WO2015060289A1 - Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package - Google Patents

Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package Download PDF

Info

Publication number
WO2015060289A1
WO2015060289A1 PCT/JP2014/077914 JP2014077914W WO2015060289A1 WO 2015060289 A1 WO2015060289 A1 WO 2015060289A1 JP 2014077914 W JP2014077914 W JP 2014077914W WO 2015060289 A1 WO2015060289 A1 WO 2015060289A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
phosphor sheet
compound particles
metal compound
refractive index
Prior art date
Application number
PCT/JP2014/077914
Other languages
French (fr)
Japanese (ja)
Inventor
石田豊
重田和樹
諏訪充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201480057773.1A priority Critical patent/CN105765744B/en
Priority to KR1020167004238A priority patent/KR102035511B1/en
Priority to JP2014558340A priority patent/JPWO2015060289A1/en
Publication of WO2015060289A1 publication Critical patent/WO2015060289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a phosphor composition, a phosphor sheet, a phosphor sheet laminate, an LED chip using them, an LED package, and a method for producing the same.
  • LEDs Light-emitting diodes
  • LCD backlights LCD backlights
  • in-vehicle headlights spotlights
  • general lighting applications featuring low power consumption, long service life, and design with a dramatic improvement in luminous efficiency.
  • the market is expanding rapidly.
  • the refractive index of the LED chip or phosphor is higher than the refractive index of the resin contained in the phosphor sheet, the light generated in the LED chip is sufficiently externally reflected by the reflection at the LED chip or phosphor interface. It cannot be taken out.
  • a conversion layer disposed on an LED chip contains a fluorescent agent, a binder material, and a plurality of nanoparticles, and the nanoparticles are dispersed so as to closely match the refractive index of the fluorescent agent particles.
  • the above method has a problem in that the cost increases because the number of processes such as etching by dry etching or the like on the LED chip, or by laminating thin layers having different refractive indexes many times. There is also a problem that the brightness of the LED package is not improved.
  • the present inventors have found that the brightness of the LED package is not improved due to the following two reasons.
  • the present invention focuses on the above problems and aims to reduce the LED package manufacturing process and improve the brightness of the LED package.
  • One feature of the present invention is a phosphor composition containing a phosphor, a matrix resin, and metal compound particles, wherein the metal compound particles have a refractive index of 1.7 or more, and an average particle diameter. 1 to 50 nm, the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship with the refractive index N2 of the phosphor, and the metal compound particles are grafted: A phosphor composition. 0.20 ⁇
  • Another feature of the present invention is a phosphor sheet containing a phosphor, a matrix resin, and metal compound particles, wherein the metal compound particles have a refractive index of 1.7 or more and an average particle diameter. Is 1 to 50 nm, the metal compound particles are grafted, and the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship (i) with the refractive index N2 of the phosphor:
  • the phosphor sheet is characterized in that the viscoelastic behavior of the sheet satisfies the following relationships (ii), (iii), and (iv).
  • the storage elastic modulus G ′ is 1.0 ⁇ 10 4 Pa ⁇ G ′ ⁇ 1.0 ⁇ 10 6 Pa at a temperature of 25 ° C. and tan ⁇ ⁇ 1
  • Storage modulus G ′ is 1.0 ⁇ 10 2 Pa ⁇ G ′ ⁇ 1.0 ⁇ 10 4 Pa at a temperature of 100 ° C. and tan ⁇ ⁇ 1
  • the storage elastic modulus G ′ is 1.0 ⁇ 10 4 Pa ⁇ G ′ ⁇ 1.0 ⁇ 10 6 Pa at a temperature of 200 ° C. and tan ⁇ ⁇ 1.
  • an LED package with improved brightness can be provided by a simple process.
  • An example of the LED package using the fluorescent substance sheet laminated body of this invention An example of the LED package using the fluorescent substance sheet laminated body of this invention.
  • the schematic diagram of an illumination intensity measurement system An example of the LED package manufacturing method using the fluorescent substance composition of this invention.
  • An example of the manufacturing method of the LED package using the fluorescent substance sheet laminated body of this invention An example of the manufacturing method of the LED chip with a fluorescent substance sheet using the fluorescent substance sheet laminated body of this invention.
  • An example of the method for attaching the phosphor sheet laminate of the present invention An example of the method for attaching the phosphor sheet laminate of the present invention An example of the manufacturing method of the LED package using the fluorescent substance sheet laminated body of this invention. An example of the manufacturing method of the LED package using the fluorescent substance sheet laminated body of this invention.
  • a phosphor composition that is one feature of the present invention is a phosphor composition containing a phosphor, a matrix resin, and metal compound particles, and the refractive index of the metal compound particles is 1.7 or more.
  • the average particle diameter is 1 to 50 nm
  • the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship with the refractive index N2 of the phosphor, and the metal compound particles are grafted: It is characterized by. 0.20 ⁇
  • the phosphor composition refers to a composition containing a phosphor, a matrix resin, and metal compound particles.
  • the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship with the refractive index N2 of the phosphor. 0.20 ⁇
  • the phosphor composition of the present invention when installed on the light emitting surface of the LED chip, the light extracted from the LED chip can be efficiently applied to the phosphor, and the light extraction performance of the LED chip is improved. As a result, the brightness of the LED package is improved.
  • the matrix resin contains the metal compound particles
  • the difference in refractive index between the mixed component and the phosphor can be reduced.
  • the refractive index of the entire phosphor composition can be brought close to the refractive index of the LED chip. Therefore, total reflection inside the LED chip can also be suppressed, and light extraction from the LED chip is improved. As a result of these two effects, the brightness of the LED package can be improved.
  • is 0.20, more preferably 0.10, and particularly preferably 0.05.
  • the greater the effect. Therefore, the lower limit is not particularly limited, but
  • the average refractive index N1 of the matrix resin containing metal compound particles is represented by the sum of the product of the refractive index and volume fraction of the metal compound particles and the product of the refractive index and volume fraction of the matrix resin.
  • the refractive index can be measured using a refractive index / film thickness measuring device “Prism Coupler Model 2010 / M” (manufactured by Metricon). Specifically, a transparent film of a composition in which metal compound particles are dispersed in a matrix resin is prepared, and the refractive index (TE) in the direction perpendicular to the film surface at 633 nm (using a He—Ne laser) is measured at a measurement temperature of 25 ° C. The average refractive index N1 can be obtained by measuring.
  • the refractive index N2 of the phosphor can be obtained by the Becke line method, the liquid immersion method, and the extrapolation method.
  • Metal compound particles used in the present invention have a refractive index of 1.7 or more and an average particle diameter of 1 to 50 nm.
  • such metal compound particles are referred to as “high refractive index nanoparticles”.
  • high refractive index nanoparticles are sufficiently smaller than the wavelength of visible light, they can be regarded as optically homogeneous by being dispersed in a matrix resin.
  • the average refractive index of the matrix resin containing metal compound particles having an average particle diameter of 1 to 50 nm is the refractive index and volume of the metal compound particles. It is expressed as the sum of the product of the fraction and the product of the refractive index and the volume fraction of the matrix resin. That is, if the metal compound particles have a refractive index larger than that of the matrix resin, the average refractive index can be increased.
  • the average particle diameter is smaller than 1 nm, the metal compound particles are difficult to exist as particles, and when the average particle diameter is larger than 50 nm, light is easily scattered and the light transmittance is lowered. From the viewpoint of suppressing light scattering, the average particle diameter is preferably 1 to 30 nm.
  • the average particle diameter of the metal compound particles is an average value of particle diameters obtained by the following method. From the two-dimensional image obtained by observing the particles with a scanning electron microscope (SEM), the one that maximizes the distance between the two intersections of the straight line that intersects the outer edge of the particles at two points is calculated as the particle diameter. It is defined as Measurement is performed on 200 particles observed, and the average value of the obtained particle diameters is defined as the average particle diameter.
  • SEM scanning electron microscope
  • Metal compound particles include titania, zirconia, alumina, ceria, tin oxide, indium oxide, zircon, iron oxide, zinc oxide, niobium oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, aluminum hydroxide, barium titanate Diamond etc. are mentioned, These may be used independently and may be used together 2 or more types. From the viewpoint of high refractive index and easy availability, at least one selected from the group consisting of aluminum compound particles, tin compound particles, titanium compound particles, zirconium compound particles, and niobium compound particles is preferably used.
  • oxides, sulfides and hydroxides of aluminum, tin, titanium, or zirconium are preferably used.
  • the metal compound particles have a high refractive index, the average refractive index when dispersed in the matrix resin can be increased, and as described above, the difference in refractive index from the LED chip is reduced to extract light from the LED chip. Efficiency can be improved.
  • Commercially available metal compound particles include tin oxide-titanium oxide composite particles “OPTRAIK TR-502”, “OPTRAIK TR-504”, “OPTRAIK TR-520”, and silicon oxide-titanium oxide composite particles.
  • the fact that the metal compound particles are grafted means that the polymer is chemically bonded (grafted) to the particle surface using hydroxyl groups present on the particle surface.
  • the adhesion between the phosphor composition and the light emitting surface of the LED chip is an important factor for improving the brightness of the LED package. If the adhesiveness with the LED chip decreases due to the occurrence of voids or cracks such as air between the light emitting surface of the LED chip and the phosphor composition or phosphor sheet, the light extraction efficiency decreases.
  • the dispersibility of the metal compound particles in the matrix resin is improved, and the compatibility between the metal compound particles and the matrix resin is improved. This makes it difficult for the interface between the matrix resin and the metal compound particles to occur. Therefore, when installing the phosphor composition or the phosphor sheet on the light emitting surface of the LED chip, it is possible to suppress voids or cracks that occur when the phosphor composition or the phosphor sheet is cured. Therefore, when they are installed on the light emitting surface of the LED chip, the adhesion between them and the light emitting surface is improved, the light extraction from the LED chip is improved, and as a result, the brightness of the LED package is improved.
  • FIGS. 1 and 2 Examples of the state where the interface between the matrix resin and the metal compound particles is not generated are shown in FIGS. 1 and 2, and examples of the state where the interface is generated are shown in FIGS. 1 and 2 are photographs obtained by cutting a cross section of a cured film of the phosphor composition of Example 10 described later and observing with a scanning electron microscope (SEM), and FIGS. 3 and 4 are comparative examples described later. It is the photograph which cut
  • SEM scanning electron microscope
  • the metal compound particles are uniformly dispersed in the matrix resin, and the boundary portion between the metal compound particles and the matrix resin is not present. It becomes clear.
  • the metal compound particles 102 form an aggregate in which the metal compound particles are aggregated. The boundary between the aggregate and the matrix resin 101 is clearly observed.
  • the type of polymer used for grafting the metal compound particles is not particularly limited as long as it is chemically bonded to the surface of the metal compound particles. It may be a water-soluble polymer (for example, poly (N-isopropylacrylamide), polyethylene glycol, polyacrylamide, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, initial condensate such as resole resin, urea resin, melamine resin, etc.) or water-insoluble.
  • a water-soluble polymer for example, poly (N-isopropylacrylamide), polyethylene glycol, polyacrylamide, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, initial condensate such as resole resin, urea resin, melamine resin, etc.
  • It may be a polymer (for example, polysiloxane, 1,4-cis-isoprene, isoprene elastomer, polystyrene, polybutadiene, polyisoprene, polymethyl methacrylate, poly n-butyl acrylate, polyvinyl chloride, polyacrylonitrile, polylactic acid, etc.).
  • polysiloxane which is a condensate of alkoxysilane described later.
  • the presence or absence of grafting on the particle surface is observed with a scanning electron microscope (hereinafter referred to as SEM) or a transmission electron microscope (hereinafter referred to as TEM) at the boundary between the metal compound particles and the matrix resin.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the method of grafting the polymer onto the metal compound particle surface is not particularly limited, but it is desirable to graft the particle surface by condensation polymerization of a siloxane compound.
  • Particularly preferred is a method in which an alkoxysilane compound is hydrolyzed with an acid catalyst in a solvent in the presence of metal compound particles, and then the hydrolyzate is subjected to a condensation reaction.
  • Polysiloxane is a condensate of alkoxysilane, which can be obtained by hydrolyzing an alkoxysilane compound in a solvent with an acid catalyst to form a silanol compound and then subjecting the silanol compound to a condensation reaction.
  • alkoxysilane compound one or more alkoxysilane compounds selected from the alkoxysilane compounds represented by the following general formulas (1) to (3) are preferable.
  • R 1 Si (OR 4 ) 3 (1)
  • R 1 represents hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof. From the viewpoint of crack resistance, it is preferable to use an alkoxysilane compound having a methyl group or a phenyl group as R 1 .
  • R 4 represents a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, and may be the same or different.
  • R 4 is more preferably a methyl group or an ethyl group.
  • R 2 and R 3 each represent hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof.
  • R 5 represents a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, and may be the same or different.
  • R5 is more preferably a methyl group or an ethyl group.
  • R 6 represents a methyl group or an ethyl group, and may be the same or different.
  • alkoxysilane compounds represented by the general formulas (1) to (3) are shown below.
  • Examples of the trifunctional alkoxysilane compound represented by the general formula (1) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyltrimethoxysilane.
  • Ethyltriethoxysilane hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 3-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, 3-glycidoxyship Pyrtrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -a
  • Examples of the bifunctional alkoxysilane compound represented by the general formula (2) include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, and methylvinyl.
  • Examples of the tetrafunctional alkoxysilane compound represented by the general formula (3) include tetramethoxysilane and tetraethoxysilane.
  • alkoxysilane compounds represented by the general formulas (1) to (3) may be used alone or in combination of two or more.
  • a phenyl group-containing alkoxysilane compound and a methyl group-containing alkoxysilane compound are preferable to use.
  • the matrix resin is a silicone resin, compatibility with the matrix resin is improved, and a phosphor composition and a phosphor sheet having excellent adhesion can be obtained.
  • the trifunctional alkoxysilane compound is preferably contained in an amount of 100 to 70 mol%
  • the bifunctional alkoxysilane compound is preferably contained in an amount of 0 to 30 mol%. More preferably, it contains 10 to 20 mol% of a functional alkoxysilane compound.
  • the handleability of the phosphor sheet indicates the ease of handling of the sheet when the sheet is attached to the LED chip.
  • the handleability is correlated with the hardness of the phosphor sheet. If the sheet is too hard, the sheet may crack or break when the sheet is handled using tweezers or a thermocompression bonding tool. On the other hand, if the sheet is too soft, when the sheet is lifted with tweezers or a thermocompression bonding tool, the shape is deformed, or the sheet is stuck to the tweezers or thermocompression bonding tool, making it difficult to adhere to the LED chip.
  • the trifunctional alkoxysilane compound is preferably a trifunctional alkoxysilane compound represented by the general formula (1), and the bifunctional alkoxysilane compound is a bifunctional alkoxy compound represented by the general formula (2). It is preferable that it is a functional alkoxysilane compound.
  • an acid catalyst and water are added to the above alkoxysilane compound in a solvent in the presence of the metal compound particles over 1 to 180 minutes, and then reacted at room temperature to 110 ° C. for 1 to 180 minutes. preferable.
  • the reaction temperature is more preferably 40 to 105 ° C.
  • the condensation reaction by heating the reaction solution as it is at 50 ° C. or higher and below the boiling point of the solvent for 1 to 100 hours.
  • Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or anhydrides thereof, and ion exchange resins.
  • acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or anhydrides thereof, and ion exchange resins.
  • an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferred.
  • a preferable content of these acid catalysts is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight or more with respect to 100 parts by weight of the total alkoxysilane compound used in the hydrolysis reaction. Is 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the total amount of the alkoxysilane compound means an amount including all of the alkoxysilane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter.
  • the solvent is appropriately selected in consideration of the dispersion stability of the metal compound particles.
  • the solvent can be used not only as one type but also as a mixture of two or more types.
  • the solvent include diacetone alcohol, propylene glycol monomethyl ether acetate, ethyl lactate, and ⁇ -butyrolactone.
  • Propylene glycol monomethyl ether acetate, ⁇ -butyrolactone, and diacetone alcohol are particularly preferably used from the viewpoint of transmittance, ease of hydrolysis, and control of condensation reaction.
  • the amount of the solvent used in the hydrolysis reaction is preferably 50 parts by weight or more and more preferably 80 parts by weight or more with respect to 100 parts by weight of the total alkoxysilane compound. Moreover, 500 weight part or less is preferable and 200 weight part or less is more preferable.
  • generation of a gel can be suppressed by making the quantity of a solvent into 50 weight part or more. Moreover, a hydrolysis reaction advances rapidly by setting it as 500 parts weight or less.
  • water used for the hydrolysis reaction ion-exchanged water is preferable.
  • the amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of the alkoxysilane compound.
  • the phosphor absorbs light emitted from the LED chip, performs wavelength conversion, and emits light having a wavelength different from that of the LED chip. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor can be mixed to produce a multicolor LED package containing white. Specifically, white light can be emitted by optically coupling a fluorescent material that emits a yellow light emission color with light from the LED chip to the blue LED chip.
  • the phosphors as described above include various phosphors such as a phosphor that emits green light, a phosphor that emits blue light, a phosphor that emits yellow light, and a phosphor that emits red light.
  • the phosphor is not particularly limited as long as it can finally reproduce a predetermined color, and a known phosphor can be used.
  • Examples of phosphors corresponding to blue LED chips include YAG phosphors, TAG phosphors, silicate phosphors, nitride phosphors, oxynitride phosphors, and the like.
  • the matrix resin forms a continuous phase and is an epoxy resin, silicone resin (silicone rubber, silicone gel or other organopolysiloxane cured material as long as it is a material excellent in moldability, transparency, heat resistance, adhesiveness, etc. Products (including cross-linked products), urea resins, fluororesins, polycarbonate resins and the like can be used. By appropriately designing these resins, a resin useful for the phosphor composition of the present invention can be obtained.
  • a dispersing agent or leveling agent for stabilizing the coating film as an additive, and an adhesion aid such as a silane coupling agent as a sheet surface modifier.
  • an adhesion aid such as a silane coupling agent
  • inorganic particles such as silica particles and silicone fine particles as a phosphor sedimentation inhibitor.
  • a thermosetting or photocurable one is preferable. From the viewpoints of transparency and heat resistance, an epoxy resin, a silicone resin, or a mixture thereof can be suitably used.
  • the matrix resin is most preferably a silicone resin from the viewpoint of heat resistance.
  • silicone resins addition reaction curable silicone compositions are preferred.
  • the addition reaction curable silicone composition is heated and cured at room temperature or 50 to 200 ° C., and is excellent in transparency, heat resistance, and adhesiveness.
  • a silicone having an alkenyl group bonded to a silicon atom, a silicone having a hydrogen atom bonded to a silicon atom, and a catalytic amount of a platinum-based catalyst can be used.
  • a silicone resin containing a silicon atom having a siloxane bond and having an aryl group directly bonded thereto is preferably used.
  • a silicone resin having a siloxane bond and containing a silicon atom directly bonded to a naphthyl group is preferable because both a high refractive index and heat and light resistance can be achieved.
  • the silicone resin having a siloxane bond and containing a silicon atom directly bonded to an aryl group includes a silicone resin having a siloxane bond and containing a silicon atom directly bonded to a phenyl group, a siloxane bond, and a methyl resin. And a silicone resin containing a silicon atom in which a group and a phenyl group are directly connected.
  • Silicone resins having a siloxane bond and containing a silicon atom directly bonded to a naphthyl group include a silicone resin having a siloxane bond and a silicon atom directly bonded to a methyl group and a naphthyl group, and having a siloxane bond. And a silicone resin containing a silicon atom in which a methyl group, a phenyl group, and a naphthyl group are directly connected.
  • the silicone resin will be described in more detail.
  • An addition reaction curable silicone composition containing a silicone having an alkenyl group bonded to a silicon atom, a silicone having a hydrogen atom bonded to a silicon atom, and a platinum-based catalyst as a hydrosilylation reaction catalyst is preferable.
  • sealing materials “OE6630” and “OE6636” manufactured by Toray Dow Corning Co., Ltd., “SCR-1012” and “SCR1016” manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • the matrix resin of the phosphor composition of the present invention is particularly preferably a crosslinked product obtained by hydrosilylation reaction of a crosslinkable silicone composition containing the compositions (A) to (D).
  • This crosslinked product can be preferably used as a matrix resin for a phosphor sheet that does not require an adhesive because the storage elastic modulus decreases at 60 ° C. to 250 ° C. and a high adhesive force is obtained by heating.
  • this cross-linked product is referred to as a heat sealing resin.
  • R 1 is an alkenyl group
  • R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 3 is an alkenyl group, and m is an integer of 5 to 50.
  • m is an integer of 5 to 50.
  • R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms, provided that 30 to 70 mol% of R 4 is phenyl.
  • ⁇ Amount such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is 0.5 to 2 ⁇
  • D Catalyst for hydrosilylation reaction ⁇ Amount sufficient to promote hydrosilylation reaction between alkenyl group in component (A), component (B) and silicon atom-bonded hydrogen atom in component (C) ⁇ .
  • component (A) the values of a, b, and c are sufficient to obtain sufficient hardness at room temperature of the resulting crosslinked product, and softening at high temperature.
  • component (B) if the content of the phenyl group is less than the lower limit of the above range, the resulting crosslinked product is insufficiently softened at a high temperature. The resulting crosslinked product loses its transparency, and its mechanical strength also decreases.
  • at least one R 3 is an alkenyl group. This is because if the alkenyl group is not present, this component is not taken into the crosslinking reaction, and this component may bleed out from the resulting crosslinked product.
  • m is an integer in the range of 5 to 50, and this is a range in which handling workability is maintained while maintaining the mechanical strength of the resulting crosslinked product.
  • the content of the component (B) is within a range of 5 to 15 parts by weight with respect to 100 parts by weight of the component (A), and is a range for obtaining sufficient softening at a high temperature of the resulting crosslinked product. .
  • R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms.
  • alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group.
  • cycloalkyl group for R 4 include a cyclopentyl group and a cycloheptyl group.
  • the phenyl group content is in the range of 30 to 70 mol%. This is a range in which the obtained crosslinked product can be sufficiently softened at a high temperature and can maintain transparency and mechanical strength.
  • component (C) is such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is in the range of 0.5 to 2. This is a range in which sufficient hardness at room temperature of the resulting crosslinked product can be obtained.
  • the component (D) is a hydrosilylation catalyst for promoting the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon atom-bonded hydrogen atom in the component (C).
  • the component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferred because they can significantly accelerate the curing of the silicone composition.
  • platinum-based catalyst include platinum fine powder, chloroplatinic acid, alcohol solution of chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex, particularly platinum-alkenylsiloxane complex. It is preferable.
  • alkenylsiloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like.
  • 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of the platinum-alkenylsiloxane complex is good. Further, since the stability of the platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3-diallyl-1,1 are added to this complex.
  • the content of the component (D) is an amount sufficient to promote the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon-bonded hydrogen atom in the component (C).
  • the amount of metal atoms in the present component is within a range of 0.01 to 500 ppm by mass unit with respect to the silicone composition, and more preferably 0.01 to 100 ppm.
  • the amount is preferably in the range of 0.01 to 50 ppm, and particularly preferably in the range of 0.01 to 50 ppm. This is a range in which the obtained silicone composition is sufficiently crosslinked and does not cause problems such as coloring.
  • the silicone composition is composed of at least the above components (A) to (D), and other optional components include ethynylhexanol, 2-methyl-3-butyn-2-ol, and 3,5-dimethyl-1-hexyne.
  • Alkyne alcohols such as 3-ol and 2-phenyl-3-butyn-2-ol; enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-in 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane;
  • a reaction inhibitor such as benzotriazole may be contained.
  • the content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm with respect to the weight of the silicone composition.
  • the phosphor composition of the present invention may contain silicone fine particles.
  • silicone fine particles By containing the silicone fine particles, it is possible to obtain a phosphor sheet having not only adhesiveness and workability but also good film thickness uniformity.
  • silicone fine particles having an average particle size of 0.1 ⁇ m or more and 2.0 ⁇ m or less it is possible to obtain a phosphor sheet that is excellent in dischargeability and excellent in film thickness uniformity when a slit die coater is used. it can.
  • the grafted metal compound particles cover the silicone fine particles. This further improves the compatibility between the matrix resin and the metal compound particles, so that the interface between them is less likely to occur. Therefore, since the adhesiveness with the light emitting surface of the LED chip is further improved, a further luminance improvement effect can be obtained.
  • the storage elastic modulus (G ′) at 100 ° C. can be lowered and the adhesion to the LED chip can be improved.
  • the grafted metal compound particles cover the silicone fine particles means a state in which the grafted metal compound particles uniformly cover the surfaces of the silicone fine particles.
  • the state can be known by observing a cured product of the phosphor composition or a cross section of the phosphor sheet with SEM or TEM.
  • FIGS. 5 and 6 Examples of the state in which the grafted metal compound particles are coated with the silicone fine particles are shown in FIGS. 5 and 6, and examples of the uncoated state are shown in FIGS. 5 and 6 are photographs obtained by cutting a cross section of a phosphor sheet of Example 19 described later and observing with a scanning electron microscope (SEM), and FIGS. 7 and 8 are Comparative Examples 12 and 13 described later, respectively. It is the photograph which cut
  • SEM scanning electron microscope
  • the silicone fine particles 103 are uniformly dispersed in the matrix resin 101, and the surface of the silicone fine particles is grafted. It is observed that the converted metal compound particles 104 are covered.
  • the grafted metal compound particles do not cover the silicone fine particles, as shown in FIGS. 7 and 8, the phosphor 105 is present in the matrix resin 101, and the silicone fine particles 103, the metal compound particles It is observed that the 102s are aggregated to form an aggregate.
  • the grafted metal compound particles are in a state in which the silicone fine particles are coated.
  • the grafted metal compound particles and the silicone fine particles are weak in hydrogen bonds, van der Waals forces and the like. This is thought to be due to the fact that the connection is a pseudo connection.
  • the silicone fine particles are preferably fine particles made of silicone resin and / or silicone rubber.
  • silicone fine particles obtained by a method of hydrolyzing organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane, and then condensing them. preferable.
  • organotrialkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-proxysilane, methyltri-i-proxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, methyltri-s-butoxy Silane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltributoxysilane, i-butyltributoxysilane, s-butyltrimethoxysilane, t -Butyltributoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane,
  • Organodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, vinylmethyl Examples include diethoxysilane.
  • organotriacetoxysilane examples include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and the like.
  • organodiacetoxysilane examples include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, and vinylethyldiacetoxysilane.
  • organotrioxime silane examples include methyl trismethyl ethyl ketoxime silane, vinyl trismethyl ethyl ketoxime silane, and examples of the organodioxime silane include methyl ethyl bismethyl ethyl ketoxime silane.
  • silicone fine particles are reported in the method reported in JP-A-63-77940, the method reported in JP-A-62-248081, and reported in JP-A-2003-342370. For example, the method reported in JP-A-4-88022.
  • organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane and / or a partial hydrolyzate thereof are added to an alkaline aqueous solution, Hydrolyzing and condensing to obtain silicone fine particles, or adding organosilane and / or a partial hydrolyzate thereof to water or an acidic solution to obtain a hydrolyzed partial condensate of the organosilane and / or the partial hydrolyzate thereof.
  • a method of obtaining an alkali fine particle by adding an alkali and proceeding a condensation reaction, an organosilane and / or a hydrolyzate thereof as an upper layer, an alkali or a mixed solution of an alkali and an organic solvent as a lower layer, the interface at these interfaces Organosilane and / or A hydrolyzate thereof by hydrolysis and polycondensation are also known a method of obtaining particles, In any of these methods, it is possible to obtain the silicone fine particles used in the present invention.
  • organosilane and / or its partial hydrolyzate is hydrolyzed and condensed, and in the presence of a polymer dispersant and a salt that act as a protective colloid in a solvent in an acidic aqueous solution, Silicone fine particles produced by adding an organosilane and / or a hydrolyzate thereof to obtain a hydrolyzate and then adding an alkali to advance the condensation reaction can also be used.
  • the polymer dispersant is a water-soluble polymer, and any synthetic polymer or natural polymer can be used as long as it acts as a protective colloid in a solvent. Specifically, polyvinyl alcohol, polyvinyl pyrrolidone and the like can be used. It can be illustrated.
  • a method for adding the polymer dispersant a method of adding in advance to the reaction initial solution, a method of adding organotrialkoxysilane and / or a partial hydrolyzate thereof simultaneously, an organotrialkoxysilane and / or a partial hydrolyzate thereof, The method of adding after hydrolyzing partial condensation can be illustrated, and any of these methods can be selected.
  • the addition amount of the polymer dispersant is preferably in the range of 5 ⁇ 10 ⁇ 7 to 10 ⁇ 2 parts by weight with respect to 1 part by weight of the reaction solution, and in this range, aggregation of the silicone fine particles hardly occurs. .
  • the organic substituents contained in the silicone fine particles are preferably a methyl group and a phenyl group, and the refractive index of the silicone fine particles can be adjusted by the content of these substituents.
  • the matrix resin is a silicone resin
  • the difference in refractive index between the refractive index d1 of the silicone fine particles and the refractive index d2 due to components other than the silicone fine particles and the phosphor is reduced.
  • the difference in refractive index between the refractive index d1 of the silicone fine particles and the refractive index d2 due to components other than the silicone fine particles and the phosphor is preferably less than 0.10, and more preferably 0.03 or less.
  • Abbe refractometer For the refractive index measurement, Abbe refractometer, Pulfrich refractometer, immersion type refractometer, immersion method, minimum declination method, etc. are used as the total reflection method, but Abbe refractometer is used to measure the refractive index of silicone resin.
  • the immersion method is useful for measuring the refractive index of refractometers and silicone fine particles.
  • the refractive index difference can be adjusted by changing the amount ratio of the raw materials constituting the silicone fine particles. That is, for example, by adjusting the mixing ratio of methyltrialkoxysilane and phenyltrialkoxysilane, which are raw materials, and increasing the composition ratio of methyl groups, it is possible to achieve a refractive index close to 1.4. On the contrary, a relatively high refractive index can be achieved by increasing the constituent ratio of the phenyl group.
  • the average particle diameter of the silicone fine particles is represented by a median diameter (D50).
  • the lower limit of the average particle diameter is preferably 0.1 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the upper limit is preferably 2.0 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the average particle diameter, that is, the median diameter (D50) and the particle size distribution of the silicone fine particles can be measured by SEM observation.
  • a particle size distribution is obtained by performing image processing on a measurement image obtained by SEM, and in the particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated portion from the small particle diameter side is obtained as the median diameter D50. If this method is used, the volume-based particle size obtained from the particle size distribution of the silicone fine particles is obtained by observing the cross-sectional SEM of the phosphor sheet and then calculating the average particle size of the silicone fine particles themselves. In the distribution, it is also possible to obtain a particle diameter of 50% accumulated from the small particle diameter side as the median diameter D50. In this case, the average particle size of the silicone fine particles determined from the cross-sectional SEM image of the phosphor sheet is theoretically 78.5% compared to the true average particle size, and is actually about 70% to 85%.
  • the content of the silicone fine particles is preferably 1 part by weight or more as a lower limit with respect to 100 parts by weight of the resin, and more preferably 10 parts by weight or more. Further, the upper limit is preferably 100 parts by weight or less, and more preferably 80 parts by weight or less. By containing 1 part by weight or more of silicone fine particles, a particularly good phosphor dispersion stabilizing effect can be obtained. On the other hand, by containing 80 parts by weight or less, the viscosity of the phosphor composition is not excessively increased.
  • the phosphor composition of the present invention may contain a solvent.
  • a solvent will not be specifically limited if the viscosity of resin of a fluid state can be adjusted.
  • toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, acetone, terpineol, texanol, methyl cellosolve, butyl carbitol, butyl carbitol acetate, propylene glycol monomethyl ether acetate and the like can be mentioned.
  • the phosphor composition of the present invention contains a dispersing agent and a leveling agent for stabilizing the coating film, an adhesion assistant such as a silane coupling agent as a sheet surface modifier when the phosphor sheet is used. May be.
  • a silanol group-containing methylphenyl silicone resin may be contained as a heating adhesive.
  • the structure of the silanol group-containing methylphenyl silicone resin is particularly preferably the following general formula (E).
  • R 5 and R 6 are each an alkyl group or cycloalkyl group having 1 to 6 carbon atoms
  • Ph is a phenyl group
  • the phosphor sheet laminate refers to a laminate containing a substrate and a phosphor sheet formed by applying a phosphor composition onto the substrate.
  • Base material As a base material, a well-known metal, a film, glass, a ceramic, paper, etc. can be used without a restriction
  • glass and resin films are preferably used because of the ease of producing the phosphor sheet and the ease of individualizing the phosphor sheet.
  • the base material is preferably a flexible film because of the adhesion when the phosphor sheet is attached to the LED chip.
  • a film having a high strength is preferred so that there is no fear of breakage when handling a film-like substrate.
  • Resin films are preferred in terms of their required characteristics and economy, and among these, plastic films selected from the group consisting of PET, polyphenylene sulfide, and polypropylene are preferred in terms of economy and handleability.
  • a polyimide film is preferable at a heat resistant surface.
  • the surface of the base material may be subjected to a mold release treatment in advance for ease of peeling of the sheet.
  • the thickness of the substrate is not particularly limited, but the lower limit is preferably 25 ⁇ m or more, and more preferably 38 ⁇ m or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
  • the phosphor sheet refers to a sheet containing a phosphor inside.
  • a phosphor sheet which is one feature of the present invention is a phosphor sheet containing a phosphor, a matrix resin, and metal compound particles, wherein the metal compound particles have a refractive index of 1.7 or more, and The average particle diameter is 1 to 50 nm, the metal compound particles are grafted, and the average refractive index N1 of the metal compound particles and the matrix resin is related to the refractive index N2 of the phosphor as follows: And the viscoelastic behavior of the sheet satisfies the following relationships (ii), (iii) and (iv).
  • the storage elastic modulus G ′ is 1.0 ⁇ 10 4 Pa ⁇ G ′ ⁇ 1.0 ⁇ 10 6 Pa at a temperature of 25 ° C. and tan ⁇ ⁇ 1
  • Storage modulus G ′ is 1.0 ⁇ 10 2 Pa ⁇ G ′ ⁇ 1.0 ⁇ 10 4 Pa at a temperature of 100 ° C. and tan ⁇ ⁇ 1
  • the storage elastic modulus G ′ is 1.0 ⁇ 10 4 Pa ⁇ G ′ ⁇ 1.0 ⁇ 10 6 Pa at a temperature of 200 ° C. and tan ⁇ ⁇ 1.
  • the phosphor sheet of the present invention preferably has high elasticity near room temperature from the viewpoints of storage properties, transportability, and processability.
  • the elasticity becomes low under certain temperature conditions, and the flexibility, adhesion, and fluidity are expressed. It is preferable.
  • the phosphor sheet of the present invention preferably exhibits fluidity when heated at 60 ° C. or higher. It is important that the phosphor sheet of the present invention has high adhesion to the light extraction surface of the LED chip, and this greatly improves the light extraction from the LED chip. Therefore, it is necessary for the viscoelastic behavior of the phosphor sheet to satisfy the above (ii) to (iv).
  • the storage elastic modulus (G ′) of the phosphor sheet is a storage elastic modulus (G ′) when the dynamic viscoelasticity measurement (temperature dependence) of the phosphor sheet is performed by a rheometer.
  • Dynamic viscoelasticity means that when shear strain is applied to a material at a sinusoidal frequency, the shear stress that appears when a steady state is reached is divided into a component (elastic component) whose strain and phase match, and the strain and phase are This is a technique for analyzing the dynamic mechanical properties of a material by decomposing it into components (viscous components) delayed by 90 °.
  • Dynamic viscoelasticity measurement (temperature dependency) can be measured using a general viscosity / viscoelasticity measuring device. In this invention, it is set as the value at the time of measuring on the following conditions.
  • Measuring device Viscosity and viscoelasticity measuring device HAAKE MARSIII (Thermo Fisher SCIENTIFIC made) Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20mm) Measurement time: 1980 seconds Angular frequency: 1 Hz Angular velocity: 6.2832 rad / sec Temperature range: 25 to 200 ° C (with low temperature control function) Temperature increase rate: 0.08333 ° C./sec Sample shape: Circular (diameter 18 mm).
  • the storage elastic modulus (G ′) is obtained by dividing the stress component whose phase coincides with the shear strain by the shear strain. Since the storage elastic modulus (G ′) represents the elasticity of the material against dynamic strain at each temperature, it is closely related to the hardness of the phosphor sheet, that is, the processability.
  • the loss elastic modulus (G ′′) is obtained by dividing the shear strain and the stress component whose phase is delayed by 90 ° by the shear strain.
  • the loss elastic modulus represents the viscosity of the material. That is, it is closely related to adhesion.
  • the loss tangent (tan ⁇ ) obtained by dividing the loss elastic modulus (G ′′) by the storage elastic modulus (G ′) is an index indicating the state in which the material is placed.
  • elasticity is dominant and it is in a solid state, whereas if tan ⁇ is 1 or more, viscosity is dominant and it indicates a liquid state.
  • the phosphor sheet in the present invention is sufficiently elastic at room temperature (25 ° C.) because 1.0 ⁇ 10 4 Pa ⁇ G ′ ⁇ 1.0 ⁇ 10 6 Pa at 25 ° C. and tan ⁇ ⁇ 1. It is. For this reason, the sheet is cut without deformation of the surroundings even with a high shear stress such as a cutting process with a blade, and processability with high dimensional accuracy is obtained.
  • the storage elastic modulus at 25 ° C. of the phosphor sheet is more preferably 9.0 ⁇ 10 5 Pa or less from the viewpoint of crack prevention during handling and workability.
  • Tan ⁇ at room temperature is more preferably 0.7 or less from the viewpoint of lowering the attaching temperature. Moreover, there is no restriction
  • the phosphor sheet satisfies 1.0 ⁇ 10 2 Pa ⁇ G ′ ⁇ 1.0 ⁇ 10 4 Pa at 100 ° C. and tan ⁇ ⁇ 1, the sheet is sufficiently viscous at 100 ° C. High fluidity. Therefore, if the phosphor sheet having this physical property is heated to 100 ° C. or higher and attached to the LED chip, the phosphor sheet quickly flows and deforms according to the shape of the light emitting surface of the LED chip, and is high. Adhesion can be obtained. Thereby, the light extraction property from the LED chip is improved, and the luminance is improved.
  • the storage elastic modulus at 100 ° C. of the phosphor sheet is more preferably 9.0 ⁇ 10 3 Pa or less from the viewpoint of lowering the attaching temperature.
  • Tan ⁇ at 100 ° C. is more preferably 1.6 or more from the viewpoint of adhesion.
  • the upper limit is not particularly limited, but is preferably 4.0 or less, more preferably 3.6 or less, and even more preferably 3.3 or less.
  • the LED chip can finally operate stably. Can be made. If the phosphor sheet is heated at 200 ° C. or higher, complete curing of the sheet is completed and the entire resin is integrated, so that it is not affected by thermal factors such as heat when the LED chip is lit.
  • the storage elastic modulus (G ′) at 200 ° C. of the phosphor sheet is more preferably 9.0 ⁇ 10 5 Pa or less from the viewpoint of preventing cracks.
  • Tan ⁇ at 200 ° C. is more preferably tan ⁇ ⁇ 0.08 from the viewpoint of thermal stability.
  • the lower limit is not particularly limited, but is preferably 0.01 or more, more preferably 0.02 or more, and further preferably 0.03 or more.
  • the resin contained therein may be in an uncured state.
  • the resin contained is not completely cured as a whole but is cured to some extent.
  • the curing has progressed to such an extent that the storage elastic modulus (G ′) does not change for a long period of time of 1 month or longer after storage at room temperature.
  • the phosphor sheet of the present invention can be obtained from the phosphor composition described above. Details of the manufacturing method will be described later.
  • the thickness of the phosphor sheet of the present invention is not particularly limited, but is preferably 10 to 1000 ⁇ m. If it is smaller than 10 ⁇ m, it is difficult to form a uniform sheet because of unevenness caused by the phosphor particles. If it exceeds 1000 ⁇ m, cracks tend to occur and sheet molding is difficult. More preferably, it is 30 to 100 ⁇ m.
  • the thickness of the sheet is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the film thickness of the sheet in the present invention is the film thickness (average film thickness) measured based on JIS K7130 (1999) Plastic-Film and Sheet-Thickness Measuring Method A Method for Measuring Thickness by Mechanical Scanning. That means.
  • Heat resistance refers to resistance to heat generated in the LED package.
  • the heat resistance can be evaluated by comparing the luminance when the LED package emits light at room temperature and when the LED package emits light at a high temperature, and measuring how much the luminance at the high temperature decreases.
  • the LED chip is in an environment where a large amount of heat is generated in a small space, and particularly in the case of a high power LED, heat generation is significant. Due to such heat generation, the temperature of the phosphor rises and the brightness of the LED package decreases. Therefore, it is important how efficiently the generated heat is radiated.
  • seat excellent in heat resistance can be obtained by making a sheet
  • the film thickness variation referred to here is a thickness measurement method based on the thickness measurement method A by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measurement method, and is shown below. Calculated by the formula.
  • film thickness variation B (%) (maximum film thickness deviation value * ⁇ average film thickness) / average film thickness ⁇ 100 * For the maximum film thickness deviation value, the one with the larger difference from the average film thickness is selected from the maximum value or the minimum value.
  • ⁇ Method for producing phosphor composition below, an example of the manufacturing method of the fluorescent substance composition of this invention is demonstrated.
  • a predetermined amount of the aforementioned metal compound particles, matrix resin, phosphor, silicone fine particles, solvent and the like are mixed.
  • the phosphor composition is uniformly mixed and dispersed with an agitator / kneader such as a homogenizer, a self-revolving stirrer, a 3-roller, a ball mill, a planetary ball mill, or a bead mill. Things are obtained.
  • Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing.
  • a specific component may be mixed in advance or a process such as aging may be performed. It is also possible to remove the solvent with an evaporator to obtain a desired solid content concentration.
  • ⁇ Method for producing phosphor sheet laminate> an example of the manufacturing method of the fluorescent substance composition of this invention is demonstrated.
  • the phosphor composition produced by the method described above is applied onto a substrate and dried to produce a phosphor sheet laminate.
  • Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, kiss coater, natural roll coater, air knife coater, roll blade coater, varibar roll blade coater, two stream coater, rod coater, wire
  • a bar coater, an applicator, a dip coater, a curtain coater, a spin coater, a knife coater or the like can be used.
  • it is preferably applied by a slit die coater.
  • the phosphor sheet can be dried using a general heating device such as a hot air dryer or an infrared dryer.
  • a general heating device such as a hot air dryer or an infrared dryer is used.
  • the heating conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 60 ° C. to 200 ° C. for 2 minutes to 4 hours. It is also possible to perform heat curing stepwise such as step cure.
  • the concentration of the metal compound particles in the phosphor sheet of the present invention can be changed depending on the viscosity of the phosphor composition and the drying conditions (speed) after coating.
  • the viscosity of the phosphor composition is high, the metal compound particles hardly flow, and it is difficult to obtain a constant concentration region and a concentration change region. Therefore, it is preferable to prepare a phosphor composition containing a solvent.
  • the viscosity of the paste is preferably 3000 to 100,000 mPa ⁇ s. Further, even if the drying temperature is increased and the drying speed is increased, the metal compound particles are less likely to flow, so that it is difficult to obtain a constant concentration region and a concentration changing region. Preferred drying conditions are as described above.
  • the substrate it is also possible to change the substrate as necessary after preparing the phosphor sheet laminate.
  • a surface with a high concentration of high refractive index nanoparticles is attached to the light emitting surface of the LED chip, it is preferable to change the base material to adjust the attachment surface.
  • examples of a simple method include a method of performing replacement using a hot plate, a method of using a vacuum laminator and a dry film laminator, and the like, but are not limited thereto.
  • the same method can also be used when the surface with the higher concentration of the high refractive index nanoparticles is made to face the light emitting surface of the LED chip.
  • the phosphor sheet laminate of the present invention is preferably a fluorescent material in which a phosphor sheet is laminated on the surface of an LED chip by being attached to a light emitting surface of an LED chip having a general structure such as lateral, vertical, and Philip chip.
  • An LED chip with a body sheet can be formed, and can be suitably used for a vertical or flip chip type LED chip having a large light emitting area.
  • the light emitting surface is a surface from which light from the LED chip is extracted.
  • the light emitting surface from the LED chip may be a single plane or not a single plane.
  • a single plane there are mainly those having only the upper light emitting surface.
  • a vertical type LED chip an LED chip whose side surface is covered with a reflective layer and light is extracted only from the upper surface are exemplified.
  • an LED chip having an upper light emitting surface and a side light emitting surface and an LED chip having a curved light emitting surface can be mentioned.
  • the light emitting surface is not a single plane because the light emitted from the side can be used and brightened.
  • a flip chip type LED chip having an upper light emitting surface and a side light emitting surface is preferable because the light emitting area can be increased and the chip manufacturing process is easy.
  • the light emitting surface may be processed into a texture or the like based on an optical design in order to improve the light emission efficiency.
  • the phosphor sheet laminate of the present invention can be pasted using an adhesive such as a transparent resin without being directly pasted on the LED chip.
  • an adhesive such as a transparent resin
  • the wavelength conversion layer here refers to a layer that absorbs light emitted from the LED chip, converts the wavelength, and emits light having a wavelength different from that of the LED chip.
  • the LED chip with a phosphor sheet obtained by these methods is packaged with metal wiring and sealing, and then incorporated into a module to illuminate various LEDs including various types of lighting, liquid crystal backlights, and headlamps. It can be used suitably for an apparatus.
  • FIG. 9 shows a suitable example of an LED chip with a phosphor sheet.
  • A is one in which a phosphor sheet is attached to the upper surface of the LED chip.
  • B is one in which the phosphor sheet 2 is attached not only to the upper surface but also to the side surface of the LED chip 1.
  • the wavelength conversion is also possible for light emission from the side surface, which is preferable.
  • C uses a flip chip type LED, and the phosphor sheet 2 covers the upper and side surfaces, which are light emitting surfaces.
  • D) attaches the surface where the density
  • 10A to 10B show suitable examples of LED packages.
  • A is the one in which the phosphor composition 4 is injected into the mounting substrate 7 with the reflector 5 on which the LED chip 1 is installed and then sealed with the transparent sealing material 6.
  • B is one in which the phosphor sheet 2 is pasted on the LED chip 1 installed on the mounting substrate 7 with the reflector 5, and then sealed with the transparent sealing material 6.
  • C is the one in which the phosphor sheet 2 is attached not only to the upper surface but also to the side surface of the LED chip 1 and is preferable because the wavelength can be converted even for light emission from the side surface. Further, a lens made of a transparent sealing material 6 is also attached.
  • (D) is the same as (b) except that the reflector 5 is not used and the lens molded body of the transparent sealing material 6 is used for sealing.
  • (E) is the same as (c) except that the reflector 5 is not used.
  • (F) is the same as (c) except that a flip-chip type LED is used and the upper surface and side surfaces, which are light emitting surfaces, are covered with the phosphor sheet 2.
  • the phosphor sheet 2 may extend to the upper surface of the mounting substrate 7 as shown in FIG.
  • (G) is the same as (e) except that the reflector 5 is not used and the lens is molded by the lens molding of the transparent sealing material 6.
  • (H) is obtained by pasting the LED chip 1 and the phosphor sheet 2 with the transparent adhesive 9, and otherwise the same as (b).
  • (I) is the same as (h) except that the phosphor sheet 2 with the base material 10 prepared in advance is used and the base material 10 is used without being peeled from the phosphor sheet 2.
  • glass is preferable.
  • the transparent sealing material 6 in (b) may have a shape as shown in (c), and the phosphor sheet 2 may be attached not only to the upper surface but also to the side surface of the LED chip 1. .
  • the structures of the parts exemplified in (a) to (i) can be appropriately combined. Moreover, you may substitute or combine with well-known parts other than these.
  • the transparent sealing material is an epoxy resin, silicone resin (cured organopolysiloxane (crosslinked product) such as silicone rubber, silicone gel, etc.) as long as it is a material excellent in moldability, transparency, heat resistance, adhesiveness, etc. And other known resins such as urea resins, fluororesins, and polycarbonate resins can be used. Moreover, the transparent sealing material mentioned above can be used for a transparent adhesive agent.
  • a method for producing an LED package using the phosphor composition of the present invention will be described. Although the suitable example of a manufacturing method of the LED chip which uses the fluorescent substance composition is shown in FIG. 12, it is not limited to this method.
  • a manufacturing method using the phosphor composition of the present invention particularly preferably, (A) a step of injecting the phosphor composition into a package frame, and (B) a package is sealed with a sealing material after that step. It is a manufacturing method of the LED package including the process to perform.
  • a mounting substrate 7 with a reflector 5 is prepared as a package frame 18.
  • the LED chip 1 is mounted on the mounting substrate 7 and installed.
  • a desired amount of the phosphor composition of the present invention is injected into the package frame 18 on which the LED chip 1 is installed.
  • the injection method at this time include injection molding, compression molding, cast molding, transfer molding, coating, potting (dispensing), printing, transfer, and the like, but are not limited thereto. Particularly preferably, potting (dispensing) can be used.
  • the phosphor composition can be placed on the LED chip in a form suitable for the package by heating and curing the phosphor composition.
  • Heat curing can be performed using a general heating device such as a hot air dryer or an infrared dryer.
  • the heat curing conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 60 ° C. to 200 ° C. for 2 minutes to 4 hours. In this case, it is possible to perform heat curing stepwise such as step cure.
  • the transparent sealing material 6 is injected and heat-cured to seal the LED chip 1.
  • the injection method and heating conditions at this time conform to the conditions of the phosphor composition described above.
  • the LED package 19 is manufactured by the above process. You may install an overcoat layer, a lens, etc. by transparent resin as needed.
  • a typical method for producing an LED package using the phosphor sheet laminate of the present invention is as follows: (1) A method of cutting a phosphor sheet into individual pieces and attaching them to individual LED chips, (2) There is a method in which dicing of the wafer and cutting of the phosphor sheet are collectively performed by pasting the wafer on which the LED chip before dicing has been fabricated, but it is not limited thereto. Particularly preferably (A) an alignment step in which one section of the phosphor sheet opposes the light emitting surface of one LED chip, and (B) pressurizing while heating with a thermocompression bonding tool.
  • the step (A) is an alignment step in which the surface of the phosphor sheet having the higher concentration of inorganic particles among the upper and lower surfaces of one section of the phosphor sheet is opposed to the light emitting surface of the one LED chip. It is preferable that it is a manufacturing method of an LED package.
  • the phosphor sheet laminate of the present invention can be adhered using an adhesive such as a transparent resin without being directly adhered to the LED chip, but a phosphor using a heat-sealing resin as a matrix resin.
  • an adhesive such as a transparent resin without being directly adhered to the LED chip, but a phosphor using a heat-sealing resin as a matrix resin.
  • the use of a sheet is preferable because it can be easily attached to the LED chip without an adhesive.
  • the phosphor sheet is affixed to the LED chip, the phosphor sheet is affixed by applying pressure while heating at a desired temperature.
  • the heating temperature is preferably 60 ° C. or higher and 250 ° C. or lower, and more preferably 60 ° C. or higher and 160 ° C. or lower.
  • the resin design for increasing the difference in elastic modulus between the room temperature and the attaching temperature becomes easy.
  • the thermal expansion and thermal shrinkage of the base material and the phosphor sheet can be reduced by setting the temperature to 250 ° C. or lower, the accuracy of pasting can be increased.
  • the position accuracy of pasting is important. In order to increase the accuracy of pasting, it is more preferable to paste at 160 ° C. or lower.
  • any existing apparatus can be used as long as it can be bonded at a desired temperature, and a thermocompression bonding tool such as a mounter or a flip chip bonder can be used.
  • a thermocompression bonding tool such as a mounter or a flip chip bonder can be used.
  • the phosphor sheet when affixing to the wafer level LED chips at once, it can be affixed using a vacuum laminator or a thermocompression bonding tool having a heating portion of about 100 to 200 mm square.
  • the phosphor sheet is pressure-bonded to the LED chip at a desired temperature and thermally fused, and then allowed to cool to room temperature, and the substrate is peeled off.
  • the phosphor sheet after being allowed to cool to room temperature after heat fusion can be easily peeled off from the substrate while firmly adhering to the LED chip. It becomes possible.
  • the method for cutting the phosphor sheet will be described.
  • the phosphor sheet is pre-cut into individual pieces before being attached to the LED chip, and then attached to individual LED chips, and the phosphor sheet is attached to the wafer level LED chip and then simultaneously with wafer dicing. Then, there is a method of cutting the phosphor sheet.
  • the uniformly formed phosphor sheet is processed into a predetermined shape by laser processing or cutting with a blade and divided. Since processing with a laser gives high energy, it is very difficult to avoid scorching of the resin and deterioration of the phosphor, and cutting with a blade is desirable.
  • a cutting method with a blade there are a method of pushing and cutting a simple blade and a method of cutting with a rotary blade, both of which can be suitably used.
  • an apparatus for cutting with a rotary blade an apparatus used for cutting (dicing) a semiconductor substrate (wafer) called a dicer into individual chips can be suitably used. If the dicer is used, the width of the dividing line can be precisely controlled by the thickness of the rotary blade and the condition setting, so that higher processing accuracy can be obtained than when cutting with a simple cutting tool.
  • FIG. 13 shows an example of individualization, LED chip application, and dicing steps when the phosphor sheet is divided into individual substrates.
  • the process of FIG. 13 includes a step of cutting the phosphor sheet into individual pieces, and a step of pressing the phosphor sheet cut into the individual pieces at a desired temperature and attaching them to the LED chip.
  • FIG. 13A shows a state where the phosphor sheet 2 laminated with the base material 20 is fixed to the temporarily fixing sheet 21.
  • both the phosphor sheet 2 and the base material 20 are separated, they are fixed to the temporarily fixing sheet 21 so as to be easy to handle.
  • the phosphor sheet 2 and the substrate 20 are cut into individual pieces.
  • the separated phosphor sheet 2 and the base material 20 are aligned on the LED chip 1 mounted on the mounting substrate 7 and heated as shown in (d). Crimping is performed at a desired temperature using the crimping tool 22.
  • the substrate is allowed to cool to room temperature, and the substrate 20 is peeled off as shown in FIG.
  • the base material 20 is glass or the like, the base material may be used as it is as shown in FIG.
  • FIG. 14 shows an example of individualization, LED chip attachment, and dicing steps when the phosphor sheet is separated into individual pieces while the base material is continuous.
  • the process of FIG. 14 also includes a step of cutting the phosphor sheet into individual pieces and a step of heating the phosphor sheet cut into the individual pieces and attaching them to the LED chip.
  • the base material 20 is not separated.
  • the substrate 20 is not cut at all, but may be partially cut as long as the substrate 20 is continuous.
  • the phosphor sheet 2 that has been separated into pieces is opposed to the wafer 23 on which the LED chips before dicing are formed, and alignment is performed.
  • the wafer 23 on the surface of which the phosphor sheet 2 and the LED chip before dicing are formed is crimped at a desired temperature using the thermocompression bonding tool 22.
  • the pressure bonding process is performed under vacuum or under reduced pressure so that air is not caught between the wafer 23 having the phosphor sheet 2 and the LED chip 1 formed on the surface.
  • the substrate is allowed to cool to room temperature.
  • the wafer is diced into individual pieces, and the LED chips with phosphor sheets separated into individual pieces as shown in (f) Get 24.
  • FIG. 15 shows an example of a process in the case where the phosphor sheet and the wafer are diced together after being attached.
  • the process of FIG. 15 includes a process of pressing and bonding a phosphor sheet to a plurality of LED chips at a desired temperature and a process of dicing the phosphor sheet and the LED chip together.
  • the phosphor sheet 2 is not cut in advance, and the phosphor sheet 2 side is made to face the wafer 23 on which the LED chips before dicing are formed as shown in FIG. Align.
  • the wafer 23 on which the phosphor sheet 2 and the LED chip before dicing are formed on the surface is crimped by a thermocompression bonding tool 22 at a desired temperature.
  • the pressure bonding it is allowed to cool to room temperature, and after peeling the substrate 20 as shown in (c), the wafer is diced, and at the same time, the phosphor sheet 2 is cut into individual pieces, as shown in (d). An LED chip 24 with a phosphor sheet is obtained.
  • the phosphor sheet is not attached to the electrode portion in order to remove the phosphor sheet. It is desirable to make a hole in the part in advance.
  • known methods such as laser processing and die punching can be suitably used for drilling, laser processing causes burning of the resin and deterioration of the phosphor, so punching with a die is more desirable.
  • punching cannot be performed after the phosphor sheet is attached to the LED chip. Therefore, it is essential to perform punching before attaching the phosphor sheet.
  • a hole having an arbitrary shape or size can be formed depending on the electrode shape of the LED chip to be attached. Any size and shape of the hole can be formed by designing the mold, but the electrode joint portion on the LED chip inside and outside the 1 mm square is preferably 500 ⁇ m or less in order not to reduce the area of the light emitting surface.
  • the hole is formed with a size of 500 ⁇ m or less in accordance with its size.
  • an electrode for performing wire bonding or the like needs to have a certain size and is at least about 50 ⁇ m. Therefore, the hole is about 50 ⁇ m in accordance with the size.
  • an affixing device having an optical alignment (alignment) mechanism is required. At this time, it is difficult to align the phosphor sheet and the LED chip in terms of work, and in practice, the alignment is often performed in a state where the phosphor sheet and the LED chip are lightly contacted. At this time, if the phosphor sheet has adhesiveness, it is very difficult to move it in contact with the LED chip. If the phosphor sheet laminate of the present invention is aligned at room temperature, it is not sticky, so that it is easy to align the phosphor sheet and the LED chip with light contact.
  • the mass production method of the LED chip with the phosphor sheet and the LED package using the phosphor sheet laminate of the present invention will be described.
  • a method for manufacturing an LED chip with a phosphor sheet will be described.
  • a method of attaching the phosphor sheet to the LED chip as shown in FIG. 16, a method of attaching one by one using the phosphor sheet laminate 26 separated for each LED chip, and as shown in FIG.
  • the phosphor sheet 2 is collectively coated on a plurality of LED chips, and then cut and individualized. Any method may be used.
  • the phosphor sheet is attached by pressing in a state where the base material softens and flows.
  • the sticking temperature is preferably 60 ° C. or higher, and more preferably 80 ° C. or higher, from the viewpoint of enhancing adhesiveness.
  • the heat-fusible resin used for the phosphor sheet has a property that the viscosity is temporarily lowered by heating, and is further cured by heating. Therefore, the temperature of the attaching step is preferably 150 ° C. or lower from the viewpoint of maintaining adhesiveness, and more preferably 120 ° C. or lower from the viewpoint of maintaining the shape of the phosphor sheet at a certain level or higher. .
  • Examples of the manufacturing apparatus for performing such affixing include vacuum affixing machines such as a vacuum diaphragm laminator, a vacuum roll laminator, a vacuum hydraulic press, a vacuum servo press, a vacuum electric press, and a TOM molding machine.
  • vacuum affixing machines such as a vacuum diaphragm laminator, a vacuum roll laminator, a vacuum hydraulic press, a vacuum servo press, a vacuum electric press, and a TOM molding machine.
  • a vacuum diaphragm muraminator is preferable because a large number of treatments can be performed at one time, and pressure can be applied without deviation from directly above.
  • the LED package manufacturing method is not limited to these examples.
  • the first manufacturing example is shown in FIG. (A)
  • the LED chip 1 is temporarily fixed on the base 30 via the double-sided adhesive tape 29.
  • the phosphor sheet laminate 26 is laminated so that the phosphor sheet 2 is in contact with the LED chip 1.
  • C After the laminate of (b) is placed in the lower chamber 32 of the vacuum diaphragm muraminator 35, the upper chamber 31 and the lower chamber 32 are depressurized while being heated. After heating under reduced pressure until the base material 25 flows, the diaphragm 33 is expanded by sucking the air into the upper chamber 31 through the air inlet 34, pressing the phosphor sheet 2 through the base material 25, and the LED chip 1. Paste to follow the light emitting surface.
  • the laminate is taken out from the vacuum diaphragm muraminator 33, and the substrate 25 is peeled off after being allowed to cool. Subsequently, the LED chip space 36 is cut with a dicing cutter or the like to produce an individual LED chip 37 with a phosphor sheet.
  • the LED chip 37 with the phosphor sheet is bonded to the package electrode 28 on the mounting substrate 27 via the gold bumps 8.
  • the LED package 38 is manufactured by the above process. If necessary, install an overcoat layer or lens with a transparent resin.
  • FIG. 19 shows a second manufacturing example.
  • the LED chip 1 is bonded to the package electrode 28 on the mounting substrate 27 via the gold bumps 8.
  • the phosphor sheet laminate 26 is laminated so that the phosphor sheet 2 is in contact with the LED chip 1.
  • E) The LED package 39 is manufactured through the above steps. If necessary, install an overcoat layer or lens with a transparent resin.
  • Nanoparticle 1 Titanium oxide “Optlake TR-527” (manufactured by Catalyst Kasei Kogyo Co., Ltd. Composition: average particle diameter 15 nm, refractive index 2.50, titanium oxide particles 20% by weight)
  • Nanoparticle 2 Titanium oxide “Optlake TR-520” (manufactured by Catalyst Kasei Kogyo Co., Ltd. Composition: average particle diameter 15 nm, refractive index 2.50, titanium oxide particles 30% by weight)
  • Nanoparticle 3 Titanium oxide “Optlake TR-521” (manufactured by Catalytic Chemical Industry Co., Ltd.
  • Nanoparticle 4 Tin oxide particle “SN1” (average particle diameter 19 nm, refractive index 2.38)
  • Nanoparticle 5 Aluminum oxide particle “SA1” (average particle diameter 34 nm, refractive index 1.76)
  • Nanoparticle 6 Cerium oxide particle “CS1” (average particle diameter 34 nm, refractive index 2.20)
  • Nanoparticle 7 Zirconia oxide “ZS1” (average particle diameter 15 nm, refractive index 2.40, zirconia oxide particle 20% by weight)
  • Nanoparticle 8 Magnesium oxide particle “MS1” (average particle diameter 44 nm, refractive index 1.76)
  • Nanoparticle 9 Zinc oxide particle “AS1” (average particle diameter 94 nm, refractive index 1.95)
  • Nanoparticle 10 Titanium oxide particles “TS1” (average particle diameter 30 nm, refractive index 2.50, titanium oxide particles 20% by weight)
  • Nanoparticle 11 Titanium oxide particles “TS1” (average particle diameter 30 nm, refractive
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • ⁇ Grafting example 3> 8.2 g of methyltrimethoxysilane, 55.5 g of phenyltrimethoxysilane, 7.2 g of dimethyldimethoxysilane, “OPTRAIK TR-521” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd., composition: oxidation 71.1 g of titanium particles (70 wt% of titanium particles, 70 wt% of diacetone alcohol) and 23.9 g of ⁇ -butyrolactone were placed in a reaction vessel, and 34.5 g of water and 1.0 g of phosphoric acid were added to this solution while stirring.
  • the solution was added dropwise so that the temperature did not exceed 40 ° C.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • ⁇ Grafting example 6> 18.05 g of vinyltrimethoxysilane, 56.36 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 805.7%) 205.7 g and propylene glycol monomethyl ether acetate 131.3 g were put in a reaction vessel. To this solution, 21.9 g of water and 0.36 g of phosphoric acid were stirred and the reaction temperature did not exceed 40 ° C. Was dropped.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 1 hour, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 1 hour, and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 1 hour, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 15 minutes and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • TKP-102 powdered titanium oxide particles “TKP-102” (trade name, manufactured by Teika Co., Ltd.) are spread thinly on a glass petri dish, and the petri dish is made into a plasma etcher (Meiwa Forsys, SEDE). ) And plasma treatment was performed for 15 minutes. The plasma-treated particles were transferred to a capped test tube, and a 9.6 mM 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) styrene solution prepared in advance was placed in the test tube and sealed with a cap. Thereafter, it was inserted into an aluminum block heater heated to 125 ° C., and radical polymerization was performed.
  • TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl
  • test tube was taken out of the heater and the glove box, and oxygen bubbled chloroform was added to completely stop the polymerization. After the titanium oxide particles and the solvent were separated by centrifugation, the titanium oxide particles were taken out. The titanium oxide particles were washed with acetone to obtain grafted titanium oxide particles.
  • ⁇ Grafting Example 10> 5.59 g of methyltrimethoxysilane, 19.0 g of phenyltrimethoxysilane, “OPTRAIK TR-527” (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) having a number average particle diameter of 15 nm, composition: 20% by weight of titanium oxide particles, methanol 804.6%) (264.6 g) and propylene glycol monomethyl ether acetate (103.3 g) were placed in a reaction vessel. To this solution, 7.39 g of water and 0.12 g of phosphoric acid were stirred and the reaction temperature did not exceed 40 ° C. Was dropped.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • ⁇ Grafting example 13> 14.64 g of dimethyldimethoxysilane, 56.36 g of phenyltrimethoxysilane, “OPTRAIK TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Chemical Industry Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 (Weight%) 185.94 g and 121.7 g of propylene glycol monomethyl ether acetate are put in a reaction vessel, and 21.9 g of water and 0.36 g of phosphoric acid are added to this solution while stirring so that the reaction temperature does not exceed 40 ° C. It was dripped.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
  • ⁇ Surface treatment example 1> Put 24.5 g of methyltrimethoxysilane, 83.3 g of phenyltrimethoxysilane, and 124.0 g of ⁇ -butyrolactone in a reaction vessel and stir while stirring with 38 g of water and 0.57 g of phosphoric acid so that the reaction temperature does not exceed 30 ° C. It was dripped in. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis.
  • “Optlake TR-527” trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd., composition: titanium oxide particles 20% by weight, methanol 80% by weight
  • the solvent was distilled off from the acetone solution and dried under reduced pressure at 80 ° C. for 10 hours to obtain titania particles surface-modified with phenyltrimethoxysilane.
  • ⁇ Silicon fine particles> Attach stirrer, thermometer, reflux tube and dropping funnel to 2L four-necked round bottom flask. Put 2L of 2.5% ammonia water containing 1ppm of polyether-modified siloxane "BYK333" as a surfactant into the flask. The temperature was raised in an oil bath while stirring at. When the internal temperature reached 50 ° C., 200 g of a mixture of methyltrimethoxysilane and phenyltrimethoxysilane (23/77 mol%) was dropped from the dropping funnel over 30 minutes. Stirring was continued for 60 minutes at the same temperature, then about 5 g of acetic acid (special grade reagent) was added, mixed with stirring, and then filtered.
  • acetic acid special grade reagent
  • the product particles on the filter were added with 600 mL of water twice and 200 mL of methanol once, followed by filtration and washing.
  • the cake on the filter was taken out, crushed, and freeze-dried over 10 hours to obtain 60 g of white powder.
  • the obtained particles were monodisperse spherical fine particles as observed by SEM.
  • As a result of measuring the refractive index of this fine particle by the immersion method it was 1.54.
  • As a result of observing the particles with a cross-sectional TEM it was confirmed that the particles had a single structure.
  • Phosphor “YAG81003” (YAG phosphor, median diameter (D 50 ): 8.6 ⁇ m, refractive index: 1.8) manufactured by Nemoto Lumi Material Co., Ltd.
  • ⁇ Matrix resin> Ingredients for compounding silicone resin Resin main component (MeViSiO 2/2 ) 0.25 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.03 (average composition, (A) Applicable) Hardness modifier ViMe 2 SiO (MePhSiO) 17.5 SiMe 2 Vi (average composition, corresponding to component (B)) Crosslinking agent (HMe 2 SiO) 2 SiPh 2 (corresponds to component (C).) * However, Me: Methyl group, Vi: Vinyl group, Ph: Phenyl group Reaction inhibitor 1-Ethynylhexanol Platinum catalyst Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Contains platinum Amount 5% by weight.
  • Silicone resins 1 and 7 to 19 used for preparing the phosphor composition were blended with the above silicone components to prepare a matrix resin.
  • silicone resins 2 to 6 commercially available products (two-component mixed products) were used, and in some cases, the mixing ratio (A / B ratio) of the liquid A and the liquid B was changed to produce a matrix resin.
  • Silicone resin 1 Resin main component 16.7 parts by weight, hardness adjusting agent 16.7 parts by weight, cross-linking agent 66.7 parts by weight, 0.025 weight part of reaction inhibitor, 0.03 weight part of platinum catalyst
  • Silicone resin 2 “OE6630 (A liquid, B liquid)” (manufactured by Dow Corning Toray) A / B ratio 1/4 Silicone resin 3: “OE6336 (liquid A, liquid B)” (manufactured by Dow Corning Toray) A / B ratio 1/1 Silicone resin 4: “KER6075 (A liquid, B liquid)” (manufactured by Shin-Etsu Chemical) A / B ratio 1/1 Silicone resin 5: “KER6075 (A liquid, B liquid)” (manufactured by Shin-Etsu Chemical) A / B ratio 1 / 1.14 Silicone resin 6: “KER6075 (A liquid, B liquid)” (manufactured by Shin-Etsu Chemical) A / B ratio 0.5 / 1
  • ⁇ Preparation of refractive index measurement sample Metal compound particles were mixed in the matrix resin, and the dispersion was prepared by stirring and defoaming for 10 minutes at 1,000 rpm using a planetary stirring deaerator “Mazerustar KK-400” manufactured by Kurabo Industries. After 5 cc of the dispersion was dropped onto the film substrate, the sample was heated in an oven at 150 ° C. for 1 hour to prepare an average refractive index N1 measurement sample. If necessary, the solvent may be removed by an evaporator after preparing the liquid.
  • ⁇ Transparency test> A sample for transparency evaluation was prepared by dispersing metal compound particles in a matrix resin, and the transparency was evaluated by observing the sample with an optical microscope.
  • a diffusion sheet 13 (Stock Co., Ltd.) cut so as to cover the LED light source 17 on the LED light source 17 (“MS-LED-460” manufactured by Prizmatix, wavelength: 460 nm, output:> 50 mW).
  • MS-LED-460 manufactured by Prizmatix, wavelength: 460 nm, output:> 50 mW.
  • black metal shading plate 16 with a hole with a diameter of 1 mm, and a surface with a high refractive index of the phosphor sheet is affixed so that bubbles do not enter the GaN substrate.
  • illuminance (lx) of the measurement sample 12 by placing the light receiving part of the sample (measurement sample) 12, the light shielding cylinder 15 made of black metal, and the illuminance meter 11 (color illuminance meter “CL-200A” manufactured by Konica Minolta, Inc.) in this order. did. If measurement is always performed at a constant distance and a fixed angle, the illuminance is proportional to the luminance.
  • the illuminance of Comparative Example 11 was set to 100, and the relative value of illuminance relative to this was shown.
  • a GaN substrate (plate thickness 0.5 mm) is set on the hot plate, the temperature of the hot plate is set to 130 ° C., and then the phosphor sheet is placed on the GaN substrate so that the phosphor sheet surface is in contact with the GaN substrate surface.
  • the laminate was stacked. Thereafter, the base material (base film) side of the phosphor sheet laminate was squeezed for 60 seconds using a rubber roller, and the phosphor sheet was attached to the GaN substrate. After moving the GaN substrate sample from the hot plate and returning to room temperature, the base material was peeled off to produce a sample substrate.
  • sample preparation for adhesion test A GaN substrate (plate thickness 0.5 mm) is set on the hot plate, the temperature of the hot plate is set to 130 ° C., and then the phosphor sheet is placed on the GaN substrate so that the phosphor sheet surface is in contact with the GaN substrate surface. The laminate was stacked. Thereafter, the base material (base film) side of the phosphor sheet laminate was squeezed for 60 seconds using a rubber roller, and the phosphor sheet was attached to the GaN substrate. After moving the GaN substrate sample from the hot plate and returning to room temperature, the base material was peeled off to produce a sample substrate.
  • Measuring device Viscosity / viscoelasticity measuring device HAAKE MARS III (Thermo Fisher SCIENTIFIC made) Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20mm) Measurement time: 1980 seconds Angular frequency: 1 Hz Angular velocity: 6.2832 rad / sec Temperature range: 25 to 200 ° C (with low temperature control function) Temperature increase rate: 0.08333 ° C./sec Sample shape: Circular (diameter 18 mm).
  • ⁇ Heat resistance test> The LED chip is turned on by applying an electric current to the LED package using the phosphor sheet so that the surface temperature of the package is from room temperature (25 ° C.) to 170 ° C. Was used to measure the luminance.
  • the luminance at room temperature (25 ° C.) and 170 ° C. was measured, and the heat retention was evaluated by calculating the luminance retention rate according to the following formula. It shows that it is excellent in heat resistance, so that a luminance retention is high. If the rating is B or more, there is no practical problem, and if the rating is A or more, it is practically excellent.
  • Luminance retention ratio I (%) (luminance at 170 ° C./luminance at room temperature (25 ° C.)) ⁇ 100 (Rounded to the first decimal place) S: Retention rate 90% or more Heat resistance is very good A: Retention rate 81-89% Good heat resistance B: Retention rate 51-80% Heat resistance is practically no problem C: Retention rate 50% or less bad.
  • Hardness measurement was carried out as an index of handleability when using a phosphor sheet (such as cracking during handling, soft shape breaking). Measurement of rubber / plastic soft hardness tester “Durometer Type D” (Product No .: GSD-720J manufactured by Teclock Co., Ltd.) based on JIS K6253 (2012) Durometer Hardness Test Method Used as an apparatus, the hardness of the sheet at room temperature (25 ° C.) was measured. Based on the experience so far, there is a correlation between the hardness of the phosphor sheet and the ease of handling. Therefore, the handleability was evaluated based on the hardness. If the rating is B or more, there is no practical problem, and if the rating is A or more, it is practically excellent. S: Hardness 60-79 Very easy to handle A: Hardness 80-89 or 50-59 Good handleability B: Hardness 40-49 Tweezers are shaped but handleability is practically acceptable C: Hardness 90 More than or less than 39 Handling is poor.
  • the LED packages in Examples 1 to 18 and Comparative Examples 1 to 10 were produced as follows.
  • the obtained phosphor composition was placed on a package frame (Enomoto's frame “TOP LED BASE”) on which an LED chip (“GM2QT450G” manufactured by Showa Denko KK, average wavelength: 453.4 nm) was mounted.
  • An LED package was manufactured by casting using “MPP-1” manufactured by Musashino Engineering Co., Ltd. and curing at 80 ° C. for 1 hour and 150 ° C. for 2 hours.
  • the manufactured LED package was turned on by passing a current of 20 mA, and the luminance immediately after the start of the test was measured using an instantaneous multi-metering system (“MCPD-7700” manufactured by Otsuka Electronics Co., Ltd.). It was.
  • the illuminance of Comparative Example 1 was set to 100, and the relative value of illuminance relative to this was shown.
  • Example 1 (with silicone fine particles, effect of grafting) ⁇ Preparation of phosphor composition> Using a planetary stirring and degassing apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), 6.0 g of silicone resin 1 is added to and mixed with 3.0 g of titanium oxide particles obtained by the method of grafting example 1, The mixture was stirred and degassed at 1000 rpm for 10 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.60. Further, the transparency was very good.
  • silicone resin 1 is added to and mixed with 30.0 g of the titanium oxide particles obtained by the method of Grafting Example 1 using a planetary stirring and defoaming device, and the mixture is stirred and removed at 1000 rpm for 3 minutes. Foamed. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.35 g of butyl carbitol were added and mixed.
  • Comparative Example 1 (with silicone fine particles, influence of graft) A phosphor composition was produced in the same manner as in Example 1 except that no metal compound particles were added. Then, the LED package by the same operation as Example 1 was produced and evaluated. The results are shown in Tables 3 and 4.
  • Comparative Example 2 (with silicone fine particles, graft effect) A phosphor composition was produced in the same manner as in Example 1 except that the powder was changed to powdered titanium oxide particles “TKP-102” (trade name, manufactured by TEIKA CORPORATION) as the metal compound particles. Then, the LED package by the same operation as Example 1 was produced and evaluated. The results are shown in Tables 3 and 4. Since the dispersibility in the matrix resin was poor and agglomerated, the phosphor composition could not be produced.
  • TKP-102 powdered titanium oxide particles
  • Comparative Example 3 (with silicone fine particles, graft effect) The same operation as in Example 1 except that the metal compound particles were changed to "Optlake TR-527" (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd., composition: titanium oxide particles 20 wt%, methanol 80 wt%). A phosphor composition was prepared. Then, the LED package by the same operation as Example 1 was produced and evaluated. The results are shown in Tables 3 and 4. Compared to Comparative Example 1, the luminance further decreased.
  • Comparative Examples 4 and 5 (with silicone fine particles, effect of grafting) A phosphor composition was prepared in the same manner as in Example 1 except that the compositions shown in Tables 1 and 3 were changed. Then, the LED package by the same operation as Example 1 was produced, and evaluation was performed. The results are shown in Tables 1 to 4. From these examples, it was found that the brightness was greatly improved with the phosphor composition of the present invention. In Comparative Examples 4 and 5, the luminance was not improved.
  • Examples 10 to 18 and Comparative Examples 6 to 10 (no silicone fine particles, effect of grafting)
  • a phosphor composition was prepared in the same manner as in Example 1, except that the silicone fine particles were not added and the compositions shown in Tables 5 and 7 were changed. Then, the LED package by the same operation as Example 1 was produced, and evaluation was performed. The results are shown in Tables 5-8. From these examples, it was found that the luminance was improved with the phosphor composition of the present invention. In Comparative Examples 6 to 10, the luminance was not improved.
  • Example 19 (with silicone fine particles, graft effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using a planetary stirring and degassing apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), 6.0 g of silicone resin 1 is added to and mixed with 3.0 g of titanium oxide particles obtained by the method of grafting example 1, The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.60. Further, the transparency was very good.
  • silicone resin 1 is added to and mixed with 30.0 g of the titanium oxide particles obtained by the method of Grafting Example 1 using a planetary stirring and defoaming device, and the mixture is stirred and removed at 1000 rpm for 3 minutes. Foamed. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.35 g of butyl carbitol were added and mixed.
  • Comparative Examples 11 to 15 (with silicone fine particles, graft effect, phosphor sheet) A phosphor composition was prepared in the same manner as in Example 19 except that the compositions described in Tables 9 and 11 were changed. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 9-12. From these examples, it was found that a phosphor sheet obtained by forming the phosphor composition of the present invention into a sheet has good film thickness uniformity and greatly improved luminance. In Comparative Examples 10 to 14, the film thickness uniformity was poor and the luminance was not improved.
  • Examples 28 to 36, Comparative Examples 16 to 20 (no silicone fine particles, graft effect, phosphor sheet)
  • a phosphor composition was prepared in the same manner as in Example 19 except that the silicone fine particles were not added and the compositions shown in Tables 13 and 15 were changed. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 13-16. From these examples, it was found that if the phosphor sheet is formed by forming the phosphor composition of the present invention into a sheet shape, the film thickness uniformity is within the practical range and the luminance is also improved. In Comparative Examples 16 to 20, the film thickness uniformity was poor and the luminance was not improved.
  • Example 37 (refractive index effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), 1.58 g of silicone resin 1 is added to 9.52 g of titanium oxide particles obtained by the method of grafting example 1, and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.63. Further, the transparency was very good.
  • silicone resin 1 was added to 47.57 g of titanium oxide particles obtained by the method of grafting example 1 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.66 g of butyl carbitol were added and mixed.
  • the phosphor composition 29 as a base material was coated on a release treatment surface of “Therapy” BX9 (manufactured by Toray Film Processing Co., Ltd., average film thickness 50 ⁇ m), and heated at 120 ° C. for 30 minutes. It dried and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 square mm. Then, the fluorescent sheet was replaced using a dry film laminator, and the base film was changed to a polyphenylene sulfide film “Torelina 3000” (manufactured by Toray Industries, Inc., average film thickness 50 ⁇ m). As a result of the illuminance measurement, relative illuminance was 111 with respect to Comparative Example 11, and a large luminance improvement effect was obtained.
  • Example 38 (refractive index effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries Co., Ltd.), 0.6 g of silicone resin 1 is added to 12.0 g of titanium oxide particles obtained by the method of grafting example 1 and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.70. Further, the transparency was very good.
  • silicone resin 1 is added to and mixed with 60.0 g of titanium oxide particles obtained by the method of Grafting Example 1 using a planetary agitation / deaeration apparatus, and the mixture is agitated and removed at 1000 rpm for 3 minutes. Foamed. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.89 g of butyl carbitol were added and mixed.
  • Example 39 (refractive index effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), 2.26 g of silicone resin 1 was added to 7.94 g of the titanium oxide particles obtained by the method of grafting Example 10 and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.73. Further, the transparency was very good.
  • silicone resin 1 was added to 39.67 g of titanium oxide particles obtained by the method of grafting example 5 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.53 g of butyl carbitol were added and mixed.
  • Example 40 (refractive index effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), 2.08 g of silicone resin 1 was added to 8.32 g of the titanium oxide particles obtained by the method of grafting Example 10 and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.75. Further, the transparency was very good.
  • silicone resin 1 was added to 41.60 g of titanium oxide particles obtained by the method of grafting example 5 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.56 g of butyl carbitol were added and mixed.
  • the phosphor composition 32 is obtained. Produced.
  • resin was discharged from the die simultaneously with the start of discharge, and good discharge property was confirmed.
  • Example 41 (refractive index effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), 1.58 g of silicone resin 1 was added to 9.52 g of titanium oxide particles obtained by the method of grafting Example 10 and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.78. Further, the transparency was very good.
  • silicone resin 1 was added to 47.57 g of titanium oxide particles obtained by the method of grafting example 1 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.66 g of butyl carbitol were added and mixed.
  • the phosphor composition 33 is obtained. Produced.
  • resin was discharged from the die simultaneously with the start of discharge, and good dischargeability was confirmed.
  • Comparative Example 21 (refractive index effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using silicone resin 2, a sample for refractive index measurement and a sample for transparency evaluation were prepared without using metal compound particles. As a result of the refractive index evaluation, the average refractive index N1 was 1.54. Further, the transparency was very good.
  • Comparative Example 22 (refractive index effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), 3.8 g of silicone resin 1 is added to and mixed with titanium oxide particles 3.88 obtained by the method of grafting example 1, The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.58. Further, the transparency was very good.
  • silicone resin 1 was added to 19.0 g of the titanium oxide particles obtained by the method of grafting example 1 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.14 g of butyl carbitol were added and mixed.
  • Comparative Example 23 (refractive index effect, phosphor sheet) ⁇ Preparation of phosphor composition> Using silicone resin 3, a sample for refractive index measurement and a sample for transparency evaluation were prepared without using metal compound particles. As a result of the refractive index evaluation, the average refractive index N1 was 1.40. Further, the transparency was very good.
  • Examples 42 to 47 (Solvent effect, phosphor sheet) Grafted titanium oxide particles were obtained in the same manner as Grafting Example 1 except that the solvents listed in Table 19 were used.
  • a phosphor composition was prepared in the same manner as in Example 19 except that this was used.
  • the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 19 and 20. From these examples, it was found that a phosphor sheet formed by forming the phosphor composition of the present invention into a sheet shape has good paste transparency and improved luminance.
  • Examples 58 to 64 (Effect of base material, phosphor sheet) A phosphor composition was prepared in the same manner as in Example 19. Thereafter, a phosphor sheet laminate was prepared and evaluated in the same manner as in Example 19 except that the base material described in Table 25 was used. The results are shown in Table 25. In Examples 58 to 64, the film thickness uniformity was better than that of Comparative Example 11. In addition, as a result of the illuminance measurement, in comparison with Comparative Example 11, Examples 58 to 64 obtained an effect of improving luminance. From these results, it was found that changing the base material did not change the effect on luminance.
  • Examples 65 to 71 (Effect of phosphor sheet thickness, phosphor sheet) A phosphor composition was prepared in the same manner as in Example 19. Thereafter, a phosphor sheet laminate was produced and evaluated in the same manner as in Example 19 except that the sheet thickness was changed to that shown in Table 26. The results are shown in Table 26. As a result of the heat resistance test, it was confirmed that the heat resistance tends to deteriorate as the film thickness increases. Further, as a result of the illuminance measurement, it was found that the luminance was improved in Examples 65 to 71 as compared with Comparative Example 11.
  • Example 72 (Effect of high refractive index nanoparticles, phosphor sheet) Grafted nanoparticles were obtained in the same manner as Grafting Example 1, except that the metal compound particles listed in Table 19 were used. A phosphor composition was prepared in the same manner as in Example 19 except that this was used. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Table 28. From Example 72, it turned out that a brightness
  • Examples 19, 73 to 82, Comparative Example 14 (Effect of molar ratio of alkoxysilane compound, phosphor sheet)
  • a phosphor composition was prepared in the same manner as in Example 19 except that the grafting method described in Tables 29 and 31 was used. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 29-32.
  • Examples 19 and 73 to 82 obtained practically no problem with respect to Comparative Example 11, and Examples 19, 73 to 75 were particularly excellent in handleability. Further, as a result of the illuminance measurement, Examples 19, 73 to 82 showed a great brightness improvement effect as compared with Comparative Example 11.
  • Examples 19, 83 to 91, Comparative Examples 11, 13, 14, 29 to 35 (with silicone fine particles, viscoelastic behavior, phosphor sheet)
  • a phosphor composition was prepared in the same manner as in Example 19 except that the matrix resin described in Tables 33, 35, and 37 was used. Then, the fluorescent substance sheet laminated body by the same operation as Example 19 was produced, and viscoelastic behavior and various evaluation were performed. The results are shown in Tables 33-38.
  • Examples 19, 83 to 91 which are within the range of the viscoelastic behavior of the present invention, showed good adhesion, whereas Comparative Examples 11, 13, 14, 29 ⁇ 35 was the result of poor adhesion.
  • Examples 28, 92 to 96, Comparative Examples 16, 18, 19, 36 (no silicone fine particles, viscoelastic behavior, phosphor sheet)
  • a phosphor composition was prepared in the same manner as in Example 19 except that the silicone fine particles were not added and the matrix resin described in Table 39 was used. Then, the fluorescent substance sheet laminated body by the same operation as Example 19 was produced, and viscoelastic behavior and various evaluation were performed. The results are shown in Tables 39 and 40.
  • Examples 28 and 92 to 96 which are within the range of the viscoelastic behavior of the present invention, showed good adhesion, whereas Comparative Examples 16, 18, 19, and 36. was the result of poor adhesion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] [Solution] Provided is a phosphor composition which contains a phosphor, a matrix resin and metal compound particles, and which is characterized in that: the metal compound particles have a refractive index of 1.7 or more and an average particle diameter of 1-50 nm; the average refractive index (N1) of the metal compound particles and the matrix resin and the refractive index (N2) of the phosphor satisfy the relation described below; and the metal compound particles are grafted. A sheet is able to be formed by a single coating process using this phosphor composition, and this phosphor composition is capable of improving the luminance of an LED package that employs this phosphor composition. 0.20 ≥ |N1 - N2|

Description

蛍光体組成物、蛍光体シート、蛍光体シート積層体ならびにそれらを用いたLEDチップ、LEDパッケージおよびその製造方法Phosphor composition, phosphor sheet, phosphor sheet laminate, LED chip using them, LED package, and method for producing the same
 本発明は、蛍光体組成物、蛍光体シート、蛍光体シート積層体ならびにそれらを用いたLEDチップ、LEDパッケージおよびその製造方法に関する。 The present invention relates to a phosphor composition, a phosphor sheet, a phosphor sheet laminate, an LED chip using them, an LED package, and a method for producing the same.
 発光ダイオード(LED)は、発光効率の目覚ましい向上を背景とし、低消費電力、高寿命、意匠性などを特長とした液晶ディスプレイ(LCD)用バックライト、車載用ヘッドライト、スポットライト、一般照明用途で急激に市場を拡大しつつある。 Light-emitting diodes (LEDs) are used for LCD backlights, in-vehicle headlights, spotlights, and general lighting applications, featuring low power consumption, long service life, and design with a dramatic improvement in luminous efficiency. The market is expanding rapidly.
 LEDの発光スペクトルは、LEDを形成する材料に依存するためその発光色は限られている。そのため、LEDを用いてLCD用バックライトや一般照明の白色光を得るためにはLEDチップ上にそれぞれのチップに適合した蛍光体を配置し、発光波長を変換して白色光を得る必要がある。具体的には、青色発光するLEDチップ上に黄色蛍光体を配置する方法、青色発光するLEDチップ上に赤および緑の蛍光体を配置する方法、紫外線を発するLEDチップ上に赤、緑、青の蛍光体を配置する方法などが提案されている。これらの中で、LEDチップの発光効率やコストの面から青色LEDチップ上に黄色蛍光体を配置する方法、および青色LEDチップ上に赤および緑の蛍光体を配置する方法が現在最も広く採用されている。 Since the emission spectrum of an LED depends on the material forming the LED, its emission color is limited. Therefore, in order to obtain white light for LCD backlights and general illumination using LEDs, it is necessary to arrange phosphors suitable for the respective chips on the LED chips and convert the emission wavelength to obtain white light. . Specifically, a method of disposing a yellow phosphor on a blue light emitting LED chip, a method of disposing red and green phosphors on a blue light emitting LED chip, red, green, blue on a LED chip emitting ultraviolet light. A method of arranging the phosphors has been proposed. Among these, the method of arranging the yellow phosphor on the blue LED chip and the method of arranging the red and green phosphors on the blue LED chip are currently most widely adopted from the viewpoint of the luminous efficiency and cost of the LED chip. ing.
 LEDチップ上に蛍光体を配置する具体的な方法の1つとして、高濃度の蛍光体が均一に分布した樹脂を予めシート状に成型して使用する方法、(蛍光体シート法)が提案されている(例えば、特許文献1参照)。本方法では、高濃度の蛍光体を含有する樹脂を予めシート状に成型しておくことで、均一な膜厚と蛍光体濃度分布および耐光性を得ることができる。そのため、LEDパッケージやLEDチップに貼り付けた時にLEDパッケージの色ばらつきを抑制することができる。しかし、LEDチップや蛍光体の屈折率が、蛍光体シートに含まれる樹脂の屈折率と比較して高いため、LEDチップや蛍光体界面における反射により、LEDチップ内で発生した光を十分に外部に取り出せていない。 As one of the specific methods for arranging the phosphor on the LED chip, there has been proposed a method (phosphor sheet method) in which a resin in which a high concentration phosphor is uniformly distributed is molded into a sheet in advance and used. (For example, refer to Patent Document 1). In this method, a uniform film thickness, phosphor concentration distribution, and light resistance can be obtained by molding a resin containing a high concentration phosphor into a sheet in advance. Therefore, the color variation of the LED package can be suppressed when it is attached to the LED package or the LED chip. However, since the refractive index of the LED chip or phosphor is higher than the refractive index of the resin contained in the phosphor sheet, the light generated in the LED chip is sufficiently externally reflected by the reflection at the LED chip or phosphor interface. It cannot be taken out.
 屈折率差に起因する反射を抑制するために、屈折率の異なる薄膜を屈折率順に積層し、屈折率を連続的に変化させることも検討されている。例えば、屈折率が異なる2~20層の封止層が形成されてなり、最下層の封止層(第1封止層)の屈折率nが1.55~1.85の範囲にあり、最上層の封止層(n番目の封止層、n=2~20)の屈折率nが1.30~1.65の範囲にあり、少なくとも2層以上の屈折率が異なる封止層が屈折率の高い順に積層してなり、各封止層が疎水性ジルコニウム粒子および/または疎水性シリカ系中空粒子とマトリックス樹脂を含むことにより、屈折率傾斜を形成することが提案されている(例えば、特許文献2参照)。 In order to suppress reflection due to a difference in refractive index, it has been studied to stack thin films having different refractive indexes in order of refractive index and continuously change the refractive index. For example, 2 to 20 sealing layers having different refractive indexes are formed, and the refractive index n 1 of the lowermost sealing layer (first sealing layer) is in the range of 1.55 to 1.85. , the top layer of the sealing layer (n-th sealing layer, n = 2 ~ 20) refractive index n n of the range 1.30 to 1.65 sealing at least two or more layers having different refractive indices It has been proposed that layers are stacked in order of decreasing refractive index, and each sealing layer includes hydrophobic zirconium particles and / or hydrophobic silica-based hollow particles and a matrix resin to form a refractive index gradient. (For example, refer to Patent Document 2).
 また、LEDチップ上に配置された変換層に蛍光剤とバインダー材料と複数のナノ粒子を含有させ、蛍光剤粒子の屈折率と厳密に整合するようにナノ粒子を分散することが開示されている(例えば、特許文献3参照)。 In addition, it is disclosed that a conversion layer disposed on an LED chip contains a fluorescent agent, a binder material, and a plurality of nanoparticles, and the nanoparticles are dispersed so as to closely match the refractive index of the fluorescent agent particles. (For example, refer to Patent Document 3).
特開平5-152609号公報Japanese Patent Laid-Open No. 5-152609 特開2012-121941号公報JP 2012-121941 A 特許5227252号公報Japanese Patent No. 5227252
 しかしながら、上記の方法ではLEDチップ上にドライエッチングなどでエッチングしたり、屈折率の異なる薄層を多数回積層したりといったプロセス数が増えるため、コストが増加するという課題があった。また、LEDパッケージの輝度が向上しないという課題もあった。 However, the above method has a problem in that the cost increases because the number of processes such as etching by dry etching or the like on the LED chip, or by laminating thin layers having different refractive indexes many times. There is also a problem that the brightness of the LED package is not improved.
 特に、LEDパッケージの輝度が向上しない点については、以下の2つの理由によることが、本発明者らにより見出された。(1)バインダー材料中に複数のナノ粒子を分散した変換層を利用する場合には、ナノ粒子が凝集してしまう。(2)LEDチップの発光面と蛍光体シートの間に空気などのボイドやクラックなどが発生し、LEDチップと蛍光体シートの密着性が低下することで、LEDチップからの光取出し効率が低下する。 In particular, the present inventors have found that the brightness of the LED package is not improved due to the following two reasons. (1) When using a conversion layer in which a plurality of nanoparticles are dispersed in a binder material, the nanoparticles are aggregated. (2) A void or crack such as air is generated between the light emitting surface of the LED chip and the phosphor sheet, and the adhesion between the LED chip and the phosphor sheet is lowered, so that the light extraction efficiency from the LED chip is lowered. To do.
 本発明は、上記課題に着目し、LEDパッケージの製造プロセスを削減でき、かつLEDパッケージの輝度を向上させることを目的とする。 The present invention focuses on the above problems and aims to reduce the LED package manufacturing process and improve the brightness of the LED package.
 本発明の一つの特徴は、蛍光体と、マトリックス樹脂と、金属化合物粒子を含有する蛍光体組成物であって、前記金属化合物粒子の屈折率が1.7以上であり、かつ、平均粒子径が1~50nmであり、前記金属化合物粒子と前記マトリックス樹脂の平均屈折率N1が、前記蛍光体の屈折率N2と以下の関係を満たし、前記金属化合物粒子がグラフト化されていることを特徴とする蛍光体組成物である。
0.20≧|N1-N2|。
One feature of the present invention is a phosphor composition containing a phosphor, a matrix resin, and metal compound particles, wherein the metal compound particles have a refractive index of 1.7 or more, and an average particle diameter. 1 to 50 nm, the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship with the refractive index N2 of the phosphor, and the metal compound particles are grafted: A phosphor composition.
0.20 ≧ | N1-N2 |.
 また本発明の別の特徴は、蛍光体と、マトリックス樹脂と、金属化合物粒子を含有する蛍光体シートであって、前記金属化合物粒子の屈折率が1.7以上であり、かつ、平均粒子径が1~50nmであり、前記金属化合物粒子がグラフト化されており、前記金属化合物粒子と前記マトリックス樹脂の平均屈折率N1が、前記蛍光体の屈折率N2と以下の関係(i)を満たし、シートの粘弾性挙動が以下の関係(ii)、(iii)および(iv)を満たすことを特徴とする蛍光体シートである。
<屈折率の関係>
(i)0.20≧|N1-N2|
<粘弾性挙動>
(ii)温度25℃において貯蔵弾性率G’が1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1
(iii)温度100℃において貯蔵弾性率G’が1.0×10Pa≦ G’<1.0×10Paであり、かつtanδ≧1
(iv)温度200℃において貯蔵弾性率G’が1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1。
Another feature of the present invention is a phosphor sheet containing a phosphor, a matrix resin, and metal compound particles, wherein the metal compound particles have a refractive index of 1.7 or more and an average particle diameter. Is 1 to 50 nm, the metal compound particles are grafted, and the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship (i) with the refractive index N2 of the phosphor: The phosphor sheet is characterized in that the viscoelastic behavior of the sheet satisfies the following relationships (ii), (iii), and (iv).
<Refractive index relationship>
(I) 0.20 ≧ | N1-N2 |
<Viscoelastic behavior>
(Ii) The storage elastic modulus G ′ is 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa at a temperature of 25 ° C. and tan δ <1
(Iii) Storage modulus G ′ is 1.0 × 10 2 Pa ≦ G ′ <1.0 × 10 4 Pa at a temperature of 100 ° C. and tan δ ≧ 1
(Iv) The storage elastic modulus G ′ is 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa at a temperature of 200 ° C. and tan δ <1.
 本発明によれば、簡易なプロセスで、輝度を向上させたLEDパッケージを提供することができる。 According to the present invention, an LED package with improved brightness can be provided by a simple process.
実施例10の蛍光体組成物の硬化膜の断面SEM写真(倍率5万倍)Cross-sectional SEM photograph (50,000 times magnification) of the cured film of the phosphor composition of Example 10 実施例10の蛍光体組成物の硬化膜の断面SEM写真(倍率10万倍)Cross-sectional SEM photograph of the cured film of the phosphor composition of Example 10 (magnification 100,000 times) 比較例8の蛍光体組成物の硬化膜の断面SEM写真(倍率5万倍)Cross-sectional SEM photograph of the cured film of the phosphor composition of Comparative Example 8 (50,000 times magnification) 比較例8の蛍光体組成物の硬化膜の断面SEM写真(倍率10万倍)Cross-sectional SEM photograph of the cured film of the phosphor composition of Comparative Example 8 (magnification of 100,000 times) 実施例19の蛍光体シートの断面SEM写真(倍率5万倍)Cross-sectional SEM photograph of the phosphor sheet of Example 19 (50,000 times magnification) 実施例19の蛍光体シートの断面SEM写真(倍率10万倍)Cross-sectional SEM photograph of the phosphor sheet of Example 19 (magnification 100,000 times) 比較例12の蛍光体シートの断面SEM写真(倍率5万倍)Cross-sectional SEM photograph of the phosphor sheet of Comparative Example 12 (magnification 50,000 times) 比較例13の蛍光体シートの断面SEM写真(倍率5万倍)Cross-sectional SEM photograph of the phosphor sheet of Comparative Example 13 (magnification 50,000 times) 本発明の蛍光体シート積層体を用いた蛍光体シート付きLEDチップの一例。An example of the LED chip with a phosphor sheet using the phosphor sheet laminate of the present invention. 本発明の蛍光体シート積層体を用いたLEDパッケージの一例。An example of the LED package using the fluorescent substance sheet laminated body of this invention. 本発明の蛍光体シート積層体を用いたLEDパッケージの一例。An example of the LED package using the fluorescent substance sheet laminated body of this invention. 照度測定系の模式図。The schematic diagram of an illumination intensity measurement system. 本発明の蛍光体組成物を用いたLEDパッケージ製造方法の一例。An example of the LED package manufacturing method using the fluorescent substance composition of this invention. 本発明の蛍光体シート積層体を用いたLEDパッケージの製造方法の一例。An example of the manufacturing method of the LED package using the fluorescent substance sheet laminated body of this invention. 本発明の蛍光体シート積層体を用いた蛍光体シート付きLEDチップの製造方法の一例。An example of the manufacturing method of the LED chip with a fluorescent substance sheet using the fluorescent substance sheet laminated body of this invention. 本発明の蛍光体シート積層体を用いた蛍光体シート付きLEDチップの製造方法の一例。An example of the manufacturing method of the LED chip with a fluorescent substance sheet using the fluorescent substance sheet laminated body of this invention. 本発明の蛍光体シート積層体の貼り付け方法の一例An example of the method for attaching the phosphor sheet laminate of the present invention 本発明の蛍光体シート積層体の貼り付け方法の一例An example of the method for attaching the phosphor sheet laminate of the present invention 本発明の蛍光体シート積層体を用いたLEDパッケージの製造方法の一例。An example of the manufacturing method of the LED package using the fluorescent substance sheet laminated body of this invention. 本発明の蛍光体シート積層体を用いたLEDパッケージの製造方法の一例。An example of the manufacturing method of the LED package using the fluorescent substance sheet laminated body of this invention.
 <蛍光体組成物>
 本発明の一つの特徴である蛍光体組成物は、蛍光体と、マトリックス樹脂と、金属化合物粒子を含有する蛍光体組成物であって、前記金属化合物粒子の屈折率が1.7以上であり、かつ、平均粒子径が1~50nmであり、前記金属化合物粒子と前記マトリックス樹脂の平均屈折率N1が、前記蛍光体の屈折率N2と以下の関係を満たし、前記金属化合物粒子がグラフト化されていることを特徴とする。
0.20≧|N1-N2|。
<Phosphor composition>
A phosphor composition that is one feature of the present invention is a phosphor composition containing a phosphor, a matrix resin, and metal compound particles, and the refractive index of the metal compound particles is 1.7 or more. And the average particle diameter is 1 to 50 nm, the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship with the refractive index N2 of the phosphor, and the metal compound particles are grafted: It is characterized by.
0.20 ≧ | N1-N2 |.
 本発明において蛍光体組成物とは、蛍光体と、マトリックス樹脂と、金属化合物粒子を含有する組成物を指すものとする。 In the present invention, the phosphor composition refers to a composition containing a phosphor, a matrix resin, and metal compound particles.
 本発明の蛍光体組成物は、金属化合物粒子とマトリックス樹脂の平均屈折率N1が、蛍光体の屈折率N2と以下の関係を満たす。
0.20≧|N1-N2|。
In the phosphor composition of the present invention, the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship with the refractive index N2 of the phosphor.
0.20 ≧ | N1-N2 |.
 これにより、本発明の蛍光体組成物をLEDチップの発光面に設置したときに、LEDチップから取り出された光を効率よく蛍光体にあてることができ、かつLEDチップの光取り出し性が向上し、結果としてLEDパッケージの輝度が向上する。 As a result, when the phosphor composition of the present invention is installed on the light emitting surface of the LED chip, the light extracted from the LED chip can be efficiently applied to the phosphor, and the light extraction performance of the LED chip is improved. As a result, the brightness of the LED package is improved.
 その理由は以下のように推測される。マトリックス樹脂が金属化合物粒子を含有することで、それらの混合成分と蛍光体の屈折率差を小さくすることができる。これによって、蛍光体と、金属化合物粒子を含むマトリックス樹脂との界面での光の反射、散乱を抑制することができるため、LEDチップから蛍光体組成物へ入射した光が効率よく蛍光体にあたる。また、マトリックス樹脂が金属化合物粒子を含むことによって、蛍光体組成物全体の屈折率をLEDチップの屈折率に近づけることができる。そのため、LEDチップ内部の全反射も抑制することができ、LEDチップからの光取出し性が向上する。これら2つの効果の結果としてLEDパッケージの輝度を向上することができる。 The reason is presumed as follows. When the matrix resin contains the metal compound particles, the difference in refractive index between the mixed component and the phosphor can be reduced. Thereby, since reflection and scattering of light at the interface between the phosphor and the matrix resin containing metal compound particles can be suppressed, light incident on the phosphor composition from the LED chip efficiently hits the phosphor. Further, when the matrix resin contains the metal compound particles, the refractive index of the entire phosphor composition can be brought close to the refractive index of the LED chip. Therefore, total reflection inside the LED chip can also be suppressed, and light extraction from the LED chip is improved. As a result of these two effects, the brightness of the LED package can be improved.
 本発明において、屈折率差|N1-N2|の好ましい上限値は0.20であり、更に好ましくは0.10であり、特に好ましくは0.05である。その上限値以下であることで、上記効果が得られ、LEDパッケージの輝度を向上することができる。なお、屈折率差|N1-N2|が小さければ小さいほど上記効果が大きくなるので、下限としては特に制限はないが、|N1-N2|≧0.02であることが好ましい。 In the present invention, a preferable upper limit value of the refractive index difference | N1-N2 | is 0.20, more preferably 0.10, and particularly preferably 0.05. By being below the upper limit value, the above effects can be obtained, and the brightness of the LED package can be improved. The smaller the refractive index difference | N1−N2 |, the greater the effect. Therefore, the lower limit is not particularly limited, but | N1−N2 | ≧ 0.02 is preferable.
 金属化合物粒子を含むマトリックス樹脂の平均屈折率N1は、金属化合物粒子の屈折率と体積分率の積と、マトリックス樹脂の屈折率と体積分率の積の和で表される。 The average refractive index N1 of the matrix resin containing metal compound particles is represented by the sum of the product of the refractive index and volume fraction of the metal compound particles and the product of the refractive index and volume fraction of the matrix resin.
 屈折率は、屈折率・膜厚測定装置“プリズムカプラMODEL2010/M”(メトリコン社製)を使用して測定することができる。具体的には、金属化合物粒子をマトリックス樹脂に分散した組成物の透明膜を作製し、測定温度25℃において、633nm(He-Neレーザー使用)における膜面に対する垂直方向の屈折率(TE)を測定することで平均屈折率N1を求めることができる。 The refractive index can be measured using a refractive index / film thickness measuring device “Prism Coupler Model 2010 / M” (manufactured by Metricon). Specifically, a transparent film of a composition in which metal compound particles are dispersed in a matrix resin is prepared, and the refractive index (TE) in the direction perpendicular to the film surface at 633 nm (using a He—Ne laser) is measured at a measurement temperature of 25 ° C. The average refractive index N1 can be obtained by measuring.
 蛍光体の屈折率N2はベッケ線法、液浸法、外挿法によって求めることができる。 The refractive index N2 of the phosphor can be obtained by the Becke line method, the liquid immersion method, and the extrapolation method.
 <金属化合物粒子>
 本発明に用いられる金属化合物粒子は、屈折率が1.7以上であり、平均粒子径が1~50nmである。以下、このような金属化合物粒子を「高屈折率ナノ粒子」と呼ぶ。
<Metal compound particles>
The metal compound particles used in the present invention have a refractive index of 1.7 or more and an average particle diameter of 1 to 50 nm. Hereinafter, such metal compound particles are referred to as “high refractive index nanoparticles”.
 高屈折率ナノ粒子は、可視光の波長よりも十分小さいため、マトリックス樹脂に分散することによって、光学的に均質とみなすことができる。また、高屈折率ナノ粒子の屈折率とマトリックス樹脂の屈折率が異なることから、平均粒子径が1~50nmの金属化合物粒子を含むマトリックス樹脂の平均屈折率は、金属化合物粒子の屈折率と体積分率の積と、マトリックス樹脂の屈折率と体積分率の積の和で表される。すなわち、マトリックス樹脂よりも屈折率が大きい金属化合物粒子であれば、平均屈折率を高くすることができる。 Since high refractive index nanoparticles are sufficiently smaller than the wavelength of visible light, they can be regarded as optically homogeneous by being dispersed in a matrix resin. In addition, since the refractive index of the high refractive index nanoparticles and the refractive index of the matrix resin are different, the average refractive index of the matrix resin containing metal compound particles having an average particle diameter of 1 to 50 nm is the refractive index and volume of the metal compound particles. It is expressed as the sum of the product of the fraction and the product of the refractive index and the volume fraction of the matrix resin. That is, if the metal compound particles have a refractive index larger than that of the matrix resin, the average refractive index can be increased.
 (粒子径)
 金属化合物粒子は、平均粒子径が1nmより小さいと粒子として存在することが難しく、50nmより大きいと光を散乱しやすくなり、光透過率が低下する。光散乱を抑制するという観点で、平均粒子径が1~30nmであることが好ましい。
(Particle size)
When the average particle diameter is smaller than 1 nm, the metal compound particles are difficult to exist as particles, and when the average particle diameter is larger than 50 nm, light is easily scattered and the light transmittance is lowered. From the viewpoint of suppressing light scattering, the average particle diameter is preferably 1 to 30 nm.
 ここでいう金属化合物粒子の平均粒子径とは、以下の方法で求められる粒子径の平均値である。走査型電子顕微鏡(SEM)で粒子を観察して得られる2次元画像から、粒子の外縁と2点で交わる直線の当該2つの交点間の距離が最大になるものを算出し、それを粒子径と定義する。観測される200個の粒子に対して測定を行い、得られた粒子径の平均値を平均粒子径とする。例えば、蛍光体シート中に存在する金属化合物粒子の粒径を測定する場合は、機械研磨法、ミクロトーム法、CP法(Cross-sect(I)on Pol(I)sher)および集束イオンビーム(F(I)B)加工法のいずれかの方法で、蛍光体シートの断面が観測されるよう研磨を行った後、得られた断面を走査型電子顕微鏡(SEM)で観察して得られる2次元画像から平均粒子径を算出することができる。 Here, the average particle diameter of the metal compound particles is an average value of particle diameters obtained by the following method. From the two-dimensional image obtained by observing the particles with a scanning electron microscope (SEM), the one that maximizes the distance between the two intersections of the straight line that intersects the outer edge of the particles at two points is calculated as the particle diameter. It is defined as Measurement is performed on 200 particles observed, and the average value of the obtained particle diameters is defined as the average particle diameter. For example, when measuring the particle size of metal compound particles present in the phosphor sheet, mechanical polishing method, microtome method, CP method (Cross-sect (I) on Pol (I) sher) and focused ion beam (F (I) B) Two-dimensional obtained by performing polishing so that the cross section of the phosphor sheet is observed by any of the processing methods, and then observing the obtained cross section with a scanning electron microscope (SEM) The average particle diameter can be calculated from the image.
 (組成)
 金属化合物粒子としては、チタニア、ジルコニア、アルミナ、セリア、酸化スズ、酸化インジウム、ジルコン、酸化鉄、酸化亜鉛、酸化ニオブ、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、水酸化アルミニウム、チタン酸バリウムダイアモンド等が挙げられ、これらは単独で用いられても良く、2種類以上併用されても良い。高屈折率、入手のし易さという観点から、アルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子、ジルコニウム化合物粒子、ニオブ化合物粒子からなる群より選ばれる少なくとも1種が好ましく用いられる。具体的には、アルミニウム、スズ、チタンまたはジルコニウムの酸化物、硫化物、水酸化物などが挙げられるが、これらのうち、塗膜、硬化膜の屈折率調整の点から酸化ジルコニウム粒子および/または酸化チタン粒子が好ましく用いられる。
(composition)
Metal compound particles include titania, zirconia, alumina, ceria, tin oxide, indium oxide, zircon, iron oxide, zinc oxide, niobium oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, aluminum hydroxide, barium titanate Diamond etc. are mentioned, These may be used independently and may be used together 2 or more types. From the viewpoint of high refractive index and easy availability, at least one selected from the group consisting of aluminum compound particles, tin compound particles, titanium compound particles, zirconium compound particles, and niobium compound particles is preferably used. Specific examples include oxides, sulfides and hydroxides of aluminum, tin, titanium, or zirconium. Among these, from the viewpoint of adjusting the refractive index of the coating film and the cured film, zirconium oxide particles and / or Titanium oxide particles are preferably used.
 金属化合物粒子が高屈折率であると、マトリックス樹脂に分散させたときの平均屈折率を高めることができるため、前述したようにLEDチップとの屈折率差を小さくしてLEDチップからの光取り出し効率を向上させることができる。市販されている金属化合物粒子としては、酸化スズ-酸化チタン複合粒子の”オプトレイクTR-502”、”オプトレイクTR-504”、”オプトレイクTR-520”、酸化ケイ素-酸化チタン複合粒子の”オプトレイクTR-503”、”オプトレイクTR-527”、”オプトレイクTR-528”、”オプトレイクTR-529”、”オプトレイクTR-513”、酸化チタン粒子の”オプトレイクTR-505”(以上、商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、酸化スズ粒子((株)高純度化学研究所製)等が挙げられる。これらの金属化合物粒子は、マトリックス樹脂との分散性を向上させるため、後述するグラフト化を行って用いることが好ましい。 If the metal compound particles have a high refractive index, the average refractive index when dispersed in the matrix resin can be increased, and as described above, the difference in refractive index from the LED chip is reduced to extract light from the LED chip. Efficiency can be improved. Commercially available metal compound particles include tin oxide-titanium oxide composite particles “OPTRAIK TR-502”, “OPTRAIK TR-504”, “OPTRAIK TR-520”, and silicon oxide-titanium oxide composite particles. "Optlake TR-503", "Optlake TR-527", "Optlake TR-528", "Optlake TR-529", "Optrake TR-513", "Optrake TR-505" of titanium oxide particles ”(Above, trade name, manufactured by Catalytic Chemical Industry Co., Ltd.), zirconium oxide particles (manufactured by Kojundo Chemical Laboratory Co., Ltd.), tin oxide-zirconium oxide composite particles (produced by Catalytic Chemical Industry Co., Ltd.), tin oxide And particles (manufactured by Kojundo Chemical Laboratory Co., Ltd.). These metal compound particles are preferably used after grafting to be described later in order to improve dispersibility with the matrix resin.
 (グラフト化)
 本発明において、金属化合物粒子がグラフト化されているとは、粒子の表面に存在する水酸基を利用し、ポリマーが粒子表面に化学結合(グラフト)されていることを言う。金属化合物粒子がグラフト化されていることで、LEDチップ等との密着性に優れた蛍光体組成物や蛍光体シートが得られる。
(Grafting)
In the present invention, the fact that the metal compound particles are grafted means that the polymer is chemically bonded (grafted) to the particle surface using hydroxyl groups present on the particle surface. By the grafting of the metal compound particles, a phosphor composition or a phosphor sheet having excellent adhesion to an LED chip or the like can be obtained.
 蛍光体組成物とLEDチップの発光面との密着性は、LEDパッケージの輝度向上のための重要な要素である。LEDチップの発光面と蛍光体組成物や蛍光体シートの間に空気などのボイドやクラックなどが発生する等の理由により、LEDチップとの密着性が低下すると、光取出し効率が低下する。 The adhesion between the phosphor composition and the light emitting surface of the LED chip is an important factor for improving the brightness of the LED package. If the adhesiveness with the LED chip decreases due to the occurrence of voids or cracks such as air between the light emitting surface of the LED chip and the phosphor composition or phosphor sheet, the light extraction efficiency decreases.
 金属化合物粒子がグラフト化されていると、金属化合物粒子のマトリックス樹脂への分散性が良好となり、金属化合物粒子とマトリックス樹脂との相溶性が向上する。これによって、マトリックス樹脂と金属化合物粒子との界面が生じにくくなる。そのため、蛍光体組成物や蛍光体シートをLEDチップ発光面に設置する際、蛍光体組成物や蛍光体シートの硬化時に生じるボイドやクラックを抑制できる。よって、それらをLEDチップの発光面に設置した際に、それらと発光面との密着性が良好になり、LEDチップからの光取出し性が向上して、結果としてLEDパッケージの輝度が向上する。 When the metal compound particles are grafted, the dispersibility of the metal compound particles in the matrix resin is improved, and the compatibility between the metal compound particles and the matrix resin is improved. This makes it difficult for the interface between the matrix resin and the metal compound particles to occur. Therefore, when installing the phosphor composition or the phosphor sheet on the light emitting surface of the LED chip, it is possible to suppress voids or cracks that occur when the phosphor composition or the phosphor sheet is cured. Therefore, when they are installed on the light emitting surface of the LED chip, the adhesion between them and the light emitting surface is improved, the light extraction from the LED chip is improved, and as a result, the brightness of the LED package is improved.
 マトリックス樹脂と金属化合物粒子との界面が生じていない状態の例を図1と図2に、界面が生じている状態の例を図3、図4に示す。図1および図2は、後述の実施例10の蛍光体組成物の硬化膜の断面を切断し走査型電子顕微鏡(SEM)で観察した写真であり、図3および図4は、後述の比較例8の蛍光体組成物の硬化膜の断面を切断しSEMで観察した写真である。 Examples of the state where the interface between the matrix resin and the metal compound particles is not generated are shown in FIGS. 1 and 2, and examples of the state where the interface is generated are shown in FIGS. 1 and 2 are photographs obtained by cutting a cross section of a cured film of the phosphor composition of Example 10 described later and observing with a scanning electron microscope (SEM), and FIGS. 3 and 4 are comparative examples described later. It is the photograph which cut | disconnected the cross section of the cured film of the fluorescent substance composition of 8, and observed with SEM.
 マトリックス樹脂と金属化合物粒子との界面が生じていない状態では、図1および図2に示されるように、金属化合物粒子がマトリックス樹脂に均一に分散され、金属化合物粒子とマトリックス樹脂の境界部分が不明瞭となる。これに対し、マトリックス樹脂と金属化合物粒子との界面が生じている場合は、図3および図4に示されるように、金属化合物粒子同士が凝集した集合体を形成しているので金属化合物粒子102の集合体とマトリックス樹脂101の境界部分が明瞭に観察される。 In the state where the interface between the matrix resin and the metal compound particles does not occur, as shown in FIGS. 1 and 2, the metal compound particles are uniformly dispersed in the matrix resin, and the boundary portion between the metal compound particles and the matrix resin is not present. It becomes clear. On the other hand, when the interface between the matrix resin and the metal compound particles is generated, as shown in FIGS. 3 and 4, the metal compound particles 102 form an aggregate in which the metal compound particles are aggregated. The boundary between the aggregate and the matrix resin 101 is clearly observed.
 なお、蛍光体組成物中にシリコーン微粒子が含まれる場合は、これとは異なる様子が観察される場合がある。その点は後述する。 In addition, when a silicone fine particle is contained in a fluorescent substance composition, a mode different from this may be observed. This point will be described later.
 本発明において金属化合物粒子のグラフト化に用いられるポリマーの種類は、金属化合物粒子の表面に化学結合するものであれば特に限定されない。水溶性ポリマー(例えば、ポリ(N-イソプロピルアクリルアミド)、ポリエチレングリコール、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、レゾール樹脂や尿素樹脂、メラミン樹脂など初期縮合物など)でもよいし、非水溶性ポリマー(例えば、ポリシロキサン、1,4-シス-イソプレン、イソプレンエラストマー、ポリスチレン、ポリブタジエン、ポリイソプレン、ポリメチルメタクリレート、ポリn-ブチルアクリレート、ポリ塩化ビニル、ポリアクリロニトリル、ポリ乳酸など)でもよい。特に好ましくは、後述するアルコキシシランの縮合物であるポリシロキサンが挙げられる。 In the present invention, the type of polymer used for grafting the metal compound particles is not particularly limited as long as it is chemically bonded to the surface of the metal compound particles. It may be a water-soluble polymer (for example, poly (N-isopropylacrylamide), polyethylene glycol, polyacrylamide, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, initial condensate such as resole resin, urea resin, melamine resin, etc.) or water-insoluble. It may be a polymer (for example, polysiloxane, 1,4-cis-isoprene, isoprene elastomer, polystyrene, polybutadiene, polyisoprene, polymethyl methacrylate, poly n-butyl acrylate, polyvinyl chloride, polyacrylonitrile, polylactic acid, etc.). Particularly preferred is polysiloxane which is a condensate of alkoxysilane described later.
 本発明においては、粒子表面のグラフト化の有無は、走査型電子顕微鏡(以下、SEMと称する)や透過型電子顕微鏡(以下、TEMと称する)で金属化合物粒子とマトリックス樹脂の境界部分を観察することによって知ることができる。グラフト化されている場合は、金属化合物粒子がマトリックス樹脂に均一に分散されており、金属化合物粒子とマトリックス樹脂の境界部分が不明瞭となるのに対し、グラフト化されていない場合は、金属化合物粒子同士が凝集するため、金属化合物粒子とマトリックス樹脂の境界部分が明確に観察される。なお、先に述べたとおり、蛍光体組成物中にシリコーン微粒子が含まれる場合は、これとは異なる様子が観察される場合がある。 In the present invention, the presence or absence of grafting on the particle surface is observed with a scanning electron microscope (hereinafter referred to as SEM) or a transmission electron microscope (hereinafter referred to as TEM) at the boundary between the metal compound particles and the matrix resin. You can know by When grafted, the metal compound particles are uniformly dispersed in the matrix resin, and the boundary between the metal compound particles and the matrix resin becomes unclear, whereas when not grafted, the metal compound particles Since the particles are aggregated, the boundary portion between the metal compound particles and the matrix resin is clearly observed. As described above, when silicone fine particles are contained in the phosphor composition, a different situation may be observed.
 金属化合物粒子表面へのポリマーのグラフト化の方法は特に限定されないが、シロキサン化合物の縮重合によって、粒子表面をグラフト化することが望ましい。特に、金属化合物粒子の存在下で、アルコキシシラン化合物を溶媒中で酸触媒により加水分解した後、該加水分解物を縮合反応させる方法が好ましい。 The method of grafting the polymer onto the metal compound particle surface is not particularly limited, but it is desirable to graft the particle surface by condensation polymerization of a siloxane compound. Particularly preferred is a method in which an alkoxysilane compound is hydrolyzed with an acid catalyst in a solvent in the presence of metal compound particles, and then the hydrolyzate is subjected to a condensation reaction.
 (ポリシロキサン)
 ポリシロキサンはアルコキシシランの縮合物であり、アルコキシシラン化合物を溶媒中、酸触媒により加水分解することによって、シラノール化合物を形成した後、該シラノール化合物を縮合反応させることによって得ることができる。アルコキシシラン化合物としては、下記一般式(1)~(3)で表されるアルコキシシラン化合物から選ばれた1種以上のアルコキシシラン化合物が好ましい。
(Polysiloxane)
Polysiloxane is a condensate of alkoxysilane, which can be obtained by hydrolyzing an alkoxysilane compound in a solvent with an acid catalyst to form a silanol compound and then subjecting the silanol compound to a condensation reaction. As the alkoxysilane compound, one or more alkoxysilane compounds selected from the alkoxysilane compounds represented by the following general formulas (1) to (3) are preferable.
    RSi(OR     (1)
 Rは水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。耐クラック性の点から、Rとしてメチル基またはフェニル基を有するアルコキシシラン化合物を用いることが好ましい。Rはメチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表し、それぞれ同一でも異なっていても良い。Rはメチル基またはエチル基がより好ましい。
R 1 Si (OR 4 ) 3 (1)
R 1 represents hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof. From the viewpoint of crack resistance, it is preferable to use an alkoxysilane compound having a methyl group or a phenyl group as R 1 . R 4 represents a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, and may be the same or different. R 4 is more preferably a methyl group or an ethyl group.
    RSi(OR    (2)
 RおよびRは、それぞれ水素、アルキル基、アルケニル基、アリール基またはそれらの置換体を表す。Rはメチル基、エチル基、プロピル基、イソプロピル基またはブチル基を表し、それぞれ同一でも異なっていても良い。R5はメチル基またはエチル基がより好ましい。
R 2 R 3 Si (OR 5 ) 2 (2)
R 2 and R 3 each represent hydrogen, an alkyl group, an alkenyl group, an aryl group, or a substituted product thereof. R 5 represents a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, and may be the same or different. R5 is more preferably a methyl group or an ethyl group.
    Si(OR        (3)
 Rはメチル基またはエチル基を表し、それぞれ同一でも異なっていても良い。
Si (OR 6 ) 4 (3)
R 6 represents a methyl group or an ethyl group, and may be the same or different.
 一般式(1)~(3)で表されるアルコキシシラン化合物の具体例を、以下に示す。 Specific examples of the alkoxysilane compounds represented by the general formulas (1) to (3) are shown below.
 一般式(1)で表される3官能性アルコキシシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシシラン、γ-グリシドキシプロピルトリイソプロポキシシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロプロピルエチルトリメトキシシラン、パーフルオロプロピルエチルトリエトキシシラン、パーフルオロペンチルエチルトリメトキシシラン、パーフルオロペンチルエチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシランなどが挙げられる。これらのうち、入手のしやすさの観点から、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、およびフェニルトリエトキシシランが好ましい。 Examples of the trifunctional alkoxysilane compound represented by the general formula (1) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyltrimethoxysilane. , Ethyltriethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 3-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, 3-glycidoxyship Pyrtrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N -Β- (aminoethyl) -γ-aminopropyltrimethoxysilane, β-cyanoethyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α -Glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane Β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxy Sisilane, γ-glycidoxypropyl triisopropoxy silane, γ-glycidoxypropyl tributoxysilane, γ-glycidoxypropyltrimethoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycidoxy Butyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycidoxy Butyltrimethoxysilane, δ-glycidoxy Butyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane, 2- (3 , 4-Epoxycyclohexyl) ethyltributoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (3,4-epoxycyclohexyl) ) Propyltrimethoxysilane, 3- (3,4-epoxycyclohexyl) propyltriethoxysilane, 4- (3,4-epoxycyclohexyl) butyltrimethoxysilane, 4- (3,4-epoxycyclohexyl) butyltriethoxysilane The Trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluoropropylethyltrimethoxysilane, perfluoropropylethyltriethoxysilane, perfluoropentylethyltrimethoxy Silane, Perfluoropentylethyltriethoxysilane, Tridecafluorooctyltrimethoxysilane, Tridecafluorooctyltriethoxysilane, Tridecafluorooctyltripropoxysilane, Tridecafluorooctyltriisopropoxysilane, Heptadecafluorodecyltrimethoxysilane And heptadecafluorodecyltriethoxysilane. Of these, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane are preferable from the viewpoint of availability.
 一般式(2)で表される2官能性アルコキシシラン化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、β-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルメトキシエトキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、トリフルオロプロピルビニルジメトキシシラン、トリフルオロプロピルビニルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシランなどが挙げられる。これらのうち、入手のしやすさの観点から、ジメチルジアルコキシシランが好ましく用いられる。 Examples of the bifunctional alkoxysilane compound represented by the general formula (2) include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, and methylvinyl. Diethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, γ- Methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-glycidoxy Tilmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycyl Sidoxypropylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, β-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethylmethoxyethoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypro Ruethyldiethoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldiethoxysilane, trifluoropropylethyldimethoxysilane, tri Fluoropropylethyldiethoxysilane, trifluoropropylvinyldimethoxysilane, trifluoropropylvinyldiethoxysilane, heptadecafluorodecylmethyldimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxysilane, cyclohexylmethyldimethoxy Examples thereof include silane and octadecylmethyldimethoxysilane. Of these, dimethyl dialkoxysilane is preferably used from the viewpoint of availability.
 一般式(3)で表される4官能性アルコキシシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシランなどが挙げられる。 Examples of the tetrafunctional alkoxysilane compound represented by the general formula (3) include tetramethoxysilane and tetraethoxysilane.
 これら一般式(1)~(3)で表されるアルコキシシラン化合物は、単独で用いても、2種以上を組み合わせて用いても良い。 These alkoxysilane compounds represented by the general formulas (1) to (3) may be used alone or in combination of two or more.
 本発明においては、フェニル基含有アルコキシシラン化合物とメチル基含有アルコキシシラン化合物を用いることが好ましい。これによって、マトリックス樹脂がシリコーン樹脂の場合、マトリックス樹脂との相溶性が向上し、密着性に優れた蛍光体組成物、蛍光体シートが得られる。 In the present invention, it is preferable to use a phenyl group-containing alkoxysilane compound and a methyl group-containing alkoxysilane compound. Thereby, when the matrix resin is a silicone resin, compatibility with the matrix resin is improved, and a phosphor composition and a phosphor sheet having excellent adhesion can be obtained.
 また、本発明においては、3官能性アルコキシシラン化合物のみを用いるか、3官能性アルコキシシラン化合物と2官能性アルコキシシラン化合物を混合して用いることが望ましい。より具体的には、3官能性アルコキシシラン化合物を100~70モル%、2官能性アルコキシシラン化合物を0~30モル%含むことが好ましく、3官能性アルコキシシラン化合物を90~80モル%、2官能性アルコキシシラン化合物を10~20モル%含むことがより好ましい。こうすることで、金属化合物粒子を含む蛍光体組成物を硬化させた場合の硬化性や硬度を調整し、金属化合物粒子を含む蛍光体シートの取り扱い性を向上することができる。 In the present invention, it is desirable to use only a trifunctional alkoxysilane compound or a mixture of a trifunctional alkoxysilane compound and a bifunctional alkoxysilane compound. More specifically, the trifunctional alkoxysilane compound is preferably contained in an amount of 100 to 70 mol%, and the bifunctional alkoxysilane compound is preferably contained in an amount of 0 to 30 mol%. More preferably, it contains 10 to 20 mol% of a functional alkoxysilane compound. By carrying out like this, sclerosis | hardenability and hardness at the time of hardening the fluorescent substance composition containing a metal compound particle can be adjusted, and the handleability of the fluorescent substance sheet containing a metal compound particle can be improved.
 ここで、蛍光体シートの取り扱い性とは、シートをLEDチップに貼り付ける際のシートの取り扱い易さを示すものである。取り扱い性は蛍光体シートの硬度と相関がある。シートの硬度が硬すぎると、ピンセットや加熱圧着ツールを用いたシートの取り扱い時にシートにクラックが入ったり、割れたりする。また、シートが柔らかすぎるとピンセットや加熱圧着ツールでシートを持ち上げた際、形がくずれたり、ピンセットや加熱圧着ツールに貼りついたりしてLEDチップに貼りにくくなる。 Here, the handleability of the phosphor sheet indicates the ease of handling of the sheet when the sheet is attached to the LED chip. The handleability is correlated with the hardness of the phosphor sheet. If the sheet is too hard, the sheet may crack or break when the sheet is handled using tweezers or a thermocompression bonding tool. On the other hand, if the sheet is too soft, when the sheet is lifted with tweezers or a thermocompression bonding tool, the shape is deformed, or the sheet is stuck to the tweezers or thermocompression bonding tool, making it difficult to adhere to the LED chip.
 また、前記3官能性アルコキシシラン化合物は一般式(1)で表される3官能性アルコキシシラン化合物であることが好ましく、前記2官能性アルコキシシラン化合物は一般式(2)で表される2官能性アルコキシシラン化合物であることが好ましい。 The trifunctional alkoxysilane compound is preferably a trifunctional alkoxysilane compound represented by the general formula (1), and the bifunctional alkoxysilane compound is a bifunctional alkoxy compound represented by the general formula (2). It is preferable that it is a functional alkoxysilane compound.
 加水分解反応は、前記金属化合物粒子の存在下、溶媒中、上記したアルコキシシラン化合物に酸触媒および水を1~180分かけて添加した後、室温~110℃で1~180分反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、より好ましくは40~105℃である。 In the hydrolysis reaction, an acid catalyst and water are added to the above alkoxysilane compound in a solvent in the presence of the metal compound particles over 1 to 180 minutes, and then reacted at room temperature to 110 ° C. for 1 to 180 minutes. preferable. By performing the hydrolysis reaction under such conditions, a rapid reaction can be suppressed. The reaction temperature is more preferably 40 to 105 ° C.
 また、加水分解反応によりシラノール化合物を得た後、そのまま、反応液を、50℃以上、溶媒の沸点以下で1~100時間加熱し、縮合反応を行うことが好ましい。また、ポリシロキサンの重合度を上げるために、再加熱もしくは塩基触媒の添加を行うことも可能である。 Further, after obtaining the silanol compound by the hydrolysis reaction, it is preferable to carry out the condensation reaction by heating the reaction solution as it is at 50 ° C. or higher and below the boiling point of the solvent for 1 to 100 hours. In order to increase the degree of polymerization of the polysiloxane, it is possible to reheat or add a base catalyst.
 加水分解における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、たとえば酸濃度、反応温度、反応時間などを設定することによって、目的とする用途に適した物性を得ることができる。 Various conditions in the hydrolysis can be obtained by considering the reaction scale, reaction vessel size, shape, etc., for example, by setting the acid concentration, reaction temperature, reaction time, etc., and obtaining physical properties suitable for the intended application. Can do.
 加水分解反応に用いる酸触媒としては、塩酸、酢酸、蟻酸、硝酸、蓚酸、硫酸、リン酸、ポリリン酸、多価カルボン酸あるいはその無水物、イオン交換樹脂などの酸触媒が挙げられる。特に蟻酸、酢酸またはリン酸を用いた酸性水溶液が好ましい。 Examples of the acid catalyst used in the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or anhydrides thereof, and ion exchange resins. In particular, an acidic aqueous solution using formic acid, acetic acid or phosphoric acid is preferred.
 これら酸触媒の好ましい含有量としては、加水分解反応時に使用される全アルコキシシラン化合物100重量部に対して、好ましくは0.05重量部以上、より好ましくは0.1重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下である。ここで、全アルコキシシラン化合物量とは、アルコキシシラン化合物、その加水分解物およびその縮合物の全てを含んだ量のことを言い、以下同じとする。酸触媒の量を0.05重量部以上とすることでスムーズに加水分解が進行し、また10重量部以下とすることで加水分解反応の制御が容易となる。 A preferable content of these acid catalysts is preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight or more with respect to 100 parts by weight of the total alkoxysilane compound used in the hydrolysis reaction. Is 10 parts by weight or less, more preferably 5 parts by weight or less. Here, the total amount of the alkoxysilane compound means an amount including all of the alkoxysilane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter. When the amount of the acid catalyst is 0.05 parts by weight or more, hydrolysis proceeds smoothly, and when the amount is 10 parts by weight or less, the hydrolysis reaction is easily controlled.
 溶媒は、金属化合物粒子の分散安定性などを考慮して適宜選択する。溶媒は1種類のみならず2種類以上の混合物として用いることも可能である。溶媒はジアセトンアルコール、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、γ-ブチロラクトンを挙げることができる。透過率と加水分解、縮合反応制御のしやすさの観点から、プロピレングリコールモノメチルエーテルアセテート、γ-ブチロラクトン、ジアセトンアルコールが特に好ましく用いられる。また、加水分解反応終了後に、さらに溶媒を添加することにより、樹脂組成物として適切な濃度に調整することも好ましい。また、目的に応じて加水分解後に、生成アルコール等を加熱および/または減圧下にて適量を留出、除去し、その後好適な溶媒を添加することも可能である。 The solvent is appropriately selected in consideration of the dispersion stability of the metal compound particles. The solvent can be used not only as one type but also as a mixture of two or more types. Examples of the solvent include diacetone alcohol, propylene glycol monomethyl ether acetate, ethyl lactate, and γ-butyrolactone. Propylene glycol monomethyl ether acetate, γ-butyrolactone, and diacetone alcohol are particularly preferably used from the viewpoint of transmittance, ease of hydrolysis, and control of condensation reaction. Moreover, it is also preferable to adjust to a suitable density | concentration as a resin composition by adding a solvent after completion | finish of a hydrolysis reaction. Moreover, after hydrolysis according to the purpose, it is also possible to distill and remove a suitable amount of the produced alcohol under heating and / or reduced pressure, and then add a suitable solvent.
 加水分解反応時に使用される溶媒の量は、全アルコキシシラン化合物100重量部に対して、50重量部以上が好ましく、80重量部以上がより好ましい。また、500重量部以下が好ましく、200重量部以下がより好ましい。溶媒の量を50重量部以上とすることでゲルの生成を抑制できる。また500重量部以下とすることで加水分解反応が速やかに進行する。 The amount of the solvent used in the hydrolysis reaction is preferably 50 parts by weight or more and more preferably 80 parts by weight or more with respect to 100 parts by weight of the total alkoxysilane compound. Moreover, 500 weight part or less is preferable and 200 weight part or less is more preferable. The production | generation of a gel can be suppressed by making the quantity of a solvent into 50 weight part or more. Moreover, a hydrolysis reaction advances rapidly by setting it as 500 parts weight or less.
 また、加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に選択可能であるが、アルコキシシラン化合物1モルに対して、1.0~4.0モルの範囲で用いるのが好ましい。 Moreover, as the water used for the hydrolysis reaction, ion-exchanged water is preferable. The amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of the alkoxysilane compound.
 <蛍光体>
 蛍光体は、LEDチップから放出される光を吸収し、波長変換を行い、LEDチップの光と異なる波長の光を放出するものである。これにより、LEDチップから放出される光の一部と、蛍光体から放出される光の一部とが混合して、白色を含む多色系のLEDパッケージを作製することが可能である。具体的には、青色LEDチップに、LEDチップからの光によって黄色の発光色を発光する蛍光体を光学的に結合させることによって白色を発光させることができる。上述のような蛍光体には、緑色に発光する蛍光体、青色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体等の種々の蛍光体がある。
<Phosphor>
The phosphor absorbs light emitted from the LED chip, performs wavelength conversion, and emits light having a wavelength different from that of the LED chip. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor can be mixed to produce a multicolor LED package containing white. Specifically, white light can be emitted by optically coupling a fluorescent material that emits a yellow light emission color with light from the LED chip to the blue LED chip. The phosphors as described above include various phosphors such as a phosphor that emits green light, a phosphor that emits blue light, a phosphor that emits yellow light, and a phosphor that emits red light.
 蛍光体として、最終的に所定の色を再現できるものであれば特に限定はなく、公知のものを用いることができる。例として、青色LEDチップに対応する蛍光体として、YAG系蛍光体、TAG系蛍光体、シリケート蛍光体、ナイトライド系蛍光体、オキシナイトライド系蛍光体等が挙げられる。 The phosphor is not particularly limited as long as it can finally reproduce a predetermined color, and a known phosphor can be used. Examples of phosphors corresponding to blue LED chips include YAG phosphors, TAG phosphors, silicate phosphors, nitride phosphors, oxynitride phosphors, and the like.
 <マトリックス樹脂>
 マトリックス樹脂は、連続相を形成するものであり、成型加工性、透明性、耐熱性、接着性等に優れる材料であれば、エポキシ樹脂、シリコーン樹脂(シリコーンゴム、シリコーンゲル等のオルガノポリシロキサン硬化物(架橋物)を含む)、ウレア樹脂、フッ素樹脂、ポリカーボネート樹脂などの公知のものを用いることができる。これらの樹脂を適宜設計することで、本発明の蛍光体組成物に有用な樹脂が得られる。
<Matrix resin>
The matrix resin forms a continuous phase and is an epoxy resin, silicone resin (silicone rubber, silicone gel or other organopolysiloxane cured material as long as it is a material excellent in moldability, transparency, heat resistance, adhesiveness, etc. Products (including cross-linked products), urea resins, fluororesins, polycarbonate resins and the like can be used. By appropriately designing these resins, a resin useful for the phosphor composition of the present invention can be obtained.
 また、添加剤として塗布膜安定化のための分散剤やレベリング剤、シート表面の改質剤としてシランカップリング剤等の接着補助剤等を添加することも可能である。また、蛍光体沈降抑制剤としてシリカ粒子やシリコーン微粒子等の無機粒子を添加することも可能である。特に、熱硬化性、または光硬化性のものが好ましい。透明性、耐熱性などの観点から、エポキシ樹脂、シリコーン樹脂またはこれらの混合物を好適に用いることができる。 It is also possible to add a dispersing agent or leveling agent for stabilizing the coating film as an additive, and an adhesion aid such as a silane coupling agent as a sheet surface modifier. It is also possible to add inorganic particles such as silica particles and silicone fine particles as a phosphor sedimentation inhibitor. In particular, a thermosetting or photocurable one is preferable. From the viewpoints of transparency and heat resistance, an epoxy resin, a silicone resin, or a mixture thereof can be suitably used.
 マトリックス樹脂は、耐熱性の観点から、シリコーン樹脂が最も好ましい。シリコーン樹脂の中でも付加反応硬化型シリコーン組成物が好ましい。付加反応硬化型シリコーン組成物は、常温または50~200℃の温度で、加熱、硬化し、透明性、耐熱性、接着性に優れる。付加反応硬化型シリコーン組成物は、ケイ素原子に結合したアルケニル基を有するシリコーンと、ケイ素原子に結合した水素原子を有するシリコーン、触媒量の白金系触媒を含有するものを使用することができる。 The matrix resin is most preferably a silicone resin from the viewpoint of heat resistance. Among silicone resins, addition reaction curable silicone compositions are preferred. The addition reaction curable silicone composition is heated and cured at room temperature or 50 to 200 ° C., and is excellent in transparency, heat resistance, and adhesiveness. As the addition reaction curable silicone composition, a silicone having an alkenyl group bonded to a silicon atom, a silicone having a hydrogen atom bonded to a silicon atom, and a catalytic amount of a platinum-based catalyst can be used.
 本発明には、シロキサン結合を有し、かつアリール基が直結したケイ素原子を含有するシリコーン樹脂が好ましく用いられる。特に、シロキサン結合を有し、かつナフチル基が直結したケイ素原子を含有するシリコーン樹脂であると、高屈折率と耐熱・耐光性を両立できるため好ましい。 In the present invention, a silicone resin containing a silicon atom having a siloxane bond and having an aryl group directly bonded thereto is preferably used. In particular, a silicone resin having a siloxane bond and containing a silicon atom directly bonded to a naphthyl group is preferable because both a high refractive index and heat and light resistance can be achieved.
 シロキサン結合を有し、かつアリール基が直結したケイ素原子を含有するシリコーン樹脂としては、シロキサン結合を有し、かつフェニル基が直結したケイ素原子を含有するシリコーン樹脂、シロキサン結合を有し、かつメチル基とフェニル基がそれぞれ直結したケイ素原子を含有するシリコーン樹脂等が挙げられる。 The silicone resin having a siloxane bond and containing a silicon atom directly bonded to an aryl group includes a silicone resin having a siloxane bond and containing a silicon atom directly bonded to a phenyl group, a siloxane bond, and a methyl resin. And a silicone resin containing a silicon atom in which a group and a phenyl group are directly connected.
 シロキサン結合を有し、かつナフチル基が直結したケイ素原子を含有するシリコーン樹脂としては、シロキサン結合を有し、かつメチル基とナフチル基がそれぞれ直結したケイ素原子を含有するシリコーン樹脂、シロキサン結合を有し、かつメチル基、フェニル基およびナフチル基がそれぞれ直結したケイ素原子を含有するシリコーン樹脂等が挙げられる。 Silicone resins having a siloxane bond and containing a silicon atom directly bonded to a naphthyl group include a silicone resin having a siloxane bond and a silicon atom directly bonded to a methyl group and a naphthyl group, and having a siloxane bond. And a silicone resin containing a silicon atom in which a methyl group, a phenyl group, and a naphthyl group are directly connected.
 なお、メチル基とフェニル基がそれぞれ直結したケイ素原子を含有するシリコーン樹脂においては、1つのケイ素原子にメチル基とフェニル基が直結している場合と、メチル基が直結したケイ素原子とフェニル基が直結したケイ素原子をそれぞれ有する場合の両方が含まれる。メチル基、フェニル基およびナフチル基がそれぞれ直結したケイ素原子を含有するシリコーン樹脂についても同様である。 In addition, in a silicone resin containing a silicon atom in which a methyl group and a phenyl group are directly connected, a case in which a methyl group and a phenyl group are directly connected to one silicon atom, and a case where a silicon atom and a phenyl group in which a methyl group is directly connected Both cases where each has a directly-connected silicon atom are included. The same applies to a silicone resin containing a silicon atom in which a methyl group, a phenyl group and a naphthyl group are directly connected.
 シリコーン樹脂についてより詳細に説明する。ケイ素原子に結合したアルケニル基を有するシリコーンと、ケイ素原子に結合した水素原子を有するシリコーンと、ヒドロシリル化反応触媒として白金系触媒を含む付加反応硬化型シリコーン組成物が好ましい。例えば、東レ・ダウコーニング(株)製封止材“OE6630”、“OE6636”などや信越化学工業株式会社製の“SCR-1012”、“SCR1016”などを用いることができる。特に、本発明の蛍光体組成物のマトリックス樹脂としては、(A)~(D)の組成を含む架橋性シリコーン組成物をヒドロシリル化反応してなる架橋物であることが特に好ましい。この架橋物は、60℃~250℃で貯蔵弾性率が減少し、加熱によって高い接着力が得られるため、接着剤不要の蛍光体シート用のマトリックス樹脂として好ましく用いることができる。以下、この架橋物を熱融着樹脂という。
(A)平均単位式: 
(R SiO2/2)a(RSiO3/2)b(R1/2)c
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの65~75モル%はフェニルであり、Rの10~20モル%はアルケニル基であり、Rは水素原子または炭素原子数1~6のアルキル基であり、a、b、およびcは、0.5≦a≦0.6、0.4≦b≦0.5、0≦c≦0.1、かつa+b=1を満たす数である。)
で表されるオルガノポリシロキサン、
(B)一般式: 
SiO(R SiO)SiR
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの40~70モル%はフェニルであり、Rの少なくとも1個はアルケニル基であり、mは5~50の整数である。)で表されるオルガノポリシロキサン{(A)成分100重量部に対して5~15重量部}
(C)一般式: 
(HR SiO)SiR
(式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基であり、ただし、Rの30~70モル%はフェニルである。)
で表されるオルガノトリシロキサン{(A)成分中と(B)成分中のアルケニル基の合計に対する本成分中のケイ素原子結合水素原子のモル比が0.5~2となる量}、および
(D)ヒドロシリル化反応用触媒{(A)成分と(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量}。
The silicone resin will be described in more detail. An addition reaction curable silicone composition containing a silicone having an alkenyl group bonded to a silicon atom, a silicone having a hydrogen atom bonded to a silicon atom, and a platinum-based catalyst as a hydrosilylation reaction catalyst is preferable. For example, sealing materials “OE6630” and “OE6636” manufactured by Toray Dow Corning Co., Ltd., “SCR-1012” and “SCR1016” manufactured by Shin-Etsu Chemical Co., Ltd. can be used. In particular, the matrix resin of the phosphor composition of the present invention is particularly preferably a crosslinked product obtained by hydrosilylation reaction of a crosslinkable silicone composition containing the compositions (A) to (D). This crosslinked product can be preferably used as a matrix resin for a phosphor sheet that does not require an adhesive because the storage elastic modulus decreases at 60 ° C. to 250 ° C. and a high adhesive force is obtained by heating. Hereinafter, this cross-linked product is referred to as a heat sealing resin.
(A) Average unit formula:
(R 1 2 SiO 2/2 ) a (R 1 SiO 3/2 ) b (R 2 O 1/2 ) c
(Wherein R 1 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 65 to 75 mol% of R 1 is phenyl. 10 to 20 mol% of R 1 is an alkenyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a, b, and c are 0.5 ≦ a ≦ 0. (6, 0.4 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.1, and a + b = 1)
An organopolysiloxane represented by
(B) General formula:
R 3 3 SiO (R 3 2 SiO) m SiR 3 3
(Wherein R 3 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 40 to 70 mol% of R 3 is phenyl. And at least one of R 3 is an alkenyl group, and m is an integer of 5 to 50.) {5 to 15 parts by weight relative to 100 parts by weight of component (A)}
(C) General formula:
(HR 4 2 SiO) 2 SiR 4 2
(In the formula, R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms, provided that 30 to 70 mol% of R 4 is phenyl.)
{Amount such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is 0.5 to 2}, and ( D) Catalyst for hydrosilylation reaction {Amount sufficient to promote hydrosilylation reaction between alkenyl group in component (A), component (B) and silicon atom-bonded hydrogen atom in component (C)}.
 (A)成分の一般式においてa、b、およびcの値は得られる架橋物の室温での十分な硬さが得られ、かつ高温での軟化が得られる。(B)成分の一般式において、フェニル基の含有量が上記範囲の下限未満であると、得られる架橋物の高温での軟化が不十分であり、一方、上記範囲の上限を超えると、得られる架橋物の透明性が失われ、その機械的強度も低下する。また、式中、Rの少なくとも1個はアルケニル基である。これは、アルケニル基を有さないと、本成分が架橋反応に取り込まれず、得られる架橋物から本成分がブリードアウトするおそれがあるからである。また、式中、mは5~50の範囲内の整数であり、これは、得られる架橋物の機械的強度を維持しつつ取扱作業性を保持する範囲である。 In the general formula of component (A), the values of a, b, and c are sufficient to obtain sufficient hardness at room temperature of the resulting crosslinked product, and softening at high temperature. In the general formula of the component (B), if the content of the phenyl group is less than the lower limit of the above range, the resulting crosslinked product is insufficiently softened at a high temperature. The resulting crosslinked product loses its transparency, and its mechanical strength also decreases. In the formula, at least one R 3 is an alkenyl group. This is because if the alkenyl group is not present, this component is not taken into the crosslinking reaction, and this component may bleed out from the resulting crosslinked product. In the formula, m is an integer in the range of 5 to 50, and this is a range in which handling workability is maintained while maintaining the mechanical strength of the resulting crosslinked product.
 (B)成分の含有量は、(A)成分100重量部に対して5~15重量部の範囲内となる量で、得られる架橋物の高温での十分な軟化を得るための範囲である。 The content of the component (B) is within a range of 5 to 15 parts by weight with respect to 100 parts by weight of the component (A), and is a range for obtaining sufficient softening at a high temperature of the resulting crosslinked product. .
 (C)成分の一般式において、式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基が例示される。Rのシクロアルキル基としては、シクロペンチル基、シクロヘプチル基が例示される。なお、Rの内、フェニル基の含有量は30~70モル%の範囲内である。これは、得られる架橋物の高温での十分な軟化が得られ、かつ透明性と機械的強度を保つ範囲である。 In the general formula of the component (C), R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms. Examples of the alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group. Examples of the cycloalkyl group for R 4 include a cyclopentyl group and a cycloheptyl group. Of R 4 , the phenyl group content is in the range of 30 to 70 mol%. This is a range in which the obtained crosslinked product can be sufficiently softened at a high temperature and can maintain transparency and mechanical strength.
 (C)成分の含有量は、(A)成分中および(B)成分中のアルケニル基の合計に対して、本成分中のケイ素原子結合水素原子のモル比が0.5~2の範囲内となる量であり、これは得られる架橋物の室温での十分な硬さが得られる範囲である。 The content of component (C) is such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is in the range of 0.5 to 2. This is a range in which sufficient hardness at room temperature of the resulting crosslinked product can be obtained.
 (D)成分は、(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するためのヒドロシリル化反応用触媒である。(D)成分としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、シリコーン組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示され、特に、白金-アルケニルシロキサン錯体であることが好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-トテラメチルジシロキサンが好ましい。また、この白金-アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましく、特に、アルケニルシロキサンを添加することが好ましい。 The component (D) is a hydrosilylation catalyst for promoting the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon atom-bonded hydrogen atom in the component (C). Examples of the component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferred because they can significantly accelerate the curing of the silicone composition. Examples of the platinum-based catalyst include platinum fine powder, chloroplatinic acid, alcohol solution of chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex, particularly platinum-alkenylsiloxane complex. It is preferable. Examples of the alkenylsiloxane include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like. In particular, 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of the platinum-alkenylsiloxane complex is good. Further, since the stability of the platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3-diallyl-1,1 are added to this complex. , 3,3-tetramethyldisiloxane, 1,3-divinyl-1,3-dimethyl-1,3-diphenyldisiloxane, 1,3-divinyl-1,1,3,3-tetraphenyldisiloxane, It is preferable to add an alkenyl siloxane such as 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane or an organosiloxane oligomer such as a dimethylsiloxane oligomer. It is preferable.
 (D)成分の含有量は、(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するための十分な量であれば特に限定されないが、好ましくは、シリコーン組成物に対して、本成分中の金属原子が質量単位で0.01~500ppmの範囲内となる量であることが好ましく、さらには、0.01~100ppmの範囲内となる量であることが好ましく、特には、0.01~50ppmの範囲内となる量であることが好ましい。これは、得られるシリコーン組成物が十分に架橋し、かつ着色等の問題を生じない範囲である。 The content of the component (D) is an amount sufficient to promote the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon-bonded hydrogen atom in the component (C). Although not particularly limited, it is preferable that the amount of metal atoms in the present component is within a range of 0.01 to 500 ppm by mass unit with respect to the silicone composition, and more preferably 0.01 to 100 ppm. The amount is preferably in the range of 0.01 to 50 ppm, and particularly preferably in the range of 0.01 to 50 ppm. This is a range in which the obtained silicone composition is sufficiently crosslinked and does not cause problems such as coloring.
 シリコーン組成物は、少なくとも上記(A)成分~(D)成分からなるが、その他任意の成分として、エチニルヘキサノール、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾール等の反応抑制剤を含有してもよい。この反応抑制剤の含有量は限定されないが、シリコーン組成物の重量に対して1~5,000ppmの範囲内であることが好ましい。反応抑制剤の含有量を調整することにより、得られる架橋物の貯蔵弾性率を調整することもできる。 The silicone composition is composed of at least the above components (A) to (D), and other optional components include ethynylhexanol, 2-methyl-3-butyn-2-ol, and 3,5-dimethyl-1-hexyne. Alkyne alcohols such as 3-ol and 2-phenyl-3-butyn-2-ol; enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-in 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane; Further, a reaction inhibitor such as benzotriazole may be contained. The content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm with respect to the weight of the silicone composition. By adjusting the content of the reaction inhibitor, the storage elastic modulus of the resulting cross-linked product can be adjusted.
 <シリコーン微粒子>
 本発明の蛍光体組成物はシリコーン微粒子を含有していてもよい。シリコーン微粒子を含有することで、接着性や加工性だけでなく、膜厚均一性も良好な蛍光体シートを得ることができる。特に、平均粒子径が0.1μm以上2.0μm以下であるシリコーン微粒子を用いることで、スリットダイコーターを用いた場合の吐出性に優れ、膜厚均一性に優れた蛍光体シートを得ることができる。
<Silicon fine particles>
The phosphor composition of the present invention may contain silicone fine particles. By containing the silicone fine particles, it is possible to obtain a phosphor sheet having not only adhesiveness and workability but also good film thickness uniformity. In particular, by using silicone fine particles having an average particle size of 0.1 μm or more and 2.0 μm or less, it is possible to obtain a phosphor sheet that is excellent in dischargeability and excellent in film thickness uniformity when a slit die coater is used. it can.
 また、組成物中にシリコーン微粒子が存在していると、グラフト化された金属化合物粒子がシリコーン微粒子を被覆する。これによってさらにマトリックス樹脂と金属化合物粒子との相溶性が向上するので、それらの界面がより生じにくくなる。よって、LEDチップの発光面との密着性が更に向上するので、より一層の輝度向上効果が得られる。また、蛍光体シートにした場合、100℃における貯蔵弾性率(G’)を低貯蔵弾性率化させ、LEDチップとの密着性を向上することができる。 Further, when silicone fine particles are present in the composition, the grafted metal compound particles cover the silicone fine particles. This further improves the compatibility between the matrix resin and the metal compound particles, so that the interface between them is less likely to occur. Therefore, since the adhesiveness with the light emitting surface of the LED chip is further improved, a further luminance improvement effect can be obtained. In addition, when the phosphor sheet is used, the storage elastic modulus (G ′) at 100 ° C. can be lowered and the adhesion to the LED chip can be improved.
 なお、ここで言う「グラフト化された金属化合物粒子がシリコーン微粒子を被覆」しているとは、上記グラフト化された金属化合物粒子がシリコーン微粒子の表面を均一に覆っている状態を意味する。その状態は、SEMやTEMで蛍光体組成物の硬化物や蛍光体シート断面を観察することによって知ることができる。 Note that “the grafted metal compound particles cover the silicone fine particles” as used herein means a state in which the grafted metal compound particles uniformly cover the surfaces of the silicone fine particles. The state can be known by observing a cured product of the phosphor composition or a cross section of the phosphor sheet with SEM or TEM.
 グラフト化された金属化合物粒子がシリコーン微粒子を被覆している状態の例を図5および図6に、被覆していない状態の例を図7および図8に示す。図5および図6は、後述の実施例19の蛍光体シートの断面を切断し走査型電子顕微鏡(SEM)で観察した写真であり、図7および図8は、それぞれ後述の比較例12および13の蛍光体シートの断面を切断しSEMで観察した写真である。 Examples of the state in which the grafted metal compound particles are coated with the silicone fine particles are shown in FIGS. 5 and 6, and examples of the uncoated state are shown in FIGS. 5 and 6 are photographs obtained by cutting a cross section of a phosphor sheet of Example 19 described later and observing with a scanning electron microscope (SEM), and FIGS. 7 and 8 are Comparative Examples 12 and 13 described later, respectively. It is the photograph which cut | disconnected the cross section of this phosphor sheet and observed with SEM.
 グラフト化された金属化合物粒子がシリコーン微粒子を被覆している状態では、図5および図6に示されるように、マトリックス樹脂中101にシリコーン微粒子103が均一に分散しており、シリコーン微粒子表面をグラフト化された金属化合物粒子104が覆っているのが観察される。グラフト化された金属化合物粒子がシリコーン微粒子を被覆していない場合は、図7および図8に示されるように、マトリックス樹脂中101に、蛍光体105が存在し、シリコーン微粒子103同士、金属化合物粒子102同士がそれぞれ凝集して集合体を形成しているのが観察される。 In the state in which the grafted metal compound particles are coated with the silicone fine particles, as shown in FIGS. 5 and 6, the silicone fine particles 103 are uniformly dispersed in the matrix resin 101, and the surface of the silicone fine particles is grafted. It is observed that the converted metal compound particles 104 are covered. When the grafted metal compound particles do not cover the silicone fine particles, as shown in FIGS. 7 and 8, the phosphor 105 is present in the matrix resin 101, and the silicone fine particles 103, the metal compound particles It is observed that the 102s are aggregated to form an aggregate.
 図5および図6に示すような、グラフト化された金属化合物粒子がシリコーン微粒子を被覆した状態となるのは、グラフト化された金属化合物粒子とシリコーン微粒子が水素結合やファンデルワールス力などの弱い結合で擬似的な結合を取っているためと考えられる。 As shown in FIG. 5 and FIG. 6, the grafted metal compound particles are in a state in which the silicone fine particles are coated. The grafted metal compound particles and the silicone fine particles are weak in hydrogen bonds, van der Waals forces and the like. This is thought to be due to the fact that the connection is a pseudo connection.
 シリコーン微粒子は、シリコーン樹脂および/またはシリコーンゴムからなる微粒子が好ましい。特に、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランを加水分解し、次いで縮合させる方法により得られるシリコーン微粒子が好ましい。 The silicone fine particles are preferably fine particles made of silicone resin and / or silicone rubber. In particular, silicone fine particles obtained by a method of hydrolyzing organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane, and then condensing them. preferable.
 オルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロキシシラン、メチルトリ-i-プロキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-i-ブトキシシラン、メチルトリ-s-ブトキシシラン、メチルトリ-t-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、i-プロピルトリメトキシシラン、n-ブチルトリブトキシシラン、i-ブチルトリブトキシシラン、s-ブチルトリメトキシシラン、t-ブチルトリブトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシランなどが例示される。 Examples of the organotrialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-proxysilane, methyltri-i-proxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, methyltri-s-butoxy Silane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltributoxysilane, i-butyltributoxysilane, s-butyltrimethoxysilane, t -Butyltributoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane and the like are exemplified.
 オルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-エチルアミノイソブチルメチルジエトキシシラン、(フェニルアミノメチル)メチルジメトキシシラン、ビニルメチルジエトキシシランなどが例示される。 Organodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, vinylmethyl Examples include diethoxysilane.
 オルガノトリアセトキシシランとしては、メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシランなどが例示される。 Examples of organotriacetoxysilane include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and the like.
 オルガノジアセトキシシランとしては、ジメチルジアセトキシシラン、メチルエチルジアセトキシシラン、ビニルメチルジアセトキシシラン、ビニルエチルジアセトキシシランなどが例示される。 Examples of organodiacetoxysilane include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, and vinylethyldiacetoxysilane.
 オルガノトリオキシムシランとしては、メチルトリスメチルエチルケトオキシムシラン、ビニルトリスメチルエチルケトオキシムシラン、オルガノジオキシムシランとしては、メチルエチルビスメチルエチルケトオキシムシランなどが例示される。 Examples of the organotrioxime silane include methyl trismethyl ethyl ketoxime silane, vinyl trismethyl ethyl ketoxime silane, and examples of the organodioxime silane include methyl ethyl bismethyl ethyl ketoxime silane.
 このようなシリコーン微粒子は、具体的には、特開昭63-77940号公報で報告されている方法、特開平6-248081号公報で報告されている方法、特開2003-342370号公報で報告されている方法、特開平4-88022号公報で報告されている方法などにより得ることができる。また、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランおよび/またはその部分加水分解物をアルカリ水溶液に添加し、加水分解・縮合させシリコーン微粒子を得る方法や、水あるいは酸性溶液にオルガノシランおよび/またはその部分加水分解物を添加し、該オルガノシランおよび/またはその部分加水分解物の加水分解部分縮合物を得た後、アルカリを添加し縮合反応を進行させシリコーン微粒子を得る方法、オルガノシランおよび/またはその加水分解物を上層にし、アルカリまたはアルカリと有機溶媒の混合液を下層にして、これらの界面で該オルガノシランおよび/またはその加水分解物を加水分解・重縮合させて粒子を得る方法なども知られており、これらいずれの方法においても、本発明で用いられるシリコーン微粒子を得ることができる。 Specifically, such silicone fine particles are reported in the method reported in JP-A-63-77940, the method reported in JP-A-62-248081, and reported in JP-A-2003-342370. For example, the method reported in JP-A-4-88022. In addition, organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane and / or a partial hydrolyzate thereof are added to an alkaline aqueous solution, Hydrolyzing and condensing to obtain silicone fine particles, or adding organosilane and / or a partial hydrolyzate thereof to water or an acidic solution to obtain a hydrolyzed partial condensate of the organosilane and / or the partial hydrolyzate thereof. After that, a method of obtaining an alkali fine particle by adding an alkali and proceeding a condensation reaction, an organosilane and / or a hydrolyzate thereof as an upper layer, an alkali or a mixed solution of an alkali and an organic solvent as a lower layer, the interface at these interfaces Organosilane and / or A hydrolyzate thereof by hydrolysis and polycondensation are also known a method of obtaining particles, In any of these methods, it is possible to obtain the silicone fine particles used in the present invention.
 これらの中で、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、球状オルガノポリシルセスキオキサン微粒子を製造するにあたり、特開2003-342370号公報で報告されているような反応溶液内に高分子分散剤を添加する方法により得られたシリコーン微粒子を用いることが好ましい。 Among these, the reaction as reported in Japanese Patent Application Laid-Open No. 2003-342370 in producing spherical organopolysilsesquioxane fine particles by hydrolyzing and condensing organosilane and / or a partial hydrolyzate thereof. It is preferable to use silicone fine particles obtained by a method of adding a polymer dispersant in the solution.
 また、シリコーン微粒子を製造するに当たり、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、酸性水溶液に溶媒中で保護コロイドとして作用する高分子分散剤及び塩を存在させた状態で、オルガノシランおよび/またはその加水分解物を添加し加水分解物を得た後、アルカリを添加し縮合反応を進行させることにより製造したシリコーン微粒子を用いることもできる。 In addition, in the production of silicone fine particles, organosilane and / or its partial hydrolyzate is hydrolyzed and condensed, and in the presence of a polymer dispersant and a salt that act as a protective colloid in a solvent in an acidic aqueous solution, Silicone fine particles produced by adding an organosilane and / or a hydrolyzate thereof to obtain a hydrolyzate and then adding an alkali to advance the condensation reaction can also be used.
 高分子分散剤は、水溶性高分子であり、溶媒中で保護コロイドとして作用するものであれば合成高分子、天然高分子のいずれでも使用できるが、具体的にはポリビニルアルコール、ポリビニルピロリドンなどを例示することができる。高分子分散剤の添加方法としては、反応初液に予め添加する方法、オルガノトリアルコキシシランおよび/またはその部分加水分解物と同時に添加する方法、オルガノトリアルコキシシランおよび/またはその部分加水分解物を加水分解部分縮合させた後に添加する方法が例示でき、これらのいずれの方法を選ぶこともできる。ここで、高分子分散剤の添加量は、反応液容量1重量部に対して5×10-7~10-2重量部の範囲が好ましく、この範囲であるとシリコーン微粒子同士の凝集が起きにくい。 The polymer dispersant is a water-soluble polymer, and any synthetic polymer or natural polymer can be used as long as it acts as a protective colloid in a solvent. Specifically, polyvinyl alcohol, polyvinyl pyrrolidone and the like can be used. It can be illustrated. As a method for adding the polymer dispersant, a method of adding in advance to the reaction initial solution, a method of adding organotrialkoxysilane and / or a partial hydrolyzate thereof simultaneously, an organotrialkoxysilane and / or a partial hydrolyzate thereof, The method of adding after hydrolyzing partial condensation can be illustrated, and any of these methods can be selected. Here, the addition amount of the polymer dispersant is preferably in the range of 5 × 10 −7 to 10 −2 parts by weight with respect to 1 part by weight of the reaction solution, and in this range, aggregation of the silicone fine particles hardly occurs. .
 シリコーン微粒子に含まれる有機置換基としては、好ましくはメチル基およびフェニル基であり、これら置換基の含有量によりシリコーン微粒子の屈折率を調整することができる。例えば、マトリックス樹脂がシリコーン樹脂の場合、LEDパッケージの輝度を低下させないためには、シリコーン微粒子の屈折率d1と、当該シリコーン微粒子および蛍光体以外の成分による屈折率d2の屈折率差を小さくすることが好ましい。シリコーン微粒子の屈折率d1と、シリコーン微粒子および蛍光体以外の成分による屈折率d2の屈折率の差は、0.10未満であることが好ましく、0.03以下であることがさらに好ましい。このような範囲に屈折率を制御することにより、シリコーン微粒子とシリコーン樹脂の界面での反射・散乱が低減され、高い透明性、光透過率が得られ、LEDパッケージの輝度を低下させることがない。 The organic substituents contained in the silicone fine particles are preferably a methyl group and a phenyl group, and the refractive index of the silicone fine particles can be adjusted by the content of these substituents. For example, when the matrix resin is a silicone resin, in order not to reduce the brightness of the LED package, the difference in refractive index between the refractive index d1 of the silicone fine particles and the refractive index d2 due to components other than the silicone fine particles and the phosphor is reduced. Is preferred. The difference in refractive index between the refractive index d1 of the silicone fine particles and the refractive index d2 due to components other than the silicone fine particles and the phosphor is preferably less than 0.10, and more preferably 0.03 or less. By controlling the refractive index within such a range, reflection / scattering at the interface between the silicone fine particles and the silicone resin is reduced, high transparency and light transmittance are obtained, and the luminance of the LED package is not lowered. .
 屈折率の測定は、全反射法としては、Abbe屈折計、Pulfrich屈折計、液浸型屈折計、液浸法、最小偏角法などが用いられるが、シリコーン樹脂の屈折率測定には、Abbe屈折計、シリコーン微粒子の屈折率測定には、液浸法が有用である。 For the refractive index measurement, Abbe refractometer, Pulfrich refractometer, immersion type refractometer, immersion method, minimum declination method, etc. are used as the total reflection method, but Abbe refractometer is used to measure the refractive index of silicone resin. The immersion method is useful for measuring the refractive index of refractometers and silicone fine particles.
 また、上記屈折率差を制御するための手段としては、シリコーン微粒子を構成する原料の量比を変えることにより調整可能である。すわなち、例えば、原料であるメチルトリアルコキシシランとフェニルトリアルコキシシランの混合比を調整し、メチル基の構成比を多くすることで、1.4に近い低屈折率化することが可能であり、逆に、フェニル基の構成比を多くすることで、比較的高屈折率化することが可能である。 Further, as a means for controlling the refractive index difference, it can be adjusted by changing the amount ratio of the raw materials constituting the silicone fine particles. That is, for example, by adjusting the mixing ratio of methyltrialkoxysilane and phenyltrialkoxysilane, which are raw materials, and increasing the composition ratio of methyl groups, it is possible to achieve a refractive index close to 1.4. On the contrary, a relatively high refractive index can be achieved by increasing the constituent ratio of the phenyl group.
 本発明において、シリコーン微粒子の平均粒子径はメジアン径(D50)で表される。この平均粒径は下限としては0.1μm以上であることが好ましく、0.5μm以上であることがさらに好ましい。また、上限としては2.0μm以下であることが好ましく、1.0μm以下であることがさらに好ましい。また、単分散で真球状の粒子を用いることが好ましい。本発明において、シリコーン微粒子の平均粒子径すなわちメジアン径(D50)および粒度分布は、SEM観察によって測定することができる。SEMによる測定画像を画像処理して粒径分布を求め、そこから得られる粒度分布において、小粒径側からの通過分積算50%の粒子径をメジアン径D50として求める。この方法であれば、シリコーン微粒子そのものの平均粒径を求めるのと同様の方法で、蛍光体シートとしてからその断面SEMを観察してシリコーン微粒子の粒径分布を求め、そこから得られる体積基準粒度分布において、小粒径側からの通過分積算50%の粒子径をメジアン径D50として求めることも可能である。この場合、蛍光体シートの断面SEM画像から求めたシリコーン微粒子平均粒子径は真の平均粒子径に比較して理論上は78.5%、実際にはおおよそ70%~85%の値となる。 In the present invention, the average particle diameter of the silicone fine particles is represented by a median diameter (D50). The lower limit of the average particle diameter is preferably 0.1 μm or more, and more preferably 0.5 μm or more. The upper limit is preferably 2.0 μm or less, and more preferably 1.0 μm or less. Moreover, it is preferable to use monodispersed true spherical particles. In the present invention, the average particle diameter, that is, the median diameter (D50) and the particle size distribution of the silicone fine particles can be measured by SEM observation. A particle size distribution is obtained by performing image processing on a measurement image obtained by SEM, and in the particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated portion from the small particle diameter side is obtained as the median diameter D50. If this method is used, the volume-based particle size obtained from the particle size distribution of the silicone fine particles is obtained by observing the cross-sectional SEM of the phosphor sheet and then calculating the average particle size of the silicone fine particles themselves. In the distribution, it is also possible to obtain a particle diameter of 50% accumulated from the small particle diameter side as the median diameter D50. In this case, the average particle size of the silicone fine particles determined from the cross-sectional SEM image of the phosphor sheet is theoretically 78.5% compared to the true average particle size, and is actually about 70% to 85%.
 シリコーン微粒子の含有量としては、樹脂100重量部に対して、下限としては1重量部以上であることが好ましく、10重量部以上であることがさらに好ましい。また、上限としては100重量部以下であることが好ましく、80重量部以下であることがさらに好ましい。シリコーン微粒子を1重量部以上含有することで、特に良好な蛍光体分散安定化効果が得られ、一方、80重量部以下の含有により、蛍光体組成物の粘度を過度に上昇させることがない。 The content of the silicone fine particles is preferably 1 part by weight or more as a lower limit with respect to 100 parts by weight of the resin, and more preferably 10 parts by weight or more. Further, the upper limit is preferably 100 parts by weight or less, and more preferably 80 parts by weight or less. By containing 1 part by weight or more of silicone fine particles, a particularly good phosphor dispersion stabilizing effect can be obtained. On the other hand, by containing 80 parts by weight or less, the viscosity of the phosphor composition is not excessively increased.
 <溶媒>
 本発明の蛍光体組成物は溶媒を含んでいてもよい。溶媒は、流動状態の樹脂の粘度を調整できるものであれば、特に限定されない。例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、アセトン、テルピネオール、テキサノール、メチルセルソルブ、ブチルカルビトール、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。
<Solvent>
The phosphor composition of the present invention may contain a solvent. A solvent will not be specifically limited if the viscosity of resin of a fluid state can be adjusted. For example, toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, acetone, terpineol, texanol, methyl cellosolve, butyl carbitol, butyl carbitol acetate, propylene glycol monomethyl ether acetate and the like can be mentioned.
 <その他の成分>
 本発明の蛍光体組成物は、塗布膜安定化のための分散剤やレベリング剤、蛍光体シートとした場合のシート表面の改質剤としてシランカップリング剤等の接着補助剤等を含有していてもよい。
<Other ingredients>
The phosphor composition of the present invention contains a dispersing agent and a leveling agent for stabilizing the coating film, an adhesion assistant such as a silane coupling agent as a sheet surface modifier when the phosphor sheet is used. May be.
 また、100℃における貯蔵弾性率(G’)を低下させるため、加熱粘着剤として、シラノール基含有メチルフェニル系シリコーンレジンを含有してもよい。前記シラノール基含有メチルフェニル系シリコーンレジンの構造は、下記一般式(E)であることが特に好ましい。
(E)一般式:(RSiO)d(PhSiO)e(ROHSiO)f(PhOHSiO)g(RSiO)h
 式中、RおよびRはそれぞれ炭素原子数1~6のアルキル基もしくはシクロアルキル基、Phはフェニル基であり、d、e、f、gおよびhは、20≦d≦40、20≦e≦40、5≦f≦15、5≦g≦15、20≦h≦40、かつd+e+f+g+h=100を満たす数である。
Moreover, in order to lower the storage elastic modulus (G ′) at 100 ° C., a silanol group-containing methylphenyl silicone resin may be contained as a heating adhesive. The structure of the silanol group-containing methylphenyl silicone resin is particularly preferably the following general formula (E).
(E) the general formula: (R 5 SiO 3) d (PhSiO 3) e (R 5 OHSiO 2) f (PhOHSiO 2) g (R 6 SiO 2) h
In the formula, R 5 and R 6 are each an alkyl group or cycloalkyl group having 1 to 6 carbon atoms, Ph is a phenyl group, and d, e, f, g, and h are 20 ≦ d ≦ 40, 20 ≦ e ≦ 40, 5 ≦ f ≦ 15, 5 ≦ g ≦ 15, 20 ≦ h ≦ 40, and d + e + f + g + h = 100.
 <蛍光体シート積層体>
 本発明において蛍光体シート積層体とは、基材と、蛍光体組成物を前記基材上に塗布することによって形成された蛍光体シートを含有する積層体をいう。
<Phosphor sheet laminate>
In the present invention, the phosphor sheet laminate refers to a laminate containing a substrate and a phosphor sheet formed by applying a phosphor composition onto the substrate.
 (基材)
 基材としては、特に制限無く公知の金属、フィルム、ガラス、セラミック、紙等を使用することができる。具体的には、アルミニウム(アルミニウム合金も含む)、亜鉛、銅、鉄などの金属板や箔、セルロースアセテート、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール、アラミド、シリコーン、ポリオレフィン、熱可塑性フッ素樹脂で、テトラフルオロエチレンとエチレンの共重合体(ETFE)などのプラスチックのフィルム、α-ポリオレフィン樹脂、ポリカプロラクトン樹脂、アクリル樹脂、シリコーン樹脂およびこれらとエチレンの共重合樹脂からなるプラスチックのフィルム、前記プラスチックがラミネートされた紙、または前記プラスチックによりコーティングされた紙、前記金属がラミネートまたは蒸着された紙、前記金属がラミネートまたは蒸着されたプラスチックフィルムなどが挙げられる。また、基材が金属板の場合、表面にクロム系やニッケル系などのメッキ処理やセラミック処理されていてもよい。
(Base material)
As a base material, a well-known metal, a film, glass, a ceramic, paper, etc. can be used without a restriction | limiting in particular. Specifically, metal plates and foils such as aluminum (including aluminum alloys), zinc, copper, iron, cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, polycarbonate , Polyvinyl acetal, aramid, silicone, polyolefin, thermoplastic fluororesin, plastic film such as tetrafluoroethylene and ethylene copolymer (ETFE), α-polyolefin resin, polycaprolactone resin, acrylic resin, silicone resin and these A plastic film made of a copolymer resin of ethylene and ethylene, paper laminated with the plastic, or paper coated with the plastic, front Paper metal is laminated or deposited, the metals and plastic film laminated or deposited. Moreover, when the base material is a metal plate, the surface may be subjected to plating treatment or ceramic treatment such as chromium or nickel.
 これらの中でも、蛍光体シートの作製のし易さや蛍光体シートの個片化のし易さからガラスや樹脂フィルムが好ましく用いられる。特に、蛍光体シートをLEDチップに貼りつける際の密着性から、基材は柔軟なフィルム状であることが好ましい。また、フィルム状の基材を取り扱う際に破断などの恐れがないように強度が高いフィルムが好ましい。それらの要求特性や経済性の面で樹脂フィルムが好ましく、これらの中でも、経済性、取り扱い性の面でPET、ポリフェニレンサルファイド、ポリプロピレンからなる群より選ばれるプラスチックフィルムが好ましい。また、蛍光体シートを乾燥させる場合や蛍光体シートをLEDチップに貼り付ける際に200℃以上の高温を必要とする場合は、耐熱性の面でポリイミドフィルムが好ましい。シートの剥離のし易さから、基材は、あらかじめ表面が離型処理されていてもよい。 Among these, glass and resin films are preferably used because of the ease of producing the phosphor sheet and the ease of individualizing the phosphor sheet. In particular, the base material is preferably a flexible film because of the adhesion when the phosphor sheet is attached to the LED chip. Further, a film having a high strength is preferred so that there is no fear of breakage when handling a film-like substrate. Resin films are preferred in terms of their required characteristics and economy, and among these, plastic films selected from the group consisting of PET, polyphenylene sulfide, and polypropylene are preferred in terms of economy and handleability. Moreover, when drying a fluorescent substance sheet, or when attaching a fluorescent substance sheet to a LED chip, when a high temperature of 200 degreeC or more is required, a polyimide film is preferable at a heat resistant surface. The surface of the base material may be subjected to a mold release treatment in advance for ease of peeling of the sheet.
 基材の厚さは特に制限はないが、下限としては25μm以上が好ましく、38μm以上がより好ましい。また、上限としては5000μm以下が好ましく、3000μm以下がより好ましい。 The thickness of the substrate is not particularly limited, but the lower limit is preferably 25 μm or more, and more preferably 38 μm or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
 (蛍光体シート)
 本発明において蛍光体シートとは、内部に蛍光体を含むシートのことをいう。本発明の一つの特徴である蛍光体シートは、蛍光体と、マトリックス樹脂と、金属化合物粒子を含有する蛍光体シートであって、前記金属化合物粒子の屈折率が1.7以上であり、かつ、平均粒子径が1~50nmであり、前記金属化合物粒子がグラフト化されており、前記金属化合物粒子と前記マトリックス樹脂の平均屈折率N1が、前記蛍光体の屈折率N2と以下の関係(i)を満たし、シートの粘弾性挙動が以下の関係(ii)、(iii)および(iv)を満たすことを特徴とする。
<屈折率の関係>
(i)0.20≧|N1-N2|
<粘弾性挙動>
(ii)温度25℃において貯蔵弾性率G’が1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1
(iii)温度100℃において貯蔵弾性率G’が1.0×10Pa≦ G’<1.0×10Paであり、かつtanδ≧1
(iv)温度200℃において貯蔵弾性率G’が1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1。
(Phosphor sheet)
In the present invention, the phosphor sheet refers to a sheet containing a phosphor inside. A phosphor sheet which is one feature of the present invention is a phosphor sheet containing a phosphor, a matrix resin, and metal compound particles, wherein the metal compound particles have a refractive index of 1.7 or more, and The average particle diameter is 1 to 50 nm, the metal compound particles are grafted, and the average refractive index N1 of the metal compound particles and the matrix resin is related to the refractive index N2 of the phosphor as follows: And the viscoelastic behavior of the sheet satisfies the following relationships (ii), (iii) and (iv).
<Refractive index relationship>
(I) 0.20 ≧ | N1-N2 |
<Viscoelastic behavior>
(Ii) The storage elastic modulus G ′ is 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa at a temperature of 25 ° C. and tan δ <1
(Iii) Storage modulus G ′ is 1.0 × 10 2 Pa ≦ G ′ <1.0 × 10 4 Pa at a temperature of 100 ° C. and tan δ ≧ 1
(Iv) The storage elastic modulus G ′ is 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa at a temperature of 200 ° C. and tan δ <1.
 上記蛍光体シートに含まれる蛍光体、マトリックス樹脂、金属化合物粒子およびそのグラフト化、ならびにその他の好ましい成分の詳細については、前述の蛍光体組成物におけるものと共通する。また、平均屈折率N1、N2およびそれらの関係を示す関係式(i)に関する説明も、前述の蛍光体組成物におけるものと共通する。 Details of the phosphor, matrix resin, metal compound particles and grafting thereof, and other preferable components contained in the phosphor sheet are the same as those in the phosphor composition described above. Further, the explanation regarding the average refractive indexes N1, N2 and the relational expression (i) showing the relationship therebetween is also common to the above-described phosphor composition.
 次に本発明の蛍光体シートの粘弾性挙動について説明する。本発明の蛍光体シートは保管性、運搬性および加工性の観点から、室温付近で弾性が高いことが好ましい。一方で、LEDチップの形状に追従するように変形し、かつLEDチップの光取出し面に密着させる観点から、一定の温度条件下で弾性が低くなり、柔軟性、密着性、流動性を発現することが好ましい。特に本発明の蛍光体シートは60℃以上の加熱で流動性を発現することが好ましい。本発明の蛍光体シートは、LEDチップの光取出し面への密着性が高いことが重要であり、これによって、LEDチップからの光取出し性が飛躍的に向上する。よって、蛍光体シートの粘弾性挙動としては、前述の(ii)~(iv)を満たすことが必要である。 Next, the viscoelastic behavior of the phosphor sheet of the present invention will be described. The phosphor sheet of the present invention preferably has high elasticity near room temperature from the viewpoints of storage properties, transportability, and processability. On the other hand, from the viewpoint of deforming to follow the shape of the LED chip and in close contact with the light extraction surface of the LED chip, the elasticity becomes low under certain temperature conditions, and the flexibility, adhesion, and fluidity are expressed. It is preferable. In particular, the phosphor sheet of the present invention preferably exhibits fluidity when heated at 60 ° C. or higher. It is important that the phosphor sheet of the present invention has high adhesion to the light extraction surface of the LED chip, and this greatly improves the light extraction from the LED chip. Therefore, it is necessary for the viscoelastic behavior of the phosphor sheet to satisfy the above (ii) to (iv).
 ここでいう蛍光体シートの貯蔵弾性率(G’)とは、レオメーターにより蛍光体シートの動的粘弾性測定(温度依存性)を行った場合の貯蔵弾性率(G’)である。動的粘弾性とは、材料にある正弦周波数で剪断歪みを加えたときに、定常状態に達した場合に現れる剪断応力を歪みと位相の一致する成分(弾性的成分)と、歪みと位相が90°遅れた成分(粘性的成分)に分解して、材料の動的な力学特性を解析する手法である。 Here, the storage elastic modulus (G ′) of the phosphor sheet is a storage elastic modulus (G ′) when the dynamic viscoelasticity measurement (temperature dependence) of the phosphor sheet is performed by a rheometer. Dynamic viscoelasticity means that when shear strain is applied to a material at a sinusoidal frequency, the shear stress that appears when a steady state is reached is divided into a component (elastic component) whose strain and phase match, and the strain and phase are This is a technique for analyzing the dynamic mechanical properties of a material by decomposing it into components (viscous components) delayed by 90 °.
 動的粘弾性測定(温度依存性)は、一般的な粘度・粘弾性測定装置を用いて動的粘弾性測定することができる。本発明においては、以下の条件にて測定を行った場合の値とする。 Dynamic viscoelasticity measurement (temperature dependency) can be measured using a general viscosity / viscoelasticity measuring device. In this invention, it is set as the value at the time of measuring on the following conditions.
  測定装置   :粘度・粘弾性測定装置HAAKE MARSIII
(Thermo Fisher SCIENTIFIC 製)
  測定条件  :OSC温度依存測定
  ジオメトリー:平行円板型(20mm)
  測定時間  :1980秒
  角周波数  :1Hz
  角速度   :6.2832rad/秒
  温度範囲  :25~200℃(低温温度制御機能あり)
  昇温速度  :0.08333℃/秒
  サンプル形状:円形(直径18mm)。
Measuring device: Viscosity and viscoelasticity measuring device HAAKE MARSIII
(Thermo Fisher SCIENTIFIC made)
Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20mm)
Measurement time: 1980 seconds Angular frequency: 1 Hz
Angular velocity: 6.2832 rad / sec Temperature range: 25 to 200 ° C (with low temperature control function)
Temperature increase rate: 0.08333 ° C./sec Sample shape: Circular (diameter 18 mm).
 ここで剪断歪みに位相が一致する応力成分を剪断歪みで除したものが、貯蔵弾性率(G’)である。貯蔵弾性率(G’)は各温度における動的な歪みに対する材料の弾性を表すものであるので、蛍光体シートの硬さ、すなわち加工性に密接に関連している。 Here, the storage elastic modulus (G ′) is obtained by dividing the stress component whose phase coincides with the shear strain by the shear strain. Since the storage elastic modulus (G ′) represents the elasticity of the material against dynamic strain at each temperature, it is closely related to the hardness of the phosphor sheet, that is, the processability.
 一方、剪断歪みと位相が90°遅れた応力成分を剪断歪みで除したものが損失弾性率(G”)である。損失弾性率は材料の粘性を表すものであるので、蛍光体シート流動性、すなわち密着性に密接に関係してくる。 On the other hand, the loss elastic modulus (G ″) is obtained by dividing the shear strain and the stress component whose phase is delayed by 90 ° by the shear strain. The loss elastic modulus represents the viscosity of the material. That is, it is closely related to adhesion.
 また、損失弾性率(G”)を貯蔵弾性率(G’)で除したものが損失正接(tanδ)であり、材料が置かれている状態を示す指標となる。tanδが1未満であれば弾性が支配的で、固体の状態である。一方、tanδが1以上であれば粘性が支配的で、液体の状態であることを示す。 Further, the loss tangent (tan δ) obtained by dividing the loss elastic modulus (G ″) by the storage elastic modulus (G ′) is an index indicating the state in which the material is placed. On the other hand, elasticity is dominant and it is in a solid state, whereas if tan δ is 1 or more, viscosity is dominant and it indicates a liquid state.
 本発明における蛍光体シートは、25℃において1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1であることにより、室温(25℃)において十分弾性的である。そのため、刃体による切断加工などの早い剪断応力に対しても、シートが周囲の変形無しに切断され、高い寸法精度での加工性が得られる。蛍光体シートの25℃における貯蔵弾性率は、ハンドリング時の割れ防止や加工性の観点から、より好ましくは、9.0×10Pa以下である。 The phosphor sheet in the present invention is sufficiently elastic at room temperature (25 ° C.) because 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa at 25 ° C. and tan δ <1. It is. For this reason, the sheet is cut without deformation of the surroundings even with a high shear stress such as a cutting process with a blade, and processability with high dimensional accuracy is obtained. The storage elastic modulus at 25 ° C. of the phosphor sheet is more preferably 9.0 × 10 5 Pa or less from the viewpoint of crack prevention during handling and workability.
 室温におけるtanδは、貼り付け温度の低温化の観点から、0.7以下であることがより好ましい。また、下限としては特に制限はないが、0.1以上であることが好ましく、0.2以上であることがより好ましく、0.25以上であることがさらに好ましい。 Tan δ at room temperature is more preferably 0.7 or less from the viewpoint of lowering the attaching temperature. Moreover, there is no restriction | limiting in particular as a minimum, However, It is preferable that it is 0.1 or more, It is more preferable that it is 0.2 or more, It is further more preferable that it is 0.25 or more.
 また、蛍光体シートが、100℃において1.0×10Pa≦ G’<1.0×10Paであり、かつtanδ≧1であることによって、100℃においてシートが十分粘性的であり、流動性が高い。そのため、この物性を備えた蛍光体シートを100℃以上で加熱しながらLEDチップへの貼り付けを行えば、LEDチップの発光面の形状に応じて蛍光体シートが素早く流動、変形して、高い密着性が得られる。これによって、LEDチップからの光取出し性が向上し、輝度が向上する。蛍光体シートの100℃における貯蔵弾性率は、貼り付け温度の低温化の観点からより好ましくは、9.0×10Pa以下である。 Further, since the phosphor sheet satisfies 1.0 × 10 2 Pa ≦ G ′ <1.0 × 10 4 Pa at 100 ° C. and tan δ ≧ 1, the sheet is sufficiently viscous at 100 ° C. High fluidity. Therefore, if the phosphor sheet having this physical property is heated to 100 ° C. or higher and attached to the LED chip, the phosphor sheet quickly flows and deforms according to the shape of the light emitting surface of the LED chip, and is high. Adhesion can be obtained. Thereby, the light extraction property from the LED chip is improved, and the luminance is improved. The storage elastic modulus at 100 ° C. of the phosphor sheet is more preferably 9.0 × 10 3 Pa or less from the viewpoint of lowering the attaching temperature.
 100℃におけるtanδは、密着性の観点から1.6以上であることがより好ましい。また、上限としては特に制限はないが、4.0以下であることが好ましく、3.6以下であることがより好ましく、3.3以下であることがさらに好ましい。 Tan δ at 100 ° C. is more preferably 1.6 or more from the viewpoint of adhesion. The upper limit is not particularly limited, but is preferably 4.0 or less, more preferably 3.6 or less, and even more preferably 3.3 or less.
 更に、蛍光体シートが、200℃において1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1であることによって、最終的にLEDチップを安定的に動作させることができる。蛍光体シートを200℃以上で加熱すれば、シートの完全硬化が完了し、樹脂全体が一体化するので、LEDチップ点灯時の熱などの熱的要因の影響を受けなくなるためである。蛍光体シートの200℃における貯蔵弾性率(G’)は、クラック防止の観点から、より好ましくは、9.0×10Pa以下である。 Furthermore, when the phosphor sheet satisfies 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa and tan δ <1 at 200 ° C., the LED chip can finally operate stably. Can be made. If the phosphor sheet is heated at 200 ° C. or higher, complete curing of the sheet is completed and the entire resin is integrated, so that it is not affected by thermal factors such as heat when the LED chip is lit. The storage elastic modulus (G ′) at 200 ° C. of the phosphor sheet is more preferably 9.0 × 10 5 Pa or less from the viewpoint of preventing cracks.
 200℃におけるtanδは、熱安定性の観点から、tanδ≦0.08であることがより好ましい。また、下限としては特に制限はないが、0.01以上であることが好ましく、0.02以上であることがより好ましく、0.03以上であることがさらに好ましい。 Tan δ at 200 ° C. is more preferably tan δ ≦ 0.08 from the viewpoint of thermal stability. The lower limit is not particularly limited, but is preferably 0.01 or more, more preferably 0.02 or more, and further preferably 0.03 or more.
 蛍光体シートとして上記の貯蔵弾性率(G’)が得られるのであれば、そこに含まれる樹脂は未硬化状態のものであってもよい。また、シートの取扱性・保存性等を考慮すると、含まれる樹脂は全体が一体化した完全硬化ではなく、ある程度硬化している状態であることが好ましい。一例としては、室温保存で1ヶ月以上の長期間、貯蔵弾性率(G’)が変化しない程度に硬化が進行していることが好ましい。 If the above storage elastic modulus (G ′) is obtained as the phosphor sheet, the resin contained therein may be in an uncured state. In consideration of the handleability and storage stability of the sheet, it is preferable that the resin contained is not completely cured as a whole but is cured to some extent. As an example, it is preferable that the curing has progressed to such an extent that the storage elastic modulus (G ′) does not change for a long period of time of 1 month or longer after storage at room temperature.
 <蛍光体シートの製造方法>
 本発明の蛍光体シートは、前述した蛍光体組成物から得ることができる。その製造方法の詳細は後述する。
<Method for producing phosphor sheet>
The phosphor sheet of the present invention can be obtained from the phosphor composition described above. Details of the manufacturing method will be described later.
 本発明の蛍光体シートの厚みは特に制限はないが、10~1000μmであることが好ましい。10μmより小さいと、蛍光体粒子に起因する凹凸のため、均一なシート成型が難しい。1000μmを超えると、クラックが生じやすくなり、シート成型が難しい。より好ましくは、30~100μmである。 The thickness of the phosphor sheet of the present invention is not particularly limited, but is preferably 10 to 1000 μm. If it is smaller than 10 μm, it is difficult to form a uniform sheet because of unevenness caused by the phosphor particles. If it exceeds 1000 μm, cracks tend to occur and sheet molding is difficult. More preferably, it is 30 to 100 μm.
 一方で、シートの耐熱性を高める観点からは、シートの膜厚は200μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることがさらに好ましい。 On the other hand, from the viewpoint of increasing the heat resistance of the sheet, the thickness of the sheet is preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 50 μm or less.
 本発明におけるシートの膜厚は、JIS K7130(1999)プラスチック-フィルム及びシート-厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて測定される膜厚(平均膜厚)のことをいう。 The film thickness of the sheet in the present invention is the film thickness (average film thickness) measured based on JIS K7130 (1999) Plastic-Film and Sheet-Thickness Measuring Method A Method for Measuring Thickness by Mechanical Scanning. That means.
 耐熱性とはLEDパッケージ内で発生した熱に対する耐性を示す。耐熱性は、LEDパッケージを室温で発光させた場合と高温で発光させた場合の輝度を比較し、高温での輝度がどの程度低下するかを測定することによって評価することができる。 Heat resistance refers to resistance to heat generated in the LED package. The heat resistance can be evaluated by comparing the luminance when the LED package emits light at room temperature and when the LED package emits light at a high temperature, and measuring how much the luminance at the high temperature decreases.
 LEDチップは小さな空間で大量の熱が発生する環境にあり、特に、ハイパワーLEDの場合、発熱が顕著である。このような発熱によって蛍光体の温度が上昇することでLEDパッケージの輝度が低下する。したがって、発生した熱をいかに効率良く放熱するかが重要である。本発明においては、シート膜厚を前記範囲とすることで耐熱性に優れたシートを得ることができる。また、シート膜厚にバラツキがあると、LEDパッケージごとに蛍光体量に違いが生じ、結果として、発光スペクトルにバラツキが生じる。従って、シート膜厚のバラツキは、好ましくは±5%以内、さらに好ましくは±3%以内である。なお、ここでいう膜厚バラツキとは、JIS K7130(1999)プラスチック-フィルム及びシート-厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて膜厚を測定し、下記に示す式にて算出される。 The LED chip is in an environment where a large amount of heat is generated in a small space, and particularly in the case of a high power LED, heat generation is significant. Due to such heat generation, the temperature of the phosphor rises and the brightness of the LED package decreases. Therefore, it is important how efficiently the generated heat is radiated. In this invention, the sheet | seat excellent in heat resistance can be obtained by making a sheet | seat film thickness into the said range. Moreover, if the sheet thickness varies, the amount of phosphor varies for each LED package, and as a result, the emission spectrum varies. Therefore, the variation in sheet thickness is preferably within ± 5%, more preferably within ± 3%. The film thickness variation referred to here is a thickness measurement method based on the thickness measurement method A by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measurement method, and is shown below. Calculated by the formula.
 より具体的には、機械的走査による厚さの測定方法A法の測定条件を用いて、市販されている接触式の厚み計などのマイクロメーターを使用して膜厚を測定して、得られた膜厚の最大値あるいは最小値と平均膜厚との差を計算し、この値を平均膜厚で除して100分率であらわした値が膜厚バラツキB(%)となる。
膜厚バラツキB(%)=(最大膜厚ズレ値*-平均膜厚)/平均膜厚×100
*最大膜厚ズレ値は膜厚の最大値または最小値のうち平均膜厚との差が大きい方を選択する。
More specifically, it is obtained by measuring the film thickness using a micrometer such as a commercially available contact-type thickness meter using the measurement conditions of the method A of measuring the thickness by mechanical scanning. The difference between the maximum value or the minimum value of the film thickness and the average film thickness is calculated, and this value is divided by the average film thickness, and the value expressed in 100 minutes is the film thickness variation B (%).
Film thickness variation B (%) = (maximum film thickness deviation value * −average film thickness) / average film thickness × 100
* For the maximum film thickness deviation value, the one with the larger difference from the average film thickness is selected from the maximum value or the minimum value.
 <蛍光体組成物の製造方法>
 以下に、本発明の蛍光体組成物の製造方法の一例を説明する。前述した金属化合物粒子、マトリックス樹脂、蛍光体、シリコーン微粒子、溶剤等を所定量混合する。上記の成分を所定の組成になるよう混合した後、ホモジナイザー、自公転型攪拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル等の撹拌・混練機で均質に混合分散することで、蛍光体組成物が得られる。混合分散後、もしくは混合分散の過程で、真空もしくは減圧条件下で脱泡することも好ましく行われる。また、ある特定の成分を事前に混合することや、エージング等の処理をしても構わない。エバポレーターによって溶剤を除去して所望の固形分濃度にすることも可能である。
<Method for producing phosphor composition>
Below, an example of the manufacturing method of the fluorescent substance composition of this invention is demonstrated. A predetermined amount of the aforementioned metal compound particles, matrix resin, phosphor, silicone fine particles, solvent and the like are mixed. After mixing the above components to a predetermined composition, the phosphor composition is uniformly mixed and dispersed with an agitator / kneader such as a homogenizer, a self-revolving stirrer, a 3-roller, a ball mill, a planetary ball mill, or a bead mill. Things are obtained. Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing. Further, a specific component may be mixed in advance or a process such as aging may be performed. It is also possible to remove the solvent with an evaporator to obtain a desired solid content concentration.
 <蛍光体シート積層体の製造方法>
 以下に、本発明の蛍光体組成物の製造方法の一例を説明する。上述した方法で作製した蛍光体組成物を基材上に塗布し、乾燥させ、蛍光体シート積層体を作製する。塗布は、リバースロールコーター、ブレードコーター、スリットダイコーター、ダイレクトグラビアコーター、オフセットグラビアコーター、キスコーター、ナチュラルロールコーター、エアーナイフコーター、ロールブレードコーター、バリバーロールブレードコーター、トゥーストリームコーター、ロッドコーター、ワイヤーバーコーター、アプリケーター、ディップコーター、カーテンコーター、スピンコーター、ナイフコーター等により行うことができる。蛍光体シートの膜厚均一性を得るためにはスリットダイコーターで塗布することが好ましい。
<Method for producing phosphor sheet laminate>
Below, an example of the manufacturing method of the fluorescent substance composition of this invention is demonstrated. The phosphor composition produced by the method described above is applied onto a substrate and dried to produce a phosphor sheet laminate. Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, kiss coater, natural roll coater, air knife coater, roll blade coater, varibar roll blade coater, two stream coater, rod coater, wire A bar coater, an applicator, a dip coater, a curtain coater, a spin coater, a knife coater or the like can be used. In order to obtain the film thickness uniformity of the phosphor sheet, it is preferably applied by a slit die coater.
 蛍光体シートの乾燥は熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行うことができる。蛍光体シートの加熱には、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置が用いられる。この場合、加熱条件は、通常、40~250℃で1分~5時間、好ましくは60℃~200℃で2分~4時間である。また、ステップキュア等の段階的に加熱硬化することも可能である。 The phosphor sheet can be dried using a general heating device such as a hot air dryer or an infrared dryer. For heating the phosphor sheet, a general heating device such as a hot air dryer or an infrared dryer is used. In this case, the heating conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 60 ° C. to 200 ° C. for 2 minutes to 4 hours. It is also possible to perform heat curing stepwise such as step cure.
 本発明の蛍光体シート中の金属化合物粒子の濃度は、蛍光体組成物の粘度、塗布後の乾燥条件(速度)によって変えることができる。蛍光体組成物の粘度が高いと金属化合物粒子が流動しにくく、濃度一定の領域と濃度変化領域が得られにくい。従って、溶媒を含む蛍光体組成物を作製することが好ましい。ペーストの粘度は好ましくは、3000~100,000mPa・sである。また、乾燥温度を高くし、乾燥速度を速めても金属化合物粒子が流動しにくくなるので、濃度一定の領域と濃度変化領域が得られにくい。好ましい乾燥条件は前述の通りである。 The concentration of the metal compound particles in the phosphor sheet of the present invention can be changed depending on the viscosity of the phosphor composition and the drying conditions (speed) after coating. When the viscosity of the phosphor composition is high, the metal compound particles hardly flow, and it is difficult to obtain a constant concentration region and a concentration change region. Therefore, it is preferable to prepare a phosphor composition containing a solvent. The viscosity of the paste is preferably 3000 to 100,000 mPa · s. Further, even if the drying temperature is increased and the drying speed is increased, the metal compound particles are less likely to flow, so that it is difficult to obtain a constant concentration region and a concentration changing region. Preferred drying conditions are as described above.
 蛍光体シート積層体を作製した後、必要に応じて基材を変更することも可能である。特に高屈折率ナノ粒子の濃度の大きい側の面をLEDチップの発光面に貼り付ける場合には、基材を変更して貼り付け面を調整することが好ましい。この場合、簡易的な方法としてはホットプレートを用いて貼り替えを行なう方法や、真空ラミネーターやドライフィルムラミネーターを用いた方法などが挙げられるが、これらに限定されない。高屈折率ナノ粒子の濃度の大きい側の面をLEDチップの発光面に対向させる様にする場合にも同様の方法を用いることができる。 It is also possible to change the substrate as necessary after preparing the phosphor sheet laminate. In particular, when a surface with a high concentration of high refractive index nanoparticles is attached to the light emitting surface of the LED chip, it is preferable to change the base material to adjust the attachment surface. In this case, examples of a simple method include a method of performing replacement using a hot plate, a method of using a vacuum laminator and a dry film laminator, and the like, but are not limited thereto. The same method can also be used when the surface with the higher concentration of the high refractive index nanoparticles is made to face the light emitting surface of the LED chip.
 <蛍光体シートの適用例>
 本発明の蛍光体シート積層体は、好ましくは、ラテラル、バーティカル、フィリップチップなどの一般的な構造のLEDチップの発光面に貼り付けることで、LEDチップの表面に蛍光体シートが積層された蛍光体シート付きLEDチップを形成でき、特に発光面積が大きいバーティカル、フリップチップタイプのLEDチップに好適に用いることができる。なお、発光面とはLEDチップからの光が取り出される面をいう。
<Application example of phosphor sheet>
The phosphor sheet laminate of the present invention is preferably a fluorescent material in which a phosphor sheet is laminated on the surface of an LED chip by being attached to a light emitting surface of an LED chip having a general structure such as lateral, vertical, and Philip chip. An LED chip with a body sheet can be formed, and can be suitably used for a vertical or flip chip type LED chip having a large light emitting area. The light emitting surface is a surface from which light from the LED chip is extracted.
 ここで、LEDチップからの発光面が単一平面の場合と、単一平面ではない場合がある。単一平面の場合としては主に上部発光面のみを有するものが挙げられる。具体的にはバーティカルタイプのLEDチップや、側面を反射層で覆い上面からのみ光が取り出されるようにしたLEDチップなどが例示される。一方、単一平面ではない場合は、上部発光面および側部発光面を有するLEDチップや曲面発光面を持つLEDチップが挙げられる。 Here, the light emitting surface from the LED chip may be a single plane or not a single plane. In the case of a single plane, there are mainly those having only the upper light emitting surface. Specifically, a vertical type LED chip, an LED chip whose side surface is covered with a reflective layer and light is extracted only from the upper surface are exemplified. On the other hand, when it is not a single plane, an LED chip having an upper light emitting surface and a side light emitting surface and an LED chip having a curved light emitting surface can be mentioned.
 側部からの発光を利用でき明るくすることができることから、発光面が単一平面でない場合が好ましい。特に発光面積を大きくできること、およびチップ製造プロセスが容易なことから、上部発光面と側部発光面を有するフリップチップタイプLEDチップが好ましい。また、発光効率を向上させるために光学的な設計に基づいて、発光表面をテクスチャーなどに加工しても良い。 It is preferable that the light emitting surface is not a single plane because the light emitted from the side can be used and brightened. In particular, a flip chip type LED chip having an upper light emitting surface and a side light emitting surface is preferable because the light emitting area can be increased and the chip manufacturing process is easy. Further, the light emitting surface may be processed into a texture or the like based on an optical design in order to improve the light emission efficiency.
 本発明の蛍光体シート積層体は、直接LEDチップに貼付けせずに、透明樹脂などの接着剤を用いて貼付けを行なうことも可能である。一方で、LEDチップを蛍光体シートで直接被覆することで、LEDチップからの光を反射などによってロスすることなく、直接、波長変換層である蛍光体シートへ入射させることができるため好ましい。これにより、色バラツキが少なく高効率で均一な白色光を得ることができる。ここで言う波長変換層とは、LEDチップから放出される光を吸収して波長を変換し、LEDチップの光と異なる波長の光を放出する層を表す。 The phosphor sheet laminate of the present invention can be pasted using an adhesive such as a transparent resin without being directly pasted on the LED chip. On the other hand, it is preferable to directly cover the LED chip with the phosphor sheet because the light from the LED chip can be directly incident on the phosphor sheet as the wavelength conversion layer without being lost due to reflection or the like. Thereby, uniform white light with little color variation and high efficiency can be obtained. The wavelength conversion layer here refers to a layer that absorbs light emitted from the LED chip, converts the wavelength, and emits light having a wavelength different from that of the LED chip.
 これらの方法で得られた蛍光体シート付きLEDチップは、金属配線や封止を行ってパッケージ化した後、モジュールに組み込むことで各種照明や液晶バックライト、ヘッドランプをはじめとする様々なLED発光装置に好適に使用することができる。 The LED chip with a phosphor sheet obtained by these methods is packaged with metal wiring and sealing, and then incorporated into a module to illuminate various LEDs including various types of lighting, liquid crystal backlights, and headlamps. It can be used suitably for an apparatus.
 図9に蛍光体シート付きLEDチップの好適な例を示す。(a)は、LEDチップの上面に蛍光体シートを貼り付けて設置したものである。(b)はLEDチップ1の上面だけでなく側面にも蛍光体シート2を貼り付けて設置したものである。側面からの発光に対しても波長変換できるため好ましい。(c)はフリップチップタイプのLEDを用いて、発光面である上面と側面を蛍光体シート2によって被覆したものである。(d)は高屈折率ナノ粒子の濃度の大きい側の面をLEDチップの発光面に貼り付けたものである。 FIG. 9 shows a suitable example of an LED chip with a phosphor sheet. (A) is one in which a phosphor sheet is attached to the upper surface of the LED chip. (B) is one in which the phosphor sheet 2 is attached not only to the upper surface but also to the side surface of the LED chip 1. The wavelength conversion is also possible for light emission from the side surface, which is preferable. (C) uses a flip chip type LED, and the phosphor sheet 2 covers the upper and side surfaces, which are light emitting surfaces. (D) attaches the surface where the density | concentration of a high refractive index nanoparticle is large to the light emission surface of a LED chip.
 図10A~図10BにLEDパッケージの好適な例を示す。(a)は、LEDチップ1を設置したリフレクター5付きの実装基板7に蛍光体組成物4を注入し、その後、透明封止材6によって封止したものである。(b)はリフレクター5付きの実装基板7に設置されたLEDチップ1上に蛍光体シート2を貼り付け、その後、透明封止材6によって封止したものである。(c)はLEDチップ1の上面だけでなく側面にも蛍光体シート2を貼り付けたものであり、側面からの発光に対しても波長変換できるため好ましい。さらに透明封止材6によるレンズも取り付けたものである。 10A to 10B show suitable examples of LED packages. (A) is the one in which the phosphor composition 4 is injected into the mounting substrate 7 with the reflector 5 on which the LED chip 1 is installed and then sealed with the transparent sealing material 6. (B) is one in which the phosphor sheet 2 is pasted on the LED chip 1 installed on the mounting substrate 7 with the reflector 5, and then sealed with the transparent sealing material 6. (C) is the one in which the phosphor sheet 2 is attached not only to the upper surface but also to the side surface of the LED chip 1 and is preferable because the wavelength can be converted even for light emission from the side surface. Further, a lens made of a transparent sealing material 6 is also attached.
 (d)は、リフレクター5を用いず、透明封止材6のレンズ成型体により封止されていること以外は(b)と同様である。(e)はリフレクター5を用いないこと以外は(c)と同様である。 (D) is the same as (b) except that the reflector 5 is not used and the lens molded body of the transparent sealing material 6 is used for sealing. (E) is the same as (c) except that the reflector 5 is not used.
 (f)はフリップチップタイプのLEDを用いて、発光面である上面と側面を蛍光体シート2によって被覆した以外は、(c)と同様である。なお、LEDチップ1の側面を蛍光体シート2で被覆する際、(f)に示すように蛍光体シート2が実装基板7の上面まで及ぶようにしてもよい。(g)は、リフレクター5を用いず、透明封止材6のレンズ成型体により封止されていること以外は(e)と同様である。(h)は、LEDチップ1と蛍光体シート2を透明接着剤9によって貼付けしたものであり、それ以外は(b)と同様である。(i)はあらかじめ用意した基材10付き蛍光体シート2を用い、基材10を蛍光体シート2から剥離せずに用いた以外は(h)と同様である。基材10の材質としてはガラスが好ましい。 (F) is the same as (c) except that a flip-chip type LED is used and the upper surface and side surfaces, which are light emitting surfaces, are covered with the phosphor sheet 2. When the side surface of the LED chip 1 is covered with the phosphor sheet 2, the phosphor sheet 2 may extend to the upper surface of the mounting substrate 7 as shown in FIG. (G) is the same as (e) except that the reflector 5 is not used and the lens is molded by the lens molding of the transparent sealing material 6. (H) is obtained by pasting the LED chip 1 and the phosphor sheet 2 with the transparent adhesive 9, and otherwise the same as (b). (I) is the same as (h) except that the phosphor sheet 2 with the base material 10 prepared in advance is used and the base material 10 is used without being peeled from the phosphor sheet 2. As the material of the substrate 10, glass is preferable.
 本発明を適用できるLEDパッケージはこれらに限られない。例えば、(b)において透明封止材6が(c)に示すような形状であり、かつLEDチップ1の上面だけでなく側面にも蛍光体シート2を貼り付けたものであっても構わない。このように、(a)~(i)に例示された各パーツの構造を適宜組み合わせることが可能である。また、これら以外の公知のパーツに置き換えたり組み合わせたりしてもよい。 The LED package to which the present invention can be applied is not limited to these. For example, the transparent sealing material 6 in (b) may have a shape as shown in (c), and the phosphor sheet 2 may be attached not only to the upper surface but also to the side surface of the LED chip 1. . As described above, the structures of the parts exemplified in (a) to (i) can be appropriately combined. Moreover, you may substitute or combine with well-known parts other than these.
 ここで透明封止材は、成形加工性、透明性、耐熱性、接着性等に優れる材料であれば、エポキシ樹脂、シリコーン樹脂(シリコーンゴム、シリコーンゲル等のオルガノポリシロキサン硬化物(架橋物)を含む)、ウレア樹脂、フッ素樹脂、ポリカーボネート樹脂などの公知のものを用いることができる。また、透明接着剤は、上述した透明封止材を用いることができる。 Here, the transparent sealing material is an epoxy resin, silicone resin (cured organopolysiloxane (crosslinked product) such as silicone rubber, silicone gel, etc.) as long as it is a material excellent in moldability, transparency, heat resistance, adhesiveness, etc. And other known resins such as urea resins, fluororesins, and polycarbonate resins can be used. Moreover, the transparent sealing material mentioned above can be used for a transparent adhesive agent.
 <LEDパッケージの製造方法への適用例>
 本発明の蛍光体組成物を用いたLEDパッケージの製造方法について説明する。図12に蛍光体組成物を使用したLEDチップの好適な製造方法例を示すが、この方法には限定されない。本発明の蛍光体組成物を用いた製造方法として、特に好ましくは、(A)蛍光体組成物をパッケージフレームに注入する工程、及び(B)その工程の後、封止材でパッケージを封止する工程を少なくとも含むLEDパッケージの製造方法である。
<Application example to LED package manufacturing method>
A method for producing an LED package using the phosphor composition of the present invention will be described. Although the suitable example of a manufacturing method of the LED chip which uses the fluorescent substance composition is shown in FIG. 12, it is not limited to this method. As a manufacturing method using the phosphor composition of the present invention, particularly preferably, (A) a step of injecting the phosphor composition into a package frame, and (B) a package is sealed with a sealing material after that step. It is a manufacturing method of the LED package including the process to perform.
 まず、(a)パッケージフレーム18として、リフレクター5付きの実装基板7を用意する。そして(b)その実装基板7上にLEDチップ1を実装して設置する。 First, (a) a mounting substrate 7 with a reflector 5 is prepared as a package frame 18. (B) The LED chip 1 is mounted on the mounting substrate 7 and installed.
 次に(c)本発明の蛍光体組成物を、LEDチップ1が設置されているパッケージフレーム18の中に所望の量を注入する。この時の注入の方法は、射出成型、圧縮成型、注型成型、トランスファー成型、コーティング、ポッティング(ディスペンス)、印刷、転写等の方法が挙げられるが、これらに限定されない。特に好ましくは、ポッティング(ディスペンス)を用いることができる。 Next, (c) a desired amount of the phosphor composition of the present invention is injected into the package frame 18 on which the LED chip 1 is installed. Examples of the injection method at this time include injection molding, compression molding, cast molding, transfer molding, coating, potting (dispensing), printing, transfer, and the like, but are not limited thereto. Particularly preferably, potting (dispensing) can be used.
 注入後、蛍光体組成物を加熱硬化させることにより、パッケージの形状にあった形で、蛍光体組成物をLEDチップ上に設置することができる。加熱硬化は、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行なうことができる。加熱硬化条件は、通常40~250℃で1分~5時間、好ましくは60℃~200℃で2分~4時間である。この場合、ステップキュア等の段階的に加熱硬化することも可能である。 After the injection, the phosphor composition can be placed on the LED chip in a form suitable for the package by heating and curing the phosphor composition. Heat curing can be performed using a general heating device such as a hot air dryer or an infrared dryer. The heat curing conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 60 ° C. to 200 ° C. for 2 minutes to 4 hours. In this case, it is possible to perform heat curing stepwise such as step cure.
 その後、(d)透明封止材6を注入し加熱硬化してLEDチップ1を封止する。この時の注入方法および加熱条件は、上述した蛍光体組成物の条件に準ずる。以上の工程によりLEDパッケージ19が製造される。必要に応じて透明樹脂によるオーバーコート層やレンズ等を設置しても構わない。 Thereafter, (d) the transparent sealing material 6 is injected and heat-cured to seal the LED chip 1. The injection method and heating conditions at this time conform to the conditions of the phosphor composition described above. The LED package 19 is manufactured by the above process. You may install an overcoat layer, a lens, etc. by transparent resin as needed.
 次に、本発明の蛍光体シート積層体を用いたLEDパッケージの製造方法を説明する。本発明の蛍光体シート積層体を用いたLEDパッケージの代表的な製造方法は、後述するように、(1)蛍光体シートを個片に切断してから、個別のLEDチップに貼り付ける方法、(2)ダイシング前のLEDチップを作り付けたウェハに一括貼り付けを経て、ウェハのダイシングと蛍光体シートの切断を一括して行う方法があるが、これらに限定されない。特に好ましくは(A)前記蛍光体シートの一の区画を、一のLEDチップの発光面に対向させる位置合わせ工程、および(B)加熱圧着ツールにより加熱しながら加圧して前記シートの前記一の区画と前記一のLEDチップの発光面を接着させる接着工程を少なくとも含むLEDパッケージの製造方法である。さらに、前記(A)の工程が、前記蛍光体シートの一の区画の上面および下面のうち無機粒子の濃度の大きい側の面を前記一のLEDチップの発光面に対向させる位置合わせ工程であるLEDパッケージの製造方法であることが好ましい。 Next, an LED package manufacturing method using the phosphor sheet laminate of the present invention will be described. As will be described later, a typical method for producing an LED package using the phosphor sheet laminate of the present invention is as follows: (1) A method of cutting a phosphor sheet into individual pieces and attaching them to individual LED chips, (2) There is a method in which dicing of the wafer and cutting of the phosphor sheet are collectively performed by pasting the wafer on which the LED chip before dicing has been fabricated, but it is not limited thereto. Particularly preferably (A) an alignment step in which one section of the phosphor sheet opposes the light emitting surface of one LED chip, and (B) pressurizing while heating with a thermocompression bonding tool. It is an LED package manufacturing method including at least a bonding step of bonding a partition and a light emitting surface of the one LED chip. Further, the step (A) is an alignment step in which the surface of the phosphor sheet having the higher concentration of inorganic particles among the upper and lower surfaces of one section of the phosphor sheet is opposed to the light emitting surface of the one LED chip. It is preferable that it is a manufacturing method of an LED package.
 本発明の蛍光体シート積層体は、直接LEDチップに貼付けせずに、透明樹脂などの接着剤を用いて貼付けを行なうことも可能であるが、マトリックス樹脂として熱融着樹脂を用いた蛍光体シートを用いることが、容易に接着剤なしでLEDチップに貼り付けることができるため好ましい。 The phosphor sheet laminate of the present invention can be adhered using an adhesive such as a transparent resin without being directly adhered to the LED chip, but a phosphor using a heat-sealing resin as a matrix resin. The use of a sheet is preferable because it can be easily attached to the LED chip without an adhesive.
 蛍光体シートは、LEDチップに貼り付ける際、所望の温度で加熱しながら加圧することで圧着して貼り付ける。加熱温度は、60℃以上250℃以下が望ましく、より望ましくは60℃以上160℃以下である。60℃以上にすることで、室温と貼り付け温度での弾性率差を大きくするための樹脂設計が容易となる。また、250℃以下にすることで、基材および蛍光体シートの熱膨張、熱収縮を小さくすることができるので、貼り付けの精度を高めることができる。特に、蛍光体シートに予め孔開け加工を施して、LEDチップ上の所定部分と位置合わせを行う場合などには貼り付けの位置精度は重要である。貼り付けの精度を高めるためには160℃以下で貼り付けることがより好適である。 When the phosphor sheet is affixed to the LED chip, the phosphor sheet is affixed by applying pressure while heating at a desired temperature. The heating temperature is preferably 60 ° C. or higher and 250 ° C. or lower, and more preferably 60 ° C. or higher and 160 ° C. or lower. By setting the temperature to 60 ° C. or higher, the resin design for increasing the difference in elastic modulus between the room temperature and the attaching temperature becomes easy. Moreover, since the thermal expansion and thermal shrinkage of the base material and the phosphor sheet can be reduced by setting the temperature to 250 ° C. or lower, the accuracy of pasting can be increased. In particular, when the phosphor sheet is pre-perforated and aligned with a predetermined portion on the LED chip, the position accuracy of pasting is important. In order to increase the accuracy of pasting, it is more preferable to paste at 160 ° C. or lower.
 蛍光体シートをLEDチップ表面に貼り付ける方法としては、所望の温度で圧着できる装置であれば既存の任意の装置が利用でき、マウンターやフリップチップボンダーなどの加熱圧着ツールが利用できる。また、ウェハレベルのLEDチップに一括して貼り付ける際には、真空ラミネーターや100~200mm角程度の加熱部分を有する加熱圧着ツールなどを用いて貼り付けることができる。いずれの場合も、所望の温度で蛍光体シートをLEDチップに圧着して熱融着させてから、室温まで放冷し、基材を剥離する。本発明のような温度と弾性率の関係を持たせることで、熱融着後に室温まで放冷却した後の蛍光体シートはLEDチップに強固に密着しつつ、基材から容易に剥離することが可能となる。 As a method for attaching the phosphor sheet to the LED chip surface, any existing apparatus can be used as long as it can be bonded at a desired temperature, and a thermocompression bonding tool such as a mounter or a flip chip bonder can be used. Further, when affixing to the wafer level LED chips at once, it can be affixed using a vacuum laminator or a thermocompression bonding tool having a heating portion of about 100 to 200 mm square. In either case, the phosphor sheet is pressure-bonded to the LED chip at a desired temperature and thermally fused, and then allowed to cool to room temperature, and the substrate is peeled off. By providing the relationship between the temperature and the elastic modulus as in the present invention, the phosphor sheet after being allowed to cool to room temperature after heat fusion can be easily peeled off from the substrate while firmly adhering to the LED chip. It becomes possible.
 蛍光体シートを切断加工する方法について説明する。蛍光体シートは、LEDチップへの貼り付け前に予め個片に切断し、個別のLEDチップに貼り付ける方法と、ウェハレベルのLEDチップに蛍光体シートを貼り付けてからウェハのダイシングと同時に一括して蛍光体シートを切断する方法がある。貼りつけ前に予め切断する場合には、均一に形成された蛍光体シートを、レーザーによる加工、あるいは刃物による切削によって所定の形状に加工し、分割する。レーザーによる加工は、高エネルギーが付与されるので樹脂の焼け焦げや蛍光体の劣化を回避することが非常に難しく、刃物による切削が望ましい。刃物での切削方法としては、単純な刃物を押し込んで切る方法と、回転刃によって切る方法があり、いずれも好適に使用できる。回転刃によって切断する装置としては、ダイサーと呼ばれる半導体基板(ウェハ)を個別のチップに切断(ダイシング)するのに用いる装置が好適に利用できる。ダイサーを用いれば、回転刃の厚みや条件設定により、分割ラインの幅を精密に制御できるため、単純な刃物の押し込みにより切断するよりも高い加工精度が得られる。 The method for cutting the phosphor sheet will be described. The phosphor sheet is pre-cut into individual pieces before being attached to the LED chip, and then attached to individual LED chips, and the phosphor sheet is attached to the wafer level LED chip and then simultaneously with wafer dicing. Then, there is a method of cutting the phosphor sheet. In the case of cutting in advance before sticking, the uniformly formed phosphor sheet is processed into a predetermined shape by laser processing or cutting with a blade and divided. Since processing with a laser gives high energy, it is very difficult to avoid scorching of the resin and deterioration of the phosphor, and cutting with a blade is desirable. As a cutting method with a blade, there are a method of pushing and cutting a simple blade and a method of cutting with a rotary blade, both of which can be suitably used. As an apparatus for cutting with a rotary blade, an apparatus used for cutting (dicing) a semiconductor substrate (wafer) called a dicer into individual chips can be suitably used. If the dicer is used, the width of the dividing line can be precisely controlled by the thickness of the rotary blade and the condition setting, so that higher processing accuracy can be obtained than when cutting with a simple cutting tool.
 基材と積層された状態の蛍光体シートを切断する場合には、基材ごと個片化しても良いし、あるいは蛍光体シートは個片化しつつ、基材は切断しなくても構わない。あるいは基材は貫通しない切り込みラインが入る所謂ハーフカットでも良い。そのように個片化した蛍光体シートを、個別のLEDチップの発光面上に熱融着させる。蛍光体シートを基材ごと個片化する場合の、個片化・LEDチップ貼り付け・ダイシングの工程の一例を、図13に示す。図13の工程には、蛍光体シートを個片に切断する工程、および該個片に切断された蛍光体シートを所望の温度で圧着してLEDチップに貼り付ける工程が含まれる。図13の(a)は、基材20と積層された状態の蛍光体シート2を仮固定シート21に固定したところである。図13に示した工程では、蛍光体シート2と基材20はいずれも個片化するので、取り扱いが容易なように仮固定シート21に固定しておく。次に(b)に示すように蛍光体シート2と基材20を切断して個片化する。続いて、(c)に示すように実装基板7に実装されたLEDチップ1の上に、個片化された蛍光体シート2と基材20を位置合わせし、(d)に示すように加熱圧着ツール22を用いて所望の温度で圧着する。このとき、蛍光体シート2とLEDチップ1の間に空気を噛み込まないように、圧着工程は真空下あるいは減圧下で行うことが好ましい。圧着後に室温まで放冷し、(e)に示すように基材20を剥離する。ここで基材20がガラス等の場合、基材を剥離せず、(f)に示すようにそのまま使用しても良い。 When the phosphor sheet in a state of being laminated with the base material is cut, the whole base material may be singulated, or the phosphor sheet may be singulated and the base material may not be cut. Alternatively, the substrate may be a so-called half cut in which a cut line that does not penetrate is entered. The phosphor sheet thus separated is thermally fused on the light emitting surface of each individual LED chip. FIG. 13 shows an example of individualization, LED chip application, and dicing steps when the phosphor sheet is divided into individual substrates. The process of FIG. 13 includes a step of cutting the phosphor sheet into individual pieces, and a step of pressing the phosphor sheet cut into the individual pieces at a desired temperature and attaching them to the LED chip. FIG. 13A shows a state where the phosphor sheet 2 laminated with the base material 20 is fixed to the temporarily fixing sheet 21. In the process shown in FIG. 13, since both the phosphor sheet 2 and the base material 20 are separated, they are fixed to the temporarily fixing sheet 21 so as to be easy to handle. Next, as shown in (b), the phosphor sheet 2 and the substrate 20 are cut into individual pieces. Subsequently, as shown in (c), the separated phosphor sheet 2 and the base material 20 are aligned on the LED chip 1 mounted on the mounting substrate 7 and heated as shown in (d). Crimping is performed at a desired temperature using the crimping tool 22. At this time, it is preferable to perform the pressure bonding step under vacuum or reduced pressure so that air is not caught between the phosphor sheet 2 and the LED chip 1. After crimping, the substrate is allowed to cool to room temperature, and the substrate 20 is peeled off as shown in FIG. Here, when the base material 20 is glass or the like, the base material may be used as it is as shown in FIG.
 また、基材が連続したまま蛍光体シートを個片化した場合には、そのまま一括してダイシング前のウェハレベルのLEDチップに熱融着させても良い。基材が連続したまま蛍光体シートを個片化する場合の、個片化・LEDチップ貼り付け・ダイシングの工程の一例を、図14に示す。図14の工程にも、蛍光体シートを個片に切断する工程、および該個片に切断された蛍光体シートを加熱してLEDチップに貼り付ける工程が含まれる。図14に示す工程の例では、まず(b)に示す工程で蛍光体シート2を個片化する際に、基材20は個片化されない。図14の(b)では基材20は全く切断されていないが、基材20が連続している限りは、部分的に切断されても構わない。次に(c)に示すように、個片化された蛍光体シート2を、ダイシング前のLEDチップを表面に形成したウェハ23に対向させ、位置合わせを行う。(d)に示す工程で、蛍光体シート2とダイシング前のLEDチップを表面に形成したウェハ23を、加熱圧着ツール22を用いて所望の温度で圧着する。このとき、蛍光体シート2とLEDチップ1を表面に形成したウェハ23の間に空気を噛み込まないように、圧着工程は真空下あるいは減圧下で行うことが好ましい。圧着後に室温まで放冷し、(e)に示すように基材20を剥離した後、ウェハをダイシングして個片化し、(f)に示すように個片化された蛍光体シート付きLEDチップ24を得る。 In addition, when the phosphor sheets are separated into individual pieces with the base material being continuous, they may be heat-sealed to the wafer level LED chips before dicing as they are. FIG. 14 shows an example of individualization, LED chip attachment, and dicing steps when the phosphor sheet is separated into individual pieces while the base material is continuous. The process of FIG. 14 also includes a step of cutting the phosphor sheet into individual pieces and a step of heating the phosphor sheet cut into the individual pieces and attaching them to the LED chip. In the example of the process shown in FIG. 14, first, when the phosphor sheet 2 is separated into pieces in the process shown in (b), the base material 20 is not separated. In FIG. 14B, the substrate 20 is not cut at all, but may be partially cut as long as the substrate 20 is continuous. Next, as shown in (c), the phosphor sheet 2 that has been separated into pieces is opposed to the wafer 23 on which the LED chips before dicing are formed, and alignment is performed. In the step shown in (d), the wafer 23 on the surface of which the phosphor sheet 2 and the LED chip before dicing are formed is crimped at a desired temperature using the thermocompression bonding tool 22. At this time, it is preferable that the pressure bonding process is performed under vacuum or under reduced pressure so that air is not caught between the wafer 23 having the phosphor sheet 2 and the LED chip 1 formed on the surface. After the pressure bonding, the substrate is allowed to cool to room temperature. After the substrate 20 is peeled off as shown in (e), the wafer is diced into individual pieces, and the LED chips with phosphor sheets separated into individual pieces as shown in (f) Get 24.
 ダイシング前のウェハレベルのLEDチップに一括して蛍光体シートを熱融着する場合には、貼り付け後にLEDチップウェハのダイシングと共に、蛍光体シートを切断することもできる。蛍光体シートとウェハを貼り付け後に一括してダイシングする場合の工程の一例を図15に示す。図15の工程には、複数のLEDチップに蛍光体シートを所望の温度で圧着して一括して貼り付ける工程、および蛍光体シートとLEDチップを一括ダイシングする工程が含まれる。図15の工程では、蛍光体シート2は予め切断加工することなく、図15の(a)に示すように蛍光体シート2の側をダイシング前のLEDチップを表面に形成したウェハ23に対向させて位置合わせする。次に(b)に示すように、加熱圧着ツール22により、所望の温度で蛍光体シート2とダイシング前のLEDチップを表面に形成したウェハ23を圧着する。この場合、蛍光体シート2とLEDチップを表面に形成したウェハ23の間に空気を噛み込まないように、圧着工程は真空下あるいは減圧下で行うことが好ましい。圧着後に室温まで放冷し、(c)に示すように基材20を剥離した後、ウェハをダイシングすると同時に、蛍光体シート2を切断して個片化し、(d)に示すように個片化された蛍光体シート付きLEDチップ24を得る。また、(b)に示すように加熱圧着ツールにより、所望の温度で蛍光体シート2とダイシング前のLEDチップを表面に形成したウェハ23を圧着した後、(e)に示すように、基材20は剥離せず、基材も蛍光体シートと一緒に切断して個片化し、(f)に示す様に個片化された基材付きの蛍光体シート付きLEDチップ24を得る。この場合、基材20がガラス等の場合は、剥離せずそのまま用いても良いし、ガラス以外のプラスチックフィルムの場合は、個片化された基材付きの蛍光体シート付きLEDチップを基板に実装した後、基材を剥離しても良い。 When the phosphor sheet is thermally fused to the wafer level LED chips before dicing, the phosphor sheet can be cut together with the dicing of the LED chip wafer after pasting. FIG. 15 shows an example of a process in the case where the phosphor sheet and the wafer are diced together after being attached. The process of FIG. 15 includes a process of pressing and bonding a phosphor sheet to a plurality of LED chips at a desired temperature and a process of dicing the phosphor sheet and the LED chip together. In the process of FIG. 15, the phosphor sheet 2 is not cut in advance, and the phosphor sheet 2 side is made to face the wafer 23 on which the LED chips before dicing are formed as shown in FIG. Align. Next, as shown in (b), the wafer 23 on which the phosphor sheet 2 and the LED chip before dicing are formed on the surface is crimped by a thermocompression bonding tool 22 at a desired temperature. In this case, it is preferable to perform the pressure bonding step under vacuum or under reduced pressure so that air is not caught between the phosphor sheet 2 and the wafer 23 on which the LED chips are formed. After the pressure bonding, it is allowed to cool to room temperature, and after peeling the substrate 20 as shown in (c), the wafer is diced, and at the same time, the phosphor sheet 2 is cut into individual pieces, as shown in (d). An LED chip 24 with a phosphor sheet is obtained. In addition, as shown in (b), after the wafer 23 having the phosphor sheet 2 and the LED chip before dicing formed on the surface thereof is crimped at a desired temperature with a thermocompression bonding tool as shown in (b), 20 does not peel off, and the substrate is cut into individual pieces together with the phosphor sheet, and the LED chip 24 with the phosphor sheet with the substrate is obtained as shown in (f). In this case, when the base material 20 is glass or the like, it may be used as it is without peeling. In the case of a plastic film other than glass, an LED chip with a phosphor sheet with a base material separated into pieces is used as a substrate. After mounting, the substrate may be peeled off.
 上述の図13~15いずれの工程を採る場合でも、蛍光体シートを上面に電極があるLEDチップに貼り付ける場合には、電極部分の蛍光体シートを除去するために蛍光体シートの貼り付け前に予めその部分に孔開け加工をしておくことが望ましい。孔開け加工はレーザー加工、金型パンチングなどの公知の方法が好適に使用できるが、レーザー加工は樹脂の焼け焦げや蛍光体の劣化を引き起こすので、金型によるパンチング加工がより望ましい。パンチング加工を実施する場合、蛍光体シートをLEDチップに貼り付けた後ではパンチング加工は不可能であるので、蛍光体シートには貼り付け前にパンチング加工を施すことが必須となる。金型によるパンチング加工は、貼り付けるLEDチップの電極形状などにより任意の形状や大きさの孔を開けることができる。孔の大きさや形状は金型を設計すれば任意のものが形成できるが、1mm角内外のLEDチップ上の電極接合部分は、発光面の面積を小さくしないためには500μm以下であることが望ましく、孔はその大きさに合わせて500μm以下で形成される。また、ワイヤーボンディングなどを行う電極はある程度の大きさが必要であり、少なくとも50μm程度の大きさとなるので、孔はその大きさに合わせて50μm程度である。孔の大きさは電極より大きすぎると、発光面が露出して光漏れが発生し、LEDパッケージの色特性が低下する。また、電極より小さすぎると、ワイヤーボンディング時にワイヤが触れて接合不良を起こす。従って、孔開け加工は50μm以上500μm以下という小さい孔を±10%以内の高精度で加工する必要があり、パンチング加工の精度を向上するためにも、蛍光体シートの25℃での貯蔵弾性率G’が1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1であることが非常に重要となる。 In any of the steps shown in FIGS. 13 to 15, when the phosphor sheet is attached to the LED chip having the electrode on the upper surface, the phosphor sheet is not attached to the electrode portion in order to remove the phosphor sheet. It is desirable to make a hole in the part in advance. Although known methods such as laser processing and die punching can be suitably used for drilling, laser processing causes burning of the resin and deterioration of the phosphor, so punching with a die is more desirable. When punching is performed, punching cannot be performed after the phosphor sheet is attached to the LED chip. Therefore, it is essential to perform punching before attaching the phosphor sheet. In the punching process using a mold, a hole having an arbitrary shape or size can be formed depending on the electrode shape of the LED chip to be attached. Any size and shape of the hole can be formed by designing the mold, but the electrode joint portion on the LED chip inside and outside the 1 mm square is preferably 500 μm or less in order not to reduce the area of the light emitting surface. The hole is formed with a size of 500 μm or less in accordance with its size. In addition, an electrode for performing wire bonding or the like needs to have a certain size and is at least about 50 μm. Therefore, the hole is about 50 μm in accordance with the size. If the size of the hole is too larger than the electrode, the light emitting surface is exposed, light leakage occurs, and the color characteristics of the LED package deteriorate. On the other hand, if it is too small than the electrode, the wire touches at the time of wire bonding, resulting in poor bonding. Therefore, in the drilling process, it is necessary to process small holes of 50 μm or more and 500 μm or less with high accuracy within ± 10%. In order to improve punching accuracy, the storage elastic modulus of the phosphor sheet at 25 ° C. It is very important that G ′ is 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa and tan δ <1.
 切断加工・孔開け加工を施した蛍光体シートを、LEDチップの所定部分に位置合わせして貼り付ける場合には、光学的な位置合わせ(アラインメント)機構を持つ、貼り付け装置が必要となる。このとき、蛍光体シートとLEDチップを近接させて位置合わせすることは作業的に難しく、実用的には蛍光体シートとLEDチップを軽く接触させた状態で位置合わせを行うことが良く行われる。このとき、蛍光体シートが粘着性を持っていると、LEDチップに接触させて動かすことは非常に困難である。本発明の蛍光体シート積層体であれば、室温で位置合わせを行えば粘着性がないので、蛍光体シートとLEDチップを軽く接触した位置合わせを行うことが容易である。 When a phosphor sheet that has been cut and perforated is aligned and adhered to a predetermined portion of the LED chip, an affixing device having an optical alignment (alignment) mechanism is required. At this time, it is difficult to align the phosphor sheet and the LED chip in terms of work, and in practice, the alignment is often performed in a state where the phosphor sheet and the LED chip are lightly contacted. At this time, if the phosphor sheet has adhesiveness, it is very difficult to move it in contact with the LED chip. If the phosphor sheet laminate of the present invention is aligned at room temperature, it is not sticky, so that it is easy to align the phosphor sheet and the LED chip with light contact.
 本発明の蛍光体シート積層体を用いた蛍光体シート付きLEDチップとLEDパッケージの量産的な製造方法を説明する。まず、蛍光体シート付きLEDチップの製造方法を説明する。LEDチップへの蛍光体シートの貼り付け方法としては、図16に示すように個々のLEDチップ毎に個片化した蛍光体シート積層体26により一つずつ貼り付ける方法、および図17に示すように複数のLEDチップに一括で蛍光体シート2を被覆した後、カットして個別化する方法が挙げられるが、いずれの方法を用いてもよい。 The mass production method of the LED chip with the phosphor sheet and the LED package using the phosphor sheet laminate of the present invention will be described. First, a method for manufacturing an LED chip with a phosphor sheet will be described. As a method of attaching the phosphor sheet to the LED chip, as shown in FIG. 16, a method of attaching one by one using the phosphor sheet laminate 26 separated for each LED chip, and as shown in FIG. In addition, there is a method in which the phosphor sheet 2 is collectively coated on a plurality of LED chips, and then cut and individualized. Any method may be used.
 蛍光体シートの貼り付けは、基材が軟化流動する状態で押圧して行う。特に熱融着性の蛍光体シートを用いている場合は接着性の強化の観点から、貼り付け温度は60℃以上が好ましく、80℃以上がより好ましい。また、蛍光体シートに用いる熱融着性樹脂は加熱により一時的に粘度が下がり、さらに加熱を続けると熱硬化する性質を持っている。そのため貼り付け工程の温度は、接着性を保持する観点から150℃以下であることが好ましく、さらに蛍光体シートの粘度を一定以上に保ち形状を保持する観点から120℃以下であることがより好ましい。また空気溜まりの残存を防ぐため0.01MPa以下の減圧下で貼り付けを行うことが好ましい。 The phosphor sheet is attached by pressing in a state where the base material softens and flows. In particular, when a heat-sealable phosphor sheet is used, the sticking temperature is preferably 60 ° C. or higher, and more preferably 80 ° C. or higher, from the viewpoint of enhancing adhesiveness. Further, the heat-fusible resin used for the phosphor sheet has a property that the viscosity is temporarily lowered by heating, and is further cured by heating. Therefore, the temperature of the attaching step is preferably 150 ° C. or lower from the viewpoint of maintaining adhesiveness, and more preferably 120 ° C. or lower from the viewpoint of maintaining the shape of the phosphor sheet at a certain level or higher. . Moreover, in order to prevent the remaining of an air pocket, it is preferable to stick on under reduced pressure of 0.01 MPa or less.
 このような貼り付けを行う製造装置としては真空ダイアフラムラミネーター、真空ロールラミネーター、真空油圧プレス、真空サーボプレス、真空電動プレス、TOM成形機などの真空貼り付け機などが例示される。中でも一度に処理できる数が多く、また真上から偏りなく加圧できることが可能であることから真空ダイアフラムラミネーターが好ましい。 Examples of the manufacturing apparatus for performing such affixing include vacuum affixing machines such as a vacuum diaphragm laminator, a vacuum roll laminator, a vacuum hydraulic press, a vacuum servo press, a vacuum electric press, and a TOM molding machine. Among these, a vacuum diaphragm muraminator is preferable because a large number of treatments can be performed at one time, and pressure can be applied without deviation from directly above.
 次に、蛍光体シートを用いたLEDパッケージの製造方法について2つの方法を例示する。なおLEDパッケージの製造方法はこれらの例に限定されない。 Next, two methods will be exemplified for the manufacturing method of the LED package using the phosphor sheet. The LED package manufacturing method is not limited to these examples.
 一つめの製造例を図18に示す。(a)台座30上に両面粘着テープ29を介してLEDチップ1を仮固定する。(b)蛍光体シート積層体26を蛍光体シート2がLEDチップ1に接するようにして積層する。(c)(b)の積層物を真空ダイアフラムラミネーター35の下部チャンバー32に入れた後、加熱しながら上部チャンバー31および下部チャンバー32を減圧する。基材25が流動するまで減圧加熱を行った後、上部チャンバー31に吸気口34を通じて大気を吸入することでダイアフラム33を膨張させ、基材25を通じて蛍光体シート2を押圧し、LEDチップ1の発光面に追従するように貼り付ける。(d)上下チャンバーを大気圧に戻したのち、積層物を真空ダイアフラムラミネーター33から取り出し、放冷後に基材25を剥離する。続いてLEDチップの間36をダイシングカッターなどで切断し、個片化した蛍光体シート付きLEDチップ37を作製する。(e)蛍光体シート付きLEDチップ37を実装基板27上のパッケージ電極28に金バンプ8を介して接合する。(f)以上の工程によりLEDパッケージ38が製造される。必要に応じて透明樹脂によるオーバーコート層やレンズ等を設置する。 The first manufacturing example is shown in FIG. (A) The LED chip 1 is temporarily fixed on the base 30 via the double-sided adhesive tape 29. (B) The phosphor sheet laminate 26 is laminated so that the phosphor sheet 2 is in contact with the LED chip 1. (C) After the laminate of (b) is placed in the lower chamber 32 of the vacuum diaphragm muraminator 35, the upper chamber 31 and the lower chamber 32 are depressurized while being heated. After heating under reduced pressure until the base material 25 flows, the diaphragm 33 is expanded by sucking the air into the upper chamber 31 through the air inlet 34, pressing the phosphor sheet 2 through the base material 25, and the LED chip 1. Paste to follow the light emitting surface. (D) After returning the upper and lower chambers to atmospheric pressure, the laminate is taken out from the vacuum diaphragm muraminator 33, and the substrate 25 is peeled off after being allowed to cool. Subsequently, the LED chip space 36 is cut with a dicing cutter or the like to produce an individual LED chip 37 with a phosphor sheet. (E) The LED chip 37 with the phosphor sheet is bonded to the package electrode 28 on the mounting substrate 27 via the gold bumps 8. (F) The LED package 38 is manufactured by the above process. If necessary, install an overcoat layer or lens with a transparent resin.
 二つ目の製造例を図19に示す。(a)LEDチップ1を実装基板27上のパッケージ電極28に金バンプ8を介して接合する。(b)蛍光体シート積層体26を蛍光体シート2がLEDチップ1に接するようにして積層する。(c)(b)の積層物を真空ダイアフラムラミネーター33の下部チャンバー32に入れた後、図10の製造例と同様の方法により蛍光体シート2をLEDチップ1の発光面に貼り付ける。(d)上下チャンバーを大気圧に戻したのち、積層物を真空ダイアフラムラミネーター33から取り出し、放冷後に基材25を剥離する。続いてLEDパッケージの間36を切断し個片化する。(e)以上の工程によりLEDパッケージ39が製造される。必要に応じて透明樹脂によるオーバーコート層やレンズ等を設置する。 FIG. 19 shows a second manufacturing example. (A) The LED chip 1 is bonded to the package electrode 28 on the mounting substrate 27 via the gold bumps 8. (B) The phosphor sheet laminate 26 is laminated so that the phosphor sheet 2 is in contact with the LED chip 1. (C) After the laminate of (b) is placed in the lower chamber 32 of the vacuum diaphragm muraminator 33, the phosphor sheet 2 is attached to the light emitting surface of the LED chip 1 by the same method as in the manufacturing example of FIG. (D) After returning the upper and lower chambers to atmospheric pressure, the laminate is taken out from the vacuum diaphragm muraminator 33, and the substrate 25 is peeled off after being allowed to cool. Subsequently, the LED package 36 is cut into individual pieces. (E) The LED package 39 is manufactured through the above steps. If necessary, install an overcoat layer or lens with a transparent resin.
 以下に、本発明を実施例により具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these.
 <金属化合物粒子>
ナノ粒子1:酸化チタン“オプトレイクTR-527”(触媒化成工業(株)製 組成:平均粒子径15nm、屈折率2.50、酸化チタン粒子20重量%)
ナノ粒子2:酸化チタン“オプトレイクTR-520”(触媒化成工業(株)製 組成:平均粒子径15nm、屈折率2.50、酸化チタン粒子30重量%)
ナノ粒子3:酸化チタン“オプトレイクTR-521”(触媒化成工業(株)製 組成:平均粒子径15nm、屈折率2.50、酸化チタン粒子30重量%)
ナノ粒子4:酸化スズ粒子“SN1”(平均粒子径19nm、屈折率2.38)
ナノ粒子5:酸化アルミニウム粒子“SA1”(平均粒子径34nm、屈折率1.76)
ナノ粒子6:酸化セリウム粒子“CS1”(平均粒子径34nm、屈折率2.20)
ナノ粒子7:酸化ジルコニア“ZS1”(平均粒子径15nm、屈折率2.40、酸化ジルコニア粒子20重量%)
ナノ粒子8:酸化マグネシウム粒子“MS1”(平均粒子径44nm、屈折率1.76)
ナノ粒子9:酸化亜鉛粒子“AS1”(平均粒子径94nm、屈折率1.95)
ナノ粒子10:酸化チタン粒子“TS1”(平均粒子径30nm、屈折率2.50、酸化チタン粒子20重量%)
ナノ粒子11:酸化チタン粒子“TS2”(平均粒子径50nm、屈折率2.50、酸化チタン粒子20重量%)
ナノ粒子12:酸化チタン粒子“TS3”(平均粒子径70nm、屈折率2.50、酸化チタン粒子20重量%)
ナノ粒子13:酸化チタン粒子“TS4”(平均粒子径80nm、屈折率2.50、酸化チタン粒子20重量%)
ナノ粒子14:酸化ジルコニア“ZS2”(平均粒子径20nm、屈折率2.40、酸化ジルコニア粒子20重量%)
ナノ粒子15:酸化ジルコニア粒子“ZS3”(平均粒子径30nm、屈折率2.40、酸化ジルコニア粒子20重量%)
ナノ粒子16:酸化ジルコニア粒子“ZS4”(平均粒子径50nm、屈折率2.40、酸化ジルコニア粒子20重量%)
ナノ粒子17:酸化ジルコニア粒子 “ZS5”(平均粒子径70nm、屈折率2.40、酸化ジルコニア粒子20重量%)
ナノ粒子18:酸化ジルコニア粒子“ZS6”(平均粒子径80nm、屈折率2.40、酸化ジルコニア粒子20重量%)
ナノ粒子19:酸化ニオブ粒子“NS1”(平均粒子径15nm、屈折率2.30、酸化ニオブ粒子20重量%)。
<Metal compound particles>
Nanoparticle 1: Titanium oxide “Optlake TR-527” (manufactured by Catalyst Kasei Kogyo Co., Ltd. Composition: average particle diameter 15 nm, refractive index 2.50, titanium oxide particles 20% by weight)
Nanoparticle 2: Titanium oxide “Optlake TR-520” (manufactured by Catalyst Kasei Kogyo Co., Ltd. Composition: average particle diameter 15 nm, refractive index 2.50, titanium oxide particles 30% by weight)
Nanoparticle 3: Titanium oxide “Optlake TR-521” (manufactured by Catalytic Chemical Industry Co., Ltd. Composition: average particle diameter 15 nm, refractive index 2.50, titanium oxide particles 30% by weight)
Nanoparticle 4: Tin oxide particle “SN1” (average particle diameter 19 nm, refractive index 2.38)
Nanoparticle 5: Aluminum oxide particle “SA1” (average particle diameter 34 nm, refractive index 1.76)
Nanoparticle 6: Cerium oxide particle “CS1” (average particle diameter 34 nm, refractive index 2.20)
Nanoparticle 7: Zirconia oxide “ZS1” (average particle diameter 15 nm, refractive index 2.40, zirconia oxide particle 20% by weight)
Nanoparticle 8: Magnesium oxide particle “MS1” (average particle diameter 44 nm, refractive index 1.76)
Nanoparticle 9: Zinc oxide particle “AS1” (average particle diameter 94 nm, refractive index 1.95)
Nanoparticle 10: Titanium oxide particles “TS1” (average particle diameter 30 nm, refractive index 2.50, titanium oxide particles 20% by weight)
Nanoparticle 11: Titanium oxide particles “TS2” (average particle diameter 50 nm, refractive index 2.50, titanium oxide particles 20% by weight)
Nanoparticle 12: Titanium oxide particles “TS3” (average particle diameter 70 nm, refractive index 2.50, titanium oxide particles 20% by weight)
Nanoparticle 13: Titanium oxide particles “TS4” (average particle diameter 80 nm, refractive index 2.50, titanium oxide particles 20% by weight)
Nanoparticle 14: Zirconia oxide “ZS2” (average particle diameter 20 nm, refractive index 2.40, zirconia oxide particles 20% by weight)
Nanoparticle 15: Zirconia oxide particles “ZS3” (average particle size 30 nm, refractive index 2.40, zirconia oxide particles 20% by weight)
Nanoparticle 16: Zirconia oxide particles “ZS4” (average particle diameter 50 nm, refractive index 2.40, zirconia oxide particles 20% by weight)
Nanoparticle 17: Zirconia oxide particle “ZS5” (average particle size 70 nm, refractive index 2.40, zirconia oxide particle 20% by weight)
Nanoparticle 18: Zirconia oxide particles “ZS6” (average particle diameter 80 nm, refractive index 2.40, zirconia oxide particles 20% by weight)
Nanoparticle 19: Niobium oxide particles “NS1” (average particle diameter 15 nm, refractive index 2.30, niobium oxide particles 20% by weight).
 (金属化合物粒子のグラフト化)
 <グラフト化例1>
 メチルトリメトキシシラン 16.6g、フェニルトリメトキシシラン 56.2g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)194g、プロピレングリコールモノメチルエーテルアセテート126.9gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.36gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
(Grafting of metal compound particles)
<Grafting example 1>
16.6 g of methyltrimethoxysilane, 56.2 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 wt%) 194 g and propylene glycol monomethyl ether acetate 126.9 g were put into a reaction vessel, and 21.9 g of water and 0.36 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例2>
 メチルトリメトキシシラン 20.4g、フェニルトリメトキシシラン 69.4g、数平均粒子径15nmの”オプトレイクTR-520”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子30重量%、γ-ブチロラクトン70重量%)70.6g、γ-ブチロラクトン44.1gを反応容器に入れ、この溶液に、水30.6gおよびリン酸0.48gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 2>
20.4 g of methyltrimethoxysilane, 69.4 g of phenyltrimethoxysilane, “OPTRAIK TR-520” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Chemical Industry Co., Ltd., composition: 30% by weight of titanium oxide particles, γ 70.6 g of butyrolactone (70 wt%) and 44.1 g of γ-butyrolactone were placed in a reaction vessel, and 30.6 g of water and 0.48 g of phosphoric acid were added to this solution while stirring, and the reaction temperature did not exceed 40 ° C. Was dropped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例3>
 メチルトリメトキシシラン 8.2g、フェニルトリメトキシシラン 55.5g、ジメチルジメトキシシラン 7.2g、数平均粒子径15nmの”オプトレイクTR-521”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子30重量%、ジアセトンアルコール70重量%)71.1g、γ-ブチロラクトン23.9gを反応容器に入れ、この溶液に、水34.5gおよびリン酸1.0gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 3>
8.2 g of methyltrimethoxysilane, 55.5 g of phenyltrimethoxysilane, 7.2 g of dimethyldimethoxysilane, “OPTRAIK TR-521” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd., composition: oxidation 71.1 g of titanium particles (70 wt% of titanium particles, 70 wt% of diacetone alcohol) and 23.9 g of γ-butyrolactone were placed in a reaction vessel, and 34.5 g of water and 1.0 g of phosphoric acid were added to this solution while stirring. The solution was added dropwise so that the temperature did not exceed 40 ° C. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例4>
 3-グリシドキシプロピルトリメトキシシラン 28.78g、フェニルトリメトキシシラン 56.4g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)194g、プロピレングリコールモノメチルエーテルアセテート253.3gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.36gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 4>
3-Glycidoxypropyltrimethoxysilane 28.78 g, phenyltrimethoxysilane 56.4 g, number-average particle diameter 15 nm “Optlake TR-527” (trade name, manufactured by Catalyst Chemical Industries, Ltd. Composition: titanium oxide particles 194 g of 20 wt% methanol 80 wt%) and 253.3 g of propylene glycol monomethyl ether acetate were placed in a reaction vessel. To this solution, 21.9 g of water and 0.36 g of phosphoric acid were stirred while the reaction temperature was 40 ° C. It was dripped so that it might not exceed. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例5>
 ビニルトリメトキシシラン 18.1g、3-グリシドキシプロピルトリメトキシシラン 67.2g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)194g、プロピレングリコールモノメチルエーテルアセテート253.6gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.36gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 5>
18.1 g of vinyltrimethoxysilane, 67.2 g of 3-glycidoxypropyltrimethoxysilane, “OPTRAIK TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Chemical Industries, Ltd. Composition: titanium oxide particles 194 g of 20 wt% methanol 80 wt%) and 253.6 g of propylene glycol monomethyl ether acetate were placed in a reaction vessel. To this solution, 21.9 g of water and 0.36 g of phosphoric acid were stirred while the reaction temperature was 40 ° C. It was dripped so that it might not exceed. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例6>
 ビニルトリメトキシシラン 18.05g、フェニルトリメトキシシラン 56.36g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)205.7g、プロピレングリコールモノメチルエーテルアセテート131.3gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.36gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 6>
18.05 g of vinyltrimethoxysilane, 56.36 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 805.7%) 205.7 g and propylene glycol monomethyl ether acetate 131.3 g were put in a reaction vessel. To this solution, 21.9 g of water and 0.36 g of phosphoric acid were stirred and the reaction temperature did not exceed 40 ° C. Was dropped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例7>
 メチルトリメトキシシラン 16.6g、フェニルトリメトキシシラン 56.2g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)194g、プロピレングリコールモノメチルエーテルアセテート126.9gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.36gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で1時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに1時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 7>
16.6 g of methyltrimethoxysilane, 56.2 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 wt%) 194 g and propylene glycol monomethyl ether acetate 126.9 g were put into a reaction vessel, and 21.9 g of water and 0.36 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 1 hour, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 1 hour, and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例8>
 メチルトリメトキシシラン 16.6g、フェニルトリメトキシシラン 56.2g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)194g、プロピレングリコールモノメチルエーテルアセテート126.9gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.36gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で1時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに15分加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 8>
16.6 g of methyltrimethoxysilane, 56.2 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 wt%) 194 g and propylene glycol monomethyl ether acetate 126.9 g were put into a reaction vessel, and 21.9 g of water and 0.36 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 1 hour, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 15 minutes and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例9>
 酸素と水分の除去されたグローブボックス内において、ガラス製シャーレの上に粉末酸化チタン粒子”TKP-102”(商品名、テイカ(株)製)を薄く広げ、シャーレをプラズマエッチャー(メイワフォーシス、SEDE)内に設置し、15分間プラズマ処理を行なった。プラズマ処理した粒子をキャップ付試験管に移し、あらかじめ準備しておいた9.6mMの2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)スチレン溶液を試験管中に入れ、キャップでシールした後、125℃に加熱しておいたアルミブロックヒーターに差込み、ラジカル重合を行なった。12時間経過後、試験管をヒーターならびにグローブボックスから取り出し、酸素バブリングしておいたクロロホルムを加え、重合を完全に停止した。遠心分離によって、酸化チタン粒子と溶媒を分離した後、酸化チタン粒子を取出した。酸化チタン粒子をアセトンで洗浄して、グラフト処理した酸化チタン粒子を得た。
<Grafting example 9>
In a glove box from which oxygen and moisture have been removed, powdered titanium oxide particles “TKP-102” (trade name, manufactured by Teika Co., Ltd.) are spread thinly on a glass petri dish, and the petri dish is made into a plasma etcher (Meiwa Forsys, SEDE). ) And plasma treatment was performed for 15 minutes. The plasma-treated particles were transferred to a capped test tube, and a 9.6 mM 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) styrene solution prepared in advance was placed in the test tube and sealed with a cap. Thereafter, it was inserted into an aluminum block heater heated to 125 ° C., and radical polymerization was performed. After 12 hours, the test tube was taken out of the heater and the glove box, and oxygen bubbled chloroform was added to completely stop the polymerization. After the titanium oxide particles and the solvent were separated by centrifugation, the titanium oxide particles were taken out. The titanium oxide particles were washed with acetone to obtain grafted titanium oxide particles.
 <グラフト化例10>
 メチルトリメトキシシラン 5.59g、フェニルトリメトキシシラン 19.0g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)264.6g、プロピレングリコールモノメチルエーテルアセテート103.3gを反応容器に入れ、この溶液に、水7.39gおよびリン酸0.12gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting Example 10>
5.59 g of methyltrimethoxysilane, 19.0 g of phenyltrimethoxysilane, “OPTRAIK TR-527” (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) having a number average particle diameter of 15 nm, composition: 20% by weight of titanium oxide particles, methanol 804.6%) (264.6 g) and propylene glycol monomethyl ether acetate (103.3 g) were placed in a reaction vessel. To this solution, 7.39 g of water and 0.12 g of phosphoric acid were stirred and the reaction temperature did not exceed 40 ° C. Was dropped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例11>
 ジメチルジメトキシシラン 4.88g、フェニルトリメトキシシラン 72.46g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)213.4g、プロピレングリコールモノメチルエーテルアセテート139.6gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.37gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting Example 11>
4.88 g of dimethyldimethoxysilane, 72.46 g of phenyltrimethoxysilane, “OPTRAIK TR-527” (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) having a number average particle diameter of 15 nm, composition: 20% by weight of titanium oxide particles, methanol 80 (% By weight) 213.4 g and 139.6 g of propylene glycol monomethyl ether acetate were put into a reaction vessel, and 21.9 g of water and 0.37 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例12>
 ジメチルジメトキシシラン 9.76g、フェニルトリメトキシシラン 64.41g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)199.65g、プロピレングリコールモノメチルエーテルアセテート130.6gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.37gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 12>
9.76 g of dimethyldimethoxysilane, 64.41 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 (% By weight) 199.65 g and 130.6 g of propylene glycol monomethyl ether acetate were put in a reaction vessel, and 21.9 g of water and 0.37 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped in. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例13>
 ジメチルジメトキシシラン 14.64g、フェニルトリメトキシシラン 56.36g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)185.94g、プロピレングリコールモノメチルエーテルアセテート121.7gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.36gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 13>
14.64 g of dimethyldimethoxysilane, 56.36 g of phenyltrimethoxysilane, “OPTRAIK TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Chemical Industry Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 (Weight%) 185.94 g and 121.7 g of propylene glycol monomethyl ether acetate are put in a reaction vessel, and 21.9 g of water and 0.36 g of phosphoric acid are added to this solution while stirring so that the reaction temperature does not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例14>
 ジメチルジメトキシシラン 19.52g、フェニルトリメトキシシラン 48.31g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)172.22g、プロピレングリコールモノメチルエーテルアセテート112.7gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.35gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting Example 14>
19.52 g of dimethyldimethoxysilane, 48.31 g of phenyltrimethoxysilane, “OPTRAIK TR-527” (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) having a number average particle diameter of 15 nm, composition: 20% by weight of titanium oxide particles, 80 of methanol (Weight%) 172.22 g and propylene glycol monomethyl ether acetate 112.7 g were put into a reaction vessel, and 21.9 g of water and 0.35 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例15>
 ジメチルジメトキシシラン 24.40g、フェニルトリメトキシシラン 40.25g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)158.50g、プロピレングリコールモノメチルエーテルアセテート103.7gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.33gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting Example 15>
24.40 g of dimethyldimethoxysilane, 40.25 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 (Weight%) 158.50 g and 103.7 g of propylene glycol monomethyl ether acetate are put in a reaction vessel, and 21.9 g of water and 0.33 g of phosphoric acid are added to this solution while stirring so that the reaction temperature does not exceed 40 ° C. It was dripped in. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例16>
 ジメチルジメトキシシラン 29.28g、フェニルトリメトキシシラン 32.20g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)144.79g、プロピレングリコールモノメチルエーテルアセテート94.73gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.31gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting Example 16>
29.28 g of dimethyldimethoxysilane, 32.20 g of phenyltrimethoxysilane, “OPTRAIK TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Chemical Industry Co., Ltd.) composition: 20% by weight of titanium oxide particles, methanol 80 (% By weight) 144.79 g and 94.73 g of propylene glycol monomethyl ether acetate were put in a reaction vessel, and 21.9 g of water and 0.31 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例17>
 ジメチルジメトキシシラン 34.16g、フェニルトリメトキシシラン 24.15g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)131.07g、プロピレングリコールモノメチルエーテルアセテート85.75gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.30gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting Example 17>
34.16 g of dimethyldimethoxysilane, 24.15 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 (% By weight) 131.07 g and propylene glycol monomethyl ether acetate 85.75 g were put into a reaction vessel, and 21.9 g of water and 0.30 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped in. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例18>
 ジメチルジメトキシシラン 39.04g、フェニルトリメトキシシラン 16.10g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)117.35g、プロピレングリコールモノメチルエーテルアセテート76.78gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.28gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting Example 18>
39.04 g of dimethyldimethoxysilane, 16.10 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 (% By weight) 117.35 g and propylene glycol monomethyl ether acetate 76.78 g were put in a reaction vessel, and 21.9 g of water and 0.28 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例19>
 ジメチルジメトキシシラン 43.92g、フェニルトリメトキシシラン 8.05g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)103.64g、プロピレングリコールモノメチルエーテルアセテート67.81gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.27gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
<Grafting example 19>
43.92 g of dimethyldimethoxysilane, 8.05 g of phenyltrimethoxysilane, “Optlake TR-527” having a number average particle diameter of 15 nm (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) Composition: 20% by weight of titanium oxide particles, methanol 80 (% By weight) 103.64 g and 67.81 g of propylene glycol monomethyl ether acetate were put in a reaction vessel, and 21.9 g of water and 0.27 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped in. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
 <グラフト化例20>
 ジメチルジメトキシシラン 14.64g、ジフェニルジメトキシシラン 35.24g、数平均粒子径15nmの”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)94.59g、プロピレングリコールモノメチルエーテルアセテート61.89gを反応容器に入れ、この溶液に、水21.9gおよびリン酸0.25gを、撹拌しながら、反応温度が40℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温115℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリシロキサンでグラフト化された酸化チタン粒子を得た。
(金属化合物粒子の表面処理)
 <表面処理例1>
 メチルトリメトキシシラン 24.5g、フェニルトリメトキシシラン 83.3g、γ-ブチロラクトン124.0gを反応容器に入れ、撹拌しながら、水38gおよびリン酸0.57gを反応温度が30℃を越えないように滴下した。滴下後、フラスコに蒸留装置を取り付け、得られた溶液をバス温105℃で2.5時間加熱撹拌して加水分解により生成したメタノールを留去しつつ反応させた。その後、溶液をバス温130℃でさらに2時間加熱撹拌した後、室温まで冷却し、ポリマー溶液を得た。得られたポリマー溶液を10.0gとり、これに”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)13.3gおよびプロピレングリコールモノメチルエーテルアセテートを添加して撹拌し、シロキサン組成物を得た。
<Grafting Example 20>
14.64 g of dimethyldimethoxysilane, 35.24 g of diphenyldimethoxysilane, “OPTRAIK TR-527” (trade name, manufactured by Catalyst Chemical Industry Co., Ltd.) having a number average particle diameter of 15 nm, composition: titanium oxide particles 20% by weight, methanol 80% by weight %) 94.59 g and 61.89 g of propylene glycol monomethyl ether acetate were put in a reaction vessel, and 21.9 g of water and 0.25 g of phosphoric acid were added to this solution while stirring so that the reaction temperature did not exceed 40 ° C. It was dripped. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 115 ° C. for 2 hours and then cooled to room temperature to obtain titanium oxide particles grafted with polysiloxane.
(Surface treatment of metal compound particles)
<Surface treatment example 1>
Put 24.5 g of methyltrimethoxysilane, 83.3 g of phenyltrimethoxysilane, and 124.0 g of γ-butyrolactone in a reaction vessel and stir while stirring with 38 g of water and 0.57 g of phosphoric acid so that the reaction temperature does not exceed 30 ° C. It was dripped in. After the dropwise addition, a distillation apparatus was attached to the flask, and the resulting solution was heated and stirred at a bath temperature of 105 ° C. for 2.5 hours, and reacted while distilling off methanol produced by hydrolysis. Thereafter, the solution was further heated and stirred at a bath temperature of 130 ° C. for 2 hours, and then cooled to room temperature to obtain a polymer solution. 10.0 g of the obtained polymer solution was taken, and 13.3 g of “OPTRAIK TR-527” (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd .: titanium oxide particles 20 wt%, methanol 80 wt%) and propylene Glycol monomethyl ether acetate was added and stirred to obtain a siloxane composition.
 <表面処理例2>
 反応容器に”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)を400mL入れ、フェニルトリメトキシシラン5.2g(Gelest社製)を加え、60℃で2時間加熱したところ白色沈殿物が生成した。次に、上澄み液を取除き、この白色沈殿物にアセトン100mLを加えたところ、フェニル基の導入により溶媒への親和性向上し、沈殿物は殆ど溶解した。少量の不溶物をろ過により除去した後、このアセトン溶液から溶媒を留去し、80℃で10時間減圧乾燥させることにより、フェニルトリメトキシシランで表面修飾されたチタニア粒子を得た。
<Surface treatment example 2>
400 mL of “Optlake TR-527” (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd., composition: titanium oxide particles 20% by weight, methanol 80% by weight) was put in a reaction container, and phenyltrimethoxysilane 5.2 g (manufactured by Gelest) ) And heated at 60 ° C. for 2 hours, a white precipitate was formed. Next, when the supernatant was removed and 100 mL of acetone was added to the white precipitate, the affinity for the solvent was improved by introduction of the phenyl group, and the precipitate was almost dissolved. After removing a small amount of insoluble matter by filtration, the solvent was distilled off from the acetone solution and dried under reduced pressure at 80 ° C. for 10 hours to obtain titania particles surface-modified with phenyltrimethoxysilane.
 <溶剤>
PGMEA:プロピレングリコールモノメチルエーテルアセテート
γBL:γ-ブチロラクトン
DAA:ジアセトンアルコール
PGME:プロピレングリコールモノメチルエーテル
酢エチ:酢酸エチル
 <基材>
BX9:離型処理済みポリエチレンテレフタレート(ポリエチレンテレフタレートフィルム)“セラピール”BX9(東レフィルム加工(株)製、平均膜厚50μm)
ガラス:ガラス(青板ガラス 板厚:0.3mm)
HP2:離型処理済みポリエチレンテレフタレート(ポリエチレンテレフタレートフィルム)“セラピールHP2” (東レフィルム加工(株)製、平均膜厚50μm)
PPS:ポリフェニレンサルファイド(ポリフェニレンサルファイドフィルム)
“トレリナ3000”(東レ(株)製、平均膜厚50μm)
PP:ポリプロピレン(ポリプロピレンフィルム)
“トレファン”(東レ(株)製、平均膜厚50μm)
PI: ポリイミド(ポリイミドフィルム)
“カプトン200H/V”(東レ・デュポン(株)製、平均膜厚50μm)
PO:ポリオレフィン(ポリオレフィンフィルム)
“オーピュランX-44B”(三井化学東セロ(株)製、平均膜厚50μm)
AL:アルミ(アルミ基板 板厚:0.24mm)。
<Solvent>
PGMEA: propylene glycol monomethyl ether acetate γBL: γ-butyrolactone DAA: diacetone alcohol PGME: propylene glycol monomethyl ether acetate: ethyl acetate <Substrate>
BX9: Release-treated polyethylene terephthalate (polyethylene terephthalate film) “Therapel” BX9 (manufactured by Toray Film Processing Co., Ltd., average film thickness 50 μm)
Glass: Glass (blue plate glass, plate thickness: 0.3 mm)
HP2: Release-treated polyethylene terephthalate (polyethylene terephthalate film) “Therapy HP2” (manufactured by Toray Film Processing Co., Ltd., average film thickness 50 μm)
PPS: Polyphenylene sulfide (polyphenylene sulfide film)
“Torelina 3000” (Toray Industries, Inc., average film thickness 50 μm)
PP: Polypropylene (polypropylene film)
“Trephan” (Toray Industries, Inc., average film thickness 50 μm)
PI: Polyimide (Polyimide film)
“Kapton 200H / V” (manufactured by Toray DuPont Co., Ltd., average film thickness 50 μm)
PO: Polyolefin (Polyolefin film)
"Opylan X-44B" (Mitsui Chemicals, Inc., manufactured by Tosero Co., Ltd., average film thickness 50μm)
AL: Aluminum (aluminum substrate plate thickness: 0.24 mm).
 <シリコーン微粒子>
 2L四つ口丸底フラスコに攪拌機、温度計、環流管、滴下ロートを取り付け、フラスコに、界面活性剤としてポリエーテル変性シロキサン“BYK333”を1ppm含む2.5%のアンモニア水2Lを入れ、300rpmで攪拌しつつ、オイルバスにて昇温した。内温50℃に到達したところで滴下ロートからメチルトリメトキシシランとフェニルトリメトキシシランの混合物(23/77mol%)200gを30分かけ滴下した。そのままの温度で、さらに60分間撹拌を続けた後、酢酸(試薬特級)約5gを添加、撹拌混合した後、濾過を行った。濾過器上の生成粒子に水600mLを2回、メタノール200mLを1回添加し、濾過、洗浄を行った。濾過器上のケークを取り出し、解砕後、10時間かけ凍結乾燥することにより、白色粉末60gを得た。得られた粒子は、SEMで観察したところ単分散球状微粒子であった。この微粒子を液浸法により屈折率測定した結果、1.54であった。この粒子を断面TEMで観察した結果、粒子内が単一構造の粒子であることが確認できた。
<Silicon fine particles>
Attach stirrer, thermometer, reflux tube and dropping funnel to 2L four-necked round bottom flask. Put 2L of 2.5% ammonia water containing 1ppm of polyether-modified siloxane "BYK333" as a surfactant into the flask. The temperature was raised in an oil bath while stirring at. When the internal temperature reached 50 ° C., 200 g of a mixture of methyltrimethoxysilane and phenyltrimethoxysilane (23/77 mol%) was dropped from the dropping funnel over 30 minutes. Stirring was continued for 60 minutes at the same temperature, then about 5 g of acetic acid (special grade reagent) was added, mixed with stirring, and then filtered. The product particles on the filter were added with 600 mL of water twice and 200 mL of methanol once, followed by filtration and washing. The cake on the filter was taken out, crushed, and freeze-dried over 10 hours to obtain 60 g of white powder. The obtained particles were monodisperse spherical fine particles as observed by SEM. As a result of measuring the refractive index of this fine particle by the immersion method, it was 1.54. As a result of observing the particles with a cross-sectional TEM, it was confirmed that the particles had a single structure.
 <蛍光体>
蛍光体:(株)ネモト・ルミマテリアル社製“YAG81003”(YAG系蛍光体、メジアン径(D50):8.6μm、屈折率:1.8)。
<Phosphor>
Phosphor: “YAG81003” (YAG phosphor, median diameter (D 50 ): 8.6 μm, refractive index: 1.8) manufactured by Nemoto Lumi Material Co., Ltd.
 <マトリックス樹脂>
シリコーン樹脂を配合するための成分
  樹脂主成分  (MeViSiO2/2)0.25(Ph2SiO2/2)0.3(PhSiO3/2)0.45(HO1/2)0.03 (平均組成、(A)成分に該当する。)
  硬度調整剤  ViMe2SiO(MePhSiO)17.5SiMe2Vi (平均組成、(B)成分に該当する。)
  架橋剤    (HMe2SiO)2SiPh2  ((C)成分に該当する。)
         ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基
  反応抑制剤  1-エチニルヘキサノール
  白金触媒  白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液) 白金含有量5重量%。
<Matrix resin>
Ingredients for compounding silicone resin Resin main component (MeViSiO 2/2 ) 0.25 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.03 (average composition, (A) Applicable)
Hardness modifier ViMe 2 SiO (MePhSiO) 17.5 SiMe 2 Vi (average composition, corresponding to component (B))
Crosslinking agent (HMe 2 SiO) 2 SiPh 2 (corresponds to component (C).)
* However, Me: Methyl group, Vi: Vinyl group, Ph: Phenyl group Reaction inhibitor 1-Ethynylhexanol Platinum catalyst Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Contains platinum Amount 5% by weight.
 蛍光体組成物作製に用いたシリコーン樹脂1、7~19は、上記のシリコーン成分を配合し、マトリックス樹脂を作製した。また、シリコーン樹脂2~6は市販品(2液混合品)を利用し、場合によってはA液とB液の混合比率(A/B比率)を変更してマトリックス樹脂を作製した。 Silicone resins 1 and 7 to 19 used for preparing the phosphor composition were blended with the above silicone components to prepare a matrix resin. For the silicone resins 2 to 6, commercially available products (two-component mixed products) were used, and in some cases, the mixing ratio (A / B ratio) of the liquid A and the liquid B was changed to produce a matrix resin.
 ・シリコーン樹脂1:
  樹脂主成分16.7重量部、硬度調整剤16.7重量部、架橋剤66.7重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂2:“OE6630(A液、B液)”(東レ・ダウコーニング社製)
           A/B比率 1/4
 ・シリコーン樹脂3:“OE6336(A液、B液)”(東レ・ダウコーニング社製)
           A/B比率 1/1
 ・シリコーン樹脂4:“KER6075(A液、B液)”(信越化学工業製)
           A/B比率 1/1
 ・シリコーン樹脂5:“KER6075(A液、B液)”(信越化学工業製)
           A/B比率 1/1.14
 ・シリコーン樹脂6:“KER6075(A液、B液)”(信越化学工業製)
           A/B比率 0.5/1
 ・シリコーン樹脂7:
  樹脂主成分16.7重量部、硬度調整剤20.0重量部、架橋剤66.7重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂8:
  樹脂主成分18.2重量部、硬度調整剤18.2重量部、架橋剤63.6重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂9:
  樹脂主成分15.4重量部、硬度調整剤15.4重量部、架橋剤69.2重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂10:
  樹脂主成分25.0重量部、硬度調整剤20.0重量部、架橋剤50.0重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂11:
  樹脂主成分25.0重量部、硬度調整剤25.0重量部、架橋剤50.0重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂12:
  樹脂主成分41.7重量部、硬度調整剤9.1重量部、架橋剤41.7重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂13:
  樹脂主成分33.3重量部、硬度調整剤43.3重量部、架橋剤23.3重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂14:
  樹脂主成分33.3重量部、硬度調整剤33.3重量部、架橋剤33.3重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂15:
  樹脂主成分41.7重量部、硬度調整剤18.2重量部、架橋剤41.7重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂16:
  樹脂主成分16.7重量部、硬度調整剤4.3重量部、架橋剤70.7重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂17:
  樹脂主成分23.3重量部、硬度調整剤53.3重量部、架橋剤23.3重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂18:
  樹脂主成分33.3重量部、硬度調整剤5.0重量部、架橋剤33.3重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部
 ・シリコーン樹脂19:
  樹脂主成分18.9重量部、硬度調整剤5.6重量部、架橋剤75.5重量部、
  反応抑制剤0.025重量部、白金触媒0.03重量部。
・ Silicone resin 1:
Resin main component 16.7 parts by weight, hardness adjusting agent 16.7 parts by weight, cross-linking agent 66.7 parts by weight,
0.025 weight part of reaction inhibitor, 0.03 weight part of platinum catalyst Silicone resin 2: “OE6630 (A liquid, B liquid)” (manufactured by Dow Corning Toray)
A / B ratio 1/4
Silicone resin 3: “OE6336 (liquid A, liquid B)” (manufactured by Dow Corning Toray)
A / B ratio 1/1
Silicone resin 4: “KER6075 (A liquid, B liquid)” (manufactured by Shin-Etsu Chemical)
A / B ratio 1/1
Silicone resin 5: “KER6075 (A liquid, B liquid)” (manufactured by Shin-Etsu Chemical)
A / B ratio 1 / 1.14
Silicone resin 6: “KER6075 (A liquid, B liquid)” (manufactured by Shin-Etsu Chemical)
A / B ratio 0.5 / 1
-Silicone resin 7:
Resin main component 16.7 parts by weight, hardness adjusting agent 20.0 parts by weight, cross-linking agent 66.7 parts by weight,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 8:
Resin main component 18.2 parts by weight, hardness adjusting agent 18.2 parts by weight, cross-linking agent 63.6 parts by weight,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 9:
15.4 parts by weight of a resin main component, 15.4 parts by weight of a hardness adjusting agent, 69.2 parts by weight of a crosslinking agent,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 10:
25.0 parts by weight of resin main component, 20.0 parts by weight of hardness adjusting agent, 50.0 parts by weight of crosslinking agent,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 11:
25.0 parts by weight of resin main component, 25.0 parts by weight of hardness adjusting agent, 50.0 parts by weight of crosslinking agent,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 12:
Resin main component 41.7 parts by weight, hardness adjusting agent 9.1 parts by weight, cross-linking agent 41.7 parts by weight,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 13:
33.3 parts by weight of resin main component, 43.3 parts by weight of hardness adjusting agent, 23.3 parts by weight of crosslinking agent,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 14:
33.3 parts by weight of resin main component, 33.3 parts by weight of hardness adjusting agent, 33.3 parts by weight of crosslinking agent,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 15:
Resin main component 41.7 parts by weight, hardness adjusting agent 18.2 parts by weight, cross-linking agent 41.7 parts by weight,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 16:
Resin main component 16.7 parts by weight, hardness adjusting agent 4.3 parts by weight, cross-linking agent 70.7 parts by weight,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 17:
23.3 parts by weight of a resin main component, 53.3 parts by weight of a hardness adjusting agent, 23.3 parts by weight of a crosslinking agent,
0.025 part by weight of reaction inhibitor, 0.03 part by weight of platinum catalyst Silicone resin 18:
33.3 parts by weight of a resin main component, 5.0 parts by weight of a hardness adjusting agent, 33.3 parts by weight of a crosslinking agent,
Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Silicone resin 19:
18.9 parts by weight of a resin main component, 5.6 parts by weight of a hardness adjusting agent, 75.5 parts by weight of a crosslinking agent,
0.025 weight part of reaction inhibitor, 0.03 weight part of platinum catalyst.
 <屈折率測定>
 屈折率・膜厚測定装置“プリズムカプラMODEL2010/M”(メトリコン社製)を使用して、屈折率測定サンプルの屈折率を測定することで金属化合物粒子とマトリックス樹脂の平均屈折率N1を測定した。下記式に蛍光体の屈折率N2を導入し屈折率差を|N1-N2|算出した。
<Refractive index measurement>
Using the refractive index / film thickness measuring device “Prism Coupler Model 2010 / M” (made by Metricon), the refractive index of the refractive index measurement sample was measured to measure the average refractive index N1 of the metal compound particles and the matrix resin. . The refractive index N2 of the phosphor was introduced into the following formula, and the refractive index difference was calculated | N1-N2 |.
 <屈折率測定サンプル作製>
 マトリックス樹脂中に金属化合物粒子を混合し、クラボウ社製遊星式攪拌脱泡装置“マゼルスターKK-400”を用い、1,000rpmで10分間攪拌、脱泡して分散液を作製した。フィルム基板に分散液を5cc滴下した後、オーブンにて150℃で1時間加熱して平均屈折率N1測定サンプルを作製した。なお、必要であれば、液作製後にエバポレーターによって溶剤を除去しても良い。
<Preparation of refractive index measurement sample>
Metal compound particles were mixed in the matrix resin, and the dispersion was prepared by stirring and defoaming for 10 minutes at 1,000 rpm using a planetary stirring deaerator “Mazerustar KK-400” manufactured by Kurabo Industries. After 5 cc of the dispersion was dropped onto the film substrate, the sample was heated in an oven at 150 ° C. for 1 hour to prepare an average refractive index N1 measurement sample. If necessary, the solvent may be removed by an evaporator after preparing the liquid.
 <透明性試験>
 マトリックス樹脂に金属化合物粒子を分散して透明性評価用サンプルを作製し、サンプルを光学顕微鏡で観察して透明性を評価した。
A:ナノ粒子の凝集による欠点が全くなく、透明な膜が形成されている。
B:ナノ粒子の凝集による欠点が存在しているが、比較的透明な膜が形成されている。
C:ナノ粒子の凝集によって白濁している(光が透過しない)。
<Transparency test>
A sample for transparency evaluation was prepared by dispersing metal compound particles in a matrix resin, and the transparency was evaluated by observing the sample with an optical microscope.
A: There is no defect due to aggregation of nanoparticles, and a transparent film is formed.
B: Although there is a defect due to aggregation of nanoparticles, a relatively transparent film is formed.
C: White turbidity due to aggregation of nanoparticles (light is not transmitted).
 <透明性評価用サンプル作製>
 マトリックス樹脂中に金属化合物粒子を混合し、クラボウ社製遊星式攪拌脱泡装置“マゼルスターKK-400”を用い、1,000rpmで10分間攪拌、脱泡して分散液を作製した。ガラス基板にアプリケーターを用いて塗膜を作製した後、オーブンにて150℃で1時間加熱して透明性評価用サンプル(75μm)を作製した。なお、必要であれば、液作製後にエバポレーターによって溶剤を除去しても良い。
<Preparation of sample for transparency evaluation>
Metal compound particles were mixed in the matrix resin, and the dispersion was prepared by stirring and defoaming for 10 minutes at 1,000 rpm using a planetary stirring deaerator “Mazerustar KK-400” manufactured by Kurabo Industries. A coating film was prepared on a glass substrate using an applicator, and then heated in an oven at 150 ° C. for 1 hour to prepare a transparency evaluation sample (75 μm). If necessary, the solvent may be removed by an evaporator after preparing the liquid.
 <吐出性評価>
 各実施例および比較例で作製した蛍光体組成物をスリットダイコーターによって塗布する際、吐出圧0.1Paとした時の口金からの樹脂の吐出しやすさを評価した。
非常に良好:吐出スタート後、3秒以内で樹脂が吐出される。
良好:吐出スタート後、3秒を超え10秒以内で樹脂が吐出される。
悪い:吐出スタート後、10秒を超えて樹脂が吐出される。
<Ejection evaluation>
When the phosphor compositions prepared in each Example and Comparative Example were applied by a slit die coater, the ease of discharging the resin from the die when the discharge pressure was 0.1 Pa was evaluated.
Very good: Resin is discharged within 3 seconds after starting discharge.
Good: Resin is discharged within 10 seconds over 3 seconds after the start of discharge.
Poor: Resin is discharged after 10 seconds from the start of discharge.
 <膜厚均一性評価>
 実施例に基づき作製した蛍光体シートの表面を光学顕微鏡で観察し、ハジキ等の欠点を確認してシート膜の形成しやすさを評価した。
A:ハジキなどの欠点が全くなく、均一な膜が形成されている。非常に良好な膜厚均一性である。
B:ハジキなど欠点の数が10個以内であり、比較的均一な膜が形成されている。実質的に問題ない膜厚均一性である。
C:ハジキの数が11個以上あり、均一な膜が形成されていない。膜厚均一性は悪い。
<Evaluation of film thickness uniformity>
The surface of the phosphor sheet produced based on the examples was observed with an optical microscope, and defects such as repelling were confirmed to evaluate the ease of forming a sheet film.
A: There is no defect such as repelling, and a uniform film is formed. Very good film thickness uniformity.
B: The number of defects such as repellency is within 10 and a relatively uniform film is formed. The film thickness uniformity is practically no problem.
C: There are 11 or more repellents, and a uniform film is not formed. The film thickness uniformity is poor.
 <蛍光体シートの照度測定>
 実施例19~96、比較例11~36における蛍光体シートの照度測定は以下の要領でサンプルを作製し測定を行った。
<Illuminance measurement of phosphor sheet>
In Examples 19 to 96 and Comparative Examples 11 to 36, the phosphor sheets were measured for illuminance by preparing samples in the following manner.
 図11に示すようにLED光源17(Prizmatix社製“MS-LED-460”、波長:460nm、出力:>50mW)の上に、LED光源17が覆われるようにカットした拡散シート13((株)オプティカルソリューションズ社製“LSD-60x1PC10-F12”)、直径1mm径の孔があいた黒色金属製の遮光板16、蛍光体シートの屈折率が高い面をGaN基板に気泡が入らないように貼り付けたサンプル(測定サンプル)12、黒色金属製の遮光円筒15、照度計11(コニカミノルタ社製色彩照度計“CL-200A”)の受光部を順におき、測定サンプル12の照度(lx)を測定した。常に一定距離、一定角度で測定すれば、照度は輝度に比例する。比較例11の照度を100とし、これに対する照度の相対値を示した。
(少数第1位を四捨五入)
A:相対値の値が116以上        輝度向上効果が非常に大きい
B:相対値の値が110以上115以下   輝度向上効果が大きい
C:相対値の値が104以上109以下   輝度向上効果がある
D:相対値の値が101以上103以下   若干輝度向上効果がある
E:相対値の値が100以下        輝度向上効果がない。
As shown in FIG. 11, a diffusion sheet 13 (Stock Co., Ltd.) cut so as to cover the LED light source 17 on the LED light source 17 (“MS-LED-460” manufactured by Prizmatix, wavelength: 460 nm, output:> 50 mW). ) "LSD-60x1PC10-F12" manufactured by Optical Solutions Co., Ltd.), black metal shading plate 16 with a hole with a diameter of 1 mm, and a surface with a high refractive index of the phosphor sheet is affixed so that bubbles do not enter the GaN substrate. Measure the illuminance (lx) of the measurement sample 12 by placing the light receiving part of the sample (measurement sample) 12, the light shielding cylinder 15 made of black metal, and the illuminance meter 11 (color illuminance meter “CL-200A” manufactured by Konica Minolta, Inc.) in this order. did. If measurement is always performed at a constant distance and a fixed angle, the illuminance is proportional to the luminance. The illuminance of Comparative Example 11 was set to 100, and the relative value of illuminance relative to this was shown.
(Rounded to the first decimal place)
A: The value of the relative value is 116 or more The brightness improvement effect is very large B: The value of the relative value is 110 or more and 115 or less The brightness improvement effect is large C: The value of the relative value is 104 or more and 109 or less The brightness improvement effect D: Relative value is 101 or more and 103 or less Some effect of improving brightness E: Relative value is 100 or less There is no effect of improving brightness.
 <照度測定用サンプル作製>
 ホットプレート上にGaN基板(板厚0.5mm)を設置し、ホットプレートの温度を130℃に設定した後、GaN基板上に、蛍光体シート面がGaN基板面と接するように、蛍光体シート積層体を重ねた。その後、ゴムローラーを用いて、蛍光体シート積層体の基材(ベースフィルム)側を60秒間しごいて、蛍光体シートをGaN基板に貼り付けた。
ホットプレート上からGaN基板サンプルを移動させて、室温に戻した後、基材を剥がしてサンプル基板を作製した。
<Preparation of sample for illuminance measurement>
A GaN substrate (plate thickness 0.5 mm) is set on the hot plate, the temperature of the hot plate is set to 130 ° C., and then the phosphor sheet is placed on the GaN substrate so that the phosphor sheet surface is in contact with the GaN substrate surface. The laminate was stacked. Thereafter, the base material (base film) side of the phosphor sheet laminate was squeezed for 60 seconds using a rubber roller, and the phosphor sheet was attached to the GaN substrate.
After moving the GaN substrate sample from the hot plate and returning to room temperature, the base material was peeled off to produce a sample substrate.
 <密着性試験>
 サンプル基板の表面にNTカッターで縦横1mmの間隔で11本の平行な傷をつけて、100個のマス目を作製した。これにポリエステルフィルム粘着テープ(寺岡製作所製“サーキットテープNo.647”)を強く圧着させた後、テープの端を45°の角度で一挙に剥離し、蛍光体シートが剥離せず残存しているマス目数を目視で確認して密着性を評価した。
S:残存しているマス目数 100個
A: 残存しているマス目数 95~99個
B:残存しているマス目数 90~94個
C:残存しているマス目数 85~89個
D:残存しているマス目数 84個以下。
<Adhesion test>
Eleven parallel scratches were made on the surface of the sample substrate with an NT cutter at intervals of 1 mm in length and width to produce 100 squares. A polyester film adhesive tape (“Circuit Tape No. 647” manufactured by Teraoka Seisakusho) is strongly bonded to this, and then the end of the tape is peeled off at an angle of 45 °, and the phosphor sheet remains without peeling. The number of cells was visually confirmed to evaluate the adhesion.
S: Number of remaining cells 100 A: Number of remaining cells 95 to 99 B: Number of remaining cells 90 to 94 C: Number of remaining cells 85 to 89 D: The number of remaining squares is 84 or less.
 <密着性試験用サンプル作製>
 ホットプレート上にGaN基板(板厚0.5mm)を設置し、ホットプレートの温度を130℃に設定した後、GaN基板上に、蛍光体シート面がGaN基板面と接するように、蛍光体シート積層体を重ねた。その後、ゴムローラーを用いて、蛍光体シート積層体の基材(ベースフィルム)側を60秒間しごいて、蛍光体シートをGaN基板に貼り付けた。
ホットプレート上からGaN基板サンプルを移動させて、室温に戻した後、基材を剥がしてサンプル基板を作製した。
<Sample preparation for adhesion test>
A GaN substrate (plate thickness 0.5 mm) is set on the hot plate, the temperature of the hot plate is set to 130 ° C., and then the phosphor sheet is placed on the GaN substrate so that the phosphor sheet surface is in contact with the GaN substrate surface. The laminate was stacked. Thereafter, the base material (base film) side of the phosphor sheet laminate was squeezed for 60 seconds using a rubber roller, and the phosphor sheet was attached to the GaN substrate.
After moving the GaN substrate sample from the hot plate and returning to room temperature, the base material was peeled off to produce a sample substrate.
 <動的弾性率測定>
  測定装置   :粘度・粘弾性測定装置HAAKE MARS III
(Thermo Fisher SCIENTIFIC 製)
  測定条件  :OSC温度依存測定
  ジオメトリー:平行円板型(20mm)
  測定時間  :1980秒
  角周波数  :1Hz
  角速度   :6.2832rad/秒
  温度範囲  :25~200℃(低温温度制御機能あり)
  昇温速度  :0.08333℃/秒
  サンプル形状:円形(直径18mm)。
<Dynamic elastic modulus measurement>
Measuring device: Viscosity / viscoelasticity measuring device HAAKE MARS III
(Thermo Fisher SCIENTIFIC made)
Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20mm)
Measurement time: 1980 seconds Angular frequency: 1 Hz
Angular velocity: 6.2832 rad / sec Temperature range: 25 to 200 ° C (with low temperature control function)
Temperature increase rate: 0.08333 ° C./sec Sample shape: Circular (diameter 18 mm).
 <動的粘弾性測定の測定サンプル作製>
 実施例および比較例に基づき作製した蛍光体シート積層体を直径18mmの円形状に切り抜いた後、フィルムを剥離して蛍光体シートのみとして測定サンプルとした。各蛍光体シートの粘弾性挙動を表34、36、38、40に示した。
<Measurement sample preparation for dynamic viscoelasticity measurement>
After the phosphor sheet laminate produced based on the examples and comparative examples was cut out into a circular shape with a diameter of 18 mm, the film was peeled off to obtain a phosphor sheet alone as a measurement sample. Tables 34, 36, 38, and 40 show the viscoelastic behavior of each phosphor sheet.
 <耐熱性試験>
 蛍光体シートを用いたLEDパッケージに、パッケージの表面温度が室温(25℃)~170℃になるよう電流を流してLEDチップを点灯させ、瞬間マルチ測光システム(MCPD-3000、大塚電子社製)を用いて輝度を測定した。室温(25℃)と170℃の場合の輝度を測定し、下記式により輝度保持率を算出することで耐熱性を評価した。輝度保持率が高いほど、耐熱性に優れていることを示す。評価B以上であれば実用上問題なく、評価A以上であれば実用上優れている。
輝度保持率I(%)=(170℃の場合の輝度/室温(25℃)の場合の輝度)×100
(少数第1位を四捨五入)
S:保持率 90%以上  耐熱性が非常に良好
A:保持率 81~89% 耐熱性が良好
B:保持率 51~80% 耐熱性が実用上問題ない
C:保持率 50%以下  耐熱性が悪い。
<Heat resistance test>
The LED chip is turned on by applying an electric current to the LED package using the phosphor sheet so that the surface temperature of the package is from room temperature (25 ° C.) to 170 ° C. Was used to measure the luminance. The luminance at room temperature (25 ° C.) and 170 ° C. was measured, and the heat retention was evaluated by calculating the luminance retention rate according to the following formula. It shows that it is excellent in heat resistance, so that a luminance retention is high. If the rating is B or more, there is no practical problem, and if the rating is A or more, it is practically excellent.
Luminance retention ratio I (%) = (luminance at 170 ° C./luminance at room temperature (25 ° C.)) × 100
(Rounded to the first decimal place)
S: Retention rate 90% or more Heat resistance is very good A: Retention rate 81-89% Good heat resistance B: Retention rate 51-80% Heat resistance is practically no problem C: Retention rate 50% or less bad.
 <硬度測定および取り扱い性評価>
 蛍光体シートを使用する場合の取り扱い性(取り扱い時に割れる、柔らかいため形がくずれるなど)の指標として、硬度測定を実施した。実施例に基づき作製したシートについて、JIS K6253(2012)プラスチックのデューロメータ硬さ試験法に基づき、ゴム・プラスチック軟質硬さ計“デューロメータタイプD”(品番:GSD-720J テクロック社製)を測定装置として用い、室温(25℃)でのシートの硬度を測定した。これまでの経験上、蛍光体シートの硬度と取り扱いやすさに相関があるので、硬度をもとに取り扱い性を評価した。評価B以上であれば実用上問題なく、評価A以上であれば実用上優れている。
S:硬度60~79             取り扱い性が非常に良好
A:硬度80~89あるいは50~59    取り扱い性が良好
B:硬度40~49             ピンセットの形はつくが、取り扱い性は
実用上問題ない
C:硬度90以上あるいは39以下      取り扱い性が悪い。
<Hardness measurement and handling evaluation>
Hardness measurement was carried out as an index of handleability when using a phosphor sheet (such as cracking during handling, soft shape breaking). Measurement of rubber / plastic soft hardness tester “Durometer Type D” (Product No .: GSD-720J manufactured by Teclock Co., Ltd.) based on JIS K6253 (2012) Durometer Hardness Test Method Used as an apparatus, the hardness of the sheet at room temperature (25 ° C.) was measured. Based on the experience so far, there is a correlation between the hardness of the phosphor sheet and the ease of handling. Therefore, the handleability was evaluated based on the hardness. If the rating is B or more, there is no practical problem, and if the rating is A or more, it is practically excellent.
S: Hardness 60-79 Very easy to handle A: Hardness 80-89 or 50-59 Good handleability B: Hardness 40-49 Tweezers are shaped but handleability is practically acceptable C: Hardness 90 More than or less than 39 Handling is poor.
 <LEDパッケージの作製と輝度評価>
 実施例1~18、比較例1~10におけるLEDパッケージは以下の要領で作製した。得られた蛍光体組成物を、LEDチップ(昭和電工(株)製“GM2QT450G”、平均波長:453.4nm)が実装されたパッケージフレーム(エノモト社製フレーム“TOP LED BASE”)に、ディスペンサー(武蔵野エンジニアリング社製“MPP-1”)を用いて流し込み、80℃で1時間、150℃で2時間キュアすることによって、LEDパッケージを作製した。作製したLEDパッケージを、20mAの電流を流して点灯させ、瞬間マルチ測光システム(大塚電子社製“MCPD-7700”)を用いて、試験開始直後の輝度を測定し、10個の平均値を輝度とした。比較例1の照度を100とし、これに対する照度の相対値を示した。
(少数第1位を四捨五入)
A:相対値の値が116以上        輝度向上効果が非常に大きい
B:相対値の値が110以上115以下   輝度向上効果が大きい
C:相対値の値が104以上109以下   輝度向上効果がある
D:相対値の値が101以上103以下   若干輝度向上効果がある
E:相対値の値が100以下        輝度向上効果がない。
<Production of LED package and brightness evaluation>
The LED packages in Examples 1 to 18 and Comparative Examples 1 to 10 were produced as follows. The obtained phosphor composition was placed on a package frame (Enomoto's frame “TOP LED BASE”) on which an LED chip (“GM2QT450G” manufactured by Showa Denko KK, average wavelength: 453.4 nm) was mounted. An LED package was manufactured by casting using “MPP-1” manufactured by Musashino Engineering Co., Ltd. and curing at 80 ° C. for 1 hour and 150 ° C. for 2 hours. The manufactured LED package was turned on by passing a current of 20 mA, and the luminance immediately after the start of the test was measured using an instantaneous multi-metering system (“MCPD-7700” manufactured by Otsuka Electronics Co., Ltd.). It was. The illuminance of Comparative Example 1 was set to 100, and the relative value of illuminance relative to this was shown.
(Rounded to the first decimal place)
A: The value of the relative value is 116 or more The brightness improvement effect is very large B: The value of the relative value is 110 or more and 115 or less The brightness improvement effect is large C: The value of the relative value is 104 or more and 109 or less The brightness improvement effect D: Relative value is 101 or more and 103 or less Some effect of improving brightness E: Relative value is 100 or less There is no effect of improving brightness.
 実施例1(シリコーン微粒子あり、グラフトの効果)
 <蛍光体組成物の作製>
 遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、グラフト化例1の方法で得られた酸化チタン粒子3.0gにシリコーン樹脂1を6.0g添加して混合し、1000rpmで10分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した後、屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.60であった。また、透明性は非常に良好であった。
Example 1 (with silicone fine particles, effect of grafting)
<Preparation of phosphor composition>
Using a planetary stirring and degassing apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), 6.0 g of silicone resin 1 is added to and mixed with 3.0 g of titanium oxide particles obtained by the method of grafting example 1, The mixture was stirred and degassed at 1000 rpm for 10 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.60. Further, the transparency was very good.
 次に、遊星式撹拌・脱泡装置にて、グラフト化例1の方法で得られた酸化チタン粒子30.0gにシリコーン樹脂1を15.0g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した。次にシリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを2.35g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物1を作製した。屈折率差|N1-N2|は0.20であった。この蛍光体組成物1を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。LEDパッケージを作製し、輝度測定を行った結果、比較例1に対して、相対照度が110となり、輝度向上効果が得られた。 Next, 15.0 g of silicone resin 1 is added to and mixed with 30.0 g of the titanium oxide particles obtained by the method of Grafting Example 1 using a planetary stirring and defoaming device, and the mixture is stirred and removed at 1000 rpm for 3 minutes. Foamed. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.35 g of butyl carbitol were added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 1. The refractive index difference | N1−N2 | was 0.20. As a result of conducting a discharge property test using this phosphor composition 1, resin was discharged from the die simultaneously with the start of discharge, and good discharge property was confirmed. As a result of fabricating the LED package and measuring the luminance, relative illuminance was 110 with respect to Comparative Example 1, and the luminance improvement effect was obtained.
 比較例1(シリコーン微粒子あり、グラフトの影響)
 金属化合物粒子を添加しない以外は、実施例1と同様の操作で蛍光体組成物を作製した。その後、実施例1と同様の操作でのLEDパッケージを作製し評価を行った。結果を表3および4に示す。
Comparative Example 1 (with silicone fine particles, influence of graft)
A phosphor composition was produced in the same manner as in Example 1 except that no metal compound particles were added. Then, the LED package by the same operation as Example 1 was produced and evaluated. The results are shown in Tables 3 and 4.
 比較例2(シリコーン微粒子あり、グラフトの効果)
 金属化合物粒子として、粉末酸化チタン粒子”TKP-102”(商品名、テイカ(株)製)に変更した以外は、実施例1と同様の操作で蛍光体組成物を作製した。その後、実施例1と同様の操作でのLEDパッケージを作製し評価を行った。結果を表3および4に示す。マトリックス樹脂への分散性が悪く、凝集してしまったため、蛍光体組成物を作製することができなかった。
Comparative Example 2 (with silicone fine particles, graft effect)
A phosphor composition was produced in the same manner as in Example 1 except that the powder was changed to powdered titanium oxide particles “TKP-102” (trade name, manufactured by TEIKA CORPORATION) as the metal compound particles. Then, the LED package by the same operation as Example 1 was produced and evaluated. The results are shown in Tables 3 and 4. Since the dispersibility in the matrix resin was poor and agglomerated, the phosphor composition could not be produced.
 比較例3(シリコーン微粒子あり、グラフトの効果)
 金属化合物粒子として、”オプトレイクTR-527”(商品名、触媒化成工業(株)製 組成:酸化チタン粒子20重量%、メタノール80重量%)に変更した以外は、実施例1と同様の操作で蛍光体組成物を作製した。その後、実施例1と同様の操作でのLEDパッケージを作製し評価を行った。結果を表3および4に示す。比較例1に比較して輝度はさらに低下した。
Comparative Example 3 (with silicone fine particles, graft effect)
The same operation as in Example 1 except that the metal compound particles were changed to "Optlake TR-527" (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd., composition: titanium oxide particles 20 wt%, methanol 80 wt%). A phosphor composition was prepared. Then, the LED package by the same operation as Example 1 was produced and evaluated. The results are shown in Tables 3 and 4. Compared to Comparative Example 1, the luminance further decreased.
 実施例2~9、比較例4、5(シリコーン微粒子あり、グラフトの効果)
 表1、3に記載の組成に変更した以外は実施例1と同様の操作で蛍光体組成物を作製した。その後、実施例1と同様の操作でのLEDパッケージを作製し、評価を行った。結果を表1~4に示す。これらの実施例から、本発明の蛍光体組成物であれば輝度が大きく向上することがわかった。比較例4、5では輝度は向上しなかった。
Examples 2 to 9, Comparative Examples 4 and 5 (with silicone fine particles, effect of grafting)
A phosphor composition was prepared in the same manner as in Example 1 except that the compositions shown in Tables 1 and 3 were changed. Then, the LED package by the same operation as Example 1 was produced, and evaluation was performed. The results are shown in Tables 1 to 4. From these examples, it was found that the brightness was greatly improved with the phosphor composition of the present invention. In Comparative Examples 4 and 5, the luminance was not improved.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例10~18、比較例6~10(シリコーン微粒子なし、グラフトの効果)
 シリコーン微粒子を添加せず、表5、7に記載の組成に変更した以外は実施例1と同様の操作で蛍光体組成物を作製した。その後、実施例1と同様の操作でのLEDパッケージを作製し、評価を行った。結果を表5~8に示す。これらの実施例から、本発明の蛍光体組成物であれば輝度が向上することがわかった。比較例6~10では輝度は向上しなかった。
Examples 10 to 18 and Comparative Examples 6 to 10 (no silicone fine particles, effect of grafting)
A phosphor composition was prepared in the same manner as in Example 1, except that the silicone fine particles were not added and the compositions shown in Tables 5 and 7 were changed. Then, the LED package by the same operation as Example 1 was produced, and evaluation was performed. The results are shown in Tables 5-8. From these examples, it was found that the luminance was improved with the phosphor composition of the present invention. In Comparative Examples 6 to 10, the luminance was not improved.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例19(シリコーン微粒子あり、グラフトの効果、蛍光体シート)
 <蛍光体組成物の作製>
 遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、グラフト化例1の方法で得られた酸化チタン粒子3.0gにシリコーン樹脂1を6.0g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した後、屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.60であった。また、透明性は非常に良好であった。
Example 19 (with silicone fine particles, graft effect, phosphor sheet)
<Preparation of phosphor composition>
Using a planetary stirring and degassing apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), 6.0 g of silicone resin 1 is added to and mixed with 3.0 g of titanium oxide particles obtained by the method of grafting example 1, The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.60. Further, the transparency was very good.
 次に、遊星式撹拌・脱泡装置にて、グラフト化例1の方法で得られた酸化チタン粒子30.0gにシリコーン樹脂1を15.0g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した。次にシリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを2.35g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物1を作製した。屈折率差|N1-N2|は0.20であった。この蛍光体組成物1を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 15.0 g of silicone resin 1 is added to and mixed with 30.0 g of the titanium oxide particles obtained by the method of Grafting Example 1 using a planetary stirring and defoaming device, and the mixture is stirred and removed at 1000 rpm for 3 minutes. Foamed. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.35 g of butyl carbitol were added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 1. The refractive index difference | N1−N2 | was 0.20. As a result of conducting a discharge property test using this phosphor composition 1, resin was discharged from the die simultaneously with the start of discharge, and good discharge property was confirmed.
 <蛍光体シート積層体の作製>
 スリットダイコーターを用いて、蛍光体組成物1を基材として“セラピール”BX9
(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。その後、ドライフィルムラミネーターを使用して蛍光シートの貼り替えを実施し、基材フィルムをポリフェニレンサルファイドフィルム“トレリナ3000”(東レ(株)製、平均膜厚50μm)へ変更した。照度測定を行った結果、比較例11に対して、相対照度が110となり、輝度向上効果が得られた。
<Preparation of phosphor sheet laminate>
Using a slit die coater, “Therapy” BX9 with phosphor composition 1 as a base material
It apply | coated on the mold release process surface (Toray Film Processing Co., Ltd. product, average film thickness of 50 micrometers), and it heated and dried at 120 degreeC for 30 minutes, and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 mm square. Then, the fluorescent sheet was replaced using a dry film laminator, and the base film was changed to a polyphenylene sulfide film “Torelina 3000” (manufactured by Toray Industries, Inc., average film thickness 50 μm). As a result of the illuminance measurement, relative illuminance was 110 compared to Comparative Example 11, and an effect of improving luminance was obtained.
 実施例20~27、比較例11~15(シリコーン微粒子あり、グラフトの効果、蛍光体シート)
 表9、11に記載の組成に変更した以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、評価を行った。結果を表9~12に示す。これらの実施例から、本発明の蛍光体組成物をシート状に形成してなる蛍光体シートであれば膜厚均一性が良好であり、輝度も大きく向上することがわかった。比較例10~14では膜厚均一性は不良であり、輝度も向上しなかった。
Examples 20 to 27, Comparative Examples 11 to 15 (with silicone fine particles, graft effect, phosphor sheet)
A phosphor composition was prepared in the same manner as in Example 19 except that the compositions described in Tables 9 and 11 were changed. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 9-12. From these examples, it was found that a phosphor sheet obtained by forming the phosphor composition of the present invention into a sheet has good film thickness uniformity and greatly improved luminance. In Comparative Examples 10 to 14, the film thickness uniformity was poor and the luminance was not improved.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例28~36、比較例16~20(シリコーン微粒子なし、グラフトの効果、蛍光体シート)
 シリコーン微粒子を添加せず、表13、15に記載の組成に変更した以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、評価を行った。結果を表13~16に示す。これらの実施例から、本発明の蛍光体組成物をシート状に形成してなる蛍光体シートであれば膜厚均一性は実用範囲であり、輝度も向上することがわかった。比較例16~20では膜厚均一性は不良であり、輝度も向上しなかった。
Examples 28 to 36, Comparative Examples 16 to 20 (no silicone fine particles, graft effect, phosphor sheet)
A phosphor composition was prepared in the same manner as in Example 19 except that the silicone fine particles were not added and the compositions shown in Tables 13 and 15 were changed. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 13-16. From these examples, it was found that if the phosphor sheet is formed by forming the phosphor composition of the present invention into a sheet shape, the film thickness uniformity is within the practical range and the luminance is also improved. In Comparative Examples 16 to 20, the film thickness uniformity was poor and the luminance was not improved.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例37(屈折率の効果、蛍光体シート)
 
 <蛍光体組成物の作製>
 遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、グラフト化例1の方法で得られた酸化チタン粒子9.52gにシリコーン樹脂1を1.58g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した後、屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.63であった。また、透明性は非常に良好であった。
Example 37 (refractive index effect, phosphor sheet)

<Preparation of phosphor composition>
Using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), 1.58 g of silicone resin 1 is added to 9.52 g of titanium oxide particles obtained by the method of grafting example 1, and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.63. Further, the transparency was very good.
 次に、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)にて、グラフト化例1の方法で得られた酸化チタン粒子47.57gにシリコーン樹脂1を7.93g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した。次にシリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを2.66g添加して混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物29を作製した。屈折率差|N1-N2|は0.17であった。この蛍光体組成物29を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 7.93 g of silicone resin 1 was added to 47.57 g of titanium oxide particles obtained by the method of grafting example 1 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.66 g of butyl carbitol were added and mixed. Then, using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming at 1000 rpm for 5 minutes, mixing and dispersing 6 times with 3 rolls, phosphor composition 29 Produced. The refractive index difference | N1−N2 | was 0.17. As a result of conducting a dischargeability test using this phosphor composition 29, resin was discharged from the die simultaneously with the start of discharge, and good dischargeability was confirmed.
 <蛍光体シート積層体の作製>
 スリットダイコーターを用いて蛍光体組成物29を基材として“セラピール”BX9(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。その後、ドライフィルムラミネーターを使用して蛍光シートの貼り替えを実施し、基材フィルムをポリフェニレンサルファイドフィルム“トレリナ3000”(東レ(株)製、平均膜厚50μm)へ変更した。照度測定を行った結果、比較例11に対して、相対照度が111となり、大きな輝度向上効果が得られた。
<Preparation of phosphor sheet laminate>
Using a slit die coater, the phosphor composition 29 as a base material was coated on a release treatment surface of “Therapy” BX9 (manufactured by Toray Film Processing Co., Ltd., average film thickness 50 μm), and heated at 120 ° C. for 30 minutes. It dried and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 square mm. Then, the fluorescent sheet was replaced using a dry film laminator, and the base film was changed to a polyphenylene sulfide film “Torelina 3000” (manufactured by Toray Industries, Inc., average film thickness 50 μm). As a result of the illuminance measurement, relative illuminance was 111 with respect to Comparative Example 11, and a large luminance improvement effect was obtained.
 実施例38(屈折率の効果、蛍光体シート)
 <蛍光体組成物の作製>
 遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、グラフト化例1の方法で得られた酸化チタン粒子12.0gにシリコーン樹脂1を0.6g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した後、屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.70であった。また、透明性は非常に良好であった。
Example 38 (refractive index effect, phosphor sheet)
<Preparation of phosphor composition>
Using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries Co., Ltd.), 0.6 g of silicone resin 1 is added to 12.0 g of titanium oxide particles obtained by the method of grafting example 1 and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.70. Further, the transparency was very good.
 次に、遊星式撹拌・脱泡装置にて、グラフト化例1の方法で得られた酸化チタン粒子60.0gにシリコーン樹脂1を3.0g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した。次にシリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを2.89g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物30を作製した。屈折率差|N1-N2|は0.10であった。この蛍光体組成物30を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 3.0 g of silicone resin 1 is added to and mixed with 60.0 g of titanium oxide particles obtained by the method of Grafting Example 1 using a planetary agitation / deaeration apparatus, and the mixture is agitated and removed at 1000 rpm for 3 minutes. Foamed. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.89 g of butyl carbitol were added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare a phosphor composition 30. The refractive index difference | N1-N2 | was 0.10. As a result of conducting a dischargeability test using this phosphor composition 30, resin was discharged from the die simultaneously with the start of discharge, and good dischargeability was confirmed.
 <蛍光体シート積層体の作製>
 スリットダイコーターを用いて蛍光体組成物30を基材として“セラピール”BX9
(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。その後、ドライフィルムラミネーターを使用して蛍光シートの貼り替えを実施し、基材フィルムをポリフェニレンサルファイドフィルム“トレリナ3000”(東レ(株)製、平均膜厚50μm)へ変更した。照度測定を行った結果、比較例11に対して、相対照度が115となり、大きな輝度向上効果が得られた。
<Preparation of phosphor sheet laminate>
"Serapeel" BX9 using phosphor composition 30 as a base material using a slit die coater
It apply | coated on the mold release process surface (Toray Film Processing Co., Ltd. product, average film thickness of 50 micrometers), and it heated and dried at 120 degreeC for 30 minutes, and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 mm square. Then, the fluorescent sheet was replaced using a dry film laminator, and the base film was changed to a polyphenylene sulfide film “Torelina 3000” (manufactured by Toray Industries, Inc., average film thickness 50 μm). As a result of the illuminance measurement, relative illuminance was 115 with respect to Comparative Example 11, and a large luminance improvement effect was obtained.
 実施例39(屈折率の効果、蛍光体シート)
 <蛍光体組成物の作製>
 遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、グラフト化例10の方法で得られた酸化チタン粒子7.94gにシリコーン樹脂1を2.26g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した後、屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.73であった。また、透明性は非常に良好であった。
Example 39 (refractive index effect, phosphor sheet)
<Preparation of phosphor composition>
Using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), 2.26 g of silicone resin 1 was added to 7.94 g of the titanium oxide particles obtained by the method of grafting Example 10 and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.73. Further, the transparency was very good.
 次に、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)にて、グラフト化例5の方法で得られた酸化チタン粒子39.67gにシリコーン樹脂1を11.33g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した。次にシリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを2.53g添加して混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物31を作製した。屈折率差|N1-N2|は0.07であった。この蛍光体組成物31を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 11.33 g of silicone resin 1 was added to 39.67 g of titanium oxide particles obtained by the method of grafting example 5 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.53 g of butyl carbitol were added and mixed. Then, using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming at 1000 rpm for 5 minutes, mixing and dispersing 6 times with three rolls, and phosphor composition 31 Produced. The refractive index difference | N1-N2 | was 0.07. As a result of conducting a discharge property test using this phosphor composition 31, resin was discharged from the die simultaneously with the start of discharge, and good discharge property was confirmed.
 <蛍光体シート積層体の作製>
 スリットダイコーターを用いて蛍光体組成物31を基材として“セラピール”BX9
(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。その後、ドライフィルムラミネーターを使用して蛍光シートの貼り替えを実施し、基材フィルムをポリフェニレンサルファイドフィルム“トレリナ3000”(東レ(株)製、平均膜厚50μm)へ変更した。照度測定を行った結果、比較例11に対して、相対照度が117となり、非常に大きな輝度向上効果が得られた。
<Preparation of phosphor sheet laminate>
"Serapeel" BX9 using phosphor composition 31 as a base material using a slit die coater
It apply | coated on the mold release process surface (Toray Film Processing Co., Ltd. product, average film thickness of 50 micrometers), and it heated and dried at 120 degreeC for 30 minutes, and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 mm square. Then, the fluorescent sheet was replaced using a dry film laminator, and the base film was changed to a polyphenylene sulfide film “Torelina 3000” (manufactured by Toray Industries, Inc., average film thickness 50 μm). As a result of the illuminance measurement, relative illuminance was 117 with respect to Comparative Example 11, and a very large luminance improvement effect was obtained.
 実施例40(屈折率の効果、蛍光体シート)
 <蛍光体組成物の作製>
 遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、グラフト化例10の方法で得られた酸化チタン粒子8.32gにシリコーン樹脂1を2.08g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した後、屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.75であった。また、透明性は非常に良好であった。
Example 40 (refractive index effect, phosphor sheet)
<Preparation of phosphor composition>
Using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), 2.08 g of silicone resin 1 was added to 8.32 g of the titanium oxide particles obtained by the method of grafting Example 10 and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.75. Further, the transparency was very good.
 次に、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)にて、グラフト化例5の方法で得られた酸化チタン粒子41.60gにシリコーン樹脂1を10.40g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した。次にシリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを2.56g添加して混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物32を作製した。屈折率差|N1-N2|は0.05であった。この蛍光体組成物32を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 10.40 g of silicone resin 1 was added to 41.60 g of titanium oxide particles obtained by the method of grafting example 5 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.56 g of butyl carbitol were added and mixed. Then, using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming at 1000 rpm for 5 minutes, mixing and dispersing six times with three rolls, the phosphor composition 32 is obtained. Produced. The refractive index difference | N1-N2 | was 0.05. As a result of a discharge property test using this phosphor composition 32, resin was discharged from the die simultaneously with the start of discharge, and good discharge property was confirmed.
 <蛍光体シート積層体の作製>
 スリットダイコーターを用いて蛍光体組成物32を基材として“セラピール”BX9
(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。その後、ドライフィルムラミネーターを使用して蛍光シートの貼り替えを実施し、基材フィルムをポリフェニレンサルファイドフィルム“トレリナ3000”(東レ(株)製、平均膜厚50μm)へ変更した。照度測定を行った結果、比較例11に対して、相対照度が119となり、非常に大きな輝度向上効果が得られた。
<Preparation of phosphor sheet laminate>
“Serapeel” BX9 using phosphor composition 32 as a base material using a slit die coater
It apply | coated on the mold release process surface (Toray Film Processing Co., Ltd. product, average film thickness of 50 micrometers), and it heated and dried at 120 degreeC for 30 minutes, and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 mm square. Then, the fluorescent sheet was replaced using a dry film laminator, and the base film was changed to a polyphenylene sulfide film “Torelina 3000” (manufactured by Toray Industries, Inc., average film thickness 50 μm). As a result of the illuminance measurement, relative illuminance was 119 with respect to Comparative Example 11, and a very large luminance improvement effect was obtained.
 実施例41(屈折率の効果、蛍光体シート)
 <蛍光体組成物の作製>
 遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、グラフト化例10の方法で得られた酸化チタン粒子9.52gにシリコーン樹脂1を1.58g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した後、屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.78であった。また、透明性は非常に良好であった。
Example 41 (refractive index effect, phosphor sheet)
<Preparation of phosphor composition>
Using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), 1.58 g of silicone resin 1 was added to 9.52 g of titanium oxide particles obtained by the method of grafting Example 10 and mixed. The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.78. Further, the transparency was very good.
 次に、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)にて、グラフト化例1の方法で得られた酸化チタン粒子47.57gにシリコーン樹脂1を7.93g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した。次にシリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを2.66g添加して混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物33を作製した。屈折率差|N1-N2|は0.02であった。この蛍光体組成物33を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 7.93 g of silicone resin 1 was added to 47.57 g of titanium oxide particles obtained by the method of grafting example 1 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.66 g of butyl carbitol were added and mixed. Then, using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming at 1000 rpm for 5 minutes, mixing and dispersing six times with three rolls, the phosphor composition 33 is obtained. Produced. The refractive index difference | N1−N2 | was 0.02. As a result of conducting a dischargeability test using this phosphor composition 33, resin was discharged from the die simultaneously with the start of discharge, and good dischargeability was confirmed.
 <蛍光体シート積層体の作製>
 スリットダイコーターを用いて蛍光体組成物33を基材として“セラピール”BX9
(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。その後、ドライフィルムラミネーターを使用して蛍光シートの貼り替えを実施し、基材フィルムをポリフェニレンサルファイドフィルム“トレリナ3000”(東レ(株)製、平均膜厚50μm)へ変更した。照度測定を行った結果、比較例11に対して、相対照度が122となり、非常に大きな輝度向上効果が得られた。
<Preparation of phosphor sheet laminate>
“Serapeel” BX9 using phosphor composition 33 as a base material using a slit die coater
It apply | coated on the mold release process surface (Toray Film Processing Co., Ltd. product, average film thickness of 50 micrometers), and it heated and dried at 120 degreeC for 30 minutes, and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 mm square. Then, the fluorescent sheet was replaced using a dry film laminator, and the base film was changed to a polyphenylene sulfide film “Torelina 3000” (manufactured by Toray Industries, Inc., average film thickness 50 μm). As a result of the illuminance measurement, relative illuminance was 122 with respect to Comparative Example 11, and a very large luminance improvement effect was obtained.
 比較例21(屈折率の効果、蛍光体シート)
 <蛍光体組成物の作製>
 シリコーン樹脂2を用い、金属化合物粒子を用いずに屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.54であった。また、透明性は非常に良好であった。
Comparative Example 21 (refractive index effect, phosphor sheet)
<Preparation of phosphor composition>
Using silicone resin 2, a sample for refractive index measurement and a sample for transparency evaluation were prepared without using metal compound particles. As a result of the refractive index evaluation, the average refractive index N1 was 1.54. Further, the transparency was very good.
 次にシリコーン樹脂2を26.67gとり出し、シリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを1.8g添加して混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物34を作製した。屈折率差|N1-N2|は0.26であった。この蛍光体組成物34を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 26.67 g of silicone resin 2 was taken out, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 1.8 g of butyl carbitol were added and mixed. Then, using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming at 1000 rpm for 5 minutes, mixing and dispersing six times with three rolls, the phosphor composition 34 is obtained. Produced. The refractive index difference | N1−N2 | was 0.26. As a result of conducting a dischargeability test using this phosphor composition 34, resin was discharged from the die simultaneously with the start of discharge, and good dischargeability was confirmed.
 <蛍光体シート積層体の作製>
 スリットダイコーターを用いて蛍光体組成物34を基材として“セラピール”BX9
(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。また照度測定を行った結果、比較例11に対して、相対照度が90となり、輝度向上効果が得られなかった。
<Preparation of phosphor sheet laminate>
"Serapeel" BX9 using phosphor composition 34 as a base material using a slit die coater
It apply | coated on the mold release process surface (Toray Film Processing Co., Ltd. product, average film thickness of 50 micrometers), and it heated and dried at 120 degreeC for 30 minutes, and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 mm square. As a result of the illuminance measurement, the relative illuminance was 90 with respect to Comparative Example 11, and the luminance improvement effect was not obtained.
 比較例22(屈折率の効果、蛍光体シート)
 <蛍光体組成物の作製>
 遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、グラフト化例1の方法で得られた酸化チタン粒子3.88にシリコーン樹脂1を3.8g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した後、屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.58であった。また、透明性は非常に良好であった。
Comparative Example 22 (refractive index effect, phosphor sheet)
<Preparation of phosphor composition>
Using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), 3.8 g of silicone resin 1 is added to and mixed with titanium oxide particles 3.88 obtained by the method of grafting example 1, The mixture was stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%, and then a sample for refractive index measurement and a sample for transparency evaluation were prepared. As a result of the refractive index evaluation, the average refractive index N1 was 1.58. Further, the transparency was very good.
 次に、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)にて、グラフト化例1の方法で得られた酸化チタン粒子19.0gにシリコーン樹脂1を19.0g添加して混合し、1000rpmで3分間撹拌・脱泡した。所望の時間放置した後、エバポレーターによって溶剤を除去して固形分濃度80wt%のサンプルを作製した。次にシリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを2.14g添加して混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物35を作製した。屈折率差|N1-N2|は0.22であった。この蛍光体組成物35を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 19.0 g of silicone resin 1 was added to 19.0 g of the titanium oxide particles obtained by the method of grafting example 1 using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries). The mixture was mixed and stirred and degassed at 1000 rpm for 3 minutes. After leaving for a desired time, the solvent was removed by an evaporator to prepare a sample having a solid content concentration of 80 wt%. Next, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 2.14 g of butyl carbitol were added and mixed. Then, using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming at 1000 rpm for 5 minutes, mixing and dispersing 6 times with 3 rolls, phosphor composition 35 Produced. The refractive index difference | N1-N2 | was 0.22. As a result of conducting a dischargeability test using this phosphor composition 35, resin was discharged from the die simultaneously with the start of discharge, and good dischargeability was confirmed.
 <蛍光体シート積層体の作製>
 スリットダイコーターを用いて蛍光体組成物35を基材として“セラピール”BX9
(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。その後、ドライフィルムラミネーターを使用して蛍光シートの貼り替えを実施し、基材フィルムをポリフェニレンサルファイドフィルム“トレリナ3000”(東レ(株)製、平均膜厚50μm)へ変更した。照度測定を行った結果、比較例11に対して、相対照度が100となり、輝度向上効果が得られなかった。
<Preparation of phosphor sheet laminate>
"Serapeel" BX9 using phosphor composition 35 as a base material using a slit die coater
It apply | coated on the mold release process surface (Toray Film Processing Co., Ltd. product, average film thickness of 50 micrometers), and it heated and dried at 120 degreeC for 30 minutes, and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 mm square. Then, the fluorescent sheet was replaced using a dry film laminator, and the base film was changed to a polyphenylene sulfide film “Torelina 3000” (manufactured by Toray Industries, Inc., average film thickness 50 μm). As a result of the illuminance measurement, relative illuminance was 100 with respect to Comparative Example 11, and the luminance enhancement effect was not obtained.
 比較例23(屈折率の効果、蛍光体シート)
 <蛍光体組成物の作製>
 シリコーン樹脂3を用い、金属化合物粒子を用いずに屈折率測定用サンプルおよび透明性評価用サンプルを作製した。屈折率評価を行った結果、平均屈折率N1は1.40であった。また、透明性は非常に良好であった。
Comparative Example 23 (refractive index effect, phosphor sheet)
<Preparation of phosphor composition>
Using silicone resin 3, a sample for refractive index measurement and a sample for transparency evaluation were prepared without using metal compound particles. As a result of the refractive index evaluation, the average refractive index N1 was 1.40. Further, the transparency was very good.
 次にシリコーン樹脂3を26.67gとり出し、シリコーン微粒子を6.67g、蛍光体を26.67g、ブチルカルビトールを1.8g添加して混合した。添加して混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物36を作製した。屈折率差|N1-N2|は0.40であった。この蛍光体組成物36を用いて吐出性試験を行った結果、吐出スタートと同時に口金から樹脂が吐出され、良好な吐出性を確認した。 Next, 26.67 g of silicone resin 3 was taken out, 6.67 g of silicone fine particles, 26.67 g of phosphor, and 1.8 g of butyl carbitol were added and mixed. Added and mixed. Then, using a planetary stirring and defoaming device “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming at 1000 rpm for 5 minutes, mixing and dispersing six times with three rolls, the phosphor composition 36 is obtained. Produced. The refractive index difference | N1−N2 | was 0.40. As a result of conducting a discharge property test using this phosphor composition 36, resin was discharged from the die simultaneously with the start of discharge, and good discharge property was confirmed.
 <蛍光体シートの作製>
 スリットダイコーターを用いて蛍光体組成物36を基材として“セラピール”BX9
(東レフィルム加工(株)製、平均膜厚50μm)の離型処理面上に塗布し、120℃で30分間加熱、乾燥し、80μm、100mm角の蛍光体シート積層体を得た。また照度測定を行った結果、比較例11に対して、相対照度が80となり、輝度向上効果が得られなかった。
<Preparation of phosphor sheet>
“Serapeel” BX9 using phosphor composition 36 as a base material using a slit die coater
It apply | coated on the mold release process surface (Toray Film Processing Co., Ltd. product, average film thickness of 50 micrometers), and it heated and dried at 120 degreeC for 30 minutes, and obtained the fluorescent substance sheet laminated body of 80 micrometers and a 100 mm square. As a result of the illuminance measurement, the relative illuminance was 80 with respect to Comparative Example 11, and the luminance enhancement effect was not obtained.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例42~47(溶剤の効果、蛍光体シート)
 表19に記載の溶剤に変更した以外はグラフト化例1と同様にしてグラフト化された酸化チタン粒子を得た。これを用いた以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、評価を行った。結果を表19、20に示す。これらの実施例から、本発明の蛍光体組成物をシート状に形成してなる蛍光体シートであればペーストの透明性も良好であり、輝度も向上することがわかった。
Examples 42 to 47 (Solvent effect, phosphor sheet)
Grafted titanium oxide particles were obtained in the same manner as Grafting Example 1 except that the solvents listed in Table 19 were used. A phosphor composition was prepared in the same manner as in Example 19 except that this was used. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 19 and 20. From these examples, it was found that a phosphor sheet formed by forming the phosphor composition of the present invention into a sheet shape has good paste transparency and improved luminance.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例48~52、比較例24(高屈折率ナノ粒子の効果、蛍光体シート)
 表22に記載の金属化合物粒子に変更した以外はグラフト化例1と同様にしてグラフト化されたナノ粒子を得た。これを用いた以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、評価を行った。結果を表21、22に示す。これらの実施例から、本発明の蛍光体組成物をシート状に形成してなる蛍光体シートであれば輝度が向上することがわかった。比較例24では輝度は向上しなかった。
Examples 48 to 52, Comparative Example 24 (effect of high refractive index nanoparticles, phosphor sheet)
Grafted nanoparticles were obtained in the same manner as Grafting Example 1 except that the metal compound particles listed in Table 22 were used. A phosphor composition was prepared in the same manner as in Example 19 except that this was used. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 21 and 22. From these examples, it was found that the luminance was improved if the phosphor sheet was formed by forming the phosphor composition of the present invention into a sheet shape. In Comparative Example 24, the luminance was not improved.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 実施例19、53~57、比較例25~28(高屈折率ナノ粒子の粒径の効果、蛍光体シート)
 表23に記載の金属化合物粒子に変更した以外はグラフト化例1と同様にしてグラフト化されたナノ粒子を得た。これを用いた以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、評価を行った。結果を表23、24に示す。これらの実施例から、本発明の蛍光体組成物をシート状に形成してなる蛍光体シートであれば輝度が向上することがわかった。比較例25~28では輝度は向上しなかった。
Examples 19, 53 to 57, Comparative Examples 25 to 28 (Effect of particle size of high refractive index nanoparticles, phosphor sheet)
Grafted nanoparticles were obtained in the same manner as Grafting Example 1, except that the metal compound particles listed in Table 23 were used. A phosphor composition was prepared in the same manner as in Example 19 except that this was used. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 23 and 24. From these examples, it was found that the luminance was improved if the phosphor sheet was formed by forming the phosphor composition of the present invention into a sheet shape. In Comparative Examples 25 to 28, the luminance was not improved.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 実施例58~64(基材の効果、蛍光体シート)
 実施例19と同様の操作で蛍光体組成物を作製した。その後、表25記載の基材に変更した以外は実施例19と同様の操作での蛍光体シート積層体を作製し、評価を行った。結果を表25に示す。実施例58~64は、比較例11に対して膜厚均一性が良好であった。また照度測定を行った結果、比較例11に対して、実施例58~64は輝度向上効果が得られた。これらの結果から、基材を変更しても輝度への効果は変わらないことがわかった。
Examples 58 to 64 (Effect of base material, phosphor sheet)
A phosphor composition was prepared in the same manner as in Example 19. Thereafter, a phosphor sheet laminate was prepared and evaluated in the same manner as in Example 19 except that the base material described in Table 25 was used. The results are shown in Table 25. In Examples 58 to 64, the film thickness uniformity was better than that of Comparative Example 11. In addition, as a result of the illuminance measurement, in comparison with Comparative Example 11, Examples 58 to 64 obtained an effect of improving luminance. From these results, it was found that changing the base material did not change the effect on luminance.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 実施例65~71(蛍光体シート膜厚の効果、蛍光体シート)
 実施例19と同様の操作で蛍光体組成物を作製した。その後、表26に記載のシート膜厚に変更した以外は実施例19と同様の操作で蛍光体シート積層体を作製し、評価を行った。結果を表26に示す。耐熱性試験を行なった結果、膜厚が厚くなるにしたがって耐熱性が悪くなる傾向が確認できた。また照度測定を行った結果、比較例11に対して、実施例65~71は輝度が向上することがわかった。
Examples 65 to 71 (Effect of phosphor sheet thickness, phosphor sheet)
A phosphor composition was prepared in the same manner as in Example 19. Thereafter, a phosphor sheet laminate was produced and evaluated in the same manner as in Example 19 except that the sheet thickness was changed to that shown in Table 26. The results are shown in Table 26. As a result of the heat resistance test, it was confirmed that the heat resistance tends to deteriorate as the film thickness increases. Further, as a result of the illuminance measurement, it was found that the luminance was improved in Examples 65 to 71 as compared with Comparative Example 11.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 実施例72(高屈折率ナノ粒子の効果、蛍光体シート)
 表19に記載の金属化合物粒子に変更した以外はグラフト化例1と同様にしてグラフト化されたナノ粒子を得た。これを用いた以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、評価を行った。結果を表28に示す。実施例72から、本発明の蛍光体組成物をシート状に形成してなる蛍光体シートであれば輝度が向上することがわかった。
Example 72 (Effect of high refractive index nanoparticles, phosphor sheet)
Grafted nanoparticles were obtained in the same manner as Grafting Example 1, except that the metal compound particles listed in Table 19 were used. A phosphor composition was prepared in the same manner as in Example 19 except that this was used. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Table 28. From Example 72, it turned out that a brightness | luminance will improve if it is a fluorescent substance sheet formed by forming the fluorescent substance composition of this invention in a sheet form.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 実施例19、73~82、比較例14(アルコキシシラン化合物のモル比の効果、蛍光体シート)
 表29、31に記載のグラフト方法に変更した以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、評価を行った。結果を表29~32に示す。取り扱い性を評価した結果、比較例11に対して、実施例19、73~82は実用上問題ない結果が得られ、特に実施例19、73~75は、良好な取り扱い性であった。また照度測定を行った結果、比較例11に対して、実施例19、73~82は大きな輝度向上効果が得られた。
Examples 19, 73 to 82, Comparative Example 14 (Effect of molar ratio of alkoxysilane compound, phosphor sheet)
A phosphor composition was prepared in the same manner as in Example 19 except that the grafting method described in Tables 29 and 31 was used. Then, the fluorescent substance sheet laminated body by the operation similar to Example 19 was produced, and evaluation was performed. The results are shown in Tables 29-32. As a result of evaluating the handleability, Examples 19 and 73 to 82 obtained practically no problem with respect to Comparative Example 11, and Examples 19, 73 to 75 were particularly excellent in handleability. Further, as a result of the illuminance measurement, Examples 19, 73 to 82 showed a great brightness improvement effect as compared with Comparative Example 11.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 実施例19、83~91、比較例11、13、14、29~35(シリコーン微粒子あり、粘弾性挙動、蛍光体シート)
 表33、35、37に記載のマトリックス樹脂に変更した以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、粘弾性挙動及び各種評価を行った。結果を表33~38に示す。密着性試験を行なった結果、本発明の粘弾性挙動の範囲に入っている実施例19、83~91は、良好な密着性が得られたのに対し、比較例11、13、14、29~35は密着不良の結果であった。また照度測定を行った結果、比較例11に対して、実施例19、83~91は輝度向上効果が得られた。比較例11、13、14、29~35は輝度向上効果が得られなかった。これらの結果から、本発明の蛍光体シートであれば、輝度向上効果が得られることがわかった。
Examples 19, 83 to 91, Comparative Examples 11, 13, 14, 29 to 35 (with silicone fine particles, viscoelastic behavior, phosphor sheet)
A phosphor composition was prepared in the same manner as in Example 19 except that the matrix resin described in Tables 33, 35, and 37 was used. Then, the fluorescent substance sheet laminated body by the same operation as Example 19 was produced, and viscoelastic behavior and various evaluation were performed. The results are shown in Tables 33-38. As a result of the adhesion test, Examples 19, 83 to 91, which are within the range of the viscoelastic behavior of the present invention, showed good adhesion, whereas Comparative Examples 11, 13, 14, 29 ~ 35 was the result of poor adhesion. Further, as a result of the illuminance measurement, the luminance improvement effect was obtained in Examples 19 and 83 to 91 with respect to Comparative Example 11. In Comparative Examples 11, 13, 14, and 29 to 35, the luminance improvement effect was not obtained. From these results, it was found that the brightness enhancement effect can be obtained with the phosphor sheet of the present invention.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 実施例28、92~96、比較例16、18、19、36(シリコーン微粒子なし、粘弾性挙動、蛍光体シート)
 シリコーン微粒子を添加せず、表39に記載のマトリックス樹脂に変更した以外は実施例19と同様の操作で蛍光体組成物を作製した。その後、実施例19と同様の操作での蛍光体シート積層体を作製し、粘弾性挙動及び各種評価を行った。結果を表39、40に示す。密着性試験を行なった結果、本発明の粘弾性挙動の範囲に入っている実施例28、92~96は、良好な密着性が得られたのに対し、比較例16、18、19、36は密着不良の結果であった。また照度測定を行った結果、比較例11に対して、実施例28、92~96は輝度向上効果が得られた。比較例16、18、19、36は輝度向上効果が得られなかった。これらの結果から、本発明の蛍光体シートであれば、輝度向上効果が得られることがわかった。
Examples 28, 92 to 96, Comparative Examples 16, 18, 19, 36 (no silicone fine particles, viscoelastic behavior, phosphor sheet)
A phosphor composition was prepared in the same manner as in Example 19 except that the silicone fine particles were not added and the matrix resin described in Table 39 was used. Then, the fluorescent substance sheet laminated body by the same operation as Example 19 was produced, and viscoelastic behavior and various evaluation were performed. The results are shown in Tables 39 and 40. As a result of the adhesion test, Examples 28 and 92 to 96, which are within the range of the viscoelastic behavior of the present invention, showed good adhesion, whereas Comparative Examples 16, 18, 19, and 36. Was the result of poor adhesion. As a result of measuring the illuminance, the brightness improvement effect was obtained in Examples 28 and 92 to 96 with respect to Comparative Example 11. In Comparative Examples 16, 18, 19, and 36, the luminance improvement effect was not obtained. From these results, it was found that the brightness enhancement effect can be obtained with the phosphor sheet of the present invention.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
1   LEDチップ
2   蛍光体シート
3   電極
4   蛍光体組成物
5   リフレクター
6   透明封止材
7   実装基板
8   金バンプ
9   透明接着剤
10  基材
11  照度計
12  測定サンプル
13  拡散シート
14  スタンド
15  遮光円筒
16  遮光板
17  LED光源
18  パッケージフレーム
19  LEDパッケージ
20  基材
21  仮固定シート
22  加熱圧着ツール
23  LEDチップを表面に形成したウェハ
24  蛍光体シート付きLEDチップ
25  基材
26  蛍光体シート積層体
27  パッケージ基板
28  パッケージ電極
29  両面粘着テープ
30  台座
31  上部チャンバー
32  下部チャンバー
33  ダイアフラム
35  真空ダイアフラムラミネーター
34  吸気/排気口
36  切断部分
37  蛍光体シート付きLEDチップ
38,39 LEDパッケージ
101 マトリックス樹脂
102 金属化合物粒子
103 シリコーン微粒子
104 グラフト化された金属化合物粒子
105 蛍光体
DESCRIPTION OF SYMBOLS 1 LED chip 2 Phosphor sheet 3 Electrode 4 Phosphor composition 5 Reflector 6 Transparent sealing material 7 Mounting board 8 Gold bump 9 Transparent adhesive 10 Base material 11 Illuminometer 12 Measurement sample 13 Diffusion sheet 14 Stand 15 Light shielding cylinder 16 Light shielding Plate 17 LED light source 18 Package frame 19 LED package 20 Base material 21 Temporary fixing sheet 22 Thermocompression bonding tool 23 Wafer with LED chip formed on the surface 24 LED chip with phosphor sheet 25 Base material 26 Phosphor sheet laminate 27 Package substrate 28 Package electrode 29 Double-sided adhesive tape 30 Base 31 Upper chamber 32 Lower chamber 33 Diaphragm 35 Vacuum diaphragm muraminator 34 Intake / exhaust port 36 Cutting part 37 LED chip with phosphor sheet 38, 39 LED pad Cage 101 Matrix resin 102 Metal compound particle 103 Silicone fine particle 104 Grafted metal compound particle 105 Phosphor

Claims (35)

  1. 蛍光体と、マトリックス樹脂と、金属化合物粒子を含有する蛍光体組成物であって、前記金属化合物粒子の屈折率が1.7以上であり、かつ、平均粒子径が1~50nmであり、前記金属化合物粒子と前記マトリックス樹脂の平均屈折率N1が、前記蛍光体の屈折率N2と以下の関係を満たし、前記金属化合物粒子がグラフト化されていることを特徴とする蛍光体組成物。
    0.20≧|N1-N2|
    A phosphor composition containing a phosphor, a matrix resin, and metal compound particles, wherein the metal compound particles have a refractive index of 1.7 or more and an average particle diameter of 1 to 50 nm, The phosphor composition, wherein the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship with the refractive index N2 of the phosphor, and the metal compound particles are grafted.
    0.20 ≧ | N1-N2 |
  2. さらにシリコーン微粒子を含有する請求項1記載の蛍光体組成物。 The phosphor composition according to claim 1, further comprising silicone fine particles.
  3. 前記シリコーン微粒子の表面が前記グラフト化された金属化合物粒子で被覆されている請求項2記載の蛍光体組成物。 The phosphor composition according to claim 2, wherein the surface of the silicone fine particles is coated with the grafted metal compound particles.
  4. 前記金属化合物粒子がアルコキシシランの縮合物でグラフト化されている請求項1~3のいずれか記載の蛍光体組成物。 4. The phosphor composition according to claim 1, wherein the metal compound particles are grafted with an alkoxysilane condensate.
  5. 前記金属化合物粒子がアルコキシシランの縮合物でグラフト化されており、前記アルコキシシランがフェニル基含有アルコキシシランおよびメチル基含有アルコキシシランを含む請求項1~4のいずれか記載の蛍光体組成物。 The phosphor composition according to any one of claims 1 to 4, wherein the metal compound particles are grafted with a condensate of alkoxysilane, and the alkoxysilane includes a phenyl group-containing alkoxysilane and a methyl group-containing alkoxysilane.
  6. 前記金属化合物粒子が、金属化合物粒子の存在下で、アルコキシシラン化合物を溶媒中で酸触媒により加水分解した後、該加水分解物を縮合反応させることによってグラフト化されている請求項1~5のいずれか記載の蛍光体組成物。 The metal compound particles are grafted by hydrolyzing an alkoxysilane compound in a solvent with an acid catalyst in the presence of the metal compound particles, and then subjecting the hydrolyzate to a condensation reaction. The phosphor composition according to any one of the above.
  7. 前記アルコキシシラン化合物が、3官能性アルコキシシラン化合物を100~70モル%、2官能性アルコキシシラン化合物を0~30モル%含むことを特徴とする請求項6に記載の蛍光体組成物。 The phosphor composition according to claim 6, wherein the alkoxysilane compound contains 100 to 70 mol% of a trifunctional alkoxysilane compound and 0 to 30 mol% of a bifunctional alkoxysilane compound.
  8. 前記金属化合物粒子がアルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子、ジルコニウム化合物粒子およびニオブ化合物粒子からなる群より選ばれる少なくとも1種の金属化合物粒子である請求項1~7のいずれか記載の蛍光体組成物。 The fluorescence according to any one of claims 1 to 7, wherein the metal compound particles are at least one metal compound particle selected from the group consisting of aluminum compound particles, tin compound particles, titanium compound particles, zirconium compound particles and niobium compound particles. Body composition.
  9. 前記マトリックス樹脂がシリコーン樹脂である請求項1~8のいずれか記載の蛍光体組成物。 The phosphor composition according to any one of claims 1 to 8, wherein the matrix resin is a silicone resin.
  10. 前記マトリックス樹脂が、シロキサン結合を有し、かつアリール基が直結したケイ素原子を含有するシリコーン樹脂である請求項9記載の蛍光体組成物。 The phosphor composition according to claim 9, wherein the matrix resin is a silicone resin having a siloxane bond and containing a silicon atom to which an aryl group is directly bonded.
  11. 前記マトリックス樹脂が、シロキサン結合を有し、かつナフチル基が直結したケイ素原子を含有する請求項10記載の蛍光体組成物。 The phosphor composition according to claim 10, wherein the matrix resin contains a silicon atom having a siloxane bond and having a naphthyl group directly bonded thereto.
  12. 請求項1~11のいずれか記載の蛍光体組成物をシート状に形成してなる蛍光体シート。 A phosphor sheet formed by forming the phosphor composition according to any one of claims 1 to 11 into a sheet shape.
  13. 蛍光体と、マトリックス樹脂と、金属化合物粒子を含有する蛍光体シートであって、前記金属化合物粒子の屈折率が1.7以上であり、かつ、平均粒子径が1~50nmであり、前記金属化合物粒子がグラフト化されており、前記金属化合物粒子と前記マトリックス樹脂の平均屈折率N1が、前記蛍光体の屈折率N2と以下の関係(i)を満たし、シートの粘弾性挙動が以下の関係(ii)、(iii)および(iv)を満たすことを特徴とする蛍光体シート。
    <屈折率の関係>
    (i)0.20≧|N1-N2|
    <粘弾性挙動>
    (ii)温度25℃において貯蔵弾性率G’が1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1
    (iii)温度100℃において貯蔵弾性率G’が1.0×10Pa≦ G’<1.0×10Paであり、かつtanδ≧1
    (iv)温度200℃において貯蔵弾性率G’が1.0×10Pa≦ G’≦1.0×10Paであり、かつtanδ<1
    A phosphor sheet containing a phosphor, a matrix resin, and metal compound particles, wherein the metal compound particles have a refractive index of 1.7 or more and an average particle diameter of 1 to 50 nm. Compound particles are grafted, the average refractive index N1 of the metal compound particles and the matrix resin satisfies the following relationship (i) with the refractive index N2 of the phosphor, and the viscoelastic behavior of the sheet is A phosphor sheet characterized by satisfying (ii), (iii) and (iv).
    <Refractive index relationship>
    (I) 0.20 ≧ | N1-N2 |
    <Viscoelastic behavior>
    (Ii) The storage elastic modulus G ′ is 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa at a temperature of 25 ° C. and tan δ <1
    (Iii) Storage modulus G ′ is 1.0 × 10 2 Pa ≦ G ′ <1.0 × 10 4 Pa at a temperature of 100 ° C. and tan δ ≧ 1
    (Iv) The storage elastic modulus G ′ is 1.0 × 10 4 Pa ≦ G ′ ≦ 1.0 × 10 6 Pa at a temperature of 200 ° C. and tan δ <1
  14. さらにシリコーン微粒子を含有する請求項13記載の蛍光体シート。 The phosphor sheet according to claim 13, further comprising silicone fine particles.
  15. 前記シリコーン微粒子の表面が前記グラフト化された金属化合物粒子で被覆されている請求項14記載の蛍光体シート。 The phosphor sheet according to claim 14, wherein the surface of the silicone fine particles is coated with the grafted metal compound particles.
  16. 前記金属化合物粒子がアルコキシシランの縮合物でグラフト化されている請求項13~15のいずれか記載の蛍光体シート。 The phosphor sheet according to any one of claims 13 to 15, wherein the metal compound particles are grafted with a condensate of alkoxysilane.
  17. 前記金属化合物粒子がアルコキシシランの縮合物でグラフト化されており、前記アルコキシシランがフェニル基含有アルコキシシランおよびメチル基含有アルコキシシランを含む請求項13~16のいずれか記載の蛍光体シート。  The phosphor sheet according to any one of claims 13 to 16, wherein the metal compound particles are grafted with a condensate of alkoxysilane, and the alkoxysilane includes a phenyl group-containing alkoxysilane and a methyl group-containing alkoxysilane.
  18. 前記金属化合物粒子が、金属化合物粒子の存在下で、アルコキシシラン化合物を溶媒中で酸触媒により加水分解した後、該加水分解物を縮合反応させることによってグラフト化されている請求項13~17のいずれか記載の蛍光体シート。 The metal compound particles are grafted by hydrolyzing an alkoxysilane compound in a solvent with an acid catalyst in the presence of the metal compound particles and then subjecting the hydrolyzate to a condensation reaction. The phosphor sheet according to any one of the above.
  19. 前記アルコキシシラン化合物が、3官能性アルコキシシラン化合物を100~70モル%、2官能性アルコキシシラン化合物を0~30モル%含むことを特徴とする請求項18に記載の蛍光体シート。 The phosphor sheet according to claim 18, wherein the alkoxysilane compound contains 100 to 70 mol% of a trifunctional alkoxysilane compound and 0 to 30 mol% of a bifunctional alkoxysilane compound.
  20. 前記金属化合物粒子がアルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子、ジルコニウム化合物粒子およびニオブ化合物粒子からなる群より選ばれる少なくとも1種の金属化合物粒子である請求項13~19のいずれか記載の蛍光体シート。 The fluorescence according to any one of claims 13 to 19, wherein the metal compound particles are at least one metal compound particle selected from the group consisting of aluminum compound particles, tin compound particles, titanium compound particles, zirconium compound particles and niobium compound particles. Body sheet.
  21. 前記マトリックス樹脂がシリコーン樹脂である請求項13~20のいずれか記載の蛍光体シート。 The phosphor sheet according to any one of claims 13 to 20, wherein the matrix resin is a silicone resin.
  22. 前記マトリックス樹脂が、シロキサン結合を有し、かつアリール基が直結したケイ素原子を含有する請求項21記載の蛍光体シート。 The phosphor sheet according to claim 21, wherein the matrix resin contains a silicon atom having a siloxane bond and an aryl group directly bonded thereto.
  23. 前記マトリックス樹脂が、シロキサン結合を有し、かつナフチル基が直結したケイ素原子を含有する請求項22記載の蛍光体シート。 The phosphor sheet according to claim 22, wherein the matrix resin contains a silicon atom having a siloxane bond and having a naphthyl group directly bonded thereto.
  24. シートの膜厚が10~1000μmである請求項13~23のいずれかに記載の蛍光体シート。 The phosphor sheet according to any one of claims 13 to 23, wherein the thickness of the sheet is 10 to 1000 µm.
  25. 基材と、請求項12~24のいずれか記載の蛍光体シートを含有する蛍光体シート積層体。 A phosphor sheet laminate comprising a substrate and the phosphor sheet according to any one of claims 12 to 24.
  26. 前記基材がガラスである請求項25記載の蛍光体シート積層体。 The phosphor sheet laminate according to claim 25, wherein the substrate is glass.
  27. 前記基材がポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、ポリプロピレン(PP)からなる群より選ばれるプラスチックフィルムである請求項25に記載の蛍光体シート積層体。 The phosphor sheet laminate according to claim 25, wherein the substrate is a plastic film selected from the group consisting of polyethylene terephthalate (PET), polyphenylene sulfide (PPS), and polypropylene (PP).
  28. LEDチップの発光面に請求項12~24のいずれかに記載の蛍光体シートを備えた蛍光体シート付きLEDチップ。 An LED chip with a phosphor sheet comprising the phosphor sheet according to any one of claims 12 to 24 on a light emitting surface of the LED chip.
  29. 請求項1~11のいずれかに記載の蛍光体組成物を用いたLEDパッケージ。  An LED package using the phosphor composition according to any one of claims 1 to 11.
  30. 請求項12~24のいずれかに記載の蛍光体シートを用いたLEDパッケージ。 An LED package using the phosphor sheet according to any one of claims 12 to 24.
  31. 請求項1~11のいずれかに記載の蛍光体組成物を用いたLEDパッケージの製造方法であって、(A)前記蛍光体組成物をパッケージフレームに注入する工程、及び(B)前記工程の後、封止材でLEDパッケージを封止する工程を少なくとも含むLEDパッケージの製造方法。 A method for manufacturing an LED package using the phosphor composition according to any one of claims 1 to 11, comprising: (A) injecting the phosphor composition into a package frame; and (B) Then, the manufacturing method of an LED package including the process of sealing an LED package with a sealing material at least.
  32. 請求項12~24のいずれかに記載の蛍光体シートを用いたLEDパッケージの製造方法であって、(A)前記蛍光体シートの一の区画を、一のLEDチップの発光面に対向させる位置合わせ工程、および(B)加熱圧着ツールにより加熱しながら加圧して前記シートの前記一の区画と前記一のLEDチップの発光面を接着させる接着工程を少なくとも含むLEDパッケージの製造方法。 25. A method of manufacturing an LED package using the phosphor sheet according to any one of claims 12 to 24, wherein (A) a position where one section of the phosphor sheet faces a light emitting surface of one LED chip. An LED package manufacturing method including at least a bonding step, and (B) an adhesion step in which the one section of the sheet and the light emitting surface of the one LED chip are bonded while being heated by a thermocompression bonding tool.
  33. 前記(A)の工程が、前記蛍光体シートの一の区画の上面および下面のうち高屈折率ナノ粒子の濃度の大きい側の面を前記一のLEDチップの発光面に対向させる位置合わせ工程である請求項32記載のLEDパッケージの製造方法。 The step (A) is an alignment step in which the surface on the higher concentration side of the high refractive index nanoparticles among the upper and lower surfaces of one section of the phosphor sheet is opposed to the light emitting surface of the one LED chip. 33. A method of manufacturing an LED package according to claim 32.
  34. 請求項12~24のいずれかに記載の蛍光体シートを用いたLEDパッケージの製造方法であって、LEDチップの発光面を前記蛍光体シートで被覆する工程を含むLEDパッケージの製造方法。 An LED package manufacturing method using the phosphor sheet according to any one of claims 12 to 24, comprising a step of covering a light emitting surface of an LED chip with the phosphor sheet.
  35. LEDチップの発光面が単一平面ではないことを特徴とする請求項32~34のいずれか記載のLEDパッケージの製造方法。 The method for manufacturing an LED package according to any one of claims 32 to 34, wherein the light emitting surface of the LED chip is not a single plane.
PCT/JP2014/077914 2013-10-24 2014-10-21 Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package WO2015060289A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480057773.1A CN105765744B (en) 2013-10-24 2014-10-21 Fluorescencer composition, fluorophor sheet material, fluorophor sheet material lamilate and the LED chip, LED package and its manufacturing method that have used them
KR1020167004238A KR102035511B1 (en) 2013-10-24 2014-10-21 Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package
JP2014558340A JPWO2015060289A1 (en) 2013-10-24 2014-10-21 Phosphor composition, phosphor sheet, phosphor sheet laminate, LED chip using them, LED package, and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013220769 2013-10-24
JP2013-220769 2013-10-24
JP2014-047185 2014-03-11
JP2014047185 2014-03-11
JP2014096588 2014-05-08
JP2014-096588 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015060289A1 true WO2015060289A1 (en) 2015-04-30

Family

ID=52992883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077914 WO2015060289A1 (en) 2013-10-24 2014-10-21 Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package

Country Status (5)

Country Link
JP (1) JPWO2015060289A1 (en)
KR (1) KR102035511B1 (en)
CN (1) CN105765744B (en)
TW (1) TWI657599B (en)
WO (1) WO2015060289A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002584A1 (en) * 2014-06-30 2016-01-07 東レ株式会社 Laminate and production method for light-emitting device using same
KR20160147479A (en) * 2015-06-15 2016-12-23 대주전자재료 주식회사 White light emitting apparatus and method for preparing same
KR20160147490A (en) * 2015-06-15 2016-12-23 대주전자재료 주식회사 Hybrid-type white light emitting apparatus and method for preparing same
WO2017057074A1 (en) * 2015-09-29 2017-04-06 東レ株式会社 Phosphor composition, phosphor sheet, and molded article using same, led chip, led package, light-emitting device, backlight unit, display, and method for manufacturing led package
JP2018525849A (en) * 2016-03-30 2018-09-06 深▲じぇん▼市聚▲飛▼光▲電▼股▲ふん▼有限公司Shenzhen Jufei Optoelectronics Co., Ltd Wide color gamut white quantum dot LED sealing method
US20180269363A1 (en) * 2017-03-17 2018-09-20 Nichia Corporation Method for manufacturing light-transmissive member and method for manufacturing light-emitting device
JP2019033256A (en) * 2017-08-04 2019-02-28 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light emitting device, lighting device, and display device
KR20190039542A (en) * 2016-09-02 2019-04-12 후지필름 가부시키가이샤 A phosphor-containing film and a backlight unit
JP2021524057A (en) * 2018-05-18 2021-09-09 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC LED manufacturing method by one-step film lamination
WO2023190493A1 (en) * 2022-03-31 2023-10-05 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581464B (en) * 2015-12-29 2017-05-01 Low light attenuation high rate photoconductor module
TWI705582B (en) * 2016-01-15 2020-09-21 日商西鐵城時計股份有限公司 Condensation reaction type crystal grain bonding agent, LED light emitting device and manufacturing method thereof
TWI608636B (en) * 2016-01-28 2017-12-11 行家光電股份有限公司 Light emitting device with asymmetrical radiation pattern and manufacturing method of the same
US10230030B2 (en) 2016-01-28 2019-03-12 Maven Optronics Co., Ltd. Light emitting device with asymmetrical radiation pattern and manufacturing method of the same
CN109661598B (en) * 2016-09-02 2021-04-27 富士胶片株式会社 Phosphor-containing film and backlight unit
EP3300128B1 (en) * 2016-09-21 2021-03-03 Vestel Elektronik Sanayi ve Ticaret A.S. Phosphor arrangement and method
CN109411585A (en) * 2018-09-30 2019-03-01 华南理工大学 A kind of method for packaging white LED with transfer fluorescence membrane
CN110034221A (en) * 2018-11-16 2019-07-19 吴裕朝 Light emitting device package processing procedure
CN109859629A (en) * 2018-12-28 2019-06-07 清华大学深圳研究生院 A kind of flexible LED display film
JPWO2021193183A1 (en) * 2020-03-24 2021-09-30
KR102486743B1 (en) * 2021-01-21 2023-01-10 한국광기술원 High Quality Phosphor Plate and Manufacturing Method Thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164731A (en) * 1993-10-20 1995-06-27 Canon Inc Recording medium, image forming method using the same and production of printed matter
JPH0853630A (en) * 1994-06-24 1996-02-27 Rhone Poulenc Chim Production of organophilic metal oxide particle
JP2006253336A (en) * 2005-03-10 2006-09-21 Toyoda Gosei Co Ltd Light source device
JP2007042668A (en) * 2005-07-29 2007-02-15 Toyoda Gosei Co Ltd Led light emitting device
JP2008007644A (en) * 2006-06-29 2008-01-17 Fine Rubber Kenkyusho:Kk Red light-emitting phosphor and light-emitting device
JP2008231199A (en) * 2007-03-19 2008-10-02 Sanyu Rec Co Ltd Silicone resin composition for encapsulation of light-emitting element and method for producing photosemiconductor electronic component by potting therewith
JP2009094262A (en) * 2007-10-09 2009-04-30 Toyoda Gosei Co Ltd Method for manufacturing light-emitting device
JP2009173871A (en) * 2007-12-25 2009-08-06 Nitto Denko Corp Silicone resin composition
JP2009272634A (en) * 2008-05-02 2009-11-19 Cree Inc Encapsulation method for phosphor-converted white light emitting diode
JP2010508391A (en) * 2006-10-27 2010-03-18 ザ ユニバーシティ オブ アクロン Organic / inorganic hybrid nanomaterial and synthesis method thereof
JP2010144135A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Silicone resin composition
JP2011514395A (en) * 2008-02-05 2011-05-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ ORGANIC-INORGANIC HYBRID MATERIAL, OPTICAL THIN LAYER MADE OF THE MATERIAL, OPTICAL MATERIAL CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP2011137119A (en) * 2009-12-31 2011-07-14 Yokohama Rubber Co Ltd:The Silicone resin composition for sealing heat-curable optical semiconductor, and optical semiconductor sealing object using this
JP2011233552A (en) * 2010-04-23 2011-11-17 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method for the same
JP2012092172A (en) * 2010-10-25 2012-05-17 Jsr Corp Composition for sealing optical semiconductor, and light-emitting element
JP2012186274A (en) * 2011-03-04 2012-09-27 Sharp Corp Light-emitting device, led chip, led wafer and package substrate
JP2013095782A (en) * 2011-10-28 2013-05-20 Mitsubishi Chemicals Corp Silicone resin composition for semiconductor light emitting device
JP2013168599A (en) * 2012-02-17 2013-08-29 Toray Ind Inc Semiconductor light-emitting device and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227252A (en) 1975-08-25 1977-03-01 Yokogawa Hokushin Electric Corp Digital-analog converter
JPH05152609A (en) 1991-11-25 1993-06-18 Nichia Chem Ind Ltd Light emitting diode
JP5626788B2 (en) 2010-12-06 2014-11-19 日揮触媒化成株式会社 Sealant paint and use thereof
CN102368496A (en) * 2011-09-16 2012-03-07 大连路明发光科技股份有限公司 Light conversion module
KR101739576B1 (en) * 2011-10-28 2017-05-25 삼성전자주식회사 Semiconductor nanocrystal-polymer micronized composite, method of preparing the same, and optoelectronic device
JP5751214B2 (en) * 2012-03-13 2015-07-22 信越化学工業株式会社 Curable silicone resin composition, cured product thereof and optical semiconductor device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164731A (en) * 1993-10-20 1995-06-27 Canon Inc Recording medium, image forming method using the same and production of printed matter
JPH0853630A (en) * 1994-06-24 1996-02-27 Rhone Poulenc Chim Production of organophilic metal oxide particle
JP2006253336A (en) * 2005-03-10 2006-09-21 Toyoda Gosei Co Ltd Light source device
JP2007042668A (en) * 2005-07-29 2007-02-15 Toyoda Gosei Co Ltd Led light emitting device
JP2008007644A (en) * 2006-06-29 2008-01-17 Fine Rubber Kenkyusho:Kk Red light-emitting phosphor and light-emitting device
JP2010508391A (en) * 2006-10-27 2010-03-18 ザ ユニバーシティ オブ アクロン Organic / inorganic hybrid nanomaterial and synthesis method thereof
JP2008231199A (en) * 2007-03-19 2008-10-02 Sanyu Rec Co Ltd Silicone resin composition for encapsulation of light-emitting element and method for producing photosemiconductor electronic component by potting therewith
JP2009094262A (en) * 2007-10-09 2009-04-30 Toyoda Gosei Co Ltd Method for manufacturing light-emitting device
JP2009173871A (en) * 2007-12-25 2009-08-06 Nitto Denko Corp Silicone resin composition
JP2011514395A (en) * 2008-02-05 2011-05-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ ORGANIC-INORGANIC HYBRID MATERIAL, OPTICAL THIN LAYER MADE OF THE MATERIAL, OPTICAL MATERIAL CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP2009272634A (en) * 2008-05-02 2009-11-19 Cree Inc Encapsulation method for phosphor-converted white light emitting diode
JP2010144135A (en) * 2008-12-22 2010-07-01 Nitto Denko Corp Silicone resin composition
JP2011137119A (en) * 2009-12-31 2011-07-14 Yokohama Rubber Co Ltd:The Silicone resin composition for sealing heat-curable optical semiconductor, and optical semiconductor sealing object using this
JP2011233552A (en) * 2010-04-23 2011-11-17 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method for the same
JP2012092172A (en) * 2010-10-25 2012-05-17 Jsr Corp Composition for sealing optical semiconductor, and light-emitting element
JP2012186274A (en) * 2011-03-04 2012-09-27 Sharp Corp Light-emitting device, led chip, led wafer and package substrate
JP2013095782A (en) * 2011-10-28 2013-05-20 Mitsubishi Chemicals Corp Silicone resin composition for semiconductor light emitting device
JP2013168599A (en) * 2012-02-17 2013-08-29 Toray Ind Inc Semiconductor light-emitting device and manufacturing method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002584A1 (en) * 2014-06-30 2016-01-07 東レ株式会社 Laminate and production method for light-emitting device using same
KR20160147479A (en) * 2015-06-15 2016-12-23 대주전자재료 주식회사 White light emitting apparatus and method for preparing same
KR20160147490A (en) * 2015-06-15 2016-12-23 대주전자재료 주식회사 Hybrid-type white light emitting apparatus and method for preparing same
KR102447373B1 (en) * 2015-06-15 2022-09-28 대주전자재료 주식회사 White light emitting apparatus and method for preparing same
KR102447368B1 (en) * 2015-06-15 2022-09-26 대주전자재료 주식회사 Hybrid-type white light emitting apparatus and method for preparing same
WO2017057074A1 (en) * 2015-09-29 2017-04-06 東レ株式会社 Phosphor composition, phosphor sheet, and molded article using same, led chip, led package, light-emitting device, backlight unit, display, and method for manufacturing led package
CN107995920A (en) * 2015-09-29 2018-05-04 东丽株式会社 Fluorescencer composition, fluorophor sheet material and the manufacture method using their formation, LED chip, LED package, light-emitting device, back light unit, display and LED package
JPWO2017057074A1 (en) * 2015-09-29 2018-07-12 東レ株式会社 Phosphor composition, phosphor sheet and formed article using them, LED chip, LED package, light emitting device, backlight unit, display, and method for producing LED package
CN107995920B (en) * 2015-09-29 2021-03-12 东丽株式会社 Phosphor composition, phosphor sheet, and article formed using same, LED chip, LED package, light-emitting device, and backlight unit
JP2018525849A (en) * 2016-03-30 2018-09-06 深▲じぇん▼市聚▲飛▼光▲電▼股▲ふん▼有限公司Shenzhen Jufei Optoelectronics Co., Ltd Wide color gamut white quantum dot LED sealing method
KR102186445B1 (en) 2016-09-02 2020-12-04 후지필름 가부시키가이샤 Phosphor-containing film and backlight unit
KR20190039542A (en) * 2016-09-02 2019-04-12 후지필름 가부시키가이샤 A phosphor-containing film and a backlight unit
KR20180106949A (en) * 2017-03-17 2018-10-01 니치아 카가쿠 고교 가부시키가이샤 Manufacturing method of light transmitting member and manufacturing method of light emitting device
US10840415B2 (en) 2017-03-17 2020-11-17 Nichia Corporation Method for manufacturing light-transmissive member and method for manufacturing light-emitting device
JP2018155968A (en) * 2017-03-17 2018-10-04 日亜化学工業株式会社 Method for manufacturing light-transmitting member and method for manufacturing light-emitting device
KR102493235B1 (en) * 2017-03-17 2023-01-27 니치아 카가쿠 고교 가부시키가이샤 Manufacturing method of light transmitting member and manufacturing method of light emitting device
US20180269363A1 (en) * 2017-03-17 2018-09-20 Nichia Corporation Method for manufacturing light-transmissive member and method for manufacturing light-emitting device
JP2019033256A (en) * 2017-08-04 2019-02-28 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light emitting device, lighting device, and display device
JP7087796B2 (en) 2017-08-04 2022-06-21 住友大阪セメント株式会社 Dispersions, compositions, encapsulants, light emitting devices, lighting fixtures and display devices
JP2021524057A (en) * 2018-05-18 2021-09-09 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC LED manufacturing method by one-step film lamination
US11923483B2 (en) 2018-05-18 2024-03-05 Ddp Specialty Electronic Materials Us, Llc Method for producing LED by one step film lamination
WO2023190493A1 (en) * 2022-03-31 2023-10-05 住友大阪セメント株式会社 Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid

Also Published As

Publication number Publication date
CN105765744A (en) 2016-07-13
JPWO2015060289A1 (en) 2017-03-09
TWI657599B (en) 2019-04-21
TW201521238A (en) 2015-06-01
KR102035511B1 (en) 2019-10-23
CN105765744B (en) 2019-01-22
KR20160075495A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2015060289A1 (en) Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package
EP2537899B1 (en) Phosphor-containing cured silicone, process for production of same, phosphor-containing silicone composition, precursor of the composition, sheet-shaped moldings, led package, light -emitting device, and process for production of led-mounted substrate
JP5287935B2 (en) Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
TWI693730B (en) Manufacturing method of light-emitting device
KR101967623B1 (en) Phosphor sheet, led and light emitting device using same and method for producing led
JP6287212B2 (en) Phosphor-containing resin sheet and light emitting device
JP5488761B2 (en) Laminated body and method for manufacturing light emitting diode with wavelength conversion layer
TWI557950B (en) An inorganic phosphor powder, a hardened resin composition using an inorganic phosphor powder, a wavelength conversion member, and a semiconductor device
WO2015033824A1 (en) Wavelength conversion sheet, sealed optical semiconductor element and optical semiconductor element device
JP2014116587A (en) Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
CN105637660B (en) The manufacturing method of the light-emitting device of laminated body and the use laminated body
JP2013157408A (en) Light emitting diode device and manufacturing method thereof
TW201515287A (en) Optical-semiconductor-element sealing composition, optical-semiconductor-element sealing molded article, optical-semiconductor-element sealing sheet, optical semiconductor device, and sealed optical semiconductor element
KR20130042450A (en) Silicone resin sheet, cured sheet, and light emitting diode device and producing method thereof
JP2014116598A (en) Light emitting diode sealing composition, phosphor sheet, led package employing the same and manufacturing method thereof
JP2015149379A (en) Composite sheet, led package using the same, and manufacturing method of the same
JP5882729B2 (en) Silicone resin sheet, cured sheet, light-emitting diode device, and manufacturing method thereof
JP2015149172A (en) Composite sheet, led package prepared using the same, and method of producing the same
WO2008062870A1 (en) Optical guiding member, process for producing the same, optical waveguide and light guide plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014558340

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004238

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855627

Country of ref document: EP

Kind code of ref document: A1