WO2014196296A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2014196296A1
WO2014196296A1 PCT/JP2014/062144 JP2014062144W WO2014196296A1 WO 2014196296 A1 WO2014196296 A1 WO 2014196296A1 JP 2014062144 W JP2014062144 W JP 2014062144W WO 2014196296 A1 WO2014196296 A1 WO 2014196296A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
temporary fixing
wiring
sealing sheet
sealing
Prior art date
Application number
PCT/JP2014/062144
Other languages
French (fr)
Japanese (ja)
Inventor
豊田 英志
亀山 工次郎
松村 健
小田 高司
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014196296A1 publication Critical patent/WO2014196296A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/27Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • semiconductor elements composed of various semiconductor materials (hereinafter also simply referred to as “elements”) such as ICs using silicon semiconductors and organic EL elements using organic semiconductors are usually provided on the wafer substrate surface. Are repeatedly formed in a matrix and then divided into individual semiconductor chips (also referred to as bare chips) by dicing.
  • a method for manufacturing a semiconductor device includes: Step A for preparing a laminate in which at least a temporary fixing sheet and a wiring sheet on which a rewiring layer is formed are laminated, A step B of flip-chip mounting a semiconductor chip on the wiring sheet of the laminate; Step C for preparing a sealing sheet obtained by plastic working a kneaded product obtained by kneading an epoxy resin, a curing agent, and an inorganic filler, Placing the sealing sheet on the surface on which the semiconductor chip is exposed, and embedding the semiconductor chip in the sealing sheet, Step E for thermosetting the sealing sheet, and Process F for peeling off the temporary fixing sheet from the wiring sheet It is characterized by comprising.
  • the semiconductor chip is flip-chip mounted on the wiring sheet.
  • a sealing sheet is arranged on the surface on which the semiconductor chip is exposed, and the semiconductor chip is embedded in the sealing sheet.
  • the sealing sheet is thermoset. Therefore, electrical bonding (flip chip mounting) between the semiconductor chip and the wiring sheet is completed before the thermosetting of the sealing sheet. Therefore, the positional deviation between the wiring sheet and the semiconductor chip due to the thermosetting of the sealing sheet cannot occur. As a result, poor connection between the wiring sheet and the semiconductor chip can be suppressed.
  • seat for sealing obtained by plastically processing the kneaded material obtained by kneading
  • the blending ratio of the inorganic filler in the sealing sheet is 70 to 90% by volume in the total composition constituting the sealing sheet.
  • the sealing sheet contains a thermoplastic elastomer made of a polymer having a weight average molecular weight of 10,000 or more containing either a styrene skeleton or a butadiene skeleton.
  • the sealing sheet contains a thermoplastic elastomer composed of a polymer having a molecular weight of 10,000 or more and containing either a styrene skeleton or a butadiene skeleton, the warpage is excellent.
  • the epoxy resin is preferably an epoxy resin represented by the following formula (1).
  • R 1 to R 4 are the same or different and each represents a methyl group or a hydrogen atom, and X represents —CH 2 —, —O—, or —S—).
  • the epoxy resin shown by the said General formula (1) since the epoxy resin shown by the said General formula (1) is included, it has a softness
  • the laminate prepared in the step A is a laminate in which a support, a temporary fixing sheet, and a wiring sheet are laminated in this order
  • the step F may be a step of peeling the temporary fixing sheet and the support from the wiring sheet.
  • the wiring sheet is fixed on the support via the temporary fixing sheet. Since the wiring sheet is usually flexible, if a support is used, it is easy to flip-chip mount the semiconductor chip on the wiring sheet.
  • the temporary fixing sheet has a thermally expandable pressure-sensitive adhesive layer on a surface in contact with the support.
  • the foaming agent contained in the thermally expandable pressure-sensitive adhesive layer is foamed.
  • the adhesive force between the temporary fixing sheet and the support can be reduced.
  • the support can be easily peeled from the temporary fixing sheet.
  • seat for temporary fixing can be peeled from a wiring sheet by peeling peeling.
  • the manufacturing method of the semiconductor device is as follows: Step A for preparing a laminate in which at least a temporary fixing sheet and a wiring sheet on which a rewiring layer is formed are laminated, A step B of flip-chip mounting a semiconductor chip on the wiring sheet of the laminate; Step C for preparing a sealing sheet obtained by plastic working a kneaded product obtained by kneading an epoxy resin, a curing agent, and an inorganic filler, Placing the sealing sheet on the surface on which the semiconductor chip is exposed, and embedding the semiconductor chip in the sealing sheet, Step E for thermosetting the sealing sheet, and Process F for peeling off the temporary fixing sheet from the wiring sheet It is characterized by comprising.
  • the laminated body is a laminated body in which the support, the temporary fixing sheet, and the wiring sheet are laminated in this order will be described.
  • FIG. 1 is a partially enlarged view showing how the semiconductor chip is mounted on the rewiring sheet.
  • a laminate 10 in which a support 1, a temporary fixing sheet 5, and a wiring sheet 2 are laminated in this order is prepared (steps). A).
  • the support 1 preferably has a certain strength or more. Although it does not specifically limit as the support body 1, Compound foils, such as metal foil, such as Ni foil and Al foil, a metal plate, a glass plate, a silicon wafer, a SiC wafer, and a GaAs wafer, etc. are mentioned. Examples of the support 1 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, and polymethylpentene.
  • Polyolefin such as ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, Polyethylene such as ethylene-hexene copolymer, polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamid , Polyphenyl sulphates id, aramid (paper), can be glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, also possible to use paper or the like. Of these, metal stays are preferred in that they have little dimensional change and can be rolled up.
  • the support 1 may be used alone or in combination of two or more.
  • the thickness of the support is not particularly limited, but is usually about 10 ⁇ m to 20 mm, for example.
  • Temporal fixing sheet As the temporary fixing sheet 5, a configuration having a thermally expandable pressure-sensitive adhesive layer or a radiation curable pressure-sensitive adhesive layer can be employed.
  • a radiation curable pressure-sensitive adhesive layer As the radiation curable pressure-sensitive adhesive layer, a conventionally known radiation curable pressure-sensitive adhesive (for example, an ultraviolet curable pressure-sensitive adhesive) can be employed. This embodiment demonstrates the case where the sheet
  • the thermally expandable pressure-sensitive adhesive layer can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent.
  • a polymer component particularly the base polymer
  • an acrylic polymer sometimes referred to as “acrylic polymer A”
  • acrylic polymer A examples include those using (meth) acrylic acid ester as a main monomer component.
  • Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, sec-butyl ester, t-butyl ester, Pentyl ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of an alkyl group such as hexadecyl ester, oct
  • the acrylic polymer A corresponds to other monomer components that can be copolymerized with the (meth) acrylic acid ester, if necessary, for the purpose of modifying cohesive strength, heat resistance, crosslinkability, and the like. Units may be included.
  • monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and carboxyethyl acrylate; acid anhydrides such as maleic anhydride and itaconic anhydride Group-containing monomers; hydroxyl group-containing monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (N-substituted or unsubstituted) amide monomers such as N-butyl (meth) acrylamide, N-
  • (Substituted or unsubstituted) amino group-containing monomers (meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate; N-vinylpyrrolidone, N -Methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N -Monomers having a nitrogen atom-containing ring such as vinylcaprolactam; N-vinylcarboxylic amides; Monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, (meth) acryl
  • the acrylic polymer A can be obtained by polymerizing a single monomer or a mixture of two or more monomers.
  • the polymerization may be performed by any method such as solution polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization), emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (for example, ultraviolet (UV) polymerization). it can.
  • the weight average molecular weight of the acrylic polymer A is not particularly limited, but is preferably 350,000 to 1,000,000, more preferably about 450,000 to 800,000.
  • an external cross-linking agent can be appropriately used for the heat-expandable pressure-sensitive adhesive in order to adjust the adhesive force.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive.
  • the amount of the external crosslinking agent used is generally 20 parts by weight or less (preferably 0.1 to 10 parts by weight) with respect to 100 parts by weight of the base polymer.
  • the heat-expandable pressure-sensitive adhesive layer contains a foaming agent for imparting heat-expandability as described above. Therefore, when peeling the support 1 from the temporary fixing sheet 5, the thermally expandable pressure-sensitive adhesive layer is at least partially heated and contained in the heated thermally expandable pressure-sensitive adhesive layer. By expanding and / or expanding the foaming agent, the heat-expandable pressure-sensitive adhesive layer expands at least partially, and at least partial expansion of the heat-expandable pressure-sensitive adhesive layer causes a pressure-sensitive adhesive surface corresponding to the expanded portion.
  • the support 1 can be peeled from the sheet 5.
  • the temporary fixing sheet 5 can be peeled from the wiring sheet 2 by peel peeling after the support 1 is peeled off.
  • the foaming agent used in the thermally expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected from known foaming agents.
  • a foaming agent can be used individually or in combination of 2 or more types.
  • thermally expandable microspheres can be suitably used.
  • the heat-expandable microsphere is not particularly limited, and can be appropriately selected from known heat-expandable microspheres (such as various inorganic heat-expandable microspheres and organic heat-expandable microspheres).
  • a microencapsulated foaming agent can be suitably used from the viewpoint of easy mixing operation.
  • thermally expandable microspheres include microspheres in which substances such as isobutane, propane, and pentane that are easily gasified and expanded by heating are encapsulated in an elastic shell.
  • the shell is often formed of a hot-melt material or a material that is destroyed by thermal expansion.
  • Examples of the substance forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Thermally expandable microspheres can be produced by a conventional method such as a coacervation method or an interfacial polymerization method.
  • Examples of the thermally expandable microspheres include, for example, a series of “Matsumoto Microsphere F30” and “Matsumoto Microsphere F301D” (trade names “Matsumoto Microsphere F30”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.).
  • Commercially available products such as “051DU”, “053DU”, “551DU”, “551-20DU”, and “551-80DU” can be used.
  • the particle size (average particle diameter) of the thermally expandable microspheres can be appropriately selected according to the thickness of the thermally expandable pressure-sensitive adhesive layer. .
  • the average particle diameter of the heat-expandable microspheres can be selected from a range of, for example, 100 ⁇ m or less (preferably 80 ⁇ m or less, more preferably 1 ⁇ m to 50 ⁇ m, particularly 1 ⁇ m to 30 ⁇ m). Note that the adjustment of the particle size of the thermally expandable microspheres may be performed in the process of generating the thermally expandable microspheres, or may be performed by means such as classification after the generation. It is preferable that the thermally expandable microspheres have the same particle size.
  • a foaming agent other than the thermally expandable microsphere can also be used.
  • various foaming agents such as various inorganic foaming agents and organic foaming agents can be appropriately selected and used.
  • the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.
  • organic foaming agents include, for example, water; chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azobisisobutyronitrile, azodicarbonamide, and barium azodi.
  • Azo compounds such as carboxylates; hydrazine compounds such as paratoluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p- Semicarbazide compounds such as toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosope Data methylene terrorism lamin, N, N'-dimethyl -N, N'N-nitroso compounds such as dinitrosoterephthalamide, and the like.
  • the volume expansion coefficient is 5 times or more, especially 7 times or more, particularly 10 times or more.
  • a foaming agent having an appropriate strength that does not burst is preferred.
  • the amount of foaming agent can be set as appropriate depending on the expansion ratio of the thermally expandable pressure-sensitive adhesive layer and the ability to lower the adhesive strength, but generally a thermally expandable pressure-sensitive adhesive layer is formed.
  • the amount is, for example, 1 part by weight to 150 parts by weight (preferably 10 parts by weight to 130 parts by weight, more preferably 25 parts by weight to 100 parts by weight) with respect to 100 parts by weight of the base polymer.
  • a foaming agent having a foaming start temperature (thermal expansion start temperature) (T 0 ) in the range of 120 ° C. to 220 ° C. can be suitably used, and a more preferable foaming start temperature is 130 ° C. It is in the range of ⁇ 200 ° C.
  • T 0 foaming start temperature
  • the foaming start temperature of the foaming agent By setting the foaming start temperature of the foaming agent to 120 ° C. or higher, foaming of the foaming agent at a stage where it is not desired to be peeled off can be suppressed, and handleability and productivity can be ensured.
  • the foaming start temperature of the foaming agent to 220 ° C. or lower, the support 1 can be easily peeled in the peeling step (step F).
  • the foaming starting temperature (T 0) of the blowing agent corresponding to the foaming starting temperature of the heat-expandable pressure-sensitive adhesive layer (T 0).
  • the foaming agent that is, a method of thermally expanding the thermally expandable pressure-sensitive adhesive layer
  • it can be appropriately selected from known heat foaming methods.
  • the heat-expandable pressure-sensitive adhesive layer has an elastic modulus of 23 ° C. in a form not containing a foaming agent from the viewpoint of a balance between moderate adhesive force before heat treatment and lowering of adhesive force after heat treatment. It is preferably 5 ⁇ 10 4 Pa to 1 ⁇ 10 6 Pa at ⁇ 150 ° C., more preferably 5 ⁇ 10 4 Pa to 8 ⁇ 10 5 Pa, and particularly 5 ⁇ 10 4 Pa to 5 ⁇ 10 5 Pa. It is preferable that When the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer containing no foaming agent is 5 ⁇ 10 4 Pa or more, the thermal expandability is inferior and the peelability is decreased.
  • the initial adhesiveness can be improved by setting the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent to 1 ⁇ 10 6 Pa or less. .
  • the thermally expansible adhesive layer of the form which does not contain a foaming agent is corresponded to the adhesive layer formed with the adhesive (The foaming agent is not contained). Therefore, the elastic modulus of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent can be measured using a pressure-sensitive adhesive (no foaming agent is included).
  • the heat-expandable pressure-sensitive adhesive layer includes a pressure-sensitive adhesive capable of forming a pressure-sensitive adhesive layer having an elastic modulus at 23 ° C. to 150 ° C. of 5 ⁇ 10 4 Pa to 1 ⁇ 10 6 Pa, and a thermal expansion containing a foaming agent. It can be formed with an adhesive.
  • the modulus of elasticity of the thermally expandable pressure-sensitive adhesive layer in the form not containing the foaming agent is the heat-expandable pressure-sensitive adhesive layer in the form in which the foaming agent is not added (that is, the pressure-sensitive adhesive layer by the pressure-sensitive adhesive not containing the foaming agent).
  • a rheometric dynamic viscoelasticity measuring device “ARES” sample thickness: about 1.5 mm, ⁇ 7.9 mm parallel plate jig, in shear mode , Frequency: 1 Hz, rate of temperature increase: 5 ° C./min, strain: 0.1% (23 ° C.), 0.3% (150 ° C.) measured at 23 ° C. and 150 ° C. shear storage elasticity obtained The value of the rate G ′ was used.
  • the elastic modulus of the thermally expandable pressure-sensitive adhesive layer can be controlled by adjusting the type of the base polymer of the pressure-sensitive adhesive, the crosslinking agent, the additive, and the like.
  • the thickness of the heat-expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the reduction in adhesive strength, and is, for example, about 5 ⁇ m to 300 ⁇ m (preferably 20 ⁇ m to 150 ⁇ m). However, when heat-expandable microspheres are used as the foaming agent, the thickness of the heat-expandable pressure-sensitive adhesive layer is preferably thicker than the maximum particle size of the heat-expandable microspheres contained. When the thickness of the heat-expandable pressure-sensitive adhesive layer is too thin, the surface smoothness is impaired by the unevenness of the heat-expandable microspheres, and the adhesiveness before heating (unfoamed state) is lowered.
  • the degree of deformation of the heat-expandable pressure-sensitive adhesive layer by heat treatment is small, and the adhesive force is not easily lowered.
  • the thickness of the heat-expandable pressure-sensitive adhesive layer is too thick, cohesive failure tends to occur in the heat-expandable pressure-sensitive adhesive layer after expansion or foaming by heat treatment, and adhesive residue may be generated.
  • the thermally expandable pressure-sensitive adhesive layer may be either a single layer or multiple layers.
  • the heat-expandable pressure-sensitive adhesive layer has various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
  • additives for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
  • the temporary fixing sheet 5 preferably has at least a thermally expandable pressure-sensitive adhesive layer and a pressure-sensitive adhesive layer. In this case, it is preferable to laminate so that the heat-expandable pressure-sensitive adhesive layer is on the support 1 side and the pressure-sensitive adhesive layer is on the wiring sheet 2 side.
  • the peeling step (step F) by laminating in this way first, the support 1 is peeled from the temporary fixing sheet 5 by thermal foaming, and then the temporary fixing sheet 5 is peeled from the wiring sheet 2 by peel peeling. Can be peeled off. Thereby, the support body 1 and the temporary fixing sheet 5 can be peeled from the wiring sheet 2.
  • the temporary fixing sheet 5 is, for example, a sheet-like adhesive mixed with a pressure-sensitive adhesive (pressure-sensitive adhesive), a foaming agent (such as thermally expandable microspheres), and a solvent or other additives as necessary. It can be formed using conventional methods for forming layers. Specifically, for example, a pressure-sensitive adhesive, a foaming agent (such as thermally expandable microspheres), and a mixture containing a solvent and other additives as necessary are applied onto an appropriate separator (such as release paper). After forming the coating film, it can be obtained by drying the coating film under predetermined conditions and transferring (transferring) it onto the support 1. Further, after the mixture is directly applied to the support 1 to form a coating film, the coating film may be dried under predetermined conditions.
  • a pressure-sensitive adhesive pressure-sensitive adhesive
  • a foaming agent such as thermally expandable microspheres
  • a solvent or other additives as necessary. It can be formed using conventional methods for forming layers. Specifically, for example, a pressure-sensitive adhesive, a
  • the wiring sheet 2 is obtained by forming it on the temporary fixing sheet 5.
  • a method of forming the wiring sheet 2 on the temporary fixing sheet 5 conventionally known circuit board and interposer manufacturing techniques such as a semi-additive method and a subtractive method can be used. Thereby, the wiring sheet 2 in which the rewiring layer was formed is obtained. Specifically, for example, a method described in JP 2010-141126 A can be employed. In the present embodiment, the wiring sheet 2 is formed on the temporary fixing sheet 5 formed on the support 1. Therefore, it is more excellent in that the dimensional stability is improved during the manufacturing process and the handleability of the thin printed circuit board is improved.
  • the laminated body 10 may be in a state of being wound in a roll shape, or may be in a strip shape that is not wound in a roll shape.
  • the support 1 uses a metal foil that can be wound.
  • the temporary fixing sheet 5 and the wiring sheet 2 are usually formed in a flexible state to the extent that they can be wound.
  • the wiring sheet 2 may be continuously laminated on the temporary fixing sheet 5, or a plurality of wiring sheets 2 may be laminated on the temporary fixing sheet 5 at a predetermined interval.
  • FIG. 2 is a plan view showing an example in which a plurality of wiring sheets are laminated on the temporary fixing sheet at a predetermined interval.
  • FIG. 3 is a plan view showing another example in which a plurality of wiring sheets are laminated at a predetermined interval on a temporary fixing sheet.
  • a circular wiring sheet 2 in a plurality of plan views is laminated on a temporary fixing sheet 5 at a predetermined interval.
  • a rectangular wiring sheet 2 in a plurality of plan views is laminated on a temporary fixing sheet 5 at a predetermined interval.
  • step A the semiconductor chip 3 is flip-chip mounted on the wiring sheet 2 of the laminate 10 as shown in FIG. 4 (step B). Specifically, as shown in FIG. 5, the connection conductor portion 21 formed on the wiring sheet 2 and the electrode 31 formed on the semiconductor chip 3 are connected, and the semiconductor chip 3 is formed on the wiring sheet 2.
  • the flip chip mounting for flip chip mounting, for example, a conventionally known flip chip bonder can be used.
  • a sealing sheet 20 obtained by plastic working a kneaded product obtained by kneading an epoxy resin, a curing agent, and an inorganic filler is prepared (step C).
  • the epoxy resin is not particularly limited.
  • Various epoxy resins such as resin and trishydroxyphenylmethane type epoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • an epoxy resin represented by the following general formula (1) is preferable.
  • the flexibility is excellent. Therefore, it is further excellent in adhesiveness with a wiring sheet or a semiconductor chip.
  • R 1 to R 4 are the same or different and each represents a methyl group or a hydrogen atom, and X represents —CH 2 —, —O—, or —S—).
  • R 1 to R 4 in the general formula (1) represent a methyl group or a hydrogen atom substituted on the benzene ring, and preferably all of R 1 to R 4 are a methyl group or a hydrogen atom.
  • epoxy resin examples include bisphenol F type epoxy resins represented by the following chemical formulas (2) to (4), for example, 4,4′-thiobisphenol type epoxy resins represented by the following chemical formulas (5) to (7). Examples thereof include 4,4′-oxybisphenol type epoxy resins represented by the following chemical formulas (8) to (10).
  • a bisphenol F type epoxy resin represented by the following chemical formula (2) a 4,4′-thiobisphenol type epoxy resin represented by the following chemical formula (5)
  • a 4,4′-oxybisphenol type epoxy resin represented by the chemical formula (8) is mentioned, and in view of tackless, a bisphenol F type epoxy resin represented by the following chemical formula (2) is more preferred.
  • the epoxy resin may be used alone or in combination.
  • the epoxy equivalent of the epoxy resin is, for example, 90 to 800 g / eq, preferably 100 to 500 g / eq.
  • the softening point of the epoxy resin is, for example, 30 to 100 ° C., preferably 40 to 90 ° C.
  • the content ratio of the epoxy resin is, for example, 1 to 50 parts by weight with respect to 100 parts by weight of the kneaded material, preferably 3 to 20 parts by weight, more preferably considering the flexibility of the sealing sheet, 4 to 8 parts by weight.
  • the curing agent is a curing agent for the epoxy resin and is not particularly limited, and examples thereof include a phenol resin, an acid anhydride compound, and an amine compound.
  • phenol resin examples include a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin (a phenol resin having a biphenyl aralkyl skeleton), a dicyclopentadiene type phenol resin, a cresol novolak resin, and a resole resin.
  • acid anhydride compounds examples include phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl nadic acid anhydride, pyromellitic anhydride, dodecenyl succinic anhydride, dichloromethane.
  • Succinic acid anhydride, benzophenone tetracarboxylic acid anhydride, chlorendic acid anhydride, etc. are mentioned.
  • amine compound examples include ethylenediamine, propylenediamine, diethylenetriamine, triethylenetetramine, amine adducts thereof, metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
  • the curing agent may be used alone or in combination.
  • a phenol resin is used, and further considering the balance between the strength of the sealing sheet after curing and the curing reactivity, Preferably, a biphenyl aralkyl resin is used.
  • the mixing ratio of the curing agent is, for example, 1 to 20 parts by weight, preferably 2 to 10 parts by weight with respect to 100 parts by weight of the kneaded product, and is, for example, 30 parts with respect to 100 parts by weight of the epoxy resin. It is ⁇ 130 parts by weight, preferably 40 to 120 parts by weight.
  • the phenol resin has, for example, 0.5 to 2 equivalents, preferably 0.5 to 2 equivalents of hydroxyl groups of the phenol resin with respect to 1 equivalent of the epoxy group of the epoxy resin described above. , 0.8 to 1.2 equivalents.
  • the kneaded material contains a curing accelerator together with the curing agent.
  • curing accelerator examples include organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds.
  • the curing accelerator may be used alone or in combination.
  • imidazole compounds are exemplified, and 2-phenyl-4,5-dihydroxymethylimidazole is more preferred.
  • the content of the curing accelerator is, for example, 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the kneaded product.
  • the content of the curing accelerator is, for example, 0.5 to 10 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the curing agent.
  • the inorganic filler is not particularly limited and includes known fillers.
  • quartz glass, talc, silica for example, fused silica, crystalline silica, etc.
  • alumina aluminum nitride, silicon nitride
  • calcium carbonate for example, heavy calcium carbonate, light calcium carbonate, white glaze etc.
  • powders such as titanium.
  • the filler may be used alone or in combination.
  • silica powder is preferably used, and more preferably fused silica powder, in view of reduction of the linear expansion coefficient of the sealing sheet 20 after curing.
  • fused silica powder examples include spherical fused silica powder and pulverized fused silica powder. In consideration of the fluidity of the kneaded material, preferably, fused spherical silica powder is used.
  • the average particle diameter of the spherical fused silica powder is, for example, 0.1 to 40 ⁇ m, preferably 0.1 to 30 ⁇ m, and more preferably 0.3 to 15 ⁇ m.
  • the average particle diameter can be measured by, for example, a laser diffraction / confusion type particle size distribution measuring apparatus.
  • the blending ratio of the inorganic filler in the sealing sheet 20 is preferably 70 to 90% by volume, more preferably 75 to 85% by volume in the total composition constituting the sealing sheet 20. preferable. By setting the blending ratio of the inorganic filler within the numerical range, it becomes easy to realize low warpage, suppression of resin protrusion, and high reliability.
  • the blending ratio of the filler is, for example, 1000 to 3000 parts by weight, preferably 1300 to 2500 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • a flexibility imparting agent can be added to the kneaded product in consideration of improvement in flexibility of the sealing sheet 20.
  • the flexibility-imparting agent is not particularly limited as long as it imparts flexibility to the sealing sheet 20.
  • various acrylic copolymers such as polyacrylic acid ester, for example, polystyrene-poly Thermoplastic elastomers having a styrene skeleton such as isobutylene copolymer and styrene acrylate copolymer, for example, thermoplastic elastomers having a butadiene skeleton such as butadiene rubber and styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer ( EVA), rubbery polymers such as isoprene rubber and acrylonitrile rubber.
  • SBR butadiene rubber and styrene-butadiene rubber
  • EVA ethylene-vinyl acetate copolymer
  • rubbery polymers such as isoprene rubber and acrylonitrile rubber.
  • thermoplastic elastomer made of a polymer having a weight average molecular weight of 10,000 or more and containing either a styrene skeleton or a butadiene skeleton is preferred from the viewpoint of low warpage.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • the flexibility-imparting agent may be used alone or in combination.
  • an elastomer having a styrene skeleton is preferable, and a polystyrene-polyisobutylene copolymer is more preferable.
  • the content ratio of the flexibility imparting agent is, for example, less than 30 parts by weight with respect to 100 parts by weight of the kneaded material, preferably less than 10 parts by weight, and more preferably 5 parts by weight in consideration of adhesiveness and heat resistance. Less than part.
  • the kneaded product includes an epoxy resin other than the above-described epoxy resin (hereinafter referred to as other epoxy resin), and, if necessary, a flame retardant, a pigment such as carbon black, and the like.
  • Known additives can be added at an appropriate ratio.
  • the content rate of other epoxy resin is less than 30 weight part with respect to 100 weight part of total amounts of said epoxy resin and other epoxy resin, for example, the sheet
  • the amount is preferably less than 20 parts by weight.
  • the method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder.
  • a known kneader such as a mixing roll, a pressure kneader, or an extruder.
  • the kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above.
  • the temperature is preferably 60 to 120 ° C.
  • the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes.
  • Such a kneaded material is prepared as a sealing sheet 20 by being plastically processed.
  • the encapsulating sheet 20 is prepared by plastic working in a high-temperature state without cooling the kneaded material after melt-kneading.
  • Such a plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T-die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a co-extrusion method, and a calendar molding method.
  • the plastic working temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above, but considering the thermosetting property and workability of the epoxy resin, for example, 40 to 150 ° C., preferably 50 to 140 ° C. More preferably, the temperature is 60 to 120 ° C.
  • the sealing sheet 20 is prepared.
  • the thickness of the sealing sheet 20 is, for example, 100 to 1500 ⁇ m, preferably 300 to 1200 ⁇ m.
  • the sealing sheet 20 is formed by plastic processing of the kneaded material without applying a varnish containing an epoxy resin or an inorganic filler onto the film.
  • the blending ratio of the inorganic filler can be increased, and the performance of the sealing sheet can be sufficiently improved.
  • the sealing sheet 20 has sufficient flexibility without blending a large amount of a flexibility imparting agent that hinders heat resistance, the adhesiveness and heat resistance can be improved. .
  • the sealing sheet 20 can increase the blending ratio of the inorganic filler, and can improve the adhesion and heat resistance.
  • the sealing sheet 20 is obtained by plastic working the kneaded product, a sealing film having a good film quality can be obtained even if the blending ratio of the inorganic filler is increased. Therefore, the compounding ratio of the inorganic filler can be increased, and the linear expansion coefficient after thermosetting of the sealing sheet can be lowered. As a result, for example, warpage of the semiconductor device due to the linear expansion coefficient of the sealing sheet after thermosetting can be suppressed.
  • the sealing sheet 20 is disposed on the surface on which the semiconductor chip 3 is exposed, and the semiconductor chip 3 is embedded in the sealing sheet 20 as shown in FIG. (Process D).
  • the method for embedding the semiconductor chip 3 in the sealing sheet 20 is not particularly limited, and can be performed by a known method such as a heat press or a laminator.
  • a heat press or a laminator As hot press conditions, the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C., the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa, and the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes.
  • it is preferable to press under reduced pressure conditions for example, 0.1 to 5 kPa).
  • the sealing sheet 20 is thermally cured (step E).
  • the conditions for the thermosetting treatment are set so that the temporary fixing sheet 5 does not peel off due to the heat of the thermosetting treatment.
  • the heating temperature at the time of thermosetting of the sealing sheet 20 is set to be 10 ° C. or more lower than the heating temperature at the time of peeling the temporary fixing sheet 5 described later. Thereby, it can prevent more reliably that the sheet
  • the heating temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher.
  • the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less. Moreover, you may pressurize as needed, Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more.
  • the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
  • the support 1 and the temporary fixing sheet 5 are peeled from the wiring sheet 2 (step F). Specifically, first, as shown in FIG. 8, the support 1 is peeled from the temporary fixing sheet 5. Peeling of the support 1 from the temporary fixing sheet 5 is performed by heating the thermally expandable pressure-sensitive adhesive layer of the temporary fixing sheet 5 to reduce the adhesive force between the support 1 and the temporary fixing sheet 5. .
  • the condition for the peeling treatment is set higher than the heating temperature at the time of thermosetting.
  • the heating temperature is preferably 110 ° C. or higher, more preferably 130 ° C. or higher.
  • the upper limit of the heating temperature is preferably 220 ° C. or lower, more preferably 200 ° C. or lower.
  • the heating time is preferably 0.2 minutes or more, more preferably 0.5 minutes or more.
  • the upper limit of the heating time is preferably 5 minutes or less, more preferably 3 minutes or less.
  • the temporary fixing sheet 5 After peeling the support 1 from the temporary fixing sheet 5, the temporary fixing sheet 5 is peeled off from the wiring sheet 2 as shown in FIG. Peel peeling can be performed at room temperature, for example. In addition, after peeling the support body 1 and the temporary fixing sheet 5 from the wiring sheet 2, the surface of the wiring sheet 2 may be cleaned by wet cleaning, plasma cleaning, or the like, if necessary.
  • bump formation process Next, bumps 4 are formed at predetermined locations on the wiring sheet 2 as necessary (see FIG. 10).
  • the semiconductor device manufacturing method according to the present embodiment has been described above.
  • the temporary fixing sheet 5 is peeled from the wiring sheet 2 after the support 1 is peeled from the temporary fixing sheet 5 has been described.
  • the present invention is not limited to this example, and the laminate of the support 1 and the temporary fixing sheet 5 may be peeled from the wiring sheet 2.
  • the temporary fixing sheet 5 is configured to have a thermally expandable pressure-sensitive adhesive layer on the adhesive surface with the wiring sheet 2, and the adhesive force between the wiring sheet 2 and the temporary fixing sheet 5 is reduced by heating to be peeled off. do it.
  • the laminated body 10 in which the support body 1, the temporary fixing sheet 5, and the wiring sheet 2 are laminated in this order has been described.
  • the laminated body of the present invention is not limited to this example as long as the temporary fixing sheet and the wiring sheet are laminated at least.
  • wiring is performed on a single temporary fixing sheet that is not supported by the support.
  • a sheet may be formed.
  • the semiconductor chip since the semiconductor chip is embedded in the sealing sheet after the semiconductor chip is flip-chip mounted on the wiring sheet, the effect of suppressing poor connection between the wiring sheet and the semiconductor chip without a support is It is because it is obtained.
  • the laminated body of this invention may have layers other than a support body, the sheet
  • the manufacturing method of the semiconductor device in this invention is not limited to the example mentioned above, In the range of the summary of this invention, it can change suitably. .
  • Example 1 ⁇ Creation of sealing sheet> In the formulation shown in Table 1 (unit:% by weight), each component was blended and melt kneaded at 100 ° C. for 10 minutes using a twin-screw kneader to prepare a kneaded product.
  • the obtained kneaded material was formed into a sheet shape by a flat plate press to obtain a sealing sheet having a size of 20 cm square and a thickness of 400 ⁇ m.
  • Epoxy resin 1 YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
  • Phenol resin 1 MEH-7851-SS manufactured by Meiwa Kasei Co., Ltd.
  • Thermoplastic resin 1 SIBSTER 072T manufactured by Kaneka Corporation (styrene-isobutylene-styrene block copolymer, weight average molecular weight: 73,000)
  • Inorganic filler 1 FB-9454FC (fused spherical silica, average particle size 20 ⁇ m) manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Silane coupling agent 1 KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • Carbon black 1 # 20 manufactured by Mitsubishi Chemical Corporation Flame retardant 1: FP-100 manufactured by Fushimi Pharmaceutical (phosphazene flame retardant: compound represented by formula (11)) Curing accelerator 1: Imidazole catalyst 2PHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • the compounding quantity of the inorganic filler 1 in Example 1 is corresponded to 80 volume% in the whole composition which comprises the sheet
  • Nitto Denko's heat release sheet (Riba Alpha NO. 31950E (thickness 96 ⁇ m, heat release temperature 200 ° C.) was prepared as a temporary fixing sheet. And has a layer structure having a pressure-sensitive adhesive layer on the other surface.
  • a metal plate (material: SUS304, thickness 0.5 mm, size 25 cm square) was prepared as a support.
  • the prepared support and the temporary fixing sheet were bonded together using a thermal laminator under conditions of 40 ° C. and a pressure of 0.2 MPa under atmospheric pressure. Under the present circumstances, it bonded together so that the heat-expandable adhesive layer of a temporary fix
  • the temporary fixing sheet and the wiring sheet are laminated by bonding the temporary fixing sheet and the wiring sheet on the support using a vacuum laminator at 100 ° C., 0.3 MPa, and a vacuum degree of 50 torr. A laminated body was obtained.
  • Chips were mounted on all mounting regions on the laminate using a flip chip bonder.
  • a chip having a length of 5 mm ⁇ width of 5 mm ⁇ thickness of 200 ⁇ m was used.
  • the mounting was performed in a vertical 20 ⁇ 20 horizontal interval with an interval of 3 mm (distance between the end of one chip and the end of the next chip).
  • the mounting conditions were as follows. (Mounting conditions) Degree of vacuum: 3Pa Temperature: 300 ° C Pressure: 1.5g / bump
  • the above-mentioned wiring sheet with the chip mounted thereon was placed in a vacuum press, and the sealing sheet obtained above was placed thereon. Thereafter, the chamber was evacuated. Next, molding was performed under the conditions of 100 ° C., 1 MPa, a vacuum degree of 20 torr, and a pressurization time of 1 minute. Thereafter, the atmosphere was released, the mold was opened, and the molded product was taken out. Furthermore, the sealing sheet was cured at 130 ° C. for 2 hours under atmospheric pressure.
  • the molded product after curing was heated on a hot plate at 200 ° C. for 30 seconds.
  • the thermally expandable pressure-sensitive adhesive layer on the support side of the temporary fixing sheet was thermally expanded and peeled off from the support.
  • the temporary fixing sheet was peeled off from the wiring sheet.
  • solder balls were formed on the surface of the gold layer, which is the end face of the external connection conductor exposed on the base insulating layer. Finally, dicing into individual semiconductor devices was performed.
  • Example 1 results of semiconductor device manufacturing evaluation. In Example 1, it was confirmed that the semiconductor device was obtained with simple work contents. Further, in Example 1, since the wiring sheet and the chip are bonded before sealing, the positional deviation between the wiring sheet and the semiconductor chip due to molding and thermosetting of the sealing sheet cannot occur. As a result, it can be seen that connection failure between the wiring sheet and the semiconductor chip can be suppressed.
  • the thickness was measured as the thickness from the base surface to the farthest part.
  • the thickness of the sealing sheet that is, a value obtained by subtracting 400 ⁇ m from the obtained measured thickness was defined as the amount of warpage.
  • the warpage amount was 2 mm.
  • Comparative Example 1 a sheet having a shape of 20 cm square and a thickness of 400 ⁇ m was prepared using a sealing sheet having the following composition.
  • Comparative Example 1 ⁇ Creation of sealing sheet>
  • MEK methyl ethyl ketone
  • MEK methyl ethyl ketone
  • Epoxy resin 2 bisphenol A type epoxy resin (Japan Epoxy Resin, Epicoat 828)
  • Epoxy resin 3 Trishydroxyphenylmethane type epoxy resin (Nippon Kayaku, EPPN-501HY)
  • Thermoplastic resin 2 acrylic copolymer (manufactured by Nagase ChemteX, Teisan Resin SG-P3, weight average molecular weight: 850,000)
  • Phenolic resin 2 Novolac type phenolic resin (Maywa Kasei, DL-65)
  • Carbon black 2 Mitsubishi Chemical # 20
  • Inorganic filler 2 Spherical fused silica powder having an average particle size of 5.5 ⁇ m (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-7SDC)
  • the compounding quantity of the inorganic filler 2 in the comparative example 1 is equivalent to 41 volume% in the whole composition which comprises the sheet
  • Example 1 Using the sealing sheet according to Comparative Example 1, the amount of warpage was measured in the same manner as in Example 1, and the result was 10 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

A method for manufacturing a semiconductor device, which comprises: a step A for preparing a laminate wherein at least a sheet for temporary joint and a wiring sheet that is provided with a rewiring layer are laminated; a step B for flip-chip mounting a semiconductor chip on the wiring sheet of the laminate; a step C for preparing a sealing sheet that is obtained by plastic working of a kneaded material that is obtained by kneading an epoxy resin, a curing agent and an inorganic filler; a step D for burying the semiconductor chip into the sealing sheet by disposing the sealing sheet on the surface where the semiconductor chip is exposed; a step E for thermally curing the sealing sheet; and a step F for separating the sheet for temporary joint from the wiring sheet.

Description

半導体装置の製造方法Manufacturing method of semiconductor device
 本発明は、半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device.
 従来、シリコン半導体を用いたICや、有機半導体を用いた有機EL素子など、種々の半導体材料にて構成される半導体素子(以下、単に「素子」とも言う)は、通常、ウェハ基板面に素子をマトリクス状に多数繰り返して形成した後、ダイシングによって個々の素子である半導体チップ(ベアチップとも呼ばれる)へと分断することによって製造されている。 Conventionally, semiconductor elements composed of various semiconductor materials (hereinafter also simply referred to as “elements”) such as ICs using silicon semiconductors and organic EL elements using organic semiconductors are usually provided on the wafer substrate surface. Are repeatedly formed in a matrix and then divided into individual semiconductor chips (also referred to as bare chips) by dicing.
 近年、半導体チップの裏面側(回路面とは反対側)から樹脂封止した後、チップの回路面上に再配線層を形成し、さらに、再配線層に外部端子を形成したファンアウトウエハレベルパッケージ(Fan-Out Wafer-Level Package)が知られている(例えば、特許文献1、2参照)。 Recently, a fan-out wafer level in which a semiconductor chip is sealed from the back side (opposite side of the circuit surface), a rewiring layer is formed on the circuit surface of the chip, and an external terminal is formed on the rewiring layer. A package (Fan-Out Wafer-Level Package) is known (see, for example, Patent Documents 1 and 2).
 特許文献1や特許文献2に記載されている半導体装置の製造方法では、まず、間隔をあけて複数の半導体チップを配置した後、これら複数の半導体チップを一括で樹脂封止する。この際、半導体チップの裏面は、樹脂で覆われない態様で封止する。その後、半導体チップの表面(素子面)に再配線層を形成し、金属バンプ等の外部接続端子を形成した後、個々の半導体チップごと又は1のパッケージとなる複数の半導体チップごとに分断している。 In the method of manufacturing a semiconductor device described in Patent Document 1 or Patent Document 2, first, a plurality of semiconductor chips are arranged at intervals, and then the plurality of semiconductor chips are collectively sealed with resin. Under the present circumstances, the back surface of a semiconductor chip is sealed in the aspect which is not covered with resin. Thereafter, a rewiring layer is formed on the surface (element surface) of the semiconductor chip, and external connection terminals such as metal bumps are formed, and then divided into individual semiconductor chips or a plurality of semiconductor chips forming one package. Yes.
米国特許第7,202,107号US Pat. No. 7,202,107 特開2001-308116号公報JP 2001-308116 A
 しかしながら、特許文献1や特許文献2に記載されている半導体装置の製造方法では、樹脂封止時の樹脂の流動による力、あるいは封止樹脂の熱硬化により樹脂が収縮する力等により半導体チップ間の距離が熱硬化前から変動する。そのため、再配線層を形成する際に、半導体チップの電極位置と再配線層の導体部分とがうまく対応せず、接続不良が発生する場合がある。また、封止樹脂に関しても、再配線層との接着性の高いことが求められる。 However, in the method for manufacturing a semiconductor device described in Patent Document 1 or Patent Document 2, between the semiconductor chips due to a force caused by the flow of the resin at the time of resin sealing or a force by which the resin contracts due to thermal curing of the sealing resin. The distance of fluctuates before thermosetting. For this reason, when the rewiring layer is formed, the electrode position of the semiconductor chip and the conductor portion of the rewiring layer do not correspond well, and connection failure may occur. Further, the sealing resin is also required to have high adhesiveness with the rewiring layer.
 本願発明者等は、下記の構成を採用することにより、前記の課題を解決できることを見出して本発明を完成させるに至った。 The inventors of the present application have found that the above-mentioned problems can be solved by adopting the following configuration, and have completed the present invention.
 すなわち、本発明に係る半導体装置の製造方法は、
 仮止め用シートと再配線層が形成された配線シートとが少なくとも積層された積層体を準備する工程A、
 前記積層体の前記配線シート上に、半導体チップをフリップチップ実装する工程B、
 エポキシ樹脂と、硬化剤と、無機充填剤とを混練して得られる混練物を、塑性加工して得た封止用シートを準備する工程C、
 前記半導体チップが表出している側の面上に前記封止用シートを配置し、前記半導体チップを前記封止用シートに埋め込む工程D、
 前記封止用シートを熱硬化させる工程E、及び、
 前記仮止め用シートを前記配線シートから剥離する工程F
を具備することを特徴とする。
That is, a method for manufacturing a semiconductor device according to the present invention includes:
Step A for preparing a laminate in which at least a temporary fixing sheet and a wiring sheet on which a rewiring layer is formed are laminated,
A step B of flip-chip mounting a semiconductor chip on the wiring sheet of the laminate;
Step C for preparing a sealing sheet obtained by plastic working a kneaded product obtained by kneading an epoxy resin, a curing agent, and an inorganic filler,
Placing the sealing sheet on the surface on which the semiconductor chip is exposed, and embedding the semiconductor chip in the sealing sheet,
Step E for thermosetting the sealing sheet, and
Process F for peeling off the temporary fixing sheet from the wiring sheet
It is characterized by comprising.
 前記構成によれば、配線シート上に、半導体チップをフリップチップ実装する。次に、半導体チップが表出している側の面上に封止用シートを配置し、前記半導体チップを前記封止用シートに埋め込む。その後、前記封止用シートを熱硬化させる。従って、封止用シートの熱硬化の前に、半導体チップと配線シートとは電気的な接合(フリップチップ実装)が完了している。そのため、封止シートの熱硬化に起因する配線シートと半導体チップとの位置ズレは起り得ない。その結果、配線シートと半導体チップとの接続不良を抑制することができる。 According to the above configuration, the semiconductor chip is flip-chip mounted on the wiring sheet. Next, a sealing sheet is arranged on the surface on which the semiconductor chip is exposed, and the semiconductor chip is embedded in the sealing sheet. Thereafter, the sealing sheet is thermoset. Therefore, electrical bonding (flip chip mounting) between the semiconductor chip and the wiring sheet is completed before the thermosetting of the sealing sheet. Therefore, the positional deviation between the wiring sheet and the semiconductor chip due to the thermosetting of the sealing sheet cannot occur. As a result, poor connection between the wiring sheet and the semiconductor chip can be suppressed.
 また、前記構成によれば、エポキシ樹脂と、硬化剤と、無機充填剤とを混練して得られる混練物を、塑性加工して得た封止用シートを用いて半導体チップを封止用シートに埋め込み、続いて、前記封止用シートを熱硬化させる。前記封止用シートは、エポキシ樹脂を含んでいるため、配線シートや半導体チップとの接着性に優れる。さらに、前記封止用シートは、前記混練物を、塑性加工して得ているため、無機充填剤の配合割合を多くしても良好な膜質の封止用シートを得ることができる。そのため、無機充填剤の配合割合を多くし、封止用シートの熱硬化後の線膨張係数を低くすることができる。その結果、例えば、熱硬化後の封止用シートの線膨張係数に起因する半導体装置の反りを抑制することができる。 Moreover, according to the said structure, the sheet | seat for sealing a semiconductor chip using the sheet | seat for sealing obtained by plastically processing the kneaded material obtained by kneading | mixing an epoxy resin, a hardening | curing agent, and an inorganic filler. Then, the sealing sheet is thermally cured. Since the sealing sheet contains an epoxy resin, it is excellent in adhesiveness with a wiring sheet or a semiconductor chip. Furthermore, since the sealing sheet is obtained by plastic working the kneaded product, a sealing sheet with good film quality can be obtained even if the blending ratio of the inorganic filler is increased. Therefore, the compounding ratio of the inorganic filler can be increased, and the linear expansion coefficient after thermosetting of the sealing sheet can be lowered. As a result, for example, warping of the semiconductor device due to the linear expansion coefficient of the sealing sheet after thermosetting can be suppressed.
 前記構成において、前記封止用シート中の前記無機充填剤の配合割合が、前記封止用シートを構成する全組成物中の70-90体積%であることが好ましい。前記無機充填剤の配合割合を前記数値範囲内とすることにより、低反り性、樹脂はみ出しの抑制、及び、高信頼性を実現し易くなる。 In the above configuration, it is preferable that the blending ratio of the inorganic filler in the sealing sheet is 70 to 90% by volume in the total composition constituting the sealing sheet. By setting the blending ratio of the inorganic filler within the numerical range, it becomes easy to realize low warpage, suppression of resin protrusion, and high reliability.
 前記構成において、前記封止用シートが、スチレン骨格、及び、ブタジエン骨格のいずれかを含有する重量平均分子量1万以上のポリマーからなる熱可塑性エラストマーを含有することが好ましい。前記封止用シートが、スチレン骨格、及び、ブタジエン骨格のいずれかを含有する分子量1万以上のポリマーからなる熱可塑性エラストマーを含有すると、低反り性に優れる。 In the above-described configuration, it is preferable that the sealing sheet contains a thermoplastic elastomer made of a polymer having a weight average molecular weight of 10,000 or more containing either a styrene skeleton or a butadiene skeleton. When the sealing sheet contains a thermoplastic elastomer composed of a polymer having a molecular weight of 10,000 or more and containing either a styrene skeleton or a butadiene skeleton, the warpage is excellent.
 前記構成において、前記エポキシ樹脂が、下記式(1)で示されるエポキシ樹脂であることが好ましい。 In the above configuration, the epoxy resin is preferably an epoxy resin represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
 
 (式中、R~Rは、同一または相異なって、メチル基または水素原子を示し、Xは、-CH-、-O-、または、-S-を示す。)
Figure JPOXMLDOC01-appb-C000002

(Wherein R 1 to R 4 are the same or different and each represents a methyl group or a hydrogen atom, and X represents —CH 2 —, —O—, or —S—).
 また、前記構成によれば、上記一般式(1)で示されるエポキシ樹脂を含んでいるため、柔軟性を有している。そのため、配線シートや半導体チップとの接着性にさらに優れる。 Moreover, according to the said structure, since the epoxy resin shown by the said General formula (1) is included, it has a softness | flexibility. Therefore, it is further excellent in adhesiveness with a wiring sheet or a semiconductor chip.
 前記構成において、前記工程Aで準備する積層体は、支持体と仮止め用シートと配線シートとがこの順で積層された積層体であり、
 前記工程Fは、前記仮止め用シートと前記支持体とを前記配線シートから剥離する工程であってもよい。
In the above configuration, the laminate prepared in the step A is a laminate in which a support, a temporary fixing sheet, and a wiring sheet are laminated in this order,
The step F may be a step of peeling the temporary fixing sheet and the support from the wiring sheet.
 前記構成によれば、支持体と仮止め用シートと配線シートとがこの順で積層されているため、配線シートは、支持体上に仮止め用シートを介して固定されている。配線シートは、通常、フレキシブルであるため、支持体を用いると、半導体チップを配線シートにフリップチップ実装し易い。 According to the above configuration, since the support, the temporary fixing sheet, and the wiring sheet are laminated in this order, the wiring sheet is fixed on the support via the temporary fixing sheet. Since the wiring sheet is usually flexible, if a support is used, it is easy to flip-chip mount the semiconductor chip on the wiring sheet.
 前記構成において、前記仮止め用シートは、前記支持体と接触する側の面に、熱膨張性粘着剤層を有することが好ましい。仮止め用シートが、前記支持体と接触する側の面に、熱膨張性粘着剤層を有していると、前記工程Fにおいて、熱膨張性粘着剤層に含まれる発泡剤を発泡させることにより仮止め用シートと支持体との間の接着力を減少させることができる。その結果、支持体を仮止め用シートから容易に剥離することができる。なお、仮止め用シートから支持体を剥離した後は、ピール剥離等により仮止め用シートを配線シートから剥離することができる。 In the above configuration, it is preferable that the temporary fixing sheet has a thermally expandable pressure-sensitive adhesive layer on a surface in contact with the support. When the temporary fixing sheet has a thermally expandable pressure-sensitive adhesive layer on the surface in contact with the support, in step F, the foaming agent contained in the thermally expandable pressure-sensitive adhesive layer is foamed. Thus, the adhesive force between the temporary fixing sheet and the support can be reduced. As a result, the support can be easily peeled from the temporary fixing sheet. In addition, after peeling a support body from the sheet | seat for temporary fixing, the sheet | seat for temporary fixing can be peeled from a wiring sheet by peeling peeling.
 本発明によれば、配線シートと半導体チップとの接続不良を抑制することができ、且つ、封止用シートと配線シートとの接着性を高くすることができる。 According to the present invention, poor connection between the wiring sheet and the semiconductor chip can be suppressed, and the adhesiveness between the sealing sheet and the wiring sheet can be increased.
本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 仮止め用シート上に複数の配線シートが所定の間隔をおいて積層されている例を示す平面図である。It is a top view which shows the example by which the several wiring sheet is laminated | stacked on the sheet | seat for temporary fixing at predetermined intervals. 仮止め用シート上に複数の配線シートが所定の間隔をおいて積層されている他の例を示す平面図である。It is a top view which shows the other example by which the some wiring sheet is laminated | stacked on the sheet | seat for temporary fixing at predetermined intervals. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 半導体チップが再配線シートに実装される様子を示す部分拡大図である。It is the elements on larger scale which show a mode that a semiconductor chip is mounted in a rewiring sheet. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態について、図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 本実施形態に係る半導体装置の製造方法は、
 仮止め用シートと再配線層が形成された配線シートとが少なくとも積層された積層体を準備する工程A、
 前記積層体の前記配線シート上に、半導体チップをフリップチップ実装する工程B、
 エポキシ樹脂と、硬化剤と、無機充填剤とを混練して得られる混練物を、塑性加工して得た封止用シートを準備する工程C、
 前記半導体チップが表出している側の面上に前記封止用シートを配置し、前記半導体チップを前記封止用シートに埋め込む工程D、
 前記封止用シートを熱硬化させる工程E、及び、
 前記仮止め用シートを前記配線シートから剥離する工程F
を具備することを特徴とする。
The manufacturing method of the semiconductor device according to this embodiment is as follows:
Step A for preparing a laminate in which at least a temporary fixing sheet and a wiring sheet on which a rewiring layer is formed are laminated,
A step B of flip-chip mounting a semiconductor chip on the wiring sheet of the laminate;
Step C for preparing a sealing sheet obtained by plastic working a kneaded product obtained by kneading an epoxy resin, a curing agent, and an inorganic filler,
Placing the sealing sheet on the surface on which the semiconductor chip is exposed, and embedding the semiconductor chip in the sealing sheet,
Step E for thermosetting the sealing sheet, and
Process F for peeling off the temporary fixing sheet from the wiring sheet
It is characterized by comprising.
 以下では、積層体が、支持体と仮止め用シートと配線シートとがこの順で積層された積層体である場合について説明する。 Hereinafter, a case where the laminated body is a laminated body in which the support, the temporary fixing sheet, and the wiring sheet are laminated in this order will be described.
 図1、図4、図6~図11は、本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。図5は、半導体チップが再配線シートに実装される様子を示す部分拡大図である。 1, 4 and 6 to 11 are schematic cross-sectional views for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 5 is a partially enlarged view showing how the semiconductor chip is mounted on the rewiring sheet.
 [積層体を準備する工程]
 図1に示すように、本実施形態に係る半導体装置の製造方法では、まず、支持体1と仮止め用シート5と配線シート2とがこの順で積層された積層体10を準備する(工程A)。
[Process of preparing a laminate]
As shown in FIG. 1, in the method for manufacturing a semiconductor device according to this embodiment, first, a laminate 10 in which a support 1, a temporary fixing sheet 5, and a wiring sheet 2 are laminated in this order is prepared (steps). A).
 (支持体)
 支持体1は、一定以上の強度を有することが好ましい。支持体1としては、特に限定されないが、Ni箔、Al箔等の金属箔、金属板、ガラス板、シリコンウェハ、SiCウェハ、GaAsウェハ等の化合物ウェハ等が挙げられる。また、支持体1として、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、紙等を用いることもできる。なかでも、寸法変化が少なく、ロール状に巻ける点で金属泊が好ましい。
(Support)
The support 1 preferably has a certain strength or more. Although it does not specifically limit as the support body 1, Compound foils, such as metal foil, such as Ni foil and Al foil, a metal plate, a glass plate, a silicon wafer, a SiC wafer, and a GaAs wafer, etc. are mentioned. Examples of the support 1 include low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, and polymethylpentene. Polyolefin such as ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, Polyethylene such as ethylene-hexene copolymer, polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamid , Polyphenyl sulphates id, aramid (paper), can be glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, also possible to use paper or the like. Of these, metal stays are preferred in that they have little dimensional change and can be rolled up.
 支持体1は、単独で使用してもよく、2種以上を組み合わせて使用しても良い。支持体の厚みは、特に限定されないが、例えば、通常10μm~20mm程度である。 The support 1 may be used alone or in combination of two or more. The thickness of the support is not particularly limited, but is usually about 10 μm to 20 mm, for example.
 (仮止め用シート)
 仮止め用シート5としては、熱膨張性粘着剤層や放射線硬化型粘着剤層を有する構成を採用することができる。放射線硬化型粘着剤層としては、従来公知の放射線硬化型の粘着剤(例えば、紫外線硬化型の粘着剤)を採用することができる。本実施形態では、仮止め用シート5が熱膨張性粘着剤層を有する場合について説明する。
(Temporary fixing sheet)
As the temporary fixing sheet 5, a configuration having a thermally expandable pressure-sensitive adhesive layer or a radiation curable pressure-sensitive adhesive layer can be employed. As the radiation curable pressure-sensitive adhesive layer, a conventionally known radiation curable pressure-sensitive adhesive (for example, an ultraviolet curable pressure-sensitive adhesive) can be employed. This embodiment demonstrates the case where the sheet | seat 5 for temporary fixing has a thermally expansible adhesive layer.
 (熱膨張性粘着剤層)
 熱膨張性粘着剤層は、ポリマー成分と、発泡剤とを含む粘着剤組成物により形成することができる。ポリマー成分(特にベースポリマー)としては、アクリル系ポリマー(「アクリルポリマーA」と称する場合がある)を好適に用いることができる。アクリルポリマーAとしては、(メタ)アクリル酸エステルを主モノマー成分として用いたものが挙げられる。前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、sec-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)などが挙げられる。これらの(メタ)アクリル酸エステルは単独で又は2種以上を併用してもよい。
(Thermal expansion adhesive layer)
The thermally expandable pressure-sensitive adhesive layer can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent. As the polymer component (particularly the base polymer), an acrylic polymer (sometimes referred to as “acrylic polymer A”) can be suitably used. Examples of the acrylic polymer A include those using (meth) acrylic acid ester as a main monomer component. Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, sec-butyl ester, t-butyl ester, Pentyl ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of an alkyl group such as hexadecyl ester, octadecyl ester or eicosyl ester Le etc.) and (meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) and the like. These (meth) acrylic acid esters may be used alone or in combination of two or more.
 なお、前記アクリルポリマーAは、凝集力、耐熱性、架橋性などの改質を目的として、必要に応じて、前記(メタ)アクリル酸エステルと共重合可能な他の単量体成分に対応する単位を含んでいてもよい。このような単量体成分として、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、カルボキシエチルアクリレートなどのカルボキシル基含有モノマー;無水マレイン酸、無水イコタン酸などの酸無水物基含有モノマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチルなどのヒドロキシル基含有モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミドなどの(N-置換又は無置換)アミド系モノマー;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル系モノマー;スチレン、α-メチルスチレンなどのスチレン系モノマー;ビニルメチルエーテル、ビニルエチルエーテルなどのビニルエーテル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;エチレン、プロピレン、イソプレン、ブタジエン、イソブチレンなどのオレフィン又はジエン系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチルなどの(置換又は無置換)アミノ基含有モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;N-ビニルピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-ビニルモルホリン、N-ビニルカプロラクタムなどの窒素原子含有環を有するモノマー;N-ビニルカルボン酸アミド類;スチレンスルホン酸、アリルスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレートなどのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;N-シクロヘキシルマレイミド、N-イソプロピルマレイミド、N-ラウリルマレイミド、N-フェニルマレイミドなどのマレイミド系モノマー;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-シクロヘキシルイタコンイミド、N-ラウリルイタコンイミドなどのイタコンイミド系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクルロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミドなどのスクシンイミド系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリルなどの酸素原子含有複素環を有するモノマー;フッ素系(メタ)アクリレートなどのフッ素原子を含有するアクリル酸エステル系モノマー;シリコーン系(メタ)アクリレートなどのケイ素原子を含有するアクリル酸エステル系モノマー;ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート、ジビニルベンゼン、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレートなどの多官能モノマー等が挙げられる。 The acrylic polymer A corresponds to other monomer components that can be copolymerized with the (meth) acrylic acid ester, if necessary, for the purpose of modifying cohesive strength, heat resistance, crosslinkability, and the like. Units may be included. Examples of such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and carboxyethyl acrylate; acid anhydrides such as maleic anhydride and itaconic anhydride Group-containing monomers; hydroxyl group-containing monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (N-substituted or unsubstituted) amide monomers such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide; vinyl ester monomers such as vinyl acetate and vinyl propionate Styling Styrene monomers such as α-methylstyrene; vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing acrylic monomers such as glycidyl (meth) acrylate Olefins or diene monomers such as ethylene, propylene, isoprene, butadiene, isobutylene; aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, etc. (Substituted or unsubstituted) amino group-containing monomers; (meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate; N-vinylpyrrolidone, N -Methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N -Monomers having a nitrogen atom-containing ring such as vinylcaprolactam; N-vinylcarboxylic amides; Monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate A phosphate group-containing monomer such as 2-hydroxyethylacryloyl phosphate; a maleimide monomer such as N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide; N Itacimide monomers such as methylitaconimide, N-ethylitaconimide, N-butylitaconimide, N-octylitaconimide, N-2-ethylhexylitaconimide, N-cyclohexylitaconimide, N-laurylitaconimide; N- ( Succinimide monomers such as (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, N- (meth) acryloyl-8-oxyoctamethylene succinimide; polyethylene glycol (meth) acrylate, (meth) ) Glycol acrylic ester monomers such as polypropylene glycol acrylate; Monomers having an oxygen atom-containing heterocycle such as tetrahydrofurfuryl (meth) acrylate; Fluorine Acrylic acid ester monomer containing fluorine atom such as (meth) acrylate; Acrylic acid ester monomer containing silicon atom such as silicone (meth) acrylate; Hexanediol di (meth) acrylate, (Poly) ethylene glycol di (Meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, epoxy acrylate, polyester acrylate, urethane acrylate, divinylbenzene, butyl di (meth) acrylate, hexyl And polyfunctional monomers such as di (meth) acrylate.
 前記アクリルポリマーAは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合(例えば、ラジカル重合、アニオン重合、カチオン重合など)、乳化重合、塊状重合、懸濁重合、光重合(例えば、紫外線(UV)重合など)等の何れの方式で行うこともできる。 The acrylic polymer A can be obtained by polymerizing a single monomer or a mixture of two or more monomers. The polymerization may be performed by any method such as solution polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization), emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (for example, ultraviolet (UV) polymerization). it can.
 アクリルポリマーAの重量平均分子量は、特に制限されないが、好ましくは35万~100万、更に好ましくは45万~80万程度である。 The weight average molecular weight of the acrylic polymer A is not particularly limited, but is preferably 350,000 to 1,000,000, more preferably about 450,000 to 800,000.
 また、熱膨張性粘着剤には、粘着力を調整するため、外部架橋剤を適宜に用いることもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。外部架橋剤の使用量は、一般的には、前記ベースポリマー100重量部に対して、20重量部以下(好ましくは0.1重量部~10重量部)である。 Also, an external cross-linking agent can be appropriately used for the heat-expandable pressure-sensitive adhesive in order to adjust the adhesive force. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. The amount of the external crosslinking agent used is generally 20 parts by weight or less (preferably 0.1 to 10 parts by weight) with respect to 100 parts by weight of the base polymer.
 熱膨張性粘着剤層は、前述のように、熱膨張性を付与するための発泡剤を含有している。そのため、仮止め用シート5から支持体1を剥離する際には、熱膨張性粘着剤層を少なくとも部分的に加熱して、該加熱された熱膨張性粘着剤層の部分に含有されている発泡剤を発泡及び/又は膨張させることにより、熱膨張性粘着剤層が少なくとも部分的に膨張し、この熱膨張性粘着剤層の少なくとも部分的な膨張により、該膨張した部分に対応した粘着面(支持体1との界面)が凹凸状に変形して、該熱膨張性粘着剤層と支持体1との接着面積が減少し、これにより、両者間の接着力が減少し、仮止め用シート5から支持体1を剥離させることができる。なお、仮止め用シート5は支持体1を剥離させた後は、ピール剥離により配線シート2から剥離することができる。 The heat-expandable pressure-sensitive adhesive layer contains a foaming agent for imparting heat-expandability as described above. Therefore, when peeling the support 1 from the temporary fixing sheet 5, the thermally expandable pressure-sensitive adhesive layer is at least partially heated and contained in the heated thermally expandable pressure-sensitive adhesive layer. By expanding and / or expanding the foaming agent, the heat-expandable pressure-sensitive adhesive layer expands at least partially, and at least partial expansion of the heat-expandable pressure-sensitive adhesive layer causes a pressure-sensitive adhesive surface corresponding to the expanded portion. (Interface with the support 1) is deformed into an uneven shape, and the adhesive area between the thermally expandable pressure-sensitive adhesive layer and the support 1 is reduced, thereby reducing the adhesive force between the two, and for temporary fixing The support 1 can be peeled from the sheet 5. The temporary fixing sheet 5 can be peeled from the wiring sheet 2 by peel peeling after the support 1 is peeled off.
 (発泡剤)
 熱膨張性粘着剤層において用いられている発泡剤としては、特に制限されず、公知の発泡剤から適宜選択することができる。発泡剤は単独で又は2種以上組み合わせて使用することができる。発泡剤としては、熱膨張性微小球を好適に用いることができる。
(Foaming agent)
The foaming agent used in the thermally expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected from known foaming agents. A foaming agent can be used individually or in combination of 2 or more types. As the foaming agent, thermally expandable microspheres can be suitably used.
 (熱膨張性微小球)
 熱膨張性微小球としては、特に制限されず、公知の熱膨張性微小球(種々の無機系熱膨張性微小球や、有機系熱膨張性微小球など)から適宜選択することができる。熱膨張性微小球としては、混合操作が容易である観点などより、マイクロカプセル化されている発泡剤を好適に用いることができる。このような熱膨張性微小球としては、例えば、イソブタン、プロパン、ペンタンなどの加熱により容易にガス化して膨張する物質を、弾性を有する殻内に内包させた微小球などが挙げられる。前記殻は、熱溶融性物質や熱膨張により破壊する物質で形成される場合が多い。前記殻を形成する物質として、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。
(Thermally expandable microsphere)
The heat-expandable microsphere is not particularly limited, and can be appropriately selected from known heat-expandable microspheres (such as various inorganic heat-expandable microspheres and organic heat-expandable microspheres). As the thermally expandable microspheres, a microencapsulated foaming agent can be suitably used from the viewpoint of easy mixing operation. Examples of such thermally expandable microspheres include microspheres in which substances such as isobutane, propane, and pentane that are easily gasified and expanded by heating are encapsulated in an elastic shell. The shell is often formed of a hot-melt material or a material that is destroyed by thermal expansion. Examples of the substance forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 熱膨張性微小球は、慣用の方法、例えば、コアセルベーション法や、界面重合法などにより製造できる。なお、熱膨張性微小球には、例えば、松本油脂製薬株式会社製の商品名「マツモトマイクロスフェアー」のシリーズ(例えば、商品名「マツモトマイクロスフェアーF30」、同「マツモトマイクロスフェアーF301D」、同「マツモトマイクロスフェアーF50D」、同「マツモトマイクロスフェアーF501D」、同「マツモトマイクロスフェアーF80SD」、同「マツモトマイクロスフェアーF80VSD」など)の他、エクスパンセル社製の商品名「051DU」、同「053DU」、同「551DU」、同「551-20DU」、同「551-80DU」などの市販品を使用することができる。 Thermally expandable microspheres can be produced by a conventional method such as a coacervation method or an interfacial polymerization method. Examples of the thermally expandable microspheres include, for example, a series of “Matsumoto Microsphere F30” and “Matsumoto Microsphere F301D” (trade names “Matsumoto Microsphere F30”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.). "Matsumoto Microsphere F50D", "Matsumoto Microsphere F501D", "Matsumoto Microsphere F80SD", "Matsumoto Microsphere F80VSD", etc.) Commercially available products such as “051DU”, “053DU”, “551DU”, “551-20DU”, and “551-80DU” can be used.
 なお、発泡剤として熱膨張性微小球を用いた場合、該熱膨張性微小球の粒径(平均粒子径)としては、熱膨張性粘着剤層の厚みなどに応じて適宜選択することができる。熱膨張性微小球の平均粒子径としては、例えば、100μm以下(好ましくは80μm以下、さらに好ましくは1μm~50μm、特に1μm~30μm)の範囲から選択することができる。なお、熱膨張性微小球の粒径の調整は、熱膨張性微小球の生成過程で行われていてもよく、生成後、分級などの手段により行われてもよい。熱膨張性微小球としては、粒径が揃えられていることが好ましい。 When thermally expandable microspheres are used as the foaming agent, the particle size (average particle diameter) of the thermally expandable microspheres can be appropriately selected according to the thickness of the thermally expandable pressure-sensitive adhesive layer. . The average particle diameter of the heat-expandable microspheres can be selected from a range of, for example, 100 μm or less (preferably 80 μm or less, more preferably 1 μm to 50 μm, particularly 1 μm to 30 μm). Note that the adjustment of the particle size of the thermally expandable microspheres may be performed in the process of generating the thermally expandable microspheres, or may be performed by means such as classification after the generation. It is preferable that the thermally expandable microspheres have the same particle size.
 (その他の発泡剤)
 本実施形態では、発泡剤としては、熱膨張性微小球以外の発泡剤も用いることもできる。このような発泡剤としては、種々の無機系発泡剤や有機系発泡剤などの各種発泡剤を適宜選択して使用することができる。無機系発泡剤の代表的な例としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水酸化ホウ素ナトリウム、各種アジド類などが挙げられる。
(Other foaming agents)
In the present embodiment, as the foaming agent, a foaming agent other than the thermally expandable microsphere can also be used. As such a foaming agent, various foaming agents such as various inorganic foaming agents and organic foaming agents can be appropriately selected and used. Typical examples of the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.
 また、有機系発泡剤の代表的な例としては、例えば、水;トリクロロモノフルオロメタン、ジクロロモノフルオロメタンなどの塩フッ化アルカン系化合物;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレートなどのアゾ系化合物;パラトルエンスルホニルヒドラジド、ジフェニルスルホン-3,3´-ジスルホニルヒドラジド、4,4´-オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)などのヒドラジン系化合物;p-トルイレンスルホニルセミカルバジド、4,4´-オキシビス(ベンゼンスルホニルセミカルバジド)などのセミカルバジド系化合物;5-モルホリル-1,2,3,4-チアトリアゾールなどのトリアゾール系化合物;N,N´-ジニトロソペンタメチレンテロラミン、N,N´-ジメチル-N,N´-ジニトロソテレフタルアミドなどのN-ニトロソ系化合物などが挙げられる。 Representative examples of organic foaming agents include, for example, water; chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azobisisobutyronitrile, azodicarbonamide, and barium azodi. Azo compounds such as carboxylates; hydrazine compounds such as paratoluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p- Semicarbazide compounds such as toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosope Data methylene terrorism lamin, N, N'-dimethyl -N, N'N-nitroso compounds such as dinitrosoterephthalamide, and the like.
 本実施形態では、加熱処理により、熱膨張性粘着剤層の接着力を効率よく且つ安定して低下させるため、体積膨張率が5倍以上、なかでも7倍以上、特に10倍以上となるまで破裂しない適度な強度を有する発泡剤が好ましい。 In this embodiment, in order to reduce the adhesive force of the heat-expandable pressure-sensitive adhesive layer efficiently and stably by heat treatment, the volume expansion coefficient is 5 times or more, especially 7 times or more, particularly 10 times or more. A foaming agent having an appropriate strength that does not burst is preferred.
 発泡剤(熱膨張性微小球など)の配合量は、熱膨張性粘着剤層の膨張倍率や接着力の低下性などに応じて適宜設定しうるが、一般には熱膨張性粘着剤層を形成するベースポリマー100重量部に対して、例えば1重量部~150重量部(好ましくは10重量部~130重量部、さらに好ましくは25重量部~100重量部)である。 The amount of foaming agent (thermally expandable microspheres, etc.) can be set as appropriate depending on the expansion ratio of the thermally expandable pressure-sensitive adhesive layer and the ability to lower the adhesive strength, but generally a thermally expandable pressure-sensitive adhesive layer is formed. The amount is, for example, 1 part by weight to 150 parts by weight (preferably 10 parts by weight to 130 parts by weight, more preferably 25 parts by weight to 100 parts by weight) with respect to 100 parts by weight of the base polymer.
 本実施形態では、発泡剤としては、発泡開始温度(熱膨張開始温度)(T)が120℃~220℃の範囲のものを好適に用いることができ、より好ましい発泡開始温度は、130℃~200℃の範囲である。発泡剤の発泡開始温度を120℃以上とすることにより、剥離させたくない段階で発泡剤が発泡してしまうことを抑制することができ、取り扱い性や生産性を確保することができる。一方、発泡剤の発泡開始温度を220℃以下とすることにより、剥離する工程(工程F)において、容易に支持体1を剥離することができる。なお、発泡剤の発泡開始温度(T)は、熱膨張性粘着剤層の発泡開始温度(T)に相当する。 In the present embodiment, a foaming agent having a foaming start temperature (thermal expansion start temperature) (T 0 ) in the range of 120 ° C. to 220 ° C. can be suitably used, and a more preferable foaming start temperature is 130 ° C. It is in the range of ~ 200 ° C. By setting the foaming start temperature of the foaming agent to 120 ° C. or higher, foaming of the foaming agent at a stage where it is not desired to be peeled off can be suppressed, and handleability and productivity can be ensured. On the other hand, by setting the foaming start temperature of the foaming agent to 220 ° C. or lower, the support 1 can be easily peeled in the peeling step (step F). Incidentally, the foaming starting temperature (T 0) of the blowing agent, corresponding to the foaming starting temperature of the heat-expandable pressure-sensitive adhesive layer (T 0).
 なお、発泡剤を発泡させる方法(すなわち、熱膨張性粘着剤層を熱膨張させる方法)としては、公知の加熱発泡方法から適宜選択して採用することができる。 In addition, as a method of foaming the foaming agent (that is, a method of thermally expanding the thermally expandable pressure-sensitive adhesive layer), it can be appropriately selected from known heat foaming methods.
 本実施形態では、熱膨張性粘着剤層は、加熱処理前の適度な接着力と加熱処理後の接着力の低下性のバランスの点から、発泡剤を含有しない形態での弾性率が23℃~150℃において5×10Pa~1×10Paであることが好ましく、さらに好ましくは5×10Pa~8×10Paであり、特に5×10Pa~5×10Paであることが好適である。熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃~150℃)を5×10Pa以上とすることにより、熱膨張性が劣り、剥離性が低下することを抑制できる。また、熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃~150℃)を1×10Pa以下とすることにより、初期接着性を良好とすることができる。 In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has an elastic modulus of 23 ° C. in a form not containing a foaming agent from the viewpoint of a balance between moderate adhesive force before heat treatment and lowering of adhesive force after heat treatment. It is preferably 5 × 10 4 Pa to 1 × 10 6 Pa at −150 ° C., more preferably 5 × 10 4 Pa to 8 × 10 5 Pa, and particularly 5 × 10 4 Pa to 5 × 10 5 Pa. It is preferable that When the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer containing no foaming agent is 5 × 10 4 Pa or more, the thermal expandability is inferior and the peelability is decreased. Can be suppressed. Moreover, the initial adhesiveness can be improved by setting the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent to 1 × 10 6 Pa or less. .
 なお、発泡剤を含有しない形態の熱膨張性粘着剤層は、粘着剤(発泡剤は含まれていない)により形成された粘着剤層に相当する。従って、熱膨張性粘着剤層の発泡剤を含有していない形態での弾性率は、粘着剤(発泡剤は含まれていない)を用いて測定することができる。なお、熱膨張性粘着剤層は、23℃~150℃における弾性率が5×10Pa~1×10Paである粘着剤層を形成可能な粘着剤と、発泡剤とを含む熱膨張性粘着剤により形成することができる。 In addition, the thermally expansible adhesive layer of the form which does not contain a foaming agent is corresponded to the adhesive layer formed with the adhesive (The foaming agent is not contained). Therefore, the elastic modulus of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent can be measured using a pressure-sensitive adhesive (no foaming agent is included). The heat-expandable pressure-sensitive adhesive layer includes a pressure-sensitive adhesive capable of forming a pressure-sensitive adhesive layer having an elastic modulus at 23 ° C. to 150 ° C. of 5 × 10 4 Pa to 1 × 10 6 Pa, and a thermal expansion containing a foaming agent. It can be formed with an adhesive.
 熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率は、発泡剤が添加されていない形態の熱膨張性粘着剤層(すなわち、発泡剤が含まれていない粘着剤による粘着剤層)(サンプル)を作製し、レオメトリック社製動的粘弾性測定装置「ARES」を用いて、サンプル厚さ:約1.5mmで、φ7.9mmパラレルプレートの治具を用い、剪断モードにて、周波数:1Hz、昇温速度:5℃/分、歪み:0.1%(23℃)、0.3%(150℃)にて測定し、23℃および150℃で得られた剪断貯蔵弾性率G´の値とした。 The modulus of elasticity of the thermally expandable pressure-sensitive adhesive layer in the form not containing the foaming agent is the heat-expandable pressure-sensitive adhesive layer in the form in which the foaming agent is not added (that is, the pressure-sensitive adhesive layer by the pressure-sensitive adhesive not containing the foaming agent). ) (Sample), using a rheometric dynamic viscoelasticity measuring device “ARES”, sample thickness: about 1.5 mm, φ7.9 mm parallel plate jig, in shear mode , Frequency: 1 Hz, rate of temperature increase: 5 ° C./min, strain: 0.1% (23 ° C.), 0.3% (150 ° C.) measured at 23 ° C. and 150 ° C. shear storage elasticity obtained The value of the rate G ′ was used.
 熱膨張性粘着剤層の弾性率は、粘着剤のベースポリマーの種類、架橋剤、添加剤などを調節することによりコントロールすることができる。 The elastic modulus of the thermally expandable pressure-sensitive adhesive layer can be controlled by adjusting the type of the base polymer of the pressure-sensitive adhesive, the crosslinking agent, the additive, and the like.
 熱膨張性粘着剤層の厚さは、特に制限されず、接着力の低減性などにより適宜に選択することができ、例えば、5μm~300μm(好ましくは20μm~150μm)程度である。ただし、発泡剤として熱膨張性微小球が用いられている場合、熱膨張性粘着剤層の厚さは、含まれている熱膨張性微小球の最大粒径よりも厚いことが好ましい。熱膨張性粘着剤層の厚さが薄すぎると、熱膨張性微小球の凹凸により表面平滑性が損なわれ、加熱前(未発泡状態)の接着性が低下する。また、加熱処理による熱膨張性粘着剤層の変形度が小さく、接着力が円滑に低下しにくくなる。一方、熱膨張性粘着剤層の厚さが厚すぎると、加熱処理による膨張乃至発泡後に、熱膨張性粘着剤層に凝集破壊が生じやすくなり、糊残りが発生する場合がある。 The thickness of the heat-expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the reduction in adhesive strength, and is, for example, about 5 μm to 300 μm (preferably 20 μm to 150 μm). However, when heat-expandable microspheres are used as the foaming agent, the thickness of the heat-expandable pressure-sensitive adhesive layer is preferably thicker than the maximum particle size of the heat-expandable microspheres contained. When the thickness of the heat-expandable pressure-sensitive adhesive layer is too thin, the surface smoothness is impaired by the unevenness of the heat-expandable microspheres, and the adhesiveness before heating (unfoamed state) is lowered. In addition, the degree of deformation of the heat-expandable pressure-sensitive adhesive layer by heat treatment is small, and the adhesive force is not easily lowered. On the other hand, if the thickness of the heat-expandable pressure-sensitive adhesive layer is too thick, cohesive failure tends to occur in the heat-expandable pressure-sensitive adhesive layer after expansion or foaming by heat treatment, and adhesive residue may be generated.
 なお、熱膨張性粘着剤層は単層、複層の何れであってもよい。 The thermally expandable pressure-sensitive adhesive layer may be either a single layer or multiple layers.
 本実施形態では、熱膨張性粘着剤層には、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。 In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).
 本実施形態では、仮止め用シート5は、少なくとも熱膨張性粘着剤層と感圧性接着剤層とを有するものであることが好ましい。この場合、熱膨張性粘着剤層が支持体1側、感圧性接着剤層が配線シート2側となるように積層するのが好ましい。このように積層することにより、剥離する工程(工程F)では、まず、熱発泡により支持体1を仮止め用シート5から剥離し、その後、ピール剥離により仮止め用シート5を配線シート2から剥離することができる。これにより、支持体1と仮止め用シート5とを配線シート2から剥離することができる。 In the present embodiment, the temporary fixing sheet 5 preferably has at least a thermally expandable pressure-sensitive adhesive layer and a pressure-sensitive adhesive layer. In this case, it is preferable to laminate so that the heat-expandable pressure-sensitive adhesive layer is on the support 1 side and the pressure-sensitive adhesive layer is on the wiring sheet 2 side. In the peeling step (step F) by laminating in this way, first, the support 1 is peeled from the temporary fixing sheet 5 by thermal foaming, and then the temporary fixing sheet 5 is peeled from the wiring sheet 2 by peel peeling. Can be peeled off. Thereby, the support body 1 and the temporary fixing sheet 5 can be peeled from the wiring sheet 2.
 仮止め用シート5は例えば、粘着剤(感圧接着剤)と、発泡剤(熱膨張性微小球など)と、必要に応じて溶媒やその他の添加剤などとを混合して、シート状の層に形成する慣用の方法を利用し形成することができる。具体的には、例えば、粘着剤、発泡剤(熱膨張性微小球など)、および必要に応じて溶媒やその他の添加剤を含む混合物を、適当なセパレータ(剥離紙など)上に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ、これを支持体1上に転写(移着)することにより得ることができる。また、前記混合物を直接、支持体1に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させてもよい。 The temporary fixing sheet 5 is, for example, a sheet-like adhesive mixed with a pressure-sensitive adhesive (pressure-sensitive adhesive), a foaming agent (such as thermally expandable microspheres), and a solvent or other additives as necessary. It can be formed using conventional methods for forming layers. Specifically, for example, a pressure-sensitive adhesive, a foaming agent (such as thermally expandable microspheres), and a mixture containing a solvent and other additives as necessary are applied onto an appropriate separator (such as release paper). After forming the coating film, it can be obtained by drying the coating film under predetermined conditions and transferring (transferring) it onto the support 1. Further, after the mixture is directly applied to the support 1 to form a coating film, the coating film may be dried under predetermined conditions.
 (配線シート)
 配線シート2は、仮止め用シート5上に形成することにより得られる。仮止め用シート5上に配線シート2を形成する方法としては、セミアディティブ法や、サブトラクティブ法など、従来公知の回路基板やインターポーザの製造技術を用いることができる。これにより、再配線層が形成された配線シート2が得られる。具体的には、例えば、特開2010-141126号公報に記載の方法を採用することができる。本実施形態では、支持体1上に形成された仮止め用シート5上に配線シート2を形成する。そのため、製造工程中、寸法安定性が良好となり、また、薄い配線回路基板の取り扱い性が良好となる点でより優れる。
(Wiring sheet)
The wiring sheet 2 is obtained by forming it on the temporary fixing sheet 5. As a method of forming the wiring sheet 2 on the temporary fixing sheet 5, conventionally known circuit board and interposer manufacturing techniques such as a semi-additive method and a subtractive method can be used. Thereby, the wiring sheet 2 in which the rewiring layer was formed is obtained. Specifically, for example, a method described in JP 2010-141126 A can be employed. In the present embodiment, the wiring sheet 2 is formed on the temporary fixing sheet 5 formed on the support 1. Therefore, it is more excellent in that the dimensional stability is improved during the manufacturing process and the handleability of the thin printed circuit board is improved.
 以上により、支持体1と仮止め用シート5と配線シート2とがこの順で積層された積層体10が得られる。 As described above, a laminate 10 in which the support 1, the temporary fixing sheet 5, and the wiring sheet 2 are laminated in this order is obtained.
 積層体10は、ロール状に巻かれた状態であってもよく、ロール状に巻かれていない短冊状であってもよい。ロール状に巻く場合、支持体1は、巻くことが可能な金属箔等を使用する。また、仮止め用シート5、及び、配線シート2は通常、巻くことが可能な程度にフレキシブルな状態で形成されている。 The laminated body 10 may be in a state of being wound in a roll shape, or may be in a strip shape that is not wound in a roll shape. In the case of winding in a roll shape, the support 1 uses a metal foil that can be wound. Further, the temporary fixing sheet 5 and the wiring sheet 2 are usually formed in a flexible state to the extent that they can be wound.
 配線シート2は、仮止め用シート5上に連続的に積層されていてもよく、仮止め用シート5上に、複数の配線シート2が所定の間隔をおいて積層されていてもよい。 The wiring sheet 2 may be continuously laminated on the temporary fixing sheet 5, or a plurality of wiring sheets 2 may be laminated on the temporary fixing sheet 5 at a predetermined interval.
 図2は、仮止め用シート上に複数の配線シートが所定の間隔をおいて積層されている例を示す平面図である。図3は、仮止め用シート上に複数の配線シートが所定の間隔をおいて積層されている他の例を示す平面図である。図2に示す例では、複数の平面視で円形状の配線シート2が所定の間隔をおいて仮止め用シート5上に積層されている。図3に示す例では、複数の平面視で矩形状の配線シート2が所定の間隔をおいて仮止め用シート5上に積層されている。 FIG. 2 is a plan view showing an example in which a plurality of wiring sheets are laminated on the temporary fixing sheet at a predetermined interval. FIG. 3 is a plan view showing another example in which a plurality of wiring sheets are laminated at a predetermined interval on a temporary fixing sheet. In the example shown in FIG. 2, a circular wiring sheet 2 in a plurality of plan views is laminated on a temporary fixing sheet 5 at a predetermined interval. In the example shown in FIG. 3, a rectangular wiring sheet 2 in a plurality of plan views is laminated on a temporary fixing sheet 5 at a predetermined interval.
 [半導体チップをフリップチップ実装する工程]
 積層体10を準備する工程の後(工程Aの後)、図4に示すように、積層体10の配線シート2上に、半導体チップ3をフリップチップ実装する(工程B)。具体的には、図5に示すように、配線シート2に形成されている接続用導体部21と半導体チップ3に形成されている電極31とを接続して、配線シート2上に半導体チップ3をフリップチップ実装する。フリップチップ実装には、例えば、従来公知のフリップチップボンダーを用いることができる。
[Process for flip chip mounting of semiconductor chip]
After the step of preparing the laminate 10 (after step A), the semiconductor chip 3 is flip-chip mounted on the wiring sheet 2 of the laminate 10 as shown in FIG. 4 (step B). Specifically, as shown in FIG. 5, the connection conductor portion 21 formed on the wiring sheet 2 and the electrode 31 formed on the semiconductor chip 3 are connected, and the semiconductor chip 3 is formed on the wiring sheet 2. The flip chip mounting. For flip chip mounting, for example, a conventionally known flip chip bonder can be used.
 [封止用シートを準備する工程]
 次に、エポキシ樹脂と、硬化剤と、無機充填剤とを混練して得られる混練物を、塑性加工して得た封止用シート20を準備する(工程C)。
[Step of preparing a sealing sheet]
Next, a sealing sheet 20 obtained by plastic working a kneaded product obtained by kneading an epoxy resin, a curing agent, and an inorganic filler is prepared (step C).
 前記エポキシ樹脂としては、特に限定されるものではなく、例えば、ジシクロペンタジエン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂等の各種エポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。中でも、下記一般式(1)で示されるエポキシ樹脂が好ましい。下記一般式(1)で示されるエポキシ樹脂を含んでいると、柔軟性に優れる。そのため、配線シートや半導体チップとの接着性にさらに優れる。 The epoxy resin is not particularly limited. For example, dicyclopentadiene type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy. Various epoxy resins such as resin and trishydroxyphenylmethane type epoxy resin can be used. These epoxy resins may be used alone or in combination of two or more. Among these, an epoxy resin represented by the following general formula (1) is preferable. When the epoxy resin represented by the following general formula (1) is included, the flexibility is excellent. Therefore, it is further excellent in adhesiveness with a wiring sheet or a semiconductor chip.
Figure JPOXMLDOC01-appb-C000003
 
 (式中、R~Rは、同一または相異なって、メチル基または水素原子を示し、Xは、-CH-、-O-、または、-S-を示す。)
Figure JPOXMLDOC01-appb-C000003

(Wherein R 1 to R 4 are the same or different and each represents a methyl group or a hydrogen atom, and X represents —CH 2 —, —O—, or —S—).
 上記一般式(1)におけるR~Rは、ベンゼン環に置換されるメチル基または水素原子を示し、好ましくは、R~Rのすべてが、メチル基または水素原子である。 R 1 to R 4 in the general formula (1) represent a methyl group or a hydrogen atom substituted on the benzene ring, and preferably all of R 1 to R 4 are a methyl group or a hydrogen atom.
 前記エポキシ樹脂としては、例えば、下記化学式(2)~(4)で示されるビスフェノールF型エポキシ樹脂、例えば、下記化学式(5)~(7)で示される4,4’-チオビスフェノール型エポキシ樹脂、例えば、下記化学式(8)~(10)で示される4,4’-オキシビスフェノール型エポキシ樹脂などが挙げられる。 Examples of the epoxy resin include bisphenol F type epoxy resins represented by the following chemical formulas (2) to (4), for example, 4,4′-thiobisphenol type epoxy resins represented by the following chemical formulas (5) to (7). Examples thereof include 4,4′-oxybisphenol type epoxy resins represented by the following chemical formulas (8) to (10).
 前記エポキシ樹脂のなかでは、柔軟性を考慮すると、好ましくは、下記化学式(2)で示されるビスフェノールF型エポキシ樹脂、下記化学式(5)で示される4,4’-チオビスフェノール型エポキシ樹脂、下記化学式(8)で示される4,4’-オキシビスフェノール型エポキシ樹脂が挙げられ、タックレスの観点を考慮すると、さらに好ましくは、下記化学式(2)で示されるビスフェノールF型エポキシ樹脂が挙げられる。
化学式(2):
Among the epoxy resins, in consideration of flexibility, preferably, a bisphenol F type epoxy resin represented by the following chemical formula (2), a 4,4′-thiobisphenol type epoxy resin represented by the following chemical formula (5), A 4,4′-oxybisphenol type epoxy resin represented by the chemical formula (8) is mentioned, and in view of tackless, a bisphenol F type epoxy resin represented by the following chemical formula (2) is more preferred.
Chemical formula (2):
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 化学式(3): Chemical formula (3):
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 化学式(4): Chemical formula (4):
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 化学式(5): Chemical formula (5):
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
化学式(6): Chemical formula (6):
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
化学式(7): Chemical formula (7):
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
化学式(8): Chemical formula (8):
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
化学式(9): Chemical formula (9):
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 化学式(10): Chemical formula (10):
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
 前記エポキシ樹脂は、単独で使用してもよく、あるいは、併用することもできる。 The epoxy resin may be used alone or in combination.
 また、前記エポキシ樹脂のエポキシ当量は、例えば、90~800g/eq、好ましくは、100~500g/eqである。 The epoxy equivalent of the epoxy resin is, for example, 90 to 800 g / eq, preferably 100 to 500 g / eq.
 また、前記エポキシ樹脂の軟化点は、例えば、30~100℃、好ましくは、40~90℃である。 The softening point of the epoxy resin is, for example, 30 to 100 ° C., preferably 40 to 90 ° C.
 前記エポキシ樹脂の含有割合は、混練物100重量部に対して、例えば、1~50重量部、封止用シートの可撓性を考慮すると、好ましくは、3~20重量部、さらに好ましくは、4~8重量部である。 The content ratio of the epoxy resin is, for example, 1 to 50 parts by weight with respect to 100 parts by weight of the kneaded material, preferably 3 to 20 parts by weight, more preferably considering the flexibility of the sealing sheet, 4 to 8 parts by weight.
 前記硬化剤は、前記エポキシ樹脂の硬化剤であって、特に制限されず、例えば、フェノール樹脂、酸無水物系化合物、アミン系化合物などが挙げられる。 The curing agent is a curing agent for the epoxy resin and is not particularly limited, and examples thereof include a phenol resin, an acid anhydride compound, and an amine compound.
 前記フェノール樹脂としては、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂(ビフェニルアラルキル骨格を有するフェノール樹脂)、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが挙げられる。 Examples of the phenol resin include a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin (a phenol resin having a biphenyl aralkyl skeleton), a dicyclopentadiene type phenol resin, a cresol novolak resin, and a resole resin.
 前記酸無水物系化合物としては、例えば、無水フタル酸、無水マレイン酸、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ピロメリット酸無水物、ドデセニルコハク酸無水物、ジクロロコハク酸無水物、ベンゾフェノンテトラカルボン酸無水物、クロレンディック酸無水物などが挙げられる。 Examples of the acid anhydride compounds include phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl nadic acid anhydride, pyromellitic anhydride, dodecenyl succinic anhydride, dichloromethane. Succinic acid anhydride, benzophenone tetracarboxylic acid anhydride, chlorendic acid anhydride, etc. are mentioned.
 前記アミン系化合物としては、例えば、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、それらのアミンアダクト、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどが挙げられる。 Examples of the amine compound include ethylenediamine, propylenediamine, diethylenetriamine, triethylenetetramine, amine adducts thereof, metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
 前記硬化剤は、単独で使用してもよく、あるいは、併用することもできる。 The curing agent may be used alone or in combination.
 また、前記硬化剤のなかでは、硬化反応性(信頼性)を考慮すると、好ましくは、フェノール樹脂が挙げられ、硬化後の封止用シートの強度と硬化反応性とのバランスを考慮すると、さらに好ましくは、ビフェニルアラルキル樹脂が挙げられる。 Among the curing agents, in view of curing reactivity (reliability), preferably, a phenol resin is used, and further considering the balance between the strength of the sealing sheet after curing and the curing reactivity, Preferably, a biphenyl aralkyl resin is used.
 また、前記硬化剤の配合割合は、混練物100重量部に対して、例えば、1~20重量部、好ましくは、2~10重量部であり、エポキシ樹脂100重量部に対して、例えば、30~130重量部、好ましくは、40~120重量部である。 The mixing ratio of the curing agent is, for example, 1 to 20 parts by weight, preferably 2 to 10 parts by weight with respect to 100 parts by weight of the kneaded product, and is, for example, 30 parts with respect to 100 parts by weight of the epoxy resin. It is ˜130 parts by weight, preferably 40 to 120 parts by weight.
 また、前記硬化剤としてフェノール樹脂を用いた場合、フェノール樹脂は、上記したエポキシ樹脂のエポキシ基1当量に対して、フェノール樹脂の水酸基の当量数が、例えば、0.5~2当量、好ましくは、0.8~1.2当量となるように添加される。 When a phenol resin is used as the curing agent, the phenol resin has, for example, 0.5 to 2 equivalents, preferably 0.5 to 2 equivalents of hydroxyl groups of the phenol resin with respect to 1 equivalent of the epoxy group of the epoxy resin described above. , 0.8 to 1.2 equivalents.
 また、必要により、混練物は、前記硬化剤とともに硬化促進剤を含有する。 If necessary, the kneaded material contains a curing accelerator together with the curing agent.
 前記硬化促進剤としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレートなどの有機リン系化合物、イミダゾール系化合物などが挙げられる。 Examples of the curing accelerator include organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds.
 前記硬化促進剤は、単独で使用してもよく、あるいは、併用することもできる。 The curing accelerator may be used alone or in combination.
 また、前記硬化促進剤のなかでは、イミダゾール系化合物が挙げられ、さらに好ましくは、2-フェニル-4,5-ジヒドロキシメチルイミダゾールが挙げられる。 Further, among the curing accelerators, imidazole compounds are exemplified, and 2-phenyl-4,5-dihydroxymethylimidazole is more preferred.
 前記硬化促進剤の含有割合は、混練物100重量部に対して、例えば、0.01~5重量部、好ましくは、0.05~3重量部である。 The content of the curing accelerator is, for example, 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the kneaded product.
 また、前記硬化促進剤の含有割合は、硬化剤100重量部に対して、例えば、0.5~10重量部、好ましくは、1~5重量部である。 Further, the content of the curing accelerator is, for example, 0.5 to 10 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the curing agent.
 前記無機充填剤としては、特に制限されず、公知の充填剤などが挙げられる。 The inorganic filler is not particularly limited and includes known fillers.
 具体的には、石英ガラス、タルク、シリカ(例えば、溶融シリカ、結晶性シリカなど)、アルミナ、窒化アルミニウム、窒化ケイ素、炭酸カルシウム(例えば、重質炭酸カルシウム、軽質炭酸カルシウム、白艶華など)、酸化チタンなどの粉末が挙げられる。 Specifically, quartz glass, talc, silica (for example, fused silica, crystalline silica, etc.), alumina, aluminum nitride, silicon nitride, calcium carbonate (for example, heavy calcium carbonate, light calcium carbonate, white glaze etc.), oxidation Examples thereof include powders such as titanium.
 前記充填剤は、単独で使用してもよく、あるいは、併用することもできる。 The filler may be used alone or in combination.
 また、前記充填剤のなかでは、硬化後の封止用シート20の線膨張係数の低減を考慮すると、好ましくは、シリカ粉末が挙げられ、さらに好ましくは、溶融シリカ粉末が挙げられる。 Of the fillers, silica powder is preferably used, and more preferably fused silica powder, in view of reduction of the linear expansion coefficient of the sealing sheet 20 after curing.
 また、前記溶融シリカ粉末としては、例えば、球状溶融シリカ粉末、粉砕溶融シリカ粉末が挙げられ、混練物の流動性を考慮すると、好ましくは、球状溶融シリカ粉末が挙げられる。 In addition, examples of the fused silica powder include spherical fused silica powder and pulverized fused silica powder. In consideration of the fluidity of the kneaded material, preferably, fused spherical silica powder is used.
 前記球状溶融シリカ粉末の平均粒子径は、例えば、0.1~40μm、好ましくは、0.1~30μm、さらに好ましくは、0.3~15μmである。 The average particle diameter of the spherical fused silica powder is, for example, 0.1 to 40 μm, preferably 0.1 to 30 μm, and more preferably 0.3 to 15 μm.
 なお、平均粒子径は、例えば、レーザー回折錯乱式粒度分布測定装置により、測定することができる。 The average particle diameter can be measured by, for example, a laser diffraction / confusion type particle size distribution measuring apparatus.
 封止用シート20中の前記無機充填剤の配合割合は、封止用シート20を構成する全組成物中の70-90体積%であることが好ましく、75-85体積%であることがより好ましい。前記無機充填剤の配合割合を前記数値範囲内とすることにより、低反り性、樹脂はみ出しの抑制、及び、高信頼性を実現し易くなる。 The blending ratio of the inorganic filler in the sealing sheet 20 is preferably 70 to 90% by volume, more preferably 75 to 85% by volume in the total composition constituting the sealing sheet 20. preferable. By setting the blending ratio of the inorganic filler within the numerical range, it becomes easy to realize low warpage, suppression of resin protrusion, and high reliability.
 また、前記充填剤の配合割合は、エポキシ樹脂100重量部に対して、例えば、1000~3000重量部、好ましくは、1300~2500重量部である。 The blending ratio of the filler is, for example, 1000 to 3000 parts by weight, preferably 1300 to 2500 parts by weight with respect to 100 parts by weight of the epoxy resin.
 また、混練物には、封止用シート20の可撓性の向上を考慮すると、可撓性付与剤を添加することもできる。 In addition, a flexibility imparting agent can be added to the kneaded product in consideration of improvement in flexibility of the sealing sheet 20.
 前記可撓性付与剤は、封止用シート20に可撓性を付与するものであれば、特に制限されないが、例えば、ポリアクリル酸エステルなどの各種アクリル系共重合体、例えば、ポリスチレン-ポリイソブチレン系共重合体、スチレンアクリレート系共重合体などのスチレン骨格を有する熱可塑性エラストマー、例えば、ブタジエンゴム、スチレン-ブタジエンゴム(SBR)などのブタジエン骨格を有する熱可塑性エラストマー、エチレン-酢酸ビニルコポリマー(EVA)、イソプレンゴム、アクリロニトリルゴムなどのゴム質重合体などが挙げられる。なかでも、低反り性の観点から、スチレン骨格、及び、ブタジエン骨格のいずれかを含有する重量平均分子量1万以上のポリマーからなる熱可塑性エラストマーが好ましい。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値をいう。 The flexibility-imparting agent is not particularly limited as long as it imparts flexibility to the sealing sheet 20. For example, various acrylic copolymers such as polyacrylic acid ester, for example, polystyrene-poly Thermoplastic elastomers having a styrene skeleton such as isobutylene copolymer and styrene acrylate copolymer, for example, thermoplastic elastomers having a butadiene skeleton such as butadiene rubber and styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer ( EVA), rubbery polymers such as isoprene rubber and acrylonitrile rubber. Among these, a thermoplastic elastomer made of a polymer having a weight average molecular weight of 10,000 or more and containing either a styrene skeleton or a butadiene skeleton is preferred from the viewpoint of low warpage. The weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
 前記可撓性付与剤は、単独で使用してもよく、あるいは、併用することもできる。 The flexibility-imparting agent may be used alone or in combination.
 また、前記可撓性付与剤のなかでは、混練物の耐熱性および強度を考慮すると、好ましくは、スチレン骨格を有するエラストマーが挙げられ、さらに好ましくは、ポリスチレン-ポリイソブチレン系共重合体が挙げられる。 Among the flexibility-imparting agents, considering the heat resistance and strength of the kneaded product, an elastomer having a styrene skeleton is preferable, and a polystyrene-polyisobutylene copolymer is more preferable. .
 前記可撓性付与剤の含有割合は、混練物100重量部に対して、例えば、30重量部未満、接着性および耐熱性を考慮すると、好ましくは、10重量部未満、さらに好ましくは、5重量部未満である。 The content ratio of the flexibility imparting agent is, for example, less than 30 parts by weight with respect to 100 parts by weight of the kneaded material, preferably less than 10 parts by weight, and more preferably 5 parts by weight in consideration of adhesiveness and heat resistance. Less than part.
 また、混練物には、上記成分に加えて、上記したエポキシ樹脂以外のエポキシ樹脂(以下、その他のエポキシ樹脂とする。)、さらに、必要に応じて、難燃剤、カーボンブラックなどの顔料などの公知の添加剤を適宜の割合で添加することもできる。 In addition to the above-mentioned components, the kneaded product includes an epoxy resin other than the above-described epoxy resin (hereinafter referred to as other epoxy resin), and, if necessary, a flame retardant, a pigment such as carbon black, and the like. Known additives can be added at an appropriate ratio.
 なお、その他のエポキシ樹脂を添加する場合、その他のエポキシ樹脂の含有割合は、上記のエポキシ樹脂およびその他のエポキシ樹脂の総量100重量部に対して、例えば、30重量部未満、封止用シート20の可撓性を考慮すると、好ましくは、20重量部未満である。 In addition, when adding other epoxy resin, the content rate of other epoxy resin is less than 30 weight part with respect to 100 weight part of total amounts of said epoxy resin and other epoxy resin, for example, the sheet | seat 20 for sealing In consideration of flexibility, the amount is preferably less than 20 parts by weight.
 このような混練物を調製するには、上記した各成分を、上記した配合割合において配合し、溶融混練する。 In order to prepare such a kneaded product, the above-described components are blended in the blending ratio described above and melt-kneaded.
 溶融混練する方法としては、特に限定されないが、例えば、ミキシングロール、加圧式ニーダー、押出機などの公知の混練機により、溶融混練する方法などが挙げられる。 The method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder.
 混練条件としては、温度が、上記した各成分の軟化点以上であれば特に制限されず、例えば、30~150℃、エポキシ樹脂の熱硬化性を考慮すると、好ましくは、40~140℃、さらに好ましくは、60~120℃であり、時間が、例えば、1~30分間、好ましくは、5~15分間である。 The kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above. For example, in consideration of the thermosetting property of the epoxy resin, preferably 40 to 140 ° C. The temperature is preferably 60 to 120 ° C., and the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes.
 これによって、混練物が調製される。 Thereby, a kneaded material is prepared.
 このような混練物は、塑性加工されることにより封止用シート20として調製される。具体的には、溶融混練後の混練物を冷却することなく高温状態のままで、塑性加工することで、封止用シート20が調製される。 Such a kneaded material is prepared as a sealing sheet 20 by being plastically processed. Specifically, the encapsulating sheet 20 is prepared by plastic working in a high-temperature state without cooling the kneaded material after melt-kneading.
 このような塑性加工方法としては、特に制限されず、平板プレス法、Tダイ押出法、ロール圧延法、ロール混練法、インフレーション押出法、共押出法、カレンダー成形法などが挙げられる。 Such a plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T-die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a co-extrusion method, and a calendar molding method.
 塑性加工温度としては、上記した各成分の軟化点以上であれば、特に制限されないが、エポキシ樹脂の熱硬化性および加工性を考慮すると、例えば、40~150℃、好ましくは、50~140℃、さらに好ましくは、60~120℃である。 The plastic working temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above, but considering the thermosetting property and workability of the epoxy resin, for example, 40 to 150 ° C., preferably 50 to 140 ° C. More preferably, the temperature is 60 to 120 ° C.
 以上によって、封止用シート20が調製される。 Thus, the sealing sheet 20 is prepared.
 封止用シート20の厚みは、例えば、100~1500μm、好ましくは、300~1200μmである。 The thickness of the sealing sheet 20 is, for example, 100 to 1500 μm, preferably 300 to 1200 μm.
 封止用シート20は、エポキシ樹脂や無機充填剤を含有するワニスをフィルム上などに塗布することなく、混練物が塑性加工されることにより形成される。 The sealing sheet 20 is formed by plastic processing of the kneaded material without applying a varnish containing an epoxy resin or an inorganic filler onto the film.
 そのため、無機充填剤の配合割合を増加させることができ、封止用シートの性能の向上を十分に図ることができる。 Therefore, the blending ratio of the inorganic filler can be increased, and the performance of the sealing sheet can be sufficiently improved.
 また、封止用シート20は、耐熱性の妨げになる可撓性付与剤を多量に配合しなくとも、十分な可撓性を有するので、その接着性および耐熱性の向上を図ることができる。 Moreover, since the sealing sheet 20 has sufficient flexibility without blending a large amount of a flexibility imparting agent that hinders heat resistance, the adhesiveness and heat resistance can be improved. .
 したがって、封止用シート20は、無機充填剤の配合割合を増加させることができ、かつ、その接着性および耐熱性の向上を図ることができる。 Therefore, the sealing sheet 20 can increase the blending ratio of the inorganic filler, and can improve the adhesion and heat resistance.
 また、封止用シート20は、前記混練物を、塑性加工して得ているため、無機充填剤の配合割合を多くしても良好な膜質の封止用シートを得ることができる。そのため、無機充填剤の配合割合を多くし、封止用シートの熱硬化後の線膨張係数を低くすることができる。その結果、例えば、熱硬化後の封止シートの線膨張係数に起因する半導体装置の反りを抑制することができる。 Further, since the sealing sheet 20 is obtained by plastic working the kneaded product, a sealing film having a good film quality can be obtained even if the blending ratio of the inorganic filler is increased. Therefore, the compounding ratio of the inorganic filler can be increased, and the linear expansion coefficient after thermosetting of the sealing sheet can be lowered. As a result, for example, warpage of the semiconductor device due to the linear expansion coefficient of the sealing sheet after thermosetting can be suppressed.
 [埋め込み工程]
 次に、図6に示すように、半導体チップ3が表出している側の面上に封止用シート20を配置し、図7に示すように、半導体チップ3を封止用シート20に埋め込む(工程D)。
[Embedding process]
Next, as shown in FIG. 6, the sealing sheet 20 is disposed on the surface on which the semiconductor chip 3 is exposed, and the semiconductor chip 3 is embedded in the sealing sheet 20 as shown in FIG. (Process D).
 半導体チップ3を封止用シート20に埋め込む方法としては、特に限定されず、熱プレスやラミネータなど公知の方法により行うことができる。熱プレス条件としては、温度が、例えば、40~100℃、好ましくは50~90℃であり、圧力が、例えば、0.1~10MPa、好ましくは0.5~8MPaであり、時間が、例えば0.3~10分間、好ましくは0.5~5分間である。また、封止用シート20の半導体チップ3及び配線シート2への密着性および追従性の向上を考慮すると、減圧条件下(例えば0.1~5kPa)においてプレスすることが好ましい。 The method for embedding the semiconductor chip 3 in the sealing sheet 20 is not particularly limited, and can be performed by a known method such as a heat press or a laminator. As hot press conditions, the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C., the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa, and the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes. In view of improving the adhesion and followability of the sealing sheet 20 to the semiconductor chip 3 and the wiring sheet 2, it is preferable to press under reduced pressure conditions (for example, 0.1 to 5 kPa).
 [熱硬化工程]
 次に、封止用シート20を熱硬化させる(工程E)。
[Thermosetting process]
Next, the sealing sheet 20 is thermally cured (step E).
 熱硬化処理の条件は、熱硬化処理の熱により仮止め用シート5が剥離しないように設定する。好ましくは、封止用シート20の熱硬化時の加熱温度が、後述する仮止め用シート5の剥離時の加熱温度よりも10℃以上低くなるように設定する。これにより、熱硬化時に仮止め用シート5が剥離することをより確実に防止することができる。前記熱硬化処理の条件として、加熱温度が好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限が、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間が、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限が、好ましくは180分以下、より好ましくは120分以下である。また、必要に応じて加圧してもよく、好ましくは0.1MPa以上、より好ましくは0.5MPa以上である。一方、上限は好ましくは10MPa以下、より好ましくは5MPa以下である。 The conditions for the thermosetting treatment are set so that the temporary fixing sheet 5 does not peel off due to the heat of the thermosetting treatment. Preferably, the heating temperature at the time of thermosetting of the sealing sheet 20 is set to be 10 ° C. or more lower than the heating temperature at the time of peeling the temporary fixing sheet 5 described later. Thereby, it can prevent more reliably that the sheet | seat 5 for temporary fixing peels at the time of thermosetting. As a condition for the thermosetting treatment, the heating temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher. On the other hand, the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The heating time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less. Moreover, you may pressurize as needed, Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more. On the other hand, the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
 [剥離工程]
 次に、支持体1と仮止め用シート5とを配線シート2から剥離する(工程F)。具体的には、まず、図8に示すように、支持体1を仮止め用シート5から剥離する。支持体1の仮止め用シート5からの剥離は、仮止め用シート5の熱膨張性粘着剤層を加熱して、支持体1と仮止め用シート5との接着力が減少させて剥離する。
[Peeling process]
Next, the support 1 and the temporary fixing sheet 5 are peeled from the wiring sheet 2 (step F). Specifically, first, as shown in FIG. 8, the support 1 is peeled from the temporary fixing sheet 5. Peeling of the support 1 from the temporary fixing sheet 5 is performed by heating the thermally expandable pressure-sensitive adhesive layer of the temporary fixing sheet 5 to reduce the adhesive force between the support 1 and the temporary fixing sheet 5. .
 剥離処理の条件としては、熱硬化時の加熱温度よりも高く設定する。前記剥離処理の条件として、加熱温度が好ましくは110℃以上、より好ましくは130℃以上である。一方、加熱温度の上限が、好ましくは220℃以下、より好ましくは200℃以下である。加熱時間が、好ましくは0.2分以上、より好ましくは0.5分以上である。一方、加熱時間の上限が、好ましくは5分以下、より好ましくは3分以下である。 ¡The condition for the peeling treatment is set higher than the heating temperature at the time of thermosetting. As a condition for the peeling treatment, the heating temperature is preferably 110 ° C. or higher, more preferably 130 ° C. or higher. On the other hand, the upper limit of the heating temperature is preferably 220 ° C. or lower, more preferably 200 ° C. or lower. The heating time is preferably 0.2 minutes or more, more preferably 0.5 minutes or more. On the other hand, the upper limit of the heating time is preferably 5 minutes or less, more preferably 3 minutes or less.
 支持体1を仮止め用シート5から剥離した後、図9に示すように、配線シート2から仮止め用シート5をピール剥離する。ピール剥離は、例えば、常温で行なうことができる。なお、配線シート2から支持体1と仮止め用シート5とを剥離した後は、必要に応じて、配線シート2の面をウエット洗浄やプラズマ洗浄等により洗浄してもよい。 After peeling the support 1 from the temporary fixing sheet 5, the temporary fixing sheet 5 is peeled off from the wiring sheet 2 as shown in FIG. Peel peeling can be performed at room temperature, for example. In addition, after peeling the support body 1 and the temporary fixing sheet 5 from the wiring sheet 2, the surface of the wiring sheet 2 may be cleaned by wet cleaning, plasma cleaning, or the like, if necessary.
 [バンプ形成工程]
 次に、必要に応じて、配線シート2上の所定箇所にバンプ4を形成する(図10参照)。
[Bump formation process]
Next, bumps 4 are formed at predetermined locations on the wiring sheet 2 as necessary (see FIG. 10).
 [ダイシング工程]
 次に、必要に応じて、ダイシングを行う(図11参照)。これにより、個々の半導体チップ3ごと又は1のパッケージとなる複数の半導体チップ3ごとに分断された半導体装置30を得ることができる。
[Dicing process]
Next, dicing is performed as necessary (see FIG. 11). Thereby, the semiconductor device 30 divided | segmented for every several semiconductor chip 3 used as each semiconductor chip 3 or one package can be obtained.
 以上、本実施形態に係る半導体装置の製造方法について説明した。 The semiconductor device manufacturing method according to the present embodiment has been described above.
 上述の実施形態では、仮止め用シート5から支持体1を剥離した後、仮止め用シート5を配線シート2から剥離する場合について説明した。しかしながら、本発明はこの例に限定されず、配線シート2から支持体1と仮止め用シート5との積層物を剥離してもよい。この場合、仮止め用シート5は、配線シート2との接着面に熱膨張性粘着剤層を有する構成とし、加熱により配線シート2と仮止め用シート5との接着力を減少させて、剥離すればよい。 In the above-described embodiment, the case where the temporary fixing sheet 5 is peeled from the wiring sheet 2 after the support 1 is peeled from the temporary fixing sheet 5 has been described. However, the present invention is not limited to this example, and the laminate of the support 1 and the temporary fixing sheet 5 may be peeled from the wiring sheet 2. In this case, the temporary fixing sheet 5 is configured to have a thermally expandable pressure-sensitive adhesive layer on the adhesive surface with the wiring sheet 2, and the adhesive force between the wiring sheet 2 and the temporary fixing sheet 5 is reduced by heating to be peeled off. do it.
 上述の実施形態では、支持体1と仮止め用シート5と配線シート2とがこの順で積層された積層体10を用いる場合について説明した。しかしながら、本発明の積層体は、仮止め用シートと配線シートとが少なくとも積層されていれば、この例に限定されず、例えば、支持体に支持されていない単体の仮止め用シート上に配線シートが形成されたものであってもよい。本発明では、配線シート上に半導体チップをフリップチップ実装した後に、半導体チップを封止用シートに埋め込んでいるため、支持体がなくとも配線シートと半導体チップとの接続不良を抑制するという効果は得られるからである。また、本発明の積層体は、支持体、仮止め用シート、配線シート以外の他の層を有していてもよい。 In the above-described embodiment, the case where the laminated body 10 in which the support body 1, the temporary fixing sheet 5, and the wiring sheet 2 are laminated in this order has been described. However, the laminated body of the present invention is not limited to this example as long as the temporary fixing sheet and the wiring sheet are laminated at least. For example, wiring is performed on a single temporary fixing sheet that is not supported by the support. A sheet may be formed. In the present invention, since the semiconductor chip is embedded in the sealing sheet after the semiconductor chip is flip-chip mounted on the wiring sheet, the effect of suppressing poor connection between the wiring sheet and the semiconductor chip without a support is It is because it is obtained. Moreover, the laminated body of this invention may have layers other than a support body, the sheet | seat for temporary fixing, and a wiring sheet.
 以上、本実施形態に係る半導体装置の製造方法の一例について説明したが、本発明における半導体装置の製造方法は、上述した例に限定されず、本発明の要旨の範囲内で適宜変更可能である。 As mentioned above, although the example of the manufacturing method of the semiconductor device which concerns on this embodiment was demonstrated, the manufacturing method of the semiconductor device in this invention is not limited to the example mentioned above, In the range of the summary of this invention, it can change suitably. .
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の要旨をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in this example are not intended to limit the gist of the present invention only to those unless otherwise limited. The term “parts” means parts by weight.
 (実施例1)
<封止用シートの作成>
 表1に示す処方(単位:重量%)において、各成分を配合し、2軸混練機により100℃で10分間溶融混練し混練物を調製した。
(Example 1)
<Creation of sealing sheet>
In the formulation shown in Table 1 (unit:% by weight), each component was blended and melt kneaded at 100 ° C. for 10 minutes using a twin-screw kneader to prepare a kneaded product.
 次いで、得られた混練物を、平板プレスによりシート状に形成して、サイズ20cm角、厚み400μmの封止用シートを得た。 Next, the obtained kneaded material was formed into a sheet shape by a flat plate press to obtain a sealing sheet having a size of 20 cm square and a thickness of 400 μm.
 実施例で使用した成分について説明する。
 エポキシ樹脂1:新日鐵化学(株)製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.軟化点80℃)
  フェノール樹脂1:明和化成社製のMEH-7851-SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.、軟化点67℃)
  熱可塑性樹脂1:カネカ社製のSIBSTER 072T(スチレン-イソブチレン-スチレンブロック共重合体、重量平均分子量:7万3000)
  無機充填剤1:電気化学工業社製のFB-9454FC(溶融球状シリカ、平均粒子径20μm)
 シランカップリング剤1:信越化学社製のKBM-403(3-グリシドキシプロピルトリメトキシシラン)
カーボンブラック1:三菱化学社製の#20
 難燃剤1:伏見製薬所製のFP-100(ホスファゼン系難燃剤:式(11)で表される化合物)
Figure JPOXMLDOC01-appb-C000013
               
  硬化促進剤1:四国化成工業社製のイミダゾール触媒 2PHZ-PW
The components used in the examples will be described.
Epoxy resin 1: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
Phenol resin 1: MEH-7851-SS manufactured by Meiwa Kasei Co., Ltd. (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq., Softening point 67 ° C.)
Thermoplastic resin 1: SIBSTER 072T manufactured by Kaneka Corporation (styrene-isobutylene-styrene block copolymer, weight average molecular weight: 73,000)
Inorganic filler 1: FB-9454FC (fused spherical silica, average particle size 20 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
Silane coupling agent 1: KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
Carbon black 1: # 20 manufactured by Mitsubishi Chemical Corporation
Flame retardant 1: FP-100 manufactured by Fushimi Pharmaceutical (phosphazene flame retardant: compound represented by formula (11))
Figure JPOXMLDOC01-appb-C000013

Curing accelerator 1: Imidazole catalyst 2PHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 なお、実施例1における無機充填剤1の配合量は、封止用シートを構成する全組成物中の80体積%に相当する。 In addition, the compounding quantity of the inorganic filler 1 in Example 1 is corresponded to 80 volume% in the whole composition which comprises the sheet | seat for sealing.
 (半導体装置の製造評価)
 <仮止め用シートの準備>
 仮止め用シートとして日東電工製の熱剥離シート(リバアルファNO.31950E(厚み96μm、熱剥離温度200℃)を準備した。なお、リバアルファNO.31950Eは、片面に熱膨張性粘着剤層を有し、他方の面に感圧性接着剤層を有する層構成を有している。
(Manufacturing evaluation of semiconductor devices)
<Preparation of temporary fixing sheet>
Nitto Denko's heat release sheet (Riba Alpha NO. 31950E (thickness 96 μm, heat release temperature 200 ° C.) was prepared as a temporary fixing sheet. And has a layer structure having a pressure-sensitive adhesive layer on the other surface.
 <配線シートの準備>
 ベース絶縁層として厚み13μmのポリイミドフィルムを用い、外部接続用導体として銅を用いた配線シート(配線回路基板)を準備した。
<Preparation of wiring sheet>
A wiring sheet (wiring circuit board) using a polyimide film having a thickness of 13 μm as the base insulating layer and copper as the external connection conductor was prepared.
 <積層体の準備>
 支持体として金属板(材質:SUS304、厚さ0.5mm、サイズ25cm角)を準備した。次に、準備した支持体と仮止めシートとを熱ラミネーターを用いて大気圧下、40℃、圧力0.2MPaの条件にて貼り合わせた。この際、仮止めシートの熱膨張性粘着剤層と支持体とが接触するように貼り合わせた。さらに、支持体上の仮止め用シートと配線シートとを、真空ラミネーターを用いて100℃、0.3MPa、真空度50torrの条件にて貼り合せることにより、仮止め用シートと配線シートとが積層された積層体を得た。
<Preparation of laminate>
A metal plate (material: SUS304, thickness 0.5 mm, size 25 cm square) was prepared as a support. Next, the prepared support and the temporary fixing sheet were bonded together using a thermal laminator under conditions of 40 ° C. and a pressure of 0.2 MPa under atmospheric pressure. Under the present circumstances, it bonded together so that the heat-expandable adhesive layer of a temporary fix | stop sheet | seat and a support body might contact. Furthermore, the temporary fixing sheet and the wiring sheet are laminated by bonding the temporary fixing sheet and the wiring sheet on the support using a vacuum laminator at 100 ° C., 0.3 MPa, and a vacuum degree of 50 torr. A laminated body was obtained.
 上記積層体上の全ての実装領域に、フリップチップボンダーを用いてチップを実装した。チップは、縦5mm×横5mm×厚さ200μmのものを用いた。また、実装は、3mmの間隔(1のチップの端部と隣のチップの端部との距離)をあけて、縦20個×20横個に行なった。また、実装条件は、下記の通りとした。
 (実装条件)
  真空度:3Pa
  温度:300℃
  圧力:1.5g/バンプ
Chips were mounted on all mounting regions on the laminate using a flip chip bonder. A chip having a length of 5 mm × width of 5 mm × thickness of 200 μm was used. In addition, the mounting was performed in a vertical 20 × 20 horizontal interval with an interval of 3 mm (distance between the end of one chip and the end of the next chip). The mounting conditions were as follows.
(Mounting conditions)
Degree of vacuum: 3Pa
Temperature: 300 ° C
Pressure: 1.5g / bump
 次に、上記に配線シートにチップを実装したものを真空プレス機に配置し、その上に、上記で得た封止用シートを載せた。その後、チャンバー内を真空引きした。次いで、100℃、1MPa、真空度20torr、加圧時間1分の条件にて成型を行った。その後、大気開放し、型を開いて成型物を取り出した。さらに、大気圧下において、130℃、2時間の加熱条件にて、封止用シートを硬化させた。 Next, the above-mentioned wiring sheet with the chip mounted thereon was placed in a vacuum press, and the sealing sheet obtained above was placed thereon. Thereafter, the chamber was evacuated. Next, molding was performed under the conditions of 100 ° C., 1 MPa, a vacuum degree of 20 torr, and a pressurization time of 1 minute. Thereafter, the atmosphere was released, the mold was opened, and the molded product was taken out. Furthermore, the sealing sheet was cured at 130 ° C. for 2 hours under atmospheric pressure.
 次に、硬化後の成型物を200℃の熱板上で30秒加熱した。これにより、仮止め用シートの支持体側の熱膨張性粘着剤層が熱膨張し、支持体から剥離された。次に、仮止め用シートを配線シートからピール剥離した。 Next, the molded product after curing was heated on a hot plate at 200 ° C. for 30 seconds. As a result, the thermally expandable pressure-sensitive adhesive layer on the support side of the temporary fixing sheet was thermally expanded and peeled off from the support. Next, the temporary fixing sheet was peeled off from the wiring sheet.
 その後ベース絶縁層に露出した外部接続用導体部の端面である金層の表面に、半田ボールを形成した。最後に個々の半導体装置へとダイシングした。 After that, solder balls were formed on the surface of the gold layer, which is the end face of the external connection conductor exposed on the base insulating layer. Finally, dicing into individual semiconductor devices was performed.
 (半導体装置の製造評価の結果)
 実施例1では、簡便な作業内容にて、半導体装置が得られることが確認できた。また、実施例1では、封止前に配線シートとチップが接合されている為、封止シートの成型および熱硬化に起因する配線シートと半導体チップとの位置ズレは起り得ない。その結果、配線シートと半導体チップとの接続不良を抑制することが可能なことがわかる。
(Results of semiconductor device manufacturing evaluation)
In Example 1, it was confirmed that the semiconductor device was obtained with simple work contents. Further, in Example 1, since the wiring sheet and the chip are bonded before sealing, the positional deviation between the wiring sheet and the semiconductor chip due to molding and thermosetting of the sealing sheet cannot occur. As a result, it can be seen that connection failure between the wiring sheet and the semiconductor chip can be suppressed.
 (反り量の測定)
 実施例1の組成の封止用シートについて、20cm角、厚さが400μmの形状のものを準備した。
 また、上記の半導体装置の製造評価において準備した、配線シートにチップを実装したものを準備した。
 配線シートにチップを実装したものを真空プレス機に配置し、その上に、封止用シートを載せた。その後、半導体装置の製造評価と同様の条件にて成型、及び、封止用シートの硬化を行なった。その後、封止用シートの反り量を測定した。反り量は、
 チップが封止されている封止用シート(ダイシングする前の20cm角、厚さが400μmの封止用シート)を平坦な台の上に置き、接触式ダイヤルゲージにて厚み測定を行った。厚み測定は、台面から一番遠い部分までの厚さとして測定した。次に、得られた測定厚みから封止用シートの厚み、すなわち、400μmを差し引いた値を反り量とした。結果、反り量は、2mmとなった。
(Measurement of warpage)
About the sheet | seat for sealing of the composition of Example 1, the thing of the shape of 20 square cm and thickness of 400 micrometers was prepared.
Moreover, what prepared the chip | tip to the wiring sheet prepared in manufacture evaluation of said semiconductor device was prepared.
A wiring sheet having a chip mounted thereon was placed in a vacuum press, and a sealing sheet was placed thereon. Thereafter, molding and curing of the sealing sheet were performed under the same conditions as those for manufacturing evaluation of the semiconductor device. Thereafter, the warpage amount of the sealing sheet was measured. The amount of warpage is
A sealing sheet (20 cm square before dicing and a 400 μm thickness sealing sheet) in which the chip is sealed was placed on a flat table, and the thickness was measured with a contact dial gauge. The thickness was measured as the thickness from the base surface to the farthest part. Next, the thickness of the sealing sheet, that is, a value obtained by subtracting 400 μm from the obtained measured thickness was defined as the amount of warpage. As a result, the warpage amount was 2 mm.
 比較例1として、以下の組成の封止用シートを用い、20cm角、厚さが400μmの形状のものを準備した。
 (比較例1)
 <封止用シートの作成>
  表2に示す各成分を表中に示す割合でMEK(メチルエチルケトン)中に分散混合し、シート塗工用ワニスを得た。つぎに、このワニスを厚さ50μmのポリエステルフィルムA(三菱化学ポリエステル製、MRF-50)上にコンマコーターにて塗工、乾燥し、ポリエステルフィルムB(三菱化学ポリエステル製、MRX-38)に貼り合わせることで、熱硬化性接着シートを得た。その後、ロールラミネーターによりこの熱硬化性接着シートを積層することにより、厚さ400μmの封止用シートを得た。
As Comparative Example 1, a sheet having a shape of 20 cm square and a thickness of 400 μm was prepared using a sealing sheet having the following composition.
(Comparative Example 1)
<Creation of sealing sheet>
Each component shown in Table 2 was dispersed and mixed in MEK (methyl ethyl ketone) at a ratio shown in the table to obtain a varnish for sheet coating. Next, this varnish is applied onto a polyester film A (MRF-50, manufactured by Mitsubishi Chemical Polyester Co., Ltd.) having a thickness of 50 μm using a comma coater, dried, and then applied to a polyester film B (MRX-38 manufactured by Mitsubishi Chemical Polyester Co., Ltd.) By combining, a thermosetting adhesive sheet was obtained. Then, the 400-micrometer-thick sealing sheet was obtained by laminating | stacking this thermosetting adhesive sheet with a roll laminator.
  エポキシ樹脂2:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製、エピコート828)
  エポキシ樹脂3:トリスヒドロキシフェニルメタン型エポキシ樹脂(日本化薬製、EPPN-501HY)
  熱可塑性樹脂2:アクリル共重合体(ナガセケムテックス製、テイサンレジン SG-P3、重量平均分子量:85万)
  フェノール樹脂2:ノボラック型フェノール樹脂(明和化成製、DL-65)
 硬化促進剤2:2P4MHZ-PW(四国化成工業製)
 カーボンブラック2:三菱化学社製 #20
  無機充填剤2:平均粒径5.5μmの球状溶融シリカ粉末(電気化学工業社製、FB-7SDC)
Epoxy resin 2: bisphenol A type epoxy resin (Japan Epoxy Resin, Epicoat 828)
Epoxy resin 3: Trishydroxyphenylmethane type epoxy resin (Nippon Kayaku, EPPN-501HY)
Thermoplastic resin 2: acrylic copolymer (manufactured by Nagase ChemteX, Teisan Resin SG-P3, weight average molecular weight: 850,000)
Phenolic resin 2: Novolac type phenolic resin (Maywa Kasei, DL-65)
Curing accelerator 2: 2P4MHZ-PW (manufactured by Shikoku Chemicals)
Carbon black 2: Mitsubishi Chemical # 20
Inorganic filler 2: Spherical fused silica powder having an average particle size of 5.5 μm (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-7SDC)
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000015
 
 なお、比較例1における無機充填剤2の配合量は、封止用シートを構成する全組成物中の41体積%に相当する。 In addition, the compounding quantity of the inorganic filler 2 in the comparative example 1 is equivalent to 41 volume% in the whole composition which comprises the sheet | seat for sealing.
 上記比較例1に係る封止用シートを用いて、上記実施例1の場合と同様に反り量を測定したところ、10mmとなった。 Using the sealing sheet according to Comparative Example 1, the amount of warpage was measured in the same manner as in Example 1, and the result was 10 mm.
 (反り量測定の結果)
 実施例に係る封止用シートは反りが抑制されていることが確認できた。特に、実施例1の封止用シートは、比較例1の封止用シートと比較して、反りが1/3以上低減されることがわかった。
(Result of warpage measurement)
It was confirmed that warpage of the sealing sheet according to the example was suppressed. In particular, it was found that the warpage of the sealing sheet of Example 1 was reduced by 1/3 or more as compared with the sealing sheet of Comparative Example 1.
  1  支持体
  2  配線シート
  3  半導体チップ
  4  半導体装置
  5  仮止め用シート
 10  積層体
 20  封止用シート
DESCRIPTION OF SYMBOLS 1 Support body 2 Wiring sheet 3 Semiconductor chip 4 Semiconductor device 5 Temporary fixing sheet 10 Laminated body 20 Sealing sheet

Claims (6)

  1.  仮止め用シートと再配線層が形成された配線シートとが少なくとも積層された積層体を準備する工程A、
     前記積層体の前記配線シート上に、半導体チップをフリップチップ実装する工程B、
     エポキシ樹脂と、硬化剤と、無機充填剤とを混練して得られる混練物を、塑性加工して得た封止用シートを準備する工程C、
     前記半導体チップが表出している側の面上に前記封止用シートを配置し、前記半導体チップを前記封止用シートに埋め込む工程D、
     前記封止用シートを熱硬化させる工程E、及び、
     前記仮止め用シートを前記配線シートから剥離する工程F
    を具備することを特徴とする半導体装置の製造方法。
    Step A for preparing a laminate in which at least a temporary fixing sheet and a wiring sheet on which a rewiring layer is formed are laminated,
    A step B of flip-chip mounting a semiconductor chip on the wiring sheet of the laminate;
    Step C for preparing a sealing sheet obtained by plastic working a kneaded product obtained by kneading an epoxy resin, a curing agent, and an inorganic filler,
    Placing the sealing sheet on the surface on which the semiconductor chip is exposed, and embedding the semiconductor chip in the sealing sheet,
    Step E for thermosetting the sealing sheet, and
    Process F for peeling off the temporary fixing sheet from the wiring sheet
    A method for manufacturing a semiconductor device, comprising:
  2.  前記封止用シート中の前記無機充填剤の配合割合が、前記封止用シートを構成する全組成物中の70-90体積%であることを特徴とする請求項1記載の半導体装置の製造方法。 2. The manufacturing method of a semiconductor device according to claim 1, wherein a blending ratio of the inorganic filler in the sealing sheet is 70 to 90% by volume in a total composition constituting the sealing sheet. Method.
  3.  前記封止用シートが、スチレン骨格、及び、ブタジエン骨格のいずれかを含有する重量平均分子量1万以上のポリマーからなる熱可塑性エラストマーを含有することを特徴とする請求項1又は2に記載の半導体装置の製造方法。 3. The semiconductor according to claim 1, wherein the encapsulating sheet contains a thermoplastic elastomer made of a polymer having a weight average molecular weight of 10,000 or more containing either a styrene skeleton or a butadiene skeleton. Device manufacturing method.
  4.  前記エポキシ樹脂が、下記式(1)で示されるエポキシ樹脂であることを特徴とする請求項1~3のいずれか1に記載の半導体装置の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     
     (式中、R~Rは、同一または相異なって、メチル基または水素原子を示し、Xは、-CH-、-O-、または、-S-を示す。)
    The method of manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the epoxy resin is an epoxy resin represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 to R 4 are the same or different and each represents a methyl group or a hydrogen atom, and X represents —CH 2 —, —O—, or —S—).
  5.  前記工程Aで準備する積層体は、支持体と仮止め用シートと配線シートとがこの順で積層された積層体であり、
     前記工程Fは、前記仮止めシートと前記支持体とを前記配線シートから剥離する工程であることを特徴とする請求項1~4のいずれか1に記載の半導体装置の製造方法。
    The laminate prepared in the step A is a laminate in which a support, a temporary fixing sheet, and a wiring sheet are laminated in this order,
    5. The method of manufacturing a semiconductor device according to claim 1, wherein the step F is a step of peeling the temporary fixing sheet and the support from the wiring sheet.
  6.  前記仮止めシートは、前記支持体と接触する側の面に、熱膨張性粘着剤層を有することを特徴とする請求項5に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 5, wherein the temporary fixing sheet has a thermally expandable pressure-sensitive adhesive layer on a surface in contact with the support.
PCT/JP2014/062144 2013-06-07 2014-05-02 Method for manufacturing semiconductor device WO2014196296A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-121004 2013-06-07
JP2013121004A JP2014239154A (en) 2013-06-07 2013-06-07 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2014196296A1 true WO2014196296A1 (en) 2014-12-11

Family

ID=52007949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062144 WO2014196296A1 (en) 2013-06-07 2014-05-02 Method for manufacturing semiconductor device

Country Status (3)

Country Link
JP (1) JP2014239154A (en)
TW (1) TW201505107A (en)
WO (1) WO2014196296A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030262A1 (en) * 2016-08-09 2018-02-15 株式会社村田製作所 Method for manufacturing module component
WO2018194133A1 (en) * 2017-04-21 2018-10-25 三井化学株式会社 Semiconductor substrate manufacturing method, semiconductor device, and method for manufacturing same
CN109390240A (en) * 2017-08-04 2019-02-26 琳得科株式会社 The manufacturing method and bonding laminated body of semiconductor device
CN112789334A (en) * 2018-10-02 2021-05-11 琳得科株式会社 Laminate and method for producing cured sealing body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6842878B2 (en) * 2016-10-20 2021-03-17 東京応化工業株式会社 Adhesive composition and its use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124381A (en) * 2009-12-10 2011-06-23 Nitto Denko Corp Method of manufacturing semiconductor device
JP2011219726A (en) * 2009-11-30 2011-11-04 Panasonic Electric Works Co Ltd Epoxy resin composition sheet for sealing and hollow device sealed using the same
WO2012111540A1 (en) * 2011-02-14 2012-08-23 日東電工株式会社 Heat-resistant adhesive tape for semiconductor device manufacturing, and method for manufacturing semiconductor chips using tape
JP2012214743A (en) * 2011-04-01 2012-11-08 Hitachi Chemical Co Ltd Solid sealing resin composition for compression molding, and semiconductor device
WO2012157665A1 (en) * 2011-05-19 2012-11-22 住友ベークライト株式会社 Semiconductor module component and liquid resin composition for encapsulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007028A (en) * 2011-05-20 2013-01-10 Nitto Denko Corp Sealing sheet and electronic component device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219726A (en) * 2009-11-30 2011-11-04 Panasonic Electric Works Co Ltd Epoxy resin composition sheet for sealing and hollow device sealed using the same
JP2011124381A (en) * 2009-12-10 2011-06-23 Nitto Denko Corp Method of manufacturing semiconductor device
WO2012111540A1 (en) * 2011-02-14 2012-08-23 日東電工株式会社 Heat-resistant adhesive tape for semiconductor device manufacturing, and method for manufacturing semiconductor chips using tape
JP2012214743A (en) * 2011-04-01 2012-11-08 Hitachi Chemical Co Ltd Solid sealing resin composition for compression molding, and semiconductor device
WO2012157665A1 (en) * 2011-05-19 2012-11-22 住友ベークライト株式会社 Semiconductor module component and liquid resin composition for encapsulation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030262A1 (en) * 2016-08-09 2018-02-15 株式会社村田製作所 Method for manufacturing module component
US10818518B2 (en) 2016-08-09 2020-10-27 Murata Manufacturing Co., Ltd. Method for manufacturing module component
WO2018194133A1 (en) * 2017-04-21 2018-10-25 三井化学株式会社 Semiconductor substrate manufacturing method, semiconductor device, and method for manufacturing same
KR20190123793A (en) * 2017-04-21 2019-11-01 미쓰이 가가쿠 가부시키가이샤 Manufacturing Method of Semiconductor Substrate, Semiconductor Device and Manufacturing Method Thereof
CN110546746A (en) * 2017-04-21 2019-12-06 三井化学株式会社 method for manufacturing semiconductor substrate, semiconductor device and method for manufacturing the same
JPWO2018194133A1 (en) * 2017-04-21 2020-02-27 三井化学株式会社 Method of manufacturing semiconductor substrate, semiconductor device and method of manufacturing the same
US10988647B2 (en) 2017-04-21 2021-04-27 Mitsui Chemicals, Inc. Semiconductor substrate manufacturing method, semiconductor device, and method for manufacturing same
KR102442262B1 (en) * 2017-04-21 2022-09-08 미쓰이 가가쿠 가부시키가이샤 A method for manufacturing a semiconductor substrate, a semiconductor device, and a method for manufacturing the same
CN109390240A (en) * 2017-08-04 2019-02-26 琳得科株式会社 The manufacturing method and bonding laminated body of semiconductor device
CN112789334A (en) * 2018-10-02 2021-05-11 琳得科株式会社 Laminate and method for producing cured sealing body

Also Published As

Publication number Publication date
TW201505107A (en) 2015-02-01
JP2014239154A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP5961055B2 (en) Sealing resin sheet, electronic component package manufacturing method, and electronic component package
TWI686458B (en) Adhesive sheet
JP5943898B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
JP2010129700A (en) Dicing die-bonding film and method for producing semiconductor device
WO2015019817A1 (en) Method for producing semiconductor package
JP2010129701A (en) Dicing die-bonding film and method for producing semiconductor device
JP6484061B2 (en) Manufacturing method of electronic component package
WO2014196296A1 (en) Method for manufacturing semiconductor device
WO2015019816A1 (en) Method for producing semiconductor package
WO2015076088A1 (en) Sealing sheet with separators on both surfaces, and method for manufacturing semiconductor device
WO2016031579A1 (en) Method for manufacturing semiconductor device, and sealing sheet
JP6041933B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
JP2014170845A (en) Method for manufacturing semiconductor device, sheet-like resin composition, and dicing tape integrated sheet-like resin composition
WO2014083974A1 (en) Semiconductor-device manufacturing method
CN111344845A (en) Semiconductor process sheet and semiconductor package manufacturing method
JP7129110B2 (en) Laminate and method for producing cured sealing body
WO2015053081A1 (en) Method for manufacturing semiconductor device
JP2014170848A (en) Method for manufacturing semiconductor device, sheet-like resin composition, and dicing tape integrated sheet-like resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807622

Country of ref document: EP

Kind code of ref document: A1