JP2016035837A - Lithium ion battery and method for manufacturing the same - Google Patents

Lithium ion battery and method for manufacturing the same Download PDF

Info

Publication number
JP2016035837A
JP2016035837A JP2014158230A JP2014158230A JP2016035837A JP 2016035837 A JP2016035837 A JP 2016035837A JP 2014158230 A JP2014158230 A JP 2014158230A JP 2014158230 A JP2014158230 A JP 2014158230A JP 2016035837 A JP2016035837 A JP 2016035837A
Authority
JP
Japan
Prior art keywords
ion battery
lithium ion
complex oxide
lithium
manganese complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014158230A
Other languages
Japanese (ja)
Other versions
JP6377992B2 (en
Inventor
荒川 正泰
Masayasu Arakawa
正泰 荒川
辻川 知伸
Tomonobu Tsujikawa
知伸 辻川
貴紀 梶本
Takanori Kajimoto
貴紀 梶本
北川 雅規
Masaki Kitagawa
雅規 北川
佳樹 宮本
Yoshiki Miyamoto
佳樹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd, NTT Facilities Inc filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2014158230A priority Critical patent/JP6377992B2/en
Publication of JP2016035837A publication Critical patent/JP2016035837A/en
Application granted granted Critical
Publication of JP6377992B2 publication Critical patent/JP6377992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium ion battery, by which a safe and large-capacity lithium ion battery can be manufactured readily.SOLUTION: A lithium ion battery comprises: an electrode group including a positive electrode plate having, as main constituents of a positive electrode active material, a lithium manganese complex oxide (NMC) of a layered structure and a lithium manganese complex oxide (sp-Mn) of a spinel structure, and a negative electrode plate having a carbon material as a negative electrode active material; a nonaqueous electrolytic solution arranged by adding, as an electrolyte, a lithium tetrafluoroborate to an organic solvent; and a phosphazene based flame-resistant agent of which the volume percentage (U) of the addition amount to the nonaqueous electrolytic solution is 10-20 vol.%. As to the lithium ion battery, the battery capacity (X) is 30-300 Ah; and the weight ratio (Y) of the layered structure lithium manganese complex oxide and the spinel structure lithium manganese complex oxide is determined to satisfy the following expressions (1) to (3): Y≤-0.0031SX+0.854T (1), where S=-0.0657U+1.646 (2), and T=-0.0037U+1.038 (3).SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池及びその製造方法に関するものである。   The present invention relates to a lithium ion battery and a method for manufacturing the same.

特許文献1(特開2003−36846号公報)には、正極活物質に、層状構造マンガン酸リチウムとスピネル構造マンガン酸リチウムを重量比55:45で配合したマンガン酸リチウム粉末を用いて得た正極板と、負極活物質として非晶質炭素又は黒鉛の粉末を用いて負極板とを用いたリチウムイオン電池が開示されている。この電池では、正極板の可逆容量が負極板の可逆容量以下となるように正極板と負極板を組み合わせている。   Patent Document 1 (Japanese Patent Laid-Open No. 2003-36846) discloses a positive electrode obtained by using a lithium manganate powder in which a layered structure lithium manganate and a spinel structure lithium manganate are blended at a weight ratio of 55:45 in a positive electrode active material. A lithium ion battery using a plate and a negative electrode plate using amorphous carbon or graphite powder as a negative electrode active material is disclosed. In this battery, the positive electrode plate and the negative electrode plate are combined so that the reversible capacity of the positive electrode plate is less than or equal to the reversible capacity of the negative electrode plate.

特許文献2(WO2010/101177号公報)には、正極活物質にスピネル系リチウムマンガン複酸化物を用いた正極板と負極活物質に炭素材を用いた負極板とがセパレータを介して捲回された電極群を用い、有機溶媒に電解質としてLiBF4が添加された電解液を用い、更に電解液に対してホスファゼン系難燃化剤が10重量%添加されているリチウム二次電池が開示されている。 In Patent Document 2 (WO2010 / 101177), a positive electrode plate using a spinel-based lithium manganese complex oxide as a positive electrode active material and a negative electrode plate using a carbon material as a negative electrode active material are wound through a separator. A lithium secondary battery is disclosed in which an electrode group is used, an electrolyte solution in which LiBF 4 is added as an electrolyte to an organic solvent, and a phosphazene-based flame retardant is added by 10% by weight to the electrolyte solution. Yes.

特開2003−36846号公報JP 2003-36846 A WO2010/101177号公報WO 2010/101177

従来、層状構造リチウムマンガン酸化物(NMC)とスピネル構造リチウムマンガン複酸化物(sp−Mn)とを正極活物質の主体として有する正極板と、炭素材を負極活物質として有する負極板とを備えた電極群と、有機溶媒に電解質として4フッ化ホウ酸リチウムが添加された非水電解液と、非水電解液に対し10vol%以上の割合で添加されたホスファゼン系難燃化剤とを備えたリチウムイオン電池で、電池容量が30Ah以上になる大容量のリチウムイオン電池を製造する場合に、簡単に設計できる基準がなかった。そのため、電池の大容量化に時間と費用がかかっていた。   Conventionally, a positive electrode plate having a layered structure lithium manganese oxide (NMC) and a spinel structure lithium manganese complex oxide (sp-Mn) as a main component of a positive electrode active material, and a negative electrode plate having a carbon material as a negative electrode active material are provided. A nonaqueous electrolytic solution in which lithium tetrafluoroborate is added as an electrolyte to an organic solvent, and a phosphazene-based flame retardant added in a proportion of 10 vol% or more with respect to the nonaqueous electrolytic solution. In the case of manufacturing a large-capacity lithium ion battery having a battery capacity of 30 Ah or more with a lithium ion battery, there was no standard that can be easily designed. Therefore, it took time and cost to increase the capacity of the battery.

本発明の目的は、安全な大容量リチウムイオン電池を簡単に製造できるリチウムイオン電池の製造方法及び該方法により製造されたリチウムイオン電池を提供することにある。   An object of the present invention is to provide a method for producing a lithium ion battery that can easily produce a safe large-capacity lithium ion battery, and a lithium ion battery produced by the method.

本発明が改良の対象とするリチウムイオン電池の製造方法は、層状構造リチウムマンガン複酸化物(NMC)とスピネル構造リチウムマンガン複酸化物(sp−Mn)とを正極活物質の主体として有する正極板と、炭素材を負極活物質として有する負極板とを備えた電極群と、有機溶媒に電解質として4フッ化ホウ酸リチウムが添加された非水電解液と、非水電解液に添加されたホスファゼン系難燃化剤とを備えてなるリチウムイオン電池を製造する方法である。   The manufacturing method of a lithium ion battery to be improved by the present invention includes a positive electrode plate having a layered structure lithium manganese complex oxide (NMC) and a spinel structure lithium manganese complex oxide (sp-Mn) as main components of a positive electrode active material. And a negative electrode plate having a carbon material as a negative electrode active material, a non-aqueous electrolyte in which lithium tetrafluoroborate is added as an electrolyte to an organic solvent, and a phosphazene added to the non-aqueous electrolyte It is a method of manufacturing a lithium ion battery comprising a system flame retardant.

本発明のリチウムイオン電池の製造方法では、放電容量をX、ホスファゼン系難燃化剤の非水電解液に対する割合をU、層状構造リチウムマンガン複酸化物(NMC)とスピネル構造リチウムマンガン複酸化物(sp−Mn)との重量比(NMC/sp−Mn)をYとして、下記式(1)〜(3)の条件を満たす正極活物質を用いて製造した正極板を用いる。   In the method for producing a lithium ion battery of the present invention, the discharge capacity is X, the ratio of the phosphazene flame retardant to the nonaqueous electrolyte is U, the layered structure lithium manganese complex oxide (NMC) and the spinel structure lithium manganese complex oxide A positive electrode plate manufactured using a positive electrode active material that satisfies the following formulas (1) to (3) is used, where Y is a weight ratio (NMC / sp-Mn) to (sp-Mn).

Y≦−0.0031SX+0.854T (30≦X≦300) …(1)
但し、S=−0.0657U+1.646 (10≦U≦20) …(2)
T=−0.0037U+1.038 (10≦U≦20) …(3)
このような条件を満足する正極板を用いてリチウムイオン電池を製造すると、高い難燃性を維持しながら、放電容量を増加させることができる。また、上記式(1)〜(3)の条件下では、放電容量(X)と難燃化剤の添加量(U)が定まれば、層状構造リチウムマンガン複酸化物とスピネル構造リチウムマンガン複酸化物との重量比(Y)が自動的に定まるため、大容量のリチウムイオン電池の設計が容易になる。したがって、本発明のリチウムイオン電池の製造方法を用いれば、安全かつ電池性能が高い大容量リチウムイオン電池を簡単に製造することができ、大容量リチウムイオン電池の製造コストを大幅に削減することが可能になる。
Y ≦ −0.0031SX + 0.854T (30 ≦ X ≦ 300) (1)
However, S = −0.0657U + 1.646 (10 ≦ U ≦ 20) (2)
T = −0.0037U + 1.038 (10 ≦ U ≦ 20) (3)
When a lithium ion battery is manufactured using a positive electrode plate that satisfies such conditions, the discharge capacity can be increased while maintaining high flame retardancy. Further, under the conditions of the above formulas (1) to (3), if the discharge capacity (X) and the addition amount (U) of the flame retardant are determined, the layered lithium manganese complex oxide and the spinel structure lithium manganese complex are determined. Since the weight ratio (Y) with the oxide is automatically determined, it is easy to design a large-capacity lithium ion battery. Therefore, if the method for producing a lithium ion battery of the present invention is used, a large capacity lithium ion battery that is safe and has high battery performance can be easily produced, and the production cost of the large capacity lithium ion battery can be greatly reduced. It becomes possible.

スピネル構造リチウムマンガン複酸化物としては、マンガンサイトの一部が、アルミニウム、マグネシウム、リチウム、コバルト、ニッケルのうち少なくとも1種類以上で置換されたものを用いることができる。この場合、マンガンサイトの置換割合zが0<z≦0.1に調整されたスピネル構造リチウムマンガン複酸化物を用いれば良い。このようなスピネル構造リチウムマンガン複酸化物であれば、ホスファゼン系化合物の難燃性を阻害し難いため、難燃性と放電特性を両立することができる。   As the spinel structure lithium manganese complex oxide, a manganese site partially substituted with at least one of aluminum, magnesium, lithium, cobalt, and nickel can be used. In this case, a spinel structure lithium manganese complex oxide in which the substitution ratio z of manganese sites is adjusted to 0 <z ≦ 0.1 may be used. With such a spinel structure lithium manganese complex oxide, it is difficult to inhibit the flame retardancy of the phosphazene compound, so that both flame retardancy and discharge characteristics can be achieved.

非水電解液には、電解質として4フッ化ホウ酸リチウムを0.8モル/リットル以上添加するのが好ましい。このような添加量の4フッ化ホウ酸リチウムを用いれば、充放電反応に十分なリチウムイオンが非水電解液中に存在するため、大容量リチウムイオン電池の非水電解液に難燃化剤を添加した場合でも、大容量リチウムイオン電池の放電容量を維持できる。   It is preferable to add 0.8 mol / liter or more of lithium tetrafluoroborate as an electrolyte to the nonaqueous electrolytic solution. When such an added amount of lithium tetrafluoroborate is used, a sufficient amount of lithium ions for the charge / discharge reaction is present in the non-aqueous electrolyte solution. Even when is added, the discharge capacity of the large-capacity lithium ion battery can be maintained.

ホスファゼン系難燃化剤は、(NPR23または(NPR24の一般式で表されるホスファゼン化合物を含有する難燃化剤である。なお、一般式中のRは、フッ素や塩素等のハロゲン元素または一価の置換基を示している。一価の置換基としては、メトキシ基やエトキシ基等のアルコキシ基、フェノキシ基やメチルフェノキシ基等のアリールオキシ基、メチル基やエチル基等のアルキル基、フェニル基やトリル基等のアリール基、メチルアミノ基等の置換型アミノ基を含むアミノ基、メチルチオ基やエチルチオ基等のアルキルチオ基、および、フェニルチオ基等のアリールチオ基を挙げることができる。このようなホスファゼン系化合物を非水電解液に添加することにより、上記式(1)〜(3)の条件下で、リチウムイオン電池の難燃性を確実に発揮することができる。 The phosphazene flame retardant is a flame retardant containing a phosphazene compound represented by a general formula of (NPR 2 ) 3 or (NPR 2 ) 4 . In the general formula, R represents a halogen element such as fluorine or chlorine or a monovalent substituent. As monovalent substituents, alkoxy groups such as methoxy group and ethoxy group, aryloxy groups such as phenoxy group and methylphenoxy group, alkyl groups such as methyl group and ethyl group, aryl groups such as phenyl group and tolyl group, Examples thereof include an amino group containing a substituted amino group such as a methylamino group, an alkylthio group such as a methylthio group and an ethylthio group, and an arylthio group such as a phenylthio group. By adding such a phosphazene compound to the non-aqueous electrolyte, the flame retardancy of the lithium ion battery can be reliably exhibited under the conditions of the above formulas (1) to (3).

また、負極活物質として用いる炭素材には、非晶質炭素または黒鉛を用いることができる。これらの炭素材は、負極活物質として用いても、電池の難燃性および放電特性を阻害しないため好ましい。   As the carbon material used as the negative electrode active material, amorphous carbon or graphite can be used. Even if these carbon materials are used as a negative electrode active material, they are preferable because they do not impair the flame retardancy and discharge characteristics of the battery.

本発明の実施の形態の一例として角型リチウムイオン電池の構造を示す一部破断正面図である。It is a partially broken front view which shows the structure of a square-shaped lithium ion battery as an example of embodiment of this invention. 図1の角型リチウムイオン電池の電池缶を取り除いた状態を示す斜視図である。It is a perspective view which shows the state which removed the battery can of the square-shaped lithium ion battery of FIG. 図1の角型リチウムイオン電池の電池缶を取り除いた状態を示す右側面図である。It is a right view which shows the state which removed the battery can of the square lithium ion battery of FIG. ホスファゼン系難燃化剤の添加量を10vol%とした場合の放電容量と活物質の重量比との関係を、釘刺し試験の評価結果の観点から示すグラフである。It is a graph which shows the relationship between the discharge capacity when the addition amount of the phosphazene flame retardant is 10 vol% and the weight ratio of the active material from the viewpoint of the evaluation result of the nail penetration test. ホスファゼン系難燃化剤の添加量を15vol%とした場合の放電容量と活物質の重量比との関係を、釘刺し試験の評価結果の観点から示すグラフである。It is a graph which shows the relationship between the discharge capacity when the addition amount of the phosphazene flame retardant is 15 vol% and the weight ratio of the active material from the viewpoint of the evaluation result of the nail penetration test. ホスファゼン系難燃化剤の添加量を20vol%とした場合の放電容量と活物質の重量比との関係を、釘刺し試験の評価結果の観点から示すグラフである。It is a graph which shows the relationship between the discharge capacity when the addition amount of the phosphazene flame retardant is 20 vol% and the weight ratio of the active material from the viewpoint of the evaluation result of the nail penetration test. 図4乃至図6のグラフから求めた、難燃化剤の各添加量と該添加量における直線式の傾きとの関係を示すグラフである。It is a graph which shows the relationship between each addition amount of a flame retardant calculated | required from the graph of FIG. 4 thru | or FIG. 6, and the linear inclination in this addition amount. 図4乃至図6のグラフから求めた、難燃化剤の各添加量と該添加量における直線式の切片との関係を示すグラフである。It is a graph which shows the relationship between each addition amount of a flame retardant calculated | required from the graph of FIG. 4 thru | or FIG. 6, and the intercept of the linear type in this addition amount.

以下、図面を参照して、本発明の製造方法により製造したリチウムイオン電池の実施の形態について説明する。   Embodiments of a lithium ion battery manufactured by the manufacturing method of the present invention will be described below with reference to the drawings.

[電池構造]
図1に示すように、本実施の形態のリチウムイオン電池(角型リチウムイオン二次電池)1は、層状構造リチウムマンガン複酸化物(NMC)とスピネル構造リチウムマンガン複酸化物(sp−Mn)とを正極活物質の主体として有する正極板と、炭素材を負極活物質として有する負極板とを備えた極板群(電極群)3と、極板群3を内部に収容するステンレス製で角型の電池容器5とを備えている。電池容器5は、一方の端部が開口する電池缶7と、電池蓋9とを備えており、極板群3を電池缶7に挿入した後、電池缶7の開口周縁部と、電池蓋9の周縁部とを溶接することで密閉されている。
[Battery structure]
As shown in FIG. 1, the lithium ion battery (rectangular lithium ion secondary battery) 1 of the present embodiment includes a layered structure lithium manganese complex oxide (NMC) and a spinel structure lithium manganese complex oxide (sp-Mn). Electrode plate group (electrode group) 3 including a positive electrode plate having a positive electrode active material as a main component, a negative electrode plate having a carbon material as a negative electrode active material, and a stainless steel square member containing the electrode plate group 3 therein. And a battery container 5 of the type. The battery container 5 includes a battery can 7 having one end opened, and a battery lid 9. After the electrode plate group 3 is inserted into the battery can 7, the opening peripheral edge of the battery can 7, and the battery lid It is sealed by welding the peripheral part of 9.

電池蓋9には、アルミニウム製の正極端子11及び銅製の負極端子13が固定されている。正極端子11及び負極端子13は、電池蓋9の蓋板を貫通して電池容器5の外部に突出する螺子付きの端子部11a及び13aと、電池容器5内に配置される集電部11b及び13bとをそれぞれ有している(図2及び図3参照)。螺子付きの端子部11a及び13aには、正極端子用ナット21及び負極端子用ナット23が螺合されている。正極端子11及び負極端子13と電池蓋9の間には、円環状の内側パッキン15がそれぞれ設けられている。電池蓋9の外側には、電池蓋9を介して内側パッキン15と対向する位置に、円環状の外側パッキン17と、端子ワッシャ19とが重ねられた状態で設けられている。正極端子11及び負極端子13は、内側パッキン15、外側パッキン17、端子ワッシャ19を介して、ネジ部の先端に設けられた正極端子用ナット21及び負極端子用ナット23により、電池蓋9にそれぞれ固定されている。電池蓋9の正極端子11及び負極端子13が設けられた部分は、内側パッキン15及び外側パッキン17により、電池容器5内の密閉・封止状態を確保している。   A positive electrode terminal 11 made of aluminum and a negative electrode terminal 13 made of copper are fixed to the battery lid 9. The positive electrode terminal 11 and the negative electrode terminal 13 pass through the cover plate of the battery lid 9 and protrude to the outside of the battery container 5 with screwed terminal portions 11a and 13a, and a current collector 11b disposed in the battery container 5 and 13b (see FIG. 2 and FIG. 3). A positive terminal nut 21 and a negative terminal nut 23 are screwed onto the screwed terminal portions 11a and 13a. An annular inner packing 15 is provided between the positive electrode terminal 11 and the negative electrode terminal 13 and the battery lid 9. An annular outer packing 17 and a terminal washer 19 are provided on the outer side of the battery lid 9 so as to be opposed to the inner packing 15 via the battery lid 9. The positive electrode terminal 11 and the negative electrode terminal 13 are respectively attached to the battery lid 9 by a positive terminal nut 21 and a negative terminal nut 23 provided at the tip of the threaded portion via the inner packing 15, the outer packing 17, and the terminal washer 19. It is fixed. The portion of the battery lid 9 where the positive electrode terminal 11 and the negative electrode terminal 13 are provided ensures a sealed / sealed state in the battery container 5 by the inner packing 15 and the outer packing 17.

電池蓋9には、ステンレス箔を溶接したガス排出弁9a及び注液口9bが配設されている(図2参照)。ガス排出弁9aは、電池内圧上昇時にステンレス箔が開裂して内部のガスを放出する機能を有している。注液口9bからは、エチレンカーボネートのような環状カーボネートとジメチルカーボネートのような鎖状カーボネートとの混合溶媒に6フッ化リン酸リチウム(LiPF6)または4フッ化ホウ酸リチウム(LiBF4)等のリチウム塩を溶解した図示しない非水電解液が注入される。 The battery lid 9 is provided with a gas discharge valve 9a and a liquid injection port 9b welded with stainless steel foil (see FIG. 2). The gas discharge valve 9a has a function of cleaving the stainless steel foil and releasing the internal gas when the battery internal pressure increases. From the liquid injection port 9b, lithium hexafluorophosphate (LiPF 6 ) or lithium tetrafluoroborate (LiBF 4 ) or the like is used as a mixed solvent of a cyclic carbonate such as ethylene carbonate and a chain carbonate such as dimethyl carbonate. A non-aqueous electrolyte solution (not shown) in which a lithium salt is dissolved is injected.

正極端子11の集電部11bには、正極側押さえ板25と正極集電タブ層27とが撹拌接合部29により取り付けられている。また、負極端子13の集電部13bには、負極側押さえ板31と負極集電タブ層33とが撹拌接合部29により取り付けられている。本実施の形態の正極端子11の集電部11bには、極板群3の積層方向に対向する2つの面に、正極側押さえ板25と正極集電タブ層27がそれぞれ取り付けられている。また、負極端子13の集電部13bには、極板群3の積層方向に対向する2つの面に、負極側押さえ板31と負極集電タブ層33がそれぞれ取り付けられている。   The positive electrode side pressing plate 25 and the positive electrode current collecting tab layer 27 are attached to the current collecting portion 11 b of the positive electrode terminal 11 by the stirring joint portion 29. Further, the negative electrode side pressing plate 31 and the negative electrode current collecting tab layer 33 are attached to the current collecting portion 13 b of the negative electrode terminal 13 by the stirring joint portion 29. In the current collecting part 11b of the positive electrode terminal 11 of the present embodiment, the positive electrode side pressing plate 25 and the positive electrode current collecting tab layer 27 are respectively attached to two surfaces facing in the stacking direction of the electrode plate group 3. In addition, a negative electrode side pressing plate 31 and a negative electrode current collecting tab layer 33 are attached to two surfaces of the current collecting portion 13 b of the negative electrode terminal 13 facing each other in the stacking direction of the electrode plate group 3.

図2は、電池缶7を取り除いた状態の角型リチウムイオン電池1の斜視図であり、図3は、電池缶7を取り除いた状態の角型リチウムイオン電池1の右側面図である。なお図2及び図3においては、理解を容易にするために各構成部材を模式的に示している。そのため、図2及び図3に示した各構成部材は、実際の極板群の構成部材とは、形状及び寸法等が異なる。極板群3は、複数枚の正極板35と、複数枚の負極板37とがセパレータ39を介して交互に積層されて構成されている。   FIG. 2 is a perspective view of the prismatic lithium ion battery 1 with the battery can 7 removed, and FIG. 3 is a right side view of the prismatic lithium ion battery 1 with the battery can 7 removed. In FIGS. 2 and 3, each component is schematically shown for easy understanding. Therefore, each component shown in FIGS. 2 and 3 is different in shape, size, and the like from the actual component of the electrode plate group. The electrode plate group 3 is configured by alternately stacking a plurality of positive electrode plates 35 and a plurality of negative electrode plates 37 via separators 39.

なお、本実施の形態では、角型リチウムイオン電池1を示したが、電池の形状について特に制限はなく、本発明は円筒型リチウムイオン電池を含む、非水電解液を使用するリチウムイオン電池一般に適用することができる。   In this embodiment, the prismatic lithium ion battery 1 is shown. However, the shape of the battery is not particularly limited, and the present invention generally includes a lithium ion battery including a cylindrical lithium ion battery and generally uses a non-aqueous electrolyte. Can be applied.

[正極板の作製]
正極板35の作製を以下のように行った。正極活物質である層状型リチウム・ニッケルマンガン・コバルト複合酸化物(NMC)とスピネル型リチウムマンガン酸化物(sp−Mn)とを、所定の重量比(NMC/sp−Mn)で混合した。本例で用いたスピネル型リチウムマンガン酸化物は、置換割合zが0<z≦0.1の範囲でマグネシウムによりマンガンサイトの一部が置換されている。この活物質の重量比は、後述の計算式によって簡単に定めることができる。なおこの計算式の導き出し方については、後に詳しく説明する。この正極活物質の混合物に、導電材として鱗片状の黒鉛(平均粒径:20μm)と、結着材としてポリフッ化ビニリデンとを順次添加し、これらを混合することにより正極材料の混合物を得た。この混合物の重量比は、活物質:導電材:結着材=86:7:7とした。さらに上記混合物に対し、分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に所定量塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化し、裁断することで正極板35を得た。
[Production of positive electrode plate]
The positive electrode plate 35 was produced as follows. A layered type lithium / nickel manganese / cobalt composite oxide (NMC) and a spinel type lithium manganese oxide (sp-Mn), which are positive electrode active materials, were mixed at a predetermined weight ratio (NMC / sp-Mn). In the spinel-type lithium manganese oxide used in this example, a part of the manganese site is substituted with magnesium in a range where the substitution ratio z is 0 <z ≦ 0.1. The weight ratio of the active material can be easily determined by the calculation formula described later. The method of deriving this calculation formula will be described in detail later. To this mixture of positive electrode active materials, scaly graphite (average particle size: 20 μm) as a conductive material and polyvinylidene fluoride as a binder were sequentially added, and these were mixed to obtain a mixture of positive electrode materials. . The weight ratio of the mixture was active material: conductive material: binder = 86: 7: 7. Further, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added to the above mixture and kneaded to form a slurry. A predetermined amount of this slurry was applied substantially uniformly and uniformly on both surfaces of a 20 μm thick aluminum foil serving as a positive electrode current collector. Then, the positive electrode plate 35 was obtained by performing a drying process, densifying with a press to a predetermined density, and cutting.

[負極板の作製]
負極板37の作製を以下のように行った。負極活物質として黒鉛を用いた。黒鉛に結着材としてポリフッ化ビニリデンを添加した。これらの重量比は、活物質:結着材=91:9とした。これに分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に所定量塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化し、裁断することで負極板37を得た。
[Production of negative electrode plate]
The negative electrode plate 37 was produced as follows. Graphite was used as the negative electrode active material. Polyvinylidene fluoride was added as a binder to graphite. The weight ratio of these was active material: binder = 91: 9. A dispersion solvent N-methyl-2-pyrrolidone (NMP) was added thereto and kneaded to form a slurry. A predetermined amount of this slurry was applied to both surfaces of a rolled copper foil having a thickness of 10 μm, which is a negative electrode current collector, substantially uniformly and uniformly. Then, the negative electrode plate 37 was obtained by performing a drying process, densifying with a press to a predetermined density, and cutting.

[電解液]
本実施形態では、非水電解液に、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)を体積比が2:3で混合した後、電解質として4フッ化ホウ酸リチウム(LiBF4)を0.8モル/リットル溶解したものを用いた。また、非水電解液には所定の割合の難燃化剤が添加されており、難燃化剤には、一般式(NPR23で表され、置換基RがF又はフェニル基であるホスファゼンを用いた。ホスファゼンの添加量は、図4〜図6に示すように、10vol%、15vol%及び20vol%に設定した。
[Electrolyte]
In this embodiment, ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed in a non-aqueous electrolyte at a volume ratio of 2: 3, and then lithium tetrafluoroborate (LiBF 4 ) is 0.8 as an electrolyte. Those dissolved in mol / liter were used. In addition, a predetermined ratio of a flame retardant is added to the non-aqueous electrolyte, and the flame retardant is represented by the general formula (NPR 2 ) 3 and the substituent R is F or a phenyl group. Phosphazene was used. The addition amount of phosphazene was set to 10 vol%, 15 vol% and 20 vol% as shown in FIGS.

なお、電解質として0.8モル/リットルの4フッ化ホウ酸リチウム(LiBF4)を添加したが、難燃性および放電容量をいずれも大きく低下させない電解質であれば、電解質の成分および添加量はこれらに限定されるものではない。 In addition, although 0.8 mol / liter lithium tetrafluoroborate (LiBF 4 ) was added as an electrolyte, if the electrolyte does not greatly reduce both flame retardancy and discharge capacity, the components and amount of the electrolyte are as follows: It is not limited to these.

また、難燃化剤として用いるホスファゼン系化合物は、これらのホスファゼンに限定されるものではなく、放電容量を大きく低下させることなく難燃性を発揮し得るものであれば他のホスファゼン系化合物を用いても良いのは勿論である。   The phosphazene compounds used as flame retardants are not limited to these phosphazenes, and other phosphazene compounds may be used as long as they can exhibit flame retardancy without greatly reducing the discharge capacity. Of course, it may be.

[計算式の導き方]
正極活物質の重量比(正極活物質中の層状構造リチウムマンガン複酸化物とスピネル構造リチウムマンガン複酸化物との重量比)は、以下の順番で導き出すことができる。
[How to derive the formula]
The weight ratio of the positive electrode active material (the weight ratio of the layered structure lithium manganese double oxide and the spinel structure lithium manganese double oxide in the positive electrode active material) can be derived in the following order.

(1)放電容量を確定するために試験用の極板群の最大厚みを決める。その厚みの範囲で密度や塗布量を変更し、極板枚数を調整することで放電容量を決める。例えば極板群最大厚みを18.4mm以下と定め、密度や塗布量を変更し、極板群枚数を調整することで、33Ah〜41Ahの放電容量となる。   (1) To determine the discharge capacity, the maximum thickness of the electrode plate group for testing is determined. The discharge capacity is determined by changing the density and the coating amount within the thickness range and adjusting the number of electrode plates. For example, by setting the maximum thickness of the electrode plate group to 18.4 mm or less, changing the density and the coating amount, and adjusting the number of electrode plate groups, the discharge capacity becomes 33 Ah to 41 Ah.

(2)上記(1)の各極板群に於いて、NMC比率を変えたものを作製し、放電容量X(30Ah≦X≦300Ah)を求める。   (2) In each electrode plate group of the above (1), one having a different NMC ratio is prepared, and the discharge capacity X (30 Ah ≦ X ≦ 300 Ah) is obtained.

(3)上記(2)で放電容量を求めた各極板群を組み込んだ電池について安全性試験を実施する。安全性試験は、くぎ差し試験や、過充電試験による破裂又は発火の有無で、安全か否かを試験する。   (3) A safety test is performed on the battery incorporating each electrode plate group for which the discharge capacity has been obtained in (2) above. In the safety test, whether or not it is safe is checked by the presence or absence of rupture or ignition by a nail insertion test or an overcharge test.

(4)難燃化剤の添加量(U)10vol%を基準として、15vol%及び20vol%の際の試験結果を、放電容量を横軸、NMC/sp−Mn比率を縦軸にして、グラフ化する。安全領域と非安全領域とを仕切るように直線を引く(図4〜図6参照)。   (4) Addition amount of flame retardant (U) Based on 10 vol%, the test results at 15 vol% and 20 vol% are shown on the graph with the discharge capacity on the horizontal axis and the NMC / sp-Mn ratio on the vertical axis. Turn into. A straight line is drawn so as to partition the safe area and the non-safe area (see FIGS. 4 to 6).

(5)上記(4)で求めた各難燃化剤添加量における直線式の傾きを縦軸に、難燃化剤添加量を横軸にし、変数Sの直線式を求める(図7参照)。   (5) The slope of the linear equation for each flame retardant addition amount obtained in (4) above is plotted on the vertical axis, and the flame retardant additive amount is plotted on the horizontal axis, and the linear equation of variable S is obtained (see FIG. 7). .

(6)上記(4)で求めた各難燃化剤添加量における直線式の切片を縦軸に、難燃化剤添加量を横軸にし、変数Tの直線式を求める(図8参照)。   (6) The straight line intercept for each flame retardant addition amount obtained in (4) above is taken on the vertical axis and the flame retardant addition amount is taken on the horizontal axis, and a linear equation for variable T is obtained (see FIG. 8). .

(7)上記(5)、(6)で求めた変数T、S及び難燃化剤添加量Uを用い、電池容量をXとしたときの安全な電池を作製できるNMC/sp−Mn比率Yは下記の計算式で表すことができる。   (7) NMC / sp-Mn ratio Y that can produce a safe battery when the battery capacity is X, using the variables T and S obtained in (5) and (6) above and the flame retardant addition amount U. Can be expressed by the following formula.

Y≦−0.0031SX+0.854T (30≦X≦300)
但し、S=−0.0657U+1.646 (10≦U≦20)
T=−0.0037U+1.038 (10≦U≦20)
(8)上記(7)に示す式から、放電容量(X)と難燃化剤の添加量(U)が定まれば、正極活物質の重量比は必然的に定まることになる。
Y ≦ −0.0031SX + 0.854T (30 ≦ X ≦ 300)
However, S = −0.0657U + 1.646 (10 ≦ U ≦ 20)
T = −0.0037U + 1.038 (10 ≦ U ≦ 20)
(8) If the discharge capacity (X) and the addition amount (U) of the flame retardant are determined from the formula shown in (7) above, the weight ratio of the positive electrode active material is inevitably determined.

[評価方法]
安全性は、釘刺し試験および過充電試験により確認した。
[Evaluation method]
Safety was confirmed by a nail penetration test and an overcharge test.

釘刺し試験では、まず、25℃の環境下において4.2〜3Vの電圧範囲で、0.5Cの電流値による充放電サイクルを2回繰り返した。さらに、4.1Vまで電池を充電後、直径5mmの釘を、速度1.6mm/秒で電池(セル)の中央部に刺し込み、電池容器5の内部において正極板と負極板とを短絡させた。この際の電池の外観の変化及び発火の有無を確認した。具体的には、ガス排出弁9aが開いた状態で、発火が観測されず、電池容器5が破裂しなかった場合は○(良好)と評価し、発火が観測されるか若しくは電池容器5が破裂した場合は×(不良)と評価した。   In the nail penetration test, first, a charge / discharge cycle with a current value of 0.5 C was repeated twice in a voltage range of 4.2 to 3 V in an environment of 25 ° C. Further, after charging the battery to 4.1 V, a nail having a diameter of 5 mm is inserted into the center of the battery (cell) at a speed of 1.6 mm / second, and the positive electrode plate and the negative electrode plate are short-circuited inside the battery container 5. It was. At this time, the change in the appearance of the battery and the presence or absence of ignition were confirmed. Specifically, when the gas discharge valve 9a is open and no ignition is observed and the battery container 5 does not rupture, it is evaluated as ◯ (good), and the ignition is observed or the battery container 5 is When bursting, it was evaluated as x (defect).

過充電試験では、まず、25℃の環境下において4.2〜3Vの電圧範囲で、0.5Cの電流値による充放電サイクルを2回繰り返した。さらに、4.1Vまで電池を充電後、0.5Cの電流値により上限電圧10Vで充電した。この際の電池の破裂及び発火の有無を上記の釘刺し試験と同じ評価方法で確認した。   In the overcharge test, first, a charge / discharge cycle with a current value of 0.5 C was repeated twice in a voltage range of 4.2 to 3 V in an environment of 25 ° C. Furthermore, after charging the battery to 4.1 V, the battery was charged at an upper limit voltage of 10 V with a current value of 0.5 C. At this time, the presence or absence of battery rupture and ignition was confirmed by the same evaluation method as in the above nail penetration test.

実施例1〜実施例32および比較例1〜比較例29は、表1及び表2に示す条件で作製した。また、釘刺し試験および過充電試験の結果は、表1、表2に示す。

Figure 2016035837
Figure 2016035837
Examples 1 to 32 and Comparative Examples 1 to 29 were produced under the conditions shown in Tables 1 and 2. Tables 1 and 2 show the results of the nail penetration test and the overcharge test.
Figure 2016035837
Figure 2016035837

表1より、実施例1〜32は、いずれも上記(7)の条件式を満たし、釘刺し試験および過充電試験の結果は○(良好)であった。これに対して、表2より、比較例1〜比較例29は、いずれも上記(7)の条件式を満たしておらず、釘刺し試験または過充電試験の結果は×(不良)であった。これらの実施例1〜32および比較例1〜29の結果から、下記式(1)〜(3)を満たす条件下では、放電容量(X)と難燃化剤の添加量(U)が定まれば、層状構造リチウムマンガン複酸化物とスピネル構造リチウムマンガン複酸化物との重量比(Y)も定まることになる。   From Table 1, Examples 1-32 satisfy | filled all the conditional expressions of said (7), and the result of the nail penetration test and the overcharge test was (circle) (good). On the other hand, from Table 2, none of Comparative Examples 1 to 29 satisfied the conditional expression (7), and the result of the nail penetration test or overcharge test was x (defect). . From the results of Examples 1 to 32 and Comparative Examples 1 to 29, the discharge capacity (X) and the addition amount (U) of the flame retardant are determined under the conditions satisfying the following formulas (1) to (3). In this case, the weight ratio (Y) between the layered structure lithium manganese complex oxide and the spinel structure lithium manganese complex oxide is also determined.

Y≦−0.0031SX+0.854T (30≦X≦300) …(1)
但し、S=−0.0657U+1.646 (10≦U≦20) …(2)
T=−0.0037U+1.038 (10≦U≦20) …(3)
そのため、難燃性を維持しながら放電特性を向上させることができる範囲で、大容量のリチウムイオン電池の設計が容易になることが判った。
Y ≦ −0.0031SX + 0.854T (30 ≦ X ≦ 300) (1)
However, S = −0.0657U + 1.646 (10 ≦ U ≦ 20) (2)
T = −0.0037U + 1.038 (10 ≦ U ≦ 20) (3)
For this reason, it has been found that the design of a large-capacity lithium ion battery is facilitated within a range in which the discharge characteristics can be improved while maintaining flame retardancy.

以上、本発明の実施の形態および実施例について具体的に説明したが、本発明はこれらの実施の形態および実施例に限定されるものではなく、本発明の技術的思想に基づく変更が可能であるのは勿論である。   Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to these embodiments and examples, and modifications based on the technical idea of the present invention are possible. Of course there is.

本発明のように、放電容量(X)とホスファゼン系難燃化剤の非水電解液に対する割合(U)と、層状構造リチウムマンガン複酸化物とスピネル構造リチウムマンガン複酸化物との重量比(Y)(=NMC/sp−Mn)とが、所定の条件式を満たすようにリチウムイオン電池を製造することにより、放電容量(X)と難燃化剤の添加量(U)が定まると、層状構造リチウムマンガン複酸化物とスピネル構造リチウムマンガン複酸化物との重量比(Y)も定まるため、難燃性を維持しながら放電特性を向上させることができる範囲で、大容量のリチウムイオン電池の設計が容易になる。したがって、本発明のリチウムイオン電池の製造方法およびその製造方法は、安全かつ電池性能が高い大容量リチウムイオン電池を簡単に製造することを可能にする点で利用価値が高い。   As in the present invention, the discharge capacity (X) and the ratio (U) of the phosphazene flame retardant to the non-aqueous electrolyte and the weight ratio of the layered structure lithium manganese complex oxide and the spinel structure lithium manganese complex oxide ( Y) (= NMC / sp-Mn) is a lithium ion battery manufactured so as to satisfy a predetermined conditional expression, thereby determining the discharge capacity (X) and the amount of flame retardant added (U). Since the weight ratio (Y) of the layered structure lithium manganese complex oxide and the spinel structure lithium manganese complex oxide is also determined, the lithium ion battery has a large capacity within a range in which the discharge characteristics can be improved while maintaining flame retardancy. The design becomes easier. Therefore, the method for manufacturing a lithium ion battery and the method for manufacturing the lithium ion battery of the present invention have high utility value in that it is possible to easily manufacture a large capacity lithium ion battery that is safe and has high battery performance.

1 角型リチウムイオン二次電池(リチウムイオン電池)
3 極板群(電極群)
35 正極板
37 負極板
1 Square type lithium ion secondary battery (lithium ion battery)
3 plate group (electrode group)
35 Positive electrode plate 37 Negative electrode plate

Claims (7)

層状構造リチウムマンガン複酸化物とスピネル構造リチウムマンガン複酸化物とを正極活物質の主体として有する正極板と、炭素材を負極活物質として有する負極板とを備えた電極群と、
有機溶媒に電解質として4フッ化ホウ酸リチウムが添加された非水電解液と、
前記非水電解液に添加されたホスファゼン系難燃化剤とを備えてなるリチウムイオン電池の製造方法であって、
放電容量をXとし、前記非水電解液に対するホスファゼン系難燃化剤の体積百分率をUとし、前記層状構造リチウムマンガン複酸化物の重量を前記スピネル構造リチウムマンガン複酸化物の重量で除した重量比をYとしたときに、
Y≦−0.0031SX+0.854T (30≦X≦300)
但し、S=−0.0657U+1.646 (10≦U≦20)
T=−0.0037U+1.038 (10≦U≦20)
の条件を満足するように、前記X、前記Yおよび前記Uを定めることを特徴とするリチウムイオン電池の製造方法。
A positive electrode plate having a layered structure lithium manganese complex oxide and a spinel structure lithium manganese complex oxide as a main component of the positive electrode active material; and an electrode group comprising a negative electrode plate having a carbon material as a negative electrode active material;
A non-aqueous electrolyte in which lithium tetrafluoroborate is added as an electrolyte to an organic solvent,
A method for producing a lithium ion battery comprising a phosphazene-based flame retardant added to the non-aqueous electrolyte,
The discharge capacity is X, the volume percentage of the phosphazene flame retardant with respect to the non-aqueous electrolyte solution is U, and the weight of the layered lithium manganese complex oxide is divided by the weight of the spinel structure lithium manganese complex oxide. When the ratio is Y,
Y ≦ −0.0031SX + 0.854T (30 ≦ X ≦ 300)
However, S = −0.0657U + 1.646 (10 ≦ U ≦ 20)
T = −0.0037U + 1.038 (10 ≦ U ≦ 20)
The method of manufacturing a lithium ion battery, wherein the X, Y, and U are determined so as to satisfy the following condition.
前記スピネル構造リチウムマンガン複酸化物は、マンガンサイトの一部が、アルミニウム、マグネシウム、リチウム、コバルト、ニッケルのうち少なくとも1種類以上で置換されたものであることを特徴とする請求項1に記載のリチウムイオン電池の製造方法。   2. The spinel structure lithium manganese complex oxide according to claim 1, wherein a part of the manganese site is substituted with at least one of aluminum, magnesium, lithium, cobalt, and nickel. A method for producing a lithium ion battery. 前記スピネル構造リチウムマンガン複酸化物は、マンガンサイトの置換割合Xが0≦X≦0.1であることを特徴とする請求項1に記載のリチウムイオン電池の製造方法。   2. The method of manufacturing a lithium ion battery according to claim 1, wherein the spinel structure lithium manganese complex oxide has a manganese site substitution ratio X of 0 ≦ X ≦ 0.1. 前記非水電解液は、前記4フッ化ホウ酸リチウムが0.8モル/リットル以上添加されたことを特徴とする請求項1に記載のリチウムイオン電池の製造方法。   2. The method of manufacturing a lithium ion battery according to claim 1, wherein the non-aqueous electrolyte solution is added with 0.8 mol / liter or more of the lithium tetrafluoroborate. 3. 前記ホスファゼン系難燃化剤は、一般式(NPR23または(NPR24で表されるホスファゼン化合物を含有し、
前記一般式中のRは、フッ素や塩素等のハロゲン元素または一価の置換基を示し、
前記一価の置換基は、アルコキシ基、アリールオキシ基、アルキル基、アリール基、置換型アミノ基を含むアミノ基、アルキルチオ基、および、アリールチオ基から選択される請求項1に記載のリチウムイオン電池の製造方法。
The phosphazene flame retardant contains a phosphazene compound represented by the general formula (NPR 2 ) 3 or (NPR 2 ) 4 ,
R in the general formula represents a halogen element such as fluorine or chlorine or a monovalent substituent,
The lithium ion battery according to claim 1, wherein the monovalent substituent is selected from an alkoxy group, an aryloxy group, an alkyl group, an aryl group, an amino group including a substituted amino group, an alkylthio group, and an arylthio group. Manufacturing method.
前記炭素材は、非晶質炭素または黒鉛であることを特徴とする請求項1に記載のリチウムイオン電池の製造方法。   The method for manufacturing a lithium ion battery according to claim 1, wherein the carbon material is amorphous carbon or graphite. 層状構造リチウムマンガン複酸化物とスピネル構造リチウムマンガン複酸化物とを正極活物質の主体として有する正極板と、炭素材を負極活物質として有する負極板とを備えた電極群と、
有機溶媒に電解質として4フッ化ホウ酸リチウムが添加された非水電解液と、
前記非水電解液に添加されたホスファゼン系難燃化剤とを備えてなるリチウムイオン電池であって、
放電容量(X)、前記層状構造リチウムマンガン複酸化物の重量を前記スピネル構造リチウムマンガン複酸化物の重量で除した重量比(Y)及び前記非水電解液に対する前記ホスファゼン系難燃化剤の体積百分率(U)が、
Y≦−0.0031SX+0.854T (30≦X≦300)
但し、S=−0.0657U+1.646 (10≦U≦20)
T=−0.0037U+1.038 (10≦U≦20)
の条件を満足することを特徴とするリチウムイオン電池。
A positive electrode plate having a layered structure lithium manganese complex oxide and a spinel structure lithium manganese complex oxide as a main component of the positive electrode active material; and an electrode group comprising a negative electrode plate having a carbon material as a negative electrode active material;
A non-aqueous electrolyte in which lithium tetrafluoroborate is added as an electrolyte to an organic solvent,
A lithium ion battery comprising a phosphazene flame retardant added to the non-aqueous electrolyte,
Discharge capacity (X), weight ratio (Y) obtained by dividing the weight of the layered structure lithium manganese complex oxide by the weight of the spinel structure lithium manganese complex oxide, and the phosphazene flame retardant for the non-aqueous electrolyte The volume percentage (U) is
Y ≦ −0.0031SX + 0.854T (30 ≦ X ≦ 300)
However, S = −0.0657U + 1.646 (10 ≦ U ≦ 20)
T = −0.0037U + 1.038 (10 ≦ U ≦ 20)
A lithium ion battery characterized by satisfying the following conditions.
JP2014158230A 2014-08-01 2014-08-01 Lithium ion battery and manufacturing method thereof Expired - Fee Related JP6377992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158230A JP6377992B2 (en) 2014-08-01 2014-08-01 Lithium ion battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158230A JP6377992B2 (en) 2014-08-01 2014-08-01 Lithium ion battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016035837A true JP2016035837A (en) 2016-03-17
JP6377992B2 JP6377992B2 (en) 2018-08-22

Family

ID=55523586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158230A Expired - Fee Related JP6377992B2 (en) 2014-08-01 2014-08-01 Lithium ion battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6377992B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063904A (en) * 2000-08-21 2002-02-28 Sony Corp Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2010101177A1 (en) * 2009-03-03 2010-09-10 株式会社Nttファシリティーズ Nonaqueous electrolyte cell
WO2012033036A1 (en) * 2010-09-06 2012-03-15 株式会社Nttファシリティーズ Lithium ion secondary battery
WO2013047342A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
WO2014142280A1 (en) * 2013-03-15 2014-09-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063904A (en) * 2000-08-21 2002-02-28 Sony Corp Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JP2005116306A (en) * 2003-10-07 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2010101177A1 (en) * 2009-03-03 2010-09-10 株式会社Nttファシリティーズ Nonaqueous electrolyte cell
WO2012033036A1 (en) * 2010-09-06 2012-03-15 株式会社Nttファシリティーズ Lithium ion secondary battery
WO2013047342A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
WO2014142280A1 (en) * 2013-03-15 2014-09-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6377992B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP7232359B2 (en) SO2-based electrolyte for rechargeable battery cells and rechargeable battery cells
US9437902B2 (en) Method of manufacturing nonaqueous electrolyte secondary battery
KR101903913B1 (en) Non-aqueous secondary battery
JP6917586B2 (en) Non-aqueous electrolyte secondary battery
CN111640975B (en) Electrolyte composition for lithium ion electrochemical cells
KR102217574B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20170057249A (en) Cathode, cathode-containing lithium ion battery in the state prior to the first charging process, method for forming a lithium ion battery, and lithium ion battery after formation
CN102195094A (en) Nonaqueous electrolyte secondary battery
US20160294006A1 (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2020527840A (en) Additives, non-aqueous electrolytes for lithium secondary batteries containing them, and lithium secondary batteries containing them
CN107437634A (en) A kind of ternary lithium electricity Overcharge prevention electrolyte and lithium ion battery
KR101941796B1 (en) Nonaqueous electrolyte secondary battery
CN114824187A (en) Nonaqueous electrolyte secondary battery
JP2020087690A (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US20170317383A1 (en) Lithium-ion secondary battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
US20220328818A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same
JP2017027927A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP6377992B2 (en) Lithium ion battery and manufacturing method thereof
KR101842328B1 (en) Non-aqueous electrolyte secondary battery and a method for producing the same
KR102379762B1 (en) Rechargeable lithium battery including same
JP2016046147A (en) Lithium ion battery
JP7320012B2 (en) Positive electrode and non-aqueous electrolyte secondary battery comprising the positive electrode
JP2018190624A (en) Nonaqueous electrolyte secondary battery
JP2018037289A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180726

R150 Certificate of patent or registration of utility model

Ref document number: 6377992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees