WO2014181831A1 - User terminal and processor - Google Patents

User terminal and processor Download PDF

Info

Publication number
WO2014181831A1
WO2014181831A1 PCT/JP2014/062370 JP2014062370W WO2014181831A1 WO 2014181831 A1 WO2014181831 A1 WO 2014181831A1 JP 2014062370 W JP2014062370 W JP 2014062370W WO 2014181831 A1 WO2014181831 A1 WO 2014181831A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
user terminal
access point
processor
control information
Prior art date
Application number
PCT/JP2014/062370
Other languages
French (fr)
Japanese (ja)
Inventor
優志 長坂
真人 藤代
空悟 守田
智春 山▲崎▼
裕之 安達
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2014181831A1 publication Critical patent/WO2014181831A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions

Definitions

  • the present invention relates to a user terminal and a processor used in a cellular communication system capable of cooperating with a wireless LAN system (WLAN system).
  • WLAN system wireless LAN system
  • WLAN access points In recent years, user terminals (so-called dual terminals) having a cellular communication unit and a WLAN communication unit are becoming popular. In addition, the number of WLAN access points (hereinafter simply referred to as “access points”) managed by operators of cellular communication systems is increasing.
  • One of the purposes of such technology is to balance the load level at the cellular base station and the access point by improving the usage rate of the access point.
  • the user terminal compares the communication status of the cellular base station and the access point, and the user terminal can select the connection destination from the cellular base station and the access point.
  • a plurality of user terminals can select the same access point as a connection destination and start connection processing for the access points all at once. Therefore, there may be a user terminal that cannot establish a connection with an access point due to a conflict in connection processing.
  • an object of the present invention is to solve a problem caused by a plurality of user terminals connecting to the same access point all at once.
  • the user terminal supports cellular communication and WLAN communication.
  • the user terminal receives from the cellular base station, a storage unit that stores an identifier associated with the user terminal, and connection control information for randomly selecting a user terminal that is allowed to connect to the access point. And a control unit that controls not to establish a connection with the access point when the identifier does not satisfy a connection permission condition defined by the connection control information.
  • the user terminal according to the second feature supports cellular communication and WLAN communication.
  • the user terminal includes a control unit that delays a start timing for starting connection with the access point according to a random number when it is determined to start connection with the access point.
  • the user terminal supports cellular communication and WLAN communication.
  • the user terminal receives from the cellular base station, a storage unit that stores an identifier associated with the user terminal, and connection control information for randomly selecting a user terminal that is allowed to connect to the access point. And a control unit that controls not to establish a connection with the access point when the identifier does not satisfy a connection permission condition defined by the connection control information.
  • connection control information is set based on the load level of the cellular base station.
  • connection control information is set such that the higher the load level of the cellular base station, the higher the probability that connection with the access point is permitted.
  • connection control information includes a first value and a second value
  • control unit calculates a result of calculating the identifier and the first value that matches the second value. If not, control is performed so as not to establish a connection with the access point.
  • the processor according to the first embodiment is provided in a user terminal that supports cellular communication and WLAN communication.
  • the processor receives, from a cellular base station, connection control information for randomly selecting a user terminal that is allowed to connect to an access point, and a connection permission condition defined by the connection control information. And controlling to not establish a connection with the access point when the identifier associated with is not satisfied.
  • the user terminal supports cellular communication and WLAN communication.
  • the user terminal includes a control unit that delays a start timing for starting connection with the access point according to a random number when it is determined to start connection with the access point.
  • control unit acquires information indicating the load level of the access point during the waiting time until the start timing.
  • the control unit stops connection with the access point.
  • the second embodiment further includes a storage unit that stores a table in which waiting times are associated with each predetermined numerical range.
  • the control unit specifies the waiting time corresponding to a numerical range to which the random number belongs based on the table.
  • the control unit determines the start timing from the specified waiting time.
  • the table is set from a cellular base station.
  • the processor according to the second embodiment is provided in a user terminal that supports cellular communication and WLAN communication.
  • the processor determines to start the connection with the access point, the processor delays the start timing for starting the connection with the access point according to the random number.
  • FIG. 1 is a system configuration diagram according to the embodiment.
  • the cellular communication system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the EPC 20 corresponds to a core network.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the UE 100 is a terminal (dual terminal) that supports both cellular communication and WLAN communication methods.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a cellular base station.
  • the eNB 200 manages one or a plurality of cells, and performs radio communication with the UE 100 that has established a connection with the own cell.
  • “cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 500 included in the EPC 20 via the S1 interface.
  • the EPC 20 includes a plurality of MME (Mobility Management Entity) / S-GW (Serving-Gateway) 500.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the WLAN system includes a WLAN access point (hereinafter referred to as “AP”) 300.
  • the WLAN system is configured in accordance with, for example, IEEE 802.11 standards.
  • the AP 300 communicates with the UE 100 in a frequency band (WLAN frequency band) different from the cellular frequency band.
  • the AP 300 is connected to the EPC 20 via a router or the like.
  • the eNB 200 and the AP 300 are not limited to being individually arranged, and the eNB 200 and the AP 300 may be arranged at the same location (Collocated). As one form of Collated, the eNB 200 and the AP 300 may be directly connected by an arbitrary interface of the operator.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes antennas 101 and 102, a cellular communication unit 111, a WLAN communication unit 112, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, and a memory. 150 and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the cellular communication unit 111 are used for transmitting and receiving cellular radio signals.
  • the cellular communication unit 111 converts the baseband signal output from the processor 160 into a cellular radio signal and transmits it from the antenna 101.
  • the cellular communication unit 111 converts a cellular radio signal received by the antenna 101 into a baseband signal and outputs it to the processor 160.
  • the antenna 102 and the WLAN communication unit 112 are used for transmitting and receiving WLAN radio signals.
  • the WLAN communication unit 112 converts the baseband signal output from the processor 160 into a WLAN radio signal and transmits it from the antenna 102.
  • the WLAN communication unit 112 converts the WLAN radio signal received by the antenna 102 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an input from the user and outputs a signal indicating the content of the input to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 150 and performs various processes.
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a cellular communication unit 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the antenna 201 and the cellular communication unit 210 are used for transmitting and receiving cellular radio signals.
  • the cellular communication unit 210 converts the baseband signal output from the processor 240 into a cellular radio signal and transmits it from the antenna 201.
  • the cellular communication unit 210 converts a cellular radio signal received by the antenna 201 into a baseband signal and outputs it to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 500 via the S1 interface.
  • the network interface 220 is used for communication with the AP 300 via the EPC 20.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a block diagram of the AP 300. As illustrated in FIG. 4, the AP 300 includes an antenna 301, a WLAN communication unit 311, a network interface 320, a memory 330, and a processor 340.
  • the antenna 301 and the WLAN communication unit 311 are used for transmitting and receiving WLAN radio signals.
  • the WLAN communication unit 311 converts the baseband signal output from the processor 340 into a WLAN radio signal and transmits it from the antenna 301.
  • the WLAN communication unit 311 converts the WLAN radio signal received by the antenna 301 into a baseband signal and outputs the baseband signal to the processor 340.
  • the network interface 320 is connected to the EPC 20 via a router or the like.
  • the network interface 320 is used for communication with the eNB 200 via the EPC 20.
  • the memory 330 stores a program executed by the processor 340 and information used for processing by the processor 340.
  • the processor 340 includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU that executes programs stored in the memory 330 and performs various processes.
  • FIG. 5 is a protocol stack diagram of a radio interface in the cellular communication system. As shown in FIG. 5, the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer. Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. Layer 3 includes an RRC (Radio Resource Control) layer.
  • PHY Physical
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and a scheduler that selects allocated resource blocks.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connected state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 6 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of ten subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH).
  • the remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • reference signals such as cell-specific reference signals are distributed and arranged in each subframe.
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • FIG. 7 is a diagram for explaining the operating environment according to the embodiment. As illustrated in FIG. 7, the AP 300 is provided in the coverage of the eNB 200. The AP 300 is an AP (Operator controlled AP) managed by an operator.
  • AP Operaator controlled AP
  • a plurality of UEs 100 are located within the coverage of the eNB 200 and within the coverage of the AP 300.
  • the UE 100 has established a connection with the eNB 200 and performs cellular communication with the eNB 200. Specifically, the UE 100 transmits and receives a cellular radio signal including traffic (user data) to and from the eNB 200. Or some UE100 does not need to establish the connection with eNB200.
  • the UE 100 compares the communication statuses of the eNB 200 and the AP 300 and can select the connection destination from the eNB 200 and the AP 300 by the UE 100 itself.
  • a load level means the congestion degree of eNB200, such as the traffic load of eNB200, or the radio
  • the traffic load of the eNB 200 can be distributed to the WLAN system by shifting (offloading) at least part of the traffic transmitted and received between the UE 100 and the eNB 200 to the WLAN system.
  • the plurality of UEs 100 start offloading to the AP 300 and establish a connection with the AP 300. Also, the plurality of UEs 100 release the connection with the eNB 200. As a result, a plurality of UEs 100 establish a connection with the AP 300 and do not establish a connection with the eNB 200 (idle state).
  • connection destination when the connection destination can be selected by the UE 100 itself from the eNB 200 and the AP 300, a plurality of UEs 100 can select the same AP 300 as the connection destination and start connection processing for the AP 300 all at once. Therefore, there is a possibility that a UE 100 that cannot establish a connection with the AP 300 may be generated due to a conflict in connection processing. In addition, even if all of these UEs 100 can establish a connection with the AP 300, there is a problem that sufficient throughput cannot be ensured due to an increase in the load level of the AP 300, or unused resources of the eNB 200 become excessive. . Hereinafter, an operation for solving such a problem will be described.
  • FIG. 8 is an operation sequence diagram according to the first embodiment.
  • step S ⁇ b> 11 the processor 240 of the eNB 200 transmits AP connection control information for randomly selecting the UE 100 that is allowed to connect to the AP 300 to the UE 100.
  • the processor 240 may transmit the AP connection control information to the UE 100 by broadcasting. Further, the processor 240 may periodically transmit AP connection control information. Alternatively, the eNB 200 receives information on whether or not the WLAN communication unit 112 is on from the UE 100, and transmits the AP connection control information to the UE 100 on which the WLAN communication unit 112 is on by unicast. Good.
  • the AP connection control information specifies connection permission conditions for allowing connection with the AP 300.
  • the AP connection control information is set based on the load level of the eNB 200. For example, the AP connection control information is set such that the higher the load level of the eNB 200, the higher the probability that the connection with the AP 300 is permitted.
  • the AP connection control information is set such that the lower the load level of the eNB 200, the lower the probability that the connection with the AP 300 is allowed. A specific example of the AP connection control information will be described later.
  • the memory 150 of the UE 100 stores a UE identifier associated with the UE 100.
  • the UE identifier is a C-RNTI (Cell-Radio Network Temporary Identifier) indicating a temporary identifier assigned from the eNB 200.
  • the UE identifier is one of a unique identifier assigned in advance to the UE 100, a subscriber identifier assigned to the user of the UE 100, and an identifier (for example, an access class identifier) set according to the attribute of the UE 100. There may be.
  • the cellular communication unit 111 of the UE 100 receives AP connection control information from the eNB 200.
  • the processor 160 determines whether or not to establish a connection with the AP 300 based on the AP connection control information received by the cellular communication unit 111 and the UE identifier stored in the memory 150. Below, operation
  • FIG. 9 is an operation flow diagram of the UE 100 according to the first embodiment.
  • the UE 100 has already received the AP connection control information from the eNB 200.
  • the case where the WLAN communication part 112 of UE100 is an ON state is assumed.
  • step S101 the processor 160 of the UE 100 determines whether or not the connection with the AP 300 is possible. For example, when the reception level of the beacon signal from the AP 300 is equal to or higher than the threshold, the UE 100 determines that the connection with the AP 300 is possible. Further, the UE 100 may determine that the connection with the AP 300 is possible when the AP load level information (that is, the load level of the AP 300) included in the beacon signal from the AP 300 is less than the threshold.
  • the AP load level information that is, the load level of the AP 300
  • the processor 160 stores the first value (divNum) included in the AP connection control information and the memory 150 in step S102. And a UE identifier (UENum). In the first embodiment, the processor 160 calculates a remainder obtained by dividing the UE identifier (UENum) by the first value (divNum).
  • step S103 the processor 160 determines whether or not a remainder value obtained by dividing the UE identifier (UENum) by the first value (divNum) matches the second value (remainerNum) included in the AP connection control information. Check.
  • the processor 160 connects to the AP 300 in step S104. Control to establish. Specifically, the processor 160 transmits a connection request to the AP 300 from the WLAN communication unit 112 to the AP 300.
  • the connection permission condition for allowing the connection with the AP 300 is that the remainder obtained by dividing the UE identifier (UENum) by the first value (divNum) is the second value (reminderNum). ).
  • the AP connection rate according to the load level of the eNB 200 can be realized by increasing or decreasing the quantity of the first value (divNum) according to the load level of the eNB 200.
  • the AP connection rate according to the load level of the eNB 200 can be realized by expanding or reducing the numerical range of the second value (reminderNum) according to the load level of the eNB 200.
  • the processor 160 establishes a connection with the AP 300. Control not to. Specifically, the processor 160 switches the WLAN communication unit 112 to an off state. Alternatively, the processor 160 may stop decoding the beacon signal or transmitting it to the AP 300 while keeping the WLAN communication unit 112 on.
  • the eNB 200 transmits AP connection control information for randomly selecting the UE 100 that is allowed to connect to the AP 300.
  • the UE 100 controls not to establish a connection with the AP 300 when the UE identifier does not satisfy the connection permission condition defined by the AP connection control information received from the eNB 200.
  • a connection destination can be selected by the UE 100 itself from the eNB 200 and the AP 300, a plurality of UEs 100 can be prevented from starting connection processing to the AP 300 all at once.
  • the AP connection control information is set based on the load level of the eNB 200. Thereby, it can avoid that the load level of eNB200 becomes too large or too small.
  • the AP connection control information is set such that the higher the load level of the eNB 200, the higher the probability that the connection with the AP 300 is allowed. Thereby, when the load level of eNB200 is high, the active offload to AP300 is realizable.
  • the AP connection control information includes a first value (divNum) and a second value (reminderNum).
  • the UE 100 controls not to establish a connection with the AP 300 when the result of calculating the UE identifier and the first value (divNum) does not match the second value (reminderNum).
  • FIG. 10 is an operation sequence diagram according to the second embodiment.
  • step S ⁇ b> 21 the processor 240 of the eNB 200 transmits a timer information table to the UE 100.
  • the processor 240 may transmit the timer information table to the UE 100 by broadcasting. Further, the processor 240 may periodically transmit the timer information table. Alternatively, the eNB 200 may receive information on whether or not the WLAN communication unit 112 is in the ON state from the UE 100, and transmit the timer information table by unicast to the UE 100 in which the WLAN communication unit 112 is in the ON state. .
  • FIG. 11 is a diagram showing a specific example of the timer information table.
  • the timer information table is a table in which a waiting time (waiting time until connection to the AP 300) is associated with each predetermined numerical range.
  • the waiting time is defined in subframe time units.
  • the cellular communication unit 111 of the UE 100 receives the timer information table from the eNB 200.
  • the memory 150 stores the timer information table received by the cellular communication unit 111.
  • the processor 160 determines whether or not to establish a connection with the AP 300 based on the timer information table. Below, operation
  • FIG. 12 is an operation flow diagram of the UE 100 according to the second embodiment.
  • the UE 100 has already received the timer information table from the eNB 200.
  • the case where the WLAN communication part 112 of UE100 is an ON state is assumed.
  • step S201 the processor 160 of the UE 100 determines whether or not the connection with the AP 300 is possible. For example, when the reception level of the beacon signal from the AP 300 is equal to or higher than the threshold, the UE 100 determines that the connection with the AP 300 is possible. Further, the UE 100 may determine that the connection with the AP 300 is possible when the AP load level information (that is, the load level of the AP 300) included in the beacon signal from the AP 300 is less than the threshold.
  • the AP load level information that is, the load level of the AP 300
  • step S201 If it is determined that the connection with the AP 300 is possible (step S201: Yes), the processor 160 generates a random number in step S202. For example, the processor 160 generates a random number within a numerical range from 0 to 99.
  • step S203 the processor 160 specifies the waiting time corresponding to the numerical range to which the random number generated in step S202 belongs based on the timer information table stored in the memory 150. For example, if the value of the random number is “57”, the time for 25 subframes is specified as the waiting time (see FIG. 11). That is, the processor 160 determines the timing after 25 subframes as the AP connection start timing for starting the connection with the AP 300. Then, the processor 160 starts the timer after setting the specified waiting time in the timer.
  • step S204 the processor 160 acquires AP load level information (that is, the load level of the AP 300) included in the beacon signal that the WLAN communication unit 112 receives from the AP 300.
  • AP load level information that is, the load level of the AP 300
  • step S205 the processor 160 confirms whether or not the load level of the AP 300 acquired in step S204 exceeds a threshold value. If the load level of the AP 300 exceeds the threshold (step S205: Yes), the process ends without establishing a connection with the AP 300.
  • step S206 the processor 160 determines whether or not the timer has expired (that is, whether the waiting time has elapsed). Confirm).
  • step S207 the processor 160 controls to establish a connection with the AP 300. Specifically, the processor 160 transmits a connection request to the AP 300 from the WLAN communication unit 112 to the AP 300.
  • step S206 No
  • the processor 160 returns the process to step S204.
  • UE100 which concerns on 2nd Embodiment delays AP connection start timing which starts the connection with AP300 according to a random number, when it is judged that the connection with AP300 is started. Thereby, even when a connection destination can be selected by the UE 100 itself from the eNB 200 and the AP 300, a plurality of UEs 100 can be prevented from starting connection processing to the AP 300 all at once.
  • the UE 100 acquires information indicating the load level of the AP 300 during the waiting time until the AP connection start timing.
  • the UE 100 stops the connection with the AP 300.
  • the waiting time until the AP connection start timing can be effectively utilized. Further, it is possible to prevent establishment of a connection with the AP 300 whose sufficient throughput cannot be expected.
  • the UE 100 specifies the waiting time corresponding to the numerical range to which the random number belongs based on the timer information table. And UE100 determines AP connection start timing from the specified waiting time. Thereby, AP connection start timing can be determined appropriately.
  • the timer information table is set from the eNB 200.
  • the timer information table suitable for the communication environment in the coverage of eNB200 can be set to UE100.
  • the AP connection control information includes the first value (divNum) and the second value (reminderNum).
  • the AP connection control information may be a single threshold value, for example.
  • the UE 100 determines whether or not AP connection is possible depending on whether or not the UE identifier exceeds a threshold value.
  • the timer information table is set from the eNB 200.
  • the UE 100 may hold a timer information table in advance.
  • the LTE system has been described as an example of the cellular communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to systems other than the LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

User equipment (UE) (100), which supports cellular communication and WLAN communication, stores an identifier associated with the UE (100). The UE (100) receives, from an evolved Node B (eNB) (200), connection control information for randomly selecting a UE (100) which is permitted to connect with an access point (AP) (300). The UE (100) performs control such that a connection with the AP (300) is not established if the identifier does not satisfy connection permission conditions defined by the control connection information.

Description

ユーザ端末及びプロセッサUser terminal and processor
 本発明は、無線LANシステム(WLANシステム)と連携可能なセルラ通信システムにおいて用いられるユーザ端末及びプロセッサに関する。 The present invention relates to a user terminal and a processor used in a cellular communication system capable of cooperating with a wireless LAN system (WLAN system).
 近年、セルラ通信部及びWLAN通信部を有するユーザ端末(いわゆる、デュアル端末)の普及が進んでいる。また、セルラ通信システムのオペレータにより管理されるWLANアクセスポイント(以下、単に「アクセスポイント」という)が増加している。 In recent years, user terminals (so-called dual terminals) having a cellular communication unit and a WLAN communication unit are becoming popular. In addition, the number of WLAN access points (hereinafter simply referred to as “access points”) managed by operators of cellular communication systems is increasing.
 そこで、セルラ通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、セルラ通信システムとWLANシステムとの連携を強化できる技術が検討される予定である(非特許文献1参照)。 Therefore, in 3GPP (3rd Generation Partnership Project), which is a standardization project for cellular communication systems, a technique that can strengthen the cooperation between the cellular communication system and the WLAN system is planned to be studied (see Non-Patent Document 1).
 このような技術の目的の一つは、アクセスポイントの使用率を向上させることにより、セルラ基地局及びアクセスポイントで負荷レベルのバランスをとることである。 One of the purposes of such technology is to balance the load level at the cellular base station and the access point by improving the usage rate of the access point.
 セルラ基地局及びアクセスポイントのそれぞれの通信状況をユーザ端末が比較して、セルラ基地局及びアクセスポイントの中から接続先をユーザ端末自身で選択できる場合を想定する。 It is assumed that the user terminal compares the communication status of the cellular base station and the access point, and the user terminal can select the connection destination from the cellular base station and the access point.
 この場合、複数のユーザ端末が、同じアクセスポイントを接続先として選択し、そのアクセスポイントに対して一斉に接続処理を開始し得る。従って、接続処理の競合により、アクセスポイントとの接続を確立できないユーザ端末が生じる虞がある。 In this case, a plurality of user terminals can select the same access point as a connection destination and start connection processing for the access points all at once. Therefore, there may be a user terminal that cannot establish a connection with an access point due to a conflict in connection processing.
 また、これらユーザ端末の全てがアクセスポイントとの接続を確立できても、アクセスポイントの負荷レベルが上昇することにより、十分なスループットを確保できなかったり、セルラ基地局の未使用リソースが過多になったりする問題がある。 Even if all of these user terminals can establish a connection with an access point, the load level of the access point increases, so that sufficient throughput cannot be ensured or the unused resources of the cellular base station are excessive. There is a problem.
 そこで、本発明は、複数のユーザ端末が同じアクセスポイントに対して一斉に接続することによる不具合を解消することを目的とする。 Therefore, an object of the present invention is to solve a problem caused by a plurality of user terminals connecting to the same access point all at once.
 第1の特徴に係るユーザ端末は、セルラ通信及びWLAN通信をサポートする。前記ユーザ端末は、前記ユーザ端末と関連付けられている識別子を記憶する記憶部と、アクセスポイントとの接続が許容されるユーザ端末をランダムに選出するための接続制御情報をセルラ基地局から受信する受信部と、前記接続制御情報により定められる接続許可条件を前記識別子が満たしていない場合に、前記アクセスポイントとの接続を確立しないよう制御する制御部と、を備える。 The user terminal according to the first feature supports cellular communication and WLAN communication. The user terminal receives from the cellular base station, a storage unit that stores an identifier associated with the user terminal, and connection control information for randomly selecting a user terminal that is allowed to connect to the access point. And a control unit that controls not to establish a connection with the access point when the identifier does not satisfy a connection permission condition defined by the connection control information.
 第2の特徴に係るユーザ端末は、セルラ通信及びWLAN通信をサポートする。前記ユーザ端末は、アクセスポイントとの接続を開始すると判断した場合において、前記アクセスポイントとの接続を開始する開始タイミングを乱数に応じて遅延させる制御部を備える。 The user terminal according to the second feature supports cellular communication and WLAN communication. The user terminal includes a control unit that delays a start timing for starting connection with the access point according to a random number when it is determined to start connection with the access point.
 本発明によれば、複数のユーザ端末が同じアクセスポイントに対して一斉に接続することによる不具合を解消できる。 According to the present invention, it is possible to solve problems caused by a plurality of user terminals connecting to the same access point all at once.
第1実施形態及び第2実施形態に係るシステム構成図である。It is a system configuration figure concerning a 1st embodiment and a 2nd embodiment. 第1実施形態及び第2実施形態に係るUE(ユーザ端末)のブロック図である。It is a block diagram of UE (user terminal) concerning a 1st embodiment and a 2nd embodiment. 第1実施形態及び第2実施形態に係るeNB(セルラ基地局)のブロック図である。It is a block diagram of eNB (cellular base station) which concerns on 1st Embodiment and 2nd Embodiment. 第1実施形態及び第2実施形態に係るAP(アクセスポイント)のブロック図である。It is a block diagram of AP (access point) which concerns on 1st Embodiment and 2nd Embodiment. LTEシステムにおける無線インターフェイスのプロトコルスタック図である。It is a protocol stack figure of the radio | wireless interface in a LTE system. LTEシステムで使用される無線フレームの構成図である。It is a block diagram of the radio | wireless frame used with a LTE system. 第1実施形態及び第2実施形態に係る動作環境を説明するための図である。It is a figure for demonstrating the operating environment which concerns on 1st Embodiment and 2nd Embodiment. 第1実施形態に係る動作シーケンス図である。It is an operation | movement sequence diagram which concerns on 1st Embodiment. 第1実施形態に係るUEの動作フロー図である。It is an operation | movement flowchart of UE which concerns on 1st Embodiment. 第2実施形態に係る動作シーケンス図である。It is an operation | movement sequence diagram which concerns on 2nd Embodiment. 第2実施形態に係るタイマ情報テーブルの具体例を示す図である。It is a figure which shows the specific example of the timer information table which concerns on 2nd Embodiment. 第2実施形態に係るUEの動作フロー図である。It is an operation | movement flowchart of UE which concerns on 2nd Embodiment.
 [実施形態の概要]
 第1実施形態に係るユーザ端末は、セルラ通信及びWLAN通信をサポートする。前記ユーザ端末は、前記ユーザ端末と関連付けられている識別子を記憶する記憶部と、アクセスポイントとの接続が許容されるユーザ端末をランダムに選出するための接続制御情報をセルラ基地局から受信する受信部と、前記接続制御情報により定められる接続許可条件を前記識別子が満たしていない場合に、前記アクセスポイントとの接続を確立しないよう制御する制御部と、を備える。
[Outline of Embodiment]
The user terminal according to the first embodiment supports cellular communication and WLAN communication. The user terminal receives from the cellular base station, a storage unit that stores an identifier associated with the user terminal, and connection control information for randomly selecting a user terminal that is allowed to connect to the access point. And a control unit that controls not to establish a connection with the access point when the identifier does not satisfy a connection permission condition defined by the connection control information.
 第1実施形態では、前記接続制御情報は、前記セルラ基地局の負荷レベルに基づいて設定される。 In the first embodiment, the connection control information is set based on the load level of the cellular base station.
 第1実施形態では、前記接続制御情報は、前記セルラ基地局の負荷レベルが高いほど、前記アクセスポイントとの接続が許容される確率が高くなるように設定される。 In the first embodiment, the connection control information is set such that the higher the load level of the cellular base station, the higher the probability that connection with the access point is permitted.
 第1実施形態では、前記接続制御情報は、第1の値及び第2の値を含み、前記制御部は、前記識別子と前記第1の値とを演算した結果が前記第2の値と一致しない場合に、前記アクセスポイントとの接続を確立しないよう制御する。 In the first embodiment, the connection control information includes a first value and a second value, and the control unit calculates a result of calculating the identifier and the first value that matches the second value. If not, control is performed so as not to establish a connection with the access point.
 第1実施形態に係るプロセッサは、セルラ通信及びWLAN通信をサポートするユーザ端末に備えられる。前記プロセッサは、アクセスポイントとの接続が許容されるユーザ端末をランダムに選出するための接続制御情報をセルラ基地局から受信するステップと、前記接続制御情報により定められる接続許可条件を、前記ユーザ端末と関連付けられている識別子が満たしていない場合に、前記アクセスポイントとの接続を確立しないよう制御するステップと、を実行する。 The processor according to the first embodiment is provided in a user terminal that supports cellular communication and WLAN communication. The processor receives, from a cellular base station, connection control information for randomly selecting a user terminal that is allowed to connect to an access point, and a connection permission condition defined by the connection control information. And controlling to not establish a connection with the access point when the identifier associated with is not satisfied.
 第2実施形態に係るユーザ端末は、セルラ通信及びWLAN通信をサポートする。前記ユーザ端末は、アクセスポイントとの接続を開始すると判断した場合において、前記アクセスポイントとの接続を開始する開始タイミングを乱数に応じて遅延させる制御部を備える。 The user terminal according to the second embodiment supports cellular communication and WLAN communication. The user terminal includes a control unit that delays a start timing for starting connection with the access point according to a random number when it is determined to start connection with the access point.
 第2実施形態では、前記制御部は、前記開始タイミングまでの待ち時間において、前記アクセスポイントの負荷レベルを示す情報を取得する。前記制御部は、取得した負荷レベルが閾値を上回る場合には、前記アクセスポイントとの接続を中止する。 In the second embodiment, the control unit acquires information indicating the load level of the access point during the waiting time until the start timing. When the acquired load level exceeds a threshold value, the control unit stops connection with the access point.
 第2実施形態では、所定の数値範囲ごとに待ち時間を対応付けたテーブルを記憶する記憶部をさらに備える。前記制御部は、前記テーブルに基づいて、前記乱数が属する数値範囲に対応する前記待ち時間を特定する。前記制御部は、特定した待ち時間から前記開始タイミングを決定する。 The second embodiment further includes a storage unit that stores a table in which waiting times are associated with each predetermined numerical range. The control unit specifies the waiting time corresponding to a numerical range to which the random number belongs based on the table. The control unit determines the start timing from the specified waiting time.
 第2実施形態では、前記テーブルは、セルラ基地局から設定される。 In the second embodiment, the table is set from a cellular base station.
 第2実施形態に係るプロセッサは、セルラ通信及びWLAN通信をサポートするユーザ端末に備えられる。前記プロセッサは、アクセスポイントとの接続を開始すると判断した場合において、前記アクセスポイントとの接続を開始する開始タイミングを乱数に応じて遅延させる。 The processor according to the second embodiment is provided in a user terminal that supports cellular communication and WLAN communication. When the processor determines to start the connection with the access point, the processor delays the start timing for starting the connection with the access point according to the random number.
 [第1実施形態]
 以下、図面を参照して、3GPP規格に準拠して構成されるセルラ通信システム(LTEシステム)を無線LAN(WLAN)システムと連携させる場合の実施形態を説明する。
[First Embodiment]
Hereinafter, an embodiment in the case where a cellular communication system (LTE system) configured in conformity with the 3GPP standard is linked with a wireless LAN (WLAN) system will be described with reference to the drawings.
 (システム構成)
 図1は、実施形態に係るシステム構成図である。図1に示すように、セルラ通信システムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10は、無線アクセスネットワークに相当する。EPC20は、コアネットワークに相当する。
(System configuration)
FIG. 1 is a system configuration diagram according to the embodiment. As shown in FIG. 1, the cellular communication system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20. The E-UTRAN 10 corresponds to a radio access network. The EPC 20 corresponds to a core network.
 UE100は、移動型の無線通信装置であり、接続を確立したセルとの無線通信を行う。UE100はユーザ端末に相当する。UE100は、セルラ通信及びWLAN通信の両通信方式をサポートする端末(デュアル端末)である。 The UE 100 is a mobile radio communication device, and performs radio communication with a cell that has established a connection. UE100 is corresponded to a user terminal. The UE 100 is a terminal (dual terminal) that supports both cellular communication and WLAN communication methods.
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200はセルラ基地局に相当する。eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。また、eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。 The E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B). The eNB 200 corresponds to a cellular base station. The eNB 200 manages one or a plurality of cells, and performs radio communication with the UE 100 that has established a connection with the own cell. Note that “cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100. The eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介して、EPC20に含まれるMME/S-GW500と接続される。 The eNB 200 is connected to each other via the X2 interface. The eNB 200 is connected to the MME / S-GW 500 included in the EPC 20 via the S1 interface.
 EPC20は、複数のMME(Mobility Management Entity)/S-GW(Serving-Gateway)500を含む。MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。 The EPC 20 includes a plurality of MME (Mobility Management Entity) / S-GW (Serving-Gateway) 500. The MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station. The S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
 WLANシステムは、WLANアクセスポイント(以下、「AP」と称する)300を含む。WLANシステムは、例えばIEEE 802.11諸規格に準拠して構成される。AP300は、セルラ周波数帯とは異なる周波数帯(WLAN周波数帯)でUE100との通信を行う。AP300は、ルータなどを介してEPC20に接続される。 The WLAN system includes a WLAN access point (hereinafter referred to as “AP”) 300. The WLAN system is configured in accordance with, for example, IEEE 802.11 standards. The AP 300 communicates with the UE 100 in a frequency band (WLAN frequency band) different from the cellular frequency band. The AP 300 is connected to the EPC 20 via a router or the like.
 また、eNB200及びAP300が個別に配置される場合に限らず、eNB200及びAP300が同じ場所に配置(Collocated)されていてもよい。Collocatedの一形態として、eNB200及びAP300がオペレータの任意のインターフェイスで直接的に接続されていてもよい。 Also, the eNB 200 and the AP 300 are not limited to being individually arranged, and the eNB 200 and the AP 300 may be arranged at the same location (Collocated). As one form of Collated, the eNB 200 and the AP 300 may be directly connected by an arbitrary interface of the operator.
 次に、UE100、eNB200、及びAP300の構成を説明する。 Next, configurations of the UE 100, the eNB 200, and the AP 300 will be described.
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101及び102と、セルラ通信部111と、WLAN通信部112と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。 FIG. 2 is a block diagram of the UE 100. As shown in FIG. 2, the UE 100 includes antennas 101 and 102, a cellular communication unit 111, a WLAN communication unit 112, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, and a memory. 150 and a processor 160. The memory 150 and the processor 160 constitute a control unit. The UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
 アンテナ101及びセルラ通信部111は、セルラ無線信号の送受信に用いられる。セルラ通信部111は、プロセッサ160が出力するベースバンド信号をセルラ無線信号に変換してアンテナ101から送信する。また、セルラ通信部111は、アンテナ101が受信するセルラ無線信号をベースバンド信号に変換してプロセッサ160に出力する。 The antenna 101 and the cellular communication unit 111 are used for transmitting and receiving cellular radio signals. The cellular communication unit 111 converts the baseband signal output from the processor 160 into a cellular radio signal and transmits it from the antenna 101. In addition, the cellular communication unit 111 converts a cellular radio signal received by the antenna 101 into a baseband signal and outputs it to the processor 160.
 アンテナ102及びWLAN通信部112は、WLAN無線信号の送受信に用いられる。WLAN通信部112は、プロセッサ160が出力するベースバンド信号をWLAN無線信号に変換してアンテナ102から送信する。また、WLAN通信部112は、アンテナ102が受信するWLAN無線信号をベースバンド信号に変換してプロセッサ160に出力する。 The antenna 102 and the WLAN communication unit 112 are used for transmitting and receiving WLAN radio signals. The WLAN communication unit 112 converts the baseband signal output from the processor 160 into a WLAN radio signal and transmits it from the antenna 102. In addition, the WLAN communication unit 112 converts the WLAN radio signal received by the antenna 102 into a baseband signal and outputs the baseband signal to the processor 160.
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの入力を受け付けて、該入力の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。 The user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons. The user interface 120 receives an input from the user and outputs a signal indicating the content of the input to the processor 160. The GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100. The battery 140 stores power to be supplied to each block of the UE 100.
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。 The memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160. The processor 160 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 150 and performs various processes. The processor 160 may further include a codec that performs encoding / decoding of an audio / video signal. The processor 160 executes various processes and various communication protocols described later.
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、セルラ通信部210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。 FIG. 3 is a block diagram of the eNB 200. As illustrated in FIG. 3, the eNB 200 includes an antenna 201, a cellular communication unit 210, a network interface 220, a memory 230, and a processor 240. The memory 230 and the processor 240 constitute a control unit.
 アンテナ201及びセルラ通信部210は、セルラ無線信号の送受信に用いられる。セルラ通信部210は、プロセッサ240が出力するベースバンド信号をセルラ無線信号に変換してアンテナ201から送信する。また、セルラ通信部210は、アンテナ201が受信するセルラ無線信号をベースバンド信号に変換してプロセッサ240に出力する。 The antenna 201 and the cellular communication unit 210 are used for transmitting and receiving cellular radio signals. The cellular communication unit 210 converts the baseband signal output from the processor 240 into a cellular radio signal and transmits it from the antenna 201. In addition, the cellular communication unit 210 converts a cellular radio signal received by the antenna 201 into a baseband signal and outputs it to the processor 240.
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW500と接続される。また、ネットワークインターフェイス220は、EPC20を介したAP300との通信に使用される。 The network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 500 via the S1 interface. The network interface 220 is used for communication with the AP 300 via the EPC 20.
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。 The memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240. The processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes. The processor 240 executes various processes and various communication protocols described later.
 図4は、AP300のブロック図である。図4に示すように、AP300は、アンテナ301と、WLAN通信部311と、ネットワークインターフェイス320と、メモリ330と、プロセッサ340と、を有する。 FIG. 4 is a block diagram of the AP 300. As illustrated in FIG. 4, the AP 300 includes an antenna 301, a WLAN communication unit 311, a network interface 320, a memory 330, and a processor 340.
 アンテナ301及びWLAN通信部311は、WLAN無線信号の送受信に用いられる。WLAN通信部311は、プロセッサ340が出力するベースバンド信号をWLAN無線信号に変換してアンテナ301から送信する。また、WLAN通信部311は、アンテナ301が受信するWLAN無線信号をベースバンド信号に変換してプロセッサ340に出力する。 The antenna 301 and the WLAN communication unit 311 are used for transmitting and receiving WLAN radio signals. The WLAN communication unit 311 converts the baseband signal output from the processor 340 into a WLAN radio signal and transmits it from the antenna 301. In addition, the WLAN communication unit 311 converts the WLAN radio signal received by the antenna 301 into a baseband signal and outputs the baseband signal to the processor 340.
 ネットワークインターフェイス320は、ルータなどを介してEPC20と接続される。また、ネットワークインターフェイス320は、EPC20を介したeNB200との通信に使用される。 The network interface 320 is connected to the EPC 20 via a router or the like. The network interface 320 is used for communication with the eNB 200 via the EPC 20.
 メモリ330は、プロセッサ340によって実行されるプログラムと、プロセッサ340による処理に使用される情報と、を記憶する。プロセッサ340は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ330に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。 The memory 330 stores a program executed by the processor 340 and information used for processing by the processor 340. The processor 340 includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU that executes programs stored in the memory 330 and performs various processes.
 図5は、セルラ通信システムにおける無線インターフェイスのプロトコルスタック図である。図5に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。 FIG. 5 is a protocol stack diagram of a radio interface in the cellular communication system. As shown in FIG. 5, the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer. Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. Layer 3 includes an RRC (Radio Resource Control) layer.
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。 The physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)、及び割当リソースブロックを選択するスケジューラを含む。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200. The MAC layer of the eNB 200 includes a uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and a scheduler that selects allocated resource blocks.
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。 The RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression / decompression and encryption / decryption.
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御メッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100は接続状態(RRC connected state)であり、そうでない場合、UE100はアイドル状態(RRC idle state)である。 The RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200. The RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connected state). Otherwise, the UE 100 is in an idle state (RRC idle state).
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。 The NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
 図6は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。 FIG. 6 is a configuration diagram of a radio frame used in the LTE system. In the LTE system, OFDMA (Orthogonal Frequency Division Multiplexing Access) is applied to the downlink, and SC-FDMA (Single Carrier Frequency Multiple Access) is applied to the uplink.
 図6に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。リソースブロックは、周波数方向に複数個のサブキャリアを含む。 As shown in FIG. 6, the radio frame is composed of ten subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction. The length of each subframe is 1 ms, and the length of each slot is 0.5 ms. Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction. The resource block includes a plurality of subcarriers in the frequency direction.
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。 Among radio resources allocated to the UE 100, frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用できる領域である。また、下りリンクにおいて、各サブフレームには、セル固有参照信号などの参照信号が分散して配置される。 In the downlink, the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH). The remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH). Also, in the downlink, reference signals such as cell-specific reference signals are distributed and arranged in each subframe.
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用できる領域である。 In the uplink, both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH).
 (第1実施形態に係る動作)
 次に、第1実施形態に係る動作について説明する。
(Operation according to the first embodiment)
Next, an operation according to the first embodiment will be described.
 (1)動作環境
 図7は、実施形態に係る動作環境を説明するための図である。図7に示すように、eNB200のカバレッジ内にAP300が設けられている。AP300は、オペレータにより管理されるAP(Operator controlled AP)である。
(1) Operating Environment FIG. 7 is a diagram for explaining the operating environment according to the embodiment. As illustrated in FIG. 7, the AP 300 is provided in the coverage of the eNB 200. The AP 300 is an AP (Operator controlled AP) managed by an operator.
 また、eNB200のカバレッジ内であって、かつAP300のカバレッジ内に複数のUE100が位置している。UE100は、eNB200との接続を確立しており、eNB200とのセルラ通信を行っている。具体的には、UE100は、トラフィック(ユーザデータ)を含んだセルラ無線信号をeNB200と送受信している。或いは、一部のUE100は、eNB200との接続を確立していなくてもよい。 In addition, a plurality of UEs 100 are located within the coverage of the eNB 200 and within the coverage of the AP 300. The UE 100 has established a connection with the eNB 200 and performs cellular communication with the eNB 200. Specifically, the UE 100 transmits and receives a cellular radio signal including traffic (user data) to and from the eNB 200. Or some UE100 does not need to establish the connection with eNB200.
 第1実施形態では、eNB200及びAP300のそれぞれの通信状況をUE100が比較して、eNB200及びAP300の中から接続先をUE100自身で選択できる場合を想定する。 In the first embodiment, it is assumed that the UE 100 compares the communication statuses of the eNB 200 and the AP 300 and can select the connection destination from the eNB 200 and the AP 300 by the UE 100 itself.
 eNB200が多数のUE100との接続を確立する場合、eNB200の負荷レベルが高くなる。負荷レベルとは、eNB200のトラフィック負荷又はeNB200の無線リソース使用率など、eNB200の混雑度を意味する。ここで、UE100とeNB200との間で送受信されるトラフィックの少なくとも一部をWLANシステムに移行(オフロード)させることにより、eNB200のトラフィック負荷をWLANシステムに分散できる。 When the eNB 200 establishes connections with many UEs 100, the load level of the eNB 200 increases. A load level means the congestion degree of eNB200, such as the traffic load of eNB200, or the radio | wireless resource usage rate of eNB200. Here, the traffic load of the eNB 200 can be distributed to the WLAN system by shifting (offloading) at least part of the traffic transmitted and received between the UE 100 and the eNB 200 to the WLAN system.
 そこで、複数のUE100は、AP300へのオフロードを開始し、AP300との接続を確立する。また、複数のUE100は、eNB200との接続を解放する。その結果、複数のUE100が、AP300との接続を確立し、かつeNB200との接続を確立していない状況(アイドル状態)になる。 Therefore, the plurality of UEs 100 start offloading to the AP 300 and establish a connection with the AP 300. Also, the plurality of UEs 100 release the connection with the eNB 200. As a result, a plurality of UEs 100 establish a connection with the AP 300 and do not establish a connection with the eNB 200 (idle state).
 このように、eNB200及びAP300の中から接続先をUE100自身で選択できる場合、複数のUE100が同じAP300を接続先として選択し、そのAP300に対して一斉に接続処理を開始し得る。従って、接続処理の競合により、AP300との接続を確立できないUE100が生じる虞がある。また、これらUE100の全てがAP300との接続を確立できても、AP300の負荷レベルが上昇することにより、十分なスループットを確保できなかったり、eNB200の未使用リソースが過多になったりする問題がある。以下において、このような不具合を解消するための動作について説明する。 In this way, when the connection destination can be selected by the UE 100 itself from the eNB 200 and the AP 300, a plurality of UEs 100 can select the same AP 300 as the connection destination and start connection processing for the AP 300 all at once. Therefore, there is a possibility that a UE 100 that cannot establish a connection with the AP 300 may be generated due to a conflict in connection processing. In addition, even if all of these UEs 100 can establish a connection with the AP 300, there is a problem that sufficient throughput cannot be ensured due to an increase in the load level of the AP 300, or unused resources of the eNB 200 become excessive. . Hereinafter, an operation for solving such a problem will be described.
 (2)動作シーケンス
 図8は、第1実施形態に係る動作シーケンス図である。
(2) Operation Sequence FIG. 8 is an operation sequence diagram according to the first embodiment.
 図8に示すように、ステップS11において、eNB200のプロセッサ240は、AP300との接続が許容されるUE100をランダムに選出するためのAP接続制御情報をUE100に送信する。 As illustrated in FIG. 8, in step S <b> 11, the processor 240 of the eNB 200 transmits AP connection control information for randomly selecting the UE 100 that is allowed to connect to the AP 300 to the UE 100.
 無線リソースの使用効率の観点から、プロセッサ240は、AP接続制御情報をブロードキャストでUE100に送信してもよい。また、プロセッサ240は、AP接続制御情報を定期的に送信してもよい。或いは、eNB200は、WLAN通信部112がオン状態であるか否かの情報をUE100から受信し、WLAN通信部112がオン状態であるUE100に対してAP接続制御情報をユニキャストで送信してもよい。 From the viewpoint of radio resource usage efficiency, the processor 240 may transmit the AP connection control information to the UE 100 by broadcasting. Further, the processor 240 may periodically transmit AP connection control information. Alternatively, the eNB 200 receives information on whether or not the WLAN communication unit 112 is on from the UE 100, and transmits the AP connection control information to the UE 100 on which the WLAN communication unit 112 is on by unicast. Good.
 AP接続制御情報は、AP300との接続が許容される接続許可条件を規定する。また、AP接続制御情報は、eNB200の負荷レベルに基づいて設定される。例えば、AP接続制御情報は、eNB200の負荷レベルが高いほど、AP300との接続が許容される確率が高くなるように設定される。AP接続制御情報は、eNB200の負荷レベルが低いほど、AP300との接続が許容される確率が低くなるように設定される。AP接続制御情報の具体例については後述する。 The AP connection control information specifies connection permission conditions for allowing connection with the AP 300. The AP connection control information is set based on the load level of the eNB 200. For example, the AP connection control information is set such that the higher the load level of the eNB 200, the higher the probability that the connection with the AP 300 is permitted. The AP connection control information is set such that the lower the load level of the eNB 200, the lower the probability that the connection with the AP 300 is allowed. A specific example of the AP connection control information will be described later.
 UE100のメモリ150は、UE100と関連付けられているUE識別子を記憶している。UE識別子は、eNB200から割り当てられる一時的な識別子を示すC-RNTI(Cell-Radio Network Temporary Identifier)である。或いは、UE識別子は、UE100に予め割り当てられているユニークな識別子、UE100のユーザに割り当てられている加入者識別子、UE100の属性に応じて設定された識別子(例えば、アクセスクラス識別子)の何れかであってもよい。 The memory 150 of the UE 100 stores a UE identifier associated with the UE 100. The UE identifier is a C-RNTI (Cell-Radio Network Temporary Identifier) indicating a temporary identifier assigned from the eNB 200. Alternatively, the UE identifier is one of a unique identifier assigned in advance to the UE 100, a subscriber identifier assigned to the user of the UE 100, and an identifier (for example, an access class identifier) set according to the attribute of the UE 100. There may be.
 UE100のセルラ通信部111は、eNB200からのAP接続制御情報を受信する。プロセッサ160は、セルラ通信部111が受信したAP接続制御情報と、メモリ150に記憶されているUE識別子と、に基づいてAP300との接続を確立するか否かを判断する。以下において、UE100の動作について説明する。 The cellular communication unit 111 of the UE 100 receives AP connection control information from the eNB 200. The processor 160 determines whether or not to establish a connection with the AP 300 based on the AP connection control information received by the cellular communication unit 111 and the UE identifier stored in the memory 150. Below, operation | movement of UE100 is demonstrated.
 (3)UE動作フロー
 図9は、第1実施形態に係るUE100の動作フロー図である。ここでは、UE100がeNB200からのAP接続制御情報を受信済みである場合を想定する。また、UE100のWLAN通信部112がオン状態である場合を想定する。
(3) UE Operation Flow FIG. 9 is an operation flow diagram of the UE 100 according to the first embodiment. Here, it is assumed that the UE 100 has already received the AP connection control information from the eNB 200. Moreover, the case where the WLAN communication part 112 of UE100 is an ON state is assumed.
 図9に示すように、ステップS101において、UE100のプロセッサ160は、AP300との接続が可能な状態であるか否かを判断する。例えば、UE100は、AP300からのビーコン信号の受信レベルが閾値以上である場合には、AP300との接続が可能な状態であると判断する。さらに、UE100は、AP300からのビーコン信号に含まれるAP負荷レベル情報(すなわち、AP300の負荷レベル)が閾値未満である場合に、AP300との接続が可能な状態であると判断してもよい。 As shown in FIG. 9, in step S101, the processor 160 of the UE 100 determines whether or not the connection with the AP 300 is possible. For example, when the reception level of the beacon signal from the AP 300 is equal to or higher than the threshold, the UE 100 determines that the connection with the AP 300 is possible. Further, the UE 100 may determine that the connection with the AP 300 is possible when the AP load level information (that is, the load level of the AP 300) included in the beacon signal from the AP 300 is less than the threshold.
 AP300との接続が可能な状態であると判断した場合(ステップS101:Yes)、ステップS102において、プロセッサ160は、AP接続制御情報に含まれる第1の値(divNum)と、メモリ150に記憶されているUE識別子(UENum)と、を演算する。第1実施形態では、プロセッサ160は、UE識別子(UENum)を第1の値(divNum)で除算した余りを算出する。 When it is determined that the connection with the AP 300 is possible (step S101: Yes), the processor 160 stores the first value (divNum) included in the AP connection control information and the memory 150 in step S102. And a UE identifier (UENum). In the first embodiment, the processor 160 calculates a remainder obtained by dividing the UE identifier (UENum) by the first value (divNum).
 ステップS103において、プロセッサ160は、UE識別子(UENum)を第1の値(divNum)で除算した余りの値が、AP接続制御情報に含まれる第2の値(remainderNum)と一致するか否かを確認する。 In step S103, the processor 160 determines whether or not a remainder value obtained by dividing the UE identifier (UENum) by the first value (divNum) matches the second value (remainerNum) included in the AP connection control information. Check.
 UE識別子(UENum)を第1の値(divNum)で除算した余りの値が第2の値(remainderNum)と一致する場合(ステップS103:Yes)、ステップS104において、プロセッサ160は、AP300との接続を確立するよう制御する。具体的には、プロセッサ160は、AP300への接続要求をWLAN通信部112からAP300に送信する。 When the remainder value obtained by dividing the UE identifier (UENum) by the first value (divNum) matches the second value (reminderNum) (step S103: Yes), the processor 160 connects to the AP 300 in step S104. Control to establish. Specifically, the processor 160 transmits a connection request to the AP 300 from the WLAN communication unit 112 to the AP 300.
 このように、第1実施形態では、AP300との接続が許容される接続許可条件は、UE識別子(UENum)を第1の値(divNum)で除算した余りの値が、第2の値(remainderNum)と一致することである。 As described above, in the first embodiment, the connection permission condition for allowing the connection with the AP 300 is that the remainder obtained by dividing the UE identifier (UENum) by the first value (divNum) is the second value (reminderNum). ).
 尚、eNB200の負荷レベルに応じて第1の値(divNum)の数量を増大又は減少することにより、eNB200の負荷レベルに応じたAP接続率を実現できる。或いは、eNB200の負荷レベルに応じて第2の値(remainderNum)の数値範囲を拡大又は縮小することにより、eNB200の負荷レベルに応じたAP接続率を実現できる。 In addition, the AP connection rate according to the load level of the eNB 200 can be realized by increasing or decreasing the quantity of the first value (divNum) according to the load level of the eNB 200. Alternatively, the AP connection rate according to the load level of the eNB 200 can be realized by expanding or reducing the numerical range of the second value (reminderNum) according to the load level of the eNB 200.
 一方、UE識別子(UENum)を第1の値(divNum)で除算した余りの値が第2の値(remainderNum)と一致しない場合(ステップS103:No)、プロセッサ160は、AP300との接続を確立しないよう制御する。具体的には、プロセッサ160は、WLAN通信部112をオフ状態に切り替える。或いは、プロセッサ160は、WLAN通信部112をオン状態に維持しつつ、ビーコン信号のデコード又はAP300への送信を中止してもよい。 On the other hand, when the remainder obtained by dividing the UE identifier (UENum) by the first value (divNum) does not match the second value (reminderNum) (step S103: No), the processor 160 establishes a connection with the AP 300. Control not to. Specifically, the processor 160 switches the WLAN communication unit 112 to an off state. Alternatively, the processor 160 may stop decoding the beacon signal or transmitting it to the AP 300 while keeping the WLAN communication unit 112 on.
 (第1実施形態のまとめ)
 第1実施形態に係るeNB200は、AP300との接続が許容されるUE100をランダムに選出するためのAP接続制御情報を送信する。UE100は、eNB200から受信したAP接続制御情報により定められる接続許可条件をUE識別子が満たしていない場合に、AP300との接続を確立しないよう制御する。これにより、eNB200及びAP300の中から接続先をUE100自身で選択できる場合でも、複数のUE100がAP300に対して一斉に接続処理を開始することを抑制できる。
(Summary of the first embodiment)
The eNB 200 according to the first embodiment transmits AP connection control information for randomly selecting the UE 100 that is allowed to connect to the AP 300. The UE 100 controls not to establish a connection with the AP 300 when the UE identifier does not satisfy the connection permission condition defined by the AP connection control information received from the eNB 200. Thereby, even when a connection destination can be selected by the UE 100 itself from the eNB 200 and the AP 300, a plurality of UEs 100 can be prevented from starting connection processing to the AP 300 all at once.
 第1実施形態では、AP接続制御情報は、eNB200の負荷レベルに基づいて設定される。これにより、eNB200の負荷レベルが過大又は過小になることを回避できる。 In the first embodiment, the AP connection control information is set based on the load level of the eNB 200. Thereby, it can avoid that the load level of eNB200 becomes too large or too small.
 第1実施形態では、AP接続制御情報は、eNB200の負荷レベルが高いほど、AP300との接続が許容される確率が高くなるように設定される。これにより、eNB200の負荷レベルが高い場合に、AP300への積極的なオフロードを実現できる。 In the first embodiment, the AP connection control information is set such that the higher the load level of the eNB 200, the higher the probability that the connection with the AP 300 is allowed. Thereby, when the load level of eNB200 is high, the active offload to AP300 is realizable.
 第1実施形態では、AP接続制御情報は、第1の値(divNum)及び第2の値(remainderNum)を含む。UE100は、UE識別子と第1の値(divNum)とを演算した結果が第2の値(remainderNum)と一致しない場合に、AP300との接続を確立しないよう制御する。これにより、AP300との接続が許容されるUE100のランダム化を実現できるため、UE間で公平性を確保できる。 In the first embodiment, the AP connection control information includes a first value (divNum) and a second value (reminderNum). The UE 100 controls not to establish a connection with the AP 300 when the result of calculating the UE identifier and the first value (divNum) does not match the second value (reminderNum). Thereby, since randomization of UE100 in which connection with AP300 is permitted is realizable, fairness is securable between UE.
 [第2実施形態]
 第2実施形態について、第1実施形態との相違点を主として説明する。
[Second Embodiment]
The second embodiment will be described mainly with respect to differences from the first embodiment.
 第2実施形態では、複数のUE100が同じAP300に対して一斉に接続することによる不具合を解消するための他の動作について説明する。尚、第2実施形態のシステム構成及び動作環境については、第1実施形態と同様である。 In the second embodiment, another operation for solving problems caused by a plurality of UEs 100 connecting to the same AP 300 all at once will be described. The system configuration and operating environment of the second embodiment are the same as those of the first embodiment.
 (1)動作シーケンス
 図10は、第2実施形態に係る動作シーケンス図である。
(1) Operation Sequence FIG. 10 is an operation sequence diagram according to the second embodiment.
 図10に示すように、ステップS21において、eNB200のプロセッサ240は、タイマ情報テーブルをUE100に送信する。 As illustrated in FIG. 10, in step S <b> 21, the processor 240 of the eNB 200 transmits a timer information table to the UE 100.
 無線リソースの使用効率の観点から、プロセッサ240は、タイマ情報テーブルをブロードキャストでUE100に送信してもよい。また、プロセッサ240は、タイマ情報テーブルを定期的に送信してもよい。或いは、eNB200は、WLAN通信部112がオン状態であるか否かの情報をUE100から受信し、WLAN通信部112がオン状態であるUE100に対してタイマ情報テーブルをユニキャストで送信してもよい。 From the viewpoint of radio resource usage efficiency, the processor 240 may transmit the timer information table to the UE 100 by broadcasting. Further, the processor 240 may periodically transmit the timer information table. Alternatively, the eNB 200 may receive information on whether or not the WLAN communication unit 112 is in the ON state from the UE 100, and transmit the timer information table by unicast to the UE 100 in which the WLAN communication unit 112 is in the ON state. .
 図11は、タイマ情報テーブルの具体例を示す図である。図11に示すように、タイマ情報テーブルは、所定の数値範囲ごとに待ち時間(AP300に接続するまでの待ち時間)を対応付けたテーブルである。本具体例では、待ち時間は、サブフレーム時間単位で規定されている。 FIG. 11 is a diagram showing a specific example of the timer information table. As shown in FIG. 11, the timer information table is a table in which a waiting time (waiting time until connection to the AP 300) is associated with each predetermined numerical range. In this specific example, the waiting time is defined in subframe time units.
 UE100のセルラ通信部111は、eNB200からのタイマ情報テーブルを受信する。メモリ150は、セルラ通信部111が受信したタイマ情報テーブルを記憶する。プロセッサ160は、タイマ情報テーブルに基づいてAP300との接続を確立するか否かを判断する。以下において、UE100の動作について説明する。 The cellular communication unit 111 of the UE 100 receives the timer information table from the eNB 200. The memory 150 stores the timer information table received by the cellular communication unit 111. The processor 160 determines whether or not to establish a connection with the AP 300 based on the timer information table. Below, operation | movement of UE100 is demonstrated.
 (2)UE動作フロー
 図12は、第2実施形態に係るUE100の動作フロー図である。ここでは、UE100がeNB200からのタイマ情報テーブルを受信済みである場合を想定する。また、UE100のWLAN通信部112がオン状態である場合を想定する。
(2) UE operation flow FIG. 12 is an operation flow diagram of the UE 100 according to the second embodiment. Here, it is assumed that the UE 100 has already received the timer information table from the eNB 200. Moreover, the case where the WLAN communication part 112 of UE100 is an ON state is assumed.
 図12に示すように、ステップS201において、UE100のプロセッサ160は、AP300との接続が可能な状態であるか否かを判断する。例えば、UE100は、AP300からのビーコン信号の受信レベルが閾値以上である場合には、AP300との接続が可能な状態であると判断する。さらに、UE100は、AP300からのビーコン信号に含まれるAP負荷レベル情報(すなわち、AP300の負荷レベル)が閾値未満である場合に、AP300との接続が可能な状態であると判断してもよい。 As shown in FIG. 12, in step S201, the processor 160 of the UE 100 determines whether or not the connection with the AP 300 is possible. For example, when the reception level of the beacon signal from the AP 300 is equal to or higher than the threshold, the UE 100 determines that the connection with the AP 300 is possible. Further, the UE 100 may determine that the connection with the AP 300 is possible when the AP load level information (that is, the load level of the AP 300) included in the beacon signal from the AP 300 is less than the threshold.
 AP300との接続が可能な状態であると判断した場合(ステップS201:Yes)、ステップS202において、プロセッサ160は、乱数を発生させる。例えば、プロセッサ160は、0から99までの数値範囲内で、乱数を発生させる。 If it is determined that the connection with the AP 300 is possible (step S201: Yes), the processor 160 generates a random number in step S202. For example, the processor 160 generates a random number within a numerical range from 0 to 99.
 ステップS203において、プロセッサ160は、メモリ150に記憶されているタイマ情報テーブルに基づいて、ステップS202で発生させた乱数が属する数値範囲に対応する待ち時間を特定する。例えば、乱数の値が“57”であれば、25サブフレーム分の時間を待ち時間として特定する(図11参照)。すなわち、プロセッサ160は、25サブフレーム後のタイミングを、AP300との接続を開始するAP接続開始タイミングとして決定する。そして、プロセッサ160は、特定した待ち時間をタイマに設定した上で、タイマを起動する。 In step S203, the processor 160 specifies the waiting time corresponding to the numerical range to which the random number generated in step S202 belongs based on the timer information table stored in the memory 150. For example, if the value of the random number is “57”, the time for 25 subframes is specified as the waiting time (see FIG. 11). That is, the processor 160 determines the timing after 25 subframes as the AP connection start timing for starting the connection with the AP 300. Then, the processor 160 starts the timer after setting the specified waiting time in the timer.
 ステップS204において、プロセッサ160は、WLAN通信部112がAP300から受信するビーコン信号に含まれるAP負荷レベル情報(すなわち、AP300の負荷レベル)を取得する。 In step S204, the processor 160 acquires AP load level information (that is, the load level of the AP 300) included in the beacon signal that the WLAN communication unit 112 receives from the AP 300.
 ステップS205において、プロセッサ160は、ステップS204で取得したAP300の負荷レベルが閾値を超えるか否かを確認する。AP300の負荷レベルが閾値を超える場合(ステップS205:Yes)、AP300との接続を確立することなく処理が終了する。 In step S205, the processor 160 confirms whether or not the load level of the AP 300 acquired in step S204 exceeds a threshold value. If the load level of the AP 300 exceeds the threshold (step S205: Yes), the process ends without establishing a connection with the AP 300.
 これに対し、ステップS204で取得したAP300の負荷レベルが閾値以下である場合(ステップS205:No)、ステップS206において、プロセッサ160は、タイマが満了したか否か(すなわち、待ち時間が経過したか否か)を確認する。 On the other hand, when the load level of the AP 300 acquired in step S204 is equal to or less than the threshold value (step S205: No), in step S206, the processor 160 determines whether or not the timer has expired (that is, whether the waiting time has elapsed). Confirm).
 タイマが満了した場合(ステップS206:Yes)、ステップS207において、プロセッサ160は、AP300との接続を確立するよう制御する。具体的には、プロセッサ160は、AP300への接続要求をWLAN通信部112からAP300に送信する。 If the timer has expired (step S206: Yes), in step S207, the processor 160 controls to establish a connection with the AP 300. Specifically, the processor 160 transmits a connection request to the AP 300 from the WLAN communication unit 112 to the AP 300.
 これに対し、タイマが満了していない場合(ステップS206:No)、プロセッサ160は、ステップS204に処理を戻す。 On the other hand, when the timer has not expired (step S206: No), the processor 160 returns the process to step S204.
 (第2実施形態のまとめ)
 第2実施形態に係るUE100は、AP300との接続を開始すると判断した場合において、AP300との接続を開始するAP接続開始タイミングを乱数に応じて遅延させる。これにより、eNB200及びAP300の中から接続先をUE100自身で選択できる場合でも、複数のUE100がAP300に対して一斉に接続処理を開始することを抑制できる。
(Summary of the second embodiment)
UE100 which concerns on 2nd Embodiment delays AP connection start timing which starts the connection with AP300 according to a random number, when it is judged that the connection with AP300 is started. Thereby, even when a connection destination can be selected by the UE 100 itself from the eNB 200 and the AP 300, a plurality of UEs 100 can be prevented from starting connection processing to the AP 300 all at once.
 第2実施形態では、UE100は、AP接続開始タイミングまでの待ち時間において、AP300の負荷レベルを示す情報を取得する。UE100は、取得した負荷レベルが閾値を上回る場合には、AP300との接続を中止する。これにより、AP接続開始タイミングまでの待ち時間を有効活用できる。また、十分なスループットが見込めなくなったAP300との接続を確立しないようにすることができる。 In the second embodiment, the UE 100 acquires information indicating the load level of the AP 300 during the waiting time until the AP connection start timing. When the acquired load level exceeds the threshold value, the UE 100 stops the connection with the AP 300. Thereby, the waiting time until the AP connection start timing can be effectively utilized. Further, it is possible to prevent establishment of a connection with the AP 300 whose sufficient throughput cannot be expected.
 第2実施形態では、UE100は、タイマ情報テーブルに基づいて、乱数が属する数値範囲に対応する待ち時間を特定する。そして、UE100は、特定した待ち時間からAP接続開始タイミングを決定する。これにより、AP接続開始タイミングを適切に決定できる。 In the second embodiment, the UE 100 specifies the waiting time corresponding to the numerical range to which the random number belongs based on the timer information table. And UE100 determines AP connection start timing from the specified waiting time. Thereby, AP connection start timing can be determined appropriately.
 第2実施形態では、タイマ情報テーブルは、eNB200から設定される。これにより、eNB200のカバレッジ内の通信環境に適したタイマ情報テーブルをUE100に設定できる。 In the second embodiment, the timer information table is set from the eNB 200. Thereby, the timer information table suitable for the communication environment in the coverage of eNB200 can be set to UE100.
 [その他の実施形態]
 上述した第1実施形態では、AP接続制御情報は、第1の値(divNum)及び第2の値(remainderNum)を含んでいた。しかしながら、AP接続制御情報は、例えば、単一の閾値であってもよい。この場合、UE100は、UE識別子が閾値を超えるか否かに応じて、AP接続可否を判断する。また、eNB200の負荷レベルに応じて閾値を調整してもよい。
[Other Embodiments]
In the first embodiment described above, the AP connection control information includes the first value (divNum) and the second value (reminderNum). However, the AP connection control information may be a single threshold value, for example. In this case, the UE 100 determines whether or not AP connection is possible depending on whether or not the UE identifier exceeds a threshold value. Moreover, you may adjust a threshold value according to the load level of eNB200.
 上述した第2実施形態では、タイマ情報テーブルはeNB200から設定されていた。しかしながら、UE100が予めタイマ情報テーブルを保持していてもよい。 In the second embodiment described above, the timer information table is set from the eNB 200. However, the UE 100 may hold a timer information table in advance.
 上述した実施形態では、セルラ通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。 In the above-described embodiment, the LTE system has been described as an example of the cellular communication system. However, the present invention is not limited to the LTE system, and the present invention may be applied to systems other than the LTE system.
 なお、日本国特許出願第2013-100778(2013年5月10日出願)の全内容が、参照により、本願に組み込まれている。 Note that the entire content of Japanese Patent Application No. 2013-100788 (filed on May 10, 2013) is incorporated herein by reference.
 本発明によれば、複数のユーザ端末が同じアクセスポイントに対して一斉に接続することによる不具合を解消できる。 According to the present invention, it is possible to solve problems caused by a plurality of user terminals connecting to the same access point all at once.

Claims (10)

  1.  セルラ通信及びWLAN通信をサポートするユーザ端末であって、
     前記ユーザ端末と関連付けられている識別子を記憶する記憶部と、
     アクセスポイントとの接続が許容されるユーザ端末をランダムに選出するための接続制御情報をセルラ基地局から受信する受信部と、
     前記接続制御情報により定められる接続許可条件を前記識別子が満たしていない場合に、前記アクセスポイントとの接続を確立しないよう制御する制御部と、を備えることを特徴とするユーザ端末。
    A user terminal that supports cellular communication and WLAN communication,
    A storage unit for storing an identifier associated with the user terminal;
    A receiving unit for receiving connection control information for randomly selecting a user terminal allowed to connect to an access point from a cellular base station;
    And a control unit that controls not to establish a connection with the access point when the identifier does not satisfy a connection permission condition defined by the connection control information.
  2.  前記接続制御情報は、前記セルラ基地局の負荷レベルに基づいて設定されることを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the connection control information is set based on a load level of the cellular base station.
  3.  前記接続制御情報は、前記セルラ基地局の負荷レベルが高いほど、前記アクセスポイントとの接続が許容される確率が高くなるように設定されることを特徴とする請求項2に記載のユーザ端末。 The user terminal according to claim 2, wherein the connection control information is set such that the higher the load level of the cellular base station, the higher the probability that connection with the access point is allowed.
  4.  前記接続制御情報は、第1の値及び第2の値を含み、
     前記制御部は、前記識別子と前記第1の値とを演算した結果が前記第2の値と一致しない場合に、前記アクセスポイントとの接続を確立しないよう制御することを特徴とする請求項1に記載のユーザ端末。
    The connection control information includes a first value and a second value,
    2. The control unit according to claim 1, wherein when the result of calculating the identifier and the first value does not match the second value, control is performed so as not to establish a connection with the access point. The user terminal described in 1.
  5.  セルラ通信及びWLAN通信をサポートするユーザ端末に備えられるプロセッサであって、
     アクセスポイントとの接続が許容されるユーザ端末をランダムに選出するための接続制御情報をセルラ基地局から受信するステップと、
     前記接続制御情報により定められる接続許可条件を、前記ユーザ端末と関連付けられている識別子が満たしていない場合に、前記アクセスポイントとの接続を確立しないよう制御するステップと、を実行することを特徴とするプロセッサ。
    A processor provided in a user terminal that supports cellular communication and WLAN communication,
    Receiving connection control information for randomly selecting user terminals allowed to connect to the access point from the cellular base station;
    Performing control so as not to establish a connection with the access point when an identifier associated with the user terminal does not satisfy a connection permission condition defined by the connection control information. Processor.
  6.  セルラ通信及びWLAN通信をサポートするユーザ端末であって、
     アクセスポイントとの接続を開始すると判断した場合において、前記アクセスポイントとの接続を開始する開始タイミングを乱数に応じて遅延させる制御部を備えることを特徴とするユーザ端末。
    A user terminal that supports cellular communication and WLAN communication,
    A user terminal comprising: a control unit that delays start timing for starting connection with the access point according to a random number when it is determined to start connection with the access point.
  7.  前記制御部は、前記開始タイミングまでの待ち時間において、前記アクセスポイントの負荷レベルを示す情報を取得し、
     前記制御部は、取得した負荷レベルが閾値を上回る場合には、前記アクセスポイントとの接続を中止することを特徴とする請求項6に記載のユーザ端末。
    The control unit obtains information indicating a load level of the access point in a waiting time until the start timing,
    The said control part stops the connection with the said access point, when the acquired load level exceeds a threshold value, The user terminal of Claim 6 characterized by the above-mentioned.
  8.  所定の数値範囲ごとに待ち時間を対応付けたテーブルを記憶する記憶部をさらに備え、
     前記制御部は、前記テーブルに基づいて、前記乱数が属する数値範囲に対応する前記待ち時間を特定し、
     前記制御部は、特定した待ち時間から前記開始タイミングを決定することを特徴とする請求項6に記載のユーザ端末。
    A storage unit for storing a table in which waiting times are associated with each predetermined numerical range;
    The control unit identifies the waiting time corresponding to a numerical range to which the random number belongs based on the table,
    The said control part determines the said start timing from the specified waiting time, The user terminal of Claim 6 characterized by the above-mentioned.
  9.  前記テーブルは、セルラ基地局から設定されることを特徴とする請求項8に記載のユーザ端末。 The user table according to claim 8, wherein the table is set from a cellular base station.
  10.  セルラ通信及びWLAN通信をサポートするユーザ端末に備えられるプロセッサであって、
     アクセスポイントとの接続を開始すると判断した場合において、前記アクセスポイントとの接続を開始する開始タイミングを乱数に応じて遅延させることを特徴とするプロセッサ。
    A processor provided in a user terminal that supports cellular communication and WLAN communication,
    A processor characterized by delaying a start timing of starting connection with the access point according to a random number when it is determined to start connection with the access point.
PCT/JP2014/062370 2013-05-10 2014-05-08 User terminal and processor WO2014181831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013100778A JP2014220778A (en) 2013-05-10 2013-05-10 User terminal and processor
JP2013-100778 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014181831A1 true WO2014181831A1 (en) 2014-11-13

Family

ID=51867308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062370 WO2014181831A1 (en) 2013-05-10 2014-05-08 User terminal and processor

Country Status (2)

Country Link
JP (1) JP2014220778A (en)
WO (1) WO2014181831A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531089A (en) * 2009-06-18 2012-12-06 テレフオンアクチーボラゲット エル エム エリクソン(パブル) System and method for selecting a network access system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531089A (en) * 2009-06-18 2012-12-06 テレフオンアクチーボラゲット エル エム エリクソン(パブル) System and method for selecting a network access system

Also Published As

Publication number Publication date
JP2014220778A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
US10097966B2 (en) Communication control method and user terminal for selecting synchronization reference of device-to-device (D2D)
US20180014343A1 (en) Mobile communication system, user terminal, base station, processor, and communication control method
US9832799B2 (en) Mobile communication system, user terminal, and base station
US10154518B2 (en) Communication control method, base station, and user terminal
US10492229B2 (en) Communication control method, user terminal, and processor
WO2015170766A1 (en) User terminal and processor
WO2015005316A1 (en) Network device and communication control method
WO2017026409A1 (en) Wireless terminal
JP2015033124A (en) User terminal, cellular base station and processor
WO2016013590A1 (en) User terminal and mobile communication system
JP6153792B2 (en) Network device, user terminal and processor
US10015714B2 (en) Network selection control method, base station, and user terminal
WO2014181829A1 (en) User terminal, cellular base station, and processor
WO2014157397A1 (en) Communication control method, user terminal, and base station
JPWO2016163431A1 (en) User terminal and control method
WO2015005323A1 (en) User equipment, network device, and processor
US20160057792A1 (en) Mobile communication system, base station, and user terminal
WO2014181831A1 (en) User terminal and processor
JP6144442B1 (en) Communication control method and base station
JP2014220777A (en) Communication control method and cellular base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794833

Country of ref document: EP

Kind code of ref document: A1