WO2014142280A1 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2014142280A1
WO2014142280A1 PCT/JP2014/056795 JP2014056795W WO2014142280A1 WO 2014142280 A1 WO2014142280 A1 WO 2014142280A1 JP 2014056795 W JP2014056795 W JP 2014056795W WO 2014142280 A1 WO2014142280 A1 WO 2014142280A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
secondary battery
battery
Prior art date
Application number
PCT/JP2014/056795
Other languages
French (fr)
Japanese (ja)
Inventor
狩野 巌大郎
新田 芳明
聡 市川
井深 重夫
健児 小原
真規 末永
高谷 真弘
邦治 野元
珠生 平井
加世田 学
学 西嶋
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015505581A priority Critical patent/JP6070822B2/en
Publication of WO2014142280A1 publication Critical patent/WO2014142280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a nonaqueous electrolyte secondary battery generally includes a positive electrode in which a positive electrode active material or the like is applied to a current collector, and a negative electrode in which a negative electrode active material or the like is applied to a current collector. It has the structure connected through the electrolyte layer holding electrolyte gel. Then, ions such as lithium ions are occluded / released in the electrode active material, thereby causing a charge / discharge reaction of the battery.
  • non-aqueous electrolyte secondary batteries with a low environmental load are being used not only for portable devices but also for power supply devices for electric vehicles such as hybrid vehicles (HEV), electric vehicles (EV), and fuel cell vehicles. .
  • HEV hybrid vehicles
  • EV electric vehicles
  • fuel cell vehicles fuel cell vehicles.
  • Non-aqueous electrolyte secondary batteries intended for application to electric vehicles are required to have high output and high capacity.
  • a positive electrode active material used for a positive electrode of a non-aqueous electrolyte secondary battery for an electric vehicle a lithium-cobalt composite oxide, which is a layered composite oxide, can obtain a high voltage of 4V and has a high energy density.
  • cobalt which is a raw material
  • there is anxiety in terms of supply of raw materials considering the possibility that demand will increase significantly in the future.
  • the price of cobalt raw materials may rise. Therefore, a composite oxide having a low cobalt content is desired.
  • Lithium manganese composite oxide (LiMn 2 O 4 ) has a spinel structure and functions as a 4V-class positive electrode material between the composition and ⁇ -MnO 2 . Since the spinel structure lithium manganese composite oxide has a three-dimensional host structure different from the layered structure of LiCoO 2 and the like, most of the theoretical capacity can be used, and excellent cycle characteristics are expected. Yes.
  • lithium ion secondary batteries using lithium manganese composite oxide as a positive electrode material cannot avoid capacity deterioration that gradually decreases in capacity due to repeated charge and discharge, which is great for practical use. The problem remained.
  • Japanese Patent Application Laid-Open No. 2000-77071 discloses a lithium material having a predetermined specific surface area as a positive electrode material in addition to a lithium manganese composite oxide.
  • a technique of further using a nickel-based composite oxide LiNiO 2 , Li 2 NiO 2 , LiNi 2 O 4 , Li 2 Ni 2 O 4 , LiNi 1-x MxO 2, etc. is disclosed. According to Japanese Patent Application Laid-Open No.
  • the technique related to Japanese Patent Laid-Open No. 2000-77071 does not take into account the required performance of a large battery for an electric vehicle. According to the study by the present inventors, it has been found that even if the technique proposed in the conventional consumer use is applied as it is to a large battery for an electric vehicle, sufficient battery performance is not exhibited. More specifically, a large battery for an electric vehicle requires a high output and a large capacity secondary battery. However, the secondary battery disclosed in Japanese Patent Application Laid-Open No. 2000-77071 is under a high output condition. It has been found that the resistance change with the progress of the depth of discharge is large and the amount of electricity that can be taken out decreases at the end of the discharge.
  • the present invention is assumed to be used particularly at a high output among large-sized nonaqueous electrolyte secondary batteries that can be used for driving electric vehicles and the like (internal resistance is 10 m ⁇ / Ah (SOC 50%) or less). It is an object of the present invention to provide means for suppressing a change in resistance accompanying the depth of discharge and improving discharge rate characteristics in a small battery.
  • the present inventors have accumulated earnest research.
  • the positive electrode active material including the spinel-based manganese positive electrode active material and the lithium nickel-based composite oxide
  • the above-described problem is solved by setting the mixing ratio of the lithium nickel-based composite oxide within a specific range. I found.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat (stacked) bipolar type, which is an embodiment of a non-aqueous electrolyte secondary battery. It is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of a nonaqueous electrolyte secondary battery.
  • a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material layer containing a negative electrode active material on the surface of the negative electrode current collector are provided.
  • a power generation element including a formed negative electrode and a separator; wherein the positive electrode active material includes a spinel-based manganese positive electrode active material and a lithium nickel-based composite oxide; and the positive electrode active material is 100% by weight.
  • a non-aqueous electrolyte secondary battery is provided in which the mixing ratio of the lithium nickel-based composite oxide is 30% by weight or more and the internal resistance is 10 m ⁇ / Ah or less (SOC 50%).
  • the lithium nickel-based composite oxide sufficiently contributes to the discharge even at the end of discharge, it is possible to suppress a change in resistance associated with the depth of discharge and improve the amount of electricity that can be taken out at the end of discharge.
  • a non-aqueous electrolyte secondary battery having excellent discharge rate characteristics can be provided, particularly in a large non-aqueous electrolyte secondary battery having a small internal resistance of 10 m ⁇ / Ah (SOC 50%) or less.
  • FIG. 1 is a schematic cross-sectional view schematically showing an outline of a stacked battery as an embodiment of the battery of the present invention.
  • the flat type (stacked type) lithium ion secondary battery shown in FIG. 1 will be described in detail as an example, but the technical scope of the present invention is only such a form. Not limited to.
  • FIG. 1 is a schematic cross-sectional view schematically showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat type (stacked type) bipolar type.
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 29 that is an exterior body.
  • the power generation element 21 has a configuration in which a positive electrode, a separator 17, and a negative electrode are stacked.
  • the separator 17 contains a nonaqueous electrolyte (for example, a liquid electrolyte).
  • the positive electrode has a structure in which the positive electrode active material layers 15 are disposed on both surfaces of the positive electrode current collector 12.
  • the negative electrode has a structure in which the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11.
  • the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 15 and the negative electrode active material layer 13 adjacent thereto face each other with a separator 17 therebetween.
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked so that they are electrically connected in parallel.
  • the negative electrode active material layer 13 is arrange
  • the positive electrode current collector 12 and the negative electrode current collector 11 are each provided with a positive electrode current collector plate (tab) 27 and a negative electrode current collector plate (tab) 25 that are electrically connected to the respective electrodes (positive electrode and negative electrode). It has the structure led out of the battery exterior material 29 so that it may be pinched
  • the positive electrode current collector 27 and the negative electrode current collector 25 are ultrasonically welded to the positive electrode current collector 12 and the negative electrode current collector 11 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.
  • FIG. 1 shows a flat battery (stacked battery) that is not a bipolar battery, but a positive electrode active material layer that is electrically coupled to one surface of the current collector and the opposite side of the current collector.
  • a bipolar battery including a bipolar electrode having a negative electrode active material layer electrically coupled to the surface.
  • one current collector also serves as a positive electrode current collector and a negative electrode current collector.
  • the positive electrode according to the present invention has a configuration in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector.
  • the positive electrode current collector is made of a conductive material.
  • the conductive material is not particularly limited as long as it has conductivity, and conventionally known materials such as metals and conductive polymers can be appropriately used. Specifically, at least one selected from the group consisting of Fe, Cr, Ni, Mn, Ti, Mo, V, Nb, Al, Cu, Ag, Au, Pt and carbon, for example, two or more
  • the current collector material such as stainless steel made of the above alloy can be preferably used.
  • a Ni / Al clad material, a Cu / Al clad material, or a plating material obtained by combining these current collector materials can be preferably used.
  • the current collector may be a current collector in which the surface of a metal (excluding Al) as the current collector material is coated with Al as the other current collector material. Moreover, you may use the electrical power collector which bonded together the metal foil which is two or more said electrical power collector materials depending on the case.
  • the thickness of the positive electrode current collector is not particularly limited, but is usually 1 to 100 ⁇ m, preferably about 1 to 50 ⁇ m.
  • the weight per unit area of the positive electrode is preferably 30 mg / cm 2 or less, and preferably 25 mg / cm 2 or less, from the viewpoint of suppressing a rapid decrease in battery discharge rate characteristics. Is more preferable.
  • the lower limit of the basis weight of the electrode is not particularly defined from the viewpoint of the battery discharge rate characteristics, but is more preferably 10 mg / cm 2 or more from the viewpoint of the electrode preparation process or the battery energy density. Further, the basis weight on both surfaces of the electrode may be the same or different, but is more preferably the same.
  • the packing density of the positive electrode is 2.5 to 3.5 g / cm 3 from the viewpoint of suppressing a rapid decrease in battery discharge rate characteristics in the case of a large current. More preferably, it is set to ⁇ 3.3 g / cm 3 .
  • the positive electrode according to the present invention it is preferable to satisfy at least one of the preferable range of the basis weight and the preferable range of the packing density, and more preferable to satisfy both the preferable range of the basis weight and the preferable range of the packing density. .
  • the positive electrode active material includes a spinel manganese positive electrode active material and a lithium nickel composite oxide.
  • the spinel manganese positive electrode active material is not particularly limited, and a conventional lithium manganese composite oxide having a spinel structure is used.
  • the composition of the lithium nickel composite oxide according to the present invention is not specifically limited as long as it is composed of a composite oxide containing lithium and nickel.
  • a typical example of a composite oxide containing lithium and nickel is lithium nickel-based composite oxide (LiNiO 2 ).
  • a composite oxide in which a part of nickel atoms of a lithium nickel composite oxide is substituted with another metal atom is more preferable.
  • a preferable example is a lithium-nickel-manganese-cobalt composite oxide (hereinafter simply referred to as “NMC”). Or a lithium-nickel-cobalt-aluminum composite oxide.
  • the NMC composite oxide has a layered crystal structure in which a lithium atomic layer and a transition metal (Mn, Ni, and Co are arranged in an orderly manner) atomic layers are alternately stacked via an oxygen atomic layer.
  • a lithium atomic layer and a transition metal (Mn, Ni, and Co are arranged in an orderly manner
  • One Li atom is contained per atom, and the amount of Li that can be taken out is twice that of the spinel-based lithium manganese oxide, that is, the supply capacity is doubled, and a high capacity can be obtained.
  • it since it has higher thermal stability than LiNiO 2 , it is particularly advantageous among the nickel-based composite oxides used as the positive electrode active material.
  • the NMC composite oxide includes a composite oxide in which a part of the transition element is substituted with another metal element.
  • Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn, etc., preferably Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, more preferably Ti, Zr, P, Al, Mg, From the viewpoint of improving cycle characteristics, Ti, Zr, Al, Mg, and Cr are more preferable.
  • the lithium-nickel-based composite oxide since the theoretical discharge capacity is high, preferably the general formula (1): Li a Ni b M c Co d O 2 (
  • a represents the atomic ratio of Li
  • b represents the atomic ratio of Ni
  • c represents the atomic ratio of M
  • d represents the atomic ratio of Co.
  • the composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • Ti and the like partially replace the transition metal in the crystal lattice.
  • a part of the transition element is substituted with another metal element, and it is particularly preferable that 0 ⁇ c ⁇ 0.5 in the general formula (1). Since at least one selected from the group consisting of Mn, Al, Ti, Zr, Nb, W, P, Mg, V, Ca, Sr and Cr is dissolved, the crystal structure is stabilized. It is considered that even when charging and discharging are repeated, a decrease in battery capacity can be prevented and excellent cycle characteristics can be realized.
  • the inventors of the present application have non-uniform metal compositions of nickel, manganese, and cobalt, such as LiNi 0.5 Mn 0.3 Co 0.2 O 2. It was found that the influence of strain / cracking of the composite oxide at the time of charge / discharge is increased. This is presumably because the stress applied to the inside of the particles during expansion and contraction is distorted and cracks are more likely to occur in the composite oxide due to the non-uniform metal composition. Therefore, for example, a complex oxide having a rich Ni abundance ratio (for example, LiNi 0.8 Mn 0.1 Co 0.1 O 2 ) or a complex oxide having a uniform ratio of Ni, Mn, and Co.
  • the lithium nickel composite oxide according to the present invention can be prepared by selecting various known methods such as a coprecipitation method and a spray drying method.
  • the coprecipitation method is preferably used because the composite oxide of the present invention is easy to prepare.
  • nickel-manganese-cobalt composite hydroxide after producing a nickel-manganese-cobalt composite hydroxide by a coprecipitation method as in the method described in JP2011-105588A, nickel-manganese-cobalt composite hydroxide; It can be obtained by mixing and baking with a lithium compound.
  • the raw material compound of the lithium nickel composite oxide of the present invention for example, Ni compound, Co compound, Mn compound or Al compound is dissolved in an appropriate solvent such as water so as to have a desired active material composition.
  • the Ni compound, Co compound, Mn compound, and Al compound include sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, and halides of the metal elements.
  • Specific examples of Ni compounds, Mn compounds, and Co compounds include, but are not limited to, nickel sulfate, cobalt sulfate, manganese sulfate, aluminum sulfate, nickel acetate, cobalt acetate, manganese acetate, and aluminum acetate.
  • Ti, Zr as a metal element that substitutes a part of the layered lithium metal composite oxide constituting the active material so that the composition of the desired active material can be obtained.
  • Nb, W, P, Al, Mg, V, Ca, Sr, and a compound containing at least one metal element such as Cr may be further mixed.
  • the coprecipitation reaction can be performed by neutralization and precipitation reaction using the above raw material compound and an alkaline solution.
  • the metal composite hydroxide and metal composite carbonate containing the metal contained in the said raw material compound are obtained.
  • the alkaline solution for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, but sodium hydroxide, sodium carbonate or a mixed solution thereof is preferably used for the neutralization reaction. .
  • an aqueous ammonia solution or an ammonium salt is preferably used for the complex reaction.
  • the addition amount of the alkaline solution used for the neutralization reaction may be an equivalent ratio of 1.0 with respect to the neutralized content of all the metal salts contained, but it is preferable to add the alkali excess together for pH adjustment.
  • the addition amount of the aqueous ammonia solution or ammonium salt used for the complex reaction is preferably such that the ammonia concentration in the reaction solution is in the range of 0.01 to 2.00 mol / l.
  • the pH of the reaction solution is preferably controlled in the range of 10.0 to 13.0.
  • the reaction temperature is preferably 30 ° C. or higher, more preferably 30 to 60 ° C.
  • the composite hydroxide obtained by the coprecipitation reaction is then preferably suction filtered, washed with water and dried.
  • a nickel-manganese-cobalt composite hydroxide, or a nickel-cobalt-aluminum composite hydroxide is mixed with a lithium compound and fired to obtain a lithium-nickel-manganese-cobalt composite hydroxide or lithium-nickel.
  • a cobalt-aluminum composite hydroxide can be obtained.
  • the Li compound include lithium hydroxide or a hydrate thereof, lithium peroxide, lithium nitrate, and lithium carbonate.
  • the firing treatment is preferably performed in two stages (temporary firing and main firing).
  • a composite oxide can be obtained efficiently by two-stage firing.
  • the pre-baking conditions are not particularly limited, but the rate of temperature rise is preferably from room temperature to 1 to 20 ° C./min.
  • the atmosphere is preferably in air or in an oxygen atmosphere.
  • the firing temperature is preferably 700 to 1000 ° C., more preferably 650 to 750 ° C.
  • the firing time is preferably 3 to 20 hours, and more preferably 4 to 6 hours.
  • the conditions for the main firing are not particularly limited, but the rate of temperature rise is preferably from room temperature to 1 to 20 ° C./min.
  • the atmosphere is preferably in air or in an oxygen atmosphere.
  • the firing temperature is preferably 700 to 1000 ° C., more preferably 850 to 1100 ° C.
  • the firing time is preferably 3 to 20 hours, and more preferably 8 to 12 hours.
  • the method includes, in advance, nickel, cobalt, manganate or aluminum Method of mixing, method of adding simultaneously with nickel, cobalt, manganate or aluminumate, method of adding to reaction solution during reaction, nickel-cobalt-manganese composite hydroxide or nickel-cobalt-aluminum together with Li compound Any means such as a method of adding to the composite hydroxide may be used.
  • the composite oxide of the present invention can be produced by appropriately adjusting the reaction conditions such as the pH of the reaction solution, the reaction temperature, the reaction concentration, the addition rate, the stirring output, and the stirring rate.
  • the present inventors are proceeding with studies to solve the above problems in a non-aqueous electrolyte secondary battery having an internal resistance of 10 m ⁇ / Ah or less (SOC 50%), which is assumed to be used under high output conditions. It was.
  • the internal resistance of the battery is one of indexes indicating its input / output performance.
  • the internal resistance of a large secondary battery used in an automobile or the like is as small as possible within a designable range.
  • the inventors of the present invention have assumed that the non-aqueous electrolyte secondary battery targeted by the present invention is a battery whose internal resistance is 10 m ⁇ / Ah (SOC 50%) or less as a battery expected to be used under high output conditions. We decided to proceed with the investigation.
  • the inventors have found that excellent discharge rate characteristics can be obtained by setting the mixing ratio of the lithium nickel composite oxide to 100% by weight of the positive electrode active material to 30% by weight or more.
  • the positive electrode active material according to the present invention may be composed of only two types of active materials of a spinel-based manganese positive electrode active material and a lithium nickel-based composite oxide, and other positive electrode active materials as long as the effects of the present invention are not impaired. May be included.
  • the mixing ratio of the lithium nickel composite oxide with respect to 100% by weight of the positive electrode active material is 30% by weight. This means that the weight ratio of the lithium nickel composite oxide and the spinel manganese positive electrode active material is 30:70.
  • the mixing ratio of the lithium nickel composite oxide to 100% by weight of the positive electrode active material is preferably 30 to 90% by weight, more preferably 50 to 80% by weight. As described above, when the mixing ratio of the lithium nickel composite oxide is less than 30% by weight, particularly in a secondary battery having an internal resistance of 10 m ⁇ / Ah or less (SOC 50%), the lithium nickel composite is at the end of discharge. The reaction ratio of the oxide is increased, and the discharge rate characteristics are deteriorated.
  • the positive electrode active material layer of the present invention includes a positive electrode material having a core portion containing the lithium nickel composite oxide and a shell portion containing a lithium metal composite oxide different from the lithium nickel composite oxide. But you can.
  • a core-shell structure further improves the cycle characteristics of the nonaqueous electrolyte secondary battery.
  • the present inventors set a hypothesis that Ni may be deactivated in the particle surface layer portion and may not substantially contribute to charge / discharge.
  • Such a core-shell type positive electrode active material can be produced by the method described in Japanese Patent Application Laid-Open No. 2007-213866.
  • primary particles are aggregated to form secondary particles.
  • the porosity of the secondary particles is preferably 2 to less than 10% from the viewpoint of cycle characteristics and volume energy density.
  • the porosity refers to the area ratio of the void portion to the sum of the area of the primary particle and the area of the void portion in the cross section of the secondary particle.
  • the average particle size of the positive electrode active material is not particularly limited, but is preferably 6 to 11 ⁇ m, more preferably 7 to 10 ⁇ m in terms of secondary particle size from the viewpoint of increasing output.
  • the average particle diameter of the primary particles is 0.4 to 0.65 ⁇ m, more preferably 0.45 to 0.55 ⁇ m.
  • the “particle diameter” in the present specification means the maximum distance L among the distances between any two points on the particle outline.
  • the average particle diameter the average particle diameter of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). A value calculated as a value is adopted.
  • the positive electrode active material of the present invention preferably has a specific surface area of 0.30 to 1.0 m 2 / g.
  • the specific surface area of the active material is in such a range, the reaction area of the active material is ensured and the internal resistance of the battery is reduced, so that the occurrence of polarization during electrode reaction can be minimized.
  • the occurrence of polarization causes side reactions such as decomposition of the electrolytic solution and oxidative decomposition of the surface of the electrode material. Therefore, it is preferable to minimize the occurrence of polarization.
  • the specific surface area is 0.30 to 0.7 m 2 / g.
  • the lithium nickel composite oxide of the present invention has (1) a true density of 4.40 to 4.80 g / cm 3 , or (2) a specific surface area of 0.30 to 1.0 m 2 / g. It is preferable to satisfy at least one of the above, and it is more preferable to satisfy both (1) and (2).
  • the positive electrode active material content in the positive electrode active material layer is preferably 85 to 99.5% by weight.
  • the positive electrode active material layer according to the present invention is provided with a conductive additive, a binder, an electrolyte (such as a polymer matrix, an ion conductive polymer, an electrolytic solution) and an ion conductivity as necessary. It further includes other additives such as lithium salts.
  • binder Although it does not specifically limit as a binder used for a positive electrode active material layer, for example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof.
  • Thermoplastic polymers such as products, polyvinylidene fluoride (P
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but preferably 0.5 to 15% by weight with respect to the active material layer. More preferably, it is 1 to 10% by weight.
  • the conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • Examples of the conductive assistant include carbon materials such as carbon black such as ketjen black and acetylene black, graphite, and carbon fiber.
  • Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3. It is done.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer described later is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to. As an example, the thickness of each active material layer is about 2 to 100 ⁇ m.
  • the negative electrode according to the present invention has a configuration in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of a negative electrode current collector.
  • the negative electrode current collector is composed of a conductive material.
  • the negative electrode active material layer contains an active material, and other additives such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt to enhance ionic conductivity as necessary.
  • a conductive additive such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt to enhance ionic conductivity as necessary.
  • An agent is further included.
  • Other additives such as conductive assistants, binders, electrolytes (polymer matrix, ion conductive polymers, electrolytes, etc.) and lithium salts for improving ion conductivity are those described in the above positive electrode active material layer column. It is the same.
  • the negative electrode active material layer preferably contains at least an aqueous binder.
  • a water-based binder has a high binding power.
  • it is easy to procure water as a raw material and since steam is generated at the time of drying, the capital investment in the production line can be greatly suppressed, and the environmental load can be reduced. There is.
  • the water-based binder refers to a binder using water as a solvent or a dispersion medium, and specifically includes a thermoplastic resin, a polymer having rubber elasticity, a water-soluble polymer, or a mixture thereof.
  • the binder using water as a dispersion medium refers to a polymer that includes all expressed as latex or emulsion and is emulsified or suspended in water.
  • kind a polymer latex that is emulsion-polymerized in a system that self-emulsifies.
  • water-based binders include styrene polymers (styrene-butadiene rubber, styrene-vinyl acetate copolymer, styrene-acrylic copolymer, etc.), acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, ) Acrylic polymers (polyethyl acrylate, polyethyl methacrylate, polypropyl acrylate, polymethyl methacrylate (methyl methacrylate rubber), polypropyl methacrylate, polyisopropyl acrylate, polyisopropyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyhexyl acrylate , Polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, polylauryl methacrylate Such as tacrylate
  • the aqueous binder may contain at least one rubber binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, and methyl methacrylate rubber from the viewpoint of binding properties. preferable. Furthermore, it is preferable that the water-based binder contains styrene-butadiene rubber because of good binding properties.
  • Water-soluble polymers suitable for use in combination with styrene-butadiene rubber include polyvinyl alcohol and modified products thereof, starch and modified products thereof, cellulose derivatives (such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and salts thereof), polyvinyl Examples include pyrrolidone, polyacrylic acid (salt), or polyethylene glycol. Among them, it is preferable to combine styrene-butadiene rubber and carboxymethyl cellulose (salt) as a binder.
  • the content of the aqueous binder is preferably 80 to 100% by weight, preferably 90 to 100% by weight, and preferably 100% by weight.
  • the negative electrode active material examples include carbon materials such as graphite (graphite), soft carbon, and hard carbon, lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. Is mentioned. In some cases, two or more negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material. Of course, negative electrode active materials other than those described above may be used.
  • the average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of increasing the output.
  • the separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
  • Examples of the form of the separator include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte, and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 ⁇ m in a single layer or multiple layers. Is desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator includes an electrolyte.
  • the electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used.
  • a gel polymer electrolyte By using the gel polymer electrolyte, the distance between the electrodes is stabilized, the occurrence of polarization is suppressed, and the durability (cycle characteristics) is improved.
  • the liquid electrolyte functions as a lithium ion carrier.
  • the liquid electrolyte constituting the electrolytic solution layer has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • the liquid electrolyte may further contain additives other than the components described above. Specific examples of such compounds include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • These cyclic carbonates may be used alone or in combination of two or more.
  • the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
  • a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off.
  • ion conductive polymer used as the matrix polymer (host polymer) examples include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), poly (methyl methacrylate (PMMA), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEG polyethylene glycol
  • PAN polyacrylonitrile
  • PVdF-HEP polyvinylidene fluoride-hexafluoropropylene
  • PMMA methyl methacrylate
  • the matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte, using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer).
  • the heat-resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used.
  • the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
  • the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
  • the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
  • the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer. With the binder, the heat-resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat-resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer is not particularly limited.
  • a compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as the binder.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • methyl acrylate methyl acrylate
  • PVDF polyvinylidene fluoride
  • these compounds only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat resistant insulating layer.
  • the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by weight or less, the gaps between the inorganic particles are appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 .
  • the material which comprises a current collector plate (25, 27) is not restrict
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the same material may be used for the positive electrode current collecting plate 27 and the negative electrode current collecting plate 25, and different materials may be used.
  • the battery outer case 29 a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • the laminate film for example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used.
  • the laminate film is not limited thereto.
  • a laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • the exterior body is more preferably an aluminum laminate because the group pressure applied to the power generation element applied from the outside can be easily adjusted and can be easily adjusted to a desired electrolyte layer thickness.
  • FIG. 2 is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of the secondary battery.
  • the flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power are drawn out from both sides thereof.
  • the power generation element 57 is encased by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed. The power generation element 57 is sealed with the positive electrode tab 58 and the negative electrode tab 59 pulled out to the outside.
  • the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery 10 shown in FIG. 1 described above.
  • the power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 composed of a positive electrode (positive electrode active material layer) 15, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 13.
  • the lithium ion secondary battery is not limited to a stacked flat shape.
  • the wound lithium ion secondary battery may have a cylindrical shape, or may have a shape that is a flattened rectangular shape by deforming such a cylindrical shape.
  • a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict
  • the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
  • the tabs 58 and 59 shown in FIG. 2 are not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
  • a terminal may be formed using a cylindrical can (metal can).
  • the negative electrode active material layer is preferably rectangular, and the length of the short side of the rectangle is preferably 100 mm or more.
  • the length of the short side of the negative electrode active material layer refers to the side having the shortest length among the electrodes.
  • the upper limit of the length of the short side of the battery structure is not particularly limited, but is usually 250 mm or less.
  • the nonaqueous electrolyte secondary battery according to the present embodiment is a battery that is enlarged as described above, together with the merit due to the manifestation of the effects of the present invention. Further, as the non-aqueous electrolyte secondary battery according to this embodiment, it is more preferable that it is a large-sized lithium ion secondary battery for automobiles, together with the merit due to the manifestation of the effects of the present invention.
  • the size of the battery can be specified by the volume energy density, the single cell rated capacity, and the like.
  • a travel distance (cruising range) by one charge is 100 km, which is a market requirement.
  • the single cell rated capacity is preferably 20 Wh or more
  • the volume energy density of the battery is preferably 153 Wh / L or more.
  • the volume energy density and the rated discharge capacity are measured by the methods described in the following examples.
  • the aspect ratio of the rectangular electrode is preferably 1 to 3, and more preferably 1 to 2.
  • the electrode aspect ratio is defined as the aspect ratio of the rectangular positive electrode active material layer. Setting the aspect ratio in such a range is preferable because the gas generated during charging can be discharged uniformly in the surface direction.
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the nonaqueous electrolyte secondary battery of the present invention maintains a discharge capacity even when used for a long period of time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the nonaqueous electrolyte secondary battery can be suitably used as a vehicle power source, for example, a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
  • a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • Example 1 Preparation of positive electrode active material Sodium hydroxide and ammonia are continuously supplied to an aqueous solution (1.0 mol / L) in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved so as to have a pH of 11.0.
  • a metal composite hydroxide formed by solid solution with a molar ratio of nickel, cobalt and manganese of 50:20:30 was prepared by the method.
  • the metal composite oxide and lithium carbonate were weighed so that the ratio of the total number of moles of metals other than Li (Ni, Co, Mn) to the number of moles of Li was 1: 1, and then mixed sufficiently.
  • the temperature was raised at a temperature rate of 5 ° C./min, pre-baked at 900 ° C. for 2 hours in an air atmosphere, then heated at a rate of temperature increase of 3 ° C./min, finally baked at 920 ° C. for 10 hours, and cooled to room temperature.
  • a lithium nickel composite oxide having a chemical composition of LiNi 0.50 Mn 0.30 Co 0.20 O 2 was obtained.
  • the lithium nickel composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) had an average primary particle size of 0.5 ⁇ m and an average secondary particle size of 10.0 ⁇ m.
  • the spinel lithium manganate having the chemical composition LiMn 2 O 4 was obtained by baking at 20 ° C. for 20 hours.
  • the average secondary particle diameter of the spinel lithium manganate (LiMn 2 O 4 ) was 10.0 ⁇ m.
  • lithium nickel composite oxide LiNi 0.50 Mn 0.30 Co 0.20 O 2
  • lithium spinel manganate LiMn 2 O 4
  • This slurry was applied to both surfaces of a copper foil (thickness 10 ⁇ m) serving as a negative electrode current collector, and the coating amount per unit area was 1 for each AC ratio (negative electrode charge capacity / positive electrode charge capacity). .2 was set. After sufficiently drying, the electrode thickness was adjusted using a roll press so that the electrode mixture filling density was 1.4 g / cm 3, and a negative electrode having negative electrode active material layers on both sides was produced.
  • Electrolytic Solution A solution was prepared by dissolving 1.0M LiPF 6 in a mixed solvent (volume ratio of 1: 1) of ethylene carbonate (EC) and dimethyl carbonate (DMC). Vinylene carbonate was added thereto in an amount corresponding to 2% by weight with respect to the weight of the electrolytic solution to obtain an electrolytic solution.
  • 1.0 M LiPF 6 means that the lithium salt (LiPF 6 ) concentration in the mixture of the mixed solvent and the lithium salt is 1.0 M.
  • the positive electrode produced in (1) above is a square with a side of 20 cm
  • the negative electrode produced in (2) above is a square with a side of 20.5 cm
  • a separator polyethylene / polypropylene microporous film, thickness 25 ⁇ m
  • both ends are negative electrodes
  • a separator is interposed between the positive electrode and the negative electrode. It was.
  • Parallel cells were stacked by connecting the tabs of each layer.
  • the obtained power generation element was put in an aluminum laminate outer package, the electrolyte prepared in (1) above was injected, and vacuum sealed to prepare a full cell for evaluation.
  • the projected area of the battery including the full cell aluminum laminate outer package obtained was 484 cm 2 .
  • Examples 2-5, Comparative Examples 1-2 In preparation of the positive electrode active material described in Example 1, the mixing ratio of lithium nickel-based composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) and lithium spinel manganate (LiMn 2 O 4 ) A full cell for evaluation was produced in the same manner as in Example 1 except that a positive electrode active material produced by changing the composition as described in Table 1 was used.
  • Examples 6 to 7, Comparative Example 3 In the preparation of the lithium nickel-based composite oxide described in Example 1, the preparation conditions were changed by the coprecipitation method so that the molar ratio of nickel, cobalt, and manganese was 1/3: 1/3: 1/3. Further, a positive electrode active material prepared according to a mixing ratio of lithium nickel-based composite oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) and lithium spinel manganate (LiMn 2 O 4 ) described in Table 1 Each full cell for evaluation was produced in the same manner as in Example 1 except that was used.
  • Examples 8 to 9, Comparative Example 4 In the preparation of the lithium nickel-based composite oxide described in Example 1, the preparation conditions were changed by a coprecipitation method so that the molar ratio of nickel, cobalt, and manganese was 80:10:10. Except that a positive electrode active material prepared according to a mixing ratio of lithium nickel-based composite oxide (LiNi 0.8 Mn 0.1 Co 0.1 O 2 ) and spinel lithium manganate (LiMn 2 O 4 ) was used. Each evaluation full cell was produced in the same manner as in Example 1.
  • Examples 10 to 11, Comparative Example 5 In the preparation of the lithium nickel-based composite oxide described in Example 1, the preparation conditions were changed by a coprecipitation method so that the molar ratio of nickel, cobalt, and manganese was 60:20:20. Except that a positive electrode active material prepared according to a mixing ratio of lithium nickel-based composite oxide (LiNi 0.6 Mn 0.2 Co 0.2 O 2 ) and lithium spinel manganate (LiMn 2 O 4 ) was used. Each evaluation full cell was produced in the same manner as in Example 1.
  • Examples 12 to 13, Comparative Example 6 In the production of the lithium nickel composite oxide described in Example 1, aluminum sulfate is used instead of manganese sulfate so that the molar ratio of nickel, cobalt, and aluminum is 80:10:10 by coprecipitation. The preparation conditions were changed, and further according to the mixing ratio of lithium nickel-based composite oxide (LiNi 0.8 Co 0.1 Al 0.1 O 2 ) and spinel lithium manganate (LiMn 2 O 4 ) listed in Table 1 Each evaluation full cell was produced like Example 1 except having used the produced positive electrode active material.
  • Example 14 to 17 In the production of the positive electrode described in Example 1, a full cell for each evaluation was produced in the same manner as in Example 1 except that the basis weight (one side) of the positive electrode was changed according to the description in Table 2.
  • Examples 18 to 21 In the production of the positive electrode described in Example 1, each evaluation full cell was produced in the same manner as in Example 1, except that the packing density of the positive electrode was changed according to the description in Table 3.
  • the results of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in FIG. 3-1, and the results of Examples 6 to 7 and Comparative Example 3 are shown in FIG. 3-2.
  • the results of Examples 8 to 9 and Comparative Example 4 are shown in FIG. 3-3, the results of Examples 10 to 11 and Comparative Example 5 are shown in FIG. 3-4, and the results of Examples 12 to 13 and Comparative Example 6 are shown in FIG.
  • the results of Examples 1 and 14 to 17 are shown in FIG. 4, and the results of Examples 1 and 18 to 21 are shown in FIG.
  • the 4.15V full charge state is SOC 100%
  • the 3V full discharge state is SOC 0%
  • the state in which the capacity of 20% from the full discharge state is charged is SOC 20%
  • the full discharge state is 50%.
  • the state in which the capacity is charged is defined as SOC 50%.
  • the rated capacity is about 10 hours after injecting the electrolyte for the test battery, and the battery is initially charged after the battery voltage becomes 2.0 V or higher. Thereafter, the measurement is performed by the following procedures 1 to 4 at a temperature of 25 ° C. and a voltage range of 3.0 V to 4.15 V.
  • Procedure 1 After reaching 4.15 V by constant current charging at 0.2 C amp, charge for 1.5 hours by constant voltage charging and rest for 5 minutes.
  • Procedure 2 After reaching 3.0 V by constant current discharge of 0.2 C amp, pause for 5 minutes.
  • Procedure 3 After reaching 4.15 V by constant current charging at 1 C amp, charge for 2.5 hours by constant voltage charging, and then rest for 5 minutes.
  • Procedure 4 Discharge until reaching 3.0V by constant current discharge of 0.2C ampere.
  • the discharge capacity obtained from the constant current discharge in step 4 is the rated capacity.
  • Table 1 shows the rated discharge capacity (Ah) and the ratio of the battery area to the rated capacity (cm 2 / Ah) of each full cell measured as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

[Problem] To provide a means that is capable of suppressing changes in resistance associated with the depth of discharge and improving discharge rate characteristics in a battery that is intended particularly for high output use (with an internal resistance as small as 10 mΩ/Ah (SOC 50%) or less) among large-size non-aqueous electrolyte secondary batteries capable of being used for driving electric vehicles, for example. [Solution] This non-aqueous electrolyte secondary battery comprises a power-generating element including: a positive electrode in which a positive-electrode active material layer including a positive-electrode active material is formed on the surface of a positive-electrode charge collector; a negative electrode in which a negative-electrode active material layer including a negative-electrode active material is formed on the surface of a negative-electrode charge collector; and a separator. In this secondary battery: the positive-electrode active material includes a spinel-type manganese positive-electrode active material and a lithium-nickel complex oxide; the rate of mixture of said lithium-nickel complex oxide to 100 wt% of said positive-electrode active material is 30 wt% or greater; and the internal resistance is 10 mΩ/Ah or less (SOC 50%).

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 本発明は、非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.
 現在、携帯電話などの携帯機器向けに利用される、リチウムイオン二次電池をはじめとする非水電解質二次電池が商品化されている。非水電解質二次電池は、一般的に、正極活物質などを集電体に塗布した正極と、負極活物質などを集電体に塗布した負極とが、セパレータに非水電解液または非水電解質ゲルを保持した電解質層を介して接続された構成を有している。そして、リチウムイオンなどのイオンが電極活物質中に吸蔵・放出されることにより、電池の充放電反応が起こる。 Currently, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries that are used for mobile devices such as mobile phones have been commercialized. A nonaqueous electrolyte secondary battery generally includes a positive electrode in which a positive electrode active material or the like is applied to a current collector, and a negative electrode in which a negative electrode active material or the like is applied to a current collector. It has the structure connected through the electrolyte layer holding electrolyte gel. Then, ions such as lithium ions are occluded / released in the electrode active material, thereby causing a charge / discharge reaction of the battery.
 ところで、近年、地球温暖化に対処するために二酸化炭素量を低減することが求められている。そこで、環境負荷の少ない非水電解質二次電池は、携帯機器などだけでなく、ハイブリッド自動車(HEV)、電気自動車(EV)、および燃料電池自動車などの電動車両の電源装置にも利用されつつある。 Incidentally, in recent years, it has been required to reduce the amount of carbon dioxide in order to cope with global warming. Thus, non-aqueous electrolyte secondary batteries with a low environmental load are being used not only for portable devices but also for power supply devices for electric vehicles such as hybrid vehicles (HEV), electric vehicles (EV), and fuel cell vehicles. .
 電動車両への適用を指向した非水電解質二次電池は、高出力および高容量であることが求められる。電動車両用の非水電解質二次電池の正極に使用する正極活物質としては、層状複合酸化物であるリチウムコバルト系複合酸化物が、4V級の高電圧を得ることができ、かつ高いエネルギー密度を有することから、既に広く実用化されている。しかし、その原料であるコバルトは、資源的にも乏しく高価であるため、今後も大幅に需要が拡大してゆく可能性を考えると、原料供給の面で不安がある。また、コバルトの原料価格が高騰する可能性もある。そこで、コバルトの含有比率の少ない複合酸化物が望まれている。 Non-aqueous electrolyte secondary batteries intended for application to electric vehicles are required to have high output and high capacity. As a positive electrode active material used for a positive electrode of a non-aqueous electrolyte secondary battery for an electric vehicle, a lithium-cobalt composite oxide, which is a layered composite oxide, can obtain a high voltage of 4V and has a high energy density. Has already been put to practical use. However, since cobalt, which is a raw material, is scarce in terms of resources and is expensive, there is anxiety in terms of supply of raw materials, considering the possibility that demand will increase significantly in the future. In addition, the price of cobalt raw materials may rise. Therefore, a composite oxide having a low cobalt content is desired.
 リチウムマンガン複合酸化物(LiMn)はスピネル構造を有し、λ-MnOとの組成間で4V級の正極材料として機能する。スピネル構造のリチウムマンガン複合酸化物はLiCoOなどが有するような層状構造とは異なる3次元のホスト構造を有することから、理論容量のほとんどが使用可能であり、サイクル特性に優れることが期待されている。 Lithium manganese composite oxide (LiMn 2 O 4 ) has a spinel structure and functions as a 4V-class positive electrode material between the composition and λ-MnO 2 . Since the spinel structure lithium manganese composite oxide has a three-dimensional host structure different from the layered structure of LiCoO 2 and the like, most of the theoretical capacity can be used, and excellent cycle characteristics are expected. Yes.
 しかしながら、実際にはリチウムマンガン複合酸化物を正極材料として用いたリチウムイオン二次電池は、充放電を繰り返すことによって徐々に容量が低下していく容量劣化が避けられず、その実用化には大きな問題が残されていた。 However, in actuality, lithium ion secondary batteries using lithium manganese composite oxide as a positive electrode material cannot avoid capacity deterioration that gradually decreases in capacity due to repeated charge and discharge, which is great for practical use. The problem remained.
 このようなリチウムマンガン複合酸化物の容量劣化の課題を解決する技術として、例えば特開2000-77071号公報には、正極材料として、リチウムマンガン複合酸化物に加えて、所定の比表面積を有するリチウムニッケル系複合酸化物(LiNiO、LiNiO、LiNi、LiNi、LiNi1-xMxOなど)をさらに用いる技術が開示されている。特開2000-77071号公報によれば、かような構成とすることで、リチウムマンガン複合酸化物からのMn溶出や電解液中のLi濃度変化が抑制される結果、充放電サイクル特性(特に高温における充放電寿命)が大きく改善された非水電解液二次電池を提供することができるとされている。 As a technique for solving the problem of capacity deterioration of such a lithium manganese composite oxide, for example, Japanese Patent Application Laid-Open No. 2000-77071 discloses a lithium material having a predetermined specific surface area as a positive electrode material in addition to a lithium manganese composite oxide. A technique of further using a nickel-based composite oxide (LiNiO 2 , Li 2 NiO 2 , LiNi 2 O 4 , Li 2 Ni 2 O 4 , LiNi 1-x MxO 2, etc.) is disclosed. According to Japanese Patent Application Laid-Open No. 2000-77071, as a result of suppressing the elution of Mn from the lithium manganese composite oxide and the change in the Li concentration in the electrolytic solution, the charge / discharge cycle characteristics (particularly high temperature) It is said that a non-aqueous electrolyte secondary battery having a greatly improved charge / discharge life) can be provided.
 しかしながら、特開2000-77071号公報に関する技術は、電動車両用大型電池の要求性能を考慮したものではなかった。そして、本発明者らの検討によれば、従来民生用途において提案されている技術を電動車両用大型電池にそのまま適用しても、十分な電池性能が発揮されるわけではないことを見出した。より詳細には、電動車両用大型電池では高出力で、大容量の二次電池が必要とされているが、特開2000-77071号公報に開示された二次電池は、高出力条件下では放電深度の進行に伴う抵抗変化が大きく、放電末期では取り出せる電気量が減少してしまうことを見出した。 However, the technique related to Japanese Patent Laid-Open No. 2000-77071 does not take into account the required performance of a large battery for an electric vehicle. According to the study by the present inventors, it has been found that even if the technique proposed in the conventional consumer use is applied as it is to a large battery for an electric vehicle, sufficient battery performance is not exhibited. More specifically, a large battery for an electric vehicle requires a high output and a large capacity secondary battery. However, the secondary battery disclosed in Japanese Patent Application Laid-Open No. 2000-77071 is under a high output condition. It has been found that the resistance change with the progress of the depth of discharge is large and the amount of electricity that can be taken out decreases at the end of the discharge.
 そこで本発明は、電動車両の駆動用などの用途に用いられうる大型の非水電解質二次電池のうち、特に高出力での使用が想定される(内部抵抗が10mΩ/Ah(SOC50%)以下と小さい)電池において、放電深度に伴う抵抗変化を抑制し、放電レート特性を向上させうる手段を提供することを目的とする。 Therefore, the present invention is assumed to be used particularly at a high output among large-sized nonaqueous electrolyte secondary batteries that can be used for driving electric vehicles and the like (internal resistance is 10 mΩ / Ah (SOC 50%) or less). It is an object of the present invention to provide means for suppressing a change in resistance accompanying the depth of discharge and improving discharge rate characteristics in a small battery.
 本発明者らは、鋭意研究を積み重ねた。その結果、スピネル系マンガン正極活物質とリチウムニッケル系複合酸化物とを含む正極活物質において、前記リチウムニッケル系複合酸化物の混合比率を特定の範囲とすることにより、上記課題が解決されることを見出した。 The present inventors have accumulated earnest research. As a result, in the positive electrode active material including the spinel-based manganese positive electrode active material and the lithium nickel-based composite oxide, the above-described problem is solved by setting the mixing ratio of the lithium nickel-based composite oxide within a specific range. I found.
非水電解質二次電池の一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。1 is a schematic cross-sectional view showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat (stacked) bipolar type, which is an embodiment of a non-aqueous electrolyte secondary battery. 非水電解質二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。It is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of a nonaqueous electrolyte secondary battery. 実施例1~5および比較例1~2で作製したフルセルの充電深度SOC50%からSOC20%における電池内部抵抗変化率(DCR20/DCR50)および0.2Cアンペアと2Cアンペアで得られた放電容量から求めた放電レート特性(2C/0.2C)を示すグラフである。Battery internal resistance change rate (DCR 20 / DCR 50 ) at charge depth SOC 50% to SOC 20% and discharge capacity obtained at 0.2 C ampere and 2 C ampere of full cells prepared in Examples 1 to 5 and Comparative Examples 1 and 2 It is a graph which shows the discharge rate characteristic (2C / 0.2C) calculated | required from (2). 実施例6~7および比較例3で作製したフルセルの充電深度SOC50%からSOC20%における電池内部抵抗変化率(DCR20/DCR50)および0.2Cアンペアと2Cアンペアで得られた放電容量から求めた放電レート特性(2C/0.2C)を示すグラフである。Obtained from the battery internal resistance change rate (DCR 20 / DCR 50 ) at the charging depth SOC 50% to SOC 20% of the full cell prepared in Examples 6 to 7 and Comparative Example 3, and the discharge capacity obtained at 0.2 C ampere and 2 C ampere. 5 is a graph showing the discharge rate characteristics (2C / 0.2C). 実施例8~9および比較例4で作製したフルセルの充電深度SOC50%からSOC20%における電池内部抵抗変化率(DCR20/DCR50)および0.2Cアンペアと2Cアンペアで得られた放電容量から求めた放電レート特性(2C/0.2C)を示すグラフである。Obtained from the battery internal resistance change rate (DCR 20 / DCR 50 ) at the charge depth SOC 50% to SOC 20% of the full cells prepared in Examples 8 to 9 and Comparative Example 4 and the discharge capacity obtained at 0.2 C ampere and 2 C ampere. 5 is a graph showing the discharge rate characteristics (2C / 0.2C). 実施例10~11および比較例5で作製したフルセルの充電深度SOC50%からSOC20%における電池内部抵抗変化率(DCR20/DCR50)および0.2Cアンペアと2Cアンペアで得られた放電容量から求めた放電レート特性(2C/0.2C)を示すグラフである。From the charge depth SOC 50% to SOC 20% of the full cell produced in Examples 10 to 11 and Comparative Example 5, the battery internal resistance change rate (DCR 20 / DCR 50 ) and the discharge capacity obtained at 0.2 C ampere and 2 C ampere were obtained. 5 is a graph showing the discharge rate characteristics (2C / 0.2C). 実施例12~13および比較例6で作製したフルセルの充電深度SOC50%からSOC20%における電池内部抵抗変化率(DCR20/DCR50)および0.2Cアンペアと2Cアンペアで得られた放電容量から求めた放電レート特性(2C/0.2C)を示すグラフである。Obtained from the battery internal resistance change rate (DCR 20 / DCR 50 ) at the charge depth SOC 50% to SOC 20% of the full cells prepared in Examples 12 to 13 and Comparative Example 6 and the discharge capacity obtained at 0.2 C ampere and 2 C ampere. 5 is a graph showing the discharge rate characteristics (2C / 0.2C). 実施例1および14~17で作製したフルセルの充電深度SOC50%からSOC20%における電池内部抵抗変化率(DCR20/DCR50)および0.2Cアンペアと2Cアンペアで得られた放電容量から求めた放電レート特性(2C/0.2C)を示すグラフである。Discharges obtained from the battery internal resistance change rate (DCR 20 / DCR 50 ) at the charge depth SOC 50% to SOC 20% of the full cells prepared in Examples 1 and 14 to 17 and the discharge capacity obtained at 0.2 C amperes and 2 C amperes. It is a graph which shows a rate characteristic (2C / 0.2C). 実施例1および18~21で作製したフルセルの充電深度SOC50%からSOC20%における電池内部抵抗変化率(DCR20/DCR50)および0.2Cアンペアと2Cアンペアで得られた放電容量から求めた放電レート特性(2C/0.2C)を示すグラフである。Discharges obtained from the battery internal resistance change rate (DCR 20 / DCR 50 ) at charge depth SOC 50% to SOC 20% and discharge capacities obtained at 0.2 C amperes and 2 C amperes of the full cells prepared in Examples 1 and 18 to 21 It is a graph which shows a rate characteristic (2C / 0.2C).
 本発明の一形態によれば、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、セパレータと、を含む発電要素を有し、前記正極活物質が、スピネル系マンガン正極活物質と、リチウムニッケル系複合酸化物とを含み、かつ前記正極活物質100重量%に対する前記リチウムニッケル系複合酸化物の混合比率が30重量%以上であり、内部抵抗が10mΩ/Ah以下(SOC50%)である、非水電解質二次電池が提供される。本発明の構成によれば、放電末期にもリチウムニッケル系複合酸化物が十分に放電に寄与することから、放電深度に伴う抵抗変化を抑制でき、放電末期においても取り出せる電気量を向上できる。その結果、大型の非水電解質二次電池のうち、特に内部抵抗が10mΩ/Ah(SOC50%)以下と小さいものにおいて、放電レート特性に優れる非水電解質二次電池が提供されうる。 According to one embodiment of the present invention, a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material layer containing a negative electrode active material on the surface of the negative electrode current collector are provided. A power generation element including a formed negative electrode and a separator; wherein the positive electrode active material includes a spinel-based manganese positive electrode active material and a lithium nickel-based composite oxide; and the positive electrode active material is 100% by weight. A non-aqueous electrolyte secondary battery is provided in which the mixing ratio of the lithium nickel-based composite oxide is 30% by weight or more and the internal resistance is 10 mΩ / Ah or less (SOC 50%). According to the configuration of the present invention, since the lithium nickel-based composite oxide sufficiently contributes to the discharge even at the end of discharge, it is possible to suppress a change in resistance associated with the depth of discharge and improve the amount of electricity that can be taken out at the end of discharge. As a result, a non-aqueous electrolyte secondary battery having excellent discharge rate characteristics can be provided, particularly in a large non-aqueous electrolyte secondary battery having a small internal resistance of 10 mΩ / Ah (SOC 50%) or less.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 [非水電解質二次電池]
 図1は、本発明の電池の一実施形態である積層型電池の概要を模式的に表した断面概略図である。なお、本明細書においては、図1に示す扁平型(積層型)の双極型でないリチウムイオン二次電池を例に挙げて詳細に説明するが、本発明の技術的範囲はかような形態のみに制限されない。
[Nonaqueous electrolyte secondary battery]
FIG. 1 is a schematic cross-sectional view schematically showing an outline of a stacked battery as an embodiment of the battery of the present invention. In the present specification, the flat type (stacked type) lithium ion secondary battery shown in FIG. 1 will be described in detail as an example, but the technical scope of the present invention is only such a form. Not limited to.
 まず、本発明の非水電解質二次電池の全体構造について、図面を用いて説明する。 First, the overall structure of the nonaqueous electrolyte secondary battery of the present invention will be described with reference to the drawings.
 [電池の全体構造]
 図1は、扁平型(積層型)の双極型ではない非水電解質リチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体である電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、セパレータ17と、負極とを積層した構成を有している。なお、セパレータ17は、非水電解質(例えば、液体電解質)を内蔵している。正極は、正極集電体12の両面に正極活物質層15が配置された構造を有する。負極は、負極集電体11の両面に負極活物質層13が配置された構造を有する。具体的には、1つの正極活物質層15とこれに隣接する負極活物質層13とが、セパレータ17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するとも言える。
[Battery overall structure]
FIG. 1 is a schematic cross-sectional view schematically showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat type (stacked type) bipolar type. As shown in FIG. 1, the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 29 that is an exterior body. Have. Here, the power generation element 21 has a configuration in which a positive electrode, a separator 17, and a negative electrode are stacked. The separator 17 contains a nonaqueous electrolyte (for example, a liquid electrolyte). The positive electrode has a structure in which the positive electrode active material layers 15 are disposed on both surfaces of the positive electrode current collector 12. The negative electrode has a structure in which the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 15 and the negative electrode active material layer 13 adjacent thereto face each other with a separator 17 therebetween. Thereby, the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked so that they are electrically connected in parallel.
 なお、発電要素21の両最外層に位置する最外層正極集電体には、いずれも片面のみに負極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面正極活物質層が配置されているようにしてもよい。 In addition, although the negative electrode active material layer 13 is arrange | positioned only at one side in the outermost layer positive electrode collector located in both outermost layers of the electric power generation element 21, an active material layer may be provided in both surfaces. That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector. Further, the arrangement of the positive electrode and the negative electrode is reversed from that in FIG. 1 so that the outermost positive electrode current collector is positioned in both outermost layers of the power generation element 21, and the single-sided positive electrode active material of the outermost layer positive electrode current collector Layers may be arranged.
 正極集電体12および負極集電体11は、各電極(正極および負極)と導通される正極集電板(タブ)27および負極集電板(タブ)25がそれぞれ取り付けられ、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される構造を有している。正極集電板27および負極集電板25はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体12および負極集電体11に超音波溶接や抵抗溶接などにより取り付けられていてもよい。 The positive electrode current collector 12 and the negative electrode current collector 11 are each provided with a positive electrode current collector plate (tab) 27 and a negative electrode current collector plate (tab) 25 that are electrically connected to the respective electrodes (positive electrode and negative electrode). It has the structure led out of the battery exterior material 29 so that it may be pinched | interposed into the edge part. The positive electrode current collector 27 and the negative electrode current collector 25 are ultrasonically welded to the positive electrode current collector 12 and the negative electrode current collector 11 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.
 なお、図1では、扁平型(積層型)の双極型ではない積層型電池を示したが、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層と、を有する双極型電極を含む双極型電池であってもよい。この場合、一の集電体が正極集電体および負極集電体を兼ねることとなる。 Note that FIG. 1 shows a flat battery (stacked battery) that is not a bipolar battery, but a positive electrode active material layer that is electrically coupled to one surface of the current collector and the opposite side of the current collector. And a bipolar battery including a bipolar electrode having a negative electrode active material layer electrically coupled to the surface. In this case, one current collector also serves as a positive electrode current collector and a negative electrode current collector.
 以下、本発明の一実施形態である非水電解質リチウムイオン二次電池を構成する各部材について説明する。 Hereafter, each member which comprises the nonaqueous electrolyte lithium ion secondary battery which is one Embodiment of this invention is demonstrated.
 [正極]
 本発明に係る正極は、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる構成を有する。
[Positive electrode]
The positive electrode according to the present invention has a configuration in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector.
 前記正極集電体は、導電性材料から構成される。前記導電性材料は、導電性を有するものであれば特に制限されず、たとえば、金属や導電性高分子など従来公知のものを適宜利用することができる。具体的には、Fe、Cr、Ni、Mn、Ti、Mo、V、Nb、Al、Cu、Ag、Au、Ptおよびカーボンからなる群より選択されてなる少なくとも1種以上、たとえば、2種以上の合金からなるステンレスなどその集電体材料が好ましく用いられうる。また本実施形態では、NiとAlのクラッド材、CuとAlのクラッド材、あるいはこれらの集電体材料の組み合わせのめっき材なども好ましく使える。また、上記集電体材料である金属(Alを除く)表面に、他の集電体材料であるAlを被覆させた集電体であってもよい。また、場合によっては、2つ以上の上記集電体材料である金属箔を張り合わせた集電体を用いてもよい。 The positive electrode current collector is made of a conductive material. The conductive material is not particularly limited as long as it has conductivity, and conventionally known materials such as metals and conductive polymers can be appropriately used. Specifically, at least one selected from the group consisting of Fe, Cr, Ni, Mn, Ti, Mo, V, Nb, Al, Cu, Ag, Au, Pt and carbon, for example, two or more The current collector material such as stainless steel made of the above alloy can be preferably used. In the present embodiment, a Ni / Al clad material, a Cu / Al clad material, or a plating material obtained by combining these current collector materials can be preferably used. The current collector may be a current collector in which the surface of a metal (excluding Al) as the current collector material is coated with Al as the other current collector material. Moreover, you may use the electrical power collector which bonded together the metal foil which is two or more said electrical power collector materials depending on the case.
 前記正極集電体の厚さは、特に限定されないが、通常は1~100μm、好ましくは1~50μm程度である。 The thickness of the positive electrode current collector is not particularly limited, but is usually 1 to 100 μm, preferably about 1 to 50 μm.
 本発明は、大電流の場合において、電池放電レート特性の急激な低下を抑える観点から、正極の片面の目付量を、30mg/cm以下にすることが好ましく、25mg/cm以下にすることがより好ましい。なお、電池放電レート特性の観点からは電極の目付量の下限を特に規定しないが、電極作成工程または電池エネルギー密度の観点からは、10mg/cm以上にすることがより好ましい。また、電極の両面の目付量は、同じであってもよく、異なっていてもよいが、同じであることがより好ましい。 In the present invention, in the case of a large current, the weight per unit area of the positive electrode is preferably 30 mg / cm 2 or less, and preferably 25 mg / cm 2 or less, from the viewpoint of suppressing a rapid decrease in battery discharge rate characteristics. Is more preferable. Note that the lower limit of the basis weight of the electrode is not particularly defined from the viewpoint of the battery discharge rate characteristics, but is more preferably 10 mg / cm 2 or more from the viewpoint of the electrode preparation process or the battery energy density. Further, the basis weight on both surfaces of the electrode may be the same or different, but is more preferably the same.
 また、本発明は、大電流の場合において、電池放電レート特性の急激な低下を抑える観点から、正極の充填密度を、2.5~3.5g/cmにすることが好ましく、2.7~3.3g/cmにすることがより好ましい。 In the present invention, it is preferable that the packing density of the positive electrode is 2.5 to 3.5 g / cm 3 from the viewpoint of suppressing a rapid decrease in battery discharge rate characteristics in the case of a large current. More preferably, it is set to ˜3.3 g / cm 3 .
 さらに、本発明に係る正極において、上記目付量の好適範囲および充填密度の好適範囲の少なくとも一方を満たすことが好ましく、上記目付量の好適範囲および充填密度の好適範囲の双方を満たすことがより好ましい。 Furthermore, in the positive electrode according to the present invention, it is preferable to satisfy at least one of the preferable range of the basis weight and the preferable range of the packing density, and more preferable to satisfy both the preferable range of the basis weight and the preferable range of the packing density. .
 (正極活物質)
 本発明において、正極活物質は、スピネル系マンガン正極活物質とリチウムニッケル系複合酸化物とを含む。
(Positive electrode active material)
In the present invention, the positive electrode active material includes a spinel manganese positive electrode active material and a lithium nickel composite oxide.
 スピネル系マンガン正極活物質は、特に制限されず、従来のスピネル構造を有するリチウムマンガン複合酸化物が用いられる。 The spinel manganese positive electrode active material is not particularly limited, and a conventional lithium manganese composite oxide having a spinel structure is used.
 次いで、リチウムニッケル系複合酸化物について説明する。 Next, the lithium nickel composite oxide will be described.
 本発明に係るリチウムニッケル系複合酸化物は、リチウムとニッケルとを含有する複合酸化物からなるものである限り、その組成は具体的に限定されない。リチウムとニッケルとを含有する複合酸化物の典型的な例としては、リチウムニッケル系複合酸化物(LiNiO)が挙げられる。ただし、リチウムニッケル系複合酸化物のニッケル原子の一部が他の金属原子で置換された複合酸化物がより好ましく、好ましい例として、リチウム-ニッケル-マンガン-コバルト複合酸化物(以下、単に「NMC複合酸化物」とも称する)、またはリチウム-ニッケル-コバルト-アルミニウム複合酸化物などが挙げられる。ここで、NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を持ち、遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。加えて、LiNiOより高い熱安定性を有しているため、正極活物質として用いられるニッケル系複合酸化物の中でも特に有利である。 The composition of the lithium nickel composite oxide according to the present invention is not specifically limited as long as it is composed of a composite oxide containing lithium and nickel. A typical example of a composite oxide containing lithium and nickel is lithium nickel-based composite oxide (LiNiO 2 ). However, a composite oxide in which a part of nickel atoms of a lithium nickel composite oxide is substituted with another metal atom is more preferable. A preferable example is a lithium-nickel-manganese-cobalt composite oxide (hereinafter simply referred to as “NMC”). Or a lithium-nickel-cobalt-aluminum composite oxide. Here, the NMC composite oxide has a layered crystal structure in which a lithium atomic layer and a transition metal (Mn, Ni, and Co are arranged in an orderly manner) atomic layers are alternately stacked via an oxygen atomic layer. One Li atom is contained per atom, and the amount of Li that can be taken out is twice that of the spinel-based lithium manganese oxide, that is, the supply capacity is doubled, and a high capacity can be obtained. In addition, since it has higher thermal stability than LiNiO 2 , it is particularly advantageous among the nickel-based composite oxides used as the positive electrode active material.
 本発明において、NMC複合酸化物は、遷移元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。 In the present invention, the NMC composite oxide includes a composite oxide in which a part of the transition element is substituted with another metal element. Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn, etc., preferably Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, more preferably Ti, Zr, P, Al, Mg, From the viewpoint of improving cycle characteristics, Ti, Zr, Al, Mg, and Cr are more preferable.
 前記リチウムニッケル系複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiCo(但し、式中、a、b、c、dは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、b+c+d=1を満たす。Mは、Mn、Al、Ti、Zr、Nb、W、P、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Mの原子比を表し、dは、Coの原子比を表す。サイクル特性の観点からは、一般式(1)において、0.4≦b≦0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。 The lithium-nickel-based composite oxide, since the theoretical discharge capacity is high, preferably the general formula (1): Li a Ni b M c Co d O 2 ( In the formula, a, b, c, d is 0.9 ≦ a ≦ 1.2, 0 <b <1, 0 <c ≦ 0.5, 0 <d ≦ 0.5, and b + c + d = 1, where M is Mn, Al, Ti, Zr, Nb, W, P, Mg, V, Ca, Sr, Cr, and at least one kind of element. Here, a represents the atomic ratio of Li, b represents the atomic ratio of Ni, c represents the atomic ratio of M, and d represents the atomic ratio of Co. From the viewpoint of cycle characteristics, it is preferable that 0.4 ≦ b ≦ 0.6 in the general formula (1). The composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
 一般に、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)は、材料の純度向上及び電子伝導性向上という観点から、容量及び出力特性に寄与することが知られている。Tiなどは、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていることが好ましく、特に一般式(1)において0<c≦0.5であることが好ましい。Mn、Al、Ti、Zr、Nb、W、P、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化されるため、その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。 Generally, nickel (Ni), cobalt (Co), and manganese (Mn) are known to contribute to capacity and output characteristics from the viewpoint of improving the purity of the material and improving the electronic conductivity. Ti and the like partially replace the transition metal in the crystal lattice. From the viewpoint of cycle characteristics, it is preferable that a part of the transition element is substituted with another metal element, and it is particularly preferable that 0 <c ≦ 0.5 in the general formula (1). Since at least one selected from the group consisting of Mn, Al, Ti, Zr, Nb, W, P, Mg, V, Ca, Sr and Cr is dissolved, the crystal structure is stabilized. It is considered that even when charging and discharging are repeated, a decrease in battery capacity can be prevented and excellent cycle characteristics can be realized.
 また、前記リチウムニッケル系複合酸化物において、本願発明者らは、例えば、LiNi0.5Mn0.3Co0.2のように、ニッケル、マンガンおよびコバルトの金属組成が不均一であると、上記充放電時の複合酸化物のひずみ/割れの影響が大きくなることを見出した。これは、金属組成が不均一であるために、膨張収縮時に粒子内部にかかる応力にひずみが生じ、複合酸化物に割れがより生じやすくなるためであると考えられる。したがって、例えば、Niの存在比がリッチである複合酸化物(例えば、LiNi0.8Mn0.1Co0.1)や、Ni、MnおよびCoの存在比率が均一である複合酸化物(例えば、LiNi0.3Mn0.3Co0.3)と比較して、長期サイクル特性の低下が顕著となる。本発明においては、LiNi0.5Mn0.3Co0.2のように金属組成が不均一である複合酸化物においても、驚くべきことに、特定の真密度にある複合酸化物を用いると、サイクル特性の低下が抑制されることを見出したものである。 Moreover, in the lithium nickel-based composite oxide, the inventors of the present application have non-uniform metal compositions of nickel, manganese, and cobalt, such as LiNi 0.5 Mn 0.3 Co 0.2 O 2. It was found that the influence of strain / cracking of the composite oxide at the time of charge / discharge is increased. This is presumably because the stress applied to the inside of the particles during expansion and contraction is distorted and cracks are more likely to occur in the composite oxide due to the non-uniform metal composition. Therefore, for example, a complex oxide having a rich Ni abundance ratio (for example, LiNi 0.8 Mn 0.1 Co 0.1 O 2 ) or a complex oxide having a uniform ratio of Ni, Mn, and Co. Compared with (for example, LiNi 0.3 Mn 0.3 Co 0.3 O 2 ), the long-term cycle characteristics are significantly reduced. In the present invention, surprisingly, even in a complex oxide having a non-uniform metal composition such as LiNi 0.5 Mn 0.3 Co 0.2 O 2 , a complex oxide having a specific true density is surprisingly obtained. It has been found that, when used, deterioration of cycle characteristics is suppressed.
 したがって、一般式(1)において、b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26である複合酸化物の正極活物質であると、本願発明の効果が顕著に得られることから好ましい。 Therefore, in the general formula (1), composite oxides in which b, c and d are 0.44 ≦ b ≦ 0.51, 0.27 ≦ c ≦ 0.31, 0.19 ≦ d ≦ 0.26 The positive electrode active material is preferable because the effects of the present invention are remarkably obtained.
 本発明に係るリチウムニッケル系複合酸化物は、共沈法、スプレードライ法、など、種々公知の方法を選択して調製することができる。本発明の複合酸化物の調製が容易であることから、共沈法を用いることが好ましい。具体的には、例えば、特開2011-105588号に記載の方法のように、共沈法によりニッケル-マンガン-コバルト複合水酸化物を製造した後、ニッケル-マンガン-コバルト複合水酸化物と、リチウム化合物とを混合して焼成することにより得ることができる。 The lithium nickel composite oxide according to the present invention can be prepared by selecting various known methods such as a coprecipitation method and a spray drying method. The coprecipitation method is preferably used because the composite oxide of the present invention is easy to prepare. Specifically, for example, after producing a nickel-manganese-cobalt composite hydroxide by a coprecipitation method as in the method described in JP2011-105588A, nickel-manganese-cobalt composite hydroxide; It can be obtained by mixing and baking with a lithium compound.
 以下、具体的に説明する。 The details will be described below.
 本発明のリチウムニッケル系複合酸化物の原料化合物、例えば、Ni化合物、Co化合物、およびMn化合物またはAl化合物などを、所望の活物質材料の組成となるように水などの適用な溶媒に溶解させる。Ni化合物、Co化合物、Mn化合物、およびAl化合物としては、例えば、当該金属元素の硫酸塩、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物、ハロゲン化物などが挙げられる。具体的には、Ni化合物、Mn化合物およびCo化合物としては、例えば、硫酸ニッケル、硫酸コバルト、硫酸マンガン、硫酸アルミニウム、酢酸ニッケル、酢酸コバルト、酢酸マンガン、酢酸アルミニウムなどが挙げられるが、これらに制限されるものではない。この過程で、必要に応じて、さらに所望の活物質材料の組成になるように、活物質材料を構成する層状のリチウム金属複合酸化物の一部を置換する金属元素として、例えば、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrなどの少なくとも1種の金属元素を含む化合物を更に混入させてもよい。 The raw material compound of the lithium nickel composite oxide of the present invention, for example, Ni compound, Co compound, Mn compound or Al compound is dissolved in an appropriate solvent such as water so as to have a desired active material composition. . Examples of the Ni compound, Co compound, Mn compound, and Al compound include sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, and halides of the metal elements. Specific examples of Ni compounds, Mn compounds, and Co compounds include, but are not limited to, nickel sulfate, cobalt sulfate, manganese sulfate, aluminum sulfate, nickel acetate, cobalt acetate, manganese acetate, and aluminum acetate. Is not to be done. In this process, as necessary, for example, Ti, Zr as a metal element that substitutes a part of the layered lithium metal composite oxide constituting the active material so that the composition of the desired active material can be obtained. , Nb, W, P, Al, Mg, V, Ca, Sr, and a compound containing at least one metal element such as Cr may be further mixed.
 上記原料化合物とアルカリ溶液とを用いた中和、沈殿反応により共沈反応を行うことができる。これにより、上記原料化合物に含まれる金属を含有する金属複合水酸化物、金属複合炭酸塩が得られる。アルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニアなどの水溶液を用いることができるが、中和反応用に水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いることが好ましい。加えて、錯体反応用にアンモニア水溶液やアンモニウム塩を用いることが好ましい。 The coprecipitation reaction can be performed by neutralization and precipitation reaction using the above raw material compound and an alkaline solution. Thereby, the metal composite hydroxide and metal composite carbonate containing the metal contained in the said raw material compound are obtained. As the alkaline solution, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, but sodium hydroxide, sodium carbonate or a mixed solution thereof is preferably used for the neutralization reaction. . In addition, an aqueous ammonia solution or an ammonium salt is preferably used for the complex reaction.
 中和反応に用いるアルカリ溶液の添加量は、含有する全金属塩の中和分に対して当量比1.0でよいが、pH調整のためにアルカリ過剰分を合わせて添加することが好ましい。 The addition amount of the alkaline solution used for the neutralization reaction may be an equivalent ratio of 1.0 with respect to the neutralized content of all the metal salts contained, but it is preferable to add the alkali excess together for pH adjustment.
 錯体反応に用いるアンモニア水溶液やアンモニウム塩の添加量は、反応液中のアンモニア濃度が0.01~2.00mol/lの範囲で添加することが好ましい。反応溶液のpHは10.0~13.0の範囲に制御することが好適である。また、反応温度は30℃以上が好ましく、より好ましくは30~60℃である。 The addition amount of the aqueous ammonia solution or ammonium salt used for the complex reaction is preferably such that the ammonia concentration in the reaction solution is in the range of 0.01 to 2.00 mol / l. The pH of the reaction solution is preferably controlled in the range of 10.0 to 13.0. The reaction temperature is preferably 30 ° C. or higher, more preferably 30 to 60 ° C.
 共沈反応で得られた複合水酸化物は、その後、吸引ろ過し、水洗して、乾燥することが好ましい。 The composite hydroxide obtained by the coprecipitation reaction is then preferably suction filtered, washed with water and dried.
 次いで、ニッケル-マンガン-コバルト複合水酸化物、またはニッケル-コバルト-アルミニウム複合水酸化物などをリチウム化合物と混合して焼成することによりリチウム-ニッケル-マンガン-コバルト複合水酸化物、またはリチウム-ニッケル-コバルト-アルミニウム複合水酸化物を得ることができる。Li化合物としては、例えば、水酸化リチウムまたはその水和物、過酸化リチウム、硝酸リチウム、炭酸リチウムなどがある。 Next, a nickel-manganese-cobalt composite hydroxide, or a nickel-cobalt-aluminum composite hydroxide is mixed with a lithium compound and fired to obtain a lithium-nickel-manganese-cobalt composite hydroxide or lithium-nickel. A cobalt-aluminum composite hydroxide can be obtained. Examples of the Li compound include lithium hydroxide or a hydrate thereof, lithium peroxide, lithium nitrate, and lithium carbonate.
 焼成処理は、2段階(仮焼成および本焼成)で行うことが好ましい。2段階の焼成により、効率よく複合酸化物を得ることができる。仮焼成条件としては、特に限定されるものではないが、昇温速度は室温から1~20℃/分であることが好ましい。また、雰囲気は、空気中ないし酸素雰囲気下であることが好ましい。また、焼成温度は、700~1000℃であることが好ましく、650~750℃であることがより好ましい。さらに、焼成時間は3~20時間であることが好ましく、4~6時間であることがより好ましい。本焼成の条件としては、特に限定されるものではないが、昇温速度は室温から1~20℃/分であることが好ましい。また、雰囲気は、空気中ないし酸素雰囲気下であることが好ましい。また、焼成温度は、700~1000℃であることが好ましく、850~1100℃であることがより好ましい。さらに、焼成時間は3~20時間であることが好ましく、8~12時間であることがより好ましい。 The firing treatment is preferably performed in two stages (temporary firing and main firing). A composite oxide can be obtained efficiently by two-stage firing. The pre-baking conditions are not particularly limited, but the rate of temperature rise is preferably from room temperature to 1 to 20 ° C./min. The atmosphere is preferably in air or in an oxygen atmosphere. The firing temperature is preferably 700 to 1000 ° C., more preferably 650 to 750 ° C. Furthermore, the firing time is preferably 3 to 20 hours, and more preferably 4 to 6 hours. The conditions for the main firing are not particularly limited, but the rate of temperature rise is preferably from room temperature to 1 to 20 ° C./min. The atmosphere is preferably in air or in an oxygen atmosphere. The firing temperature is preferably 700 to 1000 ° C., more preferably 850 to 1100 ° C. Furthermore, the firing time is preferably 3 to 20 hours, and more preferably 8 to 12 hours.
 必要に応じて、活物質材料を構成する層状のリチウム金属複合酸化物の一部を置換する金属元素を微量添加する場合、該方法としては、あらかじめニッケル、コバルト、マンガン酸塩またはアルミニウム酸塩と混合する方法、ニッケル、コバルト、マンガン酸塩またはアルミニウム酸塩と同時に添加する方法、反応途中で反応溶液に添加する方法、Li化合物とともに、ニッケル-コバルト-マンガン複合水酸化物またはニッケル-コバルト-アルミニウム複合水酸化物に添加する方法などいずれの手段を用いても構わない。 If necessary, when adding a trace amount of a metal element that replaces a part of the layered lithium metal composite oxide constituting the active material, the method includes, in advance, nickel, cobalt, manganate or aluminum Method of mixing, method of adding simultaneously with nickel, cobalt, manganate or aluminumate, method of adding to reaction solution during reaction, nickel-cobalt-manganese composite hydroxide or nickel-cobalt-aluminum together with Li compound Any means such as a method of adding to the composite hydroxide may be used.
 本発明の複合酸化物は、反応溶液のpH、反応温度、反応濃度、添加速度、撹拌出力、撹拌速度などの反応条件を適宜調整することにより製造することができる。 The composite oxide of the present invention can be produced by appropriately adjusting the reaction conditions such as the pH of the reaction solution, the reaction temperature, the reaction concentration, the addition rate, the stirring output, and the stirring rate.
 本発明者らは、上述した特開2000-77071号公報(WO0013250A1に相当する)に記載のような民生用途の二次電池では十分な放電レート特性が達成できないことについて鋭意検討した結果、以下のようにその原因を特定した。すなわち、スピネル系マンガン正極活物質とリチウムニッケル系複合酸化物とを含む正極を有するリチウムイオン二次電池では、前記二種類の正極活物質におけるリチウムイオンの脱挿入反応が進む反応電位プロファイルが異なる。具体的には、放電初期では、スピネル系マンガン正極活物質の反応比率が大きくなるが、反応末期では、リチウムニッケル系複合酸化物の反応比率が大きくなる。特に、SOC20%以下の領域においては、ほぼリチウムニッケル系複合酸化物のみが反応している状態となる。このため、リチウムニッケル系複合酸化物の混合比率が小さい二次電池では、リチウムニッケル系複合酸化物に流れる電流が非常に大きくなり、見かけ上の内部抵抗が著しく増加し、放電作動電圧が急激に低下してしまう。その結果、取り出せる電気量が減少してしまい、放電レート特性が悪くなることが見出されたのである。 As a result of diligent research on the fact that a secondary battery for consumer use as described in JP 2000-77071 A (corresponding to WO0013250A1) described above cannot achieve sufficient discharge rate characteristics, So identified the cause. That is, in a lithium ion secondary battery having a positive electrode including a spinel-based manganese positive electrode active material and a lithium nickel-based composite oxide, reaction potential profiles in which the lithium ion desorption reaction proceeds in the two types of positive electrode active materials are different. Specifically, the reaction ratio of the spinel-based manganese positive electrode active material increases at the initial stage of discharge, but the reaction ratio of the lithium nickel-based composite oxide increases at the end of the reaction. In particular, in the region where the SOC is 20% or less, almost only the lithium nickel composite oxide is in a reaction state. For this reason, in a secondary battery with a small mixing ratio of the lithium nickel composite oxide, the current flowing through the lithium nickel composite oxide becomes very large, the apparent internal resistance increases remarkably, and the discharge operating voltage suddenly increases. It will decline. As a result, it has been found that the amount of electricity that can be taken out decreases and the discharge rate characteristics deteriorate.
 その上で、本発明者らは、高出力条件での使用が想定される、内部抵抗が10mΩ/Ah以下(SOC50%)の非水電解質二次電池において、上記課題を解決すべく検討を進めた。ここで、電池の内部抵抗は、その出入力性能を示す指標の一つである。特に、自動車などに使用される大型二次電池の内部抵抗は、設計可能な範囲で値が小さければ小さいほどが好ましい。この点で、本発明者らは、高出力条件での使用が想定される電池として、本発明が対象とする非水電解質二次電池を、内部抵抗が10mΩ/Ah(SOC50%)以下のものに特定して、検討を進めたのである。 In addition, the present inventors are proceeding with studies to solve the above problems in a non-aqueous electrolyte secondary battery having an internal resistance of 10 mΩ / Ah or less (SOC 50%), which is assumed to be used under high output conditions. It was. Here, the internal resistance of the battery is one of indexes indicating its input / output performance. In particular, it is preferable that the internal resistance of a large secondary battery used in an automobile or the like is as small as possible within a designable range. In this respect, the inventors of the present invention have assumed that the non-aqueous electrolyte secondary battery targeted by the present invention is a battery whose internal resistance is 10 mΩ / Ah (SOC 50%) or less as a battery expected to be used under high output conditions. We decided to proceed with the investigation.
 その結果、正極活物質100重量%に対する前記リチウムニッケル系複合酸化物の混合比率を30重量%以上にすることによって、優れる放電レート特性が得られることを見出し本発明を完成させたものである。なお、本発明に係る正極活物質がスピネル系マンガン正極活物質とリチウムニッケル系複合酸化物の2種類の活物質のみから構成されてもよく、本発明の効果を損なわない限り他の正極活物質を含んでもよい。スピネル系マンガン正極活物質とリチウムニッケル系複合酸化物の2種類の活物質のみから構成されている場合では、前記正極活物質100重量%に対する前記リチウムニッケル系複合酸化物の混合比率を30重量%にするということは、リチウムニッケル系複合酸化物とスピネル系マンガン正極活物質との重量比を30:70にすることと同義である。 As a result, the inventors have found that excellent discharge rate characteristics can be obtained by setting the mixing ratio of the lithium nickel composite oxide to 100% by weight of the positive electrode active material to 30% by weight or more. In addition, the positive electrode active material according to the present invention may be composed of only two types of active materials of a spinel-based manganese positive electrode active material and a lithium nickel-based composite oxide, and other positive electrode active materials as long as the effects of the present invention are not impaired. May be included. In the case of being composed of only two kinds of active materials, spinel manganese positive electrode active material and lithium nickel composite oxide, the mixing ratio of the lithium nickel composite oxide with respect to 100% by weight of the positive electrode active material is 30% by weight. This means that the weight ratio of the lithium nickel composite oxide and the spinel manganese positive electrode active material is 30:70.
 また、前記正極活物質100重量%に対する前記リチウムニッケル系複合酸化物の混合比率は、30~90重量%が好ましく、より好ましくは50~80重量%である。上述したように、前記リチウムニッケル系複合酸化物の混合比率が30重量%未満であると、特に、内部抵抗が10mΩ/Ah以下(SOC50%)の二次電池において、放電末期にリチウムニッケル系複合酸化物の反応比率が大きくなり、放電レート特性が悪化してしまう。 The mixing ratio of the lithium nickel composite oxide to 100% by weight of the positive electrode active material is preferably 30 to 90% by weight, more preferably 50 to 80% by weight. As described above, when the mixing ratio of the lithium nickel composite oxide is less than 30% by weight, particularly in a secondary battery having an internal resistance of 10 mΩ / Ah or less (SOC 50%), the lithium nickel composite is at the end of discharge. The reaction ratio of the oxide is increased, and the discharge rate characteristics are deteriorated.
 また、本発明の正極活物質層において、前記リチウムニッケル系複合酸化物を含むコア部と、前記リチウムニッケル系複合酸化物と異なるリチウム金属系複合酸化物を含むシェル部とを有する正極材料を含んでもよい。かようなコア-シェル構造によって、非水電解質二次電池のサイクル特性がより向上する。本発明者らの研究において、サイクル耐久試験後のリチウムニッケル系複合酸化物の粒子を分析したところ、粒子表層部のみNi価数の低下が確認された。このことから、本発明者らは、粒子表層部においてはNiが不活性化して実質的に充放電に寄与できなくなっている可能性があるとの仮説を設定した。そのうえで、この劣化し易い局所部にNi濃度の低いNMC複合酸化物やNi以外の材料を配置することがサイクル特性の一層の向上に繋がると考え、これを実証したのである。このようなコア-シェル型正極活物質は、特開2007-213866号に記載の方法により製造することができる。 Further, the positive electrode active material layer of the present invention includes a positive electrode material having a core portion containing the lithium nickel composite oxide and a shell portion containing a lithium metal composite oxide different from the lithium nickel composite oxide. But you can. Such a core-shell structure further improves the cycle characteristics of the nonaqueous electrolyte secondary battery. In the study by the present inventors, when the lithium nickel composite oxide particles after the cycle endurance test were analyzed, a decrease in Ni valence was confirmed only in the particle surface layer portion. From this, the present inventors set a hypothesis that Ni may be deactivated in the particle surface layer portion and may not substantially contribute to charge / discharge. In addition, it was considered that the arrangement of an NMC composite oxide having a low Ni concentration or a material other than Ni in the local portion that is likely to deteriorate would lead to further improvement in cycle characteristics. Such a core-shell type positive electrode active material can be produced by the method described in Japanese Patent Application Laid-Open No. 2007-213866.
 本発明の正極活物質は、1次粒子が凝集して2次粒子を形成している。2次粒子中には各1次粒子同士の間の空隙が存在する。本発明においては、サイクル特性および体積エネルギー密度の観点から、2次粒子における空隙率が2~10%未満であることが好ましい。ここで、空隙率は、2次粒子の断面における1次粒子の存在部分と空隙部分の面積の合計に対する空隙部分の面積比を指す。 In the positive electrode active material of the present invention, primary particles are aggregated to form secondary particles. There are voids between the primary particles in the secondary particles. In the present invention, the porosity of the secondary particles is preferably 2 to less than 10% from the viewpoint of cycle characteristics and volume energy density. Here, the porosity refers to the area ratio of the void portion to the sum of the area of the primary particle and the area of the void portion in the cross section of the secondary particle.
 正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは2次粒子径で6~11μm、より好ましくは7~10μmである。また、1次粒子の平均粒子径は、0.4~0.65μm、より好ましくは0.45~0.55μmである。なお、本明細書における「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。また、「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle size of the positive electrode active material is not particularly limited, but is preferably 6 to 11 μm, more preferably 7 to 10 μm in terms of secondary particle size from the viewpoint of increasing output. The average particle diameter of the primary particles is 0.4 to 0.65 μm, more preferably 0.45 to 0.55 μm. The “particle diameter” in the present specification means the maximum distance L among the distances between any two points on the particle outline. As the value of “average particle diameter”, the average particle diameter of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). A value calculated as a value is adopted.
 また、本発明の正極活物質は、比表面積が0.30~1.0m/gであることが好ましい。活物質の比表面積がかような範囲にあることで、活物質の反応面積が確保され、電池の内部抵抗が小さくなるため、電極反応時の分極発生を最小限に抑えることができる。分極の発生により、電解液の分解や、電極材料の表面が酸化分解など、副反応が生じるため、分極の発生を最小限に抑えることが好ましい。より好ましくは、比表面積が0.30~0.7m/gである。 The positive electrode active material of the present invention preferably has a specific surface area of 0.30 to 1.0 m 2 / g. When the specific surface area of the active material is in such a range, the reaction area of the active material is ensured and the internal resistance of the battery is reduced, so that the occurrence of polarization during electrode reaction can be minimized. The occurrence of polarization causes side reactions such as decomposition of the electrolytic solution and oxidative decomposition of the surface of the electrode material. Therefore, it is preferable to minimize the occurrence of polarization. More preferably, the specific surface area is 0.30 to 0.7 m 2 / g.
 本発明のリチウムニッケル系複合酸化物は、(1)真密度が4.40~4.80g/cmである、または(2)比表面積が0.30~1.0m/gである、の少なくとも一方を満たすことが好ましく、(1)および(2)の双方を満たすことがより好ましい。 The lithium nickel composite oxide of the present invention has (1) a true density of 4.40 to 4.80 g / cm 3 , or (2) a specific surface area of 0.30 to 1.0 m 2 / g. It is preferable to satisfy at least one of the above, and it is more preferable to satisfy both (1) and (2).
 本発明において、正極活物質層中、正極活物質の含有量は、85~99.5重量%であることが好ましい。 In the present invention, the positive electrode active material content in the positive electrode active material layer is preferably 85 to 99.5% by weight.
 本発明に係る正極活物質層は、上述した活物質の他、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。 In addition to the active material described above, the positive electrode active material layer according to the present invention is provided with a conductive additive, a binder, an electrolyte (such as a polymer matrix, an ion conductive polymer, an electrolytic solution) and an ion conductivity as necessary. It further includes other additives such as lithium salts.
 (バインダー)
 正極活物質層に用いられるバインダーとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)などのフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)などのビニリデンフルオライド系フッ素ゴム、エポキシ樹脂などが挙げられる。これらのバインダーは、単独で用いてもよいし、2種以上を併用してもよい。
(binder)
Although it does not specifically limit as a binder used for a positive electrode active material layer, For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof Thermoplastic polymers such as products, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (F P), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE) ), Fluororesin such as polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene fluororubber (VDF-HFP fluoropolymer), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene Fluorine rubber (VDF-PFP-TFE fluorine rubber), vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene Examples thereof include vinylidene fluoride fluorine rubber such as fluorine rubber (VDF-CTFE fluorine rubber), epoxy resin, and the like. These binders may be used independently and may use 2 or more types together.
 正極活物質層中に含まれるバインダー量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15重量%であり、より好ましくは1~10重量%である。 The amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but preferably 0.5 to 15% by weight with respect to the active material layer. More preferably, it is 1 to 10% by weight.
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラックなどのカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。 The conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer. Examples of the conductive assistant include carbon materials such as carbon black such as ketjen black and acetylene black, graphite, and carbon fiber. When the active material layer contains a conductive additive, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.
 電解質塩(リチウム塩)としては、Li(CSON、Li(CFSON、LiPF、LiBF、LiClO、LiAsF、LiCFSOなどが挙げられる。 Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3. It is done.
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。 Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
 正極活物質層および後述の負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、2~100μm程度である。 The compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer described later is not particularly limited. The blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries. The thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to. As an example, the thickness of each active material layer is about 2 to 100 μm.
 [負極]
 本発明に係る負極は、負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる構成を有する。負極集電体は、導電性材料から構成される。負極集電体を構成する導電性材料の種類やその厚さについては、正極集電体について上述したのと同様の形態が採用されうるため、ここでは詳細な説明を省略する。
[Negative electrode]
The negative electrode according to the present invention has a configuration in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of a negative electrode current collector. The negative electrode current collector is composed of a conductive material. About the kind and the thickness of the electroconductive material which comprise a negative electrode collector, since the form similar to having mentioned above about the positive electrode collector can be employ | adopted, detailed description is abbreviate | omitted here.
 (負極活物質層)
 負極活物質層は活物質を含み、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤については、上記正極活物質層の欄で述べたものと同様である。
(Negative electrode active material layer)
The negative electrode active material layer contains an active material, and other additives such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt to enhance ionic conductivity as necessary. An agent is further included. Other additives such as conductive assistants, binders, electrolytes (polymer matrix, ion conductive polymers, electrolytes, etc.) and lithium salts for improving ion conductivity are those described in the above positive electrode active material layer column. It is the same.
 負極活物質層においては、少なくとも水系バインダーを含むことが好ましい。水系バインダーは、結着力が高い。また、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。 The negative electrode active material layer preferably contains at least an aqueous binder. A water-based binder has a high binding power. In addition, it is easy to procure water as a raw material, and since steam is generated at the time of drying, the capital investment in the production line can be greatly suppressed, and the environmental load can be reduced. There is.
 水系バインダーとは水を溶媒もしくは分散媒体とするバインダーをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、またはこれらの混合物が該当する。ここで、水を分散媒体とするバインダーとは、ラテックスまたはエマルジョンと表現される全てを含み、水と乳化または水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。 The water-based binder refers to a binder using water as a solvent or a dispersion medium, and specifically includes a thermoplastic resin, a polymer having rubber elasticity, a water-soluble polymer, or a mixture thereof. Here, the binder using water as a dispersion medium refers to a polymer that includes all expressed as latex or emulsion and is emulsified or suspended in water. For example, a polymer latex that is emulsion-polymerized in a system that self-emulsifies. Kind.
 水系バインダーとしては、具体的にはスチレン系高分子(スチレン-ブタジエンゴム、スチレン-酢酸ビニル共重合体、スチレン-アクリル共重合体など)、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、(メタ)アクリル系高分子(ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレートなど)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン-プロピレン-ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール(平均重合度は、好適には200~4000、より好適には、1000~3000、ケン化度は好適には80モル%以上、より好適には90モル%以上)およびその変性体(エチレン/酢酸ビニル=2/98~30/70モル比の共重合体の酢酸ビニル単位のうちの1~80モル%ケン化物、ポリビニルアルコールの1~50モル%部分アセタール化物など)、デンプンおよびその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプンなど)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、およびこれらの塩など)、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、(メタ)アクリルアミドおよび/または(メタ)アクリル酸塩の共重合体[(メタ)アクリルアミド重合体、(メタ)アクリルアミド-(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1~4)エステル-(メタ)アクリル酸塩共重合体など]、スチレン-マレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂など)、ポリアミドポリアミンもしくはジアルキルアミン-エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、並びにマンナンガラクタン誘導体などの水溶性高分子などが挙げられる。これらの水系バインダーは1種単独で用いてもよいし、2種以上併用して用いてもよい。 Specific examples of water-based binders include styrene polymers (styrene-butadiene rubber, styrene-vinyl acetate copolymer, styrene-acrylic copolymer, etc.), acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, ) Acrylic polymers (polyethyl acrylate, polyethyl methacrylate, polypropyl acrylate, polymethyl methacrylate (methyl methacrylate rubber), polypropyl methacrylate, polyisopropyl acrylate, polyisopropyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyhexyl acrylate , Polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, polylauryl methacrylate Such as tacrylate), polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene copolymer, polybutadiene, butyl rubber, fluororubber, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polystyrene, ethylene-propylene-diene copolymer Polyvinyl pyridine, chlorosulfonated polyethylene, polyester resin, phenol resin, epoxy resin; polyvinyl alcohol (average polymerization degree is preferably 200 to 4000, more preferably 1000 to 3000, and saponification degree is preferably 80 Mol% or more, more preferably 90 mol% or more) and a modified product thereof (a saponified product of 1 to 80 mol% of vinyl acetate units of a copolymer of ethylene / vinyl acetate = 2/98 to 30/70 mol ratio) 1 to 50 mol% partially acetalized polyvinyl alcohol), starch and modified products thereof (oxidized starch, phosphate esterified starch, cationized starch, etc.), cellulose derivatives (carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, And their salts), polyvinylpyrrolidone, polyacrylic acid (salt), polyethylene glycol, (meth) acrylamide and / or (meth) acrylate copolymer [(meth) acrylamide polymer, (meth) acrylamide- (Meth) acrylate copolymer, alkyl (meth) acrylate (1 to 4 carbon atoms) ester- (meth) acrylate copolymer, etc.], styrene-maleate copolymer, polyacrylamide man Dech, modified formalin resin (urea-formalin resin, melamine-formalin resin, etc.), polyamide polyamine or dialkylamine-epichlorohydrin copolymer, polyethyleneimine, casein, soy protein, synthetic protein, mannangalactan derivative, etc. And water-soluble polymers. These aqueous binders may be used alone or in combination of two or more.
 上記水系バインダーは、結着性の観点から、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダーを含むことが好ましい。さらに、結着性が良好であることから、水系バインダーはスチレン-ブタジエンゴムを含むことが好ましい。 The aqueous binder may contain at least one rubber binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, and methyl methacrylate rubber from the viewpoint of binding properties. preferable. Furthermore, it is preferable that the water-based binder contains styrene-butadiene rubber because of good binding properties.
 水系バインダーとしてスチレン-ブタジエンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン-ブタジエンゴムと併用することが好適な水溶性高分子としては、ポリビニルアルコールおよびその変性体、デンプンおよびその変性体、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、およびこれらの塩など)、ポリビニルピロリドン、ポリアクリル酸(塩)、またはポリエチレングリコールが挙げられる。中でも、バインダーとして、スチレン-ブタジエンゴムと、カルボキシメチルセルロース(塩)とを組み合わせることが好ましい。スチレン-ブタジエンゴムと、水溶性高分子との含有重量比は、特に制限されるものではないが、スチレン-ブタジエンゴム:水溶性高分子=1:0.1~10であることが好ましく、0.5~2であることがより好ましい。 When styrene-butadiene rubber is used as the water-based binder, it is preferable to use the water-soluble polymer in combination from the viewpoint of improving coatability. Water-soluble polymers suitable for use in combination with styrene-butadiene rubber include polyvinyl alcohol and modified products thereof, starch and modified products thereof, cellulose derivatives (such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and salts thereof), polyvinyl Examples include pyrrolidone, polyacrylic acid (salt), or polyethylene glycol. Among them, it is preferable to combine styrene-butadiene rubber and carboxymethyl cellulose (salt) as a binder. The content weight ratio of the styrene-butadiene rubber to the water-soluble polymer is not particularly limited, but is preferably styrene-butadiene rubber: water-soluble polymer = 1: 0.1 to 10; More preferably, it is 5 to 2.
 負極活物質層に用いられるバインダーのうち、水系バインダーの含有量は80~100重量%であることが好ましく、90~100重量%であることが好ましく、100重量%であることが好ましい。 Among the binders used in the negative electrode active material layer, the content of the aqueous binder is preferably 80 to 100% by weight, preferably 90 to 100% by weight, and preferably 100% by weight.
 負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボンなどの炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム-遷移金属複合酸化物が、負極活物質として用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。 Examples of the negative electrode active material include carbon materials such as graphite (graphite), soft carbon, and hard carbon, lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. Is mentioned. In some cases, two or more negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material. Of course, negative electrode active materials other than those described above may be used.
 負極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。 The average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 100 μm, more preferably 1 to 20 μm from the viewpoint of increasing the output.
 [セパレータ(電解質層)]
 セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
[Separator (electrolyte layer)]
The separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータなどを挙げることができる。 Examples of the form of the separator include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte, and a nonwoven fabric separator.
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)などの炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。 As the separator of the porous sheet made of polymer or fiber, for example, a microporous (microporous film) can be used. Specific examples of the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。 The thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 μm in a single layer or multiple layers. Is desirable. The fine pore diameter of the microporous (microporous membrane) separator is desirably 1 μm or less (usually a pore diameter of about several tens of nm).
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。 As the nonwoven fabric separator, cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination. The bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte. Furthermore, the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 μm, particularly preferably 10 to 100 μm.
 また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性(サイクル特性)が向上する。 Also, as described above, the separator includes an electrolyte. The electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used. By using the gel polymer electrolyte, the distance between the electrodes is stabilized, the occurrence of polarization is suppressed, and the durability (cycle characteristics) is improved.
 液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解液層を構成する液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネートなどのカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、Li(CFSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSOなどの電極の活物質層に添加されうる化合物が同様に採用されうる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 The liquid electrolyte functions as a lithium ion carrier. The liquid electrolyte constituting the electrolytic solution layer has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer. Examples of the organic solvent used include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. As the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, Li (CF 3 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6 A compound that can be added to the active material layer of the electrode, such as LiTaF 6 and LiCF 3 SO 3, can be similarly employed. The liquid electrolyte may further contain additives other than the components described above. Specific examples of such compounds include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate. 1-methyl-1-vinylethylene carbonate, 1-methyl-2-vinylethylene carbonate, 1-ethyl-1-vinylethylene carbonate, 1-ethyl-2-vinylethylene carbonate, vinyl vinylene carbonate, allyl ethylene carbonate, vinyl Oxymethyl ethylene carbonate, allyloxymethyl ethylene carbonate, acryloxymethyl ethylene carbonate, methacrylate Oxy methylethylene carbonate, ethynyl ethylene carbonate, propargyl carbonate, ethynyloxy methylethylene carbonate, propargyloxy ethylene carbonate, methylene carbonate, etc. 1,1-dimethyl-2-methylene-ethylene carbonate. Among these, vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable. These cyclic carbonates may be used alone or in combination of two or more.
 ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体などが挙げられる。 The gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer. The use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off. Examples of the ion conductive polymer used as the matrix polymer (host polymer) include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), poly (methyl methacrylate (PMMA), and copolymers thereof.
 ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合などの重合処理を施せばよい。 The matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte, using an appropriate polymerization initiator. A polymerization treatment may be performed.
 また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダーを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。 Further, the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer). The heat-resistant insulating layer is a ceramic layer containing inorganic particles and a binder. As the separator with a heat-resistant insulating layer, a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used. By having the heat-resistant insulating layer, the internal stress of the separator that increases when the temperature rises is relieved, so that the effect of suppressing thermal shrinkage can be obtained. As a result, it is possible to prevent the induction of a short circuit between the electrodes of the battery, so that the battery configuration is unlikely to deteriorate in performance due to temperature rise. Moreover, by having a heat-resistant insulating layer, the mechanical strength of the separator with a heat-resistant insulating layer is improved, and it is difficult for the separator to break. Furthermore, the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。 The inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer. The material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
 耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。 The basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
 耐熱絶縁層におけるバインダーは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダーによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。 The binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer. With the binder, the heat-resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat-resistant insulating layer is prevented.
 耐熱絶縁層に使用されるバインダーは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。 The binder used for the heat-resistant insulating layer is not particularly limited. For example, carboxymethyl cellulose (CMC), polyacrylonitrile, cellulose, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR), isoprene rubber A compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as the binder. Of these, carboxymethylcellulose (CMC), methyl acrylate, or polyvinylidene fluoride (PVDF) is preferably used. As for these compounds, only 1 type may be used independently and 2 or more types may be used together.
 耐熱絶縁層におけるバインダーの含有量は、耐熱絶縁層100重量%に対して、2~20重量%であることが好ましい。バインダーの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダーの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。 The binder content in the heat resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat resistant insulating layer. When the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved. On the other hand, when the binder content is 20% by weight or less, the gaps between the inorganic particles are appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
 耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。 The thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 . By using such a material having high heat resistance, it is possible to effectively prevent the separator from contracting even if the positive electrode heat generation amount increases and the battery internal temperature reaches 150 ° C. As a result, it is possible to prevent the induction of a short circuit between the electrodes of the battery, so that the battery configuration is unlikely to deteriorate in performance due to a temperature rise.
 [正極集電板および負極集電板]
 集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金などの金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板27と負極集電板25とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[Positive electrode current collector and negative electrode current collector]
The material which comprises a current collector plate (25, 27) is not restrict | limited in particular, The well-known highly electroconductive material conventionally used as a current collector plate for lithium ion secondary batteries can be used. As a constituent material of the current collector plate, for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. In addition, the same material may be used for the positive electrode current collecting plate 27 and the negative electrode current collecting plate 25, and different materials may be used.
 [正極リードおよび負極リード]
 また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器など)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
[Positive lead and negative lead]
Moreover, although illustration is abbreviate | omitted, you may electrically connect between the collector 11 and the current collector plates (25, 27) via a positive electrode lead or a negative electrode lead. As a constituent material of the positive electrode and the negative electrode lead, materials used in known lithium ion secondary batteries can be similarly employed. In addition, heat-shrinkable heat-shrinkable parts are removed from the exterior so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and leaking electricity. It is preferable to coat with a tube or the like.
 [電池外装体]
 電池外装体29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルムなどを用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができ、所望の電解液層厚みへと調整容易であることから、外装体はアルミラミネートがより好ましい。
[Battery exterior]
As the battery outer case 29, a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used. As the laminate film, for example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used. However, the laminate film is not limited thereto. A laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV. In addition, the exterior body is more preferably an aluminum laminate because the group pressure applied to the power generation element applied from the outside can be easily adjusted and can be easily adjusted to a desired electrolyte layer thickness.
 [セルサイズ]
 図2は、二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
[Cell size]
FIG. 2 is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of the secondary battery.
 図2に示すように、扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図1に示すリチウムイオン二次電池10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)15、電解質層17および負極(負極活物質層)13で構成される単電池層(単セル)19が複数積層されたものである。 As shown in FIG. 2, the flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power are drawn out from both sides thereof. Yes. The power generation element 57 is encased by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed. The power generation element 57 is sealed with the positive electrode tab 58 and the negative electrode tab 59 pulled out to the outside. Has been. Here, the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery 10 shown in FIG. 1 described above. The power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 composed of a positive electrode (positive electrode active material layer) 15, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 13.
 なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではない。巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。 The lithium ion secondary battery is not limited to a stacked flat shape. The wound lithium ion secondary battery may have a cylindrical shape, or may have a shape that is a flattened rectangular shape by deforming such a cylindrical shape. There is no particular limitation. In the said cylindrical shape thing, a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict | limit. Preferably, the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
 また、図2に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。 Also, the tabs 58 and 59 shown in FIG. 2 are not particularly limited. The positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to. Further, in a wound type lithium ion battery, instead of a tab, for example, a terminal may be formed using a cylindrical can (metal can).
 自動車用途などにおいては、昨今、大型化された電池が求められている。そして、高出力条件下で放電した場合の放電末期における内部抵抗の上昇を抑制して放電レート特性を向上させるという本願発明の効果は、大面積電池の場合により効果的にその効果が発揮される。したがって、本発明において、発電要素を外装体で覆った電池構造体が大型であることが本発明の効果がより発揮されるという意味で好ましい。具体的には、負極活物質層が長方形状であり、当該長方形の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、負極活物質層の短辺の長さとは、各電極の中で最も長さが短い辺を指す。電池構造体の短辺の長さの上限は特に限定されるものではないが、通常250mm以下である。 In automobile applications and the like, recently, larger batteries are required. The effect of the present invention of improving the discharge rate characteristics by suppressing the increase in internal resistance at the end of discharge when discharged under high output conditions is more effectively exhibited in the case of a large area battery. . Therefore, in this invention, it is preferable in the meaning that the effect of this invention is exhibited more that the battery structure which covered the electric power generation element with the exterior body is large sized. Specifically, the negative electrode active material layer is preferably rectangular, and the length of the short side of the rectangle is preferably 100 mm or more. Such a large battery can be used for vehicle applications. Here, the length of the short side of the negative electrode active material layer refers to the side having the shortest length among the electrodes. The upper limit of the length of the short side of the battery structure is not particularly limited, but is usually 250 mm or less.
 また、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、電池面積や電池容量の関係から電池の大型化を規定することもできる。例えば、扁平積層型ラミネート電池の場合には、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である電池においては、単位容量当たりの電池面積が大きいため、高出力条件下での放電に有利となる。したがって、本形態に係る非水電解質二次電池は、上述したような大型化された電池であることが、本願発明の作用効果の発現によるメリットと合わせて、より好ましい。また、本形態に係る非水電解質二次電池としては、自動車用大型リチウムイオン二次電池であることが、本願発明の作用効果の発現によるメリットと合わせて、さらにより好ましい。 Further, as a viewpoint of a large-sized battery, which is different from the viewpoint of the physical size of the electrode, it is possible to regulate the size of the battery from the relationship between the battery area and the battery capacity. For example, in the case of a flat laminated battery, the ratio of the battery area (projected area of the battery including the battery outer package) to the rated capacity is 5 cm 2 / Ah or more, and the rated capacity is 3 Ah or more. In some batteries, the battery area per unit capacity is large, which is advantageous for discharging under high output conditions. Therefore, it is more preferable that the nonaqueous electrolyte secondary battery according to the present embodiment is a battery that is enlarged as described above, together with the merit due to the manifestation of the effects of the present invention. Further, as the non-aqueous electrolyte secondary battery according to this embodiment, it is more preferable that it is a large-sized lithium ion secondary battery for automobiles, together with the merit due to the manifestation of the effects of the present invention.
 さらに、体積エネルギー密度や単セル定格容量などによって電池の大型化を規定することもできる。例えば、一般的な電気自動車では、一回の充電による走行距離(航続距離)は100kmが市場要求である。かような航続距離を考慮すると、単セル定格容量は20Wh以上であることが好ましく、かつ、電池の体積エネルギー密度は153Wh/L以上であることが好ましい。なお、体積エネルギー密度および定格放電容量は下記実施例に記載の方法で測定される。さらに、矩形状の電極のアスペクト比は1~3であることが好ましく、1~2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、充電時に発生したガスが面方向に均一に排出されることが可能となるため、好ましい。 Furthermore, the size of the battery can be specified by the volume energy density, the single cell rated capacity, and the like. For example, in a general electric vehicle, a travel distance (cruising range) by one charge is 100 km, which is a market requirement. Considering such cruising distance, the single cell rated capacity is preferably 20 Wh or more, and the volume energy density of the battery is preferably 153 Wh / L or more. The volume energy density and the rated discharge capacity are measured by the methods described in the following examples. Further, the aspect ratio of the rectangular electrode is preferably 1 to 3, and more preferably 1 to 2. The electrode aspect ratio is defined as the aspect ratio of the rectangular positive electrode active material layer. Setting the aspect ratio in such a range is preferable because the gas generated during charging can be discharged uniformly in the surface direction.
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
[Battery]
The assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
 電池が複数、直列に又は並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。 It is also possible to form a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density. An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
 [車両]
 本発明の非水電解質二次電池は、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記非水電解質二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
[vehicle]
The nonaqueous electrolyte secondary battery of the present invention maintains a discharge capacity even when used for a long period of time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the nonaqueous electrolyte secondary battery can be suitably used as a vehicle power source, for example, a vehicle driving power source or an auxiliary power source.
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。 Specifically, a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle. In the present invention, since a battery having a long life with excellent long-term reliability and output characteristics can be configured, a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery. . For example, in the case of a car, a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile. However, the application is not limited to automobiles. For example, it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。 Hereinafter, although it demonstrates in detail using an Example and a comparative example, this invention is not necessarily limited only to the following Examples.
 [実施例1]
 (1)正極活物質の作製
 硫酸ニッケル、硫酸コバルト、および硫酸マンガンを溶解した水溶液(1.0mol/L)にpH11.0となるように水酸化ナトリウムおよびアンモニアを連続的に供給し、共沈法によりニッケルとコバルトとマンガンのモル比が50:20:30で固溶してなる金属複合水酸化物を作製した。
[Example 1]
(1) Preparation of positive electrode active material Sodium hydroxide and ammonia are continuously supplied to an aqueous solution (1.0 mol / L) in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved so as to have a pH of 11.0. A metal composite hydroxide formed by solid solution with a molar ratio of nickel, cobalt and manganese of 50:20:30 was prepared by the method.
 この金属複合酸化物と炭酸リチウムを、Li以外の金属(Ni、Co、Mn)の合計のモル数とLiのモル数の比が1:1となるように秤量した後、十分混合し、昇温速度5℃/minで昇温し、空気雰囲気で900℃、2時間仮焼成した後、昇温速度3℃/minで昇温し、920℃で10時間本焼成し、室温まで冷却して化学組成LiNi0.50Mn0.30Co0.20のリチウムニッケル系複合酸化物を得た。当該リチウムニッケル系複合酸化物(LiNi0.50Mn0.30Co0.20)の平均1次粒子径は0.5μmであり、平均2次粒子径は10.0μmであった。 The metal composite oxide and lithium carbonate were weighed so that the ratio of the total number of moles of metals other than Li (Ni, Co, Mn) to the number of moles of Li was 1: 1, and then mixed sufficiently. The temperature was raised at a temperature rate of 5 ° C./min, pre-baked at 900 ° C. for 2 hours in an air atmosphere, then heated at a rate of temperature increase of 3 ° C./min, finally baked at 920 ° C. for 10 hours, and cooled to room temperature. A lithium nickel composite oxide having a chemical composition of LiNi 0.50 Mn 0.30 Co 0.20 O 2 was obtained. The lithium nickel composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) had an average primary particle size of 0.5 μm and an average secondary particle size of 10.0 μm.
 次いで、電解二酸化マンガン、水酸化アルミニウムを混合し、750℃で熱処理し、三二酸化マンガンとした後、Li/(Mn+Al)モル比が0.55となるように炭酸リチウムを加えて混合し、850℃で20時間焼成して化学組成LiMnのスピネルマンガン酸リチウムを得た。当該スピネルマンガン酸リチウム(LiMn)の平均2次粒子径は10.0μmであった。 Next, electrolytic manganese dioxide and aluminum hydroxide were mixed and heat-treated at 750 ° C. to obtain manganese sesquioxide, and then lithium carbonate was added and mixed so that the Li / (Mn + Al) molar ratio was 0.55. The spinel lithium manganate having the chemical composition LiMn 2 O 4 was obtained by baking at 20 ° C. for 20 hours. The average secondary particle diameter of the spinel lithium manganate (LiMn 2 O 4 ) was 10.0 μm.
 その後、得られたリチウムニッケル系複合酸化物(LiNi0.50Mn0.30Co0.20)とスピネルマンガン酸リチウム(LiMn)とを30:70(重量比)で混合させ、正極活物質を作製した。 Then, the obtained lithium nickel composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) and lithium spinel manganate (LiMn 2 O 4 ) were mixed at 30:70 (weight ratio). A positive electrode active material was prepared.
 (2)正極の作製
 上記(1)で得られた正極活物質95重量%、導電助剤としてアセチレンブラック(平均粒子径:38nm)2重量%、バインダーとしてポリフッ化ビニリデン(PVDF)3重量%、およびスラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量混合して、正極活物質スラリーを作製し、得られた正極活物質スラリーを、目付量が15mg/cm(片面)となるように、集電体であるアルミニウム箔(厚さ:20μm)の片面に塗布し乾燥させた。十分乾燥させた後、ロールプレス機を用いて電極合材充填密度が3.0g/cmとなるように電極厚さを調整し、正極活物質層を両面に有する正極を作製した。
(2) Production of positive electrode 95% by weight of the positive electrode active material obtained in the above (1), 2% by weight of acetylene black (average particle size: 38 nm) as a conductive additive, 3% by weight of polyvinylidene fluoride (PVDF) as a binder, And an appropriate amount of N-methyl-2-pyrrolidone (NMP) which is a slurry viscosity adjusting solvent was mixed to prepare a positive electrode active material slurry, and the obtained positive electrode active material slurry had a basis weight of 15 mg / cm 2 (single side) Then, it was applied to one side of an aluminum foil (thickness: 20 μm) as a current collector and dried. After sufficiently drying, the electrode thickness was adjusted using a roll press so that the packing density of the electrode mixture was 3.0 g / cm 3, and a positive electrode having positive electrode active material layers on both sides was produced.
 (3)負極の作製
 負極活物質として表面をアモルファス炭素で被覆した天然黒鉛(平均粒径20μm)用いた炭素負極活物質を調製し、負極活物質94重量%、バインダーとしてポリフッ化ビニリデン(PVDF)6重量%、およびスラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量混合して、負極スラリーを調製した。
(3) Production of negative electrode A carbon negative electrode active material using natural graphite (average particle size 20 μm) coated with amorphous carbon as a negative electrode active material was prepared, 94% by weight of the negative electrode active material, and polyvinylidene fluoride (PVDF) as a binder An appropriate amount of 6% by weight and N-methyl-2-pyrrolidone (NMP) as a slurry viscosity adjusting solvent was mixed to prepare a negative electrode slurry.
 このスラリーを負極集電体となる銅箔(厚さ10μm)の両面に塗布し、単位面積当たりの塗工量は、それぞれ正極に対して、AC比(負極充電容量/正極充電容量)が1.2となるように設定した。十分乾燥させた後、ロールプレス機を用いて電極合材充填密度が1.4g/cmとなるように電極厚さを調整し、負極活物質層を両面に有する負極を作製した。 This slurry was applied to both surfaces of a copper foil (thickness 10 μm) serving as a negative electrode current collector, and the coating amount per unit area was 1 for each AC ratio (negative electrode charge capacity / positive electrode charge capacity). .2 was set. After sufficiently drying, the electrode thickness was adjusted using a roll press so that the electrode mixture filling density was 1.4 g / cm 3, and a negative electrode having negative electrode active material layers on both sides was produced.
 (4)電解液の調製
 1.0M LiPFをエチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒(体積比1:1)に溶解した溶液を作成した。これにビニレンカーボネートを電解液重量に対して2重量%に相当する量で添加して電解液とした。なお、「1.0MのLiPF」とは、当該混合溶媒およびリチウム塩の混合物におけるリチウム塩(LiPF)濃度が1.0Mであるという意味である。
(4) Preparation of Electrolytic Solution A solution was prepared by dissolving 1.0M LiPF 6 in a mixed solvent (volume ratio of 1: 1) of ethylene carbonate (EC) and dimethyl carbonate (DMC). Vinylene carbonate was added thereto in an amount corresponding to 2% by weight with respect to the weight of the electrolytic solution to obtain an electrolytic solution. Note that “1.0 M LiPF 6 ” means that the lithium salt (LiPF 6 ) concentration in the mixture of the mixed solvent and the lithium salt is 1.0 M.
 (5)フルセルの作製
 上記(1)で作製した正極を一辺20cmの正方形、上記(2)で作製した負極を一辺20.5cmの正方形、セパレータ(ポリエチレン/ポリプロピレン微多孔質膜、厚さ25μm)を一辺21cmの正方形となるように裁断し、交互に積層(正極5層、負極6層、セパレータ10層)し、この際、両端が負極であり、正極と負極との間にセパレータを介在させた。各層のタブを接続して並列型のセルをスタックした。得られた発電要素をアルミラミネート外装体に入れて、上記(1)で調合した電解液を注入し、真空封止して評価用フルセルを作製した。得られたフルセルのアルミラミネート外装体まで含めた電池の投影面積は484cmであった。
(5) Production of full cell The positive electrode produced in (1) above is a square with a side of 20 cm, the negative electrode produced in (2) above is a square with a side of 20.5 cm, and a separator (polyethylene / polypropylene microporous film, thickness 25 μm) Are cut into a square with a side of 21 cm and laminated alternately (5 layers of positive electrode, 6 layers of negative electrode, 10 layers of separator). At this time, both ends are negative electrodes, and a separator is interposed between the positive electrode and the negative electrode. It was. Parallel cells were stacked by connecting the tabs of each layer. The obtained power generation element was put in an aluminum laminate outer package, the electrolyte prepared in (1) above was injected, and vacuum sealed to prepare a full cell for evaluation. The projected area of the battery including the full cell aluminum laminate outer package obtained was 484 cm 2 .
 [実施例2~5、比較例1~2]
 実施例1に記載の正極活物質の作製において、リチウムニッケル系複合酸化物(LiNi0.50Mn0.30Co0.20)とスピネルマンガン酸リチウム(LiMn)との混合比を表1に記載のように変更して作製した正極活物質を用いたこと以外は、実施例1と同様にして、それぞれの評価用フルセルを作製した。
[Examples 2-5, Comparative Examples 1-2]
In preparation of the positive electrode active material described in Example 1, the mixing ratio of lithium nickel-based composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) and lithium spinel manganate (LiMn 2 O 4 ) A full cell for evaluation was produced in the same manner as in Example 1 except that a positive electrode active material produced by changing the composition as described in Table 1 was used.
 [実施例6~7、比較例3]
 実施例1に記載のリチウムニッケル系複合酸化物の作製において、共沈法によりニッケルとコバルトとマンガンとのモル比が1/3:1/3:1/3となるように調製条件を変更し、さらに表1に記載のリチウムニッケル系複合酸化物(LiNi1/3Mn1/3Co1/3)とスピネルマンガン酸リチウム(LiMn)との混合比率に従って作製した正極活物質を用いたこと以外は、実施例1と同様にして、それぞれの評価用フルセルを作製した。
[Examples 6 to 7, Comparative Example 3]
In the preparation of the lithium nickel-based composite oxide described in Example 1, the preparation conditions were changed by the coprecipitation method so that the molar ratio of nickel, cobalt, and manganese was 1/3: 1/3: 1/3. Further, a positive electrode active material prepared according to a mixing ratio of lithium nickel-based composite oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) and lithium spinel manganate (LiMn 2 O 4 ) described in Table 1 Each full cell for evaluation was produced in the same manner as in Example 1 except that was used.
 [実施例8~9、比較例4]
 実施例1に記載のリチウムニッケル系複合酸化物の作製において、共沈法によりニッケルとコバルトとマンガンとのモル比が80:10:10となるように調製条件を変更し、さらに表1に記載のリチウムニッケル系複合酸化物(LiNi0.8Mn0.1Co0.1)とスピネルマンガン酸リチウム(LiMn)との混合比率に従って作製した正極活物質を用いたこと以外は、実施例1と同様にして、それぞれの評価用フルセルを作製した。
[Examples 8 to 9, Comparative Example 4]
In the preparation of the lithium nickel-based composite oxide described in Example 1, the preparation conditions were changed by a coprecipitation method so that the molar ratio of nickel, cobalt, and manganese was 80:10:10. Except that a positive electrode active material prepared according to a mixing ratio of lithium nickel-based composite oxide (LiNi 0.8 Mn 0.1 Co 0.1 O 2 ) and spinel lithium manganate (LiMn 2 O 4 ) was used. Each evaluation full cell was produced in the same manner as in Example 1.
 [実施例10~11、比較例5]
 実施例1に記載のリチウムニッケル系複合酸化物の作製において、共沈法によりニッケルとコバルトとマンガンとのモル比が60:20:20となるように調製条件を変更し、さらに表1に記載のリチウムニッケル系複合酸化物(LiNi0.6Mn0.2Co0.2)とスピネルマンガン酸リチウム(LiMn)との混合比率に従って作製した正極活物質を用いたこと以外は、実施例1と同様にして、それぞれの評価用フルセルを作製した。
[Examples 10 to 11, Comparative Example 5]
In the preparation of the lithium nickel-based composite oxide described in Example 1, the preparation conditions were changed by a coprecipitation method so that the molar ratio of nickel, cobalt, and manganese was 60:20:20. Except that a positive electrode active material prepared according to a mixing ratio of lithium nickel-based composite oxide (LiNi 0.6 Mn 0.2 Co 0.2 O 2 ) and lithium spinel manganate (LiMn 2 O 4 ) was used. Each evaluation full cell was produced in the same manner as in Example 1.
 [実施例12~13、比較例6]
 実施例1に記載のリチウムニッケル系複合酸化物の作製において、硫酸マンガンの代わりに硫酸アルミニウムを用いて、共沈法によりニッケルとコバルトとアルミニウムとのモル比が80:10:10となるように調製条件を変更し、さらに表1に記載のリチウムニッケル系複合酸化物(LiNi0.8Co0.1Al0.1)とスピネルマンガン酸リチウム(LiMn)との混合比率に従って作製した正極活物質を用いたこと以外は、実施例1と同様にして、それぞれの評価用フルセルを作製した。
[Examples 12 to 13, Comparative Example 6]
In the production of the lithium nickel composite oxide described in Example 1, aluminum sulfate is used instead of manganese sulfate so that the molar ratio of nickel, cobalt, and aluminum is 80:10:10 by coprecipitation. The preparation conditions were changed, and further according to the mixing ratio of lithium nickel-based composite oxide (LiNi 0.8 Co 0.1 Al 0.1 O 2 ) and spinel lithium manganate (LiMn 2 O 4 ) listed in Table 1 Each evaluation full cell was produced like Example 1 except having used the produced positive electrode active material.
 [実施例14~17]
 実施例1に記載の正極の作製において、正極の目付量(片面)を表2の記載に従って変更したこと以外は、実施例1と同様にして、それぞれの評価用のフルセルを作製した。
[Examples 14 to 17]
In the production of the positive electrode described in Example 1, a full cell for each evaluation was produced in the same manner as in Example 1 except that the basis weight (one side) of the positive electrode was changed according to the description in Table 2.
 [実施例18~21]
 実施例1に記載の正極の作製において、正極の充填密度を表3の記載に従って変更したこと以外は、実施例1と同様にして、それぞれの評価用フルセルを作製した。
[Examples 18 to 21]
In the production of the positive electrode described in Example 1, each evaluation full cell was produced in the same manner as in Example 1, except that the packing density of the positive electrode was changed according to the description in Table 3.
 [評価方法]
 本発明において、特別な記載がない限り、下記各種の測定などは、全て25℃で行ったものである。
[Evaluation methods]
In the present invention, unless otherwise specified, the following various measurements are all performed at 25 ° C.
 (1)電池内部抵抗(DCR)の変化率
 まず、各実施例および比較例で作製したフルセルを充電深度(SOC:state of charge)SOC50%まで充電し、0.2Cアンペア、0.5Cアンペア、および1Cアンペアの電流値で10秒間放電し、それぞれの放電後の電圧を測定した。そして、これらの電流値を横軸に、計測された電圧を縦軸にとった直線のグラフの傾きから内部抵抗DCR50を求め、結果を表1に示す。
(1) Rate of change of battery internal resistance (DCR) First, the full cell produced in each example and comparative example was charged to a SOC of 50% SOC (state of charge) SOC, 0.2C ampere, 0.5C ampere, The battery was discharged for 10 seconds at a current value of 1 C ampere and the voltage after each discharge was measured. Then, the internal resistance DCR 50 is obtained from the slope of a straight line graph with these current values on the horizontal axis and the measured voltage on the vertical axis, and the results are shown in Table 1.
 次いで、充電深度SOC20%まで充電し、上記したSOC50%の場合と同様な操作をし、DCR20を求め、結果を表1に示す。 Next, the battery was charged to a charge depth SOC of 20%, and the same operation as in the case of the SOC of 50% was performed to obtain DCR 20 , and the results are shown in Table 1.
 その後、各実施例および比較例で作製したフルセルにおける電池内部抵抗変化率(ΔDCR=DCR20/DCR50)を求め、結果を表1~3に示す。また、比較しやすくするために、実施例1~5および比較例1~2の結果を図3-1に示し、実施例6~7および比較例3の結果を図3-2に示し、実施例8~9および比較例4の結果を図3-3に示し、実施例10~11および比較例5の結果を図3-4に示し、実施例12~13および比較例6の結果を図3-5に示し、実施例1および14~17の結果を図4に示し、実施例1および18~21の結果を図5に示す。 Thereafter, the battery internal resistance change rate (ΔDCR = DCR 20 / DCR 50 ) in the full cell produced in each example and comparative example was determined, and the results are shown in Tables 1 to 3. For easy comparison, the results of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in FIG. 3-1, and the results of Examples 6 to 7 and Comparative Example 3 are shown in FIG. 3-2. The results of Examples 8 to 9 and Comparative Example 4 are shown in FIG. 3-3, the results of Examples 10 to 11 and Comparative Example 5 are shown in FIG. 3-4, and the results of Examples 12 to 13 and Comparative Example 6 are shown in FIG. The results of Examples 1 and 14 to 17 are shown in FIG. 4, and the results of Examples 1 and 18 to 21 are shown in FIG.
 なお、本発明において、4.15V満充電状態をSOC100%とし、3V完全放電状態をSOC0%とし、完全放電状態から20%分の容量を充電した状態をSOC20%とし、完全放電から50%分の容量を充電した状態をSOC50%とする。 In the present invention, the 4.15V full charge state is SOC 100%, the 3V full discharge state is SOC 0%, the state in which the capacity of 20% from the full discharge state is charged is SOC 20%, and the full discharge state is 50%. The state in which the capacity is charged is defined as SOC 50%.
 (2)放電レート特性
 まず、各実施例および比較例で作製したフルセルを、1Cアンペアの定電流にて充電を開始し、電圧が4.15Vになった時点で引き続き定電圧4.15Vにて充電を続行し、電流値が0.02Cアンペアとなった時点を充電完了(カットオフ)として、1Cアンペアでの充電容量を測定した。次いで、定電流0.2Cアンペアおよび2Cアンペアにてそれぞれ放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、0.2Cアンペアおよび2Cアンペアでのそれぞれの放電容量を測定した。
(2) Discharge rate characteristics First, charging of the full cell produced in each example and comparative example was started at a constant current of 1 C ampere, and continued at a constant voltage of 4.15 V when the voltage reached 4.15 V. Charging was continued, and when the current value reached 0.02 C ampere, charging was completed (cut off), and the charge capacity at 1 C ampere was measured. Next, discharge was started at constant currents of 0.2 C ampere and 2 C ampere, and when the voltage reached 3.0 V, the discharge was completed (cutoff), and each discharge capacity at 0.2 C ampere and 2 C ampere Was measured.
 そして、それぞれの放電レートで得られた放電容量の比率%(「2C/0.2C」と略記)を求め、それらの結果を表1~3に示す。また、比較しやすいために、実施例1~5および比較例1~2の結果を図3-1に示し、実施例6~7および比較例3の結果を図3-2に示し、実施例8~9および比較例4の結果を図3-3に示し、実施例10~11および比較例5の結果を図3-4に示し、実施例12~13および比較例6の結果を図3-5に示し、実施例1および14~17の結果を図4に示し、実施例1および18~21の結果を図5に示す。 Then, the ratio% (abbreviated as “2C / 0.2C”) of the discharge capacity obtained at each discharge rate was obtained, and the results are shown in Tables 1 to 3. For easy comparison, the results of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in FIG. 3-1, and the results of Examples 6 to 7 and Comparative Example 3 are shown in FIG. 3-2. The results of 8-9 and Comparative Example 4 are shown in FIG. 3-3, the results of Examples 10-11 and Comparative Example 5 are shown in FIG. 3-4, and the results of Examples 12-13 and Comparative Example 6 are shown in FIG. The results of Examples 1 and 14 to 17 are shown in FIG. 4, and the results of Examples 1 and 18 to 21 are shown in FIG.
 なお、各実施例および比較例で作製したフルセルの定格容量は、以下により求めた。 In addition, the rated capacity of the full cell produced by each Example and the comparative example was calculated | required by the following.
 定格容量は、試験用電池について、電解液を注入した後で、10時間程度放置し、電池電圧が2.0V以上になってから初期充電を行う。その後、温度25℃、3.0Vから4.15Vの電圧範囲で、次の手順1~4によって測定される。  The rated capacity is about 10 hours after injecting the electrolyte for the test battery, and the battery is initially charged after the battery voltage becomes 2.0 V or higher. Thereafter, the measurement is performed by the following procedures 1 to 4 at a temperature of 25 ° C. and a voltage range of 3.0 V to 4.15 V.
 手順1:0.2Cアンペアの定電流充電にて4.15Vに到達した後、定電圧充電にて1.5時間充電し、5分間休止する。 Procedure 1: After reaching 4.15 V by constant current charging at 0.2 C amp, charge for 1.5 hours by constant voltage charging and rest for 5 minutes.
 手順2:0.2Cアンペアの定電流放電によって3.0Vに到達後、5分間休止する。 Procedure 2: After reaching 3.0 V by constant current discharge of 0.2 C amp, pause for 5 minutes.
 手順3:1Cアンペアの定電流充電によって4.15Vに到達後、定電圧充電にて2.5時間充電し、その後、5分間休止する。  Procedure 3: After reaching 4.15 V by constant current charging at 1 C amp, charge for 2.5 hours by constant voltage charging, and then rest for 5 minutes.
 手順4:0.2Cアンペアの定電流放電によって3.0Vに到達するまで放電する。  Procedure 4: Discharge until reaching 3.0V by constant current discharge of 0.2C ampere.
 定格容量:手順4における定電流放電から得られる放電容量を定格容量とする。 Rated capacity: The discharge capacity obtained from the constant current discharge in step 4 is the rated capacity.
 上記のように測定された各フルセルの定格放電容量(Ah)および定格容量に対する電池面積の比(cm/Ah)を表1に示す。 Table 1 shows the rated discharge capacity (Ah) and the ratio of the battery area to the rated capacity (cm 2 / Ah) of each full cell measured as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果より、内部抵抗が10mΩ/Ah以下(SOC50%)である電池では、いずれのリチウムニッケル系複合酸化物においても、混合比率30重量%以上の正極を用いた実施例1~21のフルセルにおいて、放電末期の抵抗増加が抑えられて、優れた放電レート特性が得られた。 From the above results, in the batteries having an internal resistance of 10 mΩ / Ah or less (SOC 50%), the full cells of Examples 1 to 21 using the positive electrode with a mixing ratio of 30% by weight or more in any lithium nickel composite oxide. , The increase in resistance at the end of discharge was suppressed, and excellent discharge rate characteristics were obtained.
 また、フルセルにおいて、正極の目付量を30mg/cm以下、充填密度を2.5~3.5g/cmに制御することにより、優れた放電レート特性を得ることができた。 In the full cell, excellent discharge rate characteristics could be obtained by controlling the basis weight of the positive electrode to 30 mg / cm 2 or less and the packing density to 2.5 to 3.5 g / cm 3 .
 本出願は、2013年3月15日に出願された日本特許出願番号2013-054103号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2013-054103 filed on March 15, 2013, the disclosure of which is incorporated by reference as a whole.
  10、50 リチウムイオン二次電池、
  11 負極集電体、
  12 正極集電体、
  13 負極活物質層、
  15 正極活物質層、
  17 セパレータ、
  19 単電池層、
  21、57 発電要素、
  25 負極集電板、
  27 正極集電板、
  29、52 電池外装材、
  58 正極タブ、
  59 負極タブ。
10, 50 lithium ion secondary battery,
11 negative electrode current collector,
12 positive electrode current collector,
13 negative electrode active material layer,
15 positive electrode active material layer,
17 separator,
19 cell layer,
21, 57 power generation element,
25 negative current collector,
27 positive current collector,
29, 52 Battery exterior material,
58 positive electrode tab,
59 Negative electrode tab.

Claims (10)

  1.  正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
     負極集電体の表面に負極活物質を含む負極活物質層が形成されてなる負極と、
     セパレータと、
    を含む発電要素を有し、
     前記正極活物質が、スピネル系マンガン正極活物質と、リチウムニッケル系複合酸化物とを含み、かつ前記正極活物質100重量%に対する前記リチウムニッケル系複合酸化物の混合比率が30重量%以上であり、
     内部抵抗が10mΩ/Ah以下(SOC50%)である、非水電解質二次電池。
    A positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of the positive electrode current collector;
    A negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of the negative electrode current collector;
    A separator;
    A power generation element including
    The positive electrode active material includes a spinel manganese positive electrode active material and a lithium nickel composite oxide, and a mixing ratio of the lithium nickel composite oxide with respect to 100% by weight of the positive electrode active material is 30% by weight or more. ,
    A non-aqueous electrolyte secondary battery having an internal resistance of 10 mΩ / Ah or less (SOC 50%).
  2.  前記リチウムニッケル系複合酸化物は、
     一般式:LiNiCo(但し、式中、a、b、c、dは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、b+c+d=1を満たす。Mは、Mn、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種である)で表される組成を有する、請求項1に記載の非水電解質二次電池。
    The lithium nickel composite oxide is
    General formula: Li a Ni b M c Co d O 2 ( In the formula, a, b, c, d is, 0.9 ≦ a ≦ 1.2,0 <b <1,0 <c ≦ 0. 5, 0 <d ≦ 0.5, b + c + d = 1, M is at least 1 selected from the group consisting of Mn, Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr and Cr The nonaqueous electrolyte secondary battery according to claim 1, which has a composition represented by:
  3.  前記b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26である、請求項2に記載の非水電解質二次電池。 The non-aqueous electrolyte 2 according to claim 2, wherein b, c, and d are 0.44 ≦ b ≦ 0.51, 0.27 ≦ c ≦ 0.31, and 0.19 ≦ d ≦ 0.26. Next battery.
  4.  前記正極の目付量(片面)が30mg/cmで以下ある、請求項1~3のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein a weight per unit area (one side) of the positive electrode is 30 mg / cm 2 or less.
  5.  前記正極の充填密度が2.5~3.5g/cmである、請求項1~4のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein a filling density of the positive electrode is 2.5 to 3.5 g / cm 3 .
  6.  前記セパレータが耐熱絶縁層付セパレータである、請求項1~5のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the separator is a separator with a heat-resistant insulating layer.
  7.  定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である、請求項1~6のいずれか1項に記載の非水電解質二次電池。 The ratio of the battery area to the rated capacity (projected area of the battery including the battery outer casing) is 5 cm 2 / Ah or more, and the rated capacity is 3 Ah or more. The non-aqueous electrolyte secondary battery described in 1.
  8.  矩形状の正極活物質層の縦横比として定義される電極のアスペクト比が1~3である、請求項1~7のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein an aspect ratio of the electrode defined as an aspect ratio of the rectangular positive electrode active material layer is 1 to 3.
  9.  前記正極と、前記負極と、前記正極と前記負極との間に介在し、液体電解質またはゲル電解質を保持するセパレータと、
    を有する発電要素が、アルミニウムを含むラミネートフィルムである外装体の内部に封入されてなる、請求項1~9のいずれか1項に記載の非水電解質二次電池。
    A separator that is interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode, and holds a liquid electrolyte or a gel electrolyte;
    The non-aqueous electrolyte secondary battery according to any one of claims 1 to 9, wherein a power generation element having the structure is enclosed in an exterior body that is a laminate film containing aluminum.
  10.  自動車用大型リチウムイオン電池である、請求項1~9のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 9, which is a large-sized lithium ion battery for automobiles.
PCT/JP2014/056795 2013-03-15 2014-03-13 Non-aqueous electrolyte secondary battery WO2014142280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015505581A JP6070822B2 (en) 2013-03-15 2014-03-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013054103 2013-03-15
JP2013-054103 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014142280A1 true WO2014142280A1 (en) 2014-09-18

Family

ID=51536928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056795 WO2014142280A1 (en) 2013-03-15 2014-03-13 Non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP6070822B2 (en)
WO (1) WO2014142280A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035837A (en) * 2014-08-01 2016-03-17 株式会社Nttファシリティーズ Lithium ion battery and method for manufacturing the same
WO2017169417A1 (en) * 2016-03-31 2017-10-05 オートモーティブエナジーサプライ株式会社 Lithium-ion secondary battery
JP2018206581A (en) * 2017-06-02 2018-12-27 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN110098433A (en) * 2019-06-05 2019-08-06 哈尔滨理工大学 A kind of preparation method of lithium ion battery soybean protein solid electrolyte membrane
CN111954952A (en) * 2018-04-09 2020-11-17 日产自动车株式会社 Nonaqueous electrolyte secondary battery
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2006216305A (en) * 2005-02-02 2006-08-17 Nissan Motor Co Ltd Secondary battery
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2008098142A (en) * 2006-09-14 2008-04-24 Nissan Motor Co Ltd Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2008282667A (en) * 2007-05-10 2008-11-20 Sony Corp Positive active material for lithium ion secondary battery using organic electrolyte
WO2012086277A1 (en) * 2010-12-20 2012-06-28 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using said positive electrode
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2013020975A (en) * 2005-03-02 2013-01-31 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP2013051210A (en) * 2012-11-07 2013-03-14 Sanyo Electric Co Ltd Lithium secondary battery
WO2013128676A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2006216305A (en) * 2005-02-02 2006-08-17 Nissan Motor Co Ltd Secondary battery
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2013020975A (en) * 2005-03-02 2013-01-31 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP2008098142A (en) * 2006-09-14 2008-04-24 Nissan Motor Co Ltd Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2008282667A (en) * 2007-05-10 2008-11-20 Sony Corp Positive active material for lithium ion secondary battery using organic electrolyte
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
WO2012086277A1 (en) * 2010-12-20 2012-06-28 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using said positive electrode
WO2013128676A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
JP2013051210A (en) * 2012-11-07 2013-03-14 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
JP2016035837A (en) * 2014-08-01 2016-03-17 株式会社Nttファシリティーズ Lithium ion battery and method for manufacturing the same
US11660841B2 (en) 2015-05-19 2023-05-30 Corning Incorporated Articles and methods for bonding sheets with carriers
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier
WO2017169417A1 (en) * 2016-03-31 2017-10-05 オートモーティブエナジーサプライ株式会社 Lithium-ion secondary battery
JP2017183127A (en) * 2016-03-31 2017-10-05 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
JP2018206581A (en) * 2017-06-02 2018-12-27 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing the same
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
CN111954952A (en) * 2018-04-09 2020-11-17 日产自动车株式会社 Nonaqueous electrolyte secondary battery
CN110098433A (en) * 2019-06-05 2019-08-06 哈尔滨理工大学 A kind of preparation method of lithium ion battery soybean protein solid electrolyte membrane

Also Published As

Publication number Publication date
JPWO2014142280A1 (en) 2017-02-16
JP6070822B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5967287B2 (en) Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
JP6036999B2 (en) Nonaqueous electrolyte secondary battery
JP6070824B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP6008041B2 (en) Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
JP6229709B2 (en) Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
JP6075440B2 (en) Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
JP6070822B2 (en) Nonaqueous electrolyte secondary battery
JP6176317B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP6156491B2 (en) Nonaqueous electrolyte secondary battery
JP6112204B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
WO2017006480A1 (en) Nonaqueous electrolyte secondary battery
JP6070823B2 (en) Nonaqueous electrolyte secondary battery
WO2015156400A1 (en) Positive electrode for electrical device, and electrical device using same
JP6241543B2 (en) Electrical device
WO2016103511A1 (en) Electrical device
WO2016103509A1 (en) Electrical device
JP2014216264A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014216266A (en) Discharge control system and discharge control method
JP6676289B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP6528543B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2017073281A (en) Positive electrode material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery using the same, and nonaqueous electrolyte secondary battery
JP2016184528A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505581

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765505

Country of ref document: EP

Kind code of ref document: A1