WO2015046116A1 - Glass plate - Google Patents

Glass plate Download PDF

Info

Publication number
WO2015046116A1
WO2015046116A1 PCT/JP2014/075016 JP2014075016W WO2015046116A1 WO 2015046116 A1 WO2015046116 A1 WO 2015046116A1 JP 2014075016 W JP2014075016 W JP 2014075016W WO 2015046116 A1 WO2015046116 A1 WO 2015046116A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
fluorine
fluorine concentration
depth
Prior art date
Application number
PCT/JP2014/075016
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 宮坂
正信 白井
亮祐 加藤
信彰 井川
山中 一彦
泰夫 林
史朗 谷井
丈宜 三浦
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015539190A priority Critical patent/JP6428630B2/en
Publication of WO2015046116A1 publication Critical patent/WO2015046116A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/007Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in gaseous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Abstract

The present invention relates to a glass plate in which the fluorine concentration in one of the surfaces thereof that face each other in a thickness direction is greater than that in another of said surfaces thereof, said glass plate wherein the proportion of fluorine in a surface layer, said proportion being represented by formula (I), namely the proportion of fluorine in the surface layer = F0-3/F0-30, is at least 0.1 but less than 0.5, and F0-3 represented by formula (II), namely F0-3 = [the average fluorine concentration (mol%) at depths in the range of 0-3 µm in the surface having a high fluorine concentration, said average fluorine concentration being obtained using secondary ion mass spectrometry (SIMS)]× 3, is greater than 0.02. In formula (I), F0-3 is obtained using formula (II). In formula (I), F0-30 is obtained using formula (III), namely F0-30 = [the average fluorine concentration (mol%) at depths in the range of 0-30 µm in the surface having a high fluorine concentration, said average fluorine concentration being obtained using SIMS]× 30.

Description

ガラス板Glass plate
 本発明は、ガラス板に関する。 The present invention relates to a glass plate.
 近年、携帯電話または携帯情報端末(PDA)、パーソナルコンピュータ、テレビ、車載ナビゲーション表示装置等のフラットパネルディスプレイ装置において、ディスプレイの保護および美観を高めるために、画像表示部分よりも広い領域となるように薄い板状のカバーガラスをディスプレイの前面に配置することが行われている。 In recent years, in flat panel display devices such as mobile phones or personal digital assistants (PDAs), personal computers, televisions, in-vehicle navigation display devices, etc., in order to enhance the protection and aesthetics of the display, the area is wider than the image display portion. A thin plate-like cover glass is disposed on the front surface of the display.
 このようなフラットパネルディスプレイ装置に対しては、軽量および薄型化が要求されており、そのため、ディスプレイ保護用に使用されるカバーガラスも薄くすることが要求されている。 Such a flat panel display device is required to be lightweight and thin, and accordingly, a cover glass used for display protection is also required to be thin.
 しかし、カバーガラスの厚さを薄くしていくと、強度が低下し、使用中または携帯中の落下などによりカバーガラス自身が割れてしまうことがあり、ディスプレイ装置を保護するという本来の役割を果たすことができなくなるという問題がある。 However, as the thickness of the cover glass is reduced, the strength decreases, and the cover glass itself may be broken due to falling in use or while carrying it, which plays the original role of protecting the display device. There is a problem that it becomes impossible.
 このため従来のカバーガラスは、フロート法により製造されたガラス(以下、フロートガラスということがある。)を化学強化することで、表面に圧縮応力層を形成しカバーガラスの耐傷性を高めている。 For this reason, the conventional cover glass chemically strengthens the glass manufactured by the float process (henceforth a float glass), forms the compressive-stress layer on the surface, and has improved the scratch resistance of the cover glass. .
 フロートガラスは化学強化後に反りが生じて平坦性が損なわれることが報告されている(特許文献1~3)。該反りは、フロート成形時に溶融錫等の溶融金属と接触していないガラス面(以下、トップ面ともいう。)と、溶融金属と接触しているガラス面(以下、ボトム面ともいう。)とが異質になり、両面の化学強化の入り方が異なることにより生じるとされている。 It has been reported that the float glass is warped after chemical strengthening and the flatness is impaired (Patent Documents 1 to 3). The warpage includes a glass surface that is not in contact with a molten metal such as molten tin (hereinafter also referred to as a top surface) and a glass surface that is in contact with the molten metal (hereinafter also referred to as a bottom surface). It is said that this is caused by the different ways of entering chemical strengthening on both sides.
 前記フロートガラスの反りは化学強化の入り方が強いほど大きくなる。したがって、高い耐傷性への要求に応えるべく表面圧縮応力をこれまで以上、特に600MPa以上にする場合、反りの問題がより顕在化することとなる。 The warp of the float glass increases as the chemical strengthening becomes stronger. Therefore, when the surface compressive stress is made higher than ever, particularly 600 MPa or higher in order to meet the demand for high scratch resistance, the problem of warp becomes more obvious.
 特許文献1には、ガラス表面にSiO膜を形成した後に化学強化することにより、化学強化時にガラスに入るイオンの量を調整するガラスの強化方法が開示されている。また、特許文献2および3には、トップ面側の表面圧縮応力を特定範囲とすることにより、化学強化後の反りを低減する方法が開示されている。 Patent Document 1 discloses a glass strengthening method in which the amount of ions entering the glass during chemical strengthening is adjusted by chemically strengthening after forming a SiO 2 film on the glass surface. Patent Documents 2 and 3 disclose a method of reducing warpage after chemical strengthening by setting the surface compressive stress on the top surface side within a specific range.
 また、従来、前記反りの問題を低減するために、化学強化による強化応力を小さくしたり、ガラスの少なくとも一方の面を研削処理または研磨処理等することにより表面異質層を除去した後に化学強化する対処方法がなされている。 Further, conventionally, in order to reduce the problem of warpage, chemical strengthening is performed after removing a surface heterogeneous layer by reducing the strengthening stress due to chemical strengthening or grinding or polishing at least one surface of glass. There is a solution.
米国特許出願公開第2011/0293928号明細書US Patent Application Publication No. 2011/0293928 国際公開第2007/004634号International Publication No. 2007/004634 日本国特開昭62-191449号公報Japanese Unexamined Patent Publication No. Sho 62-191449
 しかしながら、特許文献1に記載のガラス表面にSiO膜を形成した後に化学強化する方法では、化学強化の際の予熱条件が限定され、さらには条件によってはSiO膜の膜質が変化して反りに影響を与える可能性がある。また、特許文献2および3に記載のように、トップ面側の表面圧縮応力を特定範囲とする方法では、ガラスの強度の観点から問題がある。 However, in the method of chemically strengthening after forming the SiO 2 film on the glass surface described in Patent Document 1, the preheating conditions for chemical strengthening are limited, and depending on the conditions, the film quality of the SiO 2 film changes and warps. May be affected. Further, as described in Patent Documents 2 and 3, the method of setting the surface compressive stress on the top surface side in a specific range has a problem from the viewpoint of the strength of the glass.
 また、化学強化前にガラスの少なくとも一方の面を研削処理または研磨処理等する方法は、生産性を向上させる観点から問題があり、これらの研削処理または研磨処理等を省略することが好ましい。 Further, the method of grinding or polishing at least one surface of the glass before chemical strengthening has a problem from the viewpoint of improving productivity, and it is preferable to omit these grinding or polishing treatments.
 さらに、化学強化後にある程度以上の反りが生じる場合、カバーガラスの黒枠を印刷する時にガラスとステージの間に隙間が大きくなりすぎて、ガラスがステージに吸着しなくなることがある。また、タッチパネル一体型のカバーガラスに使用される場合には、後工程にて大板の状態でITO(Indium Tin Oxide)等の成膜を行うことがある。その際に、ガラスが薬液処理槽や洗浄槽のエアーナイフに接触する等の搬送異常が生じたり、ITO成膜中に反りが増大し、基板周辺部のITOの成膜状態が適切にならず、剥がれてしまう等の不具合を生じることがある。また、LCD(Liquid Crystal Display)とタッチパネルが貼りつけられたカバーガラスの間に空間が存在するタイプの場合、カバーガラスに一定以上の反りがあると、輝度ムラやニュートンリングが生じることがある。 Furthermore, if warping occurs to some extent after chemical strengthening, the gap between the glass and the stage becomes too large when printing the black frame of the cover glass, and the glass may not be adsorbed on the stage. When used for a cover glass with an integrated touch panel, ITO (Indium Tin Oxide) or the like may be formed in a large plate state in a later process. At that time, conveyance abnormalities such as glass coming into contact with the air knife in the chemical treatment tank or cleaning tank occur, warpage increases during ITO film formation, and the ITO film formation state at the periphery of the substrate is not appropriate. , May cause problems such as peeling off. In addition, in the case of a type in which a space exists between an LCD (Liquid Crystal Display) and a cover glass to which a touch panel is attached, if the cover glass has a certain amount of warpage, uneven brightness or Newton rings may occur.
 したがって、本発明は、化学強化後の反りを効果的に抑制することができるとともに、化学強化前の研磨処理等を省略または簡略化することができるガラス板を提供することを目的とする。 Therefore, an object of the present invention is to provide a glass plate that can effectively suppress warping after chemical strengthening and can omit or simplify the polishing treatment before chemical strengthening.
 本発明者らは、ガラス表面をフッ素処理することにより、ガラスの一方の面ともう一方の面において化学強化の入り方に差が生じるのを抑制し、化学強化後の反りを低減できることを見出し、この知見に基づいて、本発明を完成させた。 The present inventors have found that by treating the glass surface with fluorine, it is possible to suppress a difference in the way of entering the chemical strengthening between one side and the other side of the glass and to reduce the warp after the chemical strengthening. Based on this finding, the present invention has been completed.
 すなわち、本発明は以下の通りである。
1. 厚み方向に対向する一方の面のフッ素濃度が他方の面のフッ素濃度より大きいガラス板であって、下式(I)で表される表層フッ素割合が0.1以上0.5未満であり、且つ下式(II)で表されるF0-3が0.02より大きいガラス板。
 表層フッ素割合=F0-3/F0-30…(I)
 式(I)中、F0-3は下式(II)により求める。
 F0-3=[フッ素濃度が大きい面における深さ0~3μmの二次イオン質量分析(SIMS)による平均フッ素濃度(mol%)]×3…(II)
 式(I)中、F0-30は下式(III)により求める。
 F0-30=[フッ素濃度が大きい面における深さ0~30μmのSIMSによる平均フッ素濃度(mol%)]×30…(III)
2. 前記表層フッ素割合が0.15以上である前項1に記載のガラス板。
3. 前記表層フッ素割合が0.15以上0.4以下である前項1又は2に記載のガラス板。
4. 前記表層フッ素割合が0.3以下である前項3に記載のガラス板。
5. 前項1~4のいずれか1項に記載のガラス板であって、下式(1)を満たすガラス板。ここで、フッ素濃度は深さ1~24μmのSIMSによる平均フッ素濃度(mol%)である。
 0.38≦ΔF/ΔHO…(1)
 式(1)中、ΔFは、フッ素濃度が大きい面における深さ1~24μmのSIMSによる平均フッ素濃度(mol%)からフッ素濃度が小さい面における深さ1~24μmのSIMSによる平均フッ素濃度(mol%)を減じた値である。
 式(1)中、ΔHOは、フッ素濃度が小さい面における深さ1~24μmのSIMSによる平均HO濃度(mol%)からフッ素濃度が大きい面における深さ1~24μmのSIMSによる平均HO濃度(mol%)を減じた値の絶対値である。
6. 前項1~5のいずれか1項に記載のガラス板であって、下式(2)を満たすガラス板。ここで、フッ素濃度は深さ1~24μmのSIMSによる平均フッ素濃度(mol%)である。
 5≦x…(2)
 式(2)中、xはSIMSによるフッ素濃度プロファイルにおいて、任意の深さx(μm)における傾きが下式(3)を満たす最大の深さ(μm)である。
[F(x+0.1)-F(x)]/0.1=-0.015…(3)
 式(3)中、F(x)は、深さx(μm)におけるSIMSによるフッ素濃度(mol%)を示す。
7. フロート法により製造されたガラス板である前項1~6のいずれか1項に記載のガラス板。
8. 厚みが1.5mm以下である前項1~7のいずれか1項に記載のガラス板。
9. 厚みが0.8mm以下である前項1~8のいずれか1項に記載のガラス板。
10. 表面粗さRaが2.5nm以下である前項1~9のいずれか1項に記載のガラス板。
11. フッ素濃度が大きい方の表面に直径が10nm以上である凹部が存在しない、または同凹部が6個/μm以下の密度で存在する前項1~10のいずれか1項に記載のガラス板。
12. 前項1~11のいずれか1項に記載のガラス板を化学強化して得られるガラス板。
13. カバーガラスを備えたフラットパネルディスプレイ装置であって、該カバーガラスが前項12に記載のガラス板であるフラットパネルディスプレイ装置。
That is, the present invention is as follows.
1. A glass plate in which the fluorine concentration on one surface facing the thickness direction is larger than the fluorine concentration on the other surface, and the surface layer fluorine ratio represented by the following formula (I) is 0.1 or more and less than 0.5, And a glass plate in which F 0-3 represented by the following formula (II) is larger than 0.02.
Surface layer fluorine ratio = F 0-3 / F 0-30 (I)
In the formula (I), F 0-3 is determined by the following formula (II).
F 0-3 = [Average fluorine concentration (mol%) by secondary ion mass spectrometry (SIMS) at a depth of 0 to 3 μm on a surface with a large fluorine concentration] × 3 (II)
In the formula (I), F 0-30 is determined by the following formula (III).
F 0-30 = [Average fluorine concentration (mol%) by SIMS at a depth of 0 to 30 μm on a surface with a large fluorine concentration] × 30 (III)
2. 2. The glass plate according to item 1 above, wherein the surface layer fluorine ratio is 0.15 or more.
3. 3. The glass plate according to 1 or 2 above, wherein the surface layer fluorine ratio is 0.15 or more and 0.4 or less.
4). 4. The glass plate as described in 3 above, wherein the surface layer fluorine ratio is 0.3 or less.
5. 5. The glass plate according to any one of items 1 to 4, which satisfies the following formula (1): Here, the fluorine concentration is an average fluorine concentration (mol%) by SIMS having a depth of 1 to 24 μm.
0.38 ≦ ΔF / ΔH 2 O (1)
In the formula (1), ΔF is an average fluorine concentration (mol%) by SIMS at a depth of 1 to 24 μm on a surface with a low fluorine concentration from an average fluorine concentration (mol%) by SIMS at a depth of 1 to 24 μm on a surface with a high fluorine concentration. %).
In formula (1), ΔH 2 O is an average of SIMS having a depth of 1 to 24 μm on a surface having a high fluorine concentration from an average H 2 O concentration (mol%) of SIMS having a depth of 1 to 24 μm on a surface having a low fluorine concentration. The absolute value of the value obtained by subtracting the H 2 O concentration (mol%).
6). 6. The glass plate according to any one of items 1 to 5, which satisfies the following formula (2). Here, the fluorine concentration is an average fluorine concentration (mol%) by SIMS having a depth of 1 to 24 μm.
5 ≦ x (2)
In the formula (2), x is the maximum depth (μm) in which the slope at an arbitrary depth x i (μm) satisfies the following formula (3) in the fluorine concentration profile by SIMS.
[F (x i +0.1) −F (x i )] / 0.1 = −0.015 (3)
In formula (3), F (x i ) represents the fluorine concentration (mol%) by SIMS at the depth x i (μm).
7). 7. The glass plate according to any one of items 1 to 6, which is a glass plate produced by a float process.
8). 8. The glass plate according to any one of items 1 to 7, which has a thickness of 1.5 mm or less.
9. 9. The glass plate according to any one of items 1 to 8, wherein the thickness is 0.8 mm or less.
10. 10. The glass plate according to any one of items 1 to 9, wherein the surface roughness Ra is 2.5 nm or less.
11. 11. The glass plate according to any one of the preceding items 1 to 10, wherein a concave portion having a diameter of 10 nm or more does not exist on the surface having a larger fluorine concentration, or the concave portions exist at a density of 6 pieces / μm 2 or less.
12 12. A glass plate obtained by chemically strengthening the glass plate according to any one of 1 to 11 above.
13. A flat panel display device provided with a cover glass, wherein the cover glass is the glass plate according to item 12 above.
 本発明のガラス板はその表面がフッ素処理されていることにより、ガラスの一方の面ともう一方の面において化学強化の入り方に差が生じるのを抑制し、化学強化による応力値を所望の値にできる。また、化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるガラスの反りを低減し、優れた平坦度を得ることができる。 The glass plate of the present invention has a surface treated with fluorine, thereby suppressing a difference in the way of chemical strengthening between one side and the other side of the glass, and a desired stress value due to chemical strengthening. Can be a value. Further, even if the polishing treatment before chemical strengthening is simplified or omitted, the warp of the glass after chemical strengthening can be reduced and excellent flatness can be obtained.
図1は、本発明で用いることのできる両流しタイプのインジェクタを模式的に示す図である。FIG. 1 is a diagram schematically showing a double-flow type injector that can be used in the present invention. 図2は、本発明で用いることのできる片流しタイプのインジェクタを模式的に示す図である。FIG. 2 is a diagram schematically showing a single-flow injector that can be used in the present invention. 図3は、本発明の化学強化用フロートガラスを化学強化した後、フラットパネルディスプレイ用のカバーガラスとして用いたフラットパネルディスプレイの断面図である。FIG. 3 is a cross-sectional view of a flat panel display used as a cover glass for a flat panel display after chemically strengthening the chemically strengthened float glass of the present invention. 図4(a)にフロート法によるガラス板の製造において、その構造中にフッ素原子が存在する分子を含有する気体をビームにより供給してガラスリボンの表面を処理する方法の概略説明図を示す。図4(b)は、図4(a)のA-A断面図である。FIG. 4 (a) shows a schematic explanatory diagram of a method for treating the surface of a glass ribbon by supplying a gas containing a molecule having fluorine atoms in the structure thereof by a beam in the production of a glass plate by a float method. FIG. 4B is a cross-sectional view taken along the line AA in FIG. 図5(a)~(d)は、気体の量をガラスリボンの幅方向で3分割して調整可能なビームの断面図を示す。FIGS. 5A to 5D are cross-sectional views of beams that can be adjusted by dividing the amount of gas into three in the width direction of the glass ribbon. 図6(a)~(c)は、フッ素処理したアルミノシリケートガラスのSIMSによる典型的なフッ素濃度プロファイルを示す。FIGS. 6A to 6C show typical fluorine concentration profiles by SIMS of a fluorine-treated aluminosilicate glass. 図7(a)~(c)は、アルミノシリケートガラスのSIMSによる典型的なHO濃度プロファイルを示す。FIGS. 7 (a) to (c) show typical H 2 O concentration profiles by SIMS of aluminosilicate glass. 図8は、アルミノシリケートガラスの典型的なIRスペクトルを示す。FIG. 8 shows a typical IR spectrum of an aluminosilicate glass. 図9は、ΔF/ΔHOとガラスの反り変位量の相関関係を示す図である。FIG. 9 is a diagram showing the correlation between ΔF / ΔH 2 O and the amount of warp displacement of the glass. 図10(a)は、アルミノシリケートガラスのSIMSによる典型的なフッ素濃度プロファイルを示す。図10(b)は、横軸に深さ、縦軸に式(a)で表される任意の点xにおける傾きをプロットした図を示す。図10(c)は、図10(b)中の点線部分を拡大した図を示す。FIG. 10 (a) shows a typical fluorine concentration profile by SIMS of aluminosilicate glass. FIG. 10B is a diagram in which the horizontal axis represents the depth and the vertical axis represents the slope at an arbitrary point x i represented by the formula (a). FIG.10 (c) shows the figure which expanded the dotted-line part in FIG.10 (b). 図11は、HF処理による凹部発生のメカニズムの説明図を示す。FIG. 11 is an explanatory diagram of a mechanism for generating recesses by HF processing. 図12は、実施例で用いた装置の斜視図である。(実施例4)FIG. 12 is a perspective view of the apparatus used in the example. Example 4
1.ガラス板
 本発明において、「ガラス板」とは、溶融ガラスが板状に成形されているものも含み、たとえばフロートバス内のいわゆるガラスリボンもガラス板である。ガラス板の化学強化後の反りは、ガラス板の一方の面ともう一方の面において化学強化の入り方が異なることにより生じる。具体的には、例えば、フロートガラスの場合、フロート成形時に溶融金属(通常、錫)と接触していないガラス面(トップ面)と溶融金属と接触しているガラス面(ボトム面)において化学強化の入り方が異なることにより化学強化後の反りが生じる。
1. Glass plate In the present invention, the “glass plate” includes those in which molten glass is formed into a plate shape. For example, a so-called glass ribbon in a float bath is also a glass plate. The warpage after chemical strengthening of the glass plate is caused by the difference in the way of chemical strengthening on one side and the other side of the glass plate. Specifically, for example, in the case of float glass, chemical strengthening is performed on the glass surface (top surface) that is not in contact with the molten metal (usually tin) and the glass surface (bottom surface) that is in contact with the molten metal during float forming. Warping after chemical strengthening occurs due to the difference in the way of entering.
 本発明のガラス板によれば、典型的にはガラス板の一方の面がフッ素処理されていることにより、ガラス板の一方の面ともう一方の面におけるイオンの拡散速度を調整して、一方の面ともう一方の面におけるにおける化学強化の入り方を調整することができる。そのため、本発明のガラス板は、強化応力を調整したり、化学強化処理の前に研削および研磨等の処理をすることなく、化学強化後のガラス板の反りを低減することができる。 According to the glass plate of the present invention, typically, one side of the glass plate is treated with fluorine to adjust the diffusion rate of ions on one side and the other side of the glass plate, It is possible to adjust the way of chemical strengthening on the other side and the other side. Therefore, the glass plate of the present invention can reduce the warpage of the glass plate after chemical strengthening without adjusting the strengthening stress or without performing processing such as grinding and polishing before the chemical strengthening treatment.
 ガラス板の表面をフッ素処理することにより化学強化後の反りが低減できるメカニズムとしては、以下のような現象が生じていると考えられる。
(1)ガラスの表面に取り込まれたフッ素により緩和が促進され、フッ素処理された面のCS(compressive stress、表面圧縮応力)が低下する。
(2)ガラスの表面に取り込まれたフッ素によりイオン交換が阻害され、フッ素処理された面のDOL(depth of layer、圧縮応力深さ)が低下する。
(3)フッ素処理により、ガラスの脱アルカリが生じる。
(4)フッ素処理によりガラス表面の主成分が変化し、ガラス中のSiがSiFまたはHSiFとしてガラス表面から減少するため、応力の入り方が変化する。
(5)フッ素処理により、ガラス表面からの脱水が抑制されるかあるいは水が侵入することにより、反りが低減される。
As a mechanism that can reduce the warpage after chemical strengthening by treating the surface of the glass plate with fluorine, the following phenomenon is considered to have occurred.
(1) Relaxation is promoted by fluorine taken into the surface of the glass, and CS (compressive stress) of the surface treated with fluorine is reduced.
(2) Ion exchange is inhibited by fluorine taken into the surface of the glass, and DOL (depth of layer, compression stress depth) of the surface treated with fluorine decreases.
(3) The dealkalization of the glass occurs by the fluorine treatment.
(4) The main component of the glass surface is changed by the fluorine treatment, and Si in the glass is reduced from the glass surface as SiF 4 or H 2 SiF 6 , so that the stress is changed.
(5) The warp is reduced by suppressing the dehydration from the glass surface or the intrusion of water by the fluorine treatment.
1A.反り改善のための適正な厚み方向におけるフッ素濃度分布を規定するパラメータ
 ガラスの化学強化による反りは、トップ面およびボトム面における化学強化の入り方の違いに起因する。ガラス表層にフッ素を添加することで種々の要因によってガラスの化学強化による反りが改善されるが、ガラスに添加されるフッ素濃度分布をトップ面における侵入深さを考慮して下記パラメータを設定する。
1A. Parameters defining the fluorine concentration distribution in the proper thickness direction for improving warpage Warpage due to chemical strengthening of glass is caused by the difference in how chemical strengthening is applied on the top and bottom surfaces. By adding fluorine to the glass surface layer, warpage due to chemical strengthening of the glass is improved due to various factors, but the following parameters are set for the fluorine concentration distribution added to the glass in consideration of the penetration depth at the top surface.
 本発明のガラス板は、厚み方向に対向する一方の面のフッ素濃度が他方の面のフッ素濃度より大きいガラス板であって、下式(I)で表される表層フッ素割合が0.1以上0.5未満であり、且つ下式(II)で表されるF0-3が0.02より大きいガラス板である。
 表層フッ素割合=F0-3/F0-30…(I)
The glass plate of the present invention is a glass plate in which the fluorine concentration on one surface facing in the thickness direction is larger than the fluorine concentration on the other surface, and the surface layer fluorine ratio represented by the following formula (I) is 0.1 or more It is a glass plate that is less than 0.5 and F 0-3 represented by the following formula (II) is greater than 0.02.
Surface layer fluorine ratio = F 0-3 / F 0-30 (I)
 式(I)中、F0-3はガラス表面(ガラス表面からの深さ0~3μm)のフッ素量であり、下式(II)により求める。
 F0-3=[フッ素濃度が大きい面における深さ0~3μmのSIMSによる平均フッ素濃度(mol%)]×3…(II)
 式(I)中、F0-30はフッ素処理によりガラスに取り込まれたフッ素量であり、下式(III)により求める。
 F0-30=[フッ素濃度が大きい面における深さ0~30μmのSIMSによる平均フッ素濃度(mol%)]×30…(III)
In the formula (I), F 0-3 is the fluorine amount on the glass surface (depth 0 to 3 μm from the glass surface), and is determined by the following formula (II).
F 0-3 = [Average fluorine concentration (mol%) by SIMS at a depth of 0 to 3 μm on a surface with a large fluorine concentration] × 3 (II)
In the formula (I), F 0-30 is the amount of fluorine taken into the glass by the fluorine treatment, and is determined by the following formula (III).
F 0-30 = [Average fluorine concentration (mol%) by SIMS at a depth of 0 to 30 μm on a surface with a large fluorine concentration] × 30 (III)
 平均フッ素濃度は、SIMS装置でガラス中のフッ素濃度プロファイル測定を実施し、以下の手順(a1)~(a3)により該プロファイルから算出する。図6(a)~(c)はフッ素処理したアルミノシリケートガラスのSIMSによる典型的なフッ素濃度プロファイルを示す。
(a1)濃度が既知の標準試料および測定対象サンプルのSIMSによるフッ素濃度プロファイルを測定する[図6(a)]。
(a2)標準試料の測定結果から検量線を作成し、19F/30Siをフッ素濃度(mol%)に変換するための係数を算出する[図6(b)]。
(a3)工程(a2)で算出した係数から測定対象サンプルのフッ素濃度(mol%)を求める。例えば、深さ0~3μmのSIMSによる平均フッ素濃度(mol%)は、深さ0~3μmのフッ素濃度を積算し、深さ3μmで除した値である[図6(c)]。
 深さ0~30μmのSIMSによる平均フッ素濃度(mol%)についても、同様に求めることができる。
The average fluorine concentration is calculated from the profile according to the following procedures (a1) to (a3) after measuring the fluorine concentration profile in the glass with a SIMS apparatus. 6 (a) to 6 (c) show typical fluorine concentration profiles by SIMS of a fluorine-treated aluminosilicate glass.
(A1) Measure the fluorine concentration profile by SIMS of a standard sample with a known concentration and a sample to be measured [FIG. 6A].
(A2) A calibration curve is created from the measurement results of the standard sample, and a coefficient for converting 19 F / 30 Si into a fluorine concentration (mol%) is calculated [FIG. 6 (b)].
(A3) The fluorine concentration (mol%) of the sample to be measured is obtained from the coefficient calculated in step (a2). For example, the average fluorine concentration (mol%) by SIMS at a depth of 0 to 3 μm is a value obtained by integrating the fluorine concentrations at a depth of 0 to 3 μm and dividing by the depth of 3 μm [FIG. 6 (c)].
The average fluorine concentration (mol%) by SIMS at a depth of 0 to 30 μm can be obtained in the same manner.
 表層フッ素割合を0.1以上とすることにより、化学強化後によるガラスの反りを効果的に抑制することができる。表層フッ素割合は0.1以上であり、0.15以上であることが好ましい。 When the surface layer fluorine ratio is 0.1 or more, the warp of the glass after chemical strengthening can be effectively suppressed. The surface layer fluorine ratio is 0.1 or more, and preferably 0.15 or more.
 表層フッ素割合は0.5未満であり、0.4以下であることが好ましく、0.3以下であることがより好ましい。表層フッ素割合が0.4以下、特に0.3以下であると、以下の(1)~(3)の効果が顕著となりより好ましい。 The surface layer fluorine ratio is less than 0.5, preferably 0.4 or less, and more preferably 0.3 or less. When the surface layer fluorine ratio is 0.4 or less, particularly 0.3 or less, the following effects (1) to (3) are remarkable and more preferable.
 (1)ガラスの化学強化による反りは、ガラス両表面の圧縮応力の差によって生じる。一般に、フロート法で作製された板ガラスは、その表裏面の深さ方向の組成分布が異なる。そのため、化学強化によるガラス表裏面の深さ方向への圧縮応力の入り方も異なり、結果としてガラスに反りが生じる。この反りは、圧縮応力層の厚み(以下DOLと表記する)に依存する。一方、本発明者らの検討結果によりガラス中のフッ素は、化学強化で生じた圧縮応力を緩和させる効果があることが見出された。よって、ガラス表面にフッ素を導入することで、上述したガラス表裏面の圧縮応力差を小さくして、反りを小さくすることができる。このとき、DOLの深さまで生じた圧縮応力のうち、フッ素侵入深さまでの領域で応力緩和が起こる。このため、フッ素侵入深さが深い場合、DOLが変動した際、圧縮応力深さに対するフッ素侵入深さの割合の変動が小さくなるため、応力緩和の変動が小さくなる。この結果として、反り改善量の変動も小さくなる。以上の理由により、フッ素処理により表層フッ素割合を0.4以下、特に0.3以下とすると、フッ素のガラスへの侵入深さを深くし、ガラスにおける最表面のフッ素濃度を減少して、化学強化によるガラスの反りのDOL依存性を抑制することができる。
(2)ガラスをフッ素処理した後にガラスが研磨またはエッチング処理されるとガラス表面のフッ素が減少し、ガラスをフッ素処理することによる化学強化後の反り低減効果が減少する。フッ素処理により表層フッ素割合を0.4以下、特に0.3以下とし、フッ素のガラスへの侵入深さを深くすることにより、化学強化前にガラスを研磨またはエッチング処理した場合にも、フッ素処理による化学強化後におけるガラスの反り低減効果を十分に担保することができる。
(3)ガラスの一方の面をフッ素処理することにより最表面のフッ素濃度が高くなると、フッ素によって応力が一方の面だけ緩和されてしまい、CSが入りにくくなってしまうという問題がある。フッ素処理により表層フッ素割合を0.4以下、特に0.3以下とすると、最表面のフッ素濃度が高くなるのを防ぎ、ΔCS(厚み方向に対向する一方の面のCSの値と他方の面のCSの値の差)を0に近づけることが可能となるため、化学強化による反りが低減できるとともに、強度の面においても優れたガラスが得られる。
(1) Warpage due to chemical strengthening of glass is caused by a difference in compressive stress between both glass surfaces. In general, plate glass produced by the float process has a different composition distribution in the depth direction on the front and back surfaces. Therefore, the method of entering the compressive stress in the depth direction of the glass front and back surfaces due to chemical strengthening is also different, resulting in warping of the glass. This warpage depends on the thickness of the compressive stress layer (hereinafter referred to as DOL). On the other hand, it has been found from the examination results of the present inventors that fluorine in the glass has an effect of relieving the compressive stress generated by chemical strengthening. Therefore, by introducing fluorine into the glass surface, the above-described difference in compressive stress between the front and back surfaces of the glass can be reduced, and the warpage can be reduced. At this time, of the compressive stress generated up to the depth of DOL, stress relaxation occurs in a region up to the fluorine penetration depth. For this reason, when the fluorine penetration depth is deep, when the DOL is fluctuated, the fluctuation of the ratio of the fluorine penetration depth to the compression stress depth is small, so the fluctuation of stress relaxation is small. As a result, the fluctuation of the warpage improvement amount is also reduced. For the above reasons, when the surface layer fluorine ratio is 0.4 or less, particularly 0.3 or less by fluorine treatment, the penetration depth of fluorine into the glass is increased, and the fluorine concentration on the outermost surface of the glass is reduced. It is possible to suppress the DOL dependency of glass warpage due to strengthening.
(2) When the glass is polished or etched after the glass is subjected to fluorine treatment, fluorine on the glass surface is reduced, and the warp reduction effect after chemical strengthening due to the fluorine treatment of the glass is reduced. Even if the glass is polished or etched before chemical strengthening by making the surface layer fluorine ratio 0.4 or less, especially 0.3 or less by fluorine treatment, and increasing the penetration depth of fluorine into the glass, fluorine treatment It is possible to sufficiently ensure the effect of reducing the warpage of the glass after chemical strengthening.
(3) When the fluorine concentration on the outermost surface is increased by subjecting one surface of the glass to fluorine treatment, there is a problem that stress is relaxed only by one surface due to fluorine and CS is difficult to enter. When the surface fluorine ratio is 0.4 or less, particularly 0.3 or less by the fluorine treatment, the fluorine concentration on the outermost surface is prevented from increasing, and ΔCS (the value of CS on one surface facing the thickness direction and the other surface) The difference in the CS value of the glass) can be brought close to 0, so that the warpage due to chemical strengthening can be reduced and a glass excellent in strength can be obtained.
 表層フッ素割合を0.4以下、特に0.3以下とするためには、後述するように、その構造中にフッ素原子が存在する分子を含有する気体または液体(以下、フッ素含有流体ともいう。)を搬送中のガラス板の表面に供給して該表面を処理する際のガラス板の表面温度を、該ガラス板のガラス転移温度をTgとした場合に、好ましくは(Tg+230℃)以上、より好ましくは(Tg+300℃)以上とする方法が挙げられる。 In order to set the surface layer fluorine ratio to 0.4 or less, particularly 0.3 or less, as will be described later, a gas or liquid containing molecules in which fluorine atoms are present in the structure (hereinafter also referred to as fluorine-containing fluid). ) Is supplied to the surface of the glass plate being conveyed, and the surface temperature of the glass plate when the surface is treated is preferably (Tg + 230 ° C.) or higher, where Tg is the glass transition temperature of the glass plate. A method of preferably (Tg + 300 ° C.) or higher is mentioned.
 その他、表層フッ素割合を0.4以下とするための方法としては、フッ素による処理時間を長くする方法、ガラスをフッ素処理した後に再度加熱処理を施すことで表面のフッ素を揮散させる方法、等を挙げることができる。 In addition, as a method for setting the surface layer fluorine ratio to 0.4 or less, a method of increasing the treatment time with fluorine, a method of volatilizing the surface fluorine by subjecting the glass to a heat treatment and then performing a heat treatment again, etc. Can be mentioned.
 SIMSにおける元素Mの同位体Mの二次イオン強度IM1は、一次イオン強度I、マトリックスのスパッタ率Y、元素Mの濃度C(全濃度に対する比)、同位体Mの存在確率α、元素Mの二次イオン化率β、および質量分析計の透過効率η(検出器の検出効率を含む)に比例する。
 IM1=A・I・Y・C・α・β・η (式w)
The secondary ion intensity I M1 of the isotope M 1 of the element M in SIMS is the primary ion intensity I P , the sputtering rate Y of the matrix, the concentration C M of the element M (ratio to the total concentration), and the existence probability of the isotope M 1 It is proportional to α 1 , the secondary ionization rate β M of the element M, and the transmission efficiency η (including the detection efficiency of the detector) of the mass spectrometer.
I M1 = A · I P · Y · C M · α 1 · β M · η (Formula w)
 ここで、Aは一次イオンビームの走査範囲に対する二次イオンの検出面積の比である。一般的には装置のηを求めるのは困難なためβの絶対値を求めることができない。そこで、同じ試料の中の主成分元素などを参照元素として用い、(式w)との比をとることによりηを消去する。 Here, A is the ratio of the secondary ion detection area to the scanning range of the primary ion beam. In general, it is impossible to determine the absolute value for the hard beta M determine the η devices. Therefore, η is eliminated by using a main component element or the like in the same sample as a reference element and taking a ratio with (formula w).
 ここで参照元素をR、その同位体をRとした場合、(式x)が得られる。
 IM1/IRj=(C・α・β)/(C・α・β)=C/K (式x)
 ここでKは元素Mの元素Rに対する相対感度因子である。
 K=(C・α・β)/(α・β) (式y)
 この場合、元素Mの濃度は(式z)より求められる。
 C=K・IM1/IRj (式z)
Here, when the reference element is R and its isotope is R j , (formula x) is obtained.
I M1 / I Rj = (C M · α 1 · β M ) / (C R · α j · β R ) = C M / K (Formula x)
Here, K is a relative sensitivity factor of the element M with respect to the element R.
K = ( CR * [alpha] j * [beta] R ) / ([alpha] 1 * [beta] M ) (formula y)
In this case, the concentration of the element M is obtained from (Expression z).
C M = K · I M1 / I Rj (formula z)
 本発明においては、FはMに、SiはRにそれぞれ対応する。したがって、(式x)より両者の強度比(F/Si)はフッ素濃度CをKで除したものに等しい。すなわち、F/Siはフッ素濃度の直接的な指標である。 In the present invention, F corresponds to M 1 and Si corresponds to R j . Therefore, (Equation x) ratio of the intensities from the (F / Si) is equal to fluorine concentration C M in divided by K. That is, F / Si is a direct indicator of fluorine concentration.
 SIMSの分析条件としては、例えば、以下の条件が挙げられる。なお、以下で示す分析条件は例示であり、測定装置、サンプルなどによって適宜変更されるべきものである。また、SIMSによって得られる深さ方向プロファイルの横軸の深さは、分析クレーターの深さを触針式膜厚計(例えば、Veeco社製Dektak150)によって測定することで、求められる。 Examples of SIMS analysis conditions include the following conditions. The analysis conditions shown below are examples, and should be changed as appropriate depending on the measurement device, sample, and the like. Further, the depth of the horizontal axis of the profile in the depth direction obtained by SIMS can be obtained by measuring the depth of the analysis crater with a stylus type film thickness meter (for example, Dektak 150 manufactured by Veeco).
(分析条件)
一次イオン種:Cs
一次イオン入射角:60°
一次加速電圧:5kV
(Analysis conditions)
Primary ion species: Cs +
Primary ion incident angle: 60 °
Primary acceleration voltage: 5 kV
 より具体的な分析条件としては、例えば、以下の条件が挙げられる。
(分析条件)
測定装置:四重極型質量分析器を有する二次イオン質量分析装置
一次イオン種:Cs
一次加速電圧:5.0kV
一次イオンカレント:1μA
一次イオン入射角(試料面垂直方向からの角度):60°
ラスターサイズ:200x200μm
検出領域:40x40μm
二次イオン極性:マイナス
中和用の電子銃使用:有
More specific analysis conditions include, for example, the following conditions.
(Analysis conditions)
Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs +
Primary acceleration voltage: 5.0 kV
Primary ion current: 1μA
Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
Raster size: 200x200μm 2
Detection area: 40 × 40 μm 2
Secondary ion polarity: Electron gun for negative neutralization Use: Yes
 四重極型質量分析器を有する二次イオン質量分析装置としては、例えば、アルバック・ファイ社製ADEPT1010が挙げられる。 As a secondary ion mass spectrometer having a quadrupole mass spectrometer, for example, ADEPT 1010 manufactured by ULVAC-PHI can be mentioned.
1B.反り改善のための適正なフッ素添加量を規定するパラメータ
 ガラスの化学強化による反りは、トップ面およびボトム面における化学強化の入り方の違いに起因する。該化学強化の入り方の違いはガラスの中の水分量の影響を多分に受ける。ガラス表層にフッ素を添加することで種々の要因によってガラスの化学強化による反りが改善されるが、ガラスに添加されるフッ素の適正量をトップ面およびボトム面における水分量の違いを考慮して下記パラメータを設定する。
1B. Parameters for defining an appropriate fluorine addition amount for improving warpage Warpage due to chemical strengthening of glass is caused by a difference in the way of chemical strengthening on the top surface and the bottom surface. The difference in the way of chemical strengthening is largely influenced by the amount of moisture in the glass. Addition of fluorine to the glass surface layer improves the warpage due to chemical strengthening of the glass due to various factors, but considering the difference in moisture content between the top and bottom surfaces, the appropriate amount of fluorine added to the glass is as follows: Set the parameters.
 本発明のガラス板は、厚み方向に対向する一方の面のフッ素濃度が他方の面のフッ素濃度より大きいガラス板であって、下式(1)を満たすことが好ましい。
 0.38≦ΔF/ΔHO…(1)
The glass plate of the present invention is a glass plate in which the fluorine concentration on one surface facing in the thickness direction is larger than the fluorine concentration on the other surface, and preferably satisfies the following formula (1).
0.38 ≦ ΔF / ΔH 2 O (1)
 式(1)中、ΔFは、フッ素濃度が大きい面における深さ1~24μmのSIMSによる平均フッ素濃度(mol%)からフッ素濃度が小さい面における深さ1~24μmのSIMSによる平均フッ素濃度(mol%)を減じた値である。平均フッ素濃度は、上述の手順で得ることができる。 In the formula (1), ΔF is an average fluorine concentration (mol%) by SIMS at a depth of 1 to 24 μm on a surface with a low fluorine concentration from an average fluorine concentration (mol%) by SIMS at a depth of 1 to 24 μm on a surface with a high fluorine concentration. %). The average fluorine concentration can be obtained by the above procedure.
 式(1)中、ΔHOは、フッ素濃度が小さい面における深さ1~24μmのSIMSによる平均HO濃度(mol%)からフッ素濃度が大きい面における深さ1~24μmのSIMSによる平均HO濃度(mol%)を減じた値の絶対値である。 In formula (1), ΔH 2 O is an average of SIMS having a depth of 1 to 24 μm on a surface having a high fluorine concentration from an average H 2 O concentration (mol%) of SIMS having a depth of 1 to 24 μm on a surface having a low fluorine concentration. The absolute value of the value obtained by subtracting the H 2 O concentration (mol%).
 平均HO濃度(mol%)は、SIMS装置でガラス中のフッ素濃度プロファイル測定を実施し、以下の手順(b1)~(b3)により該プロファイルから算出する。図7(a)~(c)はアルミノシリケートガラスのSIMSによる典型的なHO濃度プロファイルを示す。
(b1)濃度が既知の標準試料および測定対象サンプルのSIMSによるHO濃度プロファイルを測定する[図7(a)]。
(b2)標準試料の測定結果から検量線を作成し、H/30SiをHO濃度(mol%)に変換するための係数を算出する[図7(b)]。
(b3)工程(b2)で算出した係数から測定対象サンプルのHO濃度(mol%)を求める。深さ1~24μmのSIMSによる平均HO濃度(mol%)は、深さ1~24μmのHO濃度を積算し、23で除した値である[図7(c)]。
 前記手順(b1)~(b3)により深さ1~24μmのSIMSによる平均HO濃度(mol%)をガラスの厚さ方向に対向する両面について算出した値の差の絶対値がΔHOとなる。
The average H 2 O concentration (mol%) is calculated from the profile according to the following procedures (b1) to (b3) after measuring the fluorine concentration profile in the glass with a SIMS apparatus. FIGS. 7A to 7C show typical H 2 O concentration profiles by SIMS of aluminosilicate glass.
(B1) concentration is measured of H 2 O concentration profiles by SIMS of the known standard samples and measuring sample [Fig. 7 (a)].
(B2) A calibration curve is created from the measurement result of the standard sample, and a coefficient for converting 1 H / 30 Si into H 2 O concentration (mol%) is calculated [FIG. 7 (b)].
(B3) The H 2 O concentration (mol%) of the measurement target sample is obtained from the coefficient calculated in step (b2). The average H 2 O concentration (mol%) by SIMS at a depth of 1 to 24 μm is a value obtained by integrating the H 2 O concentration at a depth of 1 to 24 μm and dividing by 23 [FIG. 7 (c)].
The absolute value of the difference between the values obtained by calculating the average H 2 O concentration (mol%) by SIMS at a depth of 1 to 24 μm for both surfaces facing in the thickness direction of the glass by the steps (b1) to (b3) is ΔH 2 O It becomes.
 前記工程(b2)において、標準試料中のHO濃度は、測定対象サンプルのトップ面およびボトム面ともに両面研磨し、ガラスの厚み方向にHO濃度の分布がないように加工したものについてFT-IR装置を用いてガラスのIRスペクトルを取得し、ガラス中の水に起因するピークの強度からHO濃度(mol%)を算出する。アルミノシリケートガラスの典型的なIRスペクトルを図8に示す。 In the step (b2), the H 2 O concentration in the standard sample is obtained by polishing both the top surface and the bottom surface of the sample to be measured so that there is no distribution of the H 2 O concentration in the thickness direction of the glass. An IR spectrum of the glass is obtained using an FT-IR apparatus, and the H 2 O concentration (mol%) is calculated from the intensity of the peak due to water in the glass. A typical IR spectrum of an aluminosilicate glass is shown in FIG.
 すなわち、ガラス中のHO濃度CH2O(mol%)の算出は、式(i)に示すランベルト・ベールの法則とd:ガラスの比重(g/cm)、Mw:ガラスの平均分子量を用いて、式(ii)により求められる。 That is, the calculation of the H 2 O concentration C H2O (mol%) in the glass is based on the Lambert-Beer law represented by the formula (i), d: specific gravity of glass (g / cm 3 ), Mw: average molecular weight of glass. And is obtained by equation (ii).
H2O=εH2O×C×l…(i)
εH2O:ガラス中のHOのモル吸光係数 (L mol- cm-1
C:ガラス中HO濃度 (mol L-1
l:光路長(cm)  
A H2O = ε H2O × C × l (i)
ε H2O : molar extinction coefficient of H 2 O in glass (L mol− 1 cm −1 )
C: H 2 O concentration in glass (mol L −1 )
l: Optical path length (cm)
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 図9に示すように、ΔF/ΔHOとガラスの反り変位量は相関関係を示し、0.38≦ΔF/ΔHOとすることにより、化学強化後の反りを効果的に抑制することができる。ΔF/ΔHOは0.38以上であることが好ましく、1以上であることがより好ましく、2以上であることがさらに好ましい。ΔF/ΔHOが0.38未満であると、反りの変位に有意な差が見られないため不適である。また、ΔF/ΔHOは15以下であることが実用上好ましい。 As shown in FIG. 9, ΔF / ΔH 2 O and the warp displacement amount of the glass show a correlation, and by setting 0.38 ≦ ΔF / ΔH 2 O, the warp after chemical strengthening is effectively suppressed. Can do. ΔF / ΔH 2 O is preferably 0.38 or more, more preferably 1 or more, and even more preferably 2 or more. If ΔF / ΔH 2 O is less than 0.38, no significant difference is observed in the warpage displacement, which is inappropriate. Moreover, it is practically preferable that ΔF / ΔH 2 O is 15 or less.
1C.反り改善のためのフッ素侵入深さを規定するパラメータ
 ガラス表層にフッ素を添加することで化学強化後の反りが改善されるが、フッ素の侵入深さを考慮して下記パラメータを設定する。
1C. Parameters defining the fluorine penetration depth for warpage improvement Adding fluorine to the glass surface layer improves the warpage after chemical strengthening, but the following parameters are set in consideration of the fluorine penetration depth.
 本発明のガラス板は、厚み方向に対向する一方の面のフッ素濃度が他方の面のフッ素濃度より大きいガラス板であって、下式(2)を満たすことが好ましい。
 5≦x…(2)
 式(2)中、xはSIMSによるフッ素濃度プロファイルにおいて、任意の深さx(μm)における傾きが下式(3)を満たす最大の深さ(μm)である。
[F(x+0.1)-F(x)]/0.1=-0.015…(3)
 式(3)中、F(x)は、深さx(μm)におけるSIMSによるフッ素濃度(mol%)を示す。
The glass plate of the present invention is a glass plate in which the fluorine concentration on one surface facing in the thickness direction is larger than the fluorine concentration on the other surface, and preferably satisfies the following formula (2).
5 ≦ x (2)
In the formula (2), x is the maximum depth (μm) in which the slope at an arbitrary depth x i (μm) satisfies the following formula (3) in the fluorine concentration profile by SIMS.
[F (x i +0.1) −F (x i )] / 0.1 = −0.015 (3)
In formula (3), F (x i ) represents the fluorine concentration (mol%) by SIMS at the depth x i (μm).
 図10(a)にフッ素処理したアルミノシリケートガラスのSIMSによる典型的なフッ素濃度プロファイルを示す。図10(b)は、横軸に深さ、縦軸に下式(a)で表される任意の点xにおける傾きをプロットしたグラフである。下式(a)において、F(x)は点xにおけるフッ素濃度(mol%)を示す。
[F(x+Δx)-F(x)]/Δx…(a)
 Δxを0.1とした場合に、式(a)で表される傾きが-0.015となる最大の深さx(μm)は5以上であることが好ましく、10以上であることがより好ましい。xが5未満であると、反りの変位に有意な差が見られない。
FIG. 10A shows a typical fluorine concentration profile by SIMS of a fluorine-treated aluminosilicate glass. FIG. 10B is a graph plotting the depth at the horizontal axis and the slope at an arbitrary point x i represented by the following equation (a) on the vertical axis. In the following formula (a), F (x) represents the fluorine concentration (mol%) at the point x.
[F (x i + Δx) −F (x i )] / Δx (a)
When Δx is 0.1, the maximum depth x (μm) at which the slope represented by the formula (a) is −0.015 is preferably 5 or more, more preferably 10 or more. preferable. When x is less than 5, there is no significant difference in warpage displacement.
 図10(c)は、図10(b)のグラフの点線部分を拡大した図である。例えば、図10(c)において、Δxを0.1とした場合に、式(a)で表される傾きが-0.015となる最大の深さx(μm)は6.5となる。 FIG. 10 (c) is an enlarged view of the dotted line portion of the graph of FIG. 10 (b). For example, in FIG. 10C, when Δx is 0.1, the maximum depth x (μm) at which the slope represented by the formula (a) is −0.015 is 6.5.
2.ガラス板の製造方法
 本発明のガラス板の製造方法は特に限定されず、化学強化処理による強化が可能な組成を有するものである限り、種々の組成のものを使用することができる。例えば、種々の原料を適量調合し、加熱溶融した後、脱泡または攪拌などにより均質化し、周知のフロート法、ダウンドロー法(例えば、フュージョン法など)またはプレス法などによって板状に成形し、徐冷後、所望のサイズに切断し、研磨加工を施して製造される。これらの製造方法の中でも、フロート法により製造されたガラスは、特に本発明の効果である化学強化後の反り改善が発揮され易いため、好ましい。
2. The manufacturing method of a glass plate The manufacturing method of the glass plate of this invention is not specifically limited, As long as it has a composition which can be strengthened by a chemical strengthening process, the thing of various compositions can be used. For example, appropriate amounts of various raw materials are prepared, heated and melted, then homogenized by defoaming or stirring, and formed into a plate shape by a well-known float method, downdraw method (for example, fusion method) or press method, After slow cooling, it is cut into a desired size and polished to produce. Among these production methods, glass produced by the float process is preferable because the improvement of warpage after chemical strengthening, which is the effect of the present invention, is particularly easily exhibited.
 本発明に用いられるガラス板としては、具体的には、例えば、典型的にはソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、ホウ珪酸ガラスからなるガラス板が挙げられる。 Specific examples of the glass plate used in the present invention include a glass plate typically made of soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, or borosilicate glass.
 これらの中でも、Alを含む組成のガラスが好ましい。Alはアルカリが共存すると4配位をとってSiと同様にガラスの骨格となる網目の形成に参加する。4配位のAlが増えると、アルカリイオンの移動が容易になり、化学強化処理時にイオン交換が進行しやすくなる。 Among these, glass having a composition containing Al is preferable. When Al coexists with Al, it takes 4-coordination and participates in the formation of a network that becomes a glass skeleton like Si. When tetracoordinate Al increases, movement of alkali ions becomes easy, and ion exchange easily proceeds during chemical strengthening treatment.
 ガラス板の厚みは、特に制限されるものではなく、たとえば2mm、0.8mm、0.73mm、0.7mm、0.56mm、0.4mmが挙げられるが、後述する化学強化処理を効果的に行うために、通常5mm以下であることが好ましく、3mm以下であることがより好ましく、1.5mm以下であることがさらに好ましく、0.8mm以下であることが特に好ましい。 The thickness of the glass plate is not particularly limited, and examples thereof include 2 mm, 0.8 mm, 0.73 mm, 0.7 mm, 0.56 mm, and 0.4 mm. In order to carry out, it is usually preferably 5 mm or less, more preferably 3 mm or less, further preferably 1.5 mm or less, and particularly preferably 0.8 mm or less.
 通常、厚み0.7mmのガラス板の化学強化後における反り量は40μm以下であることが求められる。90mm角のガラス板でCSが750MPa、DOLが40μmの場合、化学強化後の反り量は約130μmである。一方、化学強化後におけるガラス板の反り量は板厚の2乗と反比例の関係にあるので、ガラス板の厚みが2.0mmのときの反り量は約16μmとなり、実質的に反りが問題となることはない。したがって、ガラス板の厚み2mm未満、典型的には1.5mm以下で化学強化後における反りの問題が生じる可能性がある。 Usually, the warp amount after chemical strengthening of a 0.7 mm thick glass plate is required to be 40 μm or less. When a 90 mm square glass plate has a CS of 750 MPa and a DOL of 40 μm, the amount of warpage after chemical strengthening is about 130 μm. On the other hand, the amount of warpage of the glass plate after chemical strengthening is inversely proportional to the square of the plate thickness, so the amount of warpage when the thickness of the glass plate is 2.0 mm is about 16 μm, and the warpage is substantially a problem. Never become. Therefore, the problem of warpage after chemical strengthening may occur when the thickness of the glass plate is less than 2 mm, typically 1.5 mm or less.
 本発明のガラス板の組成としては、モル%で表示した組成で、SiOを50~80%、Alを0.1~25%、LiO+NaO+KOを3~30%、MgOを0~25%、CaOを0~25%およびZrOを0~5%含むガラスが挙げられるが、特に限定されない。より具体的には、以下のガラスの組成が挙げられる。なお、例えば、「MgOを0~25%含む」とは、MgOは必須ではないが25%まで含んでもよい、の意である。(i)のガラスはソーダライムシリケートガラスに含まれ、(ii)および(iii)のガラスはアルミノシリケートガラスに含まれる。
(i)モル%で表示した組成で、SiOを63~73%、Alを0.1~5.2%、NaOを10~16%、KOを0~1.5%、MgOを5~13%及びCaOを4~10%を含むガラス
(ii)モル%で表示した組成が、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~11%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が7~15%であるガラス
(iii)モル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%およびZrOを0~1%含有するガラス
(iv)モル%で表示した組成が、SiOを67~75%、Alを0~4%、NaOを7~15%、KOを1~9%、MgOを6~14%およびZrOを0~1.5%含有し、SiOおよびAlの含有量の合計が71~75%、NaOおよびKOの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス
(v)モル%で表示した組成が、SiOを62~72%、Alを1~7%、NaOを13~19%、KOを0~4%、MgOを8~16%、CaOを0~6%およびZrOを0~3%含有し、CaO/MgOが0.5以下であるガラス
The composition of the glass plate of the present invention is a composition expressed in mol%, SiO 2 is 50 to 80%, Al 2 O 3 is 0.1 to 25%, Li 2 O + Na 2 O + K 2 O is 3 to 30%. , A glass containing 0 to 25% MgO, 0 to 25% CaO and 0 to 5% ZrO 2 , but is not particularly limited. More specifically, the following glass compositions may be mentioned. For example, “containing 0 to 25% of MgO” means that MgO is not essential but may contain up to 25%. The glass of (i) is contained in soda lime silicate glass, and the glass of (ii) and (iii) is contained in aluminosilicate glass.
(I) A composition expressed in mol%, with SiO 2 being 63 to 73%, Al 2 O 3 being 0.1 to 5.2%, Na 2 O being 10 to 16%, and K 2 O being 0 to 1. Glass (ii) containing 5%, MgO 5 to 13% and CaO 4 to 10%. The composition expressed as mol% is SiO 2 50 to 74%, Al 2 O 3 1 to 10%, Na 2 Contains 6-14% O, 3-11% K 2 O, 2-15% MgO, 0-6% CaO and 0-5% ZrO 2 , and contains SiO 2 and Al 2 O 3 composition total 75% or less, and displayed in the total content of Na 2 O content and K 2 O 12 to 25% glass (iii) mol percent total of 7 to 15% of the content of MgO and CaO 0 but the SiO 2 68 ~ 80%, the Al 2 O 3 4 ~ 10% , a Na 2 O 5 ~ 15%, the K 2 O 1%, the MgO 4 ~ 15% and ZrO 2 are compositions displaying 0-1% glass containing (iv) mol%, a SiO 2 67 ~ 75%, the Al 2 O 3 0 ~ 4% , Na 2 O the 7 ~ 15% K 2 O 1-9% of MgO 6 ~ 14% and the ZrO 2 and contains 0 to 1.5% total content of SiO 2 and Al 2 O 3 is 71 -75%, the total content of Na 2 O and K 2 O is 12-20%, and when containing CaO, the composition expressed in terms of glass (v) mol% whose content is less than 1%, SiO 2 62-72%, Al 2 O 3 1-7%, Na 2 O 13-19%, K 2 O 0-4%, MgO 8-16%, CaO 0-6% and Glass containing 0 to 3% of ZrO 2 and CaO / MgO of 0.5 or less
 本発明のガラス板の製造方法では、ガラス板またはガラスリボンの少なくとも一面に対して、フッ素含有流体を接触させて表面処理する。ガラスリボンの少なくとも一面に対してフッ素含有流体を接触させて表面処理する場合、ガラスリボンの温度は650℃以上であることが好ましい。650℃以上とすることにより後述する凹部の発生を抑制しつつ、化学強化後のガラスの反り量を低減することができる。 In the method for producing a glass plate of the present invention, surface treatment is performed by bringing a fluorine-containing fluid into contact with at least one surface of the glass plate or the glass ribbon. When the surface treatment is performed by bringing a fluorine-containing fluid into contact with at least one surface of the glass ribbon, the temperature of the glass ribbon is preferably 650 ° C. or higher. By setting the temperature to 650 ° C. or higher, it is possible to reduce the amount of warpage of the glass after chemical strengthening while suppressing the generation of recesses described later.
 フッ素含有流体としては、例えば、フッ化水素(HF)、フロン(例えば、クロロフルオロカーボン、フルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、ハロン)、フッ化水素酸、フッ素単体、トリフルオロ酢酸、四フッ化炭素、四フッ化ケイ素、五フッ化リン、三フッ化リン、三フッ化ホウ素、三フッ化窒素、三フッ化塩素などが挙げられるが、これらの気体または液体に限定されるものではない。 Examples of the fluorine-containing fluid include hydrogen fluoride (HF), flon (for example, chlorofluorocarbon, fluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, and halon), hydrofluoric acid, fluorine alone, trifluoroacetic acid, and carbon tetrafluoride. , Silicon tetrafluoride, phosphorus pentafluoride, phosphorus trifluoride, boron trifluoride, nitrogen trifluoride, chlorine trifluoride and the like, but are not limited to these gases or liquids.
 これらの中でも、フッ化水素、フロンまたはフッ化水素酸がガラス板表面との反応性が高い点で好ましい。またこれらのガスのうち、2種以上を混合して使用してもよい。また、フロートバス内では酸化力が強すぎるので、フッ素単体を使用しないことが好ましい。 Among these, hydrogen fluoride, chlorofluorocarbon or hydrofluoric acid is preferable because of its high reactivity with the glass plate surface. Moreover, you may mix and use 2 or more types among these gases. Further, since the oxidizing power is too strong in the float bath, it is preferable not to use fluorine alone.
 また液体を使用する場合は、液体のまま、例えば、スプレー塗布でガラス板表面に供給しても、液体を気化してからガラス板表面に供給してもよい。また必要に応じて他の液体または気体で希釈してもよい。 When a liquid is used, the liquid may be supplied to the glass plate surface by spray coating, for example, or may be supplied to the glass plate surface after vaporizing the liquid. Moreover, you may dilute with another liquid or gas as needed.
 フッ素含有流体としては、それらの液体や気体以外の液体または気体を含んでいてもよく、常温でフッ素原子が存在する分子と反応しない液体または気体であることが好ましい。 The fluorine-containing fluid may contain a liquid or a gas other than those liquids or gases, and is preferably a liquid or a gas that does not react with molecules having fluorine atoms at room temperature.
 前記液体または気体としては、例えば、N、空気、H、O、Ne、Xe、CO、Ar、HeおよびKrなどが挙げられるが、これらのものに限定されるものではない。またこれらのガスのうち、2種以上を混合して使用することもできる。 Examples of the liquid or gas include, but are not limited to, N 2 , air, H 2 , O 2 , Ne, Xe, CO 2 , Ar, He, and Kr. Moreover, 2 or more types of these gases can also be mixed and used.
 その構造中にフッ素原子が存在する分子を含有する気体のキャリアガスとしては、N、アルゴンなどの不活性ガスを用いることが好ましい。また、その構造中にフッ素原子が存在する分子を含有する気体には、更にSOを含んでもよい。SOはフロート法などで連続的にガラス板を生産する際に使用されており、徐冷域において搬送ローラーがガラス板と接触して、ガラスに疵を発生させることを防ぐ働きがある。また、高温で分解するガスを含んでいてもよい。 As a gas carrier gas containing molecules having fluorine atoms in its structure, it is preferable to use an inert gas such as N 2 or argon. Further, the gas containing a molecule having a fluorine atom in its structure may further contain SO 2 . SO 2 is used when a glass plate is continuously produced by a float process or the like, and has a function of preventing wrinkles from being generated on the glass due to the conveyance roller coming into contact with the glass plate in the slow cooling region. Moreover, the gas decomposed | disassembled at high temperature may be included.
 更に、フッ素含有流体には、水蒸気または水を含んでもよい。水蒸気は加熱した水に窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスをバブリングさせて取り出すことができる。大量の水蒸気が必要な場合は、気化器に水を送り込んで直接気化させる方法をとることも可能である。以下の説明では、フッ素含有流体としてHFガスを用いた場合を例として述べる。 Furthermore, the fluorine-containing fluid may contain water vapor or water. Water vapor can be extracted by bubbling an inert gas such as nitrogen, helium, argon, carbon dioxide in heated water. When a large amount of water vapor is required, it is also possible to take a method in which water is sent directly to the vaporizer and vaporized directly. In the following description, a case where HF gas is used as the fluorine-containing fluid will be described as an example.
 本発明のガラス板の製造方法の具体例としては、フロート法に代表されるガラス板を製造する方法が挙げられる。フロート法では、ガラスの原料を溶解する溶融炉と、溶融ガラスを溶融金属(錫等)上に浮かせてガラスリボンを成形するフロートバスと、該ガラスリボンを徐冷する徐冷炉とを有するガラス製造装置を用いてガラス板が製造される。 Specific examples of the method for producing a glass plate of the present invention include a method for producing a glass plate represented by the float process. In the float process, a glass manufacturing apparatus having a melting furnace for melting glass raw materials, a float bath for floating glass on a molten metal (such as tin) to form a glass ribbon, and a slow cooling furnace for gradually cooling the glass ribbon Is used to produce a glass plate.
 溶融金属(錫)浴上でガラスが成形される際に、溶融金属浴上を搬送されるガラス板に対して、金属面に触れていない側からHFガスを供給して当該ガラス板表面を処理してもよい。溶融金属(錫)浴に続く徐冷領域では、ガラス板はローラーにより搬送される。 When glass is formed on a molten metal (tin) bath, HF gas is supplied from the side not touching the metal surface to the glass plate conveyed on the molten metal bath to treat the surface of the glass plate. May be. In the slow cooling region following the molten metal (tin) bath, the glass plate is conveyed by a roller.
 図4(a)にフロート法によるガラス板の製造において、HFガスを供給してガラス表面を処理する方法の概略説明図を示す。 FIG. 4 (a) shows a schematic explanatory diagram of a method for processing a glass surface by supplying HF gas in the production of a glass plate by a float method.
 溶融ガラスを溶融金属(錫等)上に浮かせてガラスリボン101を成形するフロートバスにおいて、フロートバス内に挿入したビーム102により、HFガスを、該ガラスリボン101に吹き付ける。図4(a)に示すように、HFガスは、ガラスリボン101が溶融金属面に触れていない側からガラスリボン101に吹き付けることが好ましい。矢印Yaは、フロートバスにおいてガラスリボン101が流れる方向を示す。 In a float bath in which molten glass is floated on a molten metal (tin or the like) to form the glass ribbon 101, HF gas is blown onto the glass ribbon 101 by a beam 102 inserted into the float bath. As shown in FIG. 4A, the HF gas is preferably blown onto the glass ribbon 101 from the side where the glass ribbon 101 does not touch the molten metal surface. An arrow Ya indicates a direction in which the glass ribbon 101 flows in the float bath.
 ビーム102によりガラスリボン101にHFガスを吹き付ける位置は、ガラス転移点が550℃以上の場合には、ガラスリボン101が好ましくは650~970℃の位置であることが好ましい。また、ビーム102の位置は、ラジエーションゲート103の上流であってもよいし、下流であってもよい。ガラスリボン101に吹きつけるHFガスの量は、1×10-6~5×10-3mol/ガラスリボン1cmであることが好ましい。 When the glass transition point is 550 ° C. or higher, the glass ribbon 101 is preferably 650-970 ° C. when the HF gas is blown onto the glass ribbon 101 by the beam 102. Further, the position of the beam 102 may be upstream or downstream of the radiation gate 103. The amount of HF gas blown onto the glass ribbon 101 is preferably 1 × 10 −6 to 5 × 10 −3 mol / cm 2 of the glass ribbon.
 図4(b)に図4(a)のA-A断面図を示す。ビーム102によりY1の方向からガラスリボン101に吹き付けられたHFガスは、「IN」から流入して、「OUT」の方向から流出する。すなわち、矢印Y4およびY5の方向に移動して、ガラスリボン101に曝露する。また、矢印Y4の方向に移動したHFガスは矢印Y2の方向から流出し、矢印Y5の方向に移動したHFガスは矢印Y3の方向から流出する。 Fig. 4 (b) shows a cross-sectional view along the line AA in Fig. 4 (a). The HF gas blown to the glass ribbon 101 by the beam 102 from the Y1 direction flows in from “IN” and flows out from the “OUT” direction. That is, it moves in the directions of arrows Y4 and Y5 and is exposed to the glass ribbon 101. The HF gas that has moved in the direction of arrow Y4 flows out from the direction of arrow Y2, and the HF gas that has moved in the direction of arrow Y5 flows out from the direction of arrow Y3.
 ガラスリボン101の幅方向の位置によって化学強化後におけるガラス板の反り量が変化する場合もあり、そのような場合は、HFガスの量を調整することが好ましい。すなわち、反り量が大きい位置にはHFガスを吹きつける量を多くし、反り量が少ない位置にはHFガスを吹きつける量を少なくすることが好ましい。 The amount of warpage of the glass plate after chemical strengthening may change depending on the position of the glass ribbon 101 in the width direction. In such a case, it is preferable to adjust the amount of HF gas. That is, it is preferable to increase the amount of blowing HF gas at a position where the amount of warping is large, and to reduce the amount of blowing HF gas at a position where the amount of warping is small.
 ガラスリボン101の位置によって化学強化後におけるガラス板の反り量が変化する場合には、ビーム102の構造を、ガラスリボン101の幅方向でHFガスを調整可能な構造とすることにより、ガラスリボン101の幅方向で反り量を調整してもよい。 When the amount of warpage of the glass plate after chemical strengthening changes depending on the position of the glass ribbon 101, the structure of the beam 102 is made so that the HF gas can be adjusted in the width direction of the glass ribbon 101. The amount of warpage may be adjusted in the width direction.
 具体例として、HFガスの量をガラスリボン101の幅方向110でI~IIIに3分割して調整するビーム102の断面図を図5(a)に示す。ガス系統111~113は、隔壁114,115によって分割されており、それぞれガス吹き穴116からHFガスを流出させて、ガラスに吹き付ける。 As a specific example, FIG. 5A shows a cross-sectional view of a beam 102 that adjusts the amount of HF gas by dividing it into I to III in the width direction 110 of the glass ribbon 101. The gas systems 111 to 113 are divided by partition walls 114 and 115, and HF gas is caused to flow out from the gas blowing holes 116 and sprayed onto the glass.
 図5(a)における矢印はHFガスの流れを示す。図5(b)における矢印は、ガス系統111におけるHFガスの流れを示す。図5(c)における矢印は、ガス系統112におけるHFガスの流れを示す。図5(d)における矢印は、ガス系統113におけるHFガスの流れを示す。 The arrow in Fig.5 (a) shows the flow of HF gas. The arrows in FIG. 5B indicate the flow of HF gas in the gas system 111. The arrows in FIG. 5C indicate the flow of HF gas in the gas system 112. An arrow in FIG. 5D indicates the flow of HF gas in the gas system 113.
 HFガスのようなフッ素含有流体をガラス表面に供給する方法としては、例えば、インジェクタを用いる方法、および導入チューブを用いる方法等が挙げられる。 Examples of a method for supplying a fluorine-containing fluid such as HF gas to the glass surface include a method using an injector and a method using an introduction tube.
 本発明で用いることのできるガラス板の表面処理に用いるインジェクタの模式図を図1および図2に示す。図1は、本発明で用いることのできる両流しタイプのインジェクタを模式的に示す図である。図2は、本発明で用いることのできる片流しタイプのインジェクタを模式的に示す図である。 1 and 2 are schematic views of an injector used for the surface treatment of a glass plate that can be used in the present invention. FIG. 1 is a diagram schematically showing a double-flow type injector that can be used in the present invention. FIG. 2 is a diagram schematically showing a single-flow injector that can be used in the present invention.
 HFガスは、中央スリット1及び外スリット2からガラス板20に向かって吐出され、ガラス板20上を流路4を通じて流れ、排気スリット5から排気される。なお、図1及び図2中の符号21は、ガラス板20が流れる方向であり、流路4と平行である。 HF gas is discharged from the central slit 1 and the outer slit 2 toward the glass plate 20, flows on the glass plate 20 through the flow path 4, and is exhausted from the exhaust slit 5. In addition, the code | symbol 21 in FIG.1 and FIG.2 is a direction through which the glass plate 20 flows, and is parallel to the flow path 4. FIG.
 インジェクタより供給されるフッ素含有流体が気体である場合、インジェクタの気体吐出口とガラス板との距離は50mm以下であることが好ましい。 When the fluorine-containing fluid supplied from the injector is a gas, the distance between the gas discharge port of the injector and the glass plate is preferably 50 mm or less.
 前記距離を50mm以下とすることにより、気体が大気中に拡散するのを抑制し、所望するガス量に対して、ガラス板に十分量のガスを到達させることができる。逆にガラス板との距離が短すぎると、例えばフロート法で生産されるガラス板にオンラインで処理をする際に、ガラスリボンの変動により、ガラス板とインジェクタが接触する恐れがある。 By setting the distance to 50 mm or less, the gas can be prevented from diffusing into the atmosphere, and a sufficient amount of gas can reach the glass plate with respect to the desired gas amount. On the other hand, if the distance from the glass plate is too short, for example, when the glass plate produced by the float process is processed online, the glass plate and the injector may come into contact with each other due to the fluctuation of the glass ribbon.
 またインジェクタより供給されるフッ素含有流体が液体である場合、インジェクタの液体吐出口とガラス板との距離には特段の制限がなく、ガラス板が均一に処理できるような配置であればよい。 Further, when the fluorine-containing fluid supplied from the injector is a liquid, there is no particular limitation on the distance between the liquid discharge port of the injector and the glass plate, and it may be arranged so that the glass plate can be processed uniformly.
 インジェクタは、両流しまたは片流しなど、いずれの態様で用いてもよく、ガラス板の流れ方向に直列に2個以上並べて、ガラス板表面を処理してもよい。両流しインジェクタとは、図1に示す通り、吐出から排気へのガスの流れがガラス板の移動方向に対して、順方向と逆方向に均等に分かれるインジェクタである。 The injector may be used in any manner such as double flow or single flow, and two or more injectors may be arranged in series in the flow direction of the glass plate to treat the glass plate surface. As shown in FIG. 1, the double-flow injector is an injector in which the gas flow from discharge to exhaust is equally divided in the forward direction and the reverse direction with respect to the moving direction of the glass plate.
 この両流しインジェクタは一般的なものであり、低反射ガラスを製造するために使用するものとしても知られている。例えば、600℃まで再加熱した厚さ1.8mmの旭硝子製ソーダライムシリケートガラス(ガラス転移点560℃)に、中央スリット1からHFガスを1.12SLM(標準状態での気体で毎分リットル)と窒素(N)ガス9SLMを混合したガスを150℃に加熱し流速64cm/sで、外スリット2からNガスを45.5SLM吹き付けるように、使用することがある。このようにしてHFガスが吹き付けられたガラス表面の表面粗さ(算術平均粗さ)Raは30.6nmであり、上述のxの値は2.5μmである。 This double-flow injector is common and is also known for use in producing low reflection glass. For example, asahi glass soda lime silicate glass (glass transition point 560 ° C.) having a thickness of 1.8 mm reheated to 600 ° C., HF gas from the central slit 1 is 1.12 SLM (liters per minute as standard gas) and a nitrogen (N 2) gas was mixed gas 9SLM heated to 0.99 ° C. flow rate 64cm / s, to blow 45.5SLM the N 2 gas from the outer slit 2, which may be used. The surface roughness (arithmetic mean roughness) Ra of the glass surface sprayed with HF gas in this manner is 30.6 nm, and the value of x described above is 2.5 μm.
 片流しインジェクタとは、図2に示す通り、吐出から排気へのガスの流れがガラス板の移動方向に対して順方向もしくは逆方向のいずれかに固定されるインジェクタである。片流しインジェクタを使用するときは、気流安定性の点でガラス板上のガスの流れとガラス板の移動方向が同じである方が好ましい。 As shown in FIG. 2, the single-flow injector is an injector in which the gas flow from discharge to exhaust is fixed in either the forward direction or the reverse direction with respect to the moving direction of the glass plate. When a single-flow injector is used, it is preferable that the gas flow on the glass plate and the moving direction of the glass plate are the same in terms of airflow stability.
 また、フッ素含有流体の供給口と、未反応のフッ素含有流体ならびにガラス板と反応して生成する気体、またはフッ素含有流体のうち2種以上のガスが反応して生成する気体の排気口とが、ガラス板の同じ側の面に存在することが好ましい。 In addition, a fluorine-containing fluid supply port, a gas generated by reacting with an unreacted fluorine-containing fluid and a glass plate, or a gas exhaust port generated by reacting two or more kinds of gases among fluorine-containing fluids It is preferable that it exists in the surface of the same side of a glass plate.
 本発明においては、フッ素含有流体を搬送中のガラス板の表面に供給して該表面を処理する際のガラス板の表面温度は、該ガラス板のガラス転移温度をTgとした場合に、(Tg+50℃)~(Tg+460℃)であることが好ましく、(Tg+150℃)~(Tg+460℃)であることがより好ましく、(Tg+230℃)~(Tg+460℃)であることがさらに好ましい。 In the present invention, the surface temperature of the glass plate when the fluorine-containing fluid is supplied to the surface of the glass plate being conveyed to treat the surface is (Tg + 50) when the glass transition temperature of the glass plate is Tg. ° C) to (Tg + 460 ° C), preferably (Tg + 150 ° C) to (Tg + 460 ° C), more preferably (Tg + 230 ° C) to (Tg + 460 ° C).
 フロートバス内における成形では、通常ガラスリボンが流れる方向の上流側ほど温度が高い。またガラス内のフッ素の拡散は温度が高いほど、すなわち粘度が低いほど活発である。したがって、フロートバス内での当該フッ素処理は、フッ素の侵入深さを増大させる為に、上流で実施すると効果的である。あるいは処理位置のガラスリボンの温度を上昇させることでも同様の効果を得ることができる。 In molding in the float bath, the temperature is usually higher on the upstream side in the direction in which the glass ribbon flows. The diffusion of fluorine in the glass is more active as the temperature is higher, that is, as the viscosity is lower. Therefore, the fluorine treatment in the float bath is effective when performed upstream in order to increase the penetration depth of fluorine. Or the same effect can be acquired also by raising the temperature of the glass ribbon of a process position.
 ただし、上流側で処理を行う際、処理後にフロートバス内でガラスリボンが薄くなっていく過程を経ることがある。その場合、フッ素の侵入深さもガラスリボンとともに浅くなる為に、最終的に得られるガラス板のフッ素の侵入深さが、より下流で同じ処理をしたガラス板のフッ素の侵入深さよりも浅くなる場合がある。よって、フロートバス内で当該フッ素処理を実施する場合、フッ素侵入深さを増大するために処理位置を著しく上流側に設けることは、必ずしも効果的ではない。 However, when processing on the upstream side, the glass ribbon may go through a process of thinning in the float bath after processing. In that case, since the penetration depth of fluorine becomes shallower with the glass ribbon, the penetration depth of fluorine in the finally obtained glass plate is shallower than the penetration depth of fluorine in the glass plate that has been processed the same downstream. There is. Therefore, when the fluorine treatment is performed in the float bath, it is not always effective to provide the treatment position significantly upstream in order to increase the fluorine penetration depth.
 ガラス板における凹部の発生を抑制し、且つ化学強化後の反りの改善効果を得るためには、フッ素処理を行う際のガラス板の表面温度が(Tg+90)℃以上であることが好ましい。なお、上記にかかわらずガラス板の表面温度は、650℃超であることが好ましい。ガラス板の表面温度が650℃以下でフッ素処理すると凹部が発生しやすくなる。本明細書において、凹部とはSEM(Scanning Electron Microscope:走査型電子顕微鏡)により視認できるガラス板の表面に発生する微小穴である。ガラス板に凹部が発生することにより、ガラス板の強度が低下する。 In order to suppress the occurrence of recesses in the glass plate and obtain the effect of improving the warp after chemical strengthening, the surface temperature of the glass plate during the fluorine treatment is preferably (Tg + 90) ° C. or higher. Regardless of the above, the surface temperature of the glass plate is preferably more than 650 ° C. When the glass plate has a surface temperature of 650 ° C. or lower and is subjected to fluorine treatment, recesses are likely to occur. In the present specification, the concave portion is a minute hole generated on the surface of a glass plate that can be visually recognized by an SEM (Scanning Electron Microscope). When the concave portion is generated in the glass plate, the strength of the glass plate is lowered.
 凹部は典型的には、表面から深さ方向に縮径した後、略球状の袋状に広がった形状を示す。このような凹部の直径は、縮径部と袋状部の間のくびれ部分の直径を表し、SEM等により観察することができる。凹部の深さは、ガラス表面から袋状部の最深部までの深さを表わし、断面SEM観察等により測定することができる。 The concave portion typically shows a shape that expands in a substantially spherical bag shape after being reduced in diameter from the surface. The diameter of such a recess represents the diameter of the constricted portion between the reduced diameter portion and the bag-like portion, and can be observed by SEM or the like. The depth of the concave portion represents the depth from the glass surface to the deepest portion of the bag-like portion, and can be measured by cross-sectional SEM observation or the like.
 本発明における凹部は、大きさまたは直径が10nm以上であるものをいい、通常は20nm以上であり、また典型的には直径が40nm以下である。凹部の深さは通常10nm以上であり、また典型的には150nm以下である。 The concave portion in the present invention means a size or diameter of 10 nm or more, usually 20 nm or more, and typically 40 nm or less. The depth of the recess is usually 10 nm or more, and typically 150 nm or less.
 フッ素濃度が大きい方の表面に凹部が7個/μm超の密度で存在すると、化学強化されたガラス板の強度が低下するおそれがある。したがって、凹部が存在するとしてもその密度は6個/μm以下であることが好ましく、より好ましくは4個/μm以下であり、最も好ましくは0個/μmである。なお、凹部密度が6個/μmのときの凹部平均間隔は460nmである。 If the surface having the higher fluorine concentration has recesses with a density of more than 7 / μm 2 , the strength of the chemically strengthened glass plate may be lowered. Therefore, even if there are recesses, the density is preferably 6 / μm 2 or less, more preferably 4 / μm 2 or less, and most preferably 0 / μm 2 . Note that the average interval between the recesses when the recess density is 6 / μm 2 is 460 nm.
 図11にHF処理による凹部発生のメカニズムの説明図を示す。ガラスをHF処理することによりフッ化物の生成と揮散が生じ[図11(a)]、HFとガラスの反応によるフッ化物の生成速度が、生成したフッ化物の揮散速度よりも早い場合に、生成したフッ化物が処理面に残存し[図11(b)]、溶融したフッ化物がエッチングしながら結晶成長するとともに溶融塩が減少し[図11(c)]、その結果最終生成物が凹部として観察される[図11(d)]と考えられる。 FIG. 11 shows an explanatory diagram of the mechanism of the recess generation by HF treatment. When glass is treated with HF, fluoride is generated and volatilized [FIG. 11 (a)]. When the rate of fluoride generation by the reaction of HF and glass is faster than the rate of volatilization of the generated fluoride, it is generated. The remaining fluoride remains on the treated surface [FIG. 11 (b)], and the molten fluoride grows while etching and the molten salt decreases [FIG. 11 (c)]. As a result, the final product becomes a recess. It is thought that [FIG. 11 (d)] is observed.
 ガス流量について、フッ素含有流体としてHFを用いた場合を例として述べる。HFでガラス板を処理するにあたっては、HF流量が多いほど化学強化処理時の反り改善効果が大きいため好ましく、全ガス流量が同じ場合は、HF濃度が高いほど、化学強化処理時の反り改善効果が大きくなる。 Regarding the gas flow rate, the case where HF is used as the fluorine-containing fluid will be described as an example. When processing a glass plate with HF, the higher the HF flow rate, the greater the warp improvement effect during the chemical strengthening treatment, which is preferable. When the total gas flow rate is the same, the higher the HF concentration, the better the warp improvement effect during the chemical strengthening treatment. Becomes larger.
 全ガス流量とHFガス流量とが一定の場合は、ガラス板を処理する時間が長いほど、化学強化処理時の反り改善効果が大きくなる。例えばガラス板を加熱した後に、HFガスを用いてガラス板表面を処理する場合、ガラス板の搬送速度が低いほど化学強化後の反りが改善する。全ガス流量やHF流量をうまくコントロールできない設備でも、ガラス板の搬送速度を適宜コントロールすることによって、化学強化後の反りを改善することができる。 When the total gas flow rate and the HF gas flow rate are constant, the longer the time for processing the glass plate, the greater the warp improvement effect during the chemical strengthening process. For example, when the glass plate surface is treated with HF gas after the glass plate is heated, the warpage after chemical strengthening is improved as the conveyance speed of the glass plate is lower. Even in facilities where the total gas flow rate and HF flow rate cannot be controlled well, the warpage after chemical strengthening can be improved by appropriately controlling the conveying speed of the glass plate.
3.化学強化
 化学強化は、ガラス転移点以下の温度で、イオン交換により、ガラス表面のイオン半径が小さなアルカリ金属イオン(典型的には、LiイオンまたはNaイオン)を、イオン半径のより大きなアルカリ金属イオン(典型的には、Kイオン)に交換することで、ガラス表面に圧縮応力層を形成する処理である。化学強化処理は従来公知の方法によって行うことができる。
3. Chemical strengthening Chemical strengthening is performed by ion exchange at a temperature below the glass transition point to convert an alkali metal ion (typically Li ion or Na ion) having a small ion radius on the glass surface to an alkali metal ion having a larger ion radius. This is a process of forming a compressive stress layer on the glass surface by exchanging with (typically K ions). The chemical strengthening treatment can be performed by a conventionally known method.
 本発明では、フッ素を導入したガラス板を化学強化することにより、化学強化後の反りが改善されたガラス板を得ることができる。化学強化前のガラス板に対する化学強化後のガラス板の反りの変化量(反り変化量)は、三次元形状測定機(例えば、三鷹光器株式会社製)、または、表面粗さ・輪郭形状測定機(例えば、株式会社東京精密製)で測定することができる。 In the present invention, a glass plate with improved warpage after chemical strengthening can be obtained by chemically strengthening the glass plate into which fluorine has been introduced. The amount of warpage (warpage variation) of the glass plate after chemical strengthening relative to the glass plate before chemical strengthening is measured by a three-dimensional shape measuring machine (for example, manufactured by Mitaka Kogyo Co., Ltd.), or surface roughness and contour shape measurement It can be measured with a machine (for example, manufactured by Tokyo Seimitsu Co., Ltd.).
 本発明において、化学強化後の反りの改善は、フッ素含有流体により表面処理する以外は全て同じ条件の実験において、以下に示す式により求める反り変位量により評価する。 In the present invention, the improvement of warpage after chemical strengthening is evaluated by the amount of warpage displacement obtained by the following formula in the experiment under the same conditions except that the surface treatment is performed with a fluorine-containing fluid.
 反り変位量=ΔX-ΔY
ΔX:未処理ガラス板の化学強化による反り変化量
ΔY:処理ガラス板の化学強化による反り変化量
 ここで、反り変化量は、化学強化後のガラス板の反り量から、化学強化前のガラス板の反り量を減じた値である。反り変化量は、ΔX>0とする。ΔYはΔXと同方向に反る場合にΔY>0、ΔXと逆方向に反る場合はΔY<0とする。
Warpage displacement = ΔX−ΔY
ΔX: amount of warpage change due to chemical strengthening of untreated glass plate ΔY: amount of warpage change due to chemical strengthening of treated glass plate Here, the amount of warpage change is the amount of warpage of the glass plate after chemical strengthening, and the glass plate before chemical strengthening The value obtained by subtracting the amount of warpage. The amount of change in warping is ΔX> 0. If ΔY warps in the same direction as ΔX, ΔY> 0, and if it warps in the opposite direction to ΔX, ΔY <0.
 未処理ガラス板の化学強化による反り変化量は、種々の条件に依存しばらつきが大きい。反り変位量が所定値より大きいということは、上記ばらつきにかかわらず反りを制御できることを意味する。したがって、反り変位量が所定値、具体的には10μm以上であるガラス板は、反り問題を低減することができる。 The amount of warpage change due to chemical strengthening of untreated glass sheets varies greatly depending on various conditions. That the amount of warp displacement is larger than a predetermined value means that the warp can be controlled regardless of the above-mentioned variation. Therefore, a glass plate having a warp displacement amount of a predetermined value, specifically, 10 μm or more can reduce the warp problem.
 ガラス板のCS(表面圧縮応力)およびDOL(圧縮応力層の深さ)は、表面応力計により測定することができる。化学強化ガラスの表面圧縮応力は600MPa以上であることが好ましく、圧縮応力層の深さは15μm以上であることが好ましい。化学強化ガラスの表面圧縮応力および圧縮応力層の深さを当該範囲とすることにより、優れた強度と耐傷性が得られる。 The CS (surface compressive stress) and DOL (compressive stress layer depth) of the glass plate can be measured with a surface stress meter. The surface compressive stress of the chemically strengthened glass is preferably 600 MPa or more, and the depth of the compressive stress layer is preferably 15 μm or more. By setting the surface compressive stress and the depth of the compressive stress layer of the chemically tempered glass within the above ranges, excellent strength and scratch resistance can be obtained.
4.フラットパネルディスプレイ装置
 以下、本発明のガラス板を化学強化した後、当該化学強化ガラスをフラットパネルディスプレイ装置のカバーガラスとして用いた例について説明する。図3は、カバーガラスが配置されたディスプレイ装置の断面図である。なお、以下の説明において、前後左右は図中の矢印の向きを基準とする。
4). Flat panel display device Hereinafter, after chemically strengthening the glass plate of the present invention, an example in which the chemically strengthened glass is used as a cover glass of the flat panel display device will be described. FIG. 3 is a cross-sectional view of a display device in which a cover glass is disposed. In the following description, front, rear, left and right are based on the direction of the arrow in the figure.
 ディスプレイ装置40は、図3に示すように、筐体15内に設けられた表示パネル45と、表示パネル45の全面を覆い筐体15の前方を囲うように設けられるカバーガラス30とを備える。 As shown in FIG. 3, the display device 40 includes a display panel 45 provided in the housing 15 and a cover glass 30 that covers the entire surface of the display panel 45 and surrounds the front of the housing 15.
 カバーガラス30は、主として、ディスプレイ装置40の美観や強度の向上、衝撃破損防止などを目的として設置されるものであり、全体形状が略平面形状の一枚の板状ガラスから形成される。カバーガラス30は、図3に示すように、表示パネル45の表示側(前側)から離間するように(空気層を有するように)設置されていてもよく、透光性を有する接着膜(図示せず)を介して表示パネル45の表示側に貼り付けられてもよい。 The cover glass 30 is installed mainly for the purpose of improving the aesthetics and strength of the display device 40, preventing impact damage, and the like, and the overall shape is formed from a single plate-like glass having a substantially planar shape. As shown in FIG. 3, the cover glass 30 may be installed so as to be separated from the display side (front side) of the display panel 45 (having an air layer), and has a translucent adhesive film (FIG. (Not shown) may be attached to the display side of the display panel 45.
 カバーガラス30の表示パネル45からの光を出射する前面には機能膜41が設けられ、表示パネル45からの光が入射する背面には、表示パネル45と対応する位置に機能膜42が設けられている。なお、機能膜41、42は、図3では両面に設けたが、これに限らず前面または背面に設けてもよく、省略してもよい。 A functional film 41 is provided on the front surface of the cover glass 30 that emits light from the display panel 45, and a functional film 42 is provided on the rear surface on which the light from the display panel 45 is incident at a position corresponding to the display panel 45. ing. In addition, although the functional films 41 and 42 are provided on both surfaces in FIG. 3, the functional films 41 and 42 are not limited to this and may be provided on the front surface or the back surface, or may be omitted.
 機能膜41、42は、例えば、周囲光の反射防止、衝撃破損防止、電磁波遮蔽、近赤外線遮蔽、色調補正、および/または耐傷性向上などの機能を有し、厚さおよび形状などは用途に応じて適宜選択される。機能膜41、42は、例えば、樹脂製の膜をカバーガラス30に貼り付けることにより形成される。あるいは、蒸着法、スパッタ法またはCVD法などの薄膜形成法により形成されてもよい。 The functional films 41 and 42 have functions such as anti-reflection of ambient light, prevention of impact breakage, electromagnetic wave shielding, near-infrared shielding, color tone correction, and / or scratch resistance improvement, and thickness and shape are used for applications. It is selected as appropriate. The functional films 41 and 42 are formed, for example, by attaching a resin film to the cover glass 30. Or you may form by thin film formation methods, such as a vapor deposition method, a sputtering method, or CVD method.
 符号44は、黒色層であり、例えば、顔料粒子を含むインクをカバーガラス30に塗布し、これを紫外線照射、または加熱焼成した後、冷却することによって形成された被膜であり、筐体15の外側からは表示パネル等が見えなくなり、外観の審美性を向上させる。 Reference numeral 44 denotes a black layer, which is, for example, a coating formed by applying ink containing pigment particles to the cover glass 30, irradiating it with ultraviolet rays, or heating and baking it, and then cooling it. The display panel and the like cannot be seen from the outside, and the appearance is improved.
 このように、ディスプレイ装置のカバーガラスとして本発明のガラス板を用いる場合、表面粗さ(算術平均粗さ)Raが2.5nm以下であることが好ましく、1.5nm以下であることがさらに好ましい。これにより、カバーガラスによってディスプレイ装置の表示像の鮮明さを損なうことを防止できる。ガラス板の表面粗さRaは、JIS B0601(2001年)に準拠して、次のように測定できる。測定装置として、AFM(Atomic Force Microscope:原子間力顕微鏡)、例えばPark Systems社製、XE-HDM用いて、スキャンサイズ1μm×1μmにて3か所測定し、3か所の平均値をガラス板のRa値とする。 Thus, when the glass plate of the present invention is used as a cover glass for a display device, the surface roughness (arithmetic average roughness) Ra is preferably 2.5 nm or less, and more preferably 1.5 nm or less. . Thereby, it can prevent impairing the clearness of the display image of a display apparatus with a cover glass. The surface roughness Ra of the glass plate can be measured as follows based on JIS B0601 (2001). Using an AFM (Atomic Force Microscope), for example, Park Systems, XE-HDM as a measuring device, measure 3 locations at a scan size of 1 μm × 1 μm, and average the 3 locations. Ra value.
 以下に本発明の実施例について具体的に説明するが、本発明はこれらに限定されない。 Examples of the present invention will be specifically described below, but the present invention is not limited to these.
(ガラス板の組成)
 本実施例では、以下の組成を有する硝材A~Cのガラス板を用いた。
(硝材A)モル%表示で、SiOを64.3%、Alを8.0%、NaOを12.5%、KOを4.0%、MgOを10.5%、CaOを0.1%、SrOを0.1%、BaOを0.1%およびZrOを0.5%含有するガラス(ガラス転移温度604℃)
(硝材B)モル%表示で、SiOを68.0%、Alを10.0%、NaOを14.0%およびMgOを8.0%含有するガラス(ガラス転移温度662℃)
(硝材C)モル%表示で、SiOを68.8%、Alを3.0%、NaOを14.2%、CaOを7.8%、MgOを6.2%およびKOを0.2%含有するガラス(ガラス転移温度552℃)
(硝材D)モル%表示で、SiOを66.5%、Alを4.0%、NaOを15.5%、MgOを11.8%およびCaOを2.1%含有するガラス(ガラス転移温度578℃)
(硝材E)モル%表示で、SiOを66.9%、Alを3.4%、NaOを15.4%、MgOを13.2%およびCaOを1.1%含有するガラス(ガラス転移温度580℃)
(Composition of glass plate)
In this example, glass plates of glass materials A to C having the following composition were used.
(Glass A) In terms of mol%, SiO 2 is 64.3%, Al 2 O 3 is 8.0%, Na 2 O is 12.5%, K 2 O is 4.0%, and MgO is 10.5. %, CaO 0.1%, SrO 0.1%, BaO 0.1% and ZrO 2 0.5% (glass transition temperature 604 ° C.)
(Glass B) Glass containing 68.0% of SiO 2 , 10.0% of Al 2 O 3 , 14.0% of Na 2 O and 8.0% of MgO in terms of mol% (glass transition temperature 662) ℃)
(Glass material C) In terms of mol%, SiO 2 is 68.8%, Al 2 O 3 is 3.0%, Na 2 O is 14.2%, CaO is 7.8%, MgO is 6.2%, and Glass containing 0.2% of K 2 O (glass transition temperature 552 ° C.)
(Glass material D) In terms of mol%, SiO 2 is 66.5%, Al 2 O 3 is 4.0%, Na 2 O is 15.5%, MgO is 11.8%, and CaO is 2.1%. Glass (glass transition temperature 578 ° C)
(Glass material E) By mol%, SiO 2 66.9%, Al 2 O 3 3.4%, Na 2 O 15.4%, MgO 13.2% and CaO 1.1% Glass (glass transition temperature 580 ° C)
(反り量の測定)
 化学強化前にサーフコム表面粗さ・輪郭形状測定機(株式会社東京精密製)で反り量を測定した後、各ガラスを化学強化し、化学強化後の反り量も同様に測定し、上述の手順に基づいて反り変位量を算出した。
(Measurement of warpage)
Before chemical strengthening, measure the amount of warpage with a Surfcom surface roughness / contour shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd.), then chemically strengthen each glass and measure the amount of warpage after chemical strengthening in the same way. The amount of warpage displacement was calculated based on
(表層フッ素割合、ΔF/ΔHO、x)
 上述の二次イオン質量分析を用いて、実施例および比較例の化学強化前のガラス板を対象に、フッ素濃度及びHO濃度の厚み方向分布を測定した。この測定結果に基づいて、上述の表層フッ素割合、ΔF/ΔHO、xを得た。
(Surface layer fluorine ratio, ΔF / ΔH 2 O, x)
Using the above-described secondary ion mass spectrometry, the thickness direction distributions of fluorine concentration and H 2 O concentration were measured for the glass plates before chemical strengthening of the examples and comparative examples. Based on the measurement result, the above-mentioned surface layer fluorine ratio, ΔF / ΔH 2 O, x was obtained.
(凹部の有無)
 ガラスのHF処理面をSEM観察し、観察視野内(倍率5万~20万倍)において、凹部が一か所以上観察された場合、凹部有りとした。
(With or without recess)
The HF-treated surface of the glass was observed with an SEM. If one or more recesses were observed in the observation field (magnification of 50,000 to 200,000 times), it was determined that there was a recess.
(CSおよびDOL)
 CSおよびDOLは、折原製作所社製表面応力計(FSM-6000LE)を用いて測定した。
(CS and DOL)
CS and DOL were measured using a surface stress meter (FSM-6000LE) manufactured by Orihara Seisakusho.
[実施例1]
 硝材A(実施例1-1~1-16、比較例1-1)のガラスリボンが流れるフロートバスにおいてHF処理を実施した。得られたガラスを上述の手順で測定し、表層フッ素割合、ΔF/ΔHO、xを算出した。
[Example 1]
HF treatment was performed in a float bath in which the glass ribbon of glass material A (Examples 1-1 to 1-16, Comparative Example 1-1) flows. The obtained glass was measured by the above-described procedure, and the surface layer fluorine ratio, ΔF / ΔH 2 O, x was calculated.
 得られた板厚0.7mmのガラスを100mm角3枚に切断し、その基板の90mm角部に相当する部分の対角線2本の反りを測定し、その平均値を強化前の反り量とした。その後、450℃に加熱されたKNO熔融塩中にガラスを2時間浸漬し化学強化を行った。次に、基板の90mm角部に相当する部分の対角線2本の反りを測定し、その平均値を強化後の反り量とし、反り変位量を算出した。 The obtained glass with a thickness of 0.7 mm was cut into three pieces of 100 mm square, the warpage of two diagonal lines corresponding to the 90 mm square portion of the substrate was measured, and the average value was taken as the amount of warpage before strengthening. . Thereafter, the glass was immersed in KNO 3 molten salt heated to 450 ° C. for 2 hours for chemical strengthening. Next, the warpage of two diagonal lines corresponding to the 90 mm square portion of the substrate was measured, and the warpage displacement was calculated by taking the average value as the warpage amount after strengthening.
 尚、比較例1-1はHF処理をしていないリファレンスである。 Incidentally, Comparative Example 1-1 is a reference not subjected to HF treatment.
 結果を表1~2に示す。表1中のHF総接触量(mol/cm)は、下式で求められる。同式中の処理時間とは、HFガスがガラスリボンの表面と接触している時間である。
[HF総接触量(mol/cm)]=[HFガス濃度(体積%)]/100×[ガス流量(mol/s/cm)]×[処理時間(s)]…(b)
 また、横軸にΔF/ΔHOを、縦軸に反り変位量(μm)をプロットしたグラフを図9に示す。
The results are shown in Tables 1-2. The total contact amount (mol / cm 2 ) of HF in Table 1 is determined by the following equation. The processing time in the formula is the time during which the HF gas is in contact with the surface of the glass ribbon.
[HF total contact amount (mol / cm 2 )] = [HF gas concentration (volume%)] / 100 × [gas flow rate (mol / s / cm 2 )] × [treatment time (s)] (b)
FIG. 9 is a graph in which ΔF / ΔH 2 O is plotted on the horizontal axis and the amount of warp displacement (μm) is plotted on the vertical axis.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~2に示すように、表層フッ素割合が0.1以上0.5未満であり、且つF0-3が0.02より大きい実施例1-1~1-16は、化学強化後の反りが効果的に改善されていることがわかった。なお、実施例1-1~1-16および比較例1-1について凹部の発生は観察されなかった。 As shown in Tables 1 and 2, Examples 1-1 to 1-16 in which the surface layer fluorine ratio is 0.1 or more and less than 0.5 and F 0-3 is greater than 0.02, It was found that the warpage was effectively improved. In addition, in Examples 1-1 to 1-16 and Comparative Example 1-1, no occurrence of a recess was observed.
 図9に示すように、ΔF/ΔHOと反り変位量とは相関関係(y=26.03x)を示した。化学強化後の反りを改善するためには、反り変位量は10μm以上であることが好ましく、図9に示すグラフから、ΔF/ΔHOを0.38以上とすることにより、化学強化後の反りを効果的に改善できることがわかった。表1~2に示すように、ΔF/ΔHOが0.38以上である実施例1-1~1-16は、化学強化後の反りが効果的に改善されていることがわかった。また、表1~2に示すように、x(μm)が5以上である実施例1-1~1-16は、化学強化後の反りが効果的に改善された。 As shown in FIG. 9, ΔF / ΔH 2 O and the warpage displacement amount showed a correlation (y = 26.03x). In order to improve the warp after chemical strengthening, the warp displacement is preferably 10 μm or more. From the graph shown in FIG. 9, by setting ΔF / ΔH 2 O to 0.38 or more, It was found that the warpage can be effectively improved. As shown in Tables 1 and 2, it was found that in Examples 1-1 to 1-16 in which ΔF / ΔH 2 O was 0.38 or more, warpage after chemical strengthening was effectively improved. Further, as shown in Tables 1 and 2, in Examples 1-1 to 1-16 in which x (μm) was 5 or more, the warpage after chemical strengthening was effectively improved.
[実施例2]
 硝材Aを硝材Bに変更し、化学強化処理の時間を1.5時間とした以外は実施例1と同様の方法で、硝材B(実施例2-1~2-6、比較例2-1~2-2)のガラスリボンが流れるフロートバスにおいてHF処理を実施した。得られたガラスを、実施例1と同様の手順で測定し、表層フッ素割合、ΔF/ΔHO、x、強化前の反り量、強化後の反り量、反り変位量等を算出した。尚、実施例2においては、実施例1と比べて、HF処理時のガラスリボンの温度が高く設定される。
[Example 2]
Glass material B (Examples 2-1 to 2-6, Comparative Example 2-1) was prepared in the same manner as in Example 1 except that the glass material A was changed to the glass material B and the chemical strengthening treatment time was 1.5 hours. The HF treatment was performed in a float bath in which the glass ribbon of (2-2) flows. The obtained glass was measured in the same procedure as in Example 1, and the surface layer fluorine ratio, ΔF / ΔH 2 O, x, the warpage amount before strengthening, the warpage amount after strengthening, the warpage displacement amount, and the like were calculated. In Example 2, the temperature of the glass ribbon during HF treatment is set higher than in Example 1.
 比較例2-1~2-2はHF処理をしていないリファレンスである。 Comparative Examples 2-1 and 2-2 are references not subjected to HF processing.
 結果を表3~4に示す。 The results are shown in Tables 3-4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3~4に示すように、表層フッ素割合が0.1以上0.5未満であり、且つF0-3が0.02より大きい実施例2-1~2-6は、化学強化後の反りが効果的に改善されていることがわかった。なお、実施例2-1~2-6および比較例2-1~2-2について凹部の発生は観察されなかった。 As shown in Tables 3 to 4, Examples 2-1 to 2-6 in which the surface layer fluorine ratio is 0.1 or more and less than 0.5, and F 0-3 is larger than 0.02, It was found that the warpage was effectively improved. Note that no recess was observed in Examples 2-1 to 2-6 and Comparative Examples 2-1 to 2-2.
 また、ΔF/ΔHOを0.38以上とすることにより、反り変位量が10μm以上となり、化学強化後の反りを効果的に改善できることがわかった。また、ΔF/ΔHOが0.38以上である実施例2-1~2-6は、化学強化後の反りが効果的に改善されていることがわかった。また、x(μm)が5以上である実施例2-1~2-6は、化学強化後の反りが効果的に改善された。 Further, it was found that by setting ΔF / ΔH 2 O to 0.38 or more, the warpage displacement amount is 10 μm or more, and the warpage after chemical strengthening can be effectively improved. In addition, it was found that in Examples 2-1 to 2-6 in which ΔF / ΔH 2 O was 0.38 or more, the warpage after chemical strengthening was effectively improved. Further, in Examples 2-1 to 2-6 in which x (μm) is 5 or more, the warpage after chemical strengthening was effectively improved.
[実施例3]
 硝材Aを硝材Cに変更し、化学強化処理の温度を420℃、時間を2.5時間とした以外は実施例1と同様の方法で、硝材A(実施例3-1~3-4、比較例3-1)のガラスリボンが流れるフロートバスにおいてHF処理を実施した。得られたガラスを、実施例1と同様の手順で測定し、表層フッ素割合、ΔF/ΔHO、x、強化前の反り量、強化後の反り量、反り変位量等を算出した。
[Example 3]
The glass material A (Examples 3-1 to 3-4, HF treatment was carried out in a float bath in which the glass ribbon of Comparative Example 3-1) flows. The obtained glass was measured in the same procedure as in Example 1, and the surface layer fluorine ratio, ΔF / ΔH 2 O, x, the warpage amount before strengthening, the warpage amount after strengthening, the warpage displacement amount, and the like were calculated.
 比較例3-1はHF処理をしていないリファレンスである。 Comparative Example 3-1 is a reference not subjected to HF processing.
 結果を表5~6に示す。 Results are shown in Tables 5-6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5~6に示すように、表層フッ素割合が0.1以上0.5未満であり、且つF0-3が0.02より大きい実施例3-1~3-4は、化学強化後の反りが効果的に改善されていることがわかった。なお、実施例3-1~3-4および比較例3-1について凹部の発生は観察されなかった。 As shown in Tables 5 to 6, Examples 3-1 to 3-4 in which the surface layer fluorine ratio is 0.1 or more and less than 0.5 and F 0-3 is greater than 0.02 It was found that the warpage was effectively improved. In addition, in Examples 3-1 to 3-4 and Comparative Example 3-1, no occurrence of a recess was observed.
 また、ΔF/ΔHOを0.38以上とすることにより、反り変位量が10μm以上となり、化学強化後の反りを効果的に改善できることがわかった。また、ΔF/ΔHOが0.38以上である実施例3-1~3-4は、化学強化後の反りが効果的に改善されていることがわかった。また、x(μm)が5以上である実施例3-1~3-4は、化学強化後の反りが効果的に改善された。 Further, it was found that by setting ΔF / ΔH 2 O to 0.38 or more, the warpage displacement amount is 10 μm or more, and the warpage after chemical strengthening can be effectively improved. In addition, it was found that in Examples 3-1 to 3-4 in which ΔF / ΔH 2 O was 0.38 or more, warpage after chemical strengthening was effectively improved. Further, in Examples 3-1 to 3-4 in which x (μm) is 5 or more, the warpage after chemical strengthening was effectively improved.
[実施例4]
 硝材D(実施例4-1、比較例4-1)のガラス組成となるように原料を調合し、るつぼを用いて溶解後、大きさ50mm×50mm、厚さ0.7mmに加工しガラス板を作製した。図12に示す模式図のように、ガラス板を電気炉内に配置し、雰囲気ガスをN90%およびH10%の雰囲気に置換した後、ガラス板を880℃まで加熱し、表7に示す条件でHF処理を行った。このようにして得られたガラス板を、420℃に加熱されたKNO熔融塩中に2.5時間浸漬し化学強化を行った。
 硝材Dを硝材E(実施例4-2、比較例4-2)に変更した以外は、実施例4-1と同様の方法でガラス板の作製、HF処理および化学強化処理を行った。
 得られたガラス板を実施例1と同様の手順で測定し、表層フッ素割合、x、強化前の反り量、強化後の反り量、反り変位量等を算出した結果を表7に示す。
 比較例4-1~4-2はHF処理をしていないリファレンスである。
[Example 4]
The raw material was prepared so as to have the glass composition of glass material D (Example 4-1 and Comparative Example 4-1), melted using a crucible, processed into a size of 50 mm × 50 mm and a thickness of 0.7 mm, and a glass plate Was made. As shown in the schematic diagram of FIG. 12, the glass plate was placed in an electric furnace and the atmosphere gas was replaced with an atmosphere of 90% N 2 and 10% H 2 , and then the glass plate was heated to 880 ° C. The HF treatment was performed under the conditions shown below. The glass plate thus obtained was chemically strengthened by immersing it in KNO 3 molten salt heated to 420 ° C. for 2.5 hours.
Except that the glass material D was changed to the glass material E (Example 4-2, Comparative Example 4-2), a glass plate was prepared, HF treatment, and chemical strengthening treatment were performed in the same manner as in Example 4-1.
The obtained glass plate was measured in the same procedure as in Example 1, and the results of calculating the surface layer fluorine ratio, x, the amount of warp before strengthening, the amount of warp after strengthening, the amount of warp displacement, etc. are shown in Table 7.
Comparative examples 4-1 and 4-2 are references not subjected to HF processing.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7に示すように、表層フッ素割合が0.1以上0.5未満であり、且つF0-3が0.02より大きい実施例4-1~4-2は、化学強化後の反りが効果的に改善されていることがわかった。なお、実施例4-1~4-2および比較例4-1~4-2について凹部の発生は観察されなかった。また、x(μm)が5以上である実施例4-1~4-2は、化学強化後の反りが効果的に改善された。 As shown in Table 7, in Examples 4-1 to 4-2 in which the surface layer fluorine ratio is 0.1 or more and less than 0.5 and F0-3 is greater than 0.02, warping after chemical strengthening is effective. It was found that it was improved. In addition, in Examples 4-1 to 4-2 and Comparative Examples 4-1 to 4-2, no recess was observed. Further, in Examples 4-1 to 4-2 in which x (μm) was 5 or more, the warpage after chemical strengthening was effectively improved.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2013年9月25日付けで出願された日本特許出願(特願2013-198477)及び2013年12月13日付けで出願された日本特許出願(特願2013-258466)に基づいており、その全体が引用により援用される。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is a Japanese patent application filed on September 25, 2013 (Japanese Patent Application No. 2013-198477) and a Japanese patent application filed on December 13, 2013 (Japanese Patent Application No. 2013-258466). Which is incorporated by reference in its entirety.
1 中央スリット
2 外スリット
4 流路
5 排気スリット
15 筐体
20 ガラス板
30 カバーガラス
40 ディスプレイ装置
41,42 機能膜
45 表示パネル
101 ガラスリボン
102 ビーム
103 ラジエーションゲート
110 ガラスリボンの幅方向
111,112,113 ガス系統
114,115 隔壁
116 ガス吹き穴
DESCRIPTION OF SYMBOLS 1 Central slit 2 Outer slit 4 Flow path 5 Exhaust slit 15 Housing | casing 20 Glass plate 30 Cover glass 40 Display apparatus 41, 42 Functional film 45 Display panel 101 Glass ribbon 102 Beam 103 Radiation gate 110 Glass ribbon width direction 111,112, 113 Gas system 114, 115 Partition 116 Gas blow hole

Claims (13)

  1.  厚み方向に対向する一方の面のフッ素濃度が他方の面のフッ素濃度より大きいガラス板であって、下式(I)で表される表層フッ素割合が0.1以上0.5未満であり、且つ下式(II)で表されるF0-3が0.02より大きいガラス板。
     表層フッ素割合=F0-3/F0-30…(I)
     式(I)中、F0-3は下式(II)により求める。
     F0-3=[フッ素濃度が大きい面における深さ0~3μmの二次イオン質量分析(SIMS)による平均フッ素濃度(mol%)]×3…(II)
     式(I)中、F0-30は下式(III)により求める。
     F0-30=[フッ素濃度が大きい面における深さ0~30μmのSIMSによる平均フッ素濃度(mol%)]×30…(III)
    A glass plate in which the fluorine concentration on one surface facing the thickness direction is larger than the fluorine concentration on the other surface, and the surface layer fluorine ratio represented by the following formula (I) is 0.1 or more and less than 0.5, And a glass plate in which F 0-3 represented by the following formula (II) is larger than 0.02.
    Surface layer fluorine ratio = F 0-3 / F 0-30 (I)
    In the formula (I), F 0-3 is determined by the following formula (II).
    F 0-3 = [Average fluorine concentration (mol%) by secondary ion mass spectrometry (SIMS) at a depth of 0 to 3 μm on a surface with a large fluorine concentration] × 3 (II)
    In the formula (I), F 0-30 is determined by the following formula (III).
    F 0-30 = [Average fluorine concentration (mol%) by SIMS at a depth of 0 to 30 μm on a surface with a large fluorine concentration] × 30 (III)
  2.  前記表層フッ素割合が0.15以上である請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the surface layer fluorine ratio is 0.15 or more.
  3.  前記表層フッ素割合が0.15以上0.4以下である請求項1又は2に記載のガラス板。 The glass plate according to claim 1 or 2, wherein the surface layer fluorine ratio is 0.15 or more and 0.4 or less.
  4.  前記表層フッ素割合が0.3以下である請求項3に記載のガラス板。 The glass plate according to claim 3, wherein the surface layer fluorine ratio is 0.3 or less.
  5.  請求項1~4のいずれか1項に記載のガラス板であって、下式(1)を満たすガラス板。ここで、フッ素濃度は深さ1~24μmのSIMSによる平均フッ素濃度(mol%)である。
     0.38≦ΔF/ΔHO…(1)
     式(1)中、ΔFは、フッ素濃度が大きい面における深さ1~24μmのSIMSによる平均フッ素濃度(mol%)からフッ素濃度が小さい面における深さ1~24μmのSIMSによる平均フッ素濃度(mol%)を減じた値である。
     式(1)中、ΔHOは、フッ素濃度が小さい面における深さ1~24μmのSIMSによる平均HO濃度(mol%)からフッ素濃度が大きい面における深さ1~24μmのSIMSによる平均HO濃度(mol%)を減じた値の絶対値である。
    The glass plate according to any one of claims 1 to 4, wherein the glass plate satisfies the following formula (1). Here, the fluorine concentration is an average fluorine concentration (mol%) by SIMS having a depth of 1 to 24 μm.
    0.38 ≦ ΔF / ΔH 2 O (1)
    In the formula (1), ΔF is an average fluorine concentration (mol%) by SIMS at a depth of 1 to 24 μm on a surface with a low fluorine concentration from an average fluorine concentration (mol%) by SIMS at a depth of 1 to 24 μm on a surface with a high fluorine concentration. %).
    In formula (1), ΔH 2 O is an average of SIMS having a depth of 1 to 24 μm on a surface having a high fluorine concentration from an average H 2 O concentration (mol%) of SIMS having a depth of 1 to 24 μm on a surface having a low fluorine concentration. The absolute value of the value obtained by subtracting the H 2 O concentration (mol%).
  6.  請求項1~5のいずれか1項に記載のガラス板であって、下式(2)を満たすガラス板。ここで、フッ素濃度は深さ1~24μmのSIMSによる平均フッ素濃度(mol%)である。
     5≦x…(2)
     式(2)中、xはSIMSによるフッ素濃度プロファイルにおいて、任意の深さx(μm)における傾きが下式(3)を満たす最大の深さ(μm)である。
    [F(x+0.1)-F(x)]/0.1=-0.015…(3)
     式(3)中、F(x)は、深さx(μm)におけるSIMSによるフッ素濃度(mol%)を示す。
    The glass plate according to any one of claims 1 to 5, wherein the glass plate satisfies the following formula (2). Here, the fluorine concentration is an average fluorine concentration (mol%) by SIMS having a depth of 1 to 24 μm.
    5 ≦ x (2)
    In the formula (2), x is the maximum depth (μm) in which the slope at an arbitrary depth x i (μm) satisfies the following formula (3) in the fluorine concentration profile by SIMS.
    [F (x i +0.1) −F (x i )] / 0.1 = −0.015 (3)
    In formula (3), F (x i ) represents the fluorine concentration (mol%) by SIMS at the depth x i (μm).
  7.  フロート法により製造されたガラス板である請求項1~6のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 6, which is a glass plate produced by a float process.
  8.  厚みが1.5mm以下である請求項1~7のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 7, which has a thickness of 1.5 mm or less.
  9.  厚みが0.8mm以下である請求項1~8のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 8, wherein the thickness is 0.8 mm or less.
  10.  表面粗さRaが2.5nm以下である請求項1~9のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 9, wherein the surface roughness Ra is 2.5 nm or less.
  11.  フッ素濃度が大きい方の表面に直径が10nm以上である凹部が存在しない、または同凹部が6個/μm以下の密度で存在する請求項1~10のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 10, wherein a concave portion having a diameter of 10 nm or more does not exist on the surface having a larger fluorine concentration, or the concave portions exist at a density of 6 pieces / μm 2 or less.
  12.  請求項1~11のいずれか1項に記載のガラス板を化学強化して得られるガラス板。 A glass plate obtained by chemically strengthening the glass plate according to any one of claims 1 to 11.
  13.  カバーガラスを備えたフラットパネルディスプレイ装置であって、該カバーガラスが請求項12に記載のガラス板であるフラットパネルディスプレイ装置。 A flat panel display device comprising a cover glass, wherein the cover glass is the glass plate according to claim 12.
PCT/JP2014/075016 2013-09-25 2014-09-22 Glass plate WO2015046116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539190A JP6428630B2 (en) 2013-09-25 2014-09-22 Glass plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-198477 2013-09-25
JP2013198477 2013-09-25
JP2013-258466 2013-12-13
JP2013258466 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015046116A1 true WO2015046116A1 (en) 2015-04-02

Family

ID=52743252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075016 WO2015046116A1 (en) 2013-09-25 2014-09-22 Glass plate

Country Status (3)

Country Link
JP (1) JP6428630B2 (en)
TW (1) TW201518221A (en)
WO (1) WO2015046116A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152848A1 (en) * 2015-03-25 2016-09-29 旭硝子株式会社 Glass plate
JP2017206434A (en) * 2016-05-18 2017-11-24 ショット アクチエンゲゼルシャフトSchott AG Asymmetrization method of hydrogen content, manufacturing method of tabular glass article capable of being chemically reinforced at high level, glass article obtained according to the method
CN110395903A (en) * 2018-04-25 2019-11-01 Agc株式会社 Glass substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205641A (en) * 1985-03-09 1986-09-11 Central Glass Co Ltd Chemical reinforcement of float glass
EP2371779A1 (en) * 2010-03-30 2011-10-05 Linde Aktiengesellschaft Method for producing flat glass and glass pane produced according to this method
WO2012141310A1 (en) * 2011-04-15 2012-10-18 旭硝子株式会社 Method for producing surface-treated glass substrate
WO2014167842A1 (en) * 2013-04-08 2014-10-16 日本板硝子株式会社 Glass plate and process for manufacturing glass plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205641A (en) * 1985-03-09 1986-09-11 Central Glass Co Ltd Chemical reinforcement of float glass
EP2371779A1 (en) * 2010-03-30 2011-10-05 Linde Aktiengesellschaft Method for producing flat glass and glass pane produced according to this method
WO2012141310A1 (en) * 2011-04-15 2012-10-18 旭硝子株式会社 Method for producing surface-treated glass substrate
WO2014167842A1 (en) * 2013-04-08 2014-10-16 日本板硝子株式会社 Glass plate and process for manufacturing glass plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152848A1 (en) * 2015-03-25 2016-09-29 旭硝子株式会社 Glass plate
JPWO2016152848A1 (en) * 2015-03-25 2018-01-18 旭硝子株式会社 Glass plate
JP2017206434A (en) * 2016-05-18 2017-11-24 ショット アクチエンゲゼルシャフトSchott AG Asymmetrization method of hydrogen content, manufacturing method of tabular glass article capable of being chemically reinforced at high level, glass article obtained according to the method
JP7206034B2 (en) 2016-05-18 2023-01-17 ショット アクチエンゲゼルシャフト Method for desymmetrizing hydrogen content and method for producing highly chemically strengthenable plate-like glass article and glass article obtained according to the method
CN110395903A (en) * 2018-04-25 2019-11-01 Agc株式会社 Glass substrate

Also Published As

Publication number Publication date
JPWO2015046116A1 (en) 2017-03-09
TW201518221A (en) 2015-05-16
JP6428630B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP5790872B2 (en) Glass plate that can reduce warping during chemical strengthening
WO2013146441A1 (en) Glass sheet capable of being inhibited from warping through chemical strengthening
WO2015046117A1 (en) Glass plate production method
JP6368942B2 (en) Manufacturing method of glass plate
WO2014104303A1 (en) Method for manufacturing glass plate with which warping during chemical strengthening is reduced and glass plate
WO2015046118A1 (en) Glass plate
JP6428630B2 (en) Glass plate
WO2015046107A1 (en) Glass plate
WO2015046108A1 (en) Glass plate
WO2015046109A1 (en) Glass plate
WO2015046106A1 (en) Glass plate
WO2015046113A1 (en) Glass plate and chemically strengthened glass plate
WO2015046111A1 (en) Glass plate
WO2015046112A1 (en) Glass plate
WO2015046115A1 (en) Float glass manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539190

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849183

Country of ref document: EP

Kind code of ref document: A1