JP2009302694A - Radio communication network system - Google Patents

Radio communication network system Download PDF

Info

Publication number
JP2009302694A
JP2009302694A JP2008152376A JP2008152376A JP2009302694A JP 2009302694 A JP2009302694 A JP 2009302694A JP 2008152376 A JP2008152376 A JP 2008152376A JP 2008152376 A JP2008152376 A JP 2008152376A JP 2009302694 A JP2009302694 A JP 2009302694A
Authority
JP
Japan
Prior art keywords
wireless
radio
master station
node
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152376A
Other languages
Japanese (ja)
Inventor
Yuji Ichinose
祐治 一ノ瀬
Setsuo Arita
節男 有田
Shinji Murata
新治 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008152376A priority Critical patent/JP2009302694A/en
Publication of JP2009302694A publication Critical patent/JP2009302694A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio communication network system and a radio communication device, which can perform communications by simple route control in the radio network in which radio nodes perform radio relay in a tree shape between a radio gateway with an upper network and radio terminals of the end. <P>SOLUTION: The radio node consists of a radio master station 9 and radio auxiliary stations 8, the radio master station 9 prepares a means to detect and report route information such as a number of connected radio auxiliary stations, a circuit usage ratio, a round trip time, a number of relay etc., and the radio auxiliary stations 8 of other radio nodes collect the route information reported from a plurality of radio master stations, and decides the connecting radio master station 9. Even after the connecting radio master station 9 is decided, the route information is periodically collected, and the radio master station 9 to which the radio auxiliary station 8 is to be connected is automatically changed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、無線親局と子局を有する無線ノードが複数存在する無線通信ネットワークシステム及び無線通信装置に係わり、特に無線ノード間で通信経路制御を行う無線通信ネットワークシステムに関する。   The present invention relates to a wireless communication network system and a wireless communication apparatus in which a plurality of wireless nodes each having a wireless master station and a slave station exist, and more particularly to a wireless communication network system that performs communication path control between wireless nodes.

IEEE802.11規格で定められた無線LANでは、上位ネットワークと有線で接続された無線通信親局と、複数の通信子局との間で同一の通信チャンネルを用いて通信する。このため、広い通信エリアを確保するためには、複数の無線通信親局を配置するための有線ネットワークが必要である。   In a wireless LAN defined by the IEEE 802.11 standard, communication is performed using a single communication channel between a wireless communication master station connected to an upper network by wire and a plurality of communication slave stations. For this reason, in order to secure a wide communication area, a wired network for arranging a plurality of wireless communication master stations is necessary.

複数の無線ノードが情報を中継し、有線ネットワークを用いないで通信エリアを拡大できるマルチホップ又はメッシュネットワークが注目されている。これらのネットワークにおいては、無線経路制御が重要であり、いろいろな方式が提案されている。   A multi-hop or mesh network in which a plurality of wireless nodes relay information and can expand a communication area without using a wired network has attracted attention. In these networks, radio path control is important, and various systems have been proposed.

マルチホップネットワークは、〔特許文献1〕に記載のように、各無線ノードが自律的に経路制御する自律分散方式と、ネットワーク管理装置が経路を集中制御する方式に大別され、両方式を組合せた方式も検討されている。   As described in [Patent Document 1], multi-hop networks are broadly divided into autonomous distributed systems in which each wireless node autonomously controls routes and systems in which network management devices centrally control routes, and both systems are combined. Other methods are also being considered.

自律分散方式では、送信局は、全ノードが受信可能なブロードキャストモードにて受信局までの経路を探索するパケットを送信し、受信局に届いた探索パケットを送信局へ返信することで経路を確定させる方式がある。また、複数経路が存在する場合に全経路に対してパケット応答時間RTT(ラウンドトリップタイム)を計測して、経路を決定する方式もある。   In the autonomous decentralized method, the transmitting station transmits a packet for searching for a route to the receiving station in a broadcast mode that can be received by all nodes, and determines the route by returning the search packet that has reached the receiving station to the transmitting station. There is a method to make it. There is also a method of determining a route by measuring a packet response time RTT (round trip time) for all routes when there are a plurality of routes.

一方、ネットワーク管理装置が経路を集中制御する方式では、ネットワーク管理装置がルーティングテーブルを作成し、各無線ノードにテーブルを送信することで、送信局は隣接する無線ノードに送信すれば、ルーティングテーブルに従い次の無線ノードに中継し、最終的には受信局にパケットを中継することが出来るようになっている。   On the other hand, in the method in which the network management device centrally controls the route, the network management device creates a routing table and transmits the table to each wireless node. The packet can be relayed to the next wireless node, and finally the packet can be relayed to the receiving station.

特開2007−36361号公報JP 2007-36361 A

上述した従来技術の自律分散方式は、経路探索までの通信手順が複雑で有り、集中管理方式は、通信状態の変化に伴ってルーティングテーブルを各無線ノードに送信する必要が有るため、経路制御のための通信量が増えてスループットが低下する問題がある。   The conventional autonomous distributed method described above has a complicated communication procedure until route search, and the centralized management method needs to transmit a routing table to each wireless node as the communication state changes. Therefore, there is a problem that the amount of communication increases and throughput decreases.

本発明の目的は、上位ネットワークとの無線ゲートウェイと末端の無線端末との間で、無線ノードがツリー状に無線中継される無線ネットワークにおいて、簡便な経路制御で通信を行える無線通信ネットワークシステム及び無線通信装置を提供することにある。   An object of the present invention is to provide a wireless communication network system and a wireless communication system capable of performing communication by simple route control in a wireless network in which wireless nodes are wirelessly relayed in a tree form between a wireless gateway with a higher-level network and a terminal wireless terminal. It is to provide a communication device.

上記目的を達成するために、本発明の無線通信ネットワークシステムは、上位ネットワークに接続される無線ゲートウェイと、パケットを中継する無線ノードと、機器の情報を送受信する無線端末を備え、無線ノードは有線で接続された無線親局と無線子局で構成され、互いの情報は有線通信にて送受信するようにしたものである。無線ノード内の無線親局と他の無線ノード内の無線子局とが、無線にて通信し、無線ノード内では有線にて中継することにより、無線ノード間通信は無線親局と無線子局との通信形態であり、無線LANで広く使われているインフラストラクチャーモードでの通信である。   In order to achieve the above object, a wireless communication network system of the present invention includes a wireless gateway connected to an upper network, a wireless node that relays packets, and a wireless terminal that transmits and receives device information, and the wireless node is wired. The wireless master station and the wireless slave station are connected to each other, and the mutual information is transmitted and received by wired communication. A wireless master station in a wireless node and a wireless slave station in another wireless node communicate with each other wirelessly and relay in a wired manner within the wireless node, so that communication between wireless nodes is performed between the wireless master station and the wireless slave station. Communication in the infrastructure mode widely used in wireless LAN.

無線ノード内の無線親局では、無線ゲートウェイからの中継数を検知し、それを報知する手段を設けているため、無線ノードの無線子局が経路探索時には、上記親局の中継数を受信することによって、無線ゲートウェイまでの中継数が少ない無線ノード(親局)を選択することが出来る。   Since the radio master station in the radio node is provided with means for detecting the number of relays from the radio gateway and notifying it, the radio slave station of the radio node receives the number of relays of the master station when searching for a route. Thus, it is possible to select a wireless node (master station) with a small number of relays to the wireless gateway.

無線ノード内の無線親局では、通信している無線子局数、無線通信チャンネルの回線使用率を計測、報知する手段を設けているため、無線ノードの無線子局が経路探索時には上記無線親局の無線子局数、無線通信チャンネルの回線使用率を受信することによって、一番送信待ち時間の少ない無線ノード(親局)を選択することが出来る。   The wireless master station in the wireless node is provided with means for measuring and reporting the number of wireless slave stations that are communicating and the channel usage rate of the wireless communication channel. By receiving the number of wireless slave stations of the station and the line usage rate of the wireless communication channel, it is possible to select the wireless node (master station) with the shortest transmission waiting time.

無線ノード内の無線親局では、無線ゲートウェイ、又は上位の通信管理装置との間でのパケット到達時間であるラウンドトリップタイム(RTT)を計測、報知する手段を設けているため、無線ノードの無線子局が経路探索時には上記親局のRTTを受信することによって、無線ゲートウェイまでのパケット到達時間が短い無線ノード(親局)を選択することが出来る。   The radio master station in the radio node is provided with means for measuring and notifying the round trip time (RTT) that is the packet arrival time with the radio gateway or the upper communication management device. By receiving the RTT of the parent station when the slave station searches for a route, a wireless node (parent station) having a short packet arrival time to the wireless gateway can be selected.

無線ノード内の子局では、接続する無線ノードの無線親局を選択した後、選択した無線親局の中継数,無線子局接続数,回線使用率、及びRTTを受信すると共に、他の無線ノードの無線親局に上記情報を収集する手段を設けているため、適切な無線ノードを決定することが出来る。   In the slave station in the radio node, after selecting the radio master station of the radio node to be connected, the number of relays of the selected radio master station, the number of radio slave station connections, the line usage rate, and the RTT are received and other radio Since the means for collecting the information is provided in the wireless master station of the node, an appropriate wireless node can be determined.

本発明によれば、無線ノードが親局と子局で構成され、親局が経路選択する上で有意な情報である中継数,回線使用率,RTTを計測し報知するため、他の無線ノード子局はそれらの情報から容易に接続する無線ノード親局を選択することができる。   According to the present invention, a wireless node is composed of a master station and a slave station, and the number of relays, line usage rate, and RTT, which are significant information when the master station selects a route, is measured and notified, so The slave station can easily select the wireless node master station to be connected from the information.

本発明の一実施例を図1から図6を用いて説明する。図1は、本実施例の無線通信ネットワークの構成図であり、図1には無線親局から報知する経路選択に用いる情報も示している。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a wireless communication network according to the present embodiment. FIG. 1 also shows information used for route selection notified from a wireless master station.

図1に示すように、制御装置1は、無線通信ネットワークを介して無線端末4に接続されたセンサ等の機器5との間で通信し、例えばプラントの監視制御を行う。制御装置1は、有線ネットワーク6を介して無線ゲートウェイ2(以下、無線GW2という)に接続され、無線GW2によりパケットデータを無線情報に変換して通信する。   As shown in FIG. 1, the control device 1 communicates with a device 5 such as a sensor connected to a wireless terminal 4 via a wireless communication network, and performs, for example, plant monitoring control. The control device 1 is connected to a wireless gateway 2 (hereinafter referred to as a wireless GW 2) via a wired network 6 and converts packet data into wireless information by the wireless GW 2 for communication.

無線ノード3は、無線親局9と無線子局8で構成され、お互いは有線7により接続されて通信が可能となっている。無線ノード3は、他の無線ノード3又は無線端末4との間で無線中継する。   The wireless node 3 includes a wireless master station 9 and a wireless slave station 8, and is connected to each other via a wire 7 so that communication is possible. The wireless node 3 relays wirelessly with other wireless nodes 3 or wireless terminals 4.

無線GW2は無線親局となり、無線ノード3b,3c,3dの無線子局8と通信し、無線親局9は、同一の無線ノード3b,3c,3dの無線親局9に無線GW2からのパケットを転送し、無線ノード3bの無線親局9は、無線ノード3a,3gの無線子局8と通信するツリー上のネットワーク構成である。   The wireless GW 2 becomes a wireless master station and communicates with the wireless slave stations 8 of the wireless nodes 3 b, 3 c, 3 d, and the wireless master station 9 sends packets from the wireless GW 2 to the same wireless master station 9 of the wireless nodes 3 b, 3 c, 3 d. The wireless master station 9 of the wireless node 3b has a network configuration on a tree that communicates with the wireless slave stations 8 of the wireless nodes 3a and 3g.

このように、無線ノードが親局と子局からなり、無線ノード間も親局と子局間の通信となるため、子局と親局を組合わせることにより、マルチホップネットワークを構成することが出来る。なお、最終段の無線端末4には無線子局8はあるが、無線親局9は設けられていない。   In this way, the wireless node is composed of a master station and a slave station, and communication between the master station and the slave station is also performed between the wireless nodes. Therefore, a multi-hop network can be configured by combining the slave station and the master station. I can do it. The final stage wireless terminal 4 has a wireless slave station 8 but no wireless master station 9.

図1では、親局1台,子局1台で無線ノードを構成しているが、親局,子局のいずれか一方を複数台にするか、親局,子局の両方を複数台にして無線ノードを構成してもよい。   In FIG. 1, a wireless node is composed of one master station and one slave station. However, either one of the master station or slave station is used as a plurality, or both the master station and slave stations are used as a plurality. A wireless node may be configured.

図1に示す無線GW2と無線端末4cとの間で通信する場合には、無線ノード3d,3e,3lにてパケットを無線中継する。有線GW2を起点とすると、無線ノード3dは中継数1、無線ノード3eは中継数2、無線ノード3lは中継数3の位置にある。   When communication is performed between the wireless GW 2 and the wireless terminal 4c illustrated in FIG. 1, the wireless nodes 3d, 3e, and 3l wirelessly relay packets. Starting from the wired GW 2, the wireless node 3 d is at the relay number 1, the wireless node 3 e is at the relay number 2, and the wireless node 3 l is at the relay number 3 position.

図1に示す無線親局9から定期的に送信するビーコン情報として、中継数を格納して送信することにより、ビーコン情報を受信した無線ノード内の子局は無線GW2からの中継数が判別できるために、容易に中継すべき親局の選択が可能となる。   By storing and transmitting the number of relays as beacon information periodically transmitted from the wireless master station 9 shown in FIG. 1, the slave station in the wireless node that has received the beacon information can determine the number of relays from the wireless GW 2 Therefore, it becomes possible to easily select a master station to be relayed.

無線親局9から報知する、無線GWあるいは上位の通信管理装置との間でのパケット到達時間であるラウンドトリップタイム(RTT)は、無線親局9から無線GW2又は上位の制御装置1へパケット送信され、再び無線親局9に返信されるまでの応答時間である。   The round trip time (RTT), which is a packet arrival time with the wireless GW or the higher-level communication management device, notified from the wireless master station 9, is transmitted as a packet from the wireless master station 9 to the wireless GW 2 or the higher-level control device 1. It is the response time until it is sent back to the wireless master station 9 again.

無線親局9から無線GW2へ送信するRTT計測用のパケットは、有線で接続された同一の無線ノード内にある無線子局8に転送され、無線子局8から中継する無線ノード3へ無線通信する。その後は、通常のパケット通信と同じく無線ノード3にて中継され無線GW2に到着する。無線GW2では、RTT計測用のパケットを受信すると、パケットの送信アドレスと受信アドレスを交換して送信元の無線ノードの無線親局9に返信する。   A packet for RTT measurement transmitted from the wireless master station 9 to the wireless GW 2 is transferred to the wireless slave station 8 in the same wireless node connected by wire, and wirelessly communicated from the wireless slave station 8 to the wireless node 3 that relays it. To do. After that, it is relayed by the wireless node 3 and arrives at the wireless GW 2 as in the normal packet communication. When the wireless GW 2 receives a packet for RTT measurement, the wireless GW 2 exchanges the transmission address and the reception address of the packet and returns the packet to the wireless master station 9 of the transmission source wireless node.

RTT計測用のパケットの送信元親局では、送信時刻と返信されてきたRTT計測用のパケットの受信時刻との差からRTTを計測することができる。このように、RTTは、無線ノードから無線GWまでのパケット応答時間であり、中継経路の通信状態を把握するには優位な情報である。   The RTT measuring packet transmission source master station can measure the RTT from the difference between the transmission time and the received RTT measuring packet reception time. As described above, the RTT is a packet response time from the wireless node to the wireless GW, and is advantageous information for grasping the communication state of the relay route.

中継数には、時間的要素が入らないが、RTTは、時間的要素が入る計測値で、電波状況や他の無線ノード間での通信量により時間的に変動する量であり、このRTTの情報から、通信状況に即した経路制御が可能となる。   The number of relays does not include a time element, but the RTT is a measurement value that includes a time element, and is an amount that varies with time due to radio wave conditions and the amount of communication between other wireless nodes. It is possible to control the route according to the communication status from the information.

なお、親局からRTT計測用のパケットを送信する例を説明したが、無線GW2からRTT計測用のパケットを送信し、無線GW2で計測したRTTを、該当する無線ノードにRTT情報を通知することで実現することも出来る。又、無線通信ネットワーク全体で時刻同期が取られていれば、送信時刻と受信時刻との差からRTTを計測することが可能である。   The example in which the RTT measurement packet is transmitted from the master station has been described. However, the RTT measurement packet is transmitted from the wireless GW 2, and the RTT measured by the wireless GW 2 is notified to the corresponding wireless node of the RTT information. Can also be realized. If time synchronization is established throughout the wireless communication network, the RTT can be measured from the difference between the transmission time and the reception time.

図1に示すように、無線ノード親局から報知する情報として、子局接続数と回線使用率がある。RTTが、無線ノードから先の通信状態を把握する情報であるのに対して、子局接続数と回線使用率は、無線ノード親局とそれと通信する他無線ノード子局との通信状態を示す情報である。   As shown in FIG. 1, the information notified from the wireless node master station includes the number of slave station connections and the line usage rate. The RTT is information for grasping the communication state from the wireless node, whereas the number of connected slave stations and the line usage rate indicate the communication state between the wireless node master station and other wireless node slave stations communicating with it. Information.

回線使用率とは、親局で送受信する通信時間と、同一の通信チャンネル(以下、通信CHという)を利用する他の無線ノードより、或いは電波ノイズにより通信不可となる時間の和であり、この時間の和が小さい程、送信待ち時間が少なくてパケットを送信できる。   The line usage rate is the sum of the communication time transmitted / received by the master station and the time during which communication cannot be performed from other wireless nodes using the same communication channel (hereinafter referred to as communication CH) or due to radio noise. The smaller the sum of times, the less the transmission waiting time and the more packets can be transmitted.

従って、RTTと回線使用率の両方で評価することにより、より正確な経路選択が可能となる。子局接続数と回線使用率は比例することが多いが、1つの子局から多量のパケットが送信される場合もあるため、回線使用率を計測,報知する効果がある。   Therefore, more accurate route selection can be performed by evaluating both the RTT and the line usage rate. The number of slave stations connected and the line usage rate are often proportional, but since a large number of packets may be transmitted from one slave station, there is an effect of measuring and broadcasting the line usage rate.

無線通信のCH数は限られており、複数の無線親局9で同一の無線通信CHを使用する場合も多く、このような場合は、相互に干渉して通信性能が低下する。そのため、無線通信では、キャリアセンスして、送信している無線局がないことを確認した後に送信するCSMA方式のアクセス方式が採用される例が多い。このキャリアセンス機能により、他の無線ノードや電波ノイズにより通信できない時間を計測することは容易である。   The number of CHs for radio communication is limited, and there are many cases where the same radio communication CH is used by a plurality of radio master stations 9. In such a case, communication performance deteriorates due to mutual interference. Therefore, in wireless communication, there are many examples in which a CSMA access method is used in which carrier sense is performed and transmission is performed after confirming that no wireless station is transmitting. With this carrier sense function, it is easy to measure the time during which communication is not possible due to other wireless nodes or radio noise.

図2から図6を用いて本実施例を実現するための具体的な各部の動作について説明する。図2は、無線ノードを構成する無線親局9の構成図であり、図3は無線ノードを構成する無線子局8の構成図である。   A specific operation of each part for realizing the present embodiment will be described with reference to FIGS. FIG. 2 is a configuration diagram of the wireless master station 9 configuring the wireless node, and FIG. 3 is a configuration diagram of the wireless slave station 8 configuring the wireless node.

無線ノード3に設けられる無線親局9と無線子局8は、それぞれの外部インターフェース19により有線7にて接続されており、無線親局9で無線受信されたパケットは、有線7を介して無線子局8に転送されて無線子局8から無線にてパケットを送信して中継している。   The wireless master station 9 and the wireless slave station 8 provided in the wireless node 3 are connected to each other by a wired 7 by the external interface 19, and a packet wirelessly received by the wireless master station 9 is wirelessly transmitted via the wired 7. The packet is transferred to the slave station 8 and transmitted wirelessly from the wireless slave station 8 to be relayed.

図2に示すように、無線親局9のアンテナ14を介して無線信号が送受信され、送信時には無線送信部17からスイッチ15を介して送信され、受信時にはスイッチ15から無線受信部16にて受信される。   As shown in FIG. 2, a radio signal is transmitted / received via the antenna 14 of the radio master station 9, transmitted from the radio transmitter 17 through the switch 15 at the time of transmission, and received from the switch 15 by the radio receiver 16 at the time of reception. Is done.

無線受信部16にて受信処理された無線信号は、デジタルデータに変換されて、主制御部18においてパケットとして組立てられる。主制御部18に接続された受信電力計測部21では、受信されたパケットの送信元であるパケット毎に受信電力を計測して記録する。   The radio signal received and processed by the radio receiving unit 16 is converted into digital data and assembled as a packet by the main control unit 18. The received power measuring unit 21 connected to the main control unit 18 measures and records the received power for each packet that is a transmission source of the received packet.

主制御部18に接続された回線使用率計測部22は、単位時間当たりに送信或いは受信される時間と、同一の通信CHを利用する他の無線機器の通信によって使用できない時間の合計時間を計測する。この回線使用率は、無線親局9が通信するCHにおいて、通信に利用している割合を示しており、本親局と新たに接続を検討する他無線ノード子局にとっては、その可否を判断する情報となる。すなわち、回線使用率が低いほど、新規子局に割当てられる通信時間の確保が容易であるため、子局の送信待ち時間が短くなる。   The line usage rate measuring unit 22 connected to the main control unit 18 measures the total time of the time transmitted or received per unit time and the time that cannot be used by communication of other wireless devices using the same communication CH. To do. This line usage rate indicates the ratio of communication used in the CH communicated by the wireless master station 9, and for other wireless node slave stations newly considering connection with this master station, it is determined whether or not it is possible. Information. In other words, the lower the line usage rate, the easier it is to secure the communication time allocated to the new slave station, so the transmission waiting time of the slave station is shortened.

無線親局9の主制御部18においては、無線で送受信されるパケットを解読,生成するため、何台の子局と無線接続しているかを計測して記録できる。親局では中継数を、無線子局8で検出した他無線ノード親局の中継数に関する情報を、有線7により無線親局9に転送することで、検出できる。例えば、無線子局8から転送された中継数が1であれば、無線親局9でさらに中継するため中継数は1を加算した2となる。   Since the main control unit 18 of the wireless master station 9 decodes and generates packets transmitted and received wirelessly, it can measure and record how many slave stations are wirelessly connected. The master station can detect the number of relays by transferring information related to the number of relays of another radio node master station detected by the radio slave station 8 to the radio master station 9 via the wire 7. For example, if the number of relays transferred from the wireless slave station 8 is 1, the number of relays is 2 plus 1 because the wireless master station 9 further relays.

以上説明した子局接続数,回線使用率,RTT,中継数等の情報は、無線親局9が定期的に送信するビーコン情報として送信することにより、この情報を受信した他無線ノード子局は、接続するのに適した親局を選択することができる。   The information such as the number of connected slave stations, the line usage rate, the RTT, and the number of relays described above is transmitted as beacon information periodically transmitted by the wireless master station 9, so that other wireless node slave stations that have received this information A master station suitable for connection can be selected.

図4は、ビーコン情報の構成図であり、無線LAN規格のビーコン情報と本実施例のビーコン情報を比較して示している。従来の無線LAN規格のビーコン情報では、親局(無線LANのアクセスポイント)の識別情報,暗号化及び速度等の利用可能な通信パラメータはあるが、本実施例のように、無線マルチホップネットワークで経路制御に利用できる中継数,回線使用率等の情報は含まれてはいない。図4(b)に示す本実施例のビーコン情報では、従来のビーコン情報の他に、子局接続数10,回線使用率11,RTT12,中継数13の各情報をビーコン情報としている。   FIG. 4 is a configuration diagram of the beacon information, and shows a comparison between the beacon information of the wireless LAN standard and the beacon information of the present embodiment. In the conventional wireless LAN standard beacon information, there are communication parameters that can be used such as identification information, encryption and speed of a master station (wireless LAN access point). It does not include information such as the number of relays that can be used for route control and the line usage rate. In the beacon information of the present embodiment shown in FIG. 4B, in addition to the conventional beacon information, information on the number of connected slave stations 10, the line usage rate 11, the RTT 12, and the number 13 of relays are used as beacon information.

上述したように、ビーコン情報は親局から定期的に送信されるものであり、その周期は無線LANでは100ms程度である。このため、親局を探索中の子局においては、ビーコン情報が送信されるまで、待つ必要がある。通信可能な親局が1台の場合には、この待ち時間は長くはならないが、複数台の場合には待ち時間が長くなるため、子局からのビーコン送信要求に対して、親局からビーコン情報を不定期に送信するモードを設けることにより、経路制御のための情報収集時間を短くすることができる。   As described above, the beacon information is periodically transmitted from the master station, and the cycle is about 100 ms in the wireless LAN. For this reason, it is necessary for the slave station searching for the master station to wait until the beacon information is transmitted. This waiting time does not become long when there is one communicable master station, but the waiting time becomes long when there are multiple master stations, so in response to a beacon transmission request from a slave station, By providing a mode in which information is transmitted irregularly, it is possible to shorten the information collection time for route control.

無線子局8は、図3に示すように、アンテナ14に接続されるスイッチ15,スイッチ15に接続される無線受信部16,無線送信部17,無線受信部16及び無線送信部17に接続される主制御部18,主制御部18に接続される回線使用率計測部22,受信電力計測部21,無線ノード親局選択部26,ビーコン情報収集部27,主制御部18に接続される外部インターフェース19で構成される。   As shown in FIG. 3, the wireless slave station 8 is connected to a switch 15 connected to the antenna 14, a wireless reception unit 16 connected to the switch 15, a wireless transmission unit 17, a wireless reception unit 16, and a wireless transmission unit 17. Main control unit 18, line usage rate measurement unit 22 connected to main control unit 18, received power measurement unit 21, radio node master station selection unit 26, beacon information collection unit 27, external connected to main control unit 18 The interface 19 is configured.

ビーコン情報収集部27は、親局から定期的に送信されるビーコン情報を収集するものであり、通常通信している他無線ノード親局以外の無線ノード親局のビーコン情報も収集する。ここで、ビーコン情報とは、本実施例の子局接続数10,回線使用率11,RTT12,中継数13の各情報を含む情報である。無線ノード親局選択部26では、ビーコン情報収集部27で収集した各親局の情報から親局を選択する。   The beacon information collection unit 27 collects beacon information periodically transmitted from the master station, and also collects beacon information of radio node master stations other than the other radio node master station that is normally communicating. Here, the beacon information is information including information on the number of connected slave stations 10, the line usage rate 11, the RTT 12, and the number of relays 13 in this embodiment. The radio node master station selection unit 26 selects a master station from the information of each master station collected by the beacon information collection unit 27.

図5,図6を用いて子局での経路選択手順を説明する。図5は、無線子局8の経路選択フローチャートである。図5に示す例では、無線通信のためのCHは、CH1〜CH4の4つとして説明する。ステップ30で、通信CHをCH1に設定して、ステップ32で、CH1を使用している他無線ノード親局からのビーコン情報を収集する。ステップ33で、CH1からCH2に変更して、同じくビーコン情報を収集し、これらの収集をCH4まで繰り返して図6に示すビーコン情報一覧表を作成する。   The route selection procedure at the slave station will be described with reference to FIGS. FIG. 5 is a route selection flowchart of the wireless slave station 8. In the example shown in FIG. 5, description will be made assuming that the CHs for wireless communication are four CH1 to CH4. In step 30, the communication CH is set to CH1, and in step 32, beacon information from other radio node master stations using CH1 is collected. In step 33, the beacon information is similarly changed from CH1 to CH2, and these collections are repeated up to CH4 to create a beacon information list shown in FIG.

図6に示す例では、CH1,CH2及びCH4に親局が存在しており、従来の無線装置では受信強度が高いほど通信が安定するため、受信強度順に優先度を付けていた。本実施例では、子局接続数10,回線使用率11,RTT12,中継数13の情報を取得し、受信強度に加えてこれらの情報から親局を選択する。中継数は少ない程、回線使用率は低い程、RTTは短い程、中継すべき親局として適している。   In the example shown in FIG. 6, there are master stations in CH1, CH2, and CH4, and in the conventional wireless device, the higher the reception strength, the more stable the communication is, so the priorities are given in order of reception strength. In this embodiment, information on the number of slave station connections 10, line usage rate 11, RTT 12, and number of relays 13 is acquired, and the master station is selected from these information in addition to the received intensity. The smaller the number of relays, the lower the line usage rate, and the shorter the RTT, the more suitable as a master station to relay.

何故なら、受信強度が高くても中継数が多ければ、パケットが無線GWに到着するまでの時間が長くなるのは明らかである。このようにして、他無線ノード親局に優先順を付与し、高い順から親局に対して接続要求を送信し、親局の許可があればその親局と接続することを決定する。不許可の場合には、次の優先度の親局に対して接続要求を実施し、経路選択を実現する。   This is because it takes a long time for a packet to arrive at the wireless GW if the number of relays is large even if the reception strength is high. In this way, priority is given to the other radio node master station, a connection request is transmitted to the master station from the highest order, and if there is permission from the master station, it is determined to connect to the master station. In the case of disapproval, a connection request is made to the master station having the next priority to realize route selection.

図5に示すフローチャートでは、初期の手順を示したが、一端、接続する親局を決定しパケット通信を行っている途中においても、無線子局8のビーコン情報収集部27では、定期的に他の無線親局9についてビーコン情報の収集を行い、図6に示したビーコン情報一覧表の更新を行う。このようにすることで適切な経路制御が子局にて可能となる。無線通信の場合には、受信強度の変動やノイズによる通信性能劣化が起こる場合が多く、このように、ビーコン情報一覧表の更新することで、上述した通信不良に短時間で対応することが出来る。   In the flowchart shown in FIG. 5, the initial procedure is shown. However, the beacon information collection unit 27 of the wireless slave station 8 periodically periodically changes the master station to be connected and performs packet communication. Beacon information is collected for the wireless master station 9 and the beacon information list shown in FIG. 6 is updated. In this way, appropriate route control can be performed at the slave station. In the case of wireless communication, communication performance degradation often occurs due to fluctuations in received intensity or noise. Thus, by updating the beacon information list, it is possible to cope with the above-mentioned communication failure in a short time. .

なお、通常通信していた親局との間で通信不能となった場合には、ビーコン情報一覧表で、次の優先度の親局に経路を切り替えることが可能であり、通信不良発生後に新たに親局探索をする必要は無い。   In addition, when communication with the master station that normally communicated becomes impossible, it is possible to switch the route to the master station with the next priority in the beacon information list, There is no need to perform a master station search.

以上説明したように、本実施例によれば、無線中継を複数行い通信するマルチホップ無線通信ネットワークシステムにおいて、無線中継する無線ノードを親局と子局からなる構成とし、親局では子局接続数,回線使用率,RTT,中継数等の経路制御情報を検知して報知する手段を設け、子局では上記経路制御情報から接続する親局を選択することで、無線ノードが自律的に正確な経路制御を実現することが出来る。又、通信管理装置が情報を収集し各無線ノードの経路を決定する方式に比べて、経路制御に関する制御情報量が少なくて済むために、パケット通信に利用できる時間が増えるために、実効的な通信速度を向上させることが出来る。   As described above, according to the present embodiment, in a multi-hop wireless communication network system that performs communication by performing a plurality of wireless relays, a wireless node to be wirelessly relayed is composed of a master station and a slave station, and the master station is connected to the slave station. A means to detect and notify routing control information such as number, line usage rate, RTT, number of relays, etc. is provided, and the slave station selects the master station to be connected from the routing control information, so that the wireless node is autonomously accurate. Path control can be realized. In addition, since the amount of control information related to path control can be reduced compared with the method in which the communication management device collects information and determines the path of each wireless node, the time available for packet communication increases, which is effective. Communication speed can be improved.

本発明は、無線ノードの経路制御を効率的に行うマルチホップ無線通信ネットワークシステムに適用される。   The present invention is applied to a multi-hop wireless communication network system that efficiently performs route control of wireless nodes.

本発明の一実施例である無線通信ネットワーク構成図。1 is a configuration diagram of a wireless communication network according to an embodiment of the present invention. 本実施例の無線ノード親局の装置構成図。The apparatus block diagram of the radio | wireless node master station of a present Example. 本実施例の無線ノード子局の装置構成図。The apparatus block diagram of the radio | wireless node slave station of a present Example. ビーコン情報を示す図。The figure which shows beacon information. 本実施例の子局の経路制御の流れ図。The flowchart of the path | route control of the slave station of a present Example. 本実施例の子局の経路選択テーブルを示す図。The figure which shows the path | route selection table of the slave station of a present Example.

符号の説明Explanation of symbols

1 制御装置
2 有線GW(無線親局)
3 無線ノード
4 端末装置
5 センサ
6 有線ネットワーク
7 有線
8 無線子局
9 無線親局
10 子局接続数
11 回線使用率
12 ラウンドロビンタイム
13 中継数
14 アンテナ
15 スイッチ
16 無線受信部
17 無線送信部
18 主制御部
19 外部インターフェース
20 送受信パケットデータ
21 受信電力計測部
22 回線使用率計測部
23 RTT計測部
24 ビーコン生成部
25 無線CH選択部
26 無線ノード親局選択部
27 ビーコン情報収集部
1 control device 2 wired GW (wireless master station)
3 Wireless node 4 Terminal device 5 Sensor 6 Wired network 7 Wired 8 Wireless slave station 9 Wireless master station 10 Number of slave station connections 11 Line usage rate 12 Round robin time 13 Number of relays 14 Antenna 15 Switch 16 Wireless receiver 17 Wireless transmitter 18 Main control unit 19 External interface 20 Transmission / reception packet data 21 Received power measurement unit 22 Line usage rate measurement unit 23 RTT measurement unit 24 Beacon generation unit 25 Radio channel selection unit 26 Radio node master station selection unit 27 Beacon information collection unit

Claims (4)

有線ネットワークに接続される無線ゲートウェイと、該無線ゲートウェイと複数の無線ノードを無線中継して無線端末との間で通信する無線通信ネットワークシステムであって、前記無線ノードは有線で接続される無線親局と無線子局で構成され、前記無線ノードと他の無線ノード間は前記無線ノード内に無線親局と前記他の無線ノード内の無線子局とが無線通信することを特徴とする無線通信ネットワークシステム。   A wireless gateway connected to a wired network, and a wireless communication network system that communicates with a wireless terminal by wirelessly relaying the wireless gateway and a plurality of wireless nodes, wherein the wireless node is a wireless parent connected by wire A wireless communication system comprising a station and a wireless slave station, wherein a wireless master station and a wireless slave station in the other wireless node communicate wirelessly in the wireless node between the wireless node and another wireless node Network system. 前記無線ノードの無線親局は、該無線親局と通信する他の無線ノードの無線子局の数、該無線親局が通信する通信チャンネルの回線使用率、前記無線ノードの無線親局から前記無線ゲートウェイとの間の、又は前記無線ゲートウェイと前記有線ネットワークにて接続された通信制御装置との間のパケットデータ伝送時間、前記無線ノードの前記無線ゲートウェイからの無線中継数の経路情報を検知して、他の無線ノードに報知するものであって、前記無線ノードの無線子局は、前記他の無線ノードの無線親局が報知する前記経路情報を受信して、複数の他の無線ノードの無線親局の経路情報から接続する無線ノードの無線親局を選択することを特徴とする請求項1に記載の無線通信ネットワークシステム。   The radio master station of the radio node includes the number of radio slave stations of other radio nodes that communicate with the radio master station, the channel usage rate of the communication channel with which the radio master station communicates, and the radio master station of the radio node Detecting packet data transmission time between the wireless gateway or between the wireless gateway and the communication control device connected by the wired network, and path information of the number of wireless relays from the wireless gateway of the wireless node The wireless slave station of the wireless node receives the route information broadcast by the wireless master station of the other wireless node, and receives a plurality of other wireless nodes. 2. The wireless communication network system according to claim 1, wherein a wireless master station of a wireless node to be connected is selected from route information of the wireless master station. 前記無線ノードの無線親局が報知する経路情報は、無線親局が定期的に送信するビーコン情報に付加して送信されるものであって、他の無線ノードの無線子局からの送信要求に従い前記経路情報を送信することを特徴とする請求項2に記載の無線通信ネットワークシステム。   The route information broadcast by the wireless master station of the wireless node is transmitted in addition to the beacon information periodically transmitted by the wireless master station, and is transmitted according to a transmission request from a wireless slave station of another wireless node. The wireless communication network system according to claim 2, wherein the route information is transmitted. 前記無線ノードの無線子局に、複数の他の無線ノードの無線親局から受信した前記経路情報から接続すべき無線親局を順位付けする手段を設け、該順位付けする手段により順位付けされた順位情報を、前記経路情報を取得する毎に更新する手段を設け、前記順位情報に基づき無線親局を選択する手段とを設けたことを特徴とする請求項2又は3に記載の無線通信ネットワークシステム。   The wireless slave station of the wireless node is provided with means for ranking the wireless master stations to be connected from the route information received from the wireless master stations of a plurality of other wireless nodes, and is ranked by the ranking means. 4. The wireless communication network according to claim 2, further comprising means for updating rank information every time the route information is acquired, and means for selecting a wireless master station based on the rank information. system.
JP2008152376A 2008-06-11 2008-06-11 Radio communication network system Pending JP2009302694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152376A JP2009302694A (en) 2008-06-11 2008-06-11 Radio communication network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152376A JP2009302694A (en) 2008-06-11 2008-06-11 Radio communication network system

Publications (1)

Publication Number Publication Date
JP2009302694A true JP2009302694A (en) 2009-12-24

Family

ID=41549167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152376A Pending JP2009302694A (en) 2008-06-11 2008-06-11 Radio communication network system

Country Status (1)

Country Link
JP (1) JP2009302694A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023601A (en) * 2010-07-15 2012-02-02 Buffalo Inc Radio communication device, radio communication system, method of selecting radio communication route
JP2012080356A (en) * 2010-10-01 2012-04-19 Oki Electric Ind Co Ltd Radio terminal, program for determining terminal to accommodate the same, radio network and network configuring device
JP2013012818A (en) * 2011-06-28 2013-01-17 Kyocera Corp Wireless communication system, wireless relay device, and communication control method
JP2015162892A (en) * 2014-02-28 2015-09-07 シャープ株式会社 Wireless telemeter system and wireless communication device
JP2015186162A (en) * 2014-03-26 2015-10-22 Necプラットフォームズ株式会社 Wireless lan communication system, wireless lan communication device, and wireless lan communication method
JP2016536877A (en) * 2013-11-01 2016-11-24 クゥアルコム・インコーポレイテッドQualcomm Incorporated System, apparatus, and method for providing state updates in a mesh network
JP2016201785A (en) * 2015-04-10 2016-12-01 グニテック コーポレーション Network connection module, computer program and network connection method thereof
WO2016194205A1 (en) * 2015-06-04 2016-12-08 三菱電機株式会社 Wireless communication apparatus and wireless communication method
US10091704B2 (en) 2014-08-19 2018-10-02 Murata Machinery, Ltd. Radio communication system and radio base station
US10171986B2 (en) 2016-02-24 2019-01-01 Oki Electric Industry Co., Ltd. Radio relay device and system with waiting time optimization
JP2019068232A (en) * 2017-09-29 2019-04-25 サクサ株式会社 Radio communication terminal and remote meter reading system
WO2019230522A1 (en) * 2018-06-01 2019-12-05 パナソニックIpマネジメント株式会社 Communication terminal, communication system, and program
US10542478B2 (en) 2017-06-20 2020-01-21 Oki Electric Industry Co., Ltd. Radio communication system, radio relay device, and storage medium
WO2022070673A1 (en) * 2020-10-01 2022-04-07 ソニーグループ株式会社 Communication device and communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1132072A (en) * 1997-07-11 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> Radio packet path determination method in radio network
JP2004229242A (en) * 2003-01-27 2004-08-12 Mitsubishi Electric Corp Repeating apparatus and repeating method
WO2005109765A1 (en) * 2004-05-10 2005-11-17 Matsushita Electric Industrial Co., Ltd. Wireless node apparatus and multihop wireless lan system
JP2006081164A (en) * 2004-08-11 2006-03-23 Iwatsu Electric Co Ltd Method for expanding area for lan system and wirelss lan and access points and stations thereof
JP2007028124A (en) * 2005-07-15 2007-02-01 Sony Corp Repeating system
JP2007221564A (en) * 2006-02-17 2007-08-30 Nec Corp Communication device, communication system, and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1132072A (en) * 1997-07-11 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> Radio packet path determination method in radio network
JP2004229242A (en) * 2003-01-27 2004-08-12 Mitsubishi Electric Corp Repeating apparatus and repeating method
WO2005109765A1 (en) * 2004-05-10 2005-11-17 Matsushita Electric Industrial Co., Ltd. Wireless node apparatus and multihop wireless lan system
JP2006081164A (en) * 2004-08-11 2006-03-23 Iwatsu Electric Co Ltd Method for expanding area for lan system and wirelss lan and access points and stations thereof
JP2007028124A (en) * 2005-07-15 2007-02-01 Sony Corp Repeating system
JP2007221564A (en) * 2006-02-17 2007-08-30 Nec Corp Communication device, communication system, and method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023601A (en) * 2010-07-15 2012-02-02 Buffalo Inc Radio communication device, radio communication system, method of selecting radio communication route
US8599807B2 (en) 2010-07-15 2013-12-03 Buffalo Inc. Wireless communication device, wireless communication system, and method for selecting wireless communication route
JP2012080356A (en) * 2010-10-01 2012-04-19 Oki Electric Ind Co Ltd Radio terminal, program for determining terminal to accommodate the same, radio network and network configuring device
JP2013012818A (en) * 2011-06-28 2013-01-17 Kyocera Corp Wireless communication system, wireless relay device, and communication control method
JP2016536877A (en) * 2013-11-01 2016-11-24 クゥアルコム・インコーポレイテッドQualcomm Incorporated System, apparatus, and method for providing state updates in a mesh network
JP2015162892A (en) * 2014-02-28 2015-09-07 シャープ株式会社 Wireless telemeter system and wireless communication device
JP2015186162A (en) * 2014-03-26 2015-10-22 Necプラットフォームズ株式会社 Wireless lan communication system, wireless lan communication device, and wireless lan communication method
US10091704B2 (en) 2014-08-19 2018-10-02 Murata Machinery, Ltd. Radio communication system and radio base station
JP2016201785A (en) * 2015-04-10 2016-12-01 グニテック コーポレーション Network connection module, computer program and network connection method thereof
CN107637134A (en) * 2015-06-04 2018-01-26 三菱电机株式会社 Radio communication device and wireless communications method
WO2016194205A1 (en) * 2015-06-04 2016-12-08 三菱電機株式会社 Wireless communication apparatus and wireless communication method
DE112015006595B4 (en) * 2015-06-04 2019-02-21 Mitsubishi Electric Corporation Radio communication device and radio communication method
CN107637134B (en) * 2015-06-04 2019-05-17 三菱电机株式会社 Wireless communication device and wireless communications method
JPWO2016194205A1 (en) * 2015-06-04 2017-10-19 三菱電機株式会社 Wireless communication apparatus and wireless communication method
US10171986B2 (en) 2016-02-24 2019-01-01 Oki Electric Industry Co., Ltd. Radio relay device and system with waiting time optimization
US10542478B2 (en) 2017-06-20 2020-01-21 Oki Electric Industry Co., Ltd. Radio communication system, radio relay device, and storage medium
JP2019068232A (en) * 2017-09-29 2019-04-25 サクサ株式会社 Radio communication terminal and remote meter reading system
JP7077566B2 (en) 2017-09-29 2022-05-31 サクサ株式会社 Wireless communication terminal and remote meter reading system
WO2019230522A1 (en) * 2018-06-01 2019-12-05 パナソニックIpマネジメント株式会社 Communication terminal, communication system, and program
TWI726324B (en) * 2018-06-01 2021-05-01 日商松下知識產權經營股份有限公司 Communication terminal, communication system and recording medium
JP2019213009A (en) * 2018-06-01 2019-12-12 パナソニックIpマネジメント株式会社 Communication terminal, communication system, and program
JP7266233B2 (en) 2018-06-01 2023-04-28 パナソニックIpマネジメント株式会社 Communication terminal, communication system, and program
WO2022070673A1 (en) * 2020-10-01 2022-04-07 ソニーグループ株式会社 Communication device and communication system

Similar Documents

Publication Publication Date Title
JP2009302694A (en) Radio communication network system
CN102202371B (en) Wireless communication system and node
WO2013132856A1 (en) Multi-hop communication system, and slave unit
CN102811474B (en) Node apparatus, communication system, and channel selection method
US20170353926A1 (en) Sleeping and wake-up methods and apparatuses of master-slave network, and power saving system of master-slave network
US20130235732A1 (en) Ad hoc network system and meter reading information collecting method
JP2008301268A (en) Method of searching communication route and communication terminal using the same
US11930431B2 (en) Wireless sensor system, wireless terminal device, communication control method and communication control program
JP2013503589A (en) Network address field of node in meter meter wireless mesh network and related system
JP5455820B2 (en) Route selection method, communication apparatus, and communication system
JP5861090B2 (en) Multi-hop communication method, multi-hop communication system, and communication terminal
JP5868551B2 (en) Wireless communication system and wireless communication method
JP5903616B2 (en) Multi-hop communication method, multi-hop communication system, and communication terminal
US10897770B2 (en) Communication system, method and non-transitory computer-readable storage medium
JP5870285B2 (en) Multi-hop communication method, multi-hop communication system, and communication terminal
JP5853227B2 (en) Multi-hop communication method, multi-hop communication system, and communication terminal
JP7072731B1 (en) Communication systems, aggregates, central devices, terminals, communication methods and programs
EP1655895B1 (en) Radio communication method, radio communication terminal accommodating apparatus, and radio communication terminal
JP5541380B1 (en) Wireless communication apparatus, wireless communication system, and wireless communication program
JP2012070368A (en) Multi-hop communication method, multi-hop communication system, and communication terminal
JP6315310B2 (en) Node, wireless sensor network system, wireless communication method
JP7325663B1 (en) Communication system, aggregation device, communication method, communication program and extension terminal device
JP5685305B2 (en) Multi-hop communication system, hybrid slave, and communication path selection method in multi-hop communication system
WO2012028919A1 (en) Multi-hop communication system
JP5904579B2 (en) COMMUNICATION SYSTEM, COMMUNICATION CONTROL METHOD, NODE DEVICE, NODE DEVICE CONTROL METHOD, AND NODE DEVICE CONTROL PROGRAM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403