WO2014196359A1 - Piezoelectric sensor and pressure detection device - Google Patents

Piezoelectric sensor and pressure detection device Download PDF

Info

Publication number
WO2014196359A1
WO2014196359A1 PCT/JP2014/063444 JP2014063444W WO2014196359A1 WO 2014196359 A1 WO2014196359 A1 WO 2014196359A1 JP 2014063444 W JP2014063444 W JP 2014063444W WO 2014196359 A1 WO2014196359 A1 WO 2014196359A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pattern
piezoelectric
piezoelectric sensor
strip
Prior art date
Application number
PCT/JP2014/063444
Other languages
French (fr)
Japanese (ja)
Inventor
裕次 渡津
喜子 末▲富▼
栄二 角谷
啓佑 尾▲崎▼
柴田 淳一
勝己 ▲徳▼野
奥村 秀三
面 了明
Original Assignee
日本写真印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013118296A external-priority patent/JP5797692B2/en
Priority claimed from JP2013118297A external-priority patent/JP5797693B2/en
Priority claimed from JP2013118298A external-priority patent/JP5797694B2/en
Application filed by 日本写真印刷株式会社 filed Critical 日本写真印刷株式会社
Priority to KR1020157035555A priority Critical patent/KR101789905B1/en
Priority to US14/895,872 priority patent/US9864450B2/en
Priority to CN201480031750.3A priority patent/CN105264350B/en
Publication of WO2014196359A1 publication Critical patent/WO2014196359A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based

Definitions

  • the present invention relates to a piezoelectric sensor that generates a piezoelectric signal corresponding to a load, and more particularly to a piezoelectric sensor that can detect a position where a load is applied.
  • Patent Document 1 discloses a transparent piezoelectric sensor including a transparent pressure-sensitive layer and a pair of transparent conductive layers.
  • the transparent piezoelectric sensor of Patent Document 1 can detect a given load, but cannot detect a position where the load is applied in the transparent piezoelectric sensor. .
  • the present invention is configured as follows.
  • the piezoelectric layer is sandwiched between the upper electrode and the lower electrode.
  • At least one of the upper electrode and the lower electrode includes a plurality of pattern electrodes.
  • the upper electrode may include a plurality of first pattern electrodes, and the lower electrode may include a plurality of second pattern electrodes extending in the same direction as the first pattern electrode.
  • the upper electrode may include a plurality of first pattern electrodes, and the lower electrode may include a plurality of second pattern electrodes that intersect the first pattern electrodes.
  • the load when a load is applied to the piezoelectric sensor and a charge is generated from the piezoelectric layer, the load is applied by specifying which electrode among the plurality of pattern electrodes has detected the charge.
  • the position can be specified.
  • the reference electrode may be provided between the upper electrode and the lower electrode.
  • a first piezoelectric layer may be provided between the upper electrode and the reference electrode
  • a second piezoelectric layer may be provided between the lower electrode and the reference electrode.
  • the charges generated in the first piezoelectric layer and the second piezoelectric layer can be detected independently by the upper electrode and the lower electrode.
  • the first pattern electrode may include a first connection part that electrically connects the first electrode part and the first electrode part.
  • the second pattern electrode may also include a second electrode part and a second connection part. Further, the first electrode part may be provided on the piezoelectric layer so as to overlap the second electrode part.
  • the charge generated from the piezoelectric layer can be detected by the first electrode part and the second electrode part, and the position and amount of load applied can be detected.
  • the first electrode part may be arranged so as to overlap with the plurality of second electrode parts via the piezoelectric layer.
  • the number of locations where the first electrode portion and the second electrode portion overlap is greater than in the above case. As a result, the position detection accuracy in the piezoelectric sensor is improved.
  • the first pattern electrode may have a strip shape.
  • the second pattern electrode may have a strip shape.
  • the size of the first pattern electrode in the width direction may increase as it approaches the peripheral edge of the piezoelectric layer.
  • the load detection sensitivity is improved for the peripheral portion of the piezoelectric layer with a small amount of deflection when a load is applied and the load detection sensitivity is poor.
  • the size of the second pattern electrode in the width direction may increase as it approaches the peripheral edge of the piezoelectric layer.
  • the load detection sensitivity is improved for the peripheral portion of the piezoelectric layer with a small amount of deflection when a load is applied and the load detection sensitivity is poor.
  • the pitch interval of the first pattern electrodes may be constant.
  • the pitch interval of the second pattern electrodes may be constant.
  • the first pattern electrode has a concavo-convex shape composed of a convex portion and a concave portion, and the pitch interval of the first pattern electrodes is shorter than the length of the short diameter of the contact surface formed when the input means contacts the piezoelectric sensor. It may be designed. Furthermore, between the adjacent electrodes of the first pattern electrode, the convex portion and the concave portion may be engaged with each other.
  • the second pattern electrode has a concavo-convex shape composed of a convex portion and a concave portion, and the pitch interval of the second pattern electrode is shorter than the length of the minor axis of the contact surface formed when the input means contacts the piezoelectric sensor. It may be designed. Furthermore, between the adjacent electrodes of the second pattern electrode, the convex portion and the concave portion may be configured to mesh with each other.
  • the pressure detection device of the present invention includes a piezoelectric layer, a first electrode, a second electrode, a first detection unit, and a second detection unit.
  • the first electrode is laminated on the first main surface side of the piezoelectric layer.
  • the first electrode includes a pattern electrode.
  • the pattern electrode includes an L-type reference electrode and an L-type electrode.
  • the L-type reference electrode is an L-shaped electrode in which two sides are combined.
  • the L-type electrode is a plurality of L-shaped electrodes arranged at an interval in one direction from the two sides of the L-type reference electrode, and the end side of the L-type electrode is the end of the L-type reference electrode. It is arranged on the extended line of the side.
  • the number of the L-type reference electrode and the L-type electrode arranged varies depending on the position in the one direction.
  • the L-type reference electrode and the L-type electrode are connected to the L-type reference electrode detection unit and the L-type electrode of the first electrode. Therefore, when a load is applied to the piezoelectric layer, the number of L-type reference electrode detection units and L-type electrode detection units that detect charges differs depending on the position in the one direction where the load is applied. Therefore, by specifying the number of detection units that have detected charges, the position in one direction to which a load is applied can be specified.
  • the second electrode is laminated on the second main surface side of the piezoelectric layer.
  • the second electrode includes a plurality of strip-like electrodes that are arranged in a direction perpendicular to the one direction and cover the pattern electrode.
  • the second detection unit includes a strip electrode detection unit that is independently connected to the strip electrode.
  • the position in the direction perpendicular to the one direction where the load is applied can be specified by specifying the type of the strip-shaped electrode detection unit that detects the electric charge. .
  • the position to which the load is applied can be specified by combining the position information obtained by the first electrode detection unit and the second electrode detection unit.
  • the pressure detection device of the present invention includes a piezoelectric layer, a first electrode, two electrodes, a first detection unit, and a second detection unit.
  • the first electrode is laminated on the first main surface side of the piezoelectric layer.
  • the first electrode includes a strip-shaped pattern electrode composed of a plurality of strip-shaped electrodes arranged in one direction.
  • the second electrode includes a stepping portion, a step portion, and a connection portion.
  • the stepping portion is disposed between the strip electrodes.
  • the step portion connects the stepped portions.
  • the step portion intersects with the strip electrode in a one-to-one correspondence.
  • the connection part connects the start point of the stepping part and the end point of the step part.
  • the 1st detection part is provided with the strip
  • the second detection unit includes a plurality of strip electrode detection units connected to the plurality of step electrodes.
  • the number of overlapping strip electrodes and staircase electrodes varies depending on the position in the above one direction.
  • the strip electrode is connected to the strip electrode detector. Therefore, when a load is applied to the piezoelectric layer, the number of strip-shaped electrode detection units that detect charges varies depending on the position in the one direction. Therefore, by specifying the number of detection units that have detected charges, the position in one direction to which a load is applied can be specified.
  • the second electrode is laminated on the second main surface side of the piezoelectric layer.
  • the second electrode includes a staircase electrode.
  • the second detection unit includes a staircase electrode detection unit that is independently connected to the staircase electrode.
  • the position in the direction perpendicular to the one direction where the load is applied can be specified. It is like that.
  • the position where the load is applied can be specified.
  • the piezoelectric layer has an active piezoelectric portion and an inactive piezoelectric portion, and a first pattern electrode may be laminated on the active piezoelectric portion.
  • the piezoelectric layer has an active piezoelectric portion and an inactive piezoelectric portion, and a second pattern electrode may be laminated on the active piezoelectric portion.
  • the upper electrode may contain indium tin oxide or polyethyldioxothiophene.
  • a piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
  • the lower electrode may contain indium tin oxide or polyethyldioxothiophene.
  • the piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
  • the piezoelectric layer may be composed of an organic piezoelectric material.
  • the piezoelectric sensor can be arranged on an R curved surface.
  • the organic piezoelectric material may contain polyvinylidene fluoride or polylactic acid.
  • the piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
  • the piezoelectric layer may be made of an inorganic material.
  • the pressure detection device may have a touch panel laminated on the piezoelectric sensor.
  • the load position can be detected even when the load is hardly applied to the piezoelectric sensor.
  • the capacitive touch panel may be a capacitive touch panel.
  • position detection can be performed within the piezoelectric sensor.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. It is a top view of a piezoelectric sensor.
  • FIG. 4 is a B-B ′ sectional view of FIG. 3. It is a top view of a piezoelectric sensor.
  • FIG. 6 is a C-C ′ sectional view of FIG. 5. It is a top view of a piezoelectric sensor. It is a top view of a piezoelectric sensor. It is a top view of a piezoelectric sensor. It is a top view of a piezoelectric sensor. It is a top view of a piezoelectric sensor. It is a top view of a piezoelectric sensor. It is D-D 'sectional drawing of FIG.
  • FIG. 22 is a B-B ′ sectional view of FIG. 21. It is a top view of a piezoelectric sensor. It is C-C 'sectional drawing of FIG. It is sectional drawing of a piezoelectric sensor.
  • FIG. 33 is a B-B ′ sectional view of FIG. 32. It is a conceptual diagram of a pressure detection apparatus. It is a conceptual diagram of a pressure detection apparatus. It is sectional drawing of a piezoelectric sensor. It is sectional drawing of the pressure detection apparatus which combined the piezoelectric sensor and the touchscreen.
  • FIG. 1 is a schematic view of a pressure detection device.
  • FIG. 2 is a sectional view of the piezoelectric sensor.
  • the pressure detection device has a function of detecting the amount and position of a given load.
  • the pressure detection device 1 includes a piezoelectric sensor 10, a detection unit 20, and a control unit 30.
  • the piezoelectric sensor 10 is a device that generates an electric charge according to a given load.
  • the detection unit 20 is a device that detects charges generated by the piezoelectric sensor 10.
  • the control unit 30 is a device that controls the switch S installed in the piezoelectric sensor 10. Below, the structure of the pressure detection apparatus 1 is demonstrated in detail.
  • the piezoelectric sensor 10 has a configuration in which a piezoelectric layer 11 is sandwiched between an upper electrode 12 and a lower electrode 13.
  • the upper electrode 12 is laminated on the upper surface of the piezoelectric layer 11, and the lower electrode 13 is laminated on the lower surface of the piezoelectric layer 11.
  • the upper electrode 12 includes a strip-shaped first pattern electrode 14.
  • a plurality of first pattern electrodes 14 are arranged in the Y-axis direction.
  • the lower electrode 13 is planar.
  • the control unit 30 determines which of the first pattern electrodes 14 among the plurality of first pattern electrodes 14 the charges detected by the detection unit 20 are detected by the detection unit 20. It can be specified by detecting with.
  • Piezoelectric layer Examples of the material constituting the piezoelectric layer 11 include inorganic piezoelectric materials and organic piezoelectric materials.
  • inorganic piezoelectric materials include barium titanate, lead titanate, lead zirconate titanate, potassium niobate, lithium niobate, and lithium tantalate.
  • Examples of the organic piezoelectric material include a fluoride polymer or a copolymer thereof, and a polymer material having chirality.
  • Examples of the fluoride polymer or a copolymer thereof include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer.
  • Examples of the polymer material having chirality include L-type polylactic acid and R-type polylactic acid.
  • the piezoelectric portion is made of a transparent material or thin enough to allow light to pass therethrough.
  • Electrode The upper electrode 12 and the lower electrode 13 can be comprised with the material which has electroconductivity.
  • the conductive material include transparent conductive oxides such as indium-tin oxide (ITO), tin-zinc oxide (Tin), polyethylene dioxythiophene A conductive polymer such as (Polyethylenedioxythiophene, PEDOT) can be used.
  • the electrode can be formed by using vapor deposition or screen printing.
  • a conductive metal such as copper or silver may be used as the conductive material.
  • the electrode may be formed by vapor deposition, or may be formed using a metal paste such as a copper paste or a silver paste.
  • a conductive material a material in which conductive materials such as carbon nanotubes, metal particles, and metal nanofibers are dispersed in a binder may be used.
  • the detection unit 20 has two inputs. One input is connected to the upper electrode 12. The other input is connected to the lower electrode 13.
  • the detection unit 20 can detect the electric charge generated between the upper electrode 12 and the lower electrode 13 (that is, between both main surfaces of the piezoelectric layer 11) when the piezoelectric layer 11 is pressed.
  • the detection unit 20 can use a detection device that combines an AD converter and an amplifier.
  • Control Unit 30 is connected to the switch S that connects the upper electrode 12 and the detection unit 20 and the switch S that connects the lower electrode 13 and the detection unit 20.
  • the control unit 30 has a function of outputting an ON / OFF switching signal for the switch S.
  • the control unit 30 can be included in the drive system of the pressure detection device 1, for example.
  • the drive system may be a microcomputer including a CPU (Central Processing Unit), a storage unit, and an interface for driving a piezoelectric sensor.
  • the drive system may be integrated into one IC by a custom IC or the like.
  • control unit may be realized by causing a CPU or a custom IC to execute a program stored in a storage unit such as the microcomputer or the custom IC.
  • the pressure detection device 1 when the pressure detection device 1 is configured, the charge generated between the upper electrode 12 and the lower electrode 13 can be detected using the control unit 30. Then, it is possible to calculate the position and amount where the load is applied from the detected electric charge. Similarly, when there are a plurality of places where the load is applied, the position of each place and the amount of the load can be detected. That is, the pressure detection device 1 has a configuration capable of multi-force detection.
  • the lower electrode 13 has a planar shape and does not have a pattern shape, but the lower electrode 13 may have a second pattern electrode 15.
  • FIG. 3 is a plan view of the piezoelectric sensor according to the second embodiment. 4 is a cross-sectional view taken along the line B-B 'of FIG.
  • the lower electrode 13 includes a strip-shaped second pattern electrode 15.
  • a plurality of first pattern electrodes 14 and second pattern electrodes 15 are arranged in the Y-axis direction.
  • the first pattern electrode 14 is stacked on the second pattern electrode 15 via the piezoelectric layer 11.
  • the first pattern electrode 14 is laminated on the piezoelectric layer 11 so as to follow the shape of the second pattern electrode 15.
  • the amount of load applied to the piezoelectric sensor 10 can be specified by measuring the amount of charge detected by the detection unit 20.
  • the load position the charge detected by the detection unit 20 passes through the first pattern electrode 14 and the second pattern electrode 15 among the plurality of first pattern electrodes 14 and second pattern electrodes 15. It can be specified by detecting by the control unit 30 whether it has been detected by the detection unit 20. Thereby, the position of the place where the load was loaded and the load amount of the loaded load can be detected.
  • the first pattern electrode 14 and the second pattern electrode 15 are arranged in the Y-axis direction of the piezoelectric layer 11. However, the first pattern electrode 14 and the second pattern electrode 15 are arranged in the X-axis direction. May be.
  • FIG. 5 is a plan view of the piezoelectric sensor according to the third embodiment. 6 is a cross-sectional view taken along the line C-C ′ of FIG. 5.
  • the first pattern electrode 14 is laminated on the piezoelectric layer 11 across the plurality of second pattern electrodes 15.
  • the number of first pattern electrodes 14 stacked on the second pattern electrode 15 via the piezoelectric layer 11 is increased as shown in FIG. 6 (in the case of the second embodiment).
  • the number of overlapping portions of the first pattern electrode 14 and the second pattern electrode 15 is 4.
  • the number of overlapping portions of the second pattern electrode 15 is eight).
  • the length in the width direction of the first pattern electrode 14 and the second pattern electrode 15 is constant, but as the length approaches the peripheral portion of the piezoelectric layer 11, the length is increased. You may be comprised so that it may become long.
  • FIG. 7, 8, and 9 are plan views of the piezoelectric sensor according to the third embodiment.
  • the upper electrode 12 includes first pattern electrodes 14 arranged in a plurality in the Y-axis direction.
  • Fixing members W for fixing the piezoelectric sensor 10 are provided at both ends of the piezoelectric sensor 10 in the Y-axis direction.
  • the fixing member W is composed of an adhesive material or a fixing frame.
  • the upper electrode 12 is configured such that the first pattern electrode 14 having a wider electrode width is disposed closer to the both end portions.
  • the second pattern electrode 15 of the lower electrode 13 (dotted line portion in FIG. 7).
  • fixing members W for fixing the piezoelectric sensor 10 may be provided at both ends in the X-axis direction of the piezoelectric sensor 10.
  • the upper electrode 12 includes a first electrode pattern 14 having a neck shape in which the width of the electrode becomes wider as it approaches the both end portions.
  • the second pattern electrode 15 of the lower electrode 13 (dotted line portion in FIG. 8).
  • a fixing member W for fixing the piezoelectric sensor 10 may be provided on the periphery of the piezoelectric sensor 10.
  • the upper electrode 12 may have a structure combining the above. That is, the upper electrode 12 includes a first electrode pattern 14 having a neck shape that increases in width as it approaches both ends in the X-axis direction. The first electrode pattern electrode 14 approaches the both ends in the Y-axis direction. The electrode may have a wide width. The same applies to the second pattern electrode 15 (dotted line portion in FIG. 9).
  • the upper electrode 1 when the fixing members W are provided at both ends of the piezoelectric sensor 10 in the Y-axis direction, the upper electrode 1 has a first electrode pattern 14 having a larger electrode width as it approaches both ends in the Y-axis direction.
  • the upper electrode 12 has a wedge-shaped first shape in which the electrode width increases as it approaches both ends in the X-axis direction.
  • the first pattern electrodes 14 may be arranged on the piezoelectric layer 11 so that the pitch interval L between the first pattern electrodes 14 is constant.
  • the second pattern electrodes 15 may also be arranged on the piezoelectric layer 11 so that the pitch interval l between the second pattern electrodes 15 is constant. If comprised in this way, since the 1st pattern electrode 14 and the 2nd pattern electrode 15 are arrange
  • the pitch interval is a distance from the center portion of the electrode to the center portion of the adjacent electrode.
  • the first pattern electrode 14 and the second pattern electrode 15 are not limited to other ones as long as they extend in the same direction. Therefore, the shape of the first pattern electrode 14 and the second pattern electrode 15 is not particularly limited to a belt shape. Hereinafter, the shape of the electrode will be described.
  • FIG. 10 is a plan view of the piezoelectric sensor according to the fifth embodiment.
  • the first pattern electrode 14 has an uneven shape.
  • This concavo-convex shape is a repetitive shape corresponding to a convex portion and a concave portion.
  • the first pattern electrode 14 is arranged on the piezoelectric layer 11 so that the convex portion and the concave portion are engaged with each other in the first pattern electrode 14.
  • the pitch length L of the first pattern electrode is designed to be shorter than the length of the short diameter of the contact surface when the input means (for example, a finger or a stylus pen) and the pressure sensor 10 are in contact.
  • the input means for example, a finger or a stylus pen
  • the pitch length L of the convex portion is 1 mm to 16 mm
  • the stylus pen is 0.5 mm to 4 mm.
  • the input unit and the pressure sensor 10 are in contact with each other, the input unit is in contact with many first pattern electrodes 14 as compared with the case where the shape of the first pattern electrode 14 is a strip shape. As a result, more accurate position detection and load detection are possible.
  • the 2nd pattern electrode 15 may have uneven
  • the pitch length l of the convex portion of the second pattern electrode 15 is designed to be shorter than the length of the short diameter of the contact surface when the input means and the pressure sensor 10 are in contact.
  • FIG. 11 is a plan view of the piezoelectric sensor according to the sixth embodiment. 12 is a cross-sectional view taken along the line D-D ′ of FIG. 11.
  • the first pattern electrode 14 includes a plurality of first electrode portions 16 arranged in the X-axis direction and a first connection portion 17 that electrically connects the first electrode portions 16 to each other.
  • the second pattern electrode 15 includes a plurality of second electrode portions 18 (FIG. 11: diamond dotted line portions) arranged in the X-axis direction and a second connection portion 19 (FIG. 11) that electrically connects the second electrode portions 18 to each other. : Dotted line part).
  • the shape of the 1st electrode part 16 and the 1st electrode part 18 was shown by the rhombus shape in FIG. 9, polygonal shapes, such as a triangle and a quadrangle
  • the first electrode portion 16 is laminated on the piezoelectric layer 11 so as to follow the shape of the second electrode portion 18. Then, when an input means (for example, a finger or a stylus pen) comes into contact with the first electrode unit 16, the charge generated in the piezoelectric layer 11 passes through the first electrode unit 16 and the second electrode unit 18 and is detected by the detection unit 20. Detected. At this time, the amount of load applied to the piezoelectric sensor 10 can be specified by measuring the amount of charge detected by the detection unit 20. As for the load position, the charge detected by the detection unit 20 passes through the first pattern electrode 14 and the second pattern electrode 15 among the plurality of first pattern electrodes 14 and second pattern electrodes 15. It can be specified by detecting by the control unit 30 whether it has been detected by the detection unit 20.
  • an input means for example, a finger or a stylus pen
  • the method of laminating the first pattern electrode 14 and the second pattern electrode 15 is not limited to the case where the first electrode portion 16 is laminated on the piezoelectric layer 11 so as to follow the shape of the second electrode portion 18.
  • other arrangement methods will be described. Since the basic configuration is the same as that of the sixth embodiment, only the differences will be described.
  • FIG. 13 is a plan view of the piezoelectric sensor according to the seventh embodiment.
  • 14 is a cross-sectional view taken along the line E-E 'of FIG.
  • first pattern electrodes 14 are arranged in the Y-axis direction. Further, the first pattern electrode 14 is disposed on the piezoelectric layer 11 so as to mesh with each other. The second pattern electrode is also disposed on the piezoelectric layer 11 so as to be engaged with each other between the adjacent second pattern electrodes 15.
  • the 1st electrode part 16 is arrange
  • the piezoelectric sensor 10 When the piezoelectric sensor 10 is configured as described above, the number of the first electrode portions 16 stacked on the second electrode portion 18 is increased (in the case of the sixth embodiment, as shown in FIG. The number of overlapping portions of the electrode portion 16 and the second electrode portion 18 is three, whereas in the case of the seventh embodiment, it is six as shown in FIG. As a result, since the number of detection points increases, the position detection accuracy and load detection accuracy when the input means contacts the piezoelectric sensor 10 are improved.
  • the first pattern electrodes 14 are arranged so as to mesh with each other, so that the electrodes are spread on the piezoelectric layer 10 without any gaps. This is the same when the second pattern electrodes 15 are arranged so as to mesh with each other. As a result, the piezoelectric sensor 10 is difficult to see the pattern shapes of the first pattern electrode 14 and the second pattern electrode 15 pattern electrode.
  • the piezoelectric layer 11 may be patterned so as to have an active portion and an inactive portion.
  • FIG. 15 is a cross-sectional view of the piezoelectric sensor according to the eighth embodiment.
  • the piezoelectric layer 11 includes an active piezoelectric portion 110 and an inactive piezoelectric portion 111.
  • the active piezoelectric portion 110 is a portion where electric charges are generated when a load is applied to the piezoelectric sensor 10.
  • the inactive piezoelectric portion 111 is a portion where no charge is generated even when a load is applied.
  • the first pattern electrode 14 and the second pattern electrode 15 are disposed above and below the active piezoelectric portion 110. With such a configuration, it is possible to prevent electric charges generated near the first pattern electrode 14 from leaking and mixing into other first pattern electrodes 14 (a crosstalk phenomenon can be prevented). As a result, position detection accuracy and load detection accuracy are improved.
  • the active piezoelectric portion 110 or the active piezoelectric portion is interposed between the active piezoelectric portion 110 and the first pattern electrode 14.
  • insulating materials such as an adhesive agent and a film, may be laminated
  • FIG. 16 is a cross-sectional view of the piezoelectric sensor according to the ninth embodiment.
  • the piezoelectric sensor 10 of the ninth embodiment includes a reference electrode 40 between the upper electrode 12 and the lower electrode 13.
  • a first piezoelectric layer 11 a is provided between the upper electrode 12 and the reference electrode 40.
  • the second piezoelectric layer 11b is provided between the lower electrode 13 and the reference electrode 40.
  • the material of the first piezoelectric layer 11 a and the second piezoelectric layer 11 b is the same as that of the piezoelectric layer 11.
  • the material of the reference electrode 40 is also the same as that of the upper electrode 12 and the lower electrode 13.
  • the reference electrode 40 when the reference electrode 40 is provided between the upper electrode 12 and the lower electrode 13, the charges generated in the first piezoelectric layer 11 a and the second piezoelectric layer 11 b are independently generated by the upper electrode 12 and the lower electrode 13. Can be detected. As a result, the design of the detection circuit is simplified.
  • the direction in which a plurality of first pattern electrodes 14 are arranged and the direction in which a plurality of second pattern electrodes 15 are arranged are the same direction, but a plurality of first pattern electrodes 14 are arranged. And the direction in which a plurality of second pattern electrodes 15 are arranged may intersect each other.
  • FIG. 17 is a schematic view of a pressure detection device according to the tenth embodiment.
  • 18 is a cross-sectional view taken along the line A-A 'of FIG.
  • the pressure detection device 1 in the tenth embodiment also includes a piezoelectric sensor 10, a detection unit 20, and a control unit 30.
  • the piezoelectric sensor 10 is a device that generates an electric charge according to a given load.
  • the detection unit 20 is a device that detects charges generated by the piezoelectric sensor 10.
  • the control unit 30 is a device that controls the switch S installed in the piezoelectric sensor 10.
  • the upper electrode 12 in the tenth embodiment includes a strip-shaped first pattern electrode 14.
  • a plurality of first pattern electrodes 14 are arranged in the Y-axis direction.
  • the lower electrode 13 in the tenth embodiment also includes a strip-shaped second pattern electrode 15. The difference from the second embodiment is that a plurality of second pattern electrodes 15 in the tenth embodiment are arranged in the X-axis direction.
  • the amount of load applied to the piezoelectric sensor 10 can be specified by measuring the amount of charge detected by the detection unit 20.
  • the load position which first pattern electrode 14 and second pattern electrode 15 out of the plurality of first pattern electrodes 14 and second pattern electrodes 15 detected by the detection unit 20 pass through. Can be identified by the control unit 30.
  • the first pattern electrode 14 is arranged in the Y-axis direction of the piezoelectric layer 11 and the second pattern electrode 15 is arranged in the X-axis direction.
  • the first pattern electrode 14 and the second pattern are arranged. The arrangement position of the electrodes 15 may be switched.
  • the length in the width direction of the first pattern electrode 14 and the second pattern electrode 15 intersecting in the arrangement direction is constant. You may be comprised so that it may become long as it approaches.
  • FIG. 19 is a plan view of the piezoelectric sensor according to the eleventh embodiment.
  • a fixing member W for fixing the piezoelectric sensor 10 is provided on the peripheral edge of the piezoelectric sensor 10.
  • the fixing member W is an adhesive material or a fixing frame.
  • the first pattern electrode 14 whose electrode width increases as it approaches the peripheral edge of the piezoelectric sensor 10 may be disposed.
  • the piezoelectric sensor 10 When the piezoelectric sensor 10 is fixed by the fixing member W or the like, when a load is applied to the pressure-sensitive sensor 10, the bending force is hardly transmitted to a location where the fixing member W is provided or a location in the vicinity thereof. For this reason, it is difficult to detect the load at the above-described places.
  • an electrode having a wider electrode width is arranged to improve the physical detection sensitivity, thereby detecting the vicinity of the fixing member W where it is difficult to detect the load. It is possible.
  • first pattern electrodes 14 are arranged on the piezoelectric layer 11 so that the pitch interval L of the first pattern electrodes 14 is constant.
  • the second pattern electrodes 15 are also arranged below the piezoelectric layer 11 so that the pitch interval l between the second pattern electrodes 15 is constant. If comprised in this way, since the 1st pattern electrode 14 and the 2nd pattern electrode 15 are arranged on the piezoelectric layer 11 at equal intervals, in addition to the above, an exact position detection is attained.
  • the shapes of the first pattern electrode 14 and the second pattern electrode 15 are The belt shape is not particularly limited.
  • FIG. 20 is a plan view of the piezoelectric sensor according to the twelfth embodiment.
  • the first pattern electrode 14 has an uneven shape.
  • This concavo-convex shape is a repetitive shape corresponding to a convex portion and a concave portion.
  • the convex portion and the concave portion are arranged so as to mesh with each other between the adjacent first pattern electrodes 14.
  • the pitch length L of the first pattern electrode 14 is designed to be shorter than the length of the short diameter of the contact surface when the input means (for example, a finger or a stylus pen) and the pressure sensor 10 are in contact with each other. Yes.
  • the pitch length L of the convex portion is 1 mm to 16 mm
  • the pitch length L is 0.5 mm to 4 mm.
  • the input means and the pressure sensor come into contact with each other, the input means comes into contact with more first pattern electrodes 14 as compared with the case where the shape of the first pattern electrode 14 is a band shape. As a result, more accurate position detection and load detection are possible than in the above case.
  • the second pattern electrode 15 may be disposed below the first pattern electrode 14 via the piezoelectric layer 11 so as to follow the shape of the first pattern electrode 14.
  • FIG. 21 is a plan view of the piezoelectric sensor according to the thirteenth embodiment. 22 is a cross-sectional view taken along the line B-B ′ of FIG. 21.
  • the first pattern electrode 14 includes a plurality of first electrode portions 16 that are arranged in the X-axis direction and a first connection portion 17 that electrically connects the first electrode portions 16 to each other.
  • the second pattern electrode 15 includes a plurality of second electrode portions 18 (FIG. 21: rhombus dotted line portions) arranged in the Y-axis direction and a second connection portion 19 (FIG. 21) that electrically connects the second electrode portions 18 to each other. : Dotted line part).
  • the shape of the 1st electrode part 16 and the 1st electrode part 18 was shown by the rhombus shape in FIG. 21, polygon shape, such as a triangle and a quadrangle
  • the first electrode portion 16 is laminated on the piezoelectric layer 11 so as to follow the shape of the second electrode portion 18. Then, when an input means (for example, a finger or a stylus pen) comes into contact with the first electrode unit 16, the charge generated in the piezoelectric layer 11 is detected by the detector 20 via the first electrode unit 16 and the second electrode unit 18. Is done.
  • the detection of the touched position can be specified by detecting which first pattern electrode 14 and second pattern electrode 15 the detected charge has passed through by the control unit 20.
  • the load amount can be detected by specifying the charge amount detected by the detection unit 20.
  • FIG. 23 is a plan view of the piezoelectric sensor according to the fourteenth embodiment. 24 is a cross-sectional view taken along the line C-C ′ of FIG. 23.
  • the first electrode portion 16 is laminated on the piezoelectric layer 11 across the plurality of second electrode portions 18.
  • the number of overlapping portions of the first electrode portion 16 and the second electrode portion 18 is increased compared to the case of the thirteenth embodiment.
  • the position detection accuracy and load detection accuracy when the input means contacts the piezoelectric sensor 10 are improved.
  • the piezoelectric layer 11 may be patterned so as to have an active portion and an inactive portion.
  • 25 and 26 are cross-sectional views of the piezoelectric sensor according to the fifteenth embodiment.
  • the piezoelectric layer 11 includes an active piezoelectric portion 110 and an inactive piezoelectric portion 111.
  • the active piezoelectric portion 110 is a portion where electric charges are generated when a load is applied to the piezoelectric sensor 10.
  • the inactive piezoelectric portion 111 is a portion where no charge is generated even when a load is applied.
  • the first pattern electrode 14 is stacked on the active piezoelectric portion 110, and the second pattern electrode 15 is stacked below the active piezoelectric portion 110 and the inactive piezoelectric portion 111.
  • the second pattern electrode 15 is laminated below the active piezoelectric portion 110, and the first pattern electrode 14 is laminated on the active piezoelectric portion 110 and the inactive piezoelectric portion 111. Also good.
  • the active piezoelectric portion 110 or the active piezoelectric portion is interposed between the active piezoelectric portion 110 and the first pattern electrode 14.
  • insulating materials such as an adhesive agent and a film, may be laminated
  • FIG. 27 is a sectional view of the piezoelectric sensor according to the sixteenth embodiment.
  • a reference electrode 40 is provided between the upper electrode 12 and the lower electrode 13.
  • a first piezoelectric layer 11 a is provided between the upper electrode 12 and the reference electrode 40.
  • the second piezoelectric layer 11b is provided between the lower electrode 13 and the reference electrode 40.
  • the material of the first piezoelectric layer 11 a and the second piezoelectric layer 11 b is the same as that of the piezoelectric layer 11.
  • the material of the reference electrode 40 is also the same as that of the upper electrode 12 and the lower electrode 13.
  • the reference electrode 40 when the reference electrode 40 is provided between the upper electrode 12 and the lower electrode 13, the charges generated in the first piezoelectric layer 11 a and the second piezoelectric layer 11 b are independently generated by the upper electrode 12 and the lower electrode 13. Can be detected. As a result, the design of the detection circuit is simplified.
  • FIG. 28 is a schematic view of a pressure detection device.
  • 29 is a cross-sectional view taken along the line AA ′ in FIG.
  • the pressure detection device 1 includes a piezoelectric sensor 10 and a detection unit 20.
  • the piezoelectric sensor 10 is a device that generates an electric charge according to a given load.
  • the detection unit 20 is a device that detects charges generated in the piezoelectric layer 11. Below, the structure of the pressure detection apparatus 1 is demonstrated in detail.
  • the piezoelectric sensor 10 includes a piezoelectric layer 11, and an upper electrode (first electrode) 12 and a lower electrode (second electrode) 13 sandwiching the piezoelectric layer 11.
  • the first electrode 12 is disposed on the first main surface side of the piezoelectric layer 11, and the second electrode 13 is disposed on the second main surface side opposite to the first main surface side of the piezoelectric layer 11.
  • a reference electrode may be provided between the first electrode 12 and the second electrode 13.
  • the first electrode 12 includes a first pattern electrode 120, a second pattern electrode 121, and a third pattern electrode 122.
  • the electrode pattern is arranged in the Y-axis direction.
  • Each of the pattern electrodes includes an L-type reference electrode 123 and an L-type electrode 124.
  • the L-type reference electrode 123 is disposed outside the L-type electrode 124 and has two sides. Of the two sides, the short side is arranged in the Y-axis direction, and the long side is arranged in the X-axis direction orthogonal to the Y-axis direction.
  • a plurality of L-type electrodes 124 are arranged inside the L-type reference electrode 123.
  • the L-type electrode 124 includes a first L-type electrode 125, a second L-type electrode 126, and a third L-type electrode 127.
  • the short sides of the first L-type electrode 125 to the third L-type electrode 127 are arranged in the Y-axis direction, and the long sides are arranged in the X-axis direction. Further, the end of the short side of the L-type electrode 124 is disposed on an extension line of the end of the short side of the L-type reference electrode 123, and the end of the long side is the end of the long side of the L-type reference electrode 123. It is arranged on the extension line.
  • first L-type electrode 125 is disposed inside the L-type reference electrode 123.
  • the second L-type electrode 126 is disposed inside the first L-type electrode 125.
  • the third L-type electrode 127 is disposed inside the second L-type electrode 126.
  • the second electrode 13 includes a plurality of strip electrodes.
  • the strip electrode is composed of a first strip electrode 130, a second strip electrode 131, and a third strip electrode 132 arranged in the Y-axis direction.
  • the strip electrode covers the electrode pattern of the first electrode portion 12 via the piezoelectric layer 11. That is, the first strip electrode 130 covers the first pattern electrode 120, the second strip electrode 131 covers the second pattern electrode 121, and the third strip electrode 132 covers the third pattern electrode 122.
  • the first electrode 12 includes the three pattern electrodes from the first pattern electrode 120 to the third pattern electrode 122 .
  • Electrode The 1st electrode 12 and the 2nd electrode 13 can be comprised with the material which has the same electroconductivity as having shown in "1. 1st Embodiment.”
  • Piezoelectric layer 11 examples of the material constituting the piezoelectric layer 11 include inorganic piezoelectric materials and organic piezoelectric materials similar to those described in “1. First embodiment”.
  • the piezoelectric layer is made of a transparent material so that the display of the display device can be seen, or It is preferable that the thickness be thin enough to transmit light sufficiently.
  • the detection unit 20 includes a first detection unit 21 and a second detection unit 22.
  • the first detection unit 21 includes an L-type reference electrode detection unit 210, a first L-type electrode detection unit 211, a second L-type electrode detection unit 212, and a third L-type electrode detection unit 213.
  • the L-type reference electrode detection unit 210 is connected to each L-type reference electrode 123.
  • the first L-type electrode detector 211 is connected to each first L-type electrode 125
  • the second L-type electrode detector 212 is connected to each second L-type electrode 126
  • the third L-type electrode detector 213 is Are connected to each third L-type electrode 127.
  • the L-type reference electrode detector 210 can detect charges generated in the piezoelectric layer 11 disposed under the L-type reference electrode 123 when the piezoelectric layer 11 is pressed. Regarding the charges generated in the piezoelectric layer 11 disposed below the first L-type electrode 125, the second L-type electrode 126, and the third L-type electrode 127, the first L-type electrode detection unit 211, the second L-type electrode detection unit 212, It can be detected by the third L-type electrode detector 213.
  • the second detection unit 22 includes a first strip electrode detection unit 220, a second strip electrode detection unit 221, and a third strip electrode detection unit 222.
  • the first strip electrode detector 220 is connected to the first strip electrode 130.
  • the second strip electrode detector 221 is connected to the second strip electrode 131
  • the third strip electrode detector 222 is connected to the third strip electrode 132.
  • the first strip electrode detection unit 220 can detect the charge generated in the piezoelectric layer 11 disposed below the first strip electrode 130 when the piezoelectric layer 11 is pressed.
  • the charges generated in the piezoelectric layer 11 disposed below the second strip electrode 131 and the third strip electrode 132 can be detected by the second strip electrode detector 221 and the third strip electrode detector 222, respectively.
  • the L-type reference electrode 123, the first L-type electrode 125, the second L-type electrode 126, A third L-type electrode 127 is disposed.
  • An L-type reference electrode 123, a first L-type electrode 125, and a second L-type electrode 126 are arranged in the X2 region, and an L-type reference electrode 123 and a first L-type electrode 125 are arranged in the X3 region.
  • An L-type reference electrode 123 is disposed in the X4 region.
  • the L-type reference electrode 123 is connected to the L-type reference electrode detection unit 210, the first L-type electrode 125 is connected to the first L-type electrode detection unit 210, and the second L-type electrode 126 is connected to the second L-type electrode detection unit.
  • the third L-type electrode 127 is connected to the second L-type electrode detection unit 222.
  • the detection is performed by four detection units: a type reference electrode detection unit 210, a first L type electrode detection unit 211, a second L type electrode detection unit 212, and a third L type electrode detection unit 213.
  • the L-type reference electrode detection unit 210 and the first L-type electrode detection unit 211 pass through the L-type reference electrode 123, the first L-type electrode 125, and the second L-type electrode 126.
  • the charge is detected by the three detection units of the second L-type electrode detection unit 212.
  • the charge is detected by one detection unit of the L-type reference electrode detection unit 210 via the L-type reference electrode 123.
  • the number of detection units that detect electric charges differs depending on the portion where the load is applied. Using this difference, the position in the X-axis direction at the position where the load is applied can be specified.
  • the first strip electrode 130 is disposed in the Y1 region in the Y-axis direction
  • the second strip electrode 131 is disposed in the Y2 region
  • the Y3 region is disposed.
  • the third belt-like electrode 132 is disposed.
  • the first strip electrode 130, the second strip electrode 131, and the third strip electrode 132 are connected to the first strip electrode detection unit 220, the second strip electrode detection unit 221, and the third strip electrode detection unit 222, respectively.
  • the charge generated by the load is detected by the first strip electrode detection unit 220 via the first strip electrode 130.
  • the second strip electrode detection unit 221 When a load is applied to the Y2 region, it is detected by the second strip electrode detection unit 221 via the second strip electrode 131.
  • the load When a load is applied to the Y3 region, the load is applied via the third strip electrode 132. , And is detected by the third strip electrode detector 222.
  • the type of detection unit that detects the charge differs depending on the portion where the load is applied. Using this difference, the position in the Y-axis direction at the position where the load is applied can be specified.
  • the detection of the load amount is obtained from the total of detected charges.
  • the method of obtaining the load amount from the charge amount can be achieved by programming a conversion method in advance for detection. Accordingly, it is possible to specify the position and amount of load applied to the piezoelectric sensor.
  • the first electrode 11 constituting the piezoelectric sensor 10 includes the L-type reference electrode 123 and the L-type electrode 124, and the L-type electrode 124 is spaced from the two sides of the L-type reference electrode 123 inward.
  • the number of the L-type reference electrode 123 and the L-type electrode 124 to be arranged varies depending on the position in the X-axis direction. ing. That is, when a load is applied to an arbitrary portion of the piezoelectric sensor 10, the number of the first detection units 21 that detect charges is a unique number depending on the position in the X-axis direction to which the load is applied. By detecting, the position of the applied load in the X-axis direction can be specified.
  • the second electrode 12 constituting the piezoelectric sensor 10 includes a plurality of strip electrodes covering the L-type reference electrode 123 and the L-type electrode 124, and the strip electrodes are independently connected to the respective strip electrode detection units. .
  • the position in the Y-axis direction where the load is applied can be specified by the type of the strip-shaped electrode detection unit that detects charges.
  • the detection of the applied load amount obtains the applied load from the total of the detected charges.
  • the method of obtaining the load amount from the charge amount is achieved by programming a conversion method in advance for detection.
  • the pressure detection device of the present application can detect the position and amount of the applied load when the load is applied.
  • the piezoelectric sensor includes a piezoelectric layer, a first electrode, and a second electrode, the first electrode includes an L-type reference electrode and an L-type electrode, and the second electrode includes a strip electrode.
  • the first electrode may include a strip electrode, and the second electrode may include a staircase electrode. Below, the strip
  • FIG. 32 is a plan view of the pressure detection device 1 according to the eighteenth embodiment.
  • 33 is a cross-sectional view taken along the line B-B ′ in FIG. 32.
  • the pressure detection device 1 includes a piezoelectric sensor 10, a first detection unit 21, and a second detection unit 22.
  • the piezoelectric sensor 10 includes a piezoelectric layer 11, a first electrode 12, and a second electrode 13.
  • the first electrode 12 is disposed on the first main surface side of the piezoelectric layer 11, and the second electrode 13 is disposed on the second main surface side opposite to the first main surface side of the piezoelectric layer 11.
  • the first detection unit 21 includes a first strip electrode detection unit 250, a second strip electrode detection unit 251, and a third strip electrode detection unit 252.
  • the second detection unit 22 includes a first staircase electrode detection unit 260, a second staircase electrode detection unit 261, and a third staircase electrode detection unit 262.
  • the first electrode 12 includes a first strip pattern electrode 200, a second strip pattern electrode 201, and a third strip pattern electrode 202 arranged in the Y-axis direction.
  • the strip pattern electrode includes a first strip electrode 150, a second strip electrode 151, and a third strip electrode 152 arranged in the Y-axis direction.
  • the first strip electrode 150 of each strip pattern electrode is connected to the first strip electrode detector 250.
  • the second strip electrode 151 and the third strip electrode 152 of each strip pattern electrode are connected to the second strip electrode detector 251 and the third strip electrode detector 252, respectively.
  • the second electrode 13 includes stepped step electrodes arranged in the Y-axis direction.
  • the staircase electrode includes a first staircase electrode 160, a second staircase electrode 161, and a third staircase electrode 162.
  • Each step electrode includes a stepped portion 163, a stepped portion 164, and an L-shaped portion 165.
  • the stepping portion 163 is arranged in a direction parallel to the strip electrode in plan view. That is, the stepping portion 163 is located above the first strip electrode 150, between the first strip electrode 150 and the second strip electrode 151, between the second strip electrode 151 and the third strip electrode 152, and the third strip electrode 152. It is arranged below at an interval.
  • the stepped portion 164 is disposed in a direction intersecting with the strip electrode and connects the stepped portions 163.
  • the L-shaped portion 165 has an L-shaped shape that connects the start point of the stepping portion 163 and the end point of the stepped portion 164.
  • the first staircase electrode 160 is independent of the first staircase electrode detector 260
  • the second strip electrode 161 is independent of the second staircase electrode detector 261
  • the third strip electrode 162 is independent of the third staircase electrode detector 262. Connected.
  • the strip electrode and the staircase electrode are arranged such that the first strip electrode 150, the second strip electrode 151, and the third strip electrode 152 of the strip electrode intersect the stepped portion 164 of the staircase electrode.
  • the first strip electrode 150, the second strip electrode 151, and the third strip electrode 152 of each strip pattern electrode are The first step electrode 160, the second step electrode 161, and the third step electrode 162 overlap.
  • the second strip electrode 151 and the third strip electrode 152 of each strip pattern electrode overlap the first step electrode 160, the second step electrode 161, and the third step electrode 162.
  • the third strip electrode 152 of each strip pattern electrode overlaps the first step electrode 160, the second step electrode 161, and the third step electrode 162.
  • the charge generated by the load is transmitted through the first strip electrode 150, the second strip electrode 151, and the third strip electrode 152 of each strip pattern electrode. Detection is performed by the detection unit 250, the second strip electrode detection unit 251, and the third strip electrode detection unit 252.
  • the charge is detected by the second strip electrode detector 251 and the third strip electrode detector 252 via the second strip electrode 151 of each strip pattern electrode and the third strip electrode 152. Is done.
  • the load is detected by the third strip electrode detection unit 252 via the third strip electrode 152 of each strip pattern electrode.
  • the number of detection units that detect electric charges differs depending on the portion where the load is applied. Using this difference, the position in the X-axis direction at the position where the load is applied can be specified.
  • the first staircase electrode 160 is disposed in the Y1 region in the Y-axis direction
  • the second staircase electrode 161 is disposed in the Y2 region
  • the third staircase electrode 162 is disposed in the Y3 region. Has been.
  • the charge generated by the load is detected by the first staircase electrode detection unit 260 via the first staircase electrode 160.
  • the second staircase electrode detector 261 When a load is applied to the Y2 region, it is detected by the second staircase electrode detector 261 via the second staircase electrode 161.
  • the load When a load is applied to the Y3 region, the load is applied via the third staircase electrode 162. , Detected by the third staircase electrode detector 262.
  • the type of detection unit that detects the charge differs depending on the portion where the load is applied. Using this difference, the position in the Y-axis direction at the position where the load is applied can be specified.
  • the piezoelectric sensor 10 includes the piezoelectric layer 11, the first electrode 12, and the second electrode 13, and the first electrode 12 and the second electrode 13 are connected to the first main surface side of the piezoelectric layer 11 and the first electrode.
  • the first electrode 12 is disposed on the second seed surface side, and includes a band-shaped pattern electrode that is arranged in the Y-axis direction and includes a plurality of band-shaped electrodes (first band-shaped electrode 150, second band-shaped electrode 151, and third band-shaped electrode 152).
  • the second electrode 13 connects the plurality of stepped portions 163 and the stepped portions 163 and intersects with the strip electrodes (the first strip electrode 150, the second strip electrode 151, the third strip electrode 152) in a one-to-one correspondence.
  • strip electrodes (the first strip electrode 150, the second strip electrode 151, the third strip electrode 152) and the stair electrodes (the first stair electrode 160, the second stair electrode 161) which overlap through the piezoelectric layer 11 are arranged.
  • the number of the third staircase electrodes 162) is different.
  • the number of the first detection units 21 that detect charges is a unique number depending on the position in the X-axis direction to which the load is applied. By doing so, the position of the applied load in the X-axis direction can be specified.
  • a plurality of staircase electrodes are arranged in the Y-axis direction, and the staircase electrodes are independently connected to the respective staircase electrode detectors.
  • the position in the Y-axis direction where the load is applied can be specified by the type of the strip-shaped electrode detection unit that detects charges.
  • the detection of the applied load amount obtains the applied load from the total of the detected charges.
  • the method of obtaining the load amount from the charge amount is achieved by programming a conversion method in advance for detection.
  • the pressure detection device of the present application can detect the position and amount of the applied load when the load is applied.
  • the piezoelectric layer 11 may be patterned so as to have an active portion and an inactive portion.
  • FIG. 36 is a cross-sectional view of the piezoelectric sensor according to the nineteenth embodiment.
  • the piezoelectric layer 11 includes an active piezoelectric portion 110 and an inactive piezoelectric portion 111.
  • the active piezoelectric portion 110 is a portion where electric charges are generated when a load is applied to the piezoelectric sensor 10.
  • the inactive piezoelectric portion 111 is a portion where no charge is generated even when a load is applied.
  • the L-type reference electrode 123 and the L-type electrode 124 are disposed on the upper surface of the active piezoelectric portion 110.
  • a first strip electrode 130 is disposed on the lower surfaces of the active piezoelectric part 110 and the inactive piezoelectric part 111.
  • L-type reference electrode 123 and the L-type electrode 124 are directly laminated on the active piezoelectric portion 110 is shown, but between the active piezoelectric portion 110 and the L-type reference electrode 123, or An insulating material such as an adhesive or a film may be laminated between the active piezoelectric portion 110 and the L-type electrode 124.
  • the position and amount of a given load is detected by the piezoelectric sensor 10 has been described.
  • the position and amount of the applied load may be detected by laminating the touch panel 50 on the piezoelectric sensor 10.
  • the load is obtained by laminating the touch panel 50 on the piezoelectric sensor 10.
  • Piezoelectric sensor 11 Piezoelectric layer 11a: First piezoelectric layer 11b: Second piezoelectric layer 12: Upper electrode (first electrode) 13: Lower electrode (second electrode) 14: 1st pattern electrode 15: 2nd pattern electrode 16: 1st electrode part 17: 1st connection part 18: 2nd electrode part 19: 2nd connection part 20: Detection part 30: Control part 40: Reference electrode 50: Capacitance type touch panel 110: Active piezoelectric unit 111: Inactive piezoelectric unit S: Switch L: Pitch interval of first pattern electrodes l: Pitch interval of first pattern electrodes W: Fixing member 21: First detection unit 22 : Second detection unit 120: first pattern electrode 121: second pattern electrode 122: third pattern electrode 123: L-type reference electrode 124: L-type electrode 125: first L-type electrode 126: second L-type electrode 127: third L Type electrode 130: First strip electrode 131: Second strip electrode 132: Third strip electrode 150: First strip electrode 151: Second

Abstract

[Problem] To provide a piezoelectric sensor in which position detection and load detection can be carried out within the sensor. [Solution] This piezoelectric sensor (10) is a piezoelectric sensor (10) in which a piezoelectric layer (11) is sandwiched between an upper electrode (12) and a lower electrode (13), said piezoelectric sensor (10) being configured such that the upper electrode (12), lower electrode (13), or both are provided with a plurality of electrode patterns.

Description

圧電センサおよび圧力検出装置Piezoelectric sensor and pressure detection device
 本発明は、荷重に応じた圧電信号を発生する圧電センサに関し、特に荷重が与えられた位置を検出できる圧電センサに関する。 The present invention relates to a piezoelectric sensor that generates a piezoelectric signal corresponding to a load, and more particularly to a piezoelectric sensor that can detect a position where a load is applied.
 与えられた荷重を検出するため、圧電層を用いた圧電センサが知られている。例えば、特許文献1には、透明感圧層と、一対の透明導電層からなる透明圧電センサが開示されている。 A piezoelectric sensor using a piezoelectric layer is known to detect a given load. For example, Patent Document 1 discloses a transparent piezoelectric sensor including a transparent pressure-sensitive layer and a pair of transparent conductive layers.
特開2004-125571号公報JP 2004-125571 A
 しかし、特許文献1の透明圧電センサでは、与えられた荷重を検出できるものの、透明圧電センサ内において荷重がかかった位置を検出することはできない。。 However, the transparent piezoelectric sensor of Patent Document 1 can detect a given load, but cannot detect a position where the load is applied in the transparent piezoelectric sensor. .
 上記目的を達成するために、本発明は以下のように構成する。 In order to achieve the above object, the present invention is configured as follows.
 本発明の圧電センサは、圧電層が上部電極と下部電極に挟まれている。上部電極または下部電極の少なくとも一方の電極はパターン電極を複数備えている。上部電極は第1パターン電極を複数備え、下部電極は第1パターン電極と同一方向に延在する第2パターン電極を複数備えていてもよい。また、上部電極は第1パターン電極を複数備え、下部電極は第1パターン電極と交差する第2パターン電極を複数備えていてもよい。 In the piezoelectric sensor of the present invention, the piezoelectric layer is sandwiched between the upper electrode and the lower electrode. At least one of the upper electrode and the lower electrode includes a plurality of pattern electrodes. The upper electrode may include a plurality of first pattern electrodes, and the lower electrode may include a plurality of second pattern electrodes extending in the same direction as the first pattern electrode. The upper electrode may include a plurality of first pattern electrodes, and the lower electrode may include a plurality of second pattern electrodes that intersect the first pattern electrodes.
 上記構成によると、圧電センサに荷重が与えられ、圧電層から電荷が発生したとき、複数あるパターン電極のうち、どの電極を経由して上記電荷を検出したか特定することによって、荷重のかかった位置を特定できる。 According to the above configuration, when a load is applied to the piezoelectric sensor and a charge is generated from the piezoelectric layer, the load is applied by specifying which electrode among the plurality of pattern electrodes has detected the charge. The position can be specified.
 基準電極が、上部電極と下部電極の間に設けられていてもよい。かかる場合、上部電極と基準電極の間には第1圧電層が設けられてもよく、下部電極と基準電極の間には第2圧電層が設けられていてもよい。 The reference electrode may be provided between the upper electrode and the lower electrode. In such a case, a first piezoelectric layer may be provided between the upper electrode and the reference electrode, and a second piezoelectric layer may be provided between the lower electrode and the reference electrode.
 そうすると、第1圧電層や第2圧電層で発生した電荷を上部電極と下部電極とで独立して検出できる。 Then, the charges generated in the first piezoelectric layer and the second piezoelectric layer can be detected independently by the upper electrode and the lower electrode.
 第1パターン電極は、第1電極部と第1電極部どうしを電気的に接続する第1接続部を備えていてもよい。第2パターン電極も、第2電極部と第2接続部を備えていてもよい。また、第1電極部は第2電極部と重なるように圧電層の上に設けられていてもよい。 The first pattern electrode may include a first connection part that electrically connects the first electrode part and the first electrode part. The second pattern electrode may also include a second electrode part and a second connection part. Further, the first electrode part may be provided on the piezoelectric layer so as to overlap the second electrode part.
 そうすると、圧電層から発生した電荷を第1電極部と第2電極部で検出が可能となり、荷重がかかった位置と荷重量の検出が可能となる。 Then, the charge generated from the piezoelectric layer can be detected by the first electrode part and the second electrode part, and the position and amount of load applied can be detected.
 第1電極部は圧電層を介して複数の第2電極部と重なるように配置されていてもよい。 The first electrode part may be arranged so as to overlap with the plurality of second electrode parts via the piezoelectric layer.
 そうすると、第1電極部と第2電極部が重畳する箇所の数が、上述の場合よりも増える。その結果、圧電センサ内の位置検出精度が向上する。 Then, the number of locations where the first electrode portion and the second electrode portion overlap is greater than in the above case. As a result, the position detection accuracy in the piezoelectric sensor is improved.
 第1パターン電極は、電極の形状が帯状であってもよい。 The first pattern electrode may have a strip shape.
 第2パターン電極は、電極の形状が帯状であってもよい。 The second pattern electrode may have a strip shape.
 第1パターン電極の幅方向の大きさは、圧電層の周縁部に近づくにつれて大きくなっていてもよい。 The size of the first pattern electrode in the width direction may increase as it approaches the peripheral edge of the piezoelectric layer.
 そうすると、荷重が掛かったときの撓み量が少なく、荷重の検出感度が悪い圧電層の周縁部について、荷重の検出感度が向上する。 In this case, the load detection sensitivity is improved for the peripheral portion of the piezoelectric layer with a small amount of deflection when a load is applied and the load detection sensitivity is poor.
 第2パターン電極の幅方向の大きさは、圧電層の周縁部に近づくにつれて大きくなっていてもよい。 The size of the second pattern electrode in the width direction may increase as it approaches the peripheral edge of the piezoelectric layer.
 そうすると、荷重が掛かったときの撓み量が少なく、荷重の検出感度が悪い圧電層の周縁部について、荷重の検出感度が向上する。 In this case, the load detection sensitivity is improved for the peripheral portion of the piezoelectric layer with a small amount of deflection when a load is applied and the load detection sensitivity is poor.
 第1パターン電極のピッチ間隔は、一定であってもよい。 The pitch interval of the first pattern electrodes may be constant.
 そうすると、周縁部の感度を一定に保ったまま、与えられた荷重に対して位置の検出精度が向上する。 In this case, the position detection accuracy with respect to a given load is improved while keeping the sensitivity of the peripheral edge constant.
 第2パターン電極のピッチ間隔は、一定であってもよい。 The pitch interval of the second pattern electrodes may be constant.
 そうすると、周縁部の感度を一定に保ったまま、与えられた荷重に対して位置の検出精度が向上する。 In this case, the position detection accuracy with respect to a given load is improved while keeping the sensitivity of the peripheral edge constant.
 第1パターン電極は、凸部分と凹部分からなる凹凸形状を有し、第1パターン電極のピッチ間隔は、入力手段が前記圧電センサと接触したときに形成される接触面の短径の長さより短く設計されていてもよい。さらに、第1パターン電極の隣接する電極間は、上記凸部分と凹部分とが噛み合うように構成されていてもよい。 The first pattern electrode has a concavo-convex shape composed of a convex portion and a concave portion, and the pitch interval of the first pattern electrodes is shorter than the length of the short diameter of the contact surface formed when the input means contacts the piezoelectric sensor. It may be designed. Furthermore, between the adjacent electrodes of the first pattern electrode, the convex portion and the concave portion may be engaged with each other.
 そうすると、圧電センサと対象物が接触したときに、第1パターン電極が対象物と接触する個数が増える。その結果、上記の場合よりも高い精度で荷重のかかった位置と荷重量を検出できる。 Then, when the piezoelectric sensor and the object come into contact, the number of the first pattern electrodes that come into contact with the object increases. As a result, it is possible to detect the load position and the load amount with higher accuracy than in the above case.
 第2パターン電極は、凸部分と凹部分からなる凹凸形状を有し、第2パターン電極のピッチ間隔は、入力手段が前記圧電センサと接触したときに形成される接触面の短径の長さより短く設計されていてもよい。さらに、第2パターン電極の隣接する電極間は、上記凸部分と凹部分とが噛み合うように構成されていてもよい。 The second pattern electrode has a concavo-convex shape composed of a convex portion and a concave portion, and the pitch interval of the second pattern electrode is shorter than the length of the minor axis of the contact surface formed when the input means contacts the piezoelectric sensor. It may be designed. Furthermore, between the adjacent electrodes of the second pattern electrode, the convex portion and the concave portion may be configured to mesh with each other.
 そうすると、圧電センサと対象物が接触したときに、対象物と第2パターン電極とが接触する個数が増える。その結果、上記の場合よりも高い精度で荷重のかかった位置と荷重量を検出できる。 Then, when the piezoelectric sensor and the target object come in contact, the number of the target object and the second pattern electrode that come in contact increases. As a result, it is possible to detect the load position and the load amount with higher accuracy than in the above case.
 本発明の圧力検出装置は、圧電層と、第1電極、第2電極と、第1検出部と、第2検出部とを備えている。第1電極は、圧電層の第1主面側に積層されている。第1電極は、パターン電極を備えている。パターン電極は、L型基準電極とL型電極を備えている。L型基準電極は2つの辺が組み合されたL字型の電極である。L型電極は、L型基準電極の2つの辺から内側の一の方向に間隔をあけて複数配置されたL字型の電極であり、L型電極の端辺は、L型基準電極の端辺の延長線上に配置されている。 The pressure detection device of the present invention includes a piezoelectric layer, a first electrode, a second electrode, a first detection unit, and a second detection unit. The first electrode is laminated on the first main surface side of the piezoelectric layer. The first electrode includes a pattern electrode. The pattern electrode includes an L-type reference electrode and an L-type electrode. The L-type reference electrode is an L-shaped electrode in which two sides are combined. The L-type electrode is a plurality of L-shaped electrodes arranged at an interval in one direction from the two sides of the L-type reference electrode, and the end side of the L-type electrode is the end of the L-type reference electrode. It is arranged on the extended line of the side.
 そうすると、L型基準電極とL型電極の配置される個数が、上記一の方向の位置によって異なる。また、L型基準電極とL型電極は、第1電極のL型基準電極検出部とL型電極に接続されている。従って、圧電層に荷重が与えられたとき、電荷を検出するL型基準電極検出部とL型電極検出部の個数は、荷重が与えられた上記一の方向の位置よって異なる。よって、電荷を検出した検出部の個数を特定することで、荷重が与えられた一の方向の位置を特定できるようになっている。 Then, the number of the L-type reference electrode and the L-type electrode arranged varies depending on the position in the one direction. The L-type reference electrode and the L-type electrode are connected to the L-type reference electrode detection unit and the L-type electrode of the first electrode. Therefore, when a load is applied to the piezoelectric layer, the number of L-type reference electrode detection units and L-type electrode detection units that detect charges differs depending on the position in the one direction where the load is applied. Therefore, by specifying the number of detection units that have detected charges, the position in one direction to which a load is applied can be specified.
 また、第2電極は、圧電層の第2主面側に積層されている。第2電極は、上記一の方向と垂直な方向に配置され上記のパターン電極を覆う帯状電極を複数備えている。なお、第2検出部は、上記帯状電極とそれぞれ独立して接続される帯状電極検出部を備えている。 The second electrode is laminated on the second main surface side of the piezoelectric layer. The second electrode includes a plurality of strip-like electrodes that are arranged in a direction perpendicular to the one direction and cover the pattern electrode. The second detection unit includes a strip electrode detection unit that is independently connected to the strip electrode.
 そうすると、圧電層に荷重が与えられたとき、電荷を検出する帯状電極検出部の種類を特定することによって、荷重がかかった上記一の方向と垂直な方向における位置が特定できるようになっている。 Then, when a load is applied to the piezoelectric layer, the position in the direction perpendicular to the one direction where the load is applied can be specified by specifying the type of the strip-shaped electrode detection unit that detects the electric charge. .
 よって、第1電極検出部と第2電極検出部で得られた位置情報を組合せることにより、荷重が与えられた位置の特定が可能となっている。 Therefore, the position to which the load is applied can be specified by combining the position information obtained by the first electrode detection unit and the second electrode detection unit.
 本発明の圧力検出装置は、圧電層と、第1電極、2電極と、第1検出部と、第2検出部とを備えている。第1電極は、圧電層の第1主面側に積層されている。
 第1電極は、一の方向に複数配置された帯状電極からなる帯状パターン電極を備えている。
 第2電極は、踏込み部と段差部と接続部を備えている。踏込み部は帯状電極の間に配置されている。段差部は、踏込み部どうしを接続している。また段差部は、帯状電極と一対一対応で交差している。接続部は、踏込み部の始点と段差部の終点を接続している。
 なお、第1検出部は、帯状パターン電極の各帯状電極と接続される帯状電極検出部を備えている。第2検出部は、複数の階段電極とそれぞれ接続される複数の帯状電極検出部を備えている。
The pressure detection device of the present invention includes a piezoelectric layer, a first electrode, two electrodes, a first detection unit, and a second detection unit. The first electrode is laminated on the first main surface side of the piezoelectric layer.
The first electrode includes a strip-shaped pattern electrode composed of a plurality of strip-shaped electrodes arranged in one direction.
The second electrode includes a stepping portion, a step portion, and a connection portion. The stepping portion is disposed between the strip electrodes. The step portion connects the stepped portions. The step portion intersects with the strip electrode in a one-to-one correspondence. The connection part connects the start point of the stepping part and the end point of the step part.
In addition, the 1st detection part is provided with the strip | belt-shaped electrode detection part connected with each strip | belt-shaped electrode of a strip | belt-shaped pattern electrode. The second detection unit includes a plurality of strip electrode detection units connected to the plurality of step electrodes.
 そうすると、帯状電極と階段電極の重なる個数が、上記一の方向の位置によって異なる。また、帯状電極は、帯状電極検出部に接続されている。従って、圧電層に荷重が与えられたとき、電荷を検出する帯状電極検出部の数は、上記一の方向の位置よって異なる。よって、電荷を検出した検出部の個数を特定することで、荷重が与えられた一の方向の位置を特定できるようになっている。 Then, the number of overlapping strip electrodes and staircase electrodes varies depending on the position in the above one direction. The strip electrode is connected to the strip electrode detector. Therefore, when a load is applied to the piezoelectric layer, the number of strip-shaped electrode detection units that detect charges varies depending on the position in the one direction. Therefore, by specifying the number of detection units that have detected charges, the position in one direction to which a load is applied can be specified.
 また、第2電極は、圧電層の第2主面側に積層されている。第2電極は、階段電極を備えている。なお、第2検出部は、上記階段電極とそれぞれ独立して接続される階段電極検出部を備えている。 The second electrode is laminated on the second main surface side of the piezoelectric layer. The second electrode includes a staircase electrode. The second detection unit includes a staircase electrode detection unit that is independently connected to the staircase electrode.
 そうすると、圧電層に荷重が与えられたとき、圧電層から発生する電荷を検出する階段電極検出部の種類を特定することによって、荷重がかかった上記一の方向と垂直な方向における位置が特定できるようになっている。 Then, when a load is applied to the piezoelectric layer, by specifying the type of the staircase electrode detection unit that detects charges generated from the piezoelectric layer, the position in the direction perpendicular to the one direction where the load is applied can be specified. It is like that.
 よって、第1電極検出部と第2電極検出部で得られた位置情報を組合せることにより、
荷重が与えられた位置の特定が可能となっている。
Therefore, by combining the position information obtained by the first electrode detection unit and the second electrode detection unit,
The position where the load is applied can be specified.
 圧電層は、活性圧電部と不活性圧電部を有し、活性圧電部の上には第1パターン電極が積層されていてもよい。 The piezoelectric layer has an active piezoelectric portion and an inactive piezoelectric portion, and a first pattern electrode may be laminated on the active piezoelectric portion.
 そうすると、クロストーク現象の発生を防止できる。その結果、圧電センサにかかった位置と荷重の検出精度が向上する。 Then, the occurrence of the crosstalk phenomenon can be prevented. As a result, the detection accuracy of the position applied to the piezoelectric sensor and the load is improved.
 圧電層は、活性圧電部と不活性圧電部を有し、活性圧電部の上には第2パターン電極が積層されていてもよい。 The piezoelectric layer has an active piezoelectric portion and an inactive piezoelectric portion, and a second pattern electrode may be laminated on the active piezoelectric portion.
 そうすると、クロストーク現象の発生を防止できる。その結果、圧電センサの位置検出精度が向上する。 Then, the occurrence of the crosstalk phenomenon can be prevented. As a result, the position detection accuracy of the piezoelectric sensor is improved.
 上部電極は、酸化インジウム錫、またはポリエチルジオキソチオフェンを含んでいてもよい。 The upper electrode may contain indium tin oxide or polyethyldioxothiophene.
 そうすると、上部電極の透明性が高くなるので、液晶や有機ELなどの表示装置の上に圧電センサを配置できる。 Then, since the transparency of the upper electrode is increased, a piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
 下部電極は、酸化インジウム錫、またはポリエチルジオキソチオフェンを含んでいてもよい。 The lower electrode may contain indium tin oxide or polyethyldioxothiophene.
 そうすると、下部電極の透明性が高くなるので、液晶や有機ELなどの表示装置の上に圧電センサを配置できる。 Then, since the transparency of the lower electrode is increased, the piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
 圧電層は、有機圧電材料から構成されていてもよい。 The piezoelectric layer may be composed of an organic piezoelectric material.
 そうすると、圧電層の柔軟性が大きくなるので、圧電センサの耐屈曲性が向上する。その結果、上記圧電センサをR曲面などに配置できる。 Then, since the flexibility of the piezoelectric layer is increased, the bending resistance of the piezoelectric sensor is improved. As a result, the piezoelectric sensor can be arranged on an R curved surface.
 有機圧電材料は、ポリフッ化ビニリデンまたはポリ乳酸を含んでいてもよい。 The organic piezoelectric material may contain polyvinylidene fluoride or polylactic acid.
 そうすると、圧電層の透明性が高くなるので、液晶や有機ELなどの表示装置の上に圧電センサを配置できる。 Then, since the transparency of the piezoelectric layer is increased, the piezoelectric sensor can be disposed on a display device such as a liquid crystal or an organic EL.
 圧電層は、無機材料から構成されていてもよい。 The piezoelectric layer may be made of an inorganic material.
 そうすると、圧電定数が向上するため、荷重の検出感度が向上する。 Then, since the piezoelectric constant is improved, the load detection sensitivity is improved.
 圧力検出装置は、圧電センサ上にタッチパネルを積層していてもよい。 The pressure detection device may have a touch panel laminated on the piezoelectric sensor.
 そうすると、圧電センサに対し荷重がほとんどかからないような場合でも、荷重の位置検出ができる。 In that case, the load position can be detected even when the load is hardly applied to the piezoelectric sensor.
 上記タッチパネルが静電容量型のタッチパネルであってもよい。 The capacitive touch panel may be a capacitive touch panel.
 そうすると、圧力検出装置全体の透明性が向上する。 Then, the transparency of the entire pressure detection device is improved.
 本発明に係る圧電センサでは、圧電センサ内で位置検出ができる。 In the piezoelectric sensor according to the present invention, position detection can be performed within the piezoelectric sensor.
圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 図1のA-A’断面図である。FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 図3のB-B’断面図である。FIG. 4 is a B-B ′ sectional view of FIG. 3. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 図5のC-C’断面図である。FIG. 6 is a C-C ′ sectional view of FIG. 5. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 図11のD-D’断面図である。It is D-D 'sectional drawing of FIG. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 図13のE-E’断面図である。It is E-E 'sectional drawing of FIG. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの断面図である。It is sectional drawing of a piezoelectric sensor. 圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 図17のA-A’断面図である。It is A-A 'sectional drawing of FIG. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 図21のB-B’断面図である。FIG. 22 is a B-B ′ sectional view of FIG. 21. 圧電センサの平面図である。It is a top view of a piezoelectric sensor. 図23のC-C’断面図である。It is C-C 'sectional drawing of FIG. 圧電センサの断面図である。It is sectional drawing of a piezoelectric sensor. 圧電センサの断面図である。It is sectional drawing of a piezoelectric sensor. 圧電センサの断面図である。It is sectional drawing of a piezoelectric sensor. 圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 図28のA-A’断面図である。It is A-A 'sectional drawing of FIG. 圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 図32のB-B’断面図である。FIG. 33 is a B-B ′ sectional view of FIG. 32. 圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 圧力検出装置の概念図である。It is a conceptual diagram of a pressure detection apparatus. 圧電センサの断面図である。It is sectional drawing of a piezoelectric sensor. 圧電センサとタッチパネルを組合わせた圧力検出装置の断面図である。It is sectional drawing of the pressure detection apparatus which combined the piezoelectric sensor and the touchscreen.
 下記で、本発明に係る実施形態を図面に基づいてさらに詳細に説明する。なお、本発明の実施例に記載した部位や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載がない限り、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。 Hereinafter, embodiments according to the present invention will be described in more detail with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative positions, etc. of the parts and portions described in the embodiments of the present invention are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an illustrative example.
1. 第1実施形態
(1)圧力検出装置の全体構造
 図1、図2を用いて、本発明の第1実施形態に係る圧力検出装置の全体構造を説明する。図1は圧力検出装置の概略図である。図2は圧電センサの断面図である。
1. First Embodiment (1) Overall Structure of Pressure Detection Device The overall structure of a pressure detection device according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view of a pressure detection device. FIG. 2 is a sectional view of the piezoelectric sensor.
 圧力検出装置は、与えられた荷重の量と位置を検出する機能を有している。
 図1に示すように、圧力検出装置1は、圧電センサ10と、検出部20と、制御部30を有している。圧電センサ10は、与えられた荷重に応じて電荷を発生させる装置である。検出部20は、圧電センサ10で発生した電荷を検出する装置である。制御部30は、圧電センサ10に設置されたスイッチSを制御する装置である。以下で、圧力検出装置1の構成を詳細に説明する。
The pressure detection device has a function of detecting the amount and position of a given load.
As shown in FIG. 1, the pressure detection device 1 includes a piezoelectric sensor 10, a detection unit 20, and a control unit 30. The piezoelectric sensor 10 is a device that generates an electric charge according to a given load. The detection unit 20 is a device that detects charges generated by the piezoelectric sensor 10. The control unit 30 is a device that controls the switch S installed in the piezoelectric sensor 10. Below, the structure of the pressure detection apparatus 1 is demonstrated in detail.
 (2)圧電センサ
 図2に示すように、圧電センサ10は、圧電層11が上部電極12と下部電極13に挟まれた構成からなる。上部電極12は圧電層11の上面に積層され、下部電極13は圧電層11の下面に積層されている。
(2) Piezoelectric Sensor As shown in FIG. 2, the piezoelectric sensor 10 has a configuration in which a piezoelectric layer 11 is sandwiched between an upper electrode 12 and a lower electrode 13. The upper electrode 12 is laminated on the upper surface of the piezoelectric layer 11, and the lower electrode 13 is laminated on the lower surface of the piezoelectric layer 11.
 再び図1に示すように、上部電極12は、帯状の第1パターン電極14を備えている。なお、第1パターン電極14は、Y軸方向に複数配列されている。なお、下部電極13は、平面状である。 As shown in FIG. 1 again, the upper electrode 12 includes a strip-shaped first pattern electrode 14. A plurality of first pattern electrodes 14 are arranged in the Y-axis direction. The lower electrode 13 is planar.
 このような圧電センサ10に荷重がかかると、かかった荷重に応じた電荷が圧電層11に発生する。発生した電荷は、荷重が負荷された付近に存在する第1パターン電極14や下部電極13を経由して検出部20で検出される。このとき、検出部20で検出された電荷量を測定することにより圧電センサ10に与えられた荷重量を特定できる。なお、荷重位置については、検出部20で検出された電荷が、複数存在する第1パターン電極14のうち、どの第1パターン電極14を経由して、検出部20で検出されたかを制御部30で検出することにより、特定できる。 When a load is applied to such a piezoelectric sensor 10, a charge corresponding to the applied load is generated in the piezoelectric layer 11. The generated charges are detected by the detection unit 20 via the first pattern electrode 14 and the lower electrode 13 existing in the vicinity of the load. At this time, the amount of load applied to the piezoelectric sensor 10 can be specified by measuring the amount of charge detected by the detection unit 20. As for the load position, the control unit 30 determines which of the first pattern electrodes 14 among the plurality of first pattern electrodes 14 the charges detected by the detection unit 20 are detected by the detection unit 20. It can be specified by detecting with.
 (3)圧電層
 圧電層11を構成する材料としては、無機圧電材料や有機圧電材料が挙げられる。
(3) Piezoelectric layer Examples of the material constituting the piezoelectric layer 11 include inorganic piezoelectric materials and organic piezoelectric materials.
 無機圧電材料としては、チタン酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛、ニオブ酸カリウム、ニオブ酸リチウム、タンタル酸リチウムなどが挙げられる。 Examples of inorganic piezoelectric materials include barium titanate, lead titanate, lead zirconate titanate, potassium niobate, lithium niobate, and lithium tantalate.
 有機圧電材料としては、フッ化物重合体又はその共重合体、キラリティーを有する高分子材料などが挙げられる。フッ化物重合体又はその共重合体としては、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体などが挙げられる。キラリティーを有する高分子材料としては、L型ポリ乳酸や、R型ポリ乳酸などが挙げられる。 Examples of the organic piezoelectric material include a fluoride polymer or a copolymer thereof, and a polymer material having chirality. Examples of the fluoride polymer or a copolymer thereof include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer. Examples of the polymer material having chirality include L-type polylactic acid and R-type polylactic acid.
 また、圧力検出装置1を、タッチパネルを備えた表示装置に適用する場合には、圧電部を透明な材料により構成するか、又は、光が十分に透過できる程度に薄く構成することが好ましい。 Further, when the pressure detection device 1 is applied to a display device provided with a touch panel, it is preferable that the piezoelectric portion is made of a transparent material or thin enough to allow light to pass therethrough.
 (4)電極
 上部電極12、下部電極13は、導電性を有する材料により構成できる。導電性を有する材料としては、インジウム-スズ酸化物(Indium-Tin-Oxide、ITO)、スズ-亜鉛酸化物(Tin-Zinc-Oxide、TZO)などのような透明導電酸化物、ポリエチレンジオキシチオフェン(Polyethylenedioxythiophene、PEDOT)などの導電性高分子、などを用いることができる。この場合、上記の電極は、蒸着やスクリーン印刷などを用いて形成できる。
(4) Electrode The upper electrode 12 and the lower electrode 13 can be comprised with the material which has electroconductivity. Examples of the conductive material include transparent conductive oxides such as indium-tin oxide (ITO), tin-zinc oxide (Tin), polyethylene dioxythiophene A conductive polymer such as (Polyethylenedioxythiophene, PEDOT) can be used. In this case, the electrode can be formed by using vapor deposition or screen printing.
 また、導電性を有する材料として、銅、銀などの導電性の金属を用いてもよい。この場合、上記の電極は、蒸着により形成してもよく、銅ペースト、銀ペーストなどの金属ペーストを用いて形成してもよい。 Also, a conductive metal such as copper or silver may be used as the conductive material. In this case, the electrode may be formed by vapor deposition, or may be formed using a metal paste such as a copper paste or a silver paste.
 さらに、導電性を有する材料として、バインダー中に、カーボンナノチューブ、金属粒子、 金属ナノファイバーなどの導電材料が分散したものを用いてもよい。 Furthermore, as a conductive material, a material in which conductive materials such as carbon nanotubes, metal particles, and metal nanofibers are dispersed in a binder may be used.
 (5)検出部
 図1に示すように、検出部20は2つの入力を有している。1つの入力は、上部電極12に接続されている。もう1つの入力は、下部電極13に接続されている。
(5) Detection Unit As shown in FIG. 1, the detection unit 20 has two inputs. One input is connected to the upper electrode 12. The other input is connected to the lower electrode 13.
 以上の構成により、検出部20は、圧電層11が押圧されたときに、上部電極12と下部電極13との間(すなわち、圧電層11の両主面間)に発生する電荷を検出できる。なお、検出部20は、ADコンバータとアンプを組み合わせた検出機器を用いることができる。 With the above configuration, the detection unit 20 can detect the electric charge generated between the upper electrode 12 and the lower electrode 13 (that is, between both main surfaces of the piezoelectric layer 11) when the piezoelectric layer 11 is pressed. The detection unit 20 can use a detection device that combines an AD converter and an amplifier.
 (6)制御部
 制御部30は、上部電極12と検出部20を接続するスイッチS、および下部電極13と検出部20を接続するスイッチSに接続されている。制御部30は、上記スイッチSについて、ON-OFFの切替信号を出力できる機能を備えている。
(6) Control Unit The control unit 30 is connected to the switch S that connects the upper electrode 12 and the detection unit 20 and the switch S that connects the lower electrode 13 and the detection unit 20. The control unit 30 has a function of outputting an ON / OFF switching signal for the switch S.
 制御部30は、例えば、圧力検出装置1のドライブシステムに含めることができる。当該ドライブシステムは、CPU(Central Processing Unit)、記憶部、及び圧電センサをドライブするためのインターフェースなどを備えたマイコンであってもよい。又は、当該ドライブシステムは、カスタムICなどにより1つのICに集約されていてもよい。 The control unit 30 can be included in the drive system of the pressure detection device 1, for example. The drive system may be a microcomputer including a CPU (Central Processing Unit), a storage unit, and an interface for driving a piezoelectric sensor. Alternatively, the drive system may be integrated into one IC by a custom IC or the like.
 また、制御部の上記機能は、上記マイコンやカスタムICなどの記憶部に記憶されたプログラムを、CPUやカスタムICなどに実行させることにより実現してもよい。 Further, the above functions of the control unit may be realized by causing a CPU or a custom IC to execute a program stored in a storage unit such as the microcomputer or the custom IC.
 上記のように、圧力検出装置1を構成すると、制御部30を用いて上部電極12と下部電極13の間で発生した電荷を検出できる。そうすると、検出した電荷から荷重のかかった位置と量を計算することができる。荷重のかかった箇所が複数に及んだ場合も同様に、各箇所の位置と荷重のかかった量を検出できる。すなわち、圧力検出装置1は、マルチフォース検出が可能な構成をとっている。 As described above, when the pressure detection device 1 is configured, the charge generated between the upper electrode 12 and the lower electrode 13 can be detected using the control unit 30. Then, it is possible to calculate the position and amount where the load is applied from the detected electric charge. Similarly, when there are a plurality of places where the load is applied, the position of each place and the amount of the load can be detected. That is, the pressure detection device 1 has a configuration capable of multi-force detection.
2. 第2実施形態
 第1実施形態では、下部電極13は平面形状を有し、パターン形状を有していなかったが、下部電極13は第2パターン電極15を有していてもよい。
2. Second Embodiment In the first embodiment, the lower electrode 13 has a planar shape and does not have a pattern shape, but the lower electrode 13 may have a second pattern electrode 15.
 図3は、第2実施形態にかかる圧電センサの平面図である。図4は図3のB-B’断面図である。 FIG. 3 is a plan view of the piezoelectric sensor according to the second embodiment. 4 is a cross-sectional view taken along the line B-B 'of FIG.
 図3に示すように、上記に加え、下部電極13は、帯状の第2パターン電極15を備えている。第1パターン電極14と第2パターン電極15は、Y軸方向に複数配列されている。第1パターン電極14は、圧電層11を介して第2パターン電極15の上に積層されている。なお、図3、図4に示すように第1パターン電極14は、第2パターン電極15の形状に沿うように圧電層11の上に積層されている。 As shown in FIG. 3, in addition to the above, the lower electrode 13 includes a strip-shaped second pattern electrode 15. A plurality of first pattern electrodes 14 and second pattern electrodes 15 are arranged in the Y-axis direction. The first pattern electrode 14 is stacked on the second pattern electrode 15 via the piezoelectric layer 11. As shown in FIGS. 3 and 4, the first pattern electrode 14 is laminated on the piezoelectric layer 11 so as to follow the shape of the second pattern electrode 15.
 このような圧電センサ10に荷重がかかると、かかった荷重に応じた電荷が圧電層11に発生する。発生した電荷は、荷重が負荷された付近に存在する第1パターン電極14や第2パターン電極15を経由して検出部20で検出される。このとき、検出部20で検出された電荷量を測定することにより圧電センサ10に与えられた荷重量を特定できる。なお、荷重位置については、検出部20で検出された電荷が、複数存在する第1パターン電極14と第2パターン電極15のうち、どの第1パターン電極14と第2パターン電極15を経由して、検出部20で検出されたかを制御部30で検出することにより、特定できる。これにより、荷重が負荷された箇所の位置と負荷された荷重の荷重量を検出できる。 When a load is applied to such a piezoelectric sensor 10, a charge corresponding to the applied load is generated in the piezoelectric layer 11. The generated charges are detected by the detection unit 20 via the first pattern electrode 14 and the second pattern electrode 15 existing in the vicinity of the load. At this time, the amount of load applied to the piezoelectric sensor 10 can be specified by measuring the amount of charge detected by the detection unit 20. As for the load position, the charge detected by the detection unit 20 passes through the first pattern electrode 14 and the second pattern electrode 15 among the plurality of first pattern electrodes 14 and second pattern electrodes 15. It can be specified by detecting by the control unit 30 whether it has been detected by the detection unit 20. Thereby, the position of the place where the load was loaded and the load amount of the loaded load can be detected.
 上記のように構成すると、上部電極12に加え、下部電極13もパターン化されているので、上記より精度の高い位置検出と荷重検出が可能となる。 With the above configuration, since the lower electrode 13 is patterned in addition to the upper electrode 12, position detection and load detection with higher accuracy are possible.
 上記では、第1パターン電極14と第2パターン電極15が圧電層11のY軸方向に、配列された例を示したが、第1パターン電極14と第2パターン電極15はX軸方向に配列されていてもよい。 In the above example, the first pattern electrode 14 and the second pattern electrode 15 are arranged in the Y-axis direction of the piezoelectric layer 11. However, the first pattern electrode 14 and the second pattern electrode 15 are arranged in the X-axis direction. May be.
3.第3実施形態
 第1パターン電極14と第2パターン電極15の積層方法は、第1パターン電極14が第2電極部18の形状に沿うように圧電層11の上に積層する場合に限定されない。以下で、他の配列方法について説明する。
3. Third Embodiment The method of laminating the first pattern electrode 14 and the second pattern electrode 15 is not limited to the case where the first pattern electrode 14 is laminated on the piezoelectric layer 11 so as to follow the shape of the second electrode portion 18. Hereinafter, other arrangement methods will be described.
 図5は、第3実施形態にかかる圧電センサの平面図である。図6は、図5のC-C’断面図である。 FIG. 5 is a plan view of the piezoelectric sensor according to the third embodiment. 6 is a cross-sectional view taken along the line C-C ′ of FIG. 5.
 図5に示すように、第1パターン電極14は、複数の第2パターン電極15に跨って圧電層11上に積層されている。上記のように構成することで、図6に示すように、圧電層11を介して第2パターン電極15の上に積層されている第1パターン電極14の数が増える(第2実施形態の場合、図4に示すように第1パターン電極14と第2パターン電極15の重なり部分の数は4つである。それに対し、第2実施形態の場合、図6に示すように第1パターン電極14と第2パターン電極15の重なり部分の数は8つとなる。)。その結果、入力手段を検出する検出箇所の個数が増えるので、入力手段が圧電センサ10に接触した場合の位置検出精度と荷重検出精度が向上する。 As shown in FIG. 5, the first pattern electrode 14 is laminated on the piezoelectric layer 11 across the plurality of second pattern electrodes 15. By configuring as described above, the number of first pattern electrodes 14 stacked on the second pattern electrode 15 via the piezoelectric layer 11 is increased as shown in FIG. 6 (in the case of the second embodiment). 4, the number of overlapping portions of the first pattern electrode 14 and the second pattern electrode 15 is 4. On the other hand, in the case of the second embodiment, as shown in FIG. And the number of overlapping portions of the second pattern electrode 15 is eight). As a result, the number of detection points for detecting the input means increases, so that the position detection accuracy and load detection accuracy when the input means contacts the piezoelectric sensor 10 are improved.
4.第4実施形態
 第1~3実施形態では、第1パターン電極14や第2パターン電極15の幅方向の長さは一定であったが、上記長さは圧電層11の周縁部に近づくにつれて、長くなるように構成されていてもよい。
4). Fourth Embodiment In the first to third embodiments, the length in the width direction of the first pattern electrode 14 and the second pattern electrode 15 is constant, but as the length approaches the peripheral portion of the piezoelectric layer 11, the length is increased. You may be comprised so that it may become long.
 図7、図8、図9は、第3実施形態にかかる圧電センサの平面図である。 7, 8, and 9 are plan views of the piezoelectric sensor according to the third embodiment.
 図7に示すように、上部電極12は、Y軸方向に複数配列された第1パターン電極14を備えている。圧電センサ10のY軸方向の両端部には、圧電センサ10を固定するための固定部材Wが設けられている。固定部材Wは、接着材料や固定枠から構成される。かかる場合、上部電極12は、上記両端部に近づくほど、電極の幅が広い第1パターン電極14が配置されるように構成されている。これは、下部電極13の第2パターン電極15(図7における点線部分)についても同様である。 As shown in FIG. 7, the upper electrode 12 includes first pattern electrodes 14 arranged in a plurality in the Y-axis direction. Fixing members W for fixing the piezoelectric sensor 10 are provided at both ends of the piezoelectric sensor 10 in the Y-axis direction. The fixing member W is composed of an adhesive material or a fixing frame. In this case, the upper electrode 12 is configured such that the first pattern electrode 14 having a wider electrode width is disposed closer to the both end portions. The same applies to the second pattern electrode 15 of the lower electrode 13 (dotted line portion in FIG. 7).
 図8に示すように、圧電センサ10のX軸方向の両端部は、圧電センサ10を固定するための固定部材Wが設けられていてもよい。かかる場合、上部電極12は、上記両端部に近づくにつれて電極の幅が広くなるクビレ形状の第1電極パターン14を備えている。これは、下部電極13の第2パターン電極15(図8における点線部分)についても同様である。 As shown in FIG. 8, fixing members W for fixing the piezoelectric sensor 10 may be provided at both ends in the X-axis direction of the piezoelectric sensor 10. In such a case, the upper electrode 12 includes a first electrode pattern 14 having a neck shape in which the width of the electrode becomes wider as it approaches the both end portions. The same applies to the second pattern electrode 15 of the lower electrode 13 (dotted line portion in FIG. 8).
 図9に示すように、圧電センサ10の周縁部には、圧電センサ10を固定するための固定部材Wが設けられていてもよい。かかる場合、上部電極12は、上記を組合わせた構造を備えていてもよい。すなわち、上部電極12は、X軸方向の両端部に近づくにつれて電極幅が広くなるクビレ形状の第1電極パターン14を備え、上記第1電極パターン電極14は、Y軸方向の両端部に近づくにつれて、電極の幅が広いものが配置された構成されていてもよい。これは、第2パターン電極15(図9における点線部分)についても同様である。 As shown in FIG. 9, a fixing member W for fixing the piezoelectric sensor 10 may be provided on the periphery of the piezoelectric sensor 10. In such a case, the upper electrode 12 may have a structure combining the above. That is, the upper electrode 12 includes a first electrode pattern 14 having a neck shape that increases in width as it approaches both ends in the X-axis direction. The first electrode pattern electrode 14 approaches the both ends in the Y-axis direction. The electrode may have a wide width. The same applies to the second pattern electrode 15 (dotted line portion in FIG. 9).
 上記のように、圧電センサ10が固定部材Wなどで固定されていると、圧電センサ10に荷重が与えられたとき、固定部材Wが設けられた箇所、またはその付近の箇所には、撓みの力が伝わりにくくなる。そのため、上記のような箇所において荷重の検出は困難となる。 As described above, when the piezoelectric sensor 10 is fixed by the fixing member W or the like, when a load is applied to the piezoelectric sensor 10, the portion where the fixing member W is provided or a portion in the vicinity thereof is not bent. It becomes difficult to transmit power. For this reason, it is difficult to detect the load at the above-described places.
 第4実施形態では、圧電センサ10のY軸方向の両端に固定部材Wが設けられた場合には、上部電極1は、Y軸方向の両端部に近づくにつれて電極幅の大きな第1電極パターン14を有するよう構成され、圧電センサ10のX軸方向の両端に固定部材Wが設けられた場合には、上部電極12は、X軸方向の両端部に近づくにつれて電極幅の大きくなるクビレ形状の第1電極パターン14を有するように構成されることで、電極の物理的な検出感度を向上させて、荷重の検出が難しい固定部材W付近の検出を可能にしている。 In the fourth embodiment, when the fixing members W are provided at both ends of the piezoelectric sensor 10 in the Y-axis direction, the upper electrode 1 has a first electrode pattern 14 having a larger electrode width as it approaches both ends in the Y-axis direction. When the fixing members W are provided at both ends of the piezoelectric sensor 10 in the X-axis direction, the upper electrode 12 has a wedge-shaped first shape in which the electrode width increases as it approaches both ends in the X-axis direction. By being configured to have one electrode pattern 14, the physical detection sensitivity of the electrode is improved, and the detection of the vicinity of the fixed member W where it is difficult to detect the load is made possible.
 また、第4実施形態において、第1パターン電極14は、第1パターン電極14どうしのピッチ間隔Lが一定になるよう圧電層11の上に配列されていてもよい。なお、第2パターン電極15も、第2パターン電極15どうしのピッチ間隔lが一定になるよう圧電層11の上に配列されてもよい。このように構成すると、第1パターン電極14や第2パターン電極15は、等間隔に圧電層11の上に配置されるので、上記に加え正確な位置検出が可能となる。なお、ピッチ間隔とは、電極の中心部分から隣接する電極の中心部分までの距離のことである。 In the fourth embodiment, the first pattern electrodes 14 may be arranged on the piezoelectric layer 11 so that the pitch interval L between the first pattern electrodes 14 is constant. The second pattern electrodes 15 may also be arranged on the piezoelectric layer 11 so that the pitch interval l between the second pattern electrodes 15 is constant. If comprised in this way, since the 1st pattern electrode 14 and the 2nd pattern electrode 15 are arrange | positioned on the piezoelectric layer 11 at equal intervals, in addition to the above, an exact position detection is attained. The pitch interval is a distance from the center portion of the electrode to the center portion of the adjacent electrode.
5.第5実施形態
 第1パターン電極14と第2パターン電極15は、同一の方向に延在していれば、他に限定されない。よって、第1パターン電極14と第2パターン電極15の形状は、帯状には特に限定されない。以下、電極の形状について説明する。
5. Fifth Embodiment The first pattern electrode 14 and the second pattern electrode 15 are not limited to other ones as long as they extend in the same direction. Therefore, the shape of the first pattern electrode 14 and the second pattern electrode 15 is not particularly limited to a belt shape. Hereinafter, the shape of the electrode will be described.
 図10は、第5実施形態にかかる圧電センサの平面図である。 FIG. 10 is a plan view of the piezoelectric sensor according to the fifth embodiment.
 図10に示すように、第1パターン電極14は、凹凸形状を有している。この凹凸形状は、凸部分と凹部分の繰返し形状からなる。凸部分と凹部分は、第1パターン電極14において、隣接する電極の間で噛み合うように、それぞれの第1パターン電極14が圧電層11上に配列されている。 As shown in FIG. 10, the first pattern electrode 14 has an uneven shape. This concavo-convex shape is a repetitive shape corresponding to a convex portion and a concave portion. The first pattern electrode 14 is arranged on the piezoelectric layer 11 so that the convex portion and the concave portion are engaged with each other in the first pattern electrode 14.
 なお、第1パターン電極のピッチ長さLは、入力手段(例えば、指やスタイラスペン)と圧力センサ10が接触した場合、その接触面の短径の長さよりも短くなるように設計されている。入力手段が指の場合、凸部分のピッチ長さLは1mm~16mmであり、スタイラスペンの場合、0.5mm~4mmである。 The pitch length L of the first pattern electrode is designed to be shorter than the length of the short diameter of the contact surface when the input means (for example, a finger or a stylus pen) and the pressure sensor 10 are in contact. . When the input means is a finger, the pitch length L of the convex portion is 1 mm to 16 mm, and when the stylus pen is 0.5 mm to 4 mm.
 そうすると、入力手段と圧力センサ10が接触したとき、第1パターン電極14の形状が帯状である場合と比べて、入力手段はたくさんの第1パターン電極14と接触する。その結果、より正確な位置検出と荷重検出が可能となる。 Then, when the input unit and the pressure sensor 10 are in contact with each other, the input unit is in contact with many first pattern electrodes 14 as compared with the case where the shape of the first pattern electrode 14 is a strip shape. As a result, more accurate position detection and load detection are possible.
 なお、第2パターン電極15も同様に、凹凸形状を有していてもよい。かかる場合、第2パターン電極15の凸部分のピッチ長さlは、入力手段と圧力センサ10が接触した場合の接触面の短径の長さよりも短くなるように設計されていることが好ましい。 In addition, the 2nd pattern electrode 15 may have uneven | corrugated shape similarly. In such a case, it is preferable that the pitch length l of the convex portion of the second pattern electrode 15 is designed to be shorter than the length of the short diameter of the contact surface when the input means and the pressure sensor 10 are in contact.
 上記のように構成されていると、入力手段と圧力センサ10が接触した場合、入力手段がより多くの第1パターン電極14や第2パターン電極15と接触する。そのため、より正確な位置検出と荷重検出が可能となる。 When configured as described above, when the input means and the pressure sensor 10 come into contact, the input means comes into contact with more first pattern electrodes 14 and second pattern electrodes 15. Therefore, more accurate position detection and load detection are possible.
6.第6実施形態
 第1パターン電極14と第2パターン電極15の他のパターン形状について、以下で説明する。
6). Sixth Embodiment Other pattern shapes of the first pattern electrode 14 and the second pattern electrode 15 will be described below.
 図11は、第6実施形態にかかる圧電センサの平面図である。図12は、図11のD-D’断面図である。 FIG. 11 is a plan view of the piezoelectric sensor according to the sixth embodiment. 12 is a cross-sectional view taken along the line D-D ′ of FIG. 11.
 図11に示すように、第1パターン電極14は、X軸方向に複数配置される第1電極部16と、第1電極部16どうしを電気的に接続する第1接続部17を備えている。
 第2パターン電極15は、X軸方向に複数配置される第2電極部18(図11:ひし形点線部分)と、第2電極部18どうしを電気的に接続する第2接続部19(図11:点線部分)を備えている。なお、第1電極部16と第1電極部18の形状は、図9ではひし形形状で示したが、三角形や四角形などの多角形状や、円や楕円形状であってもよい。
As shown in FIG. 11, the first pattern electrode 14 includes a plurality of first electrode portions 16 arranged in the X-axis direction and a first connection portion 17 that electrically connects the first electrode portions 16 to each other. .
The second pattern electrode 15 includes a plurality of second electrode portions 18 (FIG. 11: diamond dotted line portions) arranged in the X-axis direction and a second connection portion 19 (FIG. 11) that electrically connects the second electrode portions 18 to each other. : Dotted line part). In addition, although the shape of the 1st electrode part 16 and the 1st electrode part 18 was shown by the rhombus shape in FIG. 9, polygonal shapes, such as a triangle and a quadrangle | tetragon, a circle | round | yen, and an ellipse shape may be sufficient.
 また、図11、図12に示すように、第1電極部16は、第2電極部18の形状に沿うように圧電層11の上に積層されている。そうすると、第1電極部16に入力手段(例えば、指やスタイラスペン)が接触した場合、圧電層11で発生した電荷が第1電極部16と第2電極部18を経由して検出部20で検出される。このとき、検出部20で検出された電荷量を測定することにより圧電センサ10に与えられた荷重量を特定できる。なお、荷重位置については、検出部20で検出された電荷が、複数存在する第1パターン電極14と第2パターン電極15のうち、どの第1パターン電極14と第2パターン電極15を経由して、検出部20で検出されたかを制御部30で検出することにより、特定できる。 Further, as shown in FIGS. 11 and 12, the first electrode portion 16 is laminated on the piezoelectric layer 11 so as to follow the shape of the second electrode portion 18. Then, when an input means (for example, a finger or a stylus pen) comes into contact with the first electrode unit 16, the charge generated in the piezoelectric layer 11 passes through the first electrode unit 16 and the second electrode unit 18 and is detected by the detection unit 20. Detected. At this time, the amount of load applied to the piezoelectric sensor 10 can be specified by measuring the amount of charge detected by the detection unit 20. As for the load position, the charge detected by the detection unit 20 passes through the first pattern electrode 14 and the second pattern electrode 15 among the plurality of first pattern electrodes 14 and second pattern electrodes 15. It can be specified by detecting by the control unit 30 whether it has been detected by the detection unit 20.
7.第7実施形態
 第1パターン電極14と第2パターン電極15の積層方法は、第1電極部16が第2電極部18の形状に沿うように圧電層11の上に積層する場合に限定されない。以下で、他の配列方法について説明する。なお、基本的な構成については、第6実施形態と同様であるので、相違点のみ説明する。
7). Seventh Embodiment The method of laminating the first pattern electrode 14 and the second pattern electrode 15 is not limited to the case where the first electrode portion 16 is laminated on the piezoelectric layer 11 so as to follow the shape of the second electrode portion 18. Hereinafter, other arrangement methods will be described. Since the basic configuration is the same as that of the sixth embodiment, only the differences will be described.
 図13は、第7実施形態にかかる圧電センサの平面図である。図14は、図13のE-E’断面図である。 FIG. 13 is a plan view of the piezoelectric sensor according to the seventh embodiment. 14 is a cross-sectional view taken along the line E-E 'of FIG.
 図13に示すように、第1パターン電極14は、Y軸方向に複数配列されている。また、第1パターン電極14は、第1パターン電極14どうしで噛み合うように圧電層11上に配置されている。第2パターン電極も、隣接する第2パターン電極15どうしで噛み合うように圧電層11上に配置されている。 As shown in FIG. 13, a plurality of first pattern electrodes 14 are arranged in the Y-axis direction. Further, the first pattern electrode 14 is disposed on the piezoelectric layer 11 so as to mesh with each other. The second pattern electrode is also disposed on the piezoelectric layer 11 so as to be engaged with each other between the adjacent second pattern electrodes 15.
 なお、上記において第1電極部16は、四方に配置された4つの第2電極部18上に跨るように配置されている。 In addition, in the above, the 1st electrode part 16 is arrange | positioned so that it may straddle on the 4th 2nd electrode part 18 arrange | positioned at four directions.
 上記のように圧電センサ10が構成されると、第2電極部18の上に積層される第1電極部16の数が増える(第6実施形態の場合、図12に示すように、第1電極部16と第2電極部18との重なり部分の個数は、3つであったのに対し、第7実施形態の場合、図14に示すように、6つとなっている)。その結果、検出箇所の個数が増えるので、入力手段が圧電センサ10に接触した場合の位置検出精度と荷重検出精度が向上する。 When the piezoelectric sensor 10 is configured as described above, the number of the first electrode portions 16 stacked on the second electrode portion 18 is increased (in the case of the sixth embodiment, as shown in FIG. The number of overlapping portions of the electrode portion 16 and the second electrode portion 18 is three, whereas in the case of the seventh embodiment, it is six as shown in FIG. As a result, since the number of detection points increases, the position detection accuracy and load detection accuracy when the input means contacts the piezoelectric sensor 10 are improved.
 さらに、上記のように、第1パターン電極14が噛み合うように配置されることで、圧電層10の上に電極が隙間無く敷き詰められる。これは、第2パターン電極15が噛み合うように配置された場合も同じである。その結果、第1パターン電極14や第2パターン電極15パターン電極のパターン形状が見えにくい圧電センサ10となっている。 Furthermore, as described above, the first pattern electrodes 14 are arranged so as to mesh with each other, so that the electrodes are spread on the piezoelectric layer 10 without any gaps. This is the same when the second pattern electrodes 15 are arranged so as to mesh with each other. As a result, the piezoelectric sensor 10 is difficult to see the pattern shapes of the first pattern electrode 14 and the second pattern electrode 15 pattern electrode.
8.第8実施形態
 上部電極12や下部電極13だけでなく、圧電層11は活性な部分と不活性な部分を有するようにパターニングされていてもよい。
8). Eighth Embodiment In addition to the upper electrode 12 and the lower electrode 13, the piezoelectric layer 11 may be patterned so as to have an active portion and an inactive portion.
 図15は、第8実施形態にかかる圧電センサの断面図である。 FIG. 15 is a cross-sectional view of the piezoelectric sensor according to the eighth embodiment.
 図15に示すように、圧電層11は、活性圧電部110と不活性圧電部111からなる。活性圧電部110は、圧電センサ10に荷重が与えられたときに電荷が発生する部分である。反対に不活性圧電部111は、荷重が与えられても電荷が発生しない部分である。 As shown in FIG. 15, the piezoelectric layer 11 includes an active piezoelectric portion 110 and an inactive piezoelectric portion 111. The active piezoelectric portion 110 is a portion where electric charges are generated when a load is applied to the piezoelectric sensor 10. On the other hand, the inactive piezoelectric portion 111 is a portion where no charge is generated even when a load is applied.
 図15の例では、活性圧電部110の上下に第1パターン電極14と第2パターン電極15が配置されている。このように構成されていると、第1パターン電極14付近で発生した電荷が漏れて、他の第1パターン電極14に混入するのを防止できる(クロストーク現象を防止できる)。その結果、位置検出精度と荷重検出精度が向上する。また上記では、活性圧電部110の上に第1パターン電極14や第2パターン電極15が直接積層された例を示したが、活性圧電部110と第1パターン電極14の間、または活性圧電部110と第2パターン電極15の間には、接着剤やフィルムなどの絶縁材料が積層されていてもよい。 In the example of FIG. 15, the first pattern electrode 14 and the second pattern electrode 15 are disposed above and below the active piezoelectric portion 110. With such a configuration, it is possible to prevent electric charges generated near the first pattern electrode 14 from leaking and mixing into other first pattern electrodes 14 (a crosstalk phenomenon can be prevented). As a result, position detection accuracy and load detection accuracy are improved. In the above description, an example in which the first pattern electrode 14 and the second pattern electrode 15 are directly laminated on the active piezoelectric portion 110 has been described. However, the active piezoelectric portion 110 or the active piezoelectric portion is interposed between the active piezoelectric portion 110 and the first pattern electrode 14. Between 110 and the 2nd pattern electrode 15, insulating materials, such as an adhesive agent and a film, may be laminated | stacked.
9.第9実施形態
 上記では、上部電極と下部電極に圧電層が挟まれた構成について説明してきたが、上部電極と下部電極の間に基準電極が設けられていてもよい。
9. Ninth Embodiment In the above description, the configuration in which the piezoelectric layer is sandwiched between the upper electrode and the lower electrode has been described. However, a reference electrode may be provided between the upper electrode and the lower electrode.
 図16は、第9実施形態にかかる圧電センサの断面図である。 FIG. 16 is a cross-sectional view of the piezoelectric sensor according to the ninth embodiment.
 図16に示すように、第9実施形態の圧電センサ10は、上部電極12と下部電極13の間に基準電極40を備えている。上部電極12と基準電極40の間には、第1圧電層11aが設けられている。下部電極13と基準電極40の間には、第2圧電層11bが設けられている。第1圧電層11aと第2圧電層11bの材質は、圧電層11と同じである。基準電極40の材質も、上部電極12や下部電極13と同じである。
 このように、上部電極12と下部電極13との間に基準電極40が設けられると、第1圧電層11aや第2圧電層11bで発生した電荷を上部電極12と下部電極13とで独立して検出できる。その結果、検出回路の設計が簡易になる。
As shown in FIG. 16, the piezoelectric sensor 10 of the ninth embodiment includes a reference electrode 40 between the upper electrode 12 and the lower electrode 13. A first piezoelectric layer 11 a is provided between the upper electrode 12 and the reference electrode 40. Between the lower electrode 13 and the reference electrode 40, the second piezoelectric layer 11b is provided. The material of the first piezoelectric layer 11 a and the second piezoelectric layer 11 b is the same as that of the piezoelectric layer 11. The material of the reference electrode 40 is also the same as that of the upper electrode 12 and the lower electrode 13.
As described above, when the reference electrode 40 is provided between the upper electrode 12 and the lower electrode 13, the charges generated in the first piezoelectric layer 11 a and the second piezoelectric layer 11 b are independently generated by the upper electrode 12 and the lower electrode 13. Can be detected. As a result, the design of the detection circuit is simplified.
10.第10実施形態
 第2実施形態では、第1パターン電極14が複数配列される方向と第2パターン電極15が複数配列される方向は同一方向であったが、第1パターン電極14が複数配列される方向と第2パターン電極15が複数配列される方向は交差していてもよい。
10. Tenth Embodiment In the second embodiment, the direction in which a plurality of first pattern electrodes 14 are arranged and the direction in which a plurality of second pattern electrodes 15 are arranged are the same direction, but a plurality of first pattern electrodes 14 are arranged. And the direction in which a plurality of second pattern electrodes 15 are arranged may intersect each other.
 図17は第10実施形態における圧力検出装置の概略図である。図18は図17のA-A’断面図である。 FIG. 17 is a schematic view of a pressure detection device according to the tenth embodiment. 18 is a cross-sectional view taken along the line A-A 'of FIG.
 図17に示すように、第10実施形態における圧力検出装置1も、圧電センサ10と、検出部20と、制御部30を有している。圧電センサ10は、与えられた荷重に応じて電荷を発生させる装置である。検出部20は、圧電センサ10で発生した電荷を検出する装置である。制御部30は、圧電センサ10に設置されたスイッチSを制御する装置である。 As shown in FIG. 17, the pressure detection device 1 in the tenth embodiment also includes a piezoelectric sensor 10, a detection unit 20, and a control unit 30. The piezoelectric sensor 10 is a device that generates an electric charge according to a given load. The detection unit 20 is a device that detects charges generated by the piezoelectric sensor 10. The control unit 30 is a device that controls the switch S installed in the piezoelectric sensor 10.
 図17に示すように、第10実施形態における上部電極12は、帯状の第1パターン電極14を備えている。なお、第1パターン電極14は、Y軸方向に複数配列されている。第10実施形態における下部電極13も帯状の第2パターン電極15を備えている。第2実施形態と異なる点は、第10実施形態における第2パターン電極15は、X軸方向に複数配列されている。 As shown in FIG. 17, the upper electrode 12 in the tenth embodiment includes a strip-shaped first pattern electrode 14. A plurality of first pattern electrodes 14 are arranged in the Y-axis direction. The lower electrode 13 in the tenth embodiment also includes a strip-shaped second pattern electrode 15. The difference from the second embodiment is that a plurality of second pattern electrodes 15 in the tenth embodiment are arranged in the X-axis direction.
 このような圧電センサ10に荷重がかかると、かかった荷重に応じた電荷が発生する。発生した電荷は、荷重がかかった付近に存在する第1パターン電極14や第2パターン電極15を経由して検出部20で検出される。このとき、検出部20で検出された電荷量を測定することにより圧電センサ10に与えられた荷重量を特定できる。なお、荷重位置については、検出部20で検出された電荷が、複数存在する第1パターン電極14と第2パターン電極15のうち、どの第1パターン電極14と第2パターン電極15を経由したかを制御部30で検出することにより、特定できる。 When a load is applied to such a piezoelectric sensor 10, an electric charge corresponding to the applied load is generated. The generated charges are detected by the detection unit 20 via the first pattern electrode 14 and the second pattern electrode 15 existing in the vicinity of the load. At this time, the amount of load applied to the piezoelectric sensor 10 can be specified by measuring the amount of charge detected by the detection unit 20. As for the load position, which first pattern electrode 14 and second pattern electrode 15 out of the plurality of first pattern electrodes 14 and second pattern electrodes 15 detected by the detection unit 20 pass through. Can be identified by the control unit 30.
 上記第10実施形態では、第1パターン電極14が圧電層11のY軸方向に、第2パターン電極15がX軸方向に配列された例を示したが、第1パターン電極14と第2パターン電極15の配列位置は、入れ替わっていてもよい。 In the tenth embodiment, the first pattern electrode 14 is arranged in the Y-axis direction of the piezoelectric layer 11 and the second pattern electrode 15 is arranged in the X-axis direction. However, the first pattern electrode 14 and the second pattern are arranged. The arrangement position of the electrodes 15 may be switched.
11.第11実施形態
 第10実施形態では、配列方向が交差する第1パターン電極14や第2パターン電極15の幅方向の長さは一定であったが、上記長さは圧電層11の周縁部に近づくにつれて、長くなるように構成されていてもよい。
11. Eleventh Embodiment In the tenth embodiment, the length in the width direction of the first pattern electrode 14 and the second pattern electrode 15 intersecting in the arrangement direction is constant. You may be comprised so that it may become long as it approaches.
 図19は、第11実施形態にかかる圧電センサの平面図である。 FIG. 19 is a plan view of the piezoelectric sensor according to the eleventh embodiment.
 図19に示すように、圧電センサ10の周縁部上には、圧電センサ10を固定するための固定部材Wが設けられている。固定部材Wは、接着材料や固定枠である。かかる場合、圧電センサ10の周縁部に近づくにつれて、電極幅が広くなる第1パターン電極14が配置されていてもよい。これは、第2パターン電極15についても同様である。 As shown in FIG. 19, a fixing member W for fixing the piezoelectric sensor 10 is provided on the peripheral edge of the piezoelectric sensor 10. The fixing member W is an adhesive material or a fixing frame. In such a case, the first pattern electrode 14 whose electrode width increases as it approaches the peripheral edge of the piezoelectric sensor 10 may be disposed. The same applies to the second pattern electrode 15.
 圧電センサ10を固定部材Wなどで固定すると、感圧センサ10に荷重が与えられたとき、固定部材Wが設けられた箇所、またはその付近の箇所には、撓みの力が伝わりにくくなる。そのため、上記のような箇所において荷重の検出は困難となる。
 第11実施形態では、固定部材Wが設けられた箇所に近づくにつれて、電極幅の広い電極を配置し、物理的な検出感度を向上させることで、荷重の検出が難しい固定部材W付近の検出を可能にしている。
When the piezoelectric sensor 10 is fixed by the fixing member W or the like, when a load is applied to the pressure-sensitive sensor 10, the bending force is hardly transmitted to a location where the fixing member W is provided or a location in the vicinity thereof. For this reason, it is difficult to detect the load at the above-described places.
In the eleventh embodiment, as the position where the fixing member W is provided is approached, an electrode having a wider electrode width is arranged to improve the physical detection sensitivity, thereby detecting the vicinity of the fixing member W where it is difficult to detect the load. It is possible.
 また、第1パターン電極14は、第1パターン電極14のピッチ間隔Lが一定になるよう圧電層11の上に配列されている。なお、第2パターン電極15も、第2パターン電極15のピッチ間隔lが一定になるよう圧電層11の下に配列されている。このように構成すると、第1パターン電極14や第2パターン電極15が、圧電層11の上に等間隔に配列されるので、上記に加え正確な位置検出が可能となる。 Further, the first pattern electrodes 14 are arranged on the piezoelectric layer 11 so that the pitch interval L of the first pattern electrodes 14 is constant. The second pattern electrodes 15 are also arranged below the piezoelectric layer 11 so that the pitch interval l between the second pattern electrodes 15 is constant. If comprised in this way, since the 1st pattern electrode 14 and the 2nd pattern electrode 15 are arranged on the piezoelectric layer 11 at equal intervals, in addition to the above, an exact position detection is attained.
12.第12実施形態
 配列方向が交差する第1パターン電極14と第2パターン電極15は、圧電層11を介して重なり部分があればよいので、第1パターン電極14と第2パターン電極15の形状は、帯状には特に限定されない。
12 Twelfth Embodiment Since the first pattern electrode 14 and the second pattern electrode 15 that intersect in the arrangement direction only need to overlap with each other via the piezoelectric layer 11, the shapes of the first pattern electrode 14 and the second pattern electrode 15 are The belt shape is not particularly limited.
 図20は、第12実施形態にかかる圧電センサの平面図である。 FIG. 20 is a plan view of the piezoelectric sensor according to the twelfth embodiment.
 図20に示すように、第1パターン電極14は、凹凸形状を有している。この凹凸形状は、凸部分と凹部分の繰返し形状からなる。凸部分と凹部分は、隣接する第1パターン電極14どうしの間で噛み合うように配列されている。 As shown in FIG. 20, the first pattern electrode 14 has an uneven shape. This concavo-convex shape is a repetitive shape corresponding to a convex portion and a concave portion. The convex portion and the concave portion are arranged so as to mesh with each other between the adjacent first pattern electrodes 14.
 なお、第1パターン電極14のピッチ長さLは、入力手段(例えば、指やスタイラスペン)と圧力センサ10が接触した場合、その接触面の短径の長さよりも短くなるように設計されている。入力手段が指の場合、凸部分のピッチ長さLは、1mm~16mmであり、スタイラスペンの場合、0.5mm~4mmである。 Note that the pitch length L of the first pattern electrode 14 is designed to be shorter than the length of the short diameter of the contact surface when the input means (for example, a finger or a stylus pen) and the pressure sensor 10 are in contact with each other. Yes. When the input means is a finger, the pitch length L of the convex portion is 1 mm to 16 mm, and when the input means is a stylus pen, the pitch length L is 0.5 mm to 4 mm.
 そうすると、入力手段と圧力センサが接触したとき、第1パターン電極14の形状が帯状である場合と比べて、入力手段はより多くの第1パターン電極14と接触する。その結果、上記の場合より、より正確な位置検出と荷重検出が可能となる。 Then, when the input means and the pressure sensor come into contact with each other, the input means comes into contact with more first pattern electrodes 14 as compared with the case where the shape of the first pattern electrode 14 is a band shape. As a result, more accurate position detection and load detection are possible than in the above case.
 なお、上記の場合において、第2パターン電極15は、第1パターン電極14の形状に沿うように圧電層11を介して第1パターン電極14の下に配置されていてもよい。 In the above case, the second pattern electrode 15 may be disposed below the first pattern electrode 14 via the piezoelectric layer 11 so as to follow the shape of the first pattern electrode 14.
 上記のように構成されていると、入力手段と圧力センサ10が接触した場合、入力手段がより多くの第1パターン電極14や第2パターン電極15と接触する。そのため、より正確な位置検出と荷重検出が可能となる。 When configured as described above, when the input means and the pressure sensor 10 come into contact, the input means comes into contact with more first pattern electrodes 14 and second pattern electrodes 15. Therefore, more accurate position detection and load detection are possible.
13.第13実施形態
 配列方向が交差する第1パターン電極14と第2パターン電極15の他のパターン形状について、以下で説明する。
13. Thirteenth Embodiment Another pattern shape of the first pattern electrode 14 and the second pattern electrode 15 whose arrangement directions intersect will be described below.
 図21は、13実施形態にかかる圧電センサの平面図である。図22は、図21のB-B’断面図である。 FIG. 21 is a plan view of the piezoelectric sensor according to the thirteenth embodiment. 22 is a cross-sectional view taken along the line B-B ′ of FIG. 21.
 図21に示すように、第1パターン電極14は、X軸方向に複数配置される第1電極部16と、第1電極部16どうしを電気的に接続する第1接続部17を備えている。
 第2パターン電極15は、Y軸方向に複数配置される第2電極部18(図21:ひし形点線部分)と、第2電極部18どうしを電気的に接続する第2接続部19(図21:点線部分)を備えている。なお、第1電極部16と第1電極部18の形状は、図21ではひし形形状で示したが、三角形や四角形などの多角形状や、円や楕円形状であってもよい。
As shown in FIG. 21, the first pattern electrode 14 includes a plurality of first electrode portions 16 that are arranged in the X-axis direction and a first connection portion 17 that electrically connects the first electrode portions 16 to each other. .
The second pattern electrode 15 includes a plurality of second electrode portions 18 (FIG. 21: rhombus dotted line portions) arranged in the Y-axis direction and a second connection portion 19 (FIG. 21) that electrically connects the second electrode portions 18 to each other. : Dotted line part). In addition, although the shape of the 1st electrode part 16 and the 1st electrode part 18 was shown by the rhombus shape in FIG. 21, polygon shape, such as a triangle and a quadrangle | tetragon, a circle | round | yen, and an ellipse shape may be sufficient.
 また、図21、図22に示すように、第1電極部16は、第2電極部18の形状に沿うように圧電層11の上に積層されている。そうすると、第1電極部16に入力手段(例えば、指やスタイラスペン)が接触した場合、圧電層11で発生した電荷が第1電極部16と第2電極部18を介して検出器20で検出される。接触した位置の検出については、検出された電荷が、どの第1パターン電極14と第2パターン電極15を経由してきたかを制御部20で検出することで特定できる。荷重量については、検出部20で検出された電荷量を特定すること検出できる。 21 and 22, the first electrode portion 16 is laminated on the piezoelectric layer 11 so as to follow the shape of the second electrode portion 18. Then, when an input means (for example, a finger or a stylus pen) comes into contact with the first electrode unit 16, the charge generated in the piezoelectric layer 11 is detected by the detector 20 via the first electrode unit 16 and the second electrode unit 18. Is done. The detection of the touched position can be specified by detecting which first pattern electrode 14 and second pattern electrode 15 the detected charge has passed through by the control unit 20. The load amount can be detected by specifying the charge amount detected by the detection unit 20.
14.第14実施形態
 配列方向が交差する第1パターン電極14と第2パターン電極15の積層方法は、第1電極部16が第2電極部18の形状に沿うように圧電層11の上に積層する場合に限定されない。以下で、他の配列方法について説明する。
14 Fourteenth Embodiment The method of laminating the first pattern electrode 14 and the second pattern electrode 15 whose arrangement directions cross each other is laminated on the piezoelectric layer 11 so that the first electrode portion 16 follows the shape of the second electrode portion 18. It is not limited to the case. Hereinafter, other arrangement methods will be described.
 図23は、第14実施形態にかかる圧電センサの平面図である。図24は、図23のC-C’断面図である。 FIG. 23 is a plan view of the piezoelectric sensor according to the fourteenth embodiment. 24 is a cross-sectional view taken along the line C-C ′ of FIG. 23.
 図23に示すように、第1電極部16は、複数の第2電極部18に跨って圧電層11上に積層されている。上記のように構成することで、第1電極部16と第2電極部18の重なり部分の個数が、第13実施形態の場合と比べて増加する。その結果、入力手段が圧電センサ10に接触した場合の位置検出精度と荷重検出精度が向上する。 As shown in FIG. 23, the first electrode portion 16 is laminated on the piezoelectric layer 11 across the plurality of second electrode portions 18. By configuring as described above, the number of overlapping portions of the first electrode portion 16 and the second electrode portion 18 is increased compared to the case of the thirteenth embodiment. As a result, the position detection accuracy and load detection accuracy when the input means contacts the piezoelectric sensor 10 are improved.
15.第15実施形態
 配列方向が交差する態様においても、上部電極12や下部電極13だけでなく、圧電層11は活性な部分と不活性な部分を有するようにパターニングされていてもよい。
15. Fifteenth Embodiment Also in an aspect in which arrangement directions intersect, not only the upper electrode 12 and the lower electrode 13 but also the piezoelectric layer 11 may be patterned so as to have an active portion and an inactive portion.
 図25、図26は、第15実施形態にかかる圧電センサの断面図である。 25 and 26 are cross-sectional views of the piezoelectric sensor according to the fifteenth embodiment.
 図25に示すように、圧電層11は、活性圧電部110と不活性圧電部111からなる。
 活性圧電部110は、圧電センサ10に荷重が与えられたときに電荷が発生する部分である。反対に不活性圧電部111は、荷重が与えられても電荷が発生しない部分である。
As shown in FIG. 25, the piezoelectric layer 11 includes an active piezoelectric portion 110 and an inactive piezoelectric portion 111.
The active piezoelectric portion 110 is a portion where electric charges are generated when a load is applied to the piezoelectric sensor 10. On the other hand, the inactive piezoelectric portion 111 is a portion where no charge is generated even when a load is applied.
 図25の例では、第1パターン電極14は、活性圧電部110の上に積層され、第2パターン電極15は、活性圧電部110と不活性圧電部111の下に積層されている。このように構成されていると、第1パターン電極14付近で発生した電荷が漏れて、他の第1パターン電極14に混入するのを防止できる(クロストーク現象を防止できる)。その結果、位置検出精度と荷重検出精度が向上する。 25, the first pattern electrode 14 is stacked on the active piezoelectric portion 110, and the second pattern electrode 15 is stacked below the active piezoelectric portion 110 and the inactive piezoelectric portion 111. With such a configuration, it is possible to prevent electric charges generated near the first pattern electrode 14 from leaking and mixing into other first pattern electrodes 14 (a crosstalk phenomenon can be prevented). As a result, position detection accuracy and load detection accuracy are improved.
 なお、図26で示すように、第2パターン電極15が、活性圧電部110の下に積層され、第1パターン電極14が、活性圧電部110と不活性圧電部111の上に積層されていてもよい。また上記では、活性圧電部110の上に第1パターン電極14や第2パターン電極15が直接積層された例を示したが、活性圧電部110と第1パターン電極14の間、または活性圧電部110と第2パターン電極15の間には、接着剤やフィルムなどの絶縁材料が積層されていてもよい。 As shown in FIG. 26, the second pattern electrode 15 is laminated below the active piezoelectric portion 110, and the first pattern electrode 14 is laminated on the active piezoelectric portion 110 and the inactive piezoelectric portion 111. Also good. In the above description, an example in which the first pattern electrode 14 and the second pattern electrode 15 are directly laminated on the active piezoelectric portion 110 has been described. However, the active piezoelectric portion 110 or the active piezoelectric portion is interposed between the active piezoelectric portion 110 and the first pattern electrode 14. Between 110 and the 2nd pattern electrode 15, insulating materials, such as an adhesive agent and a film, may be laminated | stacked.
16.第16実施形態
 上記第10~第15実施形態では、上部電極12と下部電極13に圧電層11が挟まれた構成について説明してきたが、上部電極12と下部電極13の間に基準電極40が設けられていてもよい。
16. Sixteenth Embodiment In the tenth to fifteenth embodiments, the configuration in which the piezoelectric layer 11 is sandwiched between the upper electrode 12 and the lower electrode 13 has been described, but the reference electrode 40 is provided between the upper electrode 12 and the lower electrode 13. It may be provided.
 図27図は、第16実施形態にかかる圧電センサの断面図である。 FIG. 27 is a sectional view of the piezoelectric sensor according to the sixteenth embodiment.
 図27に示すように、第16実施形態の圧電センサ10は、上部電極12と下部電極13の間に基準電極40が設けられている。上部電極12と基準電極40の間には、第1圧電層11aが設けられている。下部電極13と基準電極40の間には、第2圧電層11bが設けられている。第1圧電層11aと第2圧電層11bの材質は、圧電層11と同じである。基準電極40の材質も、上部電極12や下部電極13と同じである。
 このように、上部電極12と下部電極13との間に基準電極40が設けられると、第1圧電層11aや第2圧電層11bで発生した電荷を上部電極12と下部電極13とで独立して検出できる。その結果、検出回路の設計が簡易になる。
As shown in FIG. 27, in the piezoelectric sensor 10 of the sixteenth embodiment, a reference electrode 40 is provided between the upper electrode 12 and the lower electrode 13. A first piezoelectric layer 11 a is provided between the upper electrode 12 and the reference electrode 40. Between the lower electrode 13 and the reference electrode 40, the second piezoelectric layer 11b is provided. The material of the first piezoelectric layer 11 a and the second piezoelectric layer 11 b is the same as that of the piezoelectric layer 11. The material of the reference electrode 40 is also the same as that of the upper electrode 12 and the lower electrode 13.
As described above, when the reference electrode 40 is provided between the upper electrode 12 and the lower electrode 13, the charges generated in the first piezoelectric layer 11 a and the second piezoelectric layer 11 b are independently generated by the upper electrode 12 and the lower electrode 13. Can be detected. As a result, the design of the detection circuit is simplified.
17.第17実施形態
(1)圧力検出装置の全体構造
 図28を用いて、本発明の第17実施形態に係る圧力検出装置の全体構造を説明する。図28は圧力検出装置の概略図である。図29は図28におけるA-A’断面の断面図である。
17. Seventeenth Embodiment (1) Overall Structure of Pressure Detection Device The overall structure of a pressure detection device according to a seventeenth embodiment of the present invention will be described with reference to FIG. FIG. 28 is a schematic view of a pressure detection device. 29 is a cross-sectional view taken along the line AA ′ in FIG.
 図28に示すように、圧力検出装置1は、圧電センサ10と、検出部20を備えている。圧電センサ10は、与えられた荷重に応じて電荷を発生させる装置である。検出部20は、圧電層11で発生した電荷を検出する装置である。以下で、圧力検出装置1の構成を詳細に説明する。 As shown in FIG. 28, the pressure detection device 1 includes a piezoelectric sensor 10 and a detection unit 20. The piezoelectric sensor 10 is a device that generates an electric charge according to a given load. The detection unit 20 is a device that detects charges generated in the piezoelectric layer 11. Below, the structure of the pressure detection apparatus 1 is demonstrated in detail.
 (2)圧電センサ
 図29に示すように、圧電センサ10は、圧電層11と、これを挟む上部電極(第1電極)12及び下部電極(第2電極)13とから構成される。第1電極12は、圧電層11の第1主面側に配置され、第2電極13は、圧電層11の第1主面側とは反対側の第2主面側に配置されている。なお、図示しないが、第1電極12と第2電極13との間に基準電極が設けられていてもよい。
(2) Piezoelectric Sensor As shown in FIG. 29, the piezoelectric sensor 10 includes a piezoelectric layer 11, and an upper electrode (first electrode) 12 and a lower electrode (second electrode) 13 sandwiching the piezoelectric layer 11. The first electrode 12 is disposed on the first main surface side of the piezoelectric layer 11, and the second electrode 13 is disposed on the second main surface side opposite to the first main surface side of the piezoelectric layer 11. Although not shown, a reference electrode may be provided between the first electrode 12 and the second electrode 13.
 図30に示すように、第1電極12は、第1パターン電極120と、第2パターン電極121と、第3パターン電極122を備えている。上記電極パターンは、Y軸方向に配置されている。なお、上記パターン電極は、それぞれL型基準電極123と、L型電極124を備えている。
 L型基準電極123は、L型電極124の外側に配置され、2つの辺からなる。2つの辺のうち、短辺はY軸方向に配置され、長辺はY軸方向とは直交するX軸方向に配置されている。
As shown in FIG. 30, the first electrode 12 includes a first pattern electrode 120, a second pattern electrode 121, and a third pattern electrode 122. The electrode pattern is arranged in the Y-axis direction. Each of the pattern electrodes includes an L-type reference electrode 123 and an L-type electrode 124.
The L-type reference electrode 123 is disposed outside the L-type electrode 124 and has two sides. Of the two sides, the short side is arranged in the Y-axis direction, and the long side is arranged in the X-axis direction orthogonal to the Y-axis direction.
 L型電極124は、L型基準電極123の内側に複数配置されている。L型電極124は、第1L型電極125と、第2L型電極126と、第3L型電極127を備えている。 A plurality of L-type electrodes 124 are arranged inside the L-type reference electrode 123. The L-type electrode 124 includes a first L-type electrode 125, a second L-type electrode 126, and a third L-type electrode 127.
 第1L型電極125から第3L型電極127の短辺はY軸方向に配置され、長辺はX軸方向に配置されている。また、L型電極124における短辺の端部は、L型基準電極123における短辺の端部の延長線上に配置され、長辺の端部はL型基準電極123における長辺の端部の延長線上に配置されている。 The short sides of the first L-type electrode 125 to the third L-type electrode 127 are arranged in the Y-axis direction, and the long sides are arranged in the X-axis direction. Further, the end of the short side of the L-type electrode 124 is disposed on an extension line of the end of the short side of the L-type reference electrode 123, and the end of the long side is the end of the long side of the L-type reference electrode 123. It is arranged on the extension line.
 なお、第1L型電極125は、L型基準電極123の内側に配置されている。第2L型電極126は、第1L型電極125の内側に配置されている。第3L型電極127は、第2L型電極126の内側に配置されている。 Note that the first L-type electrode 125 is disposed inside the L-type reference electrode 123. The second L-type electrode 126 is disposed inside the first L-type electrode 125. The third L-type electrode 127 is disposed inside the second L-type electrode 126.
 図31に示すように、第2電極13は、複数の帯状電極を備えている。帯状電極は、Y軸方向に配列される第1帯状電極130、第2帯状電極131、第3帯状電極132から構成されている。帯状電極は、圧電層11を介して第1電極部12の電極パターンを覆っている。すなわち、第1帯状電極130は、第1パターン電極120を覆い、第2帯状電極131は、第2パターン電極121を覆い、第3帯状電極132は、第3パターン電極122を覆っている。 As shown in FIG. 31, the second electrode 13 includes a plurality of strip electrodes. The strip electrode is composed of a first strip electrode 130, a second strip electrode 131, and a third strip electrode 132 arranged in the Y-axis direction. The strip electrode covers the electrode pattern of the first electrode portion 12 via the piezoelectric layer 11. That is, the first strip electrode 130 covers the first pattern electrode 120, the second strip electrode 131 covers the second pattern electrode 121, and the third strip electrode 132 covers the third pattern electrode 122.
 なお、上記では、第1電極12は、第1パターン電極120から第3パターン電極122の3つのパターン電極を備えている例について説明したが、これに限定されない。すなわち、第1電極は、n個(n=1,2,3…)のパターン電極を備えていてもよい。これは、L型電極、帯状電極についても同様である。 In the above description, the example in which the first electrode 12 includes the three pattern electrodes from the first pattern electrode 120 to the third pattern electrode 122 has been described. However, the present invention is not limited to this. That is, the first electrode may include n (n = 1, 2, 3,...) Pattern electrodes. The same applies to the L-shaped electrode and the strip electrode.
  (3)電極
 第1電極12、第2電極13は、「1. 第1実施形態」で示したのと同様の導電性を有する材料により構成できる。
(3) Electrode The 1st electrode 12 and the 2nd electrode 13 can be comprised with the material which has the same electroconductivity as having shown in "1. 1st Embodiment."
 (4)圧電層
 圧電層11を構成する材料としては、「1. 第1実施形態」で示したのと同様の無機圧電材料や有機圧電材料が挙げられる。
(4) Piezoelectric layer Examples of the material constituting the piezoelectric layer 11 include inorganic piezoelectric materials and organic piezoelectric materials similar to those described in “1. First embodiment”.
 また、圧力検出装置1を、液晶装置や有機EL装置のような表示装置の上に配置する場合には、表示装置のディスプレイが見えるように、圧電層を透明な材料により構成するか、又は、光が十分に透過できる程度に薄く構成することが好ましい。 When the pressure detection device 1 is arranged on a display device such as a liquid crystal device or an organic EL device, the piezoelectric layer is made of a transparent material so that the display of the display device can be seen, or It is preferable that the thickness be thin enough to transmit light sufficiently.
 (5)検出部
 図28に示すように、検出部20は、第1検出部21と、第2検出部22からなる。再び図30に示すように、第1検出部21は、L型基準電極検出部210と、第1L型電極検出部211と、第2L型電極検出部212と、第3L型電極検出部213からなる。L型基準電極検出部210は、各L型基準電極123と接続されている。同じように、第1L型電極検出部211は、各第1L型電極125と接続され、第2L型電極検出部212は、各第2L型電極126と接続され、第3L型電極検出部213は、各第3L型電極127と接続されている。
(5) Detection Unit As shown in FIG. 28, the detection unit 20 includes a first detection unit 21 and a second detection unit 22. As shown in FIG. 30 again, the first detection unit 21 includes an L-type reference electrode detection unit 210, a first L-type electrode detection unit 211, a second L-type electrode detection unit 212, and a third L-type electrode detection unit 213. Become. The L-type reference electrode detection unit 210 is connected to each L-type reference electrode 123. Similarly, the first L-type electrode detector 211 is connected to each first L-type electrode 125, the second L-type electrode detector 212 is connected to each second L-type electrode 126, and the third L-type electrode detector 213 is Are connected to each third L-type electrode 127.
 上記のように構成すると、圧電層11が押圧されたときに、L型基準電極123の下に配置された圧電層11で発生する電荷については、L型基準電極検出部210で検出できる。第1L型電極125、第2L型電極126、第3L型電極127の下に配置された圧電層11で発生する電荷については、それぞれ第1L型電極検出部211、第2L型電極検出部212、第3L型電極検出部213で検出できる。 When configured as described above, the L-type reference electrode detector 210 can detect charges generated in the piezoelectric layer 11 disposed under the L-type reference electrode 123 when the piezoelectric layer 11 is pressed. Regarding the charges generated in the piezoelectric layer 11 disposed below the first L-type electrode 125, the second L-type electrode 126, and the third L-type electrode 127, the first L-type electrode detection unit 211, the second L-type electrode detection unit 212, It can be detected by the third L-type electrode detector 213.
 再び、図31に示すように、第2検出部22は、第1帯状電極検出部220と、第2帯状電極検出部221と、第3帯状電極検出部222を備えている。第1帯状電極検出部220は、第1帯状電極130と接続されている。同じように、第2帯状電極検出部221は、第2帯状電極131と接続され、第3帯状電極検出部222は、第3帯状電極132と接続されている。 Again, as shown in FIG. 31, the second detection unit 22 includes a first strip electrode detection unit 220, a second strip electrode detection unit 221, and a third strip electrode detection unit 222. The first strip electrode detector 220 is connected to the first strip electrode 130. Similarly, the second strip electrode detector 221 is connected to the second strip electrode 131, and the third strip electrode detector 222 is connected to the third strip electrode 132.
 上記のように構成すると、圧電層11が押圧されたときに、第1帯状電極130の下に配置された圧電層11で発生する電荷については、第1帯状電極検出部220で検出できる。第2帯状電極131、第3帯状電極132の下に配置された圧電層11で発生する電荷については、それぞれ第2帯状電極検出部221、第3帯状電極検出部222で検出できる。 When configured as described above, the first strip electrode detection unit 220 can detect the charge generated in the piezoelectric layer 11 disposed below the first strip electrode 130 when the piezoelectric layer 11 is pressed. The charges generated in the piezoelectric layer 11 disposed below the second strip electrode 131 and the third strip electrode 132 can be detected by the second strip electrode detector 221 and the third strip electrode detector 222, respectively.
 上記のように、圧力検出装置1を構成すると、再び図30に示すように、X軸方向のX1領域には、L型基準電極123と、第1L型電極125と、第2L型電極126と、第3L型電極127が配置される。X2領域には、L型基準電極123と、第1L型電極125と、第2L型電極126が配置され、X3領域には、L型基準電極123と第1L型電極125が配置される。X4領域には、L型基準電極123が配置される。なお、L型基準電極123は、L型基準電極検出部210と接続され、第1L型電極125は、第1L型電極検出部210と接続され、第2L型電極126は、第2L型電極検出部221と接続され、第3L型電極127は、第2L型電極検出部222と接続される。 As described above, when the pressure detection apparatus 1 is configured, as shown in FIG. 30 again, in the X1 region in the X-axis direction, the L-type reference electrode 123, the first L-type electrode 125, the second L-type electrode 126, A third L-type electrode 127 is disposed. An L-type reference electrode 123, a first L-type electrode 125, and a second L-type electrode 126 are arranged in the X2 region, and an L-type reference electrode 123 and a first L-type electrode 125 are arranged in the X3 region. An L-type reference electrode 123 is disposed in the X4 region. The L-type reference electrode 123 is connected to the L-type reference electrode detection unit 210, the first L-type electrode 125 is connected to the first L-type electrode detection unit 210, and the second L-type electrode 126 is connected to the second L-type electrode detection unit. The third L-type electrode 127 is connected to the second L-type electrode detection unit 222.
 そのため、X1領域に荷重がかかった場合、荷重により発生した電荷は、L型基準電極123と、第1L型電極125と、第2L型電極126と、第3L型電極127を経由して、L型基準電極検出部210と、第1L型電極検出部211と、第2L型電極検出部212と、第3L型電極検出部213の4つの検出部で検出される。 Therefore, when a load is applied to the X1 region, the charge generated by the load is transferred to the L-type reference electrode 123, the first L-type electrode 125, the second L-type electrode 126, and the third L-type electrode 127. The detection is performed by four detection units: a type reference electrode detection unit 210, a first L type electrode detection unit 211, a second L type electrode detection unit 212, and a third L type electrode detection unit 213.
 X2領域に荷重がかかった場合は、L型基準電極123と、第1L型電極125と、第2L型電極126を経由して、L型基準電極検出部210と、第1L型電極検出部211と、第2L型電極検出部212の3つの検出部で電荷が検出される。 When a load is applied to the X2 region, the L-type reference electrode detection unit 210 and the first L-type electrode detection unit 211 pass through the L-type reference electrode 123, the first L-type electrode 125, and the second L-type electrode 126. The charge is detected by the three detection units of the second L-type electrode detection unit 212.
 X3領域に荷重がかかった場合は、L型基準電極123と、第1L型電極125を経由して、L型基準電極検出部210と、第1L型電極検出部211の2つの検出部で電荷が検出される。 When a load is applied to the X3 region, charges are passed through the L-type reference electrode 123 and the first L-type electrode 125 through the L-type reference electrode detection unit 210 and the first L-type electrode detection unit 211. Is detected.
 X4領域に荷重がかかった場合は、L型基準電極123を経由して、L型基準電極検出部210の1つの検出部で電荷が検出される。 When a load is applied to the X4 region, the charge is detected by one detection unit of the L-type reference electrode detection unit 210 via the L-type reference electrode 123.
 すなわち、X軸方向については、荷重のかかった箇所によって電荷を検出する検出部の個数が異なる。この異なりを利用して、荷重がかかった位置におけるX軸方向の位置を特定できるようになっている。 That is, in the X-axis direction, the number of detection units that detect electric charges differs depending on the portion where the load is applied. Using this difference, the position in the X-axis direction at the position where the load is applied can be specified.
 また、上記のように構成することで、図31に示すように、Y軸方向のY1領域には第1帯状電極130が配置され、Y2領域には第2帯状電極131が配置され、Y3領域には第3帯状電極132が配置される。なお、第1帯状電極130、第2帯状電極131、第3帯状電極は132、それぞれ第1帯状電極検出部220、第2帯状電極検出部221、第3帯状電極検出部222と接続される。 Further, with the above configuration, as shown in FIG. 31, the first strip electrode 130 is disposed in the Y1 region in the Y-axis direction, the second strip electrode 131 is disposed in the Y2 region, and the Y3 region. The third belt-like electrode 132 is disposed. The first strip electrode 130, the second strip electrode 131, and the third strip electrode 132 are connected to the first strip electrode detection unit 220, the second strip electrode detection unit 221, and the third strip electrode detection unit 222, respectively.
 そのため、Y1領域に荷重がかかった場合、荷重により発生した電荷は、第1帯状電極130を経由して、第1帯状電極検出部220で検出される。Y2領域に荷重がかかった場合は、第2帯状電極131を経由して、第2帯状電極検出部221で検出され、Y3領域に荷重がかかった場合は、第3帯状電極132を経由して、第3帯状電極検出部222で検出される。 Therefore, when a load is applied to the Y1 region, the charge generated by the load is detected by the first strip electrode detection unit 220 via the first strip electrode 130. When a load is applied to the Y2 region, it is detected by the second strip electrode detection unit 221 via the second strip electrode 131. When a load is applied to the Y3 region, the load is applied via the third strip electrode 132. , And is detected by the third strip electrode detector 222.
 すなわち、Y軸方向については、荷重のかかった箇所によって電荷を検出する検出部の種類が異なる。この異なりを利用して、荷重がかかった位置におけるY軸方向の位置を特定できるようになっている。 That is, in the Y-axis direction, the type of detection unit that detects the charge differs depending on the portion where the load is applied. Using this difference, the position in the Y-axis direction at the position where the load is applied can be specified.
 最後に上記で検出したX軸方向とY軸方向の位置情報を組合せることによって、荷重がかかった位置を特定するのが可能となっている。 Finally, by combining the position information in the X-axis direction and the Y-axis direction detected above, it is possible to specify the position where the load is applied.
 なお、荷重量の検出は、検出された電荷の合計から求める。電荷量から荷重量を求める方法については、検出に予め変換方法をプログラムしておくことで達成できる。従って、圧電センサに荷重がかかった位置と荷重量を特定できる。 In addition, the detection of the load amount is obtained from the total of detected charges. The method of obtaining the load amount from the charge amount can be achieved by programming a conversion method in advance for detection. Accordingly, it is possible to specify the position and amount of load applied to the piezoelectric sensor.
 このように、圧電センサ10を構成する第1電極11が、L型基準電極123とL型電極124を備え、L型電極124が、L型基準電極123の2つの辺から内側に間隔をあけて複数配置され、L型基準電極123の端辺の延長線上に端辺を有することで、L型基準電極123とL型電極124の配置される個数がX軸方向の位置によって異なるものとなっている。
 すなわち、圧電センサ10の任意の箇所に荷重が与えられた場合、電荷を検出する第1検出部21の個数は、荷重が与えられたX軸方向の位置よって固有な数となるので、これを検出することで、与えられた荷重のX軸方向の位置を特定できるようになっている。
Thus, the first electrode 11 constituting the piezoelectric sensor 10 includes the L-type reference electrode 123 and the L-type electrode 124, and the L-type electrode 124 is spaced from the two sides of the L-type reference electrode 123 inward. And the number of the L-type reference electrode 123 and the L-type electrode 124 to be arranged varies depending on the position in the X-axis direction. ing.
That is, when a load is applied to an arbitrary portion of the piezoelectric sensor 10, the number of the first detection units 21 that detect charges is a unique number depending on the position in the X-axis direction to which the load is applied. By detecting, the position of the applied load in the X-axis direction can be specified.
 また、圧電センサ10を構成する第2電極12は、L型基準電極123とL型電極124を覆う帯状電極を複数備え、その帯状電極が独立してそれぞれの帯状電極検出部と接続されている。これにより、荷重のかかったY軸方向の位置は、電荷を検出する帯状電極検出部の種類で特定することが可能となっている。 The second electrode 12 constituting the piezoelectric sensor 10 includes a plurality of strip electrodes covering the L-type reference electrode 123 and the L-type electrode 124, and the strip electrodes are independently connected to the respective strip electrode detection units. . As a result, the position in the Y-axis direction where the load is applied can be specified by the type of the strip-shaped electrode detection unit that detects charges.
 よって、上記の第1電極と第2電極の検出結果を組合せることで、荷重が与えられた位置の特定を可能とするものである。 Therefore, by combining the detection results of the first electrode and the second electrode, it is possible to specify the position where the load is applied.
 また、与えられた荷重量の検出は、検出された電荷の合計から与えられた荷重を求める。電荷量から荷重量を求める方法については、検出に予め変換方法をプログラムしておくことで達成するものである。 In addition, the detection of the applied load amount obtains the applied load from the total of the detected charges. The method of obtaining the load amount from the charge amount is achieved by programming a conversion method in advance for detection.
 従って、上記のように構成することによって、本願の圧力検出装置は、荷重が与えられたとき、与えられた荷重の位置と荷重量を検出できるものである。 Therefore, by configuring as described above, the pressure detection device of the present application can detect the position and amount of the applied load when the load is applied.
18.第18実施形態
 第17実施形態では、圧電センサが圧電層と第1電極と第2電極を備えており、第1電極はL型基準電極とL型電極を備え、第2電極は帯状電極を備えていた。しかし、第1電極は帯状電極を備え、第2電極は階段電極を備えていてもよい。以下で、第1電極が備える帯状電極と、第2電極が備える階段電極について説明する。
18. Eighteenth Embodiment In the seventeenth embodiment, the piezoelectric sensor includes a piezoelectric layer, a first electrode, and a second electrode, the first electrode includes an L-type reference electrode and an L-type electrode, and the second electrode includes a strip electrode. I was prepared. However, the first electrode may include a strip electrode, and the second electrode may include a staircase electrode. Below, the strip | belt-shaped electrode with which a 1st electrode is provided, and the staircase electrode with which a 2nd electrode is provided are demonstrated.
 図32は、第18実施形態の圧力検出装置1の平面図である。図33は、図32におけるB-B’断面の断面図である。 FIG. 32 is a plan view of the pressure detection device 1 according to the eighteenth embodiment. 33 is a cross-sectional view taken along the line B-B ′ in FIG. 32.
 図32に示すように、圧力検出装置1は、圧電センサ10と、第1検出部21と、第2検出部22を備えている。圧電センサ10は、圧電層11と、第1電極12と、第2電極13を備えている。第1電極12は、圧電層11の第1主面側に配置され、第2電極13は、圧電層11の第1主面側とは反対側の第2主面側に配置されている。第1検出部21は、第1帯状電極検出部250と、第2帯状電極検出部251と、第3帯状電極検出部252を備えている。第2検出部22は、第1階段電極検出部260と、第2階段電極検出部261と、第3階段電極検出部262を備えている。 32, the pressure detection device 1 includes a piezoelectric sensor 10, a first detection unit 21, and a second detection unit 22. The piezoelectric sensor 10 includes a piezoelectric layer 11, a first electrode 12, and a second electrode 13. The first electrode 12 is disposed on the first main surface side of the piezoelectric layer 11, and the second electrode 13 is disposed on the second main surface side opposite to the first main surface side of the piezoelectric layer 11. The first detection unit 21 includes a first strip electrode detection unit 250, a second strip electrode detection unit 251, and a third strip electrode detection unit 252. The second detection unit 22 includes a first staircase electrode detection unit 260, a second staircase electrode detection unit 261, and a third staircase electrode detection unit 262.
 図34に示すように、第1電極12は、Y軸方向に配置される第1帯状パターン電極200と、第2帯状パターン電極201と、第3帯状パターン電極202を備えている。上記帯状パターン電極は、Y軸方向に配列された第1帯状電極150と、第2帯状電極151と、第3帯状電極152を備えている。各帯状パターン電極の第1帯状電極150は、第1帯状電極検出部250に接続されている。各帯状パターン電極の第2帯状電極151、第3帯状電極152は、それぞれ第2帯状電極検出部251と、第3帯状電極検出部252に接続されている。 As shown in FIG. 34, the first electrode 12 includes a first strip pattern electrode 200, a second strip pattern electrode 201, and a third strip pattern electrode 202 arranged in the Y-axis direction. The strip pattern electrode includes a first strip electrode 150, a second strip electrode 151, and a third strip electrode 152 arranged in the Y-axis direction. The first strip electrode 150 of each strip pattern electrode is connected to the first strip electrode detector 250. The second strip electrode 151 and the third strip electrode 152 of each strip pattern electrode are connected to the second strip electrode detector 251 and the third strip electrode detector 252, respectively.
 図35に示すように、第2電極13は、Y軸方向に配列された階段状の階段電極を備えている。階段電極は、第1階段電極160と、第2階段電極161と、第3階段電極162とを備えている。各階段電極は、踏込み部163と、段差部164と、L型部165を備えている。踏込み部163は、平面視において上記帯状電極と平行な方向に配置される。すなわち、踏込み部163は第1帯状電極150の上方と、第1帯状電極150と第2帯状電極151の間と、第2帯状電極151と第3帯状電極152の間と、第3帯状電極152の下方に間隔をあけて配置されている。段差部164は、帯状電極と交差する方向に配置され、踏込み部163どうしを接続している。L型部165は、踏込み部163の始点と段差部164の終点とを接続するL型形状からなる。なお、第1階段電極160は第1階段電極検出部260と、第2帯状電極161は第2階段電極検出部261と、第3帯状電極162は第3階段電極検出部262と、それぞれ独立して接続されている。 As shown in FIG. 35, the second electrode 13 includes stepped step electrodes arranged in the Y-axis direction. The staircase electrode includes a first staircase electrode 160, a second staircase electrode 161, and a third staircase electrode 162. Each step electrode includes a stepped portion 163, a stepped portion 164, and an L-shaped portion 165. The stepping portion 163 is arranged in a direction parallel to the strip electrode in plan view. That is, the stepping portion 163 is located above the first strip electrode 150, between the first strip electrode 150 and the second strip electrode 151, between the second strip electrode 151 and the third strip electrode 152, and the third strip electrode 152. It is arranged below at an interval. The stepped portion 164 is disposed in a direction intersecting with the strip electrode and connects the stepped portions 163. The L-shaped portion 165 has an L-shaped shape that connects the start point of the stepping portion 163 and the end point of the stepped portion 164. The first staircase electrode 160 is independent of the first staircase electrode detector 260, the second strip electrode 161 is independent of the second staircase electrode detector 261, and the third strip electrode 162 is independent of the third staircase electrode detector 262. Connected.
 また、帯状電極と階段電極は、帯状電極の第1帯状電極150、第2帯状電極151、第3帯状電極152が、階段電極の段差部164と交差するように配置されている。 The strip electrode and the staircase electrode are arranged such that the first strip electrode 150, the second strip electrode 151, and the third strip electrode 152 of the strip electrode intersect the stepped portion 164 of the staircase electrode.
 図34に示すように、上記のように構成されると、X軸方向のX1領域では、各帯状パターン電極の第1帯状電極150と、第2帯状電極151と、第3帯状電極152とが、第1階段電極160、第2階段電極161、第3階段電極162と重なる。
 X2領域では、各帯状パターン電極の第2帯状電極151と、第3帯状電極152とが、第1階段電極160、第2階段電極161、第3階段電極162と重なる。
 X3領域では、各帯状パターン電極の第3帯状電極152が、第1階段電極160、第2階段電極161、第3階段電極162と重なる。
As shown in FIG. 34, when configured as described above, in the X1 region in the X-axis direction, the first strip electrode 150, the second strip electrode 151, and the third strip electrode 152 of each strip pattern electrode are The first step electrode 160, the second step electrode 161, and the third step electrode 162 overlap.
In the X2 region, the second strip electrode 151 and the third strip electrode 152 of each strip pattern electrode overlap the first step electrode 160, the second step electrode 161, and the third step electrode 162.
In the X3 region, the third strip electrode 152 of each strip pattern electrode overlaps the first step electrode 160, the second step electrode 161, and the third step electrode 162.
 そのため、X1領域に荷重がかかった場合、荷重により発生した電荷は、各帯状パターン電極の第1帯状電極150と、第2帯状電極151と、第3帯状電極152を経由して第1帯状電極検出部250、第2帯状電極検出部251、第3帯状電極検出部252で検出される。 Therefore, when a load is applied to the X1 region, the charge generated by the load is transmitted through the first strip electrode 150, the second strip electrode 151, and the third strip electrode 152 of each strip pattern electrode. Detection is performed by the detection unit 250, the second strip electrode detection unit 251, and the third strip electrode detection unit 252.
 X2領域に荷重がかかった場合、電荷は、各帯状パターン電極の第2帯状電極151と、第3帯状電極152を経由して第2帯状電極検出部251、第3帯状電極検出部252で検出される。 When a load is applied to the X2 region, the charge is detected by the second strip electrode detector 251 and the third strip electrode detector 252 via the second strip electrode 151 of each strip pattern electrode and the third strip electrode 152. Is done.
 X3領域に荷重がかかった場合は、各帯状パターン電極の第3帯状電極152を経由して第3帯状電極検出部252で検出される。 When a load is applied to the X3 region, the load is detected by the third strip electrode detection unit 252 via the third strip electrode 152 of each strip pattern electrode.
 すなわち、X軸方向については、荷重のかかった箇所によって電荷を検出する検出部の個数が異なる。この異なりを利用して、荷重がかかった位置におけるX軸方向の位置を特定できるようになっている。 That is, in the X-axis direction, the number of detection units that detect electric charges differs depending on the portion where the load is applied. Using this difference, the position in the X-axis direction at the position where the load is applied can be specified.
 また、図35に示すように、Y軸方向のY1領域には第1階段電極160が配置され、Y2領域には第2階段電極161が配置され、Y3領域には第3階段電極162が配置されている。 As shown in FIG. 35, the first staircase electrode 160 is disposed in the Y1 region in the Y-axis direction, the second staircase electrode 161 is disposed in the Y2 region, and the third staircase electrode 162 is disposed in the Y3 region. Has been.
 そのため、Y1領域に荷重がかかった場合、荷重により発生した電荷は、第1階段電極160を経由して、第1階段電極検出部260で検出される。Y2領域に荷重がかかった場合は、第2階段電極161を経由して、第2階段電極検出部261で検出され、Y3領域に荷重がかかった場合は、第3階段電極162を経由して、第3階段電極検出部262で検出される。 Therefore, when a load is applied to the Y1 region, the charge generated by the load is detected by the first staircase electrode detection unit 260 via the first staircase electrode 160. When a load is applied to the Y2 region, it is detected by the second staircase electrode detector 261 via the second staircase electrode 161. When a load is applied to the Y3 region, the load is applied via the third staircase electrode 162. , Detected by the third staircase electrode detector 262.
 すなわち、Y軸方向については、荷重のかかった箇所によって電荷を検出する検出部の種類が異なる。この異なりを利用して、荷重がかかった位置におけるY軸方向の位置を特定できるようになっている。 That is, in the Y-axis direction, the type of detection unit that detects the charge differs depending on the portion where the load is applied. Using this difference, the position in the Y-axis direction at the position where the load is applied can be specified.
 最後に上記で検出したX軸方向とY軸方向の位置情報を組合せることによって、荷重がかかった位置を特定するのが可能となっている。 Finally, by combining the position information in the X-axis direction and the Y-axis direction detected above, it is possible to specify the position where the load is applied.
 このように、圧電センサ10が、圧電層11と、第1電極12と、第2電極13を備え、第1電極12と、第2電極13が、圧電層11の第1主面側と第2種面側に配置され、第1電極12が、Y軸方向に配列され複数の帯状電極(第1帯状電極150、第2帯状電極151、第3帯状電極152)からなる帯状パターン電極を備え、第2電極13が複数の踏込み部163と、踏込み部163どうしを接続し、上記帯状電極(第1帯状電極150、第2帯状電極151、第3帯状電極152)と一対一対応して交差する複数の段差部164と、踏込み部163の始点と段差部164の終点を接続するL型の接続部165とを有する階段状の階段電極(第1階段電極160、第2階段電極161、第3階段電極162)を備えることにより、X軸方向の位置によって、圧電層11を介して重なる帯状電極(第1帯状電極150、第2帯状電極151、第3帯状電極152)と、階段電極(第1階段電極160、第2階段電極161、第3階段電極162)との数が異なるものとなっている。 Thus, the piezoelectric sensor 10 includes the piezoelectric layer 11, the first electrode 12, and the second electrode 13, and the first electrode 12 and the second electrode 13 are connected to the first main surface side of the piezoelectric layer 11 and the first electrode. The first electrode 12 is disposed on the second seed surface side, and includes a band-shaped pattern electrode that is arranged in the Y-axis direction and includes a plurality of band-shaped electrodes (first band-shaped electrode 150, second band-shaped electrode 151, and third band-shaped electrode 152). The second electrode 13 connects the plurality of stepped portions 163 and the stepped portions 163 and intersects with the strip electrodes (the first strip electrode 150, the second strip electrode 151, the third strip electrode 152) in a one-to-one correspondence. A stepped staircase electrode having a plurality of stepped portions 164 and an L-shaped connecting portion 165 connecting the start point of the stepped portion 163 and the end point of the stepped portion 164 (first stepped electrode 160, second stepped electrode 161, By providing the three-step electrode 162) Depending on the position in the axial direction, strip electrodes (the first strip electrode 150, the second strip electrode 151, the third strip electrode 152) and the stair electrodes (the first stair electrode 160, the second stair electrode 161) which overlap through the piezoelectric layer 11 are arranged. The number of the third staircase electrodes 162) is different.
 すなわち、圧電センサ10の特定箇所に荷重が与えられた場合、電荷を検出する第1検出部21の個数は、荷重が与えられたX軸方向の位置よって固有な数となるので、これを検出することで、与えられた荷重のX軸方向の位置を特定できるようになっている。 That is, when a load is applied to a specific portion of the piezoelectric sensor 10, the number of the first detection units 21 that detect charges is a unique number depending on the position in the X-axis direction to which the load is applied. By doing so, the position of the applied load in the X-axis direction can be specified.
 また、上記のように構成されることにより、階段電極はY軸方向に複数配列され、上記階段電極はそれぞれの階段電極検出部と独立して接続される。これにより、荷重のかかったY軸方向の位置は、電荷を検出する帯状電極検出部の種類で特定することが可能となっている。 Further, by being configured as described above, a plurality of staircase electrodes are arranged in the Y-axis direction, and the staircase electrodes are independently connected to the respective staircase electrode detectors. As a result, the position in the Y-axis direction where the load is applied can be specified by the type of the strip-shaped electrode detection unit that detects charges.
 よって、上記の第1電極と第2電極の検出結果を組合せることで、荷重が与えられた位置の特定を可能とするものである。 Therefore, by combining the detection results of the first electrode and the second electrode, it is possible to specify the position where the load is applied.
 また、与えられた荷重量の検出は、検出された電荷の合計から与えられた荷重を求める。電荷量から荷重量を求める方法については、検出に予め変換方法をプログラムしておくことで達成するものである。 In addition, the detection of the applied load amount obtains the applied load from the total of the detected charges. The method of obtaining the load amount from the charge amount is achieved by programming a conversion method in advance for detection.
 従って、上記のように構成することによって、本願の圧力検出装置は、荷重が与えられたとき、与えられた荷重の位置と荷重量を検出できるものである。 Therefore, by configuring as described above, the pressure detection device of the present application can detect the position and amount of the applied load when the load is applied.
19.第19実施形態
 圧電層11は活性な部分と不活性な部分を有するようにパターニングされていてもよい。
19. Nineteenth Embodiment The piezoelectric layer 11 may be patterned so as to have an active portion and an inactive portion.
 図36は、第19実施形態にかかる圧電センサの断面図である。 FIG. 36 is a cross-sectional view of the piezoelectric sensor according to the nineteenth embodiment.
 図36に示すように、圧電層11は、活性圧電部110と不活性圧電部111からなる。
 活性圧電部110は、圧電センサ10に荷重が与えられたときに電荷が発生する部分である。反対に不活性圧電部111は、荷重が与えられても電荷が発生しない部分である。
As shown in FIG. 36, the piezoelectric layer 11 includes an active piezoelectric portion 110 and an inactive piezoelectric portion 111.
The active piezoelectric portion 110 is a portion where electric charges are generated when a load is applied to the piezoelectric sensor 10. On the other hand, the inactive piezoelectric portion 111 is a portion where no charge is generated even when a load is applied.
 図36の例では、活性圧電部110の上面にL型基準電極123と、L型電極124(第1L型電極125、第2L型電極126、第3L型電極127)が配置されている。活性圧電部110と不活性圧電部111の下面には、第1帯状電極130が配置されている。このように構成されていると、L型基準電極123付近で発生した電荷が漏れて、L型電極124に混入するのを防止できる(クロストーク現象を防止できる)。その結果、位置検出精度と荷重検出精度が向上する。なお、図36では、活性圧電部110の上にL型基準電極123と、L型電極124が直接積層された例を示したが、活性圧電部110とL型基準電極123との間、または活性圧電部110とL型電極124の間には、接着剤やフィルムなどの絶縁材料が積層されていてもよい。 36, the L-type reference electrode 123 and the L-type electrode 124 (the first L-type electrode 125, the second L-type electrode 126, and the third L-type electrode 127) are disposed on the upper surface of the active piezoelectric portion 110. On the lower surfaces of the active piezoelectric part 110 and the inactive piezoelectric part 111, a first strip electrode 130 is disposed. With this configuration, it is possible to prevent electric charges generated near the L-type reference electrode 123 from leaking and mixing into the L-type electrode 124 (a crosstalk phenomenon can be prevented). As a result, position detection accuracy and load detection accuracy are improved. In FIG. 36, an example in which the L-type reference electrode 123 and the L-type electrode 124 are directly laminated on the active piezoelectric portion 110 is shown, but between the active piezoelectric portion 110 and the L-type reference electrode 123, or An insulating material such as an adhesive or a film may be laminated between the active piezoelectric portion 110 and the L-type electrode 124.
20.その他の実施形態
 上記第1~第19実施形態では、与えられた荷重の位置と量を圧電センサ10で検出する例を示した。しかし、図37に示すように、圧電センサ10の上にタッチパネル50を積層することで、与えられた荷重の位置と量を検出してもよい。
 圧電センサ10の上にタッチパネル50を積層することにより、与えられた荷重が圧電センサ10で検出できないほど小さい場合(フェザータッチの場合)でも、圧電センサ10の上にタッチパネル50を積層することで荷重が与えられた箇所を検出できる。なお、タッチパネルの中でも、静電容量型タッチパネルを用いることが特に好ましい。
20. Other Embodiments In the first to nineteenth embodiments, an example in which the position and amount of a given load is detected by the piezoelectric sensor 10 has been described. However, as shown in FIG. 37, the position and amount of the applied load may be detected by laminating the touch panel 50 on the piezoelectric sensor 10.
By laminating the touch panel 50 on the piezoelectric sensor 10, even if the applied load is so small that it cannot be detected by the piezoelectric sensor 10 (in the case of feather touch), the load is obtained by laminating the touch panel 50 on the piezoelectric sensor 10. Can be detected. Of the touch panels, it is particularly preferable to use a capacitive touch panel.
 1:圧力検出装置
 10:圧電センサ
 11:圧電層
 11a :第1圧電層
 11b:第2圧電層
 12:上部電極(第1電極)
 13:下部電極(第2電極)
 14:第1パターン電極
 15:第2パターン電極
 16:第1電極部
 17:第1接続部
 18:第2電極部
 19:第2接続部
 20:検出部
 30:制御部
 40:基準電極 
 50:静電容量型タッチパネル
 110:活性圧電部
 111:不活性圧電部
 S:スイッチ
 L:第1パターン電極のピッチ間隔
 l:第1パターン電極のピッチ間隔
 W:固定部材
 21:第1検出部
 22:第2検出部
 120:第1パターン電極
 121:第2パターン電極
 122:第3パターン電極
 123:L型基準電極
 124:L型電極
 125:第1L型電極
 126:第2L型電極
 127:第3L型電極
 130:第1帯状電極
 131:第2帯状電極
 132:第3帯状電極
 150:第1帯状電極
 151:第2帯状電極
 152:第3帯状電極
 160:第1階段電極
 161:第2階段電極
 162:第3階段電極
 163:踏込み部
 164:段差部
 165:L型部
 200:第1帯状パターン電極
 201:第2帯状パターン電極
 202:第3帯状パターン電極
 210:L型基準電極検出部
 211:第1L型電極検出部
 212:第2L型電極検出部
 213:第3L型電極検出部
 220:第1帯状電極検出部
 221:第2帯状電極検出部
 222:第3帯状電極検出部
 250:第1帯状電極検出部
 251:第2帯状電極検出部
 252:第3帯状電極検出部
 260:第1階段電極検出部
 261:第2階段電極検出部
 262:第3階段電極検出部
1: Pressure detection device 10: Piezoelectric sensor 11: Piezoelectric layer 11a: First piezoelectric layer 11b: Second piezoelectric layer 12: Upper electrode (first electrode)
13: Lower electrode (second electrode)
14: 1st pattern electrode 15: 2nd pattern electrode 16: 1st electrode part 17: 1st connection part 18: 2nd electrode part 19: 2nd connection part 20: Detection part 30: Control part 40: Reference electrode
50: Capacitance type touch panel 110: Active piezoelectric unit 111: Inactive piezoelectric unit S: Switch L: Pitch interval of first pattern electrodes l: Pitch interval of first pattern electrodes W: Fixing member 21: First detection unit 22 : Second detection unit 120: first pattern electrode 121: second pattern electrode 122: third pattern electrode 123: L-type reference electrode 124: L-type electrode 125: first L-type electrode 126: second L-type electrode 127: third L Type electrode 130: First strip electrode 131: Second strip electrode 132: Third strip electrode 150: First strip electrode 151: Second strip electrode 152: Third strip electrode 160: First step electrode 161: Second step electrode 162: Third step electrode 163: Step portion 164: Stepped portion 165: L-shaped portion 200: First strip pattern electrode 201: Second strip pattern electrode 202: Third Band-shaped pattern electrode 210: L-type reference electrode detection unit 211: First L-type electrode detection unit 212: Second L-type electrode detection unit 213: Third L-type electrode detection unit 220: First band-shaped electrode detection unit 221: Second band-shaped electrode detection Unit 222: Third strip electrode detector 250: First strip electrode detector 251: Second strip electrode detector 252: Third strip electrode detector 260: First stair electrode detector 261: Second stair electrode detector 262 : Third staircase electrode detector

Claims (25)

  1.  圧電層が上部電極と下部電極に挟まれた圧電センサであって、
     前記上部電極と前記下部電極の少なくとも一方の電極が複数の電極パターンを備える圧電センサ。
    A piezoelectric sensor in which a piezoelectric layer is sandwiched between an upper electrode and a lower electrode,
    A piezoelectric sensor in which at least one of the upper electrode and the lower electrode has a plurality of electrode patterns.
  2.  前記上部電極が、
     一の方向に延在する第1パターン電極を複数備え、
     前記下部電極が、
     前記第1パターン電極と同一方向に延在する第2パターン電極を複数備える請求項1の圧電センサ。
    The upper electrode is
    A plurality of first pattern electrodes extending in one direction;
    The lower electrode is
    The piezoelectric sensor according to claim 1, comprising a plurality of second pattern electrodes extending in the same direction as the first pattern electrodes.
  3.  圧電層が上部電極と下部電極に挟まれた圧電センサであって、
     前記上部電極が、
     一の方向に延在する第1パターン電極を複数備え、
     前記下部電極が、
     前記一の方向と交差する他の方向に延在する第2パターン電極を複数備える圧電センサ。
    A piezoelectric sensor in which a piezoelectric layer is sandwiched between an upper electrode and a lower electrode,
    The upper electrode is
    A plurality of first pattern electrodes extending in one direction;
    The lower electrode is
    A piezoelectric sensor comprising a plurality of second pattern electrodes extending in another direction intersecting with the one direction.
  4.  前記第1パターン電極が、
     前記圧電層の上に間隔をあけて積層される複数の第1電極部と、
     隣接する前記第1電極部の間に形成され、前記第1電極部どうしを電気的に接続する第1接続部とを備え、
     前記第2パターン電極が、
     前記第1電極部と重なるように前記圧電層の下に積層される複数の第2電極部と、
     前記第2電極部どうしを電気的に接続する第2接続部とを備える請求項2~3の圧電センサ。
    The first pattern electrode is
    A plurality of first electrode portions stacked on the piezoelectric layer at intervals;
    A first connection part that is formed between the adjacent first electrode parts and electrically connects the first electrode parts;
    The second pattern electrode is
    A plurality of second electrode portions stacked under the piezoelectric layer so as to overlap the first electrode portion;
    The piezoelectric sensor according to any one of claims 2 to 3, further comprising a second connection portion that electrically connects the second electrode portions.
  5.  前記第1電極部が、前記圧電層を介して複数の前記第2電極部と重なるように配置された請求項4の圧電センサ。 The piezoelectric sensor according to claim 4, wherein the first electrode portion is disposed so as to overlap a plurality of the second electrode portions with the piezoelectric layer interposed therebetween.
  6.  前記第1パターン電極が、帯状である請求項2~5の圧電センサ。 The piezoelectric sensor according to any one of claims 2 to 5, wherein the first pattern electrode has a strip shape.
  7.  前記第2パターン電極が、帯状である請求項2~6の圧電センサ。 The piezoelectric sensor according to any one of claims 2 to 6, wherein the second pattern electrode has a strip shape.
  8.  前記第1パターン電極の幅方向の大きさが、前記圧電層の周縁部に近づくにつれて大きさが大きくなる請求項2~7の圧電センサ。 The piezoelectric sensor according to any one of claims 2 to 7, wherein the size of the first pattern electrode in the width direction increases as it approaches the periphery of the piezoelectric layer.
  9.  前記第2パターン電極の幅方向の大きさが、前記圧電層の周縁部に近づくにつれて大きさが大きくなる請求項2~8の圧電センサ。 The piezoelectric sensor according to any one of claims 2 to 8, wherein the size of the second pattern electrode in the width direction increases as it approaches the periphery of the piezoelectric layer.
  10.  前記第1パターン電極のピッチ間隔が、一定である請求項2~9の圧電センサ。 10. The piezoelectric sensor according to claim 2, wherein a pitch interval of the first pattern electrodes is constant.
  11.  前記第2パターン電極のピッチ間隔が、一定である請求項2~10の圧電センサ。 The piezoelectric sensor according to any one of claims 2 to 10, wherein a pitch interval between the second pattern electrodes is constant.
  12.  前記第1パターン電極は凹凸形状であり、前記凹凸形状の凸部分と凹部分が前記第1パターン電極どうしで噛み合うように前記第1パターン電極が配置され、かつ、前記第1パターン電極のピッチ間隔が、入力手段が前記圧電センサと接触したときに形成される接触面の短径の長さより短い請求項2~11の圧電センサ。 The first pattern electrode has a concavo-convex shape, the first pattern electrode is disposed such that the convex and concave portions of the concavo-convex shape are engaged with each other, and the pitch interval of the first pattern electrodes The piezoelectric sensor according to any one of claims 2 to 11, which is shorter than a length of a short diameter of a contact surface formed when the input means comes into contact with the piezoelectric sensor.
  13.  前記第2パターン電極は凹凸形状であり、前記凹凸形状の凸部分と凹部分が前記第2パターン電極どうしで噛み合うように前記第2パターン電極が配置され、かつ、前記第2パターン電極のピッチ間隔が、入力手段が前記圧電センサと接触したときに形成される接触面の短径の長さより短い請求項2~12の圧電センサ。 The second pattern electrode has a concavo-convex shape, the second pattern electrode is arranged such that the convex and concave portions of the concavo-convex shape are engaged with each other, and the pitch interval of the second pattern electrodes The piezoelectric sensor according to any one of claims 2 to 12, which is shorter than the length of the short diameter of the contact surface formed when the input means comes into contact with the piezoelectric sensor.
  14.  前記圧電層が活性圧電部と不活性圧電部とからなり、前記第1パターン電極は前記活性圧電部の上に積層された請求項2~13の圧電センサ。 14. The piezoelectric sensor according to claim 2, wherein the piezoelectric layer includes an active piezoelectric portion and an inactive piezoelectric portion, and the first pattern electrode is laminated on the active piezoelectric portion.
  15.  前記圧電層が活性圧電部と不活性圧電部とからなり、前記第2パターン電極は前記活性圧電部の上に積層された請求項2~13の圧電センサ。 14. The piezoelectric sensor according to claim 2, wherein the piezoelectric layer includes an active piezoelectric portion and an inactive piezoelectric portion, and the second pattern electrode is laminated on the active piezoelectric portion.
  16.  前記圧電層が、
     前記上部電極と接する第1圧電層と、
     前記下部電極と接する第2圧電層とを備え、
     前記第1圧電層と前記第2圧電層の間に基準電極を備える請求項1~15の圧電センサ。
    The piezoelectric layer is
    A first piezoelectric layer in contact with the upper electrode;
    A second piezoelectric layer in contact with the lower electrode,
    The piezoelectric sensor according to any one of claims 1 to 15, further comprising a reference electrode between the first piezoelectric layer and the second piezoelectric layer.
  17.  前記上部電極が、酸化インジウム錫、またはポリエチルジオキソチオフェンを含む請求項1~16の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 16, wherein the upper electrode includes indium tin oxide or polyethyldioxothiophene.
  18.  前記下部電極が、酸化インジウム錫、またはポリエチルジオキソチオフェンを含む請求項1~17の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 17, wherein the lower electrode contains indium tin oxide or polyethyldioxothiophene.
  19.  前記圧電層が、有機圧電材料からなる請求項1~18の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 18, wherein the piezoelectric layer is made of an organic piezoelectric material.
  20.  前記有機圧電材料が、ポリフッ化ビニリデンまたはポリ乳酸を含む請求項19の圧電センサ。 The piezoelectric sensor according to claim 19, wherein the organic piezoelectric material contains polyvinylidene fluoride or polylactic acid.
  21.  前記圧電層が、無機材料からなる請求項1~18の圧電センサ。 The piezoelectric sensor according to any one of claims 1 to 18, wherein the piezoelectric layer is made of an inorganic material.
  22.  圧電層が第1電極と第2電極に挟まれた圧電センサと、前記第1電極と接続される第1検出部と、前記第2電極と接続される第2検出部とを備える圧力検出装置であって、
     前記第1電極は、
     2つの辺が組み合されたL字型のL型基準電極と前記L型基準電極の前記2つの辺から内側に間隔をあけて複数配置され前記L型基準電極の端辺の延長線上に端辺を有するL字型のL型電極とが一の方向に配置されたパターン電極を備え、
     前記第2電極は、
     前記パターン電極を覆う帯状電極を備え、
     前記第1検出部は、
     前記パターン電極のL型基準電極と接続されるL型基準電極検出部と、
     前記パターン電極のL型電極と接続されるL型電極検出部とを備え、
     前記第2検出部は、
     前記帯状電極と接続される帯状電極検出部を備える圧力検出装置。
    A pressure detection device comprising: a piezoelectric sensor having a piezoelectric layer sandwiched between a first electrode and a second electrode; a first detection unit connected to the first electrode; and a second detection unit connected to the second electrode. Because
    The first electrode is
    An L-shaped L-type reference electrode having two sides combined and a plurality of L-type reference electrodes arranged inward from the two sides of the L-type reference electrode. An L-shaped L-shaped electrode having a side and a pattern electrode arranged in one direction;
    The second electrode is
    A strip electrode covering the pattern electrode;
    The first detection unit includes:
    An L-type reference electrode detector connected to the L-type reference electrode of the pattern electrode;
    An L-type electrode detector connected to the L-type electrode of the pattern electrode,
    The second detector is
    A pressure detection device comprising a strip electrode detector connected to the strip electrode.
  23.  圧電層が第1電極と第2電極に挟まれた圧電センサと、前記第1電極と接続される第1検出部と、前記第2電極と接続される第2検出部とを備える圧力検出装置であって、
     前記第1電極は一の方向に配列された複数の帯状電極からなる帯状パターン電極を備え、
     前記第2電極は、
     複数の踏込み部と、前記踏込み部どうしを接続し、前記複数の前記帯状電極と一対一対応して交差する複数の段差部と、前記踏込み部の始点と前記段差部の終点を接続するL型の接続部とを備え、
     第1検出部は、前記帯状パターン電極の各前記帯状電極と接続される帯状電極検出部を備え、
     第2検出部は、複数の前記階段電極とそれぞれ接続される複数の帯状電極検出部を備える圧力検出装置。
    A pressure detection device comprising: a piezoelectric sensor having a piezoelectric layer sandwiched between a first electrode and a second electrode; a first detection unit connected to the first electrode; and a second detection unit connected to the second electrode. Because
    The first electrode includes a strip-shaped pattern electrode composed of a plurality of strip-shaped electrodes arranged in one direction,
    The second electrode is
    A plurality of stepped portions, a plurality of stepped portions connecting the stepped portions, a plurality of stepped portions intersecting with the plurality of strip-like electrodes in a one-to-one correspondence, and an L-shape connecting a start point of the stepped portion and an end point of the stepped portion With a connection of
    The first detection unit includes a strip electrode detection unit connected to each strip electrode of the strip pattern electrode,
    A 2nd detection part is a pressure detection apparatus provided with the some strip | belt-shaped electrode detection part each connected with the said some staircase electrode.
  24.  請求項1~23の圧電センサの上にタッチパネルを積層した圧力検出装置。 A pressure detection device in which a touch panel is laminated on the piezoelectric sensor according to any one of claims 1 to 23.
  25.  前記タッチパネルが静電容量型の請求項24の圧力検出装置。 25. The pressure detection device according to claim 24, wherein the touch panel is a capacitance type.
PCT/JP2014/063444 2013-06-04 2014-05-21 Piezoelectric sensor and pressure detection device WO2014196359A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157035555A KR101789905B1 (en) 2013-06-04 2014-05-21 Piezoelectric sensor and pressure detection device
US14/895,872 US9864450B2 (en) 2013-06-04 2014-05-21 Piezoelectric sensor and pressure detection apparatus
CN201480031750.3A CN105264350B (en) 2013-06-04 2014-05-21 Piezoelectric transducer and pressure-detecting device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013118296A JP5797692B2 (en) 2013-06-04 2013-06-04 Piezoelectric sensor and pressure detection device
JP2013-118298 2013-06-04
JP2013-118296 2013-06-04
JP2013-118297 2013-06-04
JP2013118297A JP5797693B2 (en) 2013-06-04 2013-06-04 Piezoelectric sensor and pressure detection device
JP2013118298A JP5797694B2 (en) 2013-06-04 2013-06-04 Pressure detecting device and electronic device

Publications (1)

Publication Number Publication Date
WO2014196359A1 true WO2014196359A1 (en) 2014-12-11

Family

ID=52008011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063444 WO2014196359A1 (en) 2013-06-04 2014-05-21 Piezoelectric sensor and pressure detection device

Country Status (4)

Country Link
US (1) US9864450B2 (en)
KR (1) KR101789905B1 (en)
CN (1) CN105264350B (en)
WO (1) WO2014196359A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048909A (en) * 2016-09-21 2018-03-29 エルジー ディスプレイ カンパニー リミテッド Sensor device
WO2018056165A1 (en) * 2016-09-21 2018-03-29 株式会社村田製作所 Piezoelectric sensor and touch-type input device
JP2018164048A (en) * 2017-03-27 2018-10-18 日東電工株式会社 Piezoelectric laminate

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013002288T5 (en) 2012-05-03 2015-04-16 Apple Inc. Moment compensated bending beam sensor for load measurement on a bending beam supported platform
WO2014149023A1 (en) 2013-03-15 2014-09-25 Rinand Solutions Llc Force sensing of inputs through strain analysis
US10768066B2 (en) * 2013-07-10 2020-09-08 Sekisui Chemical Co., Ltd. Piezoelectric sensor including overlapping cutout sections in a signal electrode, a first ground electrode, and a second electrode
WO2015066086A1 (en) * 2013-10-28 2015-05-07 Changello Enterprise Llc Piezo based force sensing
AU2015100011B4 (en) 2014-01-13 2015-07-16 Apple Inc. Temperature compensating transparent force sensor
CN104699318B (en) * 2015-04-01 2017-12-19 上海天马微电子有限公司 Array base palte, touch-control display panel and touch control display apparatus
US9612170B2 (en) 2015-07-21 2017-04-04 Apple Inc. Transparent strain sensors in an electronic device
CN107924647A (en) * 2015-08-07 2018-04-17 株式会社村田制作所 Display device
WO2017145530A1 (en) * 2016-02-22 2017-08-31 株式会社村田製作所 Piezoelectric device
US10209830B2 (en) 2016-03-31 2019-02-19 Apple Inc. Electronic device having direction-dependent strain elements
CN107643843A (en) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 The recognition methods of pressure and device, touch-screen and terminal
US10133418B2 (en) 2016-09-07 2018-11-20 Apple Inc. Force sensing in an electronic device using a single layer of strain-sensitive structures
KR102568386B1 (en) * 2016-09-30 2023-08-21 삼성디스플레이 주식회사 Display device having touch sensing unit
US10444091B2 (en) 2017-04-11 2019-10-15 Apple Inc. Row column architecture for strain sensing
JP2019007749A (en) * 2017-06-20 2019-01-17 ヤマハ株式会社 pressure sensor
KR102360850B1 (en) * 2017-06-30 2022-02-10 삼성디스플레이 주식회사 Touch sensor and display device including the touch sensor
US10309846B2 (en) 2017-07-24 2019-06-04 Apple Inc. Magnetic field cancellation for strain sensors
US10782818B2 (en) 2018-08-29 2020-09-22 Apple Inc. Load cell array for detection of force input to an electronic device enclosure
CN109829419B (en) * 2019-01-28 2021-08-24 京东方科技集团股份有限公司 Fingerprint identification module, driving method and manufacturing method thereof and display device
WO2020172853A1 (en) * 2019-02-28 2020-09-03 京东方科技集团股份有限公司 Touch panel and driving method therefor, and display device
GB2582037B (en) * 2019-08-30 2021-12-08 Kymira Ltd Movement sensor and garment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248971A (en) * 1992-03-06 1993-09-28 Nitta Ind Corp Sensor for measurement of pressure distribution
JP2000321013A (en) * 1999-05-13 2000-11-24 Sony Corp Shape recognizing device utilizing pressure detection and motion capture device using it
WO2010095581A1 (en) * 2009-02-18 2010-08-26 株式会社クラレ Multi-layered deformation sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3908512B2 (en) * 2001-11-16 2007-04-25 セイコーインスツル株式会社 Piezoelectric transducer and pulse wave detector
JP2004125571A (en) 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Transparent piezoelectric sensor and input device having the same
US20040263483A1 (en) 2003-06-24 2004-12-30 Aufderheide Brian E Sensing device
KR100695727B1 (en) * 2005-06-10 2007-03-15 (주)피에조랩 Piezo-electric composit sensor
JP2009053109A (en) * 2007-08-28 2009-03-12 Aisin Seiki Co Ltd Piezoelectric film sensor
KR20100022748A (en) 2008-08-20 2010-03-03 주식회사 센플러스 Touch sensor and method of detecting touch pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248971A (en) * 1992-03-06 1993-09-28 Nitta Ind Corp Sensor for measurement of pressure distribution
JP2000321013A (en) * 1999-05-13 2000-11-24 Sony Corp Shape recognizing device utilizing pressure detection and motion capture device using it
WO2010095581A1 (en) * 2009-02-18 2010-08-26 株式会社クラレ Multi-layered deformation sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048909A (en) * 2016-09-21 2018-03-29 エルジー ディスプレイ カンパニー リミテッド Sensor device
WO2018056165A1 (en) * 2016-09-21 2018-03-29 株式会社村田製作所 Piezoelectric sensor and touch-type input device
JP6468403B2 (en) * 2016-09-21 2019-02-13 株式会社村田製作所 Piezoelectric sensor, touch input device
US10700259B2 (en) 2016-09-21 2020-06-30 Murata Manufacturing Co., Ltd. Piezoelectric sensor and touch type input device
JP2018164048A (en) * 2017-03-27 2018-10-18 日東電工株式会社 Piezoelectric laminate

Also Published As

Publication number Publication date
US20160124560A1 (en) 2016-05-05
KR20160008637A (en) 2016-01-22
CN105264350A (en) 2016-01-20
KR101789905B1 (en) 2017-10-25
US9864450B2 (en) 2018-01-09
CN105264350B (en) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2014196359A1 (en) Piezoelectric sensor and pressure detection device
JP5797692B2 (en) Piezoelectric sensor and pressure detection device
JP5722954B2 (en) Touch panel with pressure detection function
KR102489956B1 (en) Display device and method of driving the same
US9519378B2 (en) Pressure detector and touch panel provided with pressure detector
JP5780303B2 (en) Touch panel
WO2014196360A1 (en) Piezoelectric sensor and electronic device
WO2014125539A1 (en) Sensor device, input device, and electronic apparatus
JP5797866B1 (en) Piezoelectric sensor and pressure detection device
JP6104721B2 (en) Piezoelectric sensor and pressure detection device
KR20170064102A (en) Touch pane and display apparatus including the same
CN102591541A (en) Wire arrangement structure for single-layer indium tin oxide (ITO)
JP5797693B2 (en) Piezoelectric sensor and pressure detection device
KR20160053919A (en) Sensor device, input device, and electronic device
JP5797865B1 (en) Piezoelectric sensor and pressure detection device
JP6806183B2 (en) Sensor device and input device
JP5797694B2 (en) Pressure detecting device and electronic device
US20210342036A1 (en) Pressure sensing touch screen and input device having the same
JP5797867B1 (en) Pressure detecting device and electronic device
JP6180174B2 (en) Touch panel, display device and electronic device
JP2020129343A (en) Touch panel device
JP2014238269A (en) Piezoelectric sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031750.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14895872

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157035555

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14807697

Country of ref document: EP

Kind code of ref document: A1