WO2014108948A1 - Measurement device, footwear, and information processing device - Google Patents

Measurement device, footwear, and information processing device Download PDF

Info

Publication number
WO2014108948A1
WO2014108948A1 PCT/JP2013/006607 JP2013006607W WO2014108948A1 WO 2014108948 A1 WO2014108948 A1 WO 2014108948A1 JP 2013006607 W JP2013006607 W JP 2013006607W WO 2014108948 A1 WO2014108948 A1 WO 2014108948A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure distribution
foot
foot pressure
subject
data
Prior art date
Application number
PCT/JP2013/006607
Other languages
French (fr)
Japanese (ja)
Inventor
泰憲 加藤
光 ▲高▼橋
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2014556211A priority Critical patent/JPWO2014108948A1/en
Publication of WO2014108948A1 publication Critical patent/WO2014108948A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array

Definitions

  • the present invention relates to a measuring device, footwear, and an information processing device for evaluating the walking of a subject.
  • a sensor part such as a pressure sensitive element is arranged on the insole portion of the shoe to measure the foot pressure distribution during walking of the subject.
  • a system has been proposed (for example, see Patent Documents 1 and 2 below).
  • the foot pressure distribution during walking can be accurately measured, and abnormal foot pressure distribution can be measured. It is desirable to have a configuration that can quantitatively grasp the cause.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an advantageous technique for accurately and quantitatively grasping the state of a subject during walking.
  • One aspect of the present invention relates to a measurement device for evaluating the walking of a subject, and the measurement device includes a foot pressure distribution detection sensor unit including a plurality of pressure-sensitive elements, and the foot of the subject.
  • a foot pressure distribution detection sensor unit including a plurality of pressure-sensitive elements, and the foot of the subject.
  • a three-axis acceleration sensor that detects the movement in the three-axis direction, foot pressure distribution calculation data obtained by measurement by the foot pressure distribution detection sensor, and three axes obtained by measurement by the three-axis acceleration sensor
  • a communication unit that transmits acceleration data in association with an elapsed time from the start of measurement by the foot pressure distribution detection sensor unit and the three-axis acceleration sensor.
  • an advantageous technique is provided for accurately and quantitatively grasping the state of the subject during walking.
  • FIG. 1 It is a figure showing appearance composition of a foot pressure distribution measuring system provided with footwear (rehabilitation shoes) concerning a 1st embodiment of the present invention. It is a figure which shows the external appearance structure and sensor arrangement
  • FIG. 1 is a diagram illustrating an example of an external configuration of a foot pressure distribution measurement system 100 including rehabilitation shoes (footwear) 110R and 110L according to the first embodiment of the present invention.
  • the rehabilitation shoes (footwear) 110R and 110L incorporate a measuring device for evaluating the walking of the subject.
  • the measurement device includes a foot pressure distribution detection sensor unit, a triaxial acceleration sensor unit, and a communication unit.
  • 110L and 110R are rehabilitation shoes (footwear) provided with a foot pressure distribution detection sensor unit including an array of a plurality of pressure sensitive elements.
  • the plurality of pressure-sensitive elements can be disposed on the insole of the rehabilitation shoe so that the sole of the subject contacts directly or via a sock, for example.
  • 110L is a rehabilitation shoe for the left foot
  • 110R is a rehabilitation shoe for the right foot.
  • the rehabilitation shoes 110R and 110L are respectively provided with communication units 112R and 112L for performing wireless communication with the information processing apparatus, and triaxial acceleration sensor units 111R and 111L for measuring accelerations in the triaxial directions of the respective feet. It has been.
  • the communication unit 112R, the foot pressure distribution detection sensor unit, and the three-axis acceleration sensor unit 111R can be connected via a cable.
  • the communication unit 112L, the foot pressure distribution detection sensor unit, and the three-axis acceleration sensor unit 111L can be connected via a cable.
  • the communication unit 112R and the three-axis acceleration sensor unit 111R can be integrally attached to a band-shaped member that is wound around the subject's ankle.
  • the communication unit 112L and the three-axis acceleration sensor unit 111L can be integrally attached to a band-shaped member that is wound around the subject's ankle.
  • Reference numeral 120 denotes an information processing device, which includes foot pressure distribution calculation data measured by a foot pressure distribution detection sensor unit (not shown) of the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot, and a triaxial acceleration sensor unit.
  • the triaxial acceleration data measured by 111R and 111L (that is, data from the measuring device) are acquired.
  • the triaxial acceleration data includes acceleration data in the X axis direction (lateral direction; pitch axis direction), acceleration data in the Y axis direction (traveling direction when the subject walks; roll axis direction), Acceleration data in the Z-axis direction (height direction; yaw axis direction) can be included.
  • the information processing device 120 calculates the position coordinates of each foot of the subject while walking and the motion trajectory of each foot of the subject while walking by analyzing the triaxial acceleration data, along with the foot pressure distribution data indicate.
  • the position coordinates can be calculated with reference to the position of each foot of the subject at the start of the walking motion analysis process, for example. By calculating the motion trajectory, the landing position of the foot of the subject who is walking can be determined.
  • FIGS. 2A and 2B are diagrams for explaining a detailed configuration of the rehabilitation shoes.
  • a rehabilitation shoe 110R for the right foot is shown.
  • 2A is a side external view
  • FIG. 2B is a plan view of the insole.
  • a plurality of pressure-sensitive elements 202R are embedded in the midsole of the rehabilitation shoe 110R.
  • the midsole is a foot pressure for measuring foot pressure distribution detection data. It functions as the distribution detection sensor unit 201R.
  • the sole of the subject contacts the inner bottom of the rehabilitation shoe 110R directly or via a sock.
  • a power supply unit 203R for supplying power to the pressure sensitive element 202R, the triaxial acceleration sensor unit 111R, and the communication unit 112R is disposed on the sole of the rehabilitation shoe 110R.
  • foot pressure data data measured in each of the plurality of pressure sensitive elements 202R constituting the foot pressure distribution detection sensor unit 201R
  • foot pressure distribution calculation data a number of foot pressure data groups corresponding to the number of pressure sensitive elements 202R.
  • foot pressure distribution data data for displaying the foot pressure distribution calculated using the foot pressure distribution calculation data
  • foot pressure distribution data data for displaying the foot pressure distribution calculated using the foot pressure distribution calculation data
  • FIG. 3 is a diagram illustrating a functional configuration of the information processing apparatus 120 that configures the foot pressure distribution measurement system 100.
  • the information processing apparatus 120 includes a control unit (computer) 321, a memory unit 322, a storage unit 323, a display unit 324, an input unit 325, and an external device I / F unit 326. Each part is connected to each other via a bus 327.
  • the storage unit 323 configured by a hard disk or the like stores programs that function as a foot pressure distribution calculation unit 331, a walking motion analysis unit 332, and a triaxial motion analysis unit 333, respectively, by being executed by the control unit 321. ing.
  • the program is appropriately read into a memory unit 322 (for example, a RAM) functioning as a work area under the control of the control unit 321, and executed by the control unit 321, thereby realizing each function.
  • a memory unit 322 for example, a RAM
  • data acquired by executing the program by the control unit 321 is recorded in the storage unit 323 as foot pressure distribution calculation data 334 and triaxial acceleration data 335.
  • the display unit 324 displays a user interface for causing the control unit 321 to execute the program, or displays a walking motion analysis result.
  • the input unit 325 inputs an instruction for executing the program, and includes a keyboard and a pointing device (such as a mouse).
  • the external device I / F unit 326 is measured by the foot pressure distribution detection sensor units 201L and 201R and transmitted via the communication units 112L and 112R, and the triaxial acceleration sensor units 111L and 111R. This is an I / F (interface) for taking the triaxial acceleration data measured and transmitted via the communication units 112L and 112R into the information processing apparatus 120.
  • the external device I / F unit 326 is realized by a wireless interface such as a wireless LAN or Bluetooth.
  • the external device I / F unit 326 is realized by a wired interface such as USB or IEEE1394, for example.
  • FIG. 4 is a diagram illustrating the displacement in the Z-axis direction when the movement of the right foot while the subject is walking is viewed from the side.
  • the right foot that has landed (state 401) starts to walk and moves upward by kicking the ground (state 402), and is positioned substantially parallel to the ground.
  • the right foot that has landed (state 401) starts to walk and moves upward by kicking the ground (state 402), and is positioned substantially parallel to the ground.
  • state 405 After moving in the advancing direction while maintaining (states 403 and 404), landing again (state 405).
  • the position in the Z-axis direction of the 3-axis acceleration sensor unit 111R in the state 401 is set as the reference position 410, and the acceleration data in the Z-axis direction measured by the 3-axis acceleration sensor unit 111R is integrated twice, thereby A displacement 412 from the position 410 can be calculated.
  • the displacements 413 and 414 in the states 403 and 404 the displacement in the Z-axis direction at each elapsed time after the start of the walking motion in the walking motion for one step of the right foot can be obtained.
  • FIG. 5 is a diagram illustrating the displacement in the Z-axis direction when the movement of the right foot while the subject is walking is viewed from the side.
  • the right foot that has landed (state 401) moves upward in the traveling direction by starting a walking motion and kicking the ground (state 402), and is positioned substantially parallel to the ground.
  • the right foot that has landed moves upward in the traveling direction by starting a walking motion and kicking the ground (state 402), and is positioned substantially parallel to the ground.
  • state 405 After moving in the advancing direction while maintaining (states 403 and 404), landing again (state 405).
  • the position in the Y-axis direction of the three-axis acceleration sensor unit 111R in the state 401 is set as the reference position 510, and the acceleration data in the Y-axis direction measured by the three-axis acceleration sensor unit 111R is integrated twice, thereby A displacement 512 from the position 510 can be calculated.
  • the displacement in the Y-axis direction at each elapsed time after the start of the walking motion in the walking motion for one step of the right foot can be obtained. .
  • FIG. 6 is a diagram illustrating displacement in the X-axis direction when the motion of the right foot while the subject is walking is viewed from above. As shown in FIG. 6, the right foot that has landed (state 401) starts walking, moves in the direction of travel by kicking up the ground (states 402 to 404), and then landers again (state 405). .
  • the leg during the swing leg period may deviate in the X axis direction (turns outward or inward) with respect to the landing position. Therefore, a line connecting the position in the X-axis direction in the state 401 and the position in the X-axis direction in the state 405 with a straight line is taken as a reference position 610, and acceleration data in the X-axis direction measured by the three-axis acceleration sensor unit 111R.
  • displacements 612 to 614 from the reference position 610 can be calculated. That is, the displacement in the X-axis direction at each elapsed time after the start of the walking motion in the walking motion for one step of the right foot can be obtained.
  • the displacement locus can be calculated.
  • FIG. 7 is a flowchart showing the flow of walking motion analysis processing in the information processing apparatus 120.
  • the walking motion analysis unit 332 transmits a measurement start instruction to the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot.
  • the foot pressure distribution detection sensor units 201R and 201L include the foot pressure distribution calculation data.
  • the triaxial acceleration sensor units 111R and 111L start measuring triaxial acceleration data.
  • the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot transmit the measured foot pressure distribution calculation data and the triaxial acceleration data to the information processing device 120 in association with the elapsed time from the measurement start time. To start.
  • step S702 the walking motion analysis unit 332 starts receiving foot pressure distribution calculation data and triaxial acceleration data transmitted from the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot.
  • step S703 the walking motion analysis unit 332 starts recording the foot pressure distribution calculation data and the triaxial acceleration data received in step S702 in the storage unit 323.
  • FIG. 8 is a diagram illustrating an example of foot pressure distribution calculation data and triaxial acceleration data recorded in the storage unit 323. As shown in FIG. 8, the foot pressure distribution calculation data 334 and the triaxial acceleration data 335 transmitted from the left foot rehabilitation shoe 110L and the right foot rehabilitation shoe 110R, respectively, are associated with the elapsed time from the measurement start time. Recorded.
  • the triaxial acceleration data 335 is composed of acceleration data groups in the X axis direction, the Y axis direction, and the Z axis direction
  • the foot pressure distribution calculation data 334 is foot pressure data from N pressure sensitive elements. It consists of a group.
  • the sampling interval of the triaxial acceleration data 335 and the foot pressure distribution calculation data 334 is 100 mmsec, but the present invention is not limited to this.
  • step S704 the triaxial motion analysis unit 333 uses the acceleration data recorded in the storage unit 323 in the X axis direction and the Y axis direction to see the motion of the subject's foot while walking from above.
  • the locus of displacement in the case that is, in the XY axis plane) is calculated.
  • step S705 the triaxial motion analysis unit 333 uses the acceleration data in the Z axis direction and the Y axis direction recorded in the storage unit 323 to see the motion of the foot while the subject is walking from the side.
  • the locus of displacement in the case that is, in the YZ axis plane) is calculated.
  • step S706 the foot pressure distribution calculation unit 331 calculates the foot pressure distribution data at each elapsed time based on the foot pressure distribution calculation data 334 recorded in the storage unit 323. Specifically, a color scheme corresponding to the value of each foot pressure data is added to a position corresponding to the arrangement of each pressure sensitive element.
  • the position coordinates of the foot pressure distribution data on the XY axis plane are also calculated using the corresponding acceleration data in the X-axis direction and the Y-axis direction.
  • step S707 the walking motion analysis unit 332 determines whether or not a measurement end instruction has been input. If it is determined that a measurement end instruction has not been input, the process returns to step S704 to continue the process. On the other hand, if it is determined in step S707 that a measurement end instruction has been input, the process proceeds to step S708.
  • step S708 the stride of each foot of the subject is calculated based on the displacement locus on the YZ axis plane calculated in step S705. Specifically, a time point having a height position that coincides with the height position at the measurement start time point is extracted from the displacement locus on the YZ axis plane calculated in step S705, and the XY axis at each time point is extracted. The position coordinates of the plane are calculated. Then, these processes are performed for each of the right foot and the left foot, and the distance between adjacent position coordinates is calculated to obtain the stride of the subject.
  • step S709 the displacement locus in the XY axis plane calculated in step S704, the displacement locus in the YZ axis plane calculated in step S705, the foot pressure distribution data calculated in step S706, and in step S708
  • the calculated stride is displayed as a walking motion analysis result.
  • FIG. 9 is a diagram illustrating an example of the walking motion analysis result displayed in step S709.
  • reference numeral 901 denotes the locus of the left foot of the subject among the displacement locus on the XY axis plane calculated in step S704.
  • Reference numeral 902 denotes the locus of the right foot of the subject among the displacement locus on the XY axis plane calculated in step S704.
  • 911 indicates the locus of the left foot of the subject among the displacement locus on the YZ axis plane calculated in step S705.
  • Reference numeral 912 denotes the trajectory of the subject's right foot among the displacement trajectories in the YZ axis plane calculated in step S705.
  • reference numeral 921 indicates the foot pressure distribution data of the left foot at a predetermined elapsed time among the foot pressure distribution data calculated in step S706.
  • 922 indicates foot pressure distribution data of the right foot at a predetermined elapsed time among the foot pressure distribution data calculated in step S706.
  • 931 determines the position and orientation of the foot type (predetermined foot type) of the subject's left foot based on the foot pressure distribution data while the left foot is landing, and superimposes it on the foot pressure distribution data 921 It is a foot type displayed together.
  • 932 determines the position and orientation of the foot shape (predetermined foot shape) of the subject's right foot based on the foot pressure distribution data while the right foot is landing, and foot pressure distribution data This is a foot pattern superimposed on 922.
  • 941 and 942 indicate the strides calculated in step S708. In order to clearly indicate the stride, it is assumed that the past footprints are displayed as they are regardless of the elapsed time.
  • a triaxial acceleration sensor unit is attached to each foot of the subject, and the triaxial acceleration data together with the foot pressure distribution calculation data corresponds to the elapsed time from the start of measurement. It was set as the structure which attaches and records. Also, by processing the triaxial acceleration data, the trajectory of the subject's foot during walking on the XY axis plane, the trajectory on the YZ axis plane, and the stride are calculated, and the foot pressure distribution at each elapsed time The position coordinates of the data on the XY axis plane are calculated.
  • the calculated locus and stride are displayed, and the foot pressure distribution data is displayed based on the position coordinates of the calculated foot pressure distribution data on the XY axis plane.
  • the present invention is not limited to this.
  • the foot pressure distribution data at each landing timing during walking may be displayed simultaneously on the same plane.
  • FIG. 10 is a diagram illustrating an example of a walking motion analysis result.
  • the same display contents as the display contents shown in FIG. 9 are assigned the same reference numerals, and the description thereof is omitted here.
  • the difference from FIG. 9 is the foot pressure distribution data 1021 to 1023.
  • the foot pressure distribution data at a predetermined elapsed time is displayed.
  • the foot pressure distribution data at each timing when each foot is landing during walking is landed. It is the point which is simultaneously displayed at each position.
  • the displacement in the X axis direction, the Y axis direction, and the Z axis direction is calculated based on the triaxial acceleration data, and the trajectory of each foot during walking on the XY axis plane and Although the trajectory of each foot during walking on the YZ axis plane is displayed, the present invention is not limited to this.
  • the motion speed of each foot at each elapsed time can be calculated by integrating the 3-axis acceleration data once, the motion speed may be displayed together.
  • the operation speed display method may be, for example, a numerical value or a vector having a length proportional to the operation speed.
  • the turning angle of each foot during walking on the XY axis plane and YZ The angle of raising each foot during walking on the axial plane may be calculated and displayed together.
  • the timing at which each foot has landed is the timing at which the height of each foot has reached the reference position.
  • the stride is calculated based on the position coordinates of each foot at the timing, but the present invention is not limited to this.
  • the timing at which the contact area is maximized is determined to be the timing at which each foot has landed, and the stride is calculated using the position coordinates of each foot at that timing. It may be configured.
  • the communication units 112R and 112L and the triaxial acceleration sensor units 111R and 111L of each foot are attached to the band-shaped member.
  • the present invention is not limited to this. It is good also as a structure attached in rehabilitation shoes 110R, 110L.
  • the pressure-sensitive element is directly embedded in the bottom of the rehabilitation shoe.
  • the present invention is not limited to this.
  • the pressure sensitive element is embedded in the insole portion. It may be.
  • the three-axis acceleration sensor is arranged and the trajectory of the foot motion is calculated based on the three-axis acceleration data.
  • the present invention is not limited to this.
  • a gyro sensor or the like may be used.
  • the stride of the subject is calculated based on the triaxial acceleration data from the triaxial acceleration sensor.
  • the present invention is not limited to this, and the GPS is not limited to this.
  • a position sensor such as the above may be used.
  • 100 Foot pressure distribution measurement system
  • 110R Rehabilitation shoes for right foot
  • 110L Rehabilitation shoes for left foot
  • 111R 3-axis acceleration sensor unit
  • 111L 3-axis acceleration sensor unit
  • 112R Communication unit
  • 112L Communication unit
  • 120 Information processing device
  • 201R Foot pressure distribution detection sensor unit
  • 202R Pressure sensitive element
  • 203R Power supply unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A measurement device for assessing a subject's gait comprises: a foot pressure distribution detection sensor in which multiple pressure sensitive elements are disposed; a triaxial acceleration sensor which detects movement of the subject's foot in three axial directions; and a communication unit which externally transmits foot pressure distribution calculation data obtained by measurement by the foot pressure distribution detection sensor and triaxial acceleration data obtained by measurement by the triaxial acceleration sensor, the transmitted foot pressure distribution calculation data and the triaxial acceleration data being associated with elapsed times from the start of measurement by the foot pressure distribution detection sensor and the triaxial acceleration sensor.

Description

計測装置、履物及び情報処理装置Measuring device, footwear and information processing device
 本発明は、被検者の歩行を評価するための計測装置、履物及び情報処理装置に関するものである。 The present invention relates to a measuring device, footwear, and an information processing device for evaluating the walking of a subject.
 脳卒中などの脳神経系疾患を発症し、右片または左片が麻痺した患者に対しては、従来より、理学療法士等の指導および監視のもとで、運動機能回復訓練が行われてきた。一般的に、自立した生活を営むためには、下肢機能の回復が不可欠であり、理学療法士等は、訓練時に患者の下肢機能の回復状態を適確に判断することが重要となってくる。このため、運動機能の回復訓練においては、患者の足圧分布等の計測を行い、下肢機能の回復状態が定量的に評価されることが望ましい。 For patients with cranial nervous system diseases such as stroke and paraplegia on the right or left side, motor function recovery training has been performed under the guidance and monitoring of physical therapists and the like. Generally, in order to live an independent life, recovery of lower limb function is indispensable, and it is important for physical therapists to accurately determine the recovery status of the patient's lower limb function during training. . For this reason, in the exercise training for recovery of motor function, it is desirable to measure the patient's foot pressure distribution or the like and quantitatively evaluate the recovery state of the lower limb function.
 一方で、被検者の足圧分布を計測し可視化するシステムとして、従来より、靴のインソール部分に感圧素子等のセンサ部を配し、被検者の歩行中の足圧分布を計測するシステムが提案されている(例えば、下記特許文献1、2参照)。 On the other hand, as a system for measuring and visualizing the foot pressure distribution of a subject, conventionally, a sensor part such as a pressure sensitive element is arranged on the insole portion of the shoe to measure the foot pressure distribution during walking of the subject. A system has been proposed (for example, see Patent Documents 1 and 2 below).
特開2011-234818号公報JP 2011-234818 A 特開2009-106545号公報JP 2009-106545 A
 歩行中の足圧分布を解析するだけでは、足圧分布と足全体の歩行動作との関係が不明であるため、足圧分布の異常、例えば足圧分布の偏りの原因等を定量的に把握することが難しい。 By simply analyzing the foot pressure distribution during walking, the relationship between the foot pressure distribution and the walking behavior of the entire foot is unknown, so it is possible to quantitatively grasp the cause of abnormal foot pressure distribution, for example, bias in foot pressure distribution Difficult to do.
 このようなことから、運動機能の回復訓練において、下肢機能の回復状態を定量的に評価するにあたっては、歩行中の足圧分布を正確に計測することができ、かつ、足圧分布の異常の原因を定量的に把握できる構成とすることが望ましい。 For this reason, in the exercise training for recovery of motor function, when quantitatively evaluating the recovery state of lower limb function, the foot pressure distribution during walking can be accurately measured, and abnormal foot pressure distribution can be measured. It is desirable to have a configuration that can quantitatively grasp the cause.
 本発明は上記課題に鑑みてなされたものであり、被検者の歩行中の状態を正確かつ定量的に把握するために有利な技術を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an advantageous technique for accurately and quantitatively grasping the state of a subject during walking.
 本発明の1つの側面は、被験者の歩行を評価するための計測装置に係り、該計測装置は、複数の感圧素子が配されてなる足圧分布検出センサ部と、前記被検者の足の3軸方向の動作を検出する3軸加速度センサ部と、前記足圧分布検出センサ部による計測によって得られた足圧分布算出用データと、前記3軸加速度センサによる計測によって得られた3軸加速度データとを、前記足圧分布検出センサ部および前記3軸加速度センサによる計測開始時からの経過時間と対応付けて外部に送信する通信部とを備える。 One aspect of the present invention relates to a measurement device for evaluating the walking of a subject, and the measurement device includes a foot pressure distribution detection sensor unit including a plurality of pressure-sensitive elements, and the foot of the subject. A three-axis acceleration sensor that detects the movement in the three-axis direction, foot pressure distribution calculation data obtained by measurement by the foot pressure distribution detection sensor, and three axes obtained by measurement by the three-axis acceleration sensor A communication unit that transmits acceleration data in association with an elapsed time from the start of measurement by the foot pressure distribution detection sensor unit and the three-axis acceleration sensor.
 本発明によれば、被検者の歩行中の状態を正確かつ定量的に把握するために有利な技術が提供される。 According to the present invention, an advantageous technique is provided for accurately and quantitatively grasping the state of the subject during walking.
本発明の第1の実施形態に係る履物(リハビリシューズ)を備える足圧分布計測システムの外観構成を示す図である。It is a figure showing appearance composition of a foot pressure distribution measuring system provided with footwear (rehabilitation shoes) concerning a 1st embodiment of the present invention. リハビリシューズの外観構成及び中底のセンサ配置を示す図である。It is a figure which shows the external appearance structure and sensor arrangement | positioning of an insole of rehabilitation shoes. リハビリシューズの外観構成及び中底のセンサ配置を示す図である。It is a figure which shows the external appearance structure and sensor arrangement | positioning of an insole of rehabilitation shoes. 足圧分布計測システムの機能構成を示す図である。It is a figure which shows the function structure of a foot pressure distribution measurement system. 被検者の歩行中の足の動作を横から見た場合の、Z軸方向の変位を示す図である。It is a figure which shows the displacement of a Z-axis direction at the time of seeing the motion of the leg | foot during a test subject's walk from the side. 被検者の歩行中の足の動作を横から見た場合の、Y軸方向の変位を示す図である。It is a figure which shows the displacement of a Y-axis direction at the time of seeing the motion of the leg | foot during a test subject's walk from the side. 被検者の歩行中の足の動作を上から見た場合の、X軸方向の変位を示す図である。It is a figure which shows the displacement of a X-axis direction at the time of seeing the motion of the leg | foot while a subject walks from the top. 足圧分布計測システムにおける歩行動作解析処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the walking movement analysis process in a foot pressure distribution measurement system. 足圧分布計測システムにおいて記録されたデータ一覧の一覧を示す図である。It is a figure which shows the list of the data list recorded in the foot pressure distribution measurement system. 足圧分布計測システムにおいて表示された、歩行動作解析結果の一例を示す図である。It is a figure which shows an example of the walking movement analysis result displayed in the foot pressure distribution measurement system. 足圧分布計測システムにおいて表示された、歩行動作解析結果の一例を示す図である。It is a figure which shows an example of the walking movement analysis result displayed in the foot pressure distribution measurement system.
 以下、本発明の各実施形態について図面を参照しながら説明する。なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment described below is a preferred specific example of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise stated, the present invention is not limited to these embodiments.
 [第1の実施形態]
 <1.足圧分布計測システムの外観構成>
 図1は、本発明の第1の実施形態に係るリハビリシューズ(履物)110R、110Lを含む足圧分布計測システム100の外観構成の一例を示す図である。リハビリシューズ(履物)110R、110Lには、被験者の歩行を評価するための計測装置が組み込まれている。計測装置は、足圧分布検出センサ部、3軸加速度センサ部および通信部を含む。
[First Embodiment]
<1. Appearance structure of foot pressure distribution measurement system>
FIG. 1 is a diagram illustrating an example of an external configuration of a foot pressure distribution measurement system 100 including rehabilitation shoes (footwear) 110R and 110L according to the first embodiment of the present invention. The rehabilitation shoes (footwear) 110R and 110L incorporate a measuring device for evaluating the walking of the subject. The measurement device includes a foot pressure distribution detection sensor unit, a triaxial acceleration sensor unit, and a communication unit.
 図1において、110L及び110Rは、複数の感圧素子の配列を含む足圧分布検出センサ部が設けられたリハビリシューズ(履物)である。該複数の感圧素子は、例えば、被験者の足裏が直接またはソックスを介して接触するように、リハビリシューズの中底に配置されうる。110Lは左足用のリハビリシューズであり、110Rは右足用のリハビリシューズである。また、リハビリシューズ110R及び110Lにはそれぞれ、情報処理装置と無線通信を行うための通信部112R、112Lと、各足の3軸方向の加速度を計測する3軸加速度センサ部111R、111Lとが取り付けられている。通信部112Rと足圧分布検出センサ部および3軸加速度センサ部111Rとは、ケーブルを介して接続されうる。同様に、通信部112Lと足圧分布検出センサ部および3軸加速度センサ部111Lとは、ケーブルを介して接続されうる。通信部112R及び3軸加速度センサ部111Rは、被検者の足首に巻きつけられるバンド状部材に一体的に取り付けられうる。同様に、通信部112L及び3軸加速度センサ部111Lは、被検者の足首に巻きつけられるバンド状部材に一体的に取り付けられうる。 1, 110L and 110R are rehabilitation shoes (footwear) provided with a foot pressure distribution detection sensor unit including an array of a plurality of pressure sensitive elements. The plurality of pressure-sensitive elements can be disposed on the insole of the rehabilitation shoe so that the sole of the subject contacts directly or via a sock, for example. 110L is a rehabilitation shoe for the left foot, and 110R is a rehabilitation shoe for the right foot. In addition, the rehabilitation shoes 110R and 110L are respectively provided with communication units 112R and 112L for performing wireless communication with the information processing apparatus, and triaxial acceleration sensor units 111R and 111L for measuring accelerations in the triaxial directions of the respective feet. It has been. The communication unit 112R, the foot pressure distribution detection sensor unit, and the three-axis acceleration sensor unit 111R can be connected via a cable. Similarly, the communication unit 112L, the foot pressure distribution detection sensor unit, and the three-axis acceleration sensor unit 111L can be connected via a cable. The communication unit 112R and the three-axis acceleration sensor unit 111R can be integrally attached to a band-shaped member that is wound around the subject's ankle. Similarly, the communication unit 112L and the three-axis acceleration sensor unit 111L can be integrally attached to a band-shaped member that is wound around the subject's ankle.
 120は情報処理装置であり、左足用のリハビリシューズ110L及び右足用のリハビリシューズ110Rの足圧分布検出センサ部(不図示)によりそれぞれ計測された足圧分布算出用データと、3軸加速度センサ部111R、111Lによりそれぞれ計測された3軸加速度データと(つまり、計測装置からのデータ)を取得する。ここで、3軸加速度データには、X軸方向(横方向;ピッチ軸方向)の加速度データと、Y軸方向(被検者が歩行する際の進行方向;ロール軸方向)の加速度データと、Z軸方向(高さ方向;ヨー軸方向)の加速度データとが含まれうる。 Reference numeral 120 denotes an information processing device, which includes foot pressure distribution calculation data measured by a foot pressure distribution detection sensor unit (not shown) of the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot, and a triaxial acceleration sensor unit. The triaxial acceleration data measured by 111R and 111L (that is, data from the measuring device) are acquired. Here, the triaxial acceleration data includes acceleration data in the X axis direction (lateral direction; pitch axis direction), acceleration data in the Y axis direction (traveling direction when the subject walks; roll axis direction), Acceleration data in the Z-axis direction (height direction; yaw axis direction) can be included.
 情報処理装置120は、3軸加速度データを解析することにより、歩行中の被検者の各足の位置座標及び歩行中の被検者の各足の動作軌跡を算出し、足圧分布データとともに表示する。位置座標は、例えば、歩行動作解析処理開始時の被検者の各足の位置を基準にして算出されうる。動作軌跡を算出することにより、歩行中の被検者の足の着地位置を判定することができる。 The information processing device 120 calculates the position coordinates of each foot of the subject while walking and the motion trajectory of each foot of the subject while walking by analyzing the triaxial acceleration data, along with the foot pressure distribution data indicate. The position coordinates can be calculated with reference to the position of each foot of the subject at the start of the walking motion analysis process, for example. By calculating the motion trajectory, the landing position of the foot of the subject who is walking can be determined.
 足圧分布算出用データ及び3軸加速度データを取得・解析し、被検者の歩行状態を可視化するまでの歩行動作解析処理の詳細については後述する。 Details of the walking motion analysis process from acquiring and analyzing foot pressure distribution calculation data and triaxial acceleration data to visualizing the walking state of the subject will be described later.
 <2.リハビリシューズの詳細構成>
 次に、リハビリシューズの詳細構成について説明する。図2A、2Bは、リハビリシューズの詳細構成を説明するための図であり、ここでは、一例として、右足用のリハビリシューズ110Rを示している。図2Aは側面外観図を、図2Bは中底の平面図をそれぞれ示している。
<2. Detailed configuration of rehabilitation shoes>
Next, a detailed configuration of the rehabilitation shoes will be described. 2A and 2B are diagrams for explaining a detailed configuration of the rehabilitation shoes. Here, as an example, a rehabilitation shoe 110R for the right foot is shown. 2A is a side external view, and FIG. 2B is a plan view of the insole.
 図2Aに示すように、リハビリシューズ110Rの中底には、複数の感圧素子202Rが埋め込まれており、本実施形態において当該中底は、足圧分布検出用データを計測するための足圧分布検出センサ部201Rとして機能する。リハビリシューズ110Rの中底には、被検者がリハビリシューズ110Rを履いた状態において、被検者の足裏が直接に又はソックスを介して接触する。 As shown in FIG. 2A, a plurality of pressure-sensitive elements 202R are embedded in the midsole of the rehabilitation shoe 110R. In this embodiment, the midsole is a foot pressure for measuring foot pressure distribution detection data. It functions as the distribution detection sensor unit 201R. In the state where the subject wears the rehabilitation shoe 110R, the sole of the subject contacts the inner bottom of the rehabilitation shoe 110R directly or via a sock.
 リハビリシューズ110Rの靴底には、感圧素子202R、3軸加速度センサ部111R、通信部112Rに電源を供給するための電源部203Rが配されている。 A power supply unit 203R for supplying power to the pressure sensitive element 202R, the triaxial acceleration sensor unit 111R, and the communication unit 112R is disposed on the sole of the rehabilitation shoe 110R.
 以下では、足圧分布検出センサ部201Rを構成する複数の感圧素子202Rそれぞれにおいて計測されたデータを「足圧データ」と称し、感圧素子202Rの数に応じた数の足圧データ群を「足圧分布算出用データ」と称する。また、当該足圧分布算出用データを用いて算出された、足圧分布を表示するためのデータを「足圧分布データ」と称することとする。 Hereinafter, data measured in each of the plurality of pressure sensitive elements 202R constituting the foot pressure distribution detection sensor unit 201R will be referred to as “foot pressure data”, and a number of foot pressure data groups corresponding to the number of pressure sensitive elements 202R. This is referred to as “foot pressure distribution calculation data”. Further, data for displaying the foot pressure distribution calculated using the foot pressure distribution calculation data will be referred to as “foot pressure distribution data”.
 <3.荷重分布計測システムを構成する情報処理装置の機能構成>
 図3は、足圧分布計測システム100を構成する情報処理装置120の機能構成を示す図である。図3に示すように、情報処理装置120は、制御部(コンピュータ)321と、メモリ部322と、記憶部323と、表示部324と、入力部325と、外部機器I/F部326とを備え、各部は、バス327を介して相互に接続されている。
<3. Functional configuration of information processing device constituting load distribution measurement system>
FIG. 3 is a diagram illustrating a functional configuration of the information processing apparatus 120 that configures the foot pressure distribution measurement system 100. As illustrated in FIG. 3, the information processing apparatus 120 includes a control unit (computer) 321, a memory unit 322, a storage unit 323, a display unit 324, an input unit 325, and an external device I / F unit 326. Each part is connected to each other via a bus 327.
 ハードディスク等で構成される記憶部323には、制御部321により実行されることにより、それぞれ足圧分布算出部331、歩行動作解析部332、3軸方向動作解析部333として機能するプログラムが格納されている。当該プログラムは、制御部321による制御のもと、ワークエリアとして機能するメモリ部322(例えば、RAM)に適宜読み込まれ、制御部321によって実行されることで、各機能が実現される。尚、制御部321によって当該プログラムが実行されることにより取得されるデータは、足圧分布算出用データ334、3軸加速度データ335として、記憶部323に記録される。 The storage unit 323 configured by a hard disk or the like stores programs that function as a foot pressure distribution calculation unit 331, a walking motion analysis unit 332, and a triaxial motion analysis unit 333, respectively, by being executed by the control unit 321. ing. The program is appropriately read into a memory unit 322 (for example, a RAM) functioning as a work area under the control of the control unit 321, and executed by the control unit 321, thereby realizing each function. Note that data acquired by executing the program by the control unit 321 is recorded in the storage unit 323 as foot pressure distribution calculation data 334 and triaxial acceleration data 335.
 表示部324は、制御部321に当該プログラムを実行させるためのユーザインタフェースを表示したり、歩行動作解析結果を表示したりする。入力部325は、当該プログラムを実行させるための指示を入力するものであり、キーボードやポインティングデバイス(マウス等)で構成される。外部機器I/F部326は、足圧分布検出センサ部201L及び201Rそれぞれにおいて計測され、通信部112L及び112Rを介して送信された足圧分布算出用データ、ならびに3軸加速度センサ部111L及び111Rそれぞれにおいて計測され、通信部112L及び112Rを介して送信された3軸加速度データを、情報処理装置120内に取り込むためのI/F(インタフェース)である。本実施形態では、外部機器I/F部326は、無線LAN、ブルートゥース等の無線インタフェースで実現される。有線通信で実現する場合には、外部機器I/F部326は、例えば、USB、IEEE1394等の有線インタフェースで実現される。 The display unit 324 displays a user interface for causing the control unit 321 to execute the program, or displays a walking motion analysis result. The input unit 325 inputs an instruction for executing the program, and includes a keyboard and a pointing device (such as a mouse). The external device I / F unit 326 is measured by the foot pressure distribution detection sensor units 201L and 201R and transmitted via the communication units 112L and 112R, and the triaxial acceleration sensor units 111L and 111R. This is an I / F (interface) for taking the triaxial acceleration data measured and transmitted via the communication units 112L and 112R into the information processing apparatus 120. In the present embodiment, the external device I / F unit 326 is realized by a wireless interface such as a wireless LAN or Bluetooth. In the case of realizing by wired communication, the external device I / F unit 326 is realized by a wired interface such as USB or IEEE1394, for example.
 <4.3軸加速度センサ部により計測される3軸加速度データの解析内容の説明>
 次に、3軸加速度センサ部111L、111Rにより計測される3軸加速度データの解析内容について説明する。
<4. Description of analysis contents of triaxial acceleration data measured by triaxial acceleration sensor unit>
Next, the analysis content of the triaxial acceleration data measured by the triaxial acceleration sensor units 111L and 111R will be described.
 (1)Z軸方向の変位
 はじめに、Z軸方向の加速度データを解析することにより算出されるZ軸方向(高さ方向)の変位について説明する。図4は、被検者の歩行中の右足の動作を横から見た場合の、Z軸方向の変位を示す図である。図4に示すように、着地していた右足は(状態401)、歩行動作を開始し地面を蹴り上げることで進行方向上側へと移動し(状態402)、地面に対して略平行な位置を保ちながら進行方向へと移動した後(状態403、404)、再び着地する(状態405)。
(1) Displacement in Z-axis direction First, displacement in the Z-axis direction (height direction) calculated by analyzing acceleration data in the Z-axis direction will be described. FIG. 4 is a diagram illustrating the displacement in the Z-axis direction when the movement of the right foot while the subject is walking is viewed from the side. As shown in FIG. 4, the right foot that has landed (state 401) starts to walk and moves upward by kicking the ground (state 402), and is positioned substantially parallel to the ground. After moving in the advancing direction while maintaining (states 403 and 404), landing again (state 405).
 このとき、状態401での3軸加速度センサ部111RのZ軸方向の位置を基準位置410とし、3軸加速度センサ部111Rにより計測されたZ軸方向の加速度データを2回積分することで、基準位置410からの変位412を算出することができる。同様に、各状態403、404における各変位413、414を算出することで、右足1歩分の歩行動作における、歩行動作開始後の各経過時間におけるZ軸方向の変位を求めることができる。 At this time, the position in the Z-axis direction of the 3-axis acceleration sensor unit 111R in the state 401 is set as the reference position 410, and the acceleration data in the Z-axis direction measured by the 3-axis acceleration sensor unit 111R is integrated twice, thereby A displacement 412 from the position 410 can be calculated. Similarly, by calculating the displacements 413 and 414 in the states 403 and 404, the displacement in the Z-axis direction at each elapsed time after the start of the walking motion in the walking motion for one step of the right foot can be obtained.
 歩行動作開始後に、3軸加速度センサ部111RのZ軸方向の位置が再び基準位置410に到達した時点を検出することで、被検者の右足の1歩目の着地タイミングと判断することができる。 By detecting the time when the position of the three-axis acceleration sensor unit 111R in the Z-axis direction reaches the reference position 410 again after the start of the walking motion, it can be determined as the landing timing of the first step of the subject's right foot. .
 (2)Y軸方向の変位
 次に、Y軸方向(進行方向)の変位について説明する。図5は、被検者の歩行中の右足の動きを横から見た場合の、Z軸方向の変位を示す図である。図5に示すように、着地していた右足は(状態401)、歩行動作を開始し地面を蹴り上げることで進行方向上方へと移動し(状態402)、地面に対して略平行な位置を保ちながら進行方向へと移動した後(状態403、404)、再び着地する(状態405)。
(2) Displacement in Y-axis direction Next, displacement in the Y-axis direction (traveling direction) will be described. FIG. 5 is a diagram illustrating the displacement in the Z-axis direction when the movement of the right foot while the subject is walking is viewed from the side. As shown in FIG. 5, the right foot that has landed (state 401) moves upward in the traveling direction by starting a walking motion and kicking the ground (state 402), and is positioned substantially parallel to the ground. After moving in the advancing direction while maintaining (states 403 and 404), landing again (state 405).
 このとき、状態401での3軸加速度センサ部111RのY軸方向の位置を基準位置510とし、3軸加速度センサ部111Rにより計測されたY軸方向の加速度データを2回積分することで、基準位置510からの変位512を算出することができる。同様に、各状態403、404における各変位513、514、515を算出することで、右足1歩分の歩行動作における、歩行動作開始後の各経過時間におけるY軸方向の変位を求めることができる。 At this time, the position in the Y-axis direction of the three-axis acceleration sensor unit 111R in the state 401 is set as the reference position 510, and the acceleration data in the Y-axis direction measured by the three-axis acceleration sensor unit 111R is integrated twice, thereby A displacement 512 from the position 510 can be calculated. Similarly, by calculating each displacement 513, 514, 515 in each state 403, 404, the displacement in the Y-axis direction at each elapsed time after the start of the walking motion in the walking motion for one step of the right foot can be obtained. .
 (3)X軸方向の変位
 次に、X軸方向(旋回方向)の変位について説明する。図6は、被検者の歩行中の右足の動作を上から見た場合の、X軸方向の変位を示す図である。図6に示すように、着地していた右足は(状態401)、歩行動作を開始し地面を蹴り上げることで進行方向へと移動した後(状態402~404)、再び着地する(状態405)。
(3) Displacement in X-axis direction Next, displacement in the X-axis direction (turning direction) will be described. FIG. 6 is a diagram illustrating displacement in the X-axis direction when the motion of the right foot while the subject is walking is viewed from above. As shown in FIG. 6, the right foot that has landed (state 401) starts walking, moves in the direction of travel by kicking up the ground (states 402 to 404), and then landes again (state 405). .
 このとき、被検者によっては、遊脚期間の足が、着地位置に対して、X軸方向にずれる(外側または内側に旋回する)ことがある。そこで、状態401でのX軸方向の位置と、状態405でのX軸方向の位置とを直線で結ぶ線を基準位置610とし、3軸加速度センサ部111Rにより計測されたX軸方向の加速度データを2回積分することで、基準位置610からの変位612~614を算出することができる。つまり、右足1歩分の歩行動作における、歩行動作開始後の各経過時間におけるX軸方向の変位を求めることができる。 At this time, depending on the subject, the leg during the swing leg period may deviate in the X axis direction (turns outward or inward) with respect to the landing position. Therefore, a line connecting the position in the X-axis direction in the state 401 and the position in the X-axis direction in the state 405 with a straight line is taken as a reference position 610, and acceleration data in the X-axis direction measured by the three-axis acceleration sensor unit 111R. Are integrated twice, and displacements 612 to 614 from the reference position 610 can be calculated. That is, the displacement in the X-axis direction at each elapsed time after the start of the walking motion in the walking motion for one step of the right foot can be obtained.
 歩行動作開始時点からの各経過時間におけるZ軸方向の変位と、Y軸方向の変位とを組み合わせることで、被検者の歩行中の足の動作を横から見た場合の(つまり、Y-Z軸平面における)、変位の軌跡を算出することができる。 Combining the displacement in the Z-axis direction and the displacement in the Y-axis direction at each elapsed time from the start of the walking movement, the movement of the subject's foot while walking is viewed from the side (that is, Y− The trajectory of the displacement (in the Z-axis plane) can be calculated.
 同様に、歩行動作開始時点からの各経過時間におけるX軸方向の変位と、Y軸方向の変位とを組み合わせることで、被検者の歩行中の足の動作を上から見た場合の(つまり、X-Y軸平面における)、変位の軌跡を算出することができる。 Similarly, by combining the displacement in the X-axis direction and the displacement in the Y-axis direction at each elapsed time from the start of the walking motion, when the motion of the subject's foot during walking is viewed from above (that is, , In the XY axis plane), the displacement locus can be calculated.
 <5.歩行動作解析処理の説明>
 次に、情報処理装置120における歩行動作解析処理について説明する。図7は、情報処理装置120における歩行動作解析処理の流れを示すフローチャートである。ステップS701では、歩行動作解析部332が、左足用のリハビリシューズ110L、右足用のリハビリシューズ110Rに対して、計測開始指示を送信する。歩行動作解析部332より計測開始指示を受信したことに応答して、左足用のリハビリシューズ110L、右足用のリハビリシューズ110Rでは、足圧分布検出センサ部201R、201Lが足圧分布算出用データの計測を開始する。また、歩行動作解析部332より計測開始指示を受信したことに応答して、3軸加速度センサ部111R、111Lが3軸加速度データの計測を開始する。また、左足用のリハビリシューズ110L、右足用のリハビリシューズ110Rは、計測した足圧分布算出用データ及び3軸加速度データを計測開始時点からの経過時間と対応付けて情報処理装置120へ送信する処理を開始する。
<5. Explanation of walking motion analysis processing>
Next, walking motion analysis processing in the information processing apparatus 120 will be described. FIG. 7 is a flowchart showing the flow of walking motion analysis processing in the information processing apparatus 120. In step S701, the walking motion analysis unit 332 transmits a measurement start instruction to the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot. In response to receiving the measurement start instruction from the walking motion analysis unit 332, in the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot, the foot pressure distribution detection sensor units 201R and 201L include the foot pressure distribution calculation data. Start measurement. In response to receiving a measurement start instruction from the walking motion analysis unit 332, the triaxial acceleration sensor units 111R and 111L start measuring triaxial acceleration data. Further, the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot transmit the measured foot pressure distribution calculation data and the triaxial acceleration data to the information processing device 120 in association with the elapsed time from the measurement start time. To start.
 ステップS702では、歩行動作解析部332が、左足用のリハビリシューズ110L、右足用のリハビリシューズ110Rより送信される足圧分布算出用データ及び3軸加速度データの受信を開始する。 In step S702, the walking motion analysis unit 332 starts receiving foot pressure distribution calculation data and triaxial acceleration data transmitted from the rehabilitation shoe 110L for the left foot and the rehabilitation shoe 110R for the right foot.
 ステップS703では、歩行動作解析部332が、ステップS702において受信した足圧分布算出用データ及び3軸加速度データの記憶部323への記録を開始する。 In step S703, the walking motion analysis unit 332 starts recording the foot pressure distribution calculation data and the triaxial acceleration data received in step S702 in the storage unit 323.
 図8は、記憶部323に記録された足圧分布算出用データ及び3軸加速度データの一例を示す図である。図8に示すように、左足用のリハビリシューズ110L及び右足用のリハビリシューズ110Rよりそれぞれ送信された足圧分布算出用データ334及び3軸加速度データ335は、計測開始時点からの経過時間と対応付けて記録される。 FIG. 8 is a diagram illustrating an example of foot pressure distribution calculation data and triaxial acceleration data recorded in the storage unit 323. As shown in FIG. 8, the foot pressure distribution calculation data 334 and the triaxial acceleration data 335 transmitted from the left foot rehabilitation shoe 110L and the right foot rehabilitation shoe 110R, respectively, are associated with the elapsed time from the measurement start time. Recorded.
 本実施形態において、3軸加速度データ335は、X軸方向、Y軸方向、Z軸方向の加速度データ群からなり、足圧分布算出用データ334は、N個の感圧素子からの足圧データ群からなる。図8の例では、3軸加速度データ335及び足圧分布算出用データ334のサンプリング間隔を100mmsecとしているが、本発明はこれに限定されない。 In this embodiment, the triaxial acceleration data 335 is composed of acceleration data groups in the X axis direction, the Y axis direction, and the Z axis direction, and the foot pressure distribution calculation data 334 is foot pressure data from N pressure sensitive elements. It consists of a group. In the example of FIG. 8, the sampling interval of the triaxial acceleration data 335 and the foot pressure distribution calculation data 334 is 100 mmsec, but the present invention is not limited to this.
 図7に戻る。ステップS704では、3軸方向動作解析部333が、記憶部323に記録された、X軸方向及びY軸方向の加速度データを用いて、被検者の歩行中の足の動作を上から見た場合の(つまり、X-Y軸平面における)変位の軌跡を算出する。 Return to Figure 7. In step S704, the triaxial motion analysis unit 333 uses the acceleration data recorded in the storage unit 323 in the X axis direction and the Y axis direction to see the motion of the subject's foot while walking from above. The locus of displacement in the case (that is, in the XY axis plane) is calculated.
 ステップS705では、3軸方向動作解析部333が、記憶部323に記録された、Z軸方向及びY軸方向の加速度データを用いて、被検者の歩行中の足の動作を横から見た場合の(つまり、Y-Z軸平面における)変位の軌跡を算出する。 In step S705, the triaxial motion analysis unit 333 uses the acceleration data in the Z axis direction and the Y axis direction recorded in the storage unit 323 to see the motion of the foot while the subject is walking from the side. The locus of displacement in the case (that is, in the YZ axis plane) is calculated.
 ステップS706では、足圧分布算出部331が、記憶部323に記録された足圧分布算出用データ334に基づいて、各経過時間における足圧分布データの算出を行う。具体的には、各足圧データの値に応じた配色を、各感圧素子の配置に応じた位置に付加する。足圧分布データの算出に際しては、対応するX軸方向及びY軸方向の加速度データを用いて、各足圧分布データのX-Y軸平面における位置座標もあわせて算出する。 In step S706, the foot pressure distribution calculation unit 331 calculates the foot pressure distribution data at each elapsed time based on the foot pressure distribution calculation data 334 recorded in the storage unit 323. Specifically, a color scheme corresponding to the value of each foot pressure data is added to a position corresponding to the arrangement of each pressure sensitive element. When calculating the foot pressure distribution data, the position coordinates of the foot pressure distribution data on the XY axis plane are also calculated using the corresponding acceleration data in the X-axis direction and the Y-axis direction.
 ステップS707では、歩行動作解析部332が、計測終了指示が入力されたか否かを判定し、計測終了指示が入力されていないと判定された場合には、ステップS704に戻り、処理を継続する。一方、ステップS707において、計測終了指示が入力されたと判定された場合には、ステップS708に進む。 In step S707, the walking motion analysis unit 332 determines whether or not a measurement end instruction has been input. If it is determined that a measurement end instruction has not been input, the process returns to step S704 to continue the process. On the other hand, if it is determined in step S707 that a measurement end instruction has been input, the process proceeds to step S708.
 ステップS708では、ステップS705において算出されたY-Z軸平面における変位の軌跡に基づいて、被検者の各足の歩幅を算出する。具体的には、ステップS705において算出された、Y-Z軸平面における変位の軌跡において、計測開始時点における高さ位置と一致する高さ位置を有する時点を抽出し、各時点におけるX-Y軸平面の位置座標を算出する。そして、これらの処理を、右足及び左足それぞれについて実施し、隣り合う位置座標間の距離を算出することで、被検者の歩幅を求める。 In step S708, the stride of each foot of the subject is calculated based on the displacement locus on the YZ axis plane calculated in step S705. Specifically, a time point having a height position that coincides with the height position at the measurement start time point is extracted from the displacement locus on the YZ axis plane calculated in step S705, and the XY axis at each time point is extracted. The position coordinates of the plane are calculated. Then, these processes are performed for each of the right foot and the left foot, and the distance between adjacent position coordinates is calculated to obtain the stride of the subject.
 ステップS709では、ステップS704において算出されたX-Y軸平面における変位の軌跡、ステップS705において算出されたY-Z軸平面における変位の軌跡、ステップS706において算出された足圧分布データ、ステップS708において算出された歩幅を、歩行動作解析結果として表示する。 In step S709, the displacement locus in the XY axis plane calculated in step S704, the displacement locus in the YZ axis plane calculated in step S705, the foot pressure distribution data calculated in step S706, and in step S708 The calculated stride is displayed as a walking motion analysis result.
 図9は、ステップS709において表示された歩行動作解析結果の一例を示す図である。図9において、901はステップS704において算出されたX-Y軸平面における変位の軌跡のうち、被検者の左足の軌跡を示している。902はステップS704において算出されたX-Y軸平面における変位の軌跡のうち、被検者の右足の軌跡を示している。 FIG. 9 is a diagram illustrating an example of the walking motion analysis result displayed in step S709. In FIG. 9, reference numeral 901 denotes the locus of the left foot of the subject among the displacement locus on the XY axis plane calculated in step S704. Reference numeral 902 denotes the locus of the right foot of the subject among the displacement locus on the XY axis plane calculated in step S704.
 また、911はステップS705において算出されたY-Z軸平面における変位の軌跡のうち、被検者の左足の軌跡を示している。912はステップS705において算出されたY-Z軸平面における変位の軌跡のうち、被検者の右足の軌跡を示している。 Also, 911 indicates the locus of the left foot of the subject among the displacement locus on the YZ axis plane calculated in step S705. Reference numeral 912 denotes the trajectory of the subject's right foot among the displacement trajectories in the YZ axis plane calculated in step S705.
 また、921はステップS706において算出された足圧分布データのうち、所定の経過時間における左足の足圧分布データを示している。同様に、922はステップS706において算出された足圧分布データのうち、所定の経過時間における右足の足圧分布データを示している。 In addition, reference numeral 921 indicates the foot pressure distribution data of the left foot at a predetermined elapsed time among the foot pressure distribution data calculated in step S706. Similarly, 922 indicates foot pressure distribution data of the right foot at a predetermined elapsed time among the foot pressure distribution data calculated in step S706.
 931は、左足が着地している間の足圧分布データに基づいて、被検者の左足の足型(予め決定された足型)の位置及び向きを判断し、足圧分布データ921に重ね合わせて表示した足型である。同様に、932は、右足が着地している間の足圧分布データに基づいて、被検者の右足の足型(予め決定された足型)の位置及び向きを判断し、足圧分布データ922に重ね合わせて表示した足型である。 931 determines the position and orientation of the foot type (predetermined foot type) of the subject's left foot based on the foot pressure distribution data while the left foot is landing, and superimposes it on the foot pressure distribution data 921 It is a foot type displayed together. Similarly, 932 determines the position and orientation of the foot shape (predetermined foot shape) of the subject's right foot based on the foot pressure distribution data while the right foot is landing, and foot pressure distribution data This is a foot pattern superimposed on 922.
 941、942はステップS708において算出された歩幅を示している。なお、歩幅を明示するために、経過時間とは無関係に過去の足型はそのまま表示されるものとする。 941 and 942 indicate the strides calculated in step S708. In order to clearly indicate the stride, it is assumed that the past footprints are displayed as they are regardless of the elapsed time.
 本実施形態に係る足圧分布計測システムでは、被検者の各足に3軸加速度センサ部を装着し、3軸加速度データを足圧分布算出用データとともに、計測開始時からの経過時間に対応付けて記録する構成とした。また、3軸加速度データを処理することで、歩行時の被検者の足のX-Y軸平面における軌跡、Y-Z軸平面における軌跡、歩幅を算出するとともに、各経過時間における足圧分布データのX-Y軸平面における位置座標を算出する構成とした。 In the foot pressure distribution measurement system according to the present embodiment, a triaxial acceleration sensor unit is attached to each foot of the subject, and the triaxial acceleration data together with the foot pressure distribution calculation data corresponds to the elapsed time from the start of measurement. It was set as the structure which attaches and records. Also, by processing the triaxial acceleration data, the trajectory of the subject's foot during walking on the XY axis plane, the trajectory on the YZ axis plane, and the stride are calculated, and the foot pressure distribution at each elapsed time The position coordinates of the data on the XY axis plane are calculated.
 更に、算出した軌跡、歩幅を表示するともに、算出した足圧分布データのX-Y軸平面における位置座標に基づいて足圧分布データを表示する構成とした。 Further, the calculated locus and stride are displayed, and the foot pressure distribution data is displayed based on the position coordinates of the calculated foot pressure distribution data on the XY axis plane.
 これにより、歩行時の足全体の動作を足圧分布データとともに表示することが可能となり、足圧分布と足全体の歩行動作との関係を定量的に把握することが可能となった。 This makes it possible to display the motion of the entire foot during walking together with the foot pressure distribution data, and to quantitatively grasp the relationship between the foot pressure distribution and the walking motion of the entire foot.
 つまり、被検者の歩行中の状態を正確かつ定量的に把握することが可能となった。 In other words, it became possible to accurately and quantitatively grasp the state of the subject during walking.
 [第2の実施形態]
 上記第1の実施形態では、所定の経過時間における足圧分布データのみを表示する構成としたが、本発明はこれに限定されない。例えば、歩行中の各着地タイミングにおける足圧分布データそれぞれを同一平面上に同時に表示する構成としてもよい。
[Second Embodiment]
In the first embodiment, only the foot pressure distribution data at a predetermined elapsed time is displayed. However, the present invention is not limited to this. For example, the foot pressure distribution data at each landing timing during walking may be displayed simultaneously on the same plane.
 図10は、歩行動作解析結果の一例を示す図である。図10に示す各表示内容のうち、図9に示す各表示内容と同じ表示内容については、同じ参照番号を付すこととし、ここでは説明を省略する。 FIG. 10 is a diagram illustrating an example of a walking motion analysis result. Among the display contents shown in FIG. 10, the same display contents as the display contents shown in FIG. 9 are assigned the same reference numerals, and the description thereof is omitted here.
 図9との相違点は、足圧分布データ1021~1023である。図9の場合、所定の経過時間における足圧分布データのみを表示する構成としたが、本実施形態では、歩行中に各足が着地しているそれぞれのタイミングにおける足圧分布データを、着地している位置にそれぞれ同時に表示させている点である。 The difference from FIG. 9 is the foot pressure distribution data 1021 to 1023. In the case of FIG. 9, only the foot pressure distribution data at a predetermined elapsed time is displayed. However, in this embodiment, the foot pressure distribution data at each timing when each foot is landing during walking is landed. It is the point which is simultaneously displayed at each position.
 このように、異なる経過時間における足圧分布データを同一画面上に同時に表示させることで、各歩数における足圧分布データを一覧することが可能となる。 Thus, by simultaneously displaying the foot pressure distribution data at different elapsed times on the same screen, it becomes possible to list the foot pressure distribution data at each step count.
 [第3実施形態]
 上記第1及び第2の実施形態では、3軸加速度データに基づいて、X軸方向、Y軸方向、Z軸方向の変位を算出し、X-Y軸平面における歩行中の各足の軌跡及びY-Z軸平面における歩行中の各足の軌跡を表示する構成としたが、本発明はこれに限定されない。
[Third Embodiment]
In the first and second embodiments, the displacement in the X axis direction, the Y axis direction, and the Z axis direction is calculated based on the triaxial acceleration data, and the trajectory of each foot during walking on the XY axis plane and Although the trajectory of each foot during walking on the YZ axis plane is displayed, the present invention is not limited to this.
 3軸加速度データを1回積分することで、各経過時間における各足の動作速度を算出することができることから、当該動作速度を、合わせて表示するようにしてもよい。なお、動作速度の表示方法は、例えば、数値で表示してもよいし、動作速度に比例した長さのベクトルで表示してもよい。 Since the motion speed of each foot at each elapsed time can be calculated by integrating the 3-axis acceleration data once, the motion speed may be displayed together. Note that the operation speed display method may be, for example, a numerical value or a vector having a length proportional to the operation speed.
 また、X-Y軸平面における歩行中の各足の軌跡及びY-Z軸平面における歩行中の各足の軌跡に加え、X-Y軸平面における歩行中の各足の旋回角度及びY-Z軸平面における歩行中の各足の上げ角度等を算出し、合わせて表示するようにしてもよい。 In addition to the trajectory of each foot during walking on the XY axis plane and the trajectory of each foot during walking on the YZ axis plane, the turning angle of each foot during walking on the XY axis plane and YZ The angle of raising each foot during walking on the axial plane may be calculated and displayed together.
 また、上記第1及び第2の実施形態では、歩幅を算出するにあたり、Z軸方向の加速度データに着目し、各足の高さが、基準位置に到達したタイミングを、各足が着地したタイミングであると判断し、当該タイミングにおける各足の位置座標に基づいて歩幅の算出を行う構成としたが、本発明はこれに限定されない。例えば、足圧分布データを参照し、接触面積が最大となるタイミングを、各足が着地したタイミングであると判断し、当該タイミングにおける各足の位置座標を用いて、歩幅の算出を行うように構成してもよい。 In the first and second embodiments, when calculating the stride, paying attention to acceleration data in the Z-axis direction, the timing at which each foot has landed is the timing at which the height of each foot has reached the reference position. The stride is calculated based on the position coordinates of each foot at the timing, but the present invention is not limited to this. For example, referring to the foot pressure distribution data, the timing at which the contact area is maximized is determined to be the timing at which each foot has landed, and the stride is calculated using the position coordinates of each foot at that timing. It may be configured.
 また、上記第1及び第2の実施形態では、各足の通信部112R、112L及び3軸加速度センサ部111R、111Lを、バンド状部材に取り付ける構成としたが、本発明はこれに限定されず、リハビリシューズ110R、110L内に取り付ける構成としてもよい。 In the first and second embodiments, the communication units 112R and 112L and the triaxial acceleration sensor units 111R and 111L of each foot are attached to the band-shaped member. However, the present invention is not limited to this. It is good also as a structure attached in rehabilitation shoes 110R, 110L.
 また、上記第1及び第2の実施形態では、リハビリシューズの中底に直接感圧素子を埋め込む構成としたが、本発明はこれに限定されない。例えば、リハビリシューズの中底に係止部材を設け、インソール部分を係止させることで、歩行中のインソール部分のずれをなくす構成とした場合にあっては、インソール部分に感圧素子を埋め込むようにしてもよい。 In the first and second embodiments, the pressure-sensitive element is directly embedded in the bottom of the rehabilitation shoe. However, the present invention is not limited to this. For example, in the case where a locking member is provided on the insole of the rehabilitation shoe and the insole portion is locked to eliminate the displacement of the insole portion during walking, the pressure sensitive element is embedded in the insole portion. It may be.
 また、上記第1及び第2の実施形態では、3軸加速度センサを配し、3軸加速度データに基づいて、足の動作の軌跡を算出する構成としたが、本発明はこれに限定されず、ジャイロセンサ等を用いるようにしてもよい。 In the first and second embodiments, the three-axis acceleration sensor is arranged and the trajectory of the foot motion is calculated based on the three-axis acceleration data. However, the present invention is not limited to this. A gyro sensor or the like may be used.
 また、上記第1及び第2の実施形態では、3軸加速度センサからの3軸加速度データに基づいて、被検者の歩幅を算出する構成としたが、本発明はこれに限定されず、GPS等の位置センサを用いるようにしてもよい。 In the first and second embodiments, the stride of the subject is calculated based on the triaxial acceleration data from the triaxial acceleration sensor. However, the present invention is not limited to this, and the GPS is not limited to this. A position sensor such as the above may be used.
 本願は、2013年1月11日提出の日本国特許出願特願2013-004031を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2013-004031 filed on Jan. 11, 2013, the entire contents of which are incorporated herein by reference.
100:足圧分布計測システム、110R:右足用のリハビリシューズ、110L:左足用のリハビリシューズ、111R:3軸加速度センサ部、111L:3軸加速度センサ部、112R:通信部、112L:通信部、120:情報処理装置、201R:足圧分布検出センサ部、202R:感圧素子、203R:電源部 100: Foot pressure distribution measurement system, 110R: Rehabilitation shoes for right foot, 110L: Rehabilitation shoes for left foot, 111R: 3-axis acceleration sensor unit, 111L: 3-axis acceleration sensor unit, 112R: Communication unit, 112L: Communication unit, 120: Information processing device, 201R: Foot pressure distribution detection sensor unit, 202R: Pressure sensitive element, 203R: Power supply unit

Claims (8)

  1.  被験者の歩行を評価するための計測装置であって、
     複数の感圧素子が配されてなる足圧分布検出センサ部と、
     前記被検者の足の3軸方向の動作を検出する3軸加速度センサ部と、
     前記足圧分布検出センサ部による計測によって得られた足圧分布算出用データと、前記3軸加速度センサによる計測によって得られた3軸加速度データとを、前記足圧分布検出センサ部および前記3軸加速度センサによる計測開始時からの経過時間と対応付けて外部に送信する通信部と
     を備えることを特徴とする計測装置。
    A measuring device for evaluating the walking of a subject,
    A foot pressure distribution detection sensor unit comprising a plurality of pressure sensitive elements;
    A triaxial acceleration sensor unit that detects movements of the subject's legs in three axial directions;
    The foot pressure distribution calculation data obtained by measurement by the foot pressure distribution detection sensor unit and the triaxial acceleration data obtained by measurement by the triaxial acceleration sensor are converted into the foot pressure distribution detection sensor unit and the three axes. A communication device comprising: a communication unit that transmits to the outside in association with an elapsed time from the start of measurement by the acceleration sensor.
  2.  請求項1に記載の計測装置を備える履物であって、
     前記足圧分布検出センサ部は、前記履物の中底または前記履物のインソール部分に配されていることを特徴とする履物。
    A footwear comprising the measuring device according to claim 1,
    The footwear distribution detecting sensor unit is disposed on an insole portion of the footwear or an insole portion of the footwear.
  3.  請求項1に記載の計測装置から送信された、足圧分布算出用データと3軸加速度データとを受信し、処理する情報処理装置であって、
     前記3軸加速度データに基づいて、前記被検者の歩行動作を横から見た場合の該被検者の足の動作の軌跡と、前記被検者の歩行動作を上から見た場合の該被検者の足の動作の軌跡とを算出する第1の算出手段と、
     前記足圧分布算出用データに基づいて配色された足圧分布データを求めるとともに、前記計測開始時の前記3軸加速度センサ部の位置を基準とした場合の、前記計測開始時からの各経過時間における前記足圧分布データの位置座標を算出する第2の算出手段と、
     前記第1の算出手段により算出された軌跡を表示するとともに、前記第2の算出手段により求められた足圧分布データを、前記算出された位置座標に表示する表示手段と
     を備えることを特徴とする情報処理装置。
    An information processing apparatus that receives and processes foot pressure distribution calculation data and triaxial acceleration data transmitted from the measurement apparatus according to claim 1,
    Based on the three-axis acceleration data, the trajectory of the subject's foot when the subject's walking motion is viewed from the side, and the walking motion of the subject when viewed from above. First calculating means for calculating a trajectory of the movement of the subject's foot;
    Each elapsed time from the start of measurement when obtaining foot pressure distribution data colored based on the foot pressure distribution calculation data and using the position of the three-axis acceleration sensor unit at the start of measurement as a reference Second calculating means for calculating position coordinates of the foot pressure distribution data in
    And a display means for displaying the trajectory calculated by the first calculating means and displaying the foot pressure distribution data obtained by the second calculating means at the calculated position coordinates. Information processing apparatus.
  4.  前記3軸加速度データに基づいて、前記被検者の歩行動作における各足の着地位置を算出することで、前記被検者の歩幅を算出する第3の算出手段を更に備えることを特徴とする請求項3に記載の情報処理装置。 The apparatus further comprises third calculation means for calculating the stride of the subject by calculating the landing position of each foot in the walking motion of the subject based on the triaxial acceleration data. The information processing apparatus according to claim 3.
  5.  前記表示手段は、更に、前記着地位置における足圧分布データに基づいて、前記被検者の足裏の形を示す足型を、前記足圧分布データに重ねて表示することを特徴とする請求項4に記載の情報処理装置。 The display means further displays a foot shape indicating a shape of a sole of the subject on the foot pressure distribution data based on the foot pressure distribution data at the landing position. Item 5. The information processing apparatus according to Item 4.
  6.  前記表示手段は、前記計測開始時からの各経過時間のうち、所定の経過時間における足圧分布データを表示することを特徴とする請求項5に記載の情報処理装置。 The information processing apparatus according to claim 5, wherein the display means displays foot pressure distribution data at a predetermined elapsed time among the elapsed times from the start of the measurement.
  7.  前記表示手段は、前記計測開始時からの各経過時間のうち、異なる経過時間における各足圧分布データを、同時に表示することを特徴とする請求項5に記載の情報処理装置。 6. The information processing apparatus according to claim 5, wherein the display means simultaneously displays the foot pressure distribution data at different elapsed times among the elapsed times from the start of the measurement.
  8.  請求項1に記載の計測装置から送信された、足圧分布算出用データと3軸加速度データとを受信し、処理する情報処理装置であって、
     前記3軸加速度データに基づいて、前記被検者の歩行動作を横から見た場合の該被検者の足の動作の軌跡と、前記被検者の歩行動作を上から見た場合の該被検者の足の動作の軌跡とを算出する第1の算出手段と、
     前記足圧分布算出用データに基づいて配色された足圧分布データを求めるとともに、前記計測開始時の前記3軸加速度センサ部の位置を基準とした場合の、前記計測開始時からの各経過時間における前記足圧分布データの位置座標を算出する第2の算出手段と、
     前記第1の算出手段により算出された軌跡を表示するとともに、前記第2の算出手段により求められた足圧分布データを、前記算出された位置座標に表示する表示手段として機能させることを特徴とするプログラム。
    An information processing apparatus that receives and processes foot pressure distribution calculation data and triaxial acceleration data transmitted from the measurement apparatus according to claim 1,
    Based on the three-axis acceleration data, the trajectory of the subject's foot when the subject's walking motion is viewed from the side, and the walking motion of the subject when viewed from above. First calculating means for calculating a trajectory of the movement of the subject's foot;
    Each elapsed time from the start of measurement when obtaining foot pressure distribution data colored based on the foot pressure distribution calculation data and using the position of the three-axis acceleration sensor unit at the start of measurement as a reference Second calculating means for calculating position coordinates of the foot pressure distribution data in
    The trajectory calculated by the first calculation means is displayed, and the foot pressure distribution data obtained by the second calculation means is displayed as a display means for displaying the calculated position coordinates. Program to do.
PCT/JP2013/006607 2013-01-11 2013-11-11 Measurement device, footwear, and information processing device WO2014108948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014556211A JPWO2014108948A1 (en) 2013-01-11 2013-11-11 Measuring device, footwear and information processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013004031 2013-01-11
JP2013-004031 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014108948A1 true WO2014108948A1 (en) 2014-07-17

Family

ID=51166628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006607 WO2014108948A1 (en) 2013-01-11 2013-11-11 Measurement device, footwear, and information processing device

Country Status (2)

Country Link
JP (1) JPWO2014108948A1 (en)
WO (1) WO2014108948A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000435A (en) * 2015-06-10 2017-01-05 花王株式会社 Information processing device, program, and determination method of walking
CN106595912A (en) * 2016-11-01 2017-04-26 中国海洋大学 Real-time detection evaluation system for human foot dynamic mechanics and method
JP2017167051A (en) * 2016-03-17 2017-09-21 北川工業株式会社 Measurement information output system and program
US10512819B2 (en) 2014-08-26 2019-12-24 Well Being Digital Limited Gait monitor and a method of monitoring the gait of a person
CN113133761A (en) * 2020-01-17 2021-07-20 宝成工业股份有限公司 Method for judging left and right gait and analysis device thereof
JP2021527511A (en) * 2018-06-21 2021-10-14 シスナヴ How to analyze pedestrian stride while walking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323650A (en) * 1993-01-14 1994-06-28 Fullen Systems, Inc. System for continuously measuring forces applied to the foot
JPH0991437A (en) * 1995-07-19 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> Walking pattern processing method and device therefor
JP2002233517A (en) * 2001-02-09 2002-08-20 Nippon Telegr & Teleph Corp <Ntt> Device and method for evaluating beauty of walking
JP2008073285A (en) * 2006-09-22 2008-04-03 Seiko Epson Corp Shoe, and walking/running motion evaluation support system for person wearing the shoe
JP2012161402A (en) * 2011-02-04 2012-08-30 Osaka Prefecture Univ Exercise characteristics evaluation system and exercise characteristics evaluation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813436A (en) * 1987-07-30 1989-03-21 Human Performance Technologies, Inc. Motion analysis system employing various operating modes
JP4350394B2 (en) * 2003-03-04 2009-10-21 マイクロストーン株式会社 Determining device for knee osteoarthritis
JP2005192744A (en) * 2004-01-06 2005-07-21 Yaskawa Electric Corp Sensor for foot sole pressure
JP2009106392A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Posture determining system
CA2706959A1 (en) * 2007-11-27 2009-06-04 24Eight, Llc System, method, and computer-program product for measuring pressure points

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323650A (en) * 1993-01-14 1994-06-28 Fullen Systems, Inc. System for continuously measuring forces applied to the foot
JPH0991437A (en) * 1995-07-19 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> Walking pattern processing method and device therefor
JP2002233517A (en) * 2001-02-09 2002-08-20 Nippon Telegr & Teleph Corp <Ntt> Device and method for evaluating beauty of walking
JP2008073285A (en) * 2006-09-22 2008-04-03 Seiko Epson Corp Shoe, and walking/running motion evaluation support system for person wearing the shoe
JP2012161402A (en) * 2011-02-04 2012-08-30 Osaka Prefecture Univ Exercise characteristics evaluation system and exercise characteristics evaluation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512819B2 (en) 2014-08-26 2019-12-24 Well Being Digital Limited Gait monitor and a method of monitoring the gait of a person
JP2017000435A (en) * 2015-06-10 2017-01-05 花王株式会社 Information processing device, program, and determination method of walking
JP2017167051A (en) * 2016-03-17 2017-09-21 北川工業株式会社 Measurement information output system and program
CN106595912A (en) * 2016-11-01 2017-04-26 中国海洋大学 Real-time detection evaluation system for human foot dynamic mechanics and method
JP2021527511A (en) * 2018-06-21 2021-10-14 シスナヴ How to analyze pedestrian stride while walking
JP7312773B2 (en) 2018-06-21 2023-07-21 シスナヴ How to analyze a pedestrian's stride while walking
CN113133761A (en) * 2020-01-17 2021-07-20 宝成工业股份有限公司 Method for judging left and right gait and analysis device thereof
CN113133761B (en) * 2020-01-17 2024-05-28 宝成工业股份有限公司 Method for judging left and right gait and analysis device thereof

Also Published As

Publication number Publication date
JPWO2014108948A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2014108948A1 (en) Measurement device, footwear, and information processing device
Lin et al. Smart insole: A wearable sensor device for unobtrusive gait monitoring in daily life
WO2021140658A1 (en) Anomaly detection device, determination system, anomaly detection method, and program recording medium
Yuan et al. Human velocity and dynamic behavior tracking method for inertial capture system
CN106307775A (en) Foot posture information and pressure measurement system and intelligent sneakers
JP2008173365A (en) Gait analysis system
JP2023145448A (en) Multi-modal sensor fusion platform
CN108836344A (en) Step-length cadence evaluation method and device and gait detector
JP2008175559A (en) Walking analysis system
US20240049987A1 (en) Gait measurement system, gait measurement method, and program recording medium
JP7259982B2 (en) Gait measurement system, gait measurement method, and program
WO2014049639A1 (en) Foot pressure distribution measurement system and information processing device
JP2008161227A (en) Gait analysis system
KR102232475B1 (en) A smart insole system for diagnosis
Zhou et al. Shoes and Leg Braces Integrated System for Abnormal Gait Detection [P]
WO2022038664A1 (en) Calculation device, gait measurement system, calculation method, and program recording medium
US20220161095A1 (en) Running method determination device, running-method determination method, and program
JP7124965B2 (en) Information processing device, walking environment determination device, walking environment determination system, information processing method, and storage medium
WO2022070416A1 (en) Estimation device, estimation method, and program recording medium
WO2023127010A1 (en) Mobility estimation device, mobility estimation system, mobility estimation method, and recording medium
WO2022038663A1 (en) Detection device, detection system, detection method, and program recording medium
US20240138757A1 (en) Pelvic inclination estimation device, estimation system, pelvic inclination estimation method, and recording medium
WO2023127015A1 (en) Muscle strength evaluation device, muscle strength evaluation system, muscle strength evaluation method, and recording medium
US20230371849A1 (en) Gait information generation device, gait information generation method, and recording medium
WO2023170948A1 (en) Gait measurement device, measurement device, gait measurement system, gait measurement method, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870763

Country of ref document: EP

Kind code of ref document: A1