WO2014171547A1 - Walking test device - Google Patents

Walking test device Download PDF

Info

Publication number
WO2014171547A1
WO2014171547A1 PCT/JP2014/061101 JP2014061101W WO2014171547A1 WO 2014171547 A1 WO2014171547 A1 WO 2014171547A1 JP 2014061101 W JP2014061101 W JP 2014061101W WO 2014171547 A1 WO2014171547 A1 WO 2014171547A1
Authority
WO
WIPO (PCT)
Prior art keywords
walking
test apparatus
respiratory
walking test
measured
Prior art date
Application number
PCT/JP2014/061101
Other languages
French (fr)
Japanese (ja)
Inventor
晃 工藤
喜憲 飛ヶ谷
敏博 野口
勝 高原
Original Assignee
株式会社フクダ産業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フクダ産業 filed Critical 株式会社フクダ産業
Priority to JP2015512543A priority Critical patent/JP6382799B2/en
Publication of WO2014171547A1 publication Critical patent/WO2014171547A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays

Definitions

  • the present invention relates to a walking test apparatus for measuring arterial blood oxygen saturation (hereinafter referred to as “SpO 2 ”) or the like when a measurement subject is walking.
  • SpO 2 arterial blood oxygen saturation
  • Non-Patent Document 1 a 6-minute walking test (hereinafter sometimes referred to as 6MWT) as shown in Non-Patent Document 1 is known.
  • the 6-minute walking test is a test for measuring the maximum distance that can be walked at a self-paced pace for 6 minutes, and is a test for evaluating exercise ability based on the distance. Standardized as an exercise endurance test by the American Thoracic Society (ATS) in 2002.
  • ATS American Thoracic Society
  • the 6-minute walking test the strength of shortness of breath and the feeling of fatigue are evaluated using a modified Borg scale before and after walking and during walking.
  • the modified Borg scale is a scale for evaluating the degree of dyspnea as shown in FIG. 1, and confirming with the measured person which scale of dyspnea is met during walking (direct evaluation). Thus, the state of the person being measured while walking is evaluated.
  • the evaluation based on the modified Borg scale described above is suitable for measuring the relative time course of dyspnea in the same subject.
  • the measured value is influenced by the subjectivity of the subject, there is a problem that the state of the subject cannot be quantitatively evaluated, and there is a limit to the comparison between different groups.
  • the oxygen saturation (SpO 2 ) can be measured by a 6-minute walking test apparatus worn by the person to be measured, which makes it possible to grasp the state of the person being measured during the walking test.
  • an exercise limiting factor a factor that suppresses the walking distance for 6 minutes
  • the present invention has been made based on such a background, and the purpose of the present invention is to quantitatively evaluate the state of a person to be measured in a walking test such as a 6-minute walking test and to estimate an exercise limiting factor.
  • An object of the present invention is to provide a walking test apparatus that enables this.
  • the walking test apparatus is: Measurement to measure respiratory system items (respiration rate, tidal volume equivalent, minute ventilation equivalent, arterial oxygen saturation) and circulatory system items (pulse rate, arterial oxygen saturation) during walking of the subject
  • a walking test apparatus (1) comprising means (flow sensor 150, nostril cannula 180, face mask 190, pressure sensor 104, SpO 2 module 106, CPU 110), Display means for displaying the change over time of the measurement value related to the respiratory system item and the change over time of the measurement value related to the circulatory system item in a comparable manner (displaying time-series data of each item on a common time axis graph) (LCD 132 with a touch panel) is further provided. According to this, the state of the measurement subject in the walking test can be quantitatively evaluated, and the movement limiting factor can be estimated.
  • the walking test apparatus is: A walking test apparatus described in means 1, wherein The first time point (the inflection point at which the slope decreases and becomes flat) where the change over time of the measurement value related to the respiratory system item falls within the first predetermined range is specified, and the measurement value related to the cardiovascular system item A specifying unit (CPU 110) for specifying a second time point (an inflection point at which the inclination decreases and becomes flat) when the change with time is in the second predetermined range;
  • the display means displays the anteroposterior relationship between the first time point and the second time point so as to be grasped (coordinates on the time axis (X axis) can be grasped). According to this, an exercise
  • the walking test apparatus is: A walking test apparatus described in means 2, A determination unit (CPU 110) for determining whether the exercise limiting factor is a respiratory system or a circulatory system based on the context between the first time point and the second time point;
  • the display means displays the exercise limiting factor discriminated by the discriminating means so as to be grasped. According to this, an exercise limiting factor can be grasped.
  • the walking test apparatus is: A walking test apparatus described in means 3,
  • the determining means determines that the exercise limiting factor is a respiratory system based on the fact that the first time point is earlier than the second time point. According to this, it can be understood that the exercise limiting factor is the respiratory system.
  • the walking test apparatus is: A walking test apparatus described in means 3,
  • the discrimination means discriminates that the movement limiting factor is a circulatory system based on the fact that the second time point is earlier than the first time point. According to this, it can be understood that the movement limiting factor is the circulatory system.
  • the walking test apparatus is: A walking test apparatus described in means 3,
  • the discriminating unit discriminates that the exercise limiting factor is a respiratory system based on the fact that the first time point is earlier than the second time point, and based on the fact that the second time point is earlier than the first time point. It is characterized by discriminating that the movement limiting factor is the circulatory system. According to this, it is possible to grasp whether the exercise limiting factor is the respiratory system or the circulatory system.
  • the discrimination means discriminates that the exercise limiting factor is a muscle force system when neither the first time point nor the second time point is specified. According to this, an exercise
  • the walking test apparatus is: A walking test apparatus described in means 3,
  • the measuring means measures one or more items selected from the respiratory frequency and the ventilation volume (equivalent to tidal volume, equivalent to minute ventilation) as the respiratory system measurement item, and the pulse rate as the circulatory system measurement item Is measured. According to this, it is possible to estimate the exercise limiting factor based on the items that can be easily measured from the measurement subject.
  • the walking test apparatus is: A walking test apparatus described in means 3,
  • the measuring means measures the respiratory frequency and the ventilation volume (equivalent to tidal volume, equivalent to minute ventilation) as the respiratory system measurement items,
  • the display means displays the relationship between the number of breaths and the ventilation volume so as to be grasped. According to this, it is possible to appropriately evaluate the respiratory function of the measurement subject.
  • the walking test apparatus is: A walking test apparatus described in means 3,
  • the measuring means measures a plurality of items selected from the respiratory frequency, ventilation volume (equivalent to tidal volume, equivalent to minute ventilation), and arterial oxygen saturation as the respiratory system measurement items
  • the display means displays the measured changes over time of each respiratory system item so that they can be compared. According to this, it is possible to appropriately evaluate the respiratory function of the measurement subject.
  • ventilation simply refers to tidal and minute ventilation that can be measured by using a differential pressure flow sensor, and tidal volume that can be measured by using a nostril cannula or a face mask. It is a concept that includes all equivalent and equivalent minute ventilation.
  • the walking test apparatus is: A walking test apparatus described in means 3, Classifying means (CPU 110) for classifying the respiratory function tendency (respiratory function type) of the person to be measured based on the change over time of the measured value of the respiratory system item,
  • the display means displays the classified respiratory function tendency. According to this, it is possible to appropriately classify the respiratory function tendency of the measurement subject and notify the measurement subject.
  • the walking test apparatus is: A walking test apparatus described in means 11, wherein The measuring means measures the respiratory rate and the ventilation volume as the respiratory system item, The classifying means classifies the respiratory function tendency (respiration rate compensation type, ventilation rate compensation type, mixed type) based on a change with time in the measured value of the respiratory rate and the ventilation rate. According to this, it is possible to appropriately classify the respiratory function tendency based on the temporal change of the measured value of the number of breaths and the ventilation volume.
  • the walking test apparatus is: A walking test apparatus described in means 12, comprising: The measuring means measures an IE ratio as the respiratory system item, The classification means classifies the respiratory function tendency (IE ratio change type) based on a change with time of the IE ratio. According to this, it is possible to appropriately classify the respiratory function tendency based on the temporal change of the IE ratio.
  • the measuring means measures an IE ratio as the respiratory system item
  • the classification means classifies the respiratory function tendency (IE ratio change type) based on a change with time of the IE ratio. According to this, it is possible to appropriately classify the respiratory function tendency based on the temporal change of the IE ratio.
  • the walking test apparatus is: A walking test apparatus described in means 3,
  • the measurement means measures a respiratory system item and a circulatory system item of a measurement subject in a pre-rest state before starting the walking test and a post-rest state after finishing the walking test,
  • Recovery status determination means (CPU 110) for determining the recovery status (recovery coefficient, recovery time) of the measurement value of each item in the rear rest state relative to the previous rest state
  • the determination means displays the determined recovery status. According to this, it is possible to determine the health condition and the pathological condition of the measurement subject by determining the recovery status of the measured values of each item in the post-rest state relative to the pre-rest state. Further, the determination result can be notified.
  • the walking test apparatus is: A walking test apparatus described in means 3,
  • the measuring means further measures various walking quantities including at least one of the walking distance, walking speed, and position of the measurement subject during the walking test (CPU 110, inertial sensor, acceleration / geomagnetic sensor 105, gyro sensor). , GPS sensor, IMU, INS),
  • the measured walking quantities are displayed. According to this, it is possible to notify the measurement subject of various walking amounts of the measurement subject during the walking test.
  • the walking test apparatus is: A walking test apparatus described in means 15,
  • the measurement means includes an acceleration sensor (3-axis acceleration sensor) and an orientation sensor (3-axis geomagnetic sensor) (acceleration / geomagnetic sensor 105), and the measurement subject's measurement results are detected based on the detection results of the acceleration sensor and the orientation sensor.
  • the walking distance is measured as the various walking quantities. According to this, the walking distance of the measurement subject during the walking test can be accurately measured.
  • the walking test apparatus is: A walking test apparatus described in means 3, A pressure port (luer connector 142, 143) to which the flow sensor (150) can be connected; A nostril cannula or a face mask can be connected to the pressure port (luer connector 142) instead of the flow sensor.
  • the measurement means is capable of measuring one or more items selected from respiratory flow rate and ventilation volume when a flow sensor is connected to the pressure port (luer connectors 142, 143), When a nostril cannula (180) or a face mask (190) is connected to the pressure port (luer connector 142), one or more items selected from respiratory pressure, respiratory rate, and ventilation volume can be measured.
  • different devices can be selectively connected to the common pressure port, and respiratory system items corresponding to the devices connected to the pressure port can be measured.
  • the walking test apparatus is: A walking test apparatus described in means 17, comprising: The nostril cannula (180) is provided with an oxygen path for supplying oxygen from the oxygen supply means (oxygen supply device) to the measurement subject, in addition to the expiration path through which the measurement subject's exhalation passes. And According to this, the walking test can be performed while supplying oxygen to the measurement subject.
  • the nostril cannula (180) is provided with an oxygen path for supplying oxygen from the oxygen supply means (oxygen supply device) to the measurement subject, in addition to the expiration path through which the measurement subject's exhalation passes. And According to this, the walking test can be performed while supplying oxygen to the measurement subject.
  • the walking test apparatus described in means 19 is: A walking test apparatus described in means 1, wherein Determines whether the set oxygen flow set in the oxygen supply means (oxygen supply device) that supplies oxygen to the subject is appropriate based on the respiratory data (respiratory pressure waveform) of the subject. And an appropriate determination means (CPU 110) for notifying that when the determination result is a negative determination. According to this, alerting can be performed when the set oxygen flow rate set for the oxygen supply means is not appropriate.
  • the walking test apparatus described in means 20 is: A walking test apparatus described in means 19, comprising: The appropriateness determination means performs an appropriateness determination based on a measured offset value in a measurement subject's respiratory data (respiration pressure waveform), which is an offset value of pressure based on an oxygen flow rate. According to this, it is possible to accurately and reliably determine whether or not the set oxygen flow rate set for the oxygen supply means is appropriate.
  • the walking test apparatus described in means 21 is: A walking test apparatus described in means 1, wherein During the walking test, the apparatus further comprises an abnormality detection means (CPU 110) for detecting an abnormality in oxygen supply from the oxygen supply means for supplying oxygen to the measurement subject to the measurement subject based on the respiratory data of the measurement subject. When abnormality is detected, the fact is notified. According to this, it is possible to detect an abnormality in the oxygen supply from the oxygen supply means to the measurement subject during the walking test and call attention.
  • CPU 110 abnormality detection means
  • the walking test apparatus described in the means 22 is A walking test apparatus described in means 21, comprising:
  • the abnormality detecting means detects an abnormality based on a measurement offset value in a measurement subject's respiratory data, which is an offset value of a pressure due to an oxygen flow rate and is measured during a walking test. According to this, it is possible to appropriately detect an abnormality in the flow rate of oxygen supplied from the oxygen supply means.
  • FIG. 1 shows a modified Borg scale.
  • FIG. 2 is a functional block diagram showing an example of a 6-minute walking test apparatus.
  • FIG. 3 is a view showing the appearance of the main body.
  • FIG. 4 is a diagram showing the appearance of the flow sensor.
  • FIG. 5 is a diagram showing the appearance of the nostril cannula.
  • FIG. 6 is a view showing an example of the structure of the insertion tube.
  • FIG. 7 is a view showing an example of the structure of the insertion tube.
  • FIG. 8 is a graph showing time transitions corresponding to pulse rate, number of breaths, minute ventilation, and tidal volume.
  • FIG. 9 is a graph showing time transitions corresponding to the pulse rate, the number of breaths, the minute ventilation, and the tidal volume.
  • FIG. 1 shows a modified Borg scale.
  • FIG. 2 is a functional block diagram showing an example of a 6-minute walking test apparatus.
  • FIG. 3 is a view showing the appearance of
  • FIG. 10 is a graph showing time transitions corresponding to the pulse rate, the number of breaths, the minute ventilation, and the tidal volume.
  • FIG. 11 is a graph showing the relationship between the number of breaths and the equivalent to tidal volume.
  • FIG. 12 is a graph showing the relationship between the number of breaths and the equivalent to minute ventilation.
  • FIG. 13 is a diagram showing the dip angle distribution.
  • FIG. 14 is a diagram showing the relationship between the geomagnetic direction in the standard posture and the geomagnetic direction in the walking posture.
  • FIG. 15 is a diagram showing measurement results of a 6-minute walking test.
  • FIG. 16 is a diagram showing a BODE index. It is a figure which shows an example of the system configuration
  • 6-minute walking test apparatus 1 which is an example of the walking test apparatus according to the present invention will be described with reference to the drawings.
  • the 6-minute walking test apparatus 1 includes a main body 100, a flow sensor 150 connected to the main body 100, or a nostril cannula 180 or a face mask 190 connected in place of the main body 100. It includes an SpO 2 probe 160 and a wireless remote controller 170 that transmits a command signal and an event signal to the main body 100.
  • the housing of the main body 100 includes luer connectors 142 and 143, an SpO 2 connector 141, a DC jack 145, a USB connector 131, a liquid crystal with touch panel 132, a buzzer 133, and an LED 134. I have.
  • the pressure sensor 104 has two pressure ports for detecting pressure, and each pressure port has polarity. A positive voltage is output when a positive pressure is applied to one pressure port, and a negative voltage is output when a positive pressure is applied to the other pressure port.
  • the pressure sensor 104 in this example is a differential pressure sensor, and outputs an analog signal proportional to the differential pressure between both pressure ports.
  • a luer connector 142 is connected to one pressure port, and a luer connector 143 is connected to the other pressure port.
  • the pressure sensor 104 includes an output terminal for detecting a differential pressure between the luer connectors 142 and 143 and outputting a voltage proportional to the detected differential pressure.
  • the A / D converter 107 is provided with an A / D converter corresponding to the output of the pressure sensor 104, whereby a differential pressure converted from an analog signal to a digital signal is read by the CPU 110, and based on the differential pressure. Thus, the calculation of the respiratory flow rate and the respiratory volume is executed.
  • connection port 152 for connecting a filter and a mouthpiece is provided on a side surface of the flow sensor case 151 serving as a housing of the flow sensor 150.
  • a handle 156 for holding the flow sensor case 151 is provided below the flow sensor case 151.
  • a screen 155 is disposed as a resistor that generates respiratory resistance.
  • the screen 155 is a mesh-like material and is arranged so as to block the gas flow.
  • a differential pressure is generated before and after the screen 155.
  • the pressure before and after the screen 155 is transmitted to the luer connectors 142 and 143 of the main body 100 via the tubes 157 and 158 connected to the pressure ports arranged at the front and rear of the screen 155, respectively. ing.
  • the tube 157 transmits the pressure in front of the screen (on the connection port 152 side) to one luer connector 142 connected to the tube terminal 157a. Transmits the pressure behind the screen to the other luer connector 143 connected to the tube terminal 158a.
  • the flow rate of the gas flowing in the flow tube 153 that is, the respiratory flow rate, can be measured by detecting the differential pressure between these two luer connectors. This respiratory flow rate is also called a respiratory flow rate. Note that this type of flow sensor is a so-called differential pressure type and is widely used.
  • the measured pressure is detected by the CPU 110 when the person under test breathes in a state where the mouthpiece connected to the connection port 152 is fixed to the mouth.
  • a respiratory flow rate (hereinafter sometimes referred to as “flow”) is calculated, and a respiratory volume (hereinafter also referred to as “volume”) is calculated by integrating the respiratory flow rate.
  • the person to be measured holds the mouthpiece so that there is no gap, and breathes in a state where the nose grip is attached (a state in which nasal breathing is not possible). be able to.
  • the flow and volume measured in this way are read by the CPU 110, and based on the measured value, the vital capacity (FVC), 1 second amount (FEV1), 1 second rate (FEV1%),% 1 second amount (% FEV1) and the like are calculated. Each measured value thus obtained is displayed on the liquid crystal 132 with a touch panel.
  • the flow sensor 150 can be connected to the main body 100, it is possible to measure the tidal volume and minute ventilation of the person being measured.
  • the flow can be calculated based on the differential pressure, and the tidal volume and minute ventilation can be calculated by time integration of the flow.
  • the tidal volume is a ventilation volume per exhalation or inspiration, and the exhalation tidal volume is calculated based on the exhalation flow, and the inhalation tidal volume is calculated based on the inspiration flow.
  • the minute ventilation is the ventilation per minute.
  • the flow sensor 150 can be used when the measurement subject is in a resting state, there is a problem that the flow sensor 150 cannot be used while walking. This is because it is difficult to perform measurement while walking while holding the mouthpiece connected to the connection port 152 while walking. In addition, if measurement is performed in such a state, since the volume in the flow tube 153 including the mouthpiece is large, exhalation stays in the flow sensor from the mouthpiece, and the carbon dioxide concentration in the space increases. This is because breathing cannot be continued.
  • the flow sensor 150 is removed from the luer connectors 142 and 143 and shown in FIG.
  • the terminal 181a of the shown nostril cannula 180 is connected to the luer connector 142 (that is, a port to which a negative voltage is output when exhalation is applied) to capture exhalation / inspiration of the measurement subject.
  • the nostril cannula 180 in the present embodiment is a soft tube made of vinyl chloride, and as shown in FIG. 5, as shown in FIG. 5, a stem pipe 181, a right branch pipe 182 and a left branch pipe 183 branched from a branch portion of the trunk pipe 181, and The right branch tube 182 and the left branch tube 183 are connected to each other at a position opposite to the branch portion, and the right insertion tube 186 inserted into the subject's right nostril and the left insertion tube 187 inserted into the subject's left nostril.
  • the mounting member 185 is provided.
  • the trunk pipe 181 is provided with one tube terminal 181a, which is different from the flow sensor 150 having two terminals.
  • An annular shape body is formed by the right branch pipe 182 and the left branch pipe 183 branched from the trunk pipe 181 and the mounting member 185 connecting them.
  • the subject passes the head through the ring-shaped body, puts the right branch tube 182 over the right ear, puts the left branch tube 183 over the left ear, and further inserts the right insertion tube 186 into the right nostril. Walk with 187 inserted into the left nostril.
  • there is no restriction like the flow sensor 150 that needs to breathe with the mouthpiece held, and it also feels difficult to breathe due to retention of exhaled breath (carbon dioxide) and weight when wearing it.
  • the measurement subject can comfortably perform the walking test.
  • the tube terminal 181a provided in the trunk tube 181 of the nostril cannula 180 is connected to the luer connector 142, the remaining luer connector 143 is opened to the atmosphere. Therefore, in the pressure sensor 104, the atmospheric pressure and the inside of the trunk tube 181 A differential pressure from the pressure is detected. The differential pressure measured in this way is read by the CPU 110, and the number of breaths to be described later is calculated based on the fluctuation of the differential pressure. Each measured value thus obtained is displayed on the liquid crystal 132 with a touch panel.
  • the respiratory pressure at the luer connector 142 is detected with the luer connector 143 opened to the atmosphere. Since the total amount of inspiration cannot be captured, the flow cannot be measured accurately. However, it is possible to capture changes in respiratory pressure even with one port.
  • the offset correction is executed with respect to the reference level of the measured respiratory pressure.
  • the measured value of respiratory pressure at a certain reference level is 10 (absolute value) on the expiration side, but 8 (absolute value) on the inspiration side
  • the values on the expiration side and inspiration side are the same ( In other words, offset adjustment is performed by shifting the reference level by 1 (absolute value) toward the expiration side so that the expiration amount and the inspiration amount are the same.
  • 9 (absolute value) on the exhalation side and 9 (absolute value) on the inhalation side become the same value.
  • the respiration pressure at the reference level after the offset correction is hereinafter referred to as a flow equivalent, and is distinguished from the flow described above.
  • Tidal volume equivalent and minute ventilation equivalent can be calculated by time integration equivalent to flow.
  • the tidal volume equivalent is the ventilation volume per exhalation or inspiration for the flow equivalent, and the equivalent to the exhalation tidal volume is calculated based on the exhalation flow, and the equivalent to the inspiratory tidal volume based on the inspiratory flow Is calculated.
  • the minute ventilation equivalent is the ventilation per minute for the flow equivalent.
  • the tidal volume measured under such conditions is referred to as “equivalent to tidal volume”, and the minute ventilation is referred to as “equivalent to minute ventilation”.
  • ventilation volume when simply saying “ventilation volume”, the tidal volume and minute ventilation volume that can be measured with the flow sensor 150 connected, and the nostril cannula 180 (or the face mask 190 described later). It is a concept that includes all of the equivalent to tidal volume and minute ventilation that can be measured in the state where is connected.
  • a nostril cannula as shown in FIG. 6 or 7 is preferably used.
  • Such nostril cannula is called a dual lumen cannula and is composed of two tubes.
  • an inner tube 186a whose cross section is concentric with the right insertion tube 186 and an inner tube 187a whose cross section is concentric with the left insertion tube 187 are provided, and the inner tubes 186a and 187a are It is an oxygen supply tube connected to an oxygen cylinder or oxygen concentrator.
  • oxygen is supplied from the inner tubes 186a and 187a to the subject.
  • the right insertion tube 186 and the left insertion tube 187 are connected to a respiratory pressure detection tube connected to the luer connector 142 of the main body 100. Accordingly, it is possible to measure the number of breaths and the ventilation volume while supplying oxygen to the measurement subject, and it is also possible to perform a walking test on the measurement subject performing HOT.
  • a wall portion 186b that divides the cross section of the right insertion tube 186 into two regions and a wall portion 187b that divides the cross section of the left insertion tube 187 into two regions are provided.
  • One region divided by the wall portion 186b and the wall portion 187b is connected to an oxygen supply tube connected to an oxygen cylinder or an oxygen concentrator.
  • the other region divided by the wall portion 186 b and the wall portion 187 b is connected to a respiratory pressure detection tube connected to the luer connector 142 of the main body portion 100. Accordingly, it is possible to measure the number of breaths and the ventilation volume while supplying oxygen to the measurement subject, and it is also possible to perform a walking test on the measurement subject performing HOT.
  • the SpO 2 probe 160 is a transducer attached to the fingertip of the person to be measured, and includes a light emitting unit and a light receiving unit (sensor).
  • the light emitting unit emits red light and infrared light
  • the light receiving unit measures the amount of light transmitted through the fingertip (or the amount of light reflected by the fingertip) and outputs it as an electrical signal.
  • the SpO 2 probe 160 is connected to the SpO 2 connector 141 of the main body 100 shown in FIG.
  • the SpO 2 module 106 includes an A / D converter that converts an analog signal output from the SpO 2 probe 160 into a digital signal.
  • SpO 2 is calculated based on the transmitted light amount (or reflected light amount) of each light, and a pulse wave signal is generated and each is output as an electrical signal.
  • the CPU 110 counts the pulse rate based on the pulse wave signal with pulsation output from the SpO 2 module 106.
  • the SpO 2 and pulse rate measured in this way are stored in the RAM 121 by the CPU 110 and displayed on the liquid crystal 132 with a touch panel.
  • the wireless remote controller 170 is, for example, a wireless remote controller provided with a plurality of buttons, and a signal corresponding to the operated button is output.
  • the receiving unit 101 down-converts the received signal, performs A / D conversion, and outputs the signal to the CPU 110 in a predetermined format.
  • the CPU 110 executes control according to the output signal.
  • the wireless remote controller 170 is provided with an event button and a display switching button according to the test status and the condition of the subject. For example, when an event button of “measurement start” is operated, the CPU 110 that has received a signal corresponding to the event button displays a message “please rest and rest” on the liquid crystal 132 with a touch panel, so that the subject is measured. Encourage them to take a rest breath. When the display switching button is operated, the display content of the liquid crystal 132 with a touch panel is switched.
  • the temperature sensor 102 measures the temperature inside the main body 100, and is, for example, a diode type temperature sensor capable of measuring the temperature based on the forward voltage of the diode.
  • the A / D converter 107 is provided with an A / D converter corresponding to the output of the temperature sensor 102, whereby a voltage value converted from an analog signal to a digital signal is read by the CPU 110, and the voltage value is converted into the voltage value. The corresponding temperature is calculated.
  • the temperature measured in this manner is stored in the RAM 121 and displayed on the liquid crystal 132 with a touch panel.
  • the battery 103 is a dry battery in the present embodiment, and is one of power supply means to the main body 100.
  • the A / D converter 107 is provided with an A / D converter corresponding to the bipolar voltage of the battery 103, whereby a voltage value converted from an analog signal to a digital signal is read by the CPU 110, and the voltage value is converted into the voltage value.
  • the approximate remaining amount is determined (for example, the remaining amount is “high” or “low”).
  • the remaining amount determined in this way is stored in the RAM 121 and displayed on the liquid crystal 132 with a touch panel.
  • the main body 100 is provided with a DC jack 145, and power is supplied to the main body 100 from a household power source via an AC / DC adapter. Is possible.
  • power can be supplied to the main body 100 from a USB connector 131 described later, which is a so-called three power supply type device.
  • the acceleration / geomagnetic sensor 105 is a 6-axis sensor in which a 3-axis acceleration sensor and a 3-axis geomagnetic sensor are integrated.
  • the triaxial acceleration sensor outputs a voltage corresponding to each acceleration in the triaxial direction
  • the triaxial geomagnetic sensor outputs a voltage corresponding to the local magnetism in the triaxial direction.
  • the A / D converter 107 is provided with an A / D converter corresponding to the six-axis voltage of the acceleration / geomagnetic sensor 105, whereby a voltage value converted from an analog signal to a digital signal is read by the CPU 110. .
  • the acceleration in the triaxial direction measured in this way and the geomagnetism in the triaxial direction are stored in the RAM 121 and displayed on the liquid crystal 132 with a touch panel.
  • a module in which an A / D converter is incorporated in such a 6-axis sensor may be used.
  • CPU110 can calculate a to-be-measured person's walking distance based on the output of a triaxial acceleration sensor and the output of a triaxial geomagnetic sensor so that it may mention later.
  • a 6-axis sensor in which a 3-axis acceleration sensor and a 3-axis geomagnetic sensor are integrated is used, but in addition to the 3-axis acceleration sensor and the 3-axis geomagnetic sensor, an angular velocity sensor is also integrated.
  • a 9-axis sensor may be used.
  • the CPU 110 executes a 6-minute walking test program stored in the ROM 122 by using the RAM 121 as a work area, thereby controlling the operation of each connected component or receiving a signal from each component. The process is performed. Each data measured in the 6-minute walking test is accumulated in the RAM 121. When the 6-minute walking test is completed, the data accumulated in the RAM 121 is stored in the ROM 122.
  • the ROM 122 which is a non-volatile memory, stores measurement data as described above, and also stores measurement programs such as a 6-minute walking test program.
  • the electromagnetic valve 123 is driven by the CPU 110 via a transistor switch (not shown). In the present embodiment, the electromagnetic valve 123 is connected to the pressure sensor 104, and the pressure sensor 104 measures the atmospheric pressure when the electromagnetic valve 123 is opened, thereby performing zero point correction.
  • the USB connector 131 shown in FIGS. 2 and 3 is connected to a USB connector of a host device such as the PC 2 and serves as an interface with the upper device.
  • the USB driver circuit 124 controls communication with the host device and the CPU 110 connected by the USB connector 131. For example, it detects that a host device is connected to the USB connector 131 and transmits a command corresponding to this to the CPU 110.
  • the CPU 110 outputs the measurement data stored in the ROM 122 to the USB driver circuit 124, and the USB124 driver circuit 124 converts the input measurement data into a signal conforming to the USB standard and transmits it to the host device. To do. In this way, measurement data can be transferred to a host device such as the PC 2 via the USB interface.
  • power can be supplied to the main body 100 from a host device connected to the USB connector 131.
  • the liquid crystal 132 with a touch panel is, for example, a touch panel liquid crystal module in which a TFT liquid crystal and a 4-wire resistive touch panel are integrated.
  • the touch panel is touched, the X-axis resistance film and the Y-axis resistance film come into contact with each other, and a signal corresponding to the resistance at the contact location is output.
  • the liquid crystal 132 with a touch panel is of a module type including an A / D converter, and an X-axis signal and a Y-axis signal indicating contact coordinates are input as digital signals to the CPU 110, and according to the contact coordinates. Processing is executed. Measurement data in the 6-minute walk test is displayed on the TFT liquid crystal.
  • the buzzer 133 performs notification by outputting a predetermined buzzer sound. For example, the buzzer 133 emits a buzzer sound according to the state of the measurement subject.
  • the LED 134 performs notification by being turned on or blinking in a predetermined manner. For example, the LED 134 is lit or blinked in a manner according to the state of the walking test apparatus.
  • the sound output control of the buzzer 133 and the lighting / flashing control of the LED 134 are performed by the CPU 110.
  • the speaker 135 is connected to the CPU 110 via a voice control board (not shown) that is a control board for voice output control.
  • the audio control board is equipped with a processing circuit that executes audio signal processing for outputting audio from the speaker 135 based on control data from the CPU 110. *
  • the flow sensor 150 is removed from the main body 100, and instead of this, a nostril cannula 180 is connected and attached to the subject. Further, the SpO 2 probe 160 is attached to the fingertip of the measurement subject.
  • the “measurement start” button provided on the wireless remote controller 170 is operated while power is supplied to the main unit 100, or the “measurement start” icon displayed on the liquid crystal 132 with a touch panel
  • the CPU 110 displays a message “please rest and breathe” on the liquid crystal 132 with a touch panel to prompt the subject to be at rest and to check whether or not the rest is being ventilated.
  • the smoothed respiratory pressure differential value is switched from positive to negative (or from negative to positive) within a certain range (for example, a range of 5 to 10 seconds) for a predetermined number of times. Ventilation has been confirmed.
  • the CPU 110 When the CPU 110 confirms that the ventilation at rest is performed and that the SpO 2 is within the preset range, the CPU 110 displays a message “The test can be started” and notifies the measurer that the test can be started. Then, after confirming the condition of the subject, the measurer tells the subject that “Please start walking when you are ready”. When the measurer operates the “walk start” button provided on the wireless remote controller 170 at the time when the person to be measured starts walking, the CPU 110 that has received the corresponding signal starts counting for 6 minutes. . Along with this, each item such as the number of breaths, the amount corresponding to the tidal volume, and the amount corresponding to the minute ventilation is measured based on the detected respiratory pressure.
  • recording of SpO 2 is started based on the output of the SpO 2 probe 160. Further, the number of steps, the walking speed, and the walking distance are measured based on the output of the acceleration / geomagnetic sensor 105. A method for measuring these walking data will be described later.
  • the medical staff can determine the necessity of stopping the walking test or taking a break.
  • a subject undergoing home oxygen therapy is usually in a state where oxygen gas is being supplied, but in an air environment where oxygen gas is not supplied in a respiratory function test, Measurements may be performed at low oxygen concentrations.
  • the respiratory function test when the forced vital capacity or the like is measured, the patient is forced to perform breathing that requires more effort than normal breathing, which is a heavy burden.
  • the 6-minute walking test apparatus 1 is configured to be able to speak to the measurement subject via the speaker 135 during the walking test. Specifically, for example, during a 6-minute walking test, the subject is informed of the subject's walking state and physical state at that time (for example, “successfully walking”). Walking with a purpose of notifying the person being measured about the remaining time of the walking test (for example, “Remaining time is x minutes”) Support processing may be executed.
  • the voice call may be performed at a predetermined time interval (preferably a timing of one minute) during the walking test.
  • a test subject is notified by sounding or outputting a beep sound that the end of the walking test is approaching at a certain time before the end of the walking test (preferably a timing of 15 seconds before).
  • the “ ⁇ ” part of “Remaining time is x minutes”, that is, the number part indicating the remaining time (minutes) until the end of the walking test
  • the above message may be output as a sound by changing only the voice.
  • control is performed such as outputting sound prompting walking at a constant rhythm or outputting beep sounds at regular time intervals so as to encourage walking at a constant rhythm. It is good.
  • the 6-minute walking test apparatus 1 can interrupt the walking test to the person to be measured when the measured value of the circulatory system item or the respiratory system item becomes a value indicating a dangerous state during the walking test. It is configured to be able to perform an alerting notification process that prompts cancellation. Specifically, for example, when SpO 2 falls below a predetermined lower limit, when the pulse rate exceeds a predetermined upper limit, or when the number of breaths exceeds a predetermined upper limit, an alarm or warning sound If the walking test is continued any more, for example, by outputting a warning voice, the person to be measured is informed that it is dangerous.
  • “Number of breaths” (also referred to as RR) is the number of breaths of the subject in one minute, and by counting the number of times the differential value of the smoothed breathing pressure is switched from positive to negative (or from negative to positive) Measured.
  • the “tidal volume” (also referred to as VT) is the ventilation volume per breath at rest, and is calculated as an integrated value of the respiratory pressure in one breath.
  • “equivalent to tidal volume” is calculated.
  • the “minute ventilation” (also referred to as TE) is a ventilation volume per minute at rest, and is calculated as “tidal volume” ⁇ “respiration frequency”.
  • “equivalent minute ventilation” is calculated when the nostril cannula 180 is used.
  • Pulse rate is the pulse rate of the person to be measured in 1 minute, and after smoothing the time series data of the pulse wave, counting the number of times the differential value switches from positive to negative (or from negative to positive) Measured.
  • the respiratory frequency, tidal volume equivalent, minute ventilation equivalent, and pulse rate measured in this way are recorded as time-series data as shown in FIGS. Is displayed in graph format.
  • the elapsed time from the start of the gait test is the common X axis
  • the Y axis is the measurement of each item of the respiratory rate, the tidal volume equivalent, the minute ventilation quantity, and the pulse rate. It is displayed in a graph format corresponding to the value.
  • the pulse rate first increases gradually with the passage of time from the start of measurement (after 2 minutes), and then the number of breaths, equivalent to minute ventilation, and equivalent to tidal volume The rise is slow (after 3 minutes).
  • the pulse rate which is a circulatory system item, reaches a peak earlier than the respiratory rate, which corresponds to the respiratory system item, the equivalent to minute ventilation, and the equivalent to tidal volume. It is possible to estimate an event that the function of the circulatory system does not catch up with the increase, and as a result the walking distance is suppressed. Thus, it is possible to quantitatively evaluate the state of the measurement subject in the walking test, and to estimate that the movement limiting factor is in the circulatory system.
  • Tv (m) is m-th data, and the average of five data from Tv (m-4) to Tv (m) is moving average Av (n).
  • the linear regression line A and the linear regression line B are displayed on the graph, and the intersection of both lines is clearly displayed as an inflection point.
  • a linear regression line A related to the slope change region and a linear regression line B related to the flat region are displayed, and orthogonal to the X axis from the inflection point of each item as illustrated in FIGS.
  • a straight line (parallel to the Y axis) is displayed, and the X coordinate of the inflection point of each item is clearly displayed.
  • the exercise limiting factor may be displayed on the liquid crystal 132 with a touch panel.
  • the inflection point of the respiratory system item (the number of breaths, equivalent to minute ventilation, equivalent to the tidal volume) is larger than the inflection point of the circulatory system item (pulse rate).
  • the inflection point of the circulatory system item (pulse rate) is more than the inflection point of the respiratory system item (equivalent to the number of breaths, minute ventilation, equivalent to the tidal volume).
  • Example-limiting factor is circulatory system. Further, in the example shown in FIG. 10, both the inflection point of the respiratory system item (respiration frequency, equivalent to minute ventilation, equivalent to tidal volume) and the inflection point of the circulatory system item (pulse rate) are both. Since it is not allowed, it is recommended to display “Exercise-limiting factor is strength system”. This makes it easier to estimate whether the walking distance of the measurement subject is suppressed by the respiratory system, the circulatory system, or the muscular strength system.
  • respiratory rate, respiratory rate, minute ventilation, and tidal volume are measured as respiratory system measurement items, and pulse rate is measured as a circulatory system measurement item. Items can be measured based on respiratory pressure and pulse waveform. In this manner, the exercise limiting factor can be estimated based on the items that can be easily measured from the measurement subject.
  • FIG. 11 it is possible to create a graph showing the relationship between the number of breaths and the tidal volume.
  • a graph in which the X axis is the number of breaths and the Y axis is equivalent to a tidal volume is created and displayed on the liquid crystal 132 with a touch panel. This graph makes it possible to analyze the respiratory system as shown below.
  • FIG. 11 (A) in the case of a healthy person, the increase in the ventilation volume accompanying the amount of exercise is covered by the increase in the tidal volume, so the increase in the number of breaths is in a narrow range. In this case, the effective alveolar ventilation is high and the burden on the respiratory muscles is small.
  • FIG. 11 (B) in the case of a COPD patient, the respiratory reference level is increased due to hyperinflation, and the tidal volume is decreased. As a result, an attempt is made to maintain the ventilation volume. The number of breaths increases and the difficulty of breathing increases.
  • the medical staff should take measures such as reducing respiratory muscle burden and improving exercise tolerance by breathing guidance such as abdominal breathing, and by improving dyspnea It can be judged that QOL (quality of life) should be improved.
  • FIG. 12 it is possible to create a graph showing the relationship between the number of breaths and the minute ventilation.
  • a graph in which the X axis is the number of breaths and the Y axis is equivalent to the minute ventilation is created and displayed on the liquid crystal 132 with a touch panel. This graph makes it possible to analyze the respiratory system as shown below.
  • the value of the coefficient A increases.
  • the coefficient A is 300 or more.
  • FIG. 12B in the case of a COPD patient, the change in the number of breaths is large and the change corresponding to the minute ventilation is small, so the slope of the graph is small and linear regression is performed.
  • the 6-minute walking test apparatus 1 of the present embodiment determines which respiratory function type the measured person is classified from among a plurality of respiratory function types shown below. Respiratory function type classification processing is performed, and the determination result can be displayed.
  • FIG. 18 is a flowchart showing the flow of the respiratory function type classification process executed by the CPU 110 in this case.
  • the CPU 110 sets an evaluation period for evaluating the respiratory function type (A1).
  • the evaluation period may be the entire period of the walking test period (walking test period) (a period of 6 minutes), or a part of the walking test period (for example, the first half or the latter half of a period of 3 minutes). ).
  • the CPU 110 calculates a standard deviation of the respiration frequency (hereinafter referred to as “respiration frequency standard deviation”) as an index value representing the variation in the respiration frequency during the evaluation period (A3).
  • the CPU 110 calculates a standard deviation of the tidal volume (hereinafter referred to as “tidal volume standard deviation”) as an index value representing the variation of the tidal volume during the evaluation period (A5).
  • CPU110 determines the increase / decrease tendency of the minute ventilation in an evaluation period (A7).
  • the CPU 110 measures the IE ratio in the evaluation period (A9).
  • the IE ratio is the ratio between the number of exhalations and the number of inspirations of the measurement subject, or the ratio between the expiration time and the inspiration time. Then, after determining the respiratory function type (A11), the CPU 110 ends the respiratory function type classification process.
  • FIG. 19 is an explanatory diagram of the determination method of the respiratory function type in A11, and illustrates a table in which the determination condition is associated with the respiratory function type.
  • respiratory function types There are four types of respiratory function types: a respiratory rate compensation type, a ventilation volume compensation type, a mixed type, and an IE ratio change type.
  • the determination condition for determining the breathing rate compensation type is “the tidal volume standard deviation is below the threshold ⁇ ⁇ 1 and the respiratory rate standard deviation is above the threshold ⁇ ⁇ 1 and the minute ventilation is continuously increased. Is defined. In other words, if the tidal volume is generally constant, but the respiratory rate increases and the minute ventilation also tends to increase, the respiratory rate compensation type that increases the minute ventilation by increasing the respiratory rate is judge.
  • the determination condition for determining the ventilation compensation type is “the tidal volume standard deviation is greater than the threshold ⁇ ⁇ 1 , the respiratory rate standard deviation is less than the threshold ⁇ ⁇ 1 , and the minute ventilation is continuously increased. Is defined. In other words, if the respiratory rate is generally constant but the tidal volume increases and the minute ventilation tends to increase, the ventilation compensation compensates for increasing the minute ventilation by increasing the tidal volume. Judge as type.
  • the determination condition for determining the mixed type is that “the standard deviation of tidal volume exceeds the threshold ⁇ ⁇ 1 , the standard deviation of the respiratory rate exceeds the threshold ⁇ ⁇ 1 , and the minute ventilation continuously increases”. It has been established. That is, when the number of breaths increases, the tidal volume increases, and the minute ventilation also tends to increase, it is determined that the mixed type is a mixed type of the respiratory rate compensation type and the ventilation rate compensation type.
  • the determination condition for determining the IE ratio change type is that “the difference between the IE ratio measured at rest and the IE ratio measured at load exceeds the threshold ⁇ ”. In other words, if there is a significant difference between the IE ratio measured at rest and the IE ratio measured at load (ie during the walking test), the type of IE ratio of breathing changes between rest and load It is determined that the IE ratio change type.
  • the 6-minute walking test apparatus 1 measures walking amounts including at least one of the walking distance, walking speed, and position of the measurement subject, and displays the measured values on the liquid crystal 132 with a touch panel.
  • the various walking quantities can also be referred to as various quantities (moving quantities) indicating the moving state of the measurement subject accompanying the walking of the measurement subject during the walking test.
  • a method for measuring each walking amount will be described.
  • the above method cannot accurately measure the walking distance.
  • the walking distance is accurately calculated using the output signal of not only the triaxial acceleration sensor but also the triaxial geomagnetic sensor.
  • the walking speed is calculated based on the acceleration component of only the walking surface, and the walking distance is calculated by further integrating the walking speed. Details will be described below.
  • the dip angle distribution is open to the public, and the dip angle of the measurement point can be calculated from the latitude and longitude of the measurement point at which the 6-minute walking test is executed.
  • the dip angle at the measurement point is calculated in advance.
  • the geomagnetic sensor when the main body 100 is in a vertical posture a posture in which the negative direction of the z-axis is the gravitational direction, hereinafter referred to as a standard posture.
  • the three-axis sensor output is x 0 , y 0 , z 0
  • the geomagnetic direction is represented as (x 0 , y 0 , z 0 )
  • the posture tilted from the standard posture when walking hereinafter referred to as walking
  • the geomagnetism direction measured by the “posture” is represented as (x 1 , y 1 , z 1 ). If the dip angle in the standard posture is ⁇ 0 , ⁇ 0 is an angle formed with the xy plane, so the following equation is established.
  • the inclination of the main body 100 in this case is represented by ⁇ 0 - ⁇ 1 and is given by the following equation.
  • the plane obtained by inclining the xy plane by ⁇ 0 - ⁇ 1 becomes the walking plane, and the acceleration on the walking plane is the acceleration by walking.
  • the speed can be calculated by integrating the acceleration due to walking, and the distance can be calculated with high accuracy by further integrating.
  • the CPU 110 can calculate the acceleration on the walking surface by calculating the coordinate conversion formula shown below.
  • the data of the three-dimensional geomagnetic sensor in the standard posture is (x 0 , y 0 , z 0 )
  • the data of the three-dimensional geomagnetic sensor in the walking posture is (x 1 , y 1 , z 1 )
  • a1 to a3, b1 When .about.b3 and c1 to c3 are expressed as coefficients of an equation for coordinate conversion, the following equation is established.
  • the walking posture can be converted to the standard posture.
  • coordinate transformation is performed by multiplying the three-dimensional acceleration data in the walking posture by the inverse matrix
  • the main body 100 can be set in the standard posture, and the acceleration on the xy plane can be calculated as the acceleration on the walking surface.
  • 3D acceleration data in the standard position (X 0, Y 0, Z 0)
  • the three-dimensional acceleration data of the walking posture and (X 1, Y 1, Z 1) the following expression (X 0 , Y 0 , Z 0 ) is obtained.
  • the acceleration on the walking surface is aw
  • the acceleration on the xy plane is calculated by the following equation.
  • the walking speed can be calculated by integrating the calculated aw, and the walking distance can be calculated by integrating again.
  • the acceleration on the walking surface calculated in this way and the above-mentioned respiratory system item and circulatory system measurement item are displayed as time-series data corresponding to the elapsed time from the start of measurement as shown in FIG. .
  • the walking speed and position of the person being measured can be measured. it can.
  • a 6-minute walking test apparatus 1 is provided with a GPS receiver (GPS unit), and pseudo-positioning using a pseudo-range or Doppler positioning using a Doppler frequency is performed to determine the position of the person being measured. Measure. Moreover, speed calculation using the Doppler frequency is performed to measure the walking speed of the person being measured.
  • the 6-minute walking test apparatus 1 is provided with an acceleration sensor and an angular velocity sensor (gyro sensor) as an inertial sensor, and an inertial navigation calculation using an acceleration signal and an angular velocity signal output from the acceleration sensor and the angular velocity sensor. To measure the walking speed and position of the person being measured.
  • an acceleration sensor and an angular velocity sensor gyro sensor
  • an inertial navigation calculation using an acceleration signal and an angular velocity signal output from the acceleration sensor and the angular velocity sensor To measure the walking speed and position of the person being measured.
  • an inertial measurement device IMU (Inertial Measurement Unit)
  • IMU Inertial Measurement Unit
  • INS Inertial Navigation System
  • the walking test is usually performed outdoors (outdoor environment), but the walking test may be performed indoors (indoor environment).
  • indoor environment it is often difficult for the GPS receiver to receive a GPS satellite signal, and there is a possibility that it is impossible to measure the walking speed and position using the GPS. Therefore, an indoor transmitter (indoor base station) is installed in the building or facility where the walking test is performed, and the position of the person being measured is determined by performing triangulation based on the signal transmitted from the indoor transmitter. You may measure.
  • a pseudolite is a pseudo satellite that simulates a positioning satellite in a satellite positioning system.
  • information similar to information included in a navigation message transmitted by a satellite signal transmitted from a positioning satellite It is configured to be able to transmit a pseudo satellite signal including information such as an installed position.
  • the position of the person to be measured may be measured or specified based on the pseudo satellite signal received from the pseudo satellite.
  • the respiratory frequency (RR), inspiratory tidal volume equivalent (vTi), expiratory tidal volume equivalent (vTe), pulse rate (PR), and SpO 2 time transition are all common. It is displayed on the time axis, and the time transition of each item can be easily compared during and before and after the test for 6 minutes.
  • the exercise limiting factor can be estimated from a comparison of the pulse rate, which is a circulatory system measurement item, with the respiratory frequency, which is a respiratory system measurement item, equivalent to a tidal volume, and equivalent to a minute ventilation. As shown in FIGS.
  • the X axis of one graph is the time axis of the common scale, and the circulatory system measurement item and the respiratory system measurement item are displayed on the same graph (the scale of the Y axis is The graphs of the respective items may be displayed side by side with the time axis as a common scale as shown in FIG.
  • the acceleration on the walking surface is recorded as the measurement data, so that the walking state during the walking test can be grasped in detail, and even if the person to be measured stops, Since the movement and stop state are reflected in the acceleration data, it is not necessary to keep a separate record of the walking state.
  • the start and stop of walking are automatically recorded.
  • the walking speed and walking distance can be accurately calculated according to the elapsed time by the above-described method, it is possible to identify a decrease in walking speed and a stagnant walking distance after measurement. Therefore, an observer such as a medical staff can concentrate on observing the condition of the subject.
  • the distance (step length) per step by counting the number of steps, for example, the ratio of the stride at the start of the test to the stride at the end of the test (step length at the end of the test / step at the start of the test) It is also possible to quantify the degree of fatigue based on the stride. In addition, since it is possible to measure changes in walking speed over time, the fatigue level is quantified by, for example, the ratio of the walking speed at the start of the test and the walking speed at the end of the test (walking speed at the end of the test / walking speed at the start of the test). It is also possible to
  • the 6-minute walking test apparatus 1 uses the flow sensor in the pre-rest state prior to the start of the walking test, and the forced vital capacity (FVC), 1 second amount (FEV1), 1 second rate (FEV1%) ,% FEV1 (% FEV1) as well as measuring, measuring the SpO 2 and pulse rate with SpO 2 probe. Further, it is confirmed whether or not the subject is awakened at rest using a nostril cannula. It is also possible to set a pre-rest period (for example, a period of 3 minutes) for measurement in the pre-rest state, and start the walking test after the pre-rest period.
  • FVC forced vital capacity
  • FEV1 1 second amount
  • FEV1% 1 second rate
  • % FEV1 % FEV1
  • the circulatory system item or respiratory system can be used without waiting for a three-minute pre-rest period.
  • the measured value of the item tends to be stable. Therefore, when the variation of some or all of these measured values is less than the preset value, the measurement in the pre-rest state is automatically terminated without waiting for the pre-rest period, and the walking test is performed. It is also possible to start.
  • the blood pressure is also measured to confirm the systole and the diastolic phase by checking with the modified Borg scale.
  • the value of each item measured after the end of walking is stored together with the value of each item before the start of walking, and both are displayed on the liquid crystal 132 with a touch panel so that they can be compared.
  • the 6-minute walking test apparatus 1 is a cardiovascular system item or respiratory system in a resting state before starting the walking test (pre-resting state) and a resting state after finishing the walking test (post-resting state).
  • the measured value of the item is acquired, and the recovery status of each item in the post-rest state with respect to the pre-rest state is determined and displayed.
  • the recovery time is measured as the recovery time of the measured value of the circulatory system item such as SpO 2 and the pulse rate and the measured value of the respiratory system item such as minute ventilation to the measured value in the pre-rest state. Is displayed as the recovery status.
  • 6-minute walking test device As described above, the main functions of the 6-minute walking test apparatus 1 have been described. However, the 6-minute walking test apparatus 1 according to the present embodiment has the functions described below.
  • a walking test may be performed while supplying oxygen to a subject using a nostril cannula.
  • FIG. 20 is a flowchart showing the flow of the pre-walking test determination process executed by the CPU 110 in this case. Note that the processing shown in FIG. 20 may be executed in the same manner even after the walking test.
  • the CPU 110 obtains an appropriate oxygen flow rate (B1).
  • the appropriate oxygen flow rate is, for example, an oxygen flow rate that is recognized by the measurement subject or the operator as a set oxygen flow rate (whether it is actually set or not), and the oxygen flow rate that is considered appropriate is displayed on the operation unit (for example, a touch panel). It can be obtained by inputting from the attached liquid crystal 132).
  • the measurement subject or the operator may input parameters (age, weight, sex, etc.) of the measurement subject, and an appropriate oxygen flow determined based on the input parameters may be set as the appropriate oxygen flow. good.
  • the CPU 110 estimates the pressure offset value based on the oxygen flow rate based on the appropriate oxygen flow rate, and stores it in the RAM 121 as the estimated offset value (B3).
  • the pressure offset value based on the oxygen flow rate is substantially proportional to the oxygen flow rate. Therefore, correlation data (correlation equation or correlation table) that defines the correlation between the appropriate oxygen flow rate and the offset value is stored in the ROM 122 in advance, and the appropriate oxygen flow rate acquired in B1 is handled based on the correlation data.
  • An offset value is obtained and used as an estimated offset value.
  • the estimated offset value may be stored in the RAM 121 as 100.
  • the CPU 110 performs a determination process for determining whether or not the supplied oxygen flow rate is within an appropriate range (B5).
  • FIG. 21 is a flowchart showing the flow of the determination process.
  • CPU110 acquires the to-be-measured person's respiration waveform in the state by which oxygen was supplied to the to-be-measured person from the oxygen supply device (C1).
  • the respiratory waveform referred to here is time-series data of the respiratory pressure of the measurement subject.
  • CPU110 measures an offset value based on the acquired respiration waveform, and memorize
  • the measurement offset value can be acquired, for example, by performing a filter process that cuts an AC component (AC component) from the respiratory waveform (respiration pressure time-series data) of the measurement subject.
  • the measurement offset value when the estimated offset value described above is set to 100 may be calculated and stored in the RAM 121.
  • the CPU 110 determines whether or not the absolute value of the difference between the estimated offset value and the measured offset value stored in the RAM 121 exceeds a predetermined first threshold value (C5).
  • the first threshold value used here is preferably in the range of 10 to 20 when the estimated offset value is 100, for example, and may be determined based on the error range of the oxygen flow rate supplied by the oxygen supplier, for example. For example, assuming that the error in the oxygen flow rate supplied from the oxygen supply device to the measurement subject is approximately ⁇ 10% of the set value, the estimated offset value (here, 100) and the measurement offset value When the absolute value of the difference exceeds 10, the actual oxygen flow rate deviates from the oxygen flow rate considered appropriate. Therefore, in this case, the threshold value should be 10.
  • the supply oxygen flow rate is determined to be inappropriate, and inappropriate and continuous.
  • the improper time determined as the time determined (or the improper number of times determined consecutively as improper) is updated (C7).
  • the CPU 110 determines whether or not the inappropriate time (or the inappropriate count) exceeds a predetermined second threshold (C9). And when it determines with having exceeded the 2nd threshold value (C9; Yes), it alert
  • the absolute value of the difference between the estimated offset value and the measured offset value exceeds the first threshold value due to a large change in the instantaneous value of the measured offset value due to a temporary change in the oxygen flow rate.
  • immediately informing that the set flow rate is inappropriate with the instantaneous value may be a factor that hinders the smooth progress of the walking test. Therefore, in this example, when the inappropriate time (or inappropriate number of times) exceeds the second threshold value, the fact that the oxygen flow rate is inappropriate is notified.
  • the second threshold value used here is, for example, the time until the oxygen flow rate is stabilized after setting the oxygen flow rate of the oxygen supply device (or the number of determinations corresponding to that time), and the oxygen flow rate temporarily fluctuated due to some factor.
  • the time until the oxygen flow rate stabilizes or the number of determinations corresponding to that time
  • the time that does not have a significant effect on the subject or the walking test (or the time) The number of times of determination is good.
  • the inappropriate time (or inappropriate number of times) is cleared (C13). . Therefore, if the absolute value of the difference between the estimated offset value and the measured offset value falls below the threshold before the inappropriate time (or the inappropriate number of times) exceeds the threshold, the error is reported before the flow inappropriate notification is performed. The appropriate time (or inappropriate number of times) is cleared. Then, the CPU 110 checks whether or not a predetermined determination time has elapsed (C15). If the determination time has elapsed (C15; Yes), the determination process is terminated.
  • the process returns to C1 and the determination process is continued.
  • the inappropriate time or inappropriate number of times
  • the process proceeds to C15 without notifying that the oxygen flow rate is inappropriate.
  • the CPU 110 confirms whether or not a notification that the oxygen flow rate is inappropriate is being performed (B7). If there is no notification that the oxygen flow rate is inappropriate (B7; No), the determination process before the walking test is terminated. In connection with this, a to-be-measured person will transfer to a walk test. On the other hand, if a notification that the oxygen flow rate is inappropriate (B7; Yes), the CPU 110 performs a resetting operation (for example, a liquid crystal 132 with a touch panel) for resetting the oxygen flow rate and redoing the appropriateness determination.
  • a resetting operation for example, a liquid crystal 132 with a touch panel
  • the flow rate inappropriateness notification is continued until the resetting operation is performed, but the flow rate inappropriateness notification is terminated when a predetermined time elapses without performing the resetting operation.
  • the determination process of FIG. 21 is allowed to be executed, and it is determined that the absolute value of the difference between the estimated offset value and the measured offset value does not exceed the first threshold value. (C5; No), the inadequate flow rate notification may be terminated.
  • FIG. 22 is a flowchart illustrating a flow of a determination process during a walk test that detects an abnormality in the flow rate of oxygen supplied from the oxygen supply device to the measurement subject during the walk test.
  • CPU110 performs the process similar to the determination process shown in FIG. 20 (D5). That is, based on the breathing waveform of the person being measured during the walking test, it is confirmed whether or not the supplied oxygen flow rate is inappropriate, and if it is inappropriate, the fact is notified. .
  • the test time has elapsed in C15 (for example, whether or not 6 minutes have elapsed since the start of the test).
  • CPU110 confirms whether the notification to the effect that the oxygen flow rate is inappropriate is performed (D7). If there is no notification that the oxygen flow rate is inappropriate (D7; No), the determination process during the walking test is terminated. On the other hand, if the notification that the oxygen flow rate is inappropriate (D7; Yes), the CPU 110 selects a cancel operation for canceling the walking test (for example, selecting a cancel button displayed on the liquid crystal 132 with a touch panel). ) Is determined (D9). If it is determined (D9; Yes), the notification that the oxygen flow rate is inappropriate is terminated (D13), and the determination process during the walking test is terminated. To do. On the other hand, if it is determined that the cancel operation has not been performed (D9; No), the notification that the oxygen flow rate is inappropriate is continued (D11), and the process returns to D9.
  • the flow rate inappropriateness notification is continued until the stop operation is performed, but the flow rate inappropriateness notification is terminated when a predetermined time elapses without the stop operation being performed. Also good. Further, the determination process of FIG. 21 is made executable even during the period in which the flow rate improper notification is being executed (that is, the walking test can be continued), and the absolute value of the difference between the estimated offset value and the measured offset value is When it is determined that the threshold value is not exceeded (C5; No), the flow rate inappropriateness notification may be terminated and the walking test may be continued.
  • whether or not the oxygen flow rate is inappropriate is checked based on whether or not the absolute value of the difference between the estimated offset value and the measured offset value exceeds the first threshold value.
  • the oxygen flow rate may be checked based on the ratio of the measured offset value to the estimated offset value. For example, if the ratio of the measured offset value to the estimated offset value is 80% or less, the flow rate inappropriateness notification may be performed.
  • the ratio of the measured offset value to the estimated offset value has decreased over time (for example, the ratio is calculated every predetermined time).
  • Maximum ventilation measurement by spirometer function When the flow sensor 150 is connected to the main body 100 before the start of walking, it is possible to measure the forced vital capacity, the amount of 1 second, etc., but the flow can be accurately measured (the so-called spirometer function is provided). Therefore, the maximum ventilation (also referred to as MVV) can be measured together with these items.
  • MVV maximum ventilation
  • the ventilation volume with respect to the maximum ventilation volume (equivalent to tidal volume or minute ventilation volume) If the condition that exceeds the ratio continues for a predetermined time or more, it is assumed that the person being measured is unreasonable without being aware of his / her limit, and for example, a warning is given by the buzzer 133 to stop walking. It is possible to
  • the gender, age, weight, and height of the person to be measured are input from the liquid crystal 132 with a touch panel when starting the test.
  • the value obtained by ⁇ [454-0.87 ⁇ age (age) ⁇ 0.66 ⁇ weight (kg)] ⁇ ⁇ 82 m (2SD) ⁇ ⁇ height (m) Can be used as a normal range of the walking distance, and it is also possible to execute a determination as to whether or not the measured walking distance is within the normal range and display the determination result.
  • the predicted value of the walking distance is not limited to the above formula, and may be calculated based on the following formula.
  • [Male] 6MWT (m) (7.57 ⁇ height cm) ⁇ (5.02 ⁇ age) ⁇ (1.76 ⁇ kg body weight) ⁇ 309 m
  • [Female] 6MWT (m) (2.11 ⁇ height cm) ⁇ (2.29 ⁇ age) ⁇ (5.78 ⁇ kg body weight) +667 m
  • peak VO 2 the maximum oxygen intake (peak VO 2 ) of the measurement subject can be calculated based on the following equation.
  • 1ft 0.3048 m.
  • peak VO 2 0.006 ⁇ walking distance (ft) +7.38
  • Non-Patent Document 2 discloses a method for determining the severity of COPD based on the following items. 1.
  • BMI Body Mass Index
  • the MRC dyspnea scale is a subjective index, but the other items are calculated or measured by the 6-minute walking test apparatus 1. Accordingly, the value of the MRC dyspnea feeling scale is determined by interviewing the measurement subject and input to the walking test apparatus 1 for 6 minutes, so that the range of each of the above items 1 to 4 is obtained as shown in FIG. Based on this, BODE index is determined and displayed on the walking test apparatus 1 for 6 minutes. Thereby, the severity of COPD is easily determined. In the example of FIG. 16, as the BODE index increases to 0, 1, 2, 3, the severity of COPD increases.
  • the 6-minute walking test apparatus 1 of this embodiment it is also possible to display the hospitalization risk from the comparison with the statistical data based on the measured walking distance for 6 minutes. As a specific example, based on statistical data that the hospitalization risk increases when the walking distance is 357 m or less, it is possible to display that the hospitalization risk is high when the measured walking distance is 357 m or less. It is.
  • a walking test system that transmits measurement data during a walking test to an information communication device (communication device) such as a tablet terminal, a multi-function remote controller, or a personal computer may be configured.
  • an information communication device such as a tablet terminal, a multi-function remote controller, or a personal computer
  • FIG. 17 is a diagram illustrating an example of a system configuration of the walking test system 1000 in this case.
  • the walking test system 1000 includes a 6-minute walking test apparatus 1, a tablet terminal 3, and a printer 5.
  • the 6-minute walking test apparatus 1 includes a wireless communication unit 11 and is configured to transmit measurement data during the walking test to the tablet terminal 3 using wireless communication.
  • the tablet terminal 3 is a tablet-type portable information communication device that includes a wireless communication unit 31 and is configured to receive measurement data transmitted from the 6-minute walking test apparatus 1.
  • a wireless communication method a known wireless communication method such as Bluetooth (registered trademark) or WiFi can be applied.
  • the tablet terminal 3 includes a wireless communication unit 31 and a touch screen 33 in which a touch panel and a liquid crystal display are integrally formed, and measurement data received from the 6-minute walking test apparatus 1 by the wireless communication unit 31 is a touch screen.
  • a manager such as a person in charge of the walking test, a doctor, or a nurse can check the measurement data at any time, or the measurement subject can check the measurement data after the walking test is completed.
  • the tablet terminal 3 and the printer 5 are connected by communication, and the measurement data is output from the tablet terminal 3 to the printer 5 so that the measurement data can be printed.
  • the 6-minute walking test apparatus 1 From the 6-minute walking test apparatus 1, measurement of respiratory system items (respiration frequency, tidal volume equivalent, minute ventilation equivalent, SpO 2 ) and circulatory system items (pulse rate, SpO 2 ) are measured. The value is transmitted as measurement data.
  • the 6-minute walking test apparatus 1 since the transfer time is not in time if the real-time waveform data of the measurement values of each item is transmitted, the 6-minute walking test apparatus 1 has a regular timing (for example, 1 second or 30 seconds, The measured value at the timing is transmitted to the tablet terminal 3 at a timing of once per minute) or intermittent timing.
  • the measured value of at least one of a plurality of items included in the respiratory system item or the circulatory system item is in a dangerous state for the subject to continue the walking test.
  • the measured value may be transmitted to the tablet terminal 3 at a timing when the dangerous condition indicating the condition is satisfied. For example, when SpO 2 falls below a predetermined lower limit value, or when the number of breaths or the pulse rate exceeds a predetermined upper limit value, the measured value at that timing is transmitted to the tablet terminal 3 assuming that the dangerous condition is satisfied. You may do it.
  • a shortness coefficient indicating the degree of shortness of breath of the measurement subject may be calculated, and this shortness coefficient may be transmitted to the tablet terminal 3 at the above transmission timing.
  • the shortness of breath coefficient can be calculated based on the measured values of respiratory system items.
  • a shortness coefficient of a predetermined number of stages for example, 10 stages
  • the determined shortness of breath can be displayed on the walking test apparatus 1 for 6 minutes, transmitted to the tablet terminal 3 to be displayed, printed on the printer 5, and the like.
  • a walking test there is a case where a walking test is performed in which a predetermined walking section in which a cone or the like is arranged is reciprocated by a person to be measured.
  • an operation button for counting up is provided in the walking test apparatus 1 for 6 minutes, and the operation button is pressed every time the measured person turns at the cone placement position during the walking test. The number of times may be input to the walking test apparatus 1 for 6 minutes. Then, the number of turns may be transmitted to the tablet terminal 3 together with the measured values of the circulatory system item and the respiratory system item.
  • a plurality of types of event buttons (icons) indicating various events related to the walking test and the contents of the events are displayed on the touch screen 33 of the tablet terminal 3, and the event buttons displayed on the touch screen 33 are tapped.
  • identification information for identifying the corresponding event may be stored in association with the measurement data of the measurement subject at that time.
  • the event related to the walking test is an event set based on the walking test method, the data measurement method, and the like, for example, “1. Stop walking”, “2. Meander walking”, “3. You can set multiple types of events, such as “Out”.
  • the number assigned to each event can be stored as identification information in association with the measurement data.
  • the type and content of the event can be freely set according to the walking test method, the data measurement method, the facilities of the facility where the walking test is performed, and the like.
  • the face mask 190 that covers the nostril and the mouth may be used instead of the nostril cannula 180.
  • the face mask 190 also has one terminal, and that terminal is connected to the luer connector 142 (that is, a port that outputs a negative voltage when exhalation is applied) to thereby measure the respiratory pressure of the subject. It is possible to capture changes.
  • the nostril cannula 180 is inserted into the nostril as described above, there is a problem in that exhalation / inspiration cannot be completely captured when the measurement subject breathes through the mouth.
  • the face mask 190 when the face mask 190 is used, both the nostril and the mouth are covered. Therefore, it becomes possible to capture the exhaled air / inspired air and measure the ventilation amount more accurately.
  • the measurement items of the respiratory system are the number of breaths, equivalent to the tidal volume, equivalent to the minute ventilation, and SpO 2
  • the measurement items of the circulatory system are the pulse rate and SpO 2
  • the measurement item of the respiratory system and the measurement item of the circulatory system are not limited to these. Further, in the example shown in FIGS. 8 to 10, the temporal change of SpO 2 may be graphed together.
  • a range in which the differential value of each item converges within a predetermined range is a flat region.
  • the starting point of the flat region may be determined as the inflection point.
  • An inflection point may be determined based on a decrease in the amount of time change of each item (for example, an inflection point may be a point at which the increase in pulse rate per 10 seconds is 2 or less). The method is not limited.
  • the example in which the acceleration in the walking surface is calculated based on the output signal of the 6-axis sensor and the walking speed and the walking distance are calculated based on this is described.
  • the walking distance is calculated by counting the number of steps by detecting the walking motion (one step) and multiplying the number of steps by the step length calculated based on the input information such as height or the step length specified based on the statistical value from the input information. It may be calculated.
  • the walking test apparatus is a 6-minute walking test apparatus for a walking time of 6 minutes
  • the walking test time is not limited to 6 minutes. It goes without saying that the walking test apparatus of the present invention is intended for any walking time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention measures breathing frequency, respiratory minute volume equivalent and tidal volume equivalent and graphically indicates the same on a common time axis to enable comparison. With the lapse of time from the start of measurements, first the rise in the breathing frequency, respiratory minute volume equivalent and tidal volume equivalent is moderated (after three minutes), after which the rise in pulse rate is moderated (after four minutes). Since the items in the respiratory system have reached their peak quicker than the item in the circulatory system, it can be presumed that the functions of the respiratory system were not able to keep up with the increase in the amount of exercise and, as a result, the walking distance was limited.

Description

歩行試験装置Walking test device
 本発明は、被測定者が歩行しているときの動脈血酸素飽和度(以下、「SpO」と称する。)等を測定する歩行試験装置に関する。 The present invention relates to a walking test apparatus for measuring arterial blood oxygen saturation (hereinafter referred to as “SpO 2 ”) or the like when a measurement subject is walking.
 例えば非特許文献1に示すような6分間歩行試験(以下6MWTと称する場合がある)が知られている。6分間歩行試験は、自己のペースで6分間に歩くことができる最大距離を測定する検査であり、その距離により運動能力を評価する試験である。2002年にAmerican Thoracic Society(ATS)により運動耐用能力試験として標準化されている。6分間歩行試験においては、歩行前後および歩行中に修正Borgスケールを用いて息切れの強さと疲労感を評価する。修正Borgスケールとは、図1に示すように呼吸困難の具合を評価するスケールであり、歩行中にいずれのスケールの呼吸困難度に合致するかを被測定者に確認する(直接的評価)ことにより、歩行中の被測定者の状態を評価する。 For example, a 6-minute walking test (hereinafter sometimes referred to as 6MWT) as shown in Non-Patent Document 1 is known. The 6-minute walking test is a test for measuring the maximum distance that can be walked at a self-paced pace for 6 minutes, and is a test for evaluating exercise ability based on the distance. Standardized as an exercise endurance test by the American Thoracic Society (ATS) in 2002. In the 6-minute walking test, the strength of shortness of breath and the feeling of fatigue are evaluated using a modified Borg scale before and after walking and during walking. The modified Borg scale is a scale for evaluating the degree of dyspnea as shown in FIG. 1, and confirming with the measured person which scale of dyspnea is met during walking (direct evaluation). Thus, the state of the person being measured while walking is evaluated.
特許第4008953号公報Japanese Patent No. 4008953
 前述した修正Borgスケールによる評価は、同一対象における呼吸困難の相対的な経時推移を測定するのに適している。一方、測定値は対象者の主観性に影響されるため、定量的に被測定者の状態を評価できないという課題があり、異なる群間での比較にも限界があるとされている。また、近年は被測定者が装着した6分間歩行試験装置によって酸素飽和度(SpO)を測定可能となっており、これにより被測定者の歩行試験中の状態を把握することは可能であるものの、6分間歩行試験における運動制限因子(6分間の歩行距離を抑制する要因)を推定することが困難であるという問題がある。 The evaluation based on the modified Borg scale described above is suitable for measuring the relative time course of dyspnea in the same subject. On the other hand, since the measured value is influenced by the subjectivity of the subject, there is a problem that the state of the subject cannot be quantitatively evaluated, and there is a limit to the comparison between different groups. In recent years, the oxygen saturation (SpO 2 ) can be measured by a 6-minute walking test apparatus worn by the person to be measured, which makes it possible to grasp the state of the person being measured during the walking test. However, there is a problem that it is difficult to estimate an exercise limiting factor (a factor that suppresses the walking distance for 6 minutes) in the 6-minute walking test.
 本発明は、このような背景のもとになされたものであり、その目的は、6分間歩行試験等の歩行試験における被測定者の状態を定量的に評価可能であり、運動制限因子を推定可能とする歩行試験装置を提供することにある。 The present invention has been made based on such a background, and the purpose of the present invention is to quantitatively evaluate the state of a person to be measured in a walking test such as a 6-minute walking test and to estimate an exercise limiting factor. An object of the present invention is to provide a walking test apparatus that enables this.
 上記課題を解決すべく以下の手段を採った。なお後述する発明を実施するための最良の形態の説明および図面で使用した符号を参考のために括弧書きで付記するが、本発明の構成要素は該付記したものには限定されない。 The following measures were taken to solve the above problems. The reference numerals used in the description of the best mode for carrying out the invention and the drawings to be described later are added in parentheses for reference, but the constituent elements of the present invention are not limited to those added.
 手段1に係る歩行試験装置は、
 被測定者の歩行中における呼吸器系項目(呼吸回数、一回換気量相当、分時換気量相当、動脈血酸素飽和度)および循環器系項目(脈拍数、動脈血酸素飽和度)を測定する測定手段(フローセンサ150、鼻孔カニューラ180、フェイスマスク190、圧力センサ104、SpOモジュール106、CPU110)を備える歩行試験装置(1)であって、
 前記呼吸器系項目に係る測定値の経時変化および前記循環器系項目に係る測定値の経時変化を対比可能に表示する(共通時間軸のグラフに各項目の時系列データを表示する)表示手段(タッチパネル付液晶132)をさらに備えることを特徴とする。
 これによれば、歩行試験における被測定者の状態を定量的に評価することができ、運動制限因子を推定することができる。
The walking test apparatus according to means 1 is:
Measurement to measure respiratory system items (respiration rate, tidal volume equivalent, minute ventilation equivalent, arterial oxygen saturation) and circulatory system items (pulse rate, arterial oxygen saturation) during walking of the subject A walking test apparatus (1) comprising means (flow sensor 150, nostril cannula 180, face mask 190, pressure sensor 104, SpO 2 module 106, CPU 110),
Display means for displaying the change over time of the measurement value related to the respiratory system item and the change over time of the measurement value related to the circulatory system item in a comparable manner (displaying time-series data of each item on a common time axis graph) (LCD 132 with a touch panel) is further provided.
According to this, the state of the measurement subject in the walking test can be quantitatively evaluated, and the movement limiting factor can be estimated.
 手段2に係る歩行試験装置は、
 手段1に記載した歩行試験装置であって、
 前記呼吸器系項目に係る測定値の経時変化が第1所定範囲となる第1時点(傾きが減少して平坦となる変曲点)を特定すると共に、前記循環器系項目に係る測定値の経時変化が第2所定範囲となる第2時点(傾きが減少して平坦となる変曲点)を特定する特定手段(CPU110)をさらに備え、
 前記表示手段は、前記第1時点と前記第2時点との前後関係を把握可能(時間軸(X軸)上の座標を把握可能)に表示することを特徴とする。
 これによれば、運動制限因子を容易に推定することができる。
The walking test apparatus according to means 2 is:
A walking test apparatus described in means 1, wherein
The first time point (the inflection point at which the slope decreases and becomes flat) where the change over time of the measurement value related to the respiratory system item falls within the first predetermined range is specified, and the measurement value related to the cardiovascular system item A specifying unit (CPU 110) for specifying a second time point (an inflection point at which the inclination decreases and becomes flat) when the change with time is in the second predetermined range;
The display means displays the anteroposterior relationship between the first time point and the second time point so as to be grasped (coordinates on the time axis (X axis) can be grasped).
According to this, an exercise | movement limiting factor can be estimated easily.
 手段3に係る歩行試験装置は、
 手段2に記載した歩行試験装置であって、
 前記第1時点と前記第2時点との前後関係に基づいて運動制限因子が呼吸器系であるか又は循環器系であるかを判別する判別手段(CPU110)をさらに備え、
 前記表示手段は、前記判別手段により判別された運動制限因子を把握可能に表示することを特徴とする。
 これによれば、運動制限因子を把握することができる。
The walking test apparatus according to means 3 is:
A walking test apparatus described in means 2,
A determination unit (CPU 110) for determining whether the exercise limiting factor is a respiratory system or a circulatory system based on the context between the first time point and the second time point;
The display means displays the exercise limiting factor discriminated by the discriminating means so as to be grasped.
According to this, an exercise limiting factor can be grasped.
 手段4に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記判別手段は、前記第1時点が前記第2時点よりも早いことに基づいて運動制限因子が呼吸器系であると判別することを特徴とする。
 これによれば、運動制限因子が呼吸器系であることを把握することができる。
The walking test apparatus according to means 4 is:
A walking test apparatus described in means 3,
The determining means determines that the exercise limiting factor is a respiratory system based on the fact that the first time point is earlier than the second time point.
According to this, it can be understood that the exercise limiting factor is the respiratory system.
 手段5に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記判別手段は、前記第2時点が前記第1時点よりも早いことに基づいて運動制限因子が循環器系であると判別することを特徴とする。
 これによれば、運動制限因子が循環器系であることを把握することができる。
The walking test apparatus according to means 5 is:
A walking test apparatus described in means 3,
The discrimination means discriminates that the movement limiting factor is a circulatory system based on the fact that the second time point is earlier than the first time point.
According to this, it can be understood that the movement limiting factor is the circulatory system.
 手段6に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記判別手段は、前記第1時点が前記第2時点よりも早いことに基づいて運動制限因子が呼吸器系であると判別し、前記第2時点が前記第1時点よりも早いことに基づいて運動制限因子が循環器系であると判別することを特徴とする。
 これによれば、運動制限因子が呼吸器系であるか又は循環器系であるかを把握することができる。
The walking test apparatus according to means 6 is:
A walking test apparatus described in means 3,
The discriminating unit discriminates that the exercise limiting factor is a respiratory system based on the fact that the first time point is earlier than the second time point, and based on the fact that the second time point is earlier than the first time point. It is characterized by discriminating that the movement limiting factor is the circulatory system.
According to this, it is possible to grasp whether the exercise limiting factor is the respiratory system or the circulatory system.
 手段6に記載した歩行試験装置であって、
 前記判別手段は、前記第1時点および前記第2時点のいずれも特定されない場合には、運動制限因子が筋力系であると判別することを特徴とする。
 これによれば、運動制限因子を容易に推定することができる。
A walking test apparatus described in means 6,
The discrimination means discriminates that the exercise limiting factor is a muscle force system when neither the first time point nor the second time point is specified.
According to this, an exercise | movement limiting factor can be estimated easily.
 手段8に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記測定手段は、前記呼吸器系測定項目として呼吸回数および換気量(一回換気量相当、分時換気量相当)から選択される1項目以上を測定し、前記循環器系測定項目として脈拍数を測定することを特徴とする。
 これによれば、被測定者から容易に測定可能な項目に基づいて運動制限因子を推定することができる。
The walking test apparatus according to means 8 is:
A walking test apparatus described in means 3,
The measuring means measures one or more items selected from the respiratory frequency and the ventilation volume (equivalent to tidal volume, equivalent to minute ventilation) as the respiratory system measurement item, and the pulse rate as the circulatory system measurement item Is measured.
According to this, it is possible to estimate the exercise limiting factor based on the items that can be easily measured from the measurement subject.
 手段9に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記測定手段は、前記呼吸器系測定項目として呼吸回数および換気量(一回換気量相当、分時換気量相当)を測定し、
 前記表示手段は、前記呼吸回数および前記換気量の関係を把握可能に表示することを特徴とする。
 これによれば、被測定者の呼吸機能を適切に評価することができる。
The walking test apparatus according to means 9 is:
A walking test apparatus described in means 3,
The measuring means measures the respiratory frequency and the ventilation volume (equivalent to tidal volume, equivalent to minute ventilation) as the respiratory system measurement items,
The display means displays the relationship between the number of breaths and the ventilation volume so as to be grasped.
According to this, it is possible to appropriately evaluate the respiratory function of the measurement subject.
 手段10に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記測定手段は、前記呼吸器系測定項目として呼吸回数、換気量(一回換気量相当、分時換気量相当)、および、動脈血酸素飽和度から選択される複数の項目を測定し、
 前記表示手段は、測定された各呼吸器系項目の経時変化を対比可能に表示することを特徴とする。
 これによれば、被測定者の呼吸機能を適切に評価することができる。ここで単に「換気量」という場合は、差圧式フローセンサの使用によって測定可能となる一回換気量および分時換気量、ならびに、鼻孔カニューラあるいはフェイスマスクの使用によって測定可能となる一回換気量相当および分時換気量相当の全てを含む概念である。
The walking test apparatus according to means 10 is:
A walking test apparatus described in means 3,
The measuring means measures a plurality of items selected from the respiratory frequency, ventilation volume (equivalent to tidal volume, equivalent to minute ventilation), and arterial oxygen saturation as the respiratory system measurement items,
The display means displays the measured changes over time of each respiratory system item so that they can be compared.
According to this, it is possible to appropriately evaluate the respiratory function of the measurement subject. Here, the term “ventilation” simply refers to tidal and minute ventilation that can be measured by using a differential pressure flow sensor, and tidal volume that can be measured by using a nostril cannula or a face mask. It is a concept that includes all equivalent and equivalent minute ventilation.
 手段11に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記呼吸器系項目の測定値の経時変化に基づいて被測定者の呼吸機能傾向(呼吸機能タイプ)を分類する分類手段(CPU110)をさらに備え、
 前記表示手段は、前記分類された呼吸機能傾向を表示することを特徴とする。
 これによれば、被測定者の呼吸機能傾向を適切に分類して、被測定者に報知することができる。
The walking test apparatus according to means 11 is:
A walking test apparatus described in means 3,
Classifying means (CPU 110) for classifying the respiratory function tendency (respiratory function type) of the person to be measured based on the change over time of the measured value of the respiratory system item,
The display means displays the classified respiratory function tendency.
According to this, it is possible to appropriately classify the respiratory function tendency of the measurement subject and notify the measurement subject.
 手段12に係る歩行試験装置は、
 手段11に記載した歩行試験装置であって、
 前記測定手段は、前記呼吸器系項目として呼吸回数および換気量を測定し、
 前記分類手段は、前記呼吸回数および前記換気量の測定値の経時変化に基づいて前記呼吸機能傾向(呼吸回数補償型、換気量補償型、混合型)を分類することを特徴とする。
 これによれば、呼吸回数および換気量の測定値の経時変化に基づいて呼吸機能傾向を適切に分類することができる。
The walking test apparatus according to means 12 is:
A walking test apparatus described in means 11, wherein
The measuring means measures the respiratory rate and the ventilation volume as the respiratory system item,
The classifying means classifies the respiratory function tendency (respiration rate compensation type, ventilation rate compensation type, mixed type) based on a change with time in the measured value of the respiratory rate and the ventilation rate.
According to this, it is possible to appropriately classify the respiratory function tendency based on the temporal change of the measured value of the number of breaths and the ventilation volume.
 手段13に係る歩行試験装置は、
 手段12に記載した歩行試験装置であって、
 前記測定手段は、前記呼吸器系項目としてIE比を測定し、
 前記分類手段は、前記IE比の経時変化に基づいて前記呼吸機能傾向(IE比変化型)を分類することを特徴とする。
 これによれば、IE比の経時変化に基づいて呼吸機能傾向を適切に分類することができる。
The walking test apparatus according to means 13 is:
A walking test apparatus described in means 12, comprising:
The measuring means measures an IE ratio as the respiratory system item,
The classification means classifies the respiratory function tendency (IE ratio change type) based on a change with time of the IE ratio.
According to this, it is possible to appropriately classify the respiratory function tendency based on the temporal change of the IE ratio.
 手段14に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記測定手段は、前記歩行試験を開始する前の前安静状態および前記歩行試験を終了した後の後安静状態における被測定者の呼吸器系項目および循環器系項目を測定し、
 前記前安静状態に対する前記後安静状態の各項目の測定値の回復状況(回復係数、回復時間)を判定する回復状況判定手段(CPU110)をさらに備え、
 前記判定手段は、前記判定された回復状況を表示することを特徴とする。
 これによれば、前安静状態に対する後安静状態の各項目の測定値の回復状況を判定することで、被測定者の健康状態および病態を判断することができる。また、その判断結果を報知することができる。
The walking test apparatus according to means 14 is:
A walking test apparatus described in means 3,
The measurement means measures a respiratory system item and a circulatory system item of a measurement subject in a pre-rest state before starting the walking test and a post-rest state after finishing the walking test,
Recovery status determination means (CPU 110) for determining the recovery status (recovery coefficient, recovery time) of the measurement value of each item in the rear rest state relative to the previous rest state,
The determination means displays the determined recovery status.
According to this, it is possible to determine the health condition and the pathological condition of the measurement subject by determining the recovery status of the measured values of each item in the post-rest state relative to the pre-rest state. Further, the determination result can be notified.
 手段15に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 前記測定手段は、歩行試験中の被測定者の歩行距離、歩行速度、および位置のうちの少なくともいずれかを含む歩行諸量をさらに測定し(CPU110、慣性センサ、加速度/地磁気センサ105、ジャイロセンサ、GPSセンサ、IMU、INS)、
 前記測定された歩行諸量を表示することを特徴とする。
 これによれば、歩行試験中の被測定者の歩行諸量を被測定者に報知することができる。
The walking test apparatus according to means 15 is:
A walking test apparatus described in means 3,
The measuring means further measures various walking quantities including at least one of the walking distance, walking speed, and position of the measurement subject during the walking test (CPU 110, inertial sensor, acceleration / geomagnetic sensor 105, gyro sensor). , GPS sensor, IMU, INS),
The measured walking quantities are displayed.
According to this, it is possible to notify the measurement subject of various walking amounts of the measurement subject during the walking test.
 手段16に係る歩行試験装置は、
 手段15に記載した歩行試験装置であって、
 前記測定手段は、加速度センサ(3軸加速度センサ)および方位センサ(3軸地磁気センサ)を有し(加速度/地磁気センサ105)、前記加速度センサおよび前記方位センサの検出結果に基づいて被測定者の歩行距離を前記歩行諸量として測定することを特徴とする。
 これによれば、歩行試験中の被測定者の歩行距離を正確に測定することができる。
The walking test apparatus according to means 16 is:
A walking test apparatus described in means 15,
The measurement means includes an acceleration sensor (3-axis acceleration sensor) and an orientation sensor (3-axis geomagnetic sensor) (acceleration / geomagnetic sensor 105), and the measurement subject's measurement results are detected based on the detection results of the acceleration sensor and the orientation sensor. The walking distance is measured as the various walking quantities.
According to this, the walking distance of the measurement subject during the walking test can be accurately measured.
 手段17に係る歩行試験装置は、
 手段3に記載した歩行試験装置であって、
 フローセンサ(150)を接続可能な圧力ポート(ルアーコネクタ142,143)をさらに備え、
 前記圧力ポート(ルアーコネクタ142)には、前記フローセンサに代えて鼻孔カニューラまたはフェイスマスクを接続可能であり、
 前記測定手段は、前記圧力ポート(ルアーコネクタ142,143)にフローセンサが接続された場合に呼吸流量および換気量から選択される1以上の項目を測定可能であり、
 前記圧力ポート(ルアーコネクタ142)に鼻孔カニューラ(180)又はフェイスマスク(190)が接続された場合に呼吸圧、呼吸回数、および換気量から選択される1以上の項目を測定可能であることを特徴とする。
 これによれば、共通の圧力ポートに異なる機器を選択的に接続可能であり、圧力ポートに接続される機器に応じた呼吸器系項目を測定することができる。
The walking test apparatus according to means 17 is:
A walking test apparatus described in means 3,
A pressure port (luer connector 142, 143) to which the flow sensor (150) can be connected;
A nostril cannula or a face mask can be connected to the pressure port (luer connector 142) instead of the flow sensor.
The measurement means is capable of measuring one or more items selected from respiratory flow rate and ventilation volume when a flow sensor is connected to the pressure port (luer connectors 142, 143),
When a nostril cannula (180) or a face mask (190) is connected to the pressure port (luer connector 142), one or more items selected from respiratory pressure, respiratory rate, and ventilation volume can be measured. Features.
According to this, different devices can be selectively connected to the common pressure port, and respiratory system items corresponding to the devices connected to the pressure port can be measured.
 手段18に係る歩行試験装置は、
 手段17に記載した歩行試験装置であって、
 前記鼻孔カニューラ(180)は、被測定者の呼気が通過する呼気経路とは別に、酸素供給手段(酸素供給器)から被測定者に対して酸素を供給するための酸素経路を備えることを特徴とする。
 これによれば、被測定者に酸素を供給しながら歩行試験を行うことができる。
The walking test apparatus according to means 18 is:
A walking test apparatus described in means 17, comprising:
The nostril cannula (180) is provided with an oxygen path for supplying oxygen from the oxygen supply means (oxygen supply device) to the measurement subject, in addition to the expiration path through which the measurement subject's exhalation passes. And
According to this, the walking test can be performed while supplying oxygen to the measurement subject.
 手段19に記載した歩行試験装置は、
 手段1に記載した歩行試験装置であって、
 被測定者に対して酸素を供給する酸素供給手段(酸素供給器)において設定された設定酸素流量が適正であるか否かを、被測定者の呼吸データ(呼吸圧の波形)に基づいて判定する適正判定手段(CPU110)をさらに備え、その判定結果が否定判定である場合に、その旨を報知することを特徴とする。
 これによれば、酸素供給手段に対して設定された設定酸素流量が適正でない場合に、注意喚起を行うことができる。
The walking test apparatus described in means 19 is:
A walking test apparatus described in means 1, wherein
Determines whether the set oxygen flow set in the oxygen supply means (oxygen supply device) that supplies oxygen to the subject is appropriate based on the respiratory data (respiratory pressure waveform) of the subject. And an appropriate determination means (CPU 110) for notifying that when the determination result is a negative determination.
According to this, alerting can be performed when the set oxygen flow rate set for the oxygen supply means is not appropriate.
 手段20に記載した歩行試験装置は、
 手段19に記載した歩行試験装置であって、
 前記適正判定手段は、酸素流量による圧力のオフセット値であって、被測定者の呼吸データ(呼吸圧の波形)における測定オフセット値に基づいて適正判定を行うことを特徴とする。
 これによれば、酸素供給手段に対して設定された設定酸素流量が適正であるか否かの判定を正確かつ確実に行うことができる。
The walking test apparatus described in means 20 is:
A walking test apparatus described in means 19, comprising:
The appropriateness determination means performs an appropriateness determination based on a measured offset value in a measurement subject's respiratory data (respiration pressure waveform), which is an offset value of pressure based on an oxygen flow rate.
According to this, it is possible to accurately and reliably determine whether or not the set oxygen flow rate set for the oxygen supply means is appropriate.
 手段21に記載した歩行試験装置は、
 手段1に記載した歩行試験装置であって、
 歩行試験中において、被測定者に対して酸素を供給する酸素供給手段から被測定者への酸素供給の異常を被測定者の呼吸データに基づいて検出する異常検出手段(CPU110)をさらに備え、異常が検出された場合に、その旨を報知することを特徴とする。
 これによれば、歩行試験中における酸素供給手段から被測定者への酸素供給の異常を検出し、注意喚起を行うことができる。
The walking test apparatus described in means 21 is:
A walking test apparatus described in means 1, wherein
During the walking test, the apparatus further comprises an abnormality detection means (CPU 110) for detecting an abnormality in oxygen supply from the oxygen supply means for supplying oxygen to the measurement subject to the measurement subject based on the respiratory data of the measurement subject. When abnormality is detected, the fact is notified.
According to this, it is possible to detect an abnormality in the oxygen supply from the oxygen supply means to the measurement subject during the walking test and call attention.
 手段22に記載した歩行試験装置は、
 手段21に記載した歩行試験装置であって、
 前記異常検出手段は、酸素流量による圧力のオフセット値であって、歩行試験中に測定される被測定者の呼吸データにおける測定オフセット値に基づいて異常を検出することを特徴とする。
 これによれば、酸素供給手段から供給される酸素流量の異常を適切に検出することができる。
The walking test apparatus described in the means 22 is
A walking test apparatus described in means 21, comprising:
The abnormality detecting means detects an abnormality based on a measurement offset value in a measurement subject's respiratory data, which is an offset value of a pressure due to an oxygen flow rate and is measured during a walking test.
According to this, it is possible to appropriately detect an abnormality in the flow rate of oxygen supplied from the oxygen supply means.
図1は修正Borgスケールを示す図である。FIG. 1 shows a modified Borg scale. 図2は6分間歩行試験装置の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing an example of a 6-minute walking test apparatus. 図3は本体部の外観を示す図である。FIG. 3 is a view showing the appearance of the main body. 図4はフローセンサの外観を示す図である。FIG. 4 is a diagram showing the appearance of the flow sensor. 図5は鼻孔カニューラの外観を示す図である。FIG. 5 is a diagram showing the appearance of the nostril cannula. 図6は挿入管の構造の一例を示す図である。FIG. 6 is a view showing an example of the structure of the insertion tube. 図7は挿入管の構造の一例を示す図である。FIG. 7 is a view showing an example of the structure of the insertion tube. 図8は脈拍数、呼吸回数、分時換気量相当、および一回換気量相当の時間推移を示すグラフである。FIG. 8 is a graph showing time transitions corresponding to pulse rate, number of breaths, minute ventilation, and tidal volume. 図9は脈拍数、呼吸回数、分時換気量相当、および一回換気量相当の時間推移を示すグラフである。FIG. 9 is a graph showing time transitions corresponding to the pulse rate, the number of breaths, the minute ventilation, and the tidal volume. 図10は脈拍数、呼吸回数、分時換気量相当、および一回換気量相当の時間推移を示すグラフである。FIG. 10 is a graph showing time transitions corresponding to the pulse rate, the number of breaths, the minute ventilation, and the tidal volume. 図11は呼吸回数と一回換気量相当との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the number of breaths and the equivalent to tidal volume. 図12は呼吸回数と分時換気量相当との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the number of breaths and the equivalent to minute ventilation. 図13は伏角分布を示す図である。FIG. 13 is a diagram showing the dip angle distribution. 図14は標準姿勢における地磁気方向と歩行姿勢における地磁気方向の関係を示す図である。FIG. 14 is a diagram showing the relationship between the geomagnetic direction in the standard posture and the geomagnetic direction in the walking posture. 図15は6分間歩行試験の測定結果を示す図である。FIG. 15 is a diagram showing measurement results of a 6-minute walking test. 図16はBODE indexを示す図である。FIG. 16 is a diagram showing a BODE index. 歩行試験システムのシステム構成の一例を示す図である。It is a figure which shows an example of the system configuration | structure of a walking test system. 呼吸機能タイプ判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a respiratory function type determination process. 呼吸機能タイプの判定方法の説明図である。It is explanatory drawing of the determination method of a respiratory function type. 歩行試験前(歩行試験後)判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the determination process before a walk test (after a walk test). 判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a determination process. 歩行試験中判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the determination process during a walk test.
 以下、本発明に係る歩行試験装置の一例である6分間歩行試験装置1に関して、図面を参照して説明する。 Hereinafter, the 6-minute walking test apparatus 1 which is an example of the walking test apparatus according to the present invention will be described with reference to the drawings.
[6分間歩行試験装置の構成]
 図2に示すように、本実施形態における6分間歩行試験装置1は、本体部100と、本体部100に接続されるフローセンサ150またはこれに代えて接続される鼻孔カニューラ180若しくはフェイスマスク190、SpOプローブ160、および、本体部100に指令信号やイベント信号を送信するワイヤレスリモコン170からなる。本体部100の内部には、受信部101、温度センサ102、電池103、圧力センサ104、加速度/地磁気センサ105、SpOモジュール106、A/D変換部107、CPU110、RAM121、ROM122、電磁弁123、および、USBドライバ回路124が設けられている。また、図2および図3に示すように、本体部100の筐体は、ルアーコネクタ142,143、SpOコネクタ141、DCジャック145、USBコネクタ131、タッチパネル付液晶132、ブザー133、およびLED134を備えている。
[Configuration of 6-minute walking test device]
As shown in FIG. 2, the 6-minute walking test apparatus 1 according to the present embodiment includes a main body 100, a flow sensor 150 connected to the main body 100, or a nostril cannula 180 or a face mask 190 connected in place of the main body 100. It includes an SpO 2 probe 160 and a wireless remote controller 170 that transmits a command signal and an event signal to the main body 100. Inside the main body 100, there are a receiver 101, a temperature sensor 102, a battery 103, a pressure sensor 104, an acceleration / geomagnetic sensor 105, an SpO 2 module 106, an A / D converter 107, a CPU 110, a RAM 121, a ROM 122, and a solenoid valve 123. , And a USB driver circuit 124 is provided. As shown in FIGS. 2 and 3, the housing of the main body 100 includes luer connectors 142 and 143, an SpO 2 connector 141, a DC jack 145, a USB connector 131, a liquid crystal with touch panel 132, a buzzer 133, and an LED 134. I have.
 圧力センサ104は、圧力を検出するための2つの圧力ポートを有しており、各圧力ポートには極性が存在する。一方の圧力ポートに陽圧が印加されたときにはプラス電圧が出力され、他方の圧力ポートに陽圧が印加されたときにはマイナス電圧が出力される。本例における圧力センサ104は差圧センサであり、両圧力ポート間の差圧に比例したアナログ信号を出力するものである。一方の圧力ポートにはルアーコネクタ142が接続され、、他方の圧力ポートにはルアーコネクタ143が接続される。圧力センサ104は、ルアーコネクタ142,143間の差圧を検出し、該検出された差圧に比例した電圧を出力するための出力端子を備えている。 The pressure sensor 104 has two pressure ports for detecting pressure, and each pressure port has polarity. A positive voltage is output when a positive pressure is applied to one pressure port, and a negative voltage is output when a positive pressure is applied to the other pressure port. The pressure sensor 104 in this example is a differential pressure sensor, and outputs an analog signal proportional to the differential pressure between both pressure ports. A luer connector 142 is connected to one pressure port, and a luer connector 143 is connected to the other pressure port. The pressure sensor 104 includes an output terminal for detecting a differential pressure between the luer connectors 142 and 143 and outputting a voltage proportional to the detected differential pressure.
 図3に示される例では、ルアーコネクタ142から呼気が印加された場合には、圧力センサ104の出力端子からマイナスの電圧が出力され、ルアーコネクタ143から呼気が印加された場合には、圧力センサ104の出力端子からプラスの電圧が出力される。これは呼吸機能検査のときに、一般的に呼気がマイナス値(ボリュームの減少)として表示され、吸気がプラス値(ボリュームの増加)として表示されることに対応したものである。 In the example shown in FIG. 3, when exhalation is applied from the luer connector 142, a negative voltage is output from the output terminal of the pressure sensor 104, and when exhalation is applied from the luer connector 143, the pressure sensor A positive voltage is output from the output terminal 104. This corresponds to the fact that, during a respiratory function test, exhalation is generally displayed as a negative value (volume decrease) and inspiration is displayed as a positive value (volume increase).
 A/D変換部107には圧力センサ104の出力に対応するA/D変換器が設けられており、これによりアナログ信号からディジタル信号に変換された差圧がCPU110により読み込まれ、差圧に基づいて呼吸流量や呼吸容量等の計算が実行される。 The A / D converter 107 is provided with an A / D converter corresponding to the output of the pressure sensor 104, whereby a differential pressure converted from an analog signal to a digital signal is read by the CPU 110, and based on the differential pressure. Thus, the calculation of the respiratory flow rate and the respiratory volume is executed.
 フローセンサ150について図4を用いて詳述する。フローセンサ150の筐体となるフローセンサケース151の側面には、フィルタやマウスピースを接続するための接続口152が設けられている。フローセンサケース151の下部にはフローセンサケース151を把持するためのハンドル156が設けられている。 The flow sensor 150 will be described in detail with reference to FIG. A connection port 152 for connecting a filter and a mouthpiece is provided on a side surface of the flow sensor case 151 serving as a housing of the flow sensor 150. A handle 156 for holding the flow sensor case 151 is provided below the flow sensor case 151.
 このフローセンサケース151内の流管153内には呼吸抵抗を生ずる抵抗体としてスクリーン155が配置されている。このスクリーン155はメッシュ状物であって、気体の流れを遮るように配置されており、この流管153内に気体の流れが生じるとスクリーン155の前後に差圧が発生する。このスクリーン155の前後の圧力は、該スクリーン155の前後に配される圧力ポートの各々と接続されるチューブ157,158を介して、本体部100のルアーコネクタ142,143に伝達される構成となっている。即ち差圧チューブを構成する2本のチューブ157,158のうち、チューブ157がスクリーン前方(接続口152側)の圧力を当該チューブ端子157aと接続される一方のルアーコネクタ142に伝達し、チューブ158がスクリーン後方の圧力を当該チューブ端子158aと接続される他方のルアーコネクタ143に伝達する。本体部100側(圧力センサ104)ではこれら2つのルアーコネクタ間の差圧を検出することにより、流管153内を流れる気体の流速、即ち呼吸流量を計測することができる。この呼吸流量は、呼吸流速とも呼ばれる。なお、この方式のフローセンサは、いわゆる差圧式と呼ばれるものであり、広く使用されている。 In the flow tube 153 in the flow sensor case 151, a screen 155 is disposed as a resistor that generates respiratory resistance. The screen 155 is a mesh-like material and is arranged so as to block the gas flow. When a gas flow occurs in the flow tube 153, a differential pressure is generated before and after the screen 155. The pressure before and after the screen 155 is transmitted to the luer connectors 142 and 143 of the main body 100 via the tubes 157 and 158 connected to the pressure ports arranged at the front and rear of the screen 155, respectively. ing. That is, out of the two tubes 157 and 158 constituting the differential pressure tube, the tube 157 transmits the pressure in front of the screen (on the connection port 152 side) to one luer connector 142 connected to the tube terminal 157a. Transmits the pressure behind the screen to the other luer connector 143 connected to the tube terminal 158a. On the main body 100 side (pressure sensor 104), the flow rate of the gas flowing in the flow tube 153, that is, the respiratory flow rate, can be measured by detecting the differential pressure between these two luer connectors. This respiratory flow rate is also called a respiratory flow rate. Note that this type of flow sensor is a so-called differential pressure type and is widely used.
 ルアーコネクタ142,143にフローセンサ150が接続されているときに、被測定者が接続口152に接続されたマウスピースを口に固定した状態で呼吸することで、CPU110においては検出される差圧に応じた呼吸流量(以下「フロー」と称する場合がある)が算出され、さらに呼吸流量の積分により呼吸容量(以下「ボリューム」と称する場合がある)が算出される。なお、被測定者がマウスピースを隙間が無いようにくわえて、ノーズグリップを装着した状態(鼻呼吸ができない状態)で呼吸を行うことで、呼気・吸気の全量をフローセンサ150で補捉することができる。このようにして測定されるフローおよびボリュームはCPU110により読み込まれ、その測定値に基づいて努力性肺活量(FVC)、1秒量(FEV1)、1秒率(FEV1%)、%1秒量(%FEV1)等が算出される。このようにして得られた各測定値は、タッチパネル付液晶132に表示される。 When the flow sensor 150 is connected to the luer connectors 142 and 143, the measured pressure is detected by the CPU 110 when the person under test breathes in a state where the mouthpiece connected to the connection port 152 is fixed to the mouth. A respiratory flow rate (hereinafter sometimes referred to as “flow”) is calculated, and a respiratory volume (hereinafter also referred to as “volume”) is calculated by integrating the respiratory flow rate. In addition, the person to be measured holds the mouthpiece so that there is no gap, and breathes in a state where the nose grip is attached (a state in which nasal breathing is not possible). be able to. The flow and volume measured in this way are read by the CPU 110, and based on the measured value, the vital capacity (FVC), 1 second amount (FEV1), 1 second rate (FEV1%),% 1 second amount (% FEV1) and the like are calculated. Each measured value thus obtained is displayed on the liquid crystal 132 with a touch panel.
 また、本体部100にフローセンサ150を接続することにより、被測定者の一回換気量および分時換気量を測定することが可能である。前述したように差圧に基づいてフローを算出し、フローの時間積分により一回換気量および分時換気量を算出可能である。一回換気量は呼気または吸気一回あたりの換気量であり、呼気フローに基づいて呼気一回換気量を算出し、吸気フローに基づいて吸気一回換気量を算出する。また、分時換気量は1分間当たりの換気量である。 Also, by connecting the flow sensor 150 to the main body 100, it is possible to measure the tidal volume and minute ventilation of the person being measured. As described above, the flow can be calculated based on the differential pressure, and the tidal volume and minute ventilation can be calculated by time integration of the flow. The tidal volume is a ventilation volume per exhalation or inspiration, and the exhalation tidal volume is calculated based on the exhalation flow, and the inhalation tidal volume is calculated based on the inspiration flow. The minute ventilation is the ventilation per minute.
 ここでフローセンサ150は、被測定者が安静状態にあるときには使用可能であるものの、歩行中は使用することができないという問題がある。これは、歩行中に接続口152に接続されるマウスピースを口にくわえたまま歩行させて測定を行うことが困難であるためである。また、仮にこのような状態で測定を行う場合、マウスピースを含む流管153内の容量が大きいため、呼気がマウスピースからフローセンサ内にかけて滞留してしまい、その空間の二酸化炭素濃度が上がり、呼吸が継続できない状態になるためである。 Here, although the flow sensor 150 can be used when the measurement subject is in a resting state, there is a problem that the flow sensor 150 cannot be used while walking. This is because it is difficult to perform measurement while walking while holding the mouthpiece connected to the connection port 152 while walking. In addition, if measurement is performed in such a state, since the volume in the flow tube 153 including the mouthpiece is large, exhalation stays in the flow sensor from the mouthpiece, and the carbon dioxide concentration in the space increases. This is because breathing cannot be continued.
 そこで、歩行開始前にフローセンサ150を用いて前述した努力性肺活量(FVC)や1秒量(FEV1)等を測定した後は、フローセンサ150をルアーコネクタ142,143から取り外して、図5に示す鼻孔カニューラ180の端子181aをルアーコネクタ142(すなわち呼気を印加したときにマイナスの電圧が出力されるポート)に接続して、被測定者の呼気・吸気を捕捉する。 Therefore, after measuring the above-described forced vital capacity (FVC) and 1-second amount (FEV1) using the flow sensor 150 before the start of walking, the flow sensor 150 is removed from the luer connectors 142 and 143 and shown in FIG. The terminal 181a of the shown nostril cannula 180 is connected to the luer connector 142 (that is, a port to which a negative voltage is output when exhalation is applied) to capture exhalation / inspiration of the measurement subject.
 本実施形態における鼻孔カニューラ180は、塩化ビニル製の軟質チューブであり、図5に示すように、幹管181と、幹管181の分岐部から枝分かれした右分岐管182と左分岐管183、ならびに分岐部と対向する位置において右分岐管182と左分岐管183を連結すると共に、被測定者の右鼻孔に挿入される右挿入管186および被測定者の左鼻孔に挿入される左挿入管187とを備える装着部材185からなる。幹管181にはチューブ端子181aが1つ設けられており、この点は2端子を有するフローセンサ150と異なる構造となっている。 The nostril cannula 180 in the present embodiment is a soft tube made of vinyl chloride, and as shown in FIG. 5, as shown in FIG. 5, a stem pipe 181, a right branch pipe 182 and a left branch pipe 183 branched from a branch portion of the trunk pipe 181, and The right branch tube 182 and the left branch tube 183 are connected to each other at a position opposite to the branch portion, and the right insertion tube 186 inserted into the subject's right nostril and the left insertion tube 187 inserted into the subject's left nostril. The mounting member 185 is provided. The trunk pipe 181 is provided with one tube terminal 181a, which is different from the flow sensor 150 having two terminals.
 幹管181より分岐した右分岐管182および左分岐管183と、これらを連結する装着部材185により環状形状体が形成されている。被測定者はその環状形状体に頭を通して、右分岐管182を右耳の上にかけ、左分岐管183を左耳の上にかけ、さらに、右挿入管186を右鼻孔に挿入し、左挿入管187を左鼻孔に挿入した状態で歩行する。このようにすることで、マウスピースをくわえた状態で呼吸を行わなければならないフローセンサ150のような制約がなく、また、呼気(二酸化炭素)の滞留による息苦しさや装着時の重さを感じることなく、被測定者は快適に歩行試験を行うことができる。 An annular shape body is formed by the right branch pipe 182 and the left branch pipe 183 branched from the trunk pipe 181 and the mounting member 185 connecting them. The subject passes the head through the ring-shaped body, puts the right branch tube 182 over the right ear, puts the left branch tube 183 over the left ear, and further inserts the right insertion tube 186 into the right nostril. Walk with 187 inserted into the left nostril. By doing so, there is no restriction like the flow sensor 150 that needs to breathe with the mouthpiece held, and it also feels difficult to breathe due to retention of exhaled breath (carbon dioxide) and weight when wearing it. In addition, the measurement subject can comfortably perform the walking test.
 ここで鼻孔カニューラ180の幹管181に備えられるチューブ端子181aをルアーコネクタ142に接続した場合、残りのルアーコネクタ143は大気開放されるため、圧力センサ104では、大気圧と、幹管181内の圧力との差圧が検出されることになる。このようにして測定される差圧はCPU110により読み込まれ、差圧の変動に基づいて後述する呼吸回数等が算出される。このようにして得られた各測定値は、タッチパネル付液晶132に表示される。 Here, when the tube terminal 181a provided in the trunk tube 181 of the nostril cannula 180 is connected to the luer connector 142, the remaining luer connector 143 is opened to the atmosphere. Therefore, in the pressure sensor 104, the atmospheric pressure and the inside of the trunk tube 181 A differential pressure from the pressure is detected. The differential pressure measured in this way is read by the CPU 110, and the number of breaths to be described later is calculated based on the fluctuation of the differential pressure. Each measured value thus obtained is displayed on the liquid crystal 132 with a touch panel.
 ここで鼻孔カニューラ180を用いる場合には、ルアーコネクタ143が大気開放された状態でルアーコネクタ142における呼吸圧を検出することになり、また、被測定者が口呼吸をした場合には、呼気・吸気の全量を捕捉できないため、フローを正確に測定することができない。しかしながら、1ポートであっても呼吸圧の変化を捕捉することは可能である。 Here, when the nostril cannula 180 is used, the respiratory pressure at the luer connector 142 is detected with the luer connector 143 opened to the atmosphere. Since the total amount of inspiration cannot be captured, the flow cannot be measured accurately. However, it is possible to capture changes in respiratory pressure even with one port.
 具体的には、鼻孔カニューラが接続される1のポートにおける呼気側と吸気側の圧力測定の感度が同じであると仮定して、計測される呼吸圧の基準レベルに対してオフセット補正を実行する。例えば、ある基準レベルにおける呼吸圧の測定値が、呼気側で10(絶対値)であるのに対し、吸気側で8(絶対値)であるとすると、呼気側と吸気側の値を同じ(すなわち呼気量と吸気量とが同じ)とするように、基準レベルを呼気側に1(絶対値)分シフトしてオフセット調整を行う。そうすると、呼気側で9(絶対値)、吸気側で9(絶対値)というように同じ値となる。オフセット補正後の基準レベルにおける呼吸圧を、以下ではフロー相当と称し、前述したフローと区別するものとする。 Specifically, assuming that the sensitivity of the pressure measurement on the expiration side and the inspiration side is the same at one port to which the nostril cannula is connected, the offset correction is executed with respect to the reference level of the measured respiratory pressure. . For example, if the measured value of respiratory pressure at a certain reference level is 10 (absolute value) on the expiration side, but 8 (absolute value) on the inspiration side, the values on the expiration side and inspiration side are the same ( In other words, offset adjustment is performed by shifting the reference level by 1 (absolute value) toward the expiration side so that the expiration amount and the inspiration amount are the same. Then, 9 (absolute value) on the exhalation side and 9 (absolute value) on the inhalation side become the same value. The respiration pressure at the reference level after the offset correction is hereinafter referred to as a flow equivalent, and is distinguished from the flow described above.
 フロー相当の時間積分により一回換気量相当および分時換気量相当を算出可能である。一回換気量相当はフロー相当を対象とした呼気または吸気一回あたりの換気量であり、呼気フローに基づいて呼気一回換気量相当を算出し、吸気フローに基づいて吸気一回換気量相当を算出する。また、分時換気量相当はフロー相当を対象とした1分間当たりの換気量である。 ∙ Tidal volume equivalent and minute ventilation equivalent can be calculated by time integration equivalent to flow. The tidal volume equivalent is the ventilation volume per exhalation or inspiration for the flow equivalent, and the equivalent to the exhalation tidal volume is calculated based on the exhalation flow, and the equivalent to the inspiratory tidal volume based on the inspiratory flow Is calculated. The minute ventilation equivalent is the ventilation per minute for the flow equivalent.
 なお、フローセンサ150を使用する場合と異なり、フローを正確に測定することができない条件下で得られた呼吸圧に基づいて一回換気量や分時換気量を測定しているため、以下では、このような条件下において測定された一回換気量を「一回換気量相当」と称し、分時換気量を「分時換気量相当」と称している。本実施形態において単に「換気量」と言う場合には、フローセンサ150を接続した状態で測定可能となる一回換気量および分時換気量、ならびに、鼻孔カニューラ180(あるいは後述するフェイスマスク190)を接続した状態で測定可能となる一回換気量相当および分時換気量相当の全てを含む概念である。 Unlike the case where the flow sensor 150 is used, since the tidal volume and the minute ventilation are measured based on the respiratory pressure obtained under conditions where the flow cannot be measured accurately, The tidal volume measured under such conditions is referred to as “equivalent to tidal volume”, and the minute ventilation is referred to as “equivalent to minute ventilation”. In this embodiment, when simply saying “ventilation volume”, the tidal volume and minute ventilation volume that can be measured with the flow sensor 150 connected, and the nostril cannula 180 (or the face mask 190 described later). It is a concept that includes all of the equivalent to tidal volume and minute ventilation that can be measured in the state where is connected.
 ここで、被測定者に酸素を供給しながら歩行試験を行う場合には、図6または図7に示すような鼻孔カニューラを使用すると良い。このような鼻孔カニューラはデュアルルーメンカニューラと称されるものであり、2つのチューブから構成されている。例えば、図6に示すように、断面が右挿入管186と同心円状となる内管186a、断面が左挿入管187と同心円状となる内管187aが設けられており、内管186aおよび187aは、酸素ボンベや酸素濃縮器に接続される酸素供給用チューブとなっている。これにより酸素は内管186a,187aから被測定者に供給される。また、右挿入管186および左挿入管187は、本体部100のルアーコネクタ142に接続される呼吸圧検出用チューブに連接されている。これにより、被測定者に酸素を供給しながら呼吸回数や換気量を測定することも可能となり、HOTを行っている被測定者に対して歩行試験を行うことも可能となる。 Here, when a walking test is performed while supplying oxygen to the subject, a nostril cannula as shown in FIG. 6 or 7 is preferably used. Such nostril cannula is called a dual lumen cannula and is composed of two tubes. For example, as shown in FIG. 6, an inner tube 186a whose cross section is concentric with the right insertion tube 186 and an inner tube 187a whose cross section is concentric with the left insertion tube 187 are provided, and the inner tubes 186a and 187a are It is an oxygen supply tube connected to an oxygen cylinder or oxygen concentrator. As a result, oxygen is supplied from the inner tubes 186a and 187a to the subject. The right insertion tube 186 and the left insertion tube 187 are connected to a respiratory pressure detection tube connected to the luer connector 142 of the main body 100. Accordingly, it is possible to measure the number of breaths and the ventilation volume while supplying oxygen to the measurement subject, and it is also possible to perform a walking test on the measurement subject performing HOT.
 また、図7に示す例では、右挿入管186の断面を2領域に分割する壁部186b、左挿入管187の断面を2領域に分割する壁部187bが設けられている。壁部186bおよび壁部187bにより区分される1方の領域は、酸素ボンベや酸素濃縮器に接続される酸素供給用チューブに連接されている。また、壁部186bおよび壁部187bにより区分される他方の領域は、本体部100のルアーコネクタ142に接続される呼吸圧検出用チューブに連接されている。これにより、被測定者に酸素を供給しながら呼吸回数や換気量を測定することも可能となり、HOTを行っている被測定者に対して歩行試験を行うことも可能となる。 In the example shown in FIG. 7, a wall portion 186b that divides the cross section of the right insertion tube 186 into two regions and a wall portion 187b that divides the cross section of the left insertion tube 187 into two regions are provided. One region divided by the wall portion 186b and the wall portion 187b is connected to an oxygen supply tube connected to an oxygen cylinder or an oxygen concentrator. Further, the other region divided by the wall portion 186 b and the wall portion 187 b is connected to a respiratory pressure detection tube connected to the luer connector 142 of the main body portion 100. Accordingly, it is possible to measure the number of breaths and the ventilation volume while supplying oxygen to the measurement subject, and it is also possible to perform a walking test on the measurement subject performing HOT.
 SpOプローブ160は、被測定者の指先に装着されるトランスデューサであり、発光部と受光部(センサ)から構成されている。発光部からは赤色光および赤外光が発せられ、受光部(センサ)では、指先を透過した各光の透過光量(または指先で反射した各光の反射光量)を測定して電気信号として出力する。SpOプローブ160は、図3に示す本体部100のSpOコネクタ141に接続される。SpOモジュール106は、SpOプローブ160から出力されるアナログ信号をディジタル信号に変換するA/D変換器を備えており、発光部から発生された赤色光および赤外光の光量に対しての各光の透過光量(または反射光量)に基づいてSpOを算出すると共に、脈波信号を生成し、各々を電気信号として出力する。CPU110は、SpOモジュール106から出力される拍動のある脈波信号により脈拍数を計数する。このようにして測定されるSpOや脈拍数はCPU110によりRAM121に記憶され、タッチパネル付液晶132に表示される。 The SpO 2 probe 160 is a transducer attached to the fingertip of the person to be measured, and includes a light emitting unit and a light receiving unit (sensor). The light emitting unit emits red light and infrared light, and the light receiving unit (sensor) measures the amount of light transmitted through the fingertip (or the amount of light reflected by the fingertip) and outputs it as an electrical signal. To do. The SpO 2 probe 160 is connected to the SpO 2 connector 141 of the main body 100 shown in FIG. The SpO 2 module 106 includes an A / D converter that converts an analog signal output from the SpO 2 probe 160 into a digital signal. SpO 2 is calculated based on the transmitted light amount (or reflected light amount) of each light, and a pulse wave signal is generated and each is output as an electrical signal. The CPU 110 counts the pulse rate based on the pulse wave signal with pulsation output from the SpO 2 module 106. The SpO 2 and pulse rate measured in this way are stored in the RAM 121 by the CPU 110 and displayed on the liquid crystal 132 with a touch panel.
 ワイヤレスリモコン170は、例えば複数のボタンが設けられた無線式のリモコンであり、操作されたボタンに応じた信号が出力される。受信部101は、例えば受信した信号をダウンコンバートしてA/D変換し、所定の形式でCPU110に出力し、CPU110では、出力信号に応じた制御を実行する。例えば、ワイヤレスリモコン170には、試験の状況や被測定者の状態に応じたイベントボタンや表示切替ボタンが設けられている。例えば「測定開始」のイベントボタンが操作された場合には、これに応じた信号を受信したCPU110がタッチパネル付液晶132に「安静呼吸して下さい」とのメッセージを表示することにより、被測定者に安静呼吸する旨を促す。また、表示切替ボタンが操作された場合には、タッチパネル付液晶132の表示内容を切り替える。 The wireless remote controller 170 is, for example, a wireless remote controller provided with a plurality of buttons, and a signal corresponding to the operated button is output. For example, the receiving unit 101 down-converts the received signal, performs A / D conversion, and outputs the signal to the CPU 110 in a predetermined format. The CPU 110 executes control according to the output signal. For example, the wireless remote controller 170 is provided with an event button and a display switching button according to the test status and the condition of the subject. For example, when an event button of “measurement start” is operated, the CPU 110 that has received a signal corresponding to the event button displays a message “please rest and rest” on the liquid crystal 132 with a touch panel, so that the subject is measured. Encourage them to take a rest breath. When the display switching button is operated, the display content of the liquid crystal 132 with a touch panel is switched.
 温度センサ102は、本体100内部の温度を測定するものであり、例えばダイオードの順方向電圧に基づいて温度を測定可能なダイオード式の温度センサである。A/D変換部107には温度センサ102の出力に対応するA/D変換器が設けられており、これによりアナログ信号からディジタル信号に変換された電圧値がCPU110により読み込まれ、その電圧値に応じた温度が算出される。このようにして測定される温度はRAM121に記憶され、タッチパネル付液晶132に表示される。 The temperature sensor 102 measures the temperature inside the main body 100, and is, for example, a diode type temperature sensor capable of measuring the temperature based on the forward voltage of the diode. The A / D converter 107 is provided with an A / D converter corresponding to the output of the temperature sensor 102, whereby a voltage value converted from an analog signal to a digital signal is read by the CPU 110, and the voltage value is converted into the voltage value. The corresponding temperature is calculated. The temperature measured in this manner is stored in the RAM 121 and displayed on the liquid crystal 132 with a touch panel.
 電池103は、本実施の形態では乾電池であり、本体部100への給電手段の1つである。A/D変換部107には電池103の両極電圧に対応するA/D変換器が設けられており、これによりアナログ信号からディジタル信号に変換された電圧値がCPU110により読み込まれ、その電圧値に応じた大まかな残量が判定される(例えば残量が「多い」あるいは「少い」程度)。このようにして判定される残量はRAM121に記憶され、タッチパネル付液晶132に表示される。なお、この実施の形態においては、図3に示すように、本体部100にDCジャック145が設けられており、そのDCジャック145にAC/DCアダプタを介して家庭用電源から本体部100に給電可能である。また、後述するUSBコネクタ131からも本体部100に給電可能となっており、所謂3電源タイプの装置となっている。 The battery 103 is a dry battery in the present embodiment, and is one of power supply means to the main body 100. The A / D converter 107 is provided with an A / D converter corresponding to the bipolar voltage of the battery 103, whereby a voltage value converted from an analog signal to a digital signal is read by the CPU 110, and the voltage value is converted into the voltage value. The approximate remaining amount is determined (for example, the remaining amount is “high” or “low”). The remaining amount determined in this way is stored in the RAM 121 and displayed on the liquid crystal 132 with a touch panel. In this embodiment, as shown in FIG. 3, the main body 100 is provided with a DC jack 145, and power is supplied to the main body 100 from a household power source via an AC / DC adapter. Is possible. In addition, power can be supplied to the main body 100 from a USB connector 131 described later, which is a so-called three power supply type device.
 加速度/地磁気センサ105は、3軸加速度センサと3軸地磁気センサが一体化された6軸センサである。3軸加速度センサからは3軸方向の各加速度に応じた電圧が出力され、3軸地磁気センサからは3軸方向の各地磁気に応じた電圧が出力される。A/D変換部107には加速度/地磁気センサ105の6軸の電圧に対応するA/D変換器が設けられており、これによりアナログ信号からディジタル信号に変換された電圧値がCPU110により読み込まれる。このようにして測定される3軸方向の加速度、3軸方向の地磁気は、RAM121に記憶され、タッチパネル付液晶132に表示される。なお、このような6軸センサにA/Dコンバータが組み込まれたモジュールを使用するようにしても良い。また、CPU110は、後述するように、3軸加速度センサの出力および3軸地磁気センサの出力に基づいて被測定者の歩行距離を算出することができる。なお、本実施形態では、3軸加速度センサと3軸地磁気センサが一体化された6軸センサを用いているが、3軸加速度センサと3軸地磁気センサに加えて、さらに角速度センサまで一体化された9軸センサを用いるようにしても良い。 The acceleration / geomagnetic sensor 105 is a 6-axis sensor in which a 3-axis acceleration sensor and a 3-axis geomagnetic sensor are integrated. The triaxial acceleration sensor outputs a voltage corresponding to each acceleration in the triaxial direction, and the triaxial geomagnetic sensor outputs a voltage corresponding to the local magnetism in the triaxial direction. The A / D converter 107 is provided with an A / D converter corresponding to the six-axis voltage of the acceleration / geomagnetic sensor 105, whereby a voltage value converted from an analog signal to a digital signal is read by the CPU 110. . The acceleration in the triaxial direction measured in this way and the geomagnetism in the triaxial direction are stored in the RAM 121 and displayed on the liquid crystal 132 with a touch panel. A module in which an A / D converter is incorporated in such a 6-axis sensor may be used. Moreover, CPU110 can calculate a to-be-measured person's walking distance based on the output of a triaxial acceleration sensor and the output of a triaxial geomagnetic sensor so that it may mention later. In this embodiment, a 6-axis sensor in which a 3-axis acceleration sensor and a 3-axis geomagnetic sensor are integrated is used, but in addition to the 3-axis acceleration sensor and the 3-axis geomagnetic sensor, an angular velocity sensor is also integrated. Alternatively, a 9-axis sensor may be used.
 CPU110は、ROM122に記憶されている6分間歩行試験プログラムをRAM121を作業領域として実行することにより、接続される各構成要素の動作を制御して、あるいは各構成要素からの信号を受信して各種の処理を行うものである。6分間歩行試験において測定される各データは、RAM121に蓄積され、6分間歩行試験が終了するとRAM121に蓄積されたデータがROM122に記憶される。 The CPU 110 executes a 6-minute walking test program stored in the ROM 122 by using the RAM 121 as a work area, thereby controlling the operation of each connected component or receiving a signal from each component. The process is performed. Each data measured in the 6-minute walking test is accumulated in the RAM 121. When the 6-minute walking test is completed, the data accumulated in the RAM 121 is stored in the ROM 122.
 不揮発性のメモリであるROM122は、上記のように測定データを記憶する他、6分間歩行試験プログラム等の測定プログラムも記憶している。電磁弁123は、図示しないトランジスタスイッチを介してCPU110により駆動される。本実施形態では、電磁弁123は、圧力センサ104に接続されており、電磁弁123が開放されることで圧力センサ104が大気圧を測定し、これによりゼロ点補正を行うことができる。 The ROM 122, which is a non-volatile memory, stores measurement data as described above, and also stores measurement programs such as a 6-minute walking test program. The electromagnetic valve 123 is driven by the CPU 110 via a transistor switch (not shown). In the present embodiment, the electromagnetic valve 123 is connected to the pressure sensor 104, and the pressure sensor 104 measures the atmospheric pressure when the electromagnetic valve 123 is opened, thereby performing zero point correction.
 図2および図3に示すUSBコネクタ131は、PC2等の上位機器のUSBコネクタと接続され、上機機器とのインターフェイスを司るものである。USBドライバ回路124は、USBコネクタ131により接続された上位機器やCPU110との通信を制御する。例えば、USBコネクタ131に上位機器が接続されたことを検知して、これに応じたコマンドをCPU110に送信する。これに伴い、CPU110は、ROM122に記憶している測定データをUSBドライバ回路124に出力し、USB ドライバ回路124は入力された測定データをUSB規格に準拠した信号に変換して、上位機器に送信する。このように、USBインターフェイスを介してPC2等の上位機器に測定データを転送することが可能となっている。また、USBコネクタ131に接続された上位機器から本体部100に給電することが可能である。 The USB connector 131 shown in FIGS. 2 and 3 is connected to a USB connector of a host device such as the PC 2 and serves as an interface with the upper device. The USB driver circuit 124 controls communication with the host device and the CPU 110 connected by the USB connector 131. For example, it detects that a host device is connected to the USB connector 131 and transmits a command corresponding to this to the CPU 110. Along with this, the CPU 110 outputs the measurement data stored in the ROM 122 to the USB driver circuit 124, and the USB124 driver circuit 124 converts the input measurement data into a signal conforming to the USB standard and transmits it to the host device. To do. In this way, measurement data can be transferred to a host device such as the PC 2 via the USB interface. In addition, power can be supplied to the main body 100 from a host device connected to the USB connector 131.
 タッチパネル付液晶132は、例えば、TFT液晶と4線抵抗膜式のタッチパネルが一体化されたタッチパネル液晶モジュールである。タッチパネルがタッチされるとX軸用の抵抗膜とY軸用の抵抗膜が接触し、接触箇所の抵抗に応じた信号が出力される。この実施形態ではタッチパネル付液晶132はA/D変換器が含まれたモジュール形式のものであり、接触座標を示すX軸信号、Y軸信号がディジタル信号としてCPU110に入力され、接触座標に応じた処理が実行される。また、6分間歩行試験における測定データはTFT液晶に表示される。 The liquid crystal 132 with a touch panel is, for example, a touch panel liquid crystal module in which a TFT liquid crystal and a 4-wire resistive touch panel are integrated. When the touch panel is touched, the X-axis resistance film and the Y-axis resistance film come into contact with each other, and a signal corresponding to the resistance at the contact location is output. In this embodiment, the liquid crystal 132 with a touch panel is of a module type including an A / D converter, and an X-axis signal and a Y-axis signal indicating contact coordinates are input as digital signals to the CPU 110, and according to the contact coordinates. Processing is executed. Measurement data in the 6-minute walk test is displayed on the TFT liquid crystal.
 ブザー133は、所定のブザー音を出力することにより報知を行うものであり、例えば被測定者の状態に応じてブザー音を発する。LED134は、所定態様で点灯または点滅することにより報知を行うものであり、例えば歩行試験装置の状態に応じた態様で点灯または点滅する。ブザー133の音出力制御、および、LED134の点灯・点滅制御はCPU110により行われる。スピーカ135は、音声出力制御用の制御基板である不図示の音声制御基板を介してCPU110と接続されている。音声制御基板には、CPU110からの制御データに基づき、スピーカ135から音声を出力するための音声信号処理を実行する処理回路などが搭載されている。  The buzzer 133 performs notification by outputting a predetermined buzzer sound. For example, the buzzer 133 emits a buzzer sound according to the state of the measurement subject. The LED 134 performs notification by being turned on or blinking in a predetermined manner. For example, the LED 134 is lit or blinked in a manner according to the state of the walking test apparatus. The sound output control of the buzzer 133 and the lighting / flashing control of the LED 134 are performed by the CPU 110. The speaker 135 is connected to the CPU 110 via a voice control board (not shown) that is a control board for voice output control. The audio control board is equipped with a processing circuit that executes audio signal processing for outputting audio from the speaker 135 based on control data from the CPU 110. *
[6分間歩行試験プログラムの実行]
 (歩行開始前の測定)
 6分間歩行試験の開始に先立って、タッチパネル付液晶132を使用して被測定者の年齢、性別、身長、体重等を入力する。そして、本体部100にフローセンサ150を接続して、安静状態の確認後、努力性肺活量(FVC)、1秒量(FEV1)、1秒率(FEV1%)、%1秒量(%FEV1)等を測定する。なお、1秒量の予測値は予めプログラム内に記憶されている式と入力されたデータに基づいて算出される。また、SpOプローブ160を被測定者の指先に装着して、歩行開始前のSpOおよび脈拍数を測定する。さらに、修正Borgスケールによる確認を行い、収縮期および拡張期を把握すべく血圧も測定しておく。
[Execution of 6-minute walking test program]
(Measurement before starting walking)
Prior to the start of the 6-minute walking test, the age, sex, height, weight, etc. of the person to be measured are input using the liquid crystal 132 with a touch panel. Then, after connecting the flow sensor 150 to the main body 100 and confirming the resting state, the effort vital capacity (FVC), 1 second amount (FEV1), 1 second rate (FEV1%),% 1 second amount (% FEV1) Measure etc. The predicted value for the amount of 1 second is calculated based on the formula stored in advance in the program and the input data. Further, the SpO 2 probe 160 is attached to the fingertip of the person to be measured, and SpO 2 and the pulse rate before the start of walking are measured. Furthermore, the blood pressure is also measured in order to confirm the systolic and diastolic phases by checking with the modified Borg scale.
 (歩行中の測定)
 次に、本体部100からフローセンサ150を取り外し、これに替えて鼻孔カニューラ180を接続すると共に、被測定者に装着する。また、SpOプローブ160を被測定者の指先に装着する。両機器の装着後、本体部100に給電されている状態でワイヤレスリモコン170に設けられている「測定開始」ボタンが操作されるか、または、タッチパネル付液晶132に表示された「測定開始」アイコンがタッチされると、6分間歩行試験プログラムの実行が開始される。これに伴い、CPU110は、タッチパネル付液晶132に「安静呼吸して下さい」のメッセージを表示して、被測定者に安静時換気を促すと共に、安静時換気が行われているか否かを確認する。例えば、平滑化した呼吸圧の微分値が正から負(または負から正)に切り替わる周期が所定回数連続して一定の範囲内(例えば5秒~10秒の範囲)に収まったときに安静時換気を確認したものとする。
(Measurement during walking)
Next, the flow sensor 150 is removed from the main body 100, and instead of this, a nostril cannula 180 is connected and attached to the subject. Further, the SpO 2 probe 160 is attached to the fingertip of the measurement subject. After both devices are mounted, the “measurement start” button provided on the wireless remote controller 170 is operated while power is supplied to the main unit 100, or the “measurement start” icon displayed on the liquid crystal 132 with a touch panel When is touched, execution of the walking test program for 6 minutes is started. Accordingly, the CPU 110 displays a message “please rest and breathe” on the liquid crystal 132 with a touch panel to prompt the subject to be at rest and to check whether or not the rest is being ventilated. . For example, when the smoothed respiratory pressure differential value is switched from positive to negative (or from negative to positive) within a certain range (for example, a range of 5 to 10 seconds) for a predetermined number of times. Ventilation has been confirmed.
 CPU110は、安静時換気が行われていることと、SpOが予め設定した範囲であることを確認すると、「試験開始できます」のメッセージを表示して、測定者に試験が開始できることを通知し、測定者は被測定者の状態を確認した上で、被測定者に「準備ができたら歩行開始してください」と告げる。そして測定者は、被測定者が歩行を開始した時点で、ワイヤレスリモコン170に設けられている「歩行開始」ボタンを操作すると、これに応じた信号を受信したCPU110では6分間のカウントを開始する。これに伴い、検出される呼吸圧に基づいて、呼吸回数、一回換気量相当、および、分時換気量相当の各項目が測定される。また、SpOプローブ160の出力に基づいてSpOの記録が開始される。さらに加速度/地磁気センサ105の出力に基づいて歩数、歩行速度、および歩行距離が測定される。これら歩行データの測定方法に関しては後述する。 When the CPU 110 confirms that the ventilation at rest is performed and that the SpO 2 is within the preset range, the CPU 110 displays a message “The test can be started” and notifies the measurer that the test can be started. Then, after confirming the condition of the subject, the measurer tells the subject that “Please start walking when you are ready”. When the measurer operates the “walk start” button provided on the wireless remote controller 170 at the time when the person to be measured starts walking, the CPU 110 that has received the corresponding signal starts counting for 6 minutes. . Along with this, each item such as the number of breaths, the amount corresponding to the tidal volume, and the amount corresponding to the minute ventilation is measured based on the detected respiratory pressure. Further, recording of SpO 2 is started based on the output of the SpO 2 probe 160. Further, the number of steps, the walking speed, and the walking distance are measured based on the output of the acceleration / geomagnetic sensor 105. A method for measuring these walking data will be described later.
 なお、被測定者のSpOが所定幅以上低下した場合あるいは所定値以下に低下した場合には、ブザー133からブザー音が出力されることにより、被測定者のSpOが良好値ではない旨を報知する。これにより、医療スタッフは歩行試験の中止、あるいは休憩の必要性を判断することができる。例えば、在宅酸素療法(Home Oxygen Therapy)を行っている被測定者は、通常は酸素ガスが供給されている状態であるが、呼吸機能検査において酸素ガスを供給しない大気環境下で、通常よりも低い酸素濃度で測定をすることがある。さらに呼吸機能検査においては、努力性肺活量等を測定する場合に、通常の呼吸よりも努力を要する呼吸を患者に行わせることになるため大きな負担となる。このような場合に、過度な負担が生じているか否かをSpOによって判定し、ブザー音で警告することにより被測定者が危険な状態に陥らないようにすることができる。また、酸素ボンベ等からデュアルルーメンカニューラあるいはフェイスマスクを介して被測定者に酸素ガスが供給される状態で歩行試験を行う場合にも、チューブのねじれや装着不備等によって適切に酸素ガスが供給されないケースがある。このような場合にも、SpOの低下を検出してブザー音で警告することにより、危険を防止することができる。 In the case where SpO 2 of the subject falls below or a predetermined value when decreases more than a predetermined width, by buzzer sound from the buzzer 133 is output, that is SpO 2 of the subject is not a good value Is notified. As a result, the medical staff can determine the necessity of stopping the walking test or taking a break. For example, a subject undergoing home oxygen therapy is usually in a state where oxygen gas is being supplied, but in an air environment where oxygen gas is not supplied in a respiratory function test, Measurements may be performed at low oxygen concentrations. Furthermore, in the respiratory function test, when the forced vital capacity or the like is measured, the patient is forced to perform breathing that requires more effort than normal breathing, which is a heavy burden. In such a case, it is possible to determine whether or not an excessive burden has occurred by using SpO 2 and warn with a buzzer sound so that the measurement subject does not fall into a dangerous state. In addition, even when a walking test is performed in a state where oxygen gas is supplied to the subject to be measured through a dual lumen cannula or face mask from an oxygen cylinder or the like, the oxygen gas is not properly supplied due to twisting of the tube or improper mounting. There is a case. Even in such a case, it is possible to prevent danger by detecting a decrease in SpO 2 and warning with a buzzer sound.
 また、6分間歩行試験装置1は、スピーカ135を介して、歩行試験中に被測定者に対して声掛けを行うことが可能に構成されている。具体的には、例えば、6分間の歩行試験中に、その時点での被測定者の歩行状態や身体状態を表す内容(例えば、『上手に歩けています』といった内容)を被測定者に報知することを目的とする声掛けや、歩行試験の残り時間を表す内容(例えば、『残り時間はあと×分です』といった内容)を被測定者に報知することを目的とする声掛けを行う歩行支援処理を実行するようにしてもよい。 In addition, the 6-minute walking test apparatus 1 is configured to be able to speak to the measurement subject via the speaker 135 during the walking test. Specifically, for example, during a 6-minute walking test, the subject is informed of the subject's walking state and physical state at that time (for example, “successfully walking”). Walking with a purpose of notifying the person being measured about the remaining time of the walking test (for example, “Remaining time is x minutes”) Support processing may be executed.
 この場合は、被測定者が声掛けのタイミングを把握し易いように、例えば歩行試験中に一定時間間隔毎のタイミング(好適には1分毎のタイミング)で声掛けを行うようにするとよい。また、歩行試験終了の一定時間前のタイミング(好適には15秒前のタイミング)で、歩行試験の終了が近づいていることを声掛けやビープ音を音出力することによって被測定者に報知するとよい。なお、歩行試験の残り時間を表す内容の声掛けを行う場合において、『残り時間はあと×分です』の“×”の部分、つまり歩行試験終了までの残り時間(分)を表す数字の部分の音声のみを変えることとして、音声合成によって上記のメッセージを音出力させるようにしてもよい。 In this case, in order to make it easier for the measurement subject to grasp the timing of the voice call, for example, the voice call may be performed at a predetermined time interval (preferably a timing of one minute) during the walking test. In addition, when a test subject is notified by sounding or outputting a beep sound that the end of the walking test is approaching at a certain time before the end of the walking test (preferably a timing of 15 seconds before). Good. In addition, when calling out the content indicating the remaining time of the walking test, the “×” part of “Remaining time is x minutes”, that is, the number part indicating the remaining time (minutes) until the end of the walking test The above message may be output as a sound by changing only the voice.
 また、上記の歩行支援処理として、一定のリズムでの歩行を促す音声を音出力させたり、一定のリズムでの歩行を促すように一定時間間隔でビープ音を音出力させるなどの制御を行うこととしてもよい。 In addition, as the above-mentioned walking support processing, control is performed such as outputting sound prompting walking at a constant rhythm or outputting beep sounds at regular time intervals so as to encourage walking at a constant rhythm. It is good.
 また、6分間歩行試験装置1は、歩行試験中に循環器系項目や呼吸器系項目の測定値が危険な状態を示す値となった場合に、被測定者に対して歩行試験の中断や中止を促す注意喚起報知処理を行うことが可能に構成されている。具体的には、例えば、SpOが所定の下限値を下回った場合や、脈拍数が所定の上限値を上回った場合や、呼吸回数が所定の上限値を上回った場合に、アラームや警告音、警告音声を出力するなどして、それ以上歩行試験を継続すると危険である旨を被測定者に報知する。 In addition, the 6-minute walking test apparatus 1 can interrupt the walking test to the person to be measured when the measured value of the circulatory system item or the respiratory system item becomes a value indicating a dangerous state during the walking test. It is configured to be able to perform an alerting notification process that prompts cancellation. Specifically, for example, when SpO 2 falls below a predetermined lower limit, when the pulse rate exceeds a predetermined upper limit, or when the number of breaths exceeds a predetermined upper limit, an alarm or warning sound If the walking test is continued any more, for example, by outputting a warning voice, the person to be measured is informed that it is dangerous.
 「呼吸回数」(RRとも称される)は1分間における被測定者の呼吸回数であり、平滑化した呼吸圧の微分値が正から負(または負から正)に切り替わる回数をカウントすることにより測定される。また、「一回換気量」(VTとも称される)とは、安静時における呼吸1回あたりの換気量であり呼吸1回における呼吸圧の積分値として算出される。ただし、この実施形態においては前述したように鼻孔カニューラ180使用時には「一回換気量相当」を算出する。また、「分時換気量」(TEとも称される)とは、安静時における1分間あたりの換気量であり「一回換気量」×「呼吸回数」として算出される。ただし、この実施形態においては前述したように鼻孔カニューラ180使用時には「分時換気量相当」を算出する。 “Number of breaths” (also referred to as RR) is the number of breaths of the subject in one minute, and by counting the number of times the differential value of the smoothed breathing pressure is switched from positive to negative (or from negative to positive) Measured. The “tidal volume” (also referred to as VT) is the ventilation volume per breath at rest, and is calculated as an integrated value of the respiratory pressure in one breath. However, in this embodiment, as described above, when using the nostril cannula 180, “equivalent to tidal volume” is calculated. Further, the “minute ventilation” (also referred to as TE) is a ventilation volume per minute at rest, and is calculated as “tidal volume” × “respiration frequency”. However, in this embodiment, as described above, “equivalent minute ventilation” is calculated when the nostril cannula 180 is used.
 また、SpOプローブ160の出力によりCPU110において脈波の波形(時系列データ)を構築可能であるため、これに基づいて「脈拍数」を算出することが可能である。「脈拍数」は1分間における被測定者の脈拍数であり、脈波の時系列データを平滑化した後、その微分値が正から負(または負から正)に切り替わる回数をカウントすることにより測定される。 Further, since the pulse wave waveform (time-series data) can be constructed in the CPU 110 based on the output of the SpO 2 probe 160, the “pulse rate” can be calculated based on this. “Pulse rate” is the pulse rate of the person to be measured in 1 minute, and after smoothing the time series data of the pulse wave, counting the number of times the differential value switches from positive to negative (or from negative to positive) Measured.
 このようにして測定された呼吸回数、一回換気量相当、および分時換気量相当、ならびに脈拍数は、図8~図10に示すように時系列データとして記録されると共に、タッチパネル付液晶132にグラフ形式で表示される。図8~図10の例では、歩行試験開始からの経過時間を共通のX軸として、Y軸を呼吸回数、一回換気量相当、および分時換気量相当、ならびに脈拍数の各項目の測定値に対応させてグラフ形式で表示している。このように歩行試験開始からの経過時間を基準として、呼吸回数、一回換気量相当、および分時換気量相当、ならびに脈拍数を比較可能な態様で表示することにより、呼吸機能に係る項目である呼吸回数、一回換気量相当、および分時換気量相当と、循環機能に係る項目である脈拍数の時間推移を対比することができる。その結果、以下のような判定を行うことが可能となる。 The respiratory frequency, tidal volume equivalent, minute ventilation equivalent, and pulse rate measured in this way are recorded as time-series data as shown in FIGS. Is displayed in graph format. In the examples of FIGS. 8 to 10, the elapsed time from the start of the gait test is the common X axis, and the Y axis is the measurement of each item of the respiratory rate, the tidal volume equivalent, the minute ventilation quantity, and the pulse rate. It is displayed in a graph format corresponding to the value. In this way, by displaying the number of breaths, equivalent to tidal volume, equivalent to minute ventilation, and pulse rate in a manner that can be compared with the elapsed time from the start of the walking test as a reference, items related to respiratory function A certain number of breaths, equivalent to tidal volume, and equivalent to minute ventilation can be compared with the time transition of the pulse rate, which is an item related to the circulatory function. As a result, the following determination can be performed.
 まず、図8の例では測定開始からの時間経過に伴い、呼吸回数、分時換気量相当、および一回換気量相当の上昇が緩やかになり(3分経過時)、その後に脈拍数の上昇が緩やかになっている(4分経過時)。すなわち、循環器系の項目である脈拍数よりも、呼吸器系の項目である呼吸回数、分時換気量相当、および一回換気量相当の方が早く頭打ちになっていることにより、運動量の増加に対して呼吸器系の機能が追い付かず、その結果として歩行距離が抑制されるという事象を推定することができる。このように、歩行試験における被測定者の状態を定量的に評価することができ、運動制限因子が呼吸器系にあることを推定することができる。 First, in the example of FIG. 8, with the passage of time from the start of measurement, the increase in the number of breaths, equivalent to the minute ventilation, and the equivalent to the tidal volume become gentle (after 3 minutes), and then the pulse rate rises Is moderate (after 4 minutes). In other words, the respiratory rate, minute ventilation, and tidal volume, which are respiratory items, reach a peak earlier than the pulse rate, which is a cardiovascular item, so It is possible to estimate an event that the function of the respiratory system does not catch up with the increase, and as a result the walking distance is suppressed. Thus, it is possible to quantitatively evaluate the state of the person being measured in the walking test, and to estimate that the movement limiting factor is in the respiratory system.
 また、図9の例では測定開始からの時間経過に伴い、まず脈拍数の上昇が緩やかになり(2分経過時)、その後に呼吸回数、分時換気量相当、および一回換気量相当の上昇が緩やかになっている(3分経過時)。すなわち、呼吸器系の項目である呼吸回数、分時換気量相当、および一回換気量相当よりも、循環器系の項目である脈拍数の方が早く頭打ちになっていることにより、運動量の増加に対して循環器系の機能が追い付かず、その結果として歩行距離が抑制されるという事象を推定することができる。このように、歩行試験における被測定者の状態を定量的に評価することができ、運動制限因子が循環器系にあることを推定することができる。 In the example of FIG. 9, the pulse rate first increases gradually with the passage of time from the start of measurement (after 2 minutes), and then the number of breaths, equivalent to minute ventilation, and equivalent to tidal volume The rise is slow (after 3 minutes). In other words, the pulse rate, which is a circulatory system item, reaches a peak earlier than the respiratory rate, which corresponds to the respiratory system item, the equivalent to minute ventilation, and the equivalent to tidal volume. It is possible to estimate an event that the function of the circulatory system does not catch up with the increase, and as a result the walking distance is suppressed. Thus, it is possible to quantitatively evaluate the state of the measurement subject in the walking test, and to estimate that the movement limiting factor is in the circulatory system.
 また、図10の例では測定開始からの時間経過に伴い、脈拍数、並びに、呼吸回数、分時換気量相当、および一回換気量相当が継続的に上昇しており、図8および図9の例のように上昇が緩やかになっている時点を明確に把握できない。すなわち、呼吸器系の項目である呼吸回数、分時換気量相当、および一回換気量相当、ならびに、循環器系の項目である脈拍数が頭打ちになっていないが、歩行距離が短い場合には、運動量の増加に対して筋力系の機能が追いつかず、その結果として歩行距離が抑制されるという事象を推定することができる。このように、歩行試験における被測定者の状態を定量的に評価することができ、運動制限因子が筋力系にあることを推定することができる。 Further, in the example of FIG. 10, with the passage of time from the start of measurement, the pulse rate, the number of breaths, the equivalent to minute ventilation, and the equivalent to tidal volume continuously increase, and FIG. 8 and FIG. It is not possible to clearly grasp the time when the rise has become gradual as in the example. That is, if the respiratory rate, respiratory rate, minute ventilation, and tidal volume, and the circulatory rate, pulse rate, do not peak, but the walking distance is short Can estimate the phenomenon that the function of the muscular strength system does not catch up with the increase in the amount of exercise, and as a result the walking distance is suppressed. In this way, the state of the measurement subject in the walking test can be quantitatively evaluated, and it can be estimated that the exercise limiting factor is in the muscular strength system.
 (変曲点の算出)
 図8~図10に示したように、呼吸器系および循環器系の各項目の時間推移を共通の時間軸でグラフ表示することにより、被測定者の歩行距離が呼吸器系、循環器系、あるいは筋力系のいずれの要因によって抑制されているかを推定することができるが、例えば以下のステップに基づいて各項目の変曲点を算出することにより、運動制限因子をより明確に把握することが可能となる。
(Calculation of inflection points)
As shown in FIG. 8 to FIG. 10, the time transition of each item of the respiratory system and the circulatory system is displayed in a graph with a common time axis, so that the walking distance of the measured person can be changed to the respiratory system and the circulatory system. It can be estimated whether it is suppressed by a factor of the muscle strength system, but for example, by calculating the inflection point of each item based on the following steps, to grasp the movement limiting factor more clearly Is possible.
(1)変数の初期化:傾き変化フラグ(Ang=0)、傾き変化継続カウンタ(Cnt=0)を初期化する。
(2)移動平均の算出:Tv(m)をm個目のデータ、Tv(m-4)からTv(m)までの5個のデータの平均を移動平均Av(n)とする。Av(n)は、以下の式となる。n=m-4であり、Tv(5)以降からAv(n)を計算可能である。
Figure JPOXMLDOC01-appb-M000001
(1) Initialization of variables: An inclination change flag (Ang = 0) and an inclination change continuation counter (Cnt = 0) are initialized.
(2) Calculation of moving average: Tv (m) is m-th data, and the average of five data from Tv (m-4) to Tv (m) is moving average Av (n). Av (n) is represented by the following equation. n = m-4, and Av (n) can be calculated from Tv (5) onward.
Figure JPOXMLDOC01-appb-M000001
 (3)傾き変化フラグのセット・非セット:Av(n-1)とAv(n)の差をD(n)とし、D(n)が3%以下、すなわち、以下の条件が成立する場合には、傾き変化フラグをセット(Ang=1)する。以下の条件が成立しない場合には傾き変化フラグを非セット(Ang=0)とする。
Figure JPOXMLDOC01-appb-M000002
(3) Inclination change flag set / non-set: The difference between Av (n-1) and Av (n) is D (n), and D (n) is 3% or less, that is, the following conditions are met: Is set with an inclination change flag (Ang = 1). When the following conditions are not satisfied, the inclination change flag is not set (Ang = 0).
Figure JPOXMLDOC01-appb-M000002
(4)傾き変化フラグセット時・非セット時のカウント:次に測定したTv(m+1)に基づいて(2)(3)の計算を行う(Av(n+1)、D(n+1))。傾き変化フラグがセットされていれば(Ang=1)、傾き変化継続カウンタCntを1加算更新する(Cnt=Cnt+1)。傾き変化フラグがセットされていなければ(Ang=0)、傾き変化継続カウンタCntを1減算更新する(Cnt=Cnt-1)。
(5)平坦判定:その後に測定したTvに基づいて(2)(3)(4)の計算を行い、傾き変化継続カウンタが一定値に達した場合(例えばCnt=5となった場合)、すなわち増加率または減少率が小さい状態が所定時間以上継続した場合には、平坦フラグをセット(Pln=1)して、傾き変化継続カウンタをリセット(Cnt=0)し、最初の測定値であるTv(1)から今回取得したTv(n)までのデータを用いて線形回帰直線Aを求める。この時のnを変曲点としてInf=nとして記憶する。
 ただし、この変曲点は回帰直線同士の交点ではないので、以下の(6)(7)(8)により、平坦領域における線形回帰直線Bを引いて、線形回帰直線Aとの交点を求めたものを真の変曲点とする。
(4) Count when tilt change flag is set / not set: Calculate (2) and (3) based on Tv (m + 1) measured next (Av (n + 1), D (n + 1)). If the inclination change flag is set (Ang = 1), the inclination change continuation counter Cnt is updated by 1 (Cnt = Cnt + 1). If the inclination change flag is not set (Ang = 0), the inclination change continuation counter Cnt is updated by 1 (Cnt = Cnt-1).
(5) Flatness determination: When (2), (3), and (4) are calculated based on Tv measured after that, and the slope change continuation counter reaches a certain value (for example, when Cnt = 5), In other words, if the state where the rate of increase or decrease is small continues for a predetermined time or longer, the flat flag is set (Pln = 1), the slope change continuation counter is reset (Cnt = 0), and the first measured value A linear regression line A is obtained using data from Tv (1) to Tv (n) acquired this time. At this time, n is stored as Inf = n as an inflection point.
However, since this inflection point is not the intersection of the regression lines, the intersection with the linear regression line A was obtained by drawing the linear regression line B in the flat region by the following (6), (7) and (8). Things are true inflection points.
(6)傾き変化フラグセット時・非セット時のカウント:その後に測定したTvに基づいて(2)(3)の計算を行う。平坦フラグがセットされ(Pln=1)かつ傾き変化フラグAng=0(傾きが大きい)であれば、傾き変化継続カウンタCntを1加算更新する(Cnt=Cnt+1)。平坦フラグがセットされ(Pln=1)かつ傾き変化フラグAng=1であり、且つ、傾き変化継続カウンタCntが0でなければ(Cnt>0)、傾き変化継続カウンタCntを1減算更新する(Cnt=Cnt-1)。
(7)傾き変化判定:傾き変化継続カウンタが一定値に達した場合(例えばCnt=5となった場合)、すなわち増加率または減少率が大きい状態が所定時間以上継続した場合には、平坦フラグをリセット(Pln=0)して、傾き変化継続カウンタをリセット(Cnt=0)し、(5)で算出した変曲点Tv(Inf)から今回取得したTvまでのデータを用いて線形回帰直線Bを求める。
(6) Count when the inclination change flag is set / not set: Calculations (2) and (3) are performed based on the Tv measured thereafter. If the flat flag is set (Pln = 1) and the slope change flag Ang = 0 (the slope is large), the slope change continuation counter Cnt is updated by 1 (Cnt = Cnt + 1). If the flatness flag is set (Pln = 1) and the inclination change flag Ang = 1 and the inclination change continuation counter Cnt is not 0 (Cnt> 0), the inclination change continuation counter Cnt is updated by 1 (Cnt = Cnt-1).
(7) Inclination change determination: When the inclination change continuation counter reaches a certain value (for example, when Cnt = 5), that is, when the increase rate or decrease rate continues for a predetermined time or more, the flat flag Is reset (Pln = 0), the slope change continuation counter is reset (Cnt = 0), and the linear regression line using the data from the inflection point Tv (Inf) calculated in (5) to Tv obtained this time Find B.
(8)グラフ表示:線形回帰直線Aと線形回帰直線Bをグラフ上に表示すると共に、両直線の交点を変曲点として明確に表示する。例えば、各項目について傾き変化領域に係る線形回帰直線Aおよび平坦領域に係る線形回帰直線Bを表示すると共に、図8および図9に例示されるように各項目の変曲点からX軸に直交する(Y軸と平行な)直線を表示して、各項目の変曲点のX座標を明確に表示する。これにより、いずれの項目の変曲点が測定開始から早い時点で生じたか、あるいは変曲点が生じていないかを容易に確認することが可能となり、被測定者の歩行距離が呼吸器系、循環器系、あるいは筋力系のいずれの要因によって抑制されているかを推定することが容易になる。 (8) Graph display: The linear regression line A and the linear regression line B are displayed on the graph, and the intersection of both lines is clearly displayed as an inflection point. For example, for each item, a linear regression line A related to the slope change region and a linear regression line B related to the flat region are displayed, and orthogonal to the X axis from the inflection point of each item as illustrated in FIGS. A straight line (parallel to the Y axis) is displayed, and the X coordinate of the inflection point of each item is clearly displayed. As a result, it is possible to easily confirm which item's inflection point has occurred at an early time from the start of measurement, or whether the inflection point has not occurred. It becomes easy to estimate whether it is suppressed by a factor of the circulatory system or the muscular strength system.
 ここで(8)のグラフ表示を行った後、あるいはこれに代えて、運動制限因子をタッチパネル付液晶132に表示するようにしても良い。例えば、図8に示す例においては、呼吸器系項目(呼吸回数、分時換気量相当、一回換気量相当)の変曲点が、循環器系項目(脈拍数)の変曲点よりも早い時点で確認されることに基づいて、「運動制限因子は呼吸器系です」と表示するようにすると良い。また、図9に示す例においては、循環器系項目(脈拍数)の変曲点が、呼吸器系項目(呼吸回数、分時換気量相当、一回換気量相当)の変曲点よりも早い時点で確認されることに基づいて、「運動制限因子は循環器系です」と表示するようにすると良い。また、図10に示す例においては、呼吸器系項目(呼吸回数、分時換気量相当、一回換気量相当)の変曲点、循環器系項目(脈拍数)の変曲点のいずれも認められないことから、「運動制限因子は筋力系です」と表示するようにすると良い。これにより、被測定者の歩行距離が呼吸器系、循環器系、あるいは筋力系のいずれの要因によって抑制されているかを推定することがさらに容易になる。 Here, after the graph display of (8) is performed, or instead of this, the exercise limiting factor may be displayed on the liquid crystal 132 with a touch panel. For example, in the example shown in FIG. 8, the inflection point of the respiratory system item (the number of breaths, equivalent to minute ventilation, equivalent to the tidal volume) is larger than the inflection point of the circulatory system item (pulse rate). Based on what is confirmed at an early point in time, it is recommended to display “Exercise limiting factor is respiratory system”. In the example shown in FIG. 9, the inflection point of the circulatory system item (pulse rate) is more than the inflection point of the respiratory system item (equivalent to the number of breaths, minute ventilation, equivalent to the tidal volume). Based on what is confirmed at an early point in time, it is recommended to display “Exercise-limiting factor is circulatory system”. Further, in the example shown in FIG. 10, both the inflection point of the respiratory system item (respiration frequency, equivalent to minute ventilation, equivalent to tidal volume) and the inflection point of the circulatory system item (pulse rate) are both. Since it is not allowed, it is recommended to display “Exercise-limiting factor is strength system”. This makes it easier to estimate whether the walking distance of the measurement subject is suppressed by the respiratory system, the circulatory system, or the muscular strength system.
 上記に示した例では、呼吸器系の測定項目として、呼吸回数、分時換気量相当、および一回換気量相当、循環器系の測定項目として、脈拍数を測定しているがこれらの測定項目は呼吸圧および脈波波形に基づいて測定可能である。このように被測定者から容易に測定可能な項目に基づいて運動制限因子を推定することができる。 In the example shown above, respiratory rate, respiratory rate, minute ventilation, and tidal volume are measured as respiratory system measurement items, and pulse rate is measured as a circulatory system measurement item. Items can be measured based on respiratory pressure and pulse waveform. In this manner, the exercise limiting factor can be estimated based on the items that can be easily measured from the measurement subject.
 (呼吸機能の解析)
 前述したように、本実施形態に係る6分間歩行試験装置1においては,呼吸器系の項目として、圧力変化の他、呼吸回数、一回換気量相当、分時換気量相当、およびSpOの経時変化を測定している。これらの測定データについて、共通の時間軸(X軸)を用いたグラフ表示を行うことも可能である。
(Analysis of respiratory function)
As described above, in the 6-minute walking test apparatus 1 according to the present embodiment, as the respiratory system items, in addition to the pressure change, the number of breaths, the equivalent to the tidal volume, the equivalent to the minute ventilation, and the SpO 2 Changes over time are measured. These measurement data can be displayed in a graph using a common time axis (X axis).
 また、この実施形態においては、図11に示すように、呼吸回数と一回換気量相当の関係を示すグラフを作成することが可能である。この例ではX軸を呼吸回数とし、Y軸を一回換気量相当としたグラフを作成し、タッチパネル付液晶132に表示する。このグラフによって以下に示すような呼吸器系の解析が可能となる。 Further, in this embodiment, as shown in FIG. 11, it is possible to create a graph showing the relationship between the number of breaths and the tidal volume. In this example, a graph in which the X axis is the number of breaths and the Y axis is equivalent to a tidal volume is created and displayed on the liquid crystal 132 with a touch panel. This graph makes it possible to analyze the respiratory system as shown below.
 まず、図11(A)に示すように、健常人の場合には、運動量に伴う換気量の増加は、一回換気量の増加によってカバーするため、呼吸回数の増加は狭い範囲となる。この場合の有効肺胞換気量は高く、呼吸筋の負担は小さい。グラフは右肩上がりのパターンを示す(線形回帰直線(Y=AX+B)の係数Aが正となる)。これに対して、図11(B)に示すように、COPD患者の場合には、過膨張により呼吸基準位が上昇して、一回換気量が減少し、その結果、換気量を維持しようとして呼吸回数が増加し、呼吸困難感が増大する。この場合の有効肺胞換気量は低く、呼吸筋の負担は大きい。グラフは右肩下がりのパターンを示す(線形回帰直線(Y=AX+B)の係数Aが負となる)。このような結果に基づいて、医療スタッフは、腹式呼吸等の呼吸指導により、呼吸筋負担の軽減と運動耐容能を改善する等の措置をとるべきである、また、呼吸困難感の改善によりQOL(quality of life)の改善を図るべきであるといったような判断をすることができる。このように、線形回帰直線によって被測定者の呼吸機能を判定することが可能であり、例えば、線形回帰直線(Y=AX+B)の係数Aが、所定範囲(例えば-2≦A≦2)である場合には、COPDの疑いがあると推定することができる。 First, as shown in FIG. 11 (A), in the case of a healthy person, the increase in the ventilation volume accompanying the amount of exercise is covered by the increase in the tidal volume, so the increase in the number of breaths is in a narrow range. In this case, the effective alveolar ventilation is high and the burden on the respiratory muscles is small. The graph shows a rising pattern (coefficient A of the linear regression line (Y = AX + B) is positive). On the other hand, as shown in FIG. 11 (B), in the case of a COPD patient, the respiratory reference level is increased due to hyperinflation, and the tidal volume is decreased. As a result, an attempt is made to maintain the ventilation volume. The number of breaths increases and the difficulty of breathing increases. In this case, the effective alveolar ventilation is low and the burden on the respiratory muscles is large. The graph shows a descending pattern (coefficient A of the linear regression line (Y = AX + B) is negative). Based on such results, the medical staff should take measures such as reducing respiratory muscle burden and improving exercise tolerance by breathing guidance such as abdominal breathing, and by improving dyspnea It can be judged that QOL (quality of life) should be improved. In this way, it is possible to determine the respiratory function of the subject by the linear regression line. For example, the coefficient A of the linear regression line (Y = AX + B) is within a predetermined range (for example, −2 ≦ A ≦ 2). In some cases, it can be assumed that there is a suspicion of COPD.
 また、この実施形態においては、図12に示すように、呼吸回数と分時換気量相当の関係を示すグラフを作成することが可能である。この例ではX軸を呼吸回数とし、Y軸を分時換気量相当としたグラフを作成し、タッチパネル付液晶132に表示する。このグラフによって以下に示すような呼吸器系の解析が可能となる。 Further, in this embodiment, as shown in FIG. 12, it is possible to create a graph showing the relationship between the number of breaths and the minute ventilation. In this example, a graph in which the X axis is the number of breaths and the Y axis is equivalent to the minute ventilation is created and displayed on the liquid crystal 132 with a touch panel. This graph makes it possible to analyze the respiratory system as shown below.
 まず、図12(A)に示すように、健常人の場合には、呼吸回数の変化が小さく、分時換気量相当の変化が大きくなるため、グラフの傾きが大きくなり、線形回帰直線(Y=AX+B)の係数Aの値が大きくなる。例えば係数Aは300以上となる。これに対して、図12(B)に示すように、COPD患者の場合には、呼吸回数の変化が大きく、分時換気量相当の変化が小さくなるため、グラフの傾きが小さくなり、線形回帰直線(Y=AX+B)の係数Aの値が小さくなる。例えば係数Aは100未満となる。このように、線形回帰直線によって被測定者の呼吸機能を判定することが可能であり、例えば、線形回帰直線(Y=AX+B)の係数Aが、所定範囲(例えば100≦A≦300)である場合には、COPDの疑いがあると推定することができる。 First, as shown in FIG. 12 (A), in the case of a healthy person, the change in the number of breaths is small and the change corresponding to the minute ventilation is large, so the slope of the graph becomes large and the linear regression line (Y = AX + B) The value of the coefficient A increases. For example, the coefficient A is 300 or more. On the other hand, as shown in FIG. 12B, in the case of a COPD patient, the change in the number of breaths is large and the change corresponding to the minute ventilation is small, so the slope of the graph is small and linear regression is performed. The value of the coefficient A of the straight line (Y = AX + B) becomes small. For example, the coefficient A is less than 100. In this way, it is possible to determine the respiratory function of the measurement subject based on the linear regression line. For example, the coefficient A of the linear regression line (Y = AX + B) is within a predetermined range (for example, 100 ≦ A ≦ 300). In some cases, it can be assumed that COPD is suspected.
 本実施形態の6分間歩行試験装置1は、上記のような呼吸機能の解析の他に、以下に示す複数の呼吸機能タイプのうち、被測定者がいずれの呼吸機能タイプに分類されるかを判定する呼吸機能タイプ分類処理を行い、その判定結果を表示可能に構成されている。 The 6-minute walking test apparatus 1 of the present embodiment, in addition to the analysis of the respiratory function as described above, determines which respiratory function type the measured person is classified from among a plurality of respiratory function types shown below. Respiratory function type classification processing is performed, and the determination result can be displayed.
 図18は、この場合にCPU110が実行する呼吸機能タイプ分類処理の流れを示すフローチャートである。
 まず、CPU110は、呼吸機能タイプを評価するための評価期間を設定する(A1)。評価期間は、歩行試験を行った期間(歩行試験期間)の全体の期間(6分間の期間)としてもよいし、歩行試験期間のうちの一部の期間(例えば前半や後半の3分間の期間)としてもよい。
FIG. 18 is a flowchart showing the flow of the respiratory function type classification process executed by the CPU 110 in this case.
First, the CPU 110 sets an evaluation period for evaluating the respiratory function type (A1). The evaluation period may be the entire period of the walking test period (walking test period) (a period of 6 minutes), or a part of the walking test period (for example, the first half or the latter half of a period of 3 minutes). ).
 次いで、CPU110は、評価期間における呼吸回数のばらつきを表す指標値として呼吸回数の標準偏差(以下、「呼吸回数標準偏差」という。)を算出する(A3)。同様に、CPU110は、評価期間における一回換気量のばらつきを表す指標値として一回換気量の標準偏差(以下、「一回換気量標準偏差」という。)を算出する(A5)。また、CPU110は、評価期間における分時換気量の増減傾向を判定する(A7)。 Next, the CPU 110 calculates a standard deviation of the respiration frequency (hereinafter referred to as “respiration frequency standard deviation”) as an index value representing the variation in the respiration frequency during the evaluation period (A3). Similarly, the CPU 110 calculates a standard deviation of the tidal volume (hereinafter referred to as “tidal volume standard deviation”) as an index value representing the variation of the tidal volume during the evaluation period (A5). Moreover, CPU110 determines the increase / decrease tendency of the minute ventilation in an evaluation period (A7).
 その後、CPU110は、評価期間におけるIE比を測定する(A9)。IE比は、被測定者の呼気回数と吸気回数との比、または、呼気時間と吸気時間との比である。そして、CPU110は、呼吸機能タイプを判定した後(A11)、呼吸機能タイプ分類処理を終了する。 Thereafter, the CPU 110 measures the IE ratio in the evaluation period (A9). The IE ratio is the ratio between the number of exhalations and the number of inspirations of the measurement subject, or the ratio between the expiration time and the inspiration time. Then, after determining the respiratory function type (A11), the CPU 110 ends the respiratory function type classification process.
 図19は、A11における呼吸機能タイプの判定方法の説明図であり、判定条件と呼吸器機能タイプとを対応づけたテーブルを図示している。呼吸機能タイプには、呼吸回数補償型と、換気量補償型と、混合型と、IE比変化型との4つのタイプが定められている。 FIG. 19 is an explanatory diagram of the determination method of the respiratory function type in A11, and illustrates a table in which the determination condition is associated with the respiratory function type. There are four types of respiratory function types: a respiratory rate compensation type, a ventilation volume compensation type, a mixed type, and an IE ratio change type.
 呼吸回数補償型と判定するための判定条件には、「一回換気量標準偏差が閾値θα1を下回り、呼吸回数標準偏差が閾値θβ1を上回り、分時換気量が継続的に増加したこと」が定められている。つまり、一回換気量は概ね一定であるが、呼吸回数が増加し、分時換気量も増加する傾向にある場合は、呼吸回数を増やすことで分時換気量を増加させる呼吸回数補償型と判定する。 The determination condition for determining the breathing rate compensation type is “the tidal volume standard deviation is below the threshold θ α1 and the respiratory rate standard deviation is above the threshold θ β1 and the minute ventilation is continuously increased. Is defined. In other words, if the tidal volume is generally constant, but the respiratory rate increases and the minute ventilation also tends to increase, the respiratory rate compensation type that increases the minute ventilation by increasing the respiratory rate is judge.
 換気量補償型と判定するための判定条件には、「一回換気量標準偏差が閾値θα1を上回り、呼吸回数標準偏差が閾値θβ1を下回り、分時換気量が継続的に増加したこと」が定められている。つまり、呼吸回数は概ね一定であるが、一回換気量が増加し、分時換気量も増加する傾向にある場合は、一回換気量を増やすことで分時換気量を増加させる換気量補償型と判定する。 The determination condition for determining the ventilation compensation type is “the tidal volume standard deviation is greater than the threshold θ α1 , the respiratory rate standard deviation is less than the threshold θ β1 , and the minute ventilation is continuously increased. Is defined. In other words, if the respiratory rate is generally constant but the tidal volume increases and the minute ventilation tends to increase, the ventilation compensation compensates for increasing the minute ventilation by increasing the tidal volume. Judge as type.
 混合型と判定するための判定条件には、「一回換気量標準偏差が閾値θα1を上回り、呼吸回数標準偏差が閾値θβ1を上回り、分時換気量が継続的に増加したこと」が定められている。つまり、呼吸回数が増加し、一回換気量が増加し、分時換気量も増加する傾向にある場合は、呼吸回数補償型と換気量補償型を混合したタイプである混合型と判定する。 The determination condition for determining the mixed type is that “the standard deviation of tidal volume exceeds the threshold θ α1 , the standard deviation of the respiratory rate exceeds the threshold θ β1 , and the minute ventilation continuously increases”. It has been established. That is, when the number of breaths increases, the tidal volume increases, and the minute ventilation also tends to increase, it is determined that the mixed type is a mixed type of the respiratory rate compensation type and the ventilation rate compensation type.
 IE比変化型と判定するための判定条件には「安静時に測定されたIE比と負荷時に測定されたIE比との差が閾値θを上回ること」が定められている。つまり、安静時に測定されたIE比と負荷時(つまり歩行試験時)に測定されたIE比とに有意な差が生じている場合は、安静時と負荷時で呼吸のIE比が変化するタイプであるIE比変化型と判定する。 The determination condition for determining the IE ratio change type is that “the difference between the IE ratio measured at rest and the IE ratio measured at load exceeds the threshold θ”. In other words, if there is a significant difference between the IE ratio measured at rest and the IE ratio measured at load (ie during the walking test), the type of IE ratio of breathing changes between rest and load It is determined that the IE ratio change type.
 (歩行諸量の測定・表示)
 6分間歩行試験装置1は、被測定者の歩行距離、歩行速度および位置のうちの少なくともいずれかを含む歩行諸量を測定し、その測定値をタッチパネル付液晶132に表示させる。歩行諸量は、歩行試験中の被測定者の歩行に伴う被測定者の移動状態を示す諸量(移動諸量)と言うこともできる。以下、各歩行諸量の測定方法について説明する。
(Measurement and display of various walking quantities)
The 6-minute walking test apparatus 1 measures walking amounts including at least one of the walking distance, walking speed, and position of the measurement subject, and displays the measured values on the liquid crystal 132 with a touch panel. The various walking quantities can also be referred to as various quantities (moving quantities) indicating the moving state of the measurement subject accompanying the walking of the measurement subject during the walking test. Hereinafter, a method for measuring each walking amount will be described.
 (1)歩行距離の測定
 従来より3軸加速度センサを利用した歩行距離の測定方法が知られている。3軸加速度センサにより3軸方向の各加速度が測定され、測定される加速度は1歩の歩行動作に伴って特徴的に変動するため、その波形から1歩の歩行動作が行われたことを判定可能であり、これにより歩数をカウントすることができる。この歩数測定方法は良く用いられている。また、歩数計に身長等を入力することにより、1歩あたりの歩幅を統計データあるいは予測式により決定し、決定した歩幅と測定された歩数に基づいて歩行距離を算出する技術も知られている。しかしながら、1歩あたりの歩幅には個人差があるため、上記のような方法では歩行距離を正確に測定することはできない。また、加速度を積分することにより歩行速度を算出し、さらに歩行速度を積分することにより歩行距離を算出する方法も存在するが、この場合には歩行姿勢によって歩行面に対する重力方向が変動するため、正確な歩行距離を算出することはできない。
(1) Measurement of walking distance Conventionally, a method for measuring a walking distance using a triaxial acceleration sensor is known. Each acceleration in the three-axis direction is measured by the three-axis acceleration sensor, and the measured acceleration varies characteristically with one step of walking motion, so it is determined from the waveform that one step of walking motion has been performed. It is possible, and this makes it possible to count the number of steps. This step count measuring method is often used. In addition, a technique is known in which a step length per step is determined by statistical data or a prediction formula by inputting height or the like into a pedometer, and a walking distance is calculated based on the determined step length and the measured number of steps. . However, since the step length per step varies from person to person, the above method cannot accurately measure the walking distance. In addition, there is a method of calculating the walking speed by integrating the acceleration, and further calculating the walking distance by integrating the walking speed, but in this case the direction of gravity relative to the walking surface varies depending on the walking posture, An accurate walking distance cannot be calculated.
 本実施形態では、3軸加速度センサのみならず3軸地磁気センサの出力信号を利用して正確に歩行距離を算出するようにしている。前もって測定地点の緯度および経度から測定地点における地磁気の伏角を計算しておき、3軸地磁気センサにより検出した地磁気の方向と算出された測定地点における伏角により、測定地点における歩行面を計算し、その歩行面のみの加速度成分に基づいて歩行速度を計算し、さらに歩行速度を積分することで歩行距離を算出する方法である。以下、詳細に説明する。 In this embodiment, the walking distance is accurately calculated using the output signal of not only the triaxial acceleration sensor but also the triaxial geomagnetic sensor. Calculate the geomagnetic dip at the measurement point from the latitude and longitude of the measurement point in advance, and calculate the walking plane at the measurement point from the direction of the geomagnetism detected by the triaxial geomagnetic sensor and the calculated dip at the measurement point. In this method, the walking speed is calculated based on the acceleration component of only the walking surface, and the walking distance is calculated by further integrating the walking speed. Details will be described below.
 図13に示すように、伏角分布は公開されており、6分間歩行試験を実行する測定地点の緯度および経度から、測定地点の伏角を計算することが可能となっている。予め、測定地点の伏角を計算しておく。例えば伏角の計算方法に関しては、図14に示すように、本体部100が垂直姿勢(z軸のマイナス方向が重力方向となる姿勢であり、以下、これを標準姿勢と呼ぶ)の時の地磁気センサの3軸のセンサ出力をx,y,zとして、地磁気方向を(x,y,z)と表し、歩行している時に標準姿勢から傾いた姿勢(以下、これを歩行姿勢と呼ぶ)で計測された地磁気方向を(x,y,z)と表す。標準姿勢の時の伏角をα0すると、α0はxy平面となす角なので、以下の式が成立する。
Figure JPOXMLDOC01-appb-M000003
As shown in FIG. 13, the dip angle distribution is open to the public, and the dip angle of the measurement point can be calculated from the latitude and longitude of the measurement point at which the 6-minute walking test is executed. The dip angle at the measurement point is calculated in advance. For example, regarding the method of calculating the dip angle, as shown in FIG. 14, the geomagnetic sensor when the main body 100 is in a vertical posture (a posture in which the negative direction of the z-axis is the gravitational direction, hereinafter referred to as a standard posture). The three-axis sensor output is x 0 , y 0 , z 0 , the geomagnetic direction is represented as (x 0 , y 0 , z 0 ), and the posture tilted from the standard posture when walking (hereinafter referred to as walking) The geomagnetism direction measured by the “posture” is represented as (x 1 , y 1 , z 1 ). If the dip angle in the standard posture is α 0 , α 0 is an angle formed with the xy plane, so the following equation is established.
Figure JPOXMLDOC01-appb-M000003
 歩行姿勢での地磁気の方向を(x,y,z)とし、伏角をα1とすれば、以下の式が成立する。
Figure JPOXMLDOC01-appb-M000004
If the direction of geomagnetism in the walking posture is (x 1 , y 1 , z 1 ) and the depression angle is α 1 , the following formula is established.
Figure JPOXMLDOC01-appb-M000004
 この場合の本体部100の傾きは、α01で表され、次式となる。
Figure JPOXMLDOC01-appb-M000005
The inclination of the main body 100 in this case is represented by α 01 and is given by the following equation.
Figure JPOXMLDOC01-appb-M000005
 したがって、3軸加速度センサのデータにおいてxy平面をα01傾けた面が歩行面となり、歩行面における加速度が歩行による加速度である。また、歩行による加速度を積分することで速度が計算でき、更に積分することで距離を精度良く計算することができる。具体的には、CPU110により以下に示す座標変換式を計算することによって、歩行面における加速度を計算することが可能である。 Therefore, in the data of the three-axis acceleration sensor, the plane obtained by inclining the xy plane by α 01 becomes the walking plane, and the acceleration on the walking plane is the acceleration by walking. Further, the speed can be calculated by integrating the acceleration due to walking, and the distance can be calculated with high accuracy by further integrating. Specifically, the CPU 110 can calculate the acceleration on the walking surface by calculating the coordinate conversion formula shown below.
 標準姿勢での3次元地磁気センサのデータを(x,y,z)、歩行姿勢での3次元地磁気センサのデータを(x,y,z)とし、a1~a3、b1~b3、c1~c3を、座標変換をする式の係数として表現すると、以下の式が成立する。
Figure JPOXMLDOC01-appb-M000006
The data of the three-dimensional geomagnetic sensor in the standard posture is (x 0 , y 0 , z 0 ), the data of the three-dimensional geomagnetic sensor in the walking posture is (x 1 , y 1 , z 1 ), and a1 to a3, b1 When .about.b3 and c1 to c3 are expressed as coefficients of an equation for coordinate conversion, the following equation is established.
Figure JPOXMLDOC01-appb-M000006
 これを行列式により以下のように表現する。
Figure JPOXMLDOC01-appb-M000007
This is expressed by a determinant as follows.
Figure JPOXMLDOC01-appb-M000007
 上記逆行列を求めれば、歩行姿勢から標準姿勢に変換することができる。同様に、歩行姿勢での3次元加速度データに上記逆行列を掛けることで座標変換すれば、本体部100を標準姿勢にすることができ、xy平面の加速度が歩行面の加速度として計算できる。標準姿勢での3次元加速度データを(X,Y,Z)、歩行姿勢での3次元加速度データを(X,Y,Z)とすれば、以下の式により(X,Y,Z)が求まる。
Figure JPOXMLDOC01-appb-M000008
If the inverse matrix is obtained, the walking posture can be converted to the standard posture. Similarly, if coordinate transformation is performed by multiplying the three-dimensional acceleration data in the walking posture by the inverse matrix, the main body 100 can be set in the standard posture, and the acceleration on the xy plane can be calculated as the acceleration on the walking surface. 3D acceleration data in the standard position (X 0, Y 0, Z 0), if the three-dimensional acceleration data of the walking posture and (X 1, Y 1, Z 1), the following expression (X 0 , Y 0 , Z 0 ) is obtained.
Figure JPOXMLDOC01-appb-M000008
 歩行面での加速度をaとすると、xy平面の加速度は以下の式により算出される。
Figure JPOXMLDOC01-appb-M000009
If the acceleration on the walking surface is aw , the acceleration on the xy plane is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000009
 算出されるaを積分すれば歩行速度、更にもう一度積分すれば歩行距離を計算できる。このようにして算出される歩行面での加速度および、前述した呼吸系項目および循環器系測定項目は、図15に示すように各々測定開始からの経過時間に応じた時系列データとして表示される。横軸の経過時間のスケールを各項目共通とすることにより、経過時間に応じて各項目値がどのように推移したのかを容易に把握可能である。 The walking speed can be calculated by integrating the calculated aw, and the walking distance can be calculated by integrating again. The acceleration on the walking surface calculated in this way and the above-mentioned respiratory system item and circulatory system measurement item are displayed as time-series data corresponding to the elapsed time from the start of measurement as shown in FIG. . By making the scale of elapsed time on the horizontal axis common to each item, it is possible to easily grasp how each item value has changed according to the elapsed time.
 (2)歩行速度/位置の測定
 GPSに代表される衛星測位システム(他には、WAASやGLONASS、GALILEO、Beidou等)を利用することで、被測定者の歩行速度や位置を測定することができる。この場合、例えば、6分間歩行試験装置1にGPS受信装置(GPSユニット)を具備させておき、擬似距離を利用した擬似距離測位やドップラー周波数を利用したドップラー測位を行って、被測定者の位置を測定する。また、ドップラー周波数を利用した速度演算を行って、被測定者の歩行速度を測定する。
(2) Walking speed / position measurement By using a satellite positioning system represented by GPS (otherwise, WAAS, GLONASS, GALILEO, Beidou, etc.), the walking speed and position of the person being measured can be measured. it can. In this case, for example, a 6-minute walking test apparatus 1 is provided with a GPS receiver (GPS unit), and pseudo-positioning using a pseudo-range or Doppler positioning using a Doppler frequency is performed to determine the position of the person being measured. Measure. Moreover, speed calculation using the Doppler frequency is performed to measure the walking speed of the person being measured.
 また、衛星測位システムではなく、慣性航法演算を行って被測定者の歩行速度や位置を測定することも可能である。この場合、例えば、6分間歩行試験装置1に慣性センサとして加速度センサおよび角速度センサ(ジャイロセンサ)を具備させておき、加速度センサおよび角速度センサから出力される加速度信号および角速度信号を利用した慣性航法演算を行って、被測定者の歩行速度および位置を測定する。 Also, instead of the satellite positioning system, it is also possible to measure the walking speed and position of the subject by performing inertial navigation calculations. In this case, for example, the 6-minute walking test apparatus 1 is provided with an acceleration sensor and an angular velocity sensor (gyro sensor) as an inertial sensor, and an inertial navigation calculation using an acceleration signal and an angular velocity signal output from the acceleration sensor and the angular velocity sensor. To measure the walking speed and position of the person being measured.
 この場合において、3軸加速度センサおよび3軸角速度センサを含む慣性計測装置(IMU(Inertial Measurement Unit))を6分間歩行試験装置1に具備させておき、慣性計測装置から出力される加速度信号および角速度信号を利用してCPU110が慣性航法演算を行うようにしてもよいし、自立的に慣性航法演算を行って位置や速度を出力する慣性航法装置(INS(Inertial Navigation System))を6分間歩行試験装置1に具備させることとしてもよい。 In this case, an inertial measurement device (IMU (Inertial Measurement Unit)) including a triaxial acceleration sensor and a triaxial angular velocity sensor is provided in the walking test apparatus 1 for 6 minutes, and an acceleration signal and angular velocity output from the inertial measurement device. The CPU 110 may perform inertial navigation calculation using signals, or a 6-minute walking test of an inertial navigation device (INS (Inertial Navigation System)) that performs inertial navigation calculation autonomously and outputs position and velocity The apparatus 1 may be provided.
 なお、衛星測位システムを利用した位置演算/速度演算と慣性航法演算とを併用して被測定者の位置や歩行速度を測定することとしてもよい。例えば、衛星測位システムを利用して測定した位置/速度と、慣性航法演算を行って測定した位置/速度とを平均演算する平均処理(単純平均処理、加重平均処理)を行って、被測定者の位置や歩行速度を測定するようにしてもよい。 In addition, it is good also as measuring a to-be-measured person's position and walking speed using together position calculation / speed calculation using a satellite positioning system, and inertial navigation calculation. For example, an average process (simple average process, weighted average process) that averages the position / velocity measured using a satellite positioning system and the position / velocity measured by performing an inertial navigation calculation is performed. You may make it measure the position and walking speed.
 また、歩行試験は通常屋外(アウトドア環境)で行うことが想定されるが、屋内(インドア環境)で歩行試験を行う場合も考えられる。この場合、インドア環境ではGPS受信装置がGPS衛星信号を受信することが困難である場合が多く、GPSを利用した歩行速度や位置の測定を行うことができなくなるおそれがある。そこで、歩行試験が行われる建物や施設内に屋内発信器(屋内基地局)を設置し、この屋内発信器から発信される信号に基づいて三角測量を行うなどして、被測定者の位置を測定してもよい。また、屋内発信器として擬似衛星を設置することとしてもよい。擬似衛星は、衛星測位システムにおける測位用衛星を模擬した擬似的な衛星であり、例えば、測位用衛星から送信される衛星信号が伝送する航法メッセージに含まれる情報に類する情報や、当該擬似衛星が設置されている設置位置といった情報を含む擬似衛星信号を送信可能に構成されている。この擬似衛星から受信した擬似衛星信号に基づいて、被測定者の位置を測定または特定してもよい。 In addition, it is assumed that the walking test is usually performed outdoors (outdoor environment), but the walking test may be performed indoors (indoor environment). In this case, in an indoor environment, it is often difficult for the GPS receiver to receive a GPS satellite signal, and there is a possibility that it is impossible to measure the walking speed and position using the GPS. Therefore, an indoor transmitter (indoor base station) is installed in the building or facility where the walking test is performed, and the position of the person being measured is determined by performing triangulation based on the signal transmitted from the indoor transmitter. You may measure. Moreover, it is good also as installing a pseudolite as an indoor transmitter. A pseudo satellite is a pseudo satellite that simulates a positioning satellite in a satellite positioning system. For example, information similar to information included in a navigation message transmitted by a satellite signal transmitted from a positioning satellite, It is configured to be able to transmit a pseudo satellite signal including information such as an installed position. The position of the person to be measured may be measured or specified based on the pseudo satellite signal received from the pseudo satellite.
 図15においては、呼吸回数(RR)、吸気一回換気量相当(vTi)、呼気一回換気量相当(vTe)、脈拍数(PR)、および、SpOの時間推移が、いずれも共通の時間軸上に表示されており、6分間の試験中およびその前後における各項目の時間推移を容易に比較可能である。そして循環器系測定項目である脈拍数と、呼吸器系測定項目である呼吸回数、一回換気量相当、および分時換気量相当との比較から、運動制限因子を推定することができる。なお、図8~図10に示したように、1のグラフのX軸を共通スケールの時間軸として、循環器系測定項目と呼吸器系測定項目とを同じグラフ上に(Y軸のスケールが項目に応じて異なるように)表示しても良く、図15のように、各項目のグラフを、時間軸を共通のスケールにして上下に並べて表示するようにしても良い。 In FIG. 15, the respiratory frequency (RR), inspiratory tidal volume equivalent (vTi), expiratory tidal volume equivalent (vTe), pulse rate (PR), and SpO 2 time transition are all common. It is displayed on the time axis, and the time transition of each item can be easily compared during and before and after the test for 6 minutes. The exercise limiting factor can be estimated from a comparison of the pulse rate, which is a circulatory system measurement item, with the respiratory frequency, which is a respiratory system measurement item, equivalent to a tidal volume, and equivalent to a minute ventilation. As shown in FIGS. 8 to 10, the X axis of one graph is the time axis of the common scale, and the circulatory system measurement item and the respiratory system measurement item are displayed on the same graph (the scale of the Y axis is The graphs of the respective items may be displayed side by side with the time axis as a common scale as shown in FIG.
 従来の6分間歩行試験装置では、試験中の患者の歩行状態を記録する手段を有していなかったため、歩行試験中に立ち止まった場合には、別途観察者がイベントとして記録を取る必要があった。本実施形態に係る6分間歩行試験装置では、歩行面における加速度が測定データとして記録されることにより、歩行試験中における歩行状態を詳細に把握可能であり、仮に被測定者が立ち止まったとしても、その動作や停止状態が加速度データに反映されるため、別途歩行状態の記録を取っておく必要はない。歩行開始および歩行停止は自動的に記録されることになる。また、上述した方法により経過時間に応じて正確に歩行速度や歩行距離を算出可能であるため、測定後に歩行速度の低下や歩行距離の停滞も識別可能である。そのため医療スタッフ等の観察者は、被測定者の状態を観察することに専念できる。 In the conventional 6-minute walking test apparatus, there was no means for recording the walking state of the patient under test, so when it stopped during the walking test, an observer had to record it separately as an event. . In the 6-minute walking test apparatus according to the present embodiment, the acceleration on the walking surface is recorded as the measurement data, so that the walking state during the walking test can be grasped in detail, and even if the person to be measured stops, Since the movement and stop state are reflected in the acceleration data, it is not necessary to keep a separate record of the walking state. The start and stop of walking are automatically recorded. In addition, since the walking speed and walking distance can be accurately calculated according to the elapsed time by the above-described method, it is possible to identify a decrease in walking speed and a stagnant walking distance after measurement. Therefore, an observer such as a medical staff can concentrate on observing the condition of the subject.
 また、歩数をカウントして1歩あたりの距離(歩幅)を計算することも可能であるため、例えば試験開始時の歩幅と試験終了時の歩幅の比率(試験終了時の歩幅/試験開始時の歩幅)により疲労度を定量化することも可能である。また、歩行速度の経時変化を測定可能であるため、例えば試験開始時の歩行速度と試験終了時の歩行速度の比率(試験終了時の歩行速度/試験開始時の歩行速度)により疲労度を定量化することも可能である。 In addition, since it is possible to calculate the distance (step length) per step by counting the number of steps, for example, the ratio of the stride at the start of the test to the stride at the end of the test (step length at the end of the test / step at the start of the test) It is also possible to quantify the degree of fatigue based on the stride. In addition, since it is possible to measure changes in walking speed over time, the fatigue level is quantified by, for example, the ratio of the walking speed at the start of the test and the walking speed at the end of the test (walking speed at the end of the test / walking speed at the start of the test). It is also possible to
 (歩行終了前の測定)
 前述したように、6分間歩行試験装置1は、歩行試験の開始に先立って前安静状態においてフローセンサを用いて努力性肺活量(FVC)や1秒量(FEV1)、1秒率(FEV1%)、%1秒量(%FEV1)を測定するとともに、SpOプローブを用いてSpOや脈拍数を測定する。また、鼻孔カニューラを用いて被測定者により安静時喚起が行われているか否かを確認する。この前安静状態における測定を行う前安静期間(例えば3分間の期間)を設定し、この前安静期間の経過後に、歩行試験を開始するようにすることも可能である。
(Measurement before walking)
As described above, the 6-minute walking test apparatus 1 uses the flow sensor in the pre-rest state prior to the start of the walking test, and the forced vital capacity (FVC), 1 second amount (FEV1), 1 second rate (FEV1%) ,% FEV1 (% FEV1) as well as measuring, measuring the SpO 2 and pulse rate with SpO 2 probe. Further, it is confirmed whether or not the subject is awakened at rest using a nostril cannula. It is also possible to set a pre-rest period (for example, a period of 3 minutes) for measurement in the pre-rest state, and start the walking test after the pre-rest period.
 また、この場合、健常者や呼吸器系や循環器系にそれほど重大な問題を抱えていない非測定者である場合は、3分間という前安静期間を待たずとも循環器系項目や呼吸器系項目の測定値が安定する傾向にある。そこで、これらの測定値の一部又は全部のばらつきが所定の設定値以下となった場合に、前安静期間の経過を待たずに、前安静状態での測定を自動終了して、歩行試験を開始させるようにすることも可能である。 In this case, if the subject is a healthy person or a non-measuring person who does not have a serious problem with the respiratory system or circulatory system, the circulatory system item or respiratory system can be used without waiting for a three-minute pre-rest period. The measured value of the item tends to be stable. Therefore, when the variation of some or all of these measured values is less than the preset value, the measurement in the pre-rest state is automatically terminated without waiting for the pre-rest period, and the walking test is performed. It is also possible to start.
 (歩行終了後の測定)
 歩行開始から6分を経過したときには、ブザー133が鳴るとともに、タッチパネル付液晶132に「6分経過」と表示される。これに伴い、被測定者は歩行を終了する。そして、鼻孔カニューラ180を本体部100から取り外し、これに替えて、再度、本体部100にフローセンサ150を接続し、歩行開始前と同様に、努力性肺活量(FVC)、1秒量(FEV1)、1秒率(FEV1%)、および%1秒量(%FEV1)等を測定する。また、SpOおよび脈拍数を測定する。さらに、修正Borgスケールによる確認を行い、収縮期および拡張期を把握すべく血圧も測定する。これらの歩行終了後に測定された各項目の値は、歩行開始前の各項目の値とともに記憶され、両者は対比可能にタッチパネル付液晶132に表示される。
(Measurement after walking)
When 6 minutes have elapsed from the start of walking, the buzzer 133 sounds and “6 minutes have elapsed” is displayed on the liquid crystal 132 with a touch panel. In connection with this, a to-be-measured person complete | finishes walking. Then, the nostril cannula 180 is removed from the main body 100, and instead, the flow sensor 150 is connected again to the main body 100, and the forced vital capacity (FVC), 1 second amount (FEV1), as before the start of walking. 1 second rate (FEV 1%),% 1 second amount (% FEV 1), etc. are measured. SpO 2 and pulse rate are also measured. Furthermore, the blood pressure is also measured to confirm the systole and the diastolic phase by checking with the modified Borg scale. The value of each item measured after the end of walking is stored together with the value of each item before the start of walking, and both are displayed on the liquid crystal 132 with a touch panel so that they can be compared.
 また、6分間歩行試験装置1は、歩行試験を開始する前の安静状態(前安静状態)と、歩行試験を終了した後の安静状態(後安静状態)とにおける循環器系項目や呼吸器系項目の測定値を取得し、前安静状態に対する後安静状態での各項目の回復状況を判定して表示する。 In addition, the 6-minute walking test apparatus 1 is a cardiovascular system item or respiratory system in a resting state before starting the walking test (pre-resting state) and a resting state after finishing the walking test (post-resting state). The measured value of the item is acquired, and the recovery status of each item in the post-rest state with respect to the pre-rest state is determined and displayed.
 後安静状態において前安静状態における測定値に回復するまでどのくらいの時間が要したかを計測することが考えられるが、これには一定の時間がかかるという問題がある。健常者であれば、運動後、3分間程度の時間で呼吸器系項目や循環器系項目の測定値が前安静状態における測定値まで回復する傾向がある。そこで、後安静状態の3分間の期間で前安静状態の何%まで各項目の測定値が回復したかを示す回復係数を算出し、この回復係数を回復状況として表示する。 It is conceivable to measure how long it takes to recover to the measurement value in the pre-rest state in the post-rest state, but this has a problem that it takes a certain time. If it is a healthy person, the measured value of the respiratory system item and the circulatory system item tends to recover to the measured value in the pre-rest state in about 3 minutes after exercise. Therefore, a recovery coefficient indicating how much of the measured value of each item has recovered in the period of 3 minutes in the post-rest state is calculated, and this recovery coefficient is displayed as the recovery status.
 また、SpOや脈拍数といった循環器系項目の測定値や、分時換気量といった呼吸器系項目の測定値が前安静状態における測定値まで回復する時間を回復時間として測定し、この回復時間を回復状況として表示する。 Also, the recovery time is measured as the recovery time of the measured value of the circulatory system item such as SpO 2 and the pulse rate and the measured value of the respiratory system item such as minute ventilation to the measured value in the pre-rest state. Is displayed as the recovery status.
 [6分間歩行試験装置の他の機能]
 上述したように、6分間歩行試験装置1の主要機能について説明したが、本実施形態に係る6分間歩行試験装置1は、以下に説明する各機能を有している。
[Other functions of 6-minute walking test device]
As described above, the main functions of the 6-minute walking test apparatus 1 have been described. However, the 6-minute walking test apparatus 1 according to the present embodiment has the functions described below.
 前述したように、鼻孔カニューラを用いて被測定者に酸素を供給しながら歩行試験を行う場合がある。この場合、歩行試験開始前に酸素供給器(酸素供給手段)に対して設定した酸素流量(以下、「設定酸素流量」という。)が適正であるか否かを判定したり、歩行試験中に被測定者に対して適切に酸素が供給されているか否かの判定を行うことが可能である。 As described above, a walking test may be performed while supplying oxygen to a subject using a nostril cannula. In this case, it is determined whether the oxygen flow rate (hereinafter referred to as “set oxygen flow rate”) set for the oxygen supply device (oxygen supply means) before the start of the walking test is appropriate or during the walking test. It is possible to determine whether or not oxygen is appropriately supplied to the measurement subject.
 図20は、この場合にCPU110が実行する歩行試験前判定処理の流れを示すフローチャートである。なお図20に示す処理を、歩行試験後においても同様に実行するようにしても良い。 まず、CPU110は、適正酸素流量を取得する(B1)。適正酸素流量は、例えば、被測定者やオペレータが設定酸素流量として認識している(実際に設定したかどうかは定かでは無い)酸素流量であり、適正と考えられる酸素流量を操作部(例えばタッチパネル付液晶132)から入力させることで取得することができる。また、被測定者やオペレータに被測定者のパラメータ(年齢、体重、性別等)を入力させて、入力されたパラメータに基づいて決定される適切な酸素流量を適正酸素流量とするようにしても良い。次いで、CPU110は、適正酸素流量に基づいて、酸素流量に基づく圧力のオフセット値を推定し、推定オフセット値としてRAM121に記憶させる(B3)。酸素流量に基づく圧力のオフセット値は酸素流量にほぼ比例する。そこで、適正酸素流量とオフセット値との相関関係を定めた相関データ(相関式や相関テーブル)をあらかじめROM122に記憶させておき、当該相関データに基づいて、B1で取得した適正酸素流量に対応するオフセット値を求めて、これを推定オフセット値とする。例えば、推定オフセット値を100としてRAM121に記憶するようにすると良い。次いで、CPU110は、供給されている酸素流量が適正範囲であるか否かを判定する判定処理を行う(B5)。 FIG. 20 is a flowchart showing the flow of the pre-walking test determination process executed by the CPU 110 in this case. Note that the processing shown in FIG. 20 may be executed in the same manner even after the walking test. First, the CPU 110 obtains an appropriate oxygen flow rate (B1). The appropriate oxygen flow rate is, for example, an oxygen flow rate that is recognized by the measurement subject or the operator as a set oxygen flow rate (whether it is actually set or not), and the oxygen flow rate that is considered appropriate is displayed on the operation unit (for example, a touch panel). It can be obtained by inputting from the attached liquid crystal 132). In addition, the measurement subject or the operator may input parameters (age, weight, sex, etc.) of the measurement subject, and an appropriate oxygen flow determined based on the input parameters may be set as the appropriate oxygen flow. good. Next, the CPU 110 estimates the pressure offset value based on the oxygen flow rate based on the appropriate oxygen flow rate, and stores it in the RAM 121 as the estimated offset value (B3). The pressure offset value based on the oxygen flow rate is substantially proportional to the oxygen flow rate. Therefore, correlation data (correlation equation or correlation table) that defines the correlation between the appropriate oxygen flow rate and the offset value is stored in the ROM 122 in advance, and the appropriate oxygen flow rate acquired in B1 is handled based on the correlation data. An offset value is obtained and used as an estimated offset value. For example, the estimated offset value may be stored in the RAM 121 as 100. Next, the CPU 110 performs a determination process for determining whether or not the supplied oxygen flow rate is within an appropriate range (B5).
 図21は、判定処理の流れを示すフローチャートである。
 CPU110は、酸素供給器から被測定者に酸素が供給された状態での被測定者の呼吸波形を取得する(C1)。ここで言う呼吸波形とは、被測定者の呼吸圧の時系列データである。そして、CPU110は、取得した呼吸波形に基づいてオフセット値を測定し、測定オフセット値としてRAM121に記憶させる(C3)。測定オフセット値は、例えば、被測定者の呼吸波形(呼吸圧の時系列データ)から交流成分(AC成分)をカットするフィルタ処理を行うことで取得することができる。例えば、前述した推定オフセット値を100としたときの測定オフセット値を算出してRAM121に記憶するようにすると良い。
FIG. 21 is a flowchart showing the flow of the determination process.
CPU110 acquires the to-be-measured person's respiration waveform in the state by which oxygen was supplied to the to-be-measured person from the oxygen supply device (C1). The respiratory waveform referred to here is time-series data of the respiratory pressure of the measurement subject. And CPU110 measures an offset value based on the acquired respiration waveform, and memorize | stores it in RAM121 as a measurement offset value (C3). The measurement offset value can be acquired, for example, by performing a filter process that cuts an AC component (AC component) from the respiratory waveform (respiration pressure time-series data) of the measurement subject. For example, the measurement offset value when the estimated offset value described above is set to 100 may be calculated and stored in the RAM 121.
 次いで、CPU110は、RAM121に記憶されている推定オフセット値と測定オフセット値との差の絶対値が所定の第1閾値を超えているか否かを判定する(C5)。ここで用いる第1閾値は、例えば推定オフセット値を100とした場合に10~20の範囲とすると良く、例えば酸素供給器が供給する酸素流量の誤差範囲に基づいて決定すると良い。例えば、酸素供給器から被測定者に対して供給される酸素流量の誤差が概ね設定値の±10%であることを想定すると、推定オフセット値(ここでは100とする)と測定オフセット値との差の絶対値が10を超えている場合には、実際の酸素流量が適正と考えられる酸素流量から乖離していることになる。そのため、この場合には、閾値を10とすると良い。 Next, the CPU 110 determines whether or not the absolute value of the difference between the estimated offset value and the measured offset value stored in the RAM 121 exceeds a predetermined first threshold value (C5). The first threshold value used here is preferably in the range of 10 to 20 when the estimated offset value is 100, for example, and may be determined based on the error range of the oxygen flow rate supplied by the oxygen supplier, for example. For example, assuming that the error in the oxygen flow rate supplied from the oxygen supply device to the measurement subject is approximately ± 10% of the set value, the estimated offset value (here, 100) and the measurement offset value When the absolute value of the difference exceeds 10, the actual oxygen flow rate deviates from the oxygen flow rate considered appropriate. Therefore, in this case, the threshold value should be 10.
 そして、推定オフセット値と測定オフセット値との差の絶対値が、第1閾値を超えていると判定した場合は(C5;Yes)、供給酸素流量を不適正と判定するとともに、不適正と連続して判定された時間である不適正時間(または不適正と連続して判定された回数である不適正回数)を更新する(C7)。そして、CPU110は、不適正時間(または不適正回数)が所定の第2閾値を超えているか否かを判定する(C9)。そして、第2閾値を超えていると判定した場合には(C9;Yes)、酸素流量が不適正である旨を報知する(C11)。例えば、アラームやビープ音を鳴らすなどして、酸素流量が不適正である旨を報知する。また、「設定された酸素流量が適正ではありません」というメッセージを画面に表示するようにしても良い。 When it is determined that the absolute value of the difference between the estimated offset value and the measured offset value exceeds the first threshold value (C5; Yes), the supply oxygen flow rate is determined to be inappropriate, and inappropriate and continuous. Then, the improper time determined as the time determined (or the improper number of times determined consecutively as improper) is updated (C7). Then, the CPU 110 determines whether or not the inappropriate time (or the inappropriate count) exceeds a predetermined second threshold (C9). And when it determines with having exceeded the 2nd threshold value (C9; Yes), it alert | reports that an oxygen flow rate is improper (C11). For example, an alarm or a beep is sounded to notify that the oxygen flow rate is inappropriate. Further, a message “The set oxygen flow rate is not appropriate” may be displayed on the screen.
 例えば、酸素流量の一時的な変動に伴い測定オフセット値の瞬時値が大きく変化したことに起因して、推定オフセット値と測定オフセット値との差の絶対値が第1閾値を超えるケースも想定される。このような場合にその瞬時値を以て設定流量が不適正であると直ちに報知することは、歩行試験の円滑な進行を阻害する要因にもなり得る。従って、この例では、不適正時間(または不適正回数)が第2閾値を超えている場合に、酸素流量が不適正である旨を報知するようにしている。ここで用いる第2閾値は、例えば、酸素供給器の酸素流量を設定した後に酸素流量が安定するまでの時間(またはその時間に応じた判定回数)、何らかの要因により一時的に酸素流量が変動した場合に酸素流量が安定するまでの時間(またはその時間に応じた判定回数)、あるいは酸素流量が変動したとしても被測定者や歩行試験に重大な影響を及ぼさない程度の時間(またはその時間に応じた判定回数)等にすると良い。 For example, there may be a case where the absolute value of the difference between the estimated offset value and the measured offset value exceeds the first threshold value due to a large change in the instantaneous value of the measured offset value due to a temporary change in the oxygen flow rate. The In such a case, immediately informing that the set flow rate is inappropriate with the instantaneous value may be a factor that hinders the smooth progress of the walking test. Therefore, in this example, when the inappropriate time (or inappropriate number of times) exceeds the second threshold value, the fact that the oxygen flow rate is inappropriate is notified. The second threshold value used here is, for example, the time until the oxygen flow rate is stabilized after setting the oxygen flow rate of the oxygen supply device (or the number of determinations corresponding to that time), and the oxygen flow rate temporarily fluctuated due to some factor. In this case, the time until the oxygen flow rate stabilizes (or the number of determinations corresponding to that time), or the time that does not have a significant effect on the subject or the walking test (or the time) The number of times of determination) is good.
 一方、推定オフセット値と測定オフセット値との差の絶対値が、第1閾値を超えていないと判定した場合は(C5;No)、不適正時間(または不適正回数)をクリアする(C13)。従って、不適正時間(または不適正回数)が閾値を超える前に推定オフセット値と測定オフセット値との差の絶対値が閾値以下になったときには、流量不適正報知が行われるより前にその不適正時間(または不適正回数)がクリアされる。そして、CPU110は、所定の判定時間が経過したか否かを確認する(C15)。そして、判定時間を経過していれば(C15;Yes)、判定処理を終了し、判定期間を経過していなければ(C15;No)、C1に戻って判定処理を続行する。また、不適正時間(または不適正回数)が第2閾値以下である場合には(C9;No)、酸素流量が不適正である旨を報知することなく、C15に移行する。 On the other hand, if it is determined that the absolute value of the difference between the estimated offset value and the measured offset value does not exceed the first threshold (C5; No), the inappropriate time (or inappropriate number of times) is cleared (C13). . Therefore, if the absolute value of the difference between the estimated offset value and the measured offset value falls below the threshold before the inappropriate time (or the inappropriate number of times) exceeds the threshold, the error is reported before the flow inappropriate notification is performed. The appropriate time (or inappropriate number of times) is cleared. Then, the CPU 110 checks whether or not a predetermined determination time has elapsed (C15). If the determination time has elapsed (C15; Yes), the determination process is terminated. If the determination period has not elapsed (C15; No), the process returns to C1 and the determination process is continued. When the inappropriate time (or inappropriate number of times) is equal to or less than the second threshold value (C9; No), the process proceeds to C15 without notifying that the oxygen flow rate is inappropriate.
 図20に戻り、CPU110は、酸素流量が不適正である旨の報知が行われているか否かを確認する(B7)。酸素流量が不適正である旨の報知が行われていなければ(B7;No)、歩行試験前判定処理を終了する。これに伴い、被測定者は歩行試験に移行することになる。一方、酸素流量が不適正である旨の報知が行われていれば(B7;Yes)、CPU110は、酸素流量の再設定および適正判定のやり直しを行うための再設定操作(例えばタッチパネル付液晶132に表示されたキャンセルボタンの選択)がなされたか否かを判定し(B9)、なされたと判定したならば(B9;Yes)、酸素流量が不適正である旨の報知を終了して(B13)、歩行試験前判定処理を終了する。これに伴い、被測定者やオペレータは、酸素供給器に対して酸素流量を再設定することになる。また、必要に応じて適正酸素流量やパラメータの再入力を行う。一方、再設定操作がなされなかったと判定したならば(B9;No)、酸素流量が不適正である旨の報知を継続して(B11)、B9に戻る。 Referring back to FIG. 20, the CPU 110 confirms whether or not a notification that the oxygen flow rate is inappropriate is being performed (B7). If there is no notification that the oxygen flow rate is inappropriate (B7; No), the determination process before the walking test is terminated. In connection with this, a to-be-measured person will transfer to a walk test. On the other hand, if a notification that the oxygen flow rate is inappropriate (B7; Yes), the CPU 110 performs a resetting operation (for example, a liquid crystal 132 with a touch panel) for resetting the oxygen flow rate and redoing the appropriateness determination. It is determined whether or not the selection of the cancel button displayed on (B9) has been made (B9), and if it has been determined (B9; Yes), the notification that the oxygen flow rate is inappropriate is terminated (B13). Then, the determination process before the walking test is terminated. In connection with this, a to-be-measured person and an operator will reset oxygen flow volume with respect to an oxygen supply device. In addition, the appropriate oxygen flow rate and parameters are re-input as necessary. On the other hand, if it is determined that the resetting operation has not been performed (B9; No), the notification that the oxygen flow rate is inappropriate is continued (B11), and the process returns to B9.
 なお、この例では、再設定操作がなされるまでは、流量不適正報知が継続されるようにしているが、再設定操作がなされることなく所定時間を経過すると流量不適正報知が終了するようにしても良い。また、流量不適正報知が実行されている期間も図21の判定処理を実行可能としておき、推定オフセット値と測定オフセット値との差の絶対値が、第1閾値を超えていないと判定した場合は(C5;No)、流量不適正報知が終了するようにしても良い。 In this example, the flow rate inappropriateness notification is continued until the resetting operation is performed, but the flow rate inappropriateness notification is terminated when a predetermined time elapses without performing the resetting operation. Anyway. In addition, when the flow rate improper notification is being executed, the determination process of FIG. 21 is allowed to be executed, and it is determined that the absolute value of the difference between the estimated offset value and the measured offset value does not exceed the first threshold value. (C5; No), the inadequate flow rate notification may be terminated.
 図22は、歩行試験中において酸素供給器から被測定者に対して供給される酸素流量の異常を検出する歩行試験中判定処理の流れを示すフローチャートである。
 CPU110は、図20に示した判定処理と同様の処理を実行する(D5)。すなわち歩行試験中の被測定者の呼吸波形に基づいて、供給されている酸素流量が不適正であるか否かを確認して、不適正である場合にはその旨を報知するようにしている。なお、歩行試験中判定処理における図21の判定処理では、C15で試験時間が経過したか否か(例えば、試験開始から6分間を経過したか否か)を確認するようにしている。
FIG. 22 is a flowchart illustrating a flow of a determination process during a walk test that detects an abnormality in the flow rate of oxygen supplied from the oxygen supply device to the measurement subject during the walk test.
CPU110 performs the process similar to the determination process shown in FIG. 20 (D5). That is, based on the breathing waveform of the person being measured during the walking test, it is confirmed whether or not the supplied oxygen flow rate is inappropriate, and if it is inappropriate, the fact is notified. . In the determination process of FIG. 21 in the determination process during the walking test, it is confirmed whether or not the test time has elapsed in C15 (for example, whether or not 6 minutes have elapsed since the start of the test).
 CPU110は、酸素流量が不適正である旨の報知が行われているか否かを確認する(D7)。酸素流量が不適正である旨の報知が行われていなければ(D7;No)、歩行試験中判定処理を終了する。一方、酸素流量が不適正である旨の報知が行われていれば(D7;Yes)、CPU110は、歩行試験を中止するための中止操作(例えばタッチパネル付液晶132に表示されたキャンセルボタンの選択)がなされたか否かを判定し(D9)、なされたと判定したならば(D9;Yes)、酸素流量が不適正である旨の報知を終了して(D13)、歩行試験中判定処理を終了する。一方、中止操作がなされなかったと判定したならば(D9;No)、酸素流量が不適正である旨の報知を継続して(D11)、D9に戻る。 CPU110 confirms whether the notification to the effect that the oxygen flow rate is inappropriate is performed (D7). If there is no notification that the oxygen flow rate is inappropriate (D7; No), the determination process during the walking test is terminated. On the other hand, if the notification that the oxygen flow rate is inappropriate (D7; Yes), the CPU 110 selects a cancel operation for canceling the walking test (for example, selecting a cancel button displayed on the liquid crystal 132 with a touch panel). ) Is determined (D9). If it is determined (D9; Yes), the notification that the oxygen flow rate is inappropriate is terminated (D13), and the determination process during the walking test is terminated. To do. On the other hand, if it is determined that the cancel operation has not been performed (D9; No), the notification that the oxygen flow rate is inappropriate is continued (D11), and the process returns to D9.
 なお、この例では、中止操作がなされるまでは、流量不適正報知が継続されるようにしているが、中止操作がなされることなく所定時間を経過すると流量不適正報知が終了するようにしても良い。また、流量不適正報知が実行されている期間も図21の判定処理を実行可能としておき(すなわち歩行試験を継続可能としておき)、推定オフセット値と測定オフセット値との差の絶対値が、第1閾値を超えていないと判定した場合は(C5;No)、流量不適正報知を終了させて、歩行試験を継続するようにしても良い。 In this example, the flow rate inappropriateness notification is continued until the stop operation is performed, but the flow rate inappropriateness notification is terminated when a predetermined time elapses without the stop operation being performed. Also good. Further, the determination process of FIG. 21 is made executable even during the period in which the flow rate improper notification is being executed (that is, the walking test can be continued), and the absolute value of the difference between the estimated offset value and the measured offset value is When it is determined that the threshold value is not exceeded (C5; No), the flow rate inappropriateness notification may be terminated and the walking test may be continued.
 上記の例では、推定オフセット値と測定オフセット値との差の絶対値が、第1閾値を超えているか否かに基づいて酸素流量が不適正であるか否かを確認するようにしているが、このような形態に限らず、例えば、推定オフセット値に対しての測定オフセット値の割合に基づいて酸素流量が不適正であるか否かを確認するようにしても良い。例えば、推定オフセット値に対しての測定オフセット値の割合が80%以下であれば流量不適正報知を行うようにしても良い。 In the above example, whether or not the oxygen flow rate is inappropriate is checked based on whether or not the absolute value of the difference between the estimated offset value and the measured offset value exceeds the first threshold value. For example, the oxygen flow rate may be checked based on the ratio of the measured offset value to the estimated offset value. For example, if the ratio of the measured offset value to the estimated offset value is 80% or less, the flow rate inappropriateness notification may be performed.
 また、歩行試験中判定処理において推定オフセット値に対しての測定オフセット値の割合が経時的に低下しているか否かを確認するようにしておき(例えば所定時間毎にこの割合を算出するようにしておき)、経時的に低下していることが確認されたときには(例えば1回目に算出した割合から所定の閾値以上低下したときには)酸素供給器の残量が低下している旨を報知するようにしても良い。また、推定オフセット値を用いること無く測定オフセット値のみの経時変化によって酸素流量の変動を検出して、その変動に基づいて異常を検出するようにしても良く、例えば、測定オフセット値が経時的に低下していることに基づいて酸素供給器の残量が低下していると推定するようにしても良い。 Also, in the determination process during the walking test, it is checked whether the ratio of the measured offset value to the estimated offset value has decreased over time (for example, the ratio is calculated every predetermined time). In addition, when it is confirmed that it has decreased over time (for example, when it has decreased by a predetermined threshold or more from the ratio calculated at the first time), it is notified that the remaining amount of the oxygen supply device has decreased. Anyway. Further, it is possible to detect a change in the oxygen flow rate by a change with time of only the measurement offset value without using the estimated offset value, and detect an abnormality based on the change. You may make it estimate that the residual amount of an oxygen supply device is falling based on having fallen.
 (スパイロメータ機能による最大換気量測定)
 歩行開始前に本体部100にフローセンサ150を接続したときに、努力性肺活量や1秒量等を測定することが可能であるが、フローを正確に測定可能である(所謂スパイロメータ機能を有している)ことから、これらの項目と共に最大換気量(MVVとも称する)を測定することも可能となる。そして、歩行中は前述したように鼻孔カニューラ180を用いて一回換気量相当や分時換気量相当を測定することが可能である。従って、歩行開始前に最大換気量を測定しておくことで、例えば、歩行試験中に、最大換気量に対しての換気量(一回換気量相当または分時換気量相当)が、所定の割合以上となる状態が所定時間以上継続した場合には、被測定者が自分の限界を意識せずに無理をしている状況であるとして、例えばブザー133による警告を行い、歩行を中止させるようにすることが可能である。
(Maximum ventilation measurement by spirometer function)
When the flow sensor 150 is connected to the main body 100 before the start of walking, it is possible to measure the forced vital capacity, the amount of 1 second, etc., but the flow can be accurately measured (the so-called spirometer function is provided). Therefore, the maximum ventilation (also referred to as MVV) can be measured together with these items. During walking, as described above, it is possible to measure the tidal volume equivalent or the minute ventilation equivalent using the nostril cannula 180. Therefore, by measuring the maximum ventilation before the start of walking, for example, during the walking test, the ventilation volume with respect to the maximum ventilation volume (equivalent to tidal volume or minute ventilation volume) If the condition that exceeds the ratio continues for a predetermined time or more, it is assumed that the person being measured is unreasonable without being aware of his / her limit, and for example, a warning is given by the buzzer 133 to stop walking. It is possible to
 (歩行距離の予測)
 前述したように、試験を開始するときにタッチパネル付液晶132から被測定者の性別、年齢、体重、および身長を入力するようにしている。本実施形態の歩行試験装置1では、入力された年齢、体重、および身長から被測定者の歩行距離の予測値を算出することが可能である。例えば、非特許文献2に示されるように、{[454-0.87×年齢(才)-0.66×体重(kg)]×±82m(2SD)}×身長(m)により得られる値を歩行距離の正常域とし、測定された歩行距離が正常域内であるか否かの判定を実行して、判定結果を表示するようにすることも可能である。
(Prediction of walking distance)
As described above, the gender, age, weight, and height of the person to be measured are input from the liquid crystal 132 with a touch panel when starting the test. In the walking test apparatus 1 of this embodiment, it is possible to calculate the predicted value of the walking distance of the measurement subject from the input age, weight, and height. For example, as shown in Non-Patent Document 2, the value obtained by {[454-0.87 × age (age) −0.66 × weight (kg)] × ± 82 m (2SD)} × height (m) Can be used as a normal range of the walking distance, and it is also possible to execute a determination as to whether or not the measured walking distance is within the normal range and display the determination result.
 また、歩行距離の予測値は、上記の式に限らず、以下の式に基づいて算出するようにしても良い。
[男性]6MWT(m)=(7.57×身長cm)-(5.02×年齢)-(1.76×体重kg)-309m
[女性]6MWT(m)=(2.11×身長cm)-(2.29×年齢)-(5.78×体重kg)+667m
Further, the predicted value of the walking distance is not limited to the above formula, and may be calculated based on the following formula.
[Male] 6MWT (m) = (7.57 × height cm) − (5.02 × age) − (1.76 × kg body weight) −309 m
[Female] 6MWT (m) = (2.11 × height cm) − (2.29 × age) − (5.78 × kg body weight) +667 m
 なお、被測定者の最大酸素摂取量(peakVO)は、以下の式に基づいて算出することが可能である。ここで1ft=0.3048mとする。
 peakVO=0.006×歩行距離(ft)+7.38
Note that the maximum oxygen intake (peak VO 2 ) of the measurement subject can be calculated based on the following equation. Here, 1ft = 0.3048 m.
peak VO 2 = 0.006 × walking distance (ft) +7.38
 (BODE indexの表示機能)
 特許文献1に例示されるように、1秒量等に基づいてCOPDの重症度を判定するスパイロメータが知られているが、非特許文献2に示されているように、1秒量等のみならず、他の指標からCOPDの重症度を評価する手法も用いられている。この非特許文献2には、以下に示す各項目に基づいてCOPDの重症度を判定する方法が示されている。
1.B(Body Mass Index,BMI)
 体重(kg)÷身長(m)÷身長(m)で算出する。例えば、160cm,75kgであればBMI=75÷1.6÷1.6=29となる。
2.O(obstruction)
 肺機能による気道の閉塞の程度を示す指標であり、1秒率の予測値が用いられる。
3.D(Dyspnea)
 主観的な呼吸困難感を示す指標であり、MRC呼吸困難感スケールを用いて被測定者にヒアリングした上で呼吸困難感の値(0~4)を決定する。
4.E(excercise)
 運号能力を示す指標であり、6分間歩行試験における歩行距離が用いられる。
(BODE index display function)
As exemplified in Patent Document 1, a spirometer that determines the severity of COPD based on the amount of 1 second or the like is known, but as shown in Non-Patent Document 2, only the amount of 1 second or the like is known. In addition, techniques for evaluating the severity of COPD from other indices are also used. Non-Patent Document 2 discloses a method for determining the severity of COPD based on the following items.
1. B (Body Mass Index, BMI)
Calculated as weight (kg) / height (m) / height (m). For example, in the case of 160 cm and 75 kg, BMI = 75 ÷ 1.6 ÷ 1.6 = 29.
2. O (Obstruction)
An index indicating the degree of airway obstruction due to lung function, and a predicted value of 1 second rate is used.
3. D (Dyspnea)
This is an index indicating subjective feeling of dyspnea, and the value of dyspnea (0 to 4) is determined after hearing the subject using the MRC dyspnea scale.
4). E (excercise)
It is an index indicating the numbering ability, and the walking distance in the 6-minute walking test is used.
 上記項目のうち、MRC呼吸困難感スケールのみは主観的な指標であるが、その他の項目は、6分間歩行試験装置1により算出または測定される。従って、MRC呼吸困難感スケールの値を被測定者にヒアリングして決定し、6分間歩行試験装置1に入力することで、図16に示されるように、上記1~4の各項目の範囲に基づいてBODE indexが決定され、6分間歩行試験装置1に表示される。これによりCOPDの重症度が容易に判定される。図16の例において、BODE indexが0,1,2,3と増加するに従って、COPDの重症度が上がる。 Among the above items, only the MRC dyspnea scale is a subjective index, but the other items are calculated or measured by the 6-minute walking test apparatus 1. Accordingly, the value of the MRC dyspnea feeling scale is determined by interviewing the measurement subject and input to the walking test apparatus 1 for 6 minutes, so that the range of each of the above items 1 to 4 is obtained as shown in FIG. Based on this, BODE index is determined and displayed on the walking test apparatus 1 for 6 minutes. Thereby, the severity of COPD is easily determined. In the example of FIG. 16, as the BODE index increases to 0, 1, 2, 3, the severity of COPD increases.
 (リスク表示)
 また、本実施形態の6分間歩行試験装置1において、測定された6分間の歩行距離に基づいて、統計データとの比較から入院リスクを表示することも可能である。具体例としては、歩行距離が357m以下の場合には入院リスクが高まるとの統計データに基づいて、測定された歩行距離が357m以下である場合に、入院リスクが高いことを表示することが可能である。
(Risk indication)
Moreover, in the 6-minute walking test apparatus 1 of this embodiment, it is also possible to display the hospitalization risk from the comparison with the statistical data based on the measured walking distance for 6 minutes. As a specific example, based on statistical data that the hospitalization risk increases when the walking distance is 357 m or less, it is possible to display that the hospitalization risk is high when the measured walking distance is 357 m or less. It is.
 [他の実施形態]
 最後に、上記の実施形態とは異なる他の実施形態の一例について説明する。本発明を適用可能な実施形態は、上記の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。なお、上記の各実施形態と同一の構成については同一の符号を付して再度の説明を省略する。
[Other Embodiments]
Finally, an example of another embodiment different from the above embodiment will be described. Embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention. In addition, about the same structure as said each embodiment, the same code | symbol is attached | subjected and description for the second time is abbreviate | omitted.
 [歩行試験システム]
 上記の実施形態において、歩行試験中の測定データを、タブレット端末や多機能リモコン、パソコンといった情報通信機器(通信装置)に送信する歩行試験システムを構成することとしてもよい。
[Walking test system]
In the above embodiment, a walking test system that transmits measurement data during a walking test to an information communication device (communication device) such as a tablet terminal, a multi-function remote controller, or a personal computer may be configured.
 図17は、この場合における歩行試験システム1000のシステム構成の一例を示す図である。
 歩行試験システム1000は、6分間歩行試験装置1と、タブレット端末3と、プリンタ5とを備えて構成される。
FIG. 17 is a diagram illustrating an example of a system configuration of the walking test system 1000 in this case.
The walking test system 1000 includes a 6-minute walking test apparatus 1, a tablet terminal 3, and a printer 5.
 6分間歩行試験装置1は、無線通信部11を備え、無線通信を利用して歩行試験中の測定データをタブレット端末3に送信することが可能に構成されている。タブレット端末3は、タブレット型の持ち運び可能(携行可能)な情報通信機器であり、無線通信部31を備え、6分間歩行試験装置1から送信される測定データを受信可能に構成されている。無線通信の方式としては、Bluetooth(登録商標)やWiFiといった公知の無線通信方式を適用することができる。 The 6-minute walking test apparatus 1 includes a wireless communication unit 11 and is configured to transmit measurement data during the walking test to the tablet terminal 3 using wireless communication. The tablet terminal 3 is a tablet-type portable information communication device that includes a wireless communication unit 31 and is configured to receive measurement data transmitted from the 6-minute walking test apparatus 1. As a wireless communication method, a known wireless communication method such as Bluetooth (registered trademark) or WiFi can be applied.
 タブレット端末3は、無線通信部31や、タッチパネルと液晶表示器とが一体的に構成されたタッチスクリーン33を備え、この無線通信部31により6分間歩行試験装置1から受信した測定データをタッチスクリーン33に表示させることで、歩行試験の担当者や医師、看護師といった管理者が測定データを随時確認したり、歩行試験終了後に被測定者が測定データを確認可能に構成されている。また、タブレット端末3とプリンタ5を通信接続してタブレット端末3から測定データをプリンタ5に出力することで、測定データを印刷することが可能に構成されている。 The tablet terminal 3 includes a wireless communication unit 31 and a touch screen 33 in which a touch panel and a liquid crystal display are integrally formed, and measurement data received from the 6-minute walking test apparatus 1 by the wireless communication unit 31 is a touch screen. By being displayed on the screen 33, a manager such as a person in charge of the walking test, a doctor, or a nurse can check the measurement data at any time, or the measurement subject can check the measurement data after the walking test is completed. In addition, the tablet terminal 3 and the printer 5 are connected by communication, and the measurement data is output from the tablet terminal 3 to the printer 5 so that the measurement data can be printed.
 6分間歩行試験装置1からは、呼吸器系項目(呼吸回数、一回換気量相当、分時換気量相当、SpO)の測定値や、循環器系項目(脈拍数、SpO)の測定値が測定データとして送信される。この場合、上記の無線通信方式において、各項目の測定値のリアルタイムの波形データを送信すると転送時間が間に合わないため、6分間歩行試験装置1は、定期的なタイミング(例えば1秒や30秒、1分に1回のタイミング)や間欠的なタイミングで、当該タイミングにおける測定値をタブレット端末3に送信する。 From the 6-minute walking test apparatus 1, measurement of respiratory system items (respiration frequency, tidal volume equivalent, minute ventilation equivalent, SpO 2 ) and circulatory system items (pulse rate, SpO 2 ) are measured. The value is transmitted as measurement data. In this case, in the above wireless communication system, since the transfer time is not in time if the real-time waveform data of the measurement values of each item is transmitted, the 6-minute walking test apparatus 1 has a regular timing (for example, 1 second or 30 seconds, The measured value at the timing is transmitted to the tablet terminal 3 at a timing of once per minute) or intermittent timing.
 なお、定期的なタイミングや間欠的なタイミングではなく、特定のタイミングで、タブレット端末3に測定値を送信するようにしてもよい。具体的には、呼吸器系項目や循環器系項目に含まれる複数の項目のうちの少なくともいずれかの項目の測定値が、被測定者に歩行試験を継続させることが危険な状態であることを示す危険条件を満たしたタイミングで、タブレット端末3に測定値を送信するようにしてもよい。例えば、SpOが所定の下限値を下回った場合や、呼吸回数や脈拍数が所定の上限値を上回った場合に、危険条件が成立したとして、そのタイミングにおける測定値をタブレット端末3に送信するようにしてもよい。 In addition, you may make it transmit a measured value to the tablet terminal 3 at a specific timing instead of a periodic timing or an intermittent timing. Specifically, the measured value of at least one of a plurality of items included in the respiratory system item or the circulatory system item is in a dangerous state for the subject to continue the walking test. The measured value may be transmitted to the tablet terminal 3 at a timing when the dangerous condition indicating the condition is satisfied. For example, when SpO 2 falls below a predetermined lower limit value, or when the number of breaths or the pulse rate exceeds a predetermined upper limit value, the measured value at that timing is transmitted to the tablet terminal 3 assuming that the dangerous condition is satisfied. You may do it.
 また、被測定者の息切れの度合を示す息切れ係数を算出し、この息切れ係数を上記の送信タイミングでタブレット端末3に送信するようにしてもよい。息切れ係数は、呼吸器系項目の測定値に基づいて算出することが可能である。COPD患者においては、歩行試験等の運動による一回喚起量の増加が低値で制限され、頭打ちとなる傾向がある。そこで、所定段階数(例えば10段階)の息切れ係数を定めておき、測定した一回喚起量相当の増加率や頭打ちとなった値に基づいて、息切れ係数を判定する。判定した息切れ係数は、6分間歩行試験装置1で表示させたり、上記のタブレット端末3に送信して表示させたり、プリンタ5で印刷するなどすることができる。 Also, a shortness coefficient indicating the degree of shortness of breath of the measurement subject may be calculated, and this shortness coefficient may be transmitted to the tablet terminal 3 at the above transmission timing. The shortness of breath coefficient can be calculated based on the measured values of respiratory system items. In patients with COPD, the increase in the amount of arousal caused by exercise such as a walking test is limited to a low value and tends to reach a peak. Therefore, a shortness coefficient of a predetermined number of stages (for example, 10 stages) is determined, and the shortness coefficient is determined based on the increase rate corresponding to the measured single arousal amount or a value that reaches a peak. The determined shortness of breath can be displayed on the walking test apparatus 1 for 6 minutes, transmitted to the tablet terminal 3 to be displayed, printed on the printer 5, and the like.
 また、歩行試験として、コーンなどを配置した所定の歩行区間を被測定者に往復させる歩行試験を行う場合がある。この場合、例えば、6分間歩行試験装置1にカウントアップ用の操作ボタンを具備させておき、歩行試験中にコーンの配置位置で被測定者がターンするたびに操作ボタンを押下させることで、ターン回数を6分間歩行試験装置1に入力するようにしてもよい。そして、ターン回数を循環器系項目や呼吸器系項目の測定値と併せてタブレット端末3に送信するようにしてもよい。 Also, as a walking test, there is a case where a walking test is performed in which a predetermined walking section in which a cone or the like is arranged is reciprocated by a person to be measured. In this case, for example, an operation button for counting up is provided in the walking test apparatus 1 for 6 minutes, and the operation button is pressed every time the measured person turns at the cone placement position during the walking test. The number of times may be input to the walking test apparatus 1 for 6 minutes. Then, the number of turns may be transmitted to the tablet terminal 3 together with the measured values of the circulatory system item and the respiratory system item.
 また、タブレット端末3のタッチスクリーン33に、歩行試験に係る各種のイベントを示す複数種類のイベントボタン(アイコン)およびイベントの内容を表示させ、タッチスクリーン33に表示されたイベントボタンがタップされたことを契機として、その時刻における被測定者の測定データに、対応するイベントを識別するための識別情報を対応付けて記憶させるようにしてもよい。ここで、歩行試験に係るイベントとは、歩行試験の方法やデータの測定方法等に基づき設定されるイベントであり、例えば、「1.歩行停止」、「2.蛇行歩行」、「3.カニューラ外れ」といった複数種類のイベントを設定しておくことができる。この場合は、各イベントに割り当てられた番号を識別情報として、測定データに対応付けて記憶させることができる。なお、イベントの種類および内容は、歩行試験の方法やデータの測定方法、歩行試験が行われる施設の設備等に応じて自由に設定することが可能である。 In addition, a plurality of types of event buttons (icons) indicating various events related to the walking test and the contents of the events are displayed on the touch screen 33 of the tablet terminal 3, and the event buttons displayed on the touch screen 33 are tapped. As a trigger, identification information for identifying the corresponding event may be stored in association with the measurement data of the measurement subject at that time. Here, the event related to the walking test is an event set based on the walking test method, the data measurement method, and the like, for example, “1. Stop walking”, “2. Meander walking”, “3. You can set multiple types of events, such as “Out”. In this case, the number assigned to each event can be stored as identification information in association with the measurement data. The type and content of the event can be freely set according to the walking test method, the data measurement method, the facilities of the facility where the walking test is performed, and the like.
 上記の実施形態では、歩行試験中の呼吸圧測定に鼻孔カニューラ180を用いた例について説明したが、鼻孔カニューラ180に限らず、鼻孔と口を覆うフェイスマスク190を使用するようにしても良い。フェイスマスク190も、鼻孔カニューラ180と同様に1端子であり、その端子をルアーコネクタ142(すなわち呼気を印加したときにマイナスの電圧が出力されるポート)に接続して、被測定者の呼吸圧の変化を捕捉することが可能である。ここで、前述したように鼻孔カニューラ180は鼻孔に挿入するため、被測定者が口呼吸をしてしまった場合には、呼気・吸気を完全には捕捉できない問題がある。これに対して、フェイスマスク190を使用した場合には、鼻孔および口の両方が覆われることになるため、呼気・吸気を捕捉して換気量をより正確に測定することが可能となる。 In the above embodiment, an example in which the nostril cannula 180 is used for measuring the respiratory pressure during the walking test has been described, but the face mask 190 that covers the nostril and the mouth may be used instead of the nostril cannula 180. Similarly to the nostril cannula 180, the face mask 190 also has one terminal, and that terminal is connected to the luer connector 142 (that is, a port that outputs a negative voltage when exhalation is applied) to thereby measure the respiratory pressure of the subject. It is possible to capture changes. Here, since the nostril cannula 180 is inserted into the nostril as described above, there is a problem in that exhalation / inspiration cannot be completely captured when the measurement subject breathes through the mouth. On the other hand, when the face mask 190 is used, both the nostril and the mouth are covered. Therefore, it becomes possible to capture the exhaled air / inspired air and measure the ventilation amount more accurately.
 なお、フェイスマスク190を用いる場合には、フェイスマスク190内における二酸化炭素の滞留が問題となるが、これについては、フェイスマスク190の左右側方(被測定者が装着したときに頬に相当する位置)に呼気を逃がす孔を設けておくようにすると良い。このような孔を設けた場合にも、呼吸の圧力変動を正確に取得することができる。いずれを使用するかは、被測定者の状態や目的に応じて使い分けるようにすると良い。 When the face mask 190 is used, carbon dioxide retention in the face mask 190 becomes a problem. This corresponds to the left and right sides of the face mask 190 (corresponding to the cheek when the measurement subject wears it). It is advisable to provide a hole in the position) for releasing exhalation. Even when such a hole is provided, respiration pressure fluctuations can be accurately acquired. Which one to use is preferably used according to the condition and purpose of the person being measured.
 上記の実施形態では、呼吸器系の測定項目が呼吸回数、一回換気量相当、分時換気量相当、およびSpOであり、循環器系の測定項目が脈拍数およびSpOである例について説明したが、呼吸器系の測定項目および循環器系の測定項目はこれらに限られない。また、図8~図10に示した例において、SpOの経時変化も併せてグラフ化するようにしても良い。 In the above embodiment, the measurement items of the respiratory system are the number of breaths, equivalent to the tidal volume, equivalent to the minute ventilation, and SpO 2 , and the measurement items of the circulatory system are the pulse rate and SpO 2 Although explained, the measurement item of the respiratory system and the measurement item of the circulatory system are not limited to these. Further, in the example shown in FIGS. 8 to 10, the temporal change of SpO 2 may be graphed together.
 上記の実施形態では、線形回帰直線に基づいて変曲点を算出する例について説明したが、これに限らず、例えば、各項目の微分値が所定の範囲内に収束している範囲を平坦領域と判定して、その平坦領域の開始点を変曲点と決定するようにしても良い。各項目の時間変化量の減少に基づいて変曲点を判定するようにすると良く(例えば10秒間あたりの脈拍数の増加が2以下となった点を変曲点とするようにしても良く)、その手法については限定されない。 In the above embodiment, an example of calculating an inflection point based on a linear regression line has been described. However, the present invention is not limited to this. For example, a range in which the differential value of each item converges within a predetermined range is a flat region. And the starting point of the flat region may be determined as the inflection point. An inflection point may be determined based on a decrease in the amount of time change of each item (for example, an inflection point may be a point at which the increase in pulse rate per 10 seconds is 2 or less). The method is not limited.
 上記の実施形態では、6軸センサの出力信号に基づいて歩行面内の加速度を計算し、これに基づいて歩行速度および歩行距離を算出する例について説明したが、加速度センサの出力信号に基づいて歩行動作(1歩)を検出することにより歩数をカウントし、身長等の入力情報に基づいて計算された歩幅あるいは入力情報から統計値に基づいて特定される歩幅を歩数に乗じることによって歩行距離を算出するようにしても良い。 In the above-described embodiment, the example in which the acceleration in the walking surface is calculated based on the output signal of the 6-axis sensor and the walking speed and the walking distance are calculated based on this is described. However, based on the output signal of the acceleration sensor The walking distance is calculated by counting the number of steps by detecting the walking motion (one step) and multiplying the number of steps by the step length calculated based on the input information such as height or the step length specified based on the statistical value from the input information. It may be calculated.
 上記の実施形態では、歩行試験装置が6分間の歩行時間を対象とした6分間歩行試験装置である例について説明したが、歩行試験の時間については6分間に限られない。本発明の歩行試験装置は、任意の歩行時間を対象とするものであることはいうまでもない。 In the above-described embodiment, the example in which the walking test apparatus is a 6-minute walking test apparatus for a walking time of 6 minutes has been described, but the walking test time is not limited to 6 minutes. It goes without saying that the walking test apparatus of the present invention is intended for any walking time.

Claims (22)

  1.  被測定者の歩行中における呼吸器系項目および循環器系項目を測定する測定手段を備える歩行試験装置であって、
     前記呼吸器系項目に係る測定値の経時変化および前記循環器系項目に係る測定値の経時変化を対比可能に表示する表示手段をさらに備えることを特徴とする歩行試験装置。
    A walking test apparatus comprising a measuring means for measuring respiratory system items and circulatory system items during walking of the subject,
    A walking test apparatus further comprising display means for displaying the change over time of the measurement value related to the respiratory system item and the change over time of the measurement value related to the circulatory system item in a comparable manner.
  2.  請求項1に記載した歩行試験装置であって、
     前記呼吸器系項目に係る測定値の経時変化が第1所定範囲となる第1時点を特定すると共に、前記循環器系項目に係る測定値の経時変化が第2所定範囲となる第2時点を特定する特定手段をさらに備え、
     前記表示手段は、前記第1時点と前記第2時点との前後関係を把握可能に表示することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 1,
    A first time point at which a change over time in the measured value related to the respiratory system item falls within a first predetermined range is specified, and a second time point at which the change over time in the measured value related to the cardiovascular system item falls within a second predetermined range Further comprising a specifying means for specifying,
    The walking test apparatus characterized in that the display means displays the front-rear relationship between the first time point and the second time point so as to be grasped.
  3.  請求項2に記載した歩行試験装置であって、
     前記第1時点と前記第2時点との前後関係に基づいて運動制限因子が呼吸器系であるか又は循環器系であるかを判別する判別手段をさらに備え、
     前記表示手段は、前記判別手段により判別された運動制限因子を把握可能に表示することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 2,
    A discriminating means for discriminating whether the movement limiting factor is the respiratory system or the circulatory system based on the context between the first time point and the second time point;
    The walking test apparatus characterized in that the display means displays the movement limiting factor discriminated by the discriminating means so as to be grasped.
  4.  請求項3に記載した歩行試験装置であって、
     前記判別手段は、前記第1時点が前記第2時点よりも早いことに基づいて運動制限因子が呼吸器系であると判別することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    The gait test apparatus characterized in that the discrimination means discriminates that the exercise limiting factor is a respiratory system based on the fact that the first time point is earlier than the second time point.
  5.  請求項3に記載した歩行試験装置であって、
     前記判別手段は、前記第2時点が前記第1時点よりも早いことに基づいて運動制限因子が循環器系であると判別することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    The gait test device characterized in that the discrimination means discriminates that the exercise limiting factor is a circulatory system based on the fact that the second time point is earlier than the first time point.
  6.  請求項3に記載した歩行試験装置であって、
     前記判別手段は、前記第1時点が前記第2時点よりも早いことに基づいて運動制限因子が呼吸器系であると判別し、前記第2時点が前記第1時点よりも早いことに基づいて運動制限因子が循環器系であると判別することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    The discriminating unit discriminates that the exercise limiting factor is a respiratory system based on the fact that the first time point is earlier than the second time point, and based on the fact that the second time point is earlier than the first time point. A walking test apparatus characterized by discriminating that an exercise limiting factor is a circulatory system.
  7.  請求項6に記載した歩行試験装置であって、
     前記判別手段は、前記第1時点および前記第2時点のいずれも特定されない場合には、運動制限因子が筋力系であると判別することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 6, wherein
    The walking test apparatus according to claim 1, wherein when the first time point and the second time point are not specified, the determining means determines that the exercise limiting factor is a muscle force system.
  8.  請求項3に記載した歩行試験装置であって、
     前記測定手段は、前記呼吸器系項目として呼吸回数および換気量から選択される1項目以上を測定し、前記循環器系項目として脈拍数を測定することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    The measuring means measures at least one item selected from the respiratory rate and the ventilation volume as the respiratory system item, and measures the pulse rate as the circulatory system item.
  9.  請求項3に記載した歩行試験装置であって、
     前記測定手段は、前記呼吸器系項目として呼吸回数および換気量を測定し、
    前記表示手段は、前記呼吸回数および前記換気量の関係を把握可能に表示することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    The measuring means measures the respiratory rate and the ventilation volume as the respiratory system item,
    The said test | inspection means displays so that the relationship between the said frequency | count of breathing and the said ventilation quantity can be grasped | ascertained, The walk test apparatus characterized by the above-mentioned.
  10.  請求項3に記載した歩行試験装置であって、
     前記測定手段は、前記呼吸器系項目として呼吸回数、換気量、および動脈血酸素飽和度から選択される複数の項目を測定し、
    前記表示手段は、測定された各呼吸器系項目の経時変化を対比可能に表示することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    The measuring means measures a plurality of items selected from the respiratory rate, ventilation volume, and arterial oxygen saturation as the respiratory system item,
    The gait test device, wherein the display means displays the measured changes over time of each respiratory system item in a comparable manner.
  11.  請求項3に記載した歩行試験装置であって、
     前記呼吸器系項目の測定値の経時変化に基づいて被測定者の呼吸機能傾向を分類する分類手段をさらに備え、
     前記表示手段は、前記分類された呼吸機能傾向を表示することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    Further comprising a classifying means for classifying the respiratory function tendency of the person to be measured based on the change over time of the measured value of the respiratory system item,
    The walking test apparatus characterized in that the display means displays the classified respiratory function tendency.
  12.  請求項11に記載した歩行試験装置であって、
     前記測定手段は、前記呼吸器系項目として呼吸回数および換気量を測定し、
     前記分類手段は、前記呼吸回数および前記換気量の測定値の経時変化に基づいて前記呼吸機能傾向を分類することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 11, wherein
    The measuring means measures the respiratory rate and the ventilation volume as the respiratory system item,
    The classifying means classifies the respiratory function tendency on the basis of a change with time of the respiratory frequency and the measured value of the ventilation amount.
  13.  請求項12に記載した歩行試験装置であって、
     前記測定手段は、前記呼吸器系項目としてIE比を測定し、
     前記分類手段は、前記IE比の経時変化に基づいて前記呼吸機能傾向を分類することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 12, wherein
    The measuring means measures an IE ratio as the respiratory system item,
    The classifying means classifies the respiratory function tendency based on a change with time in the IE ratio.
  14.  請求項3に記載した歩行試験装置であって、
     前記測定手段は、前記歩行試験を開始する前の前安静状態および前記歩行試験を終了した後の後安静状態における被測定者の呼吸器系項目および循環器系項目を測定し、
     前記前安静状態に対する前記後安静状態の各項目の測定値の回復状況を判定する回復状況判定手段をさらに備え、
     前記表示手段は、前記判定された回復状況を表示することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    The measurement means measures a respiratory system item and a circulatory system item of a measurement subject in a pre-rest state before starting the walking test and a post-rest state after finishing the walking test,
    A recovery status determining means for determining a recovery status of the measurement value of each item of the rear rest state with respect to the front rest state;
    The walking test apparatus characterized in that the display means displays the determined recovery status.
  15.  請求項3に記載した歩行試験装置であって、
     前記測定手段は、歩行試験中の被測定者の歩行距離、歩行速度、および位置のうちの少なくともいずれかを含む歩行諸量をさらに測定し、
     前記表示手段は、前記測定された歩行諸量を表示することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    The measurement means further measures various walking amounts including at least one of a walking distance, a walking speed, and a position of the measurement subject during the walking test,
    The walking test apparatus, wherein the display means displays the measured walking quantities.
  16.  請求項15に記載した歩行試験装置であって、
     前記測定手段は、加速度センサおよび方位センサを有し、前記加速度センサおよび前記方位センサの検出結果に基づいて被測定者の歩行距離を前記歩行諸量として測定することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 15, wherein
    The measuring means includes an acceleration sensor and an azimuth sensor, and measures a walking distance of the measurement subject as the walking quantities based on detection results of the acceleration sensor and the azimuth sensor.
  17.  請求項3に記載した歩行試験装置であって、
     フローセンサを接続可能な圧力ポートをさらに備え、
     前記圧力ポートには、前記フローセンサに代えて鼻孔カニューラまたはフェイスマスクを接続可能であり、
    前記測定手段は、前記圧力ポートにフローセンサが接続された場合に呼吸流量および換気量から選択される1以上の項目を測定可能であり、前記圧力ポートに鼻孔カニューラ又はフェイスマスクが接続された場合に呼吸圧、呼吸回数、および換気量から選択される1以上の項目を測定可能であることを特徴とする歩行試験装置。
    A walking test apparatus according to claim 3, wherein
    A pressure port to which a flow sensor can be connected;
    A nostril cannula or a face mask can be connected to the pressure port instead of the flow sensor,
    When the flow sensor is connected to the pressure port, the measuring means can measure one or more items selected from respiratory flow rate and ventilation volume, and when a nostril cannula or a face mask is connected to the pressure port A gait test apparatus characterized by being capable of measuring one or more items selected from respiratory pressure, respiratory rate, and ventilation volume.
  18.  請求項17に記載した歩行試験装置であって、
     前記鼻孔カニューラは、被測定者の呼気が通過する呼気経路とは別に、酸素供給手段から被測定者に対して酸素を供給するための酸素経路を備えることを特徴とする歩行試験装置。
    A gait test device according to claim 17,
    The nostril cannula is provided with an oxygen path for supplying oxygen to the measurement subject from the oxygen supply means, in addition to the expiration path through which the measurement subject's exhalation passes.
  19.  請求項1に記載した歩行試験装置であって、
     被測定者に対して酸素を供給する酸素供給手段において設定された設定酸素流量が適正であるか否かを、被測定者の呼吸データに基づいて判定する適正判定手段をさらに備え、その判定結果が否定判定である場合に、その旨を報知することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 1,
    The apparatus further includes appropriate determination means for determining whether or not the set oxygen flow rate set in the oxygen supply means for supplying oxygen to the measured person is appropriate based on the respiratory data of the measured person. If the determination is negative, a walk test device that notifies that fact.
  20.  請求項19に記載した歩行試験装置であって、
     前記適正判定手段は、酸素流量による圧力のオフセット値であって、被測定者の呼吸データにおける測定オフセット値に基づいて適正判定を行うことを特徴とする歩行試験装置。
    The gait test device according to claim 19, wherein
    2. The walking test apparatus according to claim 1, wherein the appropriateness determining means performs an appropriateness determination based on a measured offset value in the breathing data of the measurement subject, which is an offset value of pressure due to an oxygen flow rate.
  21.  請求項1に記載した歩行試験装置であって、
     歩行試験中において、被測定者に対して酸素を供給する酸素供給手段から被測定者への酸素供給の異常を被測定者の呼吸データに基づいて検出する異常検出手段をさらに備え、異常が検出された場合に、その旨を報知することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 1,
    During the walking test, the apparatus further comprises an abnormality detection means for detecting an abnormality in oxygen supply from the oxygen supply means for supplying oxygen to the measurement subject to the measurement subject based on the respiratory data of the measurement subject. A walking test apparatus which notifies that when it is done.
  22.  請求項21に記載した歩行試験装置であって、
     前記異常検出手段は、酸素流量による圧力のオフセット値であって、歩行試験中に測定される被測定者の呼吸データにおける測定オフセット値に基づいて異常を検出することを特徴とする歩行試験装置。
    A walking test apparatus according to claim 21, wherein
    The gait testing device, wherein the abnormality detecting means detects an abnormality based on a measurement offset value in a measurement subject's breathing data measured during a gait test, which is an offset value of pressure due to an oxygen flow rate.
PCT/JP2014/061101 2013-04-18 2014-04-18 Walking test device WO2014171547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015512543A JP6382799B2 (en) 2013-04-18 2014-04-18 Walking test device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013087223 2013-04-18
JP2013-087223 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014171547A1 true WO2014171547A1 (en) 2014-10-23

Family

ID=51731481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061101 WO2014171547A1 (en) 2013-04-18 2014-04-18 Walking test device

Country Status (2)

Country Link
JP (1) JP6382799B2 (en)
WO (1) WO2014171547A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107152A (en) * 2013-12-03 2015-06-11 パシフィックメディコ株式会社 Pulse oximeter
CN108309266A (en) * 2018-04-27 2018-07-24 四川省肿瘤医院 A kind of six minutes gait test instrument and medical six minutes gait test systems
CN112097788A (en) * 2020-09-15 2020-12-18 上海欣睿软件信息技术有限公司 Method for measuring walking distance in 6-minute walking test
TWI722803B (en) * 2020-02-21 2021-03-21 國立中興大學 A method for step length estimation and pulmonary function prediction with a six-minute walking test
CN117213523A (en) * 2023-09-19 2023-12-12 重庆普施康科技发展股份有限公司 Walking distance reading and writing method of RFID reader-writer for six-minute walking test
CN117213523B (en) * 2023-09-19 2024-06-04 重庆普施康科技发展股份有限公司 Walking distance reading and writing method of RFID reader-writer for six-minute walking test

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279262A (en) * 2004-03-01 2005-10-13 Chest M I Inc Pulmonary lesion early detecting apparatus and method of use thereof
JP2005342191A (en) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd Exercise device
WO2011080603A2 (en) * 2009-12-28 2011-07-07 Koninklijke Philips Electronics N.V. Biofeedback for program guidance in pulmonary rehabilitation
WO2012006524A1 (en) * 2010-07-09 2012-01-12 Zoll Medical Corporation Wearable medical treatment device
WO2012020433A1 (en) * 2010-08-09 2012-02-16 Mir Srl-Medical International Research Portable device for monitoring and reporting of medical information for the evidence -based management of patients with chronic respiratory disease
JP2012187292A (en) * 2011-03-11 2012-10-04 Fukuda Sangyo:Kk Breathing function test device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017315A (en) * 1998-02-25 2000-01-25 Respironics, Inc. Patient monitor and method of using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279262A (en) * 2004-03-01 2005-10-13 Chest M I Inc Pulmonary lesion early detecting apparatus and method of use thereof
JP2005342191A (en) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd Exercise device
WO2011080603A2 (en) * 2009-12-28 2011-07-07 Koninklijke Philips Electronics N.V. Biofeedback for program guidance in pulmonary rehabilitation
WO2012006524A1 (en) * 2010-07-09 2012-01-12 Zoll Medical Corporation Wearable medical treatment device
WO2012020433A1 (en) * 2010-08-09 2012-02-16 Mir Srl-Medical International Research Portable device for monitoring and reporting of medical information for the evidence -based management of patients with chronic respiratory disease
JP2012187292A (en) * 2011-03-11 2012-10-04 Fukuda Sangyo:Kk Breathing function test device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ATS Statement:Guidelines for the Six-Minute Walk Test", AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, vol. 166, 2002, pages 111 - 117 *
HIDETOSHI IIDA: "6-funkan Hoko Shikenji no Hoko Sokudo ni yoru Kokyu Junkan Dotai ni Kansuru Kenkyu", JAPANESE JOURNAL OF APPLIED PHYSIOLOGY, vol. 28, no. 3, 1998, pages 163 - 168 *
TSUNETO AKASHIBA: "Undo Fuka Shiken", KOKYU, vol. 22, no. 9, 2003, pages 863 - 868 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107152A (en) * 2013-12-03 2015-06-11 パシフィックメディコ株式会社 Pulse oximeter
CN108309266A (en) * 2018-04-27 2018-07-24 四川省肿瘤医院 A kind of six minutes gait test instrument and medical six minutes gait test systems
TWI722803B (en) * 2020-02-21 2021-03-21 國立中興大學 A method for step length estimation and pulmonary function prediction with a six-minute walking test
CN112097788A (en) * 2020-09-15 2020-12-18 上海欣睿软件信息技术有限公司 Method for measuring walking distance in 6-minute walking test
CN117213523A (en) * 2023-09-19 2023-12-12 重庆普施康科技发展股份有限公司 Walking distance reading and writing method of RFID reader-writer for six-minute walking test
CN117213523B (en) * 2023-09-19 2024-06-04 重庆普施康科技发展股份有限公司 Walking distance reading and writing method of RFID reader-writer for six-minute walking test

Also Published As

Publication number Publication date
JP6382799B2 (en) 2018-08-29
JPWO2014171547A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US11918736B2 (en) Method and apparatus to measure, aid and correct the use of inhalers
US10078074B2 (en) Portable metabolic analyzer system
CN106999097B (en) Device and method for assessing the severity of chronic obstructive pulmonary disease, COPD, in a subject
EP2670304B1 (en) Automated spirogram analysis and interpretation
CN109937000A (en) Portable spirometer
JP6382799B2 (en) Walking test device
EP2651294B1 (en) System and method of identifying breaths based solely on capnographic information
EP2818105B1 (en) Apparatus and method for the mobile determination of a physiological stress threshold value
KR20170056385A (en) Respiration training system and method to induce deep breathing using a mobile sensor and games
US20210298635A1 (en) Systems and methods for sedation-level monitoring
JP7190351B2 (en) Apparatus, system and method for determining respiratory characteristics of a subject based on respiratory gases
JP2017176828A (en) Respiratory function testing apparatus
US11058323B2 (en) Device and method for assessing respiratory data in a monitored subject
WO2021119305A1 (en) Pulmonary function monitoring devices, systems and methods of use
JP4008953B2 (en) Respiratory function testing device
JP6013153B2 (en) Respiratory function testing device
TWI505812B (en) System and method for displaying analysis of breath
WO2021119307A1 (en) Pulmonary function monitor and method of operation
TWI820998B (en) Early warning system and method for abnormal event of cardiac
EP4292671A1 (en) Methods, apparatuses, and systems for evaluating respiratory protective devices
US20230181116A1 (en) Devices and methods for sensing physiological characteristics
CN108186019A (en) A kind of Exhaled nitric oxide measuring method for not needing to control expiratory gas flow
WO2012032501A1 (en) Portable electromedical device
TW201318601A (en) Physiological detection system
TR201513570A2 (en) SPIROMETER WITH CONTROLLED UNIT AND CONTROL METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512543

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785627

Country of ref document: EP

Kind code of ref document: A1