more.
 前記カルボン酸ハライド化合物とクロロスルホン酸とを混合させる方法は、特に限定されないが、例えば、該カルボン酸ハライド化合物に、クロロスルホン酸を添加する方法等が挙げられる。なお、クロロスルホン酸を添加する際には、希釈熱等により発熱する場合があるので、安全性の観点等からクロロスルホン酸を滴下する方法が好ましい。滴下する際の温度としては、0~20℃であることが好ましい。反応液が、20℃以下であれば、副生成物の生成を抑えることができ、より高い収率で反応を行うことができる。また、0℃以上であれば、続く加熱の際に昇温に必要な時間等を短縮することができ、工業化を行なうために経済的である。 The method of mixing the carboxylic acid halide compound and chlorosulfonic acid is not particularly limited, and examples thereof include a method of adding chlorosulfonic acid to the carboxylic acid halide compound. In addition, when adding chlorosulfonic acid, since it may generate | occur | produce with the heat of dilution etc., the method of dripping chlorosulfonic acid from a viewpoint of safety etc. is preferable. The temperature at the time of dropping is preferably 0 to 20 ° C. If a reaction liquid is 20 degrees C or less, the production | generation of a by-product can be suppressed and it can react with a higher yield. Moreover, if it is 0 degreeC or more, the time etc. which are required for temperature rising in the case of subsequent heating can be shortened, and it is economical in order to perform industrialization.
 滴下時間は0.5~3.0時間で滴下することが好ましい。0.5時間以上の時間をかけて滴下することで、発熱を抑制することができ、反応液の急激な温度上昇を防ぐことができるため、より安全に反応を行うことができる。また、滴下時間が3.0時間以下であれば、滴下による発熱を効率よく用いることができるため、続く加熱の際に昇温に必要な時間を節約でき、工業化を行う際に経済的である。 The dropping time is preferably 0.5 to 3.0 hours. By dropping over 0.5 hours or more, heat generation can be suppressed and a rapid temperature rise of the reaction solution can be prevented, so that the reaction can be performed more safely. In addition, if the dropping time is 3.0 hours or less, the heat generated by dropping can be used efficiently, so that the time required for temperature rise can be saved during subsequent heating, which is economical for industrialization. .
 前記カルボン酸ハライド化合物とクロロスルホン酸とを混合した後、反応液を加熱し反応させる温度としては、70~140℃とすることが好ましく、90~120℃とすることがより好ましい。反応温度が70℃以上であれば、適度な反応速度で反応が進行し、効率がよい。また、140℃以下であれば、タール分の生成を抑えることができ、その結果、収率の低下を抑えられる。反応時間は、通常、10~20時間である。 The temperature at which the reaction solution is heated and reacted after mixing the carboxylic acid halide compound and chlorosulfonic acid is preferably 70 to 140 ° C., more preferably 90 to 120 ° C. When the reaction temperature is 70 ° C. or higher, the reaction proceeds at an appropriate reaction rate and the efficiency is good. Moreover, if it is 140 degrees C or less, the production | generation of a tar part can be suppressed and, as a result, the fall of a yield can be suppressed. The reaction time is usually 10 to 20 hours.
 前記反応においては、無溶媒で反応させてもよいが、必要に応じて溶媒を用いてもよい。 In the above reaction, the reaction may be performed without a solvent, but a solvent may be used as necessary.
 また、前記反応は、必要に応じて、窒素、アルゴン等の不活性雰囲気下で行う。 In addition, the reaction is performed in an inert atmosphere such as nitrogen or argon as necessary.
 前記式(2)で表されるクロロスルホニルメチレンスルホン酸化合物の具体例としては、例えば、クロロスルホニルメチレンスルホン酸、1,1-クロロスルホニルエチレンスルホン酸、1,1-クロロスルホニルプロパンスルホン酸、1,1-クロロスルホニルブタンスルホン酸、2,2-クロロスルホニルプロパンスルホン酸、2-メチル-1,1-クロロスルホニルプロパンスルホン酸等が挙げられる。これらの中でも、クロロスルホニルメチレンスルホン酸、1,1-クロロスルホニルエチレンスルホン酸、1,1-クロロスルホニルプロパンスルホン酸が好ましく、クロロスルホニルメチレンスルホン酸、1,1-クロロスルホニルエチレンスルホン酸が特に好ましい。 Specific examples of the chlorosulfonylmethylenesulfonic acid compound represented by the formula (2) include, for example, chlorosulfonylmethylenesulfonic acid, 1,1-chlorosulfonylethylenesulfonic acid, 1,1-chlorosulfonylpropanesulfonic acid, 1 1,2-chlorosulfonylbutanesulfonic acid, 2,2-chlorosulfonylpropanesulfonic acid, 2-methyl-1,1-chlorosulfonylpropanesulfonic acid, and the like. Among these, chlorosulfonylmethylenesulfonic acid, 1,1-chlorosulfonylethylenesulfonic acid, and 1,1-chlorosulfonylpropanesulfonic acid are preferable, and chlorosulfonylmethylenesulfonic acid and 1,1-chlorosulfonylethylenesulfonic acid are particularly preferable. .
 1.2.(B)工程
 前記(A)工程で得られた反応液と水とを混合する(好ましくは、混合し加熱する)ことにより、メチレンジスルホン酸化合物を工業的有利に得ることができる。なお、本発明において、前記(A)工程で得られた反応液とは、カルボン酸ハライド化合物とクロロスルホン酸とを反応させて得られた反応液に限らず、カルボン酸ハライド化合物とクロロスルホン酸とを反応させて得られた反応液をさらに留去等により濃縮した濃縮反応液等も含む。
1.2. (B) Process The methylene disulfonic acid compound can be industrially advantageously obtained by mixing (preferably mixing and heating) the reaction solution obtained in the process (A) and water. In the present invention, the reaction solution obtained in the step (A) is not limited to a reaction solution obtained by reacting a carboxylic acid halide compound and chlorosulfonic acid, but a carboxylic acid halide compound and chlorosulfonic acid. In addition, a concentrated reaction liquid obtained by further concentrating the reaction liquid obtained by the reaction by distillation or the like is also included.
 得られるメチレンジスルホン酸化合物は、下記式(3): The resulting methylene disulfonic acid compound has the following formula (3):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
で表されるメチレンジスルホン酸化合物である。
(In the formula, R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
It is a methylene disulfonic acid compound represented by these.
 前記式(3)中におけるR及びRは、前記式(1)におけるR及びRにおいて例示したものが挙げられる。 R 1 and R 2 in the formula (3) include those exemplified in R 1 and R 2 in Formula (1).
 前記式(3)のメチレンジスルホン酸化合物の具体例としては、例えば、メタンジスルホン酸、エタン-1,1-ジスルホン酸、プロパン-1,1-ジスルホン酸、ブタン-1,1-ジスルホン酸、プロパン-2,2-ジスルホン酸、2-メチル-プロパン-1,1-ジスルホン酸等が挙げられる。これらの中でも、メタンジスルホン酸、エタン-1,1-ジスルホン酸、プロパン-1,1-ジスルホン酸が好ましく、メタンジスルホン酸、エタン-1,1-ジスルホン酸が特に好ましい。 Specific examples of the methylene disulfonic acid compound of the formula (3) include, for example, methane disulfonic acid, ethane-1,1-disulfonic acid, propane-1,1-disulfonic acid, butane-1,1-disulfonic acid, propane -2,2-disulfonic acid, 2-methyl-propane-1,1-disulfonic acid and the like. Among these, methanedisulfonic acid, ethane-1,1-disulfonic acid, and propane-1,1-disulfonic acid are preferable, and methanedisulfonic acid and ethane-1,1-disulfonic acid are particularly preferable.
 式(2)で表されるクロロスルホニルメチレンスルホン酸化合物と水とを混合することにより、メチレンジスルホン酸化合物を得る工程において、前記水の使用量としては、前記カルボン酸ハライド化合物 100質量部に対して、100~1200質量部であることが好ましく、400~600質量部であることがより好ましい。水の使用量が100質量部以上であれば、反応が効率的進行し、クロロスルホニルメチレンスルホン酸化合物が未反応とならず、より収率よく反応が進行する。また、1200質量部以下であれば、過剰に存在する水の除去がより容易であり、効率的である。 In the step of obtaining the methylene disulfonic acid compound by mixing the chlorosulfonylmethylenesulfonic acid compound represented by the formula (2) and water, the amount of water used is 100 parts by mass of the carboxylic acid halide compound. The amount is preferably 100 to 1200 parts by mass, and more preferably 400 to 600 parts by mass. When the amount of water used is 100 parts by mass or more, the reaction proceeds efficiently, the chlorosulfonylmethylene sulfonic acid compound does not become unreacted, and the reaction proceeds with higher yield. Moreover, if it is 1200 mass parts or less, the removal of the excess water is easier and efficient.
 前記(A)工程で得られた反応液と水とを混合する方法は、特に限定されないが、例えば、フラスコ内に水を仕込んでおき、これを氷浴しながら前記(A)工程で得られた反応液(好ましくは前記反応で得られた反応液を濃縮した濃縮反応液)を添加し、その後、昇温していく方法が挙げられる。なお、反応液を添加する際には、発熱及びガスが発生するので、安全性の観点等から反応液を滴下する方法が好ましい。滴下する際の温度としては、0~20℃であることが好ましく、滴下時間は0.5~3.0時間で滴下することが好ましい。所定の時間内で滴下することで、発熱を抑制することができる。3.0時間以内であれば、製造にかかる時間を短縮することができ、工業化を行なう場合に経済的である。 The method of mixing the reaction solution obtained in the step (A) and water is not particularly limited. For example, water is charged in a flask and obtained in the step (A) while bathing in an ice bath. The reaction solution (preferably a concentrated reaction solution obtained by concentrating the reaction solution obtained in the above reaction) is added, and then the temperature is raised. In addition, since heat_generation | fever and gas generate | occur | produce when adding a reaction liquid, the method of dripping a reaction liquid from a safety viewpoint etc. is preferable. The temperature at the time of dropping is preferably 0 to 20 ° C., and the dropping time is preferably 0.5 to 3.0 hours. Heat generation can be suppressed by dripping within a predetermined time. If it is within 3.0 hours, the time required for production can be shortened, which is economical in the case of industrialization.
 前記(A)工程で得られた反応液と水の混合後、混合液を加熱し反応させる温度としては、70~100℃とすることが好ましく、90~100℃とすることがより好ましい。反応温度が70℃以上であれば、未反応のクロロスルホニルメチレンスルホン酸化合物が残ることを防ぎ、より収率よく反応が進行する。反応時間は、通常、1~2時間である。 After mixing the reaction solution obtained in the step (A) and water, the temperature for heating and reacting the mixture is preferably 70 to 100 ° C., more preferably 90 to 100 ° C. If reaction temperature is 70 degreeC or more, it will prevent that an unreacted chlorosulfonyl methylene sulfonic acid compound remains, and reaction will progress with a sufficient yield. The reaction time is usually 1 to 2 hours.
 1.3.その他の工程
 本発明の製造方法は、本発明の効果を阻害しない範囲において、付加的な工程を含んでいてもよい。付加的な工程とは、例えば、以下に示すように余剰のクロロスルホン酸を除去する工程等が挙げられる。
1.3. Other Steps The production method of the present invention may include additional steps as long as the effects of the present invention are not impaired. Examples of the additional step include a step of removing excess chlorosulfonic acid as shown below.
 前記(A)工程において得られる前記クロロスルホニルメチレンスルホン酸化合物を含む反応液は、前記式(2)で表されるクロロスルホニルメチレンスルホン酸化合物と共に余剰分のクロロスルホン酸を通常含んでいる。そのため、この反応液から余剰分のクロロスルホン酸を除去することが好ましい。反応液から余剰分のクロロスルホン酸を除去する方法としては、続く(B)工程の前に留去等の方法により反応液を濃縮し、余剰分のクロロスルホン酸を除去する方法が挙げられる。また、反応液から余剰分のクロロスルホン酸を除去せずに、そのまま(B)工程で水と混合して反応させ、余剰分のクロロスルホン酸を加水分解し、硫酸とした上で、この硫酸を除去することもできる。加水分解後に硫酸を除去する方法としては、塩化バリウム及び水を加えて硫酸バリウムとして除去する方法が挙げられる。 The reaction liquid containing the chlorosulfonylmethylenesulfonic acid compound obtained in the step (A) usually contains an excess of chlorosulfonic acid together with the chlorosulfonylmethylenesulfonic acid compound represented by the formula (2). Therefore, it is preferable to remove excess chlorosulfonic acid from the reaction solution. Examples of the method for removing excess chlorosulfonic acid from the reaction solution include a method of concentrating the reaction solution by a method such as distillation before the subsequent step (B) to remove the excess chlorosulfonic acid. In addition, without removing the excess chlorosulfonic acid from the reaction solution, the mixture is reacted with water as it is in the step (B) to hydrolyze the excess chlorosulfonic acid to obtain sulfuric acid. Can also be removed. Examples of the method for removing sulfuric acid after hydrolysis include a method for removing barium sulfate by adding barium chloride and water.
 クロロスルホン酸を留去等で反応液から除く場合、前記(A)工程後前記(B)工程前に行えばよい。クロロスルホン酸を加水分解した後、硫酸として除く場合、前記(B)工程後に行えばよい。これらの方法は、それぞれ単独で行っても、両者を併用してもよい。 When chlorosulfonic acid is removed from the reaction solution by distillation or the like, it may be performed after the step (A) and before the step (B). When the chlorosulfonic acid is hydrolyzed and then removed as sulfuric acid, it may be carried out after the step (B). These methods may be performed alone or in combination.
 余剰分のクロロスルホン酸を硫酸として除去する場合、前記反応液と水との混合液を加熱し反応させた後、塩化バリウムを加えて、濾過することで硫酸を硫酸バリウムとして除去すればよい。この操作における温度は、限定的ではないが、塩化バリウムを加えた後、一度70~90℃に保温し、その後0~20℃に冷却してから濾過することが好ましい。使用する塩化バリウムの量は限定的ではないが、例えば、混合液中に存在する硫酸 1モルに対して、0.9~1.2モル程度であることが好ましい。混合液中に存在する硫酸の定量は、特に限定されないが、簡便であり少量での分析が可能であること等からイオンクロマトグラフ法等を挙げることが出来る。 When removing excess chlorosulfonic acid as sulfuric acid, after heating and reacting the mixture of the reaction solution and water, barium chloride is added and filtered to remove sulfuric acid as barium sulfate. The temperature in this operation is not limited, but after adding barium chloride, it is preferable to keep the temperature once at 70 to 90 ° C. and then cool to 0 to 20 ° C. and then filter. The amount of barium chloride used is not limited, but for example, it is preferably about 0.9 to 1.2 mol with respect to 1 mol of sulfuric acid present in the mixed solution. The quantification of sulfuric acid present in the mixed solution is not particularly limited, and examples thereof include an ion chromatographic method because it is simple and can be analyzed in a small amount.
 本発明で用いられる前記イオンクロマトグラフ法は、市販のイオンクロマトグラフ装置を用いればよく、用いるカラム等は特に制約を受けない。また、その測定温度や溶離条件等の測定条件は目的が達成される条件を適宜設定すればよい。 The ion chromatograph method used in the present invention may be a commercially available ion chromatograph apparatus, and the column used is not particularly limited. In addition, the measurement conditions such as the measurement temperature and elution conditions may be set appropriately as long as the objective is achieved.
 2.メチレンジスルホン酸化合物の精製
 上記反応終了後、前記式(3)で表されるメチレンジスルホン酸化合物は、余剰分の水を含んでいる。そのため、余剰分の水を留去することで水含量の少ないメチレンジスルホン酸化合物を得ることができる。
2. Purification of methylene disulfonic acid compound After completion of the above reaction, the methylene disulfonic acid compound represented by the formula (3) contains an excess amount of water. Therefore, a methylene disulfonic acid compound with a low water content can be obtained by distilling off excess water.
 前記式(3)で表されるメチレンジスルホン酸化合物は、水存在下では、通常水分子と水素結合を形成していると考えられている。上記の製造方法では過剰量の水を反応させているため、得られるメチレンジスルホン酸化合物は水分子と水素結合を形成していると考えられる。この状態をメチレンジスルホン酸化合物の水和物が形成されると表記することもあるが、本明細書中では、メチレンジスルホン酸化合物中に水が存在すると記載する。 In the presence of water, the methylene disulfonic acid compound represented by the formula (3) is usually considered to form hydrogen bonds with water molecules. Since an excessive amount of water is reacted in the above production method, the obtained methylene disulfonic acid compound is considered to form hydrogen bonds with water molecules. Although this state is sometimes described as the formation of a hydrate of a methylene disulfonic acid compound, it is described in this specification that water is present in the methylene disulfonic acid compound.
 メチレンジスルホン酸化合物中の水は、特に、下述する工程によりメチレンジスルホネート化合物を合成する反応において、脱水縮合反応を阻害するおそれがある。従って、本発明に係るメチレンジスルホン酸化合物は、できるだけ水を除くことが望ましい。特に限定はされないが、メチレンジスルホン酸化合物中の水の含量は、約5質量%以下にすることが好ましい。より好ましくは4質量%以下である。 Water in the methylene disulfonic acid compound may inhibit the dehydration condensation reaction particularly in the reaction of synthesizing the methylene disulfonate compound by the steps described below. Therefore, it is desirable to remove water from the methylene disulfonic acid compound according to the present invention as much as possible. Although not particularly limited, the content of water in the methylene disulfonic acid compound is preferably about 5% by mass or less. More preferably, it is 4 mass% or less.
 本発明のメチレンジスルホン酸化合物の製造方法を用いれば、得られたメチレンジスルホン酸化合物を減圧条件下、高温(例えば、120℃程度以上)にすることで効率的に水を除去することができ、メチレンジスルホン酸化合物に含まれる水を簡便な方法により除去することができる。例えば、140℃、5mmHg以下とすることでメチレンジスルホン酸化合物中の水分含量を約5質量%程度以下にすることができる。 By using the method for producing a methylene disulfonic acid compound of the present invention, water can be efficiently removed by bringing the obtained methylene disulfonic acid compound to a high temperature (for example, about 120 ° C. or higher) under reduced pressure conditions. Water contained in the methylene disulfonic acid compound can be removed by a simple method. For example, the water content in the methylene disulfonic acid compound can be reduced to about 5% by mass or less by adjusting the temperature to 140 ° C. and 5 mmHg or less.
 上述のとおり、本発明の方法を用いれば、加熱及び減圧条件下、得られたメチレンジスルホン酸化合物から水を留去するのみで充分に水を留去することができる。しかしながら、さらに極性有機溶媒(好ましくはジメチルスルホキシド、スルホラン、メチルピロリジン、ジメチルホルムアミド等の非プロトン性極性有機溶媒)を添加した後、減圧留去、乾燥剤による脱水等を行うことにより、さらに水分含量を減少させてもよい。当該極性有機溶媒は、下述する工程によりメチレンジスルホネート化合物を合成する際に、溶媒としてそのまま使用することができる。 As described above, when the method of the present invention is used, water can be sufficiently distilled off only by distilling off water from the obtained methylenedisulfonic acid compound under heating and reduced pressure conditions. However, after adding a polar organic solvent (preferably an aprotic polar organic solvent such as dimethyl sulfoxide, sulfolane, methylpyrrolidine, dimethylformamide, etc.), the water content can be further increased by performing distillation under reduced pressure, dehydration with a desiccant, etc. May be reduced. The polar organic solvent can be used as it is as a solvent when a methylene disulfonate compound is synthesized by the steps described below.
 3.メチレンジスルホネート化合物の製造
 上記方法により製造した前記式(3)で表されるメチレンジスルホン酸化合物から更に公知の方法により、環状のメチレンジスルホネート化合物を合成することができる。当該公知の方法としては、例えば国際公開WO2007/125736号パンフレットに記載の方法が好ましく例示できる。具体的には、メチレンジスルホン酸化合物とホルムアルデヒド化合物とを脱水剤の存在下で反応させて、環状のメチレンジスルホネート化合物を合成する方法である。
3. Production of Methylene Disulfonate Compound A cyclic methylene disulfonate compound can be synthesized from the methylene disulfonic acid compound represented by the above formula (3) produced by the above-described method by a known method. As the known method, for example, the method described in International Publication No. WO2007 / 125736 is preferably exemplified. Specifically, it is a method of synthesizing a cyclic methylene disulfonate compound by reacting a methylene disulfonic acid compound and a formaldehyde compound in the presence of a dehydrating agent.
 以下に、上記方法により得られたメチレンジスルホン酸化合物から更に環状のメチレンジスルホネート化合物を合成する方法の好ましい一態様を詳述する。 Hereinafter, a preferred embodiment of a method for synthesizing a cyclic methylene disulfonate compound from the methylene disulfonic acid compound obtained by the above method will be described in detail.
 前記式(3)で表されるメチレンジスルホン酸化合物に脱水剤、並びにホルムアルデヒド、トリオキサン、及びパラホルムアルデヒドからなる群より選択される少なくとも1種の化合物を加え、スルホラン等の極性有機溶媒中反応させることにより、下記式(4): Adding a dehydrating agent and at least one compound selected from the group consisting of formaldehyde, trioxane, and paraformaldehyde to the methylene disulfonic acid compound represented by the formula (3) and reacting in a polar organic solvent such as sulfolane. According to the following formula (4):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
で表されるメチレンジスルホネート化合物を製造することができる。
(In the formula, R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
The methylene disulfonate compound represented by these can be manufactured.
 前記式(4)中におけるR及びRは、前記式(1)におけるR及びRにおいて例示したものが挙げられる。 R 1 and R 2 in Formula (4) include those exemplified in R 1 and R 2 in Formula (1).
 ここで用いる脱水剤としては、特に限定されるものではなく、例えば、五酸化リン、五塩化リン、オキシ塩化リン、塩化チオニル、塩化アセチル、無水酢酸等を挙げることができる。これらの中でも、反応性が高い観点から、五酸化リンが好ましい。これらの脱水剤は、1種単独又は2種以上を組み合わせて用いることができる。脱水剤の使用量は、特に限定されないが、メチレンジスルホン酸化合物 1モルに対して、好ましくは、0.6~10モル、より好ましくは0.8~3モルである。 The dehydrating agent used here is not particularly limited, and examples thereof include phosphorus pentoxide, phosphorus pentachloride, phosphorus oxychloride, thionyl chloride, acetyl chloride, and acetic anhydride. Among these, phosphorus pentoxide is preferable from the viewpoint of high reactivity. These dehydrating agents can be used singly or in combination of two or more. The amount of the dehydrating agent to be used is not particularly limited, but is preferably 0.6 to 10 mol, more preferably 0.8 to 3 mol with respect to 1 mol of the methylene disulfonic acid compound.
 ホルムアルデヒド、トリオキサン、及びパラホルムアルデヒドからなる群より選択される少なくとも1種の化合物(以下「ホルムアルデヒド化合物」とも呼ぶ)の使用量は、特に限定されないが、メチレンジスルホン酸化合物 1モルに対して、ホルムアルデヒド換算で好ましくは0.2~10モル、より好ましくは0.3~3モルである。 The amount of at least one compound selected from the group consisting of formaldehyde, trioxane, and paraformaldehyde (hereinafter also referred to as “formaldehyde compound”) is not particularly limited, but is equivalent to formaldehyde with respect to 1 mole of methylene disulfonic acid compound. And preferably 0.2 to 10 mol, more preferably 0.3 to 3 mol.
 当該方法においては、反応温度は特に限定はされないが、例えば、好ましくは0~200℃、より好ましくは50~150℃である。また、反応時間は反応温度により異なるが、例えば0.1~15時間程度である。 In this method, the reaction temperature is not particularly limited, but is preferably 0 to 200 ° C., more preferably 50 to 150 ° C., for example. The reaction time varies depending on the reaction temperature, but is about 0.1 to 15 hours, for example.
 上記により得られる前記式(4)で表されるメチレンジスルホネート化合物は、通常の分離手段により反応混合物より分離され、精製される。このような分離及び精製手段としては、例えば蒸留法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、親和クロマトグラフィー、プレパラティブ薄層クロマトグラフィー、溶媒抽出法等を挙げることができる。 The methylene disulfonate compound represented by the formula (4) obtained as described above is separated from the reaction mixture by a conventional separation means and purified. Examples of such separation and purification means include distillation, recrystallization, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, preparative thin layer chromatography, solvent extraction, and the like. it can.
 以下に実施例および比較例を挙げ、本発明を具体的に説明するが、本発明は、この実施例によってなんら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the examples.
 <メチレンジスルホン酸化合物の製造>
 実施例1
 撹拌機、冷却管、温度計及び滴下ロートを備え付けた100mL容の4つ口フラスコに、窒素気流下でプロピオン酸クロライド 27.8g(0.30モル)を仕込み氷浴することで5℃まで冷却した。ここにクロロスルホン酸 69.6g(0.60モル)を滴下ロートにより10℃に維持しながら30分かけて滴下した。次にオイルバスにより反応液を1時間かけて110℃まで昇温した。反応液を110℃に保持したまま10時間保温した。この反応液を100℃/3mmHgにて減圧留去行い、得られた濃縮液を、撹拌機、冷却管、温度計および滴下ロートを備え付けた200mL容の4つ口フラスコに仕込んだ水 120.0gに、氷浴にて冷却しながら、5℃、0.5時間で滴下した。滴下後、オイルバスにより100℃に昇温し、1時間保温した。この反応液をイオンクロマトで定量したところ硫酸イオンが0.12モル存在した。そこで、塩化バリウム二水和物 31.9g(0.13モル)と水 120gを添加し80℃で保温した後に10℃に冷却し、濾過した。この濾液を140℃/3mmHgにて減圧留去することでエタン-1,1-ジスルホン酸 17.5g(0.09モル、水分含量 3.1質量%)を取得した。収率は29.8%であった。なお、水分含量はカール・フィッシャー法により求めた。以下の例も同じである。
<Production of methylene disulfonic acid compound>
Example 1
A 100 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel was charged with 27.8 g (0.30 mol) of propionic acid chloride under a nitrogen stream and cooled to 5 ° C. by bathing in an ice bath. did. 69.6 g (0.60 mol) of chlorosulfonic acid was added dropwise over 30 minutes while maintaining the temperature at 10 ° C. with a dropping funnel. Next, the temperature of the reaction solution was raised to 110 ° C. over an hour using an oil bath. The reaction solution was kept at 110 ° C. for 10 hours. This reaction solution was distilled off under reduced pressure at 100 ° C./3 mmHg, and the resulting concentrated solution was charged with 120.0 g of water charged in a 200 mL four-necked flask equipped with a stirrer, a condenser, a thermometer and a dropping funnel. The solution was added dropwise at 5 ° C. for 0.5 hours while cooling in an ice bath. After dropping, the temperature was raised to 100 ° C. by an oil bath and kept for 1 hour. When this reaction solution was quantified by ion chromatography, 0.12 mol of sulfate ion was present. Therefore, 31.9 g (0.13 mol) of barium chloride dihydrate and 120 g of water were added and kept at 80 ° C., then cooled to 10 ° C. and filtered. The filtrate was distilled off under reduced pressure at 140 ° C./3 mmHg to obtain 17.5 g of ethane-1,1-disulfonic acid (0.09 mol, moisture content 3.1% by mass). The yield was 29.8%. The water content was determined by the Karl Fischer method. The following example is the same.
 実施例2
 実施例1において、クロロスルホン酸 69.6g(0.60モル)に代えて、クロロスルホン酸 104.4g(0.90モル)を用いた以外は実施例1と同様にして、エタン-1,1-ジスルホン酸 11.6g(0.06モル、水分含量 3.8質量%)を取得した。収率は20.4%であった。
Example 2
In the same manner as in Example 1 except that 104.4 g (0.90 mol) of chlorosulfonic acid was used instead of 69.6 g (0.60 mol) of chlorosulfonic acid, ethane-1, 11.6 g (0.06 mol, water content 3.8% by mass) of 1-disulfonic acid was obtained. The yield was 20.4%.
 実施例3
 実施例1において、プロピオン酸クロライド 27.8g(0.30モル)に代えて、酢酸クロライド 23.6g(0.30モル)を用いた以外は実施例1と同様にして、メタンジスルホン酸 8.8g(0.05モル、水分含量 3.2質量%)を取得した。収率は16.6%であった。
Example 3
In Example 1, instead of 27.8 g (0.30 mol) of propionic acid chloride, 23.6 g (0.30 mol) of acetic acid chloride was used in the same manner as in Example 1, except that methanedisulfonic acid. 8 g (0.05 mol, moisture content 3.2% by mass) was obtained. The yield was 16.6%.
 比較例1
 撹拌機、冷却管、温度計及び滴下ロートを備え付けた500mL容の4つ口フラスコに、窒素気流下で三塩化ホスホリル 184.0g(1.20モル)を仕込み氷浴することで5℃まで冷却した。ここにクロロスルホン酸 76.9g(0.66モル)を滴下ロートにより10℃に維持しながら30分かけて滴下した。さらに、プロピオン酸 22.2g(0.30モル)を10℃に維持しながら30分かけて滴下した。次にオイルバスにより反応液を1時間かけて110℃まで昇温した。反応液を110℃に保持したまま5時間還流したところ、反応液中に黒色の粘性不溶物が系内に多量に生成したため、撹拌が困難となった。これにより続く蒸留操作を行うことができず、目的物であるエタン-1,1-ジスルホン酸の中間体であるエタン-1,1-ジスルホニルクロライドを取得することができなかった。
Comparative Example 1
A 500 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel was charged with 184.0 g (1.20 mol) of phosphoryl trichloride under a nitrogen stream and cooled to 5 ° C. by bathing in an ice bath. did. 76.9 g (0.66 mol) of chlorosulfonic acid was added dropwise over 30 minutes while maintaining the temperature at 10 ° C. with a dropping funnel. Further, 22.2 g (0.30 mol) of propionic acid was added dropwise over 30 minutes while maintaining at 10 ° C. Next, the temperature of the reaction solution was raised to 110 ° C. over an hour using an oil bath. When the reaction solution was refluxed for 5 hours while being kept at 110 ° C., a large amount of black viscous insoluble matter was generated in the reaction solution, which made stirring difficult. As a result, the subsequent distillation operation could not be performed, and ethane-1,1-disulfonyl chloride, an intermediate of ethane-1,1-disulfonic acid, which was the target product, could not be obtained.
 上記実施例及び比較例の条件と結果を表1にまとめた。 Table 1 summarizes the conditions and results of the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <メチレンジスルホネート化合物の製造>
 実施例4
 攪拌機、冷却管及び温度計を備え付けた300mL容の4つ口フラスコに、窒素気流下で、エタン-1,1-ジスルホン酸 18.6g(0.098モル)、及びスルホラン77.6gを仕込み、100℃に昇温した。昇温後、パラホルムアルデヒド 4.1g(ホルムアルデヒド換算で0.136モル)と五酸化二リン 27.8g(0.196モル)を添加し、12時間保温した。その後、室温まで冷却し、アセトニトリル 78.4gと水 32.3gとを添加し、分液操作を行った。分液後、油層を40℃/3mmHgにて3時間減圧濃縮を行った。その後、濃縮液を5℃まで冷却し、水 81.3gを1時間かけて滴下した。これにより生成した結晶を濾別により取得した。取得した結晶を水、イソプロパノール、及びヘキサンで洗浄し、40℃/3mmHgにて3時間減圧留去することにより、メチレン 1,1-エタンジスルホネートの白色結晶13.0g(0.06モル)を取得した。
<Production of methylene disulfonate compound>
Example 4
A 300 mL four-necked flask equipped with a stirrer, a condenser and a thermometer was charged with 18.6 g (0.098 mol) of ethane-1,1-disulfonic acid and 77.6 g of sulfolane under a nitrogen stream. The temperature was raised to 100 ° C. After the temperature increase, 4.1 g of paraformaldehyde (0.136 mol in terms of formaldehyde) and 27.8 g of diphosphorus pentoxide (0.196 mol) were added, and the temperature was kept for 12 hours. Then, it cooled to room temperature, 78.4 g of acetonitrile and 32.3 g of water were added, and liquid separation operation was performed. After separation, the oil layer was concentrated under reduced pressure at 40 ° C./3 mmHg for 3 hours. Thereafter, the concentrate was cooled to 5 ° C., and 81.3 g of water was added dropwise over 1 hour. The crystals thus produced were obtained by filtration. The obtained crystals were washed with water, isopropanol and hexane, and distilled under reduced pressure at 40 ° C./3 mmHg for 3 hours to obtain 13.0 g (0.06 mol) of white crystals of methylene 1,1-ethanedisulfonate. I got it.

Claims (4)

  1. (A)下記式(1):
    CHCOX    (1)
    (式中、R及びRは、それぞれ独立して、水素原子、または水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示し、Xはハロゲン原子を示す。)で表されるカルボン酸ハライド化合物とクロロスルホン酸とを反応させる工程、及び
    (B)前記(A)工程で得られた反応液と水とを混合する工程
    を含む下記式(3):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、それぞれ式(1)におけるR及びRと同じものを示す。)
    で表されるメチレンジスルホン酸化合物の製造方法。
    (A) The following formula (1):
    R 1 R 2 CHCOX (1)
    (Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom, and X represents a halogen atom). The following formula (3) including the step of reacting the carboxylic acid halide compound represented by) and chlorosulfonic acid, and the step of (B) mixing the reaction solution obtained in the step (A) and water:
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 are the same as R 1 and R 2 in formula (1), respectively).
    The manufacturing method of the methylene disulfonic acid compound represented by these.
  2. 前記(A)工程において、前記式(1)で表されるカルボン酸ハライド化合物 1モルに対するクロロスルホン酸の使用量が2モル以上6モル以下である請求項1記載のメチレンジスルホン酸化合物の製造方法。 2. The method for producing a methylene disulfonic acid compound according to claim 1, wherein in the step (A), the amount of chlorosulfonic acid used per 1 mol of the carboxylic acid halide compound represented by the formula (1) is 2 mol or more and 6 mol or less. .
  3. 前記(B)工程において、水の使用量が、前記(A)工程において使用した前記式(1)で表されるカルボン酸ハライド化合物 100質量部に対して、100質量部以上1200質量部以下である、請求項1又は2に記載のメチレンジスルホン酸化合物の製造方法。 In the step (B), the amount of water used is 100 parts by mass or more and 1200 parts by mass or less with respect to 100 parts by mass of the carboxylic acid halide compound represented by the formula (1) used in the step (A). A method for producing a methylene disulfonic acid compound according to claim 1 or 2.
  4. 請求項1~3のいずれかに記載の製造方法により前記式(3)で表されるメチレンジスルホン酸化合物を得る工程、及び
    (C)前記式(3)で表されるメチレンジスルホン酸化合物に、脱水剤、並びにホルムアルデヒド、トリオキサン及びパラホルムアルデヒドからなる群より選択される少なくとも一種の化合物を混合し、反応させる工程を含む下記式(4):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは、それぞれ独立して、水素原子、又は水素原子がハロゲン原子で置換されていてもよい炭素数1~4のアルキル基を示す。)
    で表されるメチレンジスルホネート化合物の製造方法。
    A step of obtaining a methylene disulfonic acid compound represented by the formula (3) by the production method according to any one of claims 1 to 3, and (C) a methylene disulfonic acid compound represented by the formula (3) Formula (4) including the step of mixing and reacting a dehydrating agent and at least one compound selected from the group consisting of formaldehyde, trioxane and paraformaldehyde:
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in which the hydrogen atom may be substituted with a halogen atom.)
    The manufacturing method of the methylene disulfonate compound represented by these.
PCT/JP2014/078961 2013-10-30 2014-10-30 Method for producing methylene-disulfonic acid compound WO2015064712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013225104 2013-10-30
JP2013-225104 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015064712A1 true WO2015064712A1 (en) 2015-05-07

Family

ID=53004309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078961 WO2015064712A1 (en) 2013-10-30 2014-10-30 Method for producing methylene-disulfonic acid compound

Country Status (2)

Country Link
TW (1) TW201527263A (en)
WO (1) WO2015064712A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208738A1 (en) * 2015-06-26 2016-12-29 セントラル硝子株式会社 Additive for nonaqueous electrolyte solution, manufacturing method for same, nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery
CN110028485A (en) * 2019-05-23 2019-07-19 泰兴华盛精细化工有限公司 A kind of purifying technique of methane-disulfonic acid methylene ester
WO2021161943A1 (en) * 2020-02-14 2021-08-19 住友精化株式会社 Method for producing methylene disulfonate compound

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109422670B (en) * 2017-08-30 2021-09-21 张家港市国泰华荣化工新材料有限公司 Method for preparing low-moisture alkyl disulfonic acid
WO2021161944A1 (en) * 2020-02-14 2021-08-19 住友精化株式会社 Method for producing alkane disulfonic acid compound
US20230159443A1 (en) * 2020-02-14 2023-05-25 Sumitomo Seika Chemicals Co., Ltd. Method for producing alkanedisulfonic acid compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125736A1 (en) * 2006-04-26 2007-11-08 Sumitomo Seika Chemicals Co., Ltd. Process for production of methylene disulfonate compound
JP2012131724A (en) * 2010-12-21 2012-07-12 Central Glass Co Ltd Method for producing cyclic disulfonic acid ester
JP2013203698A (en) * 2012-03-28 2013-10-07 Sumitomo Seika Chem Co Ltd Phosphorus-containing sulfonic acid ester compound, additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device
JP2014062076A (en) * 2012-09-24 2014-04-10 Sumitomo Seika Chem Co Ltd Methylenedisulfonyl chloride compound, methylene disulfonate compound and method for producing methylene disulfonate compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125736A1 (en) * 2006-04-26 2007-11-08 Sumitomo Seika Chemicals Co., Ltd. Process for production of methylene disulfonate compound
JP2012131724A (en) * 2010-12-21 2012-07-12 Central Glass Co Ltd Method for producing cyclic disulfonic acid ester
JP2013203698A (en) * 2012-03-28 2013-10-07 Sumitomo Seika Chem Co Ltd Phosphorus-containing sulfonic acid ester compound, additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device
JP2014062076A (en) * 2012-09-24 2014-04-10 Sumitomo Seika Chem Co Ltd Methylenedisulfonyl chloride compound, methylene disulfonate compound and method for producing methylene disulfonate compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONNTAG,N.O.: "The reactions of aliphatic acid chlorides", CHEMICAL REVIEWS, vol. 52, 1953, WASHINGTON, DC, UNITED STATES, pages 237 - 416 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208738A1 (en) * 2015-06-26 2016-12-29 セントラル硝子株式会社 Additive for nonaqueous electrolyte solution, manufacturing method for same, nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery
CN110028485A (en) * 2019-05-23 2019-07-19 泰兴华盛精细化工有限公司 A kind of purifying technique of methane-disulfonic acid methylene ester
WO2021161943A1 (en) * 2020-02-14 2021-08-19 住友精化株式会社 Method for producing methylene disulfonate compound

Also Published As

Publication number Publication date
TW201527263A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
WO2015064712A1 (en) Method for producing methylene-disulfonic acid compound
Zafrani et al. Diethyl bromodifluoromethylphosphonate: a highly efficient and environmentally benign difluorocarbene precursor
CA3006946C (en) Method for producing 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol
JP5930930B2 (en) Method for producing methylene disulfonyl chloride compound, methylene disulfonic acid compound and methylene disulfonate compound
JP2010504917A (en) Method for producing fluoromethyl 2,2,2-trifluoro-1- (trifluoromethyl) ethyl ether
CN107540598B (en) Method for preparing N-difluoromethylthio phthalimide compound
EP3805202A1 (en) Improved process for making diaryl sulfones
WO2018135417A1 (en) Method for producing 1,2,3,5,6-pentathiepane
WO2015064711A1 (en) Method for producing methylene disulfonyl chloride compound
US5442084A (en) Method of selective fluorination
JP5482233B2 (en) Method for producing diaryl disulfide compound
KR102585411B1 (en) Method for preparing 5-fluoro-1h-pyrazole-4-carbonyl fluorides
JP6074670B2 (en) Process for producing arene compounds containing perfluoroalkenyloxy groups
CN114573512B (en) Method for synthesizing C2-difluoro alkyl benzimidazole derivative
CN112679328B (en) Industrial production method of 3-trifluoromethyl-2-cyclohexene-1-one
Yang et al. The synthesis of 4-tosyloxy-2-substituted phenols using new solid pyridinium salt supported [hydroxyl (tosyloxy) iodo] benzene reagents
CN114478332B (en) Synthesis method of alkyl trifluoromethyl sulfide
JP7226430B2 (en) Method for producing 1,2,3,5,6-pentathiepane
JP4318803B2 (en) Method for producing bis (perfluoroalkylsulfonyl) methane
JPS6232188B2 (en)
RU2702121C1 (en) Method of producing 2-amino-nicotinic acid benzyl ester derivative
JP3543585B2 (en) Method for producing 2,2 &#39;, 5,5&#39;, 6,6&#39;-hexafluorobiphenyl-3,3 &#39;, 4,4&#39;-tetracarboxylic acid precursor
JP4686466B2 (en) Method for producing cyclic N-substituted α-iminocarboxylic acid
CN117304094A (en) Synthesis method of 3-trifluoromethyl pyridine or 3-difluoro methyl pyridine compound
JP2008100951A (en) Method for preparing 2-cyclopentadecenone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP