WO2014050024A1 - Composite cosmic-ray-observation system - Google Patents

Composite cosmic-ray-observation system Download PDF

Info

Publication number
WO2014050024A1
WO2014050024A1 PCT/JP2013/005501 JP2013005501W WO2014050024A1 WO 2014050024 A1 WO2014050024 A1 WO 2014050024A1 JP 2013005501 W JP2013005501 W JP 2013005501W WO 2014050024 A1 WO2014050024 A1 WO 2014050024A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
ray
data
cosmic
unit
Prior art date
Application number
PCT/JP2013/005501
Other languages
French (fr)
Japanese (ja)
Inventor
利貴 國澤
Original Assignee
Nec東芝スペースシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec東芝スペースシステム株式会社 filed Critical Nec東芝スペースシステム株式会社
Priority to JP2014538152A priority Critical patent/JPWO2014050024A1/en
Publication of WO2014050024A1 publication Critical patent/WO2014050024A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation

Definitions

  • the present invention relates to a cosmic ray combined observation system.
  • Cosmic rays such as electron beams, X-rays, and ⁇ rays are emitted from celestial bodies. Therefore, in the study of the existence of celestial bodies and the space structure, these cosmic rays are observed (see “0003” to “0029” etc. in Patent Document 1). At this time, an X-ray telescope is used for X-ray observation, and a Cherenkov telescope is used for ⁇ -rays.
  • the X-ray telescope is operated in outer space, and the Cherenkov telescope is installed and operated on the ground. In the current operation mode, these linkages are not performed. That is, the X-ray telescope and the Cherenkov telescope are operated independently of each other. For this reason, the authenticity of the observation data by the X-ray telescope needs to be determined by observing a large number of data by the X-ray telescope. Similarly, the authenticity of observation data by the Cherenkov telescope needs to be determined by observing a large number of data by the Cherenkov telescope.
  • the X-ray telescope data and the Cherenkov telescope data have characteristics that can complement each other.
  • FIG. 7 is a diagram showing a wavelength spectrum with respect to the energy band of such X-rays and ⁇ -rays.
  • Curve C1 in FIG. 7 is an X-ray wavelength spectrum, and the energy band is as narrow as several hundred eV to several MeV.
  • the curve C2 is a wavelength spectrum of ⁇ -rays, and the energy band is as wide as several GeV to several TeV, up to about 10 20 eV.
  • the X-ray telescope that observes cosmic rays in outer space has a merit that it can observe the primary cosmic rays directly, although it has a narrow energy band, but has excellent energy resolution.
  • the atmospheric Cherenkov telescope that can be installed on the ground has a wide observable energy band.
  • a main object of the present invention is to provide a cosmic ray combined observation system capable of improving the reliability of data by centrally acquiring and managing observation data of different cosmic rays.
  • a cosmic ray combined observation system includes an X-ray observation unit including an X-ray telescope mounted on an artificial satellite, a ⁇ -ray observation unit including a Cherenkov telescope installed on the ground, an X-ray telescope, A data management unit that collects data observed by the Cherenkov telescope and manages the data by associating these data with each other.
  • the reliability of the data is improved.
  • FIG. 1 is a schematic diagram of a cosmic ray composite observation system according to a first embodiment of the present invention. It is a block diagram of a cosmic ray composite observation system. It is the schematic of the cosmic-ray composite observation system concerning 2nd Embodiment of this invention. It is the schematic diagram which showed the relationship between an image parameter and a shower. It is the figure which illustrated the shower shape by a gamma ray. It is the figure which illustrated the shower shape by a proton. It is a figure which shows the energy zone
  • FIG. 1 is a schematic diagram of a cosmic ray combined observation system 2A using an X-ray telescope and an atmospheric Cherenkov telescope according to the present embodiment.
  • FIG. 2 is a block diagram of the cosmic ray composite observation system 2A.
  • the symbol E indicates the earth.
  • symbol P1 indicates a celestial body that can be viewed from the northern hemisphere
  • symbol P2 indicates a celestial body that can be viewed from the southern hemisphere.
  • the cosmic ray combined observation system 2A includes a data management unit 11, a ⁇ -ray observation unit 12, and an X-ray observation unit 14.
  • the ⁇ -ray observation unit 12 includes a northern ⁇ -ray observation unit 12a installed in the northern hemisphere for observing northern celestial bodies, and a southern ⁇ -ray observation unit 12b installed in the southern hemisphere for observing southern celestial bodies. It is out.
  • the north sky ⁇ -ray observation unit 12a and the south sky ⁇ -ray observation unit 12b are each constituted by an atmospheric Cherenkov telescope.
  • the reason why the gamma ray observation unit 12 is composed of the north sky gamma ray observation unit 12a and the south sky gamma ray observation unit 12b is to enable all sky observation. Therefore, when only the northern sky (south sky) is observed, it is not necessary to install it in the southern hemisphere (north hemisphere). However, for the purpose of the present invention, it is necessary to provide one or more units in either the northern hemisphere or the southern hemisphere.
  • the observed data is transmitted to the data management unit 11 on the ground via wireless communication or a network line.
  • the X-ray observation unit 14 is composed of an X-ray telescope mounted on an artificial satellite flying along the polar orbit B. With this X-ray telescope, cosmic rays (X-rays) in the observation energy band of several hundred eV to several MeV are observed.
  • X-rays cosmic rays
  • the observed data is transmitted to the data management unit 11 on the ground via wireless communication or a network line.
  • the ⁇ -ray observation unit 12 is installed on the ground, and the X-ray telescope 14 is installed in outer space. Especially, the increase / decrease in the number of installed atmospheric Cherenkov telescopes 12, change / maintenance of the observation energy band, etc. There is an advantage that it can be easily performed compared to the X-ray telescope.
  • the data management unit 11 includes a request reception unit 11a, a search unit 11b, an observation condition setting unit 11c, a storage unit 11d, and a storage unit 11e.
  • the data observed by the X-ray observation unit 14 and the ⁇ -ray observation unit 12 is stored in the storage unit 11e under a predetermined condition, and the data stored in response to a request from a user such as a researcher is stored. provide. Further, when the user requests observation of a specific celestial body, the X-ray observation unit 14 and the ⁇ -ray observation unit 12 are made to observe based on this request.
  • the request reception unit 11a receives a data request and an observation request from a user.
  • this request requires provision of data stored in the storage unit 11e
  • data identification information eg, observation date, direction, etc.
  • the data search command including it is output to the search unit 11b.
  • the observation condition information (for example, observation date, direction, etc.) is extracted from the observation request, and an observation command including this observation condition information is output to the observation condition setting unit 11c. To do.
  • the search unit 11b receives the data search command from the request reception unit 11a, searches the storage unit 11e based on the data identification information included in the data search command, reads out the corresponding data, and outputs it to the request reception unit 11a. To do.
  • the observation condition setting unit 11c receives the observation command from the request receiving unit 11a and extracts the observation condition information included in this observation example. And based on the observation schedule memorize
  • the observation condition setting unit 11c determines that the observation is possible, the observation condition setting unit 11c outputs an observation request acceptance signal indicating that the observation request is accepted to the request reception unit 11a, and the X-ray observation unit 14 and the corresponding ⁇ -ray observation unit 12 An observation schedule update request is output to the north sky ⁇ -ray observation unit 12a based on the above assumption.
  • the storage unit 11d stores the data observed by the X-ray observation unit 14 and the ⁇ -ray observation unit 12 in the storage unit 11e. At this time, correspondence between data from the X-ray observation unit 14 (hereinafter referred to as X-ray observation data) and data from the ⁇ -ray observation unit 12 (hereinafter referred to as ⁇ -ray observation data) is performed.
  • X-ray observation data data from the X-ray observation unit 14
  • ⁇ -ray observation data data from the ⁇ -ray observation unit 12
  • This association has the following meaning. That is, high-energy electrons emitted from the celestial body become X-rays of several hundred eV to several MeV by synchrotron radiation. There are cases where the X-rays reach the vicinity of the earth as they are, and cases where the X-rays are bounced up to about several GeV to several TeV or more by inverse Compton scattering to become ⁇ -rays. Therefore, when cosmic rays from the same date and direction are observed by X-ray observation and ⁇ -ray observation, these X-ray observation and ⁇ -ray observation can observe cosmic rays from the same object. High nature.
  • the X-ray observation unit 14 is mounted on an artificial satellite flying in a polar orbit in outer space and the ⁇ -ray observation unit 12 is installed on the ground, the X-ray observation unit 14 is relative to the ⁇ -ray observation unit 12.
  • the target position is constantly changing. Therefore, even if the X-ray observation unit 14 and the ⁇ -ray observation unit 12 observe cosmic rays from the same celestial body, the observation time and the observation direction are different.
  • the storage unit 11d when the storage unit 11d receives the X-ray observation data and the ⁇ -ray observation data, the storage unit 11d converts each observation time and observation direction into an absolute time and an orientation in an absolute space and stores them. Thereby, the correspondence between the X-ray observation data and the ⁇ -ray observation data is performed.
  • Second Embodiment a second embodiment of the present invention will be described.
  • the observation data obtained by the ⁇ -ray observation unit 12 and the observation data obtained by the X-ray observation unit 14 are converted into absolute time and orientation in absolute space and stored. The stored data is provided in response to requests from users such as researchers.
  • the other observation unit when one observation unit observes cosmic rays, the other observation unit also automatically performs observation on a celestial body in the direction emitting the cosmic rays.
  • one observation unit will be described as a ⁇ -ray observation unit 12 and the other observation unit as an X-ray observation unit 14.
  • FIG. 3 is a block diagram of the cosmic ray composite observation system 2B according to the present embodiment.
  • This cosmic ray combined observation system 2B has a configuration in which an analysis unit 11f is added to the cosmic ray combined observation system 2A of the previous embodiment.
  • the analysis unit 11f analyzes the shower shape based on the observation data, and the ⁇ -ray observation unit 12 It is determined whether the data observed in step 1 is from ⁇ rays.
  • the atmospheric Cherenkov telescope in the ⁇ -ray observation unit 12 detects Cherenkov light collected by the reflecting mirror using a plurality of photomultiplier tubes. Therefore, the analysis unit 11f restores the shape of the image captured by the photomultiplier tube from the observation data received from the storage unit 11d. Then, the determination of whether the parent particle that has caused the air shower is a proton or an atomic nucleus or a gamma ray is performed using an imaging method.
  • the parameters used in this imaging method include the shower shape of the photon distribution in the field of view, the center of gravity angle ⁇ , the width w, the length L, the center distance D, and the like that represent the direction.
  • FIG. 4 is a schematic diagram showing the relationship between these parameters and the shower.
  • the width w is the standard deviation in the minor axis direction when the shower shape is approximated by an ellipse (dotted ellipse in FIG. 4)
  • the length L is the standard deviation in the major axis direction of the ellipse
  • the center distance D is the shower center of gravity (P2)
  • the centroid angle ⁇ is an angle formed by a straight line (P4) connecting the shower centroid (P2) and the visual field center (P1) and a long axis (P3) of the shower shape approximated by an ellipse.
  • the shower shape of incident cosmic rays varies depending on whether they are hadrons or gamma rays. Therefore, the analysis unit 11f determines whether ⁇ rays have been observed from the restored shower shape.
  • FIG. 5 shows a shower shape by ⁇ rays
  • FIG. 6 shows a shower shape by protons.
  • the closed curve in each figure shows an equal energy region, and the inner closed curve has higher energy.
  • the shower shape by ⁇ rays is elliptical, but the proton shower shape is generally circular. Accordingly, the closed curve is approximated to an ellipse, and when the ratio of the short axis to the long axis (short axis / long axis) is equal to or less than a predetermined value, it is determined as ⁇ -ray. That is, it is determined from the flatness of the ellipse.
  • the analysis unit 11f notifies the observation condition setting unit 11c of the observation direction.
  • the observation condition setting unit 11c receives the observation azimuth information from the analysis unit 11f, the observation condition setting unit 11c instructs the X-ray observation unit 14 to perform observation.
  • the observation of the cosmic ray observed in one observation unit can be automatically performed in the other observation unit, and the observation data of ⁇ rays and X-rays are associated and stored in the storage unit. become able to.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

[Problem] To unitarily acquire and manage different observation data of cosmic rays to improve data reliability. [Solution] A composite cosmic-ray-observation system is configured from: an X-ray observation unit including an X-ray telescope mounted to an artificial satellite; a gamma-ray observation unit including a Cherenkov telescope disposed above ground; and a data management unit which gathers data observed by the X-ray telescope and the Cherenkov telescope, and coordinates and manages said data.

Description

宇宙線複合観測システムCosmic ray combined observation system
 本発明は、宇宙線複合観測システムに関する。 The present invention relates to a cosmic ray combined observation system.
 天体から電子線、X線、γ線等の宇宙線が放射されている。そこで、天体の存在や宇宙構造等の研究においては、これらの宇宙線を観測することが行われている(特許文献1の「0003」~「0029」等を参照)。このとき、X線の観測にはX線望遠鏡が利用され、またγ線にはチェレンコフ望遠鏡が利用されている。 Cosmic rays such as electron beams, X-rays, and γ rays are emitted from celestial bodies. Therefore, in the study of the existence of celestial bodies and the space structure, these cosmic rays are observed (see “0003” to “0029” etc. in Patent Document 1). At this time, an X-ray telescope is used for X-ray observation, and a Cherenkov telescope is used for γ-rays.
 X線望遠鏡は、宇宙空間で運用され、チェレンコフ望遠鏡は地上に設置されて運用されており、現状の運用形態では、これらの連携は行われていない。即ち、X線望遠鏡とチェレンコフ望遠鏡とは、それぞれ独立に運用されている。このため、X線望遠鏡による観測データの真偽は、X線望遠鏡によるデータを多数観測して判断する必要がある。同様に、チェレンコフ望遠鏡による観測データの真偽は、チェレンコフ望遠鏡によるデータを多数観測して判断する必要がある。 The X-ray telescope is operated in outer space, and the Cherenkov telescope is installed and operated on the ground. In the current operation mode, these linkages are not performed. That is, the X-ray telescope and the Cherenkov telescope are operated independently of each other. For this reason, the authenticity of the observation data by the X-ray telescope needs to be determined by observing a large number of data by the X-ray telescope. Similarly, the authenticity of observation data by the Cherenkov telescope needs to be determined by observing a large number of data by the Cherenkov telescope.
 しかし、X線もγ線も同一天体からの放射された宇宙線であれば、X線望遠鏡のデータとチェレンコフ望遠鏡のデータとは、相互に補完することができる特性を持つことになる。 However, if both X-rays and γ-rays are cosmic rays emitted from the same celestial body, the X-ray telescope data and the Cherenkov telescope data have characteristics that can complement each other.
 図7は、このようなX線とγ線とのエネルギー帯域に対する波長スペクトルを示した図である。図7の曲線C1はX線の波長スペクトルで、エネルギー帯域が数百eV~数MeV程度と狭い。これに対し、曲線C2はγ線の波長スペクトルで、エネルギー帯域が数GeV~数TeV、最大では1020eV程度までと広範である。 FIG. 7 is a diagram showing a wavelength spectrum with respect to the energy band of such X-rays and γ-rays. Curve C1 in FIG. 7 is an X-ray wavelength spectrum, and the energy band is as narrow as several hundred eV to several MeV. On the other hand, the curve C2 is a wavelength spectrum of γ-rays, and the energy band is as wide as several GeV to several TeV, up to about 10 20 eV.
 上述したように宇宙空間での宇宙線観測を行うX線望遠鏡は、観測できるエネルギー帯域は狭いが、エネルギー分解能に優れており、1次宇宙線を直接観測出来るという利点を持っている。これに対し、地上に設置できる大気チェレンコフ望遠鏡は、観測できるエネルギー帯域が広範である。 As described above, the X-ray telescope that observes cosmic rays in outer space has a merit that it can observe the primary cosmic rays directly, although it has a narrow energy band, but has excellent energy resolution. In contrast, the atmospheric Cherenkov telescope that can be installed on the ground has a wide observable energy band.
特開2011-180069号公報JP 2011-180069 A
 このようにX線やγ線は、それぞれ異なる波長スペクトルを持つにもかかわらず、天体の観測においては、X線望遠鏡とγ線望遠鏡とは連携することなく運用されているため、天体や宇宙構造等の研究促進が図れない問題がある。 Although X-rays and γ-rays have different wavelength spectra in this way, the observation of astronomical objects is operated without cooperation between the X-ray telescope and the γ-ray telescope. There is a problem that cannot promote research such as.
 X線望遠鏡とγ線望遠鏡との観測データの連携が行われていない最も大きな原因は、X線望遠鏡やチェレンコフ望遠鏡の設置に膨大な設置費用が必要になると共に、長大な設置時間が必要になることが挙げられる。 The biggest reason why the observation data between the X-ray telescope and the γ-ray telescope is not linked is that the installation of the X-ray telescope and the Cherenkov telescope requires a huge installation cost and a long installation time. Can be mentioned.
 従って、現行において、独立して運用されているX線望遠鏡とチェレンコフ望遠鏡とを連携して運用できるようにすることは、施設の有効活用を行いながら天体や宇宙構造等の研究を促進させることができる。 Therefore, enabling the operation of the X-ray telescope and the Cherenkov telescope, which are currently operated independently, can promote research on celestial bodies and space structures while effectively utilizing the facilities. it can.
 そこで、本発明の主目的は、異なる宇宙線の観測データを一元的に取得・管理してデータの信頼性を向上させることができる宇宙線複合観測システムを提供することである。 Therefore, a main object of the present invention is to provide a cosmic ray combined observation system capable of improving the reliability of data by centrally acquiring and managing observation data of different cosmic rays.
 上記課題を解決するため、宇宙線複合観測システムは、人工衛星に搭載されたX線望遠鏡を含むX線観測部と、地上に設置されたチェレンコフ望遠鏡を含むγ線観測部と、X線望遠鏡と、チェレンコフ望遠鏡とで観測されたデータを収集して、これらのデータの対応付けを行って管理するデータ管理部と、を備えることを特徴とする。 In order to solve the above problems, a cosmic ray combined observation system includes an X-ray observation unit including an X-ray telescope mounted on an artificial satellite, a γ-ray observation unit including a Cherenkov telescope installed on the ground, an X-ray telescope, A data management unit that collects data observed by the Cherenkov telescope and manages the data by associating these data with each other.
 本発明によれば、X線望遠鏡やチェレンコフ望遠鏡により観測された異なる宇宙線の観測データを一元的に取得・管理するので、データの信頼性が向上する。 According to the present invention, since the observation data of different cosmic rays observed by the X-ray telescope and the Cherenkov telescope are acquired and managed in a unified manner, the reliability of the data is improved.
本発明の第1実施形態にかかる宇宙線複合観測システムの概略図である。1 is a schematic diagram of a cosmic ray composite observation system according to a first embodiment of the present invention. 宇宙線複合観測システムのブロック図である。It is a block diagram of a cosmic ray composite observation system. 本発明の第2実施形態にかかる宇宙線複合観測システムの概略図である。It is the schematic of the cosmic-ray composite observation system concerning 2nd Embodiment of this invention. イメージパラメータとシャワーとの関係示した模式図である。It is the schematic diagram which showed the relationship between an image parameter and a shower. γ線によるシャワー形状を例示した図である。It is the figure which illustrated the shower shape by a gamma ray. プロトンによるシャワー形状を例示した図である。It is the figure which illustrated the shower shape by a proton. X線とγ線とのエネルギー帯域を示す図である。It is a figure which shows the energy zone | band of a X-ray and a gamma ray.
 本発明の第1実施形態を説明する。図1は、本実施形態にかかるX線望遠鏡と大気チェレンコフ望遠鏡とによる宇宙線複合観測システム2Aの概略図である。また、図2は、宇宙線複合観測システム2Aのブロック図である。なお、図1において符号Eは地球を示している。さらに、符号P1は北半球から望める天体、符号P2は南半球から望める天体をそれぞれ示している。 A first embodiment of the present invention will be described. FIG. 1 is a schematic diagram of a cosmic ray combined observation system 2A using an X-ray telescope and an atmospheric Cherenkov telescope according to the present embodiment. FIG. 2 is a block diagram of the cosmic ray composite observation system 2A. In FIG. 1, the symbol E indicates the earth. Further, symbol P1 indicates a celestial body that can be viewed from the northern hemisphere, and symbol P2 indicates a celestial body that can be viewed from the southern hemisphere.
 この宇宙線複合観測システム2Aは、データ管理部11、γ線観測部12、X線観測部14を含んでいる。 The cosmic ray combined observation system 2A includes a data management unit 11, a γ-ray observation unit 12, and an X-ray observation unit 14.
 γ線観測部12は、北天の天体を観測するために北半球に設置された北天γ線観測部12a、南天の天体を観測するために南半球に設置された南天γ線観測部12bを含んでいる。この北天γ線観測部12a及び南天γ線観測部12bは、それぞれ大気チェレンコフ望遠鏡により構成されている。 The γ-ray observation unit 12 includes a northern γ-ray observation unit 12a installed in the northern hemisphere for observing northern celestial bodies, and a southern γ-ray observation unit 12b installed in the southern hemisphere for observing southern celestial bodies. It is out. The north sky γ-ray observation unit 12a and the south sky γ-ray observation unit 12b are each constituted by an atmospheric Cherenkov telescope.
 γ線観測部12を北天γ線観測部12aと南天γ線観測部12bとにより構成したのは、全天観測を可能にするためである。従って、北天(南天)の天体しか観測しない場合には南半球(北半球)に設置する必要はない。但し、本発明の趣旨から、北半球又は南半球のいずれかに1台以上を設ける必要がある。 The reason why the gamma ray observation unit 12 is composed of the north sky gamma ray observation unit 12a and the south sky gamma ray observation unit 12b is to enable all sky observation. Therefore, when only the northern sky (south sky) is observed, it is not necessary to install it in the southern hemisphere (north hemisphere). However, for the purpose of the present invention, it is necessary to provide one or more units in either the northern hemisphere or the southern hemisphere.
 このような大気チェレンコフ望遠鏡により、数GeV~数TeV、最大では1020eV程度のエネルギー帯域の宇宙線(γ線)が観測される。 With such an atmospheric Cherenkov telescope, cosmic rays (γ rays) in the energy band of several GeV to several TeV and about 10 20 eV at the maximum are observed.
 そして、観測されたデータは、無線通信やネットワーク回線を介して地上のデータ管理部11に送信される。 Then, the observed data is transmitted to the data management unit 11 on the ground via wireless communication or a network line.
 X線観測部14は、極軌道Bに沿って飛翔する人工衛星に搭載されたX線望遠鏡により構成されている。このX線望遠鏡により、数百eV~数MeVの観測エネルギー帯域の宇宙線(X線)が観測される。 The X-ray observation unit 14 is composed of an X-ray telescope mounted on an artificial satellite flying along the polar orbit B. With this X-ray telescope, cosmic rays (X-rays) in the observation energy band of several hundred eV to several MeV are observed.
 そして、観測されたデータは、無線通信やネットワーク回線を介して地上のデータ管理部11に送信される。 Then, the observed data is transmitted to the data management unit 11 on the ground via wireless communication or a network line.
 X線望遠鏡は、極軌道Bに沿って飛翔する人工衛星に搭載されているので、大気チェレンコフ望遠鏡との相対的な経度は常に同じである。 Since the X-ray telescope is mounted on an artificial satellite that flies along the polar orbit B, the relative longitude with the atmospheric Cherenkov telescope is always the same.
 このようにγ線観測部12は地上に設置され、X線望遠鏡14は宇宙空間に設置される違いのため、特に大気チェレンコフ望遠鏡12の設置台数の増減、観測エネルギー帯域等の変更・メンテナンス等は、X線望遠鏡に比べ容易に行える利点がある。 As described above, the γ-ray observation unit 12 is installed on the ground, and the X-ray telescope 14 is installed in outer space. Especially, the increase / decrease in the number of installed atmospheric Cherenkov telescopes 12, change / maintenance of the observation energy band, etc. There is an advantage that it can be easily performed compared to the X-ray telescope.
 データ管理部11は、要求受付部11a、検索部11b、観測条件設定部11c、格納部11d、記憶部11eを含んでいる。そして、X線観測部14やγ線観測部12で観測されたデータを所定の条件の下で記憶部11eに格納すると共に、研究者等のユーザからの要求に応じて格納しているデータを提供する。また、ユーザが特定の天体についての観測を要求した際には、この要求に基づきX線観測部14及びγ線観測部12に観測させる。 The data management unit 11 includes a request reception unit 11a, a search unit 11b, an observation condition setting unit 11c, a storage unit 11d, and a storage unit 11e. The data observed by the X-ray observation unit 14 and the γ-ray observation unit 12 is stored in the storage unit 11e under a predetermined condition, and the data stored in response to a request from a user such as a researcher is stored. provide. Further, when the user requests observation of a specific celestial body, the X-ray observation unit 14 and the γ-ray observation unit 12 are made to observe based on this request.
 要求受付部11aは、ユーザからのデータ要求や観測要求を受付ける。この要求が、記憶部11eに格納されているデータの提供を求めている場合には、データ要求に含まれるデータ識別情報(例えば、観測日時、方位等)を抽出して、このデータ識別情報を含むデータ検索指令を検索部11bに出力する。 The request reception unit 11a receives a data request and an observation request from a user. When this request requires provision of data stored in the storage unit 11e, data identification information (eg, observation date, direction, etc.) included in the data request is extracted, and this data identification information is extracted. The data search command including it is output to the search unit 11b.
 また、ユーザが観測を要求している場合には、観測要求から観測条件情報(例えば、観測日時、方位等)を抽出して、この観測条件情報を含む観測指令を観測条件設定部11cに出力する。 If the user requests observation, the observation condition information (for example, observation date, direction, etc.) is extracted from the observation request, and an observation command including this observation condition information is output to the observation condition setting unit 11c. To do.
 検索部11bは、要求受付部11aからのデータ検索指令を受信して、このデータ検索指令に含まれるデータ識別情報に基づき記憶部11eを検索して該当するデータを読出し、要求受付部11aに出力する。 The search unit 11b receives the data search command from the request reception unit 11a, searches the storage unit 11e based on the data identification information included in the data search command, reads out the corresponding data, and outputs it to the request reception unit 11a. To do.
 観測条件設定部11cは、要求受付部11aからの観測指令を受信して、この観測し例に含まれる観測条件情報を抽出する。そして、内部記憶している観測スケジュールに基づき、観測条件情報で要求されている観測が可能か否かを判断する。観測が可能と判断した場合には、北天γ線観測部12aで観測するか南天γ線観測部12bで観測するかを判断する。以下の説明では、北天γ線観測部12aで観測可能と判断したとする。 The observation condition setting unit 11c receives the observation command from the request receiving unit 11a and extracts the observation condition information included in this observation example. And based on the observation schedule memorize | stored internally, it is judged whether the observation requested | required by observation condition information is possible. When it is determined that the observation is possible, it is determined whether the observation is performed by the north sky γ-ray observation unit 12a or the south sky γ-ray observation unit 12b. In the following description, it is assumed that the north sky γ-ray observation unit 12a determines that observation is possible.
 観測条件設定部11cは、観測可能と判断した場合に、観測要求を受付けたことを示す観測要求受理信号を要求受付部11aに出力すると共に、X線観測部14及び該当するγ線観測部12(先の仮定により北天γ線観測部12a)に観測スケジュール更新要求を出力する。 When the observation condition setting unit 11c determines that the observation is possible, the observation condition setting unit 11c outputs an observation request acceptance signal indicating that the observation request is accepted to the request reception unit 11a, and the X-ray observation unit 14 and the corresponding γ-ray observation unit 12 An observation schedule update request is output to the north sky γ-ray observation unit 12a based on the above assumption.
 格納部11dは、X線観測部14及びγ線観測部12が観測したデータを記憶部11eに格納する。このとき、X線観測部14からのデータ(以下、X線観測データと記載する)とγ線観測部12からのデータ(以下、γ線観測データと記載する)との対応付を行う。 The storage unit 11d stores the data observed by the X-ray observation unit 14 and the γ-ray observation unit 12 in the storage unit 11e. At this time, correspondence between data from the X-ray observation unit 14 (hereinafter referred to as X-ray observation data) and data from the γ-ray observation unit 12 (hereinafter referred to as γ-ray observation data) is performed.
 この対応付けは、以下の意味がある。即ち、天体から放出された高エネルギーの電子がシンクロトロン輻射によって数百eV~数MeV程度のX線となる。そして、このX線が、そのまま地球付近へ届く場合と、X線が逆コンプトン散乱によりエネルギーが数GeV~数TeV以上程度に跳ね上げられてγ線になる場合とがある。従って、X線観測とγ線観測とにより同じ日時、同じ方向からの宇宙線が観測された場合には、これらX線観測とγ線観測とは同一天体からの宇宙線を観測している可能性が高い。 This association has the following meaning. That is, high-energy electrons emitted from the celestial body become X-rays of several hundred eV to several MeV by synchrotron radiation. There are cases where the X-rays reach the vicinity of the earth as they are, and cases where the X-rays are bounced up to about several GeV to several TeV or more by inverse Compton scattering to become γ-rays. Therefore, when cosmic rays from the same date and direction are observed by X-ray observation and γ-ray observation, these X-ray observation and γ-ray observation can observe cosmic rays from the same object. High nature.
 このとき、X線観測部14は宇宙空間の極軌道を飛翔する人工衛星に搭載され、γ線観測部12は地上に設置されているため、γ線観測部12に対するX線観測部14の相対的位置は常に変化している。従って、X線観測部14とγ線観測部12とが同じ天体からの宇宙線を観測していても、観測時間や観測方位が異なる。 At this time, since the X-ray observation unit 14 is mounted on an artificial satellite flying in a polar orbit in outer space and the γ-ray observation unit 12 is installed on the ground, the X-ray observation unit 14 is relative to the γ-ray observation unit 12. The target position is constantly changing. Therefore, even if the X-ray observation unit 14 and the γ-ray observation unit 12 observe cosmic rays from the same celestial body, the observation time and the observation direction are different.
 そこで、格納部11dは、X線観測データやγ線観測データを受信すると、それぞれの観測時間や観測方位を絶対時間や絶対空間における方位に変換して保存する。これにより、X線観測データとγ線観測データとの対応付が行なわれる。 Therefore, when the storage unit 11d receives the X-ray observation data and the γ-ray observation data, the storage unit 11d converts each observation time and observation direction into an absolute time and an orientation in an absolute space and stores them. Thereby, the correspondence between the X-ray observation data and the γ-ray observation data is performed.
 以上により、同一天体を種類の異なる宇宙線又はエネルギー範囲の異なる宇宙線の同時観測及びデータ利用が容易に行えるようになる。従って、それらの研究等による成果の信頼性が向上する。
<第2実施形態>
 次に、本発明の第2実施形態を説明する。なお、第1実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。第1実施形態では、γ線観測部12での観測データとX線観測部14での観測データとを、絶対時間や絶対空間における方位に変換して保存した。そして、研究者等のユーザからの要求に応じて格納しているデータを提供するようにした。
As described above, simultaneous observation and data utilization of different types of cosmic rays or cosmic rays having different energy ranges can be easily performed on the same celestial body. Therefore, the reliability of the results of those researches is improved.
Second Embodiment
Next, a second embodiment of the present invention will be described. In addition, about the same structure as 1st Embodiment, description is abbreviate | omitted suitably using the same code | symbol. In the first embodiment, the observation data obtained by the γ-ray observation unit 12 and the observation data obtained by the X-ray observation unit 14 are converted into absolute time and orientation in absolute space and stored. The stored data is provided in response to requests from users such as researchers.
 しかし、γ線観測部12とX線観測部14とが、同一天体からのγ線やX線を同時に観測していることは希である。このため、γ線観測部12での観測データとX線観測部14での観測データとのデータの連携を図っても、一方の観測部によるデータが存在しない場合が発生する。無論、ユーザが同一天体を指定して、観測をX線観測部14及びγ線観測部12に観測を要求した場合には、両方のデータが存在する。 However, it is rare that the γ-ray observation unit 12 and the X-ray observation unit 14 simultaneously observe γ-rays and X-rays from the same object. For this reason, even if the data of the observation data in the γ-ray observation unit 12 and the observation data in the X-ray observation unit 14 are coordinated, there may be a case in which data by one observation unit does not exist. Of course, when the user designates the same celestial body and requests observation from the X-ray observation unit 14 and the γ-ray observation unit 12, both data exist.
 そこで、本実施形態では、一方の観測部が宇宙線を観測した場合に、他方の観測部も当該宇宙線を発している方位の天体に関する観測を自動で行うようにしたものである。以下の例では、一方の観測部をγ線観測部12、他方の観測部をX線観測部14として説明する。 Therefore, in the present embodiment, when one observation unit observes cosmic rays, the other observation unit also automatically performs observation on a celestial body in the direction emitting the cosmic rays. In the following example, one observation unit will be described as a γ-ray observation unit 12 and the other observation unit as an X-ray observation unit 14.
 図3は、本実施形態にかかる宇宙線複合観測システム2Bのブロック図である。この宇宙線複合観測システム2Bは、先の実施形態の宇宙線複合観測システム2Aに対して、解析部11fが追設された構成となっている。 FIG. 3 is a block diagram of the cosmic ray composite observation system 2B according to the present embodiment. This cosmic ray combined observation system 2B has a configuration in which an analysis unit 11f is added to the cosmic ray combined observation system 2A of the previous embodiment.
 そして、解析部11fは、γ線観測部12からの新しい観測データが格納部11dを介して記憶部11eに格納された際に、この観測データによるシャワー形状を解析して、γ線観測部12で観測したデータがγ線によるものか否かを判断する。 Then, when new observation data from the γ-ray observation unit 12 is stored in the storage unit 11e via the storage unit 11d, the analysis unit 11f analyzes the shower shape based on the observation data, and the γ-ray observation unit 12 It is determined whether the data observed in step 1 is from γ rays.
 具体的に説明する。γ線観測部12における大気チェレンコフ望遠鏡は、反射鏡で集光したチェレンコフ光を複数の光電子増倍管により検出する。そこで、解析部11fは、格納部11dから受信した観測データから光電子増倍管でとらえた像の形を復元する。そして、空気シャワーを起こした親粒子が、陽子又は原子核であるか、γ線であるかの判断を、イメージング法を用いて行う。 Specific explanation. The atmospheric Cherenkov telescope in the γ-ray observation unit 12 detects Cherenkov light collected by the reflecting mirror using a plurality of photomultiplier tubes. Therefore, the analysis unit 11f restores the shape of the image captured by the photomultiplier tube from the observation data received from the storage unit 11d. Then, the determination of whether the parent particle that has caused the air shower is a proton or an atomic nucleus or a gamma ray is performed using an imaging method.
 このイメージング法に用いられるパラメータには、視野内の光子分布のシャワー形状と、方向を表すものとして重心角度α、幅w、長さL、中心距離D等がある。図4は、これらのパラメータとシャワーの関係示した模式図である。幅wはシャワー形状を楕円(図4の点線の楕円)で近似したときの短軸方向の標準偏差、長さLはこの楕円の長軸方向の標準偏差、中心距離Dはシャワー重心(P2)と視野中心(P1)との距離である。重心角度αは、シャワー重心(P2)と視野中心(P1)とを結ぶ直線(P4)と、楕円で近似したシャワー形状の長軸線(P3)との成す角度である。 The parameters used in this imaging method include the shower shape of the photon distribution in the field of view, the center of gravity angle α, the width w, the length L, the center distance D, and the like that represent the direction. FIG. 4 is a schematic diagram showing the relationship between these parameters and the shower. The width w is the standard deviation in the minor axis direction when the shower shape is approximated by an ellipse (dotted ellipse in FIG. 4), the length L is the standard deviation in the major axis direction of the ellipse, and the center distance D is the shower center of gravity (P2) And the center of the visual field (P1). The centroid angle α is an angle formed by a straight line (P4) connecting the shower centroid (P2) and the visual field center (P1) and a long axis (P3) of the shower shape approximated by an ellipse.
 入射した宇宙線(一次粒子)のシャワー形状は、ハドロンかγ線かにより異なる。そこで、解析部11fは復元したシャワー形状からγ線を観測したか否かを判断する。図5はγ線によるシャワー形状、図6はプロトンによるシャワー形状を示した図である。各図の閉曲線は等エネルギー領域を示し、内側の閉曲線の方が高いエネルギーである。 The shower shape of incident cosmic rays (primary particles) varies depending on whether they are hadrons or gamma rays. Therefore, the analysis unit 11f determines whether γ rays have been observed from the restored shower shape. FIG. 5 shows a shower shape by γ rays, and FIG. 6 shows a shower shape by protons. The closed curve in each figure shows an equal energy region, and the inner closed curve has higher energy.
 γ線によるシャワー形状は楕円形状をなすが、プロトンのシャワー形状は概ね円形状をなす。そこで、閉曲線を楕円近似し、その短軸と長軸との比(短軸/長軸)が所定値以下の場合には、γ線と判断する。即ち、楕円の扁平度から判断する。 The shower shape by γ rays is elliptical, but the proton shower shape is generally circular. Accordingly, the closed curve is approximated to an ellipse, and when the ratio of the short axis to the long axis (short axis / long axis) is equal to or less than a predetermined value, it is determined as γ-ray. That is, it is determined from the flatness of the ellipse.
 このようにしてγ線が観測されたと判断した場合には、解析部11fは、観測方位を観測条件設定部11cに通知する。観測条件設定部11cは、解析部11fから観測方位の情報を受信すると、X線観測部14に観測を指示する。 When it is determined that γ rays have been observed in this way, the analysis unit 11f notifies the observation condition setting unit 11c of the observation direction. When the observation condition setting unit 11c receives the observation azimuth information from the analysis unit 11f, the observation condition setting unit 11c instructs the X-ray observation unit 14 to perform observation.
 これにより、一方の観測部で観測された宇宙線の観測方位に対する他の観測部での観測が自動で行えるようになり、γ線とX線との観測データが対応付して記憶部に記憶できるようになる。 As a result, the observation of the cosmic ray observed in one observation unit can be automatically performed in the other observation unit, and the observation data of γ rays and X-rays are associated and stored in the storage unit. become able to.
 この出願は、2012年9月25日に出願された日本出願特願2012-211030を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-211030 filed on Sep. 25, 2012, the entire disclosure of which is incorporated herein.
 2  宇宙線複合観測システム
 11  データ管理部
 11a  要求受付部
 11b  検索部
 11c  観測条件設定部
 11d  格納部
 11e  記憶部
 11f 解析部
 12  γ線観測部
 12a  北天γ線観測部
 12b  南天γ線観測部
2 Cosmic Ray Combined Observation System 11 Data Management Unit 11a Request Reception Unit 11b Search Unit 11c Observation Condition Setting Unit 11d Storage Unit 11e Storage Unit 11f Analysis Unit 12 γ-ray Observation Unit 12a Northern Sky γ-ray Observation Unit 12b Southern Sky γ-ray Observation Unit

Claims (8)

  1.  人工衛星に搭載されたX線望遠鏡を含むX線観測手段と、
     地上に設置されたチェレンコフ望遠鏡を含むγ線観測手段と、
     前記X線望遠鏡と、チェレンコフ望遠鏡とで観測されたデータを収集して、これらのデータの対応付けを行って管理するデータ管理手段と、を備えることを特徴とする宇宙線複合観測システム。
    X-ray observation means including an X-ray telescope mounted on an artificial satellite;
    Γ-ray observation means including the Cherenkov telescope installed on the ground,
    A cosmic ray composite observation system comprising: data management means for collecting data observed by the X-ray telescope and the Cherenkov telescope and managing the data by associating these data.
  2.  請求項1に記載の宇宙線複合観測システムであって、
     前記γ線観測手段は、北天に位置する天体からのγ線を観測する北天γ線観測手段と、
     南天に位置する天体からのγ線を観測する南天γ線観測手段と、の少なくとも1つを備えることを特徴とする宇宙線複合観測システム。
    The cosmic ray composite observation system according to claim 1,
    The γ-ray observing means is a north-sky γ-ray observing means for observing γ-rays from a celestial body located in the northern sky,
    A cosmic ray combined observation system, comprising at least one of γ-ray observation means for observing γ-rays from celestial bodies located in the southern sky.
  3.  請求項1又は2に記載の宇宙線複合観測システムであって、
     前記X線望遠鏡を搭載した前記人工衛星は、極軌道を飛翔することを特徴とする宇宙線複合観測システム。
    The cosmic ray composite observation system according to claim 1 or 2,
    The cosmic ray combined observation system, wherein the artificial satellite equipped with the X-ray telescope flies in a polar orbit.
  4.  請求項1乃至3のいずれか1項に記載の宇宙線複合観測システムであって、
     前記データ管理手段は、前記X線観測手段で取得されたX線観測データと、前記γ線観測手段で取得されたγ線観測データとが格納される記憶手段と、
     前記X線観測データと前記γ線観測データとを収集し、これらの対応付を行って、前記記憶手段に格納する格納手段と、
     外部からデータの要求を示すデータ要求又は観測を要求する観測要求を受付ける要求受付手段と、
     前記要求受付手段がデータ要求を受付けた場合には、当該データ要求に対応したデータを前記記憶手段から検索する検索手段と、を備えることを特徴とする宇宙線複合観測システム。
    The cosmic ray composite observation system according to any one of claims 1 to 3,
    The data management means includes storage means for storing X-ray observation data acquired by the X-ray observation means and γ-ray observation data acquired by the γ-ray observation means;
    Storage means for collecting the X-ray observation data and the γ-ray observation data, associating them, and storing them in the storage means;
    A request accepting means for accepting a data request indicating an external data request or an observation request for requesting observation;
    A cosmic ray composite observation system, comprising: search means for retrieving data corresponding to the data request from the storage means when the request accepting means accepts the data request.
  5.  請求項1乃至4のいずれか1項に記載の宇宙線複合観測システムであって、
     前記X線観測手段及び前記γ線観測手段で行う観測スケジュールを管理して、当該観測スケジュールに基づき前記X線観測手段及び前記γ線観測手段に観測を行わせる観測条件設定手段を備えることを特徴とする宇宙線複合観測システム。
    The cosmic ray composite observation system according to any one of claims 1 to 4,
    An observation condition setting unit that manages an observation schedule performed by the X-ray observation unit and the γ-ray observation unit and causes the X-ray observation unit and the γ-ray observation unit to perform observation based on the observation schedule is provided. Cosmic ray combined observation system.
  6.  請求項5に記載の宇宙線複合観測システムであって、
     前記観測条件設定手段は、前記要求受付手段から観測要求を受けた場合には、当該観測要求を前記観測スケジュールと照合して当該観測要求に応じる場合には、前記観測スケジュールを更新することを特徴とする宇宙線複合観測システム。
    The cosmic ray composite observation system according to claim 5,
    The observation condition setting unit, when receiving an observation request from the request reception unit, updates the observation schedule when responding to the observation request by checking the observation request with the observation schedule. Cosmic ray combined observation system.
  7.  請求項1乃至6のいずれか1項に記載の宇宙線複合観測システムであって、
     前記γ線観測手段又は前記X線観測手段の一方の観測手段が宇宙線を観測した際に、観測した前記観測手段が本来観測すべき宇宙線であるか否かを判断し、本来観測すべき宇宙線である場合には、他方の前記観測手段に観測方位を指示して観測を行わせる解析部を備えることを特徴とする宇宙線複合観測システム。
    The cosmic ray composite observation system according to any one of claims 1 to 6,
    When one of the γ-ray observing means or the X-ray observing means observes cosmic rays, it is determined whether the observed observing means is a cosmic ray that should be observed, and should be observed originally In the case of cosmic rays, the cosmic ray composite observation system includes an analysis unit that instructs the other observation means to perform observation by instructing the observation direction.
  8.  請求項7に記載の宇宙線複合観測システムであって、
     前記観測手段が、本来観測すべき宇宙線であるか否かを、イメージ法に基づくシャワー形状の扁平度から判断することを特徴とする宇宙線複合観測システム。
    The cosmic ray composite observation system according to claim 7,
    A cosmic ray combined observation system, wherein the observation means determines whether or not a cosmic ray is to be observed from the flatness of a shower shape based on an image method.
PCT/JP2013/005501 2012-09-25 2013-09-18 Composite cosmic-ray-observation system WO2014050024A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538152A JPWO2014050024A1 (en) 2012-09-25 2013-09-18 Cosmic ray combined observation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012211030 2012-09-25
JP2012-211030 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014050024A1 true WO2014050024A1 (en) 2014-04-03

Family

ID=50387467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005501 WO2014050024A1 (en) 2012-09-25 2013-09-18 Composite cosmic-ray-observation system

Country Status (2)

Country Link
JP (1) JPWO2014050024A1 (en)
WO (1) WO2014050024A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535129A (en) * 2014-09-14 2016-08-17 Radiation Doze Project Ltd Secondary cosmic rays
KR101689631B1 (en) * 2016-08-11 2016-12-27 한국 천문 연구원 Analysis system for aviation radiation dose
CN106610500A (en) * 2015-10-23 2017-05-03 中国科学院国家空间科学中心 Distributed multidirectional high-energy electron detection device based on multiple satellites
CN107517088A (en) * 2017-08-24 2017-12-26 北京邮电大学 The interference analysis method that the ground integrated system of star is declined based on mixed channel
CN109683208A (en) * 2019-01-25 2019-04-26 北京空间飞行器总体设计部 A kind of adaptation space X radiographic source Accuracy Analysis method
CN117572487A (en) * 2024-01-17 2024-02-20 西南交通大学 Method, equipment and medium for calibrating atmospheric cerenkov telescope array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122496A (en) * 1994-10-21 1996-05-17 Nikon Corp Multilayer film reflector
JP2011180069A (en) * 2010-03-03 2011-09-15 Sed Kk Device for observation of physical phenomenon

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050087B2 (en) * 2000-12-06 2006-05-23 Bioview Ltd. Data acquisition and display system and method
JP3780345B2 (en) * 2003-07-28 2006-05-31 独立行政法人情報通信研究機構 Space navigation system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122496A (en) * 1994-10-21 1996-05-17 Nikon Corp Multilayer film reflector
JP2011180069A (en) * 2010-03-03 2011-09-15 Sed Kk Device for observation of physical phenomenon

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535129A (en) * 2014-09-14 2016-08-17 Radiation Doze Project Ltd Secondary cosmic rays
CN106610500A (en) * 2015-10-23 2017-05-03 中国科学院国家空间科学中心 Distributed multidirectional high-energy electron detection device based on multiple satellites
CN106610500B (en) * 2015-10-23 2019-01-22 中国科学院国家空间科学中心 A kind of multidirectional high energy electron detection device based on distributed multiple satellites
KR101689631B1 (en) * 2016-08-11 2016-12-27 한국 천문 연구원 Analysis system for aviation radiation dose
CN107517088A (en) * 2017-08-24 2017-12-26 北京邮电大学 The interference analysis method that the ground integrated system of star is declined based on mixed channel
CN107517088B (en) * 2017-08-24 2020-09-11 北京邮电大学 Interference analysis method of satellite-ground integrated system based on mixed channel fading
CN109683208A (en) * 2019-01-25 2019-04-26 北京空间飞行器总体设计部 A kind of adaptation space X radiographic source Accuracy Analysis method
CN117572487A (en) * 2024-01-17 2024-02-20 西南交通大学 Method, equipment and medium for calibrating atmospheric cerenkov telescope array
CN117572487B (en) * 2024-01-17 2024-04-05 西南交通大学 Method, equipment and medium for calibrating atmospheric cerenkov telescope array

Also Published As

Publication number Publication date
JPWO2014050024A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
WO2014050024A1 (en) Composite cosmic-ray-observation system
Singh et al. ASTROSAT mission
Abraham et al. Properties and performance of the prototype instrument for the Pierre Auger Observatory
Acciari et al. Multiwavelength observations of a TeV-flare from W Comae
Kubo et al. Status of the CANGAROO-III project
Tanaka et al. Giant lobes of Centaurus A radio galaxy observed with the Suzaku X-ray satellite
Telescope Array Collaboration Surface detectors of the TAx4 experiment
Li et al. The technology for detection of gamma-ray burst with GECAM satellite
Dániel et al. Terrestrial gamma-ray flashes monitor demonstrator on CubeSat
Adriani et al. Design of an antimatter large acceptance detector in orbit (ALADInO)
Budnev et al. TAIGA—A hybrid array for high energy gamma-ray astronomy and cosmic-ray physics
Mercier et al. The French payload on-board the SVOM French-Chinese mission
Brandt et al. The design of the wide field monitor for the LOFT mission
Tomar et al. Broadband Modeling of Low-luminosity Active Galactic Nuclei Detected in Gamma Rays
Zech et al. SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array
Budnev et al. The TAIGA experiment: from cosmic ray physics to gamma astronomy in the Tunka valley
Lennarz et al. Searching for TeV emission from GRBs: the status of the HESS GRB programme
Martinez The MAGIC telescope project
D’Amico et al. In-orbit operations of AGILE mission: 11 years successfully in space
Sacco et al. Present and future of the TeV astronomy with Cherenkov telescopes
Anchordoqui et al. Roadmap for ultra-high energy cosmic ray physics and astronomy (whitepaper for Snowmass 2013)
Sacco et al. Present and future of the TeV astronomy with Cherenkov telescopes
Hoppe et al. Detection of very-high-energy gamma-ray emission from the vicinity of PSR B1706-44 with HESS
Hong et al. SmallSat Solar Axion X-ray Imager (SSAXI)
Torii et al. Observation of electrons above 100 GeV with the BETS detector using long-duration balloon in Antarctica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842993

Country of ref document: EP

Kind code of ref document: A1