WO2015046115A1 - Float glass manufacturing method - Google Patents

Float glass manufacturing method Download PDF

Info

Publication number
WO2015046115A1
WO2015046115A1 PCT/JP2014/075015 JP2014075015W WO2015046115A1 WO 2015046115 A1 WO2015046115 A1 WO 2015046115A1 JP 2014075015 W JP2014075015 W JP 2014075015W WO 2015046115 A1 WO2015046115 A1 WO 2015046115A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
width direction
fluorine
gas
Prior art date
Application number
PCT/JP2014/075015
Other languages
French (fr)
Japanese (ja)
Inventor
純一 宮下
亮祐 加藤
山中 一彦
信彰 井川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015539189A priority Critical patent/JPWO2015046115A1/en
Publication of WO2015046115A1 publication Critical patent/WO2015046115A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment

Definitions

  • the present invention relates to a method for producing float glass.
  • a thin plate-like cover glass is disposed on the front surface of the display.
  • Such a flat panel display device is required to be lightweight and thin, and accordingly, a cover glass used for display protection is also required to be thin.
  • the conventional cover glass raises the damage resistance of the cover glass by forming the compressive-stress layer on the surface by chemically strengthening the glass manufactured by the float method (henceforth a float glass). .
  • the warpage includes a glass surface that is not in contact with a molten metal such as molten tin (hereinafter also referred to as a top surface) and a glass surface that is in contact with the molten metal (hereinafter also referred to as a bottom surface). It is said that this is caused by the different ways of entering chemical strengthening on both sides.
  • a molten metal such as molten tin
  • a bottom surface a glass surface that is in contact with the molten metal
  • the warp of the float glass increases as the chemical strengthening becomes stronger. Therefore, when the surface compressive stress is made higher than ever, particularly 600 MPa or higher in order to meet the demand for high scratch resistance, the problem of warp becomes more obvious.
  • Patent Document 1 discloses a glass strengthening method in which the amount of ions entering the glass during chemical strengthening is adjusted by chemically strengthening after forming a SiO 2 film on the glass surface.
  • Patent Documents 2 and 3 disclose a method of reducing warpage after chemical strengthening by setting the surface compressive stress on the top surface side within a specific range.
  • the method of grinding or polishing at least one surface of the glass before chemical strengthening has a problem from the viewpoint of improving productivity, and it is preferable to omit these grinding or polishing treatments.
  • ITO Indium Tin Oxide
  • the gap between the glass and the stage becomes too large when printing the black frame of the cover glass, and the glass may not be adsorbed on the stage.
  • ITO Indium Tin Oxide
  • the cover glass has a certain amount of warpage, uneven brightness or Newton rings may occur.
  • an object of the present invention is to provide a method for producing a float glass that can effectively suppress warping after chemical strengthening and can omit or simplify polishing treatment before chemical strengthening. To do.
  • the inventors focused on the fact that the amount of warpage of the glass plate after chemical strengthening varies depending on the position in the width direction. And, when a gas containing molecules having fluorine atoms in its structure is blown onto the glass ribbon, by setting the total contact amount of fluorine atoms to be different in the width direction of the glass ribbon, It discovered that the curvature of a glass plate could be effectively reduced over the whole width direction, and completed this invention based on this knowledge.
  • a float glass manufacturing method including a step of supplying molten glass onto a molten metal and forming the glass into a glass ribbon, Blowing a gas containing a molecule having a fluorine atom in its structure onto the glass ribbon; The method for producing float glass, wherein the total contact amount of the fluorine atoms is different in the width direction of the glass ribbon.
  • the total contact amount is maximum, The method for producing a float glass according to (1) or (2), wherein the total contact amount is minimum at both ends in the width direction of the glass ribbon.
  • the minimum value of the total contact amount is a value reduced by 7.7 to 25% from the maximum value of the total contact amount.
  • the glass transition temperature of the molten glass is 550 ° C. or higher, The method for producing a float glass according to any one of (1) to (4), wherein the temperature of the glass ribbon is 600 ° C. or higher.
  • the ion contact rate in the width direction of the glass plate is adjusted by changing the total contact amount of fluorine atoms in the width direction of the glass ribbon, and chemical strengthening is entered. Can be equalized. Therefore, it is possible to reduce the warpage of the glass plate after chemical strengthening and obtain excellent flatness even if the stress due to chemical strengthening is set to a desired value and the polishing process before chemical strengthening is simplified or omitted. it can.
  • FIG. 1 is a diagram schematically showing a double-flow type injector that can be used in the present invention.
  • FIG. 2 is a diagram schematically showing a single-flow injector that can be used in the present invention.
  • FIG. 3 is a cross-sectional view of a flat panel display used as a cover glass for a flat panel display after chemically strengthening the chemically strengthened float glass of the present invention.
  • FIG. 4A is a schematic explanatory view of a method of processing the surface of a glass ribbon by supplying a gas containing molecules having fluorine atoms in the structure thereof by a beam in the production of a glass plate by a float process.
  • FIG. 4B is a cross-sectional view taken along the line AA in FIG.
  • FIGS. 5A to 5D are cross-sectional views of beams that can be adjusted by dividing the amount of gas into three in the width direction of the glass ribbon.
  • the “glass plate” includes those in which molten glass is formed into a plate shape.
  • a so-called glass ribbon in a float bath is also a glass plate.
  • the warpage after chemical strengthening of the glass plate is caused by the difference in the way of chemical strengthening on one side and the other side of the glass plate.
  • chemical strengthening is performed on the glass surface (top surface) that is not in contact with the molten metal (usually tin) and the glass surface (bottom surface) that is in contact with the molten metal during float forming. Warping after chemical strengthening occurs due to the difference in the way of entering.
  • the glass plate can reduce warpage of the glass plate after chemical strengthening without adjusting the strengthening stress or without performing processing such as grinding and polishing before the chemical strengthening treatment.
  • Method for Manufacturing Glass Plate the following method is used for forming molten glass into a plate-shaped glass plate. First, various amounts of various materials are prepared, heated and melted, then homogenized by defoaming or stirring, formed into a plate shape by a well-known float method, slowly cooled, cut to a desired size, and then subjected to polishing. Thus, a glass plate is manufactured. Thus, the glass manufactured by the float process is preferable because the improvement of warpage after chemical strengthening, which is the effect of the present invention, is easily exhibited.
  • the glass plate used in the present invention include a glass plate typically made of soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, or borosilicate glass.
  • glass having a composition containing Al is preferable.
  • Al coexists with Al, it takes 4-coordination and participates in the formation of a network that becomes a glass skeleton like Si.
  • tetracoordinate Al increases, movement of alkali ions becomes easy, and ion exchange easily proceeds during chemical strengthening treatment.
  • the thickness of the glass plate is not particularly limited, and examples thereof include 2 mm, 0.8 mm, 0.73 mm, 0.7 mm, 0.56 mm, and 0.4 mm. In order to carry out, it is usually preferably 5 mm or less, more preferably 3 mm or less, further preferably 1.5 mm or less, and particularly preferably 0.8 mm or less.
  • the warp amount after chemical strengthening of a 0.7 mm thick glass plate is required to be 40 ⁇ m or less.
  • the amount of warpage after chemical strengthening is about 130 ⁇ m.
  • the amount of warpage of the glass plate after chemical strengthening is inversely proportional to the square of the plate thickness, so the amount of warpage when the thickness of the glass plate is 2.0 mm is about 16 ⁇ m, and the warpage is substantially a problem.
  • the problem of warpage after chemical strengthening may occur when the thickness of the glass plate is less than 2 mm, typically 1.5 mm or less.
  • the composition of the glass plate of the present invention is a composition expressed in mol%, SiO 2 is 50 to 80%, Al 2 O 3 is 0.1 to 25%, Li 2 O + Na 2 O + K 2 O is 3 to 30%.
  • a glass containing 0 to 25% MgO, 0 to 25% CaO and 0 to 5% ZrO 2 but is not particularly limited. Although it does not specifically limit more specifically, For example, the following glass compositions are mentioned. For example, “containing 0 to 25% of MgO” means that MgO is not essential but may contain up to 25%.
  • the glass of (i) is contained in soda lime silicate glass, and the glass of (ii) and (iii) is contained in aluminosilicate glass.
  • the composition expressed as mol% is SiO 2 50 to 74%, Al 2 O 3 1 to 10%, Na 2 Contains 6-14% O, 3-11% K 2 O, 2-15% MgO, 0-6% CaO and 0-5% ZrO 2 , and contains SiO 2 and Al 2 O 3 composition total 75% or less, and displayed in the total content of Na 2 O content and K 2 O 12 to 25% glass (iii) mol percent total of 7 to 15% of the content of MgO and CaO 0 but the SiO 2 68 ⁇ 80%, the Al 2 O 3 4 ⁇ 10% , a Na 2 O 5 ⁇ 15%, the K 2 O 1%, the MgO 4 ⁇ 15% and ZrO 2 are compositions displaying 0-1% glass containing (iv) mol%, a SiO 2 67 ⁇ 75%, the Al 2 O 3 0 ⁇ 4% , Na 2 O the 7 ⁇ 15% K 2 O 1-9% of MgO 6 ⁇ 14% and the ZrO 2 and contains 0 to 1.
  • a glass plate of the present invention at least one surface of a glass ribbon is subjected to a surface treatment by contacting a gas or liquid containing molecules having fluorine atoms in the structure (hereinafter referred to as a fluorine-containing fluid).
  • a fluorine-containing fluid a gas or liquid containing molecules having fluorine atoms in the structure
  • the temperature of the glass ribbon is preferably 650 ° C. or higher.
  • HF spraying process by HF total contact amount (after-mentioned) sufficient to reduce the curvature amount of the glass after chemical strengthening.
  • glass plate may be used as a generic term for a glass plate and a glass ribbon.
  • fluorine-containing fluid examples include hydrogen fluoride (HF), flon (for example, chlorofluorocarbon, fluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, and halon), hydrofluoric acid, fluorine alone, trifluoroacetic acid, and carbon tetrafluoride.
  • HF hydrogen fluoride
  • flon for example, chlorofluorocarbon, fluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, and halon
  • hydrofluoric acid fluorine alone, trifluoroacetic acid
  • carbon tetrafluoride examples include silicon tetrafluoride, phosphorus pentafluoride, phosphorus trifluoride, boron trifluoride, nitrogen trifluoride, chlorine trifluoride and the like, but are not limited to these gases or liquids.
  • hydrogen fluoride, chlorofluorocarbon or hydrofluoric acid is preferable because of its high reactivity with the glass plate surface. Moreover, you may mix and use 2 or more types among these gases. Further, when the glass is produced by the float process, when the fluorine-containing fluid is sprayed on the glass ribbon, it is preferable not to use a single fluorine because the oxidizing power is too strong in the float bath.
  • the liquid When a liquid is used, the liquid may be supplied to the glass plate surface by spray coating, for example, or may be supplied to the glass plate surface after vaporizing the liquid. Moreover, you may dilute with another liquid or gas as needed.
  • the fluorine-containing fluid may contain a liquid or a gas other than those liquids or gases, and is preferably a liquid or a gas that does not react with molecules having fluorine atoms at room temperature.
  • liquid or gas examples include, but are not limited to, N 2 , air, H 2 , O 2 , Ne, Xe, CO 2 , Ar, He, and Kr. Moreover, 2 or more types of these gases can also be mixed and used.
  • gas carrier gas containing molecules having fluorine atoms in its structure it is preferable to use an inert gas such as N 2 or argon. Further, the gas containing a molecule having a fluorine atom in its structure may further contain SO 2 . SO 2 is used when a glass plate is continuously produced by a float process or the like, and has a function of preventing wrinkles from being generated on the glass due to the conveyance roller coming into contact with the glass plate in the slow cooling region. Moreover, the gas decomposed
  • the fluorine-containing fluid may contain water vapor or water.
  • Water vapor can be extracted by bubbling an inert gas such as nitrogen, helium, argon, carbon dioxide in heated water.
  • an inert gas such as nitrogen, helium, argon, carbon dioxide in heated water.
  • a float method As a specific example of a method for forming molten glass into a plate-like glass plate, for example, a float method will be described in detail.
  • a glass manufacturing apparatus having a melting furnace for melting glass raw materials, a float bath for floating glass on a molten metal (such as tin) to form a glass ribbon, and a slow cooling furnace for gradually cooling the glass ribbon And a glass plate (float glass) is manufactured using.
  • a fluorine-containing fluid is supplied to the glass plate conveyed on the molten metal bath from the side not touching the metal surface (top surface). You may process the glass plate surface.
  • the glass plate is conveyed by roller conveyance.
  • the slow cooling region includes not only the slow cooling furnace but also the portion from the time when the glass ribbon is unloaded from the molten metal (tin) bath to the time of being transported into the slow cooling furnace.
  • the gas may be supplied from the side not touching the molten metal (tin).
  • FIG. 4 (a) shows a schematic explanatory diagram of a method for treating a glass surface by supplying a gas containing molecules having fluorine atoms in the structure in the production of a glass plate by a float method.
  • a gas containing molecules having fluorine atoms in its structure is generated by the beam 102 inserted into the float bath. Spray onto the glass ribbon 101. As shown in FIG. 4A, the gas is preferably blown onto the glass ribbon 101 from the side where the glass ribbon 101 does not touch the molten metal surface.
  • An arrow Ya indicates a direction in which the glass ribbon 101 flows in the float bath.
  • the position at which the gas is blown onto the glass ribbon 101 by the beam 102 is preferably such that the surface temperature of the glass plate is (Tg + 50 ° C.) to (Tg + 460 ° C.), where Tg is the glass transition temperature of the glass ribbon.
  • Tg + 150 ° C.) to (Tg + 460 ° C.) is more preferable, and (Tg + 230 ° C.) to (Tg + 460 ° C.) is more preferable.
  • the position of the beam 102 may be upstream or downstream of the radiation gate 103.
  • the amount of the gas blown onto the glass ribbon 101 is preferably 1 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 3 mol / glass ribbon 1 cm 2 as HF.
  • Fig. 4 (b) shows a cross-sectional view along the line AA in Fig. 4 (a).
  • the gas blown to the glass ribbon 101 from the Y1 direction by the beam 102 flows in from “IN” and flows out from the “OUT” direction. That is, it moves in the directions of arrows Y4 and Y5 and is exposed to the glass ribbon 101.
  • the gas that has moved in the direction of arrow Y4 flows out from the direction of arrow Y2, and the gas that has moved in the direction of arrow Y5 flows out from the direction of arrow Y3.
  • the amount of warpage of the glass plate after chemical strengthening may change depending on the position in the width direction of the glass ribbon 101.
  • the “total contact amount” is the contact amount per unit area on the surface of the glass ribbon 101, and the unit is represented by (mol / cm 2 ).
  • the structure of the beam 102 can be adjusted to the amount of gas in the width direction of the glass ribbon 101. By doing so, the amount of warpage may be adjusted in the width direction of the glass ribbon 101.
  • FIG. 5A shows a cross-sectional view of a beam 102 in which the amount of the gas is adjusted by dividing it into I to III in the width direction 110 of the glass ribbon 101.
  • the gas systems 111 to 113 are divided by partition walls 114 and 115, and the gas is caused to flow out from the gas blowing holes 116 and blown onto the glass ribbon 101.
  • the arrows in FIG. 5 (a) indicate the gas flow.
  • the arrows in FIG. 5B indicate the gas flow in the gas system 111.
  • the arrows in FIG. 5C indicate the gas flow in the gas system 112.
  • the arrows in FIG. 5D indicate the gas flow in the gas system 113.
  • the gas flowing out from the gas systems 111 and 113 is blown to both ends in the width direction of the glass ribbon 101, and the gas flowing out from the gas system 112 is sprayed to the center portion in the width direction of the glass ribbon 101. Since the fluorine concentration of the gas flowing out from the gas systems 111 to 113 is adjusted to a desired value, the total contact amount of fluorine atoms contained in the gas is different in the width direction of the glass ribbon 101. Become.
  • the fluorine concentration of the gas may be changed in the width direction of the glass ribbon 101 as described above. Not limited. For example, it is good also as a structure which changes the total contact amount of the gas containing the molecule
  • the glass ribbon 101 in the width direction of the glass ribbon 101, it is configured to be divided into three locations of the central portion and both end portions so that the total contact amount of fluorine atoms is different. You may divide
  • Examples of the method for supplying the fluorine-containing fluid to the glass surface include a method using an injector (see FIGS. 1 and 2), a method using an introduction tube, and the like in addition to the method using the beam 102 described above.
  • FIG. 1 and 2 are schematic views of an injector 10 that can be used for surface treatment of a glass plate in the present invention.
  • FIG. 1 is a diagram schematically showing a double-flow injector 10 that can be used in the present invention.
  • FIG. 2 is a diagram schematically showing a single-flow injector 10 that can be used in the present invention.
  • the fluorine-containing fluid is discharged from the central slit 1 and the outer slit 2 toward the glass plate 20, flows on the glass plate 20 through the flow path 4, and is exhausted from the exhaust slit 5.
  • symbol 21 in FIG.1 and FIG.2 is a direction through which the glass plate 20 flows, and is parallel to the flow path 4.
  • the distance between the gas discharge port of the injector 10 and the glass plate 20 is preferably 50 mm or less.
  • the distance By setting the distance to 50 mm or less, it is possible to suppress the gas from diffusing into the atmosphere, and to reach a sufficient amount of gas to the glass plate 20 with respect to the desired gas amount. On the other hand, if the distance from the glass plate 20 is too short, the glass plate 20 may be brought into contact with the injector due to fluctuations in the glass plate 20 when, for example, a glass plate produced by the float process is processed online.
  • the fluorine-containing fluid supplied from the injector 10 is a liquid
  • the distance between the liquid discharge port of the injector 10 and the glass plate 20 there is no particular limitation on the distance between the liquid discharge port of the injector 10 and the glass plate 20, and the glass plate 20 can be disposed uniformly. That's fine.
  • This double-flow injector is common and is also known for use in producing low reflection glass.
  • asahi glass soda lime silicate glass glass transition point 560 ° C.
  • HF gas from the central slit 1 is 1.12 SLM (liters per minute as standard gas)
  • nitrogen (N2) gas 9SLM may be used by heating the gas to 150 ° C. and blowing 45.5 SLM from the outer slit 2 at a flow rate of 64 cm / s.
  • the surface roughness (arithmetic mean roughness) Ra of the glass surface sprayed with HF gas in this manner is 30.6 nm, and the value of x described above is 2.5 ⁇ m.
  • the injector 10 may be used in any manner such as double flow or single flow, and two or more injectors 10 may be arranged in series in the flow direction 21 of the glass plate 20 to treat the surface of the glass plate 20.
  • the double-flow injector is an injector 10 in which the flow of gas from discharge to exhaust is equally divided in the forward direction and the reverse direction with respect to the moving direction of the glass plate.
  • the single-flow injector is an injector 10 in which the gas flow from discharge to exhaust is fixed in either the forward direction or the reverse direction with respect to the moving direction of the glass plate.
  • the gas flow on the glass plate 20 and the flow direction 21 of the glass plate 20 are the same in terms of airflow stability.
  • a fluorine-containing fluid supply port a gas generated by reacting with the unreacted fluorine-containing fluid and the glass plate 20, or a gas exhaust port generated by reacting two or more gases of the fluorine-containing fluid Is preferably present on the same side surface of the glass plate 20.
  • the surface of the glass plate 20 may be processed by supplying the gas from the side touching the conveyor. Moreover, when the glass plate 20 is flowing on the roller, it may be supplied from the side not touching the roller, or may be supplied from between adjacent rollers on the side touching the roller.
  • the same or different gas may be supplied from both sides of the glass plate 20.
  • the glass plate 20 may be surface-treated by supplying gas from both the side not touching the roller and the side touching the roller.
  • the injector 10 when supplying gas from both sides in the slow cooling region, the injector 10 is disposed so as to face the glass plate 20 that is continuously conveyed, and the glass plate 20 is sandwiched, and the roller is touched. Gas may be supplied from both the non-contact side and the side in contact with the roller.
  • the injector 10 disposed on the side in contact with the roller and the injector 10 disposed on the side not in contact with the roller may be disposed at different positions in the flow direction of the glass plate 20. In arranging at different positions, any of them may be arranged upstream or downstream with respect to the flow direction of the glass plate 20.
  • the glass plate 20 is changed.
  • the total contact amount of fluorine atoms may be set differently.
  • a glass plate with a functional film is manufactured online by combining glass manufacturing technology using a float process and CVD technology.
  • the transparent conductive film and the underlying film are formed on the glass plate by supplying gas from the surface not touching the tin or the surface not touching the roller. Yes.
  • an injector may be disposed on the surface in contact with the roller, and a fluorine-containing fluid may be supplied from the injector to the glass plate to treat the glass plate surface.
  • the temperature of the glass plate when the fluorine-containing fluid is supplied to the surface of the glass plate being transported and the surface is treated is such that the glass transition temperature of the glass plate is Tg.
  • the surface temperature is preferably (Tg + 50 ° C.) to (Tg + 460 ° C.), more preferably (Tg + 150 ° C.) to (Tg + 460 ° C.), and further preferably (Tg + 230 ° C.) to (Tg + 460 ° C.).
  • the temperature is usually higher on the upstream side in the direction in which the glass ribbon flows. The diffusion of fluorine in the glass is more active as the temperature is higher, that is, as the viscosity is lower.
  • the fluorine treatment in the float bath is effective when performed upstream in order to increase the penetration depth of fluorine. Or the same effect can be acquired also by raising the temperature of the glass ribbon of a process position.
  • the glass ribbon may be thinned in the float bath after the processing.
  • the depth of the fluorine infiltration layer of the finally obtained glass plate is smaller than the depth of the fluorine infiltration layer of the glass plate that has been processed the same downstream. May also become shallower. Therefore, when the fluorine treatment is performed in the float bath, it is not always effective to provide the treatment position significantly upstream in order to increase the fluorine penetration depth.
  • a device such as a top roll is installed, and the installation of the processing device may affect the molding of the glass ribbon. Since the viscosity of the glass ribbon is an important factor, the above-mentioned viscosity range is appropriate for achieving both an effective fluorine infiltration effect by the fluorine treatment.
  • the pressure on the glass plate surface when supplying the fluorine-containing fluid to the glass plate surface is preferably an atmosphere in the pressure range of atmospheric pressure ⁇ 100 Pascal to atmospheric pressure + 100 Pascal, and atmospheric pressure ⁇ 50 Pascal to atmospheric pressure. More preferably, the atmosphere has a pressure range of +50 Pascals.
  • the case where HF is used as the fluorine-containing fluid will be described as an example.
  • the higher the HF flow rate the greater the warp improvement effect during the chemical strengthening treatment, which is preferable.
  • the higher the HF concentration the better the warp improvement effect during the chemical strengthening treatment. Becomes larger.
  • both the total gas flow rate and the HF gas flow rate are the same, the longer the time for processing the glass plate, the greater the warp improving effect during the chemical strengthening process.
  • the warpage after chemical strengthening is improved as the conveyance speed of the glass plate is lower.
  • the warpage after chemical strengthening can be improved by appropriately controlling the conveying speed of the glass plate.
  • Chemical strengthening is performed by ion exchange at a temperature below the glass transition point to convert an alkali metal ion (typically Li ion or Na ion) having a small ion radius on the glass surface to an alkali metal ion having a larger ion radius. This is a process of forming a compressive stress layer on the glass surface by exchanging with (typically K ions).
  • the chemical strengthening treatment can be performed by a conventionally known method.
  • the glass plate of the present invention is a glass plate with improved or improved warpage after chemical strengthening.
  • the amount of warpage (warpage variation) of the glass plate after chemical strengthening relative to the glass plate before chemical strengthening is measured by a three-dimensional shape measuring machine (for example, manufactured by Mitaka Kogyo Co., Ltd.), or surface roughness and contour shape measurement It can be measured with a machine (for example, manufactured by Tokyo Seimitsu Co., Ltd.).
  • the improvement of the warp in the width direction after chemical strengthening is based on the following formula in the experiment under the same conditions except that the surface treatment is performed with a gas or liquid containing a molecule having a fluorine atom in the structure. Evaluation is based on the required ⁇ improvement rate.
  • ⁇ improvement rate (%) [1 ⁇ ( ⁇ Y / ⁇ X)] ⁇ 100 ⁇ X: difference between the maximum value and the minimum value in the width direction of the warped amount after strengthening of the untreated glass plate ⁇ Y: difference between the maximum value and the minimum value in the width direction of the warped amount after strengthening of the treated glass plate
  • the CS (surface compression stress) and DOL (compression stress layer depth) of the glass plate can be measured by a surface stress meter ⁇ for example, a surface stress meter (FSM-6000LE ⁇ manufactured by Orihara Seisakusho Co., Ltd.)
  • the surface compressive stress is preferably 600 MPa or more, and the depth of the compressive stress layer is preferably 15 ⁇ m or more, and by making the surface compressive stress of the chemically strengthened glass and the depth of the compressive stress layer within this range, excellent High strength and scratch resistance can be obtained.
  • FIG. 3 is a cross-sectional view of a display device in which a cover glass is disposed.
  • front, rear, left and right are based on the direction of the arrow in the figure.
  • the display device 40 includes a display panel 45 provided in the housing 15 and a cover glass 30 that covers the entire surface of the display panel 45 and surrounds the front of the housing 15.
  • the cover glass 30 is installed mainly for the purpose of improving the aesthetics and strength of the display device 40, preventing impact damage, and the like, and the overall shape is formed from a single plate-like glass having a substantially planar shape. As shown in FIG. 3, the cover glass 30 may be installed so as to be separated from the display side (front side) of the display panel 45 (having an air layer), and has a translucent adhesive film (FIG. (Not shown) may be attached to the display side of the display panel 45.
  • a translucent adhesive film FOG. (Not shown) may be attached to the display side of the display panel 45.
  • a functional film 41 is provided on the front surface of the cover glass 30 that emits light from the display panel 45, and a functional film 42 is provided on the rear surface on which the light from the display panel 45 is incident at a position corresponding to the display panel 45.
  • the functional films 41 and 42 are provided on both surfaces in FIG. 3, the functional films 41 and 42 are not limited to this and may be provided on the front surface or the back surface, or may be omitted.
  • the functional films 41 and 42 have functions such as anti-reflection of ambient light, prevention of impact breakage, electromagnetic wave shielding, near-infrared shielding, color tone correction, and / or scratch resistance improvement, and thickness and shape are used for applications. It is selected as appropriate.
  • the functional films 41 and 42 are formed, for example, by attaching a resin film to the cover glass 30. Or you may form by thin film formation methods, such as a vapor deposition method, a sputtering method, or CVD method.
  • Reference numeral 44 denotes a black layer, which is, for example, a coating formed by applying ink containing pigment particles to the cover glass 30, irradiating it with ultraviolet rays, or heating and baking it, and then cooling it.
  • a black layer which is, for example, a coating formed by applying ink containing pigment particles to the cover glass 30, irradiating it with ultraviolet rays, or heating and baking it, and then cooling it.
  • the display panel and the like cannot be seen from the outside, and the appearance is improved.
  • the surface roughness (arithmetic average roughness) Ra is preferably 2.5 nm or less, and more preferably 1.5 nm or less. . Thereby, it can prevent impairing the clearness of the display image of a display apparatus with a cover glass.
  • the surface roughness Ra of the glass plate can be measured as follows based on JIS B0601 (2001). Using an AFM (Atomic Force Microscope), for example, Park Systems, XE-HDM as a measuring device, measure 3 locations at a scan size of 1 ⁇ m ⁇ 1 ⁇ m, and average the 3 locations. Ra value.
  • composition of glass plate a glass plate of glass material A having the following composition was used.
  • Glass A In terms of mol%, SiO 2 is 64.3%, Al 2 O 3 is 8.0%, Na 2 O is 12.5%, K 2 O is 4.0%, and MgO is 10.5. %, CaO 0.1%, SrO 0.1%, BaO 0.1% and ZrO 2 0.5% (glass transition temperature 604 ° C.)
  • ⁇ improvement rate (%) [1 ⁇ ( ⁇ Y / ⁇ X)] ⁇ 100 ⁇ X: difference between the maximum value and the minimum value in the width direction of the warped amount after strengthening of the untreated glass plate ⁇ Y: difference between the maximum value and the minimum value in the width direction of the warped amount after strengthening of the treated glass plate
  • CS and DOL were measured using a surface stress meter (FSM-6000LE) manufactured by Orihara Seisakusho.
  • HF is added to the glass ribbon 101 in Table 1 by the beam 102 inserted at a position where the glass ribbon 101 is about 800 ° C. Sprayed under the conditions shown.
  • the temperature of the glass ribbon when HF is sprayed is 770 to 800 ° C. in all comparative examples and examples.
  • Example 1-1 to 1-2, 2-1 to 2-4, 3-1, and 4-1 as shown in Table 1, the HF molar concentration of the process gas sprayed in the width direction of the glass ribbon 101
  • the total contact amount of fluorine atoms was changed so that the total contact amount of fluorine atoms was different. More specifically, when the center position in the width direction of the glass ribbon 101 is the origin, the right side in the flow direction Ya of the glass ribbon 101 is the + direction, and the left side is the ⁇ direction, ⁇ 2320 to ⁇ 1473 mm (FIG. 4 ( a) in the vicinity of position X3 in FIG. 4A), ⁇ 1473 to +1473 mm (in the vicinity of position X2 in FIG.
  • the HF total contact amount is set to the minimum value in the vicinity of positions X1 and X3 (both ends in the width direction), and the HF contact amount is set to the maximum value in the vicinity of position X2 (width direction center).
  • the minimum value of the HF total contact amount is a value obtained by reducing the maximum value of the HF total contact amount by 7.7 to 100%.
  • Comparative Examples 1-1, 2-1, 3-1, and 4-1 HF was not sprayed on the glass ribbon 101.
  • Comparative Examples 1-2, 2-2, 3-2, and 4-2 In the width direction of the glass ribbon 101, the HF molar concentration of the process gas to be sprayed was set to be equal so that the total contact amount of HF was equal.
  • Comparative Example 1-1, 2-1, 3-1, 4-1, 4-2 and Example 3-1, 4-1 in the width direction position -318 mm the surface stresses on the front and back surfaces (Hereinafter referred to as CS) and stress layer depth (hereinafter referred to as DOL) were measured. The average value is also shown in Table 1.
  • Comparative Example 1-2 and Examples 1-1 to 1-2 the chemical strengthening time and the temperature of the chemical strengthening salt are the same as in Comparative Example 1-1.
  • Comparative Example 2-2 and Examples 2-1 to 2-4 have the same chemical strengthening time and chemical strengthening salt temperature as Comparative Example 2-1.
  • Comparative Examples 3-1, 3-2 and Example 3-1 the chemical strengthening time and the temperature of the chemical strengthening salt are all the same.
  • all of Comparative Examples 4-1 and 4-2 and Example 4-1 have the same chemical strengthening time and chemical strengthening salt temperature.
  • Comparative Examples 1-1, 2-1, 3-1 and 4-1 in Table 2 it can be seen that the amount of warp after strengthening differs depending on the position of the glass ribbon 101 in the width direction when HF is not sprayed.
  • the amount of warp after strengthening increases toward the center in the width direction of the glass ribbon 101, and the amount of warp after strengthening decreases toward the both ends in the width direction. The tendency to become is remarkable.
  • Comparative Examples 1-2, 2-2, 3-2 and 4-2 in which the HF total contact amount (total contact amount of fluorine atoms) is set equal in the width direction of the glass ribbon 101, Comparative Example 1 Compared with ⁇ 1, 2-1, 3-1, and 4-1, the warped amount after strengthening is reduced in the entire width direction, and the average value of warpage, ⁇ , and ⁇ improvement rate are improved. This is due to the fact that the warp after chemical strengthening was reduced by the fluorine treatment of the surface of the glass ribbon.
  • Examples 1-1 to 1-2, 2-1 to 2-4, 3-1, and 4-1 in which the HF total contact amount (total contact amount of fluorine atoms) in the width direction of the glass ribbon 101 was changed Compared with Comparative Examples 1-1, 2-1, 3-1, and 4-1, the warped amount after strengthening is reduced over the entire width direction, and the average value of warpage, ⁇ , and ⁇ improvement rate are improved. Yes.
  • the minimum value of the HF total contact amount is the HF total contact amount.
  • the ⁇ and ⁇ improvement rates are improved as compared with Comparative Examples 1-2 and 2-2, and over the entire width direction. It can be seen that a more uniform warp distribution is obtained.
  • the HF total contact amount is increased at a position where the post-strengthening warpage amount is large (the central portion in the width direction). And it became clear that the amount of warpage after reinforcement can be effectively reduced over the entire width direction by reducing the total contact amount of HF at the position where the amount of warpage after reinforcement is small (both ends in the width direction).
  • the amount of warpage of the glass sheet after chemical strengthening tends to increase toward the center in the width direction and decreases toward both ends in the width direction. It is preferable to adjust the contact amount.
  • the width direction By reducing the total HF contact amount at the center and decreasing the HF total contact amount at both ends in the width direction, the same effect can be obtained.

Abstract

This float glass manufacturing method includes: a step for forming a molten glass into a glass ribbon by supplying the molten glass onto a molten metal; and a step for spraying, to the glass ribbon, a gas containing molecules each of which has a fluorine atom in the structure thereof. Total contact quantities of fluorine atoms vary in the width direction of the glass ribbon.

Description

フロートガラスの製造方法Method for producing float glass
 本発明は、フロートガラスの製造方法に関する。 The present invention relates to a method for producing float glass.
 近年、携帯電話または携帯情報端末(PDA)、パーソナルコンピュータ、テレビ、車載ナビゲーション表示装置等のフラットパネルディスプレイ装置において、ディスプレイの保護および美観を高めるために、画像表示部分よりも広い領域となるように薄い板状のカバーガラスをディスプレイの前面に配置することが行われている。 In recent years, in flat panel display devices such as mobile phones or personal digital assistants (PDAs), personal computers, televisions, in-vehicle navigation display devices, etc., in order to enhance the protection and aesthetics of the display, the area is wider than the image display portion. A thin plate-like cover glass is disposed on the front surface of the display.
 このようなフラットパネルディスプレイ装置に対しては、軽量および薄型化が要求されており、そのため、ディスプレイ保護用に使用されるカバーガラスも薄くすることが要求されている。 Such a flat panel display device is required to be lightweight and thin, and accordingly, a cover glass used for display protection is also required to be thin.
 しかし、カバーガラスの厚さを薄くしていくと、強度が低下し、使用中または携帯中の落下などによりカバーガラス自身が割れてしまうことがあり、ディスプレイ装置を保護するという本来の役割を果たすことができなくなるという問題がある。 However, as the thickness of the cover glass is reduced, the strength decreases, and the cover glass itself may be broken due to falling in use or while carrying it, which plays the original role of protecting the display device. There is a problem that it becomes impossible.
 このため従来のカバーガラスは、フロート法により製造されたガラス(以下、フロートガラスということがある。)を、化学強化することで表面に圧縮応力層を形成しカバーガラスの耐傷性を高めている。 For this reason, the conventional cover glass raises the damage resistance of the cover glass by forming the compressive-stress layer on the surface by chemically strengthening the glass manufactured by the float method (henceforth a float glass). .
 フロートガラスは化学強化後に反りが生じて平坦性が損なわれることが報告されている(特許文献1~3)。該反りは、フロート成形時に溶融錫等の溶融金属と接触していないガラス面(以下、トップ面ともいう。)と、溶融金属と接触しているガラス面(以下、ボトム面ともいう。)とが異質になり、両面の化学強化の入り方が異なることにより生じるとされている。 It has been reported that the float glass is warped after chemical strengthening and the flatness is impaired (Patent Documents 1 to 3). The warpage includes a glass surface that is not in contact with a molten metal such as molten tin (hereinafter also referred to as a top surface) and a glass surface that is in contact with the molten metal (hereinafter also referred to as a bottom surface). It is said that this is caused by the different ways of entering chemical strengthening on both sides.
 前記フロートガラスの反りは化学強化の入り方が強いほど大きくなる。したがって、高い耐傷性への要求に応えるべく表面圧縮応力をこれまで以上、特に600MPa以上にする場合、反りの問題がより顕在化することとなる。 The warp of the float glass increases as the chemical strengthening becomes stronger. Therefore, when the surface compressive stress is made higher than ever, particularly 600 MPa or higher in order to meet the demand for high scratch resistance, the problem of warp becomes more obvious.
 特許文献1には、ガラス表面にSiO膜を形成した後に化学強化することにより、化学強化時にガラスに入るイオンの量を調整するガラスの強化方法が開示されている。また、特許文献2および3には、トップ面側の表面圧縮応力を特定範囲とすることにより、化学強化後の反りを低減する方法が開示されている。 Patent Document 1 discloses a glass strengthening method in which the amount of ions entering the glass during chemical strengthening is adjusted by chemically strengthening after forming a SiO 2 film on the glass surface. Patent Documents 2 and 3 disclose a method of reducing warpage after chemical strengthening by setting the surface compressive stress on the top surface side within a specific range.
 また、従来、前記反りの問題を低減するために、化学強化による強化応力を小さくしたり、ガラスの少なくとも一方の面を研削処理または研磨処理等することにより表面異質層を除去した後に化学強化する対処方法がなされている。 Further, conventionally, in order to reduce the problem of warpage, chemical strengthening is performed after removing a surface heterogeneous layer by reducing the strengthening stress due to chemical strengthening or grinding or polishing at least one surface of glass. There is a solution.
米国特許出願公開第2011/0293928号明細書US Patent Application Publication No. 2011/0293928 国際公開第2007/004634号International Publication No. 2007/004634 日本国特開昭62-191449号公報Japanese Unexamined Patent Publication No. Sho 62-191449
 しかしながら、特許文献1に記載のガラス表面にSiO膜を形成した後に化学強化する方法では、化学強化の際の予熱条件が限定され、さらには条件によってはSiO膜の膜質が変化して反りに影響を与える可能性がある。また、特許文献2および3に記載のように、トップ面側の表面圧縮応力を特定範囲とする方法では、ガラスの強度の観点から問題がある。 However, in the method of chemically strengthening after forming the SiO 2 film on the glass surface described in Patent Document 1, the preheating conditions for chemical strengthening are limited, and depending on the conditions, the film quality of the SiO 2 film changes and warps. May be affected. Further, as described in Patent Documents 2 and 3, the method of setting the surface compressive stress on the top surface side in a specific range has a problem from the viewpoint of the strength of the glass.
 また、化学強化前にガラスの少なくとも一方の面を研削処理または研磨処理等する方法は、生産性を向上させる観点から問題があり、これらの研削処理または研磨処理等を省略することが好ましい。 Further, the method of grinding or polishing at least one surface of the glass before chemical strengthening has a problem from the viewpoint of improving productivity, and it is preferable to omit these grinding or polishing treatments.
 さらに、化学強化後にある程度以上の反りが生じる場合、カバーガラスの黒枠を印刷する時にガラスとステージの間に隙間が大きくなりすぎて、ガラスがステージに吸着しなくなることがある。また、タッチパネル一体型のカバーガラスに使用される場合には、後工程にて大板の状態でITO(Indium Tin Oxide)等の成膜を行うことがある。その際に、ガラスが薬液処理槽や洗浄槽のエアーナイフに接触する等の搬送異常が生じたり、ITO成膜中に反りが増大し、基板周辺部のITOの成膜状態が適切にならず、剥がれてしまう等の不具合を生じることがある。また、LCD(Liquid Crystal Display)とタッチパネルが貼りつけられたカバーガラスの間に空間が存在するタイプの場合、カバーガラスに一定以上の反りがあると、輝度ムラやニュートンリングが生じることがある。 Furthermore, if warping occurs to some extent after chemical strengthening, the gap between the glass and the stage becomes too large when printing the black frame of the cover glass, and the glass may not be adsorbed on the stage. When used for a cover glass with an integrated touch panel, ITO (Indium Tin Oxide) or the like may be formed in a large plate state in a later process. At that time, conveyance abnormalities such as glass coming into contact with the air knife in the chemical treatment tank or cleaning tank occur, warpage increases during ITO film formation, and the ITO film formation state at the periphery of the substrate is not appropriate. , May cause problems such as peeling off. In addition, in the case of a type in which a space exists between an LCD (Liquid Crystal Display) and a cover glass to which a touch panel is attached, if the cover glass has a certain amount of warpage, uneven brightness or Newton rings may occur.
 したがって、本発明は、化学強化後の反りを効果的に抑制することができるとともに、化学強化前の研磨処理等を省略または簡略化することができるフロートガラスの製造方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for producing a float glass that can effectively suppress warping after chemical strengthening and can omit or simplify polishing treatment before chemical strengthening. To do.
 本発明者らは、化学強化後におけるガラス板の反り量が、幅方向の位置によって変化することに着目した。そして、その構造中にフッ素原子が存在する分子を含有する気体を、ガラスリボンに吹き付ける際に、ガラスリボンの幅方向においてフッ素原子の総接触量が異なるように設定することにより、化学強化後のガラス板の反りを幅方向全体に亘って効果的に低減できることを見出し、この知見に基づいて、本発明を完成させた。 The inventors focused on the fact that the amount of warpage of the glass plate after chemical strengthening varies depending on the position in the width direction. And, when a gas containing molecules having fluorine atoms in its structure is blown onto the glass ribbon, by setting the total contact amount of fluorine atoms to be different in the width direction of the glass ribbon, It discovered that the curvature of a glass plate could be effectively reduced over the whole width direction, and completed this invention based on this knowledge.
 すなわち、本発明は以下の通りである。
(1) 溶融ガラスを溶融金属上に供給してガラスリボンに成形する工程を含むフロートガラスの製造方法であって、
 その構造中にフッ素原子が存在する分子を含有する気体を、前記ガラスリボンに吹き付ける工程を含み、
 前記ガラスリボンの幅方向において、前記フッ素原子の総接触量が異なる
ことを特徴とするフロートガラスの製造方法。
(2) 前記ガラスリボンの幅方向において、前記総接触量の最小値は、前記総接触量の最大値から最大100%減少させた値である
ことを特徴とする(1)に記載のフロートガラスの製造方法。
(3) 前記ガラスリボンの幅方向における中心部において、前記総接触量は最大であり、
 前記ガラスリボンの幅方向における両端部において、前記総接触量は最小である
ことを特徴とする(1)又は(2)に記載のフロートガラスの製造方法。
(4) 前記ガラスリボンの幅方向において、前記総接触量の最小値は、前記総接触量の最大値から7.7~25%減少させた値である
ことを特徴とする(1)~(3)の何れか1つに記載のフロートガラスの製造方法。
(5) 前記溶融ガラスのガラス転移温度が550℃以上であり、
 前記ガラスリボンの温度は600℃以上である
ことを特徴とする(1)~(4)の何れか1つに記載のフロートガラスの製造方法。
That is, the present invention is as follows.
(1) A float glass manufacturing method including a step of supplying molten glass onto a molten metal and forming the glass into a glass ribbon,
Blowing a gas containing a molecule having a fluorine atom in its structure onto the glass ribbon;
The method for producing float glass, wherein the total contact amount of the fluorine atoms is different in the width direction of the glass ribbon.
(2) The float glass according to (1), wherein in the width direction of the glass ribbon, the minimum value of the total contact amount is a value obtained by reducing the maximum value of the total contact amount by a maximum of 100%. Manufacturing method.
(3) In the central portion in the width direction of the glass ribbon, the total contact amount is maximum,
The method for producing a float glass according to (1) or (2), wherein the total contact amount is minimum at both ends in the width direction of the glass ribbon.
(4) In the width direction of the glass ribbon, the minimum value of the total contact amount is a value reduced by 7.7 to 25% from the maximum value of the total contact amount. The manufacturing method of the float glass as described in any one of 3).
(5) The glass transition temperature of the molten glass is 550 ° C. or higher,
The method for producing a float glass according to any one of (1) to (4), wherein the temperature of the glass ribbon is 600 ° C. or higher.
 本発明のフロートガラスの製造方法では、ガラスリボンの幅方向においてフッ素原子の総接触量を異なるように設定することにより、ガラス板の幅方向におけるイオンの拡散速度を調整して、化学強化の入り方を均等化することができる。したがって、化学強化による応力を所望の値にしつつ、また化学強化前の研磨処理等を簡略化または省略しても、化学強化後におけるガラス板の反りを低減し、優れた平坦度を得ることができる。 In the float glass manufacturing method of the present invention, the ion contact rate in the width direction of the glass plate is adjusted by changing the total contact amount of fluorine atoms in the width direction of the glass ribbon, and chemical strengthening is entered. Can be equalized. Therefore, it is possible to reduce the warpage of the glass plate after chemical strengthening and obtain excellent flatness even if the stress due to chemical strengthening is set to a desired value and the polishing process before chemical strengthening is simplified or omitted. it can.
図1は、本発明で用いることのできる両流しタイプのインジェクタを模式的に示す図である。FIG. 1 is a diagram schematically showing a double-flow type injector that can be used in the present invention. 図2は、本発明で用いることのできる片流しタイプのインジェクタを模式的に示す図である。FIG. 2 is a diagram schematically showing a single-flow injector that can be used in the present invention. 図3は、本発明の化学強化用フロートガラスを化学強化した後、フラットパネルディスプレイ用のカバーガラスとして用いたフラットパネルディスプレイの断面図である。FIG. 3 is a cross-sectional view of a flat panel display used as a cover glass for a flat panel display after chemically strengthening the chemically strengthened float glass of the present invention. 図4(a)は、フロート法によるガラス板の製造において、その構造中にフッ素原子が存在する分子を含有する気体をビームにより供給してガラスリボンの表面を処理する方法の概略説明図である。図4(b)は、図4(a)のA-A断面図である。FIG. 4A is a schematic explanatory view of a method of processing the surface of a glass ribbon by supplying a gas containing molecules having fluorine atoms in the structure thereof by a beam in the production of a glass plate by a float process. . FIG. 4B is a cross-sectional view taken along the line AA in FIG. 図5(a)~(d)は、気体の量をガラスリボンの幅方向で3分割して調整可能なビームの断面図を示す。FIGS. 5A to 5D are cross-sectional views of beams that can be adjusted by dividing the amount of gas into three in the width direction of the glass ribbon.
1.ガラス板
 本発明において、「ガラス板」とは、溶融ガラスが板状に成形されているものも含み、たとえばフロートバス内のいわゆるガラスリボンもガラス板である。ガラス板の化学強化後の反りは、ガラス板の一方の面ともう一方の面において化学強化の入り方が異なることにより生じる。具体的には、例えば、フロートガラスの場合、フロート成形時に溶融金属(通常、錫)と接触していないガラス面(トップ面)と溶融金属と接触しているガラス面(ボトム面)において化学強化の入り方が異なることにより化学強化後の反りが生じる。
1. Glass plate In the present invention, the “glass plate” includes those in which molten glass is formed into a plate shape. For example, a so-called glass ribbon in a float bath is also a glass plate. The warpage after chemical strengthening of the glass plate is caused by the difference in the way of chemical strengthening on one side and the other side of the glass plate. Specifically, for example, in the case of float glass, chemical strengthening is performed on the glass surface (top surface) that is not in contact with the molten metal (usually tin) and the glass surface (bottom surface) that is in contact with the molten metal during float forming. Warping after chemical strengthening occurs due to the difference in the way of entering.
 したがって、例えば、ガラス板上をフッ素処理して一方の面のフッ素濃度ともう一方の面のフッ素濃度の差を特定範囲以上とすることにより、ガラス板の一方の面ともう一方の面におけるイオンの拡散速度を調整して、一方の面ともう一方の面における化学強化の入り方を均衡化することができる。その場合、ガラス板は、強化応力を調整したり、化学強化処理の前に研削および研磨等の処理をすることなく、化学強化後のガラス板の反りを低減することができる。 Thus, for example, by treating the glass plate with fluorine so that the difference between the fluorine concentration on one surface and the fluorine concentration on the other surface is greater than a specific range, ions on one surface and the other surface of the glass plate By adjusting the diffusion rate, it is possible to balance the entry of chemical strengthening on one side and the other side. In that case, the glass plate can reduce warpage of the glass plate after chemical strengthening without adjusting the strengthening stress or without performing processing such as grinding and polishing before the chemical strengthening treatment.
 ガラス板の表面をフッ素処理することにより化学強化後の反りが低減できるメカニズムとしては、以下のような現象が生じていると考えられる。
(1)ガラスの表面に取り込まれたフッ素により緩和が促進され、フッ素処理された面のCS(compressive stress、表面圧縮応力)が低下する。
(2)ガラスの表面に取り込まれたフッ素によりイオン交換が阻害され、フッ素処理された面のDOL(depth of layer、圧縮応力深さ)が低下する。
(3)フッ素処理により、ガラスの脱アルカリが生じる。
(4)フッ素処理によりガラス表面の主成分が変化し、ガラス中のSiがSiFまたはHSiFとしてガラス表面から減少するため、応力の入り方が変化する。
(5)フッ素処理により、ガラス表面からの脱水が抑制されるかあるいは水が侵入することにより、反りが低減される。
As a mechanism that can reduce the warpage after chemical strengthening by treating the surface of the glass plate with fluorine, the following phenomenon is considered to have occurred.
(1) Relaxation is promoted by fluorine taken into the surface of the glass, and CS (compressive stress) of the surface treated with fluorine is reduced.
(2) Ion exchange is inhibited by fluorine taken into the surface of the glass, and DOL (depth of layer, compression stress depth) of the surface treated with fluorine decreases.
(3) The dealkalization of the glass occurs by the fluorine treatment.
(4) The main component of the glass surface is changed by the fluorine treatment, and Si in the glass is reduced from the glass surface as SiF 4 or H 2 SiF 6 , so that the stress is changed.
(5) The warp is reduced by suppressing the dehydration from the glass surface or the intrusion of water by the fluorine treatment.
2.ガラス板の製造方法
 本発明において、溶融ガラスを板状のガラス板に成形するには、以下の方法が用いられる。先ず種々の原料を適量調合し、加熱溶融した後、脱泡または攪拌などにより均質化し、周知のフロート法によって板状に成形し、徐冷後、所望のサイズに切断し、研磨加工を施すことによって、ガラス板が製造される。このように、フロート法により製造されたガラスは、本発明の効果である化学強化後の反り改善が発揮され易いため、好ましい。
2. Method for Manufacturing Glass Plate In the present invention, the following method is used for forming molten glass into a plate-shaped glass plate. First, various amounts of various materials are prepared, heated and melted, then homogenized by defoaming or stirring, formed into a plate shape by a well-known float method, slowly cooled, cut to a desired size, and then subjected to polishing. Thus, a glass plate is manufactured. Thus, the glass manufactured by the float process is preferable because the improvement of warpage after chemical strengthening, which is the effect of the present invention, is easily exhibited.
 本発明に用いられるガラス板としては、具体的には、例えば、典型的にはソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、ホウ珪酸ガラスからなるガラス板が挙げられる。 Specific examples of the glass plate used in the present invention include a glass plate typically made of soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, or borosilicate glass.
 これらの中でも、Alを含む組成のガラスが好ましい。Alはアルカリが共存すると4配位をとってSiと同様にガラスの骨格となる網目の形成に参加する。4配位のAlが増えると、アルカリイオンの移動が容易になり、化学強化処理時にイオン交換が進行しやすくなる。 Among these, glass having a composition containing Al is preferable. When Al coexists with Al, it takes 4-coordination and participates in the formation of a network that becomes a glass skeleton like Si. When tetracoordinate Al increases, movement of alkali ions becomes easy, and ion exchange easily proceeds during chemical strengthening treatment.
 ガラス板の厚みは、特に制限されるものではなく、たとえば2mm、0.8mm、0.73mm、0.7mm、0.56mm、0.4mmが挙げられるが、後述する化学強化処理を効果的に行うために、通常5mm以下であることが好ましく、3mm以下であることがより好ましく、1.5mm以下であることがさらに好ましく、0.8mm以下であることが特に好ましい。 The thickness of the glass plate is not particularly limited, and examples thereof include 2 mm, 0.8 mm, 0.73 mm, 0.7 mm, 0.56 mm, and 0.4 mm. In order to carry out, it is usually preferably 5 mm or less, more preferably 3 mm or less, further preferably 1.5 mm or less, and particularly preferably 0.8 mm or less.
 通常、厚み0.7mmのガラス板の化学強化後における反り量は40μm以下であることが求められる。90mm角のガラス板でCSが750MPa、DOLが40μmの場合、化学強化後の反り量は約130μmである。一方、化学強化後におけるガラス板の反り量は板厚の2乗と反比例の関係にあるので、ガラス板の厚みが2.0mmのときの反り量は約16μmとなり、実質的に反りが問題となることはない。したがって、ガラス板の厚み2mm未満、典型的には1.5mm以下で化学強化後における反りの問題が生じる可能性がある。 Usually, the warp amount after chemical strengthening of a 0.7 mm thick glass plate is required to be 40 μm or less. When a 90 mm square glass plate has a CS of 750 MPa and a DOL of 40 μm, the amount of warpage after chemical strengthening is about 130 μm. On the other hand, the amount of warpage of the glass plate after chemical strengthening is inversely proportional to the square of the plate thickness, so the amount of warpage when the thickness of the glass plate is 2.0 mm is about 16 μm, and the warpage is substantially a problem. Never become. Therefore, the problem of warpage after chemical strengthening may occur when the thickness of the glass plate is less than 2 mm, typically 1.5 mm or less.
 本発明のガラス板の組成としては、モル%で表示した組成で、SiOを50~80%、Alを0.1~25%、LiO+NaO+KOを3~30%、MgOを0~25%、CaOを0~25%およびZrOを0~5%含むガラスが挙げられるが、特に限定されない。より具体的には特に限定されないが、例えば、以下のガラスの組成が挙げられる。なお、例えば、「MgOを0~25%含む」とは、MgOは必須ではないが25%まで含んでもよい、の意である。(i)のガラスはソーダライムシリケートガラスに含まれ、(ii)および(iii)のガラスはアルミノシリケートガラスに含まれる。
(i)モル%で表示した組成で、SiOを63~73%、Alを0.1~5.2%、NaOを10~16%、KOを0~1.5%、MgOを5~13%及びCaOを4~10%を含むガラス
(ii)モル%で表示した組成が、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~11%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が7~15%であるガラス
(iii)モル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%およびZrOを0~1%含有するガラス
(iv)モル%で表示した組成が、SiOを67~75%、Alを0~4%、NaOを7~15%、KOを1~9%、MgOを6~14%およびZrOを0~1.5%含有し、SiOおよびAlの含有量の合計が71~75%、NaOおよびKOの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス
The composition of the glass plate of the present invention is a composition expressed in mol%, SiO 2 is 50 to 80%, Al 2 O 3 is 0.1 to 25%, Li 2 O + Na 2 O + K 2 O is 3 to 30%. , A glass containing 0 to 25% MgO, 0 to 25% CaO and 0 to 5% ZrO 2 , but is not particularly limited. Although it does not specifically limit more specifically, For example, the following glass compositions are mentioned. For example, “containing 0 to 25% of MgO” means that MgO is not essential but may contain up to 25%. The glass of (i) is contained in soda lime silicate glass, and the glass of (ii) and (iii) is contained in aluminosilicate glass.
(I) A composition expressed in mol%, with SiO 2 being 63 to 73%, Al 2 O 3 being 0.1 to 5.2%, Na 2 O being 10 to 16%, and K 2 O being 0 to 1. Glass (ii) containing 5%, MgO 5 to 13% and CaO 4 to 10%. The composition expressed as mol% is SiO 2 50 to 74%, Al 2 O 3 1 to 10%, Na 2 Contains 6-14% O, 3-11% K 2 O, 2-15% MgO, 0-6% CaO and 0-5% ZrO 2 , and contains SiO 2 and Al 2 O 3 composition total 75% or less, and displayed in the total content of Na 2 O content and K 2 O 12 to 25% glass (iii) mol percent total of 7 to 15% of the content of MgO and CaO 0 but the SiO 2 68 ~ 80%, the Al 2 O 3 4 ~ 10% , a Na 2 O 5 ~ 15%, the K 2 O 1%, the MgO 4 ~ 15% and ZrO 2 are compositions displaying 0-1% glass containing (iv) mol%, a SiO 2 67 ~ 75%, the Al 2 O 3 0 ~ 4% , Na 2 O the 7 ~ 15% K 2 O 1-9% of MgO 6 ~ 14% and the ZrO 2 and contains 0 to 1.5% total content of SiO 2 and Al 2 O 3 is 71 -75%, the total content of Na 2 O and K 2 O is 12 to 20%, and when CaO is contained, the content is less than 1%
 本発明のガラス板の製造方法では、ガラスリボンの少なくとも一面に対して、その構造中にフッ素原子が存在する分子を含有する気体または液体(以下、フッ素含有流体という)を接触させて表面処理する。ガラスリボンの少なくとも一面に対して前記フッ素含有流体を接触させて表面処理する場合、ガラスリボンの温度は650℃以上であることが好ましい。650℃以上とすることにより、化学強化後のガラスの反り量を低減するのに十分なHF総接触量(後述)でHF吹き付け処理を実施しやすくなる。なお、以下ではガラス板という語をガラス板およびガラスリボンを総称するものとして用いることがある。 In the method for producing a glass plate of the present invention, at least one surface of a glass ribbon is subjected to a surface treatment by contacting a gas or liquid containing molecules having fluorine atoms in the structure (hereinafter referred to as a fluorine-containing fluid). . When the surface treatment is performed by bringing the fluorine-containing fluid into contact with at least one surface of the glass ribbon, the temperature of the glass ribbon is preferably 650 ° C. or higher. By setting it as 650 degreeC or more, it becomes easy to implement HF spraying process by HF total contact amount (after-mentioned) sufficient to reduce the curvature amount of the glass after chemical strengthening. Hereinafter, the term “glass plate” may be used as a generic term for a glass plate and a glass ribbon.
 フッ素含有流体としては、例えば、フッ化水素(HF)、フロン(例えば、クロロフルオロカーボン、フルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、ハロン)、フッ化水素酸、フッ素単体、トリフルオロ酢酸、四フッ化炭素、四フッ化ケイ素、五フッ化リン、三フッ化リン、三フッ化ホウ素、三フッ化窒素、三フッ化塩素などが挙げられるが、これらの気体または液体に限定されるものではない。 Examples of the fluorine-containing fluid include hydrogen fluoride (HF), flon (for example, chlorofluorocarbon, fluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, and halon), hydrofluoric acid, fluorine alone, trifluoroacetic acid, and carbon tetrafluoride. , Silicon tetrafluoride, phosphorus pentafluoride, phosphorus trifluoride, boron trifluoride, nitrogen trifluoride, chlorine trifluoride and the like, but are not limited to these gases or liquids.
 これらの中でも、フッ化水素、フロンまたはフッ化水素酸がガラス板表面との反応性が高い点で好ましい。またこれらのガスのうち、2種以上を混合して使用してもよい。また、フロート法でガラスを製造するに際し、ガラスリボンに対してフッ素含有流体を吹き付ける場合には、フロートバス内では酸化力が強すぎるので、フッ素単体を使用しないことが好ましい。 Among these, hydrogen fluoride, chlorofluorocarbon or hydrofluoric acid is preferable because of its high reactivity with the glass plate surface. Moreover, you may mix and use 2 or more types among these gases. Further, when the glass is produced by the float process, when the fluorine-containing fluid is sprayed on the glass ribbon, it is preferable not to use a single fluorine because the oxidizing power is too strong in the float bath.
 また液体を使用する場合は、液体のまま、例えば、スプレー塗布でガラス板表面に供給しても、液体を気化してからガラス板表面に供給してもよい。また必要に応じて他の液体または気体で希釈してもよい。 When a liquid is used, the liquid may be supplied to the glass plate surface by spray coating, for example, or may be supplied to the glass plate surface after vaporizing the liquid. Moreover, you may dilute with another liquid or gas as needed.
 フッ素含有流体としては、それらの液体や気体以外の液体または気体を含んでいてもよく、常温でフッ素原子が存在する分子と反応しない液体または気体であることが好ましい。 The fluorine-containing fluid may contain a liquid or a gas other than those liquids or gases, and is preferably a liquid or a gas that does not react with molecules having fluorine atoms at room temperature.
 前記液体または気体としては、例えば、N、空気、H、O、Ne、Xe、CO、Ar、HeおよびKrなどが挙げられるが、これらのものに限定されるものではない。またこれらのガスのうち、2種以上を混合して使用することもできる。 Examples of the liquid or gas include, but are not limited to, N 2 , air, H 2 , O 2 , Ne, Xe, CO 2 , Ar, He, and Kr. Moreover, 2 or more types of these gases can also be mixed and used.
 その構造中にフッ素原子が存在する分子を含有する気体のキャリアガスとしては、N、アルゴンなどの不活性ガスを用いることが好ましい。また、その構造中にフッ素原子が存在する分子を含有する気体には、更にSOを含んでもよい。SOはフロート法などで連続的にガラス板を生産する際に使用されており、徐冷域において搬送ローラーがガラス板と接触して、ガラスに疵を発生させることを防ぐ働きがある。また、高温で分解するガスを含んでいてもよい。 As a gas carrier gas containing molecules having fluorine atoms in its structure, it is preferable to use an inert gas such as N 2 or argon. Further, the gas containing a molecule having a fluorine atom in its structure may further contain SO 2 . SO 2 is used when a glass plate is continuously produced by a float process or the like, and has a function of preventing wrinkles from being generated on the glass due to the conveyance roller coming into contact with the glass plate in the slow cooling region. Moreover, the gas decomposed | disassembled at high temperature may be included.
 更に、フッ素含有流体には、水蒸気または水を含んでもよい。水蒸気は加熱した水に窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスをバブリングさせて取り出すことができる。大量の水蒸気が必要な場合は、気化器に水を送り込んで直接気化させる方法をとることも可能である。 Furthermore, the fluorine-containing fluid may contain water vapor or water. Water vapor can be extracted by bubbling an inert gas such as nitrogen, helium, argon, carbon dioxide in heated water. When a large amount of water vapor is required, it is also possible to take a method in which water is sent directly to the vaporizer and vaporized directly.
 本発明において溶融ガラスを板状のガラス板に成形する方法の具体例としては例えばフロート法について詳述する。フロート法では、ガラスの原料を溶解する溶融炉と、溶融ガラスを溶融金属(錫等)上に浮かせてガラスリボンを成形するフロートバスと、該ガラスリボンを徐冷する徐冷炉とを有するガラス製造装置と、を用いてガラス板(フロートガラス)が製造される。 In the present invention, as a specific example of a method for forming molten glass into a plate-like glass plate, for example, a float method will be described in detail. In the float process, a glass manufacturing apparatus having a melting furnace for melting glass raw materials, a float bath for floating glass on a molten metal (such as tin) to form a glass ribbon, and a slow cooling furnace for gradually cooling the glass ribbon And a glass plate (float glass) is manufactured using.
 溶融金属(錫)浴上でガラスが成形される際に、溶融金属浴上を搬送されるガラス板に対して、金属面に触れていない側(トップ面)からフッ素含有流体を供給して当該ガラス板表面を処理してもよい。溶融金属(錫)浴に続く徐冷領域では、ガラス板はローラー搬送により搬送される。 When glass is formed on a molten metal (tin) bath, a fluorine-containing fluid is supplied to the glass plate conveyed on the molten metal bath from the side not touching the metal surface (top surface). You may process the glass plate surface. In the slow cooling region following the molten metal (tin) bath, the glass plate is conveyed by roller conveyance.
 ここで、徐冷領域とは、徐冷炉内だけではなく、ガラスリボンが上記溶融金属(錫)浴から搬出されてから徐冷炉内に搬送されるまでの部分も含むものである。徐冷領域においては溶融金属(錫)に触れていない側から当該ガスを供給してもよい。 Here, the slow cooling region includes not only the slow cooling furnace but also the portion from the time when the glass ribbon is unloaded from the molten metal (tin) bath to the time of being transported into the slow cooling furnace. In the slow cooling region, the gas may be supplied from the side not touching the molten metal (tin).
 図4(a)にフロート法によるガラス板の製造において、その構造中にフッ素原子が存在する分子を含有する気体を供給してガラス表面を処理する方法の概略説明図を示す。 FIG. 4 (a) shows a schematic explanatory diagram of a method for treating a glass surface by supplying a gas containing molecules having fluorine atoms in the structure in the production of a glass plate by a float method.
 溶融ガラスを溶融金属(錫等)上に浮かせてガラスリボン101を成形するフロートバスにおいて、フロートバス内に挿入したビーム102により、その構造中にフッ素原子が存在する分子を含有する気体を、該ガラスリボン101に吹き付ける。図4(a)に示すように、該気体は、ガラスリボン101が溶融金属面に触れていない側からガラスリボン101に吹き付けることが好ましい。矢印Yaは、フロートバスにおいてガラスリボン101が流れる方向を示す。 In a float bath in which molten glass is floated on a molten metal (such as tin) to form a glass ribbon 101, a gas containing molecules having fluorine atoms in its structure is generated by the beam 102 inserted into the float bath. Spray onto the glass ribbon 101. As shown in FIG. 4A, the gas is preferably blown onto the glass ribbon 101 from the side where the glass ribbon 101 does not touch the molten metal surface. An arrow Ya indicates a direction in which the glass ribbon 101 flows in the float bath.
 ビーム102によりガラスリボン101に前記気体を吹き付ける位置は、該ガラスリボンのガラス転移温度をTgとした場合に、ガラス板の表面温度が(Tg+50℃)~(Tg+460℃)であることが好ましく、(Tg+150℃)~(Tg+460℃)であることがより好ましく、(Tg+230℃)~(Tg+460℃)であることがさらに好ましい。また、ビーム102の位置は、ラジエーションゲート103の上流であってもよいし、下流であってもよい。ガラスリボン101に吹きつける前記気体の量は、HFとして1×10-6~5×10-3mol/ガラスリボン1cmであることが好ましい。 The position at which the gas is blown onto the glass ribbon 101 by the beam 102 is preferably such that the surface temperature of the glass plate is (Tg + 50 ° C.) to (Tg + 460 ° C.), where Tg is the glass transition temperature of the glass ribbon. Tg + 150 ° C.) to (Tg + 460 ° C.) is more preferable, and (Tg + 230 ° C.) to (Tg + 460 ° C.) is more preferable. Further, the position of the beam 102 may be upstream or downstream of the radiation gate 103. The amount of the gas blown onto the glass ribbon 101 is preferably 1 × 10 −6 to 5 × 10 −3 mol / glass ribbon 1 cm 2 as HF.
 図4(b)に図4(a)のA-A断面図を示す。ビーム102によりY1の方向からガラスリボン101に吹き付けられた前記気体は、「IN」から流入して、「OUT」の方向から流出する。すなわち、矢印Y4およびY5の方向に移動して、ガラスリボン101に曝露する。また、矢印Y4の方向に移動した該気体は矢印Y2の方向から流出し、矢印Y5の方向に移動した該気体は矢印Y3の方向から流出する。 Fig. 4 (b) shows a cross-sectional view along the line AA in Fig. 4 (a). The gas blown to the glass ribbon 101 from the Y1 direction by the beam 102 flows in from “IN” and flows out from the “OUT” direction. That is, it moves in the directions of arrows Y4 and Y5 and is exposed to the glass ribbon 101. The gas that has moved in the direction of arrow Y4 flows out from the direction of arrow Y2, and the gas that has moved in the direction of arrow Y5 flows out from the direction of arrow Y3.
 ここで、ガラスリボン101の幅方向の位置によって化学強化後におけるガラス板の反り量が変化する場合もあり、そのような場合は、前記気体に含まれるフッ素原子の量を調整することが好ましい。すなわち、ガラスリボン101の幅方向において、前記気体におけるフッ素濃度が異なるように構成することにより、前記気体に含まれるフッ素原子の総接触量が異なるように構成することが好ましい。より具体的には、ガラスリボン101の幅方向において、化学強化後におけるガラス板の反り量が大きい位置と対応する位置では前記気体のフッ素濃度を多くし、反り量が少ない位置と対応する位置では前記気体のフッ素濃度を少なくすることが好ましい。ここで、「総接触量」とは、ガラスリボン101表面における単位面積当りの接触量であり、その単位は(mol/cm)で表される。 Here, the amount of warpage of the glass plate after chemical strengthening may change depending on the position in the width direction of the glass ribbon 101. In such a case, it is preferable to adjust the amount of fluorine atoms contained in the gas. That is, it is preferable that the total contact amount of fluorine atoms contained in the gas is different by configuring the glass ribbon 101 so that the fluorine concentrations in the gas are different in the width direction. More specifically, in the width direction of the glass ribbon 101, the fluorine concentration of the gas is increased at a position corresponding to a position where the amount of warpage of the glass plate after chemical strengthening is large, and at a position corresponding to a position where the amount of warpage is small. It is preferable to reduce the fluorine concentration of the gas. Here, the “total contact amount” is the contact amount per unit area on the surface of the glass ribbon 101, and the unit is represented by (mol / cm 2 ).
 このように、ガラスリボン101の幅方向の位置によって化学強化後におけるガラス板の反り量が変化する場合には、ビーム102の構造を、ガラスリボン101の幅方向で前記気体量を調整可能な構造とすることにより、ガラスリボン101の幅方向で反り量を調整してもよい。 Thus, when the amount of warp of the glass plate after chemical strengthening changes depending on the position in the width direction of the glass ribbon 101, the structure of the beam 102 can be adjusted to the amount of gas in the width direction of the glass ribbon 101. By doing so, the amount of warpage may be adjusted in the width direction of the glass ribbon 101.
 具体例として、前記気体の量をガラスリボン101の幅方向110でI~IIIに3分割して調整するビーム102の断面図を図5(a)に示す。ガス系統111~113は、隔壁114,115によって分割されており、それぞれガス吹き穴116から該気体を流出させて、ガラスリボン101に吹き付ける。 As a specific example, FIG. 5A shows a cross-sectional view of a beam 102 in which the amount of the gas is adjusted by dividing it into I to III in the width direction 110 of the glass ribbon 101. The gas systems 111 to 113 are divided by partition walls 114 and 115, and the gas is caused to flow out from the gas blowing holes 116 and blown onto the glass ribbon 101.
 図5(a)における矢印は気体の流れを示す。図5(b)における矢印は、ガス系統111における気体の流れを示す。図5(c)における矢印は、ガス系統112における気体の流れを示す。図5(d)における矢印は、ガス系統113における気体の流れを示す。 The arrows in FIG. 5 (a) indicate the gas flow. The arrows in FIG. 5B indicate the gas flow in the gas system 111. The arrows in FIG. 5C indicate the gas flow in the gas system 112. The arrows in FIG. 5D indicate the gas flow in the gas system 113.
 このとき、ガス系統111及び113から流出する気体はガラスリボン101の幅方向における両端部に吹き付けられ、ガス系統112から流出する気体はガラスリボン101の幅方向における中央部に吹き付けられる。そして、ガス系統111~113から流出する気体のフッ素濃度が、それぞれ所望の値に調整されているため、ガラスリボン101の幅方向において、気体に含まれるフッ素原子の総接触量が相違することになる。 At this time, the gas flowing out from the gas systems 111 and 113 is blown to both ends in the width direction of the glass ribbon 101, and the gas flowing out from the gas system 112 is sprayed to the center portion in the width direction of the glass ribbon 101. Since the fluorine concentration of the gas flowing out from the gas systems 111 to 113 is adjusted to a desired value, the total contact amount of fluorine atoms contained in the gas is different in the width direction of the glass ribbon 101. Become.
 なお、ガラスリボン101の幅方向において、フッ素原子の総接触量を変化させるためには、上述したように気体のフッ素濃度を、ガラスリボン101の幅方向において変化させてもよいが、この構成に限られない。例えば、フッ素原子が存在する分子を同じ濃度で含有する気体の総接触量を、それぞれガラスリボン101の幅方向において変化させる構成としてもよい。 In order to change the total contact amount of fluorine atoms in the width direction of the glass ribbon 101, the fluorine concentration of the gas may be changed in the width direction of the glass ribbon 101 as described above. Not limited. For example, it is good also as a structure which changes the total contact amount of the gas containing the molecule | numerator in which a fluorine atom exists in the same density | concentration in the width direction of the glass ribbon 101, respectively.
 また、上述した具体例においては、ガラスリボン101の幅方向における、中央部及び両端部の3箇所に分割してフッ素原子の総接触量を異なるように構成しているが、より多くの箇所に分割してフッ素原子の総接触量を異なるように構成しても構わない。この場合、より効果的に、化学強化後におけるガラス板の反りを低減することが可能である。 Moreover, in the specific example mentioned above, in the width direction of the glass ribbon 101, it is configured to be divided into three locations of the central portion and both end portions so that the total contact amount of fluorine atoms is different. You may divide | segment and may comprise so that the total contact amount of a fluorine atom may differ. In this case, it is possible to reduce the warp of the glass plate after chemical strengthening more effectively.
 フッ素含有流体をガラス表面に供給する方法としては、例えば、上記したビーム102を用いる方法の他に、インジェクタを用いる方法(図1及び図2参照)、および導入チューブを用いる方法等が挙げられる。 Examples of the method for supplying the fluorine-containing fluid to the glass surface include a method using an injector (see FIGS. 1 and 2), a method using an introduction tube, and the like in addition to the method using the beam 102 described above.
 本発明でガラス板の表面処理に用いることができるインジェクタ10の模式図を図1および図2に示す。図1は、本発明で用いることのできる両流しタイプのインジェクタ10を模式的に示す図である。図2は、本発明で用いることのできる片流しタイプのインジェクタ10を模式的に示す図である。 1 and 2 are schematic views of an injector 10 that can be used for surface treatment of a glass plate in the present invention. FIG. 1 is a diagram schematically showing a double-flow injector 10 that can be used in the present invention. FIG. 2 is a diagram schematically showing a single-flow injector 10 that can be used in the present invention.
 フッ素含有流体は、中央スリット1及び外スリット2からガラス板20に向かって吐出され、ガラス板20上を流路4を通じて流れ、排気スリット5から排気される。なお、図1及び図2中の符号21は、ガラス板20が流れる方向であり、流路4と平行である。 The fluorine-containing fluid is discharged from the central slit 1 and the outer slit 2 toward the glass plate 20, flows on the glass plate 20 through the flow path 4, and is exhausted from the exhaust slit 5. In addition, the code | symbol 21 in FIG.1 and FIG.2 is a direction through which the glass plate 20 flows, and is parallel to the flow path 4. FIG.
 インジェクタ10より供給されるフッ素含有流体が気体である場合、インジェクタ10の気体吐出口とガラス板20との距離は50mm以下であることが好ましい。 When the fluorine-containing fluid supplied from the injector 10 is a gas, the distance between the gas discharge port of the injector 10 and the glass plate 20 is preferably 50 mm or less.
 前記距離を50mm以下とすることにより、気体が大気中に拡散するのを抑制し、所望する気体量に対して、ガラス板20に十分量の気体を到達させることができる。逆にガラス板20との距離が短すぎると、例えばフロート法で生産されるガラス板にオンラインで処理をする際に、ガラス板20の変動により、ガラス板20とインジェクタが接触する恐れがある。 By setting the distance to 50 mm or less, it is possible to suppress the gas from diffusing into the atmosphere, and to reach a sufficient amount of gas to the glass plate 20 with respect to the desired gas amount. On the other hand, if the distance from the glass plate 20 is too short, the glass plate 20 may be brought into contact with the injector due to fluctuations in the glass plate 20 when, for example, a glass plate produced by the float process is processed online.
 またインジェクタ10より供給されるフッ素含有流体が液体である場合、インジェクタ10の液体吐出口とガラス板20との距離には特段の制限がなく、ガラス板20が均一に処理できるような配置であればよい。 When the fluorine-containing fluid supplied from the injector 10 is a liquid, there is no particular limitation on the distance between the liquid discharge port of the injector 10 and the glass plate 20, and the glass plate 20 can be disposed uniformly. That's fine.
 この両流しインジェクタは一般的なものであり、低反射ガラスを製造するために使用するものとしても知られている。例えば、600℃まで再加熱した厚さ1.8mmの旭硝子製ソーダライムシリケートガラス(ガラス転移点560℃)に、中央スリット1からHFガスを1.12SLM(標準状態での気体で毎分リットル)と窒素(N2)ガス9SLMを混合したガスを150℃に加熱し流速64cm/sで、外スリット2からN2ガスを45.5SLM吹き付けるように、使用することがある。このようにしてHFガスが吹き付けられたガラス表面の表面粗さ(算術平均粗さ)Raは30.6nmであり、上述のxの値は2.5μmである。 This double-flow injector is common and is also known for use in producing low reflection glass. For example, asahi glass soda lime silicate glass (glass transition point 560 ° C.) having a thickness of 1.8 mm reheated to 600 ° C., HF gas from the central slit 1 is 1.12 SLM (liters per minute as standard gas) And nitrogen (N2) gas 9SLM may be used by heating the gas to 150 ° C. and blowing 45.5 SLM from the outer slit 2 at a flow rate of 64 cm / s. The surface roughness (arithmetic mean roughness) Ra of the glass surface sprayed with HF gas in this manner is 30.6 nm, and the value of x described above is 2.5 μm.
 インジェクタ10は、両流しまたは片流しなど、いずれの態様で用いてもよく、ガラス板20の流れ方向21に直列に2個以上並べて、ガラス板20表面を処理してもよい。両流しインジェクタとは、図1に示す通り、吐出から排気へのガスの流れがガラス板の移動方向に対して、順方向と逆方向に均等に分かれるインジェクタ10である。 The injector 10 may be used in any manner such as double flow or single flow, and two or more injectors 10 may be arranged in series in the flow direction 21 of the glass plate 20 to treat the surface of the glass plate 20. As shown in FIG. 1, the double-flow injector is an injector 10 in which the flow of gas from discharge to exhaust is equally divided in the forward direction and the reverse direction with respect to the moving direction of the glass plate.
 片流しインジェクタとは、図2に示す通り、吐出から排気へのガスの流れがガラス板の移動方向に対して順方向もしくは逆方向のいずれかに固定されるインジェクタ10である。片流しインジェクタを使用するときは、気流安定性の点でガラス板20上の気体の流れとガラス板20の流れ方向21が同じであること方が好ましい。 As shown in FIG. 2, the single-flow injector is an injector 10 in which the gas flow from discharge to exhaust is fixed in either the forward direction or the reverse direction with respect to the moving direction of the glass plate. When a single-flow injector is used, it is preferable that the gas flow on the glass plate 20 and the flow direction 21 of the glass plate 20 are the same in terms of airflow stability.
 また、フッ素含有流体の供給口と、未反応のフッ素含有流体ならびにガラス板20と反応して生成する気体、またはフッ素含有流体のうち2種以上のガスが反応して生成する気体の排気口とが、ガラス板20の同じ側の面に存在することが好ましい。 In addition, a fluorine-containing fluid supply port, a gas generated by reacting with the unreacted fluorine-containing fluid and the glass plate 20, or a gas exhaust port generated by reacting two or more gases of the fluorine-containing fluid Is preferably present on the same side surface of the glass plate 20.
 搬送されているガラス板20表面に対してフッ素含有流体を供給して表面処理をするにあたっては、例えば、ガラス板20がコンベヤーの上を流れている場合は、コンベヤーに触れていない側から供給してもよい。また、コンベヤーベルトにメッシュベルトなどのガラス板の一部が覆われていないメッシュ素材を用いることにより、コンベヤーに触れている側から供給してもよい。 When surface treatment is performed by supplying a fluorine-containing fluid to the surface of the glass plate 20 being conveyed, for example, when the glass plate 20 is flowing on the conveyor, the surface is supplied from the side not touching the conveyor. May be. Moreover, you may supply from the side which has touched the conveyor by using the mesh raw material which is not covered with glass belts, such as a mesh belt, for a conveyor belt.
 また2つ以上のコンベヤーを直列に並べて、隣り合うコンベヤーの間にインジェクタ10を設置することにより、コンベヤーに触れている側から当該気体を供給してガラス板20表面を処理してもよい。また、ガラス板20がローラーの上を流れている場合は、ローラーに触れていない側から供給してもよいし、ローラーに触れている側において、隣り合うローラーの間から供給してもよい。 Further, by arranging two or more conveyors in series and installing the injector 10 between adjacent conveyors, the surface of the glass plate 20 may be processed by supplying the gas from the side touching the conveyor. Moreover, when the glass plate 20 is flowing on the roller, it may be supplied from the side not touching the roller, or may be supplied from between adjacent rollers on the side touching the roller.
 ガラス板20の両方の側から同じまたは異なる気体を供給してもよい。例えば、ローラーに触れていない側と、ローラーに触れている側の両方の側から気体を供給してガラス板20を表面処理してもよい。例えば、徐冷領域で両方の側から気体を供給する場合は、連続的に搬送されているガラス板20に対してインジェクタ10を、ガラス板20を挟んで向かい合うように配置して、ローラーに触れていない側とローラーに触れている側の両方の側から気体を供給してもよい。 The same or different gas may be supplied from both sides of the glass plate 20. For example, the glass plate 20 may be surface-treated by supplying gas from both the side not touching the roller and the side touching the roller. For example, when supplying gas from both sides in the slow cooling region, the injector 10 is disposed so as to face the glass plate 20 that is continuously conveyed, and the glass plate 20 is sandwiched, and the roller is touched. Gas may be supplied from both the non-contact side and the side in contact with the roller.
 ローラーに触れている側に配置されるインジェクタ10と、ローラーに触れていない側に配置されるインジェクタ10は、ガラス板20の流れ方向に異なる位置に配置してもよい。異なる位置に配置するにあたっては、いずれがガラス板20の流れ方向に対して上流に配置されても、下流に配置されてもよい。 The injector 10 disposed on the side in contact with the roller and the injector 10 disposed on the side not in contact with the roller may be disposed at different positions in the flow direction of the glass plate 20. In arranging at different positions, any of them may be arranged upstream or downstream with respect to the flow direction of the glass plate 20.
 また、インジェクタ10をガラス板20の幅方向に2個以上並べ、それぞれのインジェクタ10からガラス板20に向かって供給される気体の供給量や、フッ素原子の濃度を変更することにより、ガラス板20の幅方向において、フッ素原子の総接触量が異なるように設定しても構わない。 Further, by arranging two or more injectors 10 in the width direction of the glass plate 20 and changing the supply amount of gas supplied from each injector 10 toward the glass plate 20 and the concentration of fluorine atoms, the glass plate 20 is changed. In the width direction, the total contact amount of fluorine atoms may be set differently.
 フロート法によるガラス製造技術とCVD技術を組み合わせて、オンラインで機能膜付きガラス板が製造されていることは広く知られている。この場合透明導電膜及びその下地膜については、いずれも錫に触れていない面から、もしくは、ローラーに触れていない面からガスを供給して、ガラス板上に成膜されることが知られている。 It is well known that a glass plate with a functional film is manufactured online by combining glass manufacturing technology using a float process and CVD technology. In this case, it is known that the transparent conductive film and the underlying film are formed on the glass plate by supplying gas from the surface not touching the tin or the surface not touching the roller. Yes.
 例えば、このオンラインCVDによる機能膜付きガラス板の製造において、ローラーに触れている面にインジェクタを配置して、そのインジェクタからガラス板にフッ素含有流体を供給してガラス板表面を処理してもよい。 For example, in the production of a glass plate with a functional film by online CVD, an injector may be disposed on the surface in contact with the roller, and a fluorine-containing fluid may be supplied from the injector to the glass plate to treat the glass plate surface. .
 本発明においては、フッ素含有流体を搬送中のガラス板の表面に供給して該表面を処理する際のガラス板の温度は、該ガラス板のガラス転移温度をTgとした場合に、ガラス板の表面温度が(Tg+50℃)~(Tg+460℃)であることが好ましく、(Tg+150℃)~(Tg+460℃)であることがより好ましく、(Tg+230℃)~(Tg+460℃)であることがさらに好ましい。
 フロートバス内における成形では、通常ガラスリボンが流れる方向の上流側ほど温度が高い。またガラス内のフッ素の拡散は温度が高いほど、すなわち粘度が低いほど活発である。したがって、フロートバス内での当該フッ素処理は、フッ素の浸入深さを増大させる為に、上流で実施すると効果的である。あるいは処理位置のガラスリボンの温度を上昇させることでも同様の効果を得ることができる。
 ただし、上流側で処理を行う際、処理後にフロートバス内でガラスリボンが薄くなっていく過程を経ることがある。その場合、フッ素の浸入層もガラスリボンとともに薄くなる為に、最終的に得られるガラス板のフッ素の浸入層の深さが、より下流で同じ処理をしたガラス板のフッ素の浸入層の深さよりも浅くなる場合がある。よって、フロートバス内で当該フッ素処理を実施する場合、フッ素浸入深さを増大するために処理位置を著しく上流側に設けることは、必ずしも効果的ではない。
 また、フロートバス内の成形工程においてはトップロールなどの装置が設置されており、当該処理装置の設置により、ガラスリボンの成形に影響を及ぼす場合もある。
 ガラスリボンの成形はその粘度が重要な要素である為、当該フッ素処理による効果的なフッ素浸入効果との両立を図る場合、上述の粘性範囲が適切である。
In the present invention, the temperature of the glass plate when the fluorine-containing fluid is supplied to the surface of the glass plate being transported and the surface is treated is such that the glass transition temperature of the glass plate is Tg. The surface temperature is preferably (Tg + 50 ° C.) to (Tg + 460 ° C.), more preferably (Tg + 150 ° C.) to (Tg + 460 ° C.), and further preferably (Tg + 230 ° C.) to (Tg + 460 ° C.).
In the molding in the float bath, the temperature is usually higher on the upstream side in the direction in which the glass ribbon flows. The diffusion of fluorine in the glass is more active as the temperature is higher, that is, as the viscosity is lower. Therefore, the fluorine treatment in the float bath is effective when performed upstream in order to increase the penetration depth of fluorine. Or the same effect can be acquired also by raising the temperature of the glass ribbon of a process position.
However, when processing is performed on the upstream side, the glass ribbon may be thinned in the float bath after the processing. In that case, since the fluorine infiltration layer also becomes thin with the glass ribbon, the depth of the fluorine infiltration layer of the finally obtained glass plate is smaller than the depth of the fluorine infiltration layer of the glass plate that has been processed the same downstream. May also become shallower. Therefore, when the fluorine treatment is performed in the float bath, it is not always effective to provide the treatment position significantly upstream in order to increase the fluorine penetration depth.
Further, in the molding process in the float bath, a device such as a top roll is installed, and the installation of the processing device may affect the molding of the glass ribbon.
Since the viscosity of the glass ribbon is an important factor, the above-mentioned viscosity range is appropriate for achieving both an effective fluorine infiltration effect by the fluorine treatment.
 なお、所定量のフッ素をガラスの深い位置まで導入する場合には、先述したように、より高温でより高濃度及び/又はより多量のフッ素含有流体を吹き付けることで達成できるものの、高温で吹き付けると、ガラス原料と反応するフッ素が増えて異物が増え、ガラス中に欠陥ができる。
 一方、該欠陥は、低温で当該フッ素含有流体を吹き付けることで減らすことはできるが、低温であるとフッ素をガラスの深い位置まで導入することができない。
 このようにフッ素含有流体を吹き付ける温度の高低によるフッ素の導入深さと欠陥の発生はトレードオフの関係にあるといえる。
 そこで、高低2つ以上の温度域において、それぞれ相応の量のフッ素含有流体を吹き付けることで、フッ素の導入深さが深く、すなわちフッ素導入量が多く、かつ、欠陥も少ないガラスを得ることができることから好ましい。
In addition, when introducing a predetermined amount of fluorine to a deep position of the glass, as described above, it can be achieved by spraying a higher concentration and / or a larger amount of fluorine-containing fluid at a higher temperature. Fluorine reacting with the glass raw material increases, foreign matters increase, and defects are formed in the glass.
On the other hand, the defects can be reduced by spraying the fluorine-containing fluid at a low temperature, but at a low temperature, the fluorine cannot be introduced to a deep position of the glass.
Thus, it can be said that there is a trade-off between the fluorine introduction depth and the occurrence of defects depending on the temperature at which the fluorine-containing fluid is sprayed.
Therefore, it is possible to obtain a glass having a deep fluorine introduction depth, that is, a large amount of fluorine introduction and few defects, by spraying a corresponding amount of fluorine-containing fluid in two or more temperature ranges. To preferred.
 また、フッ素含有流体をガラス板表面に供給する際のガラス板表面の圧力は、大気圧-100パスカルから大気圧+100パスカルの圧力範囲の雰囲気であることが好ましく、大気圧-50パスカルから大気圧+50パスカルの圧力範囲の雰囲気であることがより好ましい。 The pressure on the glass plate surface when supplying the fluorine-containing fluid to the glass plate surface is preferably an atmosphere in the pressure range of atmospheric pressure−100 Pascal to atmospheric pressure + 100 Pascal, and atmospheric pressure−50 Pascal to atmospheric pressure. More preferably, the atmosphere has a pressure range of +50 Pascals.
 ガス流量について、フッ素含有流体としてHFを用いた場合を例として述べる。HFでガラス板を処理するにあたっては、HF流量が多いほど化学強化処理時の反り改善効果が大きいため好ましく、全ガス流量が同じ場合は、HF濃度が高いほど、化学強化処理時の反り改善効果が大きくなる。 Regarding the gas flow rate, the case where HF is used as the fluorine-containing fluid will be described as an example. When processing a glass plate with HF, the higher the HF flow rate, the greater the warp improvement effect during the chemical strengthening treatment, which is preferable. When the total gas flow rate is the same, the higher the HF concentration, the better the warp improvement effect during the chemical strengthening treatment. Becomes larger.
 全ガス流量とHFガス流量の両方が同じ場合は、ガラス板を処理する時間が長いほど、化学強化処理時の反り改善効果が大きくなる。例えばガラス板を加熱した後に、フッ素含有流体を用いてガラス板表面を処理する場合、ガラス板の搬送速度が低いほど化学強化後の反りが改善する。全ガス流量やHF流量をうまくコントロールできない設備でも、ガラス板の搬送速度を適宜コントロールすることによって、化学強化後の反りを改善することができる。 When both the total gas flow rate and the HF gas flow rate are the same, the longer the time for processing the glass plate, the greater the warp improving effect during the chemical strengthening process. For example, when the glass plate surface is treated with a fluorine-containing fluid after the glass plate is heated, the warpage after chemical strengthening is improved as the conveyance speed of the glass plate is lower. Even in facilities where the total gas flow rate and HF flow rate cannot be controlled well, the warpage after chemical strengthening can be improved by appropriately controlling the conveying speed of the glass plate.
3.化学強化
 化学強化は、ガラス転移点以下の温度で、イオン交換により、ガラス表面のイオン半径が小さなアルカリ金属イオン(典型的には、LiイオンまたはNaイオン)を、イオン半径のより大きなアルカリ金属イオン(典型的には、Kイオン)に交換することで、ガラス表面に圧縮応力層を形成する処理である。化学強化処理は従来公知の方法によって行うことができる。
3. Chemical strengthening Chemical strengthening is performed by ion exchange at a temperature below the glass transition point to convert an alkali metal ion (typically Li ion or Na ion) having a small ion radius on the glass surface to an alkali metal ion having a larger ion radius. This is a process of forming a compressive stress layer on the glass surface by exchanging with (typically K ions). The chemical strengthening treatment can be performed by a conventionally known method.
 本発明のガラス板は、化学強化後の反りが改善される、または改善されたガラス板である。化学強化前のガラス板に対する化学強化後のガラス板の反りの変化量(反り変化量)は、三次元形状測定機(例えば、三鷹光器株式会社製)、または、表面粗さ・輪郭形状測定機(例えば、株式会社東京精密製)で測定することができる。 The glass plate of the present invention is a glass plate with improved or improved warpage after chemical strengthening. The amount of warpage (warpage variation) of the glass plate after chemical strengthening relative to the glass plate before chemical strengthening is measured by a three-dimensional shape measuring machine (for example, manufactured by Mitaka Kogyo Co., Ltd.), or surface roughness and contour shape measurement It can be measured with a machine (for example, manufactured by Tokyo Seimitsu Co., Ltd.).
 本発明において、化学強化後の幅方向における反りの改善は、その構造中にフッ素原子が存在する分子を含有する気体または液体により表面処理する以外は全て同じ条件の実験において、以下に示す式により求めるΔ改善率により評価する。 In the present invention, the improvement of the warp in the width direction after chemical strengthening is based on the following formula in the experiment under the same conditions except that the surface treatment is performed with a gas or liquid containing a molecule having a fluorine atom in the structure. Evaluation is based on the required Δ improvement rate.
 Δ改善率(%)=[1-(ΔY/ΔX)]×100
ΔX:未処理ガラス板の強化後反り量の、幅方向における最大値と最小値の差
ΔY:処理ガラス板の強化後反り量の、幅方向における最大値と最小値の差
Δ improvement rate (%) = [1− (ΔY / ΔX)] × 100
ΔX: difference between the maximum value and the minimum value in the width direction of the warped amount after strengthening of the untreated glass plate ΔY: difference between the maximum value and the minimum value in the width direction of the warped amount after strengthening of the treated glass plate
 ガラス板のCS(表面圧縮応力)およびDOL(圧縮応力層の深さ)は、表面応力計{例えば、折原製作所社製表面応力計(FSM-6000LE}により測定することができる。化学強化ガラスの表面圧縮応力は600MPa以上であることが好ましく、圧縮応力層の深さは15μm以上であることが好ましい。化学強化ガラスの表面圧縮応力および圧縮応力層の深さを当該範囲とすることにより、優れた強度と耐傷性が得られる。 The CS (surface compression stress) and DOL (compression stress layer depth) of the glass plate can be measured by a surface stress meter {for example, a surface stress meter (FSM-6000LE} manufactured by Orihara Seisakusho Co., Ltd.) The surface compressive stress is preferably 600 MPa or more, and the depth of the compressive stress layer is preferably 15 μm or more, and by making the surface compressive stress of the chemically strengthened glass and the depth of the compressive stress layer within this range, excellent High strength and scratch resistance can be obtained.
4.フラットパネルディスプレイ装置
 以下、本発明のガラス板を化学強化した後、当該化学強化ガラスをフラットパネルディスプレイ装置のカバーガラスとして用いた例について説明する。図3は、カバーガラスが配置されたディスプレイ装置の断面図である。なお、以下の説明において、前後左右は図中の矢印の向きを基準とする。
4). Flat panel display device Hereinafter, after chemically strengthening the glass plate of the present invention, an example in which the chemically strengthened glass is used as a cover glass of the flat panel display device will be described. FIG. 3 is a cross-sectional view of a display device in which a cover glass is disposed. In the following description, front, rear, left and right are based on the direction of the arrow in the figure.
 ディスプレイ装置40は、図3に示すように、筐体15内に設けられた表示パネル45と、表示パネル45の全面を覆い筐体15の前方を囲うように設けられるカバーガラス30とを備える。 As shown in FIG. 3, the display device 40 includes a display panel 45 provided in the housing 15 and a cover glass 30 that covers the entire surface of the display panel 45 and surrounds the front of the housing 15.
 カバーガラス30は、主として、ディスプレイ装置40の美観や強度の向上、衝撃破損防止などを目的として設置されるものであり、全体形状が略平面形状の一枚の板状ガラスから形成される。カバーガラス30は、図3に示すように、表示パネル45の表示側(前側)から離間するように(空気層を有するように)設置されていてもよく、透光性を有する接着膜(図示せず)を介して表示パネル45の表示側に貼り付けられてもよい。 The cover glass 30 is installed mainly for the purpose of improving the aesthetics and strength of the display device 40, preventing impact damage, and the like, and the overall shape is formed from a single plate-like glass having a substantially planar shape. As shown in FIG. 3, the cover glass 30 may be installed so as to be separated from the display side (front side) of the display panel 45 (having an air layer), and has a translucent adhesive film (FIG. (Not shown) may be attached to the display side of the display panel 45.
 カバーガラス30の表示パネル45からの光を出射する前面には機能膜41が設けられ、表示パネル45からの光が入射する背面には、表示パネル45と対応する位置に機能膜42が設けられている。なお、機能膜41、42は、図3では両面に設けたが、これに限らず前面または背面に設けてもよく、省略してもよい。 A functional film 41 is provided on the front surface of the cover glass 30 that emits light from the display panel 45, and a functional film 42 is provided on the rear surface on which the light from the display panel 45 is incident at a position corresponding to the display panel 45. ing. In addition, although the functional films 41 and 42 are provided on both surfaces in FIG. 3, the functional films 41 and 42 are not limited to this and may be provided on the front surface or the back surface, or may be omitted.
 機能膜41、42は、例えば、周囲光の反射防止、衝撃破損防止、電磁波遮蔽、近赤外線遮蔽、色調補正、および/または耐傷性向上などの機能を有し、厚さおよび形状などは用途に応じて適宜選択される。機能膜41、42は、例えば、樹脂製の膜をカバーガラス30に貼り付けることにより形成される。あるいは、蒸着法、スパッタ法またはCVD法などの薄膜形成法により形成されてもよい。 The functional films 41 and 42 have functions such as anti-reflection of ambient light, prevention of impact breakage, electromagnetic wave shielding, near-infrared shielding, color tone correction, and / or scratch resistance improvement, and thickness and shape are used for applications. It is selected as appropriate. The functional films 41 and 42 are formed, for example, by attaching a resin film to the cover glass 30. Or you may form by thin film formation methods, such as a vapor deposition method, a sputtering method, or CVD method.
 符号44は、黒色層であり、例えば、顔料粒子を含むインクをカバーガラス30に塗布し、これを紫外線照射、または加熱焼成した後、冷却することによって形成された被膜であり、筐体15の外側からは表示パネル等が見えなくなり、外観の審美性を向上させる。 Reference numeral 44 denotes a black layer, which is, for example, a coating formed by applying ink containing pigment particles to the cover glass 30, irradiating it with ultraviolet rays, or heating and baking it, and then cooling it. The display panel and the like cannot be seen from the outside, and the appearance is improved.
 このように、ディスプレイ装置のカバーガラスとして本発明のガラス板を用いる場合、表面粗さ(算術平均粗さ)Raが2.5nm以下であることが好ましく、1.5nm以下であることがさらに好ましい。これにより、カバーガラスによってディスプレイ装置の表示像の鮮明さを損なうことを防止できる。ガラス板の表面粗さRaは、JIS B0601(2001年)に準拠して、次のように測定できる。測定装置として、AFM(Atomic Force Microscope:原子間力顕微鏡)、例えばPark Systems社製、XE-HDM用いて、スキャンサイズ1μm×1μmにて3か所測定し、3か所の平均値をガラス板のRa値とする。 Thus, when the glass plate of the present invention is used as a cover glass for a display device, the surface roughness (arithmetic average roughness) Ra is preferably 2.5 nm or less, and more preferably 1.5 nm or less. . Thereby, it can prevent impairing the clearness of the display image of a display apparatus with a cover glass. The surface roughness Ra of the glass plate can be measured as follows based on JIS B0601 (2001). Using an AFM (Atomic Force Microscope), for example, Park Systems, XE-HDM as a measuring device, measure 3 locations at a scan size of 1 μm × 1 μm, and average the 3 locations. Ra value.
 以下に本発明の実施例について具体的に説明するが、本発明はこれらに限定されない。 Examples of the present invention will be specifically described below, but the present invention is not limited to these.
(ガラス板の組成)
 本実施例では、以下の組成の硝材Aのガラス板を用いた。
(硝材A)モル%表示で、SiOを64.3%、Alを8.0%、NaOを12.5%、KOを4.0%、MgOを10.5%、CaOを0.1%、SrOを0.1%、BaOを0.1%およびZrOを0.5%含有するガラス(ガラス転移温度604℃)
(Composition of glass plate)
In this example, a glass plate of glass material A having the following composition was used.
(Glass A) In terms of mol%, SiO 2 is 64.3%, Al 2 O 3 is 8.0%, Na 2 O is 12.5%, K 2 O is 4.0%, and MgO is 10.5. %, CaO 0.1%, SrO 0.1%, BaO 0.1% and ZrO 2 0.5% (glass transition temperature 604 ° C.)
(反り量の測定)
 サーフコム表面粗さ・輪郭形状測定機(株式会社東京精密製)で化学強化後の反り量を測定した。
(Measurement of warpage)
The amount of warpage after chemical strengthening was measured with a Surfcom surface roughness / contour shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd.).
(Δ改善率)
 化学強化後の幅方向における反りの改善は、フッ素含有流体により表面処理する以外は全て同じ条件の実験において、以下に示す式により求めるΔ改善率により評価した。
(Δ improvement rate)
The improvement in warpage in the width direction after chemical strengthening was evaluated by the Δ improvement rate obtained by the following formula in all the experiments under the same conditions except that the surface treatment was performed with a fluorine-containing fluid.
 Δ改善率(%)=[1-(ΔY/ΔX)]×100
 ΔX:未処理ガラス板の強化後反り量の、幅方向における最大値と最小値の差
 ΔY:処理ガラス板の強化後反り量の、幅方向における最大値と最小値の差
Δ improvement rate (%) = [1− (ΔY / ΔX)] × 100
ΔX: difference between the maximum value and the minimum value in the width direction of the warped amount after strengthening of the untreated glass plate ΔY: difference between the maximum value and the minimum value in the width direction of the warped amount after strengthening of the treated glass plate
(CSおよびDOL)
 CSおよびDOLは、折原製作所社製表面応力計(FSM-6000LE)を用いて測定した。
(CS and DOL)
CS and DOL were measured using a surface stress meter (FSM-6000LE) manufactured by Orihara Seisakusho.
 図4(a)に示すように、前述の硝材Aのガラスリボン101が流れるフロートバスにおいて、ガラスリボン101が約800℃である位置に挿入したビーム102により、ガラスリボン101にHFを表1に示す条件で吹きつけた。また、HFを吹きつける際のガラスリボンの温度は、全ての比較例と実施例において770~800℃である。 As shown in FIG. 4A, in the float bath in which the glass ribbon 101 of the glass material A described above flows, HF is added to the glass ribbon 101 in Table 1 by the beam 102 inserted at a position where the glass ribbon 101 is about 800 ° C. Sprayed under the conditions shown. The temperature of the glass ribbon when HF is sprayed is 770 to 800 ° C. in all comparative examples and examples.
 実施例1-1~1-2、2-1~2-4、3-1、4-1では、表1に示すように、ガラスリボン101の幅方向において、吹きつけるプロセスガスのHFモル濃度を変更することにより、HF総接触量を変更して、フッ素原子の総接触量が異なるようにした。より具体的には、ガラスリボン101の幅方向中心位置を原点として、ガラスリボン101の流れ方向Yaに向かって右側を+方向、左側を-方向とした場合、-2320~-1473mm(図4(a)中の位置X3近傍)、-1473~+1473mm(図4(a)中の位置X2近傍)、+1473~+2320mm(図4(a)中の位置X1近傍)それぞれの位置において、HF総接触量を変更した。特に、位置X1及びX3近傍(幅方向両端部)においてHF総接触量を最小値とし、位置X2近傍(幅方向中央部)においてHF接触量を最大値とした。ここで、HF総接触量の最小値は、HF総接触量の最大値から7.7~100%減少させた値とされている。 In Examples 1-1 to 1-2, 2-1 to 2-4, 3-1, and 4-1, as shown in Table 1, the HF molar concentration of the process gas sprayed in the width direction of the glass ribbon 101 The total contact amount of fluorine atoms was changed so that the total contact amount of fluorine atoms was different. More specifically, when the center position in the width direction of the glass ribbon 101 is the origin, the right side in the flow direction Ya of the glass ribbon 101 is the + direction, and the left side is the − direction, −2320 to −1473 mm (FIG. 4 ( a) in the vicinity of position X3 in FIG. 4A), −1473 to +1473 mm (in the vicinity of position X2 in FIG. 4A), and +1473 to +2320 mm in the vicinity of position X1 in FIG. 4A. Changed. In particular, the HF total contact amount is set to the minimum value in the vicinity of positions X1 and X3 (both ends in the width direction), and the HF contact amount is set to the maximum value in the vicinity of position X2 (width direction center). Here, the minimum value of the HF total contact amount is a value obtained by reducing the maximum value of the HF total contact amount by 7.7 to 100%.
 なお、比較例1-1、2-1、3-1及び4-1においては、ガラスリボン101にHFを吹き付けず、比較例1-2、2-2、3-2及び4-2においては、ガラスリボン101の幅方向において、吹き付けるプロセスガスのHFモル濃度を等しく設定し、HF総接触量が等しくなるようにした。 In Comparative Examples 1-1, 2-1, 3-1, and 4-1, HF was not sprayed on the glass ribbon 101. In Comparative Examples 1-2, 2-2, 3-2, and 4-2, In the width direction of the glass ribbon 101, the HF molar concentration of the process gas to be sprayed was set to be equal so that the total contact amount of HF was equal.
 また、比較例1-1、2-1、3-1、4-1、4-2、及び実施例3-1、4-1の幅方向位置-318mmにおけるガラスに関しては、表裏面の表面応力(以下CS)及び応力層深さ(以下DOL)の値を測定した。その平均値も併せて表1に示す。なお、比較例1-2及び実施例1-1~1-2は、比較例1-1と化学強化時間及び化学強化塩の温度が同一である。また、比較例2-2及び実施例2-1~2-4は、比較例2-1と化学強化時間及び化学強化塩の温度が同一である。また、比較例3-1、3-2及び実施例3-1は全て化学強化時間及び化学強化塩の温度が同一である。また、比較例4-1、4-2及び実施例4-1は全て、化学強化時間及び化学強化塩の温度が同一である。 Further, regarding the glasses at Comparative Example 1-1, 2-1, 3-1, 4-1, 4-2 and Example 3-1, 4-1 in the width direction position -318 mm, the surface stresses on the front and back surfaces (Hereinafter referred to as CS) and stress layer depth (hereinafter referred to as DOL) were measured. The average value is also shown in Table 1. In Comparative Example 1-2 and Examples 1-1 to 1-2, the chemical strengthening time and the temperature of the chemical strengthening salt are the same as in Comparative Example 1-1. Further, Comparative Example 2-2 and Examples 2-1 to 2-4 have the same chemical strengthening time and chemical strengthening salt temperature as Comparative Example 2-1. In Comparative Examples 3-1, 3-2 and Example 3-1, the chemical strengthening time and the temperature of the chemical strengthening salt are all the same. Further, all of Comparative Examples 4-1 and 4-2 and Example 4-1 have the same chemical strengthening time and chemical strengthening salt temperature.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた比較例及び実施例のガラスについて、表2に示す幅方向の15点の位置において、100mm角に切断し、加熱されたKNO溶融塩中にガラスを浸漬し、化学強化を行った。次に、基板の90mm角部分の反りに相当する値を2回測定し、その平均値を強化後反り量とした。 The glasses of Comparative Examples and Examples obtained at a position of 15 points in the width direction shown in Table 2, was cut into 100mm square, the glass was immersed in the heated KNO 3 molten salt, it was chemically strengthened . Next, a value corresponding to the warp of the 90 mm square portion of the substrate was measured twice, and the average value was taken as the warp amount after reinforcement.
 ガラスリボン101の所定の幅方向位置における強化後反り量、これら強化後反り量の平均値、強化後反り量の幅方向における最大値と最小値の差であるΔ、及び比較例1-1、2-1、3-1、4-1のΔに対する、Δの減少割合であるΔ改善率について表2に示す。 The amount of warp after strengthening at a predetermined position in the width direction of the glass ribbon 101, the average value of these warp amounts after strengthening, Δ which is the difference between the maximum value and the minimum value in the width direction of the warp amount after strengthening, and Comparative Example 1-1, Table 2 shows the Δ improvement rate, which is the reduction ratio of Δ with respect to Δ of 2-1, 3-1, 4-1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の比較例1-1、2-1,3-1及び4-1を参照すると、HFを吹き付けない場合には、ガラスリボン101の幅方向位置によって強化後反り量が異なることがわかる。特に、比較例1-1、2-1,3-1においては、ガラスリボン101の幅方向中心に向かうにしたがって強化後反り量が大きくなり、幅方向両端に向かうにしたがって強化後反り量が小さくなる傾向が顕著である。 Referring to Comparative Examples 1-1, 2-1, 3-1 and 4-1 in Table 2, it can be seen that the amount of warp after strengthening differs depending on the position of the glass ribbon 101 in the width direction when HF is not sprayed. In particular, in Comparative Examples 1-1, 2-1, and 3-1, the amount of warp after strengthening increases toward the center in the width direction of the glass ribbon 101, and the amount of warp after strengthening decreases toward the both ends in the width direction. The tendency to become is remarkable.
 これに対し、ガラスリボン101の幅方向においてHF総接触量(フッ素原子の総接触量)を等しく設定した比較例1-2、2-2、3-2及び4-2においては、比較例1-1、2-1、3-1及び4-1に比べて幅方向全体に亘って強化後反り量が低減し、反り平均値、Δ、及びΔ改善率が向上している。これは、ガラスリボンの表面がフッ素処理されたことにより、化学強化後の反りが低減されたことに起因する。しかしながら、ガラスリボン101の幅方向中心の反り量が大きく、幅方向両端の反り量が小さくなる傾向は、比較例1-1、2-1、3-1と同様であり、更なる平坦度の向上が望まれる。 On the other hand, in Comparative Examples 1-2, 2-2, 3-2 and 4-2 in which the HF total contact amount (total contact amount of fluorine atoms) is set equal in the width direction of the glass ribbon 101, Comparative Example 1 Compared with −1, 2-1, 3-1, and 4-1, the warped amount after strengthening is reduced in the entire width direction, and the average value of warpage, Δ, and Δ improvement rate are improved. This is due to the fact that the warp after chemical strengthening was reduced by the fluorine treatment of the surface of the glass ribbon. However, the tendency that the warpage amount at the center in the width direction of the glass ribbon 101 is large and the warpage amount at both ends in the width direction is small is the same as in Comparative Examples 1-1, 2-1, and 3-1, and further flatness is increased. Improvement is desired.
 また、ガラスリボン101の幅方向においてHF総接触量(フッ素原子の総接触量)を変更した実施例1-1~1-2、2-1~2-4、3-1及び4-1においては、比較例1-1、2-1、3-1及び4-1に比べて幅方向全体に亘って強化後反り量が低減し、反り平均値、Δ、及びΔ改善率が改善している。特に、実施例1-1~1-2、2-1、3-1、4-1においては、すなわち、ガラスリボン101の幅方向において、HF総接触量の最小値が、HF総接触量の最大値から7.7~25%減少させた値である場合においては、比較例1-2及び2-2と比較しても、Δ及びΔ改善率が向上しており、幅方向全体に亘ってより均一な反り分布が得られていることがわかる。 Further, in Examples 1-1 to 1-2, 2-1 to 2-4, 3-1, and 4-1, in which the HF total contact amount (total contact amount of fluorine atoms) in the width direction of the glass ribbon 101 was changed Compared with Comparative Examples 1-1, 2-1, 3-1, and 4-1, the warped amount after strengthening is reduced over the entire width direction, and the average value of warpage, Δ, and Δ improvement rate are improved. Yes. In particular, in Examples 1-1 to 1-2, 2-1, 3-1, 4-1, that is, in the width direction of the glass ribbon 101, the minimum value of the HF total contact amount is the HF total contact amount. In the case where the value is reduced by 7.7 to 25% from the maximum value, the Δ and Δ improvement rates are improved as compared with Comparative Examples 1-2 and 2-2, and over the entire width direction. It can be seen that a more uniform warp distribution is obtained.
 このように、ガラスリボン101の幅方向においてHF総接触量が異なるように設定することにより、より具体的には、強化後反り量が大きい位置(幅方向中心部)ではHF総接触量を多くし、強化後反り量が小さい位置(幅方向両端部)ではHF総接触量を少なくすることにより、強化後反り量を幅方向全体に亘って効果的に低減することができることが明らかとなった In this way, by setting the HF total contact amount to be different in the width direction of the glass ribbon 101, more specifically, the HF total contact amount is increased at a position where the post-strengthening warpage amount is large (the central portion in the width direction). And it became clear that the amount of warpage after reinforcement can be effectively reduced over the entire width direction by reducing the total contact amount of HF at the position where the amount of warpage after reinforcement is small (both ends in the width direction).
 このように、一般的には、化学強化後のガラス板の反り量は、幅方向中心に向かうにしたがって大きくなり、幅方向両端に向かうにしたがって小さくなる傾向にあるため、上述したようにHF総接触量を調整することが好ましい。しかしながら、上述したガラスリボン101と異なり、例えば、幅方向中心に向かうにしたがって強化後反り量が小さくなり、幅方向両端に向かうにしたがって強化後反り量が大きくなる傾向にある場合には、幅方向中央部ではHF総接触量を少なくし、幅方向両端部ではHF総接触量を少なくすることにより、同様の効果を奏することが可能である。 Thus, generally, the amount of warpage of the glass sheet after chemical strengthening tends to increase toward the center in the width direction and decreases toward both ends in the width direction. It is preferable to adjust the contact amount. However, unlike the glass ribbon 101 described above, for example, when the warped amount after strengthening decreases toward the center in the width direction and the warped amount after strengthening increases toward both ends in the width direction, the width direction By reducing the total HF contact amount at the center and decreasing the HF total contact amount at both ends in the width direction, the same effect can be obtained.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
 また、本出願は、2013年9月25日出願の日本特許出願2013-198476に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2013-198476 filed on Sep. 25, 2013, the contents of which are incorporated herein by reference.
1 中央スリット
2 外スリット
4 流路
5 排気スリット
15 筐体
20 ガラス板
30 カバーガラス
40 ディスプレイ装置
41,42 機能膜
45 表示パネル
101 ガラスリボン
102 ビーム
103 ラジエーションゲート
110 ガラスリボンの幅方向
111,112,113 ガス系統
114,115 隔壁
116 ガス吹き穴
DESCRIPTION OF SYMBOLS 1 Central slit 2 Outer slit 4 Flow path 5 Exhaust slit 15 Housing | casing 20 Glass plate 30 Cover glass 40 Display apparatus 41, 42 Functional film 45 Display panel 101 Glass ribbon 102 Beam 103 Radiation gate 110 Glass ribbon width direction 111,112, 113 Gas system 114, 115 Partition 116 Gas blow hole

Claims (5)

  1.  溶融ガラスを溶融金属上に供給してガラスリボンに成形する工程を含むフロートガラスの製造方法であって、
     その構造中にフッ素原子が存在する分子を含有する気体を、前記ガラスリボンに吹き付ける工程を含み、
     前記ガラスリボンの幅方向において、前記フッ素原子の総接触量が異なる
    ことを特徴とするフロートガラスの製造方法。
    A float glass manufacturing method comprising a step of supplying molten glass onto a molten metal and forming a glass ribbon,
    Blowing a gas containing a molecule having a fluorine atom in its structure onto the glass ribbon;
    The method for producing float glass, wherein the total contact amount of the fluorine atoms is different in the width direction of the glass ribbon.
  2.  前記ガラスリボンの幅方向において、前記総接触量の最小値は、前記総接触量の最大値から最大100%減少させた値である
    ことを特徴とする請求項1に記載のフロートガラスの製造方法。
    2. The method of manufacturing float glass according to claim 1, wherein in the width direction of the glass ribbon, the minimum value of the total contact amount is a value obtained by reducing the maximum value of the total contact amount by a maximum of 100%. .
  3.  前記ガラスリボンの幅方向における中心部において、前記総接触量は最大であり、
     前記ガラスリボンの幅方向における両端部において、前記総接触量は最小である
    ことを特徴とする請求項1又は2に記載のフロートガラスの製造方法。
    In the central portion in the width direction of the glass ribbon, the total contact amount is maximum,
    The method for producing a float glass according to claim 1 or 2, wherein the total contact amount is minimum at both ends in the width direction of the glass ribbon.
  4.  前記ガラスリボンの幅方向において、前記総接触量の最小値は、前記総接触量の最大値から7.7~25%減少させた値である
    ことを特徴とする請求項1~3の何れか1項に記載のフロートガラスの製造方法。
    4. The minimum value of the total contact amount in the width direction of the glass ribbon is a value obtained by reducing the maximum value of the total contact amount by 7.7 to 25%. The manufacturing method of the float glass of 1 item | term.
  5.  前記溶融ガラスのガラス転移温度が550℃以上であり、
     前記ガラスリボンの温度は600℃以上である
    ことを特徴とする請求項1~4の何れか1項に記載のフロートガラスの製造方法。
    The glass transition temperature of the molten glass is 550 ° C. or higher,
    The method for producing a float glass according to any one of claims 1 to 4, wherein the temperature of the glass ribbon is 600 ° C or higher.
PCT/JP2014/075015 2013-09-25 2014-09-22 Float glass manufacturing method WO2015046115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539189A JPWO2015046115A1 (en) 2013-09-25 2014-09-22 Method for producing float glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-198476 2013-09-25
JP2013198476 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046115A1 true WO2015046115A1 (en) 2015-04-02

Family

ID=52743251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075015 WO2015046115A1 (en) 2013-09-25 2014-09-22 Float glass manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2015046115A1 (en)
TW (1) TW201514104A (en)
WO (1) WO2015046115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196887A (en) * 2022-06-07 2022-10-18 深圳南玻科技有限公司 Spraying equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205641A (en) * 1985-03-09 1986-09-11 Central Glass Co Ltd Chemical reinforcement of float glass
EP2371779A1 (en) * 2010-03-30 2011-10-05 Linde Aktiengesellschaft Method for producing flat glass and glass pane produced according to this method
WO2012141310A1 (en) * 2011-04-15 2012-10-18 旭硝子株式会社 Method for producing surface-treated glass substrate
JP2013079177A (en) * 2011-10-05 2013-05-02 Nippon Electric Glass Co Ltd Glass film and glass roll
WO2014167842A1 (en) * 2013-04-08 2014-10-16 日本板硝子株式会社 Glass plate and process for manufacturing glass plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205641A (en) * 1985-03-09 1986-09-11 Central Glass Co Ltd Chemical reinforcement of float glass
EP2371779A1 (en) * 2010-03-30 2011-10-05 Linde Aktiengesellschaft Method for producing flat glass and glass pane produced according to this method
WO2012141310A1 (en) * 2011-04-15 2012-10-18 旭硝子株式会社 Method for producing surface-treated glass substrate
JP2013079177A (en) * 2011-10-05 2013-05-02 Nippon Electric Glass Co Ltd Glass film and glass roll
WO2014167842A1 (en) * 2013-04-08 2014-10-16 日本板硝子株式会社 Glass plate and process for manufacturing glass plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196887A (en) * 2022-06-07 2022-10-18 深圳南玻科技有限公司 Spraying equipment
CN115196887B (en) * 2022-06-07 2024-02-23 深圳南玻科技有限公司 Spraying equipment

Also Published As

Publication number Publication date
JPWO2015046115A1 (en) 2017-03-09
TW201514104A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP6023791B2 (en) Chemically tempered glass plate and flat panel display device
JP6210069B2 (en) Glass plate manufacturing method and glass plate capable of reducing warpage during chemical strengthening
JP5790872B2 (en) Glass plate that can reduce warping during chemical strengthening
WO2015046117A1 (en) Glass plate production method
JP6368942B2 (en) Manufacturing method of glass plate
WO2015046118A1 (en) Glass plate
WO2015046108A1 (en) Glass plate
JP6428630B2 (en) Glass plate
WO2015046107A1 (en) Glass plate
WO2015046115A1 (en) Float glass manufacturing method
WO2015046109A1 (en) Glass plate
WO2015046113A1 (en) Glass plate and chemically strengthened glass plate
WO2015046106A1 (en) Glass plate
WO2015046111A1 (en) Glass plate
WO2015046112A1 (en) Glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849314

Country of ref document: EP

Kind code of ref document: A1