WO2014148266A1 - X-ray imaging apparatus - Google Patents

X-ray imaging apparatus Download PDF

Info

Publication number
WO2014148266A1
WO2014148266A1 PCT/JP2014/055733 JP2014055733W WO2014148266A1 WO 2014148266 A1 WO2014148266 A1 WO 2014148266A1 JP 2014055733 W JP2014055733 W JP 2014055733W WO 2014148266 A1 WO2014148266 A1 WO 2014148266A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
unit
imaging apparatus
ray imaging
light
Prior art date
Application number
PCT/JP2014/055733
Other languages
French (fr)
Japanese (ja)
Inventor
哲士 西来路
祐紀 久保
健拓 佐藤
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2015506694A priority Critical patent/JPWO2014148266A1/en
Publication of WO2014148266A1 publication Critical patent/WO2014148266A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm

Definitions

  • the present invention relates to an apparatus for performing radiographic imaging such as X-rays while changing the imaging direction.
  • a collimator composed of a plurality of lead plates is arranged between the X-ray source and the subject in order to set the size of the X-ray irradiation range in the subject.
  • Patent Document 1 an irradiation field lamp that emits visible light is disposed in the vicinity of the X-ray source, and the subject is irradiated with visible light from the irradiation field lamp through a collimator.
  • An X-ray imaging apparatus is disclosed in which visible light that has passed through a collimator is irradiated in the X-ray irradiation range. The operator can recognize an area irradiated with visible light on the subject as an X-ray irradiation range, and can confirm whether or not it matches a desired imaging area.
  • an X-ray source and an X-ray detector are mounted on a C-shaped arm, and the X-ray source is moved by rotating the arm while maintaining the opposing relationship between the X-ray source and the X-ray detection.
  • An X-ray imaging apparatus has been developed that can perform imaging by moving the subject in any direction up, down, left, or right.
  • an irradiation field lamp when an irradiation field lamp is arranged in the vicinity of the X-ray source, in a state where the X-ray source is positioned above the subject on the bed (hereinafter referred to as an overtube), Since visible light is irradiated from the irradiation field lamp onto the upper surface of the subject, the operator can confirm the X-ray irradiation range in the visible light irradiation region on the upper surface of the subject. However, in a state where the X-ray source is located below the subject on the bed (hereinafter referred to as an undertube), visible light is irradiated from the irradiation field lamp to the bottom surface of the bed. The visible light irradiation area of the irradiation field lamp cannot be visually recognized unless it is looked under, and the bed becomes an obstacle and the X-ray irradiation range of the subject cannot be confirmed.
  • An object of the present invention is to provide an X-ray imaging apparatus that allows an operator to recognize an X-ray irradiation range in a visible light irradiation area even when an X-ray source is located below a subject.
  • an X-ray irradiation range display unit that emits visible light indicating the range of X-rays irradiated by the X-ray generation unit toward the subject in the X-ray detection unit
  • a second X-ray irradiation range display unit that emits visible light indicating the X-ray range irradiated by the X-ray generation unit toward the subject is disposed in the line generation unit.
  • the X-ray irradiation range display unit irradiates the upper surface of the subject with visible light, and the X-ray irradiation range is applied to the upper surface of the subject. indicate.
  • the X-ray irradiation range can be visually observed even when the X-ray source is located below the subject. It can be confirmed and convenience is improved. Therefore, since the X-ray irradiation range can be positioned without irradiating X-rays, the exposure can be reduced.
  • FIG. 1 is a block diagram showing the overall configuration of an X-ray imaging apparatus according to an embodiment.
  • Explanatory drawing which shows the side shape and structure of the X-ray imaging apparatus of embodiment.
  • Explanatory drawing which shows the state in which the light (laser beam) 95 is irradiated toward the subject 3 from the light irradiation part 101 of the X-ray irradiation range display part 90 of 1st Embodiment.
  • FIG. 3 is a perspective view of an X-ray irradiation range display unit 90 according to the first embodiment.
  • (a) is a perspective view of a part of the configuration of the X-ray irradiation range display unit 90 of the first embodiment
  • (b) is a partially enlarged view of FIG. (a).
  • FIG. 2 is a block diagram showing a schematic configuration of an X-ray irradiation range display unit 90 of the first embodiment.
  • FIG. 5 is a block diagram showing a schematic configuration of an X-ray irradiation range display unit 90 of a second embodiment.
  • FIG. 9 is a block diagram showing a schematic configuration of an X-ray irradiation range display unit 90 of a third embodiment. Explanatory drawing which shows the side shape and structure of the X-ray imaging apparatus of 4th Embodiment. 10 is a flowchart showing the operation of the operation control unit 150 of the fourth embodiment.
  • FIG. 1 shows an example of the overall structure of the X-ray imaging apparatus of the embodiment.
  • the X-ray imaging apparatus includes an X-ray generation unit 80, an X-ray detection unit 2 disposed opposite to the X-ray generation unit 80, an X-ray generation unit 80, and an X-ray detection unit 2.
  • a support unit 5 that supports the table 1, the X-ray generation unit 80, and the X-ray detection unit 2 that place the subject 3 between them, and that can move around the subject 3 while maintaining the opposing relationship therebetween.
  • the X-ray detection unit 80 includes an X-ray irradiation range display unit 90 that emits visible light toward the subject 3 indicating the range in which the X-ray generation unit 80 irradiates X-rays.
  • the upper surface of the subject 3 is irradiated with visible light, and the X-ray irradiation range is covered. It can be displayed on the upper surface of the specimen 3. The operator can visually confirm whether or not the X-ray irradiation range on the upper surface of the subject matches the range to be imaged.
  • the X-ray generation unit 80 includes a second X-ray irradiation range display unit 71 that emits visible light indicating the X-ray range irradiated by the X-ray generation unit 80 toward the subject 3. .
  • the second X-ray irradiation range display unit 71 irradiates the upper surface of the subject 3 with visible light, and X-ray irradiation The range can be displayed on the upper surface of the subject 3.
  • FIG. 2 is a side view of an example of the X-ray imaging apparatus.
  • the X-ray imaging apparatus includes a main body 200, an operation unit 20, and an image display unit 50 in addition to the above-described configuration.
  • an internal power supply 600 receives power from the external power supply 500 and supplies power to the X-ray irradiation range display unit 90, the aperture device 70, and the second X-ray irradiation range display unit 71.
  • the high voltage generator 30 receives power from the external power supply 500, generates a high voltage for generating X-rays, and supplies the high voltage to the X-ray tube device 60.
  • the operation control unit 150 controls the operation of each unit of the X-ray imaging apparatus.
  • the image processing unit 40 reconstructs an image from the X-rays detected by the X-ray detection unit 2.
  • a C-shaped annular arm (hereinafter referred to as a C arm) can be used as shown in FIG.
  • An X-ray detector 2 is mounted on one end of the support section (C arm) 5 and an X-ray generator 80 is mounted on the other end.
  • An X-ray imaging apparatus using a C-arm as the support unit 5 can be suitably used for fluoroscopic imaging during surgery because an operator or an operator can approach the subject 3 during imaging.
  • the support part (C arm) 5 is provided with a support part drive part 51 for moving the support part 5.
  • the support unit drive unit 51 rotates the support unit 5 in the circumferential direction (direction A), the circumferential direction movement mechanism 6 and the support unit 5 and the circumferential direction movement mechanism 6 about the X axis.
  • Rotation mechanism 7, support part 5, circumferential movement mechanism 6 and slide mechanism 8 for moving rotation mechanism 7 in the left-right direction (X-axis direction), support part 5, circumferential movement mechanism 6, rotation mechanism 7 and slide A vertical movement mechanism 9 that moves the whole mechanism 8 in the vertical direction (Z-axis direction) is provided.
  • the support drive unit 51 also includes a moving mechanism that moves the entire support unit 5, circumferential movement mechanism 6, rotation mechanism 7, and slide mechanism 8 in the longitudinal direction (Y direction) of the subject 3. ing. These support unit drive units 51 move the support unit 5 to irradiate X-rays from any direction of the subject 3 while maintaining the opposing relationship between the X-ray generation unit 80 and the X-ray detection unit 2. be able to.
  • the table 1 is made of a material that transmits X-rays.
  • the X-ray generator 80 includes an X-ray tube device 60 and a diaphragm device 70.
  • the X-ray tube device 60 is supplied with a high voltage from the high voltage generator 30 and emits X-rays.
  • the diaphragm device 70 includes one or more blades (shielding portions) 75 for shielding a part of the X-rays emitted from the X-ray tube device 60 and a driving unit thereof.
  • the drive unit of the blade 75 moves the blade 75 to a predetermined distance from the X-ray optical axis (center axis) 61. Thereby, a part of the X-ray is shielded, and the range of X-rays irradiated to the subject 3 (X-ray irradiation range) is adjusted.
  • the second X-ray irradiation range display unit 71 includes a light source that makes visible light incident along the optical axis 61, and a portion of the visible light is shielded by the blade 75, so that the X-ray irradiation range of the subject 3 is obtained. Is irradiated with visible light. Thereby, the X-ray irradiation range is displayed on the subject 3 with visible light.
  • FIG. 3 shows a state in which light (laser light) 95 is irradiated from the light irradiation unit 101 of the X-ray irradiation range display unit 90 arranged on the front surface (table 1 side) of the X-ray detection unit 2 toward the subject 3.
  • FIG. 4 is a perspective view of the X-ray irradiation range display unit 90.
  • FIG. FIG. 5 (a) is a perspective view of a part of the X-ray irradiation range display unit 90
  • FIG. 5 (b) is a partially enlarged view of FIG. 5 (a).
  • FIG. 6 is a block diagram showing a schematic configuration of the X-ray irradiation range display unit 90.
  • the X-ray irradiation range display unit 90 includes a light irradiation unit 101 that irradiates visible light 95 and a light irradiation drive unit 190.
  • the light irradiation drive unit 190 is configured so that the optical axis 101a of the light irradiation unit 101 coincides with the axis 111 connecting the tip of the blade (shielding unit) 75 of the X-ray diaphragm device and the focal point 65 of the X-ray tube device 60.
  • the irradiation unit 101 is moved. Thereby, as shown in FIG. 3, the periphery of the X-ray irradiation range 31 can be displayed on the subject 3 by the visible light 95.
  • the light irradiation drive unit 190 includes a moving mechanism (100, 102, 105, etc.) that moves the light irradiation unit 101 in parallel with the light receiving surface of the X-ray detection unit, and a tilt mechanism that tilts the optical axis 101a of the light irradiation unit 101 ( 103, 106, 107).
  • the tilt mechanism includes an arm member 103 fixed to the light irradiation unit 101, a cam roll 107 attached to the tip of the arm member 103, and a guide member that guides the movement of the cam roll 107 along a predetermined locus. (Groove cam) 106.
  • the tilt mechanism tilts the light irradiation unit 101 at an inclination angle corresponding to the amount of movement of the light irradiation unit 101 by the moving mechanism (100, 102, 105, etc.), and the optical axis 101a of the light irradiation unit 101 Is made to coincide with an axis 111 connecting the tip of the blade (shielding part) 75 and the focal point 65 of the X-ray tube device 60.
  • the light irradiation unit 101 and the arm member 103 are fixed via a shaft 108.
  • the light irradiation unit 101 uses a laser light source that irradiates a laser beam having a visible wavelength with a predetermined angle as shown in FIGS. 3 to 5A.
  • the subject 3 is irradiated with visible light rays, and the periphery of the X-ray irradiation range 31 is displayed.
  • the diaphragm device 70 includes four blades 75, and the size of the quadrangular X-ray irradiation range 31 is adjusted by opening and closing the four blades 75 with respect to the optical axis 61. An example of using will be described.
  • the X-ray irradiation range display unit 90 includes a light irradiation unit 101 for each of the four blades 75 as shown in FIGS. 3 and 4, and each line of the laser beam is applied to each side of the X-ray irradiation range 31. Irradiate.
  • Each of the four light irradiation units 101 is provided with a light irradiation driving unit 190. Since the four light irradiation units 101 and the light irradiation driving unit 190 have the same configuration, only one light irradiation unit 101 and the light irradiation driving unit 190 will be described below.
  • the tilting mechanism of the light irradiation drive unit 190 includes the arm member 103, the cam roll 107, the guide member 106, and the shaft 108 described above.
  • the shaft 108 passes through the light irradiation unit 101 and is fixed to the light irradiation unit 101. Therefore, when the shaft 108 rotates about the axis, the light irradiation unit 101 is inclined.
  • the visible light line emitted from the light irradiation unit 101 toward the subject 3 is parallel to the axial direction of the shaft 108.
  • One end of the shaft 108 is fixed to the arm member 103.
  • a cylindrical cam roll 107 is fixed to the tip of the arm member 103.
  • the cam roll 107 is engaged with the guide member (groove cam) 106, and the shape of the groove 106a of the guide member 106 is increased as the light irradiation unit 101 (shaft 108) moves in parallel to the light receiving surface of the X-ray detection unit 2. Move along the trajectory.
  • the arm member 103 is inclined with respect to the central axis of the shaft 108 according to the shape of the groove 106a, and the shaft 108 rotates.
  • the light irradiation unit 101 is inclined at the same angle as the inclination of the arm member 103.
  • the guide member 106 in FIG. 5A is longer than the guide member 106 in FIG. 6, but this is because the guide member 105 in FIG. This is because the member 106 is connected.
  • the moving mechanism of the X-ray irradiation driving unit 190 is a pair of elements arranged in parallel with the light receiving surface on the front side of the light receiving surface of the X-ray detection unit 2 as shown in FIGS. 5 (a), 5 (b) and FIG. Rail 100, a pair of bases 102, wheels 112 respectively attached to the bases 102, an annular belt 105 fixed to the bases 102, and a motor 104 that drives the belts 105.
  • the pair of rails 100 and the pair of bases 102 are disposed at both ends of the shaft 108, respectively.
  • the pair of bases 102 are provided with through holes 102a through which the shaft 108 passes, and rotatably support the shaft 108.
  • Each of the wheels 112 of the pair of bases 102 is engaged with the rail 102.
  • the wheels 112 and the rails 100 are drawn side by side in the direction of the optical axis 61 in order to facilitate understanding of the structure.
  • the structure shown in FIG. 5 (a) and FIG. 4 the structure is such that the rails 100 of the moving mechanisms of the two light irradiation units 101 facing each other are connected, and the X-ray irradiation driving unit 190 is downsized in the thickness direction. ing.
  • the base 102 moves along the rail 100. Accordingly, the shaft 108 moves along the rail 100, and the light irradiation unit 101 moves in parallel with the light receiving surface of the X-ray detection unit 2.
  • the light irradiation unit 101 is tilted by the tilt mechanism described above.
  • the shape of the groove 106a of the guide member 106 of the tilt mechanism (the trajectory drawn by the cam roll 107) is an axis where the optical axis 101a connects the tip of the blade 75 and the focal point 65 of the X-ray tube device 70 for each position of the light irradiation unit 101. It is determined to be inclined at an angle coincident with 111.
  • the position of the line of laser light emitted from the light irradiation unit 101 to the subject 3 coincides with the periphery (one side) of the X-ray irradiation range 31, and the X-ray irradiation range 31 is displayed as a visible light line. be able to.
  • the shape of the groove 106a of the guide member 106 will be described more specifically using mathematical expressions.
  • the angle between the axis 111 connecting the tip of the blade 75 and the focal point 65 of the X-ray tube device 70 and the optical axis 61 of the X-ray is ⁇ 1
  • the optical axis 101a of the light irradiation unit 101 and the arm member 103 Let ⁇ 2 be the angle formed by the axis of.
  • the distance from the intersection O of the moving direction of the base 102 and the optical axis 61 of the X-ray to the focal point 65 of the X-ray tube device 70 is L, and the distance from the central axis 99 of the shaft 108 to the central axis of the cam roll 107 Is r.
  • the cam roll 107 for matching the axis 111 with the optical axis 101a
  • the trajectory (x, y) of the center of (x, y) (-Ltan ⁇ 1 + rcos (90 ° - ⁇ 1- ⁇ 2), rsin (90 ° - ⁇ 1- ⁇ 2) ⁇ ⁇ ⁇ Equation (1) It becomes.
  • the optical axis 101a of the light irradiation unit 101 can be made to coincide with the axis 111 by forming the groove 106a of the guide member 106 along the locus of the formula (1).
  • the laser light 95 always comes to the focal point 65 through the tip of the blade 75.
  • the value of ⁇ 1 is calculated by detecting the position of the blade 75 with the sensor 76.
  • the sensor 76 detects the distance x1 between the optical axis 61 of the X-ray and the tip of the blade 75, and uses the distance L1 between the blade 75 and the focal point 65 in the direction of the optical axis 61 that has been obtained in advance.
  • the obtained ⁇ 1 or tan ⁇ 1 is substituted into the equation (2) to obtain the position (x, y).
  • the operation control unit 150 controls the operation of the motor 104 so that the base 106 moves to the position (x, y) obtained by Expression (2).
  • the four sides of the X-ray irradiation range 31 can be indicated by laser light lines, respectively (FIG. 3).
  • rotation mechanisms 78 and 79 are arranged between the X-ray detection unit 2 and the support unit (C arm) 5 and between the diaphragm device 70 and the support unit 5, respectively, and can rotate around the optical axis 61. It can also be made into a simple configuration. In this case, the rotation amounts of the rotation mechanisms 78 and 79 are controlled by the operation control unit 150 to be synchronized.
  • the X-ray irradiation range display unit 90 is mounted on the X-ray detection unit 2 and is configured to rotate integrally with the X-ray detection unit 2.
  • the X-ray irradiation range display unit 90 is rotated integrally with the X-ray detection unit 2.
  • the X-ray irradiation range 31 can be displayed with visible light.
  • the moving mechanism of the light irradiation drive unit 190 is configured to move a part of the light irradiation unit 101 in parallel to the light receiving surface of the X-ray detection unit 2.
  • the light irradiation unit 101 includes a light source 121 and a deflecting member 103 that deflects light from the light source 121, the moving mechanism moves the deflecting member 103, and the tilting mechanism tilts the deflecting member 103.
  • the configuration As the deflection member 103, a mirror, a prism, or the like can be used. With such a configuration, the light source 121 can be fixed, and only the deflection member 103 such as a small and lightweight mirror can be moved and tilted.
  • the moving mechanism and the tilting mechanism can be reduced in size.
  • the configuration of the light irradiation drive 190 of the second embodiment is almost the same as that of the first embodiment, but is different from the first embodiment in that the deflection member 103 is fixed to the shaft 108.
  • the optical axis 101a of the light irradiation unit 101 is moved and inclined so as to coincide with the axis 111.
  • the light 95 deflected by the deflecting member 103 is used.
  • the deflecting member 103 is tilted so that the optical axis thereof coincides with the axis 111. Therefore, the shape (track) of the groove 106a of the guide member (groove cam) 106 is different from that of the first embodiment.
  • the trajectory of the groove 106 of the guide member 106 will be described.
  • the angle formed between the axis 111 connecting the tip of the blade 75 and the focal point 65 of the X-ray tube device 70 and the optical axis 61 of the X-ray is ⁇ 1
  • the angle formed between the axis 111 and the axis of the arm member 103 is Is ⁇ 3.
  • the distance from the intersection O of the moving direction of the base 102 and the optical axis 61 of the X-ray to the focal point 65 of the X-ray tube device 70 is L, and the distance from the central axis 99 of the shaft 108 to the central axis of the cam roll 107 Is r.
  • the axial direction of the support portion 5 is the X-ray optical axis 61 direction is the y-axis, the moving direction of the base 102 is the x-axis, and the intersection point O is the origin.
  • the optical axis of the light 95 after being deflected by the deflecting member 103 can be made coincident with the axis 111.
  • the laser light 95 always comes to the focal point 65 through the tip of the blade 75.
  • the cam mechanism that combines the cam roll 107 and the guide member (cam groove) 106 is configured to incline the light irradiation unit 101 according to the amount of movement of the light irradiation unit 101.
  • the movement and inclination of the light irradiation unit 101 are controlled independently. Thereby, even in an X-ray imaging apparatus that can change the distance from the focal point 65 of the X-ray generation unit 80 to the X-ray detection unit 2, the X-ray irradiation range display unit 90 can display the X-ray irradiation range 31.
  • the X-ray irradiation range display unit 90 of the third embodiment includes a drive unit 78 that enables the position of the X-ray detection unit 2 relative to the X-ray generation unit 70 to move in the direction of the optical axis 61, and the X-ray detection unit 2 X
  • a sensor 77 that detects a position with respect to the line generation unit 70, an inclination driving unit that tilts the light irradiation unit 101 at a desired angle with respect to the normal direction of the base 102, and a moving mechanism of the light irradiation unit 101 are provided.
  • the drive unit 78 uses, for example, a drive mechanism using a rack and a pinion.
  • the sensor 77 detects the position of the X-ray detection unit 2 by detecting the drive amount of the rack and pinion.
  • the tilt drive unit includes a shaft 108 similar to that in the first embodiment, and a motor 110 that rotates the shaft 108 to a desired angle.
  • the motor 110 is mounted on the base 102.
  • the arm member 103, the cam roll 107, and the guide member 106 of the first embodiment are not provided in the third embodiment.
  • the moving mechanism of the light irradiation unit 101 is the same as the moving mechanism of the first embodiment, and includes a base 102, a rail 100, a belt 105, and a motor 104.
  • the operation control unit 150 calculates a distance L from the intersection O between the moving direction of the base 102 and the optical axis 61 to the focal point 65 from the position of the X-ray detection unit 2 detected by the sensor 77 by calculation. Further, the operation control unit 150 calculates the value of ⁇ 1 by detecting the position of the blade 75 with the sensor 76.
  • the value of ⁇ 1 or tan ⁇ 1 is obtained from / L1.
  • the obtained ⁇ 1 or tan ⁇ 1 is substituted into the equation (2), and the position (x, y) of the base 102 is obtained.
  • the operation control unit 150 controls the operation of the motor 104 so that the base 106 moves to the position (x, y) obtained by Expression (2).
  • the operation control unit 150 controls the motor 110 of the tilt driving unit to tilt the optical axis 101a of the light irradiation unit 101 to the angle ⁇ 1 obtained with respect to the normal direction of the base 102.
  • the optical axis 101a of the light irradiation unit 101 is connected to the focal point 65 of the X-ray tube device 60 and the tip of the blade 75.
  • the X-ray irradiation range 31 on the subject 3 can be displayed with visible light from the light irradiation unit 101.
  • one of the X-ray irradiation range display unit 90 and the second X-ray irradiation range display unit 71 is selectively operated according to the movement amount of the support unit 5. Accordingly, the X-ray irradiation range 301 is displayed by irradiating visible light from above the subject 3, and the X-ray irradiation range 301 is not irradiated from below the subject 3 that is not visible to the operator. To do.
  • the X-ray imaging apparatus includes a sensor 161 that detects the amount of movement of the support portion (C arm) 5 in the circumferential direction by the circumferential movement mechanism 6 and the rotation mechanism 7 as shown in FIG.
  • a sensor 171 that detects the rotational movement amount of the support portion 5 around the X axis is provided.
  • the operation unit 20 is provided with a switch 210 for an operator to instruct the X-ray irradiation range 310 to be displayed with visible light.
  • the operation control unit 150 sets the sensors 161 and 171. A detection result is received (step 1001). Then, the operation control unit 150 uses the detection result to determine the angle of the support unit (C arm) 5, etc., which of the X-ray irradiation range display unit 90 and the second X-ray irradiation range display unit 71, It is determined whether the object 3 is above the subject 3.
  • step 1002 it is determined whether the X-ray generation unit 80 is in an overtube state above the subject 3 or an undertube state below the subject 3 (step 1002).
  • the second X-ray irradiation range is displayed because the second X-ray irradiation range display unit 71 is above the subject 3.
  • the display unit 71 is operated. Thereby, visible light is irradiated from the second X-ray irradiation range display unit 71, and the X-ray irradiation range 301 is displayed on the subject 3 (step 1003).
  • the X-ray generation unit 80 When the X-ray generation unit 80 is in the state of an undertube below the subject 3, the X-ray irradiation range display unit 90 is located above the subject 3, so the X-ray irradiation range display unit 90 is operated. . Thereby, visible light is irradiated from the light irradiation unit 101 of the X-ray irradiation range display unit 90, and the X-ray irradiation range 301 is displayed on the subject 3 (step 1004). The light irradiation unit 101 of the X-ray irradiation range display units 71 and 90 that are not operated is turned off and does not emit light.
  • the fourth embodiment since either the X-ray irradiation range display unit 90 or the second X-ray irradiation range display unit 71 located above the subject is selectively operated, unnecessary light is emitted. Is not emitted, and stray light can be prevented from interfering with the operator and the operator. There is also an advantage that power consumption can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

In order to provide an X-ray imaging apparatus that enables an operator to recognize an X-ray irradiation range via a visible light irradiation region, even if an X-ray source is positioned below a subject: an X-ray irradiation range display unit, which emits visible light showing the range of X-rays radiated by an X-ray generation unit towards a subject, is disposed on an X-ray detection unit, and a second X-ray irradiation range display unit, which emits visible light showing the range of X-rays radiated by the X-ray generation unit towards the subject, is disposed on the X-ray generation unit. Even if the X-ray generation unit has an under tube disposed below the subject, the X-ray irradiation range display unit radiates visible light on top of the subject, showing the X-ray irradiation range on top of the subject.

Description

X線撮影装置X-ray equipment
 本発明は、撮影方向を変化させながら、X線等の放射線撮影を行う装置に関するものである。 The present invention relates to an apparatus for performing radiographic imaging such as X-rays while changing the imaging direction.
 従来のX線撮影装置では、被検体におけるX線照射範囲の大きさを設定するために、X線源と被検体との間に複数の鉛板から構成されたコリメータを配置している。 In the conventional X-ray imaging apparatus, a collimator composed of a plurality of lead plates is arranged between the X-ray source and the subject in order to set the size of the X-ray irradiation range in the subject.
 このコリメータの開口部の大きさを調節することにより、X線照射範囲の大きさを調整する。その際、操作者は、被検体におけるX線照射範囲が所望の位置および大きさとなっているかを判断する必要がある。そのため、特許文献1には、X線源の近傍に可視光を出射する照射野ランプを配置し、照射野ランプからの可視光をコリメータを通過させて被検体に照射することにより、被検体上のX線照射範囲にコリメータを通過した可視光が照射されるX線撮影装置が開示されている。操作者は、被検体上の可視光が照射される領域をX線照射範囲として認識し、所望の撮影領域に一致しているかどうかを確認することができる。 ¡Adjust the size of the X-ray irradiation range by adjusting the size of the opening of this collimator. At that time, the operator needs to determine whether the X-ray irradiation range in the subject has a desired position and size. Therefore, in Patent Document 1, an irradiation field lamp that emits visible light is disposed in the vicinity of the X-ray source, and the subject is irradiated with visible light from the irradiation field lamp through a collimator. An X-ray imaging apparatus is disclosed in which visible light that has passed through a collimator is irradiated in the X-ray irradiation range. The operator can recognize an area irradiated with visible light on the subject as an X-ray irradiation range, and can confirm whether or not it matches a desired imaging area.
特開2012-55421号公報JP 2012-55421 A
 近年、C字型に湾曲したアームにX線源とX線検出器を搭載し、X線源とX線検出の対向関係を維持したまま、アームを回転移動等させることにより、X線源を被検体の上下左右の任意の方向に移動させて撮影できるX線撮影装置が開発されている。このようなX線撮影装置において、X線源の近傍に照射野ランプを配置した場合、寝台上の被検体に対してX線源が上方に位置する状態(以降、オーバーチューブと称す)では、照射野ランプから被検体の上面に可視光が照射されるため、操作者は被検体上面の可視光照射領域でX線照射範囲を確認できる。しかしながら、寝台上の被検体に対してX線源が下方に位置する状態(以降、アンダーチューブと称す)では、照射野ランプから寝台の底面に可視光が照射されるため、操作者は、寝台の下をのぞきこまなければ照射野ランプの可視光照射領域を視認できない上、寝台が邪魔になり、被検体のX線照射範囲を確認することができない。 In recent years, an X-ray source and an X-ray detector are mounted on a C-shaped arm, and the X-ray source is moved by rotating the arm while maintaining the opposing relationship between the X-ray source and the X-ray detection. An X-ray imaging apparatus has been developed that can perform imaging by moving the subject in any direction up, down, left, or right. In such an X-ray imaging apparatus, when an irradiation field lamp is arranged in the vicinity of the X-ray source, in a state where the X-ray source is positioned above the subject on the bed (hereinafter referred to as an overtube), Since visible light is irradiated from the irradiation field lamp onto the upper surface of the subject, the operator can confirm the X-ray irradiation range in the visible light irradiation region on the upper surface of the subject. However, in a state where the X-ray source is located below the subject on the bed (hereinafter referred to as an undertube), visible light is irradiated from the irradiation field lamp to the bottom surface of the bed. The visible light irradiation area of the irradiation field lamp cannot be visually recognized unless it is looked under, and the bed becomes an obstacle and the X-ray irradiation range of the subject cannot be confirmed.
 本発明の目的は、X線源が被検体の下方に位置する場合でも、操作者がX線照射範囲を可視光の照射領域で認識できるX線撮影装置を提供することにある。 An object of the present invention is to provide an X-ray imaging apparatus that allows an operator to recognize an X-ray irradiation range in a visible light irradiation area even when an X-ray source is located below a subject.
 上記目的を達成するために、本発明では、X線検出部に、X線発生部が照射するX線の範囲を示す可視光を被検体に向かって出射するX線照射範囲表示部と、X線発生部に、X線発生部が照射するX線の範囲を示す可視光を前記被検体に向かって出射する第2のX線照射範囲表示部と、を配置する。 In order to achieve the above object, in the present invention, an X-ray irradiation range display unit that emits visible light indicating the range of X-rays irradiated by the X-ray generation unit toward the subject in the X-ray detection unit, A second X-ray irradiation range display unit that emits visible light indicating the X-ray range irradiated by the X-ray generation unit toward the subject is disposed in the line generation unit.
 X線発生部が被検体の下方に位置するアンダーチューブの状態であっても、X線照射範囲表示部が被検体の上面に可視光を照射して、X線照射範囲を被検体の上面に表示する。 Even when the X-ray generator is in the state of an undertube located below the subject, the X-ray irradiation range display unit irradiates the upper surface of the subject with visible light, and the X-ray irradiation range is applied to the upper surface of the subject. indicate.
 本発明によれば、X線検出部側からX線照射範囲に向かって可視光を照射することができるため、X線源が被検体の下方に位置する場合でも、X線照射範囲を目視で確認でき、利便性が向上する。よって、X線を照射することなくX線照射範囲を位置決めできるため、被爆の低減が可能である。 According to the present invention, since visible light can be irradiated from the X-ray detection unit side toward the X-ray irradiation range, the X-ray irradiation range can be visually observed even when the X-ray source is located below the subject. It can be confirmed and convenience is improved. Therefore, since the X-ray irradiation range can be positioned without irradiating X-rays, the exposure can be reduced.
実施形態のX線撮影装置の全体構成を示すブロック図。1 is a block diagram showing the overall configuration of an X-ray imaging apparatus according to an embodiment. 実施形態のX線撮影装置の側面形状と構成を示す説明図。Explanatory drawing which shows the side shape and structure of the X-ray imaging apparatus of embodiment. 第1の実施形態のX線照射範囲表示部90の光照射部101から被検体3に向かって光(レーザー光)95が照射される状態を示す説明図。Explanatory drawing which shows the state in which the light (laser beam) 95 is irradiated toward the subject 3 from the light irradiation part 101 of the X-ray irradiation range display part 90 of 1st Embodiment. 第1の実施形態のX線照射範囲表示部90の斜視図。FIG. 3 is a perspective view of an X-ray irradiation range display unit 90 according to the first embodiment. (a)は、第1の実施形態のX線照射範囲表示部90の一部の構成の斜視図、(b)は、図(a)の一部拡大図。(a) is a perspective view of a part of the configuration of the X-ray irradiation range display unit 90 of the first embodiment, and (b) is a partially enlarged view of FIG. (a). 第1の実施形態のX線照射範囲表示部90の概略構成を示すブロック図。FIG. 2 is a block diagram showing a schematic configuration of an X-ray irradiation range display unit 90 of the first embodiment. 第2の実施形態のX線照射範囲表示部90の概略構成を示すブロック図。FIG. 5 is a block diagram showing a schematic configuration of an X-ray irradiation range display unit 90 of a second embodiment. 第3の実施形態のX線照射範囲表示部90の概略構成を示すブロック図。FIG. 9 is a block diagram showing a schematic configuration of an X-ray irradiation range display unit 90 of a third embodiment. 第4の実施形態のX線撮影装置の側面形状と構成を示す説明図。Explanatory drawing which shows the side shape and structure of the X-ray imaging apparatus of 4th Embodiment. 第4の実施形態の動作制御部150の動作を示すフローチャート。10 is a flowchart showing the operation of the operation control unit 150 of the fourth embodiment.
 本発明の実施形態について図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図1に実施形態のX線撮影装置の全体構造の一例を示す。図1のように、X線撮影装置は、X線発生部80と、X線発生部80に対向して配置されたX線検出部2と、X線発生部80とX線検出部2との間に被検体3を配置するテーブル1と、X線発生部80およびX線検出部2とを支持し、両者の対向関係を保持したまま被検体3の周囲を移動可能にする支持部5とを備えている。X線検出部80には、X線発生部80がX線を照射する範囲を示す可視光を被検体3に向かって出射するX線照射範囲表示部90が備えられている。 FIG. 1 shows an example of the overall structure of the X-ray imaging apparatus of the embodiment. As shown in FIG. 1, the X-ray imaging apparatus includes an X-ray generation unit 80, an X-ray detection unit 2 disposed opposite to the X-ray generation unit 80, an X-ray generation unit 80, and an X-ray detection unit 2. A support unit 5 that supports the table 1, the X-ray generation unit 80, and the X-ray detection unit 2 that place the subject 3 between them, and that can move around the subject 3 while maintaining the opposing relationship therebetween. And. The X-ray detection unit 80 includes an X-ray irradiation range display unit 90 that emits visible light toward the subject 3 indicating the range in which the X-ray generation unit 80 irradiates X-rays.
 これにより、X線発生部80が、図1のように被検体3の下方に位置するアンダーチューブの状態であっても、被検体3の上面に可視光を照射し、X線照射範囲を被検体3の上面に表示することができる。操作者は、被検体上面のX線照射範囲が撮影すべき範囲と一致しているかどうかを目視で確認することができる。 As a result, even when the X-ray generation unit 80 is in the state of the undertube located below the subject 3 as shown in FIG. 1, the upper surface of the subject 3 is irradiated with visible light, and the X-ray irradiation range is covered. It can be displayed on the upper surface of the specimen 3. The operator can visually confirm whether or not the X-ray irradiation range on the upper surface of the subject matches the range to be imaged.
 一方、X線発生部80には、X線発生部80が照射するX線の範囲を示す可視光を被検体3に向かって出射する第2のX線照射範囲表示部71が備えられている。これにより、X線発生部80が、被検体3の上方に位置するオーバーチューブの状態では、第2のX線照射範囲表示部71が被検体3の上面に可視光を照射し、X線照射範囲を被検体3の上面に表示することができる。 On the other hand, the X-ray generation unit 80 includes a second X-ray irradiation range display unit 71 that emits visible light indicating the X-ray range irradiated by the X-ray generation unit 80 toward the subject 3. . As a result, when the X-ray generation unit 80 is in an overtube state located above the subject 3, the second X-ray irradiation range display unit 71 irradiates the upper surface of the subject 3 with visible light, and X-ray irradiation The range can be displayed on the upper surface of the subject 3.
 図1および図2を用いてさらに具体的に実施形態のX線撮影装置について説明する。図2は、X線撮影装置の一例の側面図である。 The X-ray imaging apparatus of the embodiment will be described more specifically with reference to FIGS. FIG. 2 is a side view of an example of the X-ray imaging apparatus.
 X線撮影装置は、上述の構成の他に、本体200と、操作部20と、画像表示部50とを備えている。本体200には、内部電源600と、高電圧発生部30と、動作制御部150と、画像処理部40とが配置されている。内部電源600は、外部電源500から電力の供給を受けて、X線照射範囲表示部90、絞り装置70および第2のX線照射範囲表示部71に電力を供給する。高電圧発生部30は、外部電源500から電力の供給を受けて、X線発生のための高電圧を発生し、X線管装置60に供給する。動作制御部150は、X線撮影装置の各部の動作を制御する。画像処理部40は、X線検出部2が検出したX線から画像を再構成する。 The X-ray imaging apparatus includes a main body 200, an operation unit 20, and an image display unit 50 in addition to the above-described configuration. In the main body 200, an internal power supply 600, a high voltage generation unit 30, an operation control unit 150, and an image processing unit 40 are arranged. The internal power supply 600 receives power from the external power supply 500 and supplies power to the X-ray irradiation range display unit 90, the aperture device 70, and the second X-ray irradiation range display unit 71. The high voltage generator 30 receives power from the external power supply 500, generates a high voltage for generating X-rays, and supplies the high voltage to the X-ray tube device 60. The operation control unit 150 controls the operation of each unit of the X-ray imaging apparatus. The image processing unit 40 reconstructs an image from the X-rays detected by the X-ray detection unit 2.
 支持部5としては、図2のようにC字型の環状アーム(以下、Cアームと称す)を用いることができる。支持部(Cアーム)5の一端に、X線検出部2が、他端にX線発生装置80が搭載されている。支持部5としてCアームを用いたX線撮影装置は、撮影中の被検体3に操作者や術者が接近する可能であるため、手術中の透視撮影等に好適に使用することできる。 As the support portion 5, a C-shaped annular arm (hereinafter referred to as a C arm) can be used as shown in FIG. An X-ray detector 2 is mounted on one end of the support section (C arm) 5 and an X-ray generator 80 is mounted on the other end. An X-ray imaging apparatus using a C-arm as the support unit 5 can be suitably used for fluoroscopic imaging during surgery because an operator or an operator can approach the subject 3 during imaging.
 支持部(Cアーム)5には、支持部5を移動させる支持部駆動部51が備えられている。支持部駆動部51は、支持部5をその円周方向(A方向)に沿って移動させる円周方向移動機構6と、支持部5および円周方向移動機構6をX軸を中心に回転させる回転機構7と、支持部5、円周方向移動機構6及び回転機構7を左右方向(X軸方向)移動させるスライド機構8と、支持部5、円周方向移動機構6、回転機構7およびスライド機構8の全体を上下方向(Z軸方向)移動させる上下動機構9を備えている。 The support part (C arm) 5 is provided with a support part drive part 51 for moving the support part 5. The support unit drive unit 51 rotates the support unit 5 in the circumferential direction (direction A), the circumferential direction movement mechanism 6 and the support unit 5 and the circumferential direction movement mechanism 6 about the X axis. Rotation mechanism 7, support part 5, circumferential movement mechanism 6 and slide mechanism 8 for moving rotation mechanism 7 in the left-right direction (X-axis direction), support part 5, circumferential movement mechanism 6, rotation mechanism 7 and slide A vertical movement mechanism 9 that moves the whole mechanism 8 in the vertical direction (Z-axis direction) is provided.
 更に図示しないが、支持駆動部51は、支持部5、円周方向移動機構6、回転機構7およびスライド機構8の全体を、被検体3の長手方向(Y方向)に移動する移動機構も備えている。これら支持部駆動部51は、支持部5を移動させることにより、X線発生部80とX線検出部2との対向関係を保ったまま、被検体3の任意の方向からX線を照射することができる。テーブル1は、X線を透過する材料によって構成されている。 Although not shown, the support drive unit 51 also includes a moving mechanism that moves the entire support unit 5, circumferential movement mechanism 6, rotation mechanism 7, and slide mechanism 8 in the longitudinal direction (Y direction) of the subject 3. ing. These support unit drive units 51 move the support unit 5 to irradiate X-rays from any direction of the subject 3 while maintaining the opposing relationship between the X-ray generation unit 80 and the X-ray detection unit 2. be able to. The table 1 is made of a material that transmits X-rays.
 よって、X線発生部80が被検体3の上方に位置する配置(オーバーチューブ)であっても、X線発生部80が被検体の下方に位置する配置(アンダーチューブ、図1および図2の配置)であっても撮影を行うことができる。 Therefore, even if the X-ray generator 80 is positioned above the subject 3 (overtube), the X-ray generator 80 is positioned below the subject (undertube, as shown in FIGS. 1 and 2). (Arrangement) can be taken.
 X線発生部80は、X線管装置60および絞り装置70を含む。X線管装置60は、高電圧発生部30から高電圧の供給を受けてX線を出射する。絞り装置70は、X線管装置60から出射されたX線の一部を遮蔽するための1以上の羽根(遮蔽部)75とその駆動部を備えている。羽根75の駆動部は、羽根75をX線の光軸(中心軸)61から所定の距離に移動させる。これにより、X線の一部を遮蔽し、被検体3に照射されるX線の範囲(X線照射範囲)を調整する。 The X-ray generator 80 includes an X-ray tube device 60 and a diaphragm device 70. The X-ray tube device 60 is supplied with a high voltage from the high voltage generator 30 and emits X-rays. The diaphragm device 70 includes one or more blades (shielding portions) 75 for shielding a part of the X-rays emitted from the X-ray tube device 60 and a driving unit thereof. The drive unit of the blade 75 moves the blade 75 to a predetermined distance from the X-ray optical axis (center axis) 61. Thereby, a part of the X-ray is shielded, and the range of X-rays irradiated to the subject 3 (X-ray irradiation range) is adjusted.
 第2のX線照射範囲表示部71は、光軸61に沿って可視光を入射する光源を備え、可視光の一部が羽根75で遮蔽されることにより、被検体3のX線照射範囲に可視光を照射する。これにより、X線照射範囲を被検体3上に可視光で表示する。 The second X-ray irradiation range display unit 71 includes a light source that makes visible light incident along the optical axis 61, and a portion of the visible light is shielded by the blade 75, so that the X-ray irradiation range of the subject 3 is obtained. Is irradiated with visible light. Thereby, the X-ray irradiation range is displayed on the subject 3 with visible light.
 以下、X線照射範囲表示部90の構成の具体的な実施形態について説明する。 Hereinafter, specific embodiments of the configuration of the X-ray irradiation range display unit 90 will be described.
 (第1の実施形態)
 第1の実施形態のX線照射範囲表示部90について図3~図6を用いて説明する。図3は、X線検出部2の前面(テーブル1側)に配置されたX線照射範囲表示部90の光照射部101から被検体3に向かって光(レーザー光)95が照射される状態を示す説明図である。図4は、X線照射範囲表示部90の斜視図である。図5(a)は、X線照射範囲表示部90の一部の構成の斜視図であり、図5(b)は、図5(a)の一部拡大図である。
(First embodiment)
The X-ray irradiation range display unit 90 according to the first embodiment will be described with reference to FIGS. FIG. 3 shows a state in which light (laser light) 95 is irradiated from the light irradiation unit 101 of the X-ray irradiation range display unit 90 arranged on the front surface (table 1 side) of the X-ray detection unit 2 toward the subject 3. It is explanatory drawing which shows. FIG. 4 is a perspective view of the X-ray irradiation range display unit 90. FIG. FIG. 5 (a) is a perspective view of a part of the X-ray irradiation range display unit 90, and FIG. 5 (b) is a partially enlarged view of FIG. 5 (a).
 図6は、X線照射範囲表示部90の概略構成を示すブロック図である。 FIG. 6 is a block diagram showing a schematic configuration of the X-ray irradiation range display unit 90.
 図3~図6に示すように、X線照射範囲表示部90は、可視光95を照射する光照射部101と、光照射駆動部190とを備える。光照射駆動部190は、光照射部101の光軸101aが、X線絞り装置の羽根(遮蔽部)75の先端とX線管装置60の焦点65とを結ぶ軸111に一致するように光照射部101を移動させる。これにより、図3のように、X線照射範囲31の周縁を可視光95によって被検体3上に表示することができる。 As shown in FIGS. 3 to 6, the X-ray irradiation range display unit 90 includes a light irradiation unit 101 that irradiates visible light 95 and a light irradiation drive unit 190. The light irradiation drive unit 190 is configured so that the optical axis 101a of the light irradiation unit 101 coincides with the axis 111 connecting the tip of the blade (shielding unit) 75 of the X-ray diaphragm device and the focal point 65 of the X-ray tube device 60. The irradiation unit 101 is moved. Thereby, as shown in FIG. 3, the periphery of the X-ray irradiation range 31 can be displayed on the subject 3 by the visible light 95.
 光照射駆動部190は、光照射部101をX線検出部の受光面に平行に移動させる移動機構(100、102,105等)と、光照射部101の光軸101aを傾斜させる傾斜機構(103,106、107)とを含む。 The light irradiation drive unit 190 includes a moving mechanism (100, 102, 105, etc.) that moves the light irradiation unit 101 in parallel with the light receiving surface of the X-ray detection unit, and a tilt mechanism that tilts the optical axis 101a of the light irradiation unit 101 ( 103, 106, 107).
 傾斜機構は、具体的には、光照射部101に固定された腕部材103と、腕部材103の先端に取り付けられたカムロール107と、カムロール107の移動を所定の軌跡に沿ってガイドするガイド部材(溝カム)106とを含む。このような構成により、傾斜機構は、移動機構(100、102,105等)による光照射部101の移動量に応じた傾斜角で光照射部101を傾斜させ、光照射部101の光軸101aを羽根(遮蔽部)75の先端とX線管装置60の焦点65とを結ぶ軸111に一致させる。なお、本実施形態では、光照射部101と腕部材103とは、シャフト108を介して固定されている。 Specifically, the tilt mechanism includes an arm member 103 fixed to the light irradiation unit 101, a cam roll 107 attached to the tip of the arm member 103, and a guide member that guides the movement of the cam roll 107 along a predetermined locus. (Groove cam) 106. With such a configuration, the tilt mechanism tilts the light irradiation unit 101 at an inclination angle corresponding to the amount of movement of the light irradiation unit 101 by the moving mechanism (100, 102, 105, etc.), and the optical axis 101a of the light irradiation unit 101 Is made to coincide with an axis 111 connecting the tip of the blade (shielding part) 75 and the focal point 65 of the X-ray tube device 60. In the present embodiment, the light irradiation unit 101 and the arm member 103 are fixed via a shaft 108.
 さらに詳しくX線照射範囲表示部90の構造を説明する。光照射部101は、ここでは可視波長のレーザー光を図3~図5(a)のように所定の角度に線状に広げて照射するレーザー光源を用いる。これにより、被検体3には、可視光の線が照射され、X線照射範囲31の周縁を表示する。本実施形態では、絞り装置70が4枚の羽根75を備え、4枚の羽根75を光軸61に対して開閉することにより、四角形のX線照射範囲31の大きさを調整する構成のものを用いる例について説明する。そのため、X線照射範囲表示部90は、図3および図4のように、4枚の羽根75についてそれぞれ光照射部101を備え、X線照射範囲31の辺に対してそれぞれレーザー光の線を照射する。4つの光照射部101には、それぞれ光照射駆動部190が備えられている。4つの光照射部101および光照射駆動部190は、同じ構成であるので、以下、一つの光照射部101および光照射駆動部190について説明する。 The structure of the X-ray irradiation range display unit 90 will be described in more detail. Here, the light irradiation unit 101 uses a laser light source that irradiates a laser beam having a visible wavelength with a predetermined angle as shown in FIGS. 3 to 5A. As a result, the subject 3 is irradiated with visible light rays, and the periphery of the X-ray irradiation range 31 is displayed. In the present embodiment, the diaphragm device 70 includes four blades 75, and the size of the quadrangular X-ray irradiation range 31 is adjusted by opening and closing the four blades 75 with respect to the optical axis 61. An example of using will be described. Therefore, the X-ray irradiation range display unit 90 includes a light irradiation unit 101 for each of the four blades 75 as shown in FIGS. 3 and 4, and each line of the laser beam is applied to each side of the X-ray irradiation range 31. Irradiate. Each of the four light irradiation units 101 is provided with a light irradiation driving unit 190. Since the four light irradiation units 101 and the light irradiation driving unit 190 have the same configuration, only one light irradiation unit 101 and the light irradiation driving unit 190 will be described below.
 図5(a)のように、光照射駆動部190の傾斜機構は、上述した腕部材103と、カムロール107と、ガイド部材106と、シャフト108とを備えて構成される。シャフト108は、光照射部101を貫通し、かつ、光照射部101に固定されている。よって、シャフト108がその軸を中心に回転すると光照射部101は傾斜する。光照射部101が被検体3に向けて出射する可視光の線は、シャフト108の軸方向に平行である。シャフト108の一端は、腕部材103に固定されている。腕部材103の先端には、円筒形のカムロール107が固定されている。カムロール107は、ガイド部材(溝カム)106に係合しており、光照射部101(シャフト108)がX線検出部2の受光面に平行に移動するにつれて、ガイド部材106の溝106aの形状に沿った軌跡で移動する。 As shown in FIG. 5 (a), the tilting mechanism of the light irradiation drive unit 190 includes the arm member 103, the cam roll 107, the guide member 106, and the shaft 108 described above. The shaft 108 passes through the light irradiation unit 101 and is fixed to the light irradiation unit 101. Therefore, when the shaft 108 rotates about the axis, the light irradiation unit 101 is inclined. The visible light line emitted from the light irradiation unit 101 toward the subject 3 is parallel to the axial direction of the shaft 108. One end of the shaft 108 is fixed to the arm member 103. A cylindrical cam roll 107 is fixed to the tip of the arm member 103. The cam roll 107 is engaged with the guide member (groove cam) 106, and the shape of the groove 106a of the guide member 106 is increased as the light irradiation unit 101 (shaft 108) moves in parallel to the light receiving surface of the X-ray detection unit 2. Move along the trajectory.
 これにより、溝106aの形状に応じて腕部材103がシャフト108の中心軸に対して傾斜し、シャフト108が回転する。これにより、光照射部101が腕部材103の傾斜と同じ角度に傾斜する。なお、図5(a)のガイド部材106は、図6のガイド部材106よりも長いが、これは、図5(a)のガイド部材105が、対向する2つの光照射部101のそれぞれのガイド部材106を連結とした構造となっているためである。 Thereby, the arm member 103 is inclined with respect to the central axis of the shaft 108 according to the shape of the groove 106a, and the shaft 108 rotates. As a result, the light irradiation unit 101 is inclined at the same angle as the inclination of the arm member 103. Note that the guide member 106 in FIG. 5A is longer than the guide member 106 in FIG. 6, but this is because the guide member 105 in FIG. This is because the member 106 is connected.
 一方、X線照射駆動部190の移動機構は、図5(a),(b)および図6のようにX線検出部2の受光面の前面側に、受光面と平行に配置された一対のレール100と、一対の土台102と、土台102にそれぞれ取り付けられた車輪112と、土台102に固定された環状のベルト105と、ベルト105を駆動するモーター104とを備えている。 On the other hand, the moving mechanism of the X-ray irradiation driving unit 190 is a pair of elements arranged in parallel with the light receiving surface on the front side of the light receiving surface of the X-ray detection unit 2 as shown in FIGS. 5 (a), 5 (b) and FIG. Rail 100, a pair of bases 102, wheels 112 respectively attached to the bases 102, an annular belt 105 fixed to the bases 102, and a motor 104 that drives the belts 105.
 一対のレール100および一対の土台102は、シャフト108の両端にそれぞれ配置されている。一対の土台102には、シャフト108が貫通する貫通孔102aが備えられ、シャフト108を回転可能に支持している。一対の土台102の車輪112はそれぞれ、レール102と係合している。なお、図6においては、構造の理解を容易にするため、車輪112とレール100を光軸61方向に並べて描いている。また、図5(a)、図4に示した構造では、対向する2つの光照射部101のそれぞれの移動機構のレール100を連結した構造とし、X線照射駆動部190を厚み方向に小型化している。 The pair of rails 100 and the pair of bases 102 are disposed at both ends of the shaft 108, respectively. The pair of bases 102 are provided with through holes 102a through which the shaft 108 passes, and rotatably support the shaft 108. Each of the wheels 112 of the pair of bases 102 is engaged with the rail 102. In FIG. 6, the wheels 112 and the rails 100 are drawn side by side in the direction of the optical axis 61 in order to facilitate understanding of the structure. Further, in the structure shown in FIG. 5 (a) and FIG. 4, the structure is such that the rails 100 of the moving mechanisms of the two light irradiation units 101 facing each other are connected, and the X-ray irradiation driving unit 190 is downsized in the thickness direction. ing.
 上述してきた構造において、モーター104によりベルト105を回転させると、土台102は、レール100に沿って移動する。これにより、シャフト108がレール100に沿って移動し、光照射部101がX線検出部2の受光面と平行に移動する。土台102の移動にともない、上述の傾斜機構によって光照射部101が傾斜する。傾斜機構のガイド部材106の溝106aの形状(カムロール107の描く軌跡)は、光照射部101の位置ごとに、光軸101aが、羽根75の先端とX線管装置70の焦点65を結ぶ軸111と一致する角度に傾斜するように定められている。これにより、光照射部101から被検体3に照射されるレーザー光の線の位置は、X線照射範囲31の周縁(一辺)と一致し、X線照射範囲31を可視光の線で表示することができる。 In the structure described above, when the belt 105 is rotated by the motor 104, the base 102 moves along the rail 100. Accordingly, the shaft 108 moves along the rail 100, and the light irradiation unit 101 moves in parallel with the light receiving surface of the X-ray detection unit 2. As the base 102 moves, the light irradiation unit 101 is tilted by the tilt mechanism described above. The shape of the groove 106a of the guide member 106 of the tilt mechanism (the trajectory drawn by the cam roll 107) is an axis where the optical axis 101a connects the tip of the blade 75 and the focal point 65 of the X-ray tube device 70 for each position of the light irradiation unit 101. It is determined to be inclined at an angle coincident with 111. As a result, the position of the line of laser light emitted from the light irradiation unit 101 to the subject 3 coincides with the periphery (one side) of the X-ray irradiation range 31, and the X-ray irradiation range 31 is displayed as a visible light line. be able to.
 ガイド部材106の溝106aの形状を数式を用いてさらに具体的に説明する。図6のように羽根75の先端とX線管装置70の焦点65を結ぶ軸111と、X線の光軸61とのなす角をθ1とし、光照射部101の光軸101aと腕部材103の軸とがなす角をθ2とする。また、土台102の移動方向とX線の光軸61との交点Oから、X線管装置70の焦点65までの距離をLとし、シャフト108の中心軸99からカムロール107の中心軸までの距離をrとする。また、支持部5の軸方向を、X線の光軸61方向をy軸、土台102の移動方向をx軸、交点Oを原点とすると、軸111と光軸101aを一致させるためのカムロール107の中心の軌跡(x,y)は、
(x,y)=
  (-Ltanθ1+rcos(90°-θ1-θ2),rsin(90°-θ1-θ2)  ・・・式(1)
となる。
The shape of the groove 106a of the guide member 106 will be described more specifically using mathematical expressions. As shown in FIG. 6, the angle between the axis 111 connecting the tip of the blade 75 and the focal point 65 of the X-ray tube device 70 and the optical axis 61 of the X-ray is θ1, and the optical axis 101a of the light irradiation unit 101 and the arm member 103 Let θ2 be the angle formed by the axis of. The distance from the intersection O of the moving direction of the base 102 and the optical axis 61 of the X-ray to the focal point 65 of the X-ray tube device 70 is L, and the distance from the central axis 99 of the shaft 108 to the central axis of the cam roll 107 Is r. Further, if the axial direction of the support portion 5 is the y-axis of the X-ray optical axis 61 direction, the moving direction of the base 102 is the x-axis, and the intersection point O is the origin, the cam roll 107 for matching the axis 111 with the optical axis 101a The trajectory (x, y) of the center of
(x, y) =
(-Ltanθ1 + rcos (90 ° -θ1-θ2), rsin (90 ° -θ1-θ2) ・ ・ ・ Equation (1)
It becomes.
 よって、ガイド部材106の溝106aを式(1)の軌跡に沿った形状にすることにより、光照射部101の光軸101aを軸111に一致させることができる。すなわち、レーザー光95が羽根75の先端を通って常に焦点65を向くようになる。 Therefore, the optical axis 101a of the light irradiation unit 101 can be made to coincide with the axis 111 by forming the groove 106a of the guide member 106 along the locus of the formula (1). In other words, the laser light 95 always comes to the focal point 65 through the tip of the blade 75.
 土台102の位置(シャフト108の中心軸99の位置)(x,y)は、
(x,y)=(-Ltanθ1,0)  ・・・式(2)
になる。
The position of the base 102 (the position of the central axis 99 of the shaft 108) (x, y) is
(x, y) = (-Ltanθ1,0) (2)
become.
 なお、θ1の値は、羽根75の位置をセンサー76で検出して、算出する。例えば、センサー76によりX線の光軸61と羽根75の先端との距離x1を検出し、予め求めておいた、光軸61方向についての羽根75と焦点65との距離L1を用いて、tanθ1=x1/L1により、θ1またはtanθ1の値を求める。求めたθ1またはtanθ1を式(2)に代入し、位置(x,y)を求める。式(2)で求めた位置(x,y)に土台106が移動するように、動作制御部150がモーター104の動作を制御する。 The value of θ1 is calculated by detecting the position of the blade 75 with the sensor 76. For example, the sensor 76 detects the distance x1 between the optical axis 61 of the X-ray and the tip of the blade 75, and uses the distance L1 between the blade 75 and the focal point 65 in the direction of the optical axis 61 that has been obtained in advance. = Find the value of θ1 or tanθ1 by x1 / L1. The obtained θ1 or tanθ1 is substituted into the equation (2) to obtain the position (x, y). The operation control unit 150 controls the operation of the motor 104 so that the base 106 moves to the position (x, y) obtained by Expression (2).
 この制御を4つの光照射部101についてそれぞれ行うことにより、X線照射範囲31の4辺をレーザー光の線でそれぞれ示すことができる(図3)。 By performing this control for each of the four light irradiation units 101, the four sides of the X-ray irradiation range 31 can be indicated by laser light lines, respectively (FIG. 3).
 なお、X線検出部2と支持部(Cアーム)5との間、絞り装置70と支持部5との間には、それぞれ回転機構78、79を配置し、光軸61を中心に回転可能な構成にすることもできる。この場合、回転機構78,79の回転量は、動作制御部150によって同期するように制御される。X線照射範囲表示部90は、X線検出部2に搭載され、X線検出部2と一体に回転するように構成される。よって、X線絞り装置70が回転機構79によって光軸61を中心に回転し、X線照射範囲31が回転する場合でも、X線照射範囲表示部90はX線検出部2と一体になり回転し、X線照射範囲31を可視光で表示することができる。 In addition, rotation mechanisms 78 and 79 are arranged between the X-ray detection unit 2 and the support unit (C arm) 5 and between the diaphragm device 70 and the support unit 5, respectively, and can rotate around the optical axis 61. It can also be made into a simple configuration. In this case, the rotation amounts of the rotation mechanisms 78 and 79 are controlled by the operation control unit 150 to be synchronized. The X-ray irradiation range display unit 90 is mounted on the X-ray detection unit 2 and is configured to rotate integrally with the X-ray detection unit 2. Therefore, even when the X-ray diaphragm device 70 is rotated around the optical axis 61 by the rotation mechanism 79 and the X-ray irradiation range 31 is rotated, the X-ray irradiation range display unit 90 is rotated integrally with the X-ray detection unit 2. In addition, the X-ray irradiation range 31 can be displayed with visible light.
 (第2の実施形態)
 第2の実施形態のX線照射範囲表示部90について図7を用いて説明する。
(Second embodiment)
The X-ray irradiation range display unit 90 of the second embodiment will be described with reference to FIG.
 第2の実施形態では、光照射駆動部190の移動機構は、光照射部101の一部をX線検出部2の受光面に平行に移動させる構成とする。例えば、光照射部101は、光源121と、光源121からの光を偏向する偏向部材103とを備える構成とし、移動機構は、偏向部材103を移動させ、傾斜機構は、偏向部材103を傾斜させる構成とする。偏向部材103としては、ミラーやプリズム等を用いることができる。このような構成にすることにより、光源121を固定することができ、小型で軽量のミラー等の偏向部材103のみを移動および傾斜させることができる。よって、移動機構および傾斜機構を小型化することが可能になる。また、X線照射範囲表示部90として光源121を一つ備え、一つの光源121から4つの光照射部101の偏向部材103に配光する構成とすることも可能になる。 In the second embodiment, the moving mechanism of the light irradiation drive unit 190 is configured to move a part of the light irradiation unit 101 in parallel to the light receiving surface of the X-ray detection unit 2. For example, the light irradiation unit 101 includes a light source 121 and a deflecting member 103 that deflects light from the light source 121, the moving mechanism moves the deflecting member 103, and the tilting mechanism tilts the deflecting member 103. The configuration. As the deflection member 103, a mirror, a prism, or the like can be used. With such a configuration, the light source 121 can be fixed, and only the deflection member 103 such as a small and lightweight mirror can be moved and tilted. Therefore, the moving mechanism and the tilting mechanism can be reduced in size. In addition, it is possible to provide a configuration in which one light source 121 is provided as the X-ray irradiation range display unit 90 and light is distributed from one light source 121 to the deflection members 103 of the four light irradiation units 101.
 第2の実施形態の光照射駆動190の構成は、第1の実施形態とほぼ同じであるが、偏向部材103をシャフト108に固定するという点が第1の実施形態とは異なる。また、第1の実施形態では、光照射部101の光軸101aを軸111と一致するように移動および傾斜させる構成であったが、第2の実施形態では、偏向部材103で偏向した光95の光軸が、軸111と一致するように偏向部材103を傾斜させる。このため、ガイド部材(溝カム)106の溝106aの形状(軌道)が、第1の実施形態とは異なる。 The configuration of the light irradiation drive 190 of the second embodiment is almost the same as that of the first embodiment, but is different from the first embodiment in that the deflection member 103 is fixed to the shaft 108. In the first embodiment, the optical axis 101a of the light irradiation unit 101 is moved and inclined so as to coincide with the axis 111. However, in the second embodiment, the light 95 deflected by the deflecting member 103 is used. The deflecting member 103 is tilted so that the optical axis thereof coincides with the axis 111. Therefore, the shape (track) of the groove 106a of the guide member (groove cam) 106 is different from that of the first embodiment.
 偏向部材103がミラーである場合について、ガイド部材106の溝106の軌道について説明する。図7のように羽根75の先端とX線管装置70の焦点65を結ぶ軸111と、X線の光軸61とのなす角をθ1とし、軸111と腕部材103の軸とがなす角をθ3とする。また、土台102の移動方向とX線の光軸61との交点Oから、X線管装置70の焦点65までの距離をLとし、シャフト108の中心軸99からカムロール107の中心軸までの距離をrとする。支持部5の軸方向を、X線の光軸61方向をy軸、土台102の移動方向をx軸、上記交点Oを原点とする。軸111と偏向後の光95の光軸を一致させるためのカムロール107の中心の軌跡(x,y)は
(x,y)=
  (-Ltanθ1+rcos(90°-θ1-θ3)/2,rsin(90°-θ1-θ3)/2)  ・・・式(3)
となる。
In the case where the deflection member 103 is a mirror, the trajectory of the groove 106 of the guide member 106 will be described. As shown in FIG. 7, the angle formed between the axis 111 connecting the tip of the blade 75 and the focal point 65 of the X-ray tube device 70 and the optical axis 61 of the X-ray is θ1, and the angle formed between the axis 111 and the axis of the arm member 103 is Is θ3. The distance from the intersection O of the moving direction of the base 102 and the optical axis 61 of the X-ray to the focal point 65 of the X-ray tube device 70 is L, and the distance from the central axis 99 of the shaft 108 to the central axis of the cam roll 107 Is r. The axial direction of the support portion 5 is the X-ray optical axis 61 direction is the y-axis, the moving direction of the base 102 is the x-axis, and the intersection point O is the origin. The locus (x, y) of the center of the cam roll 107 for matching the axis 111 and the optical axis of the deflected light 95 is
(x, y) =
(-Ltanθ1 + rcos (90 ° -θ1-θ3) / 2, rsin (90 ° -θ1-θ3) / 2) Equation (3)
It becomes.
 よって、ガイド部材106の溝106aの形状を式(3)の軌跡に沿った形状にすることにより、偏向部材103で偏向後の光95の光軸を軸111に一致させることができる。すなわち、レーザー光95が羽根75の先端を通って常に焦点65を向くようになる。 Therefore, by making the shape of the groove 106a of the guide member 106 along the locus of the expression (3), the optical axis of the light 95 after being deflected by the deflecting member 103 can be made coincident with the axis 111. In other words, the laser light 95 always comes to the focal point 65 through the tip of the blade 75.
 他の構成は、第1の実施形態と同様であるので説明を省略する。 Other configurations are the same as those in the first embodiment, and thus description thereof is omitted.
 (第3の実施形態)
 ここで第3の実施形態のX線照射範囲表示部90について図8を用いて説明する。
(Third embodiment)
Here, the X-ray irradiation range display unit 90 of the third embodiment will be described with reference to FIG.
 第1および第2の実施形態では、カムロール107とガイド部材(カム溝)106を組み合わせたカム機構によって、光照射部101の移動量に応じて光照射部101を傾斜させる構成であったが、第3の実施形態では、光照射部101の移動と傾斜とを独立して制御する構成とする。これにより、X線発生部80の焦点65からX線検出部2までの距離を変更可能なX線撮影装置であっても、X線照射範囲31をX線照射範囲表示部90が表示できる。 In the first and second embodiments, the cam mechanism that combines the cam roll 107 and the guide member (cam groove) 106 is configured to incline the light irradiation unit 101 according to the amount of movement of the light irradiation unit 101. In the third embodiment, the movement and inclination of the light irradiation unit 101 are controlled independently. Thereby, even in an X-ray imaging apparatus that can change the distance from the focal point 65 of the X-ray generation unit 80 to the X-ray detection unit 2, the X-ray irradiation range display unit 90 can display the X-ray irradiation range 31.
 第3の実施形態のX線照射範囲表示部90は、X線発生部70に対するX線検出部2の位置を光軸61方向に移動可能にする駆動部78と、X線検出部2のX線発生部70に対する位置を検出するセンサー77と、土台102の法線方向に対して所望の角度で光照射部101を傾斜させる傾斜駆動部と、光照射部101の移動機構とを備えている。駆動部78は、例えばラックとピニオンを用いた駆動機構を用いる。センサー77は、ラックとピニオンの駆動量を検出することによりX線検出部2の位置を検出する。 The X-ray irradiation range display unit 90 of the third embodiment includes a drive unit 78 that enables the position of the X-ray detection unit 2 relative to the X-ray generation unit 70 to move in the direction of the optical axis 61, and the X-ray detection unit 2 X A sensor 77 that detects a position with respect to the line generation unit 70, an inclination driving unit that tilts the light irradiation unit 101 at a desired angle with respect to the normal direction of the base 102, and a moving mechanism of the light irradiation unit 101 are provided. . The drive unit 78 uses, for example, a drive mechanism using a rack and a pinion. The sensor 77 detects the position of the X-ray detection unit 2 by detecting the drive amount of the rack and pinion.
 傾斜駆動部は、第1の実施形態と同様のシャフト108と、シャフト108を所望の角度まで回転させるモーター110とを備えている。モーター110は、土台102に搭載されている。第1の実施形態の腕部材103、カムロール107およびガイド部材106は、第3の実施形態には備えられていない。 The tilt drive unit includes a shaft 108 similar to that in the first embodiment, and a motor 110 that rotates the shaft 108 to a desired angle. The motor 110 is mounted on the base 102. The arm member 103, the cam roll 107, and the guide member 106 of the first embodiment are not provided in the third embodiment.
 光照射部101の移動機構は、第1の実施形態の移動機構と同じであり、土台102、レール100、ベルト105、および、モーター104を含む。 The moving mechanism of the light irradiation unit 101 is the same as the moving mechanism of the first embodiment, and includes a base 102, a rail 100, a belt 105, and a motor 104.
 動作制御部150は、センサー77が検出したX線検出部2の位置から、土台102の移動方向と光軸61との交点Oから焦点65までの距離Lを演算により算出する。また、動作制御部150は、θ1の値を、羽根75の位置をセンサー76で検出して算出する。 The operation control unit 150 calculates a distance L from the intersection O between the moving direction of the base 102 and the optical axis 61 to the focal point 65 from the position of the X-ray detection unit 2 detected by the sensor 77 by calculation. Further, the operation control unit 150 calculates the value of θ1 by detecting the position of the blade 75 with the sensor 76.
 例えば、センサー76によりX線の光軸61と羽根75の先端との距離x1を検出し、予め求めておいた光軸61方向の羽根75と焦点65との距離L1を用いて、tanθ1=x1/L1により、θ1またはtanθ1の値を求める。求めたθ1またはtanθ1を式(2)に代入し、土台102の位置(x,y)を求める。式(2)で求めた位置(x,y)に土台106が移動するように、動作制御部150がモーター104の動作を制御する。 For example, the sensor 76 detects the distance x1 between the optical axis 61 of the X-ray and the tip of the blade 75, and uses the distance L1 between the blade 75 and the focal point 65 in the direction of the optical axis 61 that has been obtained in advance, tan θ1 = x1 The value of θ1 or tanθ1 is obtained from / L1. The obtained θ1 or tanθ1 is substituted into the equation (2), and the position (x, y) of the base 102 is obtained. The operation control unit 150 controls the operation of the motor 104 so that the base 106 moves to the position (x, y) obtained by Expression (2).
 また、動作制御部150は、傾斜駆動部のモーター110を制御し、土台102の法線方向に対して求めたθ1の角度まで光照射部101の光軸101aを傾斜させる。 Also, the operation control unit 150 controls the motor 110 of the tilt driving unit to tilt the optical axis 101a of the light irradiation unit 101 to the angle θ1 obtained with respect to the normal direction of the base 102.
 以上により、X線発生部80の焦点65からX線検出部2までの距離が可変であっても、光照射部101の光軸101aを、X線管装置60の焦点65と羽根75の先端を結ぶ軸111に一致させることができ、被検体3上のX線照射範囲31を光照射部101からの可視光で表示することができる。 Thus, even if the distance from the focal point 65 of the X-ray generation unit 80 to the X-ray detection unit 2 is variable, the optical axis 101a of the light irradiation unit 101 is connected to the focal point 65 of the X-ray tube device 60 and the tip of the blade 75. The X-ray irradiation range 31 on the subject 3 can be displayed with visible light from the light irradiation unit 101.
 (第4の実施形態)
 第4の実施形態では、X線発生部80に備えられた第2のX線照射範囲表示部71と、X線検出部2に備えられたX線照射範囲表示部90との切り替え制御について説明する。
(Fourth embodiment)
In the fourth embodiment, switching control between the second X-ray irradiation range display unit 71 provided in the X-ray generation unit 80 and the X-ray irradiation range display unit 90 provided in the X-ray detection unit 2 will be described. To do.
 第4の実施形態では、支持部5の移動量に応じて、X線照射範囲表示部90および第2のX線照射範囲表示部71のうちの一方を選択的に動作させる。これにより、被検体3の上方から可視光を照射してX線照射範囲301を表示し、操作者からは見えない被検体3の下方からはX線照射範囲301に可視光を照射しない構成とする。 In the fourth embodiment, one of the X-ray irradiation range display unit 90 and the second X-ray irradiation range display unit 71 is selectively operated according to the movement amount of the support unit 5. Accordingly, the X-ray irradiation range 301 is displayed by irradiating visible light from above the subject 3, and the X-ray irradiation range 301 is not irradiated from below the subject 3 that is not visible to the operator. To do.
 第4の実施形態のX線撮影装置は、図9のように円周方向移動機構6による支持部(Cアーム)5の円周方向への移動量を検出するセンサー161と、回転機構7による支持部5のX軸を中心とした回転移動量を検出するセンサー171を備えている。また、操作部20には、X線照射範囲310を可視光で表示するよう操作者が指示するためのスイッチ210が備えられている。 The X-ray imaging apparatus according to the fourth embodiment includes a sensor 161 that detects the amount of movement of the support portion (C arm) 5 in the circumferential direction by the circumferential movement mechanism 6 and the rotation mechanism 7 as shown in FIG. A sensor 171 that detects the rotational movement amount of the support portion 5 around the X axis is provided. The operation unit 20 is provided with a switch 210 for an operator to instruct the X-ray irradiation range 310 to be displayed with visible light.
 動作制御部150は、図10のフローに示すように、操作者がスイッチ210をオンにして、X線照射範囲310の可視光表示を指示した場合(ステップ1000)には、センサー161、171の検出結果を受け取る(ステップ1001)。そして、動作制御部150は、検出結果を用いて支持部(Cアーム)5の角度を求める等により、X線照射範囲表示部90および第2のX線照射範囲表示部71のうちのどちらが、被検体3の上方にあるかを判断する。 As shown in the flow of FIG. 10, when the operator turns on the switch 210 and instructs the visible light display of the X-ray irradiation range 310 (step 1000), the operation control unit 150 sets the sensors 161 and 171. A detection result is received (step 1001). Then, the operation control unit 150 uses the detection result to determine the angle of the support unit (C arm) 5, etc., which of the X-ray irradiation range display unit 90 and the second X-ray irradiation range display unit 71, It is determined whether the object 3 is above the subject 3.
 すなわち、X線発生部80が被検体3の上方にあるオーバーチューブの状態か、下方にあるアンダーチューブの状態かを判断する(ステップ1002)。X線発生部80が被検体3の上方にあるオーバーチューブの状態である場合には、第2のX線照射範囲表示部71が被検体3の上方にあるため、第2のX線照射範囲表示部71を動作させる。これにより、第2のX線照射範囲表示部71から可視光を照射し、X線照射範囲301を被検体3上に表示する(ステップ1003)。X線発生部80が被検体3の下方にあるアンダーチューブの状態である場合には、X線照射範囲表示 部90が被検体3の上方にあるため、X線照射範囲表示部90を動作させる。これにより、X線照射範囲表示部90の光照射部101から可視光を照射し、X線照射範囲301を被検体3上に表示する(ステップ1004)。動作させていないX線照射範囲表示部71,90の光照射部101はオフにし、光を照射しない。 That is, it is determined whether the X-ray generation unit 80 is in an overtube state above the subject 3 or an undertube state below the subject 3 (step 1002). When the X-ray generation unit 80 is in an overtube state above the subject 3, the second X-ray irradiation range is displayed because the second X-ray irradiation range display unit 71 is above the subject 3. The display unit 71 is operated. Thereby, visible light is irradiated from the second X-ray irradiation range display unit 71, and the X-ray irradiation range 301 is displayed on the subject 3 (step 1003). When the X-ray generation unit 80 is in the state of an undertube below the subject 3, the X-ray irradiation range display unit 90 is located above the subject 3, so the X-ray irradiation range display unit 90 is operated. . Thereby, visible light is irradiated from the light irradiation unit 101 of the X-ray irradiation range display unit 90, and the X-ray irradiation range 301 is displayed on the subject 3 (step 1004). The light irradiation unit 101 of the X-ray irradiation range display units 71 and 90 that are not operated is turned off and does not emit light.
 このように、第4の実施形態では、被検体の上方に位置するX線照射範囲表示部90および第2のX線照射範囲表示部71のいずれかを選択的に動作させるため、不要な光が出射されず、迷光が操作者や術者の妨げになるのを防止できる。また、消費電力を低減できるというメリットもある。 As described above, in the fourth embodiment, since either the X-ray irradiation range display unit 90 or the second X-ray irradiation range display unit 71 located above the subject is selectively operated, unnecessary light is emitted. Is not emitted, and stray light can be prevented from interfering with the operator and the operator. There is also an advantage that power consumption can be reduced.
 1 テーブル、2 X線検出部、3 被検体、5 支持部、6 円周方向移動機構、7 回転機構、8 スライド機構、9 上下動機構、20 操作部、30 高電圧発生部、40 画像処理部、50 画像表示部、51 支持駆動部、60 X線管装置、61 光軸(中心軸)、65 焦点、70 絞り装置、71 第2のX線照射範囲表示部、75 羽根、80 X線発生部、90 X線照射範囲表示部、101 光照射部、103 腕部材、106 ガイド部材(溝カム)、107 カムロール、111 軸、108 シャフト、150 動作制御部、200 本体、600 内部電源、500 外部電源 1 table, 2 X-ray detection unit, 3 subject, 5 support unit, 6 circumferential movement mechanism, 7 rotation mechanism, 8 slide mechanism, 9 vertical movement mechanism, 20 operation unit, 30 high voltage generation unit, 40 image processing Part, 50 image display part, 51 support drive part, 60 X-ray tube device, 61 optical axis (center axis), 65 focal point, 70 diaphragm device, 71 second X-ray irradiation range display part, 75 blades, 80 X-ray Generation unit, 90 X-ray irradiation range display unit, 101 light irradiation unit, 103 arm member, 106 guide member (groove cam), 107 cam roll, 111 shaft, 108 shaft, 150 operation control unit, 200 body, 600 internal power supply, 500 External power supply

Claims (12)

  1.  X線発生部と、前記X線発生部に対向して配置されたX線検出部と、前記X線発生部と前記X線検出部との間に被検体を配置するテーブルと、前記X線発生部と前記X線検出部とを支持し、両者の対向関係を保持したまま前記被検体の周囲を移動可能にする支持部と、を備え、
     前記X線検出部には、前記X線発生部が照射するX線の範囲を示す可視光を前記被検体に向かって出射するX線照射範囲表示部が備えられ、前記X線発生部には、前記X線発生部が照射するX線の範囲を示す可視光を前記被検体に向かって出射する第2のX線照射範囲表示部が備えられていることを特徴とするX線撮影装置。
    An X-ray generation unit, an X-ray detection unit disposed opposite to the X-ray generation unit, a table for disposing a subject between the X-ray generation unit and the X-ray detection unit, and the X-ray A support unit that supports the generation unit and the X-ray detection unit, and enables movement around the subject while maintaining a facing relationship between the two,
    The X-ray detection unit is provided with an X-ray irradiation range display unit that emits visible light toward the subject indicating a range of X-rays irradiated by the X-ray generation unit. An X-ray imaging apparatus comprising: a second X-ray irradiation range display unit that emits visible light indicating a range of X-rays irradiated by the X-ray generation unit toward the subject.
  2.  請求項1に記載のX線撮影装置であって、
     前記X線発生部は、X線管装置と、前記X線管装置から出射されたX線の一部を遮蔽する遮蔽部と、前記遮蔽部を移動させる遮蔽駆動部とをさらに備え、前記X線照射範囲表示部は、可視光を照射する光照射部と、前記光照射部の光軸が前記遮蔽部の先端と前記X線管装置の焦点とを結ぶ軸に一致するように前記光照射部の少なくとも一部を移動させる光照射駆動部とを備えることを特徴とするX線撮影装置。
    The X-ray imaging apparatus according to claim 1,
    The X-ray generation unit further includes an X-ray tube device, a shielding unit that shields a part of the X-rays emitted from the X-ray tube device, and a shielding driving unit that moves the shielding unit, The irradiation range display unit includes a light irradiation unit that irradiates visible light, and the light irradiation so that an optical axis of the light irradiation unit coincides with an axis that connects a tip of the shielding unit and a focal point of the X-ray tube apparatus. An X-ray imaging apparatus comprising: a light irradiation drive unit that moves at least a part of the unit.
  3.  請求項2に記載のX線撮影装置において、
     前記光照射駆動部は、前記光照射部の少なくとも一部を前記X線検出部の受光面に平行に移動させる移動機構と、前記光照射部の光軸を傾斜させる傾斜機構とを含むことを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 2,
    The light irradiation drive unit includes a moving mechanism that moves at least a part of the light irradiation unit in parallel with the light receiving surface of the X-ray detection unit, and an inclination mechanism that tilts the optical axis of the light irradiation unit. A featured X-ray imaging system.
  4.  請求項3に記載のX線撮影装置において、
     前記傾斜機構は、前記光照射部の少なくとも一部に固定された腕部材と、前記腕部材の先端の移動を所定の軌跡に沿ってガイドするガイド部材とを含み、前記移動機構による前記光照射部の移動量に応じた傾斜角で前記光照射部の少なくとも一部を傾斜させることを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 3,
    The tilt mechanism includes an arm member fixed to at least a part of the light irradiation unit, and a guide member that guides the movement of the tip of the arm member along a predetermined locus, and the light irradiation by the movement mechanism. An X-ray imaging apparatus, wherein at least a part of the light irradiation unit is inclined at an inclination angle corresponding to a movement amount of the unit.
  5.  請求項3に記載のX線撮影装置において、
     前記移動機構は、前記光照射部全体を移動させ、前記傾斜機構は、前記光照射部全体を傾斜させることを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 3,
    The X-ray imaging apparatus, wherein the moving mechanism moves the entire light irradiation unit, and the tilt mechanism tilts the entire light irradiation unit.
  6.  請求項3に記載のX線撮影装置において、
     前記光照射部は、光源と、前記光源からの光を偏向する偏向部材とを備え、前記移動機構は、前記偏向部材を移動させ、前記傾斜機構は、前記偏向部材を傾斜させることを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 3,
    The light irradiation unit includes a light source and a deflection member that deflects light from the light source, the movement mechanism moves the deflection member, and the tilt mechanism tilts the deflection member. X-ray equipment.
  7.  請求項4に記載のX線撮影装置において、
     前記遮蔽部の位置に応じて、前記移動機構の移動量と前記傾斜機構の傾斜量とを制御する制御部を有することを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 4,
    An X-ray imaging apparatus comprising: a control unit that controls a movement amount of the moving mechanism and a tilt amount of the tilt mechanism according to a position of the shielding unit.
  8.  請求項7に記載のX線撮影装置において、
     前記制御部は、更に前記X線発生部と前記X線検出部との距離に応じて、前記移動機構の移動量と前記傾斜機構の傾斜量とを制御することを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 7,
    The control unit further controls an amount of movement of the moving mechanism and an amount of inclination of the tilt mechanism according to a distance between the X-ray generation unit and the X-ray detection unit. .
  9.  請求項4に記載のX線撮影装置において、
     前記遮蔽部の位置に応じて、前記移動機構の移動量を制御する制御部を有することを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 4,
    An X-ray imaging apparatus comprising: a control unit that controls a moving amount of the moving mechanism according to a position of the shielding unit.
  10.  請求項2に記載のX線撮影装置であって、
     前記遮蔽部は複数あり、前記光源は前記遮蔽部ごとに配置されていることを特徴とするX線撮影装置。
    The X-ray imaging apparatus according to claim 2,
    An X-ray imaging apparatus, wherein there are a plurality of shielding parts, and the light source is arranged for each shielding part.
  11.  請求項1に記載のX線撮影装置であって、
     前記支持部の移動量に応じて、前記X線照射範囲表示部および前記第2のX線照射範囲表示部のうちの一方を選択的に動作させる制御部を有することを特徴とするX線撮影装置。
    The X-ray imaging apparatus according to claim 1,
    X-ray imaging, comprising: a control unit that selectively operates one of the X-ray irradiation range display unit and the second X-ray irradiation range display unit according to the movement amount of the support unit apparatus.
  12.  請求項11に記載のX線撮影装置であって、
     前記制御部は、前記支持部により、前記X線発生部が前記X線検出部より低い位置に保持された場合は、前記X線照射範囲表示部を選択し動作させ、前記X線発生部が前記X線検出部より高い位置に保持された場合は、前記第2のX線照射範囲表示部を選択し動作させることを特徴とするX線撮影装置。
    The X-ray imaging apparatus according to claim 11,
    When the X-ray generation unit is held at a position lower than the X-ray detection unit by the support unit, the control unit selects and operates the X-ray irradiation range display unit, and the X-ray generation unit An X-ray imaging apparatus that selects and operates the second X-ray irradiation range display unit when held at a position higher than the X-ray detection unit.
PCT/JP2014/055733 2013-03-18 2014-03-06 X-ray imaging apparatus WO2014148266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015506694A JPWO2014148266A1 (en) 2013-03-18 2014-03-06 X-ray equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013055526 2013-03-18
JP2013-055526 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148266A1 true WO2014148266A1 (en) 2014-09-25

Family

ID=51579954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055733 WO2014148266A1 (en) 2013-03-18 2014-03-06 X-ray imaging apparatus

Country Status (2)

Country Link
JP (1) JPWO2014148266A1 (en)
WO (1) WO2014148266A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520363A (en) * 2013-04-23 2016-07-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Tube-detector alignment using light projection
JP2018020098A (en) * 2016-06-13 2018-02-08 シャンハイ ユナイティッド イメージング ヘルスケア カンパニー リミティッドShanghai United Imaging Healthcare Co., Ltd. System and method for x-ray scanner positioning
CN107693118A (en) * 2016-08-08 2018-02-16 上海联影医疗科技有限公司 X-ray imaging equipment and its target area indicating means
JP2021053217A (en) * 2019-09-30 2021-04-08 富士フイルム株式会社 Radiographic apparatus
KR102502082B1 (en) * 2022-06-22 2023-02-20 이자성 Device for veterinary x-ray imaging and method of controlling the device
KR102537577B1 (en) * 2022-10-04 2023-05-26 이자성 Veterinary x-ray imaging apparatus for an operator
KR102572436B1 (en) * 2022-11-09 2023-08-29 이자성 The guide lamp system of veterinary x-ray imaging apparatus for an operator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122849A (en) * 1984-09-12 1986-06-10 チヤ−ルズ レスクレニア− X-ray beam display apparatus
JPS61276546A (en) * 1985-05-31 1986-12-06 株式会社島津製作所 X-ray examination apparatus
JPH0576410U (en) * 1992-03-26 1993-10-19 株式会社日立メディコ X-ray equipment
JP2001112750A (en) * 1999-09-14 2001-04-24 Koninkl Philips Electronics Nv X-ray apparatus
JP2007151733A (en) * 2005-12-02 2007-06-21 Hitachi Medical Corp Radiographic apparatus
JP3147278U (en) * 2008-08-21 2008-12-25 真史 西川 Simple non-explosive fluoroscopic position determination device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340332A (en) * 2000-06-05 2001-12-11 Hitachi Medical Corp Radiodiagnosing device
JP2006006388A (en) * 2004-06-22 2006-01-12 Shimadzu Corp Radiographic apparatus
JP5743617B2 (en) * 2011-03-11 2015-07-01 株式会社東芝 X-ray CT system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122849A (en) * 1984-09-12 1986-06-10 チヤ−ルズ レスクレニア− X-ray beam display apparatus
JPS61276546A (en) * 1985-05-31 1986-12-06 株式会社島津製作所 X-ray examination apparatus
JPH0576410U (en) * 1992-03-26 1993-10-19 株式会社日立メディコ X-ray equipment
JP2001112750A (en) * 1999-09-14 2001-04-24 Koninkl Philips Electronics Nv X-ray apparatus
JP2007151733A (en) * 2005-12-02 2007-06-21 Hitachi Medical Corp Radiographic apparatus
JP3147278U (en) * 2008-08-21 2008-12-25 真史 西川 Simple non-explosive fluoroscopic position determination device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520363A (en) * 2013-04-23 2016-07-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Tube-detector alignment using light projection
JP7001371B2 (en) 2016-06-13 2022-01-19 シャンハイ ユナイティッド イメージング ヘルスケア カンパニー リミティッド X-ray scanner positioning system and method
JP2018020098A (en) * 2016-06-13 2018-02-08 シャンハイ ユナイティッド イメージング ヘルスケア カンパニー リミティッドShanghai United Imaging Healthcare Co., Ltd. System and method for x-ray scanner positioning
US10638985B2 (en) 2016-06-13 2020-05-05 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for x-ray scanner positioning
US11564644B2 (en) 2016-06-13 2023-01-31 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for X-ray scanner positioning
US11000243B2 (en) 2016-06-13 2021-05-11 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for X-ray scanner positioning
US11006908B2 (en) 2016-06-13 2021-05-18 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for X-ray scanner positioning
CN107693118A (en) * 2016-08-08 2018-02-16 上海联影医疗科技有限公司 X-ray imaging equipment and its target area indicating means
CN107693118B (en) * 2016-08-08 2020-10-16 上海联影医疗科技有限公司 X-ray imaging apparatus and target area indication method thereof
US11202608B2 (en) 2019-09-30 2021-12-21 Fujifilm Corporation Radiography apparatus
JP7189108B2 (en) 2019-09-30 2022-12-13 富士フイルム株式会社 radiography equipment
JP2021053217A (en) * 2019-09-30 2021-04-08 富士フイルム株式会社 Radiographic apparatus
KR102502082B1 (en) * 2022-06-22 2023-02-20 이자성 Device for veterinary x-ray imaging and method of controlling the device
KR102537577B1 (en) * 2022-10-04 2023-05-26 이자성 Veterinary x-ray imaging apparatus for an operator
KR102572436B1 (en) * 2022-11-09 2023-08-29 이자성 The guide lamp system of veterinary x-ray imaging apparatus for an operator
WO2024101744A1 (en) * 2022-11-09 2024-05-16 이자성 Guide lamp system of x-ray imaging apparatus for veterinary operator

Also Published As

Publication number Publication date
JPWO2014148266A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014148266A1 (en) X-ray imaging apparatus
US9730653B2 (en) X-ray CT apparatus
JP4922586B2 (en) Equipment for radiation projection tomography
US7020245B2 (en) Multileaf collimator
US6549609B1 (en) X-ray generator with a limiting device
JP5727147B2 (en) X-ray CT system
WO2015107660A1 (en) Multi-leaf collimator and radiation therapy device
JP6654102B2 (en) Particle beam therapy system
JP2009077759A (en) X-ray diagnostic device
WO2019131859A1 (en) X-ray ct imaging device
EP3369376B1 (en) X-ray ct scanning apparatus and scanning method thereof
JP4436343B2 (en) Multi-leaf collimator and radiotherapy apparatus assembly method
GB2086700A (en) Bi-plane angiographic apparatus
US11280747B2 (en) Measurement system and method for operating a measurement system
JP5680510B2 (en) Charged particle beam irradiation equipment
KR101621228B1 (en) Shooting point and area display device of collimator for x-ray equipment
JPWO2020025779A5 (en)
JP6560322B2 (en) X-ray CT system
JP2021097809A (en) X-ray fluoroscopic imaging apparatus and x-ray fluoroscopic imaging system
JP4619282B2 (en) X-ray analyzer
KR101793100B1 (en) X-ray examination apparatus
KR102503248B1 (en) Auto control apparatus of x-ray radiation field range
KR102521529B1 (en) Height and angle adjustable apparatus of X-ray generator
KR101474926B1 (en) X-ray imaging apparatus
KR102521549B1 (en) Smart image diagnostic apparatus for medical

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767440

Country of ref document: EP

Kind code of ref document: A1