WO2014038576A1 - Photosensitive resin composition for photo spacer, and photo spacer - Google Patents

Photosensitive resin composition for photo spacer, and photo spacer Download PDF

Info

Publication number
WO2014038576A1
WO2014038576A1 PCT/JP2013/073765 JP2013073765W WO2014038576A1 WO 2014038576 A1 WO2014038576 A1 WO 2014038576A1 JP 2013073765 W JP2013073765 W JP 2013073765W WO 2014038576 A1 WO2014038576 A1 WO 2014038576A1
Authority
WO
WIPO (PCT)
Prior art keywords
photospacer
group
photosensitive resin
repeating unit
resin composition
Prior art date
Application number
PCT/JP2013/073765
Other languages
French (fr)
Japanese (ja)
Inventor
田中 晋介
加原 浩二
悠太 湊邉
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012284668A external-priority patent/JP6184094B2/en
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201380046137.4A priority Critical patent/CN104641295B/en
Priority to KR1020157005861A priority patent/KR102149152B1/en
Publication of WO2014038576A1 publication Critical patent/WO2014038576A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • C08F222/402Alkyl substituted imides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties

Definitions

  • the present invention relates to a photosensitive resin composition for a photospacer and a photospacer.
  • a liquid crystal layer is formed between a pair of substrates, and a spacer is disposed in order to keep the distance between the substrates constant.
  • columnar spacers photo spacers
  • the photospacer is formed by applying a photosensitive resin composition on a substrate, exposing it to a predetermined mask, and then developing it. Since the photo spacer can be formed at an arbitrary position, for example, it can be formed only on the black matrix to prevent the display characteristics from deteriorating due to the spacer.
  • the characteristics required for the photospacer include high elastic recovery for maintaining a constant substrate spacing, fracture strength, adhesion to the substrate, and the like. Moreover, the photosensitive resin composition for photospacers is required to have a small amount of development residue. These characteristics are required to be satisfied at a higher level as the quality of liquid crystal display devices increases. Furthermore, there is a demand for a photospacer that sufficiently satisfies the above characteristics even in the case of a thin columnar shape.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to form a photo spacer that has excellent substrate adhesion, high elastic recovery rate and high breaking strength, and development.
  • the object is to provide a photosensitive resin composition for a photospacer with little residue.
  • the photosensitive resin composition for a photospacer of the present invention contains, as a binder polymer, an acrylic resin having a repeating unit having a ring structure in the main chain and a repeating unit having two or more oxyalkylene groups in the side chain.
  • the photosensitive resin composition for a photospacer of the present invention includes a polyfunctional monomer, a first photopolymerization initiator having a maximum absorption wavelength at a wavelength of 290 nm to 380 nm, and a maximum at a wavelength of 230 nm to 290 nm. And a second photopolymerization initiator having an absorption wavelength.
  • the repeating unit having a ring structure in the main chain is at least one selected from repeating units represented by the general formulas (1) to (7).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a linear or branched group having 1 to 30 carbon atoms It is an alkyl group.
  • the repeating unit which has a 2 or more oxyalkylene group in the said side chain is a repeating unit represented by General formula (10).
  • R 7 , R 8 and R 9 are each independently a hydrogen atom or a methyl group
  • R 10 is a linear or branched alkyl group having 1 to 20 carbon atoms, carbon A straight-chain or branched alkenyl group having 2 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 20 carbon atoms
  • AO is an oxyalkylene group having 2 to 20 carbon atoms
  • x is 0
  • y represents 0 or 1
  • n is 2 or more.
  • the acrylic resin further includes a repeating unit having an acid group in the side chain.
  • the acrylic resin further has a repeating unit having a carbon double bond in the side chain.
  • a binder polymer for a photospacer is provided.
  • This binder polymer for photospacers is an acrylic resin having a repeating unit having a ring structure in the main chain and a repeating unit having two or more oxyalkylene groups in the side chain.
  • the repeating unit which has a 2 or more oxyalkylene group in the said side chain is a repeating unit represented by General formula (10).
  • a photospacer is provided. This photospacer is formed by the photosensitive resin composition for photospacers.
  • a liquid crystal display is provided. This liquid crystal display includes the photo spacer.
  • a resin composition can be provided.
  • the photosensitive resin composition for a photospacer of the present invention can form a non-reverse tapered photospacer by further including two or more photopolymerization initiators having different maximum absorption wavelengths.
  • the non-reversely tapered photospacer formed from the photosensitive resin composition for photospacers is remarkably excellent in substrate adhesion, elastic recovery rate and breaking strength. Further, the photospacer can prevent bubbles from being mixed into the liquid crystal layer, and can contribute to the improvement of the display performance of the display device.
  • (A) And (b) is a schematic sectional drawing of the photospacer formed with the photosensitive resin composition of this invention. It is a schematic sectional drawing explaining the photo spacer of a reverse taper shape.
  • the photospacer photosensitive resin composition of the present invention is a binder polymer having a repeating unit (A) having a ring structure in the main chain and two or more oxyalkylene groups in the side chain.
  • An acrylic resin having a unit (B) is included.
  • Such a binder polymer can be used for various cured products that require breaking strength, and when the binder polymer is used for a photospacer, a photospacer having a high elastic modulus can be obtained.
  • the photosensitive resin composition for a photospacer of the present invention may further contain a polyfunctional monomer, a photopolymerization initiator, a solvent, and an additive.
  • An acrylic resin (binder polymer) having a repeating unit (A) having a ring structure in the binder polymer main chain and a repeating unit (B) having two or more oxyalkylene groups in the side chain is a monomer having a ring structure in the main chain It can be obtained by polymerizing a monomer composition comprising (a) and a monomer (b) having two or more oxyalkylene groups in the side chain.
  • the monomer composition may further include a monomer (c) constituting the repeating unit (C) having an acid group in the side chain and / or another monomer (e) constituting another repeating unit (E).
  • Examples of the repeating unit (A) having a ring structure in the main chain include a repeating unit having a maleimide structure, an N-substituted maleimide structure, a lactone ring structure, a glutaric anhydride structure, a maleic anhydride structure, and the like. Of these, a maleimide structure or an N-substituted maleimide structure is preferable.
  • an acrylic resin having a repeating unit having a maleimide structure or an N-substituted maleimide structure in the main chain a photosensitive resin composition for a photospacer having higher solubility in a developer can be obtained.
  • the repeating unit (A) having a ring structure in the main chain is preferably at least one selected from repeating units represented by the general formulas (1) to (3). It is more preferable that it is a repeating unit represented by. If an acrylic resin having a repeating unit represented by the general formula (1) is used, a curable resin composition capable of forming a cured product with higher breaking strength can be obtained, and particularly preferably, a more breaking strength is obtained.
  • the photosensitive resin composition for photospacers which can form a high photospacer can be obtained.
  • the repeating unit (A) having a ring structure in the main chain may be at least one selected from repeating units represented by the general formulas (4) to (7).
  • the repeating unit represented by the general formula (4) or (7) is preferable.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a linear or branched group having 1 to 30 carbon atoms
  • An alkyl group preferably a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms. Group, more preferably a methyl group.
  • the repeating unit (A) having a ring structure in the main chain is composed of the monomer (a) having a ring structure in the main chain.
  • the monomer (a) having a ring structure in the main chain include maleimide, benzylmaleimide, phenylmaleimide, naphthylmaleimide, No-hydroxyphenylmaleimide, Nm-hydroxyphenylmaleimide, and Np-hydroxyphenylmaleimide.
  • N-o-chlorophenylmaleimide Nm-chlorophenylmaleimide, Np-chlorophenylmaleimide, No-methylphenylmaleimide, Nm-methylphenylmaleimide, Np-methylphenylmaleimide, N-o- Aromatic substituted maleimides such as methoxyphenylmaleimide, Nm-methoxyphenylmaleimide, Np-methoxyphenylmaleimide; cyclohexylmaleimide, methylmaleimide, ethylmaleimide, propylmaleimide, isopropyl Alkyl-substituted maleimides such as Rumareimido like.
  • maleimide, benzylmaleimide, phenylmaleimide, and cyclohexylmaleimide are preferable, benzylmaleimide, phenylmaleimide, and cyclohexylmaleimide are more preferable, and benzylmaleimide is more preferable.
  • Examples of the monomer (a) constituting the repeating unit represented by the general formulas (4) to (7) include 1,6-dienes represented by the general formula (8) or (9). In formulas (8) and (9), R 1 , R 2 and R 3 are as described above.
  • the content ratio of the monomer (a) constituting the repeating unit (A) having a cyclic structure in the main chain is such that the monomer (a), the monomer (b), the monomer (c) in the monomer composition and
  • the amount is preferably 5% by weight to 50% by weight, more preferably 8% by weight to 30% by weight, and still more preferably 10% by weight to 20% by weight, based on the total amount of the monomer (e).
  • the acrylic resin as the binder polymer has the repeating unit (A) having a ring structure in the main chain
  • a photosensitive resin composition for a photospacer having high solubility in a developer can be obtained. If such a photosensitive resin composition for photospacers is used, a photospacer can be formed without producing a development residue.
  • the acrylic resin which has a repeating unit (A) which has a cyclic structure in a principal chain is used, the photosensitive resin composition for photo spacers which can form the photo spacer excellent in board
  • Examples of the repeating unit (B) having two or more oxyalkylene groups in the side chain include a repeating unit represented by the general formula (10).
  • R 7 , R 8 and R 9 are each independently a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 10 represents a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group having 6 to 20 carbon atoms. And preferably a hydrogen atom, a linear alkyl group having 1 to 20 carbon atoms, a linear alkenyl group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • a linear alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms still more preferably a linear alkyl group having 1 to 5 carbon atoms
  • a phenyl group or a biphenyl group particularly preferably a methyl group, a phenyl group or a biphenyl group.
  • the alkyl group, the alkenyl group, and the aromatic hydrocarbon group may have a substituent.
  • AO represents an oxyalkylene group.
  • the oxyalkylene group represented by AO has 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms, and even more preferably 2.
  • the repeating unit (B) may contain one or more oxyalkylene groups.
  • x represents an integer of 0-2.
  • y represents 0 or 1;
  • n represents an average addition mole number of the oxyalkylene group and is 2 or more, preferably 2 to 100, more preferably 2 to 50, and further preferably 2 to 15.
  • the repeating unit (B) having two or more oxyalkylene groups in the side chain is composed of a monomer (b) having two or more oxyalkylene groups in the side chain.
  • a monomer (b) the monomer represented by General formula (11) is mentioned, for example.
  • R 7 , R 8 , R 9 , R 10 , AO, x, y and n are as described above.
  • the monomer represented by the general formula (11) examples include ethoxylated o-phenylphenol (meth) acrylate (EO 2 mol), phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate (EO 4 mol), Methoxypolyethylene glycol (meth) acrylate (EO 9 mol), methoxypolyethylene glycol (meth) acrylate (EO 13 mol), methoxytriethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, butoxydiethylene glycol (meth) acrylate, 2-ethylhexyl Diethylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxy polypropylene glycol Le (meth) acrylate, nonyl phenoxy polyethylene glycol (meth) acrylate (EO4-17 moles), nonylphenoxy polypropyl
  • the content ratio of the monomer (b) constituting the repeating unit (B) having two or more oxyalkylene groups in the side chain is the monomer (a), monomer (b), monomer in the monomer composition.
  • it is 0.5 wt% to 55 wt%, more preferably 1 wt% to 50 wt%, and even more preferably 1 wt% to 45 wt%, based on the total amount of (c) and monomer (e). %.
  • the above-mentioned acrylic resin has a repeating unit (B) having two or more oxyalkylene groups in the side chain, thereby forming a photospacer having a high crosslink density, a high elastic recovery rate and a high breaking strength.
  • Resin composition can be obtained.
  • a photosensitive resin composition for a photospacer is constituted by combining such an acrylic resin and a polyfunctional monomer described below (preferably a polyfunctional monomer having no oxyalkylene group), the above effect is particularly effective. Become prominent.
  • the acrylic resin has a repeating unit (C) having an acid group in the side chain. If acrylic resin has the repeating unit (C) which has an acid group in a side chain, the photosensitive resin composition for photospacers which is excellent in alkali developability can be obtained.
  • the monomer (c) constituting the repeating unit (C) having an acid group in the side chain include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, itaconic acid, ⁇ -carboxy-poly Monomers having a carboxyl group such as caprolactone monoacrylate; monomers having a carboxylic anhydride group such as maleic anhydride and itaconic anhydride. Of these, (meth) acrylic acid is preferred.
  • the content ratio of the monomer (c) constituting the repeating unit (C) having an acid group in the side chain is the monomer (a), the monomer (b), the monomer (c) and the monomer composition in the monomer composition.
  • the amount is preferably 10% by weight to 90% by weight, more preferably 15% by weight to 85% by weight, and still more preferably 20% by weight to 80% by weight with respect to the total amount of the monomer (e).
  • the acrylic resin has a repeating unit (D) having a carbon double bond in the side chain. If the acrylic resin has a repeating unit (D) having a carbon double bond in the side chain, photosensitivity for photospacer that can form a photospacer with high exposure sensitivity and high elastic recovery and breaking strength. Resin composition can be obtained.
  • the repeating unit (D) having a carbon double bond in the side chain has two or more (preferably, part) acid groups of the repeating unit (C) having an acid group in the side chain as a reaction point. It can be obtained by adding a compound having a heavy bond.
  • the acid group of the repeating unit (C) having an acid group in the side chain is a carboxyl group
  • a compound having an epoxy group and a double bond, an isocyanate group and a double bond are used as the compound having a carbon double bond.
  • the compound having an epoxy group and a double bond include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinyl.
  • Examples thereof include benzyl glycidyl ether and 4-hydroxybutyl acrylate glycidyl ether.
  • Examples of the compound having an isocyanate group and a double bond include 2-isocyanatoethyl (meth) acrylate.
  • the acid group of the repeating unit (C) having an acid group in the side chain is a carboxylic anhydride group
  • a compound having a hydroxyl group and a double bond can be used as the compound having a carbon double bond.
  • Examples of the compound having a hydroxyl group and a double bond include 2-hydroxyethyl (meth) acrylate.
  • the acrylic resin may further have another repeating unit (E) derived from another monomer (e) copolymerizable with the monomer (a), monomer (b) and / or monomer (c).
  • Examples of other monomers (e) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • (Meth) acrylic acid amides aromatic vinyl compounds such as styrene, vinyl toluene and ⁇ -methyl styrene, butadiene or substituted butadiene compounds such as butadiene and isoprene, ethylene, propylene, vinyl chloride, acrylonitrile, etc. Ethylene or substituted ethylene compounds; vinyl esters such as vinyl acetate and the like. These monomers may be used alone or in combination of two or more.
  • the content ratio of the monomer (e) constituting the other repeating unit (E) in the monomer composition is such that the monomer (a), monomer (b), monomer (c) and monomer (e) in the monomer composition are
  • the total amount is preferably 0% to 55% by weight, more preferably 5% to 50% by weight, and still more preferably 10% to 45% by weight.
  • the acrylic resin may be a random copolymer or a block copolymer.
  • the acrylic resin preferably has a weight average molecular weight of 3,000 to 200,000, more preferably a value measured by gel permeation chromatography (GPC) using a tetrahydrofuran (THF) solvent. It is 4,000 to 100,000, and more preferably 5,000 to 50,000. If it is such a range, the photosensitive resin composition for photospacers which ensures heat resistance and has a viscosity suitable for film formation can be obtained.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the acid value of the acrylic resin is preferably 20 mgKOH / g to 300 mgKOH / g, more preferably 25 mgKOH / g to 200 mgKOH / g, and further preferably 30 mgKOH / g to 150 mgKOH / g. If it is such a range, the photosensitive resin composition for photospacers which can form the photospacer which is excellent in alkali developability, has little generation
  • the acrylic resin can be obtained by polymerizing the monomer (a) and the monomer (b) and, if necessary, the monomer composition containing the monomer (c) and / or (e) by any appropriate method. it can.
  • the polymerization method include a solution polymerization method.
  • the monomer composition may contain any appropriate solvent.
  • the solvent include ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and propylene glycol monomethyl ether; ketones such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and 3-methoxybutyl.
  • ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and propylene glycol monomethyl ether
  • ketones such as acetone and methyl ethyl ketone
  • esters such as acetate; alcohols such as methanol and ethanol; aromatic hydrocarbon
  • the polymerization concentration when polymerizing the monomer composition is preferably 5% by weight to 90% by weight, more preferably 5% by weight to 50% by weight, and still more preferably 10% by weight to 50% by weight. .
  • the monomer composition may contain any appropriate polymerization initiator.
  • the polymerization initiator include cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, benzoyl peroxide, t-butyl peroxyisopropyl carbonate, and t-amyl peroxy-2.
  • Organic peroxides such as ethylhexanoate and t-butylperoxy-2-ethylhexanoate; 2,2′-azobis (isobutyronitrile), 1,1′-azobis (cyclohexanecarbonitrile), Examples thereof include azo compounds such as 2,2′-azobis (2,4-dimethylvaleronitrile) and dimethyl 2,2′-azobis (2-methylpropionate).
  • the content of the polymerization initiator is preferably 0.1 parts by weight to 15 parts by weight, more preferably 0.5 parts by weight to 10 parts by weight with respect to 100 parts by weight of the total monomers in the monomer composition.
  • the polymerization temperature when polymerizing the acrylic resin by the solution polymerization method is preferably 40 ° C. to 150 ° C., more preferably 60 ° C. to 130 ° C.
  • the compound which has the said carbon double bond is added to the obtained acrylic resin after the said superposition
  • Any appropriate method can be adopted as a method for adding a compound having a carbon double bond.
  • a compound having a carbon double bond is reacted with part or all (preferably part) of the acid group of the repeating unit (C) having an acid group in the side chain.
  • the repeating unit (D) having a carbon double bond in the side chain can be formed.
  • the addition amount of the compound having a carbon double bond is preferably 5% with respect to 100 parts by weight of the acrylic resin after the polymerization (that is, the acrylic resin before adding the compound having a carbon double bond). Part or more, more preferably 10 parts by weight or more, still more preferably 15 parts by weight or more, and particularly preferably 20 parts by weight or more. If it is such a range, the photosensitive resin composition for photo spacers which is excellent in exposure sensitivity can be obtained. By using such a photosensitive resin composition for a photospacer, a dense cured coating film can be formed, and a photospacer having excellent substrate adhesion, high elastic recovery rate and high breaking strength can be formed.
  • the photosensitive resin for photospacer has a sufficient hydroxyl group generated by the addition of the compound having a carbon double bond and is excellent in solubility in an alkaline developer.
  • a composition can be obtained.
  • the upper limit of the amount of the compound having a carbon double bond is preferably 100 parts by weight with respect to 100 parts by weight of the acrylic resin after polymerization (that is, the acrylic resin before adding the compound having a carbon double bond). It is 170 parts by weight or less, more preferably 150 parts by weight or less, and still more preferably 140 parts by weight or less.
  • polymerization inhibitor examples include alkylphenol compounds such as 6-tert-butyl-2,4-xylenol.
  • catalyst examples include tertiary amines such as dimethylbenzylamine and triethylamine.
  • the photosensitive resin composition for a photospacer of the present invention may further contain a polyfunctional monomer.
  • the polyfunctional monomer include polyfunctional aromatic vinyl monomers such as divinylbenzene, diallyl phthalate, and diallylbenzene phosphonate; (di) ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane di (Meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol Tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol di
  • dipentaerythritol tetra (meth) acrylate dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol hepta (meth) acrylate, tripentaerythritol octa (meth) acrylate, Tris (hydroxy) isocyanurate tri (meth) acrylate and the like are preferred.
  • these polyfunctional monomers are used, a photo spacer having a high crosslinking density can be obtained because of the large number of functional groups.
  • a binder polymer having an oxyalkylene group is used.
  • the polyfunctional monomer may or may not have an oxyalkylene group.
  • a polyfunctional monomer having no oxyalkylene group is used.
  • the content ratio of the polyfunctional monomer is preferably 10 parts by weight to 90 parts by weight, and more preferably 30 parts by weight with respect to 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. Is 85 parts by weight, and more preferably 50 parts by weight to 85 parts by weight.
  • the photosensitive resin composition for a photospacer of the present invention may contain any appropriate photopolymerization initiator.
  • the photopolymerization initiator include benzoin such as benzoin, benzoin methyl ether, and benzoin ethyl ether and alkyl ethers thereof; acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, and 1,1-dichloroacetophenone Anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone; thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; Ketals such as acetophenone dimethyl ketal and benzyl dimethyl ket
  • the content of the photopolymerization initiator is preferably 0.1 to 50 parts by weight, more preferably 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. Is 0.5 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, particularly preferably 1 to 10 parts by weight, and most preferably 1.5 to 30 parts by weight. 5 parts by weight.
  • the photosensitive resin composition for a photospacer of the present invention includes two or more photopolymerization initiators having maximum absorption wavelengths in different wavelength ranges.
  • the photosensitive resin composition for a photospacer of the present invention includes a first photopolymerization initiator having a maximum absorption wavelength at a wavelength of 290 nm to 380 nm and a second photopolymerization start having a maximum absorption wavelength at a wavelength of 230 nm to 290 nm. Agent.
  • ultraviolet light can be efficiently used during exposure.
  • a photospacer having a shape having substantially no diameter difference in the height direction or a shape having a narrower upper part than the lower part is formed.
  • the photo spacer having such a shape has excellent substrate adhesion, and has a high elastic recovery rate and high breaking strength. Further, the photospacer can prevent bubbles from being mixed into the liquid crystal layer, and can contribute to the improvement of the display performance of the display device.
  • a shape having substantially no diameter difference in the height direction and a shape whose upper part is narrower than the lower part are collectively referred to as “non-reverse tapered shape”.
  • the first photopolymerization initiator preferably has a maximum absorption wavelength at a wavelength of 290 nm to 380 nm, more preferably has a maximum absorption wavelength at a wavelength of 295 nm to 350 nm, and more preferably has a maximum absorption wavelength of 295 nm to 340 nm.
  • a photopolymerization initiator having a maximum absorption wavelength on the wavelength side higher than 380 nm is used, it is difficult to control the thickness of the photo spacer, and a photo spacer that is too thick may be formed.
  • the “maximum absorption wavelength” refers to the wavelength of maximum absorption at which the absorbance measured at an optical path length of 1 cm is 0.5 or more for a photopolymerization initiator solution having a concentration of 0.001% by weight.
  • an ⁇ -aminoketone compound is preferably used, and more preferably an ⁇ -aminoketone compound represented by the general formula (12) is used.
  • an ⁇ -aminoketone compound represented by the general formula (12) is used.
  • X 1 and X 2 are each independently a methyl group, an ethyl group, a benzyl group or a 4-methylbenzyl group, preferably a methyl group.
  • NX 3 X 4 is a dimethylamino group, a diethylamino group or a morpholino group, preferably a dimethylamino group or a morpholino group, more preferably a morpholino group.
  • X 5 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkylthio group having 1 to 8 carbon atoms, a dimethylamino group, or a morpholino group, preferably carbon It is an alkylthio group or morpholino group having 1 to 8 carbon atoms, more preferably an alkylthio group or morpholino group having 1 to 3 carbon atoms, and further preferably a methylthio group.
  • ⁇ -aminoketone compound examples include 2-dimethylamino-2-methyl-1-phenylpropan-1-one, 2-diethylamino-2-methyl-1-phenylpropan-1-one, and 2-methyl.
  • 2-morpholino-1-phenylpropan-1-one 2-dimethylamino-2-methyl-1- (4-methylphenyl) propan-1-one
  • 2-dimethylamino-1- (4-isopropylphenyl) -2-methylpropan-1-one 1- (4-butylphenyl) -2-dimethylamino-2-methyl Propan-1-one, 2-dimethylamino-1- (4-methoxyphenyl) -2-methylpropan-1-one, 2-dimethylamino-2-methyl 1- (4-methylthiophenyl) propan-1-one, 2-methyl-1- (4-methylthiophenyl
  • first photopolymerization initiator Commercially available products may be used as the first photopolymerization initiator.
  • first photopolymerization initiator examples include trade names “Irgacure 907”, “Irgacure 369”, and “Irgacure 379” manufactured by BASF Japan.
  • the content ratio of the first photopolymerization initiator is preferably 0.1 parts by weight to 30 parts by weight with respect to 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer.
  • the amount is preferably 0.5 to 10 parts by weight, and more preferably 1.0 to 5 parts by weight.
  • the second photopolymerization initiator preferably has a maximum absorption wavelength at a wavelength of 230 nm to 290 nm, more preferably a maximum absorption wavelength at a wavelength of 240 nm to 280 nm, and still more preferably a maximum absorption wavelength at a wavelength of 250 nm to 270 nm.
  • an ⁇ -hydroxyketone compound is preferably used, more preferably an ⁇ -hydroxyketone compound represented by the general formula (13) or the general formula (14) is used. More preferably, an ⁇ -hydroxyketone compound represented by the general formula (14) is used. If such a compound is used, a photosensitive resin composition for a photospacer that can form a photospacer having a non-inverted taper shape and a small diameter can be obtained.
  • X 6 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or An alkoxy group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkoxy group having 1 to 2 carbon atoms.
  • X 7 and X 8 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group.
  • X 7 and X 8 may be bonded to each other to form a cycloalkyl group having 4 to 8 carbon atoms (preferably 6 to 8, more preferably 6).
  • X 9 to X 12 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, more preferably methyl It is a group.
  • X 9 and X 10 and / or X 11 and X 12 may be bonded to form a cycloalkyl group having 4 to 8 carbon atoms.
  • the alkyl group, alkoxy group, alkyl group and cycloalkyl group may have a substituent. Examples of the substituent include a hydroxyl group, a carboxyl group, a sulfo group, a cyano group, and a halogen atom.
  • ⁇ -hydroxyketone compound examples include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-2-methyl-1-phenylbutan-1-one, 1- ( 4-methylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-isopropylphenyl) -2-methylpropan-1-one, 1- (4-butylphenyl) -2-hydroxy- 2-methylpropan-1-one, 2-hydroxy-2-methyl-1- (4-octylphenyl) propan-1-one, 1- (4-dodecylphenyl) -2-methylpropan-1-one, -(4-methoxyphenyl) -2-methylpropan-1-one, 1- (4-methylthiophenyl) -2-methylpropan-1-one, 1- (4-chlorophenyl) 2-hydroxy-2-methylpropan-1-one, 1- (4-bromophenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-1- (4-hydroxyphenyl)
  • a commercially available product may be used as the second photopolymerization initiator.
  • Examples of the commercially available second photopolymerization initiator include trade names “Irgacure 184”, “Irgacure 2959”, “Irgacure 127”, and “Darocure 1173” manufactured by BASF Japan.
  • the content ratio of the second photopolymerization initiator is preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. More preferably, it is 0.05 to 10 parts by weight, and still more preferably 0.07 to 1 part by weight.
  • the content ratio of the second photopolymerization initiator is preferably 5% by weight to 40% by weight with respect to the total weight of the first photopolymerization initiator and the second photopolymerization initiator. More preferably, it is 5 to 30% by weight, and further preferably 5 to 20% by weight. If it is such a range, the photosensitive resin composition for photospacers which can form a photospacer which is excellent in board
  • the total content ratio of the first photopolymerization initiator and the second photopolymerization initiator is preferably 0. 0 with respect to 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer.
  • the amount is 5 to 50 parts by weight, more preferably 1 to 10 parts by weight, and still more preferably 1.5 to 5 parts by weight.
  • a photopolymerization initiation assistant may be used in combination.
  • Photopolymerization initiation assistants can also be used in combination.
  • Specific examples of the photopolymerization initiation assistant include 1,3,5-tris (3-mercaptopropionyloxyethyl) -isocyanurate, 1,3,5-tris (3-mercaptobutyloxyethyl) -isocyanurate (Showa) Electric Works, Karenz MT (registered trademark) NR1), trimethylolpropane tris (trifunctional thiol compounds such as 3-mercaptopropionate; pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercapto) Butyrate) (made by Showa Denko KK, Karenz MT (registered trademark) PE1) and the like; and polyfunctional thiols such as difunctional thiol compounds such
  • the photosensitive resin composition for a photospacer of the present invention may contain any appropriate solvent.
  • the solvent include ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy Esters such as butyl acetate; Alcohols such as methanol, ethanol, isopropanol, n-butanol, ethylene glycol monomethyl ether, and propylene glycol monomethyl ether; Aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; Chloroform, dimethyl sulfoxide, and the like Can be mentioned.
  • the amount of the solvent can be set
  • the photosensitive resin composition for a photospacer of the present invention may contain any appropriate additive as required.
  • additives for example, fillers such as aluminum hydroxide, talc, clay, barium sulfate, dyes, pigments, antifoaming agents, coupling agents, leveling agents, sensitizers, mold release agents, lubricants, plasticizers, Antioxidants, UV absorbers, flame retardants, polymerization inhibitors, thickeners, dispersants, organic fine particles, inorganic fine particles (zinc oxide, silicon oxide, zirconia, titanium), porous fine particles such as silica, Examples thereof include hollow fine particles such as silica.
  • the photosensitive resin composition for a photospacer of the present invention contains a UV absorber. If the photosensitive resin composition for photospacers containing a UV absorber is used, a photospacer having a small difference in diameter between the upper and lower sides can be obtained, and the photospacer can be formed into a thin column.
  • the photospacer formed by the photosensitive resin composition for a photospacer of the present invention is thin but has sufficient breaking strength.
  • the content of the UV absorber is based on 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer.
  • the amount is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and still more preferably 0.2 to 3 parts by weight.
  • the photospacer of the present invention can be obtained using the above-mentioned photosensitive resin composition for photospacers. If the said photosensitive resin composition for photospacers is used, the photospacer which is excellent in board
  • the photospacer of the present invention can be suitably used as a spacer for a liquid crystal display, more specifically, a liquid crystal cell of a liquid crystal display.
  • the photo spacer can be formed by photolithography. Specifically, the photosensitive resin composition for photospacer is applied to a substrate and then dried. A photomask is placed on the obtained coating film to expose it, the coating film is cured, and then developed. Thus, a photo spacer can be formed. According to photolithography, a photo spacer can be formed at an arbitrary position. For example, in a liquid crystal display device, a photo spacer is formed only on a black matrix to prevent display characteristics from being deteriorated due to the spacer. can do.
  • Examples of the method for applying the photosensitive resin composition for photospacer include a method using a spin coater, bar coater, gravure coater, roll coater, knife coater, applicator and the like.
  • the drying temperature is preferably 40 ° C. to 200 ° C., more preferably 70 ° C. to 100 ° C.
  • the drying time is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes.
  • the arrangement position of the photomask is arranged at any appropriate position according to the desired size of the photo spacer.
  • the photomask is disposed on the top of the coating film, and the distance between the coating film and the photomask is preferably 0 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 400 ⁇ m, still more preferably 20 ⁇ m to 300 ⁇ m, and particularly preferably 30 ⁇ m. ⁇ 200 ⁇ m.
  • the UV irradiation intensity (in terms of 365 nm illuminance) during the exposure is preferably 10 mJ / cm 2 to 200 mJ / cm 2 , more preferably 20 mJ / cm 2 to 150 mJ / cm 2 , and even more preferably 30 mJ / cm 2. ⁇ 100 mJ / cm 2 .
  • an alkaline aqueous solution is preferably used. This is because high-sensitivity development can be performed with less environmental burden.
  • the alkaline component for example, potassium hydroxide, sodium hydroxide, sodium carbonate or the like is used.
  • the alkali concentration of the aqueous alkali solution is preferably 0.01% to 5% by weight, more preferably 0.02% to 3% by weight, and further preferably 0.03% to 1% by weight. . If it is such a range, the said photosensitive resin composition for photospacers can be melt
  • a surfactant may be further added to the alkaline aqueous solution.
  • Post-baking may be performed after development.
  • the heating temperature during post-baking is preferably 150 ° C. to 300 ° C., more preferably 180 ° C. to 250 ° C.
  • the heating time is preferably 10 minutes to 90 minutes, more preferably 20 minutes to 60 minutes. Since the photosensitive resin composition for a photospacer of the present invention contains an acrylic resin having a repeating unit (B) having two or more oxyalkylene groups in the side chain, a photospacer having a high crosslinking density is formed by post-baking. can do.
  • Examples of the shape of the photospacer of the present invention include a columnar shape, a prismatic shape, a truncated cone shape, and a truncated pyramid shape.
  • the thickness of the lowermost part of the photospacer is preferably 3 ⁇ m 2 to 500 ⁇ m 2 , more preferably 15 ⁇ m 2 to 100 ⁇ m 2 in terms of the horizontal cross-sectional area of the photospacer.
  • the diameter at the bottom of the photospacer can be set to any appropriate range. Practically, it is preferably 2 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 10 ⁇ m, still more preferably 5 ⁇ m to 8.5 ⁇ m, and particularly preferably 5 ⁇ m to 8 ⁇ m.
  • the photo spacer which can respond to the high definition of a display apparatus can be obtained.
  • a photospacer having a diameter at the lowermost part of 5 ⁇ m to 8.5 ⁇ m (particularly preferably 5 ⁇ m to 8 ⁇ m) has a remarkable effect.
  • “diameter” means a length of a straight line that connects two points on the circumference of the lowermost surface and passes through the center of gravity of the lowermost surface. Therefore, when the photo spacer has a cylindrical shape or a truncated cone shape (that is, when the lowermost surface is circular), it means the diameter of the lowermost surface.
  • the height of the photo spacer can be set to any appropriate height depending on the desired substrate interval. The height of the photo spacer is, for example, 1 ⁇ m to 10 ⁇ m.
  • the photo spacer of the present invention preferably has a non-inverted taper shape.
  • 1 (a) and 1 (b) are schematic cross-sectional views of a non-reverse tapered photo spacer formed by the photosensitive resin composition for a photo spacer of the present invention.
  • FIG. 1A shows a photospacer 10 having substantially no diameter difference in the height direction.
  • FIG.1 (b) the photo spacer 20 whose upper part is thinner than the lower part is shown.
  • a shape that has substantially no difference in diameter in the height direction and a shape that is narrower in the upper part than the lower part are collectively referred to as a “non-inverted tapered shape”.
  • the “non-inverted taper shape” means that the horizontal cross-sectional area A1 of the portion H1 separated from the lower part of the photo spacer in the height direction (height L ⁇ 1/2 of the photo spacer) is A shape that is the same as or smaller than the horizontal cross-sectional area A2 of the portion H2 away from the bottom in the height direction (height L ⁇ 1/4 of the photo spacer).
  • the non-reverse taper-shaped photospacer is, for example, a photospacer photosensitive material containing two or more photopolymerization initiators having different maximum absorption wavelengths (for example, the first photopolymerization initiator and the second photopolymerization initiator). It can form using an adhesive resin composition.
  • the “reverse taper shape” refers to the shape shown in the schematic cross-sectional view of FIG. 2. Specifically, it is separated from the lower part of the photo spacer in the height direction (height L ⁇ 1/2 of the photo spacer).
  • the horizontal cross-sectional area of the portion H1 is larger than the horizontal cross-sectional area of the portion H2 that is separated from the lower part of the photo spacer in the height direction (height L ⁇ 1/4 of the photo spacer).
  • the ratio (A2 / A1) of the distant portion H2 to the horizontal sectional area A2 is preferably 1 to 1.3, more preferably 1 to 1.2, and still more preferably 1 to 1. 15, particularly preferably 1 to 1.1.
  • a photospacer having such a range of A2 / A1 has excellent substrate adhesion, and has a high elastic recovery rate and high fracture strength. Further, the photospacer can prevent bubbles from being mixed into the liquid crystal layer, and can contribute to the improvement of the display performance of the display device.
  • the compression ratio of the photo spacer of the present invention is 10% to 90%. A method for evaluating the compression rate will be described later.
  • the lower limit of the elastic recovery rate of the photospacer of the present invention is preferably 55% or more, more preferably 60% or more, still more preferably 65% or more, still more preferably 70% or more, and further preferably Is 75% or more, more preferably 80% or more, and particularly preferably 90% or more.
  • the upper limit of the elastic recovery rate of the photospacer of the present invention is, for example, 100%. The method for evaluating the elastic recovery rate will be described later.
  • the elastic recovery rate of the photospacer of the present invention is preferably 70% to 100%, more preferably 80%. ⁇ 95%.
  • the relationship between the elastic recovery rate b (%) of the photospacer of the present invention and the diameter a ( ⁇ m) at the lowermost part of the photospacer is preferably b> 3.1a + 45 in the range of the practical diameter a. More preferably, b> 3.1a + 50, and further preferably b> 3.1a + 53.
  • the lower limit of the breaking strength of the photospacer of the present invention is preferably 20 mN or more, more preferably 50 mN or more, further preferably 100 mN or more, further preferably 110 mN or more, and further preferably 120 mN or more. More preferably, it is 130 mN or more, More preferably, it is 145 mN or more, More preferably, it is 160 mN or more, Especially preferably, it is 175 mN or more, Most preferably, it is 190 mN or more. The higher the breaking strength, the better.
  • the upper limit value of the breaking strength of the photospacer of the present invention is, for example, preferably 300 mN. A method for evaluating the fracture strength will be described later.
  • the breaking strength of the photo spacer of the present invention is preferably 100 mN to 300 mN, more preferably 145 mN to 300 mN. Further, it is preferably 145 mN to 250 mN, more preferably 160 mN to 250 mN, still more preferably 175 mN to 210 mN, and particularly preferably 175 mN to 200 mN.
  • the load speed and unloading speed are both set to 4.7 mN / sec, the load up to 80 mN is loaded, the load is unloaded to 0.49 mN, and the load-deformation curve and unloading during loading A load-deformation curve was created.
  • the amount of deformation at a load of 80 mN at the time of loading was L1, and the compression rate was calculated by the following formula.
  • Compression rate (%) L1 ⁇ 100 / Spacer height (7)
  • Elastic recovery rate of photo spacer was measured using a micro compression tester (trade name: HM2000, manufactured by Fisher Instruments). It was measured.
  • the load speed and unloading speed are both set to 4.7 mN / sec, the load up to 80 mN is loaded, the load is unloaded to 0.49 mN, and the load-deformation curve and unloading during loading A load-deformation curve was created.
  • the amount of deformation at a load of 80 mN during loading was L1
  • the amount of deformation at a load of 0.49 mN during unloading was L2, and the elastic recovery rate was calculated by the following equation.
  • Elastic recovery rate (%) (L1-L2) ⁇ 100 / L1 (8) Fracture strength of the photo spacer
  • the break strength of the photo spacer was measured using a micro compression tester (trade name: HM2000, manufactured by Fisher Instruments). With a 100 ⁇ m square planar indenter, the load speed and the unloading speed were both set to 4.7 mN / sec, a load up to 300 mN was applied, and the load when the spacer was broken was read from the load-deformation curve.
  • Shape of photo spacer (non-reverse tapered shape / reverse tapered shape)
  • the evaluation of whether the shape of the photo spacer is a non-reverse tapered shape or a reverse tapered shape is performed using FE-SEM (trade name “S-4800”, manufactured by Hitachi, Ltd.).
  • L ⁇ 1/2) The diameter (diameter) D1 of the separated portion H1 and (the height L ⁇ 1/4) of the separated portion H2 are measured, and the diameter (diameter) D2 of the separated portion H2 is measured.
  • the horizontal sectional area A1 at H1, and the horizontal sectional area A2 at H2 were calculated. A case where A2 / A1 is 1 or more is a non-inverted taper shape.
  • PBO propylene glycol methyl ether acetate
  • PGMEA propylene glycol methyl ether acetate
  • nDM dodecyl mercaptan
  • 18 g of PGMEA and 8 g of PGMEA were added as a chain transfer agent solution into the chain transfer agent dropping tank and mixed with stirring.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C.
  • the monomer composition and the chain transfer agent solution were added dropwise.
  • the monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C.
  • PBO 0.5g was added 30 minutes after the completion of the dropping.
  • the temperature of the reaction vessel was raised to 115 ° C.
  • glycidyl methacrylate (GMA) in the reaction vessel 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Chemical Industry Co., Ltd.) as a polymerization inhibitor, and dimethylbenzyl as a catalyst
  • Amine (DMBA) 0.5 g, PGMEA 16 g and PGME 6 g were charged and reacted at 110 ° C. for 1 hour and 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-1) containing 39.4% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 17200, and the acid value was 55 mgKOH / g.
  • the production conditions, solid content concentration, weight average molecular weight (Mw) and acid value of the copolymer solution are shown in Table 1 together with Production Examples 2 to 20.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-2) containing 39.3% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 18000, and the acid value was 103 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-3) containing 39.0% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 18200, and the acid value was 44 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-4) containing 39.5% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 25200, and the acid value was 56 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-5) containing 38.8% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 10400, and the acid value was 55 mgKOH / g.
  • the reaction vessel was charged with 42 g of PGMEA and 98 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-6) containing 39.6% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 19300, and the acid value was 54 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-8) containing 39.0% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 17500, and the acid value was 54 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-9) containing 38.8% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 17000, and the acid value was 53 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-10) containing 38.9% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 17500, and the acid value was 54 mgKOH / g.
  • a separable flask equipped with a cooling tube was prepared as a reaction vessel.
  • a monomer composition in a monomer dropping tank 15 g of BzMI, 44.5 g of AA, 20.5 g of OPPE, 1 mol ethoxylated phenylphenol acrylate (trade name “A-LEN-10”, manufactured by Shin-Nakamura Chemical Co., Ltd., hereinafter A-LEN 20 g) (also referred to as ⁇ 10), 2 g of PBO, 42 g of PGMEA, and 18 g of PGMEA were added and mixed with stirring.
  • nDM 2 g
  • 18 g of PGMEA 18 g
  • 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C.
  • the monomer composition and the chain transfer agent solution were added dropwise.
  • the monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C.
  • PBO 0.5g was added 30 minutes after the completion of the dropping.
  • the temperature of the reaction vessel was raised to 115 ° C.
  • 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts.
  • the reaction was performed at 110 ° C. for 1 hour and at 115 ° C.
  • copolymer solution (A-11) containing 39.1% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 18100, and the acid value was 54 mgKOH / g.
  • nDM 2 g
  • 18 g of PGMEA 18 g
  • 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C.
  • the monomer composition and the chain transfer agent solution were added dropwise.
  • the monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C.
  • PBO 0.5g was added 30 minutes after the completion of the dropping.
  • the temperature of the reaction vessel was raised to 115 ° C.
  • 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts.
  • the reaction was performed at 110 ° C. for 1 hour and at 115 ° C.
  • nDM 2 g
  • 18 g of PGMEA 18 g
  • 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C.
  • the monomer composition and the chain transfer agent solution were added dropwise.
  • the monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C.
  • PBO 0.5g was added 30 minutes after the completion of the dropping.
  • the temperature of the reaction vessel was raised to 115 ° C.
  • 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts.
  • the reaction was performed at 110 ° C. for 1 hour and at 115 ° C.
  • copolymer solution (A-13) containing 39.0% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 18000, and the acid value was 53 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-14) containing 38.8% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 18100, and the acid value was 56 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-15) containing 39.5% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 18200, and the acid value was 54 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-16) containing 39.1% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 17800, and the acid value was 56 mgKOH / g.
  • nDM 2 g
  • 18 g of PGMEA 18 g
  • 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C.
  • the monomer composition and the chain transfer agent solution were added dropwise.
  • the monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C.
  • PBO 0.5g was added 30 minutes after the completion of the dropping.
  • the temperature of the reaction vessel was raised to 115 ° C.
  • 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts.
  • the reaction was performed at 110 ° C. for 1 hour and at 115 ° C.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-18) containing 39.4% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 17400, and the acid value was 54 mgKOH / g.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • the reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C.
  • copolymer solution (A-20) containing 38.6% by weight of an acrylic resin.
  • the weight average molecular weight (Mw) of the acrylic resin was 18200, and the acid value was 56 mgKOH / g.
  • Example 1 89 g of the copolymer solution (A-1) (that is, 35 g of acrylic resin), 65 g of tripentaerythritol octaacrylate (trade name “Biscoat # 802”, manufactured by Osaka Organic Chemical Co., Ltd.) as a polyfunctional monomer, and photopolymerization start To a mixture of 1.75 g of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one (trade name “IRGACURE® 907”, manufactured by BASF Japan Ltd.) as an agent, PGMEA was added so that the solid content concentration was 35% by weight, and the mixture was filtered through a filter having a pore size of 0.5 ⁇ m to prepare a photosensitive resin composition for a photospacer.
  • A-1 that is, 35 g of acrylic resin
  • 65 g of tripentaerythritol octaacrylate trade name “Biscoat # 802”, manufactured by Os
  • the photosensitive resin composition for photospacers was applied onto a 10 cm square glass substrate with a spin coater, and dried in an oven at 80 ° C. for 3 minutes. After drying, the strength (50 mJ / cm 2 ) by a UV aligner (trade name “TME-150RNS”, manufactured by TOPCON) with a photomask placed at a distance of 100 ⁇ m from the coating film and equipped with a 2.0 kW ultrahigh pressure mercury lamp. Ultraviolet rays were irradiated at 365 nm illuminance conversion).
  • Example 2 to 26 A photospacer was formed in the same manner as in Example 1 except that the composition of the photosensitive resin composition for photospacer was changed to the composition shown in Table 2, and subjected to the same evaluation as in Example 1. The results are shown in Table 2.
  • Table 2 dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) is represented as “DPHA”, and pentaerythritol tetraacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) is represented as “PETA”.
  • DPHA dipentaerythritol hexaacrylate
  • PETA pentaerythritol tetraacrylate
  • Examples 4 to 8 a UV absorber was further added.
  • Example 27 89 g of the copolymer solution (A-1) (that is, 35 g of acrylic resin), 65 g of tripentaerythritol octaacrylate (trade name “Biscoat # 802”, manufactured by Osaka Organic Chemical Co., Ltd.) as a polyfunctional monomer, and a wavelength of 290 nm to 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one (trade name “IRGACURE”) is used as a photopolymerization initiator (first photopolymerization initiator) having a maximum absorption wavelength at 380 nm.
  • A-1 that is, 35 g of acrylic resin
  • 65 g of tripentaerythritol octaacrylate trade name “Biscoat # 802”, manufactured by Osaka Organic Chemical Co., Ltd.
  • IRGACURE 2-Methyl-1- [4- (methylthio) phenyl] -2
  • the photosensitive resin composition for a photospacer was applied onto a 10 cm square glass substrate with a spin coater and dried in an oven at 80 ° C. for 3 minutes. After drying, the strength (50 mJ / cm 2 ) by a UV aligner (trade name “TME-150RNS”, manufactured by TOPCON) with a photomask placed at a distance of 100 ⁇ m from the coating film and equipped with a 2.0 kW ultrahigh pressure mercury lamp. Ultraviolet rays were irradiated at 365 nm illuminance conversion).
  • Example 28 to 38 A photospacer was formed in the same manner as in Example 27 except that the composition of the photosensitive resin composition for photospacer was changed to the composition shown in Table 4, and subjected to the same evaluation as in Example 27.
  • the results are shown in Table 4.
  • Table 4 dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) is represented as “DPHA”, and pentaerythritol tetraacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) is represented as “PETA”.
  • a thinner photospacer can be formed by using a photosensitive resin composition for photospacer containing a UV absorber.
  • the photospacer formed by the photosensitive resin composition for a photospacer of the present invention is thin but has sufficient breaking strength.
  • the photosensitive resin composition for photospacers of the present invention can be suitably used for the production of spacers for liquid crystal cells.

Abstract

A photosensitive resin composition for a photo spacer is provided which exhibits excellent substrate adhesion properties, which is capable of forming a photo spacer exhibiting excellent elastic recovery and breaking strength, and with which little development residue is generated. This photosensitive resin composition for a photo spacer includes an acrylic resin as a binder polymer, said acrylic resin having repeating moieties having a ring structure in the main chain thereof, and repeating moieties having at least two oxyalkylene groups in a branched chain thereof. In one embodiment of the present invention, this photosensitive resin composition for a photo spacer further includes: a multifunctional monomer; a first photopolymerization initiator having a maximum absorption wavelength in the range of 290nm-380nm; and a second photopolymerization initiator having a maximum absorption wavelength in the range of 230nm-290-nm.

Description

フォトスペーサー用感光性樹脂組成物およびフォトスペーサーPhotosensitive resin composition for photospacer and photospacer
 本発明は、フォトスペーサー用感光性樹脂組成物およびフォトスペーサーに関する。 The present invention relates to a photosensitive resin composition for a photospacer and a photospacer.
 液晶表示装置の液晶セルは、一対の基板間に液晶層が形成されており、この基板間隔を一定にするために、スペーサーが配置される。近年、このスペーサーとして、ガラスビーズ、樹脂ビーズ等のスペーサー粒子に代えて、フォトリソグラフィにより形成される柱状のスペーサー(フォトスペーサー)が用いられるようになっている(例えば、特許文献1、2)。フォトスペーサーは、感光性樹脂組成物を基板上に塗布し、所定のマスクをした上で露光し、その後、現像することにより、形成される。フォトスペーサーは、任意の位置に形成させることができるので、例えば、ブラックマトリックス上にのみ形成させて、スペーサーを要因とした表示特性の低下を防止することができる。 In the liquid crystal cell of the liquid crystal display device, a liquid crystal layer is formed between a pair of substrates, and a spacer is disposed in order to keep the distance between the substrates constant. In recent years, columnar spacers (photo spacers) formed by photolithography have been used as spacers instead of spacer particles such as glass beads and resin beads (for example, Patent Documents 1 and 2). The photospacer is formed by applying a photosensitive resin composition on a substrate, exposing it to a predetermined mask, and then developing it. Since the photo spacer can be formed at an arbitrary position, for example, it can be formed only on the black matrix to prevent the display characteristics from deteriorating due to the spacer.
 フォトスペーサーに求められる特性としては、基板間隔を一定に維持するための高弾性回復性、破壊強度、基板に対する密着性等が挙げられる。また、フォトスペーサー用の感光性樹脂組成物は、現像残渣が少ないことが求められる。これらの特性は、液晶表示装置の高品位化が進む中、より高レベルで満足することが求められている。さらには、細い柱状とした場合にも、上記特性を十分に満足するフォトスペーサーが求められている。 The characteristics required for the photospacer include high elastic recovery for maintaining a constant substrate spacing, fracture strength, adhesion to the substrate, and the like. Moreover, the photosensitive resin composition for photospacers is required to have a small amount of development residue. These characteristics are required to be satisfied at a higher level as the quality of liquid crystal display devices increases. Furthermore, there is a demand for a photospacer that sufficiently satisfies the above characteristics even in the case of a thin columnar shape.
特開2009-53663号公報JP 2009-53663 A 特開2009-175647号公報JP 2009-175647 A
 本発明は上記の課題を解決するためになされたものであり、その目的とするところは、基板密着性に優れ、弾性回復率および破壊強度が高いフォトスペーサーを形成することができ、かつ、現像残渣の少ないフォトスペーサー用感光性樹脂組成物を提供することにある。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to form a photo spacer that has excellent substrate adhesion, high elastic recovery rate and high breaking strength, and development. The object is to provide a photosensitive resin composition for a photospacer with little residue.
 本発明のフォトスペーサー用感光性樹脂組成物は、バインダーポリマーとして、主鎖に環構造を有する繰り返し単位と側鎖に2以上のオキシアルキレン基を有する繰り返し単位を有する、アクリル系樹脂を含む。
 1つの実施形態においては、本発明のフォトスペーサー用感光性樹脂組成物は、多官能モノマーと、波長290nm~380nmに極大吸収波長を有する第1の光重合開始剤と、波長230nm~290nmに極大吸収波長を有する第2の光重合開始剤とをさらに含む。
 1つの実施形態においては、上記主鎖に環構造を有する繰り返し単位が、一般式(1)~(7)で表される繰り返し単位から選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000004
 
式(4)~(7)中、R、R、R、R、RおよびRはそれぞれ独立して、水素原子または炭素数が1~30の直鎖状もしくは分岐状のアルキル基である。
 好ましい実施形態においては、上記側鎖に2以上のオキシアルキレン基を有する繰り返し単位が、一般式(10)で表される繰り返し単位である。
Figure JPOXMLDOC01-appb-C000005
式(10)中、R、RおよびRはそれぞれ独立して、水素原子またはメチル基であり、R10は、炭素数が1~20の直鎖状もしくは分岐状のアルキル基、炭素数が2~20の直鎖状もしくは分岐状のアルケニル基または炭素数が6~20の芳香族炭化水素基であり、AOは、炭素数が2~20のオキシアルキレン基であり、xは0~2の整数を表し、yは0または1を表し、nは、2以上である。
 1つの実施形態においては、上記アクリル系樹脂が、側鎖に酸基を有する繰り返し単位をさらに有する。
 1つの実施形態においては、上記アクリル系樹脂が、側鎖に炭素二重結合を有する繰り返し単位をさらに有する。
 本発明の別の局面によれば、フォトスペーサー用バインダーポリマーが提供される。このフォトスペーサー用バインダーポリマーは、主鎖に環構造を有する繰り返し単位と、側鎖に2以上のオキシアルキレン基を有する繰り返し単位を有するアクリル系樹脂である。
 1つの実施形態においては、上記側鎖に2以上のオキシアルキレン基を有する繰り返し単位が、一般式(10)で表される繰り返し単位である。
 本発明の別の局面によれば、フォトスペーサーが提供される。このフォトスペーサーは、上記フォトスペーサー用感光性樹脂組成物により形成される。
 本発明のさらに別の局面によれば、液晶ディスプレイが提供される。この液晶ディスプレイは、上記フォトスペーサーを含む。
The photosensitive resin composition for a photospacer of the present invention contains, as a binder polymer, an acrylic resin having a repeating unit having a ring structure in the main chain and a repeating unit having two or more oxyalkylene groups in the side chain.
In one embodiment, the photosensitive resin composition for a photospacer of the present invention includes a polyfunctional monomer, a first photopolymerization initiator having a maximum absorption wavelength at a wavelength of 290 nm to 380 nm, and a maximum at a wavelength of 230 nm to 290 nm. And a second photopolymerization initiator having an absorption wavelength.
In one embodiment, the repeating unit having a ring structure in the main chain is at least one selected from repeating units represented by the general formulas (1) to (7).
Figure JPOXMLDOC01-appb-C000004

In formulas (4) to (7), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a linear or branched group having 1 to 30 carbon atoms It is an alkyl group.
In preferable embodiment, the repeating unit which has a 2 or more oxyalkylene group in the said side chain is a repeating unit represented by General formula (10).
Figure JPOXMLDOC01-appb-C000005
In the formula (10), R 7 , R 8 and R 9 are each independently a hydrogen atom or a methyl group, and R 10 is a linear or branched alkyl group having 1 to 20 carbon atoms, carbon A straight-chain or branched alkenyl group having 2 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 20 carbon atoms, AO is an oxyalkylene group having 2 to 20 carbon atoms, and x is 0 Represents an integer of ˜2, y represents 0 or 1, and n is 2 or more.
In one embodiment, the acrylic resin further includes a repeating unit having an acid group in the side chain.
In one embodiment, the acrylic resin further has a repeating unit having a carbon double bond in the side chain.
According to another aspect of the present invention, a binder polymer for a photospacer is provided. This binder polymer for photospacers is an acrylic resin having a repeating unit having a ring structure in the main chain and a repeating unit having two or more oxyalkylene groups in the side chain.
In one embodiment, the repeating unit which has a 2 or more oxyalkylene group in the said side chain is a repeating unit represented by General formula (10).
According to another aspect of the present invention, a photospacer is provided. This photospacer is formed by the photosensitive resin composition for photospacers.
According to still another aspect of the present invention, a liquid crystal display is provided. This liquid crystal display includes the photo spacer.
 本発明によれば、特定のアクリル系樹脂を含むことにより、基板密着性に優れ、弾性回復率および破壊強度が高いフォトスペーサーを形成することができ、かつ、現像残渣の少ないフォトスペーサー用感光性樹脂組成物を提供することができる。 According to the present invention, by including a specific acrylic resin, it is possible to form a photo spacer having excellent substrate adhesion, high elastic recovery rate and high breaking strength, and less photodevelopment residue. A resin composition can be provided.
 さらに、本発明のフォトスペーサー用感光性樹脂組成物は、極大吸収波長の異なる2種以上の光重合開始剤をさらに含むことにより、非逆テーパー形状のフォトスペーサーを形成し得る。該フォトスペーサー用感光性樹脂組成物により形成された非逆テーパー形状のフォトスペーサーは、基板密着性、弾性回復率および破壊強度が顕著に優れる。また、該フォトスペーサーは、液晶層への気泡の混入を防いで、表示装置の表示性能の向上に寄与し得る。 Furthermore, the photosensitive resin composition for a photospacer of the present invention can form a non-reverse tapered photospacer by further including two or more photopolymerization initiators having different maximum absorption wavelengths. The non-reversely tapered photospacer formed from the photosensitive resin composition for photospacers is remarkably excellent in substrate adhesion, elastic recovery rate and breaking strength. Further, the photospacer can prevent bubbles from being mixed into the liquid crystal layer, and can contribute to the improvement of the display performance of the display device.
(a)および(b)は本発明の感光性樹脂組成物により形成されるフォトスペーサーの概略断面図である。(A) And (b) is a schematic sectional drawing of the photospacer formed with the photosensitive resin composition of this invention. 逆テーパー形状のフォトスペーサーを説明する概略断面図である。It is a schematic sectional drawing explaining the photo spacer of a reverse taper shape.
A.フォトスペーサー用感光性樹脂組成物
 本発明のフォトスペーサー用感光性樹脂組成物は、バインダーポリマーとして、主鎖に環構造を有する繰り返し単位(A)と側鎖に2以上のオキシアルキレン基を有する繰り返し単位(B)を有する、アクリル系樹脂を含む。このようなバインダーポリマーは破壊強度が要求される種々の硬化物に用いることができ、該バインダーポリマーをフォトスペーサー用として用いた場合、弾性率の高いフォトスペーサーを得ることができる。実用的には、本発明のフォトスペーサー用感光性樹脂組成物は、多官能モノマー、光重合開始剤、溶剤および添加剤をさらに含み得る。
A. Photospacer photosensitive resin composition The photospacer photosensitive resin composition of the present invention is a binder polymer having a repeating unit (A) having a ring structure in the main chain and two or more oxyalkylene groups in the side chain. An acrylic resin having a unit (B) is included. Such a binder polymer can be used for various cured products that require breaking strength, and when the binder polymer is used for a photospacer, a photospacer having a high elastic modulus can be obtained. Practically, the photosensitive resin composition for a photospacer of the present invention may further contain a polyfunctional monomer, a photopolymerization initiator, a solvent, and an additive.
A-1.バインダーポリマー
 主鎖に環構造を有する繰り返し単位(A)と側鎖に2以上のオキシアルキレン基を有する繰り返し単位(B)を有するアクリル系樹脂(バインダーポリマー)は、主鎖に環構造を有するモノマー(a)と側鎖に2以上のオキシアルキレン基を有するモノマー(b)とを含むモノマー組成物を重合して得ることができる。該モノマー組成物は、側鎖に酸基を有する繰り返し単位(C)を構成するモノマー(c)および/またはその他の繰り返し単位(E)を構成するその他のモノマー(e)をさらに含み得る。
A-1. An acrylic resin (binder polymer) having a repeating unit (A) having a ring structure in the binder polymer main chain and a repeating unit (B) having two or more oxyalkylene groups in the side chain is a monomer having a ring structure in the main chain It can be obtained by polymerizing a monomer composition comprising (a) and a monomer (b) having two or more oxyalkylene groups in the side chain. The monomer composition may further include a monomer (c) constituting the repeating unit (C) having an acid group in the side chain and / or another monomer (e) constituting another repeating unit (E).
 主鎖に環構造を有する繰り返し単位(A)としては、例えば、マレイミド構造、N-置換マレイミド構造、ラクトン環構造、グルタル酸無水物構造、無水マレイン酸構造等を有する繰り返し単位が挙げられる。なかでも好ましくは、マレイミド構造またはN-置換マレイミド構造である。主鎖にマレイミド構造またはN-置換マレイミド構造を有する繰り返し単位を有するアクリル系樹脂を用いることにより、現像液に対する溶解性がより高いフォトスペーサー用感光性樹脂組成物を得ることができる。具体的には、主鎖に環構造を有する繰り返し単位(A)は、一般式(1)~(3)で表される繰り返し単位から選ばれる少なくとも1種であることが好ましく、一般式(1)で表される繰り返し単位であることがより好ましい。一般式(1)で表される繰り返し単位を有するアクリル系樹脂を用いれば、より破壊強度の高い硬化物を形成し得る硬化性樹脂組成物を得ることができ、特に好ましくは、より破壊強度の高いフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。
Figure JPOXMLDOC01-appb-C000006
 
Examples of the repeating unit (A) having a ring structure in the main chain include a repeating unit having a maleimide structure, an N-substituted maleimide structure, a lactone ring structure, a glutaric anhydride structure, a maleic anhydride structure, and the like. Of these, a maleimide structure or an N-substituted maleimide structure is preferable. By using an acrylic resin having a repeating unit having a maleimide structure or an N-substituted maleimide structure in the main chain, a photosensitive resin composition for a photospacer having higher solubility in a developer can be obtained. Specifically, the repeating unit (A) having a ring structure in the main chain is preferably at least one selected from repeating units represented by the general formulas (1) to (3). It is more preferable that it is a repeating unit represented by. If an acrylic resin having a repeating unit represented by the general formula (1) is used, a curable resin composition capable of forming a cured product with higher breaking strength can be obtained, and particularly preferably, a more breaking strength is obtained. The photosensitive resin composition for photospacers which can form a high photospacer can be obtained.
Figure JPOXMLDOC01-appb-C000006
 主鎖に環構造を有する繰り返し単位(A)は、一般式(4)~(7)で表される繰り返し単位から選ばれる少なくとも1種であってもよい。なかでも好ましくは、一般式(4)または(7)で表される繰り返し単位である。
Figure JPOXMLDOC01-appb-C000007
 
式(4)~(7)中、R、R、R、R、RおよびRはそれぞれ独立して、水素原子または炭素数が1~30の直鎖状もしくは分岐状のアルキル基であり、好ましくは水素原子または炭素数が1~10の直鎖状もしくは分岐状のアルキル基であり、より好ましくは水素原子または炭素数が1~5の直鎖状もしくは分岐状のアルキル基であり、さらに好ましくはメチル基である。
The repeating unit (A) having a ring structure in the main chain may be at least one selected from repeating units represented by the general formulas (4) to (7). Among them, the repeating unit represented by the general formula (4) or (7) is preferable.
Figure JPOXMLDOC01-appb-C000007

In formulas (4) to (7), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a linear or branched group having 1 to 30 carbon atoms An alkyl group, preferably a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms. Group, more preferably a methyl group.
 主鎖に環構造を有する繰り返し単位(A)は、主鎖に環構造を有するモノマー(a)により構成される。主鎖に環構造を有するモノマー(a)としては、例えば、マレイミド、ベンジルマレイミド、フェニルマレイミド、ナフチルマレイミド、N-o-ヒドロキシフェニルマレイミド、N-m-ヒドロキシフェニルマレイミド、N-p-ヒドロキシフェニルマレイミド、N-o-クロロフェニルマレイミド、N-m-クロロフェニルマレイミド、N-p-クロロフェニルマレイミド、N-o-メチルフェニルマレイミド、N-m-メチルフェニルマレイミド、N-p-メチルフェニルマレイミド、N-o-メトキシフェニルマレイミド、N-m-メトキシフェニルマレイミド、N-p-メトキシフェニルマレイミド等の芳香族置換マレイミド類;シクロヘキシルマレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、イソプロピルマレイミド等のアルキル置換マレイミド類等が挙げられる。なかでも好ましくは、マレイミド、ベンジルマレイミド、フェニルマレイミド、シクロヘキシルマレイミドであり、より好ましくはベンジルマレイミド、フェニルマレイミド、シクロヘキシルマレイミドであり、さらに好ましくはベンジルマレイミドである。一般式(4)~(7)で表される繰り返し単位を構成するモノマー(a)としては、例えば、一般式(8)または(9)で表される1,6-ジエン類が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 
 
式(8)および(9)中、R、RおよびRは上記で説明したとおりである。
The repeating unit (A) having a ring structure in the main chain is composed of the monomer (a) having a ring structure in the main chain. Examples of the monomer (a) having a ring structure in the main chain include maleimide, benzylmaleimide, phenylmaleimide, naphthylmaleimide, No-hydroxyphenylmaleimide, Nm-hydroxyphenylmaleimide, and Np-hydroxyphenylmaleimide. N-o-chlorophenylmaleimide, Nm-chlorophenylmaleimide, Np-chlorophenylmaleimide, No-methylphenylmaleimide, Nm-methylphenylmaleimide, Np-methylphenylmaleimide, N-o- Aromatic substituted maleimides such as methoxyphenylmaleimide, Nm-methoxyphenylmaleimide, Np-methoxyphenylmaleimide; cyclohexylmaleimide, methylmaleimide, ethylmaleimide, propylmaleimide, isopropyl Alkyl-substituted maleimides such as Rumareimido like. Among these, maleimide, benzylmaleimide, phenylmaleimide, and cyclohexylmaleimide are preferable, benzylmaleimide, phenylmaleimide, and cyclohexylmaleimide are more preferable, and benzylmaleimide is more preferable. Examples of the monomer (a) constituting the repeating unit represented by the general formulas (4) to (7) include 1,6-dienes represented by the general formula (8) or (9).
Figure JPOXMLDOC01-appb-C000008


In formulas (8) and (9), R 1 , R 2 and R 3 are as described above.
 上記モノマー組成物中、主鎖に環構造を有する繰り返し単位(A)を構成するモノマー(a)の含有割合は、モノマー組成物中のモノマー(a)、モノマー(b)、モノマー(c)およびモノマー(e)の全量に対して、好ましくは5重量%~50重量%であり、より好ましくは8重量%~30重量%であり、さらに好ましくは10重量%~20重量%である。 In the monomer composition, the content ratio of the monomer (a) constituting the repeating unit (A) having a cyclic structure in the main chain is such that the monomer (a), the monomer (b), the monomer (c) in the monomer composition and The amount is preferably 5% by weight to 50% by weight, more preferably 8% by weight to 30% by weight, and still more preferably 10% by weight to 20% by weight, based on the total amount of the monomer (e).
 バインダーポリマーとしてのアクリル系樹脂が、主鎖に環構造を有する繰り返し単位(A)を有することにより、現像液に対する溶解性が高いフォトスペーサー用感光性樹脂組成物を得ることができる。このようなフォトスペーサー用感光性樹脂組成物を用いれば、現像残渣を生じさせることなく、フォトスペーサーを形成することができる。また、主鎖に環構造を有する繰り返し単位(A)を有するアクリル系樹脂を用いれば、基板密着性に優れるフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。 When the acrylic resin as the binder polymer has the repeating unit (A) having a ring structure in the main chain, a photosensitive resin composition for a photospacer having high solubility in a developer can be obtained. If such a photosensitive resin composition for photospacers is used, a photospacer can be formed without producing a development residue. Moreover, if the acrylic resin which has a repeating unit (A) which has a cyclic structure in a principal chain is used, the photosensitive resin composition for photo spacers which can form the photo spacer excellent in board | substrate adhesiveness can be obtained.
 側鎖に2以上のオキシアルキレン基を有する繰り返し単位(B)としては、例えば、一般式(10)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 
式(10)中、R、RおよびRはそれぞれ独立して、水素原子またはメチル基であり、好ましくは水素原子である。R10は、炭素数が1~20の直鎖状もしくは分岐状のアルキル基、炭素数が2~20の直鎖状もしくは分岐状のアルケニル基または炭素数が6~20の芳香族炭化水素基であり、好ましくは水素原子、炭素数が1~20の直鎖状のアルキル基、炭素数が2~20の直鎖状のアルケニル基または炭素数が6~20の芳香族炭化水素基であり、より好ましくは炭素数が1~10の直鎖状のアルキル基または炭素数が6~12の芳香族炭化水素基であり、さらに好ましくは炭素数が1~5の直鎖状のアルキル基、フェニル基またはビフェニル基であり、特に好ましくはメチル基、フェニル基またはビフェニル基である。なお、アルキル基、アルケニル基および芳香族炭化水素基は、置換基を有していてもよい。AOは、オキシアルキレン基を表す。AOで表されるオキシアルキレン基の炭素数は2~20であり、好ましくは2~10であり、より好ましくは2~5であり、さらに好ましくは2である。繰り返し単位(B)は1種または2種以上のオキシアルキレン基を含み得る。xは0~2の整数を表す。yは0または1を表す。nは、オキシアルキレン基の平均付加モル数を表し、2以上であり、好ましくは2~100であり、より好ましくは2~50であり、さらに好ましくは2~15である。
Examples of the repeating unit (B) having two or more oxyalkylene groups in the side chain include a repeating unit represented by the general formula (10).
Figure JPOXMLDOC01-appb-C000009

In formula (10), R 7 , R 8 and R 9 are each independently a hydrogen atom or a methyl group, preferably a hydrogen atom. R 10 represents a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group having 6 to 20 carbon atoms. And preferably a hydrogen atom, a linear alkyl group having 1 to 20 carbon atoms, a linear alkenyl group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group having 6 to 20 carbon atoms. More preferably a linear alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms, still more preferably a linear alkyl group having 1 to 5 carbon atoms, A phenyl group or a biphenyl group, particularly preferably a methyl group, a phenyl group or a biphenyl group. In addition, the alkyl group, the alkenyl group, and the aromatic hydrocarbon group may have a substituent. AO represents an oxyalkylene group. The oxyalkylene group represented by AO has 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms, and even more preferably 2. The repeating unit (B) may contain one or more oxyalkylene groups. x represents an integer of 0-2. y represents 0 or 1; n represents an average addition mole number of the oxyalkylene group and is 2 or more, preferably 2 to 100, more preferably 2 to 50, and further preferably 2 to 15.
 側鎖に2以上のオキシアルキレン基を有する繰り返し単位(B)は、側鎖に2以上のオキシアルキレン基を有するモノマー(b)により構成される。モノマー(b)としては、例えば、一般式(11)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000010
 
 
式(11)中、R、R、R、R10、AO、x、yおよびnは、上記で説明したとおりである。
The repeating unit (B) having two or more oxyalkylene groups in the side chain is composed of a monomer (b) having two or more oxyalkylene groups in the side chain. As a monomer (b), the monomer represented by General formula (11) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000010


In formula (11), R 7 , R 8 , R 9 , R 10 , AO, x, y and n are as described above.
 一般式(11)で表されるモノマーの具体例としては、エトキシ化o-フェニルフェノール(メタ)アクリレート(EO2モル)、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート(EO4モル)、メトキシポリエチレングリコール(メタ)アクリレート(EO9モル)、メトキシポリエチレングリコール(メタ)アクリレート(EO13モル)、メトキシトリエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、2-エチルヘキシルジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート(EO4―17モル)、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート(PO5モル)、EO変性クレゾール(メタ)アクリレート(EO2モル)等が挙げられる。なお、本明細書において、例えば「EO2モル」、「PO5モル」等の表記は、オキシアルキレン基の平均付加モル数を表す。 Specific examples of the monomer represented by the general formula (11) include ethoxylated o-phenylphenol (meth) acrylate (EO 2 mol), phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate (EO 4 mol), Methoxypolyethylene glycol (meth) acrylate (EO 9 mol), methoxypolyethylene glycol (meth) acrylate (EO 13 mol), methoxytriethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, butoxydiethylene glycol (meth) acrylate, 2-ethylhexyl Diethylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxy polypropylene glycol Le (meth) acrylate, nonyl phenoxy polyethylene glycol (meth) acrylate (EO4-17 moles), nonylphenoxy polypropylene glycol (meth) acrylate (PO5 mol), EO-modified cresol (meth) acrylate (EO2 mol), and the like. In the present specification, for example, “EO2 mole”, “PO5 mole” and the like represent the average number of moles added of the oxyalkylene group.
 上記モノマー組成物中、側鎖に2以上のオキシアルキレン基を有する繰り返し単位(B)を構成するモノマー(b)の含有割合は、モノマー組成物中のモノマー(a)、モノマー(b)、モノマー(c)およびモノマー(e)の全量に対して、好ましくは0.5重量%~55重量%であり、より好ましくは1重量%~50重量%であり、さらに好ましくは1重量%~45重量%である。 In the monomer composition, the content ratio of the monomer (b) constituting the repeating unit (B) having two or more oxyalkylene groups in the side chain is the monomer (a), monomer (b), monomer in the monomer composition. Preferably, it is 0.5 wt% to 55 wt%, more preferably 1 wt% to 50 wt%, and even more preferably 1 wt% to 45 wt%, based on the total amount of (c) and monomer (e). %.
 上記アクリル系樹脂が、側鎖に2以上のオキシアルキレン基を有する繰り返し単位(B)を有することにより、架橋密度が高く、弾性回復率および破壊強度の高いフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。このようなアクリル系樹脂と、後述の多官能モノマー(好ましくは、オキシアルキレン基を有さない多官能モノマー)とを組み合わせてフォトスペーサー用感光性樹脂組成物を構成する場合に、上記効果は特に顕著となる。 The above-mentioned acrylic resin has a repeating unit (B) having two or more oxyalkylene groups in the side chain, thereby forming a photospacer having a high crosslink density, a high elastic recovery rate and a high breaking strength. Resin composition can be obtained. In the case where a photosensitive resin composition for a photospacer is constituted by combining such an acrylic resin and a polyfunctional monomer described below (preferably a polyfunctional monomer having no oxyalkylene group), the above effect is particularly effective. Become prominent.
 好ましくは、上記アクリル系樹脂は、側鎖に酸基を有する繰り返し単位(C)を有する。アクリル系樹脂が側鎖に酸基を有する繰り返し単位(C)を有していれば、アルカリ現像性に優れるフォトスペーサー用感光性樹脂組成物を得ることができる。側鎖に酸基を有する繰り返し単位(C)を構成するモノマー(c)としては、例えば、(メタ)アクリル酸、2-(メタ)アクリロイロキシエチルコハク酸、イタコン酸、ω-カルボキシ-ポリカプロラクトンモノアクリレート等のカルボキシル基を有するモノマー;無水マレイン酸、無水イタコン酸等のカルボン酸無水物基を有するモノマー等が挙げられる。なかでも好ましくは(メタ)アクリル酸である。 Preferably, the acrylic resin has a repeating unit (C) having an acid group in the side chain. If acrylic resin has the repeating unit (C) which has an acid group in a side chain, the photosensitive resin composition for photospacers which is excellent in alkali developability can be obtained. Examples of the monomer (c) constituting the repeating unit (C) having an acid group in the side chain include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, itaconic acid, ω-carboxy-poly Monomers having a carboxyl group such as caprolactone monoacrylate; monomers having a carboxylic anhydride group such as maleic anhydride and itaconic anhydride. Of these, (meth) acrylic acid is preferred.
 上記モノマー組成物中、側鎖に酸基を有する繰り返し単位(C)を構成するモノマー(c)の含有割合は、モノマー組成物中のモノマー(a)、モノマー(b)、モノマー(c)およびモノマー(e)の全量に対して、好ましくは10重量%~90重量%であり、より好ましくは15重量%~85重量%であり、さらに好ましくは20重量%~80重量%である。 In the monomer composition, the content ratio of the monomer (c) constituting the repeating unit (C) having an acid group in the side chain is the monomer (a), the monomer (b), the monomer (c) and the monomer composition in the monomer composition. The amount is preferably 10% by weight to 90% by weight, more preferably 15% by weight to 85% by weight, and still more preferably 20% by weight to 80% by weight with respect to the total amount of the monomer (e).
 好ましくは、上記アクリル系樹脂は、側鎖に炭素二重結合を有する繰り返し単位(D)を有する。アクリル系樹脂が側鎖に炭素二重結合を有する繰り返し単位(D)を有していれば、露光感度が高く、かつ、弾性回復率および破壊強度が高いフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。側鎖に炭素二重結合を有する繰り返し単位(D)は、側鎖に酸基を有する繰り返し単位(C)の酸基の一部または全部(好ましくは、一部)を反応点として、炭素二重結合を有する化合物を付加することにより、得ることができる。 Preferably, the acrylic resin has a repeating unit (D) having a carbon double bond in the side chain. If the acrylic resin has a repeating unit (D) having a carbon double bond in the side chain, photosensitivity for photospacer that can form a photospacer with high exposure sensitivity and high elastic recovery and breaking strength. Resin composition can be obtained. The repeating unit (D) having a carbon double bond in the side chain has two or more (preferably, part) acid groups of the repeating unit (C) having an acid group in the side chain as a reaction point. It can be obtained by adding a compound having a heavy bond.
 側鎖に酸基を有する繰り返し単位(C)の酸基がカルボキシル基である場合、炭素二重結合を有する化合物として、エポキシ基と二重結合とを有する化合物、イソシアネート基と二重結合とを有する化合物等が用いられ得る。エポキシ基と二重結合とを有する化合物としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、4-ヒドロキシブチルアクリレートグリシジルエーテル等が挙げられる。イソシアネート基と二重結合とを有する化合物としては2-イソシアナトエチル(メタ)アクリレート等が挙げられる。側鎖に酸基を有する繰り返し単位(C)の酸基がカルボン酸無水物基である場合、炭素二重結合を有する化合物として、水酸基と二重結合とを有する化合物が用いられ得る。水酸基と二重結合とを有する化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート等が挙げられる。 When the acid group of the repeating unit (C) having an acid group in the side chain is a carboxyl group, a compound having an epoxy group and a double bond, an isocyanate group and a double bond are used as the compound having a carbon double bond. Or the like. Examples of the compound having an epoxy group and a double bond include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinyl. Examples thereof include benzyl glycidyl ether and 4-hydroxybutyl acrylate glycidyl ether. Examples of the compound having an isocyanate group and a double bond include 2-isocyanatoethyl (meth) acrylate. When the acid group of the repeating unit (C) having an acid group in the side chain is a carboxylic anhydride group, a compound having a hydroxyl group and a double bond can be used as the compound having a carbon double bond. Examples of the compound having a hydroxyl group and a double bond include 2-hydroxyethyl (meth) acrylate.
 上記アクリル系樹脂は、上記モノマー(a)、モノマー(b)および/またはモノマー(c)と共重合可能なその他のモノマー(e)由来のその他の繰り返し単位(E)をさらに有し得る。 The acrylic resin may further have another repeating unit (E) derived from another monomer (e) copolymerizable with the monomer (a), monomer (b) and / or monomer (c).
 その他のモノマー(e)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、ビフェニル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチレングリコールル(メタ)アクリレート、2-エチルヘキシルエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ビフェノキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、トリシクロデシルオキシエチル(メタ)アクリレート、ノニルフェノキシエチレングリコール(メタ)アクリレート、ノニルフェノキシプロピレングリコール、ベンジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル類、(メタ)アクリロイルモルホリン(モルホリノ(メタ)アクリレート)、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-t-オクチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-ベンジル(メタ)アクリルアミド、N-トリフェニルメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の(メタ)アクリル酸アミド類、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル化合物、ブタジエン、イソプレン等のブタジエンまたは置換ブタジエン化合物、エチレン、プロピレン、塩化ビニル、アクリロニトリル等のエチレンまたは置換エチレン化合物;酢酸ビニル等のビニルエステル類等が挙げられる。これらのモノマーは、単独で、または2種以上組み合わせて用いてもよい。 Examples of other monomers (e) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenyl (meth) acrylate, biphenyl (meth) acrylate, methoxyethyl ( (Meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethylene glycol (meth) acrylate, 2-ethylhexyl ethylene glycol (meth) acrylate, methoxypropylene glycol (Meth) acrylate, phenoxyethyl (meth) acrylate, biphenoxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, tricyclodecyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, tri (Meth) acrylic acid esters such as cyclodecyloxyethyl (meth) acrylate, nonylphenoxyethylene glycol (meth) acrylate, nonylphenoxypropylene glycol, benzyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) Acryloylmorpholine (morpholino (meth) acrylate), (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-butyl (meth) a Rilamide, N-isobutyl (meth) acrylamide, Nt-butyl (meth) acrylamide, Nt-octyl (meth) acrylamide, diacetone (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl (Meth) acrylamide, N-cyclohexyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, N-triphenylmethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, etc. (Meth) acrylic acid amides, aromatic vinyl compounds such as styrene, vinyl toluene and α-methyl styrene, butadiene or substituted butadiene compounds such as butadiene and isoprene, ethylene, propylene, vinyl chloride, acrylonitrile, etc. Ethylene or substituted ethylene compounds; vinyl esters such as vinyl acetate and the like. These monomers may be used alone or in combination of two or more.
 上記モノマー組成物中、その他の繰り返し単位(E)を構成するモノマー(e)の含有割合は、モノマー組成物中のモノマー(a)、モノマー(b)、モノマー(c)およびモノマー(e)の全量に対して、好ましくは0重量%~55重量%であり、より好ましくは5重量%~50重量%であり、さらに好ましくは10重量%~45重量%である。 The content ratio of the monomer (e) constituting the other repeating unit (E) in the monomer composition is such that the monomer (a), monomer (b), monomer (c) and monomer (e) in the monomer composition are The total amount is preferably 0% to 55% by weight, more preferably 5% to 50% by weight, and still more preferably 10% to 45% by weight.
 上記アクリル系樹脂は、ランダム共重合体であってもよく、ブロック共重合体であってもよい。 The acrylic resin may be a random copolymer or a block copolymer.
 上記アクリル系樹脂の重量平均分子量は、好ましくはテトラヒドロフラン(THF)溶媒によるゲル・パーミエーション・クロマトグラフ法(GPC)で測定した値が、好ましくは3,000~200,000であり、より好ましくは4,000~100,000であり、さらに好ましくは5,000~50,000である。このような範囲であれば、耐熱性を確保し、かつ、塗膜形成に適切な粘度を有するフォトスペーサー用感光性樹脂組成物を得ることができる。 The acrylic resin preferably has a weight average molecular weight of 3,000 to 200,000, more preferably a value measured by gel permeation chromatography (GPC) using a tetrahydrofuran (THF) solvent. It is 4,000 to 100,000, and more preferably 5,000 to 50,000. If it is such a range, the photosensitive resin composition for photospacers which ensures heat resistance and has a viscosity suitable for film formation can be obtained.
 上記アクリル系樹脂の酸価は、好ましくは20mgKOH/g~300mgKOH/gであり、より好ましくは25mgKOH/g~200mgKOH/gであり、さらに好ましくは30mgKOH/g~150mgKOH/gである。このような範囲であれば、アルカリ現像性に優れ、現像残渣の発生が少なく、かつ、密着性に優れるフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。 The acid value of the acrylic resin is preferably 20 mgKOH / g to 300 mgKOH / g, more preferably 25 mgKOH / g to 200 mgKOH / g, and further preferably 30 mgKOH / g to 150 mgKOH / g. If it is such a range, the photosensitive resin composition for photospacers which can form the photospacer which is excellent in alkali developability, has little generation | occurrence | production of a development residue, and is excellent in adhesiveness can be obtained.
 上記アクリル系樹脂は、モノマー(a)およびモノマー(b)、ならびに必要に応じてモノマー(c)および/または(e)を含むモノマー組成物を、任意の適切な方法で重合して得ることができる。重合方法としては、例えば、溶液重合法が挙げられる。 The acrylic resin can be obtained by polymerizing the monomer (a) and the monomer (b) and, if necessary, the monomer composition containing the monomer (c) and / or (e) by any appropriate method. it can. Examples of the polymerization method include a solution polymerization method.
 上記モノマー組成物は、任意の適切な溶媒を含み得る。溶媒としては、例えば、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のエステル類;メタノール、エタノール等のアルコール類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;クロロホルム;ジメチルスルホキシド等が挙げられる。これらの溶媒は、単独で、または2種以上組み合わせて用いてもよい。上記モノマー組成物を重合する際の重合濃度は、好ましくは5重量%~90重量%であり、より好ましくは5重量%~50重量%であり、さらに好ましくは10重量%~50重量%である。 The monomer composition may contain any appropriate solvent. Examples of the solvent include ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and propylene glycol monomethyl ether; ketones such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and 3-methoxybutyl. Examples include esters such as acetate; alcohols such as methanol and ethanol; aromatic hydrocarbons such as toluene, xylene and ethylbenzene; chloroform; dimethyl sulfoxide and the like. These solvents may be used alone or in combination of two or more. The polymerization concentration when polymerizing the monomer composition is preferably 5% by weight to 90% by weight, more preferably 5% by weight to 50% by weight, and still more preferably 10% by weight to 50% by weight. .
 上記モノマー組成物は、任意の適切な重合開始剤を含み得る。重合開始剤としては、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート等の有機過酸化物;2,2’-アゾビス(イソブチロニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)等のアゾ化合物等が挙げられる。重合開始剤の含有割合は、モノマー組成物中の全モノマー100重量部に対して、好ましくは0.1重量部~15重量部、より好ましくは0.5重量部~10重量部である。 The monomer composition may contain any appropriate polymerization initiator. Examples of the polymerization initiator include cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, benzoyl peroxide, t-butyl peroxyisopropyl carbonate, and t-amyl peroxy-2. Organic peroxides such as ethylhexanoate and t-butylperoxy-2-ethylhexanoate; 2,2′-azobis (isobutyronitrile), 1,1′-azobis (cyclohexanecarbonitrile), Examples thereof include azo compounds such as 2,2′-azobis (2,4-dimethylvaleronitrile) and dimethyl 2,2′-azobis (2-methylpropionate). The content of the polymerization initiator is preferably 0.1 parts by weight to 15 parts by weight, more preferably 0.5 parts by weight to 10 parts by weight with respect to 100 parts by weight of the total monomers in the monomer composition.
 上記アクリル系樹脂を溶液重合法により重合する際の重合温度は、好ましくは40℃~150℃であり、より好ましくは60℃~130℃である。 The polymerization temperature when polymerizing the acrylic resin by the solution polymerization method is preferably 40 ° C. to 150 ° C., more preferably 60 ° C. to 130 ° C.
 側鎖に炭素二重結合を有する繰り返し単位(D)を有するアクリル系樹脂を得る場合、上記重合後、得られたアクリル系樹脂に上記炭素二重結合を有する化合物を付加する。炭素二重結合を有する化合物を付加する方法としては、任意の適切な方法が採用され得る。例えば、重合禁止剤および触媒の存在下で、炭素二重結合を有する化合物を、側鎖に酸基を有する繰り返し単位(C)の酸基の一部または全部(好ましくは、一部)に反応させて付加することにより、側鎖に炭素二重結合を有する繰り返し単位(D)を形成させることができる。 When obtaining the acrylic resin which has a repeating unit (D) which has a carbon double bond in a side chain, the compound which has the said carbon double bond is added to the obtained acrylic resin after the said superposition | polymerization. Any appropriate method can be adopted as a method for adding a compound having a carbon double bond. For example, in the presence of a polymerization inhibitor and a catalyst, a compound having a carbon double bond is reacted with part or all (preferably part) of the acid group of the repeating unit (C) having an acid group in the side chain. Thus, the repeating unit (D) having a carbon double bond in the side chain can be formed.
 上記炭素二重結合を有する化合物の付加量は、上記重合後のアクリル系樹脂(すなわち、炭素二重結合を有する化合物を付加する前のアクリル系樹脂)100重量部に対して、好ましくは5重量部以上であり、より好ましくは10重量部以上であり、さらに好ましくは15重量部以上であり、特に好ましくは20重量部以上である。このような範囲であれば、露光感度に優れるフォトスペーサー用感光性樹脂組成物を得ることができる。このようなフォトスペーサー用感光性樹脂組成物を用いれば、緻密な硬化塗膜を形成して、基板密着性に優れ、弾性回復率および破壊強度が高いフォトスペーサーを形成することができる。また、炭素二重結合を有する化合物の付加量が上記範囲であれば、炭素二重結合を有する化合物の付加により水酸基が十分に生成され、アルカリ現像液に対する溶解性に優れるフォトスペーサー用感光性樹脂組成物を得ることができる。上記炭素二重結合を有する化合物の付加量の上限は、上記重合後のアクリル系樹脂(すなわち、炭素二重結合を有する化合物を付加する前のアクリル系樹脂)100重量部に対して、好ましくは170重量部以下であり、より好ましくは150重量部以下であり、さらに好ましくは140重量部以下である。炭素二重結合を有する化合物の付加量が多すぎる場合、フォトスペーサー用感光性樹脂組成物の保存安定性および溶解性が低下するおそれがある。 The addition amount of the compound having a carbon double bond is preferably 5% with respect to 100 parts by weight of the acrylic resin after the polymerization (that is, the acrylic resin before adding the compound having a carbon double bond). Part or more, more preferably 10 parts by weight or more, still more preferably 15 parts by weight or more, and particularly preferably 20 parts by weight or more. If it is such a range, the photosensitive resin composition for photo spacers which is excellent in exposure sensitivity can be obtained. By using such a photosensitive resin composition for a photospacer, a dense cured coating film can be formed, and a photospacer having excellent substrate adhesion, high elastic recovery rate and high breaking strength can be formed. In addition, if the addition amount of the compound having a carbon double bond is in the above range, the photosensitive resin for photospacer has a sufficient hydroxyl group generated by the addition of the compound having a carbon double bond and is excellent in solubility in an alkaline developer. A composition can be obtained. The upper limit of the amount of the compound having a carbon double bond is preferably 100 parts by weight with respect to 100 parts by weight of the acrylic resin after polymerization (that is, the acrylic resin before adding the compound having a carbon double bond). It is 170 parts by weight or less, more preferably 150 parts by weight or less, and still more preferably 140 parts by weight or less. When there is too much addition amount of the compound which has a carbon double bond, there exists a possibility that the storage stability and solubility of the photosensitive resin composition for photospacers may fall.
 重合禁止剤としては、例えば、6-tert-ブチル-2,4-キシレノール等のアルキルフェノール化合物が挙げられる。触媒としては、例えば、ジメチルベンジルアミン、トリエチルアミン等の3級アミンが挙げられる。 Examples of the polymerization inhibitor include alkylphenol compounds such as 6-tert-butyl-2,4-xylenol. Examples of the catalyst include tertiary amines such as dimethylbenzylamine and triethylamine.
A-2.多官能モノマー
 本発明のフォトスペーサー用感光性樹脂組成物は、多官能モノマーをさらに含み得る。多官能モノマーとしては、例えば、ジビニルベンゼン、ジアリルフタレート、ジアリルベンゼンホスホネート等の多官能芳香族ビニル系モノマー;(ジ)エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールジ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレート等の多官能(メタ)アクリレート類;これらのモノマーをカプロラクトン変性またはアルキレンオキサイド変性した多官能モノマー等が挙げられる。なかでも好ましくは、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレート等が好ましい。これらの多官能モノマーを用いれば、官能基数が多いので架橋密度の高いフォトスペーサーを得ることができる。本発明では、上記のとおりオキシアルキレン基を有するバインダーポリマーが用いられる一方、上記多官能モノマーについては、オキシアルキレン基を有していてもよく、有していなくてもよい。好ましくは、オキシアルキレン基を有さない多官能モノマーが用いられる。
A-2. Multifunctional monomer The photosensitive resin composition for a photospacer of the present invention may further contain a polyfunctional monomer. Examples of the polyfunctional monomer include polyfunctional aromatic vinyl monomers such as divinylbenzene, diallyl phthalate, and diallylbenzene phosphonate; (di) ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane di (Meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol Tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, tripentaerythritol di (meth) acrylate, tripentaerythritol tri (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripentaerythritol penta (meth) acrylate, tripentaerythritol hexa (meth) acrylate , Tripentaerythritol hepta (meth) acrylate, tripentaerythritol octa (meth) acrylate, trifunctional (meth) acrylates such as tris (hydroxyethyl) isocyanurate tri (meth) acrylate; these monomers are modified with caprolactone or alkylene Examples thereof include oxide-modified polyfunctional monomers. Among them, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol hepta (meth) acrylate, tripentaerythritol octa (meth) acrylate, Tris (hydroxy) isocyanurate tri (meth) acrylate and the like are preferred. When these polyfunctional monomers are used, a photo spacer having a high crosslinking density can be obtained because of the large number of functional groups. In the present invention, as described above, a binder polymer having an oxyalkylene group is used. On the other hand, the polyfunctional monomer may or may not have an oxyalkylene group. Preferably, a polyfunctional monomer having no oxyalkylene group is used.
 上記多官能モノマーの含有割合は、上記バインダーポリマー(アクリル系樹脂)と該多官能モノマーとの合計重量100重量部に対して、好ましくは10重量部~90重量部であり、より好ましく30重量部~85重量部であり、さらに好ましくは50重量部~85重量部である。 The content ratio of the polyfunctional monomer is preferably 10 parts by weight to 90 parts by weight, and more preferably 30 parts by weight with respect to 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. Is 85 parts by weight, and more preferably 50 parts by weight to 85 parts by weight.
A-3.光重合開始剤
 本発明のフォトスペーサー用感光性樹脂組成物は、任意の適切な光重合開始剤を含み得る。光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン類;2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン等のベンゾフェノン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1等のα―アミノケトン類;2-ヒドロキシ-1-{4-[4-(2-ヒドロキシー2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン等のα―ヒドロキシケトン類;アシルホスフィンオキサイド類およびキサントン類等が挙げられる。これらの光重合開始剤は単独で、または2種類以上組み合わせて用いてもよい。
A-3. Photopolymerization initiator The photosensitive resin composition for a photospacer of the present invention may contain any appropriate photopolymerization initiator. Examples of the photopolymerization initiator include benzoin such as benzoin, benzoin methyl ether, and benzoin ethyl ether and alkyl ethers thereof; acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, and 1,1-dichloroacetophenone Anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone; thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; Ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone; 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinop Α-aminoketones such as pan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2-hydroxy-1- {4- [4- (2-hydroxy- Α-hydroxy ketones such as 2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one; acylphosphine oxides and xanthones. These photopolymerization initiators may be used alone or in combination of two or more.
 上記光重合開始剤の含有割合は、上記バインダーポリマー(アクリル系樹脂)と上記多官能モノマーとの合計重量100重量部に対して、好ましくは0.1重量部~50重量部であり、より好ましくは0.5重量部~50重量部であり、さらに好ましくは0.5重量部~30重量部であり、特に好ましくは1重量部~10重量部であり、最も好ましくは1.5重量部~5重量部である。 The content of the photopolymerization initiator is preferably 0.1 to 50 parts by weight, more preferably 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. Is 0.5 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, particularly preferably 1 to 10 parts by weight, and most preferably 1.5 to 30 parts by weight. 5 parts by weight.
 1つの実施形態においては、本発明のフォトスペーサー用感光性樹脂組成物は、異なる波長範囲に極大吸収波長を有する2種以上の光重合開始剤を含む。例えば、本発明のフォトスペーサー用感光性樹脂組成物は、波長290nm~380nmに極大吸収波長を有する第1の光重合開始剤と、波長230nm~290nmに極大吸収波長を有する第2の光重合開始剤とを含む。光重合開始剤として、異なる波長範囲に極大吸収波長を有する2種以上の光重合開始剤を用いることにより、露光時に紫外光を効率的に利用することができる。その結果、高さ方向で実質的に径差のない形状または下部より上部の方が細い形状のフォトスペーサーが形成される。このような形状のフォトスペーサーは、基板密着性に優れ、弾性回復率および破壊強度が高い。また、該フォトスペーサーは、液晶層への気泡の混入を防いで、表示装置の表示性能の向上に寄与し得る。なお、本明細書においては、高さ方向で実質的に径差のない形状および下部より上部の方が細い形状を、「非逆テーパー形状」と総称する。 In one embodiment, the photosensitive resin composition for a photospacer of the present invention includes two or more photopolymerization initiators having maximum absorption wavelengths in different wavelength ranges. For example, the photosensitive resin composition for a photospacer of the present invention includes a first photopolymerization initiator having a maximum absorption wavelength at a wavelength of 290 nm to 380 nm and a second photopolymerization start having a maximum absorption wavelength at a wavelength of 230 nm to 290 nm. Agent. By using two or more kinds of photopolymerization initiators having maximum absorption wavelengths in different wavelength ranges as photopolymerization initiators, ultraviolet light can be efficiently used during exposure. As a result, a photospacer having a shape having substantially no diameter difference in the height direction or a shape having a narrower upper part than the lower part is formed. The photo spacer having such a shape has excellent substrate adhesion, and has a high elastic recovery rate and high breaking strength. Further, the photospacer can prevent bubbles from being mixed into the liquid crystal layer, and can contribute to the improvement of the display performance of the display device. In the present specification, a shape having substantially no diameter difference in the height direction and a shape whose upper part is narrower than the lower part are collectively referred to as “non-reverse tapered shape”.
 上記第1の光重合開始剤は、好ましくは波長290nm~380nmに極大吸収波長を有し、より好ましくは波長295nm~350nmに極大吸収波長を有し、さらに好ましくは295nm~340nmに極大吸収波長を有する。このような第1の光重合開始剤を用いることにより、非逆テーパー形状のフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。なお、380nmより高波長側に極大吸収波長を有する光重合開始剤を用いた場合、フォトスペーサーの太さを制御することが困難となり、太すぎるフォトスペーサーが形成されるおそれがある。本発明において、「極大吸収波長」とは、濃度が0.001重量%の光重合開始剤溶液について、光路長1cmで測定した吸光度が0.5以上となる極大吸収の波長をいう。 The first photopolymerization initiator preferably has a maximum absorption wavelength at a wavelength of 290 nm to 380 nm, more preferably has a maximum absorption wavelength at a wavelength of 295 nm to 350 nm, and more preferably has a maximum absorption wavelength of 295 nm to 340 nm. Have. By using such a 1st photoinitiator, the photosensitive resin composition for photospacers which can form the non-reverse taper-shaped photospacer can be obtained. When a photopolymerization initiator having a maximum absorption wavelength on the wavelength side higher than 380 nm is used, it is difficult to control the thickness of the photo spacer, and a photo spacer that is too thick may be formed. In the present invention, the “maximum absorption wavelength” refers to the wavelength of maximum absorption at which the absorbance measured at an optical path length of 1 cm is 0.5 or more for a photopolymerization initiator solution having a concentration of 0.001% by weight.
 上記第1の光重合開始剤として、好ましくはα-アミノケトン系化合物が用いられ、より好ましくは、一般式(12)で表されるα-アミノケトン系化合物が用いられる。このような化合物を用いれば、非逆テーパー形状であり、かつ、径が細いフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。
Figure JPOXMLDOC01-appb-C000011
 
 
式(12)中、XおよびXはそれぞれ独立して、メチル基、エチル基、ベンジル基または4-メチルベンジル基であり、好ましくはメチル基である。-NXはジメチルアミノ基、ジエチルアミノ基またはモルフォリノ基であり、好ましくはジメチルアミノ基またはモルフォリノ基であり、より好ましくはモルフォリノ基である。Xは、水素原子、炭素数が1~8のアルキル基、炭素数が1~8のアルコキシ基、炭素数が1~8のアルキルチオ基、ジメチルアミノ基、またはモルフォリノ基であり、好ましくは炭素数が1~8のアルキルチオ基またはモルフォリノ基であり、より好ましくは炭素数が1~3のアルキルチオ基またはモルフォリノ基であり、さらに好ましくはメチルチオ基である。
As the first photopolymerization initiator, an α-aminoketone compound is preferably used, and more preferably an α-aminoketone compound represented by the general formula (12) is used. By using such a compound, it is possible to obtain a photosensitive resin composition for a photospacer that has a non-inverted taper shape and can form a photospacer with a small diameter.
Figure JPOXMLDOC01-appb-C000011


In formula (12), X 1 and X 2 are each independently a methyl group, an ethyl group, a benzyl group or a 4-methylbenzyl group, preferably a methyl group. —NX 3 X 4 is a dimethylamino group, a diethylamino group or a morpholino group, preferably a dimethylamino group or a morpholino group, more preferably a morpholino group. X 5 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkylthio group having 1 to 8 carbon atoms, a dimethylamino group, or a morpholino group, preferably carbon It is an alkylthio group or morpholino group having 1 to 8 carbon atoms, more preferably an alkylthio group or morpholino group having 1 to 3 carbon atoms, and further preferably a methylthio group.
 上記α-アミノケトン系化合物の具体例としては、2-ジメチルアミノ-2-メチル-1-フェニルプロパン-1-オン、2-ジエチルアミノ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-2-モルフォリノ-1-フェニルプロパン-1-オン、2-ジメチルアミノ-2-メチル-1-(4-メチルフェニル)プロパン-1-オン、2-ジメチルアミノ-1-(4-エチルフェニル)-2-メチルプロパン-1-オン、2-ジメチルアミノ-1-(4-イソプロピルフェニル)-2-メチルプロパン-1-オン、1-(4-ブチルフェニル)-2-ジメチルアミノ-2-メチルプロパン-1-オン、2-ジメチルアミノ-1-(4-メトキシフェニル)-2-メチルプロパン-1-オン、2-ジメチルアミノ-2-メチル-1-(4-メチルチオフェニル)プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-ジメチルアミノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォルニル)フェニル]-1-ブタノン等が挙げられる。これらの化合物は、単独で、または2種以上組み合わせて用いてもよい。なかでも好ましくは、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オンまたは2-ジメチルアミノ-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォルニル)フェニル]-1-ブタノンであり、より好ましくは2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンである。第1の光重合開始剤として、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンを用いれば、非逆テーパー形状であり、かつ径が細いフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。 Specific examples of the α-aminoketone compound include 2-dimethylamino-2-methyl-1-phenylpropan-1-one, 2-diethylamino-2-methyl-1-phenylpropan-1-one, and 2-methyl. -2-morpholino-1-phenylpropan-1-one, 2-dimethylamino-2-methyl-1- (4-methylphenyl) propan-1-one, 2-dimethylamino-1- (4-ethylphenyl) -2-Methylpropan-1-one, 2-dimethylamino-1- (4-isopropylphenyl) -2-methylpropan-1-one, 1- (4-butylphenyl) -2-dimethylamino-2-methyl Propan-1-one, 2-dimethylamino-1- (4-methoxyphenyl) -2-methylpropan-1-one, 2-dimethylamino-2-methyl 1- (4-methylthiophenyl) propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4 -Morpholinophenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-dimethylaminophenyl) -butan-1-one, 2-dimethylamino-2-[(4-methylphenyl ) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone and the like. These compounds may be used alone or in combination of two or more. Of these, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane-1 are preferable. -One or 2-dimethylamino-2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, more preferably 2-methyl-1- (4 -Methylthiophenyl) -2-morpholinopropan-1-one. When 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one is used as the first photopolymerization initiator, a photo spacer having a non-reverse taper shape and a small diameter is formed. The photosensitive resin composition for photospacers which can be obtained can be obtained.
 上記第1の光重合開始剤は、市販品を用いてもよい。市販の第1の光重合開始剤としては、例えば、BASFジャパン社製の商品名「イルガキュア907」、「イルガキュア369」、「イルガキュア379」等が挙げられる。 Commercially available products may be used as the first photopolymerization initiator. Examples of the commercially available first photopolymerization initiator include trade names “Irgacure 907”, “Irgacure 369”, and “Irgacure 379” manufactured by BASF Japan.
 上記第1の光重合開始剤の含有割合は、上記バインダーポリマー(アクリル系樹脂)と上記多官能モノマーとの合計重量100重量部に対して、好ましくは0.1重量部~30重量部、より好ましくは0.5重量部~10重量部であり、さらに好ましくは1.0重量部~5重量部である。 The content ratio of the first photopolymerization initiator is preferably 0.1 parts by weight to 30 parts by weight with respect to 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. The amount is preferably 0.5 to 10 parts by weight, and more preferably 1.0 to 5 parts by weight.
 上記第2の光重合開始剤は、好ましくは波長230nm~290nmに極大吸収波長を有し、より好ましくは波長240nm~280nmに極大吸収波長を有し、さらに好ましくは波長250nm~270nmに極大吸収波長を有する。 The second photopolymerization initiator preferably has a maximum absorption wavelength at a wavelength of 230 nm to 290 nm, more preferably a maximum absorption wavelength at a wavelength of 240 nm to 280 nm, and still more preferably a maximum absorption wavelength at a wavelength of 250 nm to 270 nm. Have
 上記第2の光重合開始剤として、好ましくはα-ヒドロキシケトン系化合物が用いられ、より好ましくは一般式(13)または一般式(14)で表されるα-ヒドロキシケトン系化合物が用いられ、さらに好ましくは一般式(14)で表されるα-ヒドロキシケトン系化合物が用いられる。このような化合物を用いれば、非逆テーパー形状であり、かつ径が細いフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。
Figure JPOXMLDOC01-appb-C000012
 
式(13)中、Xは水素原子、炭素数が1~10のアルキル基、または炭素数が1~10のアルコキシ基であり、好ましくは水素原子、炭素数が1~5のアルキル基または炭素数が1~5のアルコキシ基であり、より好ましくは水素原子または炭素数が1~2のアルコキシ基である。XおよびXはそれぞれ独立して、水素原子または炭素数が1~10のアルキル基であり、好ましくは炭素数が1~5のアルキル基であり、より好ましくはメチル基である。また、XとXとが結合して炭素数が4~8(好ましくは6~8、より好ましくは6)のシクロアルキル基を形成していてもよい。
 式(14)中、X~X12はそれぞれ独立して、水素原子または炭素数が1~10のアルキル基であり、好ましくは炭素数が1~5のアルキル基であり、より好ましくはメチル基である。また、XとX10、および/またはX11とX12とが結合して炭素数が4~8のシクロアルキル基を形成していてもよい。
 上記アルキル基、アルコキシ基、アルキル基およびシクロアルキル基は、置換基を有していてもよい。該置換基としては、例えば、水酸基、カルボキシル基、スルホ基、シアノ基、ハロゲン原子等が挙げられる。
As the second photopolymerization initiator, an α-hydroxyketone compound is preferably used, more preferably an α-hydroxyketone compound represented by the general formula (13) or the general formula (14) is used. More preferably, an α-hydroxyketone compound represented by the general formula (14) is used. If such a compound is used, a photosensitive resin composition for a photospacer that can form a photospacer having a non-inverted taper shape and a small diameter can be obtained.
Figure JPOXMLDOC01-appb-C000012

In the formula (13), X 6 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or An alkoxy group having 1 to 5 carbon atoms, more preferably a hydrogen atom or an alkoxy group having 1 to 2 carbon atoms. X 7 and X 8 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group. X 7 and X 8 may be bonded to each other to form a cycloalkyl group having 4 to 8 carbon atoms (preferably 6 to 8, more preferably 6).
In the formula (14), X 9 to X 12 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, more preferably methyl It is a group. X 9 and X 10 and / or X 11 and X 12 may be bonded to form a cycloalkyl group having 4 to 8 carbon atoms.
The alkyl group, alkoxy group, alkyl group and cycloalkyl group may have a substituent. Examples of the substituent include a hydroxyl group, a carboxyl group, a sulfo group, a cyano group, and a halogen atom.
 上記α-ヒドロキシケトン系化合物の具体例としては、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルブタン-1-オン、1-(4-メチルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-メチルプロパン-1-オン、1-(4-ブチルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-(4-オクチルフェニル)プロパン-1-オン、1-(4-ドデシルフェニル)-2-メチルプロパン-1-オン、1-(4-メトキシフェニル)-2-メチルプロパン-1-オン、1-(4-メチルチオフェニル)-2-メチルプロパン-1-オン、1-(4-クロロフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ブロモフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-1-(4-ヒドロキシフェニル)-2-メチルプロパン-1-オン、1-(4-ジメチルアミノフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-カルボエトキシフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンなどが挙げられる。これらの化合物は、単独で、または2種以上組み合わせて用いてもよい。なかでも好ましくは、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オンまたは2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンであり、より好ましくは2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンである。第2の光重合開始剤として、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オンを用いれば、非逆テーパー形状であり、かつ、径が細いフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。 Specific examples of the α-hydroxyketone compound include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-2-methyl-1-phenylbutan-1-one, 1- ( 4-methylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-isopropylphenyl) -2-methylpropan-1-one, 1- (4-butylphenyl) -2-hydroxy- 2-methylpropan-1-one, 2-hydroxy-2-methyl-1- (4-octylphenyl) propan-1-one, 1- (4-dodecylphenyl) -2-methylpropan-1-one, -(4-methoxyphenyl) -2-methylpropan-1-one, 1- (4-methylthiophenyl) -2-methylpropan-1-one, 1- (4-chlorophenyl) 2-hydroxy-2-methylpropan-1-one, 1- (4-bromophenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-1- (4-hydroxyphenyl) -2- Methylpropan-1-one, 1- (4-dimethylaminophenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-carboethoxyphenyl) -2-hydroxy-2-methylpropane-1 -One, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- And [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one. These compounds may be used alone or in combination of two or more. Among these, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one or 2-hydroxy-1- { 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, more preferably 2-hydroxy-1- {4- [4- ( 2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one. If 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one is used as the second photopolymerization initiator It is possible to obtain a photosensitive resin composition for a photospacer that has a non-inverted taper shape and can form a photospacer with a small diameter.
 上記第2の光重合開始剤は、市販品を用いてもよい。市販の第2の光重合開始剤としては、例えば、BASFジャパン社製の商品名「イルガキュア184」、「イルガキュア2959」、「イルガキュア127」、「ダロキュア1173」等が挙げられる。 A commercially available product may be used as the second photopolymerization initiator. Examples of the commercially available second photopolymerization initiator include trade names “Irgacure 184”, “Irgacure 2959”, “Irgacure 127”, and “Darocure 1173” manufactured by BASF Japan.
 上記第2の光重合開始剤の含有割合は、上記バインダーポリマー(アクリル系樹脂)と上記多官能モノマーとの合計重量100重量部に対して、好ましくは0.01重量部~30重量部であり、より好ましくは0.05重量部~10重量部であり、さらに好ましくは0.07重量部~1重量部である。 The content ratio of the second photopolymerization initiator is preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. More preferably, it is 0.05 to 10 parts by weight, and still more preferably 0.07 to 1 part by weight.
 また、上記第2の光重合開始剤の含有割合は、上記第1の光重合開始剤と該第2の光重合開始剤の合計重量に対して、好ましくは5重量%~40重量%であり、より好ましくは5重量%~30重量%であり、さらに好ましくは5重量%~20重量%である。このような範囲であれば、基板密着性に優れ、弾性回復率および破壊強度が高いフォトスペーサーを形成し得るフォトスペーサー用感光性樹脂組成物を得ることができる。 The content ratio of the second photopolymerization initiator is preferably 5% by weight to 40% by weight with respect to the total weight of the first photopolymerization initiator and the second photopolymerization initiator. More preferably, it is 5 to 30% by weight, and further preferably 5 to 20% by weight. If it is such a range, the photosensitive resin composition for photospacers which can form a photospacer which is excellent in board | substrate adhesiveness, and has a high elastic recovery rate and high fracture strength can be obtained.
 上記第1の光重合開始剤および第2の光重合開始剤の合計含有割合は、上記バインダーポリマー(アクリル系樹脂)と上記多官能モノマーとの合計重量100重量部に対して、好ましくは0.5重量部~50重量部であり、より好ましくは1重量部~10重量部であり、さらに好ましくは1.5重量部~5重量部である。 The total content ratio of the first photopolymerization initiator and the second photopolymerization initiator is preferably 0. 0 with respect to 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. The amount is 5 to 50 parts by weight, more preferably 1 to 10 parts by weight, and still more preferably 1.5 to 5 parts by weight.
 光重合開始剤に加えて光重合開始助剤を組み合わせて用いてもよい。光重合開始助剤を複数の組み合わせで用いることもできる。光重合開始助剤の具体例としては、1,3,5-トリス(3-メルカプトプロピオニルオキシエチル)-イソシアヌレート、1,3,5-トリス(3-メルカプトブチルオキシエチル)-イソシアヌレート(昭和電工社製、カレンズMT(登録商標)NR1)、トリメチロールプロパントリス(3-メルカプトプロピオネート等の3官能チオール化合物;ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工社製、カレンズMT(登録商標)PE1)等の4官能チオール化合物;ジペンタエリスリトールヘキサキス(3-プロピオネート)等の6官能チオール化合物等の多官能チオールが挙げられる。 In addition to the photopolymerization initiator, a photopolymerization initiation assistant may be used in combination. Photopolymerization initiation assistants can also be used in combination. Specific examples of the photopolymerization initiation assistant include 1,3,5-tris (3-mercaptopropionyloxyethyl) -isocyanurate, 1,3,5-tris (3-mercaptobutyloxyethyl) -isocyanurate (Showa) Electric Works, Karenz MT (registered trademark) NR1), trimethylolpropane tris (trifunctional thiol compounds such as 3-mercaptopropionate; pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercapto) Butyrate) (made by Showa Denko KK, Karenz MT (registered trademark) PE1) and the like; and polyfunctional thiols such as difunctional thiol compounds such as dipentaerythritol hexakis (3-propionate).
A-4.溶剤
 本発明のフォトスペーサー用感光性樹脂組成物は、任意の適切な溶剤を含み得る。溶剤としては、例えば、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のエステル類;メタノール、エタノール、イソプロパノール、n-ブタノール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;クロロホルム、ジメチルスルホキシド等が挙げられる。溶剤の量は、所望とするフォトスペーサー用感光性樹脂組成物の粘度に応じて、任意の適切な量に設定され得る。
A-4. Solvent The photosensitive resin composition for a photospacer of the present invention may contain any appropriate solvent. Examples of the solvent include ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy Esters such as butyl acetate; Alcohols such as methanol, ethanol, isopropanol, n-butanol, ethylene glycol monomethyl ether, and propylene glycol monomethyl ether; Aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; Chloroform, dimethyl sulfoxide, and the like Can be mentioned. The amount of the solvent can be set to any appropriate amount depending on the desired viscosity of the photosensitive resin composition for a photospacer.
A-5.添加剤
 本発明のフォトスペーサー用感光性樹脂組成物は、必要に応じて、任意の適切な添加剤を含み得る。添加剤としては、例えば、水酸化アルミニウム、タルク、クレー、硫酸バリウム等の充填材、染料、顔料、消泡剤、カップリング剤、レベリング剤、増感剤、離型剤、滑剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤、重合抑制剤、増粘剤、分散剤、有機微粒子、無機微粒子(酸化亜鉛系、酸化ケイ素系、ジルコニア系、チタン系)、シリカ等の多孔質微粒子、シリカ等の中空微粒子等が挙げられる。
A-5. Additive The photosensitive resin composition for a photospacer of the present invention may contain any appropriate additive as required. As additives, for example, fillers such as aluminum hydroxide, talc, clay, barium sulfate, dyes, pigments, antifoaming agents, coupling agents, leveling agents, sensitizers, mold release agents, lubricants, plasticizers, Antioxidants, UV absorbers, flame retardants, polymerization inhibitors, thickeners, dispersants, organic fine particles, inorganic fine particles (zinc oxide, silicon oxide, zirconia, titanium), porous fine particles such as silica, Examples thereof include hollow fine particles such as silica.
 1つの実施形態においては、本発明のフォトスペーサー用感光性樹脂組成物は、UV吸収剤を含む。UV吸収剤を含むフォトスペーサー用感光性樹脂組成物を用いれば、上下で径の差が小さいフォトスペーサーを得ることができ、フォトスペーサーを細い柱状することができる。本発明のフォトスペーサー用感光性樹脂組成物により形成されるフォトスペーサーは、細くとも、十分な破壊強度を有する。 In one embodiment, the photosensitive resin composition for a photospacer of the present invention contains a UV absorber. If the photosensitive resin composition for photospacers containing a UV absorber is used, a photospacer having a small difference in diameter between the upper and lower sides can be obtained, and the photospacer can be formed into a thin column. The photospacer formed by the photosensitive resin composition for a photospacer of the present invention is thin but has sufficient breaking strength.
 本発明のフォトスペーサー用感光性樹脂組成物がUV吸収剤を含む場合、UV吸収剤の含有割合は、上記バインダーポリマー(アクリル系樹脂)と上記多官能モノマーとの合計重量100重量部に対して、好ましくは0.05重量部~10重量部、より好ましくは0.1重量部~5重量部であり、さらに好ましくは0.2重量部~3重量部である。 When the photosensitive resin composition for photospacers of the present invention contains a UV absorber, the content of the UV absorber is based on 100 parts by weight of the total weight of the binder polymer (acrylic resin) and the polyfunctional monomer. The amount is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and still more preferably 0.2 to 3 parts by weight.
B.フォトスペーサー
 本発明のフォトスペーサーは、上記フォトスペーサー用感光性樹脂組成物を用いて得ることができる。上記フォトスペーサー用感光性樹脂組成物を用いれば、基板密着性に優れ、弾性回復率および破壊強度が高いフォトスペーサーを形成することができる。本発明のフォトスペーサーは、液晶ディスプレイ、より具体的には液晶ディスプレイの液晶セルのスペーサーとして好適に利用することができる。
B. Photospacer The photospacer of the present invention can be obtained using the above-mentioned photosensitive resin composition for photospacers. If the said photosensitive resin composition for photospacers is used, the photospacer which is excellent in board | substrate adhesiveness and has a high elastic recovery rate and fracture strength can be formed. The photospacer of the present invention can be suitably used as a spacer for a liquid crystal display, more specifically, a liquid crystal cell of a liquid crystal display.
 上記フォトスペーサーは、フォトリソグラフィにより形成することができる。具体的には、上記フォトスペーサー用感光性樹脂組成物を基板に塗布した後に乾燥させ、得られた塗膜上にフォトマスクを配置して露光し、塗膜を硬化させ、その後、現像することにより、フォトスペーサーを形成することができる。フォトリソグラフィによれば、任意の位置にフォトスペーサーを形成することができるので、例えば、液晶表示装置において、ブラックマトリックス上にのみフォトスペーサーを形成して、スペーサーを要因とした表示特性の低下を防止することができる。 The photo spacer can be formed by photolithography. Specifically, the photosensitive resin composition for photospacer is applied to a substrate and then dried. A photomask is placed on the obtained coating film to expose it, the coating film is cured, and then developed. Thus, a photo spacer can be formed. According to photolithography, a photo spacer can be formed at an arbitrary position. For example, in a liquid crystal display device, a photo spacer is formed only on a black matrix to prevent display characteristics from being deteriorated due to the spacer. can do.
 上記フォトスペーサー用感光性樹脂組成物の塗布方法としては、例えば、スピンコーター、バーコーター、グラビアコーター、ロールコーター、ナイフコーター、アプリケーター等を用いる方法が挙げられる。乾燥温度は、好ましくは40℃~200℃であり、より好ましくは70℃~100℃である。乾燥時間は、好ましくは1分間~30分間であり、より好ましくは2分間~10分間である。 Examples of the method for applying the photosensitive resin composition for photospacer include a method using a spin coater, bar coater, gravure coater, roll coater, knife coater, applicator and the like. The drying temperature is preferably 40 ° C. to 200 ° C., more preferably 70 ° C. to 100 ° C. The drying time is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes.
 上記フォトマスクの配置位置は、所望とするフォトスペーサーのサイズに応じて、任意の適切な位置に配置される。フォトマスクは塗膜の上部に配置され、塗膜とフォトマスクとの距離は、好ましくは0μm~500μmであり、より好ましく10μm~400μmであり、さらに好ましくは20μm~300μmであり、特に好ましくは30μm~200μmである。 The arrangement position of the photomask is arranged at any appropriate position according to the desired size of the photo spacer. The photomask is disposed on the top of the coating film, and the distance between the coating film and the photomask is preferably 0 μm to 500 μm, more preferably 10 μm to 400 μm, still more preferably 20 μm to 300 μm, and particularly preferably 30 μm. ~ 200 μm.
 上記露光時のUV照射強度(365nm照度換算)は、好ましくは10mJ/cm~200mJ/cmであり、より好ましくは20mJ/cm~150mJ/cmであり、さらに好ましくは30mJ/cm~100mJ/cmである。 The UV irradiation intensity (in terms of 365 nm illuminance) during the exposure is preferably 10 mJ / cm 2 to 200 mJ / cm 2 , more preferably 20 mJ / cm 2 to 150 mJ / cm 2 , and even more preferably 30 mJ / cm 2. ~ 100 mJ / cm 2 .
 上記現像に際しては、アルカリ水溶液を用いることが好ましい。環境への負荷が少なく高感度の現像を行うことができるからである。アルカリ成分としては、例えば、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム等が用いられる。アルカリ水溶液のアルカリ濃度は、好ましくは0.01重量%~5重量%であり、より好ましくは0.02重量%~3重量%であり、さらに好ましくは0.03重量%~1重量%である。このような範囲であれば、上記フォトスペーサー用感光性樹脂組成物を適切に溶解して、現像性よくフォトスペーサーを形成することができる。アルカリ水溶液には界面活性剤をさらに添加してもよい。 In the above development, an alkaline aqueous solution is preferably used. This is because high-sensitivity development can be performed with less environmental burden. As the alkaline component, for example, potassium hydroxide, sodium hydroxide, sodium carbonate or the like is used. The alkali concentration of the aqueous alkali solution is preferably 0.01% to 5% by weight, more preferably 0.02% to 3% by weight, and further preferably 0.03% to 1% by weight. . If it is such a range, the said photosensitive resin composition for photospacers can be melt | dissolved appropriately, and a photospacer can be formed with sufficient developability. A surfactant may be further added to the alkaline aqueous solution.
 現像後に、ポストベークを行ってもよい。ポストベーク時の加熱温度は、好ましくは150℃~300℃である、より好ましくは180℃~250℃である。加熱時間は、好ましくは10分~90分であり、より好ましくは20分~60分である。本発明のフォトスペーサー用感光性樹脂組成物は、側鎖に2以上のオキシアルキレン基を有する繰り返し単位(B)を有するアクリル系樹脂を含むので、ポストベークにより、架橋密度の高いフォトスペーサーを形成することができる。 Post-baking may be performed after development. The heating temperature during post-baking is preferably 150 ° C. to 300 ° C., more preferably 180 ° C. to 250 ° C. The heating time is preferably 10 minutes to 90 minutes, more preferably 20 minutes to 60 minutes. Since the photosensitive resin composition for a photospacer of the present invention contains an acrylic resin having a repeating unit (B) having two or more oxyalkylene groups in the side chain, a photospacer having a high crosslinking density is formed by post-baking. can do.
 本発明のフォトスペーサーの形状としては、例えば、円柱状、角柱状、円錐台形状、角錐台形状等が挙げられる。フォトスペーサーの最下部における太さは、フォトスペーサーの水平断面積でいえば、好ましくは3μm~500μmであり、より好ましくは15μm~100μmである。フォトスペーサーの最下部における径は、任意の適切な範囲に設定し得る。実用的には、好ましくは2μm~20μmであり、より好ましくは3μm~10μmであり、さらに好ましくは5μm~8.5μmであり、特に好ましくは5μm~8μmである。このような範囲であれば、表示装置の高精細化に対応し得るフォトスペーサーを得ることができる。特に、最下部における径が、5μm~8.5μm(特に好ましくは5μm~8μm)であるフォトスペーサーは、該効果が顕著となる。なお、本明細書において「径」とは、最下部面の周上の2点を結び、最下部面の重心を通る直線の長さを意味する。したがって、フォトスペーサーが円柱状または円錐台形状である場合(すなわち、最下部面が円状の場合)は最下部面の直径を意味する。フォトスペーサーの高さは、所望とする基板間隔に応じて、任意の適切な高さに設定され得る。フォトスペーサーの高さは、例えば、1μm~10μmである。 Examples of the shape of the photospacer of the present invention include a columnar shape, a prismatic shape, a truncated cone shape, and a truncated pyramid shape. The thickness of the lowermost part of the photospacer is preferably 3 μm 2 to 500 μm 2 , more preferably 15 μm 2 to 100 μm 2 in terms of the horizontal cross-sectional area of the photospacer. The diameter at the bottom of the photospacer can be set to any appropriate range. Practically, it is preferably 2 μm to 20 μm, more preferably 3 μm to 10 μm, still more preferably 5 μm to 8.5 μm, and particularly preferably 5 μm to 8 μm. If it is such a range, the photo spacer which can respond to the high definition of a display apparatus can be obtained. In particular, a photospacer having a diameter at the lowermost part of 5 μm to 8.5 μm (particularly preferably 5 μm to 8 μm) has a remarkable effect. In this specification, “diameter” means a length of a straight line that connects two points on the circumference of the lowermost surface and passes through the center of gravity of the lowermost surface. Therefore, when the photo spacer has a cylindrical shape or a truncated cone shape (that is, when the lowermost surface is circular), it means the diameter of the lowermost surface. The height of the photo spacer can be set to any appropriate height depending on the desired substrate interval. The height of the photo spacer is, for example, 1 μm to 10 μm.
 本発明のフォトスペーサーは、好ましくは、非逆テーパー形状を有する。図1(a)および(b)は、本発明のフォトスペーサー用感光性樹脂組成物により形成される非逆テーパー形状のフォトスペーサーの概略断面図である。図1(a)においては、高さ方向で実質的に径差のないフォトスペーサー10を示す。図1(b)においては、下部より上部の方が細いフォトスペーサー20を示す。上記のとおり、本明細書においては、高さ方向で実質的に径差のない形状および下部より上部の方が細い形状を、「非逆テーパー形状」と総称する。より具体的には、「非逆テーパー形状」とは、フォトスペーサーの下部から高さ方向に(フォトスペーサーの高さL×1/2)離れた部分H1の水平断面積A1が、フォトスペーサーの下部から高さ方向に(フォトスペーサーの高さL×1/4)離れた部分H2の水平断面積A2と同じであるか、水平断面積A2より小さい形状をいう。非逆テーパ形状のフォトスペーサーは、例えば、極大吸収波長の異なる2種以上の光重合開始剤(例えば、上記第1の光重合開始剤および第2の光重合開始剤)を含むフォトスペーサー用感光性樹脂組成物を用いて形成することができる。また、「逆テーパー形状」とは、図2の概略断面図で示される形状をいい、具体的には、フォトスペーサーの下部から高さ方向に(フォトスペーサーの高さL×1/2)離れた部分H1の水平断面積が、フォトスペーサーの下部から高さ方向に(フォトスペーサーの高さL×1/4)離れた部分H2の水平断面積より大きい形状をいう。 The photo spacer of the present invention preferably has a non-inverted taper shape. 1 (a) and 1 (b) are schematic cross-sectional views of a non-reverse tapered photo spacer formed by the photosensitive resin composition for a photo spacer of the present invention. FIG. 1A shows a photospacer 10 having substantially no diameter difference in the height direction. In FIG.1 (b), the photo spacer 20 whose upper part is thinner than the lower part is shown. As described above, in the present specification, a shape that has substantially no difference in diameter in the height direction and a shape that is narrower in the upper part than the lower part are collectively referred to as a “non-inverted tapered shape”. More specifically, the “non-inverted taper shape” means that the horizontal cross-sectional area A1 of the portion H1 separated from the lower part of the photo spacer in the height direction (height L × 1/2 of the photo spacer) is A shape that is the same as or smaller than the horizontal cross-sectional area A2 of the portion H2 away from the bottom in the height direction (height L × 1/4 of the photo spacer). The non-reverse taper-shaped photospacer is, for example, a photospacer photosensitive material containing two or more photopolymerization initiators having different maximum absorption wavelengths (for example, the first photopolymerization initiator and the second photopolymerization initiator). It can form using an adhesive resin composition. In addition, the “reverse taper shape” refers to the shape shown in the schematic cross-sectional view of FIG. 2. Specifically, it is separated from the lower part of the photo spacer in the height direction (height L × 1/2 of the photo spacer). The horizontal cross-sectional area of the portion H1 is larger than the horizontal cross-sectional area of the portion H2 that is separated from the lower part of the photo spacer in the height direction (height L × 1/4 of the photo spacer).
 フォトスペーサーの下部から高さ方向に(フォトスペーサーの高さL×1/2)離れた部分H1の水平断面積A1と、フォトスペーサーの下部から高さ方向に(フォトスペーサーの高さL×1/4)離れた部分H2の水平断面積A2との比(A2/A1)は、好ましくは1~1.3であり、より好ましくは1~1.2であり、さらに好ましくは1~1.15であり、特に好ましくは1~1.1である。A2/A1がこのような範囲のフォトスペーサーは、基板密着性に優れ、かつ、弾性回復率および破壊強度が高い。また、該フォトスペーサーは、液晶層への気泡の混入を防いで、表示装置の表示性能の向上に寄与し得る。 The horizontal cross-sectional area A1 of the portion H1 separated from the lower part of the photo spacer in the height direction (height L × 1/2 of the photo spacer) and in the height direction from the lower part of the photo spacer (height L × 1 of the photo spacer / 4) The ratio (A2 / A1) of the distant portion H2 to the horizontal sectional area A2 is preferably 1 to 1.3, more preferably 1 to 1.2, and still more preferably 1 to 1. 15, particularly preferably 1 to 1.1. A photospacer having such a range of A2 / A1 has excellent substrate adhesion, and has a high elastic recovery rate and high fracture strength. Further, the photospacer can prevent bubbles from being mixed into the liquid crystal layer, and can contribute to the improvement of the display performance of the display device.
 1つの実施形態においては、本発明のフォトスペーサーの圧縮率は、10%~90%である。圧縮率の評価方法は後述する。 In one embodiment, the compression ratio of the photo spacer of the present invention is 10% to 90%. A method for evaluating the compression rate will be described later.
 本発明のフォトスペーサーの弾性回復率の下限は、好ましくは55%以上であり、より好ましくは60%以上であり、さらに好ましくは65%以上であり、さらに好ましくは70%以上であり、さらに好ましくは75%以上であり、さらに好ましくは80%以上であり、特に好ましくは90%以上である。弾性回復率は大きければ大きいほど好ましく、本発明のフォトスペーサーの弾性回復率の上限は、例えば、100%である。弾性回復率の評価方法は後述する。 The lower limit of the elastic recovery rate of the photospacer of the present invention is preferably 55% or more, more preferably 60% or more, still more preferably 65% or more, still more preferably 70% or more, and further preferably Is 75% or more, more preferably 80% or more, and particularly preferably 90% or more. The larger the elastic recovery rate, the better. The upper limit of the elastic recovery rate of the photospacer of the present invention is, for example, 100%. The method for evaluating the elastic recovery rate will be described later.
 1つの実施形態においては、フォトスペーサーの最下部における径が5μm~8.5μmである場合、本発明のフォトスペーサーの弾性回復率は、好ましくは70%~100%であり、より好ましくは80%~95%である。 In one embodiment, when the diameter at the bottom of the photospacer is 5 μm to 8.5 μm, the elastic recovery rate of the photospacer of the present invention is preferably 70% to 100%, more preferably 80%. ~ 95%.
 本発明のフォトスペーサーの弾性回復率b(%)と、フォトスペーサーの最下部における径a(μm)との関係は、実用的な径aの範囲において、好ましくは、b>3.1a+45であり、より好ましくは、b>3.1a+50であり、さらに好ましくは、b>3.1a+53である。 The relationship between the elastic recovery rate b (%) of the photospacer of the present invention and the diameter a (μm) at the lowermost part of the photospacer is preferably b> 3.1a + 45 in the range of the practical diameter a. More preferably, b> 3.1a + 50, and further preferably b> 3.1a + 53.
 本発明のフォトスペーサーの破壊強度の下限は、好ましくは20mN以上であり、より好ましくは50mN以上であり、さらに好ましくは100mN以上であり、さらに好ましくは110mN以上であり、さらに好ましくは120mN以上であり、さらに好ましくは130mN以上であり、さらに好ましくは145mN以上であり、さらに好ましくは160mN以上であり、特に好ましくは175mN以上であり、最も好ましくは190mN以上である。破壊強度は大きければ大きいほど好ましく、本発明のフォトスペーサーの破壊強度の上限値は、例えば、好ましくは300mNである。破壊強度の評価方法は後述する。 The lower limit of the breaking strength of the photospacer of the present invention is preferably 20 mN or more, more preferably 50 mN or more, further preferably 100 mN or more, further preferably 110 mN or more, and further preferably 120 mN or more. More preferably, it is 130 mN or more, More preferably, it is 145 mN or more, More preferably, it is 160 mN or more, Especially preferably, it is 175 mN or more, Most preferably, it is 190 mN or more. The higher the breaking strength, the better. The upper limit value of the breaking strength of the photospacer of the present invention is, for example, preferably 300 mN. A method for evaluating the fracture strength will be described later.
 1つの実施形態においては、フォトスペーサーの最下部における径が5μm~8.5μmである場合、本発明のフォトスペーサーの破壊強度は、好ましくは100mN~300mNであり、より好ましくは145mN~300mNであり、さらに好ましくは145mN~250mNであり、さらに好ましくは160mN~250mNであり、さらに好ましくは175mN~210mNであり、特に好ましくは175mN~200mNである。 In one embodiment, when the diameter of the lowermost part of the photo spacer is 5 μm to 8.5 μm, the breaking strength of the photo spacer of the present invention is preferably 100 mN to 300 mN, more preferably 145 mN to 300 mN. Further, it is preferably 145 mN to 250 mN, more preferably 160 mN to 250 mN, still more preferably 175 mN to 210 mN, and particularly preferably 175 mN to 200 mN.
 以下に、実施例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。実施例における評価方法は以下のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. The evaluation methods in the examples are as follows.
(1)重量平均分子量:Mw
 GPC(HLC-8220GPC、東ソー社製)にてTHFを溶離液とし、カラムにTSKgel SuperHZM-N(東ソー社製)を用いて測定し、標準ポリスチレン換算にて算出した。
(2)固形分
 製造例で調製した共重合体溶液をアルミカップに約0.3gはかり取り、アセトン約1gを加えて溶解させた後、常温で自然乾燥させた。その後、熱風乾燥機(商品名:PHH-101、エスペック株社製)を用い、140℃で3時間乾燥した後、デシケータ内で放冷し、重量を測定した。その重量減少量から、ポリマー溶液の固形分(アクリル系樹脂)の重量を計算した。
(3)酸価
 製造例で調製した共重合体溶液を1.5g精秤し、アセトン90gと水10gの混合溶媒に溶解させ、0.1NのKOH水溶液で滴定した。滴定は、自動滴定装置(商品名:COM-555、平沼産業社製)を用いて行い、固形分濃度から、ポリマー1g当たりの酸価を求めた(mgKOH/g)。
(1) Weight average molecular weight: Mw
Using GPC (HLC-8220 GPC, manufactured by Tosoh Corporation) as an eluent, TSKgel SuperHZM-N (manufactured by Tosoh Corporation) was used as a column, and the column was measured in terms of standard polystyrene.
(2) Solid content About 0.3 g of the copolymer solution prepared in the production example was weighed into an aluminum cup, dissolved by adding about 1 g of acetone, and then naturally dried at room temperature. Thereafter, using a hot air dryer (trade name: PHH-101, manufactured by ESPEC Corp.), it was dried at 140 ° C. for 3 hours, allowed to cool in a desiccator, and the weight was measured. From the weight loss, the weight of the solid content (acrylic resin) of the polymer solution was calculated.
(3) Acid value 1.5 g of the copolymer solution prepared in the production example was precisely weighed, dissolved in a mixed solvent of 90 g of acetone and 10 g of water, and titrated with a 0.1 N aqueous KOH solution. Titration was performed using an automatic titrator (trade name: COM-555, manufactured by Hiranuma Sangyo Co., Ltd.), and the acid value per 1 g of polymer was determined from the solid content concentration (mgKOH / g).
(4)現像残渣
 現像後、フォトスペーサー用感光性樹脂組成物のとけ残りの有無を目視観察にて評価した。
(5)フォトスペーサーの密着性
 形成されたフォトスペーサーの欠損の有無を目視にて観察し、以下の基準で評価した。
  ○:欠損無く、密着性が非常に優れる
  △:一部に欠損あり、密着性がよい
  ×:全欠損、密着性が悪い
(6)フォトスペーサーの圧縮率
 フォトスペーサーの圧縮率を、微小圧縮試験機(商品名:HM2000、フィッシャー・インストルメンツ社製)を用いて測定した。100μm角の平面圧子により、負荷速度および徐荷速度をともに4.7mN/秒として、80mNまでの荷重を負荷したのち0.49mNまで除荷して、負荷時の荷重-変形量曲線および徐荷時の荷重-変形量曲線を作成した。このとき、負荷時の荷重80mNでの変形量をL1とて、下記式により、圧縮率を算出した。
 圧縮率(%)=L1×100/スペーサー高さ
(7)フォトスペーサーの弾性回復率
 フォトスペーサーの弾性回復率を、微小圧縮試験機(商品名:HM2000、フィッシャー・インストルメンツ社製)を用いて測定した。100μm角の平面圧子により、負荷速度および徐荷速度をともに4.7mN/秒として、80mNまでの荷重を負荷したのち0.49mNまで除荷して、負荷時の荷重-変形量曲線および徐荷時の荷重-変形量曲線を作成した。このとき、負荷時の荷重80mNでの変形量をL1とし、除荷時の荷重0.49mNでの変形量をL2として、下記式により、弾性回復率を算出した。
 弾性回復率(%)=(L1-L2)×100/L1
(8)フォトスペーサーの破壊強度
 フォトスペーサーの破壊強度を、微小圧縮試験機(商品名:HM2000、フィッシャー・インストルメンツ社製)を用いて測定した。100μm角の平面圧子により、負荷速度および徐荷速度をともに4.7mN/秒として、300mNまでの荷重を負荷し、スペーサーが破壊されるときの荷重を荷重-変形量曲線から読み取った。
(9)フォトスペーサーの太さ(水平方向断面の直径)および高さ
 フォトスペーサーの最下部における径(直径)および高さは、レーザー顕微鏡(商品名「VK-9700」、キーエンス社製)を用いて測定した。
(10)フォトスペーサーの形状(非逆テーパー形状/逆テーパー形状)
 フォトスペーサーの形状が非逆テーパー形状であるか、あるいは逆テーパー形状であるかの評価は、FE-SEM(商品名「S-4800」、日立製作所製)を用いて、(フォトスペーサーの高さL×1/2)離れた部分H1の径(直径)D1、および(フォトスペーサーの高さL×1/4)離れた部分H2の径(直径)D2を測定し、該径D1、D2から、H1での水平断面積A1、およびH2での水平断面積A2を算出して行った。A2/A1が1以上となる場合が、非逆テーパー形状である。
(4) Development residue After development, the presence or absence of residue of the photosensitive resin composition for photospacers was evaluated by visual observation.
(5) Adhesiveness of photo spacer The presence or absence of defects in the formed photo spacer was visually observed and evaluated according to the following criteria.
○: No defect and very good adhesion △: Partial defect and good adhesion ×: All defects and poor adhesion (6) Photospacer compression rate Measurement was performed using a machine (trade name: HM2000, manufactured by Fisher Instruments). With a 100 μm square flat indenter, the load speed and unloading speed are both set to 4.7 mN / sec, the load up to 80 mN is loaded, the load is unloaded to 0.49 mN, and the load-deformation curve and unloading during loading A load-deformation curve was created. At this time, the amount of deformation at a load of 80 mN at the time of loading was L1, and the compression rate was calculated by the following formula.
Compression rate (%) = L1 × 100 / Spacer height (7) Elastic recovery rate of photo spacer The elastic recovery rate of the photo spacer was measured using a micro compression tester (trade name: HM2000, manufactured by Fisher Instruments). It was measured. With a 100 μm square flat indenter, the load speed and unloading speed are both set to 4.7 mN / sec, the load up to 80 mN is loaded, the load is unloaded to 0.49 mN, and the load-deformation curve and unloading during loading A load-deformation curve was created. At this time, the amount of deformation at a load of 80 mN during loading was L1, and the amount of deformation at a load of 0.49 mN during unloading was L2, and the elastic recovery rate was calculated by the following equation.
Elastic recovery rate (%) = (L1-L2) × 100 / L1
(8) Fracture strength of the photo spacer The break strength of the photo spacer was measured using a micro compression tester (trade name: HM2000, manufactured by Fisher Instruments). With a 100 μm square planar indenter, the load speed and the unloading speed were both set to 4.7 mN / sec, a load up to 300 mN was applied, and the load when the spacer was broken was read from the load-deformation curve.
(9) Photospacer thickness (horizontal cross-section diameter) and height The diameter (diameter) and height at the bottom of the photospacer was measured using a laser microscope (trade name “VK-9700”, manufactured by Keyence Corporation). Measured.
(10) Shape of photo spacer (non-reverse tapered shape / reverse tapered shape)
The evaluation of whether the shape of the photo spacer is a non-reverse tapered shape or a reverse tapered shape is performed using FE-SEM (trade name “S-4800”, manufactured by Hitachi, Ltd.). L × 1/2) The diameter (diameter) D1 of the separated portion H1 and (the height L × 1/4) of the separated portion H2 are measured, and the diameter (diameter) D2 of the separated portion H2 is measured. The horizontal sectional area A1 at H1, and the horizontal sectional area A2 at H2 were calculated. A case where A2 / A1 is 1 or more is a non-inverted taper shape.
[製造例1]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、ベンジルマレイミド(BzMI)15g、アクリル酸(AA)44.5g、1モルエトキシ化フェニルフェノールアクリレートと2モルエトキシ化フェニルフェノールアクリレートとの1:1(モル比)混合物(商品名「OPPE」、第一工業製薬社製、以下OPPEともいう)40.5g、t-ブチルパーオキシ-2-エチルヘキサノエート(商品名「パーブチル(登録商標)O」、日本油脂社製、以下PBOともいう)2g、プロピレングリコールメチルエーテルアセテート(PGMEA)42gおよびプロピレングリコールモノメチルエーテル(PGME)18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、ドデシルメルカプタン(nDM)2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、メタクリル酸グリシジル(GMA)69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてジメチルベンジルアミン(DMBA)0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.4重量%を含む共重合体溶液(A-1)を得た。アクリル系樹脂の重量平均分子量(Mw)は17200、酸価は55mgKOH/gであった。共重合体溶液の製造条件、固形分濃度、重量平均分子量(Mw)および酸価を、製造例2~20とともに、表1に示す。
[Production Example 1]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, in the monomer dropping tank, as a monomer composition, 15 g of benzylmaleimide (BzMI), 44.5 g of acrylic acid (AA), 1: 1 (molar ratio) of 1 mol ethoxylated phenylphenol acrylate and 2 mol ethoxylated phenylphenol acrylate ) 40.5 g of a mixture (trade name “OPPE”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., hereinafter also referred to as OPPE), t-butylperoxy-2-ethylhexanoate (trade name “Perbutyl (registered trademark) O”, Japan 2 g manufactured by Yushi Co., Ltd. (hereinafter also referred to as “PBO”), 42 g of propylene glycol methyl ether acetate (PGMEA) and 18 g of propylene glycol monomethyl ether (PGME) were added and mixed with stirring. Further, 2 g of dodecyl mercaptan (nDM), 18 g of PGMEA and 8 g of PGMEA were added as a chain transfer agent solution into the chain transfer agent dropping tank and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of glycidyl methacrylate (GMA) in the reaction vessel, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Chemical Industry Co., Ltd.) as a polymerization inhibitor, and dimethylbenzyl as a catalyst Amine (DMBA) 0.5 g, PGMEA 16 g and PGME 6 g were charged and reacted at 110 ° C. for 1 hour and 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-1) containing 39.4% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17200, and the acid value was 55 mgKOH / g. The production conditions, solid content concentration, weight average molecular weight (Mw) and acid value of the copolymer solution are shown in Table 1 together with Production Examples 2 to 20.
Figure JPOXMLDOC01-appb-T000013
 
 
Figure JPOXMLDOC01-appb-T000013
 
 
[製造例2]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA55g、OPPE30g、PBO2g、PGMEA30gおよびPGME30gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA13gおよびPGME13gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA11g、PGME11gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.3重量%を含む共重合体溶液(A-2)を得た。アクリル系樹脂の重量平均分子量(Mw)は18000、酸価は103mgKOH/gであった。
[Production Example 2]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, 15 g of BzMI, 55 g of AA, 30 g of OPPE, 2 g of PBO, 30 g of PGMEA, and 30 g of PGME were added as a monomer composition into the monomer dropping tank and mixed with stirring. Moreover, nDM2g, PGMEA13g, and PGMME13g were thrown into the chain transfer agent dripping tank as a chain transfer agent solution, and it stirred and mixed.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Chemical Industry Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 11 g of PGMEA, and 11 g of PGME as catalysts are placed in a reaction vessel. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-2) containing 39.3% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 18000, and the acid value was 103 mgKOH / g.
[製造例3]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA42g、OPPE43g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.0重量%を含む共重合体溶液(A-3)を得た。アクリル系樹脂の重量平均分子量(Mw)は18200、酸価は44mgKOH/gであった。
[Production Example 3]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, as a monomer composition, 15 g of BzMI, 42 g of AA, 43 g of OPPE, 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were stirred and mixed in the monomer dropping tank. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, it was cooled to room temperature to obtain a copolymer solution (A-3) containing 39.0% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 18200, and the acid value was 44 mgKOH / g.
[製造例4]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、OPPE40.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM1.2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.5重量%を含む共重合体溶液(A-4)を得た。アクリル系樹脂の重量平均分子量(Mw)は25200、酸価は56mgKOH/gであった。
[Production Example 4]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, as a monomer composition, 15 g of BzMI, 44.5 g of AA, 40.5 g of OPPE, 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were stirred and mixed in the monomer dropping tank. Moreover, nDM1.2g, PGMEA18g, and PGMEA8g were thrown into the chain transfer agent dripping tank as a chain transfer agent solution, and it stirred and mixed.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-4) containing 39.5% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 25200, and the acid value was 56 mgKOH / g.
[製造例5]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、OPPE40.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM5g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂38.8重量%を含む共重合体溶液(A-5)を得た。アクリル系樹脂の重量平均分子量(Mw)は10400、酸価は55mgKOH/gであった。
[Production Example 5]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, as a monomer composition, 15 g of BzMI, 44.5 g of AA, 40.5 g of OPPE, 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were stirred and mixed in the monomer dropping tank. Moreover, nDM5g, PGMEA18g, and PGME8g were thrown into the chain transfer agent dripping tank as a chain transfer agent solution, and it stirred and mixed.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-5) containing 38.8% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 10400, and the acid value was 55 mgKOH / g.
[製造例6]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI10g、AA76g、OPPE14g、PBO2g、PGMEA18gおよびPGME42gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM1.5g、PGMEA8gおよびPGME18gを投入し、撹拌混合した。
 反応槽にPGMEA42gとPGME98gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA124g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.7g、PGMEA32g、PGME74gを仕込み、110℃で1時間、115℃で12時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.6重量%を含む共重合体溶液(A-6)を得た。アクリル系樹脂の重量平均分子量(Mw)は19300、酸価は54mgKOH/gであった。
[Production Example 6]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, 10 g of BzMI, 76 g of AA, 14 g of OPPE, 2 g of PBO, 18 g of PGMEA, and 42 g of PGME were added as a monomer composition into the monomer dropping tank and mixed with stirring. Further, 1.5 g of nDM, 8 g of PGMEA and 18 g of PGMEA were added as a chain transfer agent solution into the chain transfer agent dropping tank and mixed with stirring.
The reaction vessel was charged with 42 g of PGMEA and 98 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, in the reaction vessel, 124 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Chemical Industry Co., Ltd.) as a polymerization inhibitor, 0.7 g of DMBA, 32 g of PGMEA, and 74 g of PGME as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 12 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-6) containing 39.6% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 19300, and the acid value was 54 mgKOH / g.
[製造例7]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA23g、OPPE62g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA30g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂35.0重量%を含む共重合体溶液(A-7)を得た。アクリル系樹脂の重量平均分子量(Mw)は17000、酸価は56mgKOH/gであった。
[Production Example 7]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, 15 g of BzMI, 23 g of AA, 62 g of OPPE, 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were added as a monomer composition to the monomer dropping tank and mixed with stirring. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Then, 30 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Chemical Industry Co., Ltd.) as a polymerization inhibitor and 0.5 g of DMBA as a catalyst were charged into a reaction vessel at 110 ° C. For 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-7) containing 35.0% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17000, and the acid value was 56 mgKOH / g.
[製造例8]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、シクロヘキシルマレイミド(CHMI)15g、AA44.5g、OPPE40.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.0重量%を含む共重合体溶液(A-8)を得た。アクリル系樹脂の重量平均分子量(Mw)は17500、酸価は54mgKOH/gであった。
[Production Example 8]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, 15 g of cyclohexylmaleimide (CHMI), 44.5 g of AA, 40.5 g of OPPE, 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were added as a monomer composition to the monomer dropping tank and mixed with stirring. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-8) containing 39.0% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17500, and the acid value was 54 mgKOH / g.
[製造例9]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、ジメチル-2、2’-[オキシビス(メチレン)]ビス-2-プロペノエート(MD)15g、AA44.5g、OPPE40.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂38.8重量%を含む共重合体溶液(A-9)を得た。アクリル系樹脂の重量平均分子量(Mw)は17000、酸価は53mgKOH/gであった。
[Production Example 9]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, in the monomer dropping tank, 15 g of dimethyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate (MD), 44.5 g of AA, 40.5 g of OPPE, 2 g of PBO, 42 g of PGMEA and 18 g of PGME were used. The mixture was stirred and mixed. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, it was cooled to room temperature to obtain a copolymer solution (A-9) containing 38.8% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17000, and the acid value was 53 mgKOH / g.
[製造例10]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、(α-アリルオキシメチル)アクリル酸メチル(AMA)15g、AA44.5g、OPPE40.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂38.9重量%を含む共重合体溶液(A-10)を得た。アクリル系樹脂の重量平均分子量(Mw)は17500、酸価は54mgKOH/gであった。
[Production Example 10]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, 15 g of (α-allyloxymethyl) methyl acrylate (AMA), 44.5 g of AA, 40.5 g of OPPE, 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were stirred and mixed as a monomer composition. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-10) containing 38.9% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17500, and the acid value was 54 mgKOH / g.
[製造例11]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、OPPE20.5g、1モルエトキシ化フェニルフェノールアクリレート(商品名「A-LEN-10」、新中村化学社製、以下A-LEN-10ともいう)20g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.1重量%を含む共重合体溶液(A-11)を得た。アクリル系樹脂の重量平均分子量(Mw)は18100、酸価は54mgKOH/gであった。
[Production Example 11]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, as a monomer composition in a monomer dropping tank, 15 g of BzMI, 44.5 g of AA, 20.5 g of OPPE, 1 mol ethoxylated phenylphenol acrylate (trade name “A-LEN-10”, manufactured by Shin-Nakamura Chemical Co., Ltd., hereinafter A-LEN 20 g) (also referred to as −10), 2 g of PBO, 42 g of PGMEA, and 18 g of PGMEA were added and mixed with stirring. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-11) containing 39.1% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 18100, and the acid value was 54 mgKOH / g.
[製造例12]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、A-LEN-10を38.5g、メトキシポリエチレングリコール(400)アクリレート(商品名「ライトアクリレート130A」、共栄社化学社製、エチレンオキサイドモル数n=9、以下130Aともいう)2g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.4重量%を含む共重合体溶液(A-12)を得た。アクリル系樹脂の重量平均分子量(Mw)は17500、酸価は55mgKOH/gであった。
[Production Example 12]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, in the monomer dropping tank, 15 g of BzMI, 44.5 g of AA, 38.5 g of A-LEN-10, methoxypolyethylene glycol (400) acrylate (trade name “Light acrylate 130A”, manufactured by Kyoeisha Chemical Co., Ltd. 2 g of ethylene oxide moles n = 9, hereinafter also referred to as 130A), 2 g of PBO, 42 g of PGMEA, and 18 g of PGMEA were added and mixed with stirring. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-12) containing 39.4% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17500, and the acid value was 55 mgKOH / g.
[製造例13]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、A-LEN-10を38.5g、メトキシポリエチレングリコール(550)アクリレート(商品名「CD550」、巴工業社製、エチレンオキサイドモル数n=12~13、以下CD550ともいう)2g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.0重量%を含む共重合体溶液(A-13)を得た。アクリル系樹脂の重量平均分子量(Mw)は18000、酸価は53mgKOH/gであった。
[Production Example 13]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, in the monomer dropping tank, 15 g of BzMI, 44.5 g of AA, 38.5 g of A-LEN-10, methoxypolyethylene glycol (550) acrylate (trade name “CD550”, manufactured by Sakai Kogyo Co., Ltd., ethylene oxide) 2 g of mole number n = 12 to 13 (hereinafter also referred to as CD550), 2 g of PBO, 42 g of PGMEA and 18 g of PGMEA were added and mixed with stirring. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-13) containing 39.0% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 18000, and the acid value was 53 mgKOH / g.
[製造例14]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、フェノキシジエチレングリコールアクリレート(商品名「ライトアクリレートP2HA」、共栄社化学社製、以下P2HAともいう)40.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂38.8重量%を含む共重合体溶液(A-14)を得た。アクリル系樹脂の重量平均分子量(Mw)は18100、酸価は56mgKOH/gであった。
[Production Example 14]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, in the monomer dropping tank, BzMI 15 g, AA 44.5 g, phenoxydiethylene glycol acrylate (trade name “Light Acrylate P2HA”, manufactured by Kyoeisha Chemical Co., hereinafter, also referred to as P2HA) 40.5 g, PBO 2 g, PGMEA 42 g and PGMEA 18 g Was stirred and mixed. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-14) containing 38.8% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 18100, and the acid value was 56 mgKOH / g.
[製造例15]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、OPPE20.5g、2-フェノキシエチルアクリレート(POA)20g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.5重量%を含む共重合体溶液(A-15)を得た。アクリル系樹脂の重量平均分子量(Mw)は18200、酸価は54mgKOH/gであった。
[Production Example 15]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, as a monomer composition, 15 g of BzMI, 44.5 g of AA, 20.5 g of OPPE, 20 g of 2-phenoxyethyl acrylate (POA), 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were added to the monomer dropping tank and mixed. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-15) containing 39.5% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 18200, and the acid value was 54 mgKOH / g.
[製造例16]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、OPPE20.5g、ジシクロペンタニルアクリレート(DCPA)20g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.1重量%を含む共重合体溶液(A-16)を得た。アクリル系樹脂の重量平均分子量(Mw)は17800、酸価は56mgKOH/gであった。
[Production Example 16]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, 15 g of BzMI, 44.5 g of AA, 20.5 g of OPPE, 20 g of dicyclopentanyl acrylate (DCPA), 2 g of PBO, 42 g of PGMEA and 18 g of PGME were added to the monomer dropping tank and mixed with stirring. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-16) containing 39.1% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17800, and the acid value was 56 mgKOH / g.
[製造例17]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、OPPE38.5g、メトキシジプロピレングリコールアクリレート(商品名「ライトアクリレートDMP-A」、共栄社化学社製、以下DPM-Aともいう))2g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.0重量%を含む共重合体溶液(A-17)を得た。アクリル系樹脂の重量平均分子量(Mw)は17600、酸価は54mgKOH/gであった。
[Production Example 17]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, in the monomer dropping tank, as a monomer composition, 15 g of BzMI, 44.5 g of AA, 38.5 g of OPPE, methoxydipropylene glycol acrylate (trade name “Light Acrylate DMP-A”, manufactured by Kyoeisha Chemical Co., Ltd., hereinafter also referred to as DPM-A) )) 2 g, 2 g of PBO, 42 g of PGMEA and 18 g of PGMEA were added and mixed with stirring. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-17) containing 39.0% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17600, and the acid value was 54 mgKOH / g.
[製造例18]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、A-LEN-10を40.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.4重量%を含む共重合体溶液(A-18)を得た。アクリル系樹脂の重量平均分子量(Mw)は17400、酸価は54mgKOH/gであった。
[Production Example 18]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, 15 g of BzMI, 44.5 g of AA, 40.5 g of A-LEN-10, 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were added as a monomer composition to the monomer dropping tank and mixed. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-18) containing 39.4% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 17400, and the acid value was 54 mgKOH / g.
[製造例19]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、BzMI15g、AA44.5g、DCPA40.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂39.6重量%を含む共重合体溶液(A-19)を得た。アクリル系樹脂の重量平均分子量(Mw)は18000、酸価は54mgKOH/gであった。
[Production Example 19]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, as a monomer composition, 15 g of BzMI, 44.5 g of AA, 40.5 g of DCPA, 2 g of PBO, 42 g of PGMEA and 18 g of PGME were added to the monomer dropping tank and mixed. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-19) containing 39.6% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 18000, and the acid value was 54 mgKOH / g.
[製造例20]
 反応槽として冷却管を付けたセパラブルフラスコを準備した。他方、モノマー滴下槽中に、モノマー組成物として、AA44.5g、A-LEN-10を55.5g、PBO2g、PGMEA42gおよびPGME18gを投入し、撹拌混合した。また、連鎖移動剤滴下槽中に、連鎖移動剤溶液として、nDM2g、PGMEA18gおよびPGME8gを投入し、撹拌混合した。
 反応槽にPGMEA98gとPGME42gを仕込み、窒素置換した後、攪拌しながらオイルバスで加熱して反応槽の温度を90℃まで昇温した。反応槽の温度が90℃に安定してから、モノマー組成物および連鎖移動剤溶液を滴下した。モノマー組成物および連鎖移動剤溶液は、それぞれ温度を90℃に保ちながら、180分間かけて滴下した。滴下が終了してから30分後にPBO0.5gを加えた。さらに30分後、反応槽を115℃に昇温した。1.5時間、115℃を維持した後、セパラブルフラスコにガス導入管を付け、酸素/窒素=5/95(v/v)混合ガスのバブリングを開始した。次いで、反応槽に、GMA69g、重合禁止剤として6-tert-ブチル-2,4-キシレノール(商品名「トパノール」、東京化成工業社製)0.3g、触媒としてDMBA0.5g、PGMEA16g、PGME6gを仕込み、110℃で1時間、115℃で8時間反応させた。その後、室温まで冷却し、アクリル系樹脂38.6重量%を含む共重合体溶液(A-20)を得た。アクリル系樹脂の重量平均分子量(Mw)は18200、酸価は56mgKOH/gであった。
[Production Example 20]
A separable flask equipped with a cooling tube was prepared as a reaction vessel. On the other hand, 44.5 g of AA, 55.5 g of A-LEN-10, 2 g of PBO, 42 g of PGMEA, and 18 g of PGME were added as a monomer composition into the monomer dropping tank and mixed with stirring. Further, 2 g of nDM, 18 g of PGMEA, and 8 g of PGME were added as a chain transfer agent solution into the chain transfer agent dropping tank, and mixed with stirring.
The reaction vessel was charged with 98 g of PGMEA and 42 g of PGME, purged with nitrogen, and then heated in an oil bath while stirring to raise the temperature of the reaction vessel to 90 ° C. After the temperature of the reaction vessel was stabilized at 90 ° C., the monomer composition and the chain transfer agent solution were added dropwise. The monomer composition and the chain transfer agent solution were added dropwise over 180 minutes while maintaining the temperature at 90 ° C. PBO 0.5g was added 30 minutes after the completion of the dropping. After another 30 minutes, the temperature of the reaction vessel was raised to 115 ° C. After maintaining at 115 ° C. for 1.5 hours, a gas introduction tube was attached to the separable flask, and bubbling of oxygen / nitrogen = 5/95 (v / v) mixed gas was started. Next, 69 g of GMA, 0.3 g of 6-tert-butyl-2,4-xylenol (trade name “Topanol”, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a polymerization inhibitor, and 0.5 g of DMBA, 16 g of PGMEA, and 6 g of PGME are used as catalysts. The reaction was performed at 110 ° C. for 1 hour and at 115 ° C. for 8 hours. Thereafter, the mixture was cooled to room temperature to obtain a copolymer solution (A-20) containing 38.6% by weight of an acrylic resin. The weight average molecular weight (Mw) of the acrylic resin was 18200, and the acid value was 56 mgKOH / g.
[実施例1]
 上記共重合体溶液(A-1)89g(すなわち、アクリル系樹脂35g)、多官能モノマーとしてトリペンタエリスリトールオクタアクリレート(商品名「ビスコート#802」、大坂有機化学社製)65g、および光重合開始剤として2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン(商品名「IRGACURE(登録商標)907」、BASFジャパン社製)1.75gの混合物に、固形分濃度が35重量%となるようにPGMEAを加え、孔径0.5μmのフィルタでろ過し、フォトスペーサー用感光性樹脂組成物を調製した。
 10cm角のガラス基板上に、上記フォトスペーサー用感光性樹脂組成物をスピンコーターにより塗布し、オーブンで80℃3分間乾燥した。乾燥後、塗膜から100μmの距離にフォトマスクを配置して2.0kWの超高圧水銀ランプを装着したUVアライナ(商品名「TME-150RNS」、TOPCON社製)によって50mJ/cmの強度(365nm照度換算)で紫外線を照射した。紫外線照射後、塗膜に0.05%の水酸化カリウム水溶液をスピン現像機にて40秒間散布し、未露光部を溶解、除去し、残った露光部を純水で10秒間水洗することにより現像して、円柱状のフォトスペーサーを形成した。現像残渣の有無を確認し(評価(4))、得られたフォトスペーサーを上記評価(5)~(9)に供した。結果を表2に示す。
[Example 1]
89 g of the copolymer solution (A-1) (that is, 35 g of acrylic resin), 65 g of tripentaerythritol octaacrylate (trade name “Biscoat # 802”, manufactured by Osaka Organic Chemical Co., Ltd.) as a polyfunctional monomer, and photopolymerization start To a mixture of 1.75 g of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one (trade name “IRGACURE® 907”, manufactured by BASF Japan Ltd.) as an agent, PGMEA was added so that the solid content concentration was 35% by weight, and the mixture was filtered through a filter having a pore size of 0.5 μm to prepare a photosensitive resin composition for a photospacer.
The photosensitive resin composition for photospacers was applied onto a 10 cm square glass substrate with a spin coater, and dried in an oven at 80 ° C. for 3 minutes. After drying, the strength (50 mJ / cm 2 ) by a UV aligner (trade name “TME-150RNS”, manufactured by TOPCON) with a photomask placed at a distance of 100 μm from the coating film and equipped with a 2.0 kW ultrahigh pressure mercury lamp. Ultraviolet rays were irradiated at 365 nm illuminance conversion). After UV irradiation, 0.05% potassium hydroxide aqueous solution is sprayed on the coating film with a spin developing machine for 40 seconds to dissolve and remove the unexposed area, and the remaining exposed area is washed with pure water for 10 seconds. Development was performed to form a cylindrical photospacer. The presence or absence of development residue was confirmed (Evaluation (4)), and the resulting photospacer was subjected to the above evaluations (5) to (9). The results are shown in Table 2.
[実施例2~26]
 フォトスペーサー用感光性樹脂組成物の組成を表2に示す組成とした以外は、実施例1と同様にしてフォトスペーサーを形成し、実施例1と同様の評価に供した。結果を表2に示す。
 なお、表2中、ジペンタエリスリトールヘキサアクリレート(共栄社化学社製)を「DPHA」と、ペンタエリスリトールテトラアクリレート(共栄社化学社製)を「PETA」と表記する。
 また、実施例4~8においては、UV吸収剤をさらに添加した。このUV吸収剤については、表2において、BASFジャパン社製の商品名「チヌビン479」を「T479」と、シプロ化成社製の商品名「SEESORB707」を「SB707」と表記する。
[Examples 2 to 26]
A photospacer was formed in the same manner as in Example 1 except that the composition of the photosensitive resin composition for photospacer was changed to the composition shown in Table 2, and subjected to the same evaluation as in Example 1. The results are shown in Table 2.
In Table 2, dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) is represented as “DPHA”, and pentaerythritol tetraacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) is represented as “PETA”.
In Examples 4 to 8, a UV absorber was further added. Regarding this UV absorber, in Table 2, the trade name “Tinubin 479” manufactured by BASF Japan Ltd. is expressed as “T479” and the trade name “SEESORB707” manufactured by Sipro Kasei Co., Ltd. is expressed as “SB707”.
[比較例1~7]
 フォトスペーサー用感光性樹脂組成物の組成を表3に示す組成とした以外は、実施例1と同様にしてフォトスペーサーを形成し、実施例1と同様の評価に供した。結果を表3に示す。
[Comparative Examples 1 to 7]
A photospacer was formed in the same manner as in Example 1 except that the composition of the photosensitive resin composition for photospacer was changed to the composition shown in Table 3, and subjected to the same evaluation as in Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000014
 
 
Figure JPOXMLDOC01-appb-T000014
 
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000015
 
[実施例27]
 上記共重合体溶液(A-1)89g(すなわち、アクリル系樹脂35g)、多官能モノマーとしてトリペンタエリスリトールオクタアクリレート(商品名「ビスコート#802」、大坂有機化学社製)65g、および波長290nm~380nmに極大吸収波長を有する光重合開始剤(第1の光重合開始剤)として2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン(商品名「IRGACURE(登録商標)907」、BASFジャパン社製)1.75g、波長230nm~290nmに極大吸収波長を有する光重合開始剤(第2の光重合開始剤)として2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(商品名「IRGACURE(登録商標)127」、BASFジャパン社製、)0.25g、UV吸収剤として2-(2-ヒドロキシ-4-オクトキシフェニル)-2H-ベンゾトリアゾール(商品名「SEESORB707」、シプロ化成社製、以下SB707という)0.5gの混合物に、固形分濃度が35重量%となるようにPGMEAを加え、孔径0.5μmのフィルタでろ過し、フォトスペーサー用感光性樹脂組成物を調製した。
 10cm角のガラス基板上に、上記フォトスペーサー用感光性樹脂組成物をスピンコーターにより塗布し、オーブンで80℃で3分間乾燥した。乾燥後、塗膜から100μmの距離にフォトマスクを配置して2.0kWの超高圧水銀ランプを装着したUVアライナ(商品名「TME-150RNS」、TOPCON社製)によって50mJ/cmの強度(365nm照度換算)で紫外線を照射した。紫外線照射後、塗膜に0.05%の水酸化カリウム水溶液をスピン現像機にて40秒間散布し、未露光部を溶解、除去し、残った露光部を純水で10秒間水洗することにより現像して、フォトスペーサーを形成した。現像残渣の有無を確認し(評価(4))、得られたフォトスペーサーを上記評価(5)~(10)に供した。結果を表4に示す。
[Example 27]
89 g of the copolymer solution (A-1) (that is, 35 g of acrylic resin), 65 g of tripentaerythritol octaacrylate (trade name “Biscoat # 802”, manufactured by Osaka Organic Chemical Co., Ltd.) as a polyfunctional monomer, and a wavelength of 290 nm to 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one (trade name “IRGACURE”) is used as a photopolymerization initiator (first photopolymerization initiator) having a maximum absorption wavelength at 380 nm. (Registered trademark) 907 ”(manufactured by BASF Japan) 1.75 g, 2-hydroxy-1- {4- [as a photopolymerization initiator (second photopolymerization initiator) having a maximum absorption wavelength at a wavelength of 230 nm to 290 nm 4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one (trade name) IRGACURE (registered trademark) 127 ”(manufactured by BASF Japan), 0.25 g, 2- (2-hydroxy-4-octoxyphenyl) -2H-benzotriazole (trade name“ SEESORB707 ”, Sipro Kasei Co., Ltd.) as a UV absorber PGMEA was added to 0.5 g of a mixture (hereinafter referred to as “SB707”) so that the solid concentration was 35% by weight, and the mixture was filtered with a filter having a pore diameter of 0.5 μm to prepare a photosensitive resin composition for photospacers.
The photosensitive resin composition for a photospacer was applied onto a 10 cm square glass substrate with a spin coater and dried in an oven at 80 ° C. for 3 minutes. After drying, the strength (50 mJ / cm 2 ) by a UV aligner (trade name “TME-150RNS”, manufactured by TOPCON) with a photomask placed at a distance of 100 μm from the coating film and equipped with a 2.0 kW ultrahigh pressure mercury lamp. Ultraviolet rays were irradiated at 365 nm illuminance conversion). After UV irradiation, 0.05% potassium hydroxide aqueous solution is sprayed on the coating film with a spin developing machine for 40 seconds to dissolve and remove the unexposed area, and the remaining exposed area is washed with pure water for 10 seconds. Development was performed to form a photospacer. The presence or absence of development residue was confirmed (Evaluation (4)), and the obtained photospacer was subjected to the above evaluations (5) to (10). The results are shown in Table 4.
[実施例28~38]
 フォトスペーサー用感光性樹脂組成物の組成を表4に示す組成とした以外は、実施例27と同様にしてフォトスペーサーを形成し、実施例27と同様の評価に供した。結果を表4に示す。
 なお、表4中、ジペンタエリスリトールヘキサアクリレート(共栄社化学社製)を「DPHA」と、ペンタエリスリトールテトラアクリレート(共栄社化学社製)を「PETA」と表記する。
[Examples 28 to 38]
A photospacer was formed in the same manner as in Example 27 except that the composition of the photosensitive resin composition for photospacer was changed to the composition shown in Table 4, and subjected to the same evaluation as in Example 27. The results are shown in Table 4.
In Table 4, dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) is represented as “DPHA”, and pentaerythritol tetraacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) is represented as “PETA”.
Figure JPOXMLDOC01-appb-T000016
 
 
Figure JPOXMLDOC01-appb-T000016
 
 
 表2~4から明らかなように、本発明のフォトスペーサー用感光性樹脂組成物を用いれば、現像残渣を生じさせずに、密着性に優れるフォトスペーサーを形成することができる。このフォトスペーサーは、弾性回復率および破壊強度に優れる。 As is apparent from Tables 2 to 4, by using the photosensitive resin composition for a photospacer of the present invention, a photospacer having excellent adhesion can be formed without producing a development residue. This photospacer is excellent in elastic recovery rate and breaking strength.
 実施例4~8から明らかなように、UV吸収剤を含むフォトスペーサー用感光性樹脂組成物を用いれば、より細いフォトスペーサーを形成することができる。本発明のフォトスペーサー用感光性樹脂組成物により形成されるフォトスペーサーは、細くとも、十分な破壊強度を有する。 As is clear from Examples 4 to 8, a thinner photospacer can be formed by using a photosensitive resin composition for photospacer containing a UV absorber. The photospacer formed by the photosensitive resin composition for a photospacer of the present invention is thin but has sufficient breaking strength.
 また、表4から明らかなように、異なる波長範囲に極大吸収波長を有する2種の光重合開始剤を含むフォトスペーサー用感光性樹脂組成物を用いれば、非逆テーパー形状のフォトスペーサーを得ることができる。 In addition, as is apparent from Table 4, if a photosensitive resin composition for photospacer containing two kinds of photopolymerization initiators having maximum absorption wavelengths in different wavelength ranges is used, a non-reverse tapered photospacer can be obtained. Can do.
 本発明のフォトスペーサー用感光性樹脂組成物は、液晶セルのスペーサーの製造に好適に利用することができる。 The photosensitive resin composition for photospacers of the present invention can be suitably used for the production of spacers for liquid crystal cells.

Claims (10)

  1.  バインダーポリマーとして、主鎖に環構造を有する繰り返し単位と側鎖に2以上のオキシアルキレン基を有する繰り返し単位を有する、アクリル系樹脂を含む、
     フォトスペーサー用感光性樹脂組成物。
    As the binder polymer, including an acrylic resin having a repeating unit having a ring structure in the main chain and a repeating unit having two or more oxyalkylene groups in the side chain,
    Photosensitive resin composition for photospacers.
  2.  多官能モノマーと、波長290nm~380nmに極大吸収波長を有する第1の光重合開始剤と、波長230nm~290nmに極大吸収波長を有する第2の光重合開始剤とをさらに含む、請求項1に記載のフォトスペーサー用感光性樹脂組成物。 The polyfunctional monomer further comprises a first photopolymerization initiator having a maximum absorption wavelength at a wavelength of 290 nm to 380 nm, and a second photopolymerization initiator having a maximum absorption wavelength at a wavelength of 230 nm to 290 nm. The photosensitive resin composition for photospacers of description.
  3.  前記主鎖に環構造を有する繰り返し単位が、一般式(1)~(7)で表される繰り返し単位から選ばれる少なくとも1種である、請求項1または2に記載のフォトスペーサー用感光性樹脂組成物:
    Figure JPOXMLDOC01-appb-C000001
     
    式(4)~(7)中、R、R、R、R、RおよびRはそれぞれ独立して、水素原子または炭素数が1~30の直鎖状もしくは分岐状のアルキル基である。
    3. The photosensitive resin for photospacer according to claim 1, wherein the repeating unit having a ring structure in the main chain is at least one selected from repeating units represented by the general formulas (1) to (7). Composition:
    Figure JPOXMLDOC01-appb-C000001

    In formulas (4) to (7), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a linear or branched group having 1 to 30 carbon atoms It is an alkyl group.
  4.  前記側鎖に2以上のオキシアルキレン基を有する繰り返し単位が、一般式(10)で表される繰り返し単位である、請求項1から3のいずれかに記載のフォトスペーサー用感光性樹脂組成物:
    Figure JPOXMLDOC01-appb-C000002
     
    式(10)中、R、RおよびRはそれぞれ独立して、水素原子またはメチル基であり、R10は、炭素数が1~20の直鎖状もしくは分岐状のアルキル基、炭素数が2~20の直鎖状もしくは分岐状のアルケニル基または炭素数が6~20の芳香族炭化水素基であり、AOは、炭素数が2~20のオキシアルキレン基であり、xは0~2の整数を表し、yは0または1を表し、nは、2以上である。
    The photosensitive resin composition for photospacers according to any one of claims 1 to 3, wherein the repeating unit having two or more oxyalkylene groups in the side chain is a repeating unit represented by the general formula (10):
    Figure JPOXMLDOC01-appb-C000002

    In the formula (10), R 7 , R 8 and R 9 are each independently a hydrogen atom or a methyl group, and R 10 is a linear or branched alkyl group having 1 to 20 carbon atoms, carbon A straight-chain or branched alkenyl group having 2 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 20 carbon atoms, AO is an oxyalkylene group having 2 to 20 carbon atoms, and x is 0 Represents an integer of ˜2, y represents 0 or 1, and n is 2 or more.
  5.  前記アクリル系樹脂が、側鎖に酸基を有する繰り返し単位をさらに有する、請求項1から4のいずれかに記載のフォトスペーサー用感光性樹脂組成物。 The photosensitive resin composition for a photospacer according to any one of claims 1 to 4, wherein the acrylic resin further has a repeating unit having an acid group in a side chain.
  6.  前記アクリル系樹脂が、側鎖に炭素二重結合を有する繰り返し単位をさらに有する、請求項1から5のいずれかに記載のフォトスペーサー用感光性樹脂組成物。 The photosensitive resin composition for a photospacer according to any one of claims 1 to 5, wherein the acrylic resin further has a repeating unit having a carbon double bond in a side chain.
  7.  主鎖に環構造を有する繰り返し単位と、側鎖に2以上のオキシアルキレン基を有する繰り返し単位を有するアクリル系樹脂である、フォトスペーサー用バインダーポリマー。 A binder polymer for a photospacer, which is an acrylic resin having a repeating unit having a ring structure in the main chain and a repeating unit having two or more oxyalkylene groups in the side chain.
  8.  前記側鎖に2以上のオキシアルキレン基を有する繰り返し単位が、一般式(10)で表される繰り返し単位である、請求項7に記載のフォトスペーサー用バインダーポリマー:
    Figure JPOXMLDOC01-appb-C000003
     
    式(10)中、R、RおよびRはそれぞれ独立して、水素原子またはメチル基であり、R10は、炭素数が1~20の直鎖状もしくは分岐状のアルキル基、炭素数が2~20の直鎖状もしくは分岐状のアルケニル基または炭素数が6~20の芳香族炭化水素基であり、AOは、炭素数が2~20のオキシアルキレン基であり、xは0~2の整数を表し、yは0または1を表し、nは、2以上である。
    The binder polymer for a photospacer according to claim 7, wherein the repeating unit having two or more oxyalkylene groups in the side chain is a repeating unit represented by the general formula (10):
    Figure JPOXMLDOC01-appb-C000003

    In the formula (10), R 7 , R 8 and R 9 are each independently a hydrogen atom or a methyl group, and R 10 is a linear or branched alkyl group having 1 to 20 carbon atoms, carbon A straight-chain or branched alkenyl group having 2 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 20 carbon atoms, AO is an oxyalkylene group having 2 to 20 carbon atoms, and x is 0 Represents an integer of ˜2, y represents 0 or 1, and n is 2 or more.
  9.  請求項1から6のいずれかに記載のフォトスペーサー用感光性樹脂組成物により形成される、フォトスペーサー。 A photospacer formed from the photosensitive resin composition for a photospacer according to any one of claims 1 to 6.
  10.  請求項9に記載のフォトスペーサーを含む、液晶ディスプレイ。 A liquid crystal display comprising the photospacer according to claim 9.
PCT/JP2013/073765 2012-09-05 2013-09-04 Photosensitive resin composition for photo spacer, and photo spacer WO2014038576A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380046137.4A CN104641295B (en) 2012-09-05 2013-09-04 Photosensitive resin composition for photospacer and photospacer
KR1020157005861A KR102149152B1 (en) 2012-09-05 2013-09-04 Photosensitive resin composition for photo spacer, and photo spacer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012195296 2012-09-05
JP2012-195296 2012-09-05
JP2012-284668 2012-12-27
JP2012284668A JP6184094B2 (en) 2012-12-27 2012-12-27 Photosensitive resin composition and photospacer using the photosensitive resin composition

Publications (1)

Publication Number Publication Date
WO2014038576A1 true WO2014038576A1 (en) 2014-03-13

Family

ID=50237185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073765 WO2014038576A1 (en) 2012-09-05 2013-09-04 Photosensitive resin composition for photo spacer, and photo spacer

Country Status (4)

Country Link
KR (1) KR102149152B1 (en)
CN (1) CN104641295B (en)
TW (1) TWI650611B (en)
WO (1) WO2014038576A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079371A (en) * 2014-10-22 2016-05-16 株式会社日本触媒 Alkali-soluble resin and curable resin composition including the same
CN111149058A (en) * 2017-09-22 2020-05-12 东丽株式会社 Transparent photosensitive resin composition, photo spacer, liquid crystal display device, method for manufacturing photo spacer, method for manufacturing liquid crystal display device, and use of transparent photosensitive resin composition in lens scanning exposure
US20220317570A1 (en) * 2021-03-23 2022-10-06 Shin-Etsu Chemical Co., Ltd. Negative photosensitive resin composition, patterning process, method for forming cured film, interlayer insulation film, surface protective film, and electronic component
US20220315676A1 (en) * 2021-03-23 2022-10-06 Shin-Etsu Chemical Co., Ltd. Positive photosensitive resin composition, positive photosensitive dry film, method for producing positive photosensitive dry film, patterning process, method for forming cured film, interlayer insulation film, surface protective film, and electronic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329331A (en) 2017-08-17 2017-11-07 惠科股份有限公司 A kind of display panel and manufacture method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091852A (en) * 2003-09-18 2005-04-07 Toppan Printing Co Ltd Photosensitive composition and color filter having photospacer formed by using the same
JP2009168992A (en) * 2008-01-15 2009-07-30 Chisso Corp Positive photosensitive polymer composition
JP2010014937A (en) * 2008-07-03 2010-01-21 Chisso Corp Photosensitive polymer composition
JP2010107693A (en) * 2008-10-30 2010-05-13 Chisso Corp Positive photosensitive composition, cured film obtained from same, and display element having cured film
JP2011002694A (en) * 2009-06-19 2011-01-06 Nippon Shokubai Co Ltd Photosensitive resin composition
JP2011157478A (en) * 2010-02-01 2011-08-18 Toyo Ink Sc Holdings Co Ltd Coloring composition, photosensitive coloring composition for color filter, color filter and color display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023275A1 (en) * 2000-09-14 2002-03-21 Goo Chemical Co., Ltd. Ultraviolet-curing resin composition and photo solder resist ink containing the same
TWI398727B (en) * 2005-10-07 2013-06-11 Toagosei Co Ltd Active energy line hardening type composition (3)
JP2008208016A (en) * 2007-02-28 2008-09-11 Nippon Shokubai Co Ltd Powdery cement dispersant
JP5207837B2 (en) 2007-08-02 2013-06-12 富士フイルム株式会社 Curable composition, cured film, method for producing photospacer, substrate for liquid crystal display device and liquid crystal display device
JP5191244B2 (en) 2008-01-28 2013-05-08 富士フイルム株式会社 Photosensitive resin composition, photospacer and method for forming the same, protective film, coloring pattern, substrate for display device, and display device
JP5158506B2 (en) * 2008-03-28 2013-03-06 富士フイルム株式会社 Planographic printing plate making method and planographic printing method
TWI477904B (en) * 2010-03-26 2015-03-21 Sumitomo Chemical Co Photosensitive resin composition
KR101495533B1 (en) * 2010-12-21 2015-02-25 동우 화인켐 주식회사 Photosensitive resin composition for spacer, spacer manufactured by the composition and display device including the spacer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091852A (en) * 2003-09-18 2005-04-07 Toppan Printing Co Ltd Photosensitive composition and color filter having photospacer formed by using the same
JP2009168992A (en) * 2008-01-15 2009-07-30 Chisso Corp Positive photosensitive polymer composition
JP2010014937A (en) * 2008-07-03 2010-01-21 Chisso Corp Photosensitive polymer composition
JP2010107693A (en) * 2008-10-30 2010-05-13 Chisso Corp Positive photosensitive composition, cured film obtained from same, and display element having cured film
JP2011002694A (en) * 2009-06-19 2011-01-06 Nippon Shokubai Co Ltd Photosensitive resin composition
JP2011157478A (en) * 2010-02-01 2011-08-18 Toyo Ink Sc Holdings Co Ltd Coloring composition, photosensitive coloring composition for color filter, color filter and color display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079371A (en) * 2014-10-22 2016-05-16 株式会社日本触媒 Alkali-soluble resin and curable resin composition including the same
CN111149058A (en) * 2017-09-22 2020-05-12 东丽株式会社 Transparent photosensitive resin composition, photo spacer, liquid crystal display device, method for manufacturing photo spacer, method for manufacturing liquid crystal display device, and use of transparent photosensitive resin composition in lens scanning exposure
JPWO2019059169A1 (en) * 2017-09-22 2020-09-03 東レ株式会社 Transparent photosensitive resin composition, photo spacer, liquid crystal display device, method for manufacturing photo spacer, manufacturing method for liquid crystal display device, and use of transparent photosensitive resin composition for lens scan exposure
CN111149058B (en) * 2017-09-22 2024-03-08 东丽株式会社 Transparent photosensitive resin composition and application thereof, photoetching spacer, liquid crystal display device and manufacturing method thereof
US20220317570A1 (en) * 2021-03-23 2022-10-06 Shin-Etsu Chemical Co., Ltd. Negative photosensitive resin composition, patterning process, method for forming cured film, interlayer insulation film, surface protective film, and electronic component
US20220315676A1 (en) * 2021-03-23 2022-10-06 Shin-Etsu Chemical Co., Ltd. Positive photosensitive resin composition, positive photosensitive dry film, method for producing positive photosensitive dry film, patterning process, method for forming cured film, interlayer insulation film, surface protective film, and electronic component

Also Published As

Publication number Publication date
CN104641295A (en) 2015-05-20
CN104641295B (en) 2020-03-03
TW201426183A (en) 2014-07-01
KR20150053761A (en) 2015-05-18
TWI650611B (en) 2019-02-11
KR102149152B1 (en) 2020-08-28

Similar Documents

Publication Publication Date Title
JP6038498B2 (en) Curable resin composition for photospacer, columnar spacer, and liquid crystal display
JP6184094B2 (en) Photosensitive resin composition and photospacer using the photosensitive resin composition
JP6404557B2 (en) Curable resin composition
WO2014038576A1 (en) Photosensitive resin composition for photo spacer, and photo spacer
JP6236280B2 (en) Photo spacer
JP6254389B2 (en) Photosensitive resin composition for photospacer and photospacer
JP6001877B2 (en) Curable resin composition for photospacer and columnar spacer
JP2013024930A (en) Curable resin composition for photo spacer, and columnar spacer
JP5671369B2 (en) Curable resin composition having alkali developability and cured product obtained from the composition
JP6669439B2 (en) A curable resin composition for forming a photospacer, comprising an alkali-soluble resin
JP2013007866A (en) Alkali-soluble curable resin composition and cured product obtained from the same
JP6553439B2 (en) Curable resin composition
JP6694230B2 (en) Alkali-soluble resin and curable resin composition containing the same
JP6431324B2 (en) Alkali-soluble resin and curable resin composition containing the same
JP6854147B2 (en) Resin for photo spacers, resin composition for photo spacers, photo spacers and color filters
JP2019061052A (en) Photosensitive resin composition
JP2016042157A (en) Curable resin composition
JP6782077B2 (en) Photosensitive resin composition for color filters
JP6912909B2 (en) Photosensitive resin composition
JP2020050707A (en) Alkali-soluble resin and photosensitive resin composition
KR20240032114A (en) Photosensitive resin composition, cured product, and image display device
JP2013011695A (en) Hardened resin composition for photo-spacers, and columnar spacer
JP2020177091A (en) Photosensitive resin composition
JP2019144395A (en) Photosensitive resin composition
JP2008052043A (en) Photosensitive resin composition and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005861

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834798

Country of ref document: EP

Kind code of ref document: A1