WO2014203343A1 - Medical device and method for manufacturing medical device - Google Patents

Medical device and method for manufacturing medical device Download PDF

Info

Publication number
WO2014203343A1
WO2014203343A1 PCT/JP2013/066815 JP2013066815W WO2014203343A1 WO 2014203343 A1 WO2014203343 A1 WO 2014203343A1 JP 2013066815 W JP2013066815 W JP 2013066815W WO 2014203343 A1 WO2014203343 A1 WO 2014203343A1
Authority
WO
WIPO (PCT)
Prior art keywords
lumen
hollow tube
medical device
sub
operation line
Prior art date
Application number
PCT/JP2013/066815
Other languages
French (fr)
Japanese (ja)
Inventor
兼政 賢一
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to PCT/JP2013/066815 priority Critical patent/WO2014203343A1/en
Publication of WO2014203343A1 publication Critical patent/WO2014203343A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M25/0032Multi-lumen catheters with stationary elements characterized by at least one unconventionally shaped lumen, e.g. polygons, ellipsoids, wedges or shapes comprising concave and convex parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0136Handles therefor

Definitions

  • the present invention relates to a medical device and a method for manufacturing the medical device.
  • catheters have been provided that can be manipulated in the direction of entry into a body cavity by bending the distal end.
  • two wire lumens (sublumens) having a smaller diameter are provided around the central lumen (main lumen) so as to face each other by 180 degrees, and a deflection wire is provided inside the sublumen.
  • a catheter through which is inserted is described. In this catheter, the tip of the catheter is bent by operating the deflection wire.
  • Patent Document 1 has the following room for improvement.
  • the deflection wire that is the operation line is operated with the catheter bent, it may be difficult to operate the operation line. Since the operation line can be easily operated with the catheter bent, the inner diameter of the circular wire lumen (sublumume) needs to be larger than the diameter of the operation line. As a result, the diameter of the catheter is increased.
  • the catheter was demonstrated and demonstrated here, the same subject is a subject which arises not only in a catheter but in the medical device which operates with an operation line.
  • a main body, a tubular body formed around the main lumen and a sub-lumen extending along a longitudinal direction of the main lumen, and the sub-lumen are arranged in the sub-lumen
  • a medical device is provided which is a twisted wire obtained by twisting a plurality of thin wires having a circular cross section orthogonal to each other, and the cross-sectional shape of the sub-lumen orthogonal to the longitudinal direction is a flat shape flat in the circumferential direction of the main lumen.
  • the operation line in the sub-lumen is a stranded wire formed of a plurality of thin wires having a circular cross section or a circular cross section.
  • the cross-sectional shape of the sub-lumen is flat in the circumferential direction of the main lumen. Therefore, in the cross section orthogonal to the longitudinal direction of the main lumen, a space is formed between the peripheral wall of the sub-lumen on the circumferential direction side of the main lumen and the operation line.
  • the manufacturing method of the medical device mentioned above can also be provided. That is, according to the present invention, a hollow tube in which a sub-lumen having a circular shape in a cross section perpendicular to the longitudinal direction is formed, and a core wire is loosely inserted (inserted in a state where there is a sufficient space) inside, a resin Arranging the main body portion and the hollow tube in a radial direction of the main body portion, and heating the main body portion and the hollow tube; It is also possible to provide a method for manufacturing a medical device including a step of pressurizing from the outer peripheral side to make the shape of the cross section of the sublumen flat.
  • a technique for providing a medical device with good operability is provided.
  • FIG. (A) (b) is a figure which shows the cross section orthogonal to the longitudinal direction of the main lumen of a catheter.
  • (A) (b) is sectional drawing of an operation line. It is a side view which shows the whole catheter, and a side view which shows the bending example of a front-end
  • FIG. 1, 2 is a cross-sectional view taken along the II-II direction of FIG.
  • the catheter 100 of the present embodiment is a tubular body in which a main lumen 20 and a sub-lumen 80 (80a, 80b) disposed around the main lumen 20 and extending along the longitudinal direction of the main lumen 20 are formed.
  • the operation line 70 (70a, 70b) has a circular cross section perpendicular to the longitudinal direction, or the operation line 70 (70a, 70b) is composed of a plurality of thin lines having a circular cross section orthogonal to the longitudinal direction. It is a twisted wire.
  • the cross-sectional shape of the sub-lumen 80 (80a, 80b) orthogonal to the longitudinal direction is a flat shape that is flat in the circumferential direction of the main lumen 20.
  • the catheter 100 includes a coat layer 50 and an operation unit 60 in addition to the tubular body 10 and the operation line 70 described above.
  • the tubular main body 10 includes a sheath including an inner layer 11 having a main lumen therein and an outer layer (main body portion) 12 covering the inner layer 11, a reinforcing layer 30, a hollow tube 82, and a marker 40.
  • a distal end DE the distal ends of the sheath 10 and the catheter 100 are referred to as a distal end DE, but the rear end of the sheath 10 is referred to as a proximal end PE, and the rear end of the catheter 100 is referred to as a proximal end CE.
  • the inner layer 11 is a hollow tubular layer, and a main lumen 20 extending along the longitudinal direction of the catheter 100 is formed therein.
  • a fluorine-based thermoplastic polymer material can be used for the inner layer 11. More specifically, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), perfluoroalkoxy fluororesin (PFA), or the like can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PFA perfluoroalkoxy fluororesin
  • the main lumen 20 has a circular cross section perpendicular to the longitudinal direction of the catheter 100.
  • the outer layer 12 is a resin tubular body that covers the inner layer 11.
  • the outer layer 12 is thicker than the inner layer 11 and constitutes the main thickness of the sheath.
  • a thermoplastic polymer is widely used for the outer layer 12. Examples include polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polyethylene (PE), polyamide (PA), nylon elastomer, polyurethane (PU), ethylene-vinyl acetate resin (EVA), poly Vinyl chloride (PVC) or polypropylene (PP) can be used.
  • the reinforcing layer 30 surrounds the inner layer 11 and is included in the outer layer 12.
  • This reinforcing layer 30 is a coil layer.
  • the wire material constituting the reinforcing layer 30 in addition to fine metal wires such as stainless steel (SUS) and nickel titanium alloy, fine fiber wires such as PI, PAI, and PET can be used.
  • the cross-sectional shape of the wire material 31 is not specifically limited, A round wire or a flat wire may be sufficient.
  • the sub-lumen 80 through which the operation lines 70 are inserted is formed inside the outer layer 12 and outside the reinforcing layer 30.
  • the hollow tubes 82 (82a, 82b) are embedded in the outer layer 12, and are arranged around the main lumen 20 so that the longitudinal direction thereof is along the longitudinal direction of the main lumen 20.
  • the hollow tube 82 defines the sub-lumen 80.
  • the hollow tube 82 that defines the sublumen 80 is provided along the longitudinal direction of the catheter 100, and although not shown, the proximal end PE side of the sheath 10 is open. The distal end side of the sheath 10 of the hollow tube 82 is closed by the marker 40.
  • the hollow tube 82 is disposed outside the reinforcing layer 30, and the inner side of the reinforcing layer 30, that is, the main lumen 20 protects the operation line 70 (70 a, 70 b) disposed inside the hollow tube 82.
  • a plurality of hollow tubes 82 are provided. Specifically, a plurality of hollow tubes 82 are arranged on the same circumference so as to surround the main lumen 20. In the present embodiment, four hollow tubes 82 are arranged at equal intervals.
  • the operation line 70 is arrange
  • the operation line 70 is not disposed inside the other pair of hollow tubes 82 facing each other across the center of the main lumen 20.
  • the number of the hollow tubes 82 and the sub-lumens 80 is not limited to four, and can be appropriately selected as necessary.
  • the sub-lumen 80 in each hollow tube 82 has a flat shape in which the cross-sectional shape orthogonal to the longitudinal direction of the catheter 100 is flat in the circumferential direction of the main lumen 20. More specifically, in the cross section orthogonal to the longitudinal direction of the catheter 100, the sub-lumen 80 has a length A in the circumferential direction of the main lumen 20 longer than a length B in the radial direction of the main lumen 20. Thereby, the torsional rigidity of the sheath 10 is increased. The torsion of the sheath 10 acts on the hollow tube 82 as a force in the bending direction, and the hollow tube 82 is longer in the bending direction than the hollow tube having a circular cross section.
  • the secondary moment increases and the torsional rigidity of the sheath 10 increases.
  • the length B in the radial direction of the main lumen 20 is preferably 1 to 3 times the predetermined diameter of the operation line 70, and more preferably 1 to 1.5 times. From the viewpoint of preventing the diameter of the catheter 100 from becoming large, 1 to 1.2 times is particularly preferable.
  • the ratio (A / B) between the circumferential length A and the radial length B of the main lumen 20 is preferably 1.2-4. From the viewpoint of operability when the catheter 100 is bent, 1.2 to 2.5 is more preferable. From the viewpoint of improving torsional rigidity, A / B is particularly preferably 1.8 to 2.5.
  • the sub-lumen 80 is curved along the outer shape of the main lumen 20 in a cross section orthogonal to the longitudinal direction of the catheter 100.
  • the inner peripheral edge positioned on the main lumen 20 side and the outer peripheral edge positioned on the outer peripheral side of the sheath 10 are curved in a convex arc shape toward the outer peripheral side of the sheath 10. is doing.
  • the cross section of the sub-lumen 80 has a so-called Magatama, Comma-shaped beads shape.
  • the operation line 70 is loosely inserted in such a subroutine 80.
  • the hollow tube 82 is made of a material different from that of the outer layer 12. By doing in this way, the hollow tube 82 can be comprised with the material whose bending rigidity and tensile elasticity modulus are higher than the outer layer 12.
  • FIG. Examples of the material constituting the hollow tube 82 include materials such as polytetrafluoroethylene (PTFE), perfluoroalkoxy fluororesin (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP). . It is preferable that any one or more of these materials are the main component. These materials can improve the slidability (slidability) of the operation line and have high heat resistance.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy fluororesin
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • any one or more of these materials are the main component. These materials can improve the s
  • the cross-sectional shape of the sub-lumen 80 is not limited to the shape illustrated in FIG. 2, and may be a flat shape that is long and flat in the circumferential direction of the main lumen 20, that is, a shape that is crushed in the radial direction of the main lumen 20. .
  • an oval shape may be used as shown in FIG. 3A, and an elliptical shape may be used as shown in FIG.
  • the operation line 70 is loosely inserted in the sub-lumen 80 and extends along the longitudinal direction of the sub-lumen 80.
  • the operation line 70 may be constituted by a single line, or may be a stranded line constituted by twisting a plurality of thin wires 72 as shown in FIG.
  • the cross section perpendicular to the longitudinal direction has a circular shape.
  • the cross section orthogonal to the longitudinal direction of the thin wire 72 constituting the operation line 70 has a circular shape.
  • the circular shape of the cross section is not limited to a perfect circle.
  • the thin wire 72 is arranged so that each thin wire 72 constituting the outline of the operation wire 70 is inscribed in one circle R in a cross section orthogonal to the longitudinal direction.
  • the number of fine wires constituting one stranded wire is not particularly limited, but is preferably 3 or more.
  • a suitable example of the number of thin wires is three or seven.
  • the number of fine lines is 3, the three fine lines are arranged point-symmetrically in the cross section.
  • the seven fine lines are arranged point-symmetrically in a honeycomb shape in the cross section.
  • the distal end portion 71 (71 a, 71 b) of the operation line 70 (70 a, 70 b) is fixed to the marker 40 at the distal end DE of the sheath 10.
  • the tip portions 71 (71a, 71b) of 70a, 70b) are fixed to the distal end DE.
  • the operation line 70 is slidably inserted into the sub-lumen 80 (80a, 80b).
  • the distal end 15 of the catheter 100 is bent by pulling the proximal end of each operation line 70 (70a, 70b) (see FIG. 5).
  • the curvature and direction of the bent distal end portion 15 change in a plurality of ways depending on selection of the operation line 70 (70a, 70b) to be pulled.
  • polyether ether ketone PEEK
  • polyphenylene sulfide PPS
  • polybutylene terephthalate PBT
  • polymer fiber such as PI or PTFE
  • SUS Corrosion-resistant coated steel wires
  • metal wires such as titanium or titanium alloys
  • PVDF high density polyethylene (HDPE)
  • HDPE high density polyethylene
  • the catheter 100 includes an operation unit 60.
  • the operation unit 60 is provided at the proximal end portion 17 of the catheter 100.
  • a portion between the distal end portion 15 and the proximal end portion 17 is referred to as an intermediate portion 16.
  • the operation unit 60 includes a shaft portion 61 extending in the longitudinal direction of the catheter 100, a slider 64 (64a, 64b) that moves forward and backward in the longitudinal direction of the catheter 100 with respect to the shaft portion 61, and a handle portion that rotates the shaft portion 61 about its axis. 62 and a gripping portion 63 through which the sheath 10 is rotatably inserted. Further, the proximal end portion 17 of the sheath 10 is fixed to the shaft portion 61. Moreover, the handle
  • the operation unit 60 of the present embodiment rotates the distal end portion 15 of the tubular main body (sheath 10).
  • a handle portion 62 as a rotation operation portion for torque-rotating the sheath 10 and a slider 64 as a bending operation portion for bending the sheath 10 are integrally provided.
  • the present invention is not limited to this, and the handle portion 62 and the slider 64 may be provided separately.
  • the proximal end of the first operation line 70 a protrudes from the proximal end portion 17 of the sheath 10 to the proximal end side, and is connected to the slider 64 a of the operation portion 60.
  • the proximal end of the second operation line 70 b is also connected to the slider 64 b of the operation unit 60. Then, by sliding the slider 64a and the slider 64b individually to the proximal end side with respect to the shaft portion 61, the first operation line 70a or the second operation line 70b connected thereto is pulled and the distal end of the sheath 10 is pulled. A tensile force is applied to the end portion 15. As a result, the distal end portion 15 bends toward the pulled operation line 70.
  • a marker 40 is provided at the distal end DE of the sheath 10.
  • the marker 40 is a ring-shaped member made of a material that does not transmit radiation such as X-rays. Specifically, a metal material such as platinum can be used for the marker 40.
  • the marker 40 of this embodiment is provided around the main lumen 20 and inside the outer layer 12.
  • the coat layer 50 constitutes the outermost layer of the catheter 100 and is a hydrophilic layer.
  • a hydrophilic material such as polyvinyl alcohol (PVA) or polyvinyl pyrrolidone can be used.
  • the radius of the main lumen 20 can be about 200 to 300 ⁇ m
  • the thickness of the inner layer 11 can be about 10 to 30 ⁇ m
  • the thickness of the outer layer 12 can be about 100 to 150 ⁇ m
  • the thickness of the reinforcing layer 30 can be 20 to 30 ⁇ m.
  • the radius from the axial center of the catheter 100 to the center of the sublumen 80 can be about 300 to 350 ⁇ m
  • the inner diameter of the sublumen 80 can be about 40 to 100 ⁇ m
  • the thickness of the operation line 70 can be about 30 to 60 ⁇ m.
  • the outermost diameter of the catheter 100 can be about 350 to 450 ⁇ m.
  • the outer diameter of the catheter 100 of this embodiment is less than 1 mm in diameter, and can be inserted into blood vessels such as the celiac artery. Further, the catheter 100 according to the present embodiment is operated freely by pulling the operation line 70 (70a, 70b), so that the catheter 100 can be advanced in a desired direction even in a branching blood vessel, for example. Is possible.
  • the distal end portion 15 of the catheter 100 refers to a predetermined length region including the distal end DE of the catheter 100.
  • the proximal end portion 17 of the catheter 100 refers to a predetermined length region including the proximal end CE of the catheter 100.
  • the intermediate portion 16 refers to a predetermined length region between the distal end portion 15 and the proximal end portion 17. The bending of the catheter 100 means that a part or all of the catheter 100 is bent or bent.
  • the operation line 70 to be pulled is only the first operation line 70a, only the second operation line 70b, or whether the two operation lines 70a and 70b are pulled simultaneously.
  • the curvature of the bent distal end portion 15 changes in a plurality of ways. Thereby, the catheter 100 can be freely entered into a body cavity that branches at various angles.
  • the catheter 100 of the present embodiment can individually pull the proximal ends of the plurality of operation lines 70 (the first operation line 70a or the second operation line 70b).
  • the bending direction can be changed by the operating line 70 to be pulled. Specifically, when the first operation line 70a is pulled as shown in FIGS. 5B and 5C, the first operation line 70a is bent to the side where the first operation line 70a is provided, as shown in FIGS. 5D and 5E. When the second operation line 70b is pulled, the second operation line 70b is bent. Further, the curvature of curvature (the radius of curvature) can be changed by adjusting the pulling amount of each operation line 70 (70a, 70b). Specifically, as shown in FIGS.
  • the catheter 100 bends by operating the operation line 70 as described above.
  • the shape of the blood vessel into which the catheter 100 is inserted may be bent even when the operation line 70 is not operated.
  • the cross-sectional shape of the bent portion of the catheter 100 changes as shown in FIG. 6A shows a cross-sectional view of the catheter 100 that is not bent and is linear
  • FIG. 6B is a cross-sectional view in the bb direction of FIG. 6C.
  • FIG. 3 is a cross-sectional view of the catheter 100 in a bent state.
  • the expansion toward the direction opposite to the main lumen 20 is: This is more noticeable than the expansion toward the main lumen 20 (expansion in the direction of arrow Y2 in FIG. 6B). This is because the reinforcing layer 30 is provided around the main lumen 20, so that the main lumen 20 does not easily expand.
  • the hollow tube 82 inside the bent portion greatly expands in the radial direction of the main lumen 20 substantially perpendicular to the circumferential direction of the main lumen 20, so that the radial direction of the main lumen 20 increases.
  • the distance between the peripheral wall of the sub-lumen 80 and the operation line 70 increases.
  • the expansion of the sheath 10 occurs more significantly in the radial direction substantially orthogonal to the circumferential direction than in the circumferential direction of the main lumen 20 (arrows Y3 and 4 in FIG. 6B) (see FIG. 6).
  • the peripheral wall of the sub-lumen 80 on the circumferential side of the main lumen 20 may slightly approach the operation line 70.
  • the sub-lumen 80 has a flat shape that is flat in the circumferential direction of the main lumen 20, a space can be secured between the operation line 70 and the peripheral wall of the sub-lumen 80 on the circumferential side of the main lumen 20.
  • the cross-sectional shape of the hollow tube 82 becomes a substantially circular shape. Therefore, the operation line 70 in the hollow tube 82 is less likely to come into contact with the hollow tube 82, and the operability of the operation line 70 is improved.
  • the sub-lumen 80 has a flat shape that is flat in the circumferential direction of the main lumen 20. Therefore, when the catheter 100 is not bent (straight state), the diameter of the main lumen 20 of the sub-lumen 80 is The distance between the peripheral wall and the operation line 70 is shortened. Therefore, there is a possibility that the peripheral wall of the main lumen 20 in the radial direction of the sub lumen 80 is likely to come into contact with the operation line 70. However, in a state where the catheter 100 is not bent, a large tension is not applied to the operation line 70, so even if the operation line 70 and the peripheral wall of the sub-lumen 80 come into contact with each other, a large friction is unlikely to occur. Since the operability of the line 70 is not greatly affected, no problem occurs.
  • the sub-lumen 80 having a circular cross section perpendicular to the longitudinal direction is formed, and the hollow tube 82 in which the core wire 90 is loosely inserted is used as the main lumen 20 of the outer layer 12.
  • the outer layer 12 is extruded.
  • a material containing resin constituting the outer layer 12 is extruded around a mandrel (core material) (not shown).
  • the gas is so formed that a long hollow portion (hole) along the longitudinal direction is formed at each position where the sub-lumen 80 is formed by the hollow tube 82 being embedded later.
  • the hollow outer layer 12 can be formed by pulling out the mandrel.
  • the inner layer 11 is also prepared by extrusion molding.
  • a material containing a resin constituting the inner layer 11 may be extruded around a mandrel (core material) M shown in FIG. Thereafter, the coil 31 is placed around the inner layer 11 with the core material M. Therefore, at this stage, the mandrel M is still inserted in the inner layer 11.
  • the hollow tube 82 is also formed by extruding a material containing a resin constituting the hollow tube 82. Extrusion molding is performed while discharging a fluid such as gas to the material of the hollow tube 82 so that a long hollow portion along the longitudinal direction is formed.
  • the hollow tube 82 manufactured in this way has a ring shape with a circular cross section perpendicular to the longitudinal direction.
  • the core wire 90 is inserted into the hollow tube 82.
  • the core wire 90 has a circular cross section perpendicular to the longitudinal direction.
  • the diameter of the core wire 90 is larger than the diameter of the operation wire 70 (the diameter of the circle R in the case of a stranded wire).
  • the hollow tube 82 may be extruded around the core wire 90, the core wire 90 and the hollow tube 82 may be peeled off, and the core wire 90 may be loosely inserted into the hollow tube 82.
  • the core wire 90 By adopting a method of inserting the core wire 90 after forming the portion, the hollow portion of the hollow tube 82 can be surely formed into a desired shape.
  • FIG. 8 shows a cross-sectional view in the VIII-VIII direction of FIG. 8, the coil 31 is omitted.
  • the sub-lumen in the hollow tube 82 has a circular cross section perpendicular to the longitudinal direction. Note that a circular cross section is not limited to a perfect circle.
  • the heat shrinkable tube 91 is contracted by heating, and the outer layer 12, the coil 31, the inner layer 11, and the hollow tube 82 are pressurized from the outside in the radial direction of the inner layer 11. Further, the outer layer 12 is melted by the heating. The heating temperature is higher than the melting temperature of the outer layer 12 and lower than the melting temperature of the inner layer 11 and the hollow tube 82. By this heating, the outer layer 12 and the inner layer 11 are joined by welding. At this time, the material constituting the outer layer 12 encloses the coil 31 and the outer layer 12 is impregnated with the coil. Further, the outer layer 12 and the hollow tube 82 are joined by welding.
  • the outer peripheral surface of the outer layer 12 is substantially circular by tightening the outer peripheral surface of the outer layer 12 with the heat shrinkable tube 91.
  • the hollow tube 82 is crushed in the radial direction of the outer layer 12 by being pressurized in this step, and the cross section perpendicular to the longitudinal direction of the sub-lumen 80 inside the hollow tube 82 is the circumference of the outer layer 12. It becomes a flat shape flat in the direction. Even in a state where the cross section of the hollow tube 82 has a flat shape, it is preferable that the core wire 90 is loosely inserted into the hollow tube 82.
  • the heat shrinkable tube 91 is cut from the outer layer 12 by cutting the heat shrinkable tube 91 and tearing the heat shrinkable tube 91.
  • the operation line 70 is inserted into the hollow tube 82.
  • one end of the operation line 70 is connected to one end of the core wire 90.
  • the core wire 90 and the operation wire 70 are interchanged, and the operation wire 70 is disposed in the hollow tube 82.
  • a marker 40 that is an annular metal member is prepared.
  • fixing of the tip of the operation line 70 to the marker 40 and caulking and fixing of the marker 40 to the periphery of the tip of the outer layer 12 are performed.
  • a member (not shown) serving as an inlet for a chemical solution or the like is connected to the base end portion of the main lumen 20.
  • the mandrel M in the inner layer 11 is pulled out.
  • the mandrel M is pulled out in a state where the mandrel M is reduced in diameter by pulling both ends in the longitudinal direction of the mandrel M.
  • a hollow serving as the main lumen 20 is formed at the center of the inner layer 11.
  • the base end portion of the operation line 70 is connected to the separately created operation unit.
  • the coat layer 50 is formed. From the above, the catheter 100 can be obtained.
  • the effect of this embodiment is demonstrated.
  • the resin constituting the sheath 10 expands in the inner portion of the bent portion, and the cross-sectional shape of the sub-lumen 80 is deformed.
  • the sub-lumen 80 inside the bent portion expands in the radial direction of the main lumen 20 that is substantially orthogonal to the circumferential direction of the main lumen 20.
  • the cross-sectional shape orthogonal to the longitudinal direction of the sub-lumen 80 is a flat shape that is flat in the circumferential direction of the main lumen 20 in advance, and the peripheral wall of the sub-lumen 80 on the circumferential side of the main lumen 20 A large space is formed between the operation line 70 and the operation line 70. Therefore, even if the sub-lumen 80 expands in the radial direction of the main lumen 20 and the peripheral wall of the sub-lumen 80 in the circumferential direction of the main lumen 20 approaches the operation line 70, contact between the inner wall of the sub-lumen 80 and the operation line 70 is maintained. Can be suppressed.
  • the distance between the peripheral wall of the sub-lumen 80 in the radial direction of the main lumen 20 and the operation line 70 is increased.
  • the peripheral wall of the sub-lumen 80 on the circumferential direction side of the main lumen 20 slightly approaches the operation line 70.
  • the distance from the center of the sub-lumen 80 to the peripheral wall of the sub-lumen 80 becomes relatively uniform.
  • the cross-sectional shape of the sub-lumen 80 is a substantially circular shape. Therefore, the operation line 70 in the hollow tube 82 can be freely moved in the sub-lumen 80, and the operability of the operation line 70 is improved.
  • the bent catheter 100 may be bent further in various directions.
  • the operation line 70 in the hollow tube 82 can be freely moved in the sub-lumen 80, which is very useful.
  • FIG. 11 discloses a cross-sectional view orthogonal to the longitudinal direction of the catheter 900 disclosed in Patent Document 1.
  • the catheter 900 has a spaghetti tube 901 that partitions a wire lumen (sublumen), and a deflection wire 902 is inserted into the spaghetti tube 901.
  • a pressurized fluid is supplied into the spaghetti tube 901 at the time of manufacture to prevent the spaghetti tube 901 from collapsing. Therefore, the cross-sectional shape orthogonal to the longitudinal direction of the spaghetti tube 901 is a circle.
  • the cross-sectional shape of the bent portion is as shown in FIG.
  • the resin constituting the catheter 900 expands, the spaghetti tube 901 extends in the radial direction perpendicular to the circumferential direction of the main lumen, and the width in the circumferential direction of the main lumen becomes narrow. Therefore, the turning wire 902 can easily come into contact with the spaghetti tube 901. Therefore, friction is generated between the turning wire 902 and the spaghetti tube 901, and the operability of the turning wire is deteriorated when the catheter is bent. Even if the deflecting wire 902 does not contact the spaghetti tube 901 with the catheter 900 bent, the deflecting wire 902 is difficult to move in the width direction of the spaghetti tube 901. The operability of 902 is deteriorated.
  • the catheter 100 of the present embodiment has good operability of the operation line 70 while keeping the diameter of the catheter 100 small even when the catheter 100 is bent.
  • the hollow tube 82 constituting the sub-lumen 80 is made of a material having a higher tensile elastic modulus and bending rigidity than the outer layer 12.
  • the cross-sectional shape orthogonal to the longitudinal direction of the sub-lumen 80 is a flat shape that is flat in the circumferential direction of the main lumen 20.
  • the cross-sectional shape of the sub-lumen 80 is such that the length in the circumferential direction of the main lumen 20 is long, although the length in the radial direction of the main lumen 20 that is substantially orthogonal to the circumferential direction of the main lumen 20 is short.
  • the rigidity is increased with respect to the force along the circumferential direction of the main lumen 20, specifically, the force that twists the sheath 10, as compared with the case of forming a sub-lumen having a circular cross section as in the past. be able to.
  • the torsional rigidity of the sheath 10 is increased, and the sheath 10 can be prevented from being locally twisted.
  • the sub-lumen 80 is twisted by setting A / B to 1.2 to 4 when the circumferential length of the main lumen 20 is A and the radial length of the main lumen 20 is B. The above-mentioned effect that can be prevented can be exhibited remarkably.
  • an inner peripheral edge located on the main lumen 20 side and an outer peripheral edge located on the sheath outer peripheral side are in addition, the outer surface of the sheath 10 is curved in a convex arc shape.
  • the sub-lumen 80 is partitioned using the hollow tube 82.
  • the circular hollow tube 82 may be crushed in the radial direction of the main lumen 20, so that the flat sub-lumen 80 can be easily formed.
  • the hollow tube 82 is mainly made of a relatively soft material such as polytetrafluoroethylene (PTFE), perfluoroalkoxy fluororesin (PFA), or tetrafluoroethylene / hexafluoropropylene copolymer (FEP). Since the material included as a component is used, the hollow tube 82 can be easily crushed to form a flat-shaped sub-lumen 80.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy fluororesin
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • the core wire 90 is disposed in the circular hollow tube 82, and then the hollow tube 82 is crushed into a flat shape. Thereafter, the operation wire 70 having a diameter smaller than that of the core wire 90 is inserted into the hollow tube 82. Thereby, a gap can be reliably formed between the inner wall of the hollow tube 82 having a flat shape and the operation line 70, and the catheter 100 can be easily operated.
  • one of the two operation lines and the two sub-lumens 80 (80a, 80b) is selected as one operation line 70 (the first operation line 70a or the second operation line 70b).
  • the present invention is not limited to this. That is, as described above, three or more operation lines 70 may be inserted into the sheath 10 and then one or two or more of them may be pulled.
  • distal end portions 71 (71a, 71b) of the two operation lines 70 (70a, 70b) are separately fixed to the distal end DE of the sheath 10, but one continuous operation line is used. Then, both ends may be wound around a dial type operation unit, and the towing direction and the amount of towing may be adjusted by operating the dial.
  • the hollow tube 82 is inserted into the hollow portion formed in the outer layer 12 during the manufacturing method of the catheter 100.
  • the present invention is not limited to this.
  • the outer circumferential surface of the outer layer 12 may be cut out to form a groove, and the hollow tube 82 may be inserted into the groove.
  • the core wire 90 in the hollow tube 82 is replaced with the operation line 70 when the catheter 100 is manufactured.
  • the core wire 90 may be used as the operation line.
  • the core wire 90 was inserted,
  • the insertion method of the core wire 90 is not restricted to this.
  • the hollow tube 82 is extruded (coating extrusion) so as to cover the core wire 90, and then both ends of the core wire 90 are pulled to expand the core wire 90 and reduce the diameter. Remove completely.
  • the core wire 90 is loosely inserted into the hollow tube 82.
  • what is necessary is just to insert the hollow tube 82 in the hollow part (or groove
  • the hollow tube 82 is extruded (coating extrusion) so as to cover the core wire 90, and then the hollow portion (or the groove described above) formed in the outer layer 12 as in the above embodiment. Insert into. Next, the both ends of the core wire 90 are pulled, the core wire 90 is extended and reduced in diameter, and the core wire 90 is completely peeled off from the hollow tube. The core wire 90 may be loosely inserted into the hollow tube 82. By doing in this way, the process which inserts the core wire 90 in the hollow tube 82 can be skipped, and the productivity of a catheter can be improved.
  • the cross-sectional shape of the four sub-lumens 80 is a flat shape.
  • the cross-sectional shape of the sub-bloom 80 in which the operation line 70 is not inserted may not be a flat shape, and may be a circular shape. There may be.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

The objective of the present invention is to provide a technology that provides a medical device with favorable operability. A catheter (100) comprises: a tubular main body (10) in which are formed a main lumen (20) and a sub-lumen (80) which is disposed around the main lumen (20) and extends along a longitudinal direction of the main lumen (20); and an operating line (70) which is disposed inside the sub-lumen (80) and a distal end of which is fixed to a distal end of the tubular main body (10). The operating line (70) is circular in a cross section orthogonal to the longitudinal direction or the operating line (70) is a stranded wire composed of multiple filaments which are circular in a cross section orthogonal to the longitudinal direction. The cross sectional shape of the sub-lumen (80 (80a, 80b)) orthogonal to the longitudinal direction is a flat shape which is flat in a circumferential direction of the main lumen (20).

Description

医療機器および医療機器の製造方法Medical device and method for manufacturing medical device
 本発明は、医療機器および医療機器の製造方法に関する。 The present invention relates to a medical device and a method for manufacturing the medical device.
 近年、遠位端部を屈曲させることにより体腔への進入方向が操作可能なカテーテルが提供されている。たとえば、特許文献1には、中央内腔(メインルーメン)の周囲に、これよりも細径の2つのワイヤ内腔(サブルーメン)を180度対向して設け、サブルーメンの内部に変向ワイヤを挿通してなるカテーテルが記載されている。このカテーテルにおいては、変向ワイヤを操作することで、カテーテルの先端が曲がるようになっている。 In recent years, catheters have been provided that can be manipulated in the direction of entry into a body cavity by bending the distal end. For example, in Patent Literature 1, two wire lumens (sublumens) having a smaller diameter are provided around the central lumen (main lumen) so as to face each other by 180 degrees, and a deflection wire is provided inside the sublumen. A catheter through which is inserted is described. In this catheter, the tip of the catheter is bent by operating the deflection wire.
特開2006-192269号公報JP 2006-192269 A
 このような特許文献1に開示されたカテーテルにおいては、次のような改善の余地があることがわかった。
 カテーテルが曲がった状態で、操作線である変向ワイヤを操作した場合、操作線の操作が行ないにくいことがある。カテーテルが曲がった状態で、操作線の操作が行ないやすくなるため、円形のワイヤ内腔(サブルーメ)の内径を操作線の径より更に大きくなる必要がある。その結果、カテーテルの径が大きくなってしまう。
なお、ここでは、カテーテルを例示して説明したが同様の課題は、カテーテルに限らず、操作線で操作を行なう医療機器において生じる課題である。
It has been found that the catheter disclosed in Patent Document 1 has the following room for improvement.
When the deflection wire that is the operation line is operated with the catheter bent, it may be difficult to operate the operation line. Since the operation line can be easily operated with the catheter bent, the inner diameter of the circular wire lumen (sublumume) needs to be larger than the diameter of the operation line. As a result, the diameter of the catheter is increased.
In addition, although the catheter was demonstrated and demonstrated here, the same subject is a subject which arises not only in a catheter but in the medical device which operates with an operation line.
 本発明によれば、 メインルーメンと、前記メインルーメンの周囲に配置され、前記メインルーメンの長手方向に沿って延在するサブルーメンとが形成された管状本体と、前記サブルーメン内に配置され、その遠位端が前記管状本体の遠位端に固定された操作線とを備え、前記操作線は、前記長手方向と直交する断面が円形であり、あるいは、前記操作線は、前記長手方向と直交する断面が円形である複数細線を撚りあわせた撚り線であり、前記長手方向と直交する前記サブルーメンの断面形状は、前記メインルーメンの周方向に扁平な扁平形状である医療機器が提供される。
 このような医療機器において、サブルーメン内の操作線は断面が円形、あるいは、断面が円形である複数細線で構成された撚り線となっている。一方で、サブルーメンの断面形状は、メインルーメンの周方向に扁平な形状となっている。そのため、メインルーメンの長手方向と直交する断面において、メインルーメンの周方向側のサブルーメンの周壁と、操作線との間には空間が形成されることとなる。
 本発明者が検討した結果、このような形状としておくことで、医療機器を屈曲させた場合であっても、操作線とサブルーメンとの間に空隙を形成することができ、カテーテルの径を小さく保持しながら、操作性を向上させることができることがわかった。
According to the present invention, a main body, a tubular body formed around the main lumen and a sub-lumen extending along a longitudinal direction of the main lumen, and the sub-lumen are arranged in the sub-lumen, An operating line fixed to the distal end of the tubular body, and the operating line has a circular cross section perpendicular to the longitudinal direction, or the operating line extends in the longitudinal direction. A medical device is provided which is a twisted wire obtained by twisting a plurality of thin wires having a circular cross section orthogonal to each other, and the cross-sectional shape of the sub-lumen orthogonal to the longitudinal direction is a flat shape flat in the circumferential direction of the main lumen. The
In such a medical device, the operation line in the sub-lumen is a stranded wire formed of a plurality of thin wires having a circular cross section or a circular cross section. On the other hand, the cross-sectional shape of the sub-lumen is flat in the circumferential direction of the main lumen. Therefore, in the cross section orthogonal to the longitudinal direction of the main lumen, a space is formed between the peripheral wall of the sub-lumen on the circumferential direction side of the main lumen and the operation line.
As a result of the study by the present inventors, it is possible to form a gap between the operation line and the sublumen even when the medical device is bent by setting it in such a shape, and reducing the diameter of the catheter. It was found that the operability can be improved while keeping it small.
 さらに、本発明によれば、上述した医療機器の製造方法も提供できる。
 すなわち、本発明によれば、長手方向と直交する断面が円形形状であるサブルーメンが形成され、内部に芯線が遊挿(空間的に余裕のある状態に挿入)された中空管を、樹脂製の管状の本体部のメインルーメン形成領域の周囲に配置する工程と、前記本体部および前記中空管を加熱するとともに、前記本体部の径方向に向かって、前記本体部および中空管を外周側から加圧し、前記サブルーメンの前記断面の形状を扁平形状とする工程とを含む医療機器の製造方法も提供できる。
Furthermore, according to this invention, the manufacturing method of the medical device mentioned above can also be provided.
That is, according to the present invention, a hollow tube in which a sub-lumen having a circular shape in a cross section perpendicular to the longitudinal direction is formed, and a core wire is loosely inserted (inserted in a state where there is a sufficient space) inside, a resin Arranging the main body portion and the hollow tube in a radial direction of the main body portion, and heating the main body portion and the hollow tube; It is also possible to provide a method for manufacturing a medical device including a step of pressurizing from the outer peripheral side to make the shape of the cross section of the sublumen flat.
 本発明によれば、操作性が良好な医療機器を提供する技術が提供される。 According to the present invention, a technique for providing a medical device with good operability is provided.
本発明の一実施形態にかかるカテーテルの先端部の断面図である。It is sectional drawing of the front-end | tip part of the catheter concerning one Embodiment of this invention. 図1のII-II方向の断面図である。It is sectional drawing of the II-II direction of FIG. (a)(b)は、カテーテルのメインルーメンの長手方向に直交する断面を示す図である。(A) (b) is a figure which shows the cross section orthogonal to the longitudinal direction of the main lumen of a catheter. (a)(b)は、操作線の断面図である。(A) (b) is sectional drawing of an operation line. カテーテルの全体を示す側面図と、先端部の屈曲例を示す側面図であって、(a)はカテーテルを屈曲する前の全体を示す側面図であり、(b)はスライダを操作して先端を上方に屈曲させた状態を示す側面図であり、(c)はスライダを操作して先端を(b)よりも大きな曲率で上方に屈曲させた状態を示す側面図であり、(d)はスライダを操作して先端を下方に屈曲させた状態を示す側面図であり、(e)はスライダを操作して、先端を(d)よりも大きな曲率で下方に屈曲させた状態を示す側面図である。It is a side view which shows the whole catheter, and a side view which shows the bending example of a front-end | tip part, Comprising: (a) is a side view which shows the whole before bending a catheter, (b) is a tip by operating a slider. (C) is a side view showing a state where the tip is bent upward with a larger curvature than (b) by operating the slider. It is a side view which shows the state which operated the slider and bent the front-end | tip downward, (e) is a side view which shows the state which operated the slider and bent the front-end | tip with the curvature larger than (d). It is. カテーテルの長手方向に直交する断面図であり、(a)は、カテーテルが屈曲していない状態の断面図であり、(b)は、カテーテルが屈曲した状態の断面図である。(c)は、カテーテルが屈曲した状態を示す側面図である。It is sectional drawing orthogonal to the longitudinal direction of a catheter, (a) is sectional drawing of the state in which the catheter is not bent, (b) is sectional drawing of the state in which the catheter was bent. (C) is a side view showing a state in which the catheter is bent. カテーテルの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of a catheter. 図7のVIII-VIII方向の断面図である。It is sectional drawing of the VIII-VIII direction of FIG. カテーテルの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of a catheter. サブルーメン内を操作線が移動した状態を模式的に示す図である。It is a figure which shows typically the state which the operation line moved in the sub-lumen. 従来のカテーテルの断面図であり、(a)は、カテーテルが屈曲していない状態の断面図であり、(b)は、カテーテルが屈曲した状態の断面図である。It is sectional drawing of the conventional catheter, (a) is sectional drawing of the state in which the catheter is not bent, (b) is sectional drawing of the state in which the catheter was bent.
 以下、本発明の実施形態を図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同一符号を付し、その詳細な説明は重複しないように適宜省略される。
〔構成例〕
 図1、2を参照して、本実施形態の医療機器であるカテーテル100の概要について説明する。図1は、カテーテル100の長手方向に沿った断面図であり、図2は、図1のII-II方向の断面図である。
 本実施形態のカテーテル100は、メインルーメン20と、メインルーメン20の周囲に配置され、前記メインルーメン20の長手方向に沿って延在するサブルーメン80(80a、80b)とが形成された管状本体10と、サブルーメン80(80a、80b)内に配置され、その遠位端が前記管状本体10の遠位端に固定された操作線70(70a、70b)とを備える。
 操作線70(70a、70b)は、前記長手方向と直交する断面が円形であり、あるいは、操作線70(70a、70b)は、前記長手方向と直交する断面が円形である複数細線で構成された撚り線である。
 図2に示すように、前記長手方向と直交するサブルーメン80(80a、80b)の断面形状は、前記メインルーメン20の周方向に扁平な扁平形状である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and detailed description thereof is appropriately omitted so as not to overlap.
[Configuration example]
With reference to FIG. 1, 2, the outline | summary of the catheter 100 which is a medical device of this embodiment is demonstrated. 1 is a cross-sectional view taken along the longitudinal direction of the catheter 100, and FIG. 2 is a cross-sectional view taken along the II-II direction of FIG.
The catheter 100 of the present embodiment is a tubular body in which a main lumen 20 and a sub-lumen 80 (80a, 80b) disposed around the main lumen 20 and extending along the longitudinal direction of the main lumen 20 are formed. 10 and an operation line 70 (70a, 70b) disposed in the sub-lumen 80 (80a, 80b) and having a distal end fixed to the distal end of the tubular body 10.
The operation line 70 (70a, 70b) has a circular cross section perpendicular to the longitudinal direction, or the operation line 70 (70a, 70b) is composed of a plurality of thin lines having a circular cross section orthogonal to the longitudinal direction. It is a twisted wire.
As shown in FIG. 2, the cross-sectional shape of the sub-lumen 80 (80a, 80b) orthogonal to the longitudinal direction is a flat shape that is flat in the circumferential direction of the main lumen 20.
 次に、カテーテル100の構造について詳細に説明する。
 カテーテル100は、前述した、管状本体10、操作線70に加えて、コート層50、操作部60を備える。
Next, the structure of the catheter 100 will be described in detail.
The catheter 100 includes a coat layer 50 and an operation unit 60 in addition to the tubular body 10 and the operation line 70 described above.
 管状本体10は、内部にメインルーメンを有する内層11およびこの内層11を被覆する外層(本体部)12を備えるシースと、補強層30と、中空管82と、マーカ40とを備える。
 なお、以下、シース10とカテーテル100の先端は遠位端DEとよぶが、シース10の後端は近位端PEとよび、カテーテル100の後端は近位端CEとよぶ。
The tubular main body 10 includes a sheath including an inner layer 11 having a main lumen therein and an outer layer (main body portion) 12 covering the inner layer 11, a reinforcing layer 30, a hollow tube 82, and a marker 40.
Hereinafter, the distal ends of the sheath 10 and the catheter 100 are referred to as a distal end DE, but the rear end of the sheath 10 is referred to as a proximal end PE, and the rear end of the catheter 100 is referred to as a proximal end CE.
 内層11は、中空の管状の層であり、内部にカテーテル100の長手方向に沿って延在するメインルーメン20が形成されている。内層11には、一例として、フッ素系の熱可塑性ポリマー材料を用いることができる。より具体的には、ポリテトラフルオロエチレン(PTFE)やポリビニリデンフルオライド(PVDF)、ペルフルオロアルコキシフッ素樹脂(PFA)などを用いることができる。内層11にフッ素系樹脂を用いることにより、カテーテル100のメインルーメン20を通じて造影剤や薬液などを患部に供給する際のデリバリー性が良好となる。
 メインルーメン20は、カテーテル100の長手方向と直交する断面形状が円形形状となっている。
The inner layer 11 is a hollow tubular layer, and a main lumen 20 extending along the longitudinal direction of the catheter 100 is formed therein. For example, a fluorine-based thermoplastic polymer material can be used for the inner layer 11. More specifically, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), perfluoroalkoxy fluororesin (PFA), or the like can be used. By using a fluorine-based resin for the inner layer 11, the delivery property when supplying a contrast medium or a drug solution to the affected area through the main lumen 20 of the catheter 100 is improved.
The main lumen 20 has a circular cross section perpendicular to the longitudinal direction of the catheter 100.
 外層12は、内層11を被覆する樹脂製の管状体である。外層12は、内層11よりも厚みがあつく、シースの主たる肉厚を構成するものである。
 外層12には熱可塑性ポリマーが広く用いられる。一例として、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)のほか、ポリエチレン(PE)、ポリアミド(PA)、ナイロンエラストマー、ポリウレタン(PU)、エチレン-酢酸ビニル樹脂(EVA)、ポリ塩化ビニル(PVC)またはポリプロピレン(PP)などを用いることができる。
The outer layer 12 is a resin tubular body that covers the inner layer 11. The outer layer 12 is thicker than the inner layer 11 and constitutes the main thickness of the sheath.
A thermoplastic polymer is widely used for the outer layer 12. Examples include polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polyethylene (PE), polyamide (PA), nylon elastomer, polyurethane (PU), ethylene-vinyl acetate resin (EVA), poly Vinyl chloride (PVC) or polypropylene (PP) can be used.
 補強層30は、内層11を取り囲むとともに、外層12に内包されている。この補強層30はコイル層である。補強層30を構成する線材料には、ステンレス鋼(SUS)やニッケルチタン合金などの金属細線のほか、PI、PAIまたはPETなどの高分子ファイバーの細線を用いることができる。また、線材料31の断面形状は特に限定されず、丸線でも平線でもよい。
 なお、本実施形態のカテーテル100においては、操作線70がそれぞれ挿通されたサブルーメン80は、外層12の内部であって、補強層30の外側に形成されている。
The reinforcing layer 30 surrounds the inner layer 11 and is included in the outer layer 12. This reinforcing layer 30 is a coil layer. As the wire material constituting the reinforcing layer 30, in addition to fine metal wires such as stainless steel (SUS) and nickel titanium alloy, fine fiber wires such as PI, PAI, and PET can be used. Moreover, the cross-sectional shape of the wire material 31 is not specifically limited, A round wire or a flat wire may be sufficient.
In the catheter 100 of the present embodiment, the sub-lumen 80 through which the operation lines 70 are inserted is formed inside the outer layer 12 and outside the reinforcing layer 30.
 中空管82(82a、82b)は、外層12内に埋め込まれており、その長手方向がメインルーメン20の長手方向に沿うように、メインルーメン20の周囲に配置されている。
 中空管82は、サブルーメン80を区画するものである。サブルーメン80を区画する中空管82はカテーテル100の長手方向に沿って設けられ、図示はしないが、シース10の近位端PE側が開口している。また、中空管82のシース10の遠位端側は、マーカ40により閉鎖されている。
The hollow tubes 82 (82a, 82b) are embedded in the outer layer 12, and are arranged around the main lumen 20 so that the longitudinal direction thereof is along the longitudinal direction of the main lumen 20.
The hollow tube 82 defines the sub-lumen 80. The hollow tube 82 that defines the sublumen 80 is provided along the longitudinal direction of the catheter 100, and although not shown, the proximal end PE side of the sheath 10 is open. The distal end side of the sheath 10 of the hollow tube 82 is closed by the marker 40.
 中空管82は、補強層30の外側に配置されており、中空管82内部に配置される操作線70(70a、70b)に対して、補強層30の内側、すなわちメインルーメン20が保護されている。
 本実施形態では、図2に示すように、中空管82は、複数設けられている。具体的には、メインルーメン20を取り囲むように、同一の円周上に複数の中空管82が配置されている。本実施形態では、4つの中空管82が等間隔で配置されている。そして、メインルーメン20の中心を挟んで対向する一対の中空管82内部に操作線70が配置されている。また、メインルーメン20の中心を挟んで対向する他の一対の中空管82内部には、操作線70は配置されていない。
 なお、中空管82やサブルーメン80の個数は、4つに限られるものではなく、必要に応じて適宜選択することができる。
The hollow tube 82 is disposed outside the reinforcing layer 30, and the inner side of the reinforcing layer 30, that is, the main lumen 20 protects the operation line 70 (70 a, 70 b) disposed inside the hollow tube 82. Has been.
In the present embodiment, as shown in FIG. 2, a plurality of hollow tubes 82 are provided. Specifically, a plurality of hollow tubes 82 are arranged on the same circumference so as to surround the main lumen 20. In the present embodiment, four hollow tubes 82 are arranged at equal intervals. And the operation line 70 is arrange | positioned inside a pair of hollow tube 82 which opposes on both sides of the center of the main lumen 20. Further, the operation line 70 is not disposed inside the other pair of hollow tubes 82 facing each other across the center of the main lumen 20.
Note that the number of the hollow tubes 82 and the sub-lumens 80 is not limited to four, and can be appropriately selected as necessary.
 各中空管82内のサブルーメン80は、カテーテル100の長手方向と直交する断面形状がメインルーメン20の周方向に扁平な扁平形状となっている。
 より詳細に説明すると、カテーテル100の長手方向と直交する断面において、サブルーメン80は、メインルーメン20の周方向の長さAが、メインルーメン20の径方向の長さBよりも長い。
これにより、シース10のねじり剛性が高くなる。シース10のねじりは、中空管82に対しては、曲げ方向の力として作用し、中空管82がこの曲げ方向に長い形状となるほうが、断面円形の中空管に場合に比べ、断面2次モーメントが大きくなり、シース10のねじり剛性が高くなる。
メインルーメン20の径方向の長さBが操作線70の所定径の1~3倍であることが好ましく、1~1.5倍がより好ましい。カテーテル100の径が大きくならない観点からは、1~1.2倍が特に好ましい。メインルーメン20の周方向の長さAと径方向の長さBの比(A/B)は、1.2~4が好ましい。カテーテル100を屈曲させた場合の操作性の観点から、1.2~2.5がより好ましい。ねじり剛性を向上させる観点からは、A/Bが1.8~2.5が特に好ましい。
The sub-lumen 80 in each hollow tube 82 has a flat shape in which the cross-sectional shape orthogonal to the longitudinal direction of the catheter 100 is flat in the circumferential direction of the main lumen 20.
More specifically, in the cross section orthogonal to the longitudinal direction of the catheter 100, the sub-lumen 80 has a length A in the circumferential direction of the main lumen 20 longer than a length B in the radial direction of the main lumen 20.
Thereby, the torsional rigidity of the sheath 10 is increased. The torsion of the sheath 10 acts on the hollow tube 82 as a force in the bending direction, and the hollow tube 82 is longer in the bending direction than the hollow tube having a circular cross section. The secondary moment increases and the torsional rigidity of the sheath 10 increases.
The length B in the radial direction of the main lumen 20 is preferably 1 to 3 times the predetermined diameter of the operation line 70, and more preferably 1 to 1.5 times. From the viewpoint of preventing the diameter of the catheter 100 from becoming large, 1 to 1.2 times is particularly preferable. The ratio (A / B) between the circumferential length A and the radial length B of the main lumen 20 is preferably 1.2-4. From the viewpoint of operability when the catheter 100 is bent, 1.2 to 2.5 is more preferable. From the viewpoint of improving torsional rigidity, A / B is particularly preferably 1.8 to 2.5.
 また、図2に示すように、本実施形態では、カテーテル100の長手方向と直交する断面において、サブルーメン80は、メインルーメン20の外形にそって湾曲している。そして、サブルーメン80を区画する周縁のうち、メインルーメン20側に位置する内周縁と、シース10外周側に位置する外周縁とが、シース10の外周側に向かって凸状に円弧状に湾曲している。サブルーメン80の断面は、いわゆる勾玉(Magatama, Comma-shaped beads)形状である。このようなサブルーメン80内に操作線70は、遊挿されている。 Further, as shown in FIG. 2, in the present embodiment, the sub-lumen 80 is curved along the outer shape of the main lumen 20 in a cross section orthogonal to the longitudinal direction of the catheter 100. Of the peripheral edges that define the sub-lumen 80, the inner peripheral edge positioned on the main lumen 20 side and the outer peripheral edge positioned on the outer peripheral side of the sheath 10 are curved in a convex arc shape toward the outer peripheral side of the sheath 10. is doing. The cross section of the sub-lumen 80 has a so-called Magatama, Comma-shaped beads shape. The operation line 70 is loosely inserted in such a subroutine 80.
 中空管82は、外層12とは異なる材料で構成されている。このようにすることで、中空管82を、外層12よりも曲げ剛性や、引張り弾性率が高い材料で構成することができる。たとえば、中空管82を構成する材料としては、ポリテトラフルオロエチレン(PTFE)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)等の材料が挙げられる。これらの材料のいずれか1種以上を主成分とすることが好ましい。これらの材料は、操作線の摺動性(スライド性)をよくでき、耐熱性も高い。
 このような中空管82を使用することで、カテーテル100のねじり剛性を高め、シースをその長手方向を回転軸として、回転させた際に、シースが局所的にねじれてしまうことを防止できる。
The hollow tube 82 is made of a material different from that of the outer layer 12. By doing in this way, the hollow tube 82 can be comprised with the material whose bending rigidity and tensile elasticity modulus are higher than the outer layer 12. FIG. Examples of the material constituting the hollow tube 82 include materials such as polytetrafluoroethylene (PTFE), perfluoroalkoxy fluororesin (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP). . It is preferable that any one or more of these materials are the main component. These materials can improve the slidability (slidability) of the operation line and have high heat resistance.
By using such a hollow tube 82, the torsional rigidity of the catheter 100 can be increased, and the sheath can be prevented from being locally twisted when the sheath is rotated with its longitudinal direction as the rotation axis.
 なお、サブルーメン80の前記断面形状は、図2に示した形状に限られず、メインルーメン20の周方向に長く扁平な扁平形状、すなわち、メインルーメン20の径方向に潰れた形状であればよい。たとえば、図3(a)に示すように、長円形状であってもよく、また、図3(b)に示すように、楕円形状であってもよい。 The cross-sectional shape of the sub-lumen 80 is not limited to the shape illustrated in FIG. 2, and may be a flat shape that is long and flat in the circumferential direction of the main lumen 20, that is, a shape that is crushed in the radial direction of the main lumen 20. . For example, an oval shape may be used as shown in FIG. 3A, and an elliptical shape may be used as shown in FIG.
 操作線70は、サブルーメン80内に遊挿されており、サブルーメン80の長手方向に沿って延在している。
 操作線70は、1本の線で構成されていてもよく、図4に示すように、複数本の細線72を撚りあわせて構成された撚り線であってもよい。操作線70が、1本の線で構成される場合、その長手方向に直交する断面は円形形状である。一方で、操作線70が撚り線で構成される場合、操作線70を構成する細線72の長手方向に直交する断面は円形形状である。
 ここで、断面が円形形状であるとは、真円に限られるものではない。
 操作線70が撚り線で構成される場合、長手方向と直交する断面において、操作線70の外郭を構成する各細線72がひとつの円Rに内接するように、細線72が配置された構造であることが好ましい。
 ここで、一本の撚り線を構成する細線の本数は特に限定されないが、3本以上であることが好ましい。細線の本数の好適な例は、3本又は7本である。細線の本数が3本の場合、横断面において3本の細線が点対称に配置される。細線の本数が7本の場合、横断面において7本の細線が点対称にハニカム状に配置される。
The operation line 70 is loosely inserted in the sub-lumen 80 and extends along the longitudinal direction of the sub-lumen 80.
The operation line 70 may be constituted by a single line, or may be a stranded line constituted by twisting a plurality of thin wires 72 as shown in FIG. When the operation line 70 is composed of a single line, the cross section perpendicular to the longitudinal direction has a circular shape. On the other hand, when the operation line 70 is composed of a stranded wire, the cross section orthogonal to the longitudinal direction of the thin wire 72 constituting the operation line 70 has a circular shape.
Here, the circular shape of the cross section is not limited to a perfect circle.
When the operation wire 70 is formed of a stranded wire, the thin wire 72 is arranged so that each thin wire 72 constituting the outline of the operation wire 70 is inscribed in one circle R in a cross section orthogonal to the longitudinal direction. Preferably there is.
Here, the number of fine wires constituting one stranded wire is not particularly limited, but is preferably 3 or more. A suitable example of the number of thin wires is three or seven. When the number of fine lines is 3, the three fine lines are arranged point-symmetrically in the cross section. When the number of fine lines is seven, the seven fine lines are arranged point-symmetrically in a honeycomb shape in the cross section.
 また、図1に示すように、シース10の遠位端DEにおいて、操作線70(70a、70b)の先端部71(71a、71b)は、マーカ40に固定されることで、操作線70(70a、70b)の先端部71(71a、71b)が遠位端DEに固定されている。操作線70は、サブルーメン80(80a、80b)にそれぞれ摺動可能(スライド可能)に挿通されている。そして、各操作線70(70a、70b)の近位端を牽引することによりカテーテル100の遠位端部15が屈曲する(図5参照)。また、本実施形態のカテーテル100は、牽引する操作線70(70a、70b)の選択により、屈曲する遠位端部15の曲率と方向とが複数通りに変化する。 As shown in FIG. 1, the distal end portion 71 (71 a, 71 b) of the operation line 70 (70 a, 70 b) is fixed to the marker 40 at the distal end DE of the sheath 10. The tip portions 71 (71a, 71b) of 70a, 70b) are fixed to the distal end DE. The operation line 70 is slidably inserted into the sub-lumen 80 (80a, 80b). Then, the distal end 15 of the catheter 100 is bent by pulling the proximal end of each operation line 70 (70a, 70b) (see FIG. 5). Further, in the catheter 100 of the present embodiment, the curvature and direction of the bent distal end portion 15 change in a plurality of ways depending on selection of the operation line 70 (70a, 70b) to be pulled.
 ここで、操作線70の具体的な材料としては、たとえば、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリブチレンテレフタレート(PBT)、PIもしくはPTFEなどの高分子ファイバー、または、SUS、耐腐食性被覆した鋼鉄線、チタンもしくはチタン合金などの金属線を用いることができる。また、上記各材料に加えて、PVDF、高密度ポリエチレン(HDPE)またはポリエステルなどを使用することもできる。 Here, as a specific material of the operation line 70, for example, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polymer fiber such as PI or PTFE, or SUS, Corrosion-resistant coated steel wires, metal wires such as titanium or titanium alloys can be used. In addition to the above materials, PVDF, high density polyethylene (HDPE), polyester, or the like can also be used.
 また、図5に示すように、カテーテル100は、操作部60を備える。操作部60は、カテーテル100の近位端部17に設けられている。また、遠位端部15と近位端部17との間を中間部16と呼ぶ。 Further, as shown in FIG. 5, the catheter 100 includes an operation unit 60. The operation unit 60 is provided at the proximal end portion 17 of the catheter 100. A portion between the distal end portion 15 and the proximal end portion 17 is referred to as an intermediate portion 16.
 操作部60は、カテーテル100の長手方向に延びる軸部61と、軸部61に対してカテーテル100の長手方向にそれぞれ進退するスライダ64(64a、64b)と、軸部61を軸回転するハンドル部62と、シース10が回転可能に挿通された把持部63とを備えている。また、シース10の近位端部17は、軸部61に固定されている。また、ハンドル部62と軸部61とは一体に構成されている。そして、把持部63とハンドル部62とを相対的に軸回転させることで、操作線70を含むシース10全体が軸部61とともにトルク回転する。 The operation unit 60 includes a shaft portion 61 extending in the longitudinal direction of the catheter 100, a slider 64 (64a, 64b) that moves forward and backward in the longitudinal direction of the catheter 100 with respect to the shaft portion 61, and a handle portion that rotates the shaft portion 61 about its axis. 62 and a gripping portion 63 through which the sheath 10 is rotatably inserted. Further, the proximal end portion 17 of the sheath 10 is fixed to the shaft portion 61. Moreover, the handle | steering-wheel part 62 and the axial part 61 are comprised integrally. Then, the entire sheath 10 including the operation line 70 is torque-rotated together with the shaft portion 61 by rotating the grip portion 63 and the handle portion 62 relative to each other.
 したがって、本実施形態の操作部60は、管状本体(シース10)の遠位端部15を回転操作する。なお、本実施形態においては、シース10をトルク回転させる回転操作部としてのハンドル部62と、シース10を屈曲させるための屈曲操作部としてのスライダ64とが一体に設けられている。しかし、本発明がこれに限定されるものではなく、ハンドル部62とスライダ64とが別個に設けられていてもよい。 Therefore, the operation unit 60 of the present embodiment rotates the distal end portion 15 of the tubular main body (sheath 10). In the present embodiment, a handle portion 62 as a rotation operation portion for torque-rotating the sheath 10 and a slider 64 as a bending operation portion for bending the sheath 10 are integrally provided. However, the present invention is not limited to this, and the handle portion 62 and the slider 64 may be provided separately.
 第一操作線70aの近位端は、シース10の近位端部17から基端側に突出し、操作部60のスライダ64aに接続されている。また、第二操作線70bの近位端も同様に、操作部60のスライダ64bに接続されている。そして、スライダ64aとスライダ64bを軸部61に対して個別に基端側にスライドさせることにより、これに接続された第一操作線70aまたは第二操作線70bが牽引され、シース10の遠位端部15に引張力が与えられる。これにより、牽引された当該操作線70の側に遠位端部15が屈曲する。 The proximal end of the first operation line 70 a protrudes from the proximal end portion 17 of the sheath 10 to the proximal end side, and is connected to the slider 64 a of the operation portion 60. Similarly, the proximal end of the second operation line 70 b is also connected to the slider 64 b of the operation unit 60. Then, by sliding the slider 64a and the slider 64b individually to the proximal end side with respect to the shaft portion 61, the first operation line 70a or the second operation line 70b connected thereto is pulled and the distal end of the sheath 10 is pulled. A tensile force is applied to the end portion 15. As a result, the distal end portion 15 bends toward the pulled operation line 70.
 図1に示すように、マーカ40が、シース10の遠位端DEに設けられている。このマーカ40は、X線等の放射線が不透過な材料からなるリング状の部材である。具体的には、マーカ40には白金などの金属材料を用いることができる。本実施形態のマーカ40は、メインルーメン20の周囲であって外層12の内部に設けられている。 As shown in FIG. 1, a marker 40 is provided at the distal end DE of the sheath 10. The marker 40 is a ring-shaped member made of a material that does not transmit radiation such as X-rays. Specifically, a metal material such as platinum can be used for the marker 40. The marker 40 of this embodiment is provided around the main lumen 20 and inside the outer layer 12.
 コート層50は、カテーテル100の最外層を構成するものであり、親水性の層である。コート層50には、ポリビニルアルコール(PVA)やポリビニルピロリドンなどの親水性材料を用いることができる。 The coat layer 50 constitutes the outermost layer of the catheter 100 and is a hydrophilic layer. For the coat layer 50, a hydrophilic material such as polyvinyl alcohol (PVA) or polyvinyl pyrrolidone can be used.
 ここで、本実施形態のカテーテル100の代表的な寸法について説明する。メインルーメン20の半径は200~300μm程度、内層11の厚さは10~30μm程度、外層12の厚さは100~150μm程度、補強層30の厚さは20~30μmとすることができる。そして、カテーテル100の軸心からサブルーメン80の中心までの半径は300~350μm程度、サブルーメン80の内径は40~100μm程度とし、操作線70の太さを30~60μm程度とすることができる。そして、カテーテル100の最外径を350~450μm程度とすることができる。 Here, typical dimensions of the catheter 100 of the present embodiment will be described. The radius of the main lumen 20 can be about 200 to 300 μm, the thickness of the inner layer 11 can be about 10 to 30 μm, the thickness of the outer layer 12 can be about 100 to 150 μm, and the thickness of the reinforcing layer 30 can be 20 to 30 μm. The radius from the axial center of the catheter 100 to the center of the sublumen 80 can be about 300 to 350 μm, the inner diameter of the sublumen 80 can be about 40 to 100 μm, and the thickness of the operation line 70 can be about 30 to 60 μm. . The outermost diameter of the catheter 100 can be about 350 to 450 μm.
 すなわち、本実施形態のカテーテル100の外径は直径1mm未満であり、腹腔動脈などの血管に挿通可能である。また、本実施形態のカテーテル100に関しては、操作線70(70a、70b)の牽引により進行方向が自在に操作されるため、たとえば分岐する血管内においても所望の方向にカテーテル100を進入させることが可能である。 That is, the outer diameter of the catheter 100 of this embodiment is less than 1 mm in diameter, and can be inserted into blood vessels such as the celiac artery. Further, the catheter 100 according to the present embodiment is operated freely by pulling the operation line 70 (70a, 70b), so that the catheter 100 can be advanced in a desired direction even in a branching blood vessel, for example. Is possible.
 〔動作例〕
 次に、本実施形態のカテーテル100の動作例について、図5を参照して、説明する。まず、本実施形態のカテーテル100において、操作線70(第一操作線70aまたは第二操作線70b)の近位端を牽引すると、カテーテル100の遠位端部15に引張力が与えられて、当該操作線70(第一操作線70aまたは第二操作線70b)が挿通されたサブルーメン80(サブルーメン80aまたはサブルーメン80b)の側に向かって遠位端部15の一部または全部が屈曲する。一方、操作線70の近位端をカテーテル100に対して押し込んだ場合には、当該操作線70からカテーテル100の遠位端部15に対して押込力が実質的に与えられることはない。
[Operation example]
Next, an operation example of the catheter 100 of the present embodiment will be described with reference to FIG. First, in the catheter 100 of the present embodiment, when the proximal end of the operation line 70 (the first operation line 70a or the second operation line 70b) is pulled, a tensile force is applied to the distal end portion 15 of the catheter 100, Part or all of the distal end portion 15 bends toward the sub-lumen 80 (sub-lumen 80a or sub-lumen 80b) through which the operation line 70 (first operation line 70a or second operation line 70b) is inserted. To do. On the other hand, when the proximal end of the operation line 70 is pushed into the catheter 100, a pushing force is not substantially applied from the operation line 70 to the distal end portion 15 of the catheter 100.
 なお、カテーテル100の遠位端部15とは、カテーテル100の遠位端DEを含む所定の長さ領域をいう。同様に、カテーテル100の近位端部17とは、カテーテル100の近位端CEを含む所定の長さ領域をいう。中間部16とは、遠位端部15と近位端部17との間の所定の長さ領域をいう。また、カテーテル100が屈曲するとは、カテーテル100の一部または全部が、湾曲または折れ曲がって曲がることをいう。 Note that the distal end portion 15 of the catheter 100 refers to a predetermined length region including the distal end DE of the catheter 100. Similarly, the proximal end portion 17 of the catheter 100 refers to a predetermined length region including the proximal end CE of the catheter 100. The intermediate portion 16 refers to a predetermined length region between the distal end portion 15 and the proximal end portion 17. The bending of the catheter 100 means that a part or all of the catheter 100 is bent or bent.
 本実施形態のカテーテル100では、牽引する操作線70を、第一操作線70aのみとするか、第二操作線70bのみとするか、または2本の操作線70a、70bを同時に牽引するかにより、屈曲する遠位端部15の曲率が複数通りに変化する。これにより、さまざまな角度に分岐する体腔に対してカテーテル100を自在に進入させることができる。 In the catheter 100 of this embodiment, the operation line 70 to be pulled is only the first operation line 70a, only the second operation line 70b, or whether the two operation lines 70a and 70b are pulled simultaneously. The curvature of the bent distal end portion 15 changes in a plurality of ways. Thereby, the catheter 100 can be freely entered into a body cavity that branches at various angles.
 本実施形態のカテーテル100は、複数本の操作線70(第一操作線70aまたは第二操作線70b)の近位端をそれぞれ個別に牽引することができる。そして、この牽引する操作線70によって、屈曲方向を変化させることができる。具体的には、図5(b)、(c)のように第一操作線70aを牽引すると、第一操作線70aを設けた側に屈曲し、図5(d)、(e)のように第二操作線70bを牽引すると、第二操作線70bを設けた側に屈曲する。また、各操作線70(70a、70b)の牽引量を調整することによって、屈曲の曲率(曲率半径)を変化させることができる。具体的には、図5(b)、(d)に示すように、第一または第二操作線70a、70bを少し牽引した場合、遠位端部15は小さな曲率(曲率半径が大きい)で屈曲する。一方、図5(c)、(e)に示すように、第一または第二操作線70a、70bをより長く牽引した場合、遠位端部15は大きな曲率(曲率半径が小さい)で屈曲する。 The catheter 100 of the present embodiment can individually pull the proximal ends of the plurality of operation lines 70 (the first operation line 70a or the second operation line 70b). The bending direction can be changed by the operating line 70 to be pulled. Specifically, when the first operation line 70a is pulled as shown in FIGS. 5B and 5C, the first operation line 70a is bent to the side where the first operation line 70a is provided, as shown in FIGS. 5D and 5E. When the second operation line 70b is pulled, the second operation line 70b is bent. Further, the curvature of curvature (the radius of curvature) can be changed by adjusting the pulling amount of each operation line 70 (70a, 70b). Specifically, as shown in FIGS. 5B and 5D, when the first or second operation lines 70a and 70b are slightly pulled, the distal end portion 15 has a small curvature (a large radius of curvature). Bend. On the other hand, as shown in FIGS. 5C and 5E, when the first or second operation line 70a, 70b is pulled longer, the distal end portion 15 bends with a large curvature (the curvature radius is small). .
 ここで、カテーテル100は、上述したように、操作線70を操作することで、屈曲する。これに加え、カテーテル100を挿入する血管の形状により、操作線70を操作しない場合であっても、屈曲することがある。
 このような場合、カテーテル100の屈曲部分の断面形状は、図6に示したように変化する。図6(a)は、カテーテル100が屈曲しておらず、直線状になっている状態の断面図を示し、図6(b)は、図6(c)のb-b方向の断面図であり、カテーテル100が屈曲した状態の断面図である。
 カテーテル100が屈曲した場合、図6(c)に示すように、屈曲部分の外側部分には、シース10の長手方向に沿って引っ張り応力がかかる。この力により、シース10の屈曲部分の外側部分では、シース10を構成する樹脂が、ポアソン比に従い、わずかながらではあるが収縮する。
Here, the catheter 100 bends by operating the operation line 70 as described above. In addition to this, the shape of the blood vessel into which the catheter 100 is inserted may be bent even when the operation line 70 is not operated.
In such a case, the cross-sectional shape of the bent portion of the catheter 100 changes as shown in FIG. 6A shows a cross-sectional view of the catheter 100 that is not bent and is linear, and FIG. 6B is a cross-sectional view in the bb direction of FIG. 6C. FIG. 3 is a cross-sectional view of the catheter 100 in a bent state.
When the catheter 100 is bent, a tensile stress is applied to the outer portion of the bent portion along the longitudinal direction of the sheath 10 as shown in FIG. Due to this force, the resin constituting the sheath 10 contracts slightly in accordance with the Poisson's ratio in the outer portion of the bent portion of the sheath 10.
 一方で、カテーテル100が屈曲した場合、図6(c)に示すように、屈曲部分の内側部分には、シース10の長手方向に沿って圧縮応力がかかる。この力により、シース10の屈曲部分の内側部分では、シース10を構成する樹脂がポアソン比に従いわずかながらではあるが膨張する。
 この膨張は、メインルーメン20の周方向(図6(b)の矢印Y3、4方向)よりも、周方向と略直交する半径方向において顕著に生じる(図6(b)の矢印Y1、2方向)。メインルーメン20の周方向は、シース10を構成する樹脂に拘束されているからである。特に、図6(b)に示すように、屈曲部分の内側部分の半径方向の膨張のうち、メインルーメン20と反対方向に向かった膨張(図6(b)の矢印Y1方向の膨張)は、メインルーメン20側に向かった膨張(図6(b)の矢印Y2方向の膨張)よりも顕著となる。これは、メインルーメン20の周囲に補強層30が設けられているため、メインルーメン20側に膨張しにくいためである。
On the other hand, when the catheter 100 is bent, a compressive stress is applied along the longitudinal direction of the sheath 10 to the inner portion of the bent portion, as shown in FIG. Due to this force, the resin constituting the sheath 10 expands, albeit slightly, in accordance with the Poisson's ratio in the inner portion of the bent portion of the sheath 10.
This expansion occurs more significantly in the radial direction substantially orthogonal to the circumferential direction (in the directions of arrows Y1 and Y2 in FIG. 6B) than in the circumferential direction of the main lumen 20 (in the directions of arrows Y3 and 4 in FIG. 6B). ). This is because the circumferential direction of the main lumen 20 is restrained by the resin constituting the sheath 10. In particular, as shown in FIG. 6B, of the expansion in the radial direction of the inner portion of the bent portion, the expansion toward the direction opposite to the main lumen 20 (expansion in the direction of arrow Y1 in FIG. 6B) is: This is more noticeable than the expansion toward the main lumen 20 (expansion in the direction of arrow Y2 in FIG. 6B). This is because the reinforcing layer 30 is provided around the main lumen 20, so that the main lumen 20 does not easily expand.
 このような、シース10の膨張に伴い、屈曲部分の内側の中空管82は、メインルーメン20の周方向と略直交するメインルーメン20の径方向に大きく膨張し、メインルーメン20の径方向のサブルーメン80の周壁と操作線70との距離が広がる。一方で、前述したように、シース10の膨張は、メインルーメン20の周方向(図6(b)の矢印Y3、4方向)よりも、周方向と略直交する半径方向において顕著に生じる(図6(b)の矢印Y1、2方向)ため、メインルーメン20周方向側のサブルーメン80の周壁は、操作線70にわずかながら近づく可能性がある。しかしながら、サブルーメン80は、メインルーメン20の周方向に扁平な扁平形状であるため、操作線70とメインルーメン20周方向側のサブルーメン80の周壁との間に空間を確保できる。
 これにより、カテーテル100を屈曲させた際に、たとえば、中空管82の断面形状が略円形状となる。
 そのため、中空管82内の操作線70が中空管82と接触しにくくなり、操作線70の操作性が向上する。
With the expansion of the sheath 10, the hollow tube 82 inside the bent portion greatly expands in the radial direction of the main lumen 20 substantially perpendicular to the circumferential direction of the main lumen 20, so that the radial direction of the main lumen 20 increases. The distance between the peripheral wall of the sub-lumen 80 and the operation line 70 increases. On the other hand, as described above, the expansion of the sheath 10 occurs more significantly in the radial direction substantially orthogonal to the circumferential direction than in the circumferential direction of the main lumen 20 (arrows Y3 and 4 in FIG. 6B) (see FIG. 6). 6 (b) (in the direction of arrows Y1 and Y2), the peripheral wall of the sub-lumen 80 on the circumferential side of the main lumen 20 may slightly approach the operation line 70. However, since the sub-lumen 80 has a flat shape that is flat in the circumferential direction of the main lumen 20, a space can be secured between the operation line 70 and the peripheral wall of the sub-lumen 80 on the circumferential side of the main lumen 20.
Thereby, when the catheter 100 is bent, for example, the cross-sectional shape of the hollow tube 82 becomes a substantially circular shape.
Therefore, the operation line 70 in the hollow tube 82 is less likely to come into contact with the hollow tube 82, and the operability of the operation line 70 is improved.
 なお、本実施形態では、サブルーメン80は、メインルーメン20の周方向に扁平な扁平形状であるため、カテーテル100が屈曲していない状態(直線状態)では、サブルーメン80のメインルーメン20径方向の周壁と、操作線70との距離が短くなっている。そのため、サブルーメン80のメインルーメン20径方向の周壁が操作線70に接触しやすくなる可能性がある。しかしながら、カテーテル100が屈曲していない状態においては、操作線70に大きな張力が付与されていないので、操作線70とサブルーメン80の周壁とが接触しても、大きな摩擦とはなりにくく、操作線70の操作性に大きな影響はないため、問題は生じない。 In the present embodiment, the sub-lumen 80 has a flat shape that is flat in the circumferential direction of the main lumen 20. Therefore, when the catheter 100 is not bent (straight state), the diameter of the main lumen 20 of the sub-lumen 80 is The distance between the peripheral wall and the operation line 70 is shortened. Therefore, there is a possibility that the peripheral wall of the main lumen 20 in the radial direction of the sub lumen 80 is likely to come into contact with the operation line 70. However, in a state where the catheter 100 is not bent, a large tension is not applied to the operation line 70, so even if the operation line 70 and the peripheral wall of the sub-lumen 80 come into contact with each other, a large friction is unlikely to occur. Since the operability of the line 70 is not greatly affected, no problem occurs.
 〔製造方法〕
 次に、図7~図9を参照して、本実施形態のカテーテル100の製造方法について説明する。
 はじめに、カテーテル100の製造方法の概要について説明する。
 本実施形態のカテーテル100の製造方法は、長手方向と直交する断面が円形形状であるサブルーメン80が形成され、内部に芯線90が遊挿された中空管82を、外層12のメインルーメン20形成領域の周囲に配置する工程と、
 外層12および中空管82を加熱するとともに、外層12の径方向に向かって、外層12および中空管82を外周側から加圧し、サブルーメン80の前記断面の形状を扁平形状とする工程とを含む。
〔Production method〕
Next, a method for manufacturing the catheter 100 of the present embodiment will be described with reference to FIGS.
First, an outline of a method for manufacturing the catheter 100 will be described.
In the method of manufacturing the catheter 100 according to the present embodiment, the sub-lumen 80 having a circular cross section perpendicular to the longitudinal direction is formed, and the hollow tube 82 in which the core wire 90 is loosely inserted is used as the main lumen 20 of the outer layer 12. Arranging around the formation region;
Heating the outer layer 12 and the hollow tube 82, pressurizing the outer layer 12 and the hollow tube 82 from the outer peripheral side in the radial direction of the outer layer 12, and making the shape of the cross section of the sub-lumen 80 flat. including.
 次に、カテーテル100の製造方法について詳細に説明する。
 はじめに、外層12を押し出し成形しておく。外層12を構成する樹脂を含む材料を図示しないマンドレル(芯材)の周囲に押し出す。このとき、外層12において、後に中空管82が埋設されることによりサブルーメン80が形成される位置の各々に、長手方向に沿う長尺な中空部(孔)が形成されるように、ガス等の流体を吐出しながら押出成形する。
 押出成形後、マンドレルを引き抜くことにより、中空形状の外層12を作成することができる。
Next, the manufacturing method of the catheter 100 will be described in detail.
First, the outer layer 12 is extruded. A material containing resin constituting the outer layer 12 is extruded around a mandrel (core material) (not shown). At this time, in the outer layer 12, the gas is so formed that a long hollow portion (hole) along the longitudinal direction is formed at each position where the sub-lumen 80 is formed by the hollow tube 82 being embedded later. Extruding while discharging fluid such as.
After the extrusion molding, the hollow outer layer 12 can be formed by pulling out the mandrel.
 一方で、内層11も押し出し成形により、作製しておく。外層を形成する場合と同様、図7に示すマンドレル(芯材)Mの周囲に、内層11を構成する樹脂を含む材料を押し出せばよい。
 その後、芯材M付きの内層11の周囲にコイル31を被せる。従って、この段階では、未だ、内層11内にはマンドレルMが挿通されたままである。
On the other hand, the inner layer 11 is also prepared by extrusion molding. As in the case of forming the outer layer, a material containing a resin constituting the inner layer 11 may be extruded around a mandrel (core material) M shown in FIG.
Thereafter, the coil 31 is placed around the inner layer 11 with the core material M. Therefore, at this stage, the mandrel M is still inserted in the inner layer 11.
 中空管82も中空管82を構成する樹脂を含む材料を押出成形することによって作成する。長手方向に沿う長尺な中空部が形成されるように、中空管82の材料に対してガス等の流体を吐出しながら押出成形する。このようにして製造された中空管82は、長手方向と直交する断面形状が円形のリング形状である。
 次に、中空管82内に芯線90を挿入する。芯線90は、長手方向と直交する断面が円形である。
 ただし、芯線90の径は、操作線70の径(撚り線である場合には円Rの径)よりも大きい。
 後述するが、芯線90の周囲に中空管82を押し出し、芯線90と中空管82とを剥離し、中空管82内に芯線90を遊挿してもよいが、中空管82に中空部を形成した後、芯線90を挿入する方法を採用することで、中空管82の中空部を確実に所望の形状とすることができる。
The hollow tube 82 is also formed by extruding a material containing a resin constituting the hollow tube 82. Extrusion molding is performed while discharging a fluid such as gas to the material of the hollow tube 82 so that a long hollow portion along the longitudinal direction is formed. The hollow tube 82 manufactured in this way has a ring shape with a circular cross section perpendicular to the longitudinal direction.
Next, the core wire 90 is inserted into the hollow tube 82. The core wire 90 has a circular cross section perpendicular to the longitudinal direction.
However, the diameter of the core wire 90 is larger than the diameter of the operation wire 70 (the diameter of the circle R in the case of a stranded wire).
As will be described later, the hollow tube 82 may be extruded around the core wire 90, the core wire 90 and the hollow tube 82 may be peeled off, and the core wire 90 may be loosely inserted into the hollow tube 82. By adopting a method of inserting the core wire 90 after forming the portion, the hollow portion of the hollow tube 82 can be surely formed into a desired shape.
 その後、内層11の周囲にコイル31を被せた状態で、このコイル31の周囲に外層12を被せる。
 次に、外層12の中空部分に対し、芯線90入りの中空管82を挿入する。
 その後、図7に示すように、外層12の周囲に、熱収縮チューブ91を被せる。図8に図7のVIII-VIII方向の断面図を示す。図8においては、コイル31を省略している。このとき、中空管82内のサブルーメンは、その長手方向と直交する断面が円形である。なお、断面が円形とは真円であることに限られるものではない。
 次に、加熱により、熱収縮チューブ91を収縮させて、外層12、コイル31、内層11、中空管82を内層11の径方向に向かって外側から加圧する。また、前記加熱により、外層12を溶融させる。なお、加熱温度は、外層12の溶融温度よりも高く、内層11、中空管82の溶融温度よりも低い。この加熱により、外層12と内層11とが溶着により接合する。このとき、外層12を構成する材料が、コイル31を内包し、外層12にコイルが含浸されることとなる。また、外層12と中空管82とが溶着により接合する。
 なお、この工程において、外層12の外周面が熱収縮チューブ91により締め付けられることにより、外層12の外周面はほぼ円形となる。
 一方で、中空管82は、この工程において加圧されることで、外層12の径方向につぶされ、中空管82内部のサブルーメン80の長手方向と直交する断面は、外層12の周方向に扁平な扁平形状となる。
 中空管82の断面が扁平形状となった状態においても、芯線90は、中空管82に遊挿された状態であることが好ましい。
Thereafter, the outer layer 12 is covered around the coil 31 in a state where the coil 31 is covered around the inner layer 11.
Next, the hollow tube 82 containing the core wire 90 is inserted into the hollow portion of the outer layer 12.
Thereafter, as shown in FIG. 7, a heat shrinkable tube 91 is placed around the outer layer 12. FIG. 8 shows a cross-sectional view in the VIII-VIII direction of FIG. In FIG. 8, the coil 31 is omitted. At this time, the sub-lumen in the hollow tube 82 has a circular cross section perpendicular to the longitudinal direction. Note that a circular cross section is not limited to a perfect circle.
Next, the heat shrinkable tube 91 is contracted by heating, and the outer layer 12, the coil 31, the inner layer 11, and the hollow tube 82 are pressurized from the outside in the radial direction of the inner layer 11. Further, the outer layer 12 is melted by the heating. The heating temperature is higher than the melting temperature of the outer layer 12 and lower than the melting temperature of the inner layer 11 and the hollow tube 82. By this heating, the outer layer 12 and the inner layer 11 are joined by welding. At this time, the material constituting the outer layer 12 encloses the coil 31 and the outer layer 12 is impregnated with the coil. Further, the outer layer 12 and the hollow tube 82 are joined by welding.
In this step, the outer peripheral surface of the outer layer 12 is substantially circular by tightening the outer peripheral surface of the outer layer 12 with the heat shrinkable tube 91.
On the other hand, the hollow tube 82 is crushed in the radial direction of the outer layer 12 by being pressurized in this step, and the cross section perpendicular to the longitudinal direction of the sub-lumen 80 inside the hollow tube 82 is the circumference of the outer layer 12. It becomes a flat shape flat in the direction.
Even in a state where the cross section of the hollow tube 82 has a flat shape, it is preferable that the core wire 90 is loosely inserted into the hollow tube 82.
 次に、熱収縮チューブ91に切り込みを入れ、該熱収縮チューブ91を引き裂くことによって、熱収縮チューブ91を外層12から取り除く。 Next, the heat shrinkable tube 91 is cut from the outer layer 12 by cutting the heat shrinkable tube 91 and tearing the heat shrinkable tube 91.
 次に、図9に示すように、中空管82内に、操作線70を挿通する。このためには、操作線70の一端を芯線90の一端に接続する。次に、芯線90の他端を中空管82から引き抜くことにより、芯線90と操作線70とが入れ替わり、操作線70が中空管82内に配置されることとなる。 Next, as shown in FIG. 9, the operation line 70 is inserted into the hollow tube 82. For this purpose, one end of the operation line 70 is connected to one end of the core wire 90. Next, by pulling out the other end of the core wire 90 from the hollow tube 82, the core wire 90 and the operation wire 70 are interchanged, and the operation wire 70 is disposed in the hollow tube 82.
 また、別途、環状の金属部材であるマーカ40を準備する。
 次に、マーカ40に対する操作線70の先端部の固定と、外層12の先端部の周囲に対するマーカ40のかしめ固定(Permanent Mechanical Assembly)と、を行う。
Separately, a marker 40 that is an annular metal member is prepared.
Next, fixing of the tip of the operation line 70 to the marker 40 and caulking and fixing of the marker 40 to the periphery of the tip of the outer layer 12 (Permanent Mechanical Assembly) are performed.
 次に、メインルーメン20の基端部に対し、薬液等の導入口となる部材(図示略)を接続する。
 次に、内層11内のマンドレルMを引き抜く。マンドレルMの引き抜きは、マンドレルMの長手方向両端を引っ張ることによりマンドレルMを細径化した状態で行う。これにより、内層11の中心には、メインルーメン20となる中空が形成される。
Next, a member (not shown) serving as an inlet for a chemical solution or the like is connected to the base end portion of the main lumen 20.
Next, the mandrel M in the inner layer 11 is pulled out. The mandrel M is pulled out in a state where the mandrel M is reduced in diameter by pulling both ends in the longitudinal direction of the mandrel M. As a result, a hollow serving as the main lumen 20 is formed at the center of the inner layer 11.
 次に、別途作成した操作部に対し、操作線70の基端部を連結する。
 次に、コート層50を形成する。
 以上より、カテーテル100を得ることができる。
Next, the base end portion of the operation line 70 is connected to the separately created operation unit.
Next, the coat layer 50 is formed.
From the above, the catheter 100 can be obtained.
 次に、本実施形態の作用効果について説明する。
 前述したように、カテーテル100が屈曲した場合、屈曲部分の内側部分では、シース10を構成する樹脂が膨張し、サブルーメン80の断面形状が変形することとなる。具体的には、図6(b)に示すように、屈曲部分内側のサブルーメン80は、メインルーメン20の周方向と略直交するメインルーメン20の径方向に膨張する。本実施形態では、あらかじめ、サブルーメン80の長手方向に直交する断面形状が、メインルーメン20の周方向に扁平な扁平形状となっており、メインルーメン20の周方向側のサブルーメン80の周壁と、操作線70との間には大きく空間が形成されている。そのため、サブルーメン80がメインルーメン20の径方向に膨張し、サブルーメン80のメインルーメン20周方向の周壁が操作線70に近づいても、サブルーメン80の内壁と、操作線70との接触を抑制できる。カテーテル100が屈曲した状態においては、屈曲部分内側のサブルーメン80内の操作線70(70b)には、張力がかかっているので、この操作線70とサブルーメン80の内壁との接触を抑制することは、特に重要である。
Next, the effect of this embodiment is demonstrated.
As described above, when the catheter 100 is bent, the resin constituting the sheath 10 expands in the inner portion of the bent portion, and the cross-sectional shape of the sub-lumen 80 is deformed. Specifically, as shown in FIG. 6B, the sub-lumen 80 inside the bent portion expands in the radial direction of the main lumen 20 that is substantially orthogonal to the circumferential direction of the main lumen 20. In the present embodiment, the cross-sectional shape orthogonal to the longitudinal direction of the sub-lumen 80 is a flat shape that is flat in the circumferential direction of the main lumen 20 in advance, and the peripheral wall of the sub-lumen 80 on the circumferential side of the main lumen 20 A large space is formed between the operation line 70 and the operation line 70. Therefore, even if the sub-lumen 80 expands in the radial direction of the main lumen 20 and the peripheral wall of the sub-lumen 80 in the circumferential direction of the main lumen 20 approaches the operation line 70, contact between the inner wall of the sub-lumen 80 and the operation line 70 is maintained. Can be suppressed. In a state where the catheter 100 is bent, since the tension is applied to the operation line 70 (70b) in the sub-lumen 80 inside the bent portion, the contact between the operation line 70 and the inner wall of the sub-lumen 80 is suppressed. That is particularly important.
 また、前述したように、カテーテル100が屈曲した場合、メインルーメン20の径方向のサブルーメン80の周壁と操作線70との距離が広がる。一方で、メインルーメン20の周方向側のサブルーメン80の周壁は、操作線70にわずかながら近づく。これにより、サブルーメン80の中心からサブルーメン80の周壁までの距離が比較的均一となり、たとえば、サブルーメン80の断面形状は、略円形形状となる。そのため、中空管82内の操作線70をサブルーメン80内で自由に動かすことができ、操作線70の操作性が向上する。血管等の体腔は、3次元的に屈曲しているため、屈曲したカテーテル100をさらに様々な方向に屈曲させることがある。本実施形態では、カテーテル100が屈曲した状態でも、中空管82内の操作線70をサブルーメン80内で自由に動かすことができるので、非常に有用なものとなる。 As described above, when the catheter 100 is bent, the distance between the peripheral wall of the sub-lumen 80 in the radial direction of the main lumen 20 and the operation line 70 is increased. On the other hand, the peripheral wall of the sub-lumen 80 on the circumferential direction side of the main lumen 20 slightly approaches the operation line 70. Thereby, the distance from the center of the sub-lumen 80 to the peripheral wall of the sub-lumen 80 becomes relatively uniform. For example, the cross-sectional shape of the sub-lumen 80 is a substantially circular shape. Therefore, the operation line 70 in the hollow tube 82 can be freely moved in the sub-lumen 80, and the operability of the operation line 70 is improved. Since a body cavity such as a blood vessel is bent three-dimensionally, the bent catheter 100 may be bent further in various directions. In the present embodiment, even when the catheter 100 is bent, the operation line 70 in the hollow tube 82 can be freely moved in the sub-lumen 80, which is very useful.
 ここで、従来のカテーテルの操作性について、図11を参照して説明する。
 図11には、特許文献1に開示されたカテーテル900の長手方向と直交する断面図が開示されている。
 図11(a)に示すように、カテーテル900は、ワイヤ内腔(サブルーメン)を区画するスパゲッティーチューブ901を有しており、このスパゲッティーチューブ901内に変向ワイヤ902が挿入されている。特許文献1では、製造時に、加圧流体をスパゲッティーチューブ901内に供給し、スパゲッティーチューブ901のつぶれを防止している。そのため、スパゲッティーチューブ901の長手方向に直交する断面形状は、円形となっている。
 このようなカテーテル900を屈曲させた場合、屈曲部分の断面形状は、図11(b)のようになる。屈曲部分の内側部分では、カテーテル900を構成する樹脂が膨張し、スパゲッティーチューブ901がメインルーメンの周方向と直交する径方向にのびて、メインルーメンの周方向の幅が狭くなる。そのため、変向ワイヤ902がスパゲッティーチューブ901と接触しやすくなる。そのため、変向ワイヤ902およびスパゲッティーチューブ901間で摩擦が生じ、カテーテルが曲がった状態での変向ワイヤの操作性が悪化する。また、かりに、カテーテル900を屈曲させた状態で、変向ワイヤ902がスパゲッティーチューブ901に接触しなかったとしても、変向ワイヤ902をスパゲッティーチューブ901の前記幅方向に動かしにくくなるので、変向ワイヤ902の操作性が悪化する。
一方、カテーテル900を屈曲させた場合、変向ワイヤ902の操作性が悪化しないため、円形のスパゲッティーチューブ901の内径を変向ワイヤ902の径より更に大きくなる必要がある。その結果、カテーテル900の径が大きくなってしまう。
これに対し、本実施形態のカテーテル100は、上述したように、カテーテル100が屈曲した状態でも、カテーテル100の径を小さく保持しながら、操作線70の操作性が良好となる。
Here, the operability of the conventional catheter will be described with reference to FIG.
FIG. 11 discloses a cross-sectional view orthogonal to the longitudinal direction of the catheter 900 disclosed in Patent Document 1.
As shown in FIG. 11A, the catheter 900 has a spaghetti tube 901 that partitions a wire lumen (sublumen), and a deflection wire 902 is inserted into the spaghetti tube 901. In Patent Document 1, a pressurized fluid is supplied into the spaghetti tube 901 at the time of manufacture to prevent the spaghetti tube 901 from collapsing. Therefore, the cross-sectional shape orthogonal to the longitudinal direction of the spaghetti tube 901 is a circle.
When such a catheter 900 is bent, the cross-sectional shape of the bent portion is as shown in FIG. In the inner portion of the bent portion, the resin constituting the catheter 900 expands, the spaghetti tube 901 extends in the radial direction perpendicular to the circumferential direction of the main lumen, and the width in the circumferential direction of the main lumen becomes narrow. Therefore, the turning wire 902 can easily come into contact with the spaghetti tube 901. Therefore, friction is generated between the turning wire 902 and the spaghetti tube 901, and the operability of the turning wire is deteriorated when the catheter is bent. Even if the deflecting wire 902 does not contact the spaghetti tube 901 with the catheter 900 bent, the deflecting wire 902 is difficult to move in the width direction of the spaghetti tube 901. The operability of 902 is deteriorated.
On the other hand, when the catheter 900 is bent, the operability of the turning wire 902 is not deteriorated, so that the inner diameter of the circular spaghetti tube 901 needs to be larger than the diameter of the turning wire 902. As a result, the diameter of the catheter 900 is increased.
In contrast, as described above, the catheter 100 of the present embodiment has good operability of the operation line 70 while keeping the diameter of the catheter 100 small even when the catheter 100 is bent.
 さらに、本実施形態では、サブルーメン80を構成する中空管82は、外層12に比べて、引張り弾性率や曲げ剛性の高い材料で構成されている。これに加え、サブルーメン80の長手方向と直交する断面形状が、メインルーメン20の周方向に扁平な扁平形状となっている。換言すると、サブルーメン80の断面形状は、メインルーメン20の周方向と略直交するメインルーメン20の径方向の長さが短いものの、メインルーメン20の周方向の長さが長くなっている。
 そのため、従来のような断面円形形状のサブルーメンを形成する場合に比べて、メインルーメン20の周方向に沿った力、具体的には、シース10をねじるような力に対して、剛性を高めることができる。これにより、シース10のねじり剛性が高まり、シース10が局所的にねじれてしまうことを防止できる。
 なかでも、サブルーメン80は、メインルーメン20の周方向の長さをA、メインルーメン20の径方向の長さをBとした場合、A/Bを1.2~4とすることで、ねじれを防止できるという上記効果を顕著に発揮することができる。
Further, in the present embodiment, the hollow tube 82 constituting the sub-lumen 80 is made of a material having a higher tensile elastic modulus and bending rigidity than the outer layer 12. In addition, the cross-sectional shape orthogonal to the longitudinal direction of the sub-lumen 80 is a flat shape that is flat in the circumferential direction of the main lumen 20. In other words, the cross-sectional shape of the sub-lumen 80 is such that the length in the circumferential direction of the main lumen 20 is long, although the length in the radial direction of the main lumen 20 that is substantially orthogonal to the circumferential direction of the main lumen 20 is short.
Therefore, the rigidity is increased with respect to the force along the circumferential direction of the main lumen 20, specifically, the force that twists the sheath 10, as compared with the case of forming a sub-lumen having a circular cross section as in the past. be able to. Thereby, the torsional rigidity of the sheath 10 is increased, and the sheath 10 can be prevented from being locally twisted.
In particular, the sub-lumen 80 is twisted by setting A / B to 1.2 to 4 when the circumferential length of the main lumen 20 is A and the radial length of the main lumen 20 is B. The above-mentioned effect that can be prevented can be exhibited remarkably.
 また、本実施形態では、サブルーメン80の長手方向と直交する断面において、サブルーメン80を区画する周縁のうち、メインルーメン20側に位置する内周縁と、シース外周側に位置する外周縁とが、シース10の外周側に向かって凸状に円弧状に湾曲している。サブルーメン80の断面形状をこのような形状とすることで、図10に示すように操作線70の位置にばらつきが生じても、メインルーメン20の中心Cから操作線70までの距離rがほぼ同じとなる。そのため、操作線70の位置によらず、操作線70を操作する際の力をほぼ同じ力とすることができ、操作性の高いカテーテル100とすることができる。 Moreover, in this embodiment, in the cross section orthogonal to the longitudinal direction of the sub-lumen 80, among the peripheries that define the sub-lumen 80, an inner peripheral edge located on the main lumen 20 side and an outer peripheral edge located on the sheath outer peripheral side are In addition, the outer surface of the sheath 10 is curved in a convex arc shape. By setting the cross-sectional shape of the sub-lumen 80 to such a shape, the distance r from the center C of the main lumen 20 to the operation line 70 is almost equal even when the position of the operation line 70 varies as shown in FIG. It will be the same. Therefore, regardless of the position of the operation line 70, the force when operating the operation line 70 can be made substantially the same, and the catheter 100 with high operability can be obtained.
 さらに、本実施形態では、中空管82を使用して、サブルーメン80を区画している。サブルーメン80の断面形状を扁平形状とするには、円形の中空管82をメインルーメン20の径方向に向かってつぶせばよいので、扁平形状のサブルーメン80を容易に形成することができる。
 特に、中空管82として、比較的やわらかい材料であるポリテトラフルオロエチレン(PTFE)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)のいずれかを主成分として含む材料を使用しているため、中空管82を容易につぶして、扁平形状のサブルーメン80を形成することができる。
Furthermore, in this embodiment, the sub-lumen 80 is partitioned using the hollow tube 82. In order to make the cross-sectional shape of the sub-lumen 80 flat, the circular hollow tube 82 may be crushed in the radial direction of the main lumen 20, so that the flat sub-lumen 80 can be easily formed.
In particular, the hollow tube 82 is mainly made of a relatively soft material such as polytetrafluoroethylene (PTFE), perfluoroalkoxy fluororesin (PFA), or tetrafluoroethylene / hexafluoropropylene copolymer (FEP). Since the material included as a component is used, the hollow tube 82 can be easily crushed to form a flat-shaped sub-lumen 80.
 また、本実施形態では、カテーテル100を製造する際に、円形の中空管82内に芯線90を配置した後、中空管82をつぶして扁平形状としている。その後、芯線90よりも、径の小さい操作線70を中空管82内に挿入している。これにより、扁平形状となった中空管82の内壁と、操作線70との間に隙間を確実に形成することができ、操作線70の操作のしやすいカテーテル100とすることができる。 In this embodiment, when the catheter 100 is manufactured, the core wire 90 is disposed in the circular hollow tube 82, and then the hollow tube 82 is crushed into a flat shape. Thereafter, the operation wire 70 having a diameter smaller than that of the core wire 90 is inserted into the hollow tube 82. Thereby, a gap can be reliably formed between the inner wall of the hollow tube 82 having a flat shape and the operation line 70, and the catheter 100 can be easily operated.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 たとえば前記実施形態においては二本の操作線と二本のサブルーメン80(80a、80b)のうち、いずれか一本の操作線70(第一操作線70aまたは第二操作線70b)を選択して個別に牽引する態様を例示的に説明したが、本発明はこれに限られない。すなわち、前述したように、三本以上の操作線70をシース10に挿通した上でその一本もしくは二本以上を牽引してもよい。また、二本の操作線70(70a、70b)の先端部71(71a、71b)が、それぞれ別個にシース10の遠位端DEに固定されているが、一本の連続した操作線を用いて、両端部をダイヤル式の操作部に巻き付け、ダイヤルを操作することによって牽引方向や牽引量を調整してもよい。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the embodiment, one of the two operation lines and the two sub-lumens 80 (80a, 80b) is selected as one operation line 70 (the first operation line 70a or the second operation line 70b). However, the present invention is not limited to this. That is, as described above, three or more operation lines 70 may be inserted into the sheath 10 and then one or two or more of them may be pulled. Further, the distal end portions 71 (71a, 71b) of the two operation lines 70 (70a, 70b) are separately fixed to the distal end DE of the sheath 10, but one continuous operation line is used. Then, both ends may be wound around a dial type operation unit, and the towing direction and the amount of towing may be adjusted by operating the dial.
 また、前記医療機器をカテーテルとしたが、これに限られるものではない。
 さらに、前記実施形態では、カテーテル100の製造方法の際、中空管82を外層12に形成された中空部に挿入したが、これに限られるものではない。たとえば、外層12の外周面を切り欠いて、溝を形成し、この溝に中空管82を挿入してもよい。
 また、前記実施形態では、カテーテル100の製造の際に、中空管82内の芯線90を、操作線70と置換したが、芯線90を操作線として使用してもよい。
Moreover, although the said medical device was used as the catheter, it is not restricted to this.
Furthermore, in the above-described embodiment, the hollow tube 82 is inserted into the hollow portion formed in the outer layer 12 during the manufacturing method of the catheter 100. However, the present invention is not limited to this. For example, the outer circumferential surface of the outer layer 12 may be cut out to form a groove, and the hollow tube 82 may be inserted into the groove.
In the above embodiment, the core wire 90 in the hollow tube 82 is replaced with the operation line 70 when the catheter 100 is manufactured. However, the core wire 90 may be used as the operation line.
 さらに、前記実施形態では、中空管82を製造した後、芯線90を挿入したが、芯線90の挿入方法はこれに限られるものではない。
 たとえば、芯線90を被覆するように、中空管82を押し出し(コーティング押し出し)、その後、芯線90の両端部を引っ張って、芯線90を伸張し、縮径させ、中空管82から芯線90を完全に引き剥がす。これにより、中空管82内部に芯線90が遊挿された状態となる。
 その後、中空管82を外層12に形成された中空部(あるいは、上述した溝)に挿入すればよい。
 また、芯線90を被覆するように、中空管82を押し出し(コーティング押し出し)、その後、前記実施形態と同様に、中空管82を外層12に形成された中空部(あるいは、上述した溝)に挿入する。次に、芯線90の両端部を引っ張って、芯線90を伸張し、縮径させ、中空管から芯線90を完全に引き剥がす。そして、中空管82内部に芯線90が遊挿された状態としてもよい。
 このようにすることで、中空管82内に芯線90を挿入する工程を省くことができ、カテーテルの生産性を高めることができる。
Furthermore, in the said embodiment, after manufacturing the hollow tube 82, the core wire 90 was inserted, However, The insertion method of the core wire 90 is not restricted to this.
For example, the hollow tube 82 is extruded (coating extrusion) so as to cover the core wire 90, and then both ends of the core wire 90 are pulled to expand the core wire 90 and reduce the diameter. Remove completely. As a result, the core wire 90 is loosely inserted into the hollow tube 82.
Then, what is necessary is just to insert the hollow tube 82 in the hollow part (or groove | channel mentioned above) formed in the outer layer 12. FIG.
Further, the hollow tube 82 is extruded (coating extrusion) so as to cover the core wire 90, and then the hollow portion (or the groove described above) formed in the outer layer 12 as in the above embodiment. Insert into. Next, the both ends of the core wire 90 are pulled, the core wire 90 is extended and reduced in diameter, and the core wire 90 is completely peeled off from the hollow tube. The core wire 90 may be loosely inserted into the hollow tube 82.
By doing in this way, the process which inserts the core wire 90 in the hollow tube 82 can be skipped, and the productivity of a catheter can be improved.
 さらに、前記実施形態では、4つのサブルーメン80の断面形状を扁平形状としたが、たとえば、操作線70が挿入されていないサブルーメン80の断面形状は扁平形状でなくてもよく、円形形状であっても良い。 Furthermore, in the above-described embodiment, the cross-sectional shape of the four sub-lumens 80 is a flat shape. However, for example, the cross-sectional shape of the sub-bloom 80 in which the operation line 70 is not inserted may not be a flat shape, and may be a circular shape. There may be.
10  シース(管状本体)
11  内層
12  外層(本体部)
15  遠位端部
16  中間部
17  近位端部
20  メインルーメン
30  補強層
31  コイル
40  マーカ
50  コート層
60  操作部
61  軸部
62  ハンドル部
63  把持部
64  スライダ
64a  スライダ
64b  スライダ
70  操作線
70a  第一操作線
70b  第二操作線
71  先端部
71a  先端部
71b  先端部
72  細線
80  サブルーメン
80a  サブルーメン
80b  サブルーメン
82  中空管
82a  中空管
82b  中空管
90  芯線
91  熱収縮チューブ
100  カテーテル
900  カテーテル
901  スパゲッティーチューブ
902  変向ワイヤ
CE  近位端
DE  遠位端
M  マンドレル
PE  近位端
10 Sheath (Tubular body)
11 Inner layer 12 Outer layer (main part)
15 distal end portion 16 intermediate portion 17 proximal end portion 20 main lumen 30 reinforcing layer 31 coil 40 marker 50 coat layer 60 operation portion 61 shaft portion 62 handle portion 63 gripping portion 64 slider 64a slider 64b slider 70 operation line 70a first Operation line 70b Second operation line 71 Tip 71a Tip 71b Tip 72 Fine wire 80 Sublumen 80a Sublumen 80b Sublumen 82 Hollow tube 82a Hollow tube 82b Hollow tube 90 Core wire 91 Heat-shrinkable tube 100 Catheter 900 Catheter 901 Spaghetti tube 902 turning wire CE proximal end DE distal end M mandrel PE proximal end

Claims (13)

  1.  メインルーメンと、前記メインルーメンの周囲に配置され、前記メインルーメンの長手方向に沿って延在するサブルーメンとが形成された管状本体と、
     前記サブルーメン内に配置され、その遠位端が前記管状本体の遠位端に固定された操作線とを備え、
     前記操作線は、前記長手方向と直交する断面が円形であり、
    あるいは、
     前記操作線は、前記長手方向と直交する断面が円形である複数細線を撚りあわせた撚り線であり、
     前記長手方向と直交する前記サブルーメンの断面形状は、前記メインルーメンの周方向に扁平な扁平形状である医療機器。
    A tubular body formed with a main lumen and a sub-lumen disposed around the main lumen and extending along a longitudinal direction of the main lumen;
    An operating line disposed within the sublumen and having a distal end secured to the distal end of the tubular body;
    The operation line has a circular cross section perpendicular to the longitudinal direction,
    Or
    The operation line is a stranded wire formed by twisting a plurality of thin wires having a circular cross section perpendicular to the longitudinal direction,
    A medical device in which a cross-sectional shape of the sublumen orthogonal to the longitudinal direction is a flat shape flat in a circumferential direction of the main lumen.
  2.  請求項1に記載の医療機器において、
     前記操作線は、前記サブルーメン内に摺動可能(スライド可能)に挿入され、
     前記操作線の近位端を牽引することで、前記管状本体の遠位端が屈曲する医療機器。
    The medical device according to claim 1,
    The operation line is slidably inserted into the sub-lumen (slidable),
    A medical device in which a distal end of the tubular body is bent by pulling a proximal end of the operation line.
  3.  請求項1または2に記載の医療機器において、
     前記長手方向と直交する前記サブルーメンの断面形状において、前記メインルーメンの周方向の長さをA、前記メインルーメンの周方向の長さAと直交するメインルーメン径方向の長さをBとした場合、
     A/Bが1.2以上、4以下である医療機器。
    The medical device according to claim 1 or 2,
    In the cross-sectional shape of the sub-lumen that is orthogonal to the longitudinal direction, the length in the circumferential direction of the main lumen is A, and the length in the radial direction of the main lumen that is orthogonal to the circumferential length A of the main lumen is B. If
    A medical device having A / B of 1.2 or more and 4 or less.
  4.  請求項1乃至3のいずれかに記載の医療機器において、
     前記管状本体は、
     内側に前記メインルーメンが形成された樹脂製の管状の本体部と、
     前記本体部に設けられ、前記サブルーメンを区画し、前記長手方向と直交する断面形状が前記メインルーメンの周方向に扁平な扁平形状である中空管とを備える医療機器。
    The medical device according to any one of claims 1 to 3,
    The tubular body is
    A tubular main body made of resin in which the main lumen is formed;
    A medical device provided with the hollow tube which is provided in the main-body part, divides the sub-lumen, and a cross-sectional shape orthogonal to the longitudinal direction is a flat shape flat in the circumferential direction of the main lumen.
  5.  請求項4に記載の医療機器において、
     前記中空管は、前記本体部よりも引っ張り弾性率が高い材料で構成されている医療機器。
    The medical device according to claim 4,
    The said hollow tube is a medical device comprised with the material whose tensile elasticity modulus is higher than the said main-body part.
  6.  請求項4または5に記載の医療機器において、
     前記中空管は、ポリテトラフルオロエチレン、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体からなる群のうち、いずれかを1種以上を主成分として含む医療機器。
    The medical device according to claim 4 or 5,
    The hollow tube is a medical device containing one or more of the group consisting of polytetrafluoroethylene, perfluoroalkoxy fluororesin, and tetrafluoroethylene / hexafluoropropylene copolymer as a main component.
  7.  請求項1乃至6のいずれかに記載の医療機器において、
     前記長手方向と直交する断面において、前記サブルーメンを区画する周縁のうち、前記メインルーメン側に位置する内周縁と、前記管状本体外周側に位置する外周縁とが、前記管状本体外周側に向かって凸状に湾曲している医療機器。
    The medical device according to any one of claims 1 to 6,
    In the cross section perpendicular to the longitudinal direction, of the peripheral edges that define the sub-lumen, an inner peripheral edge located on the main lumen side and an outer peripheral edge located on the outer peripheral side of the tubular body face the outer peripheral side of the tubular body. Medical devices that are curved in a convex shape.
  8.  請求項1乃至7のいずれかに記載の医療機器において、
     当該医療機器はカテーテルである医療機器。
    The medical device according to any one of claims 1 to 7,
    The medical device is a medical device that is a catheter.
  9.  樹脂製の管状の本体部のメインルーメン形成領域の周囲に、
     長手方向と直交する断面が円形形状であるサブルーメンが形成され、内部に芯線が遊挿された中空管が配置された状態とする工程と、
     前記本体部および前記中空管を加熱するとともに、前記本体部の径方向に向かって、前記本体部および中空管を外側から加圧し、前記サブルーメンの前記断面の形状を扁平形状とする工程とを含む医療機器の製造方法。
    Around the main lumen formation area of the resin tubular body,
    A sub-lumen having a circular cross section perpendicular to the longitudinal direction is formed, and a hollow tube having a core wire loosely inserted therein is disposed.
    Heating the main body and the hollow tube, pressurizing the main body and the hollow tube from the outside in the radial direction of the main body, and making the shape of the cross section of the sublumen flat And a method for manufacturing a medical device.
  10.  請求項9に記載の医療機器の製造方法において、
     メインルーメン形成領域の周囲に、前記中空管が配置された状態とする前記工程では、
     前記中空管を構成する材料を押し出しながら、前記材料に対して流体を吐出し、中空部を形成して中空管を形成し、
     得られた中空管の前記中空部内に、前記芯線を挿入する医療機器の製造方法。
    The method of manufacturing a medical device according to claim 9,
    In the step of setting the hollow tube around the main lumen forming region,
    While extruding the material constituting the hollow tube, the fluid is discharged to the material, forming a hollow portion to form a hollow tube,
    The manufacturing method of the medical device which inserts the said core wire in the said hollow part of the obtained hollow tube.
  11.  請求項9に記載の医療機器の製造方法において、
     メインルーメン形成領域の周囲に、前記中空管が配置された状態とする前記工程では、
     前記芯線を被覆するように前記中空管を構成する材料を押し出し、
     その後、前記芯線を伸張して縮径させ、前記芯線を前記中空管から引き剥がして、中空管内部に前記芯線が遊挿された状態とする医療機器の製造方法。
    The method of manufacturing a medical device according to claim 9,
    In the step of setting the hollow tube around the main lumen forming region,
    Extrude the material constituting the hollow tube so as to cover the core wire,
    Thereafter, the core wire is stretched and reduced in diameter, and the core wire is peeled off from the hollow tube so that the core wire is loosely inserted into the hollow tube.
  12.  請求項11に記載の医療機器の製造方法において、
     メインルーメン形成領域の周囲に、前記中空管が配置された状態とする前記工程では、
     前記芯線を被覆するように前記中空管を構成する材料を押し出し、
     前記中空管を、前記本体部に形成された孔あるいは溝に、挿入し、
     その後、前記芯線を伸張し、縮径させ、前記中空管から引き剥がして、中空管内部に芯線が遊挿された状態とする医療機器の製造方法。
    The method of manufacturing a medical device according to claim 11,
    In the step of setting the hollow tube around the main lumen forming region,
    Extrude the material constituting the hollow tube so as to cover the core wire,
    Insert the hollow tube into the hole or groove formed in the main body,
    Thereafter, the core wire is stretched, reduced in diameter, peeled off from the hollow tube, and the core wire is loosely inserted into the hollow tube.
  13.  請求項9乃至12のいずれかに記載の医療機器の製造方法において、
     前記サブルーメンの断面形状を扁平形状とする前記工程後、
     前記芯線を前記サブルーメンから取り出すとともに、前記サブルーメン内に操作線を挿入する工程を実施し、
     前記操作線は、前記長手方向と直交する断面が円形であり、
    あるいは、
     前記操作線は、前記長手方向と直交する断面が円形である複数細線を撚りあわせた撚り線であり、
     前記芯線の径は、前記操作線の径よりも大きい医療機器の製造方法。
    In the manufacturing method of the medical device in any one of Claims 9 thru | or 12,
    After the step of making the cross-sectional shape of the sublumen a flat shape,
    The core wire is removed from the sub-lumen and a process of inserting an operation line into the sub-lumen is performed.
    The operation line has a circular cross section perpendicular to the longitudinal direction,
    Or
    The operation line is a stranded wire formed by twisting a plurality of thin wires having a circular cross section perpendicular to the longitudinal direction,
    The diameter of the said core wire is a manufacturing method of a medical device larger than the diameter of the said operation wire.
PCT/JP2013/066815 2013-06-19 2013-06-19 Medical device and method for manufacturing medical device WO2014203343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066815 WO2014203343A1 (en) 2013-06-19 2013-06-19 Medical device and method for manufacturing medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066815 WO2014203343A1 (en) 2013-06-19 2013-06-19 Medical device and method for manufacturing medical device

Publications (1)

Publication Number Publication Date
WO2014203343A1 true WO2014203343A1 (en) 2014-12-24

Family

ID=52104109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066815 WO2014203343A1 (en) 2013-06-19 2013-06-19 Medical device and method for manufacturing medical device

Country Status (1)

Country Link
WO (1) WO2014203343A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017205662A1 (en) * 2016-05-26 2017-11-30 Boston Scientific Scimed, Inc. Articulating devices
US20180085555A1 (en) * 2016-09-26 2018-03-29 Boston Scientific Scimed, Inc. Injection catheter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184528A (en) * 1992-01-14 1993-07-27 Olympus Optical Co Ltd Bending mechanism of flexible tube
JPH08510152A (en) * 1993-05-10 1996-10-29 インステント インコーポレーテッド Stent delivery system
JP2000512874A (en) * 1996-06-17 2000-10-03 ハートポート インコーポレイテッド Multilumen catheter and method of manufacturing the same
JP2004147737A (en) * 2002-10-29 2004-05-27 Nippon Zeon Co Ltd Balloon catheter and manufacturing method therefor
JP2010227486A (en) * 2009-03-30 2010-10-14 Kawasumi Lab Inc Tubular treatment implement detention device
JP2010284326A (en) * 2009-06-11 2010-12-24 Sumitomo Bakelite Co Ltd Catheter manufacturing method
JP2012034801A (en) * 2010-08-06 2012-02-23 Terumo Corp Suction catheter and method of manufacturing the same
JP2013132432A (en) * 2011-12-27 2013-07-08 Sumitomo Bakelite Co Ltd Medical device and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184528A (en) * 1992-01-14 1993-07-27 Olympus Optical Co Ltd Bending mechanism of flexible tube
JPH08510152A (en) * 1993-05-10 1996-10-29 インステント インコーポレーテッド Stent delivery system
JP2000512874A (en) * 1996-06-17 2000-10-03 ハートポート インコーポレイテッド Multilumen catheter and method of manufacturing the same
JP2004147737A (en) * 2002-10-29 2004-05-27 Nippon Zeon Co Ltd Balloon catheter and manufacturing method therefor
JP2010227486A (en) * 2009-03-30 2010-10-14 Kawasumi Lab Inc Tubular treatment implement detention device
JP2010284326A (en) * 2009-06-11 2010-12-24 Sumitomo Bakelite Co Ltd Catheter manufacturing method
JP2012034801A (en) * 2010-08-06 2012-02-23 Terumo Corp Suction catheter and method of manufacturing the same
JP2013132432A (en) * 2011-12-27 2013-07-08 Sumitomo Bakelite Co Ltd Medical device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017205662A1 (en) * 2016-05-26 2017-11-30 Boston Scientific Scimed, Inc. Articulating devices
US10758709B2 (en) 2016-05-26 2020-09-01 Boston Scientific Scimed, Inc. Articulating devices and methods
US11759610B2 (en) 2016-05-26 2023-09-19 Boston Scientific Scimed, Inc. Articulating devices and methods
US20180085555A1 (en) * 2016-09-26 2018-03-29 Boston Scientific Scimed, Inc. Injection catheter

Similar Documents

Publication Publication Date Title
JP6149855B2 (en) Medical equipment
WO2013146673A1 (en) Medical instrument and method for manufacturing medical instrument
JP5604974B2 (en) catheter
WO2018097258A1 (en) Catheter and method for manufacturing catheter
TWI615161B (en) Medical instrument, catheter and method of producing medical instrument
JP5636656B2 (en) catheter
JP5990907B2 (en) Medical device and method for manufacturing medical device
JP5747449B2 (en) catheter
JP5927974B2 (en) Medical equipment
JP5577902B2 (en) catheter
JP2012213627A (en) Catheter
WO2014203343A1 (en) Medical device and method for manufacturing medical device
JP6319390B2 (en) Medical device and method for manufacturing medical device
JP6137380B2 (en) Medical device manufacturing method
JP2013192692A (en) Medical coil, medical instrument and method for manufacturing medical coil
JP2014018391A (en) Catheter
JP5994335B2 (en) catheter
JP2012061070A (en) Catheter
JP6792587B2 (en) Medical devices and manufacturing methods for medical devices
TW201500071A (en) Medical equipment and method for producing the same
JP2013192632A (en) Medical instrument manufacturing method and medical instrument
JP2013208355A (en) Medical device and method of manufacturing medical device
JP2013158588A (en) Medical coil, medical device and method for producing medical coil
JP2019024919A (en) catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887288

Country of ref document: EP

Kind code of ref document: A1