WO2014141439A1 - Radio communication device and wireless multihop network system - Google Patents

Radio communication device and wireless multihop network system Download PDF

Info

Publication number
WO2014141439A1
WO2014141439A1 PCT/JP2013/057238 JP2013057238W WO2014141439A1 WO 2014141439 A1 WO2014141439 A1 WO 2014141439A1 JP 2013057238 W JP2013057238 W JP 2013057238W WO 2014141439 A1 WO2014141439 A1 WO 2014141439A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
priority
transmission
wireless communication
node
Prior art date
Application number
PCT/JP2013/057238
Other languages
French (fr)
Japanese (ja)
Inventor
芳樹 松浦
悠一 五十嵐
弘起 佐藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/057238 priority Critical patent/WO2014141439A1/en
Publication of WO2014141439A1 publication Critical patent/WO2014141439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a technology of a wireless communication device and a wireless multi-hop network system.
  • Narrowband frequencies using the 920 MHz band and the like are advantageous for obstacle avoidance and long-distance communication, although the communication speed is relatively slow.
  • nodes Construction of the above system using a plurality of wireless communication devices (hereinafter sometimes referred to as “nodes”) is being studied.
  • a plurality of nodes transmit sensor information, device information, and the like to the management node.
  • a node whose wireless communication does not reach the management node directly transmits these information to the management node via other nodes. That is, it is considered to construct a wireless multi-hop network system in which a plurality of nodes are connected in a tree shape by wireless communication.
  • data is not always transmitted from a plurality of nodes to the management node.
  • the management node sends a control command or the like to a predetermined node to inquire about the situation.
  • the predetermined node notifies the management node of information relating to the abnormal state. It is desirable that data including such urgent information is preferentially communicated with respect to data that is normally transmitted and received.
  • Patent Document 1 describes that a communication time for preferential data and a communication time for normal data are divided in advance.
  • Patent Document 2 describes that different frequencies are used for preferential data communication and normal data communication.
  • JP 2000-253017 A Japanese Patent No. 4,904,849
  • the priority data is not frequently transmitted / received, and the rate at which normal data is transmitted / received is most. Therefore, unless the transmission / reception between the preferential data and the normal data is performed in a well-balanced manner, the efficiency of the normal data transmission / reception may be greatly reduced.
  • a wireless communication apparatus is a wireless communication apparatus that constitutes a tree-shaped wireless multi-hop network, and a synchronization unit that synchronizes timing with other wireless communication apparatuses,
  • a transmission data management unit that manages data to be transmitted to the wireless communication device in association with the priority of the data, and predetermined data stored in the transmission data management unit is transmitted to another wireless communication device.
  • preferential data communication and normal data communication can be performed in a balanced manner.
  • high priority data can reach the transmission destination in as short a time as possible.
  • wireless communication apparatus Hardware configuration example of the gateway.
  • the operation example of each node in the case where data having a high priority is transmitted from the node e to the node A when the frame of the node d is executed.
  • 10 is a configuration example of a wireless multi-hop network system in which an obstacle exists in part according to the second embodiment.
  • An example of a time slot related to transmission / reception of high priority data. 6 shows an example data structure of an address packet and a data packet.
  • 10 is a flowchart example of a transmission process of a transmission unit according to the second embodiment.
  • 10 is a flowchart example of a reception process of a reception unit according to the second embodiment.
  • FIG. 1 shows a configuration diagram of a wireless multi-hop network system.
  • a wireless multihop network system (hereinafter referred to as “wireless network”) 100 includes a gateway 101A and a plurality of wireless communication devices 102a to 102j.
  • the wireless network 100 has a structure in which, for example, a plurality of wireless communication devices 102a to 102j are connected by wireless communication in a tree shape with the gateway 101A as the highest level.
  • a solid line connecting the wireless communication devices indicates a communication path capable of wireless communication.
  • the wireless communication devices 102a to 102j may be collectively referred to as the wireless communication device 102.
  • the gateway 101A and the wireless communication device 102 may be referred to as nodes.
  • the gateway 101A is directly or indirectly connected to each wireless communication device 102.
  • the gateway 101A is connected to the control server 130 via the network 120.
  • the gateway 101A manages the communication timing of the wireless communication apparatus 102 and relays between the wireless communication apparatus 102 and the control server 130.
  • the gateway 101 ⁇ / b> A receives data transmitted from each wireless communication device 102 located at a lower rank in the network topology, and transmits the data to the control server 130.
  • the gateway 101 ⁇ / b> A transmits a control command or the like transmitted from the control server 130 to the wireless communication apparatus 102.
  • the gateway 101 ⁇ / b> A receives response data for the control command transmitted from the wireless communication apparatus 102 and transmits the response data to the control server 130.
  • the wireless communication device 102 transmits data (for example, sensor information or device state information) generated by itself to another wireless communication device 102.
  • the wireless communication device 102 transfers the data received from the other wireless communication device 102 to another wireless communication device 102 (or gateway 101A) different from the data.
  • the control server 130 has a function of managing the entire wireless network. For example, the control server 130 manages various information collected from the wireless communication apparatus 102 via the gateway 101A, or transmits a control command to the wireless communication apparatus 102 via the gateway 101A.
  • the network 120 is a network different from the wireless network 100.
  • the network 120 includes, for example, the Internet and / or a LAN (Local Area Network).
  • a certain node can transmit / receive data only to / from neighboring nodes existing within a wireless communication possible range. Accordingly, data generated by a certain node is relayed (transferred) in a bucket relay manner by another node and is carried to a destination (destination) node.
  • the node A shown in FIG. 1 receives data having the node e as the transmission destination from the control server 130, the data is first transferred to the node a capable of wireless communication. The data transferred to the node a is then transferred to the node b and node c and carried to the destination node e. In this way, transmitting data from the higher rank to the lower rank may be referred to as transmitting data in the “downward” direction.
  • the node e when the node e generates data having the node A as a transmission destination, the data is first transferred to the node c capable of wireless communication. The data transferred to the node c is then transferred to the node b and the node a and carried to the destination node A. As described above, transmitting data from a lower rank to an upper rank may be referred to as transmitting data in the “upward” direction.
  • FIG. 2 shows a hardware configuration of the wireless communication apparatus 102.
  • the wireless communication device 102 has a function of performing wireless communication with another wireless communication device 102 and / or the gateway 101A.
  • the wireless communication device 102 includes, for example, a storage unit 201, a sensor unit 202, a central control device 203, a power supply circuit 204, and an RFIF (Radio Frequency Interface) 205. These elements 201 to 205 are connected by a bus 230 capable of transmitting and receiving data in both directions.
  • the wireless communication device 102 may be an embedded device or an independent device.
  • the sensor unit 202 senses various information. For example, the wireless communication device 102 periodically notifies the control server 103 of sensor information including various sensed information.
  • the central control device 203 executes various computer programs stored in the storage unit 201. Thereby, various functions of the wireless communication apparatus 102 are realized.
  • the power supply circuit 204 supplies power to the wireless communication apparatus 102. Thereby, the wireless communication apparatus 102 operates.
  • the RFIF 205 mutually converts a digital signal and a radio signal. That is, the RFIF 205 transmits the generated digital data on a wireless signal to be transmitted to another node, or extracts the digital data from a wireless signal received from another node.
  • the storage unit 201 includes, for example, a ROM (Read-Only Memory) 210 and a RAM (Random Access Memory) 220.
  • the ROM 210 is configured by, for example, a read-only semiconductor memory.
  • the ROM 210 stores, for example, various computer programs that are executed in the wireless communication apparatus 102.
  • the ROM 210 stores programs and data such as a transmission / reception control unit 211, a transmission data acquisition unit 212, a transmission unit 213, a reception unit 214, a synchronization unit 215, a path management unit 216, and an application processing unit 217.
  • the synchronization unit 215 synchronizes timing related to time with another wireless communication apparatus 102. For example, the synchronization unit 215 performs synchronization so that the time has an error of a predetermined value or less between the nodes. This is because if there is an error in the time, the timing of data transmission / reception between nodes differs, and data cannot be transmitted / received correctly.
  • the route management unit 216 manages the route of the wireless network 100. For example, the path management unit 216 manages in which position the wireless node 100 is located, and which other node is connected to the wireless network 100 in terms of the network topology.
  • Application processing unit 217 generates data having predetermined information. For example, the application processing unit 217 generates data based on the sensor information acquired from the sensor unit. The generated data is notified to the control server 130, for example.
  • the transmission unit 213 transmits predetermined data stored in the transmission data management information 222 to other nodes by wireless communication. Details of the transmission unit 213 will be described later.
  • the receiving unit 214 receives data transmitted from other nodes. Details of the receiving unit 214 will be described later.
  • the RAM 220 is configured by a rewritable semiconductor memory or the like.
  • the RAM 220 stores data necessary for program execution.
  • the RAM 220 stores programs and data such as a priority queue 221, transmission data management information 222, own node transmission timing information 223, node information 224, and reception flag information 225, for example.
  • the priority queue 221 manages data to be transmitted as a queue for each priority.
  • the priority queue 221 includes, for example, a queue that manages data with high priority, a queue that manages data with high priority, and a queue that manages data with low priority. .
  • the transmission data management information 222 manages data to be transmitted to other wireless communication apparatuses 102 in association with priorities. Details of the transmission data management information 222 will be described later.
  • the own node transmission timing information 223 includes information regarding a timing at which the own node can transmit data. Details of the own node transmission timing information 223 will be described later.
  • the node information 224 includes information on the network topology position of the wireless network 100 of the own node and the connection relationship with other nodes. Details of the node information 224 will be described later.
  • the reception flag information 225 includes a flag for managing completion / non-completion of processing for each priority. Details of the reception flag information 225 will be described later.
  • the transmission / reception control unit 211 switches to a wireless communication channel associated with the priority of data at a predetermined timing, and controls transmission or reception of data with the priority.
  • the transmission / reception control unit 211 switches to a wireless communication channel corresponding to a certain priority at a predetermined timing, causes the reception unit 214 to wait for reception of data for a predetermined standby time, and A) receives data within the standby time. If not, switch to a wireless communication channel corresponding to a priority lower than a certain priority, and B) If reception of data is started within the waiting time, the same wireless communication channel until reception of the data that has started reception is completed May then be switched to a wireless communication channel corresponding to a priority lower than a certain priority.
  • the transmission / reception control unit 211 After the transmission / reception control unit 211 switches to a wireless communication channel corresponding to a priority lower than a certain priority, the transmission / reception control unit 211 again causes the reception unit 214 to wait for reception of data for a predetermined standby time, and the above A) and B) This determination may be repeated until the time slot, which is a predetermined time, is completed.
  • the transmission / reception control unit 211 When transmitting / receiving data to be transmitted, the transmission / reception control unit 211 first transmits preceding data including an address of a transfer destination of the data to be transmitted (for example, the address packet 1300 illustrated in FIG. 25), and then transmits the data.
  • the preceding data is not received within the waiting time in the above A) when transmitting the data to be transmitted and waiting for the data reception, or the transfer destination address included in the preceding data is its own wireless communication device If it does not indicate 102, the wireless communication channel corresponding to a priority lower than a certain priority is switched, and in B), the preceding data is received within the waiting time and the transfer included in the preceding data is performed.
  • the destination address indicates the wireless communication device 102 of the own device, the same wireless communication channel is maintained, and the data to be transmitted after that is transmitted. Receiving the data, then, it may be Kaee cut a wireless communication channel corresponding to a lower priority than some priority.
  • the transmission / reception control unit 211 identifies data to be transmitted from the transmission data management information 222, and corresponds to the priority of data to be transmitted at a predetermined timing in a time slot in which the wireless communication apparatus 102 can transmit data.
  • the data to be transmitted may be transmitted to the transmission unit 213 by switching to a wireless communication channel.
  • the transmission / reception control unit 211 can transmit the data to be transmitted when reception of data having a priority higher than the priority of the data to be transmitted is started within the standby time before the timing for transmitting the data to be transmitted.
  • Time slots may be delayed by a certain number of time slots.
  • the data to be transmitted / received includes a rank 94 indicating a hierarchy in the tree shape of a node that is a transmission source of the data, and a transmission direction 95 indicating whether the data is transmitted in an up or down direction of the tree shape.
  • the transmission / reception control unit 211 includes the transmission direction 95 included in the received data, and the positional relationship between the rank 94 included in the received data and the rank of its own wireless communication device. Based on this, the number of time slots to be delayed may be determined.
  • the transmission / reception control unit 211 determines the number of time slots. B) If the transmission direction 95 included in the received data is upstream and the rank included in the received data is the same as the rank of the own wireless communication device 102, the number of time slots is set to 1. C) If the transmission direction 95 included in the received data is upstream and the rank 94 included in the received data is lower than the rank of its own wireless communication device 102, the number of time slots is two. It may be delayed.
  • the transmission / reception control unit 211 When switching to a wireless communication channel corresponding to the lowest priority at a predetermined timing, the transmission / reception control unit 211 performs carrier sense on the wireless communication channel, and then transmits data corresponding to the lowest priority to the transmission unit. 213 may be transmitted. Further details of the transmission / reception control unit 211 will be described later.
  • FIG. 3 shows the hardware configuration of the gateway 101A.
  • the gateway 101A has a function of performing wireless communication with the wireless communication apparatus 102.
  • the gateway 101 ⁇ / b> A has a function of communicating with the control server 130 via the network 120.
  • the gateway 101A includes, for example, a storage unit 301, a sensor unit 302, a central control device 303, a power supply circuit 304, an RFIF 305, and a network IF 306. These elements 301 to 306 are connected by a bus 330 capable of bidirectional data transmission / reception.
  • the storage unit 301, the sensor unit 302, the central control device 303, the power supply circuit 304, and the RFIF 305 have the same functions as the storage unit 201, the sensor unit 202, the central control device 203, the power supply circuit 204, and the RFIF 205 shown in FIG. Therefore, explanation is omitted.
  • the network IF 306 is an IF for connecting to the network 120 and transmitting / receiving data to / from the control server 130, for example.
  • the storage unit 301 includes, for example, a ROM 310 and a RAM 320.
  • the ROM 310 and the RAM 320 have the same functions and configurations as the ROM 210 and the RAM 220 shown in FIG.
  • the ROM 310 stores programs and data such as a transmission / reception control unit 311, a transmission data acquisition unit 312, a transmission unit 313, a reception unit 314, a synchronization unit 315, a path management unit 316, and an application processing unit 317.
  • the transmission / reception control unit 311, transmission data acquisition unit 312, transmission unit 313, reception unit 314, synchronization unit 315, and path management unit 316 are the transmission / reception control unit 211, transmission data acquisition unit 212, transmission unit 213, reception shown in FIG. Since the functions are the same as those of the unit 214, the synchronization unit 215, and the route management unit 216, description thereof is omitted.
  • Application processing unit 317 generates data having predetermined information. For example, the application processing unit 317 generates data based on the sensor information acquired from the sensor unit 302. The generated data is notified to the control server 130, for example. The application processing unit 317 may create data for transmission / reception with the control server 130.
  • the RAM 320 stores programs and data such as a priority queue 321, transmission data management information 322, all node transmission timing information 323, node information 324, and reception flag information 325, for example.
  • the priority queue 321, transmission data management information 322, node information 324, and reception flag information 325 have the same functions as the priority queue 221, transmission data management information 222, node information 224, and reception flag information 225 shown in FIG. Since there is, description is abbreviate
  • the all node transmission timing information 323 manages data transmission timing of all nodes. Details of the all-node transmission timing information 323 will be described later.
  • FIG. 4 shows an example of the data structure of the transmission data management information 222 (322).
  • the transmission data management information 222 (322) is a so-called buffer for waiting for data to be transmitted until the actual transmission timing.
  • the predetermined data stored in the priority queue 221 (321) is temporarily stored in the transmission data management information 222 (322) until the timing at which the own node can transmit is reached. Then, when it is time for the own node to transmit, the predetermined data stored in the transmission data management information 222 (322) is transmitted.
  • the transmission data management information 222 (322) includes a time slot waiting number 401, a priority 402, data 403, and a transmission direction 404 as data items.
  • the time slot waiting number 401 stores the number of time slots that should be waited until the data waiting to be transmitted can be transmitted within the frame.
  • the value of the time slot waiting number 401 is normally subtracted by “1” when one time slot ends.
  • the priority 402 stores the priority of data.
  • the priority 402 stores information of “high”, “medium”, or “low” indicating the high priority.
  • the priority “low” is normally transmitted / received data
  • the priority “high” is data to be transmitted urgently
  • the “medium” priority is data to be transmitted as soon as possible. That is, most data transmitted and received in the wireless network 100 has a low priority.
  • the data 403 stores data that is actually transmitted.
  • information indicating the direction of the transmission destination is stored. For example, in the transmission direction 404, either “down” indicating transmission to the lower rank or “up” indicating transmission to the upper rank in the tree-shaped wireless network 10 is stored.
  • the data to be transmitted in which the number of timeslot waiting is “0”, the priority 402 is “high”, the data 403 is “POWER_OFF”, and the transmission direction 404 is “downlink” is transmitted data management information 222 ( 322).
  • FIG. 5 shows an example of the data structure of the own node transmission timing information 223.
  • the wireless communication apparatus 102 holds the own node transmission timing information 223.
  • the own node transmission timing information 223 holds the frame number that the own node can transmit.
  • the own node transmission timing information 223 has a frame number 411 as a data item. For example, when the frame number assigned to the own node is “1”, “1” is stored in the frame number 411. In this case, when the frame number is in the order of “1” in the transmission / reception schedule, the own node tries to transmit the data generated by the own node.
  • FIG. 6 shows an example of the data structure of the node information 224 (324).
  • the node information 224 (324) stores information for wireless communication.
  • the node information 224 (3240 is a data item including a node ID (identification) 421, a parent node ID 422, a child node ID 423, and a rank 424.
  • the node ID 421 stores a value that uniquely identifies the own node.
  • the node ID 422 stores the ID of the node that is the parent of the own node (upward), and the child node ID 423 stores the ID of the node that is a child of the own node (downward). Stores a value indicating which layer on the network topology the node is in.
  • a is represented in the node ID 421
  • A representing the gateway is represented in the parent node ID 422
  • the child node ID 423 is one level below the own node.
  • “1” is stored in the rank 424 for the node “b, h” connected to.
  • FIG. 7 shows an example of the data structure of the reception flag information 225 (325).
  • the reception flag information 225 (325) stores a flag for determining whether or not data corresponding to each priority can be received in one frame.
  • the reception flag information 225 (325) has a priority 431 and a flag 432 as data items.
  • the height of each priority operated in the wireless network 100 is stored. For example, “high”, “medium”, and “low” indicating the high priority are stored in the priority 431. And then. A value of “TRUE” or “FALSE” is stored for each priority level. “TRUE” indicates that data of the priority can be received in one frame. “FALSE” indicates that data of the priority is not received in the one frame. When the processing shifts to the next frame, all the flags 432 are initialized (reset) to “TRUE”.
  • FIG. 8 shows an example of the data configuration of all node transmission timing information 323. All node transmission timing information 323 is held by the gateway 101A.
  • the all node transmission timing information 323 information on transmission timings of all nodes existing in the wireless network 100 is stored.
  • the all-node transmission timing information 323 has a node ID 501, a rank 502 and a frame number 503 as data items.
  • the node ID 501 stores the ID of each node.
  • the rank 502 stores the rank of each node.
  • the frame number 503 stores the frame number assigned to each node. That is, the all-node transmission timing information 323 includes information indicating in which frame number 503 each node can transmit data.
  • the row 465b indicates that the rank 502 of the node ID 501 “b” (that is, the node b) is “2”, and the frame number 503 assigned to the node b is “2”.
  • the communication schedule indicates at what timing each node should transmit or receive data. That is, each node transmits or receives data at an appropriate timing (time) according to this communication schedule.
  • FIG. 9 shows the configuration of the super frame 50.
  • the super frame 50 indicates a one-cycle communication schedule for the entire wireless network 100. That is, the communication schedule indicated by the super frame 50 is repeatedly executed in the entire wireless network 100.
  • the super frame 50 is composed of a plurality of frames 51 arranged in a predetermined order.
  • the frame 51 indicates which node can transmit data in the frame. That is, as shown in FIG. 8, a node is assigned to each frame, and each node can transmit data when the current frame number is the frame number assigned to itself. For example, in the frame 51a in FIG. 9, the node a is in a state where data can be transmitted.
  • a frame is allocated to all nodes included in the wireless network 100. That is, the super frame 50 includes frames that are equal to or more than the number of nodes included in the wireless network 100. Usually, the super frame 50 is configured by adding a plurality of spare frames to the number of nodes included in the wireless network 100.
  • the control server 130 can acquire data from all nodes included in the wireless network 100.
  • FIG. 10 shows the configuration of the frame 51.
  • the frame 51 is composed of a plurality of time slots 52.
  • the time slot 52 indicates a predetermined time at equal intervals.
  • Each node can transmit or receive data during the time slot 52 with other nodes adjacent in the network topology.
  • the number of time slots 52 included in one frame 51 is equal to or greater than the number of hops required to transfer data from the lowest rank node to the highest rank node in the network topology.
  • data is transmitted from the node d to the adjacent upstream node c in the first time slot 52d-1. Then, data is transmitted from the node c to the node b in the second time slot 52d-2. Then, data is transmitted from the node b to the node a in the third time slot 52d-3. Then, data is transmitted from the node a to the node A in the fourth time slot 52d-4.
  • the remaining time slots 52d-5 to 52d-6 constituting the frame 51d become standby time as a spare.
  • FIG. 11 shows the structure of the time slot 52.
  • the time slot 52 is divided into one or more times.
  • this divided time is referred to as “division time”.
  • a different wireless communication channel that is, a different frequency band
  • each of the different wireless communication channels is assigned a process for data having a different priority.
  • processing with a priority “high” is assigned to the division time 61
  • processing with a priority “medium” is assigned to the division time 62
  • processing with a priority “low” is assigned to the division time 63. Is assigned.
  • the node determines the presence / absence of transmission / reception of priority data corresponding to the division time in each division time of the time slot 52. That is, the node switches to the wireless communication channel corresponding to the division time, and determines whether or not data with priority corresponding to the division time is transmitted / received.
  • the time slot 52 has a switching time 60 for switching the wireless communication channel before each divided time.
  • the switching time 60a is a time for switching to the wireless communication channel corresponding to the priority “high”.
  • the division time 61 is a time for determining transmission / reception of data with high priority.
  • the switching time 60b is a time for switching to the wireless communication channel corresponding to the priority “medium”.
  • the division time 62 is a time for determining transmission / reception of data with the priority “medium”.
  • the switching time 60c is a time for switching to the wireless communication channel corresponding to the priority “low”.
  • the division time 63 is a time for determining transmission / reception of data with a low priority.
  • FIG. 12 is a diagram for explaining processing when it is determined that data is transmitted / received at each divided time of the time slot.
  • FIG. 12A shows processing in the time slot when it is determined to transmit / receive data with high priority.
  • the processing in the time slot is shown in FIG. That is, when transmission / reception of data having a high priority occurs in the division time 61, the division time 61 is extended until transmission / reception of packet data having a high priority is completed (see the division time 61a).
  • the wireless communication channel is switched to the low priority wireless communication channel at the switching time 60c, and the remaining time 63 until the time of the time slot 52a ends is assigned to the processing related to transmission / reception of the low priority data.
  • transmission / reception of data with a high priority occurs in the time slot 52a, processing related to transmission / reception of data with a priority of “medium” is not executed.
  • FIG. 12B shows the structure of the time slot when it is determined to transmit / receive data with the priority “medium”.
  • the time slot 52 shown in FIG. 11 when it is determined not to transmit / receive priority “high” data and when it is determined to transmit / receive priority “medium” data at the split time 62, Is the process shown in FIG. That is, if transmission / reception of data with priority “high” does not occur during the division time 61 and transmission / reception of data with priority “medium” occurs during the division time 62, transmission / reception of packet data with priority “medium” is performed.
  • the division time 62 is extended until completion (see the division time 62a).
  • the wireless communication channel is switched to the low priority wireless communication channel at the switching time 64c, and the remaining time 63 until the time of the time slot 52b ends is assigned to processing related to transmission / reception of the low priority data.
  • FIG. 12C shows the structure of the time slot when it is determined to transmit / receive data with a priority “low”.
  • the processing shown in FIG. Become.
  • the wireless communication channel is switched to the wireless communication channel with the priority “low” at the switching time 60c.
  • the remaining time until the time slot ends is assigned to the determination of whether or not data with a low priority is transmitted / received. If transmission / reception of data with a priority “low” occurs during the division time 63a, packet data with a priority “low” is transmitted / received in the remaining time.
  • CS (career sense) 67 is executed after the switching time 60c.
  • the CS 67 is not executed. This is because the transmission of the data with the priority “high” and the priority “medium” is managed and configured so that no interference occurs in the entire wireless network 100.
  • the transmission timing between the nodes of the data with the priority “high” and “medium” is managed and controlled in the entire wireless network 100 according to the communication schedule. That is, the wireless network 100 guarantees the bandwidth of transmission of data with priority “high” and “medium”.
  • CS67 is executed in advance in the transmission of the data with the priority “low” shown in FIG. This is because transmission of data with a low priority is not managed so that interference does not occur in the entire wireless network 100.
  • execute CS67, and other nodes are not transmitting / receiving data with low priority on the wireless communication channel with low priority.
  • the timing of transmission of data with low priority between nodes may not be managed and controlled in the entire wireless network. That is, the wireless network 100 may make transmission / reception of data with a low priority “best effort”.
  • FIG. 13 shows an example of the structure of packet data.
  • the packet data 80 includes, for example, a header 81, a payload 82, and inspection data 83.
  • the header 81 includes, for example, a transfer destination address 91, a transfer source address 92, a transmission destination address 85, a transmission source address 86, a packet length 93, a rank 94, and a transmission direction 95.
  • the transfer destination address 91 stores an address (for example, an IP address) of a transfer destination node of the packet data 80 (hereinafter also referred to as “transfer destination node”).
  • the transfer source address 92 stores an address of a transfer source node of the packet data 80 (hereinafter also referred to as “transfer source node”).
  • transmission destination node an address of a node that finally receives the packet data 80 is stored.
  • the node of the transmission destination address may be referred to as “transmission destination node”.
  • the source address 86 stores the address of the node that first transmitted the packet data 80.
  • the node of the source address may be referred to as “source node”.
  • the packet length 93 the length (data size) of the packet data 80 is stored.
  • the packet length 93 stores, for example, the length of subsequent data including the packet length 93 itself.
  • rank 84 a value indicating a hierarchy in the wireless network 100 of the transmission source node of the packet data 80 is stored. That is, the value stored in the rank 424 of the node information 224 (324) is stored in the rank 814.
  • a value indicating whether the packet data 80 should be transmitted in the uplink or downlink direction from the transmission source node is stored. For example, “1” may be stored in the transmission direction 815 when the packet data 80 is transmitted in the upstream direction, and “0” may be stored in the transmission direction 815 when the packet data 80 is transmitted in the downstream direction.
  • data for example, application data
  • the packet data 80 is stored.
  • the inspection data 83 a value used for determining whether or not an error has occurred in the packet data 80 and / or correcting the error is stored. This is because the packet data 80 may cause an error due to the influence of noise or the like on wireless communication.
  • the inspection data 830 stores, for example, CRC (Cyclic Redundancy Check).
  • FIG. 14 shows an example of a flowchart of processing in the transmission / reception control unit 211 (311).
  • FIG. 14 shows processing in one frame.
  • the transmission / reception control unit 211 sets (initializes) all the flags included in the reception flag information 225 (325) to “TRUE” when it is time to start frame processing (S101).
  • the transmission data acquisition unit 212 (312) performs transmission data acquisition processing (S102). Although details of the transmission data acquisition process (S102) will be described later, in brief, the transmission data acquisition unit 212 (312) stores transmission data in the priority queue 221 (321), and this time When the frame is the transmission timing of the own node, the transmission data is stored in the transmission data management information 222 (322) (S102).
  • the transmission / reception control unit 211 sets “high” to a flag (hereinafter referred to as “target priority”) indicating the priority of the current processing target (S103), and corresponds to the priority “high”. Switch to the wireless communication channel (S104).
  • the transmission / reception control unit 211 (311) has a priority corresponding to the target priority among the data stored in the transmission data management information 222 (322) in step S102, and the time slot waiting number 401 is set. It is determined whether or not “0” data exists (S105).
  • the transmission / reception control unit 211 (311) transmits the transmission unit 213 (313). To execute the transmission process (S106), and then proceeds to step S113. Although details of the transmission process (S106) will be described later, in this process, the flag corresponding to the priority in the process of the reception flag information 225 (325) is changed to “FALSE”.
  • step S108 the transmission / reception control unit 211 (311) refers to the reception flag information 225 (325) and determines whether the flag corresponding to the target priority is “TRUE” or “FALSE” (S108). .
  • the transmission / reception control unit 211 (311) turns off the reception function (S107), and proceeds to step S109. That is, it is assumed that priority level data corresponding to the target priority level is not received during the current division time.
  • the transmission / reception control unit 211 (311) sends the current target to the reception unit 214 (314) during the current division time.
  • the reception of data corresponding to the priority is waited (S109).
  • the transmission / reception control unit 211 (311) performs reception processing (S922) on the reception unit 214 (314). After that, proceed to step S113. Although details of the reception process (S922) will be described later, in this process, the flag corresponding to the target priority is changed to “FALSE” in the reception flag information 225 (325).
  • the transmission / reception control unit 211 (311) lowers the target priority by one (S909), and the step Proceed to S112. That is, if the current target priority is “high”, it is changed to “medium”, and if the current target priority is “medium”, it is changed to “low”.
  • step S112 the transmission / reception control unit 211 (311) determines whether or not the target priority is “low” (S112). When the target priority is not “low” (S112: NO), the transmission / reception control unit 211 (311) returns to step S104. That is, the transmission / reception control unit 211 (311) executes the processes of steps S104 to S112 with the target priority lowered by one.
  • the transmission / reception control unit 211 switches to a wireless communication channel corresponding to the priority “low” (S113). Then, the transmission / reception control unit 211 (311) waits for reception of data with a priority “low” for the remaining time of the time slot (that is, until the time slot ends). Or the transmission / reception control part 211 (311) performs the transmission process of the data of a priority "low” (S114).
  • the transmission / reception control unit 211 (311) subtracts “1” from the number of time slot standbys stored in the transmission data management information 222 (322) (S115). Then, the transmission / reception control unit 211 (311) determines whether or not the frame end time has come (S116).
  • the transmission / reception control unit 211 (311) advances the time slot by one and returns to the process of step S103. That is, the transmission / reception control unit 211 (311) repeats the above-described processing for the next time slot.
  • the transmission / reception control unit 211 (311) ends the process. That is, the transmission / reception control unit 211 (311) ends the process of the current frame and proceeds to the process of the next frame.
  • priority “high” and priority “medium” when priority “high” and priority “medium” can be transmitted in a frame, data of priority “high” may be preferentially transmitted in the first time slot. Then, after transmitting the high priority data, the medium priority data may be transmitted in the next time slot.
  • the high priority data and the medium priority data may be adjusted in the transmission data management information 222 (322) so that they are not transmitted in the same time slot. For example, the time slot waiting number 401 may be adjusted, or the time slot waiting number 401 may be updated before the end of the time slot.
  • FIG. 15 is an example of a flowchart showing processing of the transmission data acquisition unit 212 in the wireless communication apparatus 102.
  • the transmission data acquisition unit 212 determines whether or not data with a priority “high” exists in the priority queue 221 (S201). When data with a priority “high” exists (S201: YES), the transmission data acquisition unit 212 acquires data with a priority “high” from the priority queue 221 (S202), and sets the priority to “high”. The data is set and stored in the transmission data management information 222 (S203), and the process proceeds to step S204. If no data with high priority exists (S201: NO), the transmission data acquisition unit 212 proceeds directly to step S204.
  • the transmission data acquisition unit 212 determines whether or not data with a priority “medium” exists in the priority queue 221 in step S204 (S204). When data with a priority “medium” exists (S204: YES), the transmission data acquisition unit 212 determines whether or not the current frame matches the value stored in the local node transmission timing information 223 ( S205). If the value matches the value stored in the own node transmission timing information 223 (S205: YES), the transmission data acquisition unit 212 determines that the own node can transmit data, and determines the priority from the priority queue 221. The “medium” data is acquired (S206), the priority is set to “medium” and stored in the transmission data management information 222 (S207), and the process ends.
  • step S204 If there is no data with priority “medium” in step S204, or if the data does not match the value stored in the local node transmission timing information 223 in step S205 (S205: NO), the transmission data acquisition unit 212 performs step S208. Proceed to
  • step S208 the transmission data acquisition unit 212 confirms whether or not data with a priority “low” exists in the priority queue 221 (S208).
  • S208: YES data with a priority “low” exists
  • the transmission data acquisition unit 212 acquires data with a priority “low” from the priority queue 221 (S209), and sets the priority to “low”.
  • the data is set and stored in the transmission data management information 222 (S210), and the process ends.
  • step S208 If there is no data with a priority “low” in step S208 (S208: NO), the transmission data acquisition unit ends the process.
  • the data is stored in the transmission data management information 222.
  • the data stored in the transmission data management information 222 is in a state of waiting for transmission in the frame. That is, the preparation for transmitting data within the frame is completed.
  • FIG. 16 is an example of a flowchart showing processing of the transmission data acquisition unit 312 in the gateway 101A.
  • the transmission data acquisition unit 312 determines whether or not data with a priority “high” exists in the priority queue 321 (S301). When data with a priority “high” exists (S301: YES), the transmission data acquisition unit 312 acquires data with a priority “high” from the priority queue 231 (S302). Then, the transmission data acquisition unit 312 refers to the all-node transmission timing information 323 and determines whether or not the rank of the node assigned to the current frame is an even number (S303).
  • the transmission data acquisition unit 312 proceeds to step S305.
  • the transmission data acquisition unit 312 sets the acquired data to the transmission data management information 322 with the priority set to “high”. Store. Further, the transmission data acquisition unit 312 changes the time slot waiting number of the stored data to “1” (S304), and proceeds to step S305. That is, the stored data is transmitted not in the current time slot but in the next time slot. As a result, it is possible to prevent interference of data having a high priority.
  • steps S305 to S311 is almost the same as the processing of steps S204 to S210 shown in FIG.
  • FIG. 17 is an example of a flowchart showing a transmission process of the transmission unit 213 (313).
  • the transmission unit 213 (313) acquires data from the transmission data management information 222 (322) (S401). Next, the transmission unit 213 (313) generates packet data from the acquired data, the transmission direction of the data, the node information 224 (324), and the like (S402). Next, the transmission unit 213 (313) transmits the generated packet data by wireless communication (S403). Next, the transmission unit 213 (313) changes the target priority flag of the reception flag information 225 (325) to “FALSE” (S404), and ends the processing.
  • the data stored in the transmission data management information 222 (322) is transmitted to the next node.
  • FIG. 18 is an example of a flowchart showing the reception process of the reception unit 214 (314).
  • the transmission / reception control unit 211 analyzes the received packet data (hereinafter also referred to as “received data”) (S501), and whether or not the received data needs to be relayed (transferred). Is determined (S502). For example, the transmission / reception control unit 211 (311) determines whether it is necessary to relay (transfer) the packet data based on the transfer destination address 91 included in the received data. Here, when the transfer destination address 91 does not match the address of the own node, or when the transmission destination address 85 matches the address of the own node, the transmission / reception control unit 211 (311) determines that transfer of the received data is unnecessary. (S502: NO).
  • the transmission / reception control unit 211 changes the reception flag corresponding to the priority of the reception data to “FALSE” (S503), and if the transfer destination address 91 does not match the address of the own node, the reception data If the transmission destination address 85 matches the address of its own node, the received data is passed to the application processing unit 217 (317), and the processing is terminated.
  • the transmission / reception control unit 211 determines that the received data needs to be transferred (S502: YES), and proceeds to step S504.
  • step S504 the transmission / reception control unit 211 (311) generates packet data for transfer based on the received data, and stores the packet data in the transmission data management information 222 (322) (S504).
  • the transmission / reception control unit 211 determines whether or not data with a priority “medium” exists in the transmission data management information 222 (322) (S505), and if it does not exist (S505: NO), The process ends.
  • the transmission / reception control unit 211 (311) When there is data with priority “medium” in the transmission data management information 222 (322) (S505: YES), the transmission / reception control unit 211 (311) further determines whether the priority of the received data is “high”. Is determined (S506). When the priority of the received data is not “high” (S506: NO), the transmission / reception control unit 211 (311) ends the process.
  • the transmission / reception control unit 211 determines whether the transmission direction 95 of the received data is “up” or “down” ( S507).
  • the transmission / reception control unit 211 (311) determines how the rank 94 (that is, the rank of the transmission source node) included in the received data is related to the rank of the own node (S508). When the rank 94 included in the received data is “lower” or “equivalent” than the rank of the own node (S508: lower or equivalent), the transmission / reception control unit 211 (311) ends the process.
  • the transmission / reception control unit 211 (311) has the priority “medium” of the transmission data management information 222 (322). “1” is added to the time slot waiting number 401 of the data (S509), and the process ends.
  • the transmission / reception control unit 211 (311) determines how the rank 94 (that is, the rank of the transmission source node) included in the received data is related to the rank of the own node (S510). When the rank 94 included in the received data is “higher” than the rank of the own node (S510: higher), the transmission / reception control unit 211 (311) ends the process.
  • the transmission / reception control unit 211 (311) is similar to the above-described step S509 in the transmission data management information 222 (322). “1” is added to the number of time slot waits for the data with the priority “medium” (S509), and the process is terminated.
  • the transmission / reception control unit 211 (311) has the priority “medium” of the transmission data management information 222 (322). “2” is added to the time slot waiting number of data (S511), and the process is terminated.
  • relays (transfers) with high priority and medium priority are appropriately controlled. For example, when it is necessary to relay received data with a high priority, if transmission data with a priority “medium” is stored in the transmission data management information 222 (322), the transmission timing of this transmission data Delay. As a result, received data with a high priority can be relayed preferentially.
  • FIG. 19 shows an example of the operation of each node when data with a high priority is transmitted from the node A to the node e during the frame execution in the node c.
  • the horizontal axis indicates the time transition of the time slot included in the frame of the node c.
  • the vertical axis shows the operation of each node.
  • the hatched divided time indicates that the wireless communication channel corresponding to the priority “high” is tuned.
  • the mottled splitting time indicates that the wireless communication channel corresponding to the priority “medium” is tuned.
  • the white division time indicates that the wireless communication channel with the priority “low” is tuned.
  • the slash of the division time indicates that the priority data is not transmitted / received in the frame. The same applies to FIGS. 20 to 22 below.
  • the node A transmits data of the priority “high” to the node a (S11).
  • the node c transmits data of priority “medium” to the node b (S12).
  • the data with the medium priority transmitted from the node c is received by the adjacent nodes d and e (R11, R12).
  • the node d and the node e determine that relaying is not necessary based on the transfer destination address 91 of the data, and change the priority flag “medium” in the reception flag information 225 to “FALSE”.
  • node A and node c do not process data with the same priority as that processed once in the same frame. Therefore, the node A changes the flag of the priority “high” in the reception flag information 325 to “FALSE”. The node c changes the priority flags “high” and “medium” in the reception flag information 225 to “FALSE”.
  • the node a transfers the data of the priority “high” received from the node A to the node b (S13). After that, the node a changes the flag of the priority “high” in the reception flag information 225 to “FALSE” in the same manner as described above.
  • the node b should transfer the data of the priority “medium” received from the node c and stored in the transmission data management information 222 to the node a. No transfer is made this time (S14). This is because the node “b” first receives data of the priority “high” from the node “a” (S13). Therefore, the node b adds “1” to the time slot waiting number 401 of the data of the priority “medium” stored in the transmission data management information 222 after receiving the data of the priority “high”.
  • the node b stores the data of the priority “high” and the data of the priority “medium” in the transmission data management information 222.
  • the node “b” first transfers the data with the priority “high”, which is the smaller number of time slot standbys 401 (S15, S16). After the transfer, the node b changes the flag of the priority “high” in the reception flag information 222 to “FALSE”.
  • the node c transfers the data with the priority “high” to the node e (S17).
  • the data with high priority reaches the transmission destination node e.
  • the node c and the node e change the priority “high” flag of the reception flag information 225 to “FALSE”.
  • the node d adjacent to the node c receives the high priority data transferred from the node c (R13), but determines that the received data is not addressed to the own node and discards the received data. To do. Further, the node d determines that the data having the high priority in the current frame is irrelevant to the own node, and changes the flag having the high priority in the reception flag information 225 to “FALSE”.
  • the node b is located within the reach of the radio signal transmitted from the node c (R14). However, since the node “b” has already set the “high” priority flag of the reception flag information 225 to “FALSE”, the node “b” does not react to the above-described high priority data transferred from the node c to the node e. Thereby, in the same fourth time slot, the node b can transfer the data of the priority “medium” to the node a (S18).
  • the node “a” transfers the data of the priority “medium” received from the node “b” to the node A (S19). As a result, data with the priority “medium” also reaches the transmission destination node.
  • high priority data can be transmitted and transferred with priority. That is, data with a high priority can be made to reach the destination node in a time slot corresponding to the number of hops from the source node to the destination node.
  • FIG. 20 shows an example of the operation of each node when data having a high priority is transmitted from the node e to the node A during frame execution at the node d.
  • FIG. 20 shows an example in which the node e that has received the high priority data in FIG. 19 returns the response data.
  • the node e transmits data of the priority “high” to the node c (S21). After the transmission, the node e changes the priority flag of the reception flag information 225 to “FALSE”.
  • the node d Since the node d adjacent to the node e is executing the frame assigned to the own node, the node d wants to transmit the data with the medium priority stored in the transmission data management information 222. However, the node d first receives the high priority data transmitted from the node e (R21). Therefore, the node d determines that the received data of the priority “high” is the data transmitted in the upstream direction from the node e of rank 4 that is the same as that of the node d. “1” is added to the time slot waiting number 401. That is, the node d sees off transmission of data with the priority “medium” for one time slot (S22).
  • the node d determines that the data of the priority “high” transmitted from the node e is not related to the own node in the current frame, and sets the flag of the priority “high” in the reception flag information 225 to “ Change to "FALSE".
  • the node c transfers the high priority data received from the node e to the node b (S23). After the transfer, the node c changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
  • the node d confirms the time slot waiting number 401 of the data with the priority “medium” stored in the transmission data management information 222.
  • the time slot waiting number 401 of the data with the priority “medium” is not “0” yet because “1” is added in the above. Therefore, the node d subtracts “1” from the time slot waiting number 401 of the data with the priority “medium”, and does not transmit this data in the current second time slot (S24).
  • the node b transfers the high priority data received from the node c to the node a (S25). After the transmission, the node b changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
  • the node d Since the time slot waiting number 401 of the data with the priority “medium” is “0”, the node d transmits the data with the priority “medium” to the node c (S26). After the transmission, the node d changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
  • the node e adjacent to the node d in the third time slot receives the data of the priority “medium” transmitted from the node d (R22), but discards the data after completion of reception because it is not addressed to its own node.
  • the flag of the priority “medium” in the reception flag information 225 is changed to “FALSE”.
  • the node a transfers the data of the priority “high” received from the node b to the node A (S27). As a result, data with high priority reaches the transmission destination node. After the transfer, the node a and the node A respectively change the priority flag “high” in the reception flag information 225 and 325 to “FALSE”.
  • the node c transfers the data of the priority “medium” received from the node d to the node b (S28). After the transfer, the node c changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
  • the node b transfers the data of the priority “medium” received from the node c to the node a (S29). After the transfer, the node b changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
  • the node a transfers the data of the priority “medium” received from the node b to the node A (S30). As a result, data with the priority “medium” reaches the destination node.
  • the data with the priority “high” and the priority “medium” are transferred in the same upstream direction
  • the data with the priority “high” is transferred with priority. That is, data with high priority can be reached in a time slot corresponding to the number of hops from the transmission source node to the transmission destination node.
  • FIG. 21 shows an example of the operation of each node when data of priority “high” is transmitted from the node e to the node A when the frame of the node f is executed.
  • FIG. 21 shows an example in which the node e that has received the high priority data in FIG. 19 returns the response data and receives the high priority data from the lower rank nodes. .
  • the node e transmits the data of the priority “high” to the node c (S31). After the transmission, the node e changes the priority flag of the reception flag information 225 to “FALSE”.
  • node f Since node f is executing a frame assigned to itself, it wants to transmit data with a medium priority stored in the transmission data management information 222. However, the node f first receives the high priority packet transmitted from the node e (R31). Therefore, the node f determines that the received high priority data is data transmitted from the node e of the rank 4 lower than the own node in the uplink direction, and has the medium priority. “2” is added to the data time slot waiting number 401. In other words, the node f sees transmission of data with the priority “medium” for two time slots (S32).
  • the node f determines that the data of the priority “high” transmitted from the node e is not related to the own node in the current frame, and sets the flag of the priority “high” in the reception flag information 225 to “ Change to "FALSE".
  • the node c transfers the high priority data received from the node e to the node b (S33). After the transfer, the node c changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
  • the node f confirms the time slot waiting number 401 of the data with the priority “medium” stored in the transmission data management information 222.
  • the time slot waiting number 401 of the data with the priority “medium” is not yet “0” because “2” is added in the above. Therefore, the node d subtracts “1” from the time slot waiting number 401 of the data with the priority “medium”, and does not transmit this data in the current second time slot 602 (S34).
  • the node b transfers the high priority data received from the node c to the node a (S35). After the transfer, the node b changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
  • the node f confirms the time slot waiting number 401 of the data with the priority “medium” stored in the transmission data management information 222.
  • the time slot waiting number 401 of the data of the priority “medium” is not “0” yet because “2” is added in the above. Therefore, the node d subtracts “1” from the time slot waiting number of the data with the priority “medium”, and does not transmit this data in the current second time slot (S36).
  • the node a transfers the data of the priority “high” received from the node b to the node A (S37). As a result, data with high priority reaches the transmission destination node. After the transfer, the node a and the node A respectively change the priority flag “high” in the reception flag information 225 and 325 to “FALSE”.
  • the node f transmits the data with the priority “medium” to the node b ( S38). After the transmission, the node f changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
  • the node e adjacent to the node f in the fourth time slot 604 receives the medium priority data transmitted from the node f (R32), but discards the data after the reception is completed because it is not addressed to the own node. Then, the priority “medium” flag of the reception flag information 225 is changed to “FALSE”.
  • FIG. 22 shows an example of the operation of each node when priority “high” data is transmitted from the node A to the node h when the frame of the node d is executed.
  • the node A In the first time slot 601, the node A holds data with a priority “high”. However, since the frame assigned to the rank d node d, which is an even number, is being executed this time, the node A waits for transmission of the data with the high priority (S41). That is, when the node A acquires the data of the priority “high” from the priority queue 321 and stores it in the transmission data management information 222, as shown in step S304 of FIG. Is changed to “1”.
  • node d Since node d is executing a frame of its own node, data of priority “medium” is transmitted to node c (S42). After the transmission, the node d changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
  • the node A transmits the data with the priority “high” to the node a (S43). After the transmission, the node A changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
  • the node c transfers the data of the priority “medium” received from the node d to the node b (S44). After the transfer, the node c changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
  • the node a transfers the data of the priority “high” received from the node A to the node h (S45). As a result, the data with high priority reaches the transmission destination node. After the transfer, the node a changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
  • the node b wants to transmit the packet with the medium priority stored in the transmission data management information 222.
  • the node b first receives the data with the priority “high” from the node a. Therefore, the node b determines that the received data with the high priority is data transmitted in the downstream direction from the node A of rank 0 higher than the own node, and has the medium priority. “1” is added to the number of timeslot waiting for data. That is, the node b defers transmission of data with the priority “medium” for one time slot (S46).
  • the node “b” determines that the data of the priority “high” transmitted from the node “a” is not related to the own node in the current frame, and sets the flag of the priority “high” in the reception flag information 225 to “ Change to "FALSE".
  • the node b confirms the time slot waiting number 401 of the data with the priority “medium” stored in the transmission data management information 222.
  • the time slot waiting number 401 of the data with the priority “medium” is not “0” yet because “1” is added in the above. Therefore, the node d subtracts “1” from the time slot waiting number 401 of the data with the priority “medium”, and does not transmit this data in the current fourth time slot 604 (S47).
  • the node b transmits the data with the priority “medium” to the node a because the time slot waiting number 401 of the data with the priority “medium” is “0” (S48). ). After the transmission, the node b changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
  • the node a transfers the data of the priority “medium” received from the node b to the node A (S49). As a result, data with the priority “medium” reaches the destination node.
  • a plurality of data having different priorities can be transmitted and received within one frame. Furthermore, data with high priority can be reached at the destination node in a shorter time. That is, it is possible to reduce the number of times high priority data is kept waiting in the time slot and to reach the transmission destination node with a smaller number of time slots.
  • the wireless network 100 shown in FIG. 1 it is desirable to arrange nodes having two or more ranks away from each other so as not to receive radio waves.
  • the radio wave environment changes, and nodes that are separated by two or more ranks transmit radio waves to each other. It is also possible to receive it.
  • the configuration and processing in such a case will be described.
  • FIG. 23 shows an example of the configuration of a wireless multi-hop network system 1000 in which some obstacles exist according to the second embodiment.
  • the wireless network 1000 includes a gateway 1001A (node A), a wireless communication device 1002a (node a), and a wireless communication device 1002b (node b). Initially, it is assumed that an obstacle 1003 exists between the gateway 1001A and the wireless communication device 1002b, and no radio wave arrives between the gateway 1001A and the wireless communication device 1002b. That is, initially, it is assumed that the gateway 100A and the wireless communication device 1002a are wirelessly connected, and the wireless communication device 1002a and the wireless communication device 1002b are wirelessly connected.
  • the radio wave arrives between the gateway 1001A and the wireless communication device 1002b.
  • FIG. 24 shows an example of a time slot related to transmission / reception of data with high priority.
  • the super frame 50, the frame 51, and the time slot 52 are the same as those in the first embodiment.
  • the second embodiment is different from the first embodiment in the data transmission / reception process in the time slot.
  • a process of transmitting / receiving data with high priority will be described as an example.
  • FIG. 24 (a) shows a time slot 1100a in the case of transmitting data with high priority.
  • the node When the start timing of the time slot 1100a is reached, the node first switches to the wireless communication channel with the priority “high” at the switching time 60a. Next, the node transmits packet data including the destination address (hereinafter referred to as “address packet”) at time 1101, and after waiting for a predetermined time 1102, transmits data of high priority.
  • address packet the destination address
  • data packet the data transmitted after the transmission of the address packet. Details of the address packet 1300 and the data packet 1400 will be described later (see FIG. 25).
  • the node switches to the wireless communication channel with the priority “low” at the switching time 60 c and executes processing related to transmission / reception of the data with the priority “low” during the division time 63.
  • FIG. 24 (b) shows a time slot 1100b in the case of receiving data with the priority “high” in FIG. 24 (a).
  • the node When the start timing of the time slot 1100b is reached, the node first switches to the wireless communication channel with the priority “high” at the switching time 60a. Next, the node waits for reception of the address packet 1300 at time 1201. Here, when the address packet 1300 is received, and the transfer destination address 91 included in the address packet 1300 is addressed to the own node, data of high priority is received after waiting for a predetermined time 1202. .
  • the node switches to the wireless communication channel with the priority “low” at the switching time 60 c and executes processing related to transmission / reception of the data with the priority “low” during the division time 63.
  • FIG. 24C shows the time slot 110c when the address packet 1300 is received in the above, but the forwarding address 91 included in the address packet is not addressed to the own node.
  • the node When the start timing of the time slot 1100c is reached, the node first switches to the wireless communication channel with the priority “high” at the switching time 60a. Next, the node waits for reception of the address packet 1300 at time 1201. Here, when the address packet 1300 is received but the transfer destination address 91 included in the address packet 1300 is not addressed to the own node, the priority “medium” is set at the switching time 60b after waiting for the predetermined time 1202. Switch to the wireless communication channel. Thereafter, as in the case of the first embodiment, processing related to transmission / reception of data with priority “medium” and “low” is executed.
  • FIG. 25 shows an example of the data structure of the address packet and the data packet.
  • FIG. 25A shows an example of the data structure of the address packet 1300.
  • the address packet 1300 includes a header 1301 and inspection data 83.
  • the header 1301 includes a transfer destination address 91, a transfer source address 92, a packet length 93, and a packet type 1302.
  • the description of the transfer destination address 91, the transfer source address 92, and the packet length 2413 is the same as that of the packet data 80 shown in FIG. Similarly, the description of the inspection data 83 is also omitted.
  • the packet type 1302 stores a value for identifying whether the packet is an address packet or a data packet. For example, the packet type 1302 of the address packet is determined in advance as “0” and the packet type 1302 of the data packet is determined as “1”.
  • FIG. 25 (b) shows an example of the data structure of the data packet 1400.
  • the data packet 1400 includes a header 1401, a payload 82, and inspection data 83.
  • the difference from the packet data 80 shown in FIG. 13 of the first embodiment is that a packet type 1302 is added to the header 1401.
  • FIG. 26 illustrates an example of a flowchart of transmission processing of the transmission unit according to the second embodiment.
  • the transmission process illustrated in FIG. 26 corresponds to the transmission process illustrated in FIG. 17 in the first embodiment.
  • the transmission unit acquires data to be transmitted from the transmission data management information 222 (322) (S701). Next, the transmission unit generates an address packet 1300 (S702). Next, the transmission unit wirelessly transmits the generated address packet 1300 (S703). Next, the transmission unit waits for a predetermined time (S704). Next, the transmission unit generates a data packet 1400 (S705). Next, the transmission unit wirelessly transmits the generated data packet 1400 (S706). Finally, the transmission unit changes the reception flag corresponding to the priority of the transmitted data to “FALSE” (S707), and ends the process.
  • the transmission unit according to the second embodiment first transmits an address packet 1300 and then transmits a data packet 1400 corresponding to the packet data 80 of the first embodiment, as compared with the first embodiment.
  • FIG. 27 illustrates an example of a flowchart of the reception process of the reception unit according to the second embodiment.
  • the reception process illustrated in FIG. 27 corresponds to the reception process illustrated in FIG. 18 in the first embodiment.
  • the receiving unit When receiving the address packet 1300, the receiving unit analyzes the address packet 1300 (S801), and determines whether or not the transfer destination address 91 is addressed to the own node (S802).
  • the receiving unit waits for a predetermined time (S805), and then proceeds to step S111 shown in FIG.
  • the receiving unit waits for a predetermined time (S803), receives the data packet (S804), and proceeds to step S502 in FIG.
  • Wireless multi-hop network system 101A ... Gateway 102 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a radio communication device constituting a tree-shaped wireless multihop network, the radio communication device having: a synchronization unit for synchronizing time-related timing between the radio communication device and another radio communication device; a transmission data management unit for managing data to be transmitted to the other radio communication device in correlation with priority of the data; a transmission unit for transmitting prescribed data stored in the transmission data management unit to the other radio communication device; a receiving unit for receiving data transmitted from the other radio communication device; and a transmission/reception control unit for switching, at prescribed timing, to a radio communication channel correlated with the priority of the data, and controlling the transmission or reception of data having the priority concerned.

Description

無線通信装置及び無線マルチホップネットワークシステムWireless communication apparatus and wireless multi-hop network system
 本発明は、無線通信装置及び無線マルチホップネットワークシステムの技術に関する。 The present invention relates to a technology of a wireless communication device and a wireless multi-hop network system.
 近年、電力消費量を遠隔で監視する自動検針システム、工場内の機器の状態を監視する機器遠隔監視システム、又は広域に分散した機器から情報を収集するシステムに、狭帯域周波数を用いた無線通信を適用することが検討されている。920MHz帯等を用いる狭帯域周波数は、通信速度は比較的遅いものの、障害物の回避及び長距離通信に有利である。 In recent years, wireless communication using narrowband frequencies for automatic meter reading systems that monitor power consumption remotely, equipment remote monitoring systems that monitor the status of equipment in factories, or systems that collect information from equipment distributed over a wide area Is being considered. Narrowband frequencies using the 920 MHz band and the like are advantageous for obstacle avoidance and long-distance communication, although the communication speed is relatively slow.
 上記のシステムを、複数の無線通信装置(以下「ノード」と言うことがある)を用いて構築することが検討されている。当該システムでは、複数のノードが、センサ情報及び機器情報等を管理ノードに送信する。ここで、管理ノードに無線通信が直接届かないノードは、これらの情報を他のノードを中継して管理ノードに送信する。つまり、複数のノードを無線通信によってツリー型に接続する無線マルチホップネットワークシステムとして構築することが検討されている。 Construction of the above system using a plurality of wireless communication devices (hereinafter sometimes referred to as “nodes”) is being studied. In the system, a plurality of nodes transmit sensor information, device information, and the like to the management node. Here, a node whose wireless communication does not reach the management node directly transmits these information to the management node via other nodes. That is, it is considered to construct a wireless multi-hop network system in which a plurality of nodes are connected in a tree shape by wireless communication.
 このようなシステムにおいて、データは、複数のノードから管理ノードに送信されるだけとは限られない。例えば、ノードの故障時及び緊急時等には、管理ノードから所定のノードに制御コマンド等を送信して状況を問い合わせる。その所定のノードは、管理ノードに対して異常状態に関する情報等を通知する。このような緊急的な情報を含むデータは、通常時に送受信しているデータに対して、優先的に通信されることが望ましい。 In such a system, data is not always transmitted from a plurality of nodes to the management node. For example, in the event of a node failure or emergency, the management node sends a control command or the like to a predetermined node to inquire about the situation. The predetermined node notifies the management node of information relating to the abnormal state. It is desirable that data including such urgent information is preferentially communicated with respect to data that is normally transmitted and received.
 例えば、特許文献1には、優先的なデータの通信時間と、通常のデータの通信時間とを予め分けておくことが記載されている。また、特許文献2には、優先的なデータの通信と、通常のデータの通信とで、異なる周波数を用いることが記載されている。 For example, Patent Document 1 describes that a communication time for preferential data and a communication time for normal data are divided in advance. Patent Document 2 describes that different frequencies are used for preferential data communication and normal data communication.
特開2000-253017号公報JP 2000-253017 A 特許第4904849号公報Japanese Patent No. 4,904,849
 例えば、緊急的な情報を含むデータを優先的なデータとした場合、優先的なデータは頻繁に送受信されるわけではなく、通常のデータが送受信される割合がほとんどである。したがって、優先的なデータと、通常のデータとの送受信をバランス良く行わないと、通常のデータの送受信の効率が大きく低下してしまう虞がある。 For example, when data including urgent information is set as priority data, the priority data is not frequently transmitted / received, and the rate at which normal data is transmitted / received is most. Therefore, unless the transmission / reception between the preferential data and the normal data is performed in a well-balanced manner, the efficiency of the normal data transmission / reception may be greatly reduced.
 そこで、本発明の目的は、優先的なデータの通信と、通常のデータの通信とをバランス良く行う無線通信装置及び無線マルチホップネットワークシステムを提供することにある。また、本発明の別の目的は、優先度の高いデータをできるだけ短時間で送信先に到達させる無線通信装置及び無線マルチホップネットワークシステムを提供することにある。 Therefore, an object of the present invention is to provide a wireless communication apparatus and a wireless multi-hop network system that perform preferential data communication and normal data communication in a balanced manner. Another object of the present invention is to provide a wireless communication apparatus and a wireless multi-hop network system that allow high priority data to reach a transmission destination in as short a time as possible.
 本発明の一実施形態に係る無線通信装置は、ツリー形状の無線マルチホップネットワークを構成する無線通信装置であって、他の無線通信装置との間で時間に関するタイミングを同期する同期部と、他の無線通信装置に送信すべきデータを、そのデータの優先度と対応付けて管理する送信データ管理部と、送信データ管理部に格納されている所定のデータを、他の無線通信装置に送信する送信部と、他の無線通信装置から送信されたデータを受信する受信部と、所定のタイミングにおいて、データの優先度に対応付けられている無線通信チャンネルに切り換え、当該優先度のデータの送信又は受信を制御する送受信制御部を有する。 A wireless communication apparatus according to an embodiment of the present invention is a wireless communication apparatus that constitutes a tree-shaped wireless multi-hop network, and a synchronization unit that synchronizes timing with other wireless communication apparatuses, A transmission data management unit that manages data to be transmitted to the wireless communication device in association with the priority of the data, and predetermined data stored in the transmission data management unit is transmitted to another wireless communication device. A transmission unit, a reception unit that receives data transmitted from another wireless communication device, and at a predetermined timing, switches to a wireless communication channel associated with the priority of the data, and transmits data of the priority or A transmission / reception control unit for controlling reception;
 本発明によれば、優先的なデータの通信と、通常のデータの通信とをバランス良く行うことができる。また、優先度の高いデータをできるだけ短時間で送信先に到達させることができる。 According to the present invention, preferential data communication and normal data communication can be performed in a balanced manner. In addition, high priority data can reach the transmission destination in as short a time as possible.
無線マルチホップネットワークシステムの構成例。1 is a configuration example of a wireless multi-hop network system. 無線通信装置のハードウェア構成例。The hardware structural example of a radio | wireless communication apparatus. ゲートウェイのハードウェア構成例。Hardware configuration example of the gateway. 送信データ管理情報のデータ構成例。The data structural example of transmission data management information. 自ノード送信タイミング情報のデータ構成例。The data structural example of self-node transmission timing information. ノード情報のデータ構成例。Data configuration example of node information. 受信フラグ情報のデータ構成例。The data structural example of reception flag information. 全ノード送信タイミング情報のデータ構成例。The data structural example of all node transmission timing information. スーパーフレームの構成例。Configuration example of superframe. フレームの構成例。Example of frame configuration. タイムスロットの構成例。A configuration example of a time slot. タイムスロットの各分割時間においてデータを送受信すると判定した場合の動作例。An operation example when it is determined that data is transmitted / received in each divided time slot. パケットデータの構成例。Packet data configuration example. 送受信制御部における処理のフローチャート例。The flowchart example of the process in a transmission / reception control part. 無線通信装置における送信データ取得部の処理のフローチャート例。The flowchart example of the process of the transmission data acquisition part in a radio | wireless communication apparatus. ゲートウェイにおける送信データ取得部の処理のフローチャート例。The flowchart example of the process of the transmission data acquisition part in a gateway. 送信部の送信処理のフローチャート例。The flowchart example of the transmission process of a transmission part. 受信部の受信処理のフローチャート例。The flowchart example of the reception process of a receiving part. ノードcのフレーム実行時に、ノードAから優先度「高」のデータがノードeに送信される場合の各ノードの動作例。An example of the operation of each node when data with a high priority is transmitted from the node A to the node e when the frame of the node c is executed. ノードdのフレーム実行時に、ノードeから優先度「高」のデータがノードAに送信される場合の各ノードの動作例。The operation example of each node in the case where data having a high priority is transmitted from the node e to the node A when the frame of the node d is executed. ノードfのフレーム実行時に、ノードeから優先度「高」のデータがノードAに送信される場合における各ノードの動作例。The operation example of each node in the case where data of priority “high” is transmitted from the node e to the node A when the frame of the node f is executed. ノードdのフレーム実行時に、ノードAから優先「高」のデータがノードhに送信される場合における各ノードの動作例。An example of the operation of each node when data of priority “high” is transmitted from the node A to the node h when the frame of the node d is executed. 実施例2に係る一部に障害物が存在する無線マルチホップネットワークシステムの構成例。10 is a configuration example of a wireless multi-hop network system in which an obstacle exists in part according to the second embodiment. 優先度「高」のデータの送受信に関するタイムスロットの例。An example of a time slot related to transmission / reception of high priority data. アドレス用パケット及びデータ用パケットのデータ構造例。6 shows an example data structure of an address packet and a data packet. 実施例2に係る送信部の送信処理のフローチャート例。10 is a flowchart example of a transmission process of a transmission unit according to the second embodiment. 実施例2に係る受信部の受信処理のフローチャート例。10 is a flowchart example of a reception process of a reception unit according to the second embodiment.
 以下、図面を参照しながら、データの優先度に基づいて所定のタイミングで無線通信チャンネルを切り換えて、当該データを送受信する無線通信装置及び無線マルチホップネットワークシステムについて説明する。 Hereinafter, a wireless communication apparatus and a wireless multi-hop network system that transmit and receive data by switching wireless communication channels at a predetermined timing based on data priority will be described with reference to the drawings.
 図1は、無線マルチホップネットワークシステムの構成図を示す。無線マルチホップネットワークシステム(以下「無線ネットワーク」という)100は、ゲートウェイ101Aと、複数の無線通信装置102a~102jとから構成されている。無線ネットワーク100は、例えば、ゲートウェイ101Aを最上位として、複数の無線通信装置102a~102jが、ツリー状に無線通信で接続された構造を有する。図1に示す無線ネットワーク100において、各無線通信装置を結ぶ実線は、無線通信が可能な通信路を示す。以下、無線通信装置102a~102jをまとめて無線通信装置102と言うことがある。また、ゲートウェイ101A及び無線通信装置102を、ノードと言うことがある。 FIG. 1 shows a configuration diagram of a wireless multi-hop network system. A wireless multihop network system (hereinafter referred to as “wireless network”) 100 includes a gateway 101A and a plurality of wireless communication devices 102a to 102j. The wireless network 100 has a structure in which, for example, a plurality of wireless communication devices 102a to 102j are connected by wireless communication in a tree shape with the gateway 101A as the highest level. In the wireless network 100 shown in FIG. 1, a solid line connecting the wireless communication devices indicates a communication path capable of wireless communication. Hereinafter, the wireless communication devices 102a to 102j may be collectively referred to as the wireless communication device 102. The gateway 101A and the wireless communication device 102 may be referred to as nodes.
 ゲートウェイ101Aは、各無線通信装置102と、直接的に又は間接的に接続されている。ゲートウェイ101Aは、ネットワーク120を介して、制御サーバ130と接続されている。ゲートウェイ101Aは、無線通信装置102の通信タイミングの管理及び無線通信装置102と制御サーバ130との間の中継を行う。例えば、ゲートウェイ101Aは、ネットワークトポロジー的に下位のランクに位置する各無線通信装置102から送信されるデータを受信し、制御サーバ130に送信する。また、ゲートウェイ101Aは、制御サーバ130から送信された制御コマンド等を、無線通信装置102に対して送信する。また、ゲートウェイ101Aは、無線通信装置102から送信されたその制御コマンドに対する応答データを受信し、制御サーバ130に送信する。 The gateway 101A is directly or indirectly connected to each wireless communication device 102. The gateway 101A is connected to the control server 130 via the network 120. The gateway 101A manages the communication timing of the wireless communication apparatus 102 and relays between the wireless communication apparatus 102 and the control server 130. For example, the gateway 101 </ b> A receives data transmitted from each wireless communication device 102 located at a lower rank in the network topology, and transmits the data to the control server 130. The gateway 101 </ b> A transmits a control command or the like transmitted from the control server 130 to the wireless communication apparatus 102. The gateway 101 </ b> A receives response data for the control command transmitted from the wireless communication apparatus 102 and transmits the response data to the control server 130.
 無線通信装置102は、自己が生成したデータ(例えば、センサ情報又は装置状態情報等)を、他の無線通信装置102に送信する。無線通信装置102は、他の無線通信装置102から受信したデータを、それとは異なる他の無線通信装置102(又はゲートウェイ101A)に転送する。 The wireless communication device 102 transmits data (for example, sensor information or device state information) generated by itself to another wireless communication device 102. The wireless communication device 102 transfers the data received from the other wireless communication device 102 to another wireless communication device 102 (or gateway 101A) different from the data.
 制御サーバ130は、無線ネットワーク全体を管理する機能を有する。例えば、制御サーバ130は、ゲートウェイ101Aを介して無線通信装置102から収集した各種情報を管理したり、ゲートウェイ101Aを介して無線通信装置102に対して制御コマンドを送信したりする。 The control server 130 has a function of managing the entire wireless network. For example, the control server 130 manages various information collected from the wireless communication apparatus 102 via the gateway 101A, or transmits a control command to the wireless communication apparatus 102 via the gateway 101A.
 ネットワーク120は、無線ネットワーク100とは別のネットワークである。ネットワーク120は、例えば、インターネット及び/又はLAN(Local Area Network)等で構成される。 The network 120 is a network different from the wireless network 100. The network 120 includes, for example, the Internet and / or a LAN (Local Area Network).
 無線ネットワーク100では、或るノードは、無線通信の可能な範囲内に存在する近隣のノードとしかデータを送受信できない。したがって、或るノードが生成したデータは、他のノードによってバケツリレー式に中継(転送)され、送信先(宛先)のノードまで運ばれる。 In the wireless network 100, a certain node can transmit / receive data only to / from neighboring nodes existing within a wireless communication possible range. Accordingly, data generated by a certain node is relayed (transferred) in a bucket relay manner by another node and is carried to a destination (destination) node.
 例えば、図1に示すノードAが制御サーバ130からノードeを送信先とするデータを受け取った場合、そのデータは、まず、無線通信可能なノードaに転送される。そのノードaに転送されたデータは、その後、ノードb、ノードcと転送されて、送信先のノードeまで運ばれる。このように、上位のランクから下位のランクに向けてデータを送信することを、「下り」方向にデータを送信すると言うことがある。 For example, when the node A shown in FIG. 1 receives data having the node e as the transmission destination from the control server 130, the data is first transferred to the node a capable of wireless communication. The data transferred to the node a is then transferred to the node b and node c and carried to the destination node e. In this way, transmitting data from the higher rank to the lower rank may be referred to as transmitting data in the “downward” direction.
 反対に、ノードeが、ノードAを送信先とするデータを生成した場合、そのデータは、まず、無線通信が可能なノードcに転送される。そのノードcに転送されたデータは、その後、ノードb、ノードaと転送されて、送信先のノードAまで運ばれる。このように、下位のランクから上位のランクに向けてデータを送信することを、「上り」方向にデータを送信すると言うことがある。 On the contrary, when the node e generates data having the node A as a transmission destination, the data is first transferred to the node c capable of wireless communication. The data transferred to the node c is then transferred to the node b and the node a and carried to the destination node A. As described above, transmitting data from a lower rank to an upper rank may be referred to as transmitting data in the “upward” direction.
 図2は、無線通信装置102のハードウェア構成を示す。無線通信装置102は、他の無線通信装置102及び/又はゲートウェイ101Aと無線通信を行う機能を有する。無線通信装置102は、例えば、記憶部201と、センサ部202と、中央制御装置203と、電源回路204と、RFIF(Radio Frequency Interface)205と、を備える。これらの要素201~205は、双方向にデータの送受信が可能なバス230によって接続されている。無線通信装置102は、組み込み機器であっても、独立した装置であってもよい。 FIG. 2 shows a hardware configuration of the wireless communication apparatus 102. The wireless communication device 102 has a function of performing wireless communication with another wireless communication device 102 and / or the gateway 101A. The wireless communication device 102 includes, for example, a storage unit 201, a sensor unit 202, a central control device 203, a power supply circuit 204, and an RFIF (Radio Frequency Interface) 205. These elements 201 to 205 are connected by a bus 230 capable of transmitting and receiving data in both directions. The wireless communication device 102 may be an embedded device or an independent device.
 センサ部202は、各種情報をセンシングする。無線通信装置102は、例えば、このセンシングされた各種情報を含むセンサ情報を、定期的に、制御サーバ103に通知する。 The sensor unit 202 senses various information. For example, the wireless communication device 102 periodically notifies the control server 103 of sensor information including various sensed information.
 中央制御装置203は、記憶部201に格納されている各種コンピュータプログラムを実行する。これにより、無線通信装置102の有する各種機能が実現される。 The central control device 203 executes various computer programs stored in the storage unit 201. Thereby, various functions of the wireless communication apparatus 102 are realized.
 電源回路204は、無線通信装置102に電力を供給する。これにより、無線通信装置102が動作する。 The power supply circuit 204 supplies power to the wireless communication apparatus 102. Thereby, the wireless communication apparatus 102 operates.
 RFIF205は、デジタル信号と無線信号とを相互に変換する。つまり、RFIF205は、生成したデジタルデータを無線信号に載せて他のノードに送信したり、他のノードから受信した無線信号からデジタルデータを取り出したりする。 RFIF 205 mutually converts a digital signal and a radio signal. That is, the RFIF 205 transmits the generated digital data on a wireless signal to be transmitted to another node, or extracts the digital data from a wireless signal received from another node.
 記憶部201は、例えば、ROM(Read-Only Memory)210及びRAM(Random Access Memory)220から構成される。ROM210は、例えば、読み出し専用の半導体メモリ等によって構成される。 The storage unit 201 includes, for example, a ROM (Read-Only Memory) 210 and a RAM (Random Access Memory) 220. The ROM 210 is configured by, for example, a read-only semiconductor memory.
 ROM210には、例えば、無線通信装置102において実行される種々のコンピュータプログラムが格納されている。ROM210には、例えば、送受信制御部211、送信データ取得部212、送信部213、受信部214、同期部215、経路管理部216、及びアプリケーション処理部217等のプログラム及びデータが格納されている。 The ROM 210 stores, for example, various computer programs that are executed in the wireless communication apparatus 102. The ROM 210 stores programs and data such as a transmission / reception control unit 211, a transmission data acquisition unit 212, a transmission unit 213, a reception unit 214, a synchronization unit 215, a path management unit 216, and an application processing unit 217.
 同期部215は、他の無線通信装置102との間で時間に関するタイミングを同期する。例えば、同期部215は、ノード間において時刻が所定以下の誤差となるように同期する。時刻に誤差があると、ノード間におけるデータの送受信のタイミングが異なってしまい、正しくデータを送受信できないからである。 The synchronization unit 215 synchronizes timing related to time with another wireless communication apparatus 102. For example, the synchronization unit 215 performs synchronization so that the time has an error of a predetermined value or less between the nodes. This is because if there is an error in the time, the timing of data transmission / reception between nodes differs, and data cannot be transmitted / received correctly.
 経路管理部216は、無線ネットワーク100の経路を管理する。例えば、経路管理部216は、自ノードが無線ネットワーク100何れに位置しているのか、及び、自ノードがネットワークトポロジー的に他の何れのノードと接続しているのか等を管理する。 The route management unit 216 manages the route of the wireless network 100. For example, the path management unit 216 manages in which position the wireless node 100 is located, and which other node is connected to the wireless network 100 in terms of the network topology.
 アプリケーション処理部217は、所定の情報を有するデータを生成する。例えば、アプリケーション処理部217は、センサ部から取得したセンサ情報に基づいて、データを生成する。この生成されたデータは、例えば、制御サーバ130に通知される。 Application processing unit 217 generates data having predetermined information. For example, the application processing unit 217 generates data based on the sensor information acquired from the sensor unit. The generated data is notified to the control server 130, for example.
 送信部213は、送信データ管理情報222に格納されている所定のデータを、他のノードに無線通信によって送信する。送信部213の詳細については後述する。 The transmission unit 213 transmits predetermined data stored in the transmission data management information 222 to other nodes by wireless communication. Details of the transmission unit 213 will be described later.
 受信部214は、他のノードから送信されたデータを受信する。受信部214の詳細については後述する。 The receiving unit 214 receives data transmitted from other nodes. Details of the receiving unit 214 will be described later.
 RAM220は、書き換え可能な半導体メモリ等によって構成される。RAM220には、プログラムの実行に必要なデータが格納される。RAM220には、例えば、優先度キュー221、送信データ管理情報222、自ノード送信タイミング情報223、ノード情報224及び受信フラグ情報225等のプログラム及びデータが格納される。 The RAM 220 is configured by a rewritable semiconductor memory or the like. The RAM 220 stores data necessary for program execution. The RAM 220 stores programs and data such as a priority queue 221, transmission data management information 222, own node transmission timing information 223, node information 224, and reception flag information 225, for example.
 優先度キュー221は、送信すべきデータを優先度毎にキューとして管理する。優先度キュー221は、例えば、優先度「高」のデータを管理するキューと、優先度「中」のデータを管理するキューと、優先度「低」のデータを管理するキューとから構成される。 The priority queue 221 manages data to be transmitted as a queue for each priority. The priority queue 221 includes, for example, a queue that manages data with high priority, a queue that manages data with high priority, and a queue that manages data with low priority. .
 送信データ管理情報222は、他の無線通信装置102に送信すべきデータを、優先度と対応付けて管理する。送信データ管理情報222の詳細についは後述する。 The transmission data management information 222 manages data to be transmitted to other wireless communication apparatuses 102 in association with priorities. Details of the transmission data management information 222 will be described later.
 自ノード送信タイミング情報223は、自ノードがデータを送信可能なタイミングに関する情報を有する。自ノード送信タイミング情報223の詳細については後述する。 The own node transmission timing information 223 includes information regarding a timing at which the own node can transmit data. Details of the own node transmission timing information 223 will be described later.
 ノード情報224は、自ノードの無線ネットワーク100のネットワークトポロジー的な位置及び他のノードとの接続関係に関する情報を有する。ノード情報224の詳細については後述する。 The node information 224 includes information on the network topology position of the wireless network 100 of the own node and the connection relationship with other nodes. Details of the node information 224 will be described later.
 受信フラグ情報225は、各優先度に対する処理の完了/未完了を管理するためのフラグを有する。受信フラグ情報225の詳細については後述する。 The reception flag information 225 includes a flag for managing completion / non-completion of processing for each priority. Details of the reception flag information 225 will be described later.
 送受信制御部211は、所定のタイミングにおいて、データの優先度に対応付けられている無線通信チャンネルに切り換え、当該優先度のデータの送信又は受信を制御する。 The transmission / reception control unit 211 switches to a wireless communication channel associated with the priority of data at a predetermined timing, and controls transmission or reception of data with the priority.
 送受信制御部211は、所定のタイミングにおいて、或る優先度に対応する無線通信チャンネルに切り換え、所定の待機時間、データの受信を受信部214に待機させ、A)待機時間内にデータを受信しなかった場合、或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換え、B)待機時間内にデータを受信開始した場合、当該受信開始したデータの受信が完了するまで同じ無線通信チャンネルを維持し、その後、或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換えても良い。 The transmission / reception control unit 211 switches to a wireless communication channel corresponding to a certain priority at a predetermined timing, causes the reception unit 214 to wait for reception of data for a predetermined standby time, and A) receives data within the standby time. If not, switch to a wireless communication channel corresponding to a priority lower than a certain priority, and B) If reception of data is started within the waiting time, the same wireless communication channel until reception of the data that has started reception is completed May then be switched to a wireless communication channel corresponding to a priority lower than a certain priority.
 送受信制御部211は、或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換えた後、再び、所定の待機時間、データの受信を受信部214に待機させ、上記A)及びB)に係る判定を実行することを、所定の時間であるタイムスロットが終了するまで繰り返しても良い。 After the transmission / reception control unit 211 switches to a wireless communication channel corresponding to a priority lower than a certain priority, the transmission / reception control unit 211 again causes the reception unit 214 to wait for reception of data for a predetermined standby time, and the above A) and B) This determination may be repeated until the time slot, which is a predetermined time, is completed.
 送受信制御部211は、送信すべきデータを送信する場合、当該送信すべきデータの転送先のアドレスを含む先行データ(例えば、図25に示すアドレス用パケット1300)を先に送信した後、当該送信すべきデータを送信し、データの受信を待機するにあたり、上記A)において、待機時間内に先行データを受信しなかった場合、又は、先行データに含まれる転送先のアドレスが自己の無線通信装置102を示すものでなかった場合、或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換え、上記B)において、待機時間内に先行データを受信し、且つ、先行データに含まれる転送先アドレスが自己の無線通信装置102を示すものであった場合、同じ無線通信チャンネルを維持して、その後に送信される送信すべきデータを受信し、その後、或る優先度よりも低い優先度に対応する無線通信チャンネルに切り返えても良い。 When transmitting / receiving data to be transmitted, the transmission / reception control unit 211 first transmits preceding data including an address of a transfer destination of the data to be transmitted (for example, the address packet 1300 illustrated in FIG. 25), and then transmits the data. When the preceding data is not received within the waiting time in the above A) when transmitting the data to be transmitted and waiting for the data reception, or the transfer destination address included in the preceding data is its own wireless communication device If it does not indicate 102, the wireless communication channel corresponding to a priority lower than a certain priority is switched, and in B), the preceding data is received within the waiting time and the transfer included in the preceding data is performed. If the destination address indicates the wireless communication device 102 of the own device, the same wireless communication channel is maintained, and the data to be transmitted after that is transmitted. Receiving the data, then, it may be Kaee cut a wireless communication channel corresponding to a lower priority than some priority.
 送受信制御部211は、送信データ管理情報222から送信すべきデータを特定し、自己の無線通信装置102がデータを送信可能なタイムスロットにおいて、所定のタイミングで送信すべきデータの優先度に対応する無線通信チャンネルに切り換えて、当該送信すべきデータを送信部213に送信させても良い。 The transmission / reception control unit 211 identifies data to be transmitted from the transmission data management information 222, and corresponds to the priority of data to be transmitted at a predetermined timing in a time slot in which the wireless communication apparatus 102 can transmit data. The data to be transmitted may be transmitted to the transmission unit 213 by switching to a wireless communication channel.
 送受信制御部211は、送信すべきデータを送信するタイミングの以前に、送信すべきデータの優先度よりも高い優先度のデータを待機時間内に受信開始した場合、送信すべきデータの送信可能なタイムスロットを、或るタイムスロットの数だけ遅らせても良い。 The transmission / reception control unit 211 can transmit the data to be transmitted when reception of data having a priority higher than the priority of the data to be transmitted is started within the standby time before the timing for transmitting the data to be transmitted. Time slots may be delayed by a certain number of time slots.
 送受信するデータには、当該データの送信元のノードの前記ツリー形状における階層を示すランク94と、当該データが前記ツリー形状の上り又は下りの何れの方向に送信されるかを示す送信方向95と、が含まれており(図13参照)、送受信制御部211は、受信データに含まれる送信方向95と、受信データに含まれるランク94と自己の無線通信装置のランクとの位置関係と、に基づいて、遅らせるタイムスロットの数を決定しても良い。 The data to be transmitted / received includes a rank 94 indicating a hierarchy in the tree shape of a node that is a transmission source of the data, and a transmission direction 95 indicating whether the data is transmitted in an up or down direction of the tree shape. (See FIG. 13), the transmission / reception control unit 211 includes the transmission direction 95 included in the received data, and the positional relationship between the rank 94 included in the received data and the rank of its own wireless communication device. Based on this, the number of time slots to be delayed may be determined.
 送受信制御部211は、a)受信データに含まれる送信方向95が下りであって、且つ、受信データに含まれるランク94が自己の無線通信装置102のランクよりも上位の場合、タイムスロットの数を1つ遅らせ、b)受信データに含まれる送信方向95が上りであって、且つ、受信データに含まれるランクが自己の無線通信装置102のランクと同位の場合、前記タイムスロットの数を1つ遅らせ、c)受信データに含まれる送信方向95が上りであって、且つ、受信データに含まれるランク94が自己の無線通信装置102のランクよりも下位の場合、タイムスロットの数を2つ遅らせる、としても良い。 When the transmission direction 95 included in the received data is down and the rank 94 included in the received data is higher than the rank of the own wireless communication device 102, the transmission / reception control unit 211 determines the number of time slots. B) If the transmission direction 95 included in the received data is upstream and the rank included in the received data is the same as the rank of the own wireless communication device 102, the number of time slots is set to 1. C) If the transmission direction 95 included in the received data is upstream and the rank 94 included in the received data is lower than the rank of its own wireless communication device 102, the number of time slots is two. It may be delayed.
 送受信制御部211は、所定のタイミングにおいて、最低の優先度に対応する無線通信チャンネルに切り換えた場合、当該無線通信チャンネルにおいてキャリアセンスを実行した後、その最低の優先度に対応するデータを送信部213に送信させても良い。送受信制御部211の更なる詳細については後述する。 When switching to a wireless communication channel corresponding to the lowest priority at a predetermined timing, the transmission / reception control unit 211 performs carrier sense on the wireless communication channel, and then transmits data corresponding to the lowest priority to the transmission unit. 213 may be transmitted. Further details of the transmission / reception control unit 211 will be described later.
 図3は、ゲートウェイ101Aのハードウェア構成を示す。ゲートウェイ101Aは、無線通信装置102と無線通信を行う機能を有する。また、ゲートウェイ101Aは、ネットワーク120を介して、制御サーバ130と通信を行う機能を有する。 FIG. 3 shows the hardware configuration of the gateway 101A. The gateway 101A has a function of performing wireless communication with the wireless communication apparatus 102. The gateway 101 </ b> A has a function of communicating with the control server 130 via the network 120.
 ゲートウェイ101Aは、例えば、記憶部301と、センサ部302と、中央制御装置303と、電源回路304と、RFIF305と、ネットワークIF306と、を備える。これらの要素301~306は、双方向にデータの送受信が可能なバス330によって接続されている。 The gateway 101A includes, for example, a storage unit 301, a sensor unit 302, a central control device 303, a power supply circuit 304, an RFIF 305, and a network IF 306. These elements 301 to 306 are connected by a bus 330 capable of bidirectional data transmission / reception.
 記憶部301、センサ部302、中央制御装置303、電源回路304及びRFIF305は、それぞれ図2に示した記憶部201、センサ部202、中央制御装置203、電源回路204及びRFIF205と同等の機能であるので、説明を省略する。 The storage unit 301, the sensor unit 302, the central control device 303, the power supply circuit 304, and the RFIF 305 have the same functions as the storage unit 201, the sensor unit 202, the central control device 203, the power supply circuit 204, and the RFIF 205 shown in FIG. Therefore, explanation is omitted.
 ネットワークIF306は、ネットワーク120に接続し、例えば、制御サーバ130とデータを送受信するためのIFである。 The network IF 306 is an IF for connecting to the network 120 and transmitting / receiving data to / from the control server 130, for example.
 記憶部301は、例えば、ROM310及びRAM320から構成される。ROM310及びRAM320は、それぞれ図2に示したROM210及びRAM220と同等の機能及び構成であるので、説明を省略する。 The storage unit 301 includes, for example, a ROM 310 and a RAM 320. The ROM 310 and the RAM 320 have the same functions and configurations as the ROM 210 and the RAM 220 shown in FIG.
 ROM310には、例えば、送受信制御部311、送信データ取得部312、送信部313、受信部314、同期部315、経路管理部316、アプリケーション処理部317等のプログラム及びデータが格納されている。 The ROM 310 stores programs and data such as a transmission / reception control unit 311, a transmission data acquisition unit 312, a transmission unit 313, a reception unit 314, a synchronization unit 315, a path management unit 316, and an application processing unit 317.
 送受信制御部311、送信データ取得部312、送信部313、受信部314、同期部315及び経路管理部316は、図2に示した送受信制御部211、送信データ取得部212、送信部213、受信部214、同期部215及び経路管理部216と同等の機能であるので、説明を省略する。 The transmission / reception control unit 311, transmission data acquisition unit 312, transmission unit 313, reception unit 314, synchronization unit 315, and path management unit 316 are the transmission / reception control unit 211, transmission data acquisition unit 212, transmission unit 213, reception shown in FIG. Since the functions are the same as those of the unit 214, the synchronization unit 215, and the route management unit 216, description thereof is omitted.
 アプリケーション処理部317は、所定の情報を有するデータを生成する。例えば、アプリケーション処理部317は、センサ部302から取得したセンサ情報に基づいて、データを生成する。この生成されたデータは、例えば、制御サーバ130に通知される。また、アプリケーション処理部317は、制御サーバ130と送受信するためのデータを作成しても良い。 Application processing unit 317 generates data having predetermined information. For example, the application processing unit 317 generates data based on the sensor information acquired from the sensor unit 302. The generated data is notified to the control server 130, for example. The application processing unit 317 may create data for transmission / reception with the control server 130.
 RAM320には、例えば、優先度キュー321、送信データ管理情報322、全ノード送信タイミング情報323、ノード情報324及び受信フラグ情報325等のプログラム及びデータが格納される。 The RAM 320 stores programs and data such as a priority queue 321, transmission data management information 322, all node transmission timing information 323, node information 324, and reception flag information 325, for example.
 優先度キュー321、送信データ管理情報322、ノード情報324及び受信フラグ情報325は、図2に示した優先度キュー221、送信データ管理情報222、ノード情報224及び受信フラグ情報225と同等の機能であるので、説明を省略する。 The priority queue 321, transmission data management information 322, node information 324, and reception flag information 325 have the same functions as the priority queue 221, transmission data management information 222, node information 224, and reception flag information 225 shown in FIG. Since there is, description is abbreviate | omitted.
 全ノード送信タイミング情報323は、全てのノードのデータの送信タイミングを管理する。全ノード送信タイミング情報323の詳細については後述する。 The all node transmission timing information 323 manages data transmission timing of all nodes. Details of the all-node transmission timing information 323 will be described later.
 図4は、送信データ管理情報222(322)のデータ構成の例を示す。送信データ管理情報222(322)は、送信すべきデータを、実際に送信するタイミングまで待機させておくためのいわゆるバッファである。つまり、優先度キュー221(321)に格納されている所定のデータは、自ノードが送信可能なタイミングになるまで、一旦送信データ管理情報222(322)に格納される。そして、自ノードが送信可能なタイミングになったとき、送信データ管理情報222(322)に格納されていた所定のデータが送信される。送信データ管理情報222(322)は、データ項目として、タイムスロット待機数401、優先度402、データ403及び送信方向404を有する。 FIG. 4 shows an example of the data structure of the transmission data management information 222 (322). The transmission data management information 222 (322) is a so-called buffer for waiting for data to be transmitted until the actual transmission timing. In other words, the predetermined data stored in the priority queue 221 (321) is temporarily stored in the transmission data management information 222 (322) until the timing at which the own node can transmit is reached. Then, when it is time for the own node to transmit, the predetermined data stored in the transmission data management information 222 (322) is transmitted. The transmission data management information 222 (322) includes a time slot waiting number 401, a priority 402, data 403, and a transmission direction 404 as data items.
 タイムスロット待機数401には、送信を待機しているデータが、フレーム内において送信可能となるタイミングまでに待機すべきタイムスロットの数が格納される。タイムスロット待機数401の値は、通常、1つのタイムスロットが終了すると、全て「1」減算される。 The time slot waiting number 401 stores the number of time slots that should be waited until the data waiting to be transmitted can be transmitted within the frame. The value of the time slot waiting number 401 is normally subtracted by “1” when one time slot ends.
 優先度402には、データの優先度が格納される。例えば、優先度402には、優先度の高さを示す「高」、「中」、「低」の何れかの情報が格納される。例えば、優先度「低」は通常に送受信されるデータとし、優先度「高」は緊急に伝えたいデータとし、優先度「中」はできるだけ早急に伝えたいデータする。つまり、無線ネットワーク100において、送受信される大部分のデータは優先度「低」である。 The priority 402 stores the priority of data. For example, the priority 402 stores information of “high”, “medium”, or “low” indicating the high priority. For example, the priority “low” is normally transmitted / received data, the priority “high” is data to be transmitted urgently, and the “medium” priority is data to be transmitted as soon as possible. That is, most data transmitted and received in the wireless network 100 has a low priority.
 データ403には、実際に送信されるデータが格納される。送信方向404には、送信先の方向を示す情報が格納される。例えば、送信方向404には、ツリー形状の無線ネットワーク10において、下段方向のランクへの送信を示す「下り」及び上段方向のランクへの送信を示す「上り」の何れかが格納される。 The data 403 stores data that is actually transmitted. In the transmission direction 404, information indicating the direction of the transmission destination is stored. For example, in the transmission direction 404, either “down” indicating transmission to the lower rank or “up” indicating transmission to the upper rank in the tree-shaped wireless network 10 is stored.
 例えば、行411aは、タイムスロット待機数が「0」、優先度402が「高」、データ403が「POWER_OFF」、送信方向404が「下り」の送信すべきデータが、送信データ管理情報222(322)に格納されていることを示す。 For example, in the row 411a, the data to be transmitted in which the number of timeslot waiting is “0”, the priority 402 is “high”, the data 403 is “POWER_OFF”, and the transmission direction 404 is “downlink” is transmitted data management information 222 ( 322).
 図5は、自ノード送信タイミング情報223のデータ構成の例を示す。自ノード送信タイミング情報223は、無線通信装置102が保持する。 FIG. 5 shows an example of the data structure of the own node transmission timing information 223. The wireless communication apparatus 102 holds the own node transmission timing information 223.
 自ノード送信タイミング情報223には、自ノードが送信可能となるフレームの番号が保持される。自ノード送信タイミング情報223は、データ項目として、フレーム番号411を有する。例えば、自ノードに割り当てられたフレーム番号が「1」の場合は、このフレーム番号411に「1」が格納される。この場合、自ノードは、送受信のスケジュールにおいてフレーム番号が「1」の順番になったときに、自ノードが生成したデータの送信を試みる。 The own node transmission timing information 223 holds the frame number that the own node can transmit. The own node transmission timing information 223 has a frame number 411 as a data item. For example, when the frame number assigned to the own node is “1”, “1” is stored in the frame number 411. In this case, when the frame number is in the order of “1” in the transmission / reception schedule, the own node tries to transmit the data generated by the own node.
 図6は、ノード情報224(324)のデータ構成の例を示す。ノード情報224(324)には、無線通信のための情報が格納される。 FIG. 6 shows an example of the data structure of the node information 224 (324). The node information 224 (324) stores information for wireless communication.
 ノード情報224(3240は、データ項目として、ノードID(identification)421、親ノードID422、子ノードID423、ランク424を有する。ノードID421には、自ノードを一意に特定する値が格納される。親ノードID422には、自ノードの親となる(上り方向の)ノードのIDが格納される。子ノードID423には、自ノードの子となる(下り方向の)ノードのIDが格納する。ランク424には、自ノードがネットワークトポロジー上のどの階層にいるかを表す値が格納される。 The node information 224 (3240 is a data item including a node ID (identification) 421, a parent node ID 422, a child node ID 423, and a rank 424. The node ID 421 stores a value that uniquely identifies the own node. The node ID 422 stores the ID of the node that is the parent of the own node (upward), and the child node ID 423 stores the ID of the node that is a child of the own node (downward). Stores a value indicating which layer on the network topology the node is in.
 例えば、図1における無線通信装置102aの場合は、行463aに示すように、ノードID421に「a」が、親ノードID422にゲートウェイを表す「A」が、子ノードID423に自ノードの1つ下に接続しているノード「b、h」が、ランク424に「1」が格納される。 For example, in the case of the wireless communication apparatus 102a in FIG. 1, as shown in a row 463a, “a” is represented in the node ID 421, “A” representing the gateway is represented in the parent node ID 422, and the child node ID 423 is one level below the own node. “1” is stored in the rank 424 for the node “b, h” connected to.
 図7は、受信フラグ情報225(325)のデータ構成の例を示す。受信フラグ情報225(325)には、1つのフレーム内において、各優先度に対応するデータの受信が可能か否かを判定するためのフラグが格納される。受信フラグ情報225(325)は、データ項目として、優先度431と、フラグ432を有する。 FIG. 7 shows an example of the data structure of the reception flag information 225 (325). The reception flag information 225 (325) stores a flag for determining whether or not data corresponding to each priority can be received in one frame. The reception flag information 225 (325) has a priority 431 and a flag 432 as data items.
 優先度431には、無線ネットワーク100において運用する各優先度の高さが格納される。例えば、優先度431には優先度の高さを示す「高」,「中」、「低」が格納される。そして。それぞれの優先度の高さに対して、「TRUE」又は「FALSE」の値が格納される。「TRUE」は、1つのフレーム内において、その優先度のデータの受信が可能であることを示す。「FALSE」は、その1つのフレーム内において、その優先度のデータを受信しないことを示す。次のフレームに処理が移行すると、フラグ432の全ては「TRUE」に初期化(リセット)される。 In the priority 431, the height of each priority operated in the wireless network 100 is stored. For example, “high”, “medium”, and “low” indicating the high priority are stored in the priority 431. And then. A value of “TRUE” or “FALSE” is stored for each priority level. “TRUE” indicates that data of the priority can be received in one frame. “FALSE” indicates that data of the priority is not received in the one frame. When the processing shifts to the next frame, all the flags 432 are initialized (reset) to “TRUE”.
 図8は、全ノード送信タイミング情報323のデータ構成の例を示す。全ノード送信タイミング情報323は、ゲートウェイ101Aが保持する。 FIG. 8 shows an example of the data configuration of all node transmission timing information 323. All node transmission timing information 323 is held by the gateway 101A.
 全ノード送信タイミング情報323には、無線ネットワーク100に存在する全てのノードの送信タイミングに関する情報が格納される。全ノード送信タイミング情報323は、データ項目として、ノードID501、ランク502及びフレーム番号503を有する。 In the all node transmission timing information 323, information on transmission timings of all nodes existing in the wireless network 100 is stored. The all-node transmission timing information 323 has a node ID 501, a rank 502 and a frame number 503 as data items.
 ノードID501には、各ノードのIDが格納される。ランク502には、各ノードのランクが格納される。フレーム番号503には、各ノードに割り当てられているフレームの番号が格納される。つまり、全ノード送信タイミング情報323は、各ノードが何れのフレーム番号503においてデータを送信可能であるかを示す情報を有する。 The node ID 501 stores the ID of each node. The rank 502 stores the rank of each node. The frame number 503 stores the frame number assigned to each node. That is, the all-node transmission timing information 323 includes information indicating in which frame number 503 each node can transmit data.
 例えば、行465bは、ノードID501が「b」(つまり、ノードb)のランク502は「2」であり、ノードbに割り当てられているフレーム番号503は「2」であることを示す。 For example, the row 465b indicates that the rank 502 of the node ID 501 “b” (that is, the node b) is “2”, and the frame number 503 assigned to the node b is “2”.
 次に、図9~図11を用いて、無線ネットワーク100における通信に関するスケジュール(以下「通信スケジュール」という)について説明する。通信スケジュールは、各ノードが、どのようなタイミングでデータを送信又は受信すべきかを示す。つまり、各ノードは、この通信スケジュールに従って、適切なタイミング(時刻)で、データを送信又は受信する。 Next, a schedule relating to communication in the wireless network 100 (hereinafter referred to as “communication schedule”) will be described with reference to FIGS. The communication schedule indicates at what timing each node should transmit or receive data. That is, each node transmits or receives data at an appropriate timing (time) according to this communication schedule.
 図9は、スーパーフレーム50の構成を示す。スーパーフレーム50は、無線ネットワーク100全体の1周期の通信スケジュールを示す。つまり、無線ネットワーク100全体において、スーパーフレーム50の示す通信スケジュールが繰り返し実行される。 FIG. 9 shows the configuration of the super frame 50. The super frame 50 indicates a one-cycle communication schedule for the entire wireless network 100. That is, the communication schedule indicated by the super frame 50 is repeatedly executed in the entire wireless network 100.
 スーパーフレーム50は、所定の順序で並んだ複数のフレーム51で構成される。フレーム51は、何れのノードが、当該フレームにおいてデータを送信可能であるかを示す。つまり、図8に示したように各フレームにはそれぞれノードが割り当てられており、各ノードは、現在のフレームの番号が自分に割り当てられたフレーム番号のときにデータを送信することができる。例えば、図9におけるフレーム51aでは、ノードaがデータを送信可能な状態となる。 The super frame 50 is composed of a plurality of frames 51 arranged in a predetermined order. The frame 51 indicates which node can transmit data in the frame. That is, as shown in FIG. 8, a node is assigned to each frame, and each node can transmit data when the current frame number is the frame number assigned to itself. For example, in the frame 51a in FIG. 9, the node a is in a state where data can be transmitted.
 基本的に、1つのスーパーフレーム50において、無線ネットワーク100に含まれる全てのノードに対してフレームが割り当てられる。つまり、スーパーフレーム50は、無線ネットワーク100に含まれるノードの数以上のフレームから構成される。通常、スーパーフレーム50は、無線ネットワーク100に含まれるノードの数のフレームに、予備の複数のフレームを加えて構成される。 Basically, in one superframe 50, a frame is allocated to all nodes included in the wireless network 100. That is, the super frame 50 includes frames that are equal to or more than the number of nodes included in the wireless network 100. Usually, the super frame 50 is configured by adding a plurality of spare frames to the number of nodes included in the wireless network 100.
 これにより、スーパーフレーム50が1周期実行されると、通常、無線ネットワーク100に含まれる全てのノードが、データの送信を完了する。言い換えると、通常、スーパーフレーム50が1周期実行されると、制御サーバ130は、無線ネットワーク100に含まれる全てのノードからデータを取得できる。 Thus, when the super frame 50 is executed for one cycle, all the nodes included in the wireless network 100 normally complete data transmission. In other words, normally, when the super frame 50 is executed for one cycle, the control server 130 can acquire data from all nodes included in the wireless network 100.
 図10は、フレーム51の構成を示す。フレーム51は、複数のタイムスロット52から構成される。タイムスロット52は、等間隔の所定の時間を示す。各ノードは、1つのタイムスロット52の間に、ネットワークトポロジー的に隣接する他のノードと、データを送信又は受信することができる。 FIG. 10 shows the configuration of the frame 51. The frame 51 is composed of a plurality of time slots 52. The time slot 52 indicates a predetermined time at equal intervals. Each node can transmit or receive data during the time slot 52 with other nodes adjacent in the network topology.
 通常、1つのフレーム51に含まれるタイムスロット52の数は、ネットワークトポロジー的に最下層のランクのノードから最上層のランクのノードまでデータを転送するのに要するホップ数以上となる。 Usually, the number of time slots 52 included in one frame 51 is equal to or greater than the number of hops required to transfer data from the lowest rank node to the highest rank node in the network topology.
 例えば、図10に示すノードaに割り当てられているフレーム51aでは、第1タイムスロット52a-1で、ノードaから隣接する上りのノードAへデータが送信される。このデータは、1つのタイムスロットでノードAに到達するので、フレーム51aを構成する残りのタイムスロット52a-2~52a-6は、予備としての待機時間となる。 For example, in the frame 51a allocated to the node a shown in FIG. 10, data is transmitted from the node a to the adjacent upstream node A in the first time slot 52a-1. Since this data reaches the node A in one time slot, the remaining time slots 52a-2 to 52a-6 constituting the frame 51a become standby time as a spare.
 例えば、図10に示すノードdに割り当てられているフレーム51dでは、第1タイムスロット52d-1で、ノードdから隣接する上りのノードcへデータが送信される。そして、第2タイムスロット52d-2で、ノードcからノードbへデータが送信される。そして、第3タイムスロット52d-3で、ノードbからノードaへデータが送信される。そして、第4タイムスロッ52d-4で、ノードaからノードAへデータが送信される。ここで、データがノードAに到達するので、フレーム51dを構成する残りのタイムスロット52d-5~52d-6は、予備としての待機時間となる。 For example, in the frame 51d assigned to the node d shown in FIG. 10, data is transmitted from the node d to the adjacent upstream node c in the first time slot 52d-1. Then, data is transmitted from the node c to the node b in the second time slot 52d-2. Then, data is transmitted from the node b to the node a in the third time slot 52d-3. Then, data is transmitted from the node a to the node A in the fourth time slot 52d-4. Here, since the data reaches the node A, the remaining time slots 52d-5 to 52d-6 constituting the frame 51d become standby time as a spare.
 図11は、タイムスロット52の構成を示す。タイムスロット52は、1又は2以上の時間に分割される。以下、この分割された時間を「分割時間」という。そして、この分割時間の各々には、異なる無線通信チャンネル(つまり、異なる周波数帯)が割り当てられる。更に、この異なる無線通信チャンネルの各々には、異なる優先度のデータに対する処理が割り当てられる。図11に示すタイムスロット52は、分割時間61に優先度「高」の処理が割り当てられ、分割時間62に優先度「中」の処理が割り当てられ、分割時間63に優先度「低」の処理が割り当てられている。 FIG. 11 shows the structure of the time slot 52. The time slot 52 is divided into one or more times. Hereinafter, this divided time is referred to as “division time”. A different wireless communication channel (that is, a different frequency band) is assigned to each of the division times. Further, each of the different wireless communication channels is assigned a process for data having a different priority. In the time slot 52 shown in FIG. 11, processing with a priority “high” is assigned to the division time 61, processing with a priority “medium” is assigned to the division time 62, and processing with a priority “low” is assigned to the division time 63. Is assigned.
 ノードは、タイムスロット52の各分割時間において、分割時間に対応する優先度のデータの送受信の有無を判定する。つまり、ノードは、分割時間に対応する無線通信チャンネルに切り換えて、その分割時間に対応する優先度のデータの送受信の有無を判定する。タイムスロット52は、各分割時間の前に、無線通信チャンネルを切り換えるための切換時間60を有する。 The node determines the presence / absence of transmission / reception of priority data corresponding to the division time in each division time of the time slot 52. That is, the node switches to the wireless communication channel corresponding to the division time, and determines whether or not data with priority corresponding to the division time is transmitted / received. The time slot 52 has a switching time 60 for switching the wireless communication channel before each divided time.
 例えば、図11に示すタイムスロット52において、切換時間60aは、優先度「高」に対応する無線通信チャンネルに切り換えるための時間である。分割時間61は、優先度「高」のデータの送受信を判定するための時間である。切換時間60bは、優先度「中」に対応する無線通信チャンネルに切り換えるための時間である。分割時間62は、優先度「中」のデータの送受信を判定するための時間である。切換時間60cは、優先度「低」に対応する無線通信チャンネルに切り換えるための時間である。分割時間63は、優先度「低」のデータの送受信を判定するための時間である。 For example, in the time slot 52 shown in FIG. 11, the switching time 60a is a time for switching to the wireless communication channel corresponding to the priority “high”. The division time 61 is a time for determining transmission / reception of data with high priority. The switching time 60b is a time for switching to the wireless communication channel corresponding to the priority “medium”. The division time 62 is a time for determining transmission / reception of data with the priority “medium”. The switching time 60c is a time for switching to the wireless communication channel corresponding to the priority “low”. The division time 63 is a time for determining transmission / reception of data with a low priority.
 図12は、タイムスロットの各分割時間においてデータを送受信すると判定した場合の処理を説明する図である。 FIG. 12 is a diagram for explaining processing when it is determined that data is transmitted / received at each divided time of the time slot.
 図12(a)は、優先度「高」のデータを送受信すると判定した場合におけるタイムスロット内の処理を示す。図11に示すタイムスロット52の分割時間61にて、優先度「高」のデータを送受信すると判定した場合、タイムスロット内は、図12(a)に示す処理となる。つまり、分割時間61において優先度「高」のデータの送受信が発生した場合は、優先度「高」のパケットデータの送受信が完了するまで、分割時間61が延長される(分割時間61a参照)。 FIG. 12A shows processing in the time slot when it is determined to transmit / receive data with high priority. When it is determined that the data of the priority “high” is transmitted / received at the division time 61 of the time slot 52 shown in FIG. 11, the processing in the time slot is shown in FIG. That is, when transmission / reception of data having a high priority occurs in the division time 61, the division time 61 is extended until transmission / reception of packet data having a high priority is completed (see the division time 61a).
 その後は、切換時間60cにおいて優先度「低」の無線通信チャンネルに切り換えて、タイムスロット52aの時間が終了するまでの残り時間63を、優先度「低」のデータの送受信に関する処理に割り当てる。タイムスロット52aにおいて、優先度「高」のデータの送受信が発生した場合、優先度「中」のデータの送受信に関する処理は実行されない。 Thereafter, the wireless communication channel is switched to the low priority wireless communication channel at the switching time 60c, and the remaining time 63 until the time of the time slot 52a ends is assigned to the processing related to transmission / reception of the low priority data. When transmission / reception of data with a high priority occurs in the time slot 52a, processing related to transmission / reception of data with a priority of “medium” is not executed.
 図12(b)は、優先度「中」のデータを送受信すると判定した場合におけるタイムスロットの構成を示す。図11に示すタイムスロット52の分割時間61にて、優先度「高」のデータを送受信しないと判定し、分割時間62にて優先度「中」のデータを送受信すると判定した場合、タイムスロット内は、図12(b)に示す処理となる。つまり、分割時間61において優先度「高」のデータの送受信が発生せず、分割時間62において優先度「中」のデータの送受信が発生した場合は、優先度「中」のパケットデータの送受信が完了するまで、分割時間62が延長される(分割時間62a参照)。 FIG. 12B shows the structure of the time slot when it is determined to transmit / receive data with the priority “medium”. In the time slot 52 shown in FIG. 11, when it is determined not to transmit / receive priority “high” data and when it is determined to transmit / receive priority “medium” data at the split time 62, Is the process shown in FIG. That is, if transmission / reception of data with priority “high” does not occur during the division time 61 and transmission / reception of data with priority “medium” occurs during the division time 62, transmission / reception of packet data with priority “medium” is performed. The division time 62 is extended until completion (see the division time 62a).
 その後は、切換時間64cにおいて優先度「低」の無線通信チャンネルに切り換えて、タイムスロット52bの時間が終了するまでの残り時間63を、優先度「低」のデータの送受信に関する処理に割り当てる。 Thereafter, the wireless communication channel is switched to the low priority wireless communication channel at the switching time 64c, and the remaining time 63 until the time of the time slot 52b ends is assigned to processing related to transmission / reception of the low priority data.
 図12(c)は、優先度「低」のデータを送受信すると判定した場合におけるタイムスロットの構成を示す。図11に示すタイムスロット52の分割時間61及び62にて、それぞれ優先度「高」及び「中」のデータを送受信しないと判定した場合、タイムスロット内は、図12(c)に示す処理となる。つまり、分割時間61及び62において、それぞれ優先度「高」及び「中」のデータの送受信が発生しなかった場合は、切換時間60cにおいて、優先度「低」の無線通信チャンネルに切り換える。そして、タイムスロットの時間が終了するまでの残り時間を優先度「低」のデータの送受信の有無の判定に割り当てる。この分割時間63aにおいて、優先度「低」のデータの送受信が発生した場合は、残り時間で優先度「低」のパケットデータを送受信する。 FIG. 12C shows the structure of the time slot when it is determined to transmit / receive data with a priority “low”. When it is determined that the data of priority “high” and “medium” are not transmitted / received at the divided times 61 and 62 of the time slot 52 shown in FIG. 11, the processing shown in FIG. Become. In other words, when transmission / reception of data with the priority “high” and “medium” does not occur in the division times 61 and 62, respectively, the wireless communication channel is switched to the wireless communication channel with the priority “low” at the switching time 60c. Then, the remaining time until the time slot ends is assigned to the determination of whether or not data with a low priority is transmitted / received. If transmission / reception of data with a priority “low” occurs during the division time 63a, packet data with a priority “low” is transmitted / received in the remaining time.
 優先度「低」のデータを送信する場合は、切換時間60cの後に、CS(Career Sense)67を実行する。図12(a)に示す優先度「高」及び図12(b)に示す優先度「中」のデータの送信では、CS67は実行されない。優先度「高」及び優先度「中」のデータの送信は、無線ネットワーク100全体において、干渉が発生しないように管理及び構成されるからである。つまり、優先度「高」及び「中」のデータの各ノード間における送信のタイミングは、通信スケジュールによって、無線ネットワーク100全体において管理及び制御される。つまり、無線ネットワーク100は、優先度「高」及び「中」のデータの送信の帯域を保証する。 When transmitting data with a low priority, CS (career sense) 67 is executed after the switching time 60c. In the transmission of data with the priority “high” shown in FIG. 12A and the priority “medium” shown in FIG. 12B, the CS 67 is not executed. This is because the transmission of the data with the priority “high” and the priority “medium” is managed and configured so that no interference occurs in the entire wireless network 100. In other words, the transmission timing between the nodes of the data with the priority “high” and “medium” is managed and controlled in the entire wireless network 100 according to the communication schedule. That is, the wireless network 100 guarantees the bandwidth of transmission of data with priority “high” and “medium”.
 これに対して、図12(c)に示す優先度「低」のデータの送信では、事前にCS67が実行される。優先度「低」のデータの送信は、無線ネットワーク100全体において、干渉が発生しないように管理されないからである。つまり、優先度「低」のデータを送信する前には、CS67を実行して、他のノードが優先度「低」の無線通信チャンネルで、優先度「低」のデータを送受信していないことを確認する。つまり、優先度「低」のデータの各ノード間における送信のタイミングは、無線ネットワーク全体において管理及び制御されなくても良い。つまり、無線ネットワーク100は、優先度「低」のデータの送受信をベストエフォートとしても良い。 On the other hand, CS67 is executed in advance in the transmission of the data with the priority “low” shown in FIG. This is because transmission of data with a low priority is not managed so that interference does not occur in the entire wireless network 100. In other words, before transmitting data with low priority, execute CS67, and other nodes are not transmitting / receiving data with low priority on the wireless communication channel with low priority. Confirm. In other words, the timing of transmission of data with low priority between nodes may not be managed and controlled in the entire wireless network. That is, the wireless network 100 may make transmission / reception of data with a low priority “best effort”.
 図13は、パケットデータの構成の例を示す。パケットデータ80は、例えば、ヘッダ81、ペイロード82及び検査用データ83から構成される。 FIG. 13 shows an example of the structure of packet data. The packet data 80 includes, for example, a header 81, a payload 82, and inspection data 83.
 ヘッダ81は、例えば、転送先アドレス91、転送元アドレス92、送信先アドレス85、送信元アドレス86、パケット長93、ランク94及び送信方向95から構成される。 The header 81 includes, for example, a transfer destination address 91, a transfer source address 92, a transmission destination address 85, a transmission source address 86, a packet length 93, a rank 94, and a transmission direction 95.
 転送先アドレス91には、当該パケットデータ80の転送先のノード(以下、「転送先ノード」ということがある)のアドレス(例えば、IPアドレス)が格納される。転送元アドレス92には、当該パケットデータ80の転送元のノード(以下、「転送元ノード」ということがある)のアドレスが格納される。 The transfer destination address 91 stores an address (for example, an IP address) of a transfer destination node of the packet data 80 (hereinafter also referred to as “transfer destination node”). The transfer source address 92 stores an address of a transfer source node of the packet data 80 (hereinafter also referred to as “transfer source node”).
 送信先アドレス85には、当該パケットデータ80を最終的に受け取るノードのアドレスが格納されている。以下、この送信先アドレスのノードを「送信先ノード」と言うことがある。送信元アドレス86には、当該パケットデータ80を最初に送信したノードのアドレスが格納される。以下、この送信元アドレスのノードを「送信元ノード」と言うことがある。 In the transmission destination address 85, an address of a node that finally receives the packet data 80 is stored. Hereinafter, the node of the transmission destination address may be referred to as “transmission destination node”. The source address 86 stores the address of the node that first transmitted the packet data 80. Hereinafter, the node of the source address may be referred to as “source node”.
 パケット長93には、当該パケットデータ80の長さ(データサイズ)が格納される。パケット長93には、例えば、パケット長93自身を含むそれ以降のデータの長さが格納される。 In the packet length 93, the length (data size) of the packet data 80 is stored. The packet length 93 stores, for example, the length of subsequent data including the packet length 93 itself.
 ランク84には、当該パケットデータ80の送信元ノードの無線ネットワーク100における階層を示す値が格納される。つまり、ランク814には、ノード情報224(324)のランク424に格納されている値が格納される。 In rank 84, a value indicating a hierarchy in the wireless network 100 of the transmission source node of the packet data 80 is stored. That is, the value stored in the rank 424 of the node information 224 (324) is stored in the rank 814.
 送信方向815には、上述のとおり、当該パケットデータ80が、送信元ノードから、上り又は下りの何れの方向に送信すべきかを示す値が格納される。例えば、当該パケットデータ80が、上りの方向に送信される場合は送信方向815に「1」が、下りの方向に送信される場合は送信方向815に「0」が格納されても良い。 In the transmission direction 815, as described above, a value indicating whether the packet data 80 should be transmitted in the uplink or downlink direction from the transmission source node is stored. For example, “1” may be stored in the transmission direction 815 when the packet data 80 is transmitted in the upstream direction, and “0” may be stored in the transmission direction 815 when the packet data 80 is transmitted in the downstream direction.
 ペイロード82には、当該パケットデータ80によって運ばれるデータ(例えば、アプリケーションデータ)が格納される。 In the payload 82, data (for example, application data) carried by the packet data 80 is stored.
 検査用データ83には、当該パケットデータ80に誤りが発生していないか否かの判定及び/又は誤りの訂正に用いられる値が格納される。パケットデータ80は、無線通信上のノイズ等の影響により、誤りが発生する虞があるからである。検査用データ830には、例えば、CRC(Cyclic Redundancy Check)等が格納される。 In the inspection data 83, a value used for determining whether or not an error has occurred in the packet data 80 and / or correcting the error is stored. This is because the packet data 80 may cause an error due to the influence of noise or the like on wireless communication. The inspection data 830 stores, for example, CRC (Cyclic Redundancy Check).
 図14は、送受信制御部211(311)における処理のフローチャートの例を示す。図14は、1つのフレームにおける処理である。 FIG. 14 shows an example of a flowchart of processing in the transmission / reception control unit 211 (311). FIG. 14 shows processing in one frame.
 送受信制御部211(311)は、フレームの処理を開始するタイミングになると、受信フラグ情報225(325)の有する全てのフラグを「TRUE」にセット(初期化)する(S101)。次に、送信データ取得部212(312)が、送信データ取得処理を行う(S102)。この送信データ取得処理(S102)の詳細については後述するが、簡単に説明すると、送信データ取得部212(312)は、優先度キュー221(321)に送信データが格納されており、且つ、今回のフレームが自ノードの送信タイミングである場合、送信データ管理情報222(322)に送信データを格納する(S102)。 The transmission / reception control unit 211 (311) sets (initializes) all the flags included in the reception flag information 225 (325) to “TRUE” when it is time to start frame processing (S101). Next, the transmission data acquisition unit 212 (312) performs transmission data acquisition processing (S102). Although details of the transmission data acquisition process (S102) will be described later, in brief, the transmission data acquisition unit 212 (312) stores transmission data in the priority queue 221 (321), and this time When the frame is the transmission timing of the own node, the transmission data is stored in the transmission data management information 222 (322) (S102).
 次に、送受信制御部211(311)は、今回の処理対象の優先度を示すフラグ(以下「対象優先度」という)に「高」をセットし(S103)、優先度「高」に対応する無線通信チャンネルに切り換える(S104)。 Next, the transmission / reception control unit 211 (311) sets “high” to a flag (hereinafter referred to as “target priority”) indicating the priority of the current processing target (S103), and corresponds to the priority “high”. Switch to the wireless communication channel (S104).
 次に、送受信制御部211(311)は、ステップS102で送信データ管理情報222(322)に格納したデータの内、対象優先度に対応する優先度を有し、且つ、タイムスロット待機数401が「0」のデータが存在するか否かを判定する(S105)。 Next, the transmission / reception control unit 211 (311) has a priority corresponding to the target priority among the data stored in the transmission data management information 222 (322) in step S102, and the time slot waiting number 401 is set. It is determined whether or not “0” data exists (S105).
 対象優先度に対応する優先度を有し、且つ、タイムスロット待機数401が「0」のデータが存在する場合(S105:YES)、送受信制御部211(311)は、送信部213(313)に送信処理(S106)を実行させ、その後、ステップS113へ進む。送信処理(S106)の詳細については後述するが、この処理において、受信フラグ情報225(325)の当該処理中の優先度に対応するフラグが「FALSE」に変更される。 When there is data having a priority corresponding to the target priority and the time slot waiting number 401 is “0” (S105: YES), the transmission / reception control unit 211 (311) transmits the transmission unit 213 (313). To execute the transmission process (S106), and then proceeds to step S113. Although details of the transmission process (S106) will be described later, in this process, the flag corresponding to the priority in the process of the reception flag information 225 (325) is changed to “FALSE”.
 送信データ管理情報222(322)にデータが格納されていない、又は対象優先度に対応するデータ(つまり、対象優先度と優先度が適合するデータ)が存在しない、又はタイムスロット待機数401が「0」のデータが存在しない場合(S105:NO)、送受信制御部211(311)は、次のステップS108へ進む。 No data is stored in the transmission data management information 222 (322), or there is no data corresponding to the target priority (that is, data matching the target priority and the priority), or the time slot waiting number 401 is “ When the data “0” does not exist (S105: NO), the transmission / reception control unit 211 (311) proceeds to the next step S108.
 ステップS108において、送受信制御部211(311)は、受信フラグ情報225(325)を参照し、対象優先度に対応するフラグが「TRUE」又は「FALSE」の何れであるかを判定する(S108)。 In step S108, the transmission / reception control unit 211 (311) refers to the reception flag information 225 (325) and determines whether the flag corresponding to the target priority is “TRUE” or “FALSE” (S108). .
 対象優先度に対応するフラグが「FALSE」である場合(S107:FALSE)、送受信制御部211(311)は、受信機能をオフにし(S107)、ステップS109へ進む。つまり、今回の分割時間においては、対象優先度に対応する優先度のデータを受信しないとする。 When the flag corresponding to the target priority is “FALSE” (S107: FALSE), the transmission / reception control unit 211 (311) turns off the reception function (S107), and proceeds to step S109. That is, it is assumed that priority level data corresponding to the target priority level is not received during the current division time.
 対象優先度に対応する優先度のフラグが「TRUE」である場合(S107:TRUE)、送受信制御部211(311)は、今回の分割時間の間、受信部214(314)に、今回の対象優先度に対応するデータの受信を待機させる(S109)。 When the priority flag corresponding to the target priority is “TRUE” (S107: TRUE), the transmission / reception control unit 211 (311) sends the current target to the reception unit 214 (314) during the current division time. The reception of data corresponding to the priority is waited (S109).
 今回の分割時間の間に今回の対象優先度に対応するデータの受信を開始した場合(S109:YES)、送受信制御部211(311)は、受信部214(314)に受信処理(S922)を実行させ、その後、ステップS113へ進む。受信処理(S922)の詳細については後述するが、この処理の中で、受信フラグ情報225(325)において、対象優先度に対応するフラグを「FALSE」に変更する。 When reception of data corresponding to the current priority is started during the current divided time (S109: YES), the transmission / reception control unit 211 (311) performs reception processing (S922) on the reception unit 214 (314). After that, proceed to step S113. Although details of the reception process (S922) will be described later, in this process, the flag corresponding to the target priority is changed to “FALSE” in the reception flag information 225 (325).
 今回の分割時間の間に今回の対象優先度に対応するデータを受信しなかった場合(S109:NO)、送受信制御部211(311)は、対象優先度を一つ下げて(S909)、ステップS112へ進む。つまり、今回の対象優先度が「高」であった場合は「中」に、今回の対象優先度が「中」であった場合は「低」に変更する。 If the data corresponding to the current target priority is not received during the current divided time (S109: NO), the transmission / reception control unit 211 (311) lowers the target priority by one (S909), and the step Proceed to S112. That is, if the current target priority is “high”, it is changed to “medium”, and if the current target priority is “medium”, it is changed to “low”.
 ステップS112において、送受信制御部211(311)は、対象優先度が「低」であるか否かを判定する(S112)。対象優先度が「低」でない場合(S112:NO)、送受信制御部211(311)は、ステップS104へ戻る。つまり、送受信制御部211(311)は、対象優先度を一つ下げた状態で、ステップS104~S112の処理を実行する。 In step S112, the transmission / reception control unit 211 (311) determines whether or not the target priority is “low” (S112). When the target priority is not “low” (S112: NO), the transmission / reception control unit 211 (311) returns to step S104. That is, the transmission / reception control unit 211 (311) executes the processes of steps S104 to S112 with the target priority lowered by one.
 対象優先度が「低」である場合(S112:YES)、送受信制御部211(311)は、優先度「低」に対応する無線通信チャンネルに切り換える(S113)。そして、送受信制御部211(311)は、タイムスロットの残り時間の間(つまり、タイムスロットが終了するまで)、優先度「低」のデータの受信を待機する。又は、送受信制御部211(311)は、優先度「低」のデータの送信処理を実行する(S114)。 When the target priority is “low” (S112: YES), the transmission / reception control unit 211 (311) switches to a wireless communication channel corresponding to the priority “low” (S113). Then, the transmission / reception control unit 211 (311) waits for reception of data with a priority “low” for the remaining time of the time slot (that is, until the time slot ends). Or the transmission / reception control part 211 (311) performs the transmission process of the data of a priority "low" (S114).
 タイムスロットの終了時間になると、送受信制御部211(311)は、送信データ管理情報222(322)に格納されている全てのデータのタイムスロット待機数を「1」減算する(S115)。そして、送受信制御部211(311)は、フレームの終了時間になったか否かを判定する(S116)。 When the end time of the time slot is reached, the transmission / reception control unit 211 (311) subtracts “1” from the number of time slot standbys stored in the transmission data management information 222 (322) (S115). Then, the transmission / reception control unit 211 (311) determines whether or not the frame end time has come (S116).
 フレームの終了時間になっていない場合(S116:NO)、送受信制御部211(311)は、タイムスロットを一つ進めて、ステップS103の処理に戻る。つまり、送受信制御部211(311)は、次のタイムスロットに対して上述の処理を繰り返す。 If it is not the end time of the frame (S116: NO), the transmission / reception control unit 211 (311) advances the time slot by one and returns to the process of step S103. That is, the transmission / reception control unit 211 (311) repeats the above-described processing for the next time slot.
 フレームの終了時間になった場合(S116:YES)、送受信制御部211(311)は、当該処理を終了する。つまり、送受信制御部211(311)は、今回のフレームの処理を終了し、次のフレームの処理に移行する。 When the frame end time is reached (S116: YES), the transmission / reception control unit 211 (311) ends the process. That is, the transmission / reception control unit 211 (311) ends the process of the current frame and proceeds to the process of the next frame.
 ここで、フレームにおいて、優先度「高」と優先度「中」が送信可能な場合は、最初のタイムスロットで、優先度「高」のデータを優先して送信しても良い。そして、優先度「高」のデータを送信後、次のタイムスロットで、優先度「中」のデータを送信しても良い。優先度「高」のデータと優先度「中」のデータは、同じタイムスロットで送信されないように、送信データ管理情報222(322)において調整されても良い。例えば、タイムスロット待機数401を調整したり、タイムスロットの終了前にタイムスロット待機数401を更新したりしても良い。 Here, when priority “high” and priority “medium” can be transmitted in a frame, data of priority “high” may be preferentially transmitted in the first time slot. Then, after transmitting the high priority data, the medium priority data may be transmitted in the next time slot. The high priority data and the medium priority data may be adjusted in the transmission data management information 222 (322) so that they are not transmitted in the same time slot. For example, the time slot waiting number 401 may be adjusted, or the time slot waiting number 401 may be updated before the end of the time slot.
 図15は、無線通信装置102における送信データ取得部212の処理を示すフローチャートの例である。 FIG. 15 is an example of a flowchart showing processing of the transmission data acquisition unit 212 in the wireless communication apparatus 102.
 送信データ取得部212は、優先度キュー221に、優先度「高」のデータが存在するか否かを判定する(S201)。優先度「高」のデータが存在する場合(S201:YES)、送信データ取得部212は、優先度キュー221から優先度「高」のデータを取得し(S202)、優先度を「高」に設定して送信データ管理情報222に格納し(S203)、ステップS204に進む。優先度「高」のデータが存在しない場合(S201:NO)、送信データ取得部212は、そのままステップS204に進む。 The transmission data acquisition unit 212 determines whether or not data with a priority “high” exists in the priority queue 221 (S201). When data with a priority “high” exists (S201: YES), the transmission data acquisition unit 212 acquires data with a priority “high” from the priority queue 221 (S202), and sets the priority to “high”. The data is set and stored in the transmission data management information 222 (S203), and the process proceeds to step S204. If no data with high priority exists (S201: NO), the transmission data acquisition unit 212 proceeds directly to step S204.
 送信データ取得部212は、ステップS204において優先度キュー221に優先度「中」のデータが存在するか否かを判定する(S204)。優先度「中」のデータが存在する場合(S204:YES)、送信データ取得部212は、現在のフレームが自ノード送信タイミング情報223に格納されている値と一致するか否かを判定する(S205)。自ノード送信タイミング情報223に格納されている値と一致する場合(S205:YES)、送信データ取得部212は、自ノードがデータを送信可能であると判断して、優先度キュー221から優先度「中」のデータを取得し(S206)、優先度を「中」に設定して送信データ管理情報222に格納し(S207)、当該処理を終了する。 The transmission data acquisition unit 212 determines whether or not data with a priority “medium” exists in the priority queue 221 in step S204 (S204). When data with a priority “medium” exists (S204: YES), the transmission data acquisition unit 212 determines whether or not the current frame matches the value stored in the local node transmission timing information 223 ( S205). If the value matches the value stored in the own node transmission timing information 223 (S205: YES), the transmission data acquisition unit 212 determines that the own node can transmit data, and determines the priority from the priority queue 221. The “medium” data is acquired (S206), the priority is set to “medium” and stored in the transmission data management information 222 (S207), and the process ends.
 ステップS204において優先度「中」のデータが存在しない場合、又はステップS205において自ノード送信タイミング情報223に格納されている値と一致しない場合(S205:NO)、送信データ取得部212は、ステップS208へ進む。 If there is no data with priority “medium” in step S204, or if the data does not match the value stored in the local node transmission timing information 223 in step S205 (S205: NO), the transmission data acquisition unit 212 performs step S208. Proceed to
 ステップS208において送信データ取得部212は、優先度キュー221に優先度「低」のデータが存在するか否かを確認する(S208)。優先度「低」のデータが存在する場合(S208:YES)、送信データ取得部212は、優先度キュー221から優先度「低」のデータを取得し(S209)、優先度を「低」に設定して送信データ管理情報222に格納し(S210)、当該処理を終了する。 In step S208, the transmission data acquisition unit 212 confirms whether or not data with a priority “low” exists in the priority queue 221 (S208). When data with a priority “low” exists (S208: YES), the transmission data acquisition unit 212 acquires data with a priority “low” from the priority queue 221 (S209), and sets the priority to “low”. The data is set and stored in the transmission data management information 222 (S210), and the process ends.
 ステップS208において優先度「低」のデータが存在しない場合(S208:NO)、送信データ取得部は、当該処理を終了する。 If there is no data with a priority “low” in step S208 (S208: NO), the transmission data acquisition unit ends the process.
 以上の処理により、今回のフレームで送信すべきデータが優先度キュー221に存在する場合は、そのデータが送信データ管理情報222に格納される。この送信データ管理情報222に格納されたデータは、フレーム内における送信待ちの状態となる。つまり、フレーム内でデータを送信するための準備が整う。 Through the above processing, when data to be transmitted in the current frame exists in the priority queue 221, the data is stored in the transmission data management information 222. The data stored in the transmission data management information 222 is in a state of waiting for transmission in the frame. That is, the preparation for transmitting data within the frame is completed.
 図16は、ゲートウェイ101Aにおける送信データ取得部312の処理を示すフローチャートの例である。 FIG. 16 is an example of a flowchart showing processing of the transmission data acquisition unit 312 in the gateway 101A.
 送信データ取得部312は、優先度キュー321に、優先度「高」のデータが存在するか否かを判定する(S301)。優先度「高」のデータが存在する場合(S301:YES)、送信データ取得部312は、優先度キュー231から優先度「高」のデータを取得する(S302)。そして、送信データ取得部312は、全ノード送信タイミング情報323を参照し、今回のフレームに割り当てられているノードのランクが偶数か否かを判定する(S303)。 The transmission data acquisition unit 312 determines whether or not data with a priority “high” exists in the priority queue 321 (S301). When data with a priority “high” exists (S301: YES), the transmission data acquisition unit 312 acquires data with a priority “high” from the priority queue 231 (S302). Then, the transmission data acquisition unit 312 refers to the all-node transmission timing information 323 and determines whether or not the rank of the node assigned to the current frame is an even number (S303).
 今回のフレームに割り当てられているノードのランクが偶数でない場合(S303:NO)、送信データ取得部312は、ステップS305に進む。 If the rank of the node assigned to the current frame is not an even number (S303: NO), the transmission data acquisition unit 312 proceeds to step S305.
 今回のフレームに割り当てられているノードのランクが偶数の場合(S303:YES)、送信データ取得部312は、この取得したデータを、優先度を「高」に設定して送信データ管理情報322に格納する。更に、送信データ取得部312は、この格納したデータのタイムスロット待機数を「1」に変更し(S304)、ステップS305に進む。つまり、この格納されたデータは、今回のタイムスロットではなく、次回のタイムスロットにおいて送信されることとなる。これにより、優先度「高」のデータの干渉を防止することができる。 When the rank of the node assigned to the current frame is an even number (S303: YES), the transmission data acquisition unit 312 sets the acquired data to the transmission data management information 322 with the priority set to “high”. Store. Further, the transmission data acquisition unit 312 changes the time slot waiting number of the stored data to “1” (S304), and proceeds to step S305. That is, the stored data is transmitted not in the current time slot but in the next time slot. As a result, it is possible to prevent interference of data having a high priority.
 ステップS305~S311の処理は、図15に示したステップS204~S210の処理とほぼ同様であるので、説明を省略する。 The processing of steps S305 to S311 is almost the same as the processing of steps S204 to S210 shown in FIG.
 図17は、送信部213(313)の送信処理を示すフローチャートの例である。 FIG. 17 is an example of a flowchart showing a transmission process of the transmission unit 213 (313).
 送信部213(313)は、送信データ管理情報222(322)からデータを取得する(S401)。次に、送信部213(313)は、その取得したデータと、そのデータの送信方向及びノード情報224(324)等とから、パケットデータを生成する(S402)。次に、送信部213(313)は、その生成したパケットデータを無線通信で送信する(S403)。次に、送信部213(313)は、受信フラグ情報225(325)の対象優先度のフラグを「FALSE」に変更し(S404)、当該処理を終了する。 The transmission unit 213 (313) acquires data from the transmission data management information 222 (322) (S401). Next, the transmission unit 213 (313) generates packet data from the acquired data, the transmission direction of the data, the node information 224 (324), and the like (S402). Next, the transmission unit 213 (313) transmits the generated packet data by wireless communication (S403). Next, the transmission unit 213 (313) changes the target priority flag of the reception flag information 225 (325) to “FALSE” (S404), and ends the processing.
 以上の処理により、送信データ管理情報222(322)に格納されたデータが、次のノードに送信される。 Through the above processing, the data stored in the transmission data management information 222 (322) is transmitted to the next node.
 図18は、受信部214(314)の受信処理を示すフローチャートの例である。 FIG. 18 is an example of a flowchart showing the reception process of the reception unit 214 (314).
 パケットデータを受信すると、送受信制御部211(311)は、受信したパケットデータ(以下「受信データ」ということもある)を解析して(S501)、受信データの中継(転送)が必要か否かを判定する(S502)。例えば、送受信制御部211(311)は、受信データに含まれる転送先アドレス91に基づいて、パケットデータの中継(転送)が必要か否かを判定する。ここで、転送先アドレス91が自ノードのアドレスと一致しない場合、又は送信先アドレス85が自ノードのアドレスと一致する場合、送受信制御部211(311)は、受信データの転送を不要と判定する(S502:NO)。この場合、送受信制御部211(311)は、受信データの優先度に対応する受信フラグを「FALSE」に変更して(S503)、転送先アドレス91が自ノードのアドレスと一致しない場合は受信データを破棄し、送信先アドレス85が自ノードのアドレスと一致した場合は、受信データをアプリケーション処理部217(317)へ渡し、当該処理を終了する。 When the packet data is received, the transmission / reception control unit 211 (311) analyzes the received packet data (hereinafter also referred to as “received data”) (S501), and whether or not the received data needs to be relayed (transferred). Is determined (S502). For example, the transmission / reception control unit 211 (311) determines whether it is necessary to relay (transfer) the packet data based on the transfer destination address 91 included in the received data. Here, when the transfer destination address 91 does not match the address of the own node, or when the transmission destination address 85 matches the address of the own node, the transmission / reception control unit 211 (311) determines that transfer of the received data is unnecessary. (S502: NO). In this case, the transmission / reception control unit 211 (311) changes the reception flag corresponding to the priority of the reception data to “FALSE” (S503), and if the transfer destination address 91 does not match the address of the own node, the reception data If the transmission destination address 85 matches the address of its own node, the received data is passed to the application processing unit 217 (317), and the processing is terminated.
 転送先アドレス91が自ノードのアドレスと一致する場合、送受信制御部211(311)は、受信データの転送を必要と判定し(S502:YES)、ステップS504に進む。 When the transfer destination address 91 matches the address of the own node, the transmission / reception control unit 211 (311) determines that the received data needs to be transferred (S502: YES), and proceeds to step S504.
 ステップS504において送受信制御部211(311)は、受信データに基づいて転送用のパケットデータを生成し、送信データ管理情報222(322)に格納する(S504)。 In step S504, the transmission / reception control unit 211 (311) generates packet data for transfer based on the received data, and stores the packet data in the transmission data management information 222 (322) (S504).
 次に、送受信制御部211(311)は、送信データ管理情報222(322)に優先度「中」のデータが存在するか否かを判定し(S505)、存在しない場合(S505:NO)、当該処理を終了する。 Next, the transmission / reception control unit 211 (311) determines whether or not data with a priority “medium” exists in the transmission data management information 222 (322) (S505), and if it does not exist (S505: NO), The process ends.
 送信データ管理情報222(322)に優先度「中」のデータが存在する場合(S505:YES)、送受信制御部211(311)は、更に、受信データの優先度が「高」であるか否かを判定する(S506)。受信データの優先度が「高」でない場合(S506:NO)、送受信制御部211(311)は、当該処理を終了する。 When there is data with priority “medium” in the transmission data management information 222 (322) (S505: YES), the transmission / reception control unit 211 (311) further determines whether the priority of the received data is “high”. Is determined (S506). When the priority of the received data is not “high” (S506: NO), the transmission / reception control unit 211 (311) ends the process.
 受信データの優先度が「高」である場合(S506:YES)、送受信制御部211(311)は、受信データの送信方向95が「上り」又は「下り」の何れであるかを判定する(S507)。 When the priority of the received data is “high” (S506: YES), the transmission / reception control unit 211 (311) determines whether the transmission direction 95 of the received data is “up” or “down” ( S507).
 まず、受信データの送信方向95が「下り」の場合(S507:下り)について説明する。 First, the case where the transmission direction 95 of received data is “downlink” (S507: downlink) will be described.
 送受信制御部211(311)は、受信データに含まれるランク94(つまり、送信元ノードのランク)が、自ノードのランクに対してどのような関係であるかを判定する(S508)。受信データに含まれるランク94が、自ノードのランクよりも「下位」又は「同位」の場合(S508:下位or同位)、送受信制御部211(311)は、当該処理を終了する。 The transmission / reception control unit 211 (311) determines how the rank 94 (that is, the rank of the transmission source node) included in the received data is related to the rank of the own node (S508). When the rank 94 included in the received data is “lower” or “equivalent” than the rank of the own node (S508: lower or equivalent), the transmission / reception control unit 211 (311) ends the process.
 受信データに含まれるランク94が、自ノードのランクよりも「上位」の場合(S508:上位)、送受信制御部211(311)は、送信データ管理情報222(322)の優先度「中」のデータのタイムスロット待機数401に「1」を加算し(S509)、当該処理を終了する。 When the rank 94 included in the received data is “higher” than the rank of the own node (S508: higher), the transmission / reception control unit 211 (311) has the priority “medium” of the transmission data management information 222 (322). “1” is added to the time slot waiting number 401 of the data (S509), and the process ends.
 次に、受信データの送信方向が「上り」の場合(S507:上り)について説明する。 Next, the case where the transmission direction of the received data is “uplink” (S507: uplink) will be described.
 送受信制御部211(311)は、受信データに含まれるランク94(つまり、送信元ノードのランク)が、自ノードのランクに対してどのような関係であるかを判定する(S510)。受信データに含まれるランク94が、自ノードのランクよりも「上位」の場合(S510:上位)、送受信制御部211(311)は、当該処理を終了する。 The transmission / reception control unit 211 (311) determines how the rank 94 (that is, the rank of the transmission source node) included in the received data is related to the rank of the own node (S510). When the rank 94 included in the received data is “higher” than the rank of the own node (S510: higher), the transmission / reception control unit 211 (311) ends the process.
 受信データに含まれるランク94が、自ノードのランクと「同位」の場合(S510:同位)、送受信制御部211(311)は、上述のステップS509と同様、送信データ管理情報222(322)の優先度「中」のデータのタイムスロット待機数に「1」を加算し(S509)、当該処理を終了する。 When the rank 94 included in the received data is “equivalent” to the rank of the own node (S510: peer), the transmission / reception control unit 211 (311) is similar to the above-described step S509 in the transmission data management information 222 (322). “1” is added to the number of time slot waits for the data with the priority “medium” (S509), and the process is terminated.
 受信データに含まれるランク94が、自ノードのランクよりも「下位」の場合(S510:下位)、送受信制御部211(311)は、送信データ管理情報222(322)の優先度「中」のデータのタイムスロット待機数に「2」を加算し(S511)、当該処理を終了する。 When the rank 94 included in the received data is “lower” than the rank of the own node (S510: lower), the transmission / reception control unit 211 (311) has the priority “medium” of the transmission data management information 222 (322). “2” is added to the time slot waiting number of data (S511), and the process is terminated.
 以上の処理によって、優先度「高」及び「中」の中継(転送)が適切に制御される。例えば、優先度「高」の受信データを中継する必要がる場合に、送信データ管理情報222(322)に優先度「中」の送信データが格納されている場合は、この送信データの送信タイミングを遅らせる。これにより、優先度「高」の受信データを、優先的に中継することができる。 Through the above processing, relays (transfers) with high priority and medium priority are appropriately controlled. For example, when it is necessary to relay received data with a high priority, if transmission data with a priority “medium” is stored in the transmission data management information 222 (322), the transmission timing of this transmission data Delay. As a result, received data with a high priority can be relayed preferentially.
 また、受信データを中継する必要がない場合は、今回のフレーム内で、当該受信データと同じ優先度のデータを受信しないように抑制することができる。これにより、隣接ノードから送信されたデータの受信を抑制することができ、不要なタイムスロットの待ち時間を少なくすることができる。 In addition, when it is not necessary to relay the received data, it is possible to suppress the reception of data having the same priority as the received data within the current frame. As a result, reception of data transmitted from the adjacent node can be suppressed, and unnecessary time slot waiting time can be reduced.
 次に、無線マルチホップネットワークシステムが、上述に示した方法に基づいて動作した場合の例を説明する。 Next, an example where the wireless multi-hop network system operates based on the method described above will be described.
 図19は、ノードcにおけるフレーム実行時に、ノードAから優先度「高」のデータがノードeに送信される場合の各ノードの動作の例を示す。 FIG. 19 shows an example of the operation of each node when data with a high priority is transmitted from the node A to the node e during the frame execution in the node c.
 図19において、横軸は、ノードcのフレームに含まれるタイムスロットの時間的推移を示す。縦軸は、各ノードの動作を示す。斜線の網掛けの分割時間は、優先度「高」に対応する無線通信チャンネルにチューニングされていることを示す。斑模様の網掛けの分割時間は、優先度「中」に対応する無線通信チャンネルにチューニングされていることを示す。白色の分割時間は、優先度「低」の無線通信チャンネルにチューニングされていることを示す。また、分割時間のスラッシュは、そのフレームにおいて、その優先度のデータを送受信しないことを示す。以下、図20~図22についても同様とする。 In FIG. 19, the horizontal axis indicates the time transition of the time slot included in the frame of the node c. The vertical axis shows the operation of each node. The hatched divided time indicates that the wireless communication channel corresponding to the priority “high” is tuned. The mottled splitting time indicates that the wireless communication channel corresponding to the priority “medium” is tuned. The white division time indicates that the wireless communication channel with the priority “low” is tuned. The slash of the division time indicates that the priority data is not transmitted / received in the frame. The same applies to FIGS. 20 to 22 below.
 第1タイムスロット601において、ノードAは、優先度「高」のデータをノードaに送信する(S11)。同じく第1タイムスロット601において、ノードcは、優先度「中」のデータをノードbに送信する(S12)。このとき、ノードcから送信された優先度「中」のデータは、隣接するノードd及びノードeに受信される(R11、R12)。しかし、ノードd及びノードeは、このデータの転送先アドレス91に基づいて中継不要と判断し、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 In the first time slot 601, the node A transmits data of the priority “high” to the node a (S11). Similarly, in the first time slot 601, the node c transmits data of priority “medium” to the node b (S12). At this time, the data with the medium priority transmitted from the node c is received by the adjacent nodes d and e (R11, R12). However, the node d and the node e determine that relaying is not necessary based on the transfer destination address 91 of the data, and change the priority flag “medium” in the reception flag information 225 to “FALSE”.
 ノードAとノードcは、一度処理した優先度と同じ優先度のデータを、同一フレーム内において処理しないとする。したがって、ノードAは、受信フラグ情報325の優先度「高」のフラグを「FALSE」に変更する。ノードcは、受信フラグ情報225の優先度「高」及び「中」のフラグを「FALSE」に変更する。 Suppose that node A and node c do not process data with the same priority as that processed once in the same frame. Therefore, the node A changes the flag of the priority “high” in the reception flag information 325 to “FALSE”. The node c changes the priority flags “high” and “medium” in the reception flag information 225 to “FALSE”.
 第2タイムスロット602では、ノードaが、ノードAから受信した優先度「高」のデータを、ノードbに転送する(S13)。その後、ノードaは、上記と同様、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。同じく第2タイムスロット602において、本来であれば、ノードbは、ノードcから受信して送信データ管理情報222に格納した優先度「中」のデータを、ノードaに転送するべきであるが、今回は転送しない(S14)。なぜなら、ノードbは、ノードaから優先度「高」のデータを先に受信する(S13)からである。したがって、ノードbは、優先度「高」のデータを受信後、送信データ管理情報222に格納されている優先度「中」のデータのタイムスロット待機数401に「1」を加算する。 In the second time slot 602, the node a transfers the data of the priority “high” received from the node A to the node b (S13). After that, the node a changes the flag of the priority “high” in the reception flag information 225 to “FALSE” in the same manner as described above. Similarly, in the second time slot 602, the node b should transfer the data of the priority “medium” received from the node c and stored in the transmission data management information 222 to the node a. No transfer is made this time (S14). This is because the node “b” first receives data of the priority “high” from the node “a” (S13). Therefore, the node b adds “1” to the time slot waiting number 401 of the data of the priority “medium” stored in the transmission data management information 222 after receiving the data of the priority “high”.
 第3タイムスロット603において、ノードbは、優先度「高」のデータと優先度「中」のデータを送信データ管理情報222に格納している。この場合、ノードbは、第3タイムスロット603において、タイムスロット待機数401の少ない方である優先度「高」のデータを先に転送する(S15、S16)。転送後、ノードbは、受信フラグ情報222の優先度「高」のフラグを「FALSE」に変更する。 In the third time slot 603, the node b stores the data of the priority “high” and the data of the priority “medium” in the transmission data management information 222. In this case, in the third time slot 603, the node “b” first transfers the data with the priority “high”, which is the smaller number of time slot standbys 401 (S15, S16). After the transfer, the node b changes the flag of the priority “high” in the reception flag information 222 to “FALSE”.
 第4タイムスロット604では、ノードcが、優先度「高」のデータをノードeに転送する(S17)。これにより、優先度「高」のデータは、送信先ノードeに到達する。ノードc及びノードeは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。また、ノードcに隣接するノードdは、ノードcから転送された優先度「高」のデータを受信するが(R13)、当該受信データは自ノード宛で無いと判定し、当該受信データを破棄する。さらに、ノードdは、今回のフレームにおいて優先度「高」のデータは、自ノードと無関係と判断し、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the fourth time slot 604, the node c transfers the data with the priority “high” to the node e (S17). As a result, the data with high priority reaches the transmission destination node e. The node c and the node e change the priority “high” flag of the reception flag information 225 to “FALSE”. Further, the node d adjacent to the node c receives the high priority data transferred from the node c (R13), but determines that the received data is not addressed to the own node and discards the received data. To do. Further, the node d determines that the data having the high priority in the current frame is irrelevant to the own node, and changes the flag having the high priority in the reception flag information 225 to “FALSE”.
 ここで、ノードbは、ノードcから送信される無線信号の到達範囲内に位置する(R14)。しかし、ノードbは、既に受信フラグ情報225の優先度「高」のフラグを「FALSE」としているため、上述のノードcからノードeに転送される優先度「高」のデータに反応しない。これにより、同じ第4タイムスロットにおいて、ノードbは、優先度「中」のデータを、ノードaに転送することができる(S18)。 Here, the node b is located within the reach of the radio signal transmitted from the node c (R14). However, since the node “b” has already set the “high” priority flag of the reception flag information 225 to “FALSE”, the node “b” does not react to the above-described high priority data transferred from the node c to the node e. Thereby, in the same fourth time slot, the node b can transfer the data of the priority “medium” to the node a (S18).
 第5タイムスロット605では、ノードaが、ノードbから受信した優先度「中」のデータを、ノードAに転送する(S19)。これにより、優先度「中」のデータも、送信先ノードに到達する。 In the fifth time slot 605, the node “a” transfers the data of the priority “medium” received from the node “b” to the node A (S19). As a result, data with the priority “medium” also reaches the transmission destination node.
 第6タイムスロットでは、優先度「高」及び「中」の何れの送受信すべきデータも存在しないため、基本的に、全てのノードが待機状態となる。 In the sixth time slot, since there is no data to be transmitted / received with the priority “high” or “medium”, basically all the nodes are in a standby state.
 以上のように、優先度「高」のデータを優先的に送信及び転送することができる。つまり、優先度「高」のデータを、送信元ノードから送信先ノードまでのホップ数分のタイムスロットの時間で、データを送信先ノードまで到達させることができる。 As described above, high priority data can be transmitted and transferred with priority. That is, data with a high priority can be made to reach the destination node in a time slot corresponding to the number of hops from the source node to the destination node.
 また、優先度「中」のデータを、送信元ノードから送信先ノードまでのホップ数分に「2」を加算した数のタイムスロットの時間で、送信先ノードまで到達させることができる。 In addition, it is possible to cause the data with the priority “medium” to reach the destination node in the time slot of the number of times “2” added to the number of hops from the source node to the destination node.
 図20は、ノードdにおけるフレーム実行時に、ノードeから優先度「高」のデータがノードAに送信される場合の各ノードの動作の例を示す。図20は、図19において優先度「高」のデータを受信したノードeが、その応答データを返す場合の例である。 FIG. 20 shows an example of the operation of each node when data having a high priority is transmitted from the node e to the node A during frame execution at the node d. FIG. 20 shows an example in which the node e that has received the high priority data in FIG. 19 returns the response data.
 第1タイムスロットでは、ノードeが優先度「高」のデータをノードcに送信する(S21)。送信後、ノードeは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the first time slot, the node e transmits data of the priority “high” to the node c (S21). After the transmission, the node e changes the priority flag of the reception flag information 225 to “FALSE”.
 ノードeに隣接するノードdは、自ノードに割り当てられたフレームを実行中であるため、送信データ管理情報222に格納されている優先度「中」のデータを送信したい。しかし、ノードdは、ノードeから送信された優先度「高」のデータを先に受信する(R21)。そこで、ノードdは、この受信した優先度「高」のデータが、自ノードと同位のランク4のノードeから上り方向に送信されたデータであると判定し、優先度「中」のデータのタイムスロット待機数401に「1」を加算する。つまり、ノードdは、優先度「中」のデータの送信を、タイムスロット1回分見送る(S22)。 Since the node d adjacent to the node e is executing the frame assigned to the own node, the node d wants to transmit the data with the medium priority stored in the transmission data management information 222. However, the node d first receives the high priority data transmitted from the node e (R21). Therefore, the node d determines that the received data of the priority “high” is the data transmitted in the upstream direction from the node e of rank 4 that is the same as that of the node d. “1” is added to the time slot waiting number 401. That is, the node d sees off transmission of data with the priority “medium” for one time slot (S22).
 また、ノードdは、ノードeから送信された優先度「高」のデータは、今回のフレーム内において自ノードと関係ないと判定して、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 Further, the node d determines that the data of the priority “high” transmitted from the node e is not related to the own node in the current frame, and sets the flag of the priority “high” in the reception flag information 225 to “ Change to "FALSE".
 第2タイムスロットでは、ノードcが、ノードeから受信した優先度「高」のデータをノードbに転送する(S23)。転送後、ノードcは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the second time slot, the node c transfers the high priority data received from the node e to the node b (S23). After the transfer, the node c changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
 同じく第2にタイムスロットにおいて、ノードdは、送信データ管理情報222に格納されている優先度「中」のデータのタイムスロット待機数401を確認する。しかし、優先度「中」のデータのタイムスロット待機数401は、上記において「1」が加算されたので、まだ「0」では無い。したがって、ノードdは、この優先度「中」のデータのタイムスロット待機数401から「1」を減算し、今回の第2タイムスロットではこのデータを送信しない(S24)。 Similarly, secondly, in the time slot, the node d confirms the time slot waiting number 401 of the data with the priority “medium” stored in the transmission data management information 222. However, the time slot waiting number 401 of the data with the priority “medium” is not “0” yet because “1” is added in the above. Therefore, the node d subtracts “1” from the time slot waiting number 401 of the data with the priority “medium”, and does not transmit this data in the current second time slot (S24).
 第3タイムスロットでは、ノードbが、ノードcから受信した優先度「高」のデータをノードaに転送する(S25)。送信後、ノードbは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the third time slot, the node b transfers the high priority data received from the node c to the node a (S25). After the transmission, the node b changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
 ノードdは、優先度「中」のデータのタイムスロット待機数401が「0」となっているので、この優先度「中」のデータをノードcに送信する(S26)。送信後、ノードdは、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 Since the time slot waiting number 401 of the data with the priority “medium” is “0”, the node d transmits the data with the priority “medium” to the node c (S26). After the transmission, the node d changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
 同じく第3タイムスロットにおいてノードdに隣接するノードeは、ノードdから送信された優先度「中」のデータを受信するが(R22)、自ノード宛でないため、受信完了後にデータを破棄し、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 Similarly, the node e adjacent to the node d in the third time slot receives the data of the priority “medium” transmitted from the node d (R22), but discards the data after completion of reception because it is not addressed to its own node. The flag of the priority “medium” in the reception flag information 225 is changed to “FALSE”.
 第4タイムスロットでは、ノードaが、ノードbから受信した優先度「高」のデータをノードAに転送する(S27)。これにより、優先度「高」のデータが送信先ノードまで到達する。転送後、ノードa及びノードAは各々、受信フラグ情報225及び325の優先度「高」のフラグを「FALSE」に変更する。 In the fourth time slot, the node a transfers the data of the priority “high” received from the node b to the node A (S27). As a result, data with high priority reaches the transmission destination node. After the transfer, the node a and the node A respectively change the priority flag “high” in the reception flag information 225 and 325 to “FALSE”.
 同じく第4タイムスロットにおいて、ノードcは、ノードdから受信した優先度「中」のデータをノードbに転送する(S28)。転送後、ノードcは、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 Similarly, in the fourth time slot, the node c transfers the data of the priority “medium” received from the node d to the node b (S28). After the transfer, the node c changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
 第5タイムスロットでは、ノードbが、ノードcから受信した優先度「中」のデータをノードaに転送する(S29)。転送後、ノードbは、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 In the fifth time slot, the node b transfers the data of the priority “medium” received from the node c to the node a (S29). After the transfer, the node b changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
 第6タイムスロットでは、ノードaが、ノードbから受信した優先度「中」のデータをノードAに転送する(S30)。これにより、優先度「中」のデータが、送信先ノードまで到達する。 In the sixth time slot, the node a transfers the data of the priority “medium” received from the node b to the node A (S30). As a result, data with the priority “medium” reaches the destination node.
 以上のように、優先度「高」及び優先度「中」のデータが同じ上り方向に転送される場合に、優先度「高」のデータが、優先的に転送される。つまり、優先度「高」のデータは、送信元ノードから送信先ノードまでのホップ数分のタイムスロットの時間で到達することができる。 As described above, when the data with the priority “high” and the priority “medium” are transferred in the same upstream direction, the data with the priority “high” is transferred with priority. That is, data with high priority can be reached in a time slot corresponding to the number of hops from the transmission source node to the transmission destination node.
 また、これにより、優先度「中」のデータと優先度「高」のデータとの干渉を抑制することができる。つまり、優先度「中」のデータは、送信元ノードから送信先ノードまでのホップ数分に「2」を加算したタイムスロットの時間で到達することができる。 This also makes it possible to suppress interference between data with a priority “medium” and data with a priority “high”. That is, data with a priority of “medium” can be reached in the time slot time obtained by adding “2” to the number of hops from the transmission source node to the transmission destination node.
 図21は、ノードfのフレーム実行時に、ノードeから優先度「高」のデータがノードAに送信される場合における各ノードの動作の例を示す。図21は、図19において優先度「高」のデータを受信したノードeが、その応答データを返し、且つ、下位のランクのノードから優先度「高」のデータを受信する場合の例である。 FIG. 21 shows an example of the operation of each node when data of priority “high” is transmitted from the node e to the node A when the frame of the node f is executed. FIG. 21 shows an example in which the node e that has received the high priority data in FIG. 19 returns the response data and receives the high priority data from the lower rank nodes. .
 第1タイムスロットでは、ノードeが、優先度「高」のデータをノードcに送信する(S31)。送信後、ノードeは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the first time slot, the node e transmits the data of the priority “high” to the node c (S31). After the transmission, the node e changes the priority flag of the reception flag information 225 to “FALSE”.
 ノードfは、自ノードに割り当てられたフレーム実行中であるため、送信データ管理情報222に格納されている優先度「中」のデータを送信したい。しかし、ノードfは、ノードeから送信された優先度「高」のパケットを先に受信する(R31)。そこで、ノードfは、この受信した優先度「高」のデータが、自ノードの下位のランク4のノードeから上り方向に対して送信されたデータであると判定し、優先度「中」のデータのタイムスロット待機数401に「2」を加算する。つまり、ノードfは、優先度「中」のデータの送信を、タイムスロット2回分見送る(S32)。 Since node f is executing a frame assigned to itself, it wants to transmit data with a medium priority stored in the transmission data management information 222. However, the node f first receives the high priority packet transmitted from the node e (R31). Therefore, the node f determines that the received high priority data is data transmitted from the node e of the rank 4 lower than the own node in the uplink direction, and has the medium priority. “2” is added to the data time slot waiting number 401. In other words, the node f sees transmission of data with the priority “medium” for two time slots (S32).
 また、ノードfは、ノードeから送信された優先度「高」のデータは、今回のフレーム内において自ノードと関係ないと判断して、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 Further, the node f determines that the data of the priority “high” transmitted from the node e is not related to the own node in the current frame, and sets the flag of the priority “high” in the reception flag information 225 to “ Change to "FALSE".
 第2タイムスロット602では、ノードcが、ノードeから受信した優先度「高」のデータをノードbに転送する(S33)。転送後、ノードcは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the second time slot 602, the node c transfers the high priority data received from the node e to the node b (S33). After the transfer, the node c changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
 同じく第2タイムスロットにおいて、ノードfは、送信データ管理情報222に格納されている優先度「中」のデータのタイムスロット待機数401を確認する。しかし、優先度「中」のデータのタイムスロット待機数401は、上記において「2」が加算されたので、未だ「0」では無い。したがって、ノードdは、この優先度「中」のデータのタイムスロット待機数401から「1」を減算し、今回の第2タイムスロット602ではこのデータを送信しない(S34)。 Similarly, in the second time slot, the node f confirms the time slot waiting number 401 of the data with the priority “medium” stored in the transmission data management information 222. However, the time slot waiting number 401 of the data with the priority “medium” is not yet “0” because “2” is added in the above. Therefore, the node d subtracts “1” from the time slot waiting number 401 of the data with the priority “medium”, and does not transmit this data in the current second time slot 602 (S34).
 第3タイムスロットで603は、ノードbが、ノードcから受信した優先度「高」のデータをノードaに転送する(S35)。転送後、ノードbは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the third time slot 603, the node b transfers the high priority data received from the node c to the node a (S35). After the transfer, the node b changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
 同じく第3タイムスロット603において、ノードfは、送信データ管理情報222に格納されている優先度「中」のデータのタイムスロット待機数401を確認する。しかし、優先度「中」のデータのタイムスロット待機数401は、上記において「2」が加算されたので、まだ「0」では無い。したがって、ノードdは、この優先度「中」のデータのタイムスロット待機数から「1」を減算し、今回の第2タイムスロットではこのデータを送信しない(S36)。 Similarly, in the third time slot 603, the node f confirms the time slot waiting number 401 of the data with the priority “medium” stored in the transmission data management information 222. However, the time slot waiting number 401 of the data of the priority “medium” is not “0” yet because “2” is added in the above. Therefore, the node d subtracts “1” from the time slot waiting number of the data with the priority “medium”, and does not transmit this data in the current second time slot (S36).
 第4タイムスロット604では、ノードaが、ノードbから受信した優先度「高」のデータをノードAに転送する(S37)。これにより、優先度「高」のデータが送信先ノードまで到達する。転送後、ノードa及びノードAは各々、受信フラグ情報225及び325の優先度「高」のフラグを「FALSE」に変更する。 In the fourth time slot 604, the node a transfers the data of the priority “high” received from the node b to the node A (S37). As a result, data with high priority reaches the transmission destination node. After the transfer, the node a and the node A respectively change the priority flag “high” in the reception flag information 225 and 325 to “FALSE”.
 同じく第4タイムスロット604において、ノードfは、優先度「中」のデータのタイムスロット待機数401が「0」となっているので、この優先度「中」のデータをノードbに送信する(S38)。送信後、ノードfは、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 Similarly, in the fourth time slot 604, since the time slot waiting number 401 of the data with the priority “medium” is “0”, the node f transmits the data with the priority “medium” to the node b ( S38). After the transmission, the node f changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
 同じく第4タイムスロット604においてノードfに隣接するノードeは、ノードfから送信された優先度「中」のデータを受信するが(R32)、自ノード宛でないため、受信完了後にデータを破棄し、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 Similarly, the node e adjacent to the node f in the fourth time slot 604 receives the medium priority data transmitted from the node f (R32), but discards the data after the reception is completed because it is not addressed to the own node. Then, the priority “medium” flag of the reception flag information 225 is changed to “FALSE”.
 第5タイムスロット605及び第6タイムスロット606については、図20の場合と同様であるため、説明を省略する(S39、S40)。 Since the fifth time slot 605 and the sixth time slot 606 are the same as those in FIG. 20, the description thereof is omitted (S39, S40).
 以上のように、上り方向に優先度「高」及び優先度「中」のデータが転送される場合であり、且つ、下位のランクのノードから優先度「高」のデータを受信した場合であっても、優先度「高」のデータが優先的に転送される。つまり、優先度「高」のデータは、送信元ノードから送信先ノードまでのホップ数分のタイムスロットの時間で到達することができる。 As described above, this is a case where data of priority “high” and priority “medium” is transferred in the uplink direction, and when data of priority “high” is received from a lower rank node. However, data with a high priority is preferentially transferred. That is, data with high priority can be reached in a time slot corresponding to the number of hops from the transmission source node to the transmission destination node.
 また、これにより、優先度「中」のデータと優先度「高」のデータとの干渉を抑制することができる。つまり、優先度「中」のデータは、送信元ノードから送信先ノードまでのホップ数分に「3」を加算したタイムスロットの時間で到達することができる。 This also makes it possible to suppress interference between data with a priority “medium” and data with a priority “high”. That is, the data with the priority “medium” can be reached in the time slot in which “3” is added to the number of hops from the transmission source node to the transmission destination node.
 図22は、ノードdのフレーム実行時に、ノードAから優先「高」のデータがノードhに送信される場合における各ノードの動作の例を示す。 FIG. 22 shows an example of the operation of each node when priority “high” data is transmitted from the node A to the node h when the frame of the node d is executed.
 第1タイムスロット601において、ノードAが、優先度「高」のデータを保持している。しかし、今回は、偶数であるランク4のノードdに割り当てられたフレーム実行中であるため、ノードAは、この優先度「高」のデータの送信を待機する(S41)。つまり、ノードAは、優先度キュー321から優先度「高」のデータを取得して、送信データ管理情報222に格納するときに、図16のステップS304に示したように、タイムスロット待機数401を「1」に変更する。 In the first time slot 601, the node A holds data with a priority “high”. However, since the frame assigned to the rank d node d, which is an even number, is being executed this time, the node A waits for transmission of the data with the high priority (S41). That is, when the node A acquires the data of the priority “high” from the priority queue 321 and stores it in the transmission data management information 222, as shown in step S304 of FIG. Is changed to “1”.
 ノードdは、自ノードのフレーム実行中であるため、優先度「中」のデータをノードcに送信する(S42)。送信後、ノードdは、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 Since node d is executing a frame of its own node, data of priority “medium” is transmitted to node c (S42). After the transmission, the node d changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
 第2タイムスロット602では、ノードAが、優先度「高」のデータのタイムスロット待機数401が「0」のため、ノードaに、この優先度「高」のデータを送信する(S43)。送信後、ノードAは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the second time slot 602, since the time slot waiting number 401 of the data with the priority “high” is “0”, the node A transmits the data with the priority “high” to the node a (S43). After the transmission, the node A changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
 同じ第2タイムスロットにおいて、ノードcは、ノードdから受信した優先度「中」のデータをノードbに転送する(S44)。転送後、ノードcは、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 In the same second time slot, the node c transfers the data of the priority “medium” received from the node d to the node b (S44). After the transfer, the node c changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
 第3タイムスロットでは、ノードaが、ノードAから受信した優先度「高」のデータをノードhに転送する(S45)。これにより、優先度「高」のデータは、送信先ノードまで到達する。転送後、ノードaは、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the third time slot, the node a transfers the data of the priority “high” received from the node A to the node h (S45). As a result, the data with high priority reaches the transmission destination node. After the transfer, the node a changes the flag of the priority “high” in the reception flag information 225 to “FALSE”.
 同じ第3タイムスロットにおいて、ノードbは、送信データ管理情報222に格納している優先度「中」のパケットを送信したい。しかし、ノードbは、ノードaから優先度「高」のデータを先に受信する。そこで、ノードbは、この受信した優先度「高」のデータが、自ノードの上位のランク0のノードAから下り方向に対して送信されたデータであると判定し、優先度「中」のデータのタイムスロット待機数に「1」を加算する。つまり、ノードbは、優先度「中」のデータの送信を、タイムスロット1回分見送ることとする(S46)。また、ノードbは、ノードaから送信された優先度「高」のデータは、今回のフレーム内において自ノードと関係ないと判断して、受信フラグ情報225の優先度「高」のフラグを「FALSE」に変更する。 In the same third time slot, the node b wants to transmit the packet with the medium priority stored in the transmission data management information 222. However, the node b first receives the data with the priority “high” from the node a. Therefore, the node b determines that the received data with the high priority is data transmitted in the downstream direction from the node A of rank 0 higher than the own node, and has the medium priority. “1” is added to the number of timeslot waiting for data. That is, the node b defers transmission of data with the priority “medium” for one time slot (S46). Further, the node “b” determines that the data of the priority “high” transmitted from the node “a” is not related to the own node in the current frame, and sets the flag of the priority “high” in the reception flag information 225 to “ Change to "FALSE".
 第4タイムスロット604において、ノードbは、送信データ管理情報222に格納されている優先度「中」のデータのタイムスロット待機数401を確認する。しかし、優先度「中」のデータのタイムスロット待機数401は、上記において「1」が加算されたので、まだ「0」では無い。したがって、ノードdは、この優先度「中」のデータのタイムスロット待機数401から「1」を減算し、今回の第4タイムスロット604ではこのデータを送信しない(S47)。 In the fourth time slot 604, the node b confirms the time slot waiting number 401 of the data with the priority “medium” stored in the transmission data management information 222. However, the time slot waiting number 401 of the data with the priority “medium” is not “0” yet because “1” is added in the above. Therefore, the node d subtracts “1” from the time slot waiting number 401 of the data with the priority “medium”, and does not transmit this data in the current fourth time slot 604 (S47).
 第5タイムスロット605において、ノードbは、優先度「中」のデータのタイムスロット待機数401が「0」となっているので、この優先度「中」のデータをノードaに送信する(S48)。送信後、ノードbは、受信フラグ情報225の優先度「中」のフラグを「FALSE」に変更する。 In the fifth time slot 605, the node b transmits the data with the priority “medium” to the node a because the time slot waiting number 401 of the data with the priority “medium” is “0” (S48). ). After the transmission, the node b changes the flag of the priority “medium” in the reception flag information 225 to “FALSE”.
 第6タイムスロット606では、ノードaが、ノードbから受信した優先度「中」のデータをノードAに転送する(S49)。これにより、優先度「中」のデータが、送信先ノードまで到達する。 In the sixth time slot 606, the node a transfers the data of the priority “medium” received from the node b to the node A (S49). As a result, data with the priority “medium” reaches the destination node.
 ゲートウェイ101Aから優先度「高」のデータが送信され、且つ、ランクが偶数のノードから優先度「中」のデータが送信される場合、本来であれば、無線通信における隠れ端末問題が発生し、優先度「中」のデータをロスしてしまう。しかし、上述のように、ゲートウェイ101Aからの優先度「高」のデータの送信を、タイムスロット1回分ずらすことによって、無線通信における隠れ端末問題を防ぎ、ランクが奇数のノードから優先度「中」のデータが送信される場合と同様に、1フレーム内の5つのタイムスロットにおいて、優先度「高」と優先度「中」のデータの両方を転送させることができる。 When data of priority “high” is transmitted from the gateway 101A and data of priority “medium” is transmitted from an even-ranked node, a hidden terminal problem in wireless communication occurs. Data of priority “medium” is lost. However, as described above, the transmission of data having a high priority from the gateway 101A is shifted by one time slot to prevent the hidden terminal problem in the wireless communication, and the medium priority from the node having an odd rank. Similarly to the case where the data of “5” is transmitted, in the five time slots in one frame, both the data of the priority “high” and the priority “medium” can be transferred.
 実施例1によれば、1つのフレーム内において、優先度の異なる複数のデータを送受信することができる。さらに、優先度の高いデータを、より短時間で送信先ノードに到達させることができる。つまり、優先度の高いデータがタイムスロットで待機させられる回数を減らし、より少ないタイムスロット数で、送信先ノードに到達させることができる。 According to the first embodiment, a plurality of data having different priorities can be transmitted and received within one frame. Furthermore, data with high priority can be reached at the destination node in a shorter time. That is, it is possible to reduce the number of times high priority data is kept waiting in the time slot and to reach the transmission destination node with a smaller number of time slots.
 図1に示した無線ネットワーク100では、ランクが2つ以上離れているノード同士を、相互に電波を受信しない距離に配置することが望ましい。しかし、例えば、障害物の移動、人の流動、又は天候の変化等により、無線ネットワーク100を構築した後に、電波環境が変化し、ランクが2つ以上離れているノード同士が、相互に電波を受信してしまうことも考えられる。実施例2では、このような場合における構成及び処理等について説明する。 In the wireless network 100 shown in FIG. 1, it is desirable to arrange nodes having two or more ranks away from each other so as not to receive radio waves. However, after building the wireless network 100 due to, for example, movement of obstacles, flow of people, or changes in weather, the radio wave environment changes, and nodes that are separated by two or more ranks transmit radio waves to each other. It is also possible to receive it. In the second embodiment, the configuration and processing in such a case will be described.
 図23は、実施例2に係る一部に障害物が存在する無線マルチホップネットワークシステム1000の構成の例を示す。 FIG. 23 shows an example of the configuration of a wireless multi-hop network system 1000 in which some obstacles exist according to the second embodiment.
 無線ネットワーク1000は、ゲートウェイ1001A(ノードA)と、無線通信装置1002a(ノードa)と、無線通信装置1002b(ノードb)と、から構成されている。当初は、ゲートウェイ1001Aと無線通信装置1002bとの間に障害物1003が存在しており、ゲートウェイ1001Aと無線通信装置1002bとの間で電波が到達しなかったとする。つまり、当初は、ゲートウェイ100Aと無線通信装置1002aとが無線で接続されており、無線通信装置1002aと無線通信装置1002bとが無線で接続されているとする。 The wireless network 1000 includes a gateway 1001A (node A), a wireless communication device 1002a (node a), and a wireless communication device 1002b (node b). Initially, it is assumed that an obstacle 1003 exists between the gateway 1001A and the wireless communication device 1002b, and no radio wave arrives between the gateway 1001A and the wireless communication device 1002b. That is, initially, it is assumed that the gateway 100A and the wireless communication device 1002a are wirelessly connected, and the wireless communication device 1002a and the wireless communication device 1002b are wirelessly connected.
 ここで、例えば、障害物1003が排除されると、ゲートウェイ1001Aと無線通信装置1002bとの間で電波が到達するようになってしまう。 Here, for example, when the obstacle 1003 is eliminated, the radio wave arrives between the gateway 1001A and the wireless communication device 1002b.
 図24は、優先度「高」のデータの送受信に関するタイムスロットの例を示す。実施例2は、スーパーフレーム50、フレーム51、及びタイムスロット52については、実施例1と同様である。しかし、実施例2は、タイムスロット内におけるデータの送受信の処理が、実施例1と異なる。図24では、優先度「高」のデータの送受信の処理を例に説明する。 FIG. 24 shows an example of a time slot related to transmission / reception of data with high priority. In the second embodiment, the super frame 50, the frame 51, and the time slot 52 are the same as those in the first embodiment. However, the second embodiment is different from the first embodiment in the data transmission / reception process in the time slot. In FIG. 24, a process of transmitting / receiving data with high priority will be described as an example.
 図24(a)は、優先度「高」のデータを送信する場合のタイムスロット1100aを示す。 FIG. 24 (a) shows a time slot 1100a in the case of transmitting data with high priority.
 ノードは、タイムスロット1100aの開始タイミングになると、まず、切換時間60aにおいて、優先度「高」の無線通信チャンネルに切り換える。次に、ノードは、時間1101において、宛先アドレスを含むパケットデータ(以下「アドレス用パケット」という)を送信し、所定時間1102の待機後、優先度「高」のデータを送信する。以下、このアドレス用パケットの送信後に送信するデータを「データ用パケット」という。アドレス用パケット1300及びデータ用パケット1400の詳細については後述する(図25参照)。 When the start timing of the time slot 1100a is reached, the node first switches to the wireless communication channel with the priority “high” at the switching time 60a. Next, the node transmits packet data including the destination address (hereinafter referred to as “address packet”) at time 1101, and after waiting for a predetermined time 1102, transmits data of high priority. Hereinafter, the data transmitted after the transmission of the address packet is referred to as a “data packet”. Details of the address packet 1300 and the data packet 1400 will be described later (see FIG. 25).
 その後、ノードは、切換時間60cにおいて優先度「低」の無線通信チャンネルに切り換え、分割時間63の間、優先度「低」のデータの送受信に関する処理を実行する。 After that, the node switches to the wireless communication channel with the priority “low” at the switching time 60 c and executes processing related to transmission / reception of the data with the priority “low” during the division time 63.
 図24(b)は、図24(a)の優先度「高」のデータを受信する場合のタイムスロット1100bを示す。 FIG. 24 (b) shows a time slot 1100b in the case of receiving data with the priority “high” in FIG. 24 (a).
 ノードは、タイムスロット1100bの開始タイミングになると、まず、切換時間60aにおいて、優先度「高」の無線通信チャンネルに切り換える。次に、ノードは、時間1201において、アドレス用パケット1300の受信を待機する。ここで、アドレス用パケット1300を受信し、このアドレス用パケット1300に含まれる転送先アドレス91が、自ノード宛であった場合、所定時間1202の待機後、優先度「高」のデータを受信する。 When the start timing of the time slot 1100b is reached, the node first switches to the wireless communication channel with the priority “high” at the switching time 60a. Next, the node waits for reception of the address packet 1300 at time 1201. Here, when the address packet 1300 is received, and the transfer destination address 91 included in the address packet 1300 is addressed to the own node, data of high priority is received after waiting for a predetermined time 1202. .
 その後、ノードは、切換時間60cにおいて優先度「低」の無線通信チャンネルに切り換え、分割時間63の間、優先度「低」のデータの送受信に関する処理を実行する。 After that, the node switches to the wireless communication channel with the priority “low” at the switching time 60 c and executes processing related to transmission / reception of the data with the priority “low” during the division time 63.
 図24(c)は、上記において、アドレス用パケット1300を受信したが、このアドレス用パケットに含まれる転送先アドレス91が自ノード宛で無かった場合のタイムスロット110cを示す。 FIG. 24C shows the time slot 110c when the address packet 1300 is received in the above, but the forwarding address 91 included in the address packet is not addressed to the own node.
 ノードは、タイムスロット1100cの開始タイミングになると、まず、切換時間60aにおいて、優先度「高」の無線通信チャンネルに切り換える。次に、ノードは、時間1201において、アドレス用パケット1300の受信を待機する。ここで、アドレス用パケット1300を受信したものの、このアドレス用パケット1300に含まれる転送先アドレス91が、自ノード宛でなかった場合、所定時間1202の待機後、切換時間60bにおいて、優先度「中」の無線通信チャンネルに切り換える。以降は、実施例1の場合と同様に、優先度「中」及び「低」のデータの送受信に関する処理を実行する。 When the start timing of the time slot 1100c is reached, the node first switches to the wireless communication channel with the priority “high” at the switching time 60a. Next, the node waits for reception of the address packet 1300 at time 1201. Here, when the address packet 1300 is received but the transfer destination address 91 included in the address packet 1300 is not addressed to the own node, the priority “medium” is set at the switching time 60b after waiting for the predetermined time 1202. Switch to the wireless communication channel. Thereafter, as in the case of the first embodiment, processing related to transmission / reception of data with priority “medium” and “low” is executed.
 上記図24(a)~(c)は、優先度「高」の場合について説明したが、優先度「中」の場合も同様に、まずアドレス用パケット1300を送信又は受信待機した後、所定時間の待機後、優先度「中」のデータ用パケット1400を送信又は受信する。 24A to 24C described the case where the priority is “high”. Similarly, in the case where the priority is “medium” as well, first, after waiting for transmission or reception of the address packet 1300, a predetermined time After that, the data packet 1400 having the medium priority is transmitted or received.
 これにより、宛先アドレスのノードのみがデータ用パケット1400を受信し、電波の到達してしまう宛先アドレスでないノードが無駄にデータ用パケット1400を受信してしまうことを防止できる。 Thereby, it is possible to prevent only the node at the destination address from receiving the data packet 1400 and the node other than the destination address from which the radio wave arrives from receiving the data packet 1400 in vain.
 図25は、アドレス用パケット及びデータ用パケットのデータ構造の例を示す。 FIG. 25 shows an example of the data structure of the address packet and the data packet.
 図25(a)は、アドレス用パケット1300のデータ構造の例を示す。アドレス用パケット1300は、ヘッダ1301と検査用データ83とから構成される。 FIG. 25A shows an example of the data structure of the address packet 1300. The address packet 1300 includes a header 1301 and inspection data 83.
 ヘッダ1301は、転送先アドレス91、転送元アドレス92、パケット長93、パケット種類1302から構成される。転送先アドレス91、転送元アドレス92、パケット長2413の説明については、実施例1の図13に示したパケットデータ80と同様となるので省略する。同じく、検査用データ83についても説明を省略する。 The header 1301 includes a transfer destination address 91, a transfer source address 92, a packet length 93, and a packet type 1302. The description of the transfer destination address 91, the transfer source address 92, and the packet length 2413 is the same as that of the packet data 80 shown in FIG. Similarly, the description of the inspection data 83 is also omitted.
 パケット種類1302には、当該パケットが、アドレス用パケット及びデータ用パケットの何れであるかを識別するための値が格納される。例えば、アドレス用パケットのパケット種類1302は「0」、データ用パケットのパケット種類1302は「1」と予め決めておく。 The packet type 1302 stores a value for identifying whether the packet is an address packet or a data packet. For example, the packet type 1302 of the address packet is determined in advance as “0” and the packet type 1302 of the data packet is determined as “1”.
 図25(b)は、データ用パケット1400のデータ構造の例を示す。 FIG. 25 (b) shows an example of the data structure of the data packet 1400.
 データ用パケット1400は、実施例1の図13に示したパケットデータ80と同様に、ヘッダ1401と、ペイロード82と、検査用データ83とから構成される。 Similarly to the packet data 80 shown in FIG. 13 of the first embodiment, the data packet 1400 includes a header 1401, a payload 82, and inspection data 83.
 ここで、実施例1の図13に示したパケットデータ80との相違点は、ヘッダ1401に、パケット種類1302が追加されている点である。 Here, the difference from the packet data 80 shown in FIG. 13 of the first embodiment is that a packet type 1302 is added to the header 1401.
 図26は、実施例2に係る送信部の送信処理のフローチャートの例を示す。図26に示す送信処理は、実施例1において図17に示した送信処理に該当する。 FIG. 26 illustrates an example of a flowchart of transmission processing of the transmission unit according to the second embodiment. The transmission process illustrated in FIG. 26 corresponds to the transmission process illustrated in FIG. 17 in the first embodiment.
 送信部は、送信データ管理情報222(322)から送信すべきデータを取得する(S701)。次に、送信部は、アドレス用パケット1300を生成する(S702)。次に、送信部は、その生成したアドレス用パケット1300を無線で送信する(S703)。次に、送信部は、所定の時間待機する(S704)。次に、送信部は、データ用パケット1400を生成する(S705)。次に,送信部は、その生成したデータ用パケット1400を無線で送信する(S706)。最後に、送信部は、その送信したデータの優先度に対応する受信フラグを「FALSE」に変更し(S707)、当該処理を終了する。 The transmission unit acquires data to be transmitted from the transmission data management information 222 (322) (S701). Next, the transmission unit generates an address packet 1300 (S702). Next, the transmission unit wirelessly transmits the generated address packet 1300 (S703). Next, the transmission unit waits for a predetermined time (S704). Next, the transmission unit generates a data packet 1400 (S705). Next, the transmission unit wirelessly transmits the generated data packet 1400 (S706). Finally, the transmission unit changes the reception flag corresponding to the priority of the transmitted data to “FALSE” (S707), and ends the process.
 つまり、実施例2に係る送信部は、実施例1と比較して、まず、アドレス用パケット1300を送信した後に、実施例1のパケットデータ80に該当するデータ用パケット1400を送信する。 That is, the transmission unit according to the second embodiment first transmits an address packet 1300 and then transmits a data packet 1400 corresponding to the packet data 80 of the first embodiment, as compared with the first embodiment.
 図27は、実施例2に係る受信部の受信処理のフローチャートの例を示す。図27に示す受信処理は、実施例1において図18に示した受信処理に該当する。 FIG. 27 illustrates an example of a flowchart of the reception process of the reception unit according to the second embodiment. The reception process illustrated in FIG. 27 corresponds to the reception process illustrated in FIG. 18 in the first embodiment.
 受信部は、アドレス用パケット1300を受信すると、そのアドレス用パケット1300を解析し(S801)、転送先アドレス91が自ノード宛であるか否かを判定する(S802)。 When receiving the address packet 1300, the receiving unit analyzes the address packet 1300 (S801), and determines whether or not the transfer destination address 91 is addressed to the own node (S802).
 転送先アドレス91が自ノード宛でない場合(S802:NO)、受信部は、所定時間待機後(S805)、図14に示すステップS111に進む。 If the forwarding address 91 is not addressed to the own node (S802: NO), the receiving unit waits for a predetermined time (S805), and then proceeds to step S111 shown in FIG.
 転送先アドレス91が自ノード宛である場合(S802:YES)、受信部は、所定時間待機後(S803)、データ用パケットを受信し(S804)、図18のステップS502に進む。 When the forwarding address 91 is addressed to the own node (S802: YES), the receiving unit waits for a predetermined time (S803), receives the data packet (S804), and proceeds to step S502 in FIG.
 これにより、ランクが2つ以上離れているノードに電波が到達してしまう場合であっても、実施例1に示したように、優先度の高いデータを、より短時間(少ないタイムスロット数)で、送信先ノードに到達させることができる。 As a result, even when the radio wave reaches a node whose rank is two or more, as shown in the first embodiment, data with high priority is reduced in a shorter time (small number of time slots). Thus, the destination node can be reached.
 上述した本発明の実施例は、本発明の説明のための例示であり、本発明の範囲をそれらの実施例にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。 The embodiments of the present invention described above are examples for explaining the present invention, and are not intended to limit the scope of the present invention only to those embodiments. Those skilled in the art can implement the present invention in various other modes without departing from the gist of the present invention.
 100…無線マルチホップネットワークシステム 101A…ゲートウェイ 102…無線通信装置 100 ... Wireless multi-hop network system 101A ... Gateway 102 ... Wireless communication device

Claims (10)

  1.  ツリー形状の無線マルチホップネットワークを構成する無線通信装置であって、
     他の無線通信装置との間で時間に関するタイミングを同期する同期部と、
     他の無線通信装置に送信すべきデータを、前記データの優先度と対応付けて管理する送信データ管理部と、
     前記送信データ管理部に格納されている所定のデータを、他の無線通信装置に送信する送信部と、
     他の無線通信装置から送信されたデータを受信する受信部と、
     所定のタイミングにおいて、前記データの優先度に対応付けられている無線通信チャンネルに切り換え、当該優先度のデータの送信又は受信を制御する送受信制御部と、
    を有する
    無線通信装置。
     
    A wireless communication device constituting a tree-shaped wireless multi-hop network,
    A synchronization unit that synchronizes timing with respect to other wireless communication devices;
    A transmission data management unit for managing data to be transmitted to another wireless communication device in association with the priority of the data;
    A transmission unit that transmits predetermined data stored in the transmission data management unit to another wireless communication device;
    A receiving unit for receiving data transmitted from another wireless communication device;
    At a predetermined timing, a transmission / reception control unit that switches to a wireless communication channel associated with the priority of the data and controls transmission or reception of the data of the priority,
    A wireless communication device.
  2.  前記送受信制御部は、
     前記所定のタイミングにおいて、或る優先度に対応する無線通信チャンネルに切り換え、所定の待機時間、データの受信を前記受信部に待機させ、
      A)前記待機時間内にデータを受信しなかった場合、前記或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換え、
      B)前記待機時間内にデータの受信を開始した場合、当該受信を開始したデータの受信が完了するまで同じ無線通信チャンネルを維持し、その後、前記或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換える
    請求項1に記載の無線通信装置。
     
    The transmission / reception control unit includes:
    At the predetermined timing, switching to a wireless communication channel corresponding to a certain priority, predetermined reception time, let the reception unit wait to receive data,
    A) If no data is received within the waiting time, switch to a wireless communication channel corresponding to a priority lower than the certain priority,
    B) When reception of data is started within the waiting time, the same wireless communication channel is maintained until reception of the data that has started reception is completed, and thereafter, a priority lower than the certain priority is supported. The wireless communication apparatus according to claim 1, wherein the wireless communication channel is switched to a wireless communication channel.
  3.  前記送受信制御部は、
     前記或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換えた後、所定の待機時間、データの受信を前記受信部に待機させ、前記A)及びB)に係る判定を実行することを、所定の時間であるタイムスロットが終了するまで繰り返す
    請求項2に記載の無線通信装置。
     
    The transmission / reception control unit includes:
    After switching to a wireless communication channel corresponding to a priority lower than the certain priority, the reception unit waits for reception of data for a predetermined standby time, and performs the determination according to A) and B) The wireless communication apparatus according to claim 2, wherein the wireless communication device is repeated until a time slot that is a predetermined time is completed.
  4.  前記送受信制御部は、
      前記送信データ管理部から送信すべきデータを特定し、自己の無線通信装置がデータを送信可能なタイムスロットにおいて、所定のタイミングで前記送信すべきデータの優先度に対応する無線通信チャンネルに切り換えて、当該送信すべきデータを前記送信部に送信させる
    請求項2又は3に記載の無線通信装置。
     
    The transmission / reception control unit includes:
    Specify data to be transmitted from the transmission data management unit, and switch to a wireless communication channel corresponding to the priority of the data to be transmitted at a predetermined timing in a time slot in which the wireless communication apparatus can transmit data. The wireless communication apparatus according to claim 2, wherein the data to be transmitted is transmitted to the transmission unit.
  5.  前記送受信制御部は、
      前記送信すべきデータを送信するタイミングの以前に、前記送信すべきデータの優先度よりも高い優先度のデータを前記待機時間内に受信開始した場合、前記送信すべきデータの送信可能なタイムスロットを、或るタイムスロットの数だけ遅らせる
    請求項4に記載の無線通信装置。
     
    The transmission / reception control unit includes:
    If the reception of data having a higher priority than the priority of the data to be transmitted is started within the waiting time before the timing to transmit the data to be transmitted, the time slot in which the data to be transmitted can be transmitted The wireless communication device according to claim 4, wherein the wireless communication device is delayed by a certain number of time slots.
  6.  送受信するデータには、当該データの送信元のノードの前記ツリー形状における階層を示すランクと、当該データが前記ツリー形状の上り又は下りの何れの方向に送信されるかを示す送信方向と、が含まれており、
     前記送受信制御部は、
      前記受信データに含まれる前記送信方向と、前記受信データに含まれるランクと自己の無線通信装置のランクとの位置関係と、に基づいて、遅らせるタイムスロットの数を決定する
    請求項5に記載の無線通信装置。
     
    The data to be transmitted / received includes a rank indicating the hierarchy in the tree shape of the node that is the transmission source of the data, and a transmission direction indicating whether the data is transmitted in the up or down direction of the tree shape. Included,
    The transmission / reception control unit includes:
    6. The number of time slots to be delayed is determined based on the transmission direction included in the received data, and a positional relationship between a rank included in the received data and a rank of the wireless communication device. Wireless communication device.
  7.  前記送受信制御部は、
     前記受信データに含まれる送信方向が下りであって、且つ、前記受信データに含まれるランクが自己の無線通信装置のランクよりも上位の場合、前記タイムスロットの数を1つ遅らせ、
     前記受信データに含まれる送信方向が上りであって、且つ、前記受信データに含まれるランクが自己の無線通信装置のランクと同位の場合、前記タイムスロットの数を1つ遅らせ、
     前記受信データに含まれる送信方向が上りであって、且つ、前記受信データに含まれるランクが自己の無線通信装置のランクよりも下位の場合、前記タイムスロットの数を2つ遅らせる
    請求項6に記載の無線通信装置。
     
    The transmission / reception control unit includes:
    When the transmission direction included in the received data is downlink and the rank included in the received data is higher than the rank of its own wireless communication device, the number of the time slots is delayed by one,
    When the transmission direction included in the received data is uplink and the rank included in the received data is the same as the rank of its own wireless communication device, the number of time slots is delayed by one,
    The number of the time slots is delayed by two when the transmission direction included in the received data is uplink and the rank included in the received data is lower than the rank of the own wireless communication device. The wireless communication device described.
  8.  前記送受信制御部は、
     前記所定のタイミングにおいて、最低の優先度に対応する無線通信チャンネルに切り換えた場合、当該無線通信チャンネルにおいてキャリアセンスを実行した後、前記最低の優先度に対応するデータを前記送信部に送信させる
    請求項3乃至7の何れかに記載の無線通信装置。
     
    The transmission / reception control unit includes:
    When switching to a wireless communication channel corresponding to the lowest priority at the predetermined timing, after performing carrier sense on the wireless communication channel, the transmission unit transmits data corresponding to the lowest priority. Item 8. The wireless communication device according to any one of Items 3 to 7.
  9.  前記送受信制御部は、
     前記送信すべきデータを送信する場合、当該送信すべきデータの転送先のアドレスを含む先行データを先に送信した後、当該送信すべきデータを送信し、
     データの受信を待機するにあたり、
      前記A)において、前記待機時間内に前記先行データを受信しなかった場合、又は、前記先行データに含まれる前記転送先のアドレスが自己の無線通信装置を示すものでなかった場合、前記或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換え、
      前記B)において、前記待機時間内に前記先行データを受信し、且つ、前記先行データに含まれる前記転送先のアドレスが自己の無線通信装置を示すものであった場合、同じ無線通信チャンネルを維持して、その後に送信される前記送信すべきデータを受信し、その後、前記或る優先度よりも低い優先度に対応する無線通信チャンネルに切り換える
    請求項2に記載の無線通信装置。
     
    The transmission / reception control unit includes:
    When transmitting the data to be transmitted, first transmitting the preceding data including the transfer destination address of the data to be transmitted, then transmitting the data to be transmitted;
    When waiting to receive data,
    In A), when the preceding data is not received within the waiting time, or when the transfer destination address included in the preceding data does not indicate its own wireless communication device, Switch to a wireless communication channel that supports a priority lower than the priority,
    In B), if the preceding data is received within the waiting time and the transfer destination address included in the preceding data indicates the own wireless communication device, the same wireless communication channel is maintained. The wireless communication apparatus according to claim 2, wherein the data to be transmitted thereafter is received and then switched to a wireless communication channel corresponding to a priority lower than the certain priority.
  10.  複数の無線通信装置によって構成されるツリー形状の無線マルチホップネットワークシステムであって、前記複数の無線通信装置の各々が、
     他の無線通信装置との間で時間に関するタイミングを同期する時間同期部と、
     他の無線通信装置に送信すべきデータを、前記データの優先度と対応付けて管理する送信データ管理部と、
     前記送信データ管理部に格納されている所定のデータを、他の無線通信装置に送信する送信部と、
     他の無線通信装置から送信されたデータを受信する受信部と、
     所定のタイミングにおいて、前記データの優先度に対応付けられている無線通信チャンネルに切り換え、当該優先度のデータの送信又は受信を制御する送受信制御部と、
    を有する
    無線マルチホップネットワークシステム。
     

     
    A tree-shaped wireless multi-hop network system configured by a plurality of wireless communication devices, each of the plurality of wireless communication devices,
    A time synchronization unit that synchronizes timing related to time with other wireless communication devices;
    A transmission data management unit for managing data to be transmitted to another wireless communication device in association with the priority of the data;
    A transmission unit that transmits predetermined data stored in the transmission data management unit to another wireless communication device;
    A receiving unit for receiving data transmitted from another wireless communication device;
    At a predetermined timing, a transmission / reception control unit that switches to a wireless communication channel associated with the priority of the data and controls transmission or reception of the data of the priority,
    A wireless multi-hop network system.


PCT/JP2013/057238 2013-03-14 2013-03-14 Radio communication device and wireless multihop network system WO2014141439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057238 WO2014141439A1 (en) 2013-03-14 2013-03-14 Radio communication device and wireless multihop network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057238 WO2014141439A1 (en) 2013-03-14 2013-03-14 Radio communication device and wireless multihop network system

Publications (1)

Publication Number Publication Date
WO2014141439A1 true WO2014141439A1 (en) 2014-09-18

Family

ID=51536134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057238 WO2014141439A1 (en) 2013-03-14 2013-03-14 Radio communication device and wireless multihop network system

Country Status (1)

Country Link
WO (1) WO2014141439A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188639A (en) * 2020-09-07 2021-01-05 珠海格力电器股份有限公司 Communication method, device, equipment and computer readable medium based on WiFi Mesh network
CN112585913A (en) * 2018-08-23 2021-03-30 三菱电机株式会社 Communication device, communication method, and communication program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253017A (en) * 1999-03-02 2000-09-14 Nippon Telegr & Teleph Corp <Ntt> Radio packet control station
JP2005086216A (en) * 2003-09-04 2005-03-31 Ntt Docomo Inc Packet priority control apparatus and method therefor
JP2012085079A (en) * 2010-10-12 2012-04-26 Hitachi Ltd Radio network system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253017A (en) * 1999-03-02 2000-09-14 Nippon Telegr & Teleph Corp <Ntt> Radio packet control station
JP2005086216A (en) * 2003-09-04 2005-03-31 Ntt Docomo Inc Packet priority control apparatus and method therefor
JP2012085079A (en) * 2010-10-12 2012-04-26 Hitachi Ltd Radio network system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585913A (en) * 2018-08-23 2021-03-30 三菱电机株式会社 Communication device, communication method, and communication program
CN112188639A (en) * 2020-09-07 2021-01-05 珠海格力电器股份有限公司 Communication method, device, equipment and computer readable medium based on WiFi Mesh network
CN112188639B (en) * 2020-09-07 2022-08-19 珠海格力电器股份有限公司 Communication method based on WiFi Mesh network and related equipment

Similar Documents

Publication Publication Date Title
JP5598228B2 (en) Wireless terminal, accommodation terminal determination program, wireless network, and network configuration device
JP4820464B2 (en) Node device, storage medium, and frame transmission method
KR100652963B1 (en) Method for data transmission path establishment in sensor network
EP2677835B1 (en) Wi-fi mesh fire detection system
US9357471B2 (en) Node apparatus and alternative path search method
JP2008228177A (en) Radio device
WO2015158562A1 (en) Method and apparatus for reducing the length of a packet storm in a wireless mesh network
US10075366B2 (en) Communication device, communication system, communication control method, and communication control program
JP2009302694A (en) Radio communication network system
JP5705030B2 (en) Communications system
JP2013070176A (en) Communication device, communication program, node device, and network
KR20130128150A (en) Bundle data relaying method for swarming uavs
WO2014141439A1 (en) Radio communication device and wireless multihop network system
JP2008228178A (en) Radio device
JP2008228180A (en) Radio device
JP6399099B2 (en) Radio relay station, radio base station, communication system, and communication method
JP5853227B2 (en) Multi-hop communication method, multi-hop communication system, and communication terminal
JP2010233072A (en) Radio network system
JP5337980B2 (en) Frequency division multiplexing wireless network system
JP5868506B2 (en) Time synchronization method in wireless network system
JP2018182603A (en) Wireless communication system
JP2012085079A (en) Radio network system
JP6003158B2 (en) Communication device, route construction method, and route construction program
KR102294197B1 (en) Auto-Configuration Method of IoT Control Network and System Thereof
JP2008228176A (en) Radio device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP