WO2014050833A1 - Glass laminate and manufacturing method for same, and support substrate having silicone resin layer attached thereto and manufacturing method for same - Google Patents

Glass laminate and manufacturing method for same, and support substrate having silicone resin layer attached thereto and manufacturing method for same Download PDF

Info

Publication number
WO2014050833A1
WO2014050833A1 PCT/JP2013/075762 JP2013075762W WO2014050833A1 WO 2014050833 A1 WO2014050833 A1 WO 2014050833A1 JP 2013075762 W JP2013075762 W JP 2013075762W WO 2014050833 A1 WO2014050833 A1 WO 2014050833A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
resin layer
glass substrate
siloxane unit
glass
Prior art date
Application number
PCT/JP2013/075762
Other languages
French (fr)
Japanese (ja)
Inventor
絢 松井
庚薫 閔
大輔 内田
純一 角田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014050833A1 publication Critical patent/WO2014050833A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a glass laminate and a method for producing the same, and more particularly, to a glass laminate having a predetermined siloxane unit in a silicone resin of a silicone resin layer and a method for producing the same.
  • the present invention also relates to a support substrate with a silicone resin layer and a method for producing the same, and more particularly to a support substrate with a silicone resin layer on which a glass substrate is releasably laminated and a method for producing the same.
  • devices such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the glass substrates used in these devices have been made thinner. Progressing. If the strength of the glass substrate is insufficient due to the thinning, the handling property of the glass substrate is lowered in the device manufacturing process.
  • PV solar cells
  • LCD liquid crystal panels
  • OLED organic EL panels
  • a method of forming a device member for example, a thin film transistor
  • a glass substrate thicker than the final thickness and then thinning the glass substrate by chemical etching is widely used.
  • this method for example, when the thickness of one glass substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original glass substrate material is scraped off with an etching solution. Therefore, it is not preferable from the viewpoint of productivity and use efficiency of raw materials.
  • the method of thinning a glass substrate by the above chemical etching if a fine scratch exists on the surface of the glass substrate, a fine recess (etch pit) is formed from the scratch by the etching process, resulting in an optical defect. There was a case.
  • the reinforcing plate has a support plate and a silicone resin layer fixed on the support plate, and the silicone resin layer and the thin glass substrate are in close contact with each other in a peelable manner.
  • the reinforcing plate separated from the thin glass substrate is peeled off from the interface between the silicone resin layer of the glass laminate and the thin glass substrate, and can be reused as a glass laminate by being laminated with a new thin glass substrate.
  • the present invention has been made in view of the above problems, and is a glass laminate in which thermal decomposition of a silicone resin layer is suppressed even under high-temperature heat treatment conditions, and a glass substrate can be easily peeled even after high-temperature heat treatment. And it aims at providing the manufacturing method.
  • Another object of the present invention is to provide a support substrate with a silicone resin layer used for the production of the glass laminate and a method for producing the same.
  • the first aspect of the present invention includes a support base layer, a silicone resin layer, and a glass substrate layer in this order, and the peel strength at the interface between the support base layer and the silicone resin layer is that of the glass substrate.
  • a glass laminate having a higher peel strength at the interface between the layer and the silicone resin layer, wherein the silicone resin of the silicone resin layer contains a siloxane unit (A) represented by the formula (1) described later It is a glass laminate that is a crosslinked product of siloxane.
  • R 1 to R 4 in the siloxane unit (A) are each independently an alkyl group having 4 or less carbon atoms or a phenyl group.
  • the crosslinkable organopolysiloxane further includes a siloxane unit (B) represented by the formula (2) described later.
  • the ratio of the siloxane unit (A) to the total of the siloxane unit (A) and the siloxane unit (B) is 30 to 90 mol%, and the siloxane unit ( The total proportion of A) and the siloxane unit (B) is preferably 80 to 100 mol%.
  • the siloxane unit (B) is a siloxane unit (B) in which at least one of R 5 and R 6 is an alkenyl group having 3 or less carbon atoms and is an alkyl group having 4 or less carbon atoms in the case of other than the alkenyl group. -1), and R 5 and R 6 are both selected from the group consisting of siloxane units (B-2) which are alkyl groups having 4 or less carbon atoms, and the siloxane units (B) in the crosslinkable organopolysiloxane are It is preferable that the siloxane unit (B-1) alone or the siloxane unit (B-1) and the siloxane unit (B-2).
  • the crosslinkable organopolysiloxane is preferably an alternating copolymer of a siloxane unit (A) and a siloxane unit (B).
  • the thickness of the silicone resin layer is preferably 2 to 100 ⁇ m. 1st aspect WHEREIN: It is preferable that a support base material is a glass plate.
  • a layer of a crosslinkable organopolysiloxane is formed on one side of a support substrate, and the silicone resin layer is formed by crosslinking the crosslinkable organopolysiloxane on the surface of the support substrate.
  • a method for producing a glass laminate comprising laminating a glass substrate on a surface of a resin layer opposite to a surface that contacts the support substrate.
  • 3rd aspect of this invention is a support base material with a silicone resin layer which has a support base material and the silicone resin layer which has the peelable surface provided on the support base material surface, Silicone resin of a silicone resin layer Is a support substrate with a silicone resin layer, which is a crosslinked product of a crosslinkable organopolysiloxane containing a siloxane unit (A) represented by the formula (1) described later.
  • the crosslinkable organopolysiloxane preferably further contains a siloxane unit (B) represented by the formula (2).
  • the crosslinkable organopolysiloxane is preferably an alternating copolymer of a siloxane unit (A) and a siloxane unit (B).
  • the thickness of the silicone resin layer is preferably 2 to 100 ⁇ m.
  • the supporting substrate is preferably a glass plate.
  • a silicone resin layer is formed by forming a crosslinkable organopolysiloxane layer on the support substrate surface and crosslinking the crosslinkable organopolysiloxane on the support substrate surface. It is the method of manufacturing the support base material with a silicone resin layer.
  • the thermal decomposition of a silicone resin layer is suppressed also under high temperature heat processing conditions, and the glass laminated body which can peel a glass substrate easily even after high temperature heat processing, and its manufacturing method can be provided.
  • the support base material with a silicone resin layer used for manufacture of this glass laminated body and its manufacturing method can be provided.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a glass laminate according to the present invention.
  • 2 (A) to 2 (D) are schematic cross-sectional views showing an embodiment of a method for producing a glass substrate with a member according to the present invention in the order of steps.
  • the glass laminate of the present invention comprises a support base material layer, a silicone resin layer, and a glass substrate layer in this order. That is, it has a silicone resin layer between the layer of the supporting substrate and the layer of the glass substrate, and therefore, the silicone resin layer has one side in contact with the layer of the supporting substrate and the other side in contact with the layer of the glass substrate. Yes.
  • the silicone resin of the silicone resin layer is a cross-linked product of a cross-linkable organopolysiloxane containing a siloxane unit (A) represented by the formula (1) described later. On the other hand, it exhibits a predetermined adhesion and suppresses the decomposition of the silicone resin under high temperature treatment conditions.
  • the decomposition of the silicone resin is suppressed is that the main chain of the crosslinkable organopolysiloxane contains a divalent aromatic hydrocarbon group (for example, a phenylene group).
  • a divalent aromatic hydrocarbon group for example, a phenylene group.
  • FIG. 1 is a schematic cross-sectional view of an example of a glass laminate according to the present invention.
  • the glass laminated body 10 is a laminated body in which the layer of the support base material 12, the layer of the glass substrate 16, and the silicone resin layer 14 exist among them.
  • One side of the silicone resin layer 14 is in contact with the layer of the support base 12, and the other side is in contact with the first main surface 16 a of the glass substrate 16.
  • the silicone resin layer 14 is in contact with the first major surface 16 a of the glass substrate 16.
  • the two-layer portion including the layer of the support base 12 and the silicone resin layer 14 reinforces the glass substrate 16 in a member forming process for manufacturing a member for an electronic device such as a liquid crystal panel.
  • the two-layer part which consists of the layer of the support base material 12 manufactured previously for manufacture of the glass laminated body 10, and the silicone resin layer 14 is called the support base material 18 with a silicone resin layer.
  • the glass laminate 10 is used until a member forming step described later. That is, the glass laminate 10 is used until a member for an electronic device such as a liquid crystal display device is formed on the surface of the second main surface 16b of the glass substrate 16. Thereafter, the glass laminate on which the electronic device member is formed is separated into the supporting substrate 18 with the silicone resin layer and the glass substrate with the member, and the supporting substrate 18 with the silicone resin layer is not a part constituting the electronic device. .
  • the support base material 18 with the silicone resin layer is laminated with a new glass substrate 16 and can be reused as a new glass laminate 10.
  • the interface between the support substrate 12 and the silicone resin layer 14 has a peel strength (x), and when a stress in the peeling direction exceeding the peel strength (x) is applied to the interface between the support substrate 12 and the silicone resin layer 14, The interface between the support base 12 and the silicone resin layer 14 is peeled off.
  • the interface between the silicone resin layer 14 and the glass substrate 16 has a peel strength (y).
  • the peel strength (x) is higher than the peel strength (y).
  • the glass laminated body 10 of this invention will be in the interface of the silicone resin layer 14 and the glass substrate 16.
  • the peel strength (x) is preferably sufficiently higher than the peel strength (y). Increasing the peel strength (x) means that the adhesion of the silicone resin layer 14 to the support base 12 can be increased, and a relatively higher adhesion to the glass substrate 16 can be maintained after the heat treatment. .
  • the silicone resin layer 14 bonded to the support substrate 12 with a high bonding force can be formed by the adhesive force at the time of crosslinking and curing.
  • the bonding force of the silicone resin, which is a crosslinked product of the crosslinkable organopolysiloxane after crosslinking and curing, to the glass substrate 16 is usually lower than the bonding force generated during the crosslinking and curing. Therefore, the crosslinkable organopolysiloxane is crosslinked and cured on the support base 12 to form the silicone resin layer 14, and then the glass substrate 16 is laminated on the surface of the silicone resin layer 14 to produce the glass laminate 10. Is preferred.
  • each layer (support base material 12, glass substrate 16, silicone resin layer 14) which comprises the glass laminated body 10 is explained in full detail first, Then, the manufacturing method of a glass laminated body and a glass substrate with a member is explained in full detail. .
  • the support base material 12 supports and reinforces the glass substrate 16, and the glass substrate 16 is deformed and scratched when the electronic device member is manufactured in a member forming step (step of manufacturing an electronic device member) described later. Prevent damage.
  • the support substrate 12 for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used.
  • the support base 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 16 and more preferably formed of the same material as the glass substrate 16.
  • the support base 12 is a glass plate.
  • the support base 12 is preferably a glass plate made of the same glass material as the glass substrate 16.
  • the thickness of the support base 12 may be thicker or thinner than the glass substrate 16.
  • the thickness of the support base 12 is selected based on the thickness of the glass substrate 16, the thickness of the silicone resin layer 14, and the thickness of the glass laminate 10.
  • the thickness of the support base 12 is set to 0.4 mm. In general, the thickness of the support base 12 is preferably 0.2 to 5.0 mm.
  • the thickness of the glass plate is preferably 0.08 mm or more for reasons such as being easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.
  • the difference in average linear expansion coefficient between the support base 12 and the glass substrate 16 at 25 to 300 ° C. is preferably 500 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 300 ⁇ 10 ⁇ 7 / ° C. or less. More preferably, it is 200 ⁇ 10 ⁇ 7 / ° C. or less. If the difference is too large, the glass laminate 10 may be severely warped or the support substrate 12 and the glass substrate 16 may be peeled off during heating and cooling in the member forming process. When the material of the support base material 12 is the same as the material of the glass substrate 16, it can suppress that such a problem arises.
  • the 1st main surface 16a touches the silicone resin layer 14, and the member for electronic devices is provided in the 2nd main surface 16b on the opposite side to the silicone resin layer 14 side.
  • the glass substrate 16 may be of a general type, and examples thereof include a glass substrate for a display device such as an LCD or an OLED.
  • the glass substrate 16 is preferably excellent in chemical resistance and moisture permeability and has a low thermal shrinkage rate.
  • As an index of the heat shrinkage rate a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
  • the member forming process often involves heat treatment, and various inconveniences are likely to occur.
  • the TFT may be displaced excessively due to thermal contraction of the glass substrate 16.
  • the glass substrate 16 is obtained by melting a glass raw material and molding the molten glass into a plate shape.
  • a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used.
  • the glass substrate 16 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
  • the type of glass of the glass substrate 16 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable.
  • oxide-based glass a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
  • glass suitable for the type of electronic device member and the manufacturing process thereof is employed.
  • a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Components are preferably included).
  • the glass of the glass substrate 16 is appropriately selected based on the type of device to be applied and its manufacturing process.
  • the thickness of the glass substrate 16 is preferably 0.3 mm or less, more preferably 0.15 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 16. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 16. In the case of 0.15 mm or less, the glass substrate 16 can be rolled up. Further, the thickness of the glass substrate 16 is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate 16 and easy handling of the glass substrate 16.
  • the glass substrate 16 may be composed of two or more layers.
  • the material forming each layer may be the same material or a different material.
  • the thickness of the glass substrate 16 means the total thickness of all the layers.
  • the silicone resin layer 14 prevents the glass substrate 16 from being displaced until the operation for separating the glass substrate 16 and the support base 12 is performed, and prevents the glass substrate 16 and the like from being damaged by the separation operation.
  • the surface (first main surface of the silicone resin layer) 14a of the silicone resin layer 14 in contact with the glass substrate 16 is in close contact with the first main surface 16a of the glass substrate 16 in a peelable manner.
  • the silicone resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a weak bonding force, and the peeling strength (y) at the interface is the peeling at the interface between the silicone resin layer 14 and the support base 12. Lower than strength (x).
  • the silicone resin layer 14 is in close contact with the first main surface 16a of the glass substrate 16, but has a surface characteristic that allows the glass substrate 16 to be easily peeled off. That is, the silicone resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a certain amount of bonding force to prevent the glass substrate 16 from being displaced, and at the same time, when the glass substrate 16 is peeled off.
  • the glass substrate 16 is bonded with a bonding force that can be easily peeled without breaking the glass substrate 16.
  • peelability the property which can peel this silicone resin layer 14 surface easily is called peelability.
  • the 1st main surface of the support base material 12 and the silicone resin layer 14 are couple
  • the silicone resin layer 14 formed by the method of the present invention usually has a peelable surface.
  • the bonding force at the interface between the silicone resin layer 14 and the glass substrate 16 may change before and after the electronic device member is formed on the surface (second main surface 16b) of the glass substrate 16 of the glass laminate 10. (That is, the peel strength (x) and peel strength (y) may change). However, even after the electronic device member is formed, the peel strength (y) is lower than the peel strength (x).
  • the silicone resin layer 14 and the glass substrate 16 are bonded to each other with a bonding force due to weak adhesive force or van der Waals force.
  • the silicone resin of the silicone resin layer 14 is sufficiently cross-linked so as not to exhibit an adhesive force, the binding force due to van der Waals force It is thought that it is combined with.
  • the silicone resin of the silicone resin layer 14 often has a certain weak adhesive force. Even when the adhesiveness is extremely low, when the electronic device member is formed on the laminated body after the glass laminated body 10 is manufactured, the silicone resin of the silicone resin layer 14 is removed from the glass substrate 16 by a heating operation or the like.
  • the bonding strength between the silicone resin layer 14 and the glass substrate 16 is increased by adhering to the surface.
  • the surface 14a of the silicone resin layer 14 before lamination or the first main surface 16a of the glass substrate 16 before lamination can be laminated by performing a treatment for weakening the bonding force between them.
  • the bonding strength at the interface between the silicone resin layer 14 and the glass substrate 16 can be weakened, and the peel strength (y) can be lowered.
  • the peelability of the surface of the silicone resin layer 14 of the present invention can be adjusted.
  • the silicone resin layer 14 is bonded to the surface of the support base 12 with a strong bonding force such as an adhesive force or an adhesive force.
  • a strong bonding force such as an adhesive force or an adhesive force.
  • the thickness of the silicone resin layer 14 is not particularly limited, but is preferably 2 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and even more preferably 5 to 20 ⁇ m. When the thickness of the silicone resin layer 14 is within such a range, even if air bubbles or foreign matter may be present between the silicone resin layer 14 and the glass substrate 16, the occurrence of distortion defects in the glass substrate 16 is suppressed. can do. In addition, if the thickness of the silicone resin layer 14 is too thick, it takes time and materials to form it, which is not economical and the heat resistance may decrease. Moreover, when the thickness of the silicone resin layer 14 is too thin, the adhesiveness of the silicone resin layer 14 and the glass substrate 16 may fall.
  • the silicone resin layer 14 may be composed of two or more layers. In this case, “the thickness of the silicone resin layer 14” means the total thickness of all the layers. Moreover, when the silicone resin layer 14 consists of two or more layers, resin which forms each layer may consist of a different crosslinked silicone resin.
  • the silicone resin layer 14 preferably has excellent heat resistance. More specifically, the 5% weight reduction temperature of the silicone resin of the silicone resin layer 14 is preferably 450 ° C. or higher, and more preferably 500 ° C. or higher.
  • the upper limit is not particularly limited, but is usually 600 ° C. or lower in many cases. If it is in the said range, decomposition
  • the 5% weight loss temperature is determined when the sample is heated from room temperature to 700 ° C. under a nitrogen atmosphere (100 ml / min) using a thermogravimetric analyzer at a rate of temperature increase of 15 ° C./min. The temperature at which the weight is reduced by 5%.
  • the silicone resin of the silicone resin layer 14 is a cross-linked product of a crosslinkable organopolysiloxane containing a siloxane unit (A) represented by the formula (1) described later.
  • A siloxane unit
  • the crosslinkable organopolysiloxane used in the present invention contains a siloxane unit (A) represented by the formula (1).
  • A siloxane unit
  • the basic structural unit of organopolysiloxane is classified according to how many monovalent organic groups represented by methyl group and phenyl group are bonded to silicon atoms.
  • the organic group called D unit shown below is 2 Bifunctional siloxane unit with one bond, trifunctional siloxane unit with one organic group called T unit, monofunctional siloxane unit with three organic groups called M unit, called Q unit It consists of a tetrafunctional siloxane unit having no organic group.
  • the Q unit is a unit that does not have an organic group bonded to a silicon atom (an organic group having a carbon atom bonded to a silicon atom), but is regarded as a siloxane unit in the present invention.
  • R represents a monovalent organic group represented by a methyl group or a phenyl group.
  • the siloxane bond is a bond in which two silicon atoms are bonded through one oxygen atom, so that the oxygen atom per silicon atom in the siloxane bond is regarded as 1 ⁇ 2, Expressed as O 1/2 . More specifically, for example, in one D unit, one silicon atom is bonded to two oxygen atoms, and each oxygen atom is bonded to a silicon atom of another unit. The formula is -O 1/ 2- (R) 2 Si-O 1/ 2- . Since there are two O 1/2 s , the D unit is usually expressed as (R) 2 SiO 2/2 .
  • the O unit 1/2 expression is used for each oxygen atom to express the M unit, D unit, T unit, and Q unit as follows.
  • the terminal unit of the polymer chain is a unit other than the M unit
  • atoms other than the silicon atom bonded to O 1/2 of the terminal unit are 1 ⁇ 2 equivalent oxygen atoms, and one in total And represents an oxygen atom in a hydroxyl group or an alkoxy group.
  • the hydroxyl group bonded to the silicon atom of the terminal unit is —O 1/2 / H.
  • each of two silicon atoms is bonded to an oxygen atom, and each oxygen atom is bonded to a silicon atom outside the unit. Expressed as 1/2 .
  • the siloxane unit (A) can be regarded as a D unit because it is bifunctional.
  • the crosslinkable organopolysiloxane will be described assuming that the siloxane unit (A) is one type of D unit in the present invention.
  • R 1 to R 4 in the formula (1) each independently represents a monovalent hydrocarbon group which may contain a hetero atom.
  • the monovalent hydrocarbon group include a monovalent aliphatic hydrocarbon group (for example, an alkyl group, an alkenyl group, and an alkynyl group) or a monovalent aromatic hydrocarbon group.
  • the number of carbon atoms contained in the hydrocarbon group is not particularly limited, but is preferably 10 or less, more preferably 4 or less, in that decomposition of the silicone resin under high-temperature treatment conditions is further suppressed.
  • Specific examples include a methyl group, an ethyl group, a vinyl group, an allyl group, an ethynyl group, and a phenyl group.
  • the monovalent hydrocarbon group may contain a hetero atom, and examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. More specifically, —X 1 —, —N (R a ) —, —C ( ⁇ X 2 ) —, —CON (R b ) —, —C ( ⁇ X 3 ) X 4 —, —SO 2 It is preferably contained in the form of N (R c ) —, a halogen atom, or a group combining these.
  • X 1 to X 4 each independently represents an oxygen atom and a sulfur atom
  • R a , R b , and R c each independently represents an organic group having 4 or less carbon atoms.
  • R 1 to R 4 are preferably an alkyl group having 4 or less carbon atoms (particularly preferred is a methyl group) or a phenyl group, from the viewpoint that decomposition of the silicone resin under high-temperature treatment conditions is further suppressed. .
  • Ar represents a divalent aromatic hydrocarbon group which may have a substituent.
  • the two bonds of Ar are bonds of carbon atoms constituting the aromatic ring.
  • the number of carbon atoms contained in the divalent aromatic hydrocarbon group is not particularly limited, but is preferably 6 to 18, more preferably 6 to 12 in terms of further suppressing decomposition of the silicone resin under high temperature treatment conditions.
  • Specific examples of the divalent aromatic hydrocarbon group include a phenylene group, a naphthylene group, a biphenylene group, and a terphenylene group.
  • a phenylene group is preferable in that the cost can be reduced, the flexibility of the silicone resin layer 14 is excellent, and the adhesion and peelability of the silicone resin layer 14 to the glass substrate 16 are more excellent.
  • a polycyclic aromatic hydrocarbon group as Ar.
  • the type of the substituent is not particularly limited, and examples thereof include a halogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an alkoxy group, an arylalkyl group, an aryloxy group, a heterocyclic group, an amino group, a nitro group, And a cyano group.
  • the crosslinkable organopolysiloxane in the present invention is a polymer containing only a siloxane unit (A) as a siloxane unit, or a copolymer containing a siloxane unit (A) and another siloxane unit.
  • the crosslinkable organopolysiloxane in the present invention is preferably a linear polymer, and the other siloxane units are preferably D units other than the siloxane unit (A).
  • the crosslinkable organopolysiloxane is a linear polymer
  • the crosslinkable organopolysiloxane is a polymer containing only the siloxane unit (A), a polymer containing the siloxane unit (A) and other D units, a siloxane unit ( There are polymers containing A) and M units, and polymers containing siloxane units (A), other D units and M units. However, two or more siloxane units (A), other D units, and M units may be present.
  • the crosslinkable organopolysiloxane in the present invention may be a non-linear polymer having a small number of branches.
  • the linear polymer has D units and optionally further M units.
  • the crosslinkable organopolysiloxane in the present invention is crosslinkable.
  • an organopolysiloxane consisting only of a siloxane unit (A) in which R 1 to R 4 are all methyl groups and Ar is a phenylene group is crosslinkable, It can be cross-linked with UV light or the like.
  • a siloxane unit (A) in which a part of R 1 to R 4 is an alkenyl group or an alkynyl group can be contained.
  • the crosslinkable organopolysiloxane in the present invention is preferably a polymer containing only a siloxane unit (A) as a D unit, and a polymer containing a siloxane unit (A) and another D unit, and particularly a siloxane unit (A ) And other D units are preferred.
  • the cross-linked product (silicone resin) of organopolysiloxane containing other D units has higher flexibility than the cross-linked product of polyorganosiloxane (silicone resin) not containing other D units, and the silicone resin layer for the glass substrate Good adhesion.
  • the D unit other than the siloxane unit (A) is preferably a siloxane unit (B) represented by the formula (2).
  • R 5 and R 6 each independently represent a monovalent hydrocarbon group that may contain a hetero atom.
  • the definition of the monovalent hydrocarbon which may contain a hetero atom is the same as the case of R 1 to R 4 described above.
  • preferred monovalent hydrocarbon groups include alkenyl groups having 3 or less carbon atoms in addition to the above.
  • R 5 and R 6 an alkyl having 4 or less carbon atoms (particularly preferred is a methyl group) or an alkenyl group having 3 or less carbon atoms (in particular, a methyl group is preferable) in that decomposition of the silicone resin under high-temperature treatment conditions is further suppressed.
  • a vinyl group is preferable.
  • the crosslinking between the crosslinkable organopolysiloxanes further proceeds, and the decomposition of the silicone resin under high temperature treatment conditions is further suppressed, so that the siloxane unit (B) is R At least one of 5 and R 6 is an alkenyl group having 3 or less carbon atoms, and in the case of other than the alkenyl group, any one of siloxane unit (B-1) which is an alkyl group having 4 or less carbon atoms, and R 5 and R 6 Are selected from the group consisting of siloxane units (B-2) which are alkyl groups having 4 or less carbon atoms, and the siloxane units (B) in the crosslinkable organopolysiloxane consist only of siloxane units (B-1), or And an embodiment comprising a siloxane unit (B-1) and a siloxane unit (B-2).
  • R 5 and R 6 are alkenyl group having 3 or less carbon atoms, preferably a vinyl group.
  • R 5 and R 6 are other than an alkenyl group, it is an alkyl group having 4 or less carbon atoms, preferably a methyl group.
  • a preferred embodiment of the siloxane unit (B-1) is that one of R 5 and R 6 is a methyl group and the other is a vinyl group in that the decomposition of the silicone resin under high temperature treatment conditions is further suppressed. An embodiment is mentioned.
  • both R 5 and R 6 are alkyl groups having 4 or less carbon atoms, preferably methyl groups.
  • the ratio of the siloxane unit (B-1) to the total siloxane unit (B) [siloxane unit (B- 1)] ⁇ 100 / [siloxane unit (B-1) + siloxane unit (B-2)] is not particularly limited, but the crosslinking between the crosslinkable organopolysiloxanes proceeds further, and the silicone resin under high temperature treatment conditions 30 to 80 mol% is preferable, and 40 to 60 mol% is more preferable in that the decomposition of is further suppressed and the adhesiveness and peelability of the silicone resin layer 14 to the glass substrate 16 are more excellent.
  • the crosslinkable organopolysiloxane may contain siloxane units (for example, M unit, T unit, Q unit) other than the siloxane unit (A) and the siloxane unit (B) described above.
  • siloxane units for example, M unit, T unit, Q unit
  • T units and Q units the flexibility of the cross-linked product
  • M units and Q units the flexibility of the cross-linked product
  • M units the polymer has a low number average molecular weight and has physical properties such as heat resistance. May decrease. Therefore, it is preferable that the number thereof is small.
  • the content of units other than the D unit (siloxane unit (A) and siloxane unit (B)) is preferably 0 to 20 mol%, and 0 to 5 mol. % Is more preferable.
  • the ratio of the siloxane unit (A) to the total of the siloxane unit (A) and the siloxane unit (B) 10 to 90 mol% is preferable, 30 to 90 mol% is more preferable, and 40 to 90 mol% is more preferable in that the decomposition of the silicone resin in the resin is further suppressed and the adhesion and peelability of the silicone resin layer 14 to the glass substrate 16 are more excellent. More preferred is ⁇ 60 mol%.
  • the ratio of the total of the siloxane unit (A) and the siloxane unit (B) with respect to the total siloxane units in the crosslinkable organopolysiloxane further suppresses the decomposition of the silicone resin under high-temperature treatment conditions, and the silicone resin layer 14 80 to 100 mol% is preferable, and 95 to 100 mol% is more preferable in terms of better adhesion to the glass substrate 16 and peelability.
  • the bonding type of the siloxane unit (A) and the siloxane unit (B) in the crosslinkable organopolysiloxane is not particularly limited, and may be any of a random copolymer, a block copolymer, and an alternating copolymer. Also good.
  • an alternating copolymer is preferable at the point by which decomposition
  • the alternating copolymer of the siloxane unit (A) and the siloxane unit (B) is a bond between the siloxane unit (A) and the siloxane unit (B), and a bond between the siloxane unit (A) and the siloxane unit (A).
  • the alternating copolymer of the siloxane unit (A) and the siloxane unit (B) in the present invention may contain a small number of random bond portions or block bond portions.
  • the proportion of the siloxane units (A) and siloxane units (B) in the alternating copolymer is preferably 80 to 100 mol%, more preferably 90 to 100 mol%, based on the total of the above three types of bonds. More preferred is 95 to 100 mol%.
  • the siloxane unit (A) in the alternating copolymer and a siloxane unit (B) The ratio of the siloxane unit (A) to the total of 50) is preferably 50 ⁇ 5 mol%.
  • the alternating copolymer in the present invention may be one kind of silicone resin, or a mixture ratio of siloxane units (A) and siloxane units (B) by mixing two or more kinds of silicone resins. It may be obtained by adjusting so as to have a desirable ratio.
  • the number average molecular weight of the crosslinkable organopolysiloxane is not particularly limited, but it is excellent in handleability, excellent in film formability, and is more resistant to decomposition of the silicone resin under high temperature processing conditions.
  • the number average molecular weight in terms of polystyrene as measured by chromatography is preferably 5,000 to 30,000, more preferably 10,000 to 20,000.
  • the number average molecular weight of the crosslinkable organopolysiloxane can be adjusted by controlling the reaction conditions. For example, the molecular weight can be controlled by changing the amount and type of terminal groups and the monomer mixing ratio. When the amount of terminal groups is increased, a low molecular weight product is obtained, and when the amount is decreased, a high molecular weight is obtained. Further, when the monomer ratio is biased, a low molecular weight product is obtained, and when the ratio is made equal, a high molecular weight product is obtained.
  • the method for producing the crosslinkable organopolysiloxane is not particularly limited as long as the siloxane unit (A) represented by the above formula (1) is included.
  • the silane compound represented by the formula (3) can be produced by polymerizing by a condensation reaction or a hydrolysis / condensation reaction.
  • a crosslinkable organopolysiloxane having a siloxane unit (B) it can be produced using a silane compound represented by the formula (4).
  • the crosslinkable organopolysiloxane having other siloxane units can be produced using a silane compound having at least one silanol group or hydrolyzable group.
  • the polymerization reaction is usually carried out in an inert solvent, and the reaction can be carried out only by heating in the absence of a catalyst. If necessary, a reaction catalyst can be used.
  • a crosslinkable organopolysiloxane having a siloxane unit (A) and a method for producing the same are basically known, and are described in, for example, Japanese Patent Application Laid-Open No. 9-59387 and Japanese Patent Application Laid-Open No. 2008-280402. .
  • As the crosslinkable organopolysiloxane and the method for producing the same in the present invention those described in the known literature can be used.
  • R 1 ⁇ R 6 have the same meanings as R 1 ⁇ R 6 in the formula (1) and (2).
  • X and Y each independently represent a hydroxyl group or a hydrolyzable group (for example, primary to tertiary amino groups such as amino group, monoalkylamino group, dialkylamino group, halogen group, alkoxy group) Etc.).
  • the alternating copolymer can be obtained by polymerizing two kinds of monomers having different reactivities.
  • X is a polymerization reactive group of the silane compound represented by the above formula (3) to be the siloxane unit (A) and a polymerization reactive group of the silane compound represented by the above formula (4) to be the siloxane unit (B).
  • Y having a mutual reactivity higher than both the reactivity between X and the reactivity between Y is selected, and a substantially equimolar amount of the two silane compounds is reacted.
  • an alternating copolymer can be produced.
  • X and Y are a hydroxyl group, and the other is a primary to tertiary amino group such as an amino group, a monoalkylamino group, or a dialkylamino group.
  • one is preferably a hydroxyl group and the other is a dialkylamino group, more preferably X is a hydroxyl group and Y is a dialkylamino group.
  • the alkyl group in the monoalkylamino group or dialkylamino group is preferably an alkyl group having 4 or less carbon atoms, and particularly preferably a methyl group.
  • Alternating copolymers of organopolysiloxanes and their production methods are basically known. For example, Macromolecules 1998, 31, 8501 or Journal of Applied Polymer Science, Vol. 106, 1007, 2007). The polymer and its manufacturing method are described. As the alternating copolymer and the production method thereof in the present invention, those described in these known documents can be used.
  • an organic solvent solution of a silane compound represented by the above formula (3) (where X is a hydroxyl group) and a silane compound represented by the above formula (4) (Y is a dimethylamino group) A method of mixing an organic solvent solution of a certain thing at a ratio in which both silane compounds are equimolar amounts and reacting while heating and stirring, dividing one organic solvent solution into another organic solvent solution with heating and stirring, or continuously Alternatively, an alternating copolymer can be produced by a method of reacting while adding them.
  • the crosslinkable organopolysiloxane is cross-linked and cured through a predetermined cross-linking reaction to become a cross-linked product which is the silicone resin in the present invention.
  • the form of crosslinking is not particularly limited, and a known form can be appropriately employed depending on the kind of the crosslinkable group contained in the crosslinkable organopolysiloxane. Examples thereof include a hydrosilylation reaction, a silanol group condensation reaction, a heat treatment, a high energy ray treatment, or a radical reaction with a radical polymerization initiator.
  • the crosslinkable organopolysiloxane has a radical reactive group such as an alkenyl group or an alkynyl group
  • the crosslinkable product (silicone resin) is crosslinked by a reaction between radical reactive groups via the radical reaction. It becomes.
  • crosslinkable organopolysiloxane has a silanol group, it crosslinks by the condensation reaction of silanol groups, and turns into a crosslinked material.
  • the crosslinkable organopolysiloxane has a hydrogen atom bonded to an alkenyl group or a silicon atom, it is crosslinked by a hydrosilylation reaction in the presence of a hydrosilylation catalyst (for example, a platinum-based catalyst) to form a crosslinked product.
  • a hydrosilylation catalyst for example, a platinum-based catalyst
  • the form through radical reaction is preferable in that the generation of by-products due to the reaction is suppressed and a denser and excellent heat-resistant silicone resin can be obtained.
  • a cross-linkable organopolysiloxane containing two or more types of siloxane units (A) represented by the formula (1) may be used in combination, or the siloxane units represented by the formula (1).
  • forming a silicone resin as a crosslinked product by crosslinking and curing the crosslinkable organopolysiloxane is simply referred to as curing of the crosslinkable organopolysiloxane.
  • the glass laminate 10 of the present invention is a laminate in which the support base 12, the glass substrate 16, and the silicone resin layer 14 exist between them.
  • the method for producing the glass laminate 10 of the present invention is not particularly limited, but in order to obtain a laminate having a peel strength (x) higher than the peel strength (y), a predetermined crosslinkable organopolysiloxane is formed on the surface of the support substrate 12.
  • a method of forming the silicone resin layer 14 by curing siloxane is preferable.
  • a layer of a crosslinkable organopolysiloxane is formed on the surface of the support substrate 12, the crosslinkable organopolysiloxane is cured on the surface of the support substrate 12 to form the silicone resin layer 14, and then the silicone resin layer 14
  • the crosslinkable organopolysiloxane is cured on the surface of the support substrate 12, it is considered that the crosslinkable organopolysiloxane adheres due to the interaction with the surface of the support substrate 12 during the curing reaction, and the peel strength between the silicone resin and the surface of the support substrate 12 increases. .
  • a step of forming a silicone resin layer 14 by forming a crosslinkable organopolysiloxane layer on the surface of the support substrate 12 and curing the crosslinkable organopolysiloxane on the surface of the support substrate 12 is a resin layer formation step.
  • the process of laminating the glass substrate 16 on the silicone resin surface of the silicone resin layer 14 to form the glass laminate 10 is referred to as a lamination process, and the procedure of each process will be described in detail.
  • a layer of a crosslinkable organopolysiloxane is formed on the surface of the support base 12, and the crosslinkable organopolysiloxane is cured on the surface of the support base 12 to form the silicone resin layer 14.
  • a coating composition in which the crosslinkable organopolysiloxane is dissolved in a solvent is used, and this composition is applied onto the support substrate 12. It is preferable to form a solution layer and then remove the solvent to form a crosslinkable organopolysiloxane layer.
  • the thickness of the crosslinkable organopolysiloxane layer can be controlled by adjusting the concentration of the crosslinkable organopolysiloxane in the composition.
  • the solvent is not particularly limited as long as it can easily dissolve the crosslinkable organopolysiloxane in a working environment and can be easily volatilized and removed. Specifically, toluene, xylene, THF, chloroform etc. can be illustrated, for example.
  • the method for applying the composition containing the crosslinkable organopolysiloxane on the surface of the support substrate 12 is not particularly limited, and a known method can be used. Examples thereof include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating.
  • the crosslinkable organopolysiloxane on the support substrate 12 is cured to form the silicone resin layer 14. More specifically, as shown in FIG. 2A, in this step, a silicone resin layer 14 is formed on the surface of at least one side of the support base 12.
  • a silicone resin layer 14 is formed on the surface of at least one side of the support base 12.
  • an optimum method is appropriately selected according to the crosslinking type of the crosslinkable organopolysiloxane.
  • the crosslinkable organopolysiloxane has a radical polymerizable group
  • it is preferable to produce the silicone resin layer 14 by thermosetting in that a silicone resin excellent in adhesion to the glass substrate 16 and heat resistance can be obtained.
  • thermosetting the aspect of thermosetting is explained in full detail.
  • the temperature condition for thermosetting the crosslinkable organopolysiloxane is not particularly limited as long as the heat resistance of the silicone resin layer 14 is improved and the peel strength (y) after lamination with the glass substrate 16 can be controlled as described above. However, 300 to 475 ° C. is preferable, and 350 to 450 ° C. is more preferable.
  • the heating time is usually preferably 10 to 300 minutes, more preferably 20 to 120 minutes.
  • the temperature of thermosetting is too low, the heat resistance and the flatness of the silicone resin layer 14 are lowered.
  • the peel strength (y) is too low, both of which are the glass substrate 16 and the silicone resin layer 14. Adhesiveness may be weakened.
  • the crosslinkable organopolysiloxane is preferably cured by precuring (precuring) and then curing (main curing).
  • Precuring is preferably carried out following the removal of the solvent.
  • the removal of the solvent is preferably performed by heating to 100 ° C. or higher, and precure can be continued by heating to 150 ° C. or higher.
  • the temperature at which the solvent is removed and precured and the heating time are preferably 100 to 420 ° C. and 5 to 60 minutes, more preferably 150 to 300 ° C. and 10 to 30 minutes.
  • a silicone resin layer that is easily peeled when the temperature is 420 ° C. or lower is obtained.
  • the glass substrate 16 is laminated on the silicone resin surface of the silicone resin layer 14 obtained in the resin layer forming step, and the layer of the supporting base 12, the silicone resin layer 14, and the glass substrate 16 are laminated.
  • This is a step of obtaining the glass laminate 10 provided in this order. More specifically, as shown in FIG. 2B, the surface (first main surface of the silicone resin layer) 14a opposite to the support base 12 side of the silicone resin layer 14 and the first main surface 16a.
  • the glass laminate 10 is obtained by laminating the silicone resin layer 14 and the glass substrate 16 with the first principal surface 16a of the glass substrate 16 having the second principal surface 16b as a lamination surface.
  • stacking the glass substrate 16 on the silicone resin layer 14 is not restrict
  • a well-known method is employable.
  • a method of stacking the glass substrate 16 on the surface of the silicone resin layer 14 under a normal pressure environment can be mentioned.
  • the glass substrate 16 may be pressure-bonded to the silicone resin layer 14 using a roll or a press. Air bubbles mixed between the silicone resin layer 14 and the glass substrate 16 can be removed relatively easily by pressure bonding using a roll or a press, which is preferable.
  • the surface of the glass substrate 16 in contact with the silicone resin layer 14 is sufficiently washed and laminated in an environment with a high degree of cleanliness.
  • pre-annealing process heat processing
  • the adhesion of the laminated glass substrate 16 to the silicone resin layer 14 can be improved, and an appropriate peel strength (y) can be obtained. Misalignment of members is less likely to occur, and the productivity of electronic devices is improved.
  • the conditions for the pre-annealing treatment are appropriately selected according to the type of the silicone resin layer 14 to be used, but the peel strength (y) between the glass substrate 16 and the silicone resin layer 14 is more appropriate. In view of this, it is preferable to perform heat treatment at 300 ° C. or higher (preferably 300 to 400 ° C.) for 5 minutes or longer (preferably 5 to 30 minutes).
  • the silicone resin layer 14 which provided the difference in the peeling strength with respect to the 1st main surface of the glass substrate 16 and the peeling strength with respect to the 1st main surface of the support base material 12 is not restricted to the said method.
  • a crosslinkable organopolysiloxane is cured on some peelable surface to produce a silicone resin film, This film can be interposed between the glass substrate 16 and the support base 12 and laminated simultaneously.
  • the adhesiveness by hardening of crosslinkable organopolysiloxane is low enough with respect to the glass substrate 16, and the adhesiveness is high enough with respect to the support base material 12, it bridge
  • the silicone resin layer 14 can be formed by curing the functional organopolysiloxane. Furthermore, even when the support base 12 is made of the same glass material as that of the glass substrate 16, it is possible to increase the peel strength with respect to the silicone resin layer 14 by performing a process for improving the adhesion of the support base 12 surface.
  • a chemical method that improves the fixing force chemically such as a silane coupling agent
  • a physical method that increases surface active groups such as a flame (flame) treatment
  • a surface such as a sandblast treatment
  • a mechanical processing method increase the catch by increasing the roughness of the material.
  • the glass laminate 10 of the present invention can be used for various applications, for example, manufacturing electronic parts such as a display device panel, PV, a thin film secondary battery, and a semiconductor wafer having a circuit formed on the surface, which will be described later. The use to do is mentioned.
  • the glass laminate 10 is often exposed (for example, 1 hour or longer) under high temperature conditions (for example, 400 ° C. or higher).
  • the display device panel includes LCD, OLED, electronic paper, plasma display panel, field emission panel, quantum dot LED panel, MEMS (Micro Electro Mechanical Systems) shutter panel, and the like.
  • the glass substrate with a member (glass substrate with a member for electronic devices) containing a glass substrate and the member for electronic devices is manufactured using the laminated body mentioned above.
  • the manufacturing method of this glass substrate with a member is not specifically limited, From the point which is excellent in productivity of an electronic device, the member for electronic devices is formed on the glass substrate in the said glass laminated body, and the laminated body with an electronic device member is used.
  • a method in which the manufactured and obtained laminate with a member for electronic devices is separated into a glass substrate with a member and a supporting substrate with a silicone resin layer by using the glass substrate side interface of the silicone resin layer as a release surface is preferable.
  • the step of forming a member for an electronic device by forming a member for an electronic device on the glass substrate in the glass laminate is a member forming step, and the glass substrate for the silicone resin layer from the laminate with the member for an electronic device.
  • the process of separating into a glass substrate with a member and a supporting substrate with a silicone resin layer using the side interface as a release surface is called a separation process. The materials and procedures used in each process are described in detail below.
  • a member formation process is a process of forming the member for electronic devices on the glass substrate 16 in the glass laminated body 10 obtained in the said lamination process. More specifically, as shown in FIG. 2C, the electronic device member 20 is formed on the second main surface 16b (exposed surface) of the glass substrate 16 to obtain the laminate 22 with the electronic device member. .
  • the electronic device member 20 used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.
  • the electronic device member 20 is a member that is formed on the glass substrate 16 in the glass laminate 10 and constitutes at least a part of the electronic device. More specifically, as the electronic device member 20, a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface (for example, Display member, solar cell member, thin film secondary battery member, electronic component circuit).
  • a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
  • a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc.
  • various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
  • a circuit for an electronic component in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
  • the manufacturing method of the laminated body 22 with the member for electronic devices mentioned above is not specifically limited, According to the conventionally well-known method according to the kind of structural member of the member for electronic devices, the 2nd main of the glass substrate 16 of the glass laminated body 10 is used.
  • the electronic device member 20 is formed on the surface 16b.
  • the electronic device member 20 is not all of the members finally formed on the second main surface 16b of the glass substrate 16 (hereinafter referred to as “all members”), but a part of all members (hereinafter referred to as “parts”). May be referred to as a member.
  • the glass substrate with a partial member peeled from the silicone resin layer 14 can be used as a glass substrate with an all member (corresponding to an electronic device described later) in the subsequent steps.
  • the other electronic device member may be formed in the peeling surface (1st main surface 16a) in the glass substrate with all the members peeled from the silicone resin layer 14.
  • the laminated body with all members can be assembled, and then the support substrate 18 with the silicone resin layer can be peeled from the laminated body with all members to manufacture an electronic device.
  • the laminate with all members is assembled using two sheets, and then the two support bases 18 with the silicone resin layer are peeled from the laminate with all members to form a glass substrate with a member having two glass substrates. It can also be manufactured.
  • an organic EL is formed on the surface of the glass laminate 10 opposite to the silicone resin layer 14 side of the glass substrate 16 (corresponding to the second main surface 16b of the glass substrate 16).
  • a transparent electrode is formed, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc. are deposited on the surface on which the transparent electrode is formed, a back electrode is formed, and sealing is performed.
  • Various layers are formed and processed, such as sealing with a plate. Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
  • a resist film is used on the second main surface 16b of the glass substrate 16 of the glass laminate 10 by a general film forming method such as a CVD method or a sputtering method.
  • a TFT forming step of forming a thin film transistor (TFT) by patterning the formed metal film, metal oxide film, etc., and patterning a resist solution on the second main surface 16b of the glass substrate 16 of another glass laminate 10 Various processes such as a CF forming step for forming a color filter (CF) to be used for forming, a laminating step for laminating a laminated body with TFT obtained in the TFT forming step and a laminated body with CF obtained in the CF forming step, etc. Process.
  • the TFT and the CF are formed on the second main surface 16b of the glass substrate 16 using a well-known photolithography technique, etching technique, or the like.
  • a resist solution is used as a coating solution for pattern formation.
  • known dry cleaning or wet cleaning can be used.
  • the thin film transistor forming surface of the laminated body with TFT and the color filter forming surface of the laminated body with CF are opposed to each other, and are bonded using a sealant (for example, an ultraviolet curable sealant for cell formation).
  • a sealant for example, an ultraviolet curable sealant for cell formation.
  • a liquid crystal material is injected into a cell formed by the laminate with TFT and the laminate with CF.
  • the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
  • the separation step is performed by using the electronic device member-attached laminate 22 obtained in the member formation step, with the interface between the silicone resin layer 14 and the glass substrate 16 as a release surface.
  • the electronic device member 20 on the glass substrate 16 at the time of peeling is a part of the formation of all the necessary constituent members, the remaining constituent members can be formed on the glass substrate 16 after separation.
  • the method of peeling the glass substrate 16 and the support base material 12 is not specifically limited. Specifically, for example, a sharp blade-like object is inserted into the interface between the glass substrate 16 and the silicone resin layer 14 to give a trigger for peeling, and then a mixed fluid of water and compressed air is sprayed. Can be peeled off.
  • the electronic device member-attached laminate 22 is placed on the surface plate so that the support substrate 12 is on the upper side and the electronic device member 20 side is on the lower side, and the electronic device member 20 side is vacuumed on the surface plate. In this state, the blade is first allowed to enter the interface between the glass substrate 16 and the silicone resin layer 14.
  • the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted.
  • an air layer is formed on the interface between the silicone resin layer 14 and the glass substrate 16 and on the cohesive failure surface of the silicone resin layer 14, and the air layer spreads over the entire interface and cohesive failure surface, so that the supporting substrate 12 is easily peeled off. can do.
  • the support base material 12 can be laminated
  • the above-described method for manufacturing the glass substrate with member 24 is suitable for manufacturing a small display device used for a mobile terminal such as a mobile phone or a PDA.
  • the display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like.
  • the present invention can be applied to both passive drive type and active drive type display devices.
  • a panel for a display device having a glass substrate and a member for a display device a solar cell having a glass substrate and a member for a solar cell, a glass substrate and a member for a thin film secondary battery.
  • a thin film secondary battery an electronic component having a glass substrate and an electronic device member.
  • the display device panel include a liquid crystal panel, an organic EL panel, a plasma display panel, a field emission panel, and the like.
  • a glass plate made of non-alkali borosilicate glass (length 200 mm, width 200 mm, plate thickness 0.3 mm, linear expansion coefficient 38 ⁇ 10 ⁇ 7 / ° C., Asahi Glass Co., Ltd. trade name “AN100”) was used.
  • a glass plate (240 mm long, 240 mm wide, 0.4 mm thick, linear expansion coefficient 38 ⁇ 10 ⁇ 7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd., also made of non-alkali borosilicate glass. )It was used.
  • reaction solution was stirred at 110 ° C. for 1 hour. After completion of the stirring, the reaction solution was naturally cooled to room temperature, and the reaction solution was added to methanol (3250 parts by mass) for reprecipitation treatment. Next, the precipitate was collected and vacuum-dried to obtain a colorless and transparent liquid crosslinkable organopolysiloxane (S1).
  • the obtained crosslinkable organopolysiloxane (S1) had a number average molecular weight (polystyrene conversion) by GPC (gel permeation chromatography) of 1.2 ⁇ 10 4 . Further, by using a thermogravimetric analyzer (manufactured by TA Instruments Inc.), the temperature is increased from room temperature to 700 ° C. in a nitrogen atmosphere (100 ml / min) at a rate of temperature increase of 15 ° C./min. The 5% weight loss temperature of the functional organopolysiloxane (S1) was measured and found to be 535 ° C.
  • the structure of the crosslinkable organopolysiloxane (S1) was identified by 1 H NMR measurement, 29 Si NMR measurement, and 13 C NMR measurement.
  • 1 H NMR, 29 Si NMR, and 13 C NMR measuring apparatus ECA600 manufactured by JEOL RESONANCE
  • 1 H NMR measurement method CDCL 3 was added to a sample to prepare a sample concentration of 10% by mass. Tetramethylsilane was used as a standard.
  • 29 Si NMR measurement method CDCL 3 was added to a sample to prepare a sample concentration of 30% by mass.
  • acetylacetone chromium salt was added as a relaxation reagent, and it prepared so that it might become 0.1 mass% with respect to a sample.
  • Tetramethylsilane was used as a standard.
  • the composition of the copolymer is determined from the 1 H NMR measurement. Each assignment was determined for the spectrum obtained from 1 H NMR measurement by the method described in Journal of Applied Polymer Science, 2007, 106, 1007-1013.
  • a crosslinkable organopolysiloxane (S1) (30 parts by mass) was dissolved in xylene (70 parts by mass) to prepare a liquid material containing the crosslinkable organopolysiloxane (S1).
  • a support substrate having a thickness of 0.4 mm was cleaned with pure water, and further cleaned with UV.
  • a liquid material containing the crosslinkable organopolysiloxane (S1) was applied on the first main surface of the support substrate with a spin coater (coating amount 120 g / m 2 ).
  • a spin coater coating amount 120 g / m 2 .
  • the glass substrate A and the silicone resin layer surface of the supporting substrate were bonded together by vacuum pressing at room temperature to obtain a glass laminate A.
  • the supporting base material and the glass substrate were in close contact with the silicone resin layer without generating bubbles, there were no distortion defects, and the smoothness was good.
  • the glass laminate A was heated at 450 ° C. for 60 minutes in a nitrogen atmosphere and cooled to room temperature.
  • the glass substrate A was separated from the supporting substrate and the glass substrate, and the silicone resin layer was foamed or whitened. No change in appearance was observed.
  • glass The vacuum suction pad was adsorbed on the surface of the substrate and the supporting base that were not the release surfaces, and an external force was applied in the direction in which the glass substrate and the supporting base were separated from each other, thereby separating the glass substrate and the supporting base without being damaged.
  • the cutter was inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Specifically, the vacuum suction pad was pulled up while spraying a static eliminating fluid continuously from the ionizer toward the formed gap.
  • the silicone resin layer is separated from the glass substrate together with the supporting base material. From the result, the peeling strength (x) at the interface between the supporting base material layer and the silicone resin layer is determined as the peeling strength at the interface between the silicone resin layer and the glass substrate. It was confirmed that it was higher than (y).
  • Example 2 In the same manner as in Example 1, a crosslinkable organopolysiloxane (S2) was heat-cured on the first main surface of the support substrate to form a 6 ⁇ m silicone resin layer. Subsequently, a glass laminate B was obtained in the same manner as in Example 1. In the obtained glass laminate B, the supporting base material and the glass substrate were in close contact with the silicone resin layer without generating bubbles, there were no distortion defects, and the smoothness was good. Next, when the glass laminate B was subjected to the same heat treatment as in Example 1, changes in appearance such as separation of the support substrate of the glass laminate B and the glass substrate, foaming or whitening of the silicone resin layer were observed. There wasn't.
  • the glass laminated body B was isolate
  • Example 3 In the same manner as in Example 1, a crosslinkable organopolysiloxane (S3) was heat-cured on the first main surface of the support substrate to form a 6 ⁇ m thick silicone resin layer. Subsequently, a glass laminate C was obtained in the same manner as in Example 1. In the obtained glass laminate C, the supporting base material and the glass substrate were in close contact with the silicone resin layer without generating bubbles, there were no distortion defects, and the smoothness was good. Next, when the glass laminate C was subjected to the same heat treatment as in Example 1, changes in appearance such as separation of the support substrate of the glass laminate C and the glass substrate, foaming or whitening of the silicone resin layer were observed. There wasn't.
  • the glass laminated body C was isolate
  • a crosslinkable organopolysiloxane (S4) is applied onto the support substrate with a spin coater (coating amount 10 g / m 2 ), 180 A silicone resin layer having a film thickness of 16 ⁇ m was obtained by heating and curing in the air at 30 ° C. for 30 minutes. After cleaning the surface of the glass substrate that contacts the silicone resin layer with pure water cleaning, UV cleaning, etc., the silicone resin layer forming surface of the support substrate and the glass substrate are bonded together by a vacuum press at room temperature. A glass laminate P having an addition polymerization type silicone resin layer was obtained. Next, when the glass laminate P was subjected to the same heat treatment as in Example 1, changes in appearance such as foaming of the silicone resin layer and whitening were confirmed. In the glass laminate P, the glass substrate was partially separated.
  • Examples 1 to 3 were glass laminates having the silicone resin layer of the present invention, the decomposition of the silicone layer was not confirmed even when subjected to high temperature treatment, and the glass substrate could be easily peeled off.
  • the crosslinkable organopolysiloxane containing more siloxane units (A) it was confirmed that the 5% weight loss temperature was higher and the heat resistance was superior.
  • the silicone resin layer is decomposed during the treatment under the high temperature condition, and the silicone resin layer is foamed. And whitening was confirmed. Moreover, partial peeling of the glass substrate was also confirmed with foaming.
  • Example 4 an OLED is manufactured using the glass laminate A obtained in Example 1. First, silicon nitride, silicon oxide, and amorphous silicon are formed in this order on the second main surface of the glass substrate in the glass laminate A by plasma CVD. Next, low concentration boron is injected into the amorphous silicon layer by an ion doping apparatus, and a dehydrogenation process is performed by heating at 450 ° C. for 60 minutes in a nitrogen atmosphere. Next, the amorphous silicon layer is crystallized by a laser annealing apparatus.
  • low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas.
  • a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method to form a gate insulating film, then molybdenum is formed by a sputtering method, and etching is performed using a photolithography method.
  • a gate electrode is formed.
  • high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area.
  • an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography.
  • a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method.
  • an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography.
  • a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
  • the organic EL structure is formed on the glass substrate by the above procedure, and the glass laminate A (hereinafter referred to as panel A) having the organic EL structure on the glass substrate is used in the present invention. It is a laminated body (panel for display apparatuses with a support base material) with a member for electronic devices. Subsequently, after vacuum-adsorbing the sealing body side of the panel A to the surface plate, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the silicone resin layer at the corner portion of the panel A, and glass Provides a trigger for peeling at the interface between the substrate and the silicone resin layer.
  • a suction pad is raised.
  • the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation).
  • the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap.
  • the separation surface of the glass substrate separated by the same method as in Example 1 was cleaned, the separated glass substrate was cut using a laser cutter or a scribe-break method, and divided into a plurality of cells.
  • the glass substrate on which the EL structure is formed and the counter substrate are assembled, and a module forming process is performed to manufacture an OLED.
  • the OLED obtained in this way does not have a problem in characteristics.
  • Example 5 an LCD is manufactured using the glass laminate A obtained in Example 1.
  • two glass laminates A are prepared, and silicon nitride, silicon oxide, and amorphous silicon are formed in this order on the second main surface of the glass substrate in one glass laminate A1 by plasma CVD.
  • low concentration boron is injected into the amorphous silicon layer by an ion doping apparatus, and a dehydrogenation process is performed by heating at 450 ° C. for 60 minutes in a nitrogen atmosphere.
  • the amorphous silicon layer is crystallized by a laser annealing apparatus.
  • low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas.
  • a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method and a gate insulating film is formed, molybdenum is formed by a sputtering method, and the gate is etched by photolithography. An electrode is formed.
  • high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area.
  • an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography.
  • a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method.
  • an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography.
  • a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
  • the other glass laminate A2 is heat-treated at 450 ° C. for 60 minutes in an air atmosphere.
  • a chromium film is formed on the second main surface of the glass substrate in the glass laminate A by a sputtering method, and a light shielding layer is formed by etching using a photolithography method.
  • a color resist is applied to the second main surface side of the glass substrate by a die coating method, and a color filter layer is formed by a photolithography method and heat curing.
  • a film of indium tin oxide is formed by a sputtering method to form a counter electrode.
  • an ultraviolet curable resin liquid is applied to the second main surface side of the glass substrate by a die coating method, and columnar spacers are formed by a photolithography method and thermal curing.
  • a polyimide resin solution is applied by a roll coating method, an alignment layer is formed by thermosetting, and rubbing is performed.
  • a sealing resin liquid is drawn in a frame shape by the dispenser method, and after dropping the liquid crystal in the frame by the dispenser method, two glass layers are laminated using the glass laminate A1 in which the pixel electrodes are formed as described above.
  • the second main surface sides of the glass substrate of the body A are bonded together, and an LCD panel is obtained by ultraviolet curing and thermal curing.
  • the second main surface of the glass laminate A1 is vacuum-adsorbed on a surface plate, and a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the silicone resin layer at the corner of the glass laminate A2. Triggering the peeling between the first main surface of the glass substrate and the peelable surface of the silicone resin layer.
  • the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation).
  • the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap.
  • the second main surface of the glass substrate on which the color filter is formed on the first main surface is vacuum-adsorbed on a surface plate, and the thickness is formed at the interface between the glass substrate and the silicone resin layer at the corner portion of the glass laminate A1.
  • a 0.1 mm stainless steel blade is inserted to give a trigger for peeling between the first main surface of the glass substrate and the peelable surface of the silicone resin layer.
  • sucking the 2nd main surface of the support base material of glass laminated body A1 with a vacuum suction pad a suction pad is raised.
  • only the LCD cell is left on the surface plate, and the supporting substrate to which the silicone resin layer is fixed can be peeled off.
  • a plurality of LCD cells composed of a glass substrate having a thickness of 0.1 mm are obtained.
  • Example 6 an OLED is manufactured using the glass laminate A obtained in Example 1.
  • molybdenum is deposited on the second main surface of the glass substrate in the glass laminate A by a sputtering method, and a gate electrode is formed by etching using a photolithography method.
  • a silicon nitride film is further formed on the second main surface side of the glass substrate by a plasma CVD method to form a gate insulating film, and then an indium gallium zinc oxide film is formed by a sputtering method to perform a photolithography method.
  • An oxide semiconductor layer is formed by the etching used.
  • a silicon nitride film is further formed on the second main surface side of the glass substrate by plasma CVD to form a channel protective layer, and then molybdenum is formed by sputtering and etching using a photolithography method is performed. Thus, a source electrode and a drain electrode are formed. Next, heat treatment is performed in the atmosphere at 450 ° C. for 60 minutes. Next, a silicon nitride film is further formed on the second main surface side of the glass substrate by a plasma CVD method to form a passivation layer, followed by an indium tin oxide film formed by a sputtering method and etching using a photolithography method. Thus, a pixel electrode is formed.
  • the organic EL structure is formed on the glass substrate by the above procedure, and the glass laminate A (hereinafter referred to as panel A) having the organic EL structure on the glass substrate is used in the present invention. It is a laminated body (panel for display apparatuses with a support base material) with a member for electronic devices. Subsequently, after vacuum-adsorbing the sealing body side of the panel A to the surface plate, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the silicone resin layer at the corner portion of the panel A, and glass Provides a trigger for peeling at the interface between the substrate and the silicone resin layer.
  • a suction pad is raised.
  • the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation).
  • the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap.
  • the separation surface of the glass substrate separated by the same method as in Example 1 was cleaned, the separated glass substrate was cut using a laser cutter or a scribe-break method, and divided into a plurality of cells.
  • the glass substrate on which the EL structure is formed and the counter substrate are assembled, and a module forming process is performed to manufacture an OLED.
  • the OLED obtained in this way does not have a problem in characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

 The present invention relates to a glass laminate which has, in the following order, a support substrate layer, a silicone resin layer and a glass substrate layer, and in which the peel strength of the interface of the support substrate layer and the silicone resin layer is higher than the peel strength of the interface of the glass substrate layer and the silicone resin layer, wherein the silicone resin of the silicone resin layer is the crosslinked product of a crosslinking organopolysiloxane containing a siloxane unit (A) represented by formula (1).

Description

ガラス積層体およびその製造方法、並びに、シリコーン樹脂層付き支持基材およびその製造方法GLASS LAMINATE AND METHOD FOR PRODUCING SAME, AND SUPPORT SUBSTRATE WITH SILICONE RESIN LAYER AND METHOD FOR PRODUCING SAME
 本発明は、ガラス積層体およびその製造方法に係り、特に、シリコーン樹脂層のシリコーン樹脂が所定のシロキサン単位を有するガラス積層体およびその製造方法に関する。
 また、本発明はシリコーン樹脂層付き支持基材およびその製造方法に係り、特に、ガラス基板がその表面に剥離可能に積層されるシリコーン樹脂層付き支持基材およびその製造方法に関する。
The present invention relates to a glass laminate and a method for producing the same, and more particularly, to a glass laminate having a predetermined siloxane unit in a silicone resin of a silicone resin layer and a method for producing the same.
The present invention also relates to a support substrate with a silicone resin layer and a method for producing the same, and more particularly to a support substrate with a silicone resin layer on which a glass substrate is releasably laminated and a method for producing the same.
 近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などのデバイス(電子機器)の薄型化、軽量化が進行しており、これらのデバイスに用いるガラス基板の薄板化が進行している。薄板化によりガラス基板の強度が不足すると、デバイスの製造工程において、ガラス基板のハンドリング性が低下する。 In recent years, devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the glass substrates used in these devices have been made thinner. Progressing. If the strength of the glass substrate is insufficient due to the thinning, the handling property of the glass substrate is lowered in the device manufacturing process.
 そこで、従来から、最終厚さよりも厚いガラス基板上にデバイス用部材(例えば、薄膜トランジスタ)を形成した後、ガラス基板を化学エッチング処理により薄板化する方法が広く採用されている。
 しかしながら、この方法では、例えば、1枚のガラス基板の厚さを0.7mmから0.2mmや0.1mmに薄板化する場合、元々のガラス基板の材料の大半をエッチング液で削り落とすことになるので、生産性や原材料の使用効率という観点では好ましくない。また、上記の化学エッチングによるガラス基板の薄板化方法においては、ガラス基板表面に微細な傷が存在する場合、エッチング処理によって傷を起点として微細な窪み(エッチピット)が形成され、光学的な欠陥となる場合があった。
Therefore, conventionally, a method of forming a device member (for example, a thin film transistor) on a glass substrate thicker than the final thickness and then thinning the glass substrate by chemical etching is widely used.
However, in this method, for example, when the thickness of one glass substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original glass substrate material is scraped off with an etching solution. Therefore, it is not preferable from the viewpoint of productivity and use efficiency of raw materials. In addition, in the method of thinning a glass substrate by the above chemical etching, if a fine scratch exists on the surface of the glass substrate, a fine recess (etch pit) is formed from the scratch by the etching process, resulting in an optical defect. There was a case.
 最近では、上記の課題に対応するため、薄板ガラス基板と補強板とを積層したガラス積層体を用意し、ガラス積層体の薄板ガラス基板上に表示装置などの電子デバイス用部材を形成した後、薄板ガラス基板から支持板を分離する方法が提案されている(例えば、特許文献1参照)。補強板は、支持板と、該支持板上に固定されたシリコーン樹脂層とを有し、シリコーン樹脂層と薄板ガラス基板とが剥離可能に密着される。ガラス積層体のシリコーン樹脂層と薄板ガラス基板の界面が剥離され、薄板ガラス基板から分離された補強板は、新たな薄板ガラス基板と積層され、ガラス積層体として再利用することが可能である。 Recently, in order to cope with the above problems, after preparing a glass laminate in which a thin glass substrate and a reinforcing plate are laminated and forming a member for an electronic device such as a display device on the thin glass substrate of the glass laminate, A method for separating a support plate from a thin glass substrate has been proposed (see, for example, Patent Document 1). The reinforcing plate has a support plate and a silicone resin layer fixed on the support plate, and the silicone resin layer and the thin glass substrate are in close contact with each other in a peelable manner. The reinforcing plate separated from the thin glass substrate is peeled off from the interface between the silicone resin layer of the glass laminate and the thin glass substrate, and can be reused as a glass laminate by being laminated with a new thin glass substrate.
国際公開第2007/018028号International Publication No. 2007/018028
 特許文献1に記載のガラス積層体に関して、近年さらに高い耐熱性が要求されるようになってきた。ガラス積層体のガラス基板上に形成される電子デバイス用部材の高機能化や複雑化に伴い、電子デバイス用部材を形成する際の温度がさらに高温になると共に、その高温に曝される時間も長時間を要する場合が少なくない。
 特許文献1に記載のガラス積層体は大気中300℃、1時間の処理に耐えうる。しかし、本発明者らの検討によれば、特許文献1に記載のガラス積層体におけるシリコーン樹脂層のシリコーン樹脂は、400℃においては短時間のうちに分解が起こり、多量のアウトガスが発生する。このようなアウトガスの発生は、ガラス基板上に形成される電子デバイス用部材を汚染し、結果として電子デバイスの生産性を低下させる原因となる。
 また、樹脂層の分解によりシリコーン樹脂層自体にクラックなどが生じ、その上に積層されるガラス基板との密着性が低下し、高温処理が施される電子デバイス用部材の製造時にガラス基板の位置ずれなどが生じやすく、結果として電子デバイスの生産性を低下させる懸念もある。
 さらに、ガラス積層体からガラス基板を分離する際に、熱劣化したシリコーン樹脂層の一部が製品側であるガラス基板の剥離面に付着してしまうことがあり、その除去が非常に困難であり、剥離性が低下する懸念があった。
In recent years, higher heat resistance has been required for the glass laminate described in Patent Document 1. As the electronic device members formed on the glass substrate of the glass laminate become more functional and complex, the temperature at which the electronic device members are formed becomes even higher, and the time exposed to the high temperatures also increases. It often takes a long time.
The glass laminate described in Patent Document 1 can withstand treatment at 300 ° C. for 1 hour in the air. However, according to the study by the present inventors, the silicone resin of the silicone resin layer in the glass laminate described in Patent Document 1 decomposes in a short time at 400 ° C., and a large amount of outgas is generated. Generation | occurrence | production of such an outgas contaminates the member for electronic devices formed on a glass substrate, and becomes a cause of reducing the productivity of an electronic device as a result.
In addition, cracks or the like occur in the silicone resin layer itself due to decomposition of the resin layer, the adhesion with the glass substrate laminated thereon is lowered, and the position of the glass substrate during the manufacture of the electronic device member subjected to high temperature treatment There is a concern that a deviation or the like is likely to occur, resulting in a decrease in productivity of the electronic device.
Furthermore, when separating the glass substrate from the glass laminate, a part of the thermally deteriorated silicone resin layer may adhere to the peeling surface of the glass substrate on the product side, which is very difficult to remove. There was a concern that the peelability would decrease.
 本発明は、上記課題に鑑みてなされたものであって、高温加熱処理条件下でもシリコーン樹脂層の熱分解が抑制され、高温加熱処理後でもガラス基板を容易に剥離することができるガラス積層体およびその製造方法を提供することを目的とする。
 また、本発明は、該ガラス積層体の製造に使用されるシリコーン樹脂層付き支持基材およびその製造方法を提供することも目的とする。
The present invention has been made in view of the above problems, and is a glass laminate in which thermal decomposition of a silicone resin layer is suppressed even under high-temperature heat treatment conditions, and a glass substrate can be easily peeled even after high-temperature heat treatment. And it aims at providing the manufacturing method.
Another object of the present invention is to provide a support substrate with a silicone resin layer used for the production of the glass laminate and a method for producing the same.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成した。
 すなわち、本発明の第1の態様は、支持基材の層とシリコーン樹脂層とガラス基板の層とをこの順で備え、支持基材の層とシリコーン樹脂層の界面の剥離強度がガラス基板の層とシリコーン樹脂層の界面の剥離強度よりも高い、ガラス積層体であって、シリコーン樹脂層のシリコーン樹脂が、後述する式(1)で表されるシロキサン単位(A)を含む架橋性オルガノポリシロキサンの架橋物である、ガラス積層体である。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the first aspect of the present invention includes a support base layer, a silicone resin layer, and a glass substrate layer in this order, and the peel strength at the interface between the support base layer and the silicone resin layer is that of the glass substrate. A glass laminate having a higher peel strength at the interface between the layer and the silicone resin layer, wherein the silicone resin of the silicone resin layer contains a siloxane unit (A) represented by the formula (1) described later It is a glass laminate that is a crosslinked product of siloxane.
 第1の態様において、シロキサン単位(A)におけるR~Rが、それぞれ独立に、炭素数4以下のアルキル基またはフェニル基であることが好ましい。
 第1の態様において、架橋性オルガノポリシロキサンが、さらに後述する式(2)で表されるシロキサン単位(B)を含むことが好ましい。
 第1の態様において、架橋性オルガノポリシロキサンにおいて、シロキサン単位(A)とシロキサン単位(B)の合計に対するシロキサン単位(A)の割合が30~90モル%であり、全シロキサン単位に対するシロキサン単位(A)とシロキサン単位(B)の合計の割合が80~100モル%であることが好ましい。
In the first embodiment, it is preferable that R 1 to R 4 in the siloxane unit (A) are each independently an alkyl group having 4 or less carbon atoms or a phenyl group.
In the first aspect, it is preferable that the crosslinkable organopolysiloxane further includes a siloxane unit (B) represented by the formula (2) described later.
In the first embodiment, in the crosslinkable organopolysiloxane, the ratio of the siloxane unit (A) to the total of the siloxane unit (A) and the siloxane unit (B) is 30 to 90 mol%, and the siloxane unit ( The total proportion of A) and the siloxane unit (B) is preferably 80 to 100 mol%.
 第1の態様において、シロキサン単位(B)が、RとRの少なくとも一方が炭素数3以下のアルケニル基でありアルケニル基以外の場合は炭素数4以下のアルキル基であるシロキサン単位(B-1)、および、RとRのいずれも炭素数4以下のアルキル基であるシロキサン単位(B-2)からなる群から選択され、架橋性オルガノポリシロキサン中のシロキサン単位(B)が、シロキサン単位(B-1)のみからなるか、または、シロキサン単位(B-1)とシロキサン単位(B-2)からなることが好ましい。
 第1の態様において、架橋性オルガノポリシロキサンが、シロキサン単位(A)とシロキサン単位(B)の交互共重合体であることが好ましい。
 第1の態様において、シリコーン樹脂層の厚さが2~100μmであることが好ましい。
 第1の態様において、支持基材がガラス板であることが好ましい。
In the first embodiment, the siloxane unit (B) is a siloxane unit (B) in which at least one of R 5 and R 6 is an alkenyl group having 3 or less carbon atoms and is an alkyl group having 4 or less carbon atoms in the case of other than the alkenyl group. -1), and R 5 and R 6 are both selected from the group consisting of siloxane units (B-2) which are alkyl groups having 4 or less carbon atoms, and the siloxane units (B) in the crosslinkable organopolysiloxane are It is preferable that the siloxane unit (B-1) alone or the siloxane unit (B-1) and the siloxane unit (B-2).
In the first aspect, the crosslinkable organopolysiloxane is preferably an alternating copolymer of a siloxane unit (A) and a siloxane unit (B).
In the first embodiment, the thickness of the silicone resin layer is preferably 2 to 100 μm.
1st aspect WHEREIN: It is preferable that a support base material is a glass plate.
 本発明の第2の態様は、支持基材の片面に架橋性オルガノポリシロキサンの層を形成し、支持基材面上で架橋性オルガノポリシロキサンを架橋させてシリコーン樹脂層を形成し、次いでシリコーン樹脂層の前記支持基板が接する面とは反対側の面にガラス基板を積層することを特徴とするガラス積層体を製造する方法である。 In the second aspect of the present invention, a layer of a crosslinkable organopolysiloxane is formed on one side of a support substrate, and the silicone resin layer is formed by crosslinking the crosslinkable organopolysiloxane on the surface of the support substrate. A method for producing a glass laminate, comprising laminating a glass substrate on a surface of a resin layer opposite to a surface that contacts the support substrate.
 本発明の第3の態様は、支持基材と支持基材面上に設けられた剥離性表面を有するシリコーン樹脂層とを有する、シリコーン樹脂層付き支持基材であり、シリコーン樹脂層のシリコーン樹脂が、後述する式(1)で表されるシロキサン単位(A)を含む架橋性オルガノポリシロキサンの架橋物である、シリコーン樹脂層付き支持基材である。
 第3の態様において、架橋性オルガノポリシロキサンが、さらに式(2)で表されるシロキサン単位(B)を含むことが好ましい。
 第3の態様において、架橋性オルガノポリシロキサンが、シロキサン単位(A)とシロキサン単位(B)の交互共重合体であることが好ましい。
 第3の態様において、シリコーン樹脂層の厚さが2~100μmであることが好ましい。
 第3の態様において、支持基材がガラス板であることが好ましい。
3rd aspect of this invention is a support base material with a silicone resin layer which has a support base material and the silicone resin layer which has the peelable surface provided on the support base material surface, Silicone resin of a silicone resin layer Is a support substrate with a silicone resin layer, which is a crosslinked product of a crosslinkable organopolysiloxane containing a siloxane unit (A) represented by the formula (1) described later.
In the third aspect, the crosslinkable organopolysiloxane preferably further contains a siloxane unit (B) represented by the formula (2).
In the third aspect, the crosslinkable organopolysiloxane is preferably an alternating copolymer of a siloxane unit (A) and a siloxane unit (B).
In the third aspect, the thickness of the silicone resin layer is preferably 2 to 100 μm.
In the third aspect, the supporting substrate is preferably a glass plate.
 本発明の第4の態様は、支持基材面に架橋性オルガノポリシロキサンの層を形成して支持基材面上で架橋性オルガノポリシロキサンを架橋させてシリコーン樹脂層を形成することを特徴とするシリコーン樹脂層付き支持基材を製造する方法である。 According to a fourth aspect of the present invention, a silicone resin layer is formed by forming a crosslinkable organopolysiloxane layer on the support substrate surface and crosslinking the crosslinkable organopolysiloxane on the support substrate surface. It is the method of manufacturing the support base material with a silicone resin layer.
 本発明によれば、高温加熱処理条件下でもシリコーン樹脂層の熱分解が抑制され、高温加熱処理後でもガラス基板を容易に剥離することができるガラス積層体およびその製造方法を提供することができる。
 また、本発明によれば、該ガラス積層体の製造に使用されるシリコーン樹脂層付き支持基材およびその製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the thermal decomposition of a silicone resin layer is suppressed also under high temperature heat processing conditions, and the glass laminated body which can peel a glass substrate easily even after high temperature heat processing, and its manufacturing method can be provided. .
Moreover, according to this invention, the support base material with a silicone resin layer used for manufacture of this glass laminated body and its manufacturing method can be provided.
図1は、本発明に係るガラス積層体の一実施形態の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of a glass laminate according to the present invention. 図2(A)~2(D)は、本発明に係る部材付きガラス基板の製造方法の一実施形態を工程順に示す模式的断面図である。2 (A) to 2 (D) are schematic cross-sectional views showing an embodiment of a method for producing a glass substrate with a member according to the present invention in the order of steps.
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、以下の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えることができる。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not deviated from the scope of the present invention. Various modifications and substitutions can be made.
 本発明のガラス積層体は、支持基材の層とシリコーン樹脂層とガラス基板の層とをこの順で備える。すなわち、支持基材の層とガラス基板の層との間にシリコーン樹脂層を有し、したがって、シリコーン樹脂層は一方の側が支持基材の層に接し、他方の側がガラス基板の層に接している。
 本発明のガラス積層体においては、シリコーン樹脂層のシリコーン樹脂が、後述する式(1)で表されるシロキサン単位(A)を含む架橋性オルガノポリシロキサンの架橋物であることにより、ガラス基板に対して所定の密着性を示すと共に、高温処理条件下においてシリコーン樹脂の分解が抑制される。結果として、アウトガスの発生や、ガラス基板の位置ずれなどがより抑制される。シリコーン樹脂の分解が抑制される理由としては、架橋性オルガノポリシロキサンの主鎖中に2価の芳香族炭化水素基(例えば、フェニレン基)が含まれている点が挙げられる。この芳香族炭化水素基が含まれることにより、架橋性オルガノポリシロキサンの結合エネルギーが向上すると共に、架橋性オルガノポリシロキサンの運動性が低下し、シロキサン結合の開裂が進行しにくくなる。結果として、開裂に伴い生成するシロキサンの環状化合物の発生が抑制され、アウトガスの発生や、ガラス基板の位置ずれなどがより抑制される。
The glass laminate of the present invention comprises a support base material layer, a silicone resin layer, and a glass substrate layer in this order. That is, it has a silicone resin layer between the layer of the supporting substrate and the layer of the glass substrate, and therefore, the silicone resin layer has one side in contact with the layer of the supporting substrate and the other side in contact with the layer of the glass substrate. Yes.
In the glass laminate of the present invention, the silicone resin of the silicone resin layer is a cross-linked product of a cross-linkable organopolysiloxane containing a siloxane unit (A) represented by the formula (1) described later. On the other hand, it exhibits a predetermined adhesion and suppresses the decomposition of the silicone resin under high temperature treatment conditions. As a result, generation of outgas, displacement of the glass substrate, etc. are further suppressed. The reason why the decomposition of the silicone resin is suppressed is that the main chain of the crosslinkable organopolysiloxane contains a divalent aromatic hydrocarbon group (for example, a phenylene group). By including this aromatic hydrocarbon group, the bond energy of the crosslinkable organopolysiloxane is improved, the mobility of the crosslinkable organopolysiloxane is lowered, and the cleavage of the siloxane bond is difficult to proceed. As a result, generation of a cyclic compound of siloxane generated along with cleavage is suppressed, and generation of outgas, displacement of the glass substrate, and the like are further suppressed.
 図1は、本発明に係るガラス積層体の一例の模式的断面図である。
 図1に示すように、ガラス積層体10は、支持基材12の層とガラス基板16の層とそれらの間にシリコーン樹脂層14が存在する積層体である。シリコーン樹脂層14は、その一方の面が支持基材12の層に接すると共に、その他方の面がガラス基板16の第1主面16aに接している。言い換えると、シリコーン樹脂層14はガラス基板16の第1主面16aに接している。
 支持基材12の層およびシリコーン樹脂層14からなる2層部分は、液晶パネルなどの電子デバイス用部材を製造する部材形成工程において、ガラス基板16を補強する。なお、ガラス積層体10の製造のためにあらかじめ製造される支持基材12の層およびシリコーン樹脂層14からなる2層部分をシリコーン樹脂層付き支持基材18という。
FIG. 1 is a schematic cross-sectional view of an example of a glass laminate according to the present invention.
As shown in FIG. 1, the glass laminated body 10 is a laminated body in which the layer of the support base material 12, the layer of the glass substrate 16, and the silicone resin layer 14 exist among them. One side of the silicone resin layer 14 is in contact with the layer of the support base 12, and the other side is in contact with the first main surface 16 a of the glass substrate 16. In other words, the silicone resin layer 14 is in contact with the first major surface 16 a of the glass substrate 16.
The two-layer portion including the layer of the support base 12 and the silicone resin layer 14 reinforces the glass substrate 16 in a member forming process for manufacturing a member for an electronic device such as a liquid crystal panel. In addition, the two-layer part which consists of the layer of the support base material 12 manufactured previously for manufacture of the glass laminated body 10, and the silicone resin layer 14 is called the support base material 18 with a silicone resin layer.
 このガラス積層体10は、後述する部材形成工程まで使用される。即ち、このガラス積層体10は、そのガラス基板16の第2主面16b表面上に液晶表示装置などの電子デバイス用部材が形成されるまで使用される。その後、電子デバイス用部材が形成されたガラス積層体は、シリコーン樹脂層付き支持基材18と部材付きガラス基板に分離され、シリコーン樹脂層付き支持基材18は電子デバイスを構成する部分とはならない。シリコーン樹脂層付き支持基材18は、新たなガラス基板16と積層され、新たなガラス積層体10として再利用することができる。 The glass laminate 10 is used until a member forming step described later. That is, the glass laminate 10 is used until a member for an electronic device such as a liquid crystal display device is formed on the surface of the second main surface 16b of the glass substrate 16. Thereafter, the glass laminate on which the electronic device member is formed is separated into the supporting substrate 18 with the silicone resin layer and the glass substrate with the member, and the supporting substrate 18 with the silicone resin layer is not a part constituting the electronic device. . The support base material 18 with the silicone resin layer is laminated with a new glass substrate 16 and can be reused as a new glass laminate 10.
 支持基材12とシリコーン樹脂層14の界面は剥離強度(x)を有し、支持基材12とシリコーン樹脂層14の界面に剥離強度(x)を越える引き剥がし方向の応力が加えられると、支持基材12とシリコーン樹脂層14の界面が剥離する。シリコーン樹脂層14とガラス基板16の界面は剥離強度(y)を有し、シリコーン樹脂層14とガラス基板16の界面に剥離強度(y)を越える引き剥がし方向の応力が加えられると、シリコーン樹脂層14とガラス基板16の界面が剥離する。
 本発明のガラス積層体10(後述の電子デバイス用部材付き積層体も意味する)においては、上記剥離強度(x)は上記剥離強度(y)よりも高い。したがって、本発明のガラス積層体10に支持基材12とガラス基板16とを引き剥がす方向の応力が加えられると、本発明のガラス積層体10は、シリコーン樹脂層14とガラス基板16の界面で剥離してガラス基板16とシリコーン樹脂層付き支持基材18に分離する。
The interface between the support substrate 12 and the silicone resin layer 14 has a peel strength (x), and when a stress in the peeling direction exceeding the peel strength (x) is applied to the interface between the support substrate 12 and the silicone resin layer 14, The interface between the support base 12 and the silicone resin layer 14 is peeled off. The interface between the silicone resin layer 14 and the glass substrate 16 has a peel strength (y). When a stress in the peeling direction exceeding the peel strength (y) is applied to the interface between the silicone resin layer 14 and the glass substrate 16, the silicone resin The interface between the layer 14 and the glass substrate 16 is peeled off.
In the glass laminate 10 of the present invention (which also means a laminate with an electronic device member described later), the peel strength (x) is higher than the peel strength (y). Therefore, when the stress of the direction which peels the support base material 12 and the glass substrate 16 is applied to the glass laminated body 10 of this invention, the glass laminated body 10 of this invention will be in the interface of the silicone resin layer 14 and the glass substrate 16. FIG. It peels and isolate | separates into the glass substrate 16 and the support base material 18 with a silicone resin layer.
 剥離強度(x)は、剥離強度(y)と比較して、充分高いことが好ましい。剥離強度(x)を高めることは、支持基材12に対するシリコーン樹脂層14の付着力を高め、かつ加熱処理後においてガラス基板16に対してよりも相対的に高い付着力を維持できることを意味する。
 支持基材12に対するシリコーン樹脂層14の付着力を高めるためには、後述するように、架橋性オルガノポリシロキサンを支持基材12上で架橋硬化させてシリコーン樹脂層14を形成することが好ましい。架橋硬化の際の接着力で、支持基材12に対して高い結合力で結合したシリコーン樹脂層14を形成することができる。
 一方、架橋硬化後の架橋性オルガノポリシロキサンの架橋物であるシリコーン樹脂のガラス基板16に対する結合力は、上記架橋硬化時に生じる結合力よりも低いのが通例である。したがって、支持基材12上で架橋性オルガノポリシロキサンを架橋硬化させてシリコーン樹脂層14を形成し、その後シリコーン樹脂層14の面にガラス基板16を積層して、ガラス積層体10を製造することが好ましい。
The peel strength (x) is preferably sufficiently higher than the peel strength (y). Increasing the peel strength (x) means that the adhesion of the silicone resin layer 14 to the support base 12 can be increased, and a relatively higher adhesion to the glass substrate 16 can be maintained after the heat treatment. .
In order to increase the adhesion of the silicone resin layer 14 to the support substrate 12, it is preferable to form a silicone resin layer 14 by crosslinking and curing a crosslinkable organopolysiloxane on the support substrate 12, as will be described later. The silicone resin layer 14 bonded to the support substrate 12 with a high bonding force can be formed by the adhesive force at the time of crosslinking and curing.
On the other hand, the bonding force of the silicone resin, which is a crosslinked product of the crosslinkable organopolysiloxane after crosslinking and curing, to the glass substrate 16 is usually lower than the bonding force generated during the crosslinking and curing. Therefore, the crosslinkable organopolysiloxane is crosslinked and cured on the support base 12 to form the silicone resin layer 14, and then the glass substrate 16 is laminated on the surface of the silicone resin layer 14 to produce the glass laminate 10. Is preferred.
 以下で、まず、ガラス積層体10を構成する各層(支持基材12、ガラス基板16、シリコーン樹脂層14)について詳述し、その後、ガラス積層体および部材付きガラス基板の製造方法について詳述する。 Below, each layer (support base material 12, glass substrate 16, silicone resin layer 14) which comprises the glass laminated body 10 is explained in full detail first, Then, the manufacturing method of a glass laminated body and a glass substrate with a member is explained in full detail. .
[支持基材]
 支持基材12は、ガラス基板16を支持して補強し、後述する部材形成工程(電子デバイス用部材を製造する工程)において電子デバイス用部材の製造の際にガラス基板16の変形、傷付き、破損などを防止する。
 支持基材12としては、例えば、ガラス板、プラスチック板、SUS板などの金属板などが用いられる。通常、部材形成工程が熱処理を伴うため、支持基材12はガラス基板16との線膨張係数の差の小さい材料で形成されることが好ましく、ガラス基板16と同一材料で形成されることがより好ましく、支持基材12はガラス板であることが好ましい。特に、支持基材12は、ガラス基板16と同じガラス材料からなるガラス板であることが好ましい。
[Supporting substrate]
The support base material 12 supports and reinforces the glass substrate 16, and the glass substrate 16 is deformed and scratched when the electronic device member is manufactured in a member forming step (step of manufacturing an electronic device member) described later. Prevent damage.
As the support substrate 12, for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used. Usually, since the member forming process involves heat treatment, the support base 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 16 and more preferably formed of the same material as the glass substrate 16. Preferably, the support base 12 is a glass plate. In particular, the support base 12 is preferably a glass plate made of the same glass material as the glass substrate 16.
 支持基材12の厚さは、ガラス基板16よりも厚くてもよいし、薄くてもよい。好ましくは、ガラス基板16の厚さ、シリコーン樹脂層14の厚さ、およびガラス積層体10の厚さに基づいて、支持基材12の厚さが選択される。例えば、現行の部材形成工程が厚さ0.5mmの基板を処理するように設計されたものであって、ガラス基板16の厚さとシリコーン樹脂層14の厚さとの和が0.1mmの場合、支持基材12の厚さを0.4mmとする。支持基材12の厚さは、通常の場合、0.2~5.0mmであることが好ましい。 The thickness of the support base 12 may be thicker or thinner than the glass substrate 16. Preferably, the thickness of the support base 12 is selected based on the thickness of the glass substrate 16, the thickness of the silicone resin layer 14, and the thickness of the glass laminate 10. For example, when the current member forming process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the glass substrate 16 and the thickness of the silicone resin layer 14 is 0.1 mm, The thickness of the support base 12 is set to 0.4 mm. In general, the thickness of the support base 12 is preferably 0.2 to 5.0 mm.
 支持基材12がガラス板の場合、ガラス板の厚さは、扱いやすく、割れにくいなどの理由から、0.08mm以上であることが好ましい。また、ガラス板の厚さは、電子デバイス用部材形成後に剥離する際に、割れずに適度に撓むような剛性が望まれる理由から、1.0mm以下であることが好ましい。 When the support substrate 12 is a glass plate, the thickness of the glass plate is preferably 0.08 mm or more for reasons such as being easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.
 支持基材12とガラス基板16との25~300℃における平均線膨張係数の差は、好ましくは500×10-7/℃以下であり、より好ましくは300×10-7/℃以下であり、さらに好ましくは200×10-7/℃以下である。差が大き過ぎると、部材形成工程における加熱冷却時に、ガラス積層体10が激しく反ったり、支持基材12とガラス基板16とが剥離したりする可能性がある。支持基材12の材料がガラス基板16の材料と同じ場合、このような問題が生じるのを抑制することができる。 The difference in average linear expansion coefficient between the support base 12 and the glass substrate 16 at 25 to 300 ° C. is preferably 500 × 10 −7 / ° C. or less, more preferably 300 × 10 −7 / ° C. or less. More preferably, it is 200 × 10 −7 / ° C. or less. If the difference is too large, the glass laminate 10 may be severely warped or the support substrate 12 and the glass substrate 16 may be peeled off during heating and cooling in the member forming process. When the material of the support base material 12 is the same as the material of the glass substrate 16, it can suppress that such a problem arises.
[ガラス基板]
 ガラス基板16は、第1主面16aがシリコーン樹脂層14と接し、シリコーン樹脂層14側とは反対側の第2主面16bに電子デバイス用部材が設けられる。
 ガラス基板16の種類は、一般的なものであってよく、例えば、LCD、OLEDといった表示装置用のガラス基板などが挙げられる。ガラス基板16は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低いことが好ましい。熱収縮率の指標としては、JIS R 3102(1995年改正)に規定されている線膨張係数が用いられる。
[Glass substrate]
As for the glass substrate 16, the 1st main surface 16a touches the silicone resin layer 14, and the member for electronic devices is provided in the 2nd main surface 16b on the opposite side to the silicone resin layer 14 side.
The glass substrate 16 may be of a general type, and examples thereof include a glass substrate for a display device such as an LCD or an OLED. The glass substrate 16 is preferably excellent in chemical resistance and moisture permeability and has a low thermal shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
 ガラス基板16の線膨張係数が大きいと、部材形成工程は加熱処理を伴うことが多いので、様々な不都合が生じやすい。例えば、ガラス基板16上にTFTを形成する場合、加熱下でTFTが形成されたガラス基板16を冷却すると、ガラス基板16の熱収縮によって、TFTの位置ずれが過大になるおそれがある。 If the linear expansion coefficient of the glass substrate 16 is large, the member forming process often involves heat treatment, and various inconveniences are likely to occur. For example, when a TFT is formed on the glass substrate 16, if the glass substrate 16 on which the TFT is formed is cooled under heating, the TFT may be displaced excessively due to thermal contraction of the glass substrate 16.
 ガラス基板16は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えば、フロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法などが用いられる。また、特に厚さが薄いガラス基板16は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸などの手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。 The glass substrate 16 is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. The glass substrate 16 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
 ガラス基板16のガラスの種類は特に限定されないが、無アルカリホウケイ酸ガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40~90質量%のガラスが好ましい。 The type of glass of the glass substrate 16 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable. As the oxide-based glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
 ガラス基板16のガラスとしては、電子デバイス用部材の種類やその製造工程に適したガラスが採用される。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなる(ただし、通常アルカリ土類金属成分は含まれる)ことが好ましい。このように、ガラス基板16のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。 As the glass of the glass substrate 16, glass suitable for the type of electronic device member and the manufacturing process thereof is employed. For example, a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Components are preferably included). Thus, the glass of the glass substrate 16 is appropriately selected based on the type of device to be applied and its manufacturing process.
 ガラス基板16の厚さは、ガラス基板16の薄型化および/または軽量化の観点から、0.3mm以下であることが好ましく、より好ましくは0.15mm以下である。0.3mm以下の場合、ガラス基板16に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板16をロール状に巻き取ることが可能である。
 また、ガラス基板16の厚さは、ガラス基板16の製造が容易であること、ガラス基板16の取り扱いが容易であることなどの理由から、0.03mm以上であることが好ましい。
The thickness of the glass substrate 16 is preferably 0.3 mm or less, more preferably 0.15 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 16. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 16. In the case of 0.15 mm or less, the glass substrate 16 can be rolled up.
Further, the thickness of the glass substrate 16 is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate 16 and easy handling of the glass substrate 16.
 なお、ガラス基板16は2層以上からなっていてもよく、この場合、各々の層を形成する材料は同種材料であってもよいし、異種材料であってもよい。また、この場合、「ガラス基板16の厚さ」は全ての層の合計の厚さを意味するものとする。 The glass substrate 16 may be composed of two or more layers. In this case, the material forming each layer may be the same material or a different material. In this case, “the thickness of the glass substrate 16” means the total thickness of all the layers.
[シリコーン樹脂層]
 シリコーン樹脂層14は、ガラス基板16と支持基材12とを分離する操作が行われるまでガラス基板16の位置ずれを防止すると共に、ガラス基板16などが分離操作によって破損するのを防止する。シリコーン樹脂層14のガラス基板16と接する表面(シリコーン樹脂層の第1主面)14aは、ガラス基板16の第1主面16aに剥離可能に密着する。シリコーン樹脂層14はガラス基板16の第1主面16aに弱い結合力で結合しており、その界面の剥離強度(y)は、シリコーン樹脂層14と支持基材12との間の界面の剥離強度(x)よりも低い。
 すなわち、ガラス基板16と支持基材12とを分離する際には、ガラス基板16の第1主面16aとシリコーン樹脂層14との界面で剥離し、支持基材12とシリコーン樹脂層14との界面では剥離し難い。このため、シリコーン樹脂層14はガラス基板16の第1主面16aと密着するが、ガラス基板16を容易に剥離することができる表面特性を有する。すなわち、シリコーン樹脂層14は、ガラス基板16の第1主面16aに対してある程度の結合力で結合してガラス基板16の位置ずれなどを防止していると同時に、ガラス基板16を剥離する際には、ガラス基板16を破壊することなく、容易に剥離できる程度の結合力で結合している。本発明では、このシリコーン樹脂層14表面の容易に剥離できる性質を剥離性という。一方、支持基材12の第1主面とシリコーン樹脂層14とは相対的に剥離しがたい結合力で結合している。本発明の方法で形成されたシリコーン樹脂層14は通常剥離性表面を有する。
 なお、シリコーン樹脂層14とガラス基板16の界面の結合力は、ガラス積層体10のガラス基板16の面(第2主面16b)上に電子デバイス用部材を形成する前後に変化してもよい(すなわち、剥離強度(x)や剥離強度(y)が変化してもよい)。しかし、電子デバイス用部材を形成した後であっても、剥離強度(y)は、剥離強度(x)よりも低い。
[Silicone resin layer]
The silicone resin layer 14 prevents the glass substrate 16 from being displaced until the operation for separating the glass substrate 16 and the support base 12 is performed, and prevents the glass substrate 16 and the like from being damaged by the separation operation. The surface (first main surface of the silicone resin layer) 14a of the silicone resin layer 14 in contact with the glass substrate 16 is in close contact with the first main surface 16a of the glass substrate 16 in a peelable manner. The silicone resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a weak bonding force, and the peeling strength (y) at the interface is the peeling at the interface between the silicone resin layer 14 and the support base 12. Lower than strength (x).
That is, when separating the glass substrate 16 and the support base material 12, the glass substrate 16 is peeled off at the interface between the first main surface 16 a of the glass substrate 16 and the silicone resin layer 14, and the support base material 12 and the silicone resin layer 14 are separated. It is difficult to peel off at the interface. For this reason, the silicone resin layer 14 is in close contact with the first main surface 16a of the glass substrate 16, but has a surface characteristic that allows the glass substrate 16 to be easily peeled off. That is, the silicone resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a certain amount of bonding force to prevent the glass substrate 16 from being displaced, and at the same time, when the glass substrate 16 is peeled off. The glass substrate 16 is bonded with a bonding force that can be easily peeled without breaking the glass substrate 16. In this invention, the property which can peel this silicone resin layer 14 surface easily is called peelability. On the other hand, the 1st main surface of the support base material 12 and the silicone resin layer 14 are couple | bonded by the bonding force which cannot be peeled relatively. The silicone resin layer 14 formed by the method of the present invention usually has a peelable surface.
The bonding force at the interface between the silicone resin layer 14 and the glass substrate 16 may change before and after the electronic device member is formed on the surface (second main surface 16b) of the glass substrate 16 of the glass laminate 10. (That is, the peel strength (x) and peel strength (y) may change). However, even after the electronic device member is formed, the peel strength (y) is lower than the peel strength (x).
 シリコーン樹脂層14とガラス基板16の層とは、弱い接着力やファンデルワールス力に起因する結合力で結合していると考えられる。シリコーン樹脂層14を形成した後その表面にガラス基板16を積層する場合、シリコーン樹脂層14のシリコーン樹脂が接着力を示さないほど充分に架橋している場合はファンデルワールス力に起因する結合力で結合していると考えられる。しかし、シリコーン樹脂層14のシリコーン樹脂は、ある程度の弱い接着力を有することが少なくない。たとえ接着性が極めて低い場合であっても、ガラス積層体10製造後その積層体上に電子デバイス用部材を形成する際には、加熱操作などにより、シリコーン樹脂層14のシリコーン樹脂はガラス基板16面に接着し、シリコーン樹脂層14とガラス基板16の層との間の結合力は上昇すると考えられる。場合により、積層前のシリコーン樹脂層14の表面14aや積層前のガラス基板16の第1主面16aに両者間の結合力を弱める処理を行って積層することもできる。積層する面に非接着性処理などを行い、その後積層することにより、シリコーン樹脂層14とガラス基板16の層の界面の結合力を弱め、剥離強度(y)を低くすることができる。このような処理により、本発明のシリコーン樹脂層14の表面の剥離性を調節することもできる。 It is considered that the silicone resin layer 14 and the glass substrate 16 are bonded to each other with a bonding force due to weak adhesive force or van der Waals force. When the glass substrate 16 is laminated on the surface after the silicone resin layer 14 is formed, if the silicone resin of the silicone resin layer 14 is sufficiently cross-linked so as not to exhibit an adhesive force, the binding force due to van der Waals force It is thought that it is combined with. However, the silicone resin of the silicone resin layer 14 often has a certain weak adhesive force. Even when the adhesiveness is extremely low, when the electronic device member is formed on the laminated body after the glass laminated body 10 is manufactured, the silicone resin of the silicone resin layer 14 is removed from the glass substrate 16 by a heating operation or the like. It is considered that the bonding strength between the silicone resin layer 14 and the glass substrate 16 is increased by adhering to the surface. In some cases, the surface 14a of the silicone resin layer 14 before lamination or the first main surface 16a of the glass substrate 16 before lamination can be laminated by performing a treatment for weakening the bonding force between them. By performing non-adhesive treatment or the like on the surface to be laminated and then laminating, the bonding strength at the interface between the silicone resin layer 14 and the glass substrate 16 can be weakened, and the peel strength (y) can be lowered. By such treatment, the peelability of the surface of the silicone resin layer 14 of the present invention can be adjusted.
 また、シリコーン樹脂層14は、接着力や粘着力などの強い結合力で支持基材12表面に結合されている。たとえば、上述したように、架橋性オルガノポリシロキサンを支持基材12表面で架橋硬化させることにより、架橋物であるシリコーン樹脂を支持基材12表面に接着して、高い結合力を得ることができる。また、支持基材12表面とシリコーン樹脂層14間に強い結合力を生じさせる処理(例えば、カップリング剤を使用した処理)を施して支持基材12表面とシリコーン樹脂層14間の結合力を高めることができる。
 シリコーン樹脂層14と支持基材12の層とが高い結合力で結合していることは、両者の界面の剥離強度(x)が高いことを意味する。
The silicone resin layer 14 is bonded to the surface of the support base 12 with a strong bonding force such as an adhesive force or an adhesive force. For example, as described above, by crosslinking and curing the crosslinkable organopolysiloxane on the surface of the support substrate 12, a silicone resin as a crosslinked product can be adhered to the surface of the support substrate 12 and high bonding strength can be obtained. . Moreover, the process (for example, process using a coupling agent) which produces strong bond strength between the support base material 12 surface and the silicone resin layer 14 is given, and the bond strength between the support base material 12 surface and the silicone resin layer 14 is given. Can be increased.
The fact that the silicone resin layer 14 and the layer of the supporting substrate 12 are bonded with a high bonding force means that the peel strength (x) at the interface between them is high.
 シリコーン樹脂層14の厚さは特に限定されないが、2~100μmであることが好ましく、3~50μmであることがより好ましく、5~20μmであることがさらに好ましい。シリコーン樹脂層14の厚さがこのような範囲であると、シリコーン樹脂層14とガラス基板16との間に気泡や異物が介在することがあっても、ガラス基板16のゆがみ欠陥の発生を抑制することができる。また、シリコーン樹脂層14の厚さが厚すぎると、形成するのに時間および材料を要するため経済的ではなく、耐熱性が低下する場合がある。また、シリコーン樹脂層14の厚さが薄すぎると、シリコーン樹脂層14とガラス基板16との密着性が低下する場合がある。
 なお、シリコーン樹脂層14は2層以上からなっていてもよい。この場合「シリコーン樹脂層14の厚さ」は全ての層の合計の厚さを意味するものとする。
 また、シリコーン樹脂層14が2層以上からなる場合は、各々の層を形成する樹脂が異なる架橋シリコーン樹脂からなってもよい。
The thickness of the silicone resin layer 14 is not particularly limited, but is preferably 2 to 100 μm, more preferably 3 to 50 μm, and even more preferably 5 to 20 μm. When the thickness of the silicone resin layer 14 is within such a range, even if air bubbles or foreign matter may be present between the silicone resin layer 14 and the glass substrate 16, the occurrence of distortion defects in the glass substrate 16 is suppressed. can do. In addition, if the thickness of the silicone resin layer 14 is too thick, it takes time and materials to form it, which is not economical and the heat resistance may decrease. Moreover, when the thickness of the silicone resin layer 14 is too thin, the adhesiveness of the silicone resin layer 14 and the glass substrate 16 may fall.
The silicone resin layer 14 may be composed of two or more layers. In this case, “the thickness of the silicone resin layer 14” means the total thickness of all the layers.
Moreover, when the silicone resin layer 14 consists of two or more layers, resin which forms each layer may consist of a different crosslinked silicone resin.
 シリコーン樹脂層14は優れた耐熱性を有していることが好ましい。
 より具体的には、シリコーン樹脂層14のシリコーン樹脂の5%重量減少温度は、450℃以上が好ましく、500℃以上がより好ましい。上限は特に制限されないが、通常、600℃以下の場合が多い。上記範囲内であれば、TFTアレイの製造プロセスなど高温条件(約400℃以上)下においてもシリコーン樹脂層14の分解が抑制され、ガラス積層体10中の発泡の発生などがより抑制される。
The silicone resin layer 14 preferably has excellent heat resistance.
More specifically, the 5% weight reduction temperature of the silicone resin of the silicone resin layer 14 is preferably 450 ° C. or higher, and more preferably 500 ° C. or higher. The upper limit is not particularly limited, but is usually 600 ° C. or lower in many cases. If it is in the said range, decomposition | disassembly of the silicone resin layer 14 will be suppressed also under high temperature conditions (about 400 degreeC or more), such as a manufacturing process of a TFT array, and generation | occurrence | production of the foaming in the glass laminated body 10 will be suppressed more.
 なお、上記5%重量減少温度は、熱重量分析装置を用いて、昇温速度15℃/分、窒素雰囲気下(100ml/分)で試料を室温~700℃まで昇温した際に、試料の重量が5%減少する温度をいう。 The 5% weight loss temperature is determined when the sample is heated from room temperature to 700 ° C. under a nitrogen atmosphere (100 ml / min) using a thermogravimetric analyzer at a rate of temperature increase of 15 ° C./min. The temperature at which the weight is reduced by 5%.
 シリコーン樹脂層14のシリコーン樹脂は、後述する式(1)で表されるシロキサン単位(A)を含む架橋性オルガノポリシロキサンの架橋物である。
 以下では、架橋性オルガノポリシロキサンおよびその架橋物の態様について詳述する。
The silicone resin of the silicone resin layer 14 is a cross-linked product of a crosslinkable organopolysiloxane containing a siloxane unit (A) represented by the formula (1) described later.
Below, the aspect of crosslinkable organopolysiloxane and its crosslinked material is explained in full detail.
(架橋性オルガノポリシロキサンおよびその架橋物)
 本発明で使用される架橋性オルガノポリシロキサンは、式(1)で表されるシロキサン単位(A)を含む。
 通常、オルガノポリシロキサンの基本構成単位は、メチル基やフェニル基に代表される1価の有機基がケイ素原子に何個結合しているかで分類され、以下に示すD単位と呼ばれる有機基が2つ結合した2官能性のシロキサン単位、T単位と呼ばれる有機基が1つ結合した3官能性のシロキサン単位、M単位と呼ばれる有機基が3つ結合した1官能性のシロキサン単位、Q単位と呼ばれる有機基が1つもない4官能性のシロキサン単位などからなる。なお、Q単位はケイ素原子に結合した有機基(ケイ素原子に結合した炭素原子を有する有機基)を有しない単位であるが、本発明においてはシロキサン単位とみなす。以下の式中、Rはメチル基やフェニル基に代表される1価の有機基を表す。
(Crosslinkable organopolysiloxane and its cross-linked product)
The crosslinkable organopolysiloxane used in the present invention contains a siloxane unit (A) represented by the formula (1).
Usually, the basic structural unit of organopolysiloxane is classified according to how many monovalent organic groups represented by methyl group and phenyl group are bonded to silicon atoms. The organic group called D unit shown below is 2 Bifunctional siloxane unit with one bond, trifunctional siloxane unit with one organic group called T unit, monofunctional siloxane unit with three organic groups called M unit, called Q unit It consists of a tetrafunctional siloxane unit having no organic group. The Q unit is a unit that does not have an organic group bonded to a silicon atom (an organic group having a carbon atom bonded to a silicon atom), but is regarded as a siloxane unit in the present invention. In the following formulae, R represents a monovalent organic group represented by a methyl group or a phenyl group.
 シロキサン単位において、シロキサン結合は2個のケイ素原子が1個の酸素原子を介して結合した結合であることより、シロキサン結合におけるケイ素原子1個当たりの酸素原子は1/2個とみなし、式中O1/2と表現される。より具体的には、例えば、1つのD単位においては、その1個のケイ素原子は2個の酸素原子と結合し、それぞれの酸素原子は他の単位のケイ素原子と結合していることより、その式は-O1/2-(R)Si-O1/2-となる。O1/2が2個存在することより、D単位は(R)SiO2/2と表現されるのが通常である。しかし、本発明では、後述のA単位の表現に合わせて、以下のように、個々の酸素原子についてO1/2の表現を用い、M単位、D単位、T単位、Q単位を表現した。
 なお、重合体鎖の末端の単位がM単位以外の単位である場合、末端単位のO1/2に結合するケイ素原子以外の原子は1/2個相当の酸素原子であり、合わせて1個の酸素原子となり、水酸基やアルコキシ基などにおける酸素原子を表現する。下記シロキサン単位の表現と同様に表現すれば、例えば末端単位のケイ素原子に結合する水酸基は-O1/2-Hとなる。
In the siloxane unit, the siloxane bond is a bond in which two silicon atoms are bonded through one oxygen atom, so that the oxygen atom per silicon atom in the siloxane bond is regarded as ½, Expressed as O 1/2 . More specifically, for example, in one D unit, one silicon atom is bonded to two oxygen atoms, and each oxygen atom is bonded to a silicon atom of another unit. The formula is -O 1/ 2- (R) 2 Si-O 1/ 2- . Since there are two O 1/2 s , the D unit is usually expressed as (R) 2 SiO 2/2 . However, in the present invention, in accordance with the expression of the A unit described later, the O unit 1/2 expression is used for each oxygen atom to express the M unit, D unit, T unit, and Q unit as follows.
In addition, when the terminal unit of the polymer chain is a unit other than the M unit, atoms other than the silicon atom bonded to O 1/2 of the terminal unit are ½ equivalent oxygen atoms, and one in total And represents an oxygen atom in a hydroxyl group or an alkoxy group. When expressed in the same manner as the expression of the siloxane unit below, for example, the hydroxyl group bonded to the silicon atom of the terminal unit is —O 1/2 / H.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明における、後述するシロキサン単位(A)では、2つのケイ素原子のそれぞれが酸素原子と結合し、それぞれの酸素原子は単位外のケイ素原子と結合しているため、式(1)中、O1/2と表現される。シロキサン単位(A)は2官能性である点から、D単位とみなすことができる。以下、本発明においてシロキサン単位(A)はD単位の1種とみなして、架橋性オルガノポリシロキサンを説明する。 In the siloxane unit (A) described later in the present invention, each of two silicon atoms is bonded to an oxygen atom, and each oxygen atom is bonded to a silicon atom outside the unit. Expressed as 1/2 . The siloxane unit (A) can be regarded as a D unit because it is bifunctional. Hereinafter, the crosslinkable organopolysiloxane will be described assuming that the siloxane unit (A) is one type of D unit in the present invention.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)のR~Rは、それぞれ独立に、ヘテロ原子を含有していてもよい1価の炭化水素基を表す。1価の炭化水素基としては、具体的には、1価の脂肪族炭化水素基(例えば、アルキル基、アルケニル基、アルキニル基など)または1価の芳香族炭化水素基が挙げられる。炭化水素基に含まれる炭素数は特に制限されないが、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、10個以下が好ましく、4個以下がより好ましい。具体的には、例えば、メチル基、エチル基、ビニル基、アリル基、エチニル基、フェニル基などが挙げられる。
 1価の炭化水素基にはヘテロ原子が含有されていてもよく、ヘテロ原子としては例えば、酸素原子、窒素原子、硫黄原子またはハロゲン原子などが挙げられる。より具体的には、-X-、-N(R)-、-C(=X)-、-CON(R)-、-C(=X)X-、-SON(R)-、ハロゲン原子、またはこれらを組み合わせた基の態様で含まれることが好ましい。X~Xは、それぞれ独立に、酸素原子および硫黄原子を表し、R、R、Rは、それぞれ独立に、炭素数4以下の有機基を表す。
R 1 to R 4 in the formula (1) each independently represents a monovalent hydrocarbon group which may contain a hetero atom. Specific examples of the monovalent hydrocarbon group include a monovalent aliphatic hydrocarbon group (for example, an alkyl group, an alkenyl group, and an alkynyl group) or a monovalent aromatic hydrocarbon group. The number of carbon atoms contained in the hydrocarbon group is not particularly limited, but is preferably 10 or less, more preferably 4 or less, in that decomposition of the silicone resin under high-temperature treatment conditions is further suppressed. Specific examples include a methyl group, an ethyl group, a vinyl group, an allyl group, an ethynyl group, and a phenyl group.
The monovalent hydrocarbon group may contain a hetero atom, and examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. More specifically, —X 1 —, —N (R a ) —, —C (═X 2 ) —, —CON (R b ) —, —C (═X 3 ) X 4 —, —SO 2 It is preferably contained in the form of N (R c ) —, a halogen atom, or a group combining these. X 1 to X 4 each independently represents an oxygen atom and a sulfur atom, and R a , R b , and R c each independently represents an organic group having 4 or less carbon atoms.
 上記R~Rとしては、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、炭素数4個以下のアルキル基(特に、メチル基が好ましい)またはフェニル基であることが好ましい。 R 1 to R 4 are preferably an alkyl group having 4 or less carbon atoms (particularly preferred is a methyl group) or a phenyl group, from the viewpoint that decomposition of the silicone resin under high-temperature treatment conditions is further suppressed. .
 式(1)中、Arは、置換基を有していてもよい2価の芳香族炭化水素基を表す。なお、Arの2個の結合手は芳香族環を構成する炭素原子の結合手である。
 2価の芳香族炭化水素基に含まれる炭素数は特に制限されないが、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、6~18個が好ましく、6~12個がより好ましい。2価の芳香族炭化水素基の具体例としては、例えば、フェニレン基、ナフチレン基、ビフェニレン基、ターフェニレン基などが挙げられる。なかでも、低コスト化が可能で、かつ、シリコーン樹脂層14の柔軟性に優れ、シリコーン樹脂層14のガラス基板16に対する密着性および剥離性がより優れる点で、フェニレン基が好ましい。なお、シリコーン樹脂層14により優れた耐熱性を付与したい場合は、Arとして多環の芳香族炭化水素基を使用することが好ましい。
 なお、置換基の種類は特に制限されず、例えば、ハロゲン原子、脂肪族炭化水素基、芳香族炭化水素基、アルコキシ基、アリールアルキル基、アリールオキシ基、複素環基、アミノ基、ニトロ基、シアノ基などが挙げられる。
In formula (1), Ar represents a divalent aromatic hydrocarbon group which may have a substituent. The two bonds of Ar are bonds of carbon atoms constituting the aromatic ring.
The number of carbon atoms contained in the divalent aromatic hydrocarbon group is not particularly limited, but is preferably 6 to 18, more preferably 6 to 12 in terms of further suppressing decomposition of the silicone resin under high temperature treatment conditions. . Specific examples of the divalent aromatic hydrocarbon group include a phenylene group, a naphthylene group, a biphenylene group, and a terphenylene group. Among these, a phenylene group is preferable in that the cost can be reduced, the flexibility of the silicone resin layer 14 is excellent, and the adhesion and peelability of the silicone resin layer 14 to the glass substrate 16 are more excellent. In addition, when it is desired to impart excellent heat resistance to the silicone resin layer 14, it is preferable to use a polycyclic aromatic hydrocarbon group as Ar.
The type of the substituent is not particularly limited, and examples thereof include a halogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an alkoxy group, an arylalkyl group, an aryloxy group, a heterocyclic group, an amino group, a nitro group, And a cyano group.
 本発明における架橋性オルガノポリシロキサンは、シロキサン単位として、シロキサン単位(A)のみを含む重合体であるか、または、シロキサン単位(A)と他のシロキサン単位とを含む共重合体である。本発明における架橋性オルガノポリシロキサンは、線状重合体であることが好ましく、他のシロキサン単位としてはシロキサン単位(A)以外のD単位が好ましい。架橋性オルガノポリシロキサンが線状重合体である場合、架橋性オルガノポリシロキサンはシロキサン単位(A)のみを含む重合体、シロキサン単位(A)と他のD単位とを含む重合体、シロキサン単位(A)とM単位を含む重合体、シロキサン単位(A)と他のD単位とM単位を含む重合体がある。ただし、シロキサン単位(A)、他のD単位、M単位はそれぞれ2種以上存在してもよい。
 また、本発明における架橋性オルガノポリシロキサンは、少数の分岐を有する非線状の重合体であってもよい。この場合、分岐をもたらすT単位やQ単位を少数有する以外は上記線状重合体におけるD単位や場合によりさらにM単位を有する。
 本発明における架橋性オルガノポリシロキサンは架橋性であり、例えば、R~Rがすべてメチル基、Arがフェニレン基であるシロキサン単位(A)のみからなるオルガノポリシロキサンは架橋性であり、熱や紫外線等で架橋させることができる。また、架橋性をより高めるために、R~Rの一部がアルケニル基やアルキニル基であるシロキサン単位(A)を含有させることもできる。
The crosslinkable organopolysiloxane in the present invention is a polymer containing only a siloxane unit (A) as a siloxane unit, or a copolymer containing a siloxane unit (A) and another siloxane unit. The crosslinkable organopolysiloxane in the present invention is preferably a linear polymer, and the other siloxane units are preferably D units other than the siloxane unit (A). When the crosslinkable organopolysiloxane is a linear polymer, the crosslinkable organopolysiloxane is a polymer containing only the siloxane unit (A), a polymer containing the siloxane unit (A) and other D units, a siloxane unit ( There are polymers containing A) and M units, and polymers containing siloxane units (A), other D units and M units. However, two or more siloxane units (A), other D units, and M units may be present.
The crosslinkable organopolysiloxane in the present invention may be a non-linear polymer having a small number of branches. In this case, except for having a small number of T units and Q units that cause branching, the linear polymer has D units and optionally further M units.
The crosslinkable organopolysiloxane in the present invention is crosslinkable. For example, an organopolysiloxane consisting only of a siloxane unit (A) in which R 1 to R 4 are all methyl groups and Ar is a phenylene group is crosslinkable, It can be cross-linked with UV light or the like. In order to further improve the crosslinkability, a siloxane unit (A) in which a part of R 1 to R 4 is an alkenyl group or an alkynyl group can be contained.
 本発明における架橋性オルガノポリシロキサンとしては、D単位としてシロキサン単位(A)のみを含む重合体、および、シロキサン単位(A)と他のD単位とを含む重合体が好ましく、特にシロキサン単位(A)と他のD単位とを含む重合体が好ましい。他のD単位を含むオルガノポリシロキサンの架橋物(シリコーン樹脂)は、他のD単位を含まないオルガノポリシロキサンの架橋物(シリコーン樹脂)に比較して柔軟性が高く、ガラス基板に対するシリコーン樹脂層の密着性が良好である。さらに、他のD単位がアルケニル基を含むD単位である場合には、架橋性が向上し、高温処理条件下における架橋物(シリコーン樹脂)の分解がより抑制される。
 シロキサン単位(A)以外のD単位としては式(2)で表されるシロキサン単位(B)が好ましい。
The crosslinkable organopolysiloxane in the present invention is preferably a polymer containing only a siloxane unit (A) as a D unit, and a polymer containing a siloxane unit (A) and another D unit, and particularly a siloxane unit (A ) And other D units are preferred. The cross-linked product (silicone resin) of organopolysiloxane containing other D units has higher flexibility than the cross-linked product of polyorganosiloxane (silicone resin) not containing other D units, and the silicone resin layer for the glass substrate Good adhesion. Furthermore, when the other D unit is a D unit containing an alkenyl group, the crosslinkability is improved, and the decomposition of the cross-linked product (silicone resin) under high-temperature treatment conditions is further suppressed.
The D unit other than the siloxane unit (A) is preferably a siloxane unit (B) represented by the formula (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(2)中、RおよびRは、それぞれ独立に、ヘテロ原子を含有していてもよい1価の炭化水素基を表す。ヘテロ原子を含有していてもよい1価の炭化水素の定義は、上述のR~Rの場合と同一である。ただし、好ましい1価の炭化水素基としては上述に加え炭素数3以下のアルケニル基が挙げられる。
 RおよびRとしては、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、炭素数4個以下のアルキル(特に、メチル基が好ましい)または炭素数3個以下のアルケニル基(特に、ビニル基が好ましい)であることが好ましい。
In formula (2), R 5 and R 6 each independently represent a monovalent hydrocarbon group that may contain a hetero atom. The definition of the monovalent hydrocarbon which may contain a hetero atom is the same as the case of R 1 to R 4 described above. However, preferred monovalent hydrocarbon groups include alkenyl groups having 3 or less carbon atoms in addition to the above.
As R 5 and R 6 , an alkyl having 4 or less carbon atoms (particularly preferred is a methyl group) or an alkenyl group having 3 or less carbon atoms (in particular, a methyl group is preferable) in that decomposition of the silicone resin under high-temperature treatment conditions is further suppressed. In particular, a vinyl group is preferable.
 シロキサン単位(B)の好適態様としては、架橋性オルガノポリシロキサン間での架橋がより進行し、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、シロキサン単位(B)が、RとRの少なくとも一方が炭素数3以下のアルケニル基であり該アルケニル基以外の場合は炭素数4以下のアルキル基であるシロキサン単位(B-1)、および、RとRのいずれも炭素数4以下のアルキル基であるシロキサン単位(B-2)からなる群から選択され、架橋性オルガノポリシロキサン中のシロキサン単位(B)がシロキサン単位(B-1)のみからなるか、または、シロキサン単位(B-1)とシロキサン単位(B-2)からなる態様が挙げられる。 As a preferred embodiment of the siloxane unit (B), the crosslinking between the crosslinkable organopolysiloxanes further proceeds, and the decomposition of the silicone resin under high temperature treatment conditions is further suppressed, so that the siloxane unit (B) is R At least one of 5 and R 6 is an alkenyl group having 3 or less carbon atoms, and in the case of other than the alkenyl group, any one of siloxane unit (B-1) which is an alkyl group having 4 or less carbon atoms, and R 5 and R 6 Are selected from the group consisting of siloxane units (B-2) which are alkyl groups having 4 or less carbon atoms, and the siloxane units (B) in the crosslinkable organopolysiloxane consist only of siloxane units (B-1), or And an embodiment comprising a siloxane unit (B-1) and a siloxane unit (B-2).
 シロキサン単位(B-1)中、RとRの少なくとも一方は、炭素数3以下のアルケニル基であり、好ましくはビニル基である。また、RとRがアルケニル基以外の場合は、炭素数4以下のアルキル基であり、好ましくはメチル基である。
 なお、シロキサン単位(B-1)の好適態様としては、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、RまたはRの一方がメチル基で、他方がビニル基である態様が挙げられる。
 シロキサン単位(B-2)中、RとRのいずれも炭素数4以下のアルキル基であり、好ましくはメチル基である。
In the siloxane unit (B-1), at least one of R 5 and R 6 is an alkenyl group having 3 or less carbon atoms, preferably a vinyl group. When R 5 and R 6 are other than an alkenyl group, it is an alkyl group having 4 or less carbon atoms, preferably a methyl group.
A preferred embodiment of the siloxane unit (B-1) is that one of R 5 and R 6 is a methyl group and the other is a vinyl group in that the decomposition of the silicone resin under high temperature treatment conditions is further suppressed. An embodiment is mentioned.
In the siloxane unit (B-2), both R 5 and R 6 are alkyl groups having 4 or less carbon atoms, preferably methyl groups.
 シロキサン単位(B)がシロキサン単位(B-1)とシロキサン単位(B-2)とを含む場合、全シロキサン単位(B)に対するシロキサン単位(B-1)の割合である[シロキサン単位(B-1)]×100/[シロキサン単位(B-1)+シロキサン単位(B-2)]は特に制限されないが、架橋性オルガノポリシロキサン間での架橋がより進行し、高温処理条件下におけるシリコーン樹脂の分解がより抑制されると共に、シリコーン樹脂層14のガラス基板16に対する密着性および剥離性がより優れる点で、30~80モル%が好ましく、40~60モル%がより好ましい。 When the siloxane unit (B) includes the siloxane unit (B-1) and the siloxane unit (B-2), the ratio of the siloxane unit (B-1) to the total siloxane unit (B) [siloxane unit (B- 1)] × 100 / [siloxane unit (B-1) + siloxane unit (B-2)] is not particularly limited, but the crosslinking between the crosslinkable organopolysiloxanes proceeds further, and the silicone resin under high temperature treatment conditions 30 to 80 mol% is preferable, and 40 to 60 mol% is more preferable in that the decomposition of is further suppressed and the adhesiveness and peelability of the silicone resin layer 14 to the glass substrate 16 are more excellent.
 なお、架橋性オルガノポリシロキサンは、上述したシロキサン単位(A)およびシロキサン単位(B)以外の他のシロキサン単位(例えば、M単位、T単位、Q単位)を含んでいてもよい。しかし、分岐を有する単位(T単位やQ単位)が多く存在すると架橋物(シリコーン樹脂)の柔軟性が低下し、M単位が多く存在すると数平均分子量の低い重合体となり耐熱性等の物性が低下するおそれがある。したがって、それらの数は少ない方が好ましく、後述のようにD単位(シロキサン単位(A)とシロキサン単位(B))以外の単位の含有量は、0~20モル%が好ましく、0~5モル%がより好ましい。 In addition, the crosslinkable organopolysiloxane may contain siloxane units (for example, M unit, T unit, Q unit) other than the siloxane unit (A) and the siloxane unit (B) described above. However, if there are many branched units (T units and Q units), the flexibility of the cross-linked product (silicone resin) is lowered, and if there are many M units, the polymer has a low number average molecular weight and has physical properties such as heat resistance. May decrease. Therefore, it is preferable that the number thereof is small. As described later, the content of units other than the D unit (siloxane unit (A) and siloxane unit (B)) is preferably 0 to 20 mol%, and 0 to 5 mol. % Is more preferable.
 架橋性オルガノポリシロキサンが上記シロキサン単位(A)および上記シロキサン単位(B)を含む場合、シロキサン単位(A)とシロキサン単位(B)の合計に対するシロキサン単位(A)の割合は、高温処理条件下におけるシリコーン樹脂の分解がより抑制されると共に、シリコーン樹脂層14のガラス基板16に対する密着性および剥離性がより優れる点で、10~90モル%が好ましく、30~90モル%がより好ましく、40~60モル%がさらに好ましい。
 また、架橋性オルガノポリシロキサン中の全シロキサン単位に対するシロキサン単位(A)とシロキサン単位(B)の合計の割合は、高温処理条件下におけるシリコーン樹脂の分解がより抑制されると共に、シリコーン樹脂層14のガラス基板16に対する密着性および剥離性がより優れる点で、80~100モル%が好ましく、95~100モル%がより好ましい。
 さらに、架橋性オルガノポリシロキサン中におけるシロキサン単位(A)およびシロキサン単位(B)の結合形式は特に制限されず、例えば、ランダム共重合体、ブロック共重合体、交互共重合体のいずれであってもよい。なかでも、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、交互共重合体が好ましい。
 本発明において、シロキサン単位(A)とシロキサン単位(B)の交互共重合体とはシロキサン単位(A)とシロキサン単位(B)の結合が、シロキサン単位(A)とシロキサン単位(A)の結合およびシロキサン単位(B)とシロキサン単位(B)の結合の合計よりもはるかに多い共重合体を意味する。これら3種の結合は、例えばH NMR測定および29Si NMR測定により区別することができ、その測定によりそれら結合の相対的な数の割合を計算できる。本発明におけるシロキサン単位(A)とシロキサン単位(B)の交互共重合体は、少数のランダム結合部分やブロック結合部分を含んでいてもよい。交互共重合体におけるシロキサン単位(A)とシロキサン単位(B)の結合の割合は、上記3種の結合の合計に対して、80~100モル%が好ましく、90~100モル%がより好ましく、95~100モル%がさらに好ましい。なお、交互共重合体であるか否かを区別するものではないが、本発明における架橋性ポリシロキサンが交互共重合体の場合、その交互共重合体におけるシロキサン単位(A)とシロキサン単位(B)の合計に対するシロキサン単位(A)の割合は50±5モル%が好ましい。
 なお、本発明における交互共重合体は、1種のシリコーン樹脂であってもよく、また2種以上のシリコーン樹脂を混合してシロキサン単位(A)とシロキサン単位(B)の結合の割合が上記の好ましい割合となるように調整して得てもよい。
When the crosslinkable organopolysiloxane contains the siloxane unit (A) and the siloxane unit (B), the ratio of the siloxane unit (A) to the total of the siloxane unit (A) and the siloxane unit (B) 10 to 90 mol% is preferable, 30 to 90 mol% is more preferable, and 40 to 90 mol% is more preferable in that the decomposition of the silicone resin in the resin is further suppressed and the adhesion and peelability of the silicone resin layer 14 to the glass substrate 16 are more excellent. More preferred is ˜60 mol%.
The ratio of the total of the siloxane unit (A) and the siloxane unit (B) with respect to the total siloxane units in the crosslinkable organopolysiloxane further suppresses the decomposition of the silicone resin under high-temperature treatment conditions, and the silicone resin layer 14 80 to 100 mol% is preferable, and 95 to 100 mol% is more preferable in terms of better adhesion to the glass substrate 16 and peelability.
Further, the bonding type of the siloxane unit (A) and the siloxane unit (B) in the crosslinkable organopolysiloxane is not particularly limited, and may be any of a random copolymer, a block copolymer, and an alternating copolymer. Also good. Especially, an alternating copolymer is preferable at the point by which decomposition | disassembly of the silicone resin under high temperature processing conditions is suppressed more.
In the present invention, the alternating copolymer of the siloxane unit (A) and the siloxane unit (B) is a bond between the siloxane unit (A) and the siloxane unit (B), and a bond between the siloxane unit (A) and the siloxane unit (A). And a copolymer much more than the sum of the bonds of siloxane units (B) and siloxane units (B). These three types of bonds can be distinguished by, for example, 1 H NMR measurement and 29 Si NMR measurement, and the relative number ratio of these bonds can be calculated by the measurement. The alternating copolymer of the siloxane unit (A) and the siloxane unit (B) in the present invention may contain a small number of random bond portions or block bond portions. The proportion of the siloxane units (A) and siloxane units (B) in the alternating copolymer is preferably 80 to 100 mol%, more preferably 90 to 100 mol%, based on the total of the above three types of bonds. More preferred is 95 to 100 mol%. In addition, although it does not distinguish whether it is an alternating copolymer, when the crosslinkable polysiloxane in this invention is an alternating copolymer, the siloxane unit (A) in the alternating copolymer and a siloxane unit (B The ratio of the siloxane unit (A) to the total of 50) is preferably 50 ± 5 mol%.
The alternating copolymer in the present invention may be one kind of silicone resin, or a mixture ratio of siloxane units (A) and siloxane units (B) by mixing two or more kinds of silicone resins. It may be obtained by adjusting so as to have a desirable ratio.
 架橋性オルガノポリシロキサンの数平均分子量は特に制限されないが、取扱い性に優れると共に、成膜性にも優れ、高温処理条件下におけるシリコーン樹脂の分解がより抑制される点で、GPC(ゲルパーミエーションクロマトグラフィー)測定による、ポリスチレン換算の数平均分子量は5,000~30,000が好ましく、10,000~20,000がより好ましい。
 架橋性オルガノポリシロキサンの数平均分子量の調節は、反応条件を制御することにより行うことができる。例えば、末端基量や種類、またモノマー混合比率を変えることによって分子量を制御することができる。末端基量を多くすると低分子量物が得られ、量を少なくすると高分子量が得られる。また、モノマー比率を偏らせると低分子量物が得られ、比率を等しくすると高分子量物が得られる。
The number average molecular weight of the crosslinkable organopolysiloxane is not particularly limited, but it is excellent in handleability, excellent in film formability, and is more resistant to decomposition of the silicone resin under high temperature processing conditions. The number average molecular weight in terms of polystyrene as measured by chromatography is preferably 5,000 to 30,000, more preferably 10,000 to 20,000.
The number average molecular weight of the crosslinkable organopolysiloxane can be adjusted by controlling the reaction conditions. For example, the molecular weight can be controlled by changing the amount and type of terminal groups and the monomer mixing ratio. When the amount of terminal groups is increased, a low molecular weight product is obtained, and when the amount is decreased, a high molecular weight is obtained. Further, when the monomer ratio is biased, a low molecular weight product is obtained, and when the ratio is made equal, a high molecular weight product is obtained.
 架橋性オルガノポリシロキサンの製造方法は、上述した式(1)で表されるシロキサン単位(A)が含まれれば特に制限されない。例えば、式(3)で表されるシラン化合物を縮合反応や加水分解・縮合反応で重合させて、製造することができる。シロキサン単位(B)を有する架橋性オルガノポリシロキサンの場合はさらに式(4)で表わされるシラン化合物を使用して製造することができる。さらに他のシロキサン単位を有する架橋性オルガノポリシロキサンは、シラノール基や加水分解性基を1個以上有するシラン化合物を使用して製造することができる。重合反応は通常不活性溶媒中で行われ、無触媒下、加熱のみで反応させることできる。必要により、反応触媒を使用することもできる。
 シロキサン単位(A)を有する架橋性オルガノポリシロキサンやその製造方法は基本的に公知であり、例えば、日本国特開平9-59387号公報、日本国特開2008-280402号公報に記載されている。本発明における架橋性オルガノポリシロキサンやその製造方法は、このような公知文献記載のものを使用できる。
The method for producing the crosslinkable organopolysiloxane is not particularly limited as long as the siloxane unit (A) represented by the above formula (1) is included. For example, the silane compound represented by the formula (3) can be produced by polymerizing by a condensation reaction or a hydrolysis / condensation reaction. In the case of a crosslinkable organopolysiloxane having a siloxane unit (B), it can be produced using a silane compound represented by the formula (4). Furthermore, the crosslinkable organopolysiloxane having other siloxane units can be produced using a silane compound having at least one silanol group or hydrolyzable group. The polymerization reaction is usually carried out in an inert solvent, and the reaction can be carried out only by heating in the absence of a catalyst. If necessary, a reaction catalyst can be used.
A crosslinkable organopolysiloxane having a siloxane unit (A) and a method for producing the same are basically known, and are described in, for example, Japanese Patent Application Laid-Open No. 9-59387 and Japanese Patent Application Laid-Open No. 2008-280402. . As the crosslinkable organopolysiloxane and the method for producing the same in the present invention, those described in the known literature can be used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(3)および式(4)中、R~Rは、式(1)および式(2)中のR~Rと同義である。
 式(3)中、X、Yは、それぞれ独立に、水酸基または加水分解性基(例えば、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基などの1~3級のアミノ基、ハロゲン基、アルコキシ基等)を表す。
In the formula (3) and (4), R 1 ~ R 6 have the same meanings as R 1 ~ R 6 in the formula (1) and (2).
In the formula (3), X and Y each independently represent a hydroxyl group or a hydrolyzable group (for example, primary to tertiary amino groups such as amino group, monoalkylamino group, dialkylamino group, halogen group, alkoxy group) Etc.).
 交互共重合体は反応性が異なる2種の単量体を重合させることにより得ることができる。例えば、シロキサン単位(A)となる上記式(3)で表わされるシラン化合物の重合反応性基であるXとシロキサン単位(B)となる上記式(4)で表わされるシラン化合物の重合反応性基であるYの相互の反応性が、X同士の反応性とY同士の反応性のいずれよりも高くなるものを選択して、上記2種のシラン化合物の実質的に等モル量を反応させることにより、交互共重合体を製造することができる。XとYの反応性が、X同士の反応性とY同士の反応性のいずれよりもより高いものとすることにより、ランダム結合部分やブロック結合部分のより少ない交互共重合体が得られる。
 交互共重合体を製造する場合、XとYの一方が水酸基であり、他方がアミノ基、モノアルキルアミノ基、ジアルキルアミノ基などの1~3級のアミノ基であることが好ましい。特に、一方が水酸基で他方がジアルキルアミノ基であることが好ましく、Xが水酸基でYがジアルキルアミノ基であることがより好ましい。なお、モノアルキルアミノ基やジアルキルアミノ基におけるアルキル基は炭素数4以下のアルキル基が好ましく、メチル基が特に好ましい。
 オルガノポリシロキサンの交互共重合体やその製造方法は基本的に公知であり、例えば、Macromolecules 1998, 31, 8501またはJournal of Applied Polymer Science, Vol.106, 1007, 2007)にオルガノポリシロキサンの交互共重合体やその製造方法が記載されている。本発明における交互共重合体やその製造方法はこれら公知文献に記載のものを使用することができる。
 具体的な製造方法としては、例えば、上記式(3)で表わされるシラン化合物(Xが水酸基であるもの)の有機溶媒溶液と上記式(4)で表わされるシラン化合物(Yがジメチルアミノ基であるもの)の有機溶媒溶液を両シラン化合物が等モル量となる割合で混合し加熱撹拌しながら反応させる方法、一方の有機溶媒溶液に加熱撹拌下に他方の有機溶媒溶液を分割してまたは連続的に添加しながら反応させる方法などで交互共重合体を製造することができる。
The alternating copolymer can be obtained by polymerizing two kinds of monomers having different reactivities. For example, X is a polymerization reactive group of the silane compound represented by the above formula (3) to be the siloxane unit (A) and a polymerization reactive group of the silane compound represented by the above formula (4) to be the siloxane unit (B). Y having a mutual reactivity higher than both the reactivity between X and the reactivity between Y is selected, and a substantially equimolar amount of the two silane compounds is reacted. Thus, an alternating copolymer can be produced. By making the reactivity of X and Y higher than both the reactivity of X and the reactivity of Y, an alternating copolymer with fewer random bonds or block bonds can be obtained.
When producing an alternating copolymer, it is preferable that one of X and Y is a hydroxyl group, and the other is a primary to tertiary amino group such as an amino group, a monoalkylamino group, or a dialkylamino group. In particular, one is preferably a hydroxyl group and the other is a dialkylamino group, more preferably X is a hydroxyl group and Y is a dialkylamino group. The alkyl group in the monoalkylamino group or dialkylamino group is preferably an alkyl group having 4 or less carbon atoms, and particularly preferably a methyl group.
Alternating copolymers of organopolysiloxanes and their production methods are basically known. For example, Macromolecules 1998, 31, 8501 or Journal of Applied Polymer Science, Vol. 106, 1007, 2007). The polymer and its manufacturing method are described. As the alternating copolymer and the production method thereof in the present invention, those described in these known documents can be used.
As a specific production method, for example, an organic solvent solution of a silane compound represented by the above formula (3) (where X is a hydroxyl group) and a silane compound represented by the above formula (4) (Y is a dimethylamino group) A method of mixing an organic solvent solution of a certain thing at a ratio in which both silane compounds are equimolar amounts and reacting while heating and stirring, dividing one organic solvent solution into another organic solvent solution with heating and stirring, or continuously Alternatively, an alternating copolymer can be produced by a method of reacting while adding them.
 架橋性オルガノポリシロキサンは所定の架橋反応を介して、架橋硬化し、本発明におけるシリコーン樹脂である架橋物となる。架橋の形式は特に制限されず、架橋性オルガノポリシロキサン中に含まれる架橋性基の種類に応じて適宜公知の形式を採用できる。例えば、ヒドロシリル化反応、シラノール基の縮合反応、または、加熱処理、高エネルギー線処理若しくはラジカル重合開始剤によるラジカル反応などが挙げられる。
 より具体的には、架橋性オルガノポリシロキサンがアルケニル基またはアルキニル基などのラジカル反応性基を有する場合、上記ラジカル反応を介したラジカル反応性基同士の反応により架橋して架橋物(シリコーン樹脂)となる。
 また、架橋性オルガノポリシロキサンがシラノール基を有する場合、シラノール基同士の縮合反応により架橋して架橋物となる。
 さらに、架橋性オルガノポリシロキサンがアルケニル基またはケイ素原子に結合した水素原子を有する場合、ヒドロシリル化触媒(例えば、白金系触媒)の存在下、ヒドロシリル化反応により架橋して架橋物となる。
 上記架橋形式のなかでも、反応による副生成物の発生が抑制され、より緻密で耐熱性に優れたシリコーン樹脂が得られる点で、ラジカル反応を介した形式が好ましい。
 なお、架橋反応に際しては、2種以上の式(1)で表されるシロキサン単位(A)を含む架橋性オルガノポリシロキサンを併用してもよく、また、式(1)で表されるシロキサン単位(A)を含む架橋性オルガノポリシロキサン以外の他の架橋性オルガノポリシロキサンを併用してもよい。
 なお、以下、架橋性オルガノポリシロキサンを架橋硬化させて架橋物であるシリコーン樹脂を形成することを単に架橋性オルガノポリシロキサンの硬化という。
The crosslinkable organopolysiloxane is cross-linked and cured through a predetermined cross-linking reaction to become a cross-linked product which is the silicone resin in the present invention. The form of crosslinking is not particularly limited, and a known form can be appropriately employed depending on the kind of the crosslinkable group contained in the crosslinkable organopolysiloxane. Examples thereof include a hydrosilylation reaction, a silanol group condensation reaction, a heat treatment, a high energy ray treatment, or a radical reaction with a radical polymerization initiator.
More specifically, when the crosslinkable organopolysiloxane has a radical reactive group such as an alkenyl group or an alkynyl group, the crosslinkable product (silicone resin) is crosslinked by a reaction between radical reactive groups via the radical reaction. It becomes.
Moreover, when crosslinkable organopolysiloxane has a silanol group, it crosslinks by the condensation reaction of silanol groups, and turns into a crosslinked material.
Further, when the crosslinkable organopolysiloxane has a hydrogen atom bonded to an alkenyl group or a silicon atom, it is crosslinked by a hydrosilylation reaction in the presence of a hydrosilylation catalyst (for example, a platinum-based catalyst) to form a crosslinked product.
Among the above-mentioned crosslinking forms, the form through radical reaction is preferable in that the generation of by-products due to the reaction is suppressed and a denser and excellent heat-resistant silicone resin can be obtained.
In the cross-linking reaction, a cross-linkable organopolysiloxane containing two or more types of siloxane units (A) represented by the formula (1) may be used in combination, or the siloxane units represented by the formula (1). You may use together other crosslinkable organopolysiloxane other than the crosslinkable organopolysiloxane containing (A).
Hereinafter, forming a silicone resin as a crosslinked product by crosslinking and curing the crosslinkable organopolysiloxane is simply referred to as curing of the crosslinkable organopolysiloxane.
[ガラス積層体およびその製造方法]
 本発明のガラス積層体10は、上述したように、支持基材12とガラス基板16とそれらの間にシリコーン樹脂層14が存在する積層体である。
 本発明のガラス積層体10の製造方法は特に制限されないが、剥離強度(x)が剥離強度(y)よりも高い積層体を得るために、支持基材12表面上で所定の架橋性オルガノポリシロキサンを硬化させてシリコーン樹脂層14を形成する方法が好ましい。すなわち、架橋性オルガノポリシロキサンの層を支持基材12の表面に形成し、支持基材12表面上で架橋性オルガノポリシロキサンを硬化させてシリコーン樹脂層14を形成し、次いで、シリコーン樹脂層14のシリコーン樹脂面にガラス基板16を積層して、ガラス積層体10を製造する方法である。
 架橋性オルガノポリシロキサンを支持基材12表面で硬化させると、硬化反応時の支持基材12表面との相互作用により接着し、シリコーン樹脂と支持基材12表面との剥離強度は高くなると考えられる。したがって、ガラス基板16と支持基材12とが同じ材質からなるものであっても、シリコーン樹脂層14と両者間の剥離強度に差を設けることができる。
 以下、架橋性オルガノポリシロキサンの層を支持基材12の表面に形成し、支持基材12表面上で架橋性オルガノポリシロキサンを硬化させてシリコーン樹脂層14を形成する工程を樹脂層形成工程、シリコーン樹脂層14のシリコーン樹脂面にガラス基板16を積層してガラス積層体10とする工程を積層工程といい、各工程の手順について詳述する。
[Glass laminate and manufacturing method thereof]
As described above, the glass laminate 10 of the present invention is a laminate in which the support base 12, the glass substrate 16, and the silicone resin layer 14 exist between them.
The method for producing the glass laminate 10 of the present invention is not particularly limited, but in order to obtain a laminate having a peel strength (x) higher than the peel strength (y), a predetermined crosslinkable organopolysiloxane is formed on the surface of the support substrate 12. A method of forming the silicone resin layer 14 by curing siloxane is preferable. That is, a layer of a crosslinkable organopolysiloxane is formed on the surface of the support substrate 12, the crosslinkable organopolysiloxane is cured on the surface of the support substrate 12 to form the silicone resin layer 14, and then the silicone resin layer 14 This is a method of manufacturing the glass laminate 10 by laminating the glass substrate 16 on the silicone resin surface.
When the crosslinkable organopolysiloxane is cured on the surface of the support substrate 12, it is considered that the crosslinkable organopolysiloxane adheres due to the interaction with the surface of the support substrate 12 during the curing reaction, and the peel strength between the silicone resin and the surface of the support substrate 12 increases. . Therefore, even if the glass substrate 16 and the support base 12 are made of the same material, a difference can be provided in the peel strength between the silicone resin layer 14 and the both.
Hereinafter, a step of forming a silicone resin layer 14 by forming a crosslinkable organopolysiloxane layer on the surface of the support substrate 12 and curing the crosslinkable organopolysiloxane on the surface of the support substrate 12 is a resin layer formation step. The process of laminating the glass substrate 16 on the silicone resin surface of the silicone resin layer 14 to form the glass laminate 10 is referred to as a lamination process, and the procedure of each process will be described in detail.
(樹脂層形成工程)
 樹脂層形成工程では、架橋性オルガノポリシロキサンの層を支持基材12の表面に形成し、支持基材12表面上で架橋性オルガノポリシロキサンを硬化させてシリコーン樹脂層14を形成する。
 支持基材12上に架橋性オルガノポリシロキサンの層を形成するためには、架橋性オルガノポリシロキサンを溶媒に溶解させたコーティング用組成物を使用し、この組成物を支持基材12上に塗布して溶液の層を形成し、次いで溶媒を除去して架橋性オルガノポリシロキサンの層とすることが好ましい。組成物中における架橋性オルガノポリシロキサンの濃度の調整などにより、架橋性オルガノポリシロキサンの層の厚さを制御することができる。
 溶媒としては、作業環境下で架橋性オルガノポリシロキサンを容易に溶解でき、かつ、容易に揮発除去させることのできる溶媒であれば、特に限定されるものではない。具体的には、例えば、トルエン、キシレン、THF、クロロホルム等を例示することができる。
(Resin layer forming process)
In the resin layer forming step, a layer of a crosslinkable organopolysiloxane is formed on the surface of the support base 12, and the crosslinkable organopolysiloxane is cured on the surface of the support base 12 to form the silicone resin layer 14.
In order to form a crosslinkable organopolysiloxane layer on the support substrate 12, a coating composition in which the crosslinkable organopolysiloxane is dissolved in a solvent is used, and this composition is applied onto the support substrate 12. It is preferable to form a solution layer and then remove the solvent to form a crosslinkable organopolysiloxane layer. The thickness of the crosslinkable organopolysiloxane layer can be controlled by adjusting the concentration of the crosslinkable organopolysiloxane in the composition.
The solvent is not particularly limited as long as it can easily dissolve the crosslinkable organopolysiloxane in a working environment and can be easily volatilized and removed. Specifically, toluene, xylene, THF, chloroform etc. can be illustrated, for example.
 支持基材12表面上に架橋性オルガノポリシロキサンを含む組成物を塗布する方法は特に限定されず、公知の方法を使用することができる。例えば、スプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法などが挙げられる。 The method for applying the composition containing the crosslinkable organopolysiloxane on the surface of the support substrate 12 is not particularly limited, and a known method can be used. Examples thereof include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating.
 次いで、支持基材12上の架橋性オルガノポリシロキサンを硬化させて、シリコーン樹脂層14を形成する。より具体的には、図2(A)に示すように、該工程では支持基材12の少なくとも片面の表面上にシリコーン樹脂層14が形成される。
 硬化の方法は、上述したように、架橋性オルガノポリシロキサンの架橋形式に応じて適宜最適な方法が選択される。なかでも、架橋性オルガノポリシロキサンがラジカル重合性基を有する場合、ガラス基板16に対する密着性および耐熱性に優れるシリコーン樹脂が得られる点で、熱硬化によりシリコーン樹脂層14を製造することが好ましい。以下、熱硬化の態様について詳述する。
Next, the crosslinkable organopolysiloxane on the support substrate 12 is cured to form the silicone resin layer 14. More specifically, as shown in FIG. 2A, in this step, a silicone resin layer 14 is formed on the surface of at least one side of the support base 12.
As described above, as the curing method, an optimum method is appropriately selected according to the crosslinking type of the crosslinkable organopolysiloxane. Especially, when the crosslinkable organopolysiloxane has a radical polymerizable group, it is preferable to produce the silicone resin layer 14 by thermosetting in that a silicone resin excellent in adhesion to the glass substrate 16 and heat resistance can be obtained. Hereinafter, the aspect of thermosetting is explained in full detail.
 架橋性オルガノポリシロキサンを熱硬化させる温度条件は、シリコーン樹脂層14の耐熱性を向上し、ガラス基板16と積層後の剥離強度(y)を上記のように制御しうる範囲内で特に制限されないが、300~475℃が好ましく、350~450℃がより好ましい。また、加熱時間は、通常、10~300分が好ましく、20~120分がより好ましい。熱硬化の温度が低すぎると、耐熱性やシリコーン樹脂層14の平坦性が低下し、一方、温度が高すぎると剥離強度(y)が低くなりすぎ、いずれもガラス基板16とシリコーン樹脂層14との密着性が弱くなる場合がある。 The temperature condition for thermosetting the crosslinkable organopolysiloxane is not particularly limited as long as the heat resistance of the silicone resin layer 14 is improved and the peel strength (y) after lamination with the glass substrate 16 can be controlled as described above. However, 300 to 475 ° C. is preferable, and 350 to 450 ° C. is more preferable. The heating time is usually preferably 10 to 300 minutes, more preferably 20 to 120 minutes. When the temperature of thermosetting is too low, the heat resistance and the flatness of the silicone resin layer 14 are lowered. On the other hand, when the temperature is too high, the peel strength (y) is too low, both of which are the glass substrate 16 and the silicone resin layer 14. Adhesiveness may be weakened.
 なお、架橋性オルガノポリシロキサンはプレキュア(予備硬化)を行った後硬化(本硬化)を行って硬化させることが好ましい。プレキュアを行うことにより耐熱性に優れたシリコーン樹脂層14を得ることができる。プレキュアは溶媒の除去に引き続き行うことが好ましく、その場合、層から溶媒を除去して架橋性オルガノポリシロキサンの層を形成する工程とプレキュアを行う工程とは特に区別されない。溶媒の除去は100℃以上に加熱して行うことが好ましく、150℃以上に加熱することにより引き続きプレキュアを行うことができる。溶媒の除去とプレキュアを行う温度および加熱時間は、100~420℃、5~60分が好ましく、150~300℃、10~30分がより好ましい。420℃以下であると剥離容易なシリコーン樹脂層が得られる。 The crosslinkable organopolysiloxane is preferably cured by precuring (precuring) and then curing (main curing). By performing precure, the silicone resin layer 14 excellent in heat resistance can be obtained. Precuring is preferably carried out following the removal of the solvent. In that case, there is no particular distinction between the step of removing the solvent from the layer to form a layer of the crosslinkable organopolysiloxane and the step of precuring. The removal of the solvent is preferably performed by heating to 100 ° C. or higher, and precure can be continued by heating to 150 ° C. or higher. The temperature at which the solvent is removed and precured and the heating time are preferably 100 to 420 ° C. and 5 to 60 minutes, more preferably 150 to 300 ° C. and 10 to 30 minutes. A silicone resin layer that is easily peeled when the temperature is 420 ° C. or lower is obtained.
(積層工程)
 積層工程は、上記の樹脂層形成工程で得られたシリコーン樹脂層14のシリコーン樹脂面上にガラス基板16を積層し、支持基材12の層とシリコーン樹脂層14とガラス基板16の層とをこの順で備えるガラス積層体10を得る工程である。より具体的には、図2(B)に示すように、シリコーン樹脂層14の支持基材12側とは反対側の表面(シリコーン樹脂層の第1主面)14aと、第1主面16aおよび第2主面16bを有するガラス基板16の第1主面16aとを積層面として、シリコーン樹脂層14とガラス基板16とを積層し、ガラス積層体10を得る。
(Lamination process)
In the laminating step, the glass substrate 16 is laminated on the silicone resin surface of the silicone resin layer 14 obtained in the resin layer forming step, and the layer of the supporting base 12, the silicone resin layer 14, and the glass substrate 16 are laminated. This is a step of obtaining the glass laminate 10 provided in this order. More specifically, as shown in FIG. 2B, the surface (first main surface of the silicone resin layer) 14a opposite to the support base 12 side of the silicone resin layer 14 and the first main surface 16a. The glass laminate 10 is obtained by laminating the silicone resin layer 14 and the glass substrate 16 with the first principal surface 16a of the glass substrate 16 having the second principal surface 16b as a lamination surface.
 ガラス基板16をシリコーン樹脂層14上に積層する方法は特に制限されず、公知の方法を採用することができる。
 例えば、常圧環境下でシリコーン樹脂層14の表面上にガラス基板16を重ねる方法が挙げられる。なお、必要に応じて、シリコーン樹脂層14の表面上にガラス基板16を重ねた後、ロールやプレスを用いてシリコーン樹脂層14にガラス基板16を圧着させてもよい。ロールまたはプレスによる圧着により、シリコーン樹脂層14とガラス基板16の層との間に混入している気泡が比較的容易に除去されるので好ましい。
The method in particular of laminating | stacking the glass substrate 16 on the silicone resin layer 14 is not restrict | limited, A well-known method is employable.
For example, a method of stacking the glass substrate 16 on the surface of the silicone resin layer 14 under a normal pressure environment can be mentioned. If necessary, after the glass substrate 16 is overlaid on the surface of the silicone resin layer 14, the glass substrate 16 may be pressure-bonded to the silicone resin layer 14 using a roll or a press. Air bubbles mixed between the silicone resin layer 14 and the glass substrate 16 can be removed relatively easily by pressure bonding using a roll or a press, which is preferable.
 真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保が行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、ガラス基板16のゆがみ欠陥につながりにくいという利点もある。 It is more preferable to perform pressure bonding by a vacuum laminating method or a vacuum pressing method because it can suppress mixing of bubbles and ensure good adhesion. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are not likely to lead to a distortion defect of the glass substrate 16.
 ガラス基板16を積層する際には、シリコーン樹脂層14に接触するガラス基板16の表面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。クリーン度が高いほど、ガラス基板16の平坦性は良好となるので好ましい。 When laminating the glass substrate 16, it is preferable that the surface of the glass substrate 16 in contact with the silicone resin layer 14 is sufficiently washed and laminated in an environment with a high degree of cleanliness. The higher the degree of cleanliness, the better the flatness of the glass substrate 16, which is preferable.
 なお、ガラス基板16を積層した後、必要に応じて、プレアニール処理(加熱処理)を行ってもよい。該プレアニール処理を行うことにより、積層されたガラス基板16のシリコーン樹脂層14に対する密着性が向上し、適切な剥離強度(y)とすることができ、後述する部材形成工程の際に電子デバイス用部材の位置ずれなどが生じにくくなり、電子デバイスの生産性が向上する。
 プレアニール処理の条件は使用されるシリコーン樹脂層14の種類に応じて適宜最適な条件が選択されるが、ガラス基板16とシリコーン樹脂層14の間の剥離強度(y)をより適切なものとする点から、300℃以上(好ましくは、300~400℃)で5分間以上(好ましく、5~30分間)加熱処理を行うことが好ましい。
In addition, after laminating | stacking the glass substrate 16, you may perform a pre-annealing process (heat processing) as needed. By performing the pre-annealing treatment, the adhesion of the laminated glass substrate 16 to the silicone resin layer 14 can be improved, and an appropriate peel strength (y) can be obtained. Misalignment of members is less likely to occur, and the productivity of electronic devices is improved.
The conditions for the pre-annealing treatment are appropriately selected according to the type of the silicone resin layer 14 to be used, but the peel strength (y) between the glass substrate 16 and the silicone resin layer 14 is more appropriate. In view of this, it is preferable to perform heat treatment at 300 ° C. or higher (preferably 300 to 400 ° C.) for 5 minutes or longer (preferably 5 to 30 minutes).
 なお、ガラス基板16の第1主面に対する剥離強度と支持基材12の第1主面に対する剥離強度に差を設けたシリコーン樹脂層14の形成は、上記方法に限られるものではない。
 例えば、シリコーン樹脂表面に対する密着性がガラス基板16よりも高い材質の支持基材12を用いる場合には、架橋性オルガノポリシロキサンを何らかの剥離性表面上で硬化してシリコーン樹脂のフィルムを製造し、このフィルムをガラス基板16と支持基材12との間に介在させ同時に積層することができる。
 また、架橋性オルガノポリシロキサンの硬化による接着性がガラス基板16に対して充分低くかつその接着性が支持基材12に対して充分高い場合は、ガラス基板16と支持基材12の間で架橋性オルガノポリシロキサンを硬化させてシリコーン樹脂層14を形成することができる。
 さらに、支持基材12がガラス基板16と同様のガラス材料からなる場合であっても、支持基材12表面の接着性を高める処理を施してシリコーン樹脂層14に対する剥離強度を高めることもできる。例えば、シランカップリング剤のような化学的に固定力を向上させる化学的方法(プライマー処理)や、フレーム(火炎)処理のように表面活性基を増加させる物理的方法、サンドブラスト処理のように表面の粗度を増加させることにより引っかかりを増加させる機械的処理方法などが例示される。
In addition, formation of the silicone resin layer 14 which provided the difference in the peeling strength with respect to the 1st main surface of the glass substrate 16 and the peeling strength with respect to the 1st main surface of the support base material 12 is not restricted to the said method.
For example, in the case of using a support base material 12 having a higher adhesion to the silicone resin surface than the glass substrate 16, a crosslinkable organopolysiloxane is cured on some peelable surface to produce a silicone resin film, This film can be interposed between the glass substrate 16 and the support base 12 and laminated simultaneously.
Moreover, when the adhesiveness by hardening of crosslinkable organopolysiloxane is low enough with respect to the glass substrate 16, and the adhesiveness is high enough with respect to the support base material 12, it bridge | crosslinks between the glass substrate 16 and the support base material 12. The silicone resin layer 14 can be formed by curing the functional organopolysiloxane.
Furthermore, even when the support base 12 is made of the same glass material as that of the glass substrate 16, it is possible to increase the peel strength with respect to the silicone resin layer 14 by performing a process for improving the adhesion of the support base 12 surface. For example, a chemical method (primer treatment) that improves the fixing force chemically such as a silane coupling agent, a physical method that increases surface active groups such as a flame (flame) treatment, or a surface such as a sandblast treatment Examples of such a mechanical processing method increase the catch by increasing the roughness of the material.
(ガラス積層体)
 本発明のガラス積層体10は、種々の用途に使用することができ、例えば、後述する表示装置用パネル、PV、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品を製造する用途などが挙げられる。なお、該用途では、ガラス積層体10が高温条件(例えば、400℃以上)で曝される(例えば、1時間以上)場合が多い。
 ここで、表示装置用パネルとは、LCD、OLED、電子ペーパー、プラズマディスプレイパネル、フィールドエミッションパネル、量子ドットLEDパネル、MEMS(Micro Electro Mechanical Systems)シャッターパネル等が含まれる。
(Glass laminate)
The glass laminate 10 of the present invention can be used for various applications, for example, manufacturing electronic parts such as a display device panel, PV, a thin film secondary battery, and a semiconductor wafer having a circuit formed on the surface, which will be described later. The use to do is mentioned. In this application, the glass laminate 10 is often exposed (for example, 1 hour or longer) under high temperature conditions (for example, 400 ° C. or higher).
Here, the display device panel includes LCD, OLED, electronic paper, plasma display panel, field emission panel, quantum dot LED panel, MEMS (Micro Electro Mechanical Systems) shutter panel, and the like.
[部材付きガラス基板およびその製造方法]
 本発明においては、上述した積層体を用いて、ガラス基板と電子デバイス用部材とを含む部材付きガラス基板(電子デバイス用部材付きガラス基板)が製造される。
 該部材付きガラス基板の製造方法は特に限定されないが、電子デバイスの生産性に優れる点から、上記ガラス積層体中のガラス基板上に電子デバイス用部材を形成して電子デバイス用部材付き積層体を製造し、得られた電子デバイス用部材付き積層体からシリコーン樹脂層のガラス基板側界面を剥離面として部材付きガラス基板とシリコーン樹脂層付き支持基材とに分離する方法が好ましい。
 以下、上記ガラス積層体中のガラス基板上に電子デバイス用部材を形成して電子デバイス用部材付き積層体を製造する工程を部材形成工程、電子デバイス用部材付き積層体からシリコーン樹脂層のガラス基板側界面を剥離面として部材付きガラス基板とシリコーン樹脂層付き支持基材とに分離する工程を分離工程という。
 以下に、各工程で使用される材料および手順について詳述する。
[Glass substrate with member and method for producing the same]
In this invention, the glass substrate with a member (glass substrate with a member for electronic devices) containing a glass substrate and the member for electronic devices is manufactured using the laminated body mentioned above.
Although the manufacturing method of this glass substrate with a member is not specifically limited, From the point which is excellent in productivity of an electronic device, the member for electronic devices is formed on the glass substrate in the said glass laminated body, and the laminated body with an electronic device member is used. A method in which the manufactured and obtained laminate with a member for electronic devices is separated into a glass substrate with a member and a supporting substrate with a silicone resin layer by using the glass substrate side interface of the silicone resin layer as a release surface is preferable.
Hereinafter, the step of forming a member for an electronic device by forming a member for an electronic device on the glass substrate in the glass laminate is a member forming step, and the glass substrate for the silicone resin layer from the laminate with the member for an electronic device. The process of separating into a glass substrate with a member and a supporting substrate with a silicone resin layer using the side interface as a release surface is called a separation process.
The materials and procedures used in each process are described in detail below.
(部材形成工程)
 部材形成工程は、上記積層工程において得られたガラス積層体10中のガラス基板16上に電子デバイス用部材を形成する工程である。より具体的には、図2(C)に示すように、ガラス基板16の第2主面16b(露出表面)上に電子デバイス用部材20を形成し、電子デバイス用部材付き積層体22を得る。
 まず、本工程で使用される電子デバイス用部材20について詳述し、その後工程の手順について詳述する。
(Member formation process)
A member formation process is a process of forming the member for electronic devices on the glass substrate 16 in the glass laminated body 10 obtained in the said lamination process. More specifically, as shown in FIG. 2C, the electronic device member 20 is formed on the second main surface 16b (exposed surface) of the glass substrate 16 to obtain the laminate 22 with the electronic device member. .
First, the electronic device member 20 used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.
(電子デバイス用部材(機能性素子))
 電子デバイス用部材20は、ガラス積層体10中のガラス基板16上に形成され電子デバイスの少なくとも一部を構成する部材である。より具体的には、電子デバイス用部材20としては、表示装置用パネル、太陽電池、薄膜2次電池、または、表面に回路が形成された半導体ウェハ等の電子部品などに用いられる部材(例えば、表示装置用部材、太陽電池用部材、薄膜2次電池用部材、電子部品用回路)が挙げられる。
(Electronic device components (functional elements))
The electronic device member 20 is a member that is formed on the glass substrate 16 in the glass laminate 10 and constitutes at least a part of the electronic device. More specifically, as the electronic device member 20, a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface (for example, Display member, solar cell member, thin film secondary battery member, electronic component circuit).
 例えば、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
 また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
 また、電子部品用回路としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
For example, as a member for a solar cell, a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
Further, as a member for a thin film secondary battery, in the lithium ion type, a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc. In addition, various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
In addition, as a circuit for an electronic component, in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
(工程の手順)
 上述した電子デバイス用部材付き積層体22の製造方法は特に限定されず、電子デバイス用部材の構成部材の種類に応じて従来公知の方法にて、ガラス積層体10のガラス基板16の第2主面16b表面上に、電子デバイス用部材20を形成する。
 なお、電子デバイス用部材20は、ガラス基板16の第2主面16bに最終的に形成される部材の全部(以下、「全部材」という)ではなく、全部材の一部(以下、「部分部材」という)であってもよい。シリコーン樹脂層14から剥離された部分部材付きガラス基板を、その後の工程で全部材付きガラス基板(後述する電子デバイスに相当)とすることもできる。
 また、シリコーン樹脂層14から剥離された、全部材付きガラス基板には、その剥離面(第1主面16a)に他の電子デバイス用部材が形成されてもよい。また、全部材付き積層体を組み立て、その後、全部材付き積層体からシリコーン樹脂層付き支持基材18を剥離して、電子デバイスを製造することもできる。さらに、全部材付き積層体を2枚用いて組み立て、その後、全部材付き積層体から2枚のシリコーン樹脂層付き支持基材18を剥離して、2枚のガラス基板を有する部材付きガラス基板を製造することもできる。
(Process procedure)
The manufacturing method of the laminated body 22 with the member for electronic devices mentioned above is not specifically limited, According to the conventionally well-known method according to the kind of structural member of the member for electronic devices, the 2nd main of the glass substrate 16 of the glass laminated body 10 is used. The electronic device member 20 is formed on the surface 16b.
The electronic device member 20 is not all of the members finally formed on the second main surface 16b of the glass substrate 16 (hereinafter referred to as “all members”), but a part of all members (hereinafter referred to as “parts”). May be referred to as a member. The glass substrate with a partial member peeled from the silicone resin layer 14 can be used as a glass substrate with an all member (corresponding to an electronic device described later) in the subsequent steps.
Moreover, the other electronic device member may be formed in the peeling surface (1st main surface 16a) in the glass substrate with all the members peeled from the silicone resin layer 14. FIG. Moreover, the laminated body with all members can be assembled, and then the support substrate 18 with the silicone resin layer can be peeled from the laminated body with all members to manufacture an electronic device. Furthermore, the laminate with all members is assembled using two sheets, and then the two support bases 18 with the silicone resin layer are peeled from the laminate with all members to form a glass substrate with a member having two glass substrates. It can also be manufactured.
 例えば、OLEDを製造する場合を例にとると、ガラス積層体10のガラス基板16のシリコーン樹脂層14側とは反対側の表面上(ガラス基板16の第2主面16bに該当)に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、例えば、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。 For example, when an OLED is manufactured as an example, an organic EL is formed on the surface of the glass laminate 10 opposite to the silicone resin layer 14 side of the glass substrate 16 (corresponding to the second main surface 16b of the glass substrate 16). In order to form a structure, a transparent electrode is formed, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc. are deposited on the surface on which the transparent electrode is formed, a back electrode is formed, and sealing is performed. Various layers are formed and processed, such as sealing with a plate. Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
 また、例えば、TFT-LCDを製造する場合は、ガラス積層体10のガラス基板16の第2主面16b上に、レジスト液を用いて、CVD法およびスパッター法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成するTFT形成工程と、別のガラス積層体10のガラス基板16の第2主面16b上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成するCF形成工程と、TFT形成工程で得られたTFT付き積層体とCF形成工程で得られたCF付き積層体とを積層する貼合わせ工程等の各種工程を有する。 Further, for example, when manufacturing a TFT-LCD, a resist film is used on the second main surface 16b of the glass substrate 16 of the glass laminate 10 by a general film forming method such as a CVD method or a sputtering method. A TFT forming step of forming a thin film transistor (TFT) by patterning the formed metal film, metal oxide film, etc., and patterning a resist solution on the second main surface 16b of the glass substrate 16 of another glass laminate 10 Various processes such as a CF forming step for forming a color filter (CF) to be used for forming, a laminating step for laminating a laminated body with TFT obtained in the TFT forming step and a laminated body with CF obtained in the CF forming step, etc. Process.
 TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、ガラス基板16の第2主面16bにTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。
 なお、TFTやCFを形成する前に、必要に応じて、ガラス基板16の第2主面16bを洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。
In the TFT formation process and the CF formation process, the TFT and the CF are formed on the second main surface 16b of the glass substrate 16 using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
In addition, before forming TFT and CF, you may wash | clean the 2nd main surface 16b of the glass substrate 16 as needed. As a cleaning method, known dry cleaning or wet cleaning can be used.
 貼合わせ工程では、TFT付き積層体の薄膜トランジスタ形成面と、CF付き積層体のカラーフィルタ形成面とを対向させて、シール剤(例えば、セル形成用紫外線硬化型シール剤)を用いて貼り合わせる。その後、TFT付き積層体とCF付き積層体とで形成されたセル内に、液晶材を注入する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。 In the laminating step, the thin film transistor forming surface of the laminated body with TFT and the color filter forming surface of the laminated body with CF are opposed to each other, and are bonded using a sealant (for example, an ultraviolet curable sealant for cell formation). Thereafter, a liquid crystal material is injected into a cell formed by the laminate with TFT and the laminate with CF. Examples of the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
(分離工程)
 分離工程は、図2(D)に示すように、上記部材形成工程で得られた電子デバイス用部材付き積層体22から、シリコーン樹脂層14とガラス基板16との界面を剥離面として、電子デバイス用部材20が積層したガラス基板16(部材付きガラス基板)と、シリコーン樹脂層付き支持基材18とに分離して、電子デバイス用部材20およびガラス基板16を含む部材付きガラス基板24を得る工程である。
 剥離時のガラス基板16上の電子デバイス用部材20が必要な全構成部材の形成の一部である場合には、分離後、残りの構成部材をガラス基板16上に形成することもできる。
(Separation process)
As shown in FIG. 2 (D), the separation step is performed by using the electronic device member-attached laminate 22 obtained in the member formation step, with the interface between the silicone resin layer 14 and the glass substrate 16 as a release surface. The process which isolate | separates into the glass substrate 16 (glass substrate with a member) on which the member 20 for lamination | stacking laminated | stacked, and the support base material 18 with a silicone resin layer, and obtains the glass substrate 24 with a member containing the member 20 for electronic devices and the glass substrate 16 It is.
When the electronic device member 20 on the glass substrate 16 at the time of peeling is a part of the formation of all the necessary constituent members, the remaining constituent members can be formed on the glass substrate 16 after separation.
 ガラス基板16と支持基材12とを剥離する方法は、特に限定されない。具体的には、例えば、ガラス基板16とシリコーン樹脂層14との界面に鋭利な刃物状のものを差し込み、剥離のきっかけを与えた上で、水と圧縮空気との混合流体を吹き付けたりして剥離することができる。好ましくは、電子デバイス用部材付き積層体22の支持基材12が上側、電子デバイス用部材20側が下側となるように定盤上に設置し、電子デバイス用部材20側を定盤上に真空吸着し(両面に支持基材が積層されている場合は順次行う)、この状態でまず刃物をガラス基板16とシリコーン樹脂層14界面に刃物を侵入させる。そして、その後に支持基材12側を複数の真空吸着パッドで吸着し、刃物を差し込んだ箇所付近から順に真空吸着パッドを上昇させる。そうするとシリコーン樹脂層14とガラス基板16との界面やシリコーン樹脂層14の凝集破壊面へ空気層が形成され、その空気層が界面や凝集破壊面の全面に広がり、支持基材12を容易に剥離することができる。
 また、支持基材12は、新たなガラス基板と積層して、本発明のガラス積層体10を製造することができる。
The method of peeling the glass substrate 16 and the support base material 12 is not specifically limited. Specifically, for example, a sharp blade-like object is inserted into the interface between the glass substrate 16 and the silicone resin layer 14 to give a trigger for peeling, and then a mixed fluid of water and compressed air is sprayed. Can be peeled off. Preferably, the electronic device member-attached laminate 22 is placed on the surface plate so that the support substrate 12 is on the upper side and the electronic device member 20 side is on the lower side, and the electronic device member 20 side is vacuumed on the surface plate. In this state, the blade is first allowed to enter the interface between the glass substrate 16 and the silicone resin layer 14. Then, the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. As a result, an air layer is formed on the interface between the silicone resin layer 14 and the glass substrate 16 and on the cohesive failure surface of the silicone resin layer 14, and the air layer spreads over the entire interface and cohesive failure surface, so that the supporting substrate 12 is easily peeled off. can do.
Moreover, the support base material 12 can be laminated | stacked with a new glass substrate, and the glass laminated body 10 of this invention can be manufactured.
 なお、ガラス積層体10から部材付きガラス基板24を分離する際においては、イオナイザによる吹き付けや湿度を制御することにより、シリコーン樹脂層14の欠片が部材付きガラス基板24に静電吸着することをより抑制することができる。 When separating the glass substrate 24 with a member from the glass laminate 10, it is more likely that the fragments of the silicone resin layer 14 are electrostatically adsorbed to the glass substrate 24 with a member by controlling the spraying and humidity with an ionizer. Can be suppressed.
 上述した部材付きガラス基板24の製造方法は、携帯電話やPDAのようなモバイル端末に使用される小型の表示装置の製造に好適である。表示装置は主としてLCDまたはOLEDであり、LCDとしては、TN型、STN型、FE型、TFT型、MIM型、IPS型、VA型等を含む。基本的にパッシブ駆動型、アクティブ駆動型のいずれの表示装置の場合でも適用することができる。 The above-described method for manufacturing the glass substrate with member 24 is suitable for manufacturing a small display device used for a mobile terminal such as a mobile phone or a PDA. The display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like. Basically, the present invention can be applied to both passive drive type and active drive type display devices.
 上記方法で製造された部材付きガラス基板24としては、ガラス基板と表示装置用部材を有する表示装置用パネル、ガラス基板と太陽電池用部材を有する太陽電池、ガラス基板と薄膜2次電池用部材を有する薄膜2次電池、ガラス基板と電子デバイス用部材を有する電子部品などが挙げられる。表示装置用パネルとしては、液晶パネル、有機ELパネル、プラズマディスプレイパネル、フィールドエミッションパネルなどを含む。 As the glass substrate 24 with a member manufactured by the above method, a panel for a display device having a glass substrate and a member for a display device, a solar cell having a glass substrate and a member for a solar cell, a glass substrate and a member for a thin film secondary battery. Examples thereof include a thin film secondary battery, an electronic component having a glass substrate and an electronic device member. Examples of the display device panel include a liquid crystal panel, an organic EL panel, a plasma display panel, a field emission panel, and the like.
 以下に、実施例等により本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples.
 以下の実施例1~3、比較例1では、ガラス基板として、無アルカリホウケイ酸ガラスからなるガラス板(縦200mm、横200mm、板厚0.3mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。また、支持基材としては、同じく無アルカリホウケイ酸ガラスからなるガラス板(縦240mm、横240mm、板厚0.4mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。 In Examples 1 to 3 and Comparative Example 1 below, as a glass substrate, a glass plate made of non-alkali borosilicate glass (length 200 mm, width 200 mm, plate thickness 0.3 mm, linear expansion coefficient 38 × 10 −7 / ° C., Asahi Glass Co., Ltd. trade name “AN100”) was used. Further, as the supporting base material, a glass plate (240 mm long, 240 mm wide, 0.4 mm thick, linear expansion coefficient 38 × 10 −7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd., also made of non-alkali borosilicate glass. )It was used.
<製造例1>架橋性オルガノポリシロキサン(S1)を含む液状物の製造
 窒素雰囲気中、シロキサン単位(A)を構成する化合物として1,4-ビス(ヒドロキシジメチルシリル)ベンゼン(35質量部、ゲレスト社製)を、トルエン(90質量部)に加え、反応溶液を調製した。次に、反応溶液を110℃に加熱して、ビス(ジメチルアミノ)ジメチルシラン(11質量部、ゲレスト社製)およびビス(ジメチルアミノ)メチルビニルシラン(12質量部、ゲレスト社製)をトルエン(40質量部)に溶解させた溶液を約5分かけて反応溶液に滴下した。その後、反応溶液を110℃で1時間攪拌した。攪拌終了後、反応溶液を室温まで自然冷却し、反応溶液をメタノール(3250質量部)中に加えて再沈殿処理を行った。次に、沈殿物を回収し、真空乾燥することにより、無色透明で液体状の架橋性オルガノポリシロキサン(S1)を得た。
<Production Example 1> Production of liquid containing crosslinkable organopolysiloxane (S1) 1,4-bis (hydroxydimethylsilyl) benzene (35 parts by mass, gelest) as a compound constituting siloxane unit (A) in a nitrogen atmosphere Was added to toluene (90 parts by mass) to prepare a reaction solution. Next, the reaction solution was heated to 110 ° C., and bis (dimethylamino) dimethylsilane (11 parts by mass, manufactured by Gerest) and bis (dimethylamino) methylvinylsilane (12 parts by mass, manufactured by Gerest) were converted into toluene (40 The solution dissolved in (part by mass) was dropped into the reaction solution over about 5 minutes. Thereafter, the reaction solution was stirred at 110 ° C. for 1 hour. After completion of the stirring, the reaction solution was naturally cooled to room temperature, and the reaction solution was added to methanol (3250 parts by mass) for reprecipitation treatment. Next, the precipitate was collected and vacuum-dried to obtain a colorless and transparent liquid crosslinkable organopolysiloxane (S1).
 得られた架橋性オルガノポリシロキサン(S1)は、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量(ポリスチレン換算)が、1.2×10であった。また、熱重量分析装置(ティー・エイ・インスツルメント社製)を用いて、昇温速度15℃/分、窒素雰囲気下(100ml/分)で室温~700℃まで昇温することにより、架橋性オルガノポリシロキサン(S1)の5%重量減少温度を測定したところ、535℃であった。さらに、H NMR測定、29Si NMR測定、および13CNMR測定により、架橋性オルガノポリシロキサン(S1)の構造を同定した。H NMR測定および29Si NMR測定におけるスペクトルの帰属は、Journal of Applied Polymer Science, 2007, 106, 1007-1013を参照した。
 H NMR、29Si NMR、および13C NMR測定装置:JEOL RESONANCE社製 ECA600
 H NMR測定方法:試料にCDCLを添加し、試料濃度が10質量%になるように調製した。基準には、テトラメチルシランを用いた。
 29Si NMR測定方法:試料にCDCLを添加し、試料濃度が30質量%になるように調製した。また、緩和試薬としてアセチルアセトンクロム塩を添加し、試料に対して0.1質量%になるように調製した。基準には、テトラメチルシランを用いた。
 13C NMR測定:試料にCDCLを添加し、試料濃度が10質量%になるように調製した。基準には、テトラメチルシランを用いた。
 H NMR測定からは、共重合体の組成が求められる。H NMR測定から得られたスペクトルを、Journal of Applied Polymer Science, 2007, 106, 1007-1013に記載の方法で各帰属を求めた。その結果、シロキサン単位(A)のフェニレン基由来である7.55ppm、シロキサン単位(B-1)と(B-2)のメチル基由来である0.337ppおよび0.142ppm、シロキサン単位(B-2)のビニル基由来である5.9ppm、が確認された。H-NMR測定により、得られた共重合体の各単位の割合(モル%)を算出し、表1に示す。
 29Si NMRおよび13C NMRからは、結合に関する情報が得られる。
 29Si NMR測定から得られたスペクトルを、Journal of Applied Polymer Science, 2007, 106, 1007-1013に記載の方法で各帰属を求めた。
 下記式(α)~(δ)で表わされる式中の、下線付きで示したSiの帰属である、それぞれ-19.5ppm、-33.4ppm、-2.5ppm、-1.6ppmのスペクトルが確認された。また、同じシロキサン単位が連結しているケイ素原子のスペクトルは観察されないか、観察されても極めて低い濃度であった。シロキサン単位(A)とシロキサン単位(B)とが交互に配置された交互共重合体であることが確認された。また、-19.5ppmおよび-33.4ppmのスペクトルの積分値から、シロキサン単位(A)とシロキサン単位(B)の結合が架橋性オルガノポリシロキサン(S1)中90モル%であることが確認された。
The obtained crosslinkable organopolysiloxane (S1) had a number average molecular weight (polystyrene conversion) by GPC (gel permeation chromatography) of 1.2 × 10 4 . Further, by using a thermogravimetric analyzer (manufactured by TA Instruments Inc.), the temperature is increased from room temperature to 700 ° C. in a nitrogen atmosphere (100 ml / min) at a rate of temperature increase of 15 ° C./min. The 5% weight loss temperature of the functional organopolysiloxane (S1) was measured and found to be 535 ° C. Furthermore, the structure of the crosslinkable organopolysiloxane (S1) was identified by 1 H NMR measurement, 29 Si NMR measurement, and 13 C NMR measurement. For assignment of spectra in 1 H NMR measurement and 29 Si NMR measurement, Journal of Applied Polymer Science, 2007, 106, 1007-1013 was referred.
1 H NMR, 29 Si NMR, and 13 C NMR measuring apparatus: ECA600 manufactured by JEOL RESONANCE
1 H NMR measurement method: CDCL 3 was added to a sample to prepare a sample concentration of 10% by mass. Tetramethylsilane was used as a standard.
29 Si NMR measurement method: CDCL 3 was added to a sample to prepare a sample concentration of 30% by mass. Moreover, acetylacetone chromium salt was added as a relaxation reagent, and it prepared so that it might become 0.1 mass% with respect to a sample. Tetramethylsilane was used as a standard.
13 C NMR measurement: CDCL 3 was added to the sample to prepare a sample concentration of 10% by mass. Tetramethylsilane was used as a standard.
The composition of the copolymer is determined from the 1 H NMR measurement. Each assignment was determined for the spectrum obtained from 1 H NMR measurement by the method described in Journal of Applied Polymer Science, 2007, 106, 1007-1013. As a result, 7.55 ppm derived from the phenylene group of the siloxane unit (A), 0.337 pp and 0.142 ppm derived from the methyl group of the siloxane units (B-1) and (B-2), the siloxane unit (B— 5.9 ppm derived from the vinyl group of 2) was confirmed. The ratio (mol%) of each unit of the obtained copolymer was calculated by 1 H-NMR measurement and shown in Table 1.
29 Si NMR and 13 C NMR give information about the bonds.
Each assignment of the spectrum obtained from 29 Si NMR measurement was determined by the method described in Journal of Applied Polymer Science, 2007, 106, 1007-1013.
In the formulas represented by the following formulas (α) to (δ), the spectra of −19.5 ppm, −33.4 ppm, −2.5 ppm, and −1.6 ppm, which are the attribution of Si underlined, are respectively shown. confirmed. Moreover, the spectrum of the silicon atom to which the same siloxane unit was connected was not observed, or even when observed, the concentration was extremely low. It was confirmed that the siloxane unit (A) and the siloxane unit (B) were alternating copolymers in which the siloxane units (B) were alternately arranged. Further, from the integral values of the spectra of -19.5 ppm and -33.4 ppm, it was confirmed that the bond between the siloxane unit (A) and the siloxane unit (B) was 90 mol% in the crosslinkable organopolysiloxane (S1). It was.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 次に、架橋性オルガノポリシロキサン(S1)(30質量部)をキシレン(70質量部)に溶解させて架橋性オルガノポリシロキサン(S1)を含む液状物を作製した。 Next, a crosslinkable organopolysiloxane (S1) (30 parts by mass) was dissolved in xylene (70 parts by mass) to prepare a liquid material containing the crosslinkable organopolysiloxane (S1).
<製造例2~4>架橋性オルガノポリシロキサン(S2)~(S4)と各液状物の製造
 架橋性オルガノポリシロキサン(S2)~(S4)について、製造例1と同様にして、得られるオルガノポリシロキサン中の各単位が表1に示す組成比(モル比)となるように製造した。ついで、得られた架橋性オルガノポリシロキサン(S2)~(S4)をキシレンに溶解させて、架橋性オルガノポリシロキサン(S2)~(S4)を各々含む液状物を作製した。
<Production Examples 2 to 4> Production of Crosslinkable Organopolysiloxanes (S2) to (S4) and Liquid Products Organos obtained in the same manner as in Production Example 1 for crosslinkable organopolysiloxanes (S2) to (S4) It manufactured so that each unit in polysiloxane might become the composition ratio (molar ratio) shown in Table 1. Next, the obtained crosslinkable organopolysiloxanes (S2) to (S4) were dissolved in xylene to prepare liquid materials each containing the crosslinkable organopolysiloxanes (S2) to (S4).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<実施例1>
 初めに、板厚0.4mmの支持基材を純水洗浄した後、さらにUV洗浄して清浄化した。
 次に、支持基材の第1主面上に、架橋性オルガノポリシロキサン(S1)を含む液状物を、スピンコータにて塗工した(塗工量120g/m)。
 次に、375℃にて30分間大気中で加熱硬化して、支持基材の第1主面に厚さ6μmのシリコーン樹脂層を形成した。
<Example 1>
First, a support substrate having a thickness of 0.4 mm was cleaned with pure water, and further cleaned with UV.
Next, a liquid material containing the crosslinkable organopolysiloxane (S1) was applied on the first main surface of the support substrate with a spin coater (coating amount 120 g / m 2 ).
Next, it was heat-cured in the air at 375 ° C. for 30 minutes to form a 6 μm-thick silicone resin layer on the first main surface of the support substrate.
 その後、ガラス基板と、支持基材のシリコーン樹脂層面とを、室温下で真空プレスにより貼り合わせ、ガラス積層体Aを得た。
 得られたガラス積層体Aにおいては、支持基材とガラス基板は、シリコーン樹脂層と気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であった。
Then, the glass substrate A and the silicone resin layer surface of the supporting substrate were bonded together by vacuum pressing at room temperature to obtain a glass laminate A.
In the obtained glass laminate A, the supporting base material and the glass substrate were in close contact with the silicone resin layer without generating bubbles, there were no distortion defects, and the smoothness was good.
 次に、ガラス積層体Aを窒素雰囲気下にて450℃で60分間加熱処理をおこない、室温まで冷却したところ、ガラス積層体Aの支持基材とガラス基板の分離やシリコーン樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、ガラス積層体Aの4箇所のうち1箇所のコーナー部におけるガラス基板と支持シリコーン樹脂層の界面に厚さ0.1mmのステンレス製刃物を挿入させて剥離の切欠部を形成しながら、ガラス基板と支持基材それぞれの剥離面でない面に真空吸着パッドを吸着させ、互いにガラス基板と支持基材が分離する方向に外力を加えて、ガラス基板と支持基材を破損すること無く分離した。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行った。具体的には、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら真空吸着パッドを引き上げた。
 なお、シリコーン樹脂層は支持基材と共にガラス基板から分離され、該結果より、支持基材の層とシリコーン樹脂層の界面の剥離強度(x)が、シリコーン樹脂層とガラス基板の界面の剥離強度(y)よりも高いことが確認された。
Next, the glass laminate A was heated at 450 ° C. for 60 minutes in a nitrogen atmosphere and cooled to room temperature. As a result, the glass substrate A was separated from the supporting substrate and the glass substrate, and the silicone resin layer was foamed or whitened. No change in appearance was observed.
And while forming the notch part of peeling by inserting the stainless steel cutting tool of thickness 0.1mm in the interface of the glass substrate and support silicone resin layer in the corner part of one place among four places of the glass laminated body A, glass The vacuum suction pad was adsorbed on the surface of the substrate and the supporting base that were not the release surfaces, and an external force was applied in the direction in which the glass substrate and the supporting base were separated from each other, thereby separating the glass substrate and the supporting base without being damaged. Here, the cutter was inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Specifically, the vacuum suction pad was pulled up while spraying a static eliminating fluid continuously from the ionizer toward the formed gap.
In addition, the silicone resin layer is separated from the glass substrate together with the supporting base material. From the result, the peeling strength (x) at the interface between the supporting base material layer and the silicone resin layer is determined as the peeling strength at the interface between the silicone resin layer and the glass substrate. It was confirmed that it was higher than (y).
<実施例2>
 実施例1と同様の方法で、支持基材の第1主面上に、架橋性オルガノポリシロキサン(S2)を加熱硬化させて6μmのシリコーン樹脂層を形成した。
 続いて、実施例1と同様の方法で、ガラス積層体Bを得た。
 得られたガラス積層体Bにおいては、支持基材とガラス基板は、シリコーン樹脂層と気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であった。
 次に、ガラス積層体Bを実施例1と同様の加熱処理をおこなったところ、ガラス積層体Bの支持基材とガラス基板の分離やシリコーン樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、ガラス積層体Bを実施例1と同様の方法で、ガラス基板と支持基材を破損すること無く分離した。該結果より、支持基材の層とシリコーン樹脂層の界面の剥離強度(x)が、シリコーン樹脂層とガラス基板の界面の剥離強度(y)よりも高いことが確認された。
<Example 2>
In the same manner as in Example 1, a crosslinkable organopolysiloxane (S2) was heat-cured on the first main surface of the support substrate to form a 6 μm silicone resin layer.
Subsequently, a glass laminate B was obtained in the same manner as in Example 1.
In the obtained glass laminate B, the supporting base material and the glass substrate were in close contact with the silicone resin layer without generating bubbles, there were no distortion defects, and the smoothness was good.
Next, when the glass laminate B was subjected to the same heat treatment as in Example 1, changes in appearance such as separation of the support substrate of the glass laminate B and the glass substrate, foaming or whitening of the silicone resin layer were observed. There wasn't.
And the glass laminated body B was isolate | separated by the method similar to Example 1, without damaging a glass substrate and a support base material. From the results, it was confirmed that the peel strength (x) at the interface between the support substrate layer and the silicone resin layer was higher than the peel strength (y) at the interface between the silicone resin layer and the glass substrate.
<実施例3>
 実施例1と同様の方法で、支持基材の第1主面上に、架橋性オルガノポリシロキサン(S3)を加熱硬化させて厚さ6μmのシリコーン樹脂層を形成した。
 続いて、実施例1と同様の方法で、ガラス積層体Cを得た。
 得られたガラス積層体Cにおいては、支持基材とガラス基板は、シリコーン樹脂層と気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であった。
 次に、ガラス積層体Cを実施例1と同様の加熱処理をおこなったところ、ガラス積層体Cの支持基材とガラス基板の分離やシリコーン樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、ガラス積層体Cを実施例1と同様の方法で、ガラス基板と支持基材を破損すること無く分離した。該結果より、支持基材の層とシリコーン樹脂層の界面の剥離強度(x)が、シリコーン樹脂層とガラス基板の界面の剥離強度(y)よりも高いことが確認された。
<Example 3>
In the same manner as in Example 1, a crosslinkable organopolysiloxane (S3) was heat-cured on the first main surface of the support substrate to form a 6 μm thick silicone resin layer.
Subsequently, a glass laminate C was obtained in the same manner as in Example 1.
In the obtained glass laminate C, the supporting base material and the glass substrate were in close contact with the silicone resin layer without generating bubbles, there were no distortion defects, and the smoothness was good.
Next, when the glass laminate C was subjected to the same heat treatment as in Example 1, changes in appearance such as separation of the support substrate of the glass laminate C and the glass substrate, foaming or whitening of the silicone resin layer were observed. There wasn't.
And the glass laminated body C was isolate | separated by the method similar to Example 1, without damaging a glass substrate and a support base material. From the results, it was confirmed that the peel strength (x) at the interface between the support substrate layer and the silicone resin layer was higher than the peel strength (y) at the interface between the silicone resin layer and the glass substrate.
<比較例1>
 支持基材を純水洗浄、UV洗浄等で清浄化した後、該支持基材上に、架橋性オルガノポリシロキサン(S4)をスピンコータにて塗工し(塗工量10g/m)、180℃にて30分間大気中で加熱硬化して膜厚16μmのシリコーン樹脂層を得た。
 ガラス基板のシリコーン樹脂層と接触させる側の面を純水洗浄、UV洗浄等で清浄化した後、支持基材のシリコーン樹脂層形成面と、ガラス基板とを、室温下真空プレスにて貼り合わせ、付加重合型シリコーン樹脂層を有するガラス積層体Pを得た。
 次に、ガラス積層体Pを実施例1と同様の加熱処理をおこなったところ、シリコーン樹脂層の発泡、および、白化など外観上の変化が確認された。また、ガラス積層体P中において、ガラス基板が一部分離した。
<Comparative Example 1>
After the support substrate is cleaned with pure water cleaning, UV cleaning, or the like, a crosslinkable organopolysiloxane (S4) is applied onto the support substrate with a spin coater (coating amount 10 g / m 2 ), 180 A silicone resin layer having a film thickness of 16 μm was obtained by heating and curing in the air at 30 ° C. for 30 minutes.
After cleaning the surface of the glass substrate that contacts the silicone resin layer with pure water cleaning, UV cleaning, etc., the silicone resin layer forming surface of the support substrate and the glass substrate are bonded together by a vacuum press at room temperature. A glass laminate P having an addition polymerization type silicone resin layer was obtained.
Next, when the glass laminate P was subjected to the same heat treatment as in Example 1, changes in appearance such as foaming of the silicone resin layer and whitening were confirmed. In the glass laminate P, the glass substrate was partially separated.
 実施例1~3は、本発明のシリコーン樹脂層を有するガラス積層体のため、高温処理を施してもシリコーン層の分解などは確認されず、ガラス基板も容易に剥離することができた。なお、実施例1および3に示すように、シロキサン単位(A)をより多く含む架橋性オルガノポリシロキサンの場合、5%重量減少温度がより高温となり、耐熱性により優れることが確認された。
 一方、特許文献1の実施例欄に記載される態様に該当する上記比較例1では、上記のように、高温条件下での処理の際にシリコーン樹脂層の分解が起こり、シリコーン樹脂層の発泡および白化などが確認された。また、発泡に伴い、ガラス基板の一部剥離も確認された。
Since Examples 1 to 3 were glass laminates having the silicone resin layer of the present invention, the decomposition of the silicone layer was not confirmed even when subjected to high temperature treatment, and the glass substrate could be easily peeled off. In addition, as shown in Examples 1 and 3, in the case of the crosslinkable organopolysiloxane containing more siloxane units (A), it was confirmed that the 5% weight loss temperature was higher and the heat resistance was superior.
On the other hand, in the comparative example 1 corresponding to the embodiment described in the example column of Patent Document 1, as described above, the silicone resin layer is decomposed during the treatment under the high temperature condition, and the silicone resin layer is foamed. And whitening was confirmed. Moreover, partial peeling of the glass substrate was also confirmed with foaming.
<実施例4>
 本例では、実施例1で得たガラス積層体Aを用いてOLEDを製造する。
 まず、ガラス積層体Aにおけるガラス基板の第2主面上に、プラズマCVD法により窒化シリコン、酸化シリコン、アモルファスシリコンの順に成膜する。次に、イオンドーピング装置により低濃度のホウ素をアモルファスシリコン層に注入し、窒素雰囲気下450℃60分間加熱処理し脱水素処理をおこなう。次に、レーザアニール装置によりアモルファスシリコン層の結晶化処理をおこなう。次に、フォトリソグラフィ法を用いたエッチングおよびイオンドーピング装置より、低濃度のリンをアモルファスシリコン層に注入し、N型およびP型のTFTエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法により酸化シリコン膜を成膜してゲート絶縁膜を形成した後に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、フォトリソグラフィ法とイオンドーピング装置により、高濃度のホウ素とリンをN型、P型それぞれの所望のエリアに注入し、ソースエリアおよびドレインエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法による酸化シリコンの成膜で層間絶縁膜を、スパッタリング法によりアルミニウムの成膜およびフォトリソグラフィ法を用いたエッチングによりTFT電極を形成する。次に、水素雰囲気下450℃60分間加熱処理し水素化処理をおこなった後に、プラズマCVD法による窒素シリコンの成膜で、パッシベーション層を形成する。次に、ガラス基板の第2主面側に、紫外線硬化性樹脂を塗布し、フォトリソグラフィ法により平坦化層およびコンタクトホールを形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより画素電極を形成する。
 続いて、蒸着法により、ガラス基板の第2主面側に、正孔注入層として4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N-ナフチル)-N-フェニル]ベンジジン、発光層として8-キノリノールアルミニウム錯体(Alq)に2,6-ビス[4-[N-(4-メトキシフェニル)-N-フェニル]アミノスチリル]ナフタレン-1,5-ジカルボニトリル(BSN-BCN)を40体積%混合したもの、電子輸送層としてAlqをこの順に成膜する。次に、スパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成する。次に、ガラス基板の第2主面側に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止する。上記手順によって、ガラス基板上に有機EL構造体を形成する。ガラス基板上に有機EL構造体を有するガラス積層体A(以下、パネルAという。)が、本発明の電子デバイス用部材付き積層体(支持基材付き表示装置用パネル)である。
 続いて、パネルAの封止体側を定盤に真空吸着させたうえで、パネルAのコーナー部のガラス基板とシリコーン樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板とシリコーン樹脂層の界面に剥離のきっかけを与える。そして、パネルAの支持基材表面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら真空吸着パッドを引き上げる。その結果、定盤上に有機EL構造体が形成されたガラス基板のみを残し、シリコーン樹脂層付き支持基材を剥離することができる。
 続いて、実施例1と同様の方法で分離したガラス基板の剥離面を清浄化し、分離されたガラス基板をレーザーカッタまたはスクライブ-ブレイク法を用いて切断し、複数のセルに分断した後、有機EL構造体が形成されたガラス基板と対向基板とを組み立てて、モジュール形成工程を実施してOLEDを作製する。こうして得られるOLEDは、特性上問題は生じない。
<Example 4>
In this example, an OLED is manufactured using the glass laminate A obtained in Example 1.
First, silicon nitride, silicon oxide, and amorphous silicon are formed in this order on the second main surface of the glass substrate in the glass laminate A by plasma CVD. Next, low concentration boron is injected into the amorphous silicon layer by an ion doping apparatus, and a dehydrogenation process is performed by heating at 450 ° C. for 60 minutes in a nitrogen atmosphere. Next, the amorphous silicon layer is crystallized by a laser annealing apparatus. Next, low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas. Next, a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method to form a gate insulating film, then molybdenum is formed by a sputtering method, and etching is performed using a photolithography method. A gate electrode is formed. Next, high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area. Next, an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography. Next, after heat treatment is performed at 450 ° C. for 60 minutes in a hydrogen atmosphere, a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method. Next, an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography. Next, a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
Subsequently, by vapor deposition, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine is formed on the second main surface side of the glass substrate, and bis [ (N-naphthyl) -N-phenyl] benzidine, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] to 8-quinolinol aluminum complex (Alq 3 ) as the light emitting layer A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer are formed in this order, and then aluminum is formed by sputtering, followed by photolithography. Next, another glass substrate is formed on the second main surface side of the glass substrate through an ultraviolet curable adhesive layer. The organic EL structure is formed on the glass substrate by the above procedure, and the glass laminate A (hereinafter referred to as panel A) having the organic EL structure on the glass substrate is used in the present invention. It is a laminated body (panel for display apparatuses with a support base material) with a member for electronic devices.
Subsequently, after vacuum-adsorbing the sealing body side of the panel A to the surface plate, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the silicone resin layer at the corner portion of the panel A, and glass Provides a trigger for peeling at the interface between the substrate and the silicone resin layer. And after adsorb | sucking the support base material surface of the panel A with a vacuum suction pad, a suction pad is raised. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap. As a result, only the glass substrate on which the organic EL structure is formed on the surface plate is left, and the supporting base material with the silicone resin layer can be peeled off.
Subsequently, the separation surface of the glass substrate separated by the same method as in Example 1 was cleaned, the separated glass substrate was cut using a laser cutter or a scribe-break method, and divided into a plurality of cells. The glass substrate on which the EL structure is formed and the counter substrate are assembled, and a module forming process is performed to manufacture an OLED. The OLED obtained in this way does not have a problem in characteristics.
<実施例5>
 本例では、実施例1で得たガラス積層体Aを用いてLCDを製造する。
 まず、2枚のガラス積層体Aを準備して、片方のガラス積層体A1におけるガラス基板の第2主面上に、プラズマCVD法により窒化シリコン、酸化シリコン、アモルファスシリコンの順に成膜する。次に、イオンドーピング装置により低濃度のホウ素をアモルファスシリコン層に注入し、窒素雰囲気下450℃60分間加熱処理し脱水素処理をおこなう。次に、レーザアニール装置によりアモルファスシリコン層の結晶化処理をおこなう。次に、フォトリソグラフィ法を用いたエッチングおよびイオンドーピング装置より、低濃度のリンをアモルファスシリコン層に注入し、N型およびP型のTFTエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法により酸化シリコン膜を成膜しゲート絶縁膜を形成した後に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、フォトリソグラフィ法とイオンドーピング装置により、高濃度のホウ素とリンをN型、P型それぞれの所望のエリアに注入し、ソースエリアおよびドレインエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法による酸化シリコンの成膜で層間絶縁膜を、スパッタリング法によりアルミニウムの成膜およびフォトリソグラフィ法を用いたエッチングによりTFT電極を形成する。次に、水素雰囲気下450℃60分間加熱処理し水素化処理をおこなった後に、プラズマCVD法による窒素シリコンの成膜で、パッシベーション層を形成する。次に、ガラス基板の第2主面側に、紫外線硬化性樹脂を塗布し、フォトリソグラフィ法により平坦化層およびコンタクトホールを形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより画素電極を形成する。
 次に、もう片方のガラス積層体A2を大気雰囲気下450℃60分間加熱処理する。次に、ガラス積層体Aにおけるガラス基板の第2主面上に、スパッタリング法によりクロムを成膜し、フォトリソグラフィ法を用いたエッチングにより遮光層を形成する。次に、ガラス基板の第2主面側に、ダイコート法によりカラーレジストを塗布し、フォトリソグラフィ法および熱硬化によりカラーフィルタ層を形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、対向電極を形成する。次に、ガラス基板の第2主面側に、ダイコート法により紫外線硬化樹脂液を塗布し、フォトリソグラフィ法および熱硬化により柱状スペーサを形成する。次に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングをおこなう。
 次に、ディスペンサ法によりシール用樹脂液を枠状に描画し、枠内にディスペンサ法により液晶を滴下した後に、上記で画素電極が形成されたガラス積層体A1を用いて、2枚のガラス積層体Aのガラス基板の第2主面側同士を貼り合わせ、紫外線硬化および熱硬化によりLCDパネルを得る。
<Example 5>
In this example, an LCD is manufactured using the glass laminate A obtained in Example 1.
First, two glass laminates A are prepared, and silicon nitride, silicon oxide, and amorphous silicon are formed in this order on the second main surface of the glass substrate in one glass laminate A1 by plasma CVD. Next, low concentration boron is injected into the amorphous silicon layer by an ion doping apparatus, and a dehydrogenation process is performed by heating at 450 ° C. for 60 minutes in a nitrogen atmosphere. Next, the amorphous silicon layer is crystallized by a laser annealing apparatus. Next, low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas. Next, after a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method and a gate insulating film is formed, molybdenum is formed by a sputtering method, and the gate is etched by photolithography. An electrode is formed. Next, high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area. Next, an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography. Next, after heat treatment is performed at 450 ° C. for 60 minutes in a hydrogen atmosphere, a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method. Next, an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography. Next, a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
Next, the other glass laminate A2 is heat-treated at 450 ° C. for 60 minutes in an air atmosphere. Next, a chromium film is formed on the second main surface of the glass substrate in the glass laminate A by a sputtering method, and a light shielding layer is formed by etching using a photolithography method. Next, a color resist is applied to the second main surface side of the glass substrate by a die coating method, and a color filter layer is formed by a photolithography method and heat curing. Next, a film of indium tin oxide is formed by a sputtering method to form a counter electrode. Next, an ultraviolet curable resin liquid is applied to the second main surface side of the glass substrate by a die coating method, and columnar spacers are formed by a photolithography method and thermal curing. Next, a polyimide resin solution is applied by a roll coating method, an alignment layer is formed by thermosetting, and rubbing is performed.
Next, a sealing resin liquid is drawn in a frame shape by the dispenser method, and after dropping the liquid crystal in the frame by the dispenser method, two glass layers are laminated using the glass laminate A1 in which the pixel electrodes are formed as described above. The second main surface sides of the glass substrate of the body A are bonded together, and an LCD panel is obtained by ultraviolet curing and thermal curing.
 続いて、ガラス積層体A1の第2主面を定盤に真空吸着させ、ガラス積層体A2のコーナー部のガラス基板とシリコーン樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板の第1主面とシリコーン樹脂層の剥離性表面との剥離のきっかけを与える。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら真空吸着パッドを引き上げる。そして、ガラス積層体A2の支持基材の第2主面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。その結果、定盤上に、ガラス積層体A1の支持基材が付いたLCDの空セルのみを残し、シリコーン樹脂層付き支持基材を剥離することができる。 Subsequently, the second main surface of the glass laminate A1 is vacuum-adsorbed on a surface plate, and a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the silicone resin layer at the corner of the glass laminate A2. Triggering the peeling between the first main surface of the glass substrate and the peelable surface of the silicone resin layer. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap. And after adsorb | sucking the 2nd main surface of the support base material of glass laminated body A2 with a vacuum suction pad, a suction pad is raised. As a result, it is possible to leave only the empty cell of the LCD with the supporting substrate of the glass laminate A1 on the surface plate, and to peel the supporting substrate with the silicone resin layer.
 次に、第1主面にカラーフィルタが形成されたガラス基板の第2主面を定盤に真空吸着させ、ガラス積層体A1のコーナー部のガラス基板とシリコーン樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板の第1主面とシリコーン樹脂層の剥離性表面との剥離のきっかけを与える。そして、ガラス積層体A1の支持基材の第2主面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。その結果、定盤上にLCDセルのみを残し、シリコーン樹脂層が固定された支持基材を剥離することができる。こうして、厚さ0.1mmのガラス基板で構成される複数のLCDのセルが得られる。 Next, the second main surface of the glass substrate on which the color filter is formed on the first main surface is vacuum-adsorbed on a surface plate, and the thickness is formed at the interface between the glass substrate and the silicone resin layer at the corner portion of the glass laminate A1. A 0.1 mm stainless steel blade is inserted to give a trigger for peeling between the first main surface of the glass substrate and the peelable surface of the silicone resin layer. And after adsorb | sucking the 2nd main surface of the support base material of glass laminated body A1 with a vacuum suction pad, a suction pad is raised. As a result, only the LCD cell is left on the surface plate, and the supporting substrate to which the silicone resin layer is fixed can be peeled off. Thus, a plurality of LCD cells composed of a glass substrate having a thickness of 0.1 mm are obtained.
 続いて、切断する工程により、複数のLCDのセルに分断する。完成された各々のLCDセルに偏光板を貼付する工程を実施し、続いてモジュール形成工程を実施してLCDを得る。こうして得られるLCDは、特性上問題は生じない。 Subsequently, it is divided into a plurality of LCD cells by a cutting process. A step of attaching a polarizing plate to each completed LCD cell is performed, and then a module forming step is performed to obtain an LCD. The LCD obtained in this way does not have a problem in characteristics.
<実施例6>
 本例では、実施例1で得たガラス積層体Aを用いてOLEDを製造する。
 まず、ガラス積層体Aにおけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、プラズマCVD法により、ガラス基板の第2主面側にさらに窒化ケイ素を成膜してゲート絶縁膜を形成し、続いてスパッタリング法により酸化インジウムガリウム亜鉛を成膜してフォトリソグラフィ法を用いたエッチングにより酸化物半導体層を形成する。次に、プラズマCVD法により、ガラス基板の第2主面側にさらに窒化ケイ素を成膜してチャネル保護層を形成し、続いてスパッタリング法によりモリブデンを成膜してフォトリソグラフィ法を用いたエッチングによりソース電極およびドレイン電極を形成する。次に、大気中で450℃にて60分間加熱処理を行う。次に、ガラス基板の第2主面側にさらにプラズマCVD法により窒化ケイ素を成膜してパッシベーション層を形成し、続いてスパッタリング法により酸化インジウム錫を成膜してフォトリソグラフィ法を用いたエッチングにより、画素電極を形成する。
 続いて、蒸着法により、ガラス基板の第2主面側に、正孔注入層として4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N-ナフチル)-N-フェニル]ベンジジン、発光層として8-キノリノールアルミニウム錯体(Alq)に2,6-ビス[4-[N-(4-メトキシフェニル)-N-フェニル]アミノスチリル]ナフタレン-1,5-ジカルボニトリル(BSN-BCN)を40体積%混合したもの、電子輸送層としてAlqをこの順に成膜する。次に、スパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成する。次に、ガラス基板の第2主面側に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止する。上記手順によって、ガラス基板上に有機EL構造体を形成する。ガラス基板上に有機EL構造体を有するガラス積層体A(以下、パネルAという。)が、本発明の電子デバイス用部材付き積層体(支持基材付き表示装置用パネル)である。
 続いて、パネルAの封止体側を定盤に真空吸着させたうえで、パネルAのコーナー部のガラス基板とシリコーン樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板とシリコーン樹脂層の界面に剥離のきっかけを与える。そして、パネルAの支持基材表面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら真空吸着パッドを引き上げる。その結果、定盤上に有機EL構造体が形成されたガラス基板のみを残し、シリコーン樹脂層付き支持基材を剥離することができる。
 続いて、実施例1と同様の方法で分離したガラス基板の剥離面を清浄化し、分離されたガラス基板をレーザーカッタまたはスクライブ-ブレイク法を用いて切断し、複数のセルに分断した後、有機EL構造体が形成されたガラス基板と対向基板とを組み立てて、モジュール形成工程を実施してOLEDを作製する。こうして得られるOLEDは、特性上問題は生じない。
<Example 6>
In this example, an OLED is manufactured using the glass laminate A obtained in Example 1.
First, molybdenum is deposited on the second main surface of the glass substrate in the glass laminate A by a sputtering method, and a gate electrode is formed by etching using a photolithography method. Next, a silicon nitride film is further formed on the second main surface side of the glass substrate by a plasma CVD method to form a gate insulating film, and then an indium gallium zinc oxide film is formed by a sputtering method to perform a photolithography method. An oxide semiconductor layer is formed by the etching used. Next, a silicon nitride film is further formed on the second main surface side of the glass substrate by plasma CVD to form a channel protective layer, and then molybdenum is formed by sputtering and etching using a photolithography method is performed. Thus, a source electrode and a drain electrode are formed. Next, heat treatment is performed in the atmosphere at 450 ° C. for 60 minutes. Next, a silicon nitride film is further formed on the second main surface side of the glass substrate by a plasma CVD method to form a passivation layer, followed by an indium tin oxide film formed by a sputtering method and etching using a photolithography method. Thus, a pixel electrode is formed.
Subsequently, by vapor deposition, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine is formed on the second main surface side of the glass substrate, and bis [ (N-naphthyl) -N-phenyl] benzidine, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] to 8-quinolinol aluminum complex (Alq 3 ) as the light emitting layer A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer are formed in this order, and then aluminum is formed by sputtering, followed by photolithography. Next, another glass substrate is formed on the second main surface side of the glass substrate through an ultraviolet curable adhesive layer. The organic EL structure is formed on the glass substrate by the above procedure, and the glass laminate A (hereinafter referred to as panel A) having the organic EL structure on the glass substrate is used in the present invention. It is a laminated body (panel for display apparatuses with a support base material) with a member for electronic devices.
Subsequently, after vacuum-adsorbing the sealing body side of the panel A to the surface plate, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the silicone resin layer at the corner portion of the panel A, and glass Provides a trigger for peeling at the interface between the substrate and the silicone resin layer. And after adsorb | sucking the support base material surface of the panel A with a vacuum suction pad, a suction pad is raised. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap. As a result, only the glass substrate on which the organic EL structure is formed on the surface plate is left, and the supporting base material with the silicone resin layer can be peeled off.
Subsequently, the separation surface of the glass substrate separated by the same method as in Example 1 was cleaned, the separated glass substrate was cut using a laser cutter or a scribe-break method, and divided into a plurality of cells. The glass substrate on which the EL structure is formed and the counter substrate are assembled, and a module forming process is performed to manufacture an OLED. The OLED obtained in this way does not have a problem in characteristics.
本出願は、2012年9月27日出願の日本特許出願2012-214060に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2012-2114060 filed on Sep. 27, 2012, the contents of which are incorporated herein by reference.
 10  ガラス積層体
 12  支持基材
 14  シリコーン樹脂層
 14a シリコーン樹脂層の第1主面
 16  ガラス基板
 16a ガラス基板の第1主面
 16b ガラス基板の第2主面
 18  シリコーン樹脂層付き支持基材
 20  電子デバイス用部材
 22  電子デバイス用部材付き積層体
 24  部材付きガラス基板
DESCRIPTION OF SYMBOLS 10 Glass laminated body 12 Support base material 14 Silicone resin layer 14a 1st main surface of a silicone resin layer 16 Glass substrate 16a 1st main surface of a glass substrate 16b 2nd main surface of a glass substrate 18 Support base material with a silicone resin layer 20 Electron Device member 22 Laminated body with electronic device member 24 Glass substrate with member

Claims (15)

  1.  支持基材の層とシリコーン樹脂層とガラス基板の層とをこの順で備え、前記支持基材の層と前記シリコーン樹脂層の界面の剥離強度が前記ガラス基板の層と前記シリコーン樹脂層の界面の剥離強度よりも高い、ガラス積層体であって、
     前記シリコーン樹脂層のシリコーン樹脂が、式(1)で表されるシロキサン単位(A)を含む架橋性オルガノポリシロキサンの架橋物である、ガラス積層体:
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、R~Rは、それぞれ独立に、ヘテロ原子を含有していてもよい1価の炭化水素基を表す。Arは、置換基を有していてもよい2価の芳香族炭化水素基を表す。
    A support substrate layer, a silicone resin layer, and a glass substrate layer are provided in this order, and the peel strength at the interface between the support substrate layer and the silicone resin layer is the interface between the glass substrate layer and the silicone resin layer. It is a glass laminate that is higher than the peel strength of
    A glass laminate in which the silicone resin of the silicone resin layer is a crosslinked product of a crosslinkable organopolysiloxane containing a siloxane unit (A) represented by the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R 1 to R 4 each independently represents a monovalent hydrocarbon group which may contain a hetero atom. Ar represents a divalent aromatic hydrocarbon group which may have a substituent.
  2.  前記シロキサン単位(A)におけるR~Rが、それぞれ独立に、炭素数4以下のアルキル基またはフェニル基である、請求項1に記載のガラス積層体。 The glass laminate according to claim 1, wherein R 1 to R 4 in the siloxane unit (A) are each independently an alkyl group having 4 or less carbon atoms or a phenyl group.
  3.  前記架橋性オルガノポリシロキサンが、さらに式(2)で表されるシロキサン単位(B)を含む、請求項1または2に記載のガラス積層体:
    Figure JPOXMLDOC01-appb-C000002
    式(2)中、RおよびRは、それぞれ独立に、ヘテロ原子を含有していてもよい炭化水素基を表す。
    The glass laminate according to claim 1 or 2, wherein the crosslinkable organopolysiloxane further contains a siloxane unit (B) represented by the formula (2):
    Figure JPOXMLDOC01-appb-C000002
    In Formula (2), R 5 and R 6 each independently represent a hydrocarbon group that may contain a hetero atom.
  4.  前記架橋性オルガノポリシロキサンにおいて、前記シロキサン単位(A)と前記シロキサン単位(B)の合計に対する前記シロキサン単位(A)の割合が30~90モル%であり、全シロキサン単位に対する前記シロキサン単位(A)と前記シロキサン単位(B)の合計の割合が80~100モル%である、請求項3に記載のガラス積層体。 In the crosslinkable organopolysiloxane, the ratio of the siloxane unit (A) to the total of the siloxane unit (A) and the siloxane unit (B) is 30 to 90 mol%, and the siloxane unit (A ) And the siloxane unit (B) in a total amount of 80 to 100 mol%.
  5.  前記シロキサン単位(B)が、RとRの少なくとも一方が炭素数3以下のアルケニル基であり前記アルケニル基でない場合は炭素数4以下のアルキル基であるシロキサン単位(B-1)、および、RとRのいずれも炭素数4以下のアルキル基であるシロキサン単位(B-2)からなる群から選択され、
     前記架橋性オルガノポリシロキサン中のシロキサン単位(B)が、前記シロキサン単位(B-1)のみからなるか、または、前記シロキサン単位(B-1)と前記シロキサン単位(B-2)からなる、請求項3または4に記載のガラス積層体。
    When the siloxane unit (B) is at least one of R 5 and R 6 is an alkenyl group having 3 or less carbon atoms and is not the alkenyl group, the siloxane unit (B-1) is an alkyl group having 4 or less carbon atoms, and , R 5 and R 6 are both selected from the group consisting of siloxane units (B-2) which are alkyl groups having 4 or less carbon atoms,
    The siloxane unit (B) in the crosslinkable organopolysiloxane consists only of the siloxane unit (B-1), or consists of the siloxane unit (B-1) and the siloxane unit (B-2). The glass laminated body of Claim 3 or 4.
  6.  前記架橋性オルガノポリシロキサンが、前記シロキサン単位(A)と前記シロキサン単位(B)の交互共重合体である、請求項3~5のいずれか一項に記載のガラス積層体。 The glass laminate according to any one of claims 3 to 5, wherein the crosslinkable organopolysiloxane is an alternating copolymer of the siloxane unit (A) and the siloxane unit (B).
  7.  前記シリコーン樹脂層の厚さが2~100μmである、請求項1~6のいずれか一項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 6, wherein the silicone resin layer has a thickness of 2 to 100 µm.
  8.  前記支持基材がガラス板である、請求項1~7のいずれか一項に記載のガラス積層体。 The glass laminate according to any one of claims 1 to 7, wherein the supporting substrate is a glass plate.
  9.  支持基材の片面に架橋性オルガノポリシロキサンの層を形成し、前記支持基材面上で前記架橋性オルガノポリシロキサンを架橋させてシリコーン樹脂層を形成し、次いで前記シリコーン樹脂層の前記支持基材が接する面とは反対側の面にガラス基板を積層することを特徴とする請求項1~8のいずれか一項に記載のガラス積層体を製造する方法。 A layer of a crosslinkable organopolysiloxane is formed on one side of the support substrate, the crosslinkable organopolysiloxane is crosslinked on the surface of the support substrate to form a silicone resin layer, and then the support group of the silicone resin layer is formed. The method for producing a glass laminate according to any one of claims 1 to 8, wherein a glass substrate is laminated on a surface opposite to a surface in contact with the material.
  10.  支持基材と前記支持基材面上に設けられた剥離性表面を有するシリコーン樹脂層とを有する、シリコーン樹脂層付き支持基材であり、
     前記シリコーン樹脂層のシリコーン樹脂が、式(1)で表されるシロキサン単位(A)を含む架橋性オルガノポリシロキサンの架橋物である、シリコーン樹脂層付き支持基材:
    Figure JPOXMLDOC01-appb-C000003
    式(1)中、R~Rは、それぞれ独立に、ヘテロ原子を含有していてもよい1価の炭化水素基を表す。Arは、置換基を有していてもよい2価の芳香族炭化水素基を表す。
    A support substrate with a silicone resin layer, comprising a support substrate and a silicone resin layer having a peelable surface provided on the support substrate surface;
    The support substrate with a silicone resin layer, wherein the silicone resin of the silicone resin layer is a crosslinked product of a crosslinkable organopolysiloxane containing a siloxane unit (A) represented by the formula (1):
    Figure JPOXMLDOC01-appb-C000003
    In the formula (1), R 1 to R 4 each independently represents a monovalent hydrocarbon group which may contain a hetero atom. Ar represents a divalent aromatic hydrocarbon group which may have a substituent.
  11.  前記架橋性オルガノポリシロキサンが、さらに式(2)で表されるシロキサン単位(B)を含む、請求項10に記載のシリコーン樹脂層付き支持基材:
    Figure JPOXMLDOC01-appb-C000004
    式(2)中、RおよびRは、それぞれ独立に、ヘテロ原子を含有していてもよい1価の炭化水素基を表す。
    The support substrate with a silicone resin layer according to claim 10, wherein the crosslinkable organopolysiloxane further contains a siloxane unit (B) represented by the formula (2):
    Figure JPOXMLDOC01-appb-C000004
    In formula (2), R 5 and R 6 each independently represent a monovalent hydrocarbon group that may contain a hetero atom.
  12.  前記架橋性オルガノポリシロキサンが、前記シロキサン単位(A)と前記シロキサン単位(B)の交互共重合体である、請求項11に記載のシリコーン樹脂層付き支持基材。 The support substrate with a silicone resin layer according to claim 11, wherein the crosslinkable organopolysiloxane is an alternating copolymer of the siloxane unit (A) and the siloxane unit (B).
  13.  前記シリコーン樹脂層の厚さが2~100μmである、請求項10~12のいずれか一項に記載のシリコーン樹脂層付き支持基材。 The support substrate with a silicone resin layer according to any one of claims 10 to 12, wherein the silicone resin layer has a thickness of 2 to 100 µm.
  14.  前記支持基材がガラス板である、請求項10~13のいずれか一項に記載のシリコーン樹脂層付き支持基材。 The support substrate with a silicone resin layer according to any one of claims 10 to 13, wherein the support substrate is a glass plate.
  15.  支持基材面に架橋性オルガノポリシロキサンの層を形成して前記支持基材面上で前記架橋性オルガノポリシロキサンを架橋させてシリコーン樹脂層を形成することを特徴とする請求項10~14のいずれか一項に記載のシリコーン樹脂層付き支持基材を製造する方法。 15. A silicone resin layer is formed by forming a crosslinkable organopolysiloxane layer on a support substrate surface and crosslinking the crosslinkable organopolysiloxane on the support substrate surface. The method to manufacture the support base material with a silicone resin layer as described in any one of Claims.
PCT/JP2013/075762 2012-09-27 2013-09-24 Glass laminate and manufacturing method for same, and support substrate having silicone resin layer attached thereto and manufacturing method for same WO2014050833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012214060A JP2015231668A (en) 2012-09-27 2012-09-27 Glass laminate and method for producing the same, and supporting substrate having silicone resin layer and method for producing the same
JP2012-214060 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050833A1 true WO2014050833A1 (en) 2014-04-03

Family

ID=50388230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075762 WO2014050833A1 (en) 2012-09-27 2013-09-24 Glass laminate and manufacturing method for same, and support substrate having silicone resin layer attached thereto and manufacturing method for same

Country Status (3)

Country Link
JP (1) JP2015231668A (en)
TW (1) TW201420335A (en)
WO (1) WO2014050833A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119210A1 (en) * 2014-02-07 2015-08-13 旭硝子株式会社 Glass laminate
WO2015146920A1 (en) * 2014-03-26 2015-10-01 旭硝子株式会社 Glass laminate
WO2018105716A1 (en) * 2016-12-09 2018-06-14 ダイキン工業株式会社 Polymer, composition, and molded article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070549B (en) * 2016-04-28 2021-07-06 Agc株式会社 Glass laminate and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018028A1 (en) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
JP2008280402A (en) * 2007-05-09 2008-11-20 Univ Nihon Poly (silarylene siloxane) derivative, its copolymer, and silicone rubber
WO2010079688A1 (en) * 2009-01-09 2010-07-15 旭硝子株式会社 Glass laminate and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018028A1 (en) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
JP2008280402A (en) * 2007-05-09 2008-11-20 Univ Nihon Poly (silarylene siloxane) derivative, its copolymer, and silicone rubber
WO2010079688A1 (en) * 2009-01-09 2010-07-15 旭硝子株式会社 Glass laminate and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119210A1 (en) * 2014-02-07 2015-08-13 旭硝子株式会社 Glass laminate
WO2015146920A1 (en) * 2014-03-26 2015-10-01 旭硝子株式会社 Glass laminate
WO2018105716A1 (en) * 2016-12-09 2018-06-14 ダイキン工業株式会社 Polymer, composition, and molded article
CN109996832A (en) * 2016-12-09 2019-07-09 大金工业株式会社 Polymer, composition and molded product
JPWO2018105716A1 (en) * 2016-12-09 2019-08-08 ダイキン工業株式会社 Polymers, compositions and molded articles
US10961353B2 (en) 2016-12-09 2021-03-30 Daikin Industries, Ltd. Polymer, composition, and molded article
CN109996832B (en) * 2016-12-09 2022-07-01 大金工业株式会社 Polymer, composition and molded article

Also Published As

Publication number Publication date
TW201420335A (en) 2014-06-01
JP2015231668A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5924344B2 (en) LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING GLASS SUBSTRATE WITH ELECTRONIC DEVICE MEMBER
JP6561845B2 (en) Glass laminate and method for producing the same
TWI649192B (en) Glass laminate, method of manufacturing same, and method of manufacturing electronic component
TWI647114B (en) Glass laminate
WO2015146920A1 (en) Glass laminate
JP6252490B2 (en) GLASS LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SUPPORT SUBSTRATE WITH SILICONE RESIN LAYER
TWI666112B (en) Glass laminated body, manufacturing method thereof, and electronic component manufacturing method
JP6194893B2 (en) GLASS LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SUPPORT SUBSTRATE WITH SILICONE RESIN LAYER
KR102526047B1 (en) Glass laminate and method for producing same
WO2014050833A1 (en) Glass laminate and manufacturing method for same, and support substrate having silicone resin layer attached thereto and manufacturing method for same
WO2014050834A1 (en) Organopolysiloxane, manufacturing method for organopolysiloxane, crosslinked organopolysiloxane, and coating composition
JP2015182450A (en) glass laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP