WO2013172259A1 - Switching power supply circuit and led lighting device - Google Patents

Switching power supply circuit and led lighting device Download PDF

Info

Publication number
WO2013172259A1
WO2013172259A1 PCT/JP2013/063135 JP2013063135W WO2013172259A1 WO 2013172259 A1 WO2013172259 A1 WO 2013172259A1 JP 2013063135 W JP2013063135 W JP 2013063135W WO 2013172259 A1 WO2013172259 A1 WO 2013172259A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
power supply
voltage
reference voltage
Prior art date
Application number
PCT/JP2013/063135
Other languages
French (fr)
Japanese (ja)
Inventor
弘之 小路
金森 淳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013172259A1 publication Critical patent/WO2013172259A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a switching power supply circuit.
  • LEDs Light Emitting Diodes
  • Common lighting fixtures often use a commercial AC 100V power source. Considering the use of LED lighting fixtures instead of general lighting fixtures such as incandescent bulbs, LED lighting fixtures are similar to general lighting fixtures. It is desirable to use a commercial AC100V power source (for example, Patent Document 1). In order to make the illuminance and color constant, the LED needs to be driven with a constant current, and a switching power supply circuit that makes the output current constant is used.
  • Patent Document 2 detects the time during which the secondary current of the transformer flows, and the ratio of this time in the switching cycle, that is, the on-duty ratio of the secondary current. A technique for making it constant is disclosed.
  • the switching power supply circuit disclosed in Patent Document 1 includes a semiconductor device 100, a transformer 110, diodes 121 and 141, capacitors 122 and 142, and resistors 151 and 152.
  • This is a flyback switching power supply circuit that generates a predetermined DC output voltage Vo from the AC input voltage VIN and supplies it to a load 130.
  • Transformer 110 includes a primary winding 111, a secondary winding 112, and an auxiliary winding 113.
  • FIG. 3 of Patent Document 2 shows a timing chart showing voltage waveforms and current waveforms of each part of the switching power supply circuit.
  • the auxiliary winding voltage VTR obtained by dividing the voltage appearing at one end of the auxiliary winding 113, the primary current Ids flowing through the switching element 1, and the secondary current I2p flowing through the secondary winding 112 are shown. It is depicted.
  • T1 is a first period in which the secondary current I2p flows
  • T2 is a second period in which the secondary current I2p does not flow
  • T3 is a third period in which the first period T1 and the second period T2 are combined
  • Ipk1 Is the peak value of the primary current Ids
  • Ipk2 is the peak value of the secondary current I2p.
  • the output current Iout supplied from the switching power supply circuit to the load 130 is an average value of the secondary current I2p.
  • the average value of the secondary current I2p in the first period T1 is 1 ⁇ 2 of the peak value Ipk2 of the secondary current I2p.
  • the conventional switching power supply circuit uses the secondary current on-duty ratio control circuit 8 in the above formula (1) to keep the peak current Ipk1 of the primary current Ids constant using the drain current limiting circuit 3 and the secondary current.
  • the on-duty ratio (T1 / T3) constant, the output current Iout is controlled to be constant.
  • dimming control is performed on conventional incandescent bulbs.
  • switching elements typically thyristor elements and triac elements
  • a phase control dimmer (generally called an incandescent lycon) that can easily control the dimming of power to the incandescent bulb with a single volume element is used.
  • FIG. 11 shows a conventional example of an LED illumination system capable of dimming control of an LED illumination lamp using an AC power source.
  • the LED illumination system shown in FIG. 11 includes a phase control dimmer 2, an LED drive circuit 4, and an LED array 3 in which LEDs are connected in series.
  • a phase control dimmer 2 is connected in series between the AC power source 1 and the LED drive circuit 4.
  • the LED drive circuit 4 includes, for example, a full-wave rectifier circuit 41 configured by a diode bridge, a filter circuit 42, an input voltage detection means 43, a phase angle detection means 44, a current extraction means 45, and a current limiting means 46. I have.
  • the triac Tri1 is turned on at a power supply phase angle depending on the resistance value by varying the resistance value of the semi-fixed resistor Rvar1.
  • the semi-fixed resistor Rvar1 is a rotary knob or a slide type, and the dimming control of the illumination lamp can be performed by changing the rotation angle of the knob or changing the slide position.
  • a noise suppression circuit including the capacitor C1 and the inductor L1 is configured to reduce noise returning from the phase control dimmer 2 to the AC power supply line.
  • FIG. 12 shows the output waveform of the dimmer and the output waveform of the full-wave rectifier circuit 41 when the phase angle of the phase control dimmer 2 is 0 °, 45 °, 90 °, and 135 °.
  • the phase angle of the phase control dimmer 2 is 0 °, 45 °, 90 °, and 135 °.
  • the average voltage value of the full-wave rectifier circuit output waveform decreases.
  • the brightness of the LED array 3 decreases.
  • the output voltage of the full-wave rectifier circuit 41 becomes smaller than the forward voltage of the LED array 3.
  • the LED does not shine and the current flowing through the dimmer decreases rapidly.
  • the current flowing through the dimmer decreases rapidly, the current falls below the holding current of the internal triac Tri1, so the triac is turned off and the dimmer output stops and becomes unstable, causing flickering in the brightness of the LED. To do.
  • the LED is turned on from off and the impedance of the LED changes abruptly.
  • ringing occurs at the edge portion where the output voltage of the dimmer abruptly changes, so that the triac Tri1 becomes unstable and turns off, and the brightness of the LED may flicker.
  • a filter circuit composed of a resistor, an inductor, a diode, and a capacitor is often disposed between the full-wave rectifier circuit and the current limiting means.
  • the phase angle of the dimmer becomes 90 ° or more, the current supplied to the LED drive circuit decreases due to the dimming operation of the LED drive circuit, and at the same time, the output voltage of the dimmer changes from rising to falling.
  • the electric current stored in the capacitor in the circuit causes the current limiting means to operate, and the current supplied from the dimmer decreases rapidly.
  • the triac may be turned off, causing the dimmer to malfunction and causing flickering.
  • Iin (1/2) ⁇ Ipk1 ⁇ (T1 / T3) ⁇ (N1 / N2) ⁇ (Vout / Vin) (2) Where Vout: output voltage, Vin: input voltage
  • the drain current limiting circuit 3 is used to make the peak Ipk1 of the primary current flowing through the switching element 1 constant, and the on-duty ratio (T1 / T3) of the secondary current is set.
  • the output current Iout is controlled to be constant. Further, the winding number ratio (N1 / N2) is also constant. Further, since the output current Iout flowing through the load 130 is substantially constant, the output voltage Vout is also substantially constant.
  • the present invention includes a switching power supply circuit capable of suppressing malfunction of the phase control dimmer by maintaining the average input current flowing into the switching power supply circuit substantially constant, and the same.
  • An object of the present invention is to provide an LED lighting device.
  • the present invention provides: A rectifier circuit connectable to an AC power supply via a phase control dimmer; A transformer having a primary winding to which a voltage is supplied from the rectifier circuit and a secondary winding; A rectifying / smoothing circuit connected between the secondary winding and a load; A switching device connected to the primary winding, and a flyback switching power supply circuit comprising: A voltage dividing circuit for dividing the output voltage of the rectifier circuit; A reference voltage generating circuit that generates a reference voltage based on the output voltage of the rectifier circuit divided by the voltage dividing circuit; A primary peak current control circuit that controls the peak value of the primary current by switching the switching element so as to match the current value corresponding to the reference voltage generated by the reference voltage generation circuit. .
  • the reference voltage generation circuit includes: A control reference voltage output circuit that outputs a control reference voltage corresponding to the output voltage of the rectifier circuit divided by the voltage divider circuit; A primary average current detection circuit for detecting an average of primary currents; A primary control reference voltage generation circuit that generates a primary control reference voltage by comparing the output of the control reference voltage output circuit with the detection output of the primary average current detection circuit; A secondary current on-duty ratio detection circuit for detecting an on-duty ratio of the secondary current; A first multiplication circuit that multiplies the output of the primary control reference voltage generation circuit by the output of the secondary current on-duty ratio detection circuit; A reference voltage source; An error amplifier for amplifying an error between a multiplication result of the first multiplication circuit and a reference voltage by the reference voltage source; A second multiplier circuit that multiplies the output voltage of the rectifier circuit divided by the voltage divider circuit by the output of the error amplifier and outputs a multiplication result as the reference voltage; You may make it provide.
  • a phase angle detection circuit for detecting a phase angle of a rise of the output voltage of the rectifier circuit;
  • a power supply for supplying a voltage from the rectifier circuit to the primary winding at the moment when the phase control dimmer is turned on with an amount of current corresponding to the phase angle detected by the phase angle detection circuit.
  • a current drawing circuit for drawing current from the supply line.
  • an input current control circuit that controls an input current by drawing a current from a power supply line for supplying a voltage from the rectifier circuit to the primary winding may be provided.
  • a phase angle detection circuit for detecting a phase angle of a rise of the output voltage of the rectifier circuit;
  • a power supply for supplying a voltage from the rectifier circuit to the primary winding at the moment when the phase control dimmer is turned on with an amount of current corresponding to the phase angle detected by the phase angle detection circuit.
  • a current drawing control for drawing current from a supply line, and a current drawing and input current control circuit for controlling an input current by drawing current from the power supply line, and
  • the current drawing and input current control circuit may share a circuit for drawing current for controlling the current drawing and controlling the input current.
  • the average input current may be controlled to increase from the phase angle of the output voltage of the rectifier circuit being 90 ° or more.
  • the switching frequency of the switching element is variable according to the output voltage of the rectifier circuit
  • the sampling time for averaging of the primary average current detection circuit may be variable according to the switching frequency
  • the LED lighting device of the present invention includes a switching power supply circuit having any one of the above-described configurations and an LED load connected to the output side of the switching power supply circuit.
  • 1 is a configuration diagram of a switching power supply circuit according to a first embodiment of the present invention. It is a figure which shows the example of 1 structure of the primary current detection circuit which concerns on 1st Embodiment of this invention. It is a figure which shows one structural example of the primary average current detection circuit which concerns on 1st Embodiment of this invention. It is a figure which shows the example of 1 structure of the secondary current on-duty ratio detection circuit which concerns on 1st Embodiment of this invention. It is a figure which shows the example of 1 structure of the 1st multiplication circuit which concerns on 1st Embodiment of this invention. It is a figure which shows the example of a waveform of the average input current which concerns on embodiment of this invention.
  • FIG. 1 The configuration of the switching power supply circuit according to the first embodiment of the present invention is shown in FIG.
  • a switching power supply circuit 10 shown in FIG. 1 is a so-called flyback converter, and an AC power supply 1 is connected to a front stage side via a phase control dimmer 2.
  • An LED lighting device is configured by the switching power supply circuit 10 and the LED array 15 in which a plurality of LEDs connected to the output side of the rectifying and smoothing circuit 120 are connected in series.
  • the switching power supply circuit 10 includes a full-wave rectifier circuit 101, a voltage dividing circuit 102, a phase angle detection circuit 103, a current extraction circuit 104, a resistor R11, a primary peak current control circuit 131, and a reference voltage generation circuit 132. And a switching element 109 for primary current control, a primary current detection circuit 110, a transformer 119, and a rectifying and smoothing circuit 120.
  • the primary peak current control circuit 131 includes an oscillation circuit 105, an RS flip-flop 106, a gate driver 107, and a voltage comparison circuit 108.
  • the reference voltage generation circuit 132 includes a primary average current detection circuit 111, a primary control reference voltage generation circuit 112, a control reference voltage output circuit 113, a secondary current on-duty ratio detection circuit 114, and a first multiplication circuit 115. And an error amplifier 116, a reference voltage source 117, and a second multiplier circuit 118.
  • the transformer 119 includes a primary winding 119A, a secondary winding 119B, and an auxiliary winding 119C.
  • the polarities of the primary winding 119A and the secondary winding 119B are reversed.
  • the secondary winding 119B and the auxiliary winding 119C have the same polarity, and a voltage proportional to the voltage generated in the secondary winding 119B is generated in the auxiliary winding 119C.
  • a full-wave rectifier circuit 101 is connected to one end of the primary winding 119A.
  • the other end of the primary winding 119A is connected to the drain of the switching element 109 formed of an N-channel MOS transistor.
  • Both ends of the secondary winding 119B are connected to the input side of the rectifying and smoothing circuit 120.
  • One end of the auxiliary winding 119C is connected to the ground potential, and the other end is connected to the input end of the secondary current on-duty ratio detection circuit 114.
  • the phase control dimmer 2 has the same configuration as that shown in FIG.
  • the AC voltage output from the AC power source 1 is phase-controlled by the phase control dimmer 2, and the AC voltage after phase control is full-wave rectified by the full-wave rectifier circuit 101 and applied to the primary winding 119A.
  • the switching element 109 When the switching element 109 is turned on, the primary current flowing through the primary winding 119A gradually increases, and the core of the transformer 119 is magnetized by the generated magnetic flux, and energy is accumulated in the core. When the switching element 109 is turned off, the energy is released and the secondary current flowing in the secondary winding 119B rises and then gradually decreases.
  • the primary current detection circuit 110 is a circuit that detects a primary current flowing through the switching element 109, and outputs a detection voltage signal to the voltage comparison circuit 108 and also to the primary average current detection circuit 111.
  • FIG. 2 A configuration example of the primary current detection circuit 110 is shown in FIG.
  • the primary current detection circuit 110 shown in FIG. 2 is subjected to current / voltage conversion by a current detection resistor R110 having one end connected to the source of the switching element 109 and the other end connected to the ground potential, and the current detection resistor 110.
  • the buffer circuit 110A outputs the detected voltage signal as a detected voltage signal.
  • the primary average current detection circuit 111 is a circuit that averages the primary current detected by the primary current detection circuit 110 every predetermined sampling time and outputs the average result as a detection voltage signal.
  • the primary average current detection circuit 111 shown in FIG. 3 is configured as an integration circuit that integrates an input voltage, and includes resistors R111 and R112, a capacitor C111, and an operational amplifier OP111.
  • the control reference voltage output circuit 113 is a circuit that receives the output voltage of the full-wave rectifier circuit 101 divided by the voltage dividing circuit 102 and outputs a control reference voltage corresponding to the input voltage.
  • the primary control reference voltage generation circuit 112 compares the control reference voltage output from the control reference voltage output circuit 113 with the detection voltage output from the primary average current detection circuit 111 to obtain the primary control reference voltage.
  • the secondary current on-period detection circuit 114 is a circuit that detects a secondary current on-duty ratio that is a ratio of a period in which the secondary current flows (secondary current on period) to a switching cycle, and firstly multiplies the detection signal by the first multiplication. Output to the circuit 115.
  • the secondary current on period detection circuit 114 shown in FIG. 4 includes a waveform shaping circuit 114A whose input end is connected to one end of the auxiliary winding 119C, and a reference voltage source 114B.
  • the switching element 109 When the switching element 109 is turned on, the primary current gradually increases, and when the switching element 109 is turned off, the secondary current rises and gradually decreases. During the period when the secondary current is flowing, a voltage is generated in the auxiliary winding 119C. During the period when the secondary current flows and the voltage of the auxiliary winding 119C is generated, the auxiliary winding voltage becomes equal to or higher than the reference voltage by the reference voltage source 114B, and the waveform shaping circuit 114A is at the low level while detecting this. Output voltage V114. When the secondary current becomes zero, the auxiliary winding voltage starts to decrease and falls below the reference voltage. When the waveform shaping circuit 114A detects this, the waveform shaping circuit 114A outputs the output voltage V114 as a high level. That is, the on-duty ratio of the secondary current is detected as a pulse voltage signal.
  • the first multiplication circuit 115 multiplies the primary control reference voltage generated by the primary control reference voltage generation circuit 112 by the secondary current on duty ratio detected by the secondary current on duty ratio detection circuit 114. It is.
  • the first multiplication circuit 115 shown in FIG. 5 includes an inverting circuit 115A, switches 115B and 115C, and a smoothing circuit 115D.
  • the switches 115B and 115C are connected in series between the output terminal of the primary control reference voltage generation circuit 112 and the ground potential, and the connection point between the switches 115B and 115C is connected to the input terminal of the smoothing circuit 115D.
  • the output of the secondary current on-duty ratio detection circuit 114 is inverted by the inversion circuit 115A, and the switch 115B is switched according to the inversion result.
  • the switch 115C is switched by the output of the secondary current on-duty ratio detection circuit 114. By such switching, a voltage signal that is a result of multiplication of the primary control reference voltage and the secondary current on-duty ratio is output from the output terminal of the smoothing circuit 115D.
  • the error amplifier 116 is a circuit that amplifies an error between the output of the first multiplier circuit 115 and the first reference voltage caused by the reference voltage source 117.
  • the second multiplication circuit 118 multiplies the output voltage of the full-wave rectification circuit 101 divided by the voltage dividing circuit 102 by the output of the error amplifier 116, and outputs the multiplication result to the voltage comparison circuit 108 as a second reference voltage. Circuit.
  • the detection voltage output from the primary current detection circuit 110 is input to the non-inverting input terminal of the voltage comparison circuit 108, and the second multiplication circuit 118 is input to the inverting input terminal of the voltage comparison circuit 108.
  • the output second reference voltage is input.
  • the set terminal of the RS flip-flop 106 is connected to the output terminal of the voltage comparison circuit 108.
  • the oscillation circuit 105 is a circuit that outputs an oscillation pulse to the reset terminal of the RS flip-flop 106, and outputs an oscillation pulse having a frequency that is variable according to the output voltage (that is, the input voltage Vin) of the full-wave rectification circuit 101. .
  • the higher the input voltage Vin the higher the frequency. This is because if the frequency is constant, the primary current increases according to the voltage when the input voltage increases, and the ripple of the output current increases.
  • noise radiated from the switching power supply increases, and many noise countermeasure components are required. In particular, in a power supply device with a rated output of 10 W or less, it is difficult to increase the number of noise countermeasure components because the product itself is small and inexpensive.
  • the Q bar output terminal of the RS flip-flop 106 is connected to the input terminal of the gate driver 107.
  • the output terminal of the gate driver 107 is connected to the gate of the switching element 109.
  • the RS flip-flop 106 When the output of the oscillation circuit 105 becomes a high level, the RS flip-flop 106 is reset, and the switching element 109 is turned on by the gate driver 107. After that, when the primary current increases and the primary current reaches the current value corresponding to the second reference voltage, the RS flip-flop is set by the output of the voltage comparison circuit 108, and the switching element 109 is controlled by the gate driver 107. It is turned off. Thereafter, the switching element 109 is turned on again by the high level output of the oscillation circuit 105. In this way, the peak value of the primary current is controlled.
  • the reference voltage generation circuit 132 generates the second reference voltage based on the output voltage of the full-wave rectification circuit 101 divided by the voltage dividing circuit 102, and the generated second reference voltage.
  • the peak value of the primary current is controlled by the primary peak current control circuit 131 so as to match the current value corresponding to. As a result, when the input voltage Vin increases, the peak value of the primary current is increased, the average input current Iin flowing into the switching power supply circuit 10 is suppressed from decreasing, and the average input current Iin is held substantially constant. It becomes possible.
  • FIG. 6 shows a waveform example of the input voltage Vin (upper stage) and the average input current Iin (middle stage) according to the present embodiment, and the average input current Iin is held substantially constant.
  • the capacitor C1 and the inductor L1 (FIG. 11) in the dimmer and the capacitance, inductor, resistance in the switching power supply circuit Therefore, the current flowing through the triac Tri1 is likely to be lower than the holding current due to vibration, and the malfunction of the dimmer is likely to occur.
  • the switching power supply circuit is also provided with a phase angle detection circuit 103 and a current drawing circuit 104.
  • the phase angle detection circuit 103 is a circuit that detects the phase angle at which the output voltage of the full-wave rectifier circuit 101 rises (that is, the phase angle of the rise by the phase control dimmer 2).
  • the current extraction circuit 104 is an extraction current amount corresponding to the rising phase angle detected by the phase angle detection circuit 103, and a predetermined time (for example, several times) from the moment when the triac Tri1 in the phase control dimmer 2 is turned on.
  • the current is drawn from the power supply line L1 provided between the full-wave rectifier circuit 101 and the primary winding 119A for only 100 ⁇ s).
  • An example of the relationship between the rising phase angle and the amount of extraction current is shown in FIG.
  • the amount of extraction current is increased compared to the case where it is smaller than 90 ° (in the example of FIG. 7, 30 mA compared to 20 mA).
  • the triac Tri1 is easily turned off by ringing that occurs at the moment when the dimmer is turned on because the input voltage is lowered when the phase angle is 90 ° or more.
  • a current is supplied to the switching element 109 from the energy stored in a capacitor on a circuit (not shown) such as a filter, and the current from the dimmer 2 to the switching power supply circuit 10 is increased. This is because the input current decreases and the triac Tri1 is easily turned off.
  • the oscillation frequency of the oscillation circuit 105 that is, the switching frequency of the switching element 109 is variable according to the output voltage of the full-wave rectification circuit 101, that is, the input voltage Vin. Therefore, it is desirable that the averaging sampling time in the primary average current detection circuit 111 is variable according to the switching frequency. In particular, when the input voltage Vin is high, the switching frequency becomes high, so that the primary current peak can be controlled early by shortening the sampling time, and fluctuations in the average input current Iin due to control delay can be suppressed. . Therefore, the average input current Iin can be kept constant.
  • FIG. 8 shows the configuration of a switching power supply circuit according to the second embodiment of the present invention.
  • the difference of the configuration of the switching power supply circuit 20 shown in FIG. 8 from the first embodiment (FIG. 1) is that an input current control circuit 201 is further provided.
  • the input current control circuit 201 is a circuit that controls the input current by drawing current from the power supply line L1 during the period from the moment when the dimmer 2 is turned on until it is turned off.
  • An input current control circuit 201 shown in FIG. 9 includes a switching element 201A for current extraction control from the power supply line L1, a current detection resistor 201B, a buffer circuit 201C, a reference voltage source 201D, a comparator 201E, An oscillator 201F, an RS flip-flop 201G, and a gate driver 201H are provided.
  • the input current control circuit 201 repeatedly draws a current from the power supply line L1 with a current amount corresponding to the reference voltage by the reference voltage source 201D.
  • the peak value of the primary current controlled by the primary peak current control circuit 131 can be lowered. Therefore, even if the capacitance of the capacitor in the rectifying and smoothing circuit 120 is reduced, the peak value is output to the LED array 15. The ripple of the output current Iout can be reduced. Accordingly, the switching power supply circuit can be reduced in size and cost.
  • FIG. 10 shows a configuration of a switching power supply circuit according to the third embodiment of the present invention.
  • a switching power supply circuit 30 shown in FIG. 10 includes a current extraction and input current control circuit 301.
  • the current extraction and input current control circuit 301 is configured so that the triac Tri1 in the phase control dimmer 2 has a current amount corresponding to the phase angle detected by the phase angle detection circuit 103.
  • the current is drawn and input from the power supply line L1 during the period from when the dimmer 2 is turned on until it is turned off. Control the current.
  • the current extraction and input current control circuit 301 shares, for example, a circuit for extracting current shown in FIG. 9 for current extraction and input current control in accordance with the phase angle. Cost can be reduced.
  • the peak value of the primary current is increased by increasing the extraction current amount of the current extraction circuit 104 or increasing the primary control reference voltage obtained from the primary control reference voltage generation circuit 112. Increase it.
  • a waveform example of the average input current Iin according to the present embodiment is shown in the lower part of FIG.
  • LED lighting device includes an LED bulb, a ceiling light, and a straight tube light.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A flyback-type switching power supply circuit equipped with a rectification circuit capable of connecting to an alternating current power supply via a phase-control-type dimmer, a transformer having a primary winding to which voltage from the rectification circuit is supplied, and a secondary winding, a rectification/smoothing circuit connected between the secondary winding and a load, and a switching element connected to the first winding, said power supply circuit being constructed so as to be further equipped with: a voltage-dividing circuit that divides the output voltage from the rectification circuit; a reference voltage generation circuit that generates a reference voltage on the basis of the output voltage from the rectification circuit that has been divided by the voltage-dividing circuit; and a primary peak current control circuit that switches the switching element and controls the peak value of the primary current so as to match a current value corresponding to the reference voltage generated by the reference voltage generation circuit.

Description

スイッチング電源回路、及びLED照明装置Switching power supply circuit and LED lighting device
 本発明は、スイッチング電源回路に関する。 The present invention relates to a switching power supply circuit.
 LED(Light Emitting Diode)は低消費電流で長寿命などの特徴を有し、表示装置だけでなく照明器具等にもその用途が広がりつつある。 LEDs (Light Emitting Diodes) have features such as low current consumption and long life, and their use is spreading not only to display devices but also to lighting equipment.
 一般的な照明器具は商用AC100V電源を使用することが多く、白熱電球などの一般的な照明灯具に代えてLED照明灯具を使用する場合を考慮すると、LED照明灯具も一般的な照明灯具と同様に商用AC100V電源を使用する構成であることが望ましい(例えば特許文献1)。また、照度や色合を一定にするためにLEDは定電流で駆動を行うことが必要であり、出力電流を一定にするスイッチング電源回路が使用される。 Common lighting fixtures often use a commercial AC 100V power source. Considering the use of LED lighting fixtures instead of general lighting fixtures such as incandescent bulbs, LED lighting fixtures are similar to general lighting fixtures. It is desirable to use a commercial AC100V power source (for example, Patent Document 1). In order to make the illuminance and color constant, the LED needs to be driven with a constant current, and a switching power supply circuit that makes the output current constant is used.
 一般的なスイッチング電源回路の技術として、例えば特許文献2には、トランスの2次電流が流れている時間を検出し、この時間がスイッチング周期中に占める比率、即ち2次電流のオンデューティ比を一定にする技術が開示されている。 As a general switching power supply circuit technology, for example, Patent Document 2 detects the time during which the secondary current of the transformer flows, and the ratio of this time in the switching cycle, that is, the on-duty ratio of the secondary current. A technique for making it constant is disclosed.
 特許文献1に開示されたスイッチング電源回路(特許文献1の図1)は、半導体装置100と、トランス110と、ダイオード121及び141と、コンデンサ122及び142と、抵抗151及び152と、を有し、交流入力電圧VINから所定の直流出力電圧Voを生成して負荷130に供給するフライバック方式のスイッチング電源回路である。トランス110は、1次巻線111と、2次巻線112と、補助巻線113と、を含む。 The switching power supply circuit disclosed in Patent Document 1 (FIG. 1 of Patent Document 1) includes a semiconductor device 100, a transformer 110, diodes 121 and 141, capacitors 122 and 142, and resistors 151 and 152. This is a flyback switching power supply circuit that generates a predetermined DC output voltage Vo from the AC input voltage VIN and supplies it to a load 130. Transformer 110 includes a primary winding 111, a secondary winding 112, and an auxiliary winding 113.
 特許文献2の図3には、スイッチング電源回路各部の電圧波形と電流波形を示すタイミングチャートが示される。本タイミングチャートには、補助巻線113の一端に現れる電圧を分圧して得られる補助巻線電圧VTR、スイッチング素子1に流れる1次電流Ids、及び2次巻線112に流れる2次電流I2pが描写されている。 FIG. 3 of Patent Document 2 shows a timing chart showing voltage waveforms and current waveforms of each part of the switching power supply circuit. In this timing chart, the auxiliary winding voltage VTR obtained by dividing the voltage appearing at one end of the auxiliary winding 113, the primary current Ids flowing through the switching element 1, and the secondary current I2p flowing through the secondary winding 112 are shown. It is depicted.
 ここで、T1を2次電流I2pが流れている第1期間、T2を2次電流I2pが流れていない第2期間、T3を第1期間T1と第2期間T2を合わせた第3期間、Ipk1を1次電流Idsのピーク値、及びIpk2を2次電流I2pのピーク値とする。 Here, T1 is a first period in which the secondary current I2p flows, T2 is a second period in which the secondary current I2p does not flow, T3 is a third period in which the first period T1 and the second period T2 are combined, Ipk1 Is the peak value of the primary current Ids, and Ipk2 is the peak value of the secondary current I2p.
 スイッチング電源回路から負荷130に供給される出力電流Ioutは、2次電流I2pの平均値である。第1期間T1における2次電流I2pの平均値は、2次電流I2pのピーク値Ipk2の1/2である。第3期間T3における2次電流I2pの平均値は、第1期間T1における2次電流I2pの平均値に2次電流のオンデューティ比を乗じた値となる。従って、1次巻線111の巻線数をN1とし、2次巻線112の巻線数をN2とすると、出力電流Ioutは、次の(1)式で表される。
 Iout=(1/2)×(N1/N2)×(T1/T3)×Ipk1 … (1)
The output current Iout supplied from the switching power supply circuit to the load 130 is an average value of the secondary current I2p. The average value of the secondary current I2p in the first period T1 is ½ of the peak value Ipk2 of the secondary current I2p. The average value of the secondary current I2p in the third period T3 is a value obtained by multiplying the average value of the secondary current I2p in the first period T1 by the on-duty ratio of the secondary current. Accordingly, when the number of turns of the primary winding 111 is N1 and the number of turns of the secondary winding 112 is N2, the output current Iout is expressed by the following equation (1).
Iout = (1/2) × (N1 / N2) × (T1 / T3) × Ipk1 (1)
 従来のスイッチング電源回路は、上記(1)式において、ドレイン電流制限回路3を用いて1次電流Idsのピーク電流Ipk1を一定としつつ、2次電流オンデューティ比制御回路8を用いて2次電流のオンデューティ比(T1/T3)を一定とすることにより、出力電流Ioutを一定に制御している。 The conventional switching power supply circuit uses the secondary current on-duty ratio control circuit 8 in the above formula (1) to keep the peak current Ipk1 of the primary current Ids constant using the drain current limiting circuit 3 and the secondary current. By making the on-duty ratio (T1 / T3) constant, the output current Iout is controlled to be constant.
 また、従来の白熱電球は調光制御が行われており、調光制御をしようとした場合、スイッチング素子(一般的にはサイリスタ素子やトライアック素子)を交流電源電圧のある位相角でオンすることにより白熱電球への電源供給をボリューム素子一つで簡単に調光制御できる位相制御式調光器(一般に白熱ライコンと呼ばれている)が用いられている。 In addition, dimming control is performed on conventional incandescent bulbs. When dimming control is to be performed, switching elements (typically thyristor elements and triac elements) should be turned on at a phase angle with an AC power supply voltage. Therefore, a phase control dimmer (generally called an incandescent lycon) that can easily control the dimming of power to the incandescent bulb with a single volume element is used.
 しかしながら、既存調光器にLEDを接続したときに、調光器の位相角制御に関係なく、光量が変化するチラツキが発生する。特にワット数の小さなLED電球と調光器を接続するとチラツキや点滅が生じ易く、正常に調光できないことが知られている。 However, when an LED is connected to an existing dimmer, flickering occurs in which the amount of light changes regardless of the phase angle control of the dimmer. In particular, it is known that when an LED bulb with a small wattage is connected to a dimmer, flickering or blinking tends to occur, and dimming cannot be performed normally.
特開2004-327152号公報JP 2004-327152 A 特開2009-11073号公報JP 2009-11073 A
 AC電源を用いたLED照明灯具を調光制御することができるLED照明システムの従来例を図11に示す。図11に示すLED照明システムは、位相制御式調光器2と、LED駆動回路4と、LEDを直列に接続したLEDアレイ3を備えている。AC電源1とLED駆動回路4の間に位相制御式調光器2が直列に接続されている。LED駆動回路4は、例えばダイオードブリッジで構成される全波整流回路41と、フィルタ回路42と、入力電圧検出手段43と、位相角検出手段44と、電流引抜手段45と、電流制限手段46を備えている。 FIG. 11 shows a conventional example of an LED illumination system capable of dimming control of an LED illumination lamp using an AC power source. The LED illumination system shown in FIG. 11 includes a phase control dimmer 2, an LED drive circuit 4, and an LED array 3 in which LEDs are connected in series. A phase control dimmer 2 is connected in series between the AC power source 1 and the LED drive circuit 4. The LED drive circuit 4 includes, for example, a full-wave rectifier circuit 41 configured by a diode bridge, a filter circuit 42, an input voltage detection means 43, a phase angle detection means 44, a current extraction means 45, and a current limiting means 46. I have.
 位相制御式調光器2では、半固定抵抗Rvar1の抵抗値を可変させることにより、抵抗値に依存した電源位相角でトライアックTri1をオンさせる。通常、半固定抵抗Rvar1は回転つまみやスライド式になっており、つまみの回転角を変えたり、スライド位置を変えることにより、照明灯具の調光制御ができるようになっている。さらに、位相制御式調光器2では、コンデンサC1とインダクタL1による雑音抑制回路が構成され、位相制御式調光器2からAC電源ラインに帰還する雑音を低減している。 In the phase control dimmer 2, the triac Tri1 is turned on at a power supply phase angle depending on the resistance value by varying the resistance value of the semi-fixed resistor Rvar1. Usually, the semi-fixed resistor Rvar1 is a rotary knob or a slide type, and the dimming control of the illumination lamp can be performed by changing the rotation angle of the knob or changing the slide position. Further, in the phase control dimmer 2, a noise suppression circuit including the capacitor C1 and the inductor L1 is configured to reduce noise returning from the phase control dimmer 2 to the AC power supply line.
 図12に位相制御式調光器2の位相角が0°、45°、90°及び135°の場合の、調光器の出力波形と全波整流回路41の出力波形を示す。位相角が大きくなるに従い、全波整流回路出力波形の電圧の平均値が小さくなる。調光器の位相角が大きくなるに従い、LEDアレイ3の明るさが暗くなる。 FIG. 12 shows the output waveform of the dimmer and the output waveform of the full-wave rectifier circuit 41 when the phase angle of the phase control dimmer 2 is 0 °, 45 °, 90 °, and 135 °. As the phase angle increases, the average voltage value of the full-wave rectifier circuit output waveform decreases. As the phase angle of the dimmer increases, the brightness of the LED array 3 decreases.
 位相制御式調光器2の位相角を大きくして、LEDアレイ3の明るさを暗くしていった場合、全波整流回路41の出力電圧がLEDアレイ3の順方向電圧よりも小さくなったときに、LEDが光らなくなり調光器に流れる電流が急激に減少する。調光器に流れる電流が急激に減少すると、内部のトライアックTri1の保持電流を下回るため、トライアックがオフして調光器の出力がストップして不安定になり、LEDの明るさにチラツキが発生する。 When the phase angle of the phase control dimmer 2 is increased and the brightness of the LED array 3 is reduced, the output voltage of the full-wave rectifier circuit 41 becomes smaller than the forward voltage of the LED array 3. Sometimes the LED does not shine and the current flowing through the dimmer decreases rapidly. When the current flowing through the dimmer decreases rapidly, the current falls below the holding current of the internal triac Tri1, so the triac is turned off and the dimmer output stops and becomes unstable, causing flickering in the brightness of the LED. To do.
 また、調光器出力が位相制御されて、トライアックTri1がオフからオンになるときに、LEDがオフからオンになりLEDのインピーダンスが急激に変化する。これにより調光器の出力の電圧が急激に変化するエッジ部分にリンギングが発生することにより、トライアックTri1が不安定になりオフしてしまい、LEDの明るさにチラツキが発生することがある。 Also, when the dimmer output is phase-controlled and the triac Tri1 is turned on from off, the LED is turned on from off and the impedance of the LED changes abruptly. As a result, ringing occurs at the edge portion where the output voltage of the dimmer abruptly changes, so that the triac Tri1 becomes unstable and turns off, and the brightness of the LED may flicker.
 また、図11に示すように、力率改善及びEMIノイズ低減のために全波整流回路と電流制限手段の間に抵抗、インダクタ、ダイオード、コンデンサによるフィルタ回路を配置することが多い。調光器の位相角が90°以上になると、LED駆動回路の調光動作により、LED駆動回路に供給される電流が減少すると同時に、調光器の出力電圧が上昇から下降に転じるため、フィルタ回路内のコンデンサに蓄積された電荷により、電流制限手段が動作するようになり、調光器から供給される電流が急激に減少する。これにより、調光器内のトライアックに流れる電流が保持電流を下回ることにより、トライアックがオフして調光器が誤動作してチラツキが発生してしまうことがある。 In addition, as shown in FIG. 11, in order to improve the power factor and reduce the EMI noise, a filter circuit composed of a resistor, an inductor, a diode, and a capacitor is often disposed between the full-wave rectifier circuit and the current limiting means. When the phase angle of the dimmer becomes 90 ° or more, the current supplied to the LED drive circuit decreases due to the dimming operation of the LED drive circuit, and at the same time, the output voltage of the dimmer changes from rising to falling. The electric current stored in the capacitor in the circuit causes the current limiting means to operate, and the current supplied from the dimmer decreases rapidly. As a result, when the current flowing through the triac in the dimmer is lower than the holding current, the triac may be turned off, causing the dimmer to malfunction and causing flickering.
 また、ここで、上述した特許文献2のスイッチング電源回路(特許文献2の図1)の前段に、図11と同様に交流電源、位相制御式調光器、及び全波整流回路を接続した場合を考える。特許文献2のスイッチング電源回路に全波整流回路を含めた回路をスイッチング電源回路と捉えると、当該スイッチング電源回路に流れ込む平均入力電流Iinは、次式で表される。 Also, here, when the AC power supply, the phase control dimmer, and the full-wave rectifier circuit are connected to the previous stage of the above-described switching power supply circuit of Patent Document 2 (FIG. 1 of Patent Document 2) as in FIG. think of. When a circuit including a full-wave rectifier circuit in the switching power supply circuit of Patent Document 2 is regarded as a switching power supply circuit, an average input current Iin flowing into the switching power supply circuit is expressed by the following equation.
 Iin=(1/2)×Ipk1×(T1/T3)×(N1/N2)×
      (Vout/Vin) … (2)
 但し、Vout:出力電圧、Vin:入力電圧
Iin = (1/2) × Ipk1 × (T1 / T3) × (N1 / N2) ×
(Vout / Vin) (2)
Where Vout: output voltage, Vin: input voltage
 ここで、特許文献2のスイッチング電源回路では、ドレイン電流制限回路3を用いてスイッチング素子1に流れる1次電流のピークIpk1を一定とすると共に、2次電流のオンデューティ比(T1/T3)を一定とし、出力電流Ioutを一定に制御する。また、巻線数比(N1/N2)も一定である。さらに、負荷130に流れる出力電流Ioutがほぼ一定であることから、出力電圧Voutもほぼ一定である。 Here, in the switching power supply circuit of Patent Document 2, the drain current limiting circuit 3 is used to make the peak Ipk1 of the primary current flowing through the switching element 1 constant, and the on-duty ratio (T1 / T3) of the secondary current is set. The output current Iout is controlled to be constant. Further, the winding number ratio (N1 / N2) is also constant. Further, since the output current Iout flowing through the load 130 is substantially constant, the output voltage Vout is also substantially constant.
 従って、図13に示すようにスイッチング電源回路の入力電圧Vinが変動すると、スイッチング電源回路の平均入力電流Iinは、入力電圧Vinに反比例して変動することが分かり、入力電圧Vinが高い場合にスイッチング電源回路に流れ込む電流が減ることとなる。よって、位相制御式調光器内のトライアックに流れる電流が保持電流を下回り易く、トライアックがオフして調光器が誤動作し、負荷130がLEDの場合にチラツキが発生してしまうことがある。 Therefore, as shown in FIG. 13, when the input voltage Vin of the switching power supply circuit fluctuates, the average input current Iin of the switching power supply circuit fluctuates in inverse proportion to the input voltage Vin, and switching is performed when the input voltage Vin is high. The current flowing into the power supply circuit is reduced. Therefore, the current flowing through the triac in the phase control dimmer tends to be lower than the holding current, the triac is turned off, the dimmer malfunctions, and flicker may occur when the load 130 is an LED.
 上記問題点に鑑み、本発明は、スイッチング電源回路に流れ込む平均入力電流をほぼ一定に保持することにより、位相制御式調光器の誤動作を抑制することができるスイッチング電源回路、及びこれを備えたLED照明装置を提供することを目的とする。 In view of the above problems, the present invention includes a switching power supply circuit capable of suppressing malfunction of the phase control dimmer by maintaining the average input current flowing into the switching power supply circuit substantially constant, and the same. An object of the present invention is to provide an LED lighting device.
 上記目的を達成するために本発明は、
 位相制御式調光器を介して交流電源と接続可能な整流回路と、
 前記整流回路から電圧が供給される1次巻線と、2次巻線とを有するトランスと、
 前記2次巻線と負荷の間に接続される整流平滑回路と、
 前記1次巻線に接続されるスイッチング素子と、を備えたフライバック方式のスイッチング電源回路であって、
 前記整流回路の出力電圧を分圧する分圧回路と、
 前記分圧回路により分圧された前記整流回路の出力電圧に基づいて基準電圧を生成する基準電圧生成回路と、
 前記基準電圧生成回路により生成された基準電圧に対応する電流値に一致するよう前記スイッチング素子をスイッチングして1次電流のピーク値を制御する1次ピーク電流制御回路と、を備えた構成とする。
In order to achieve the above object, the present invention provides:
A rectifier circuit connectable to an AC power supply via a phase control dimmer;
A transformer having a primary winding to which a voltage is supplied from the rectifier circuit and a secondary winding;
A rectifying / smoothing circuit connected between the secondary winding and a load;
A switching device connected to the primary winding, and a flyback switching power supply circuit comprising:
A voltage dividing circuit for dividing the output voltage of the rectifier circuit;
A reference voltage generating circuit that generates a reference voltage based on the output voltage of the rectifier circuit divided by the voltage dividing circuit;
A primary peak current control circuit that controls the peak value of the primary current by switching the switching element so as to match the current value corresponding to the reference voltage generated by the reference voltage generation circuit. .
 また、上記構成において、前記基準電圧生成回路は、
 前記分圧回路により分圧された前記整流回路の出力電圧に応じた制御基準電圧を出力する制御基準電圧出力回路と、
 1次電流の平均を検出する1次平均電流検出回路と、
 前記制御基準電圧出力回路の出力と前記1次平均電流検出回路の検出出力とを比較することにより1次制御基準電圧を生成する1次制御基準電圧生成回路と、
 2次電流のオンデューティ比を検出する2次電流オンデューティ比検出回路と、
 前記1次制御基準電圧生成回路の出力に対して前記2次電流オンデューティ比検出回路の出力を乗算する第1乗算回路と、
 基準電圧源と、
 前記第1乗算回路の乗算結果と前記基準電圧源による基準電圧の誤差を増幅するエラーアンプと、
 前記分圧回路により分圧された前記整流回路の出力電圧に対して前記エラーアンプの出力を乗算して乗算結果を前記基準電圧として出力する第2乗算回路と、
 を備えるようにしてもよい。
In the above configuration, the reference voltage generation circuit includes:
A control reference voltage output circuit that outputs a control reference voltage corresponding to the output voltage of the rectifier circuit divided by the voltage divider circuit;
A primary average current detection circuit for detecting an average of primary currents;
A primary control reference voltage generation circuit that generates a primary control reference voltage by comparing the output of the control reference voltage output circuit with the detection output of the primary average current detection circuit;
A secondary current on-duty ratio detection circuit for detecting an on-duty ratio of the secondary current;
A first multiplication circuit that multiplies the output of the primary control reference voltage generation circuit by the output of the secondary current on-duty ratio detection circuit;
A reference voltage source;
An error amplifier for amplifying an error between a multiplication result of the first multiplication circuit and a reference voltage by the reference voltage source;
A second multiplier circuit that multiplies the output voltage of the rectifier circuit divided by the voltage divider circuit by the output of the error amplifier and outputs a multiplication result as the reference voltage;
You may make it provide.
 また、上記いずれかの構成において、
 前記整流回路の出力電圧の立ち上がりの位相角を検出する位相角検出回路と、
 前記位相角検出回路により検出された位相角に応じた電流量にて前記位相制御式調光器がオンとなった瞬間に、前記整流回路から前記1次巻線へ電圧を供給するための電源供給ラインから電流を引抜く電流引抜回路と、を備えるようにしてもよい。
In any of the above configurations,
A phase angle detection circuit for detecting a phase angle of a rise of the output voltage of the rectifier circuit;
A power supply for supplying a voltage from the rectifier circuit to the primary winding at the moment when the phase control dimmer is turned on with an amount of current corresponding to the phase angle detected by the phase angle detection circuit. A current drawing circuit for drawing current from the supply line.
 また、上記いずれかの構成において、前記整流回路から前記1次巻線へ電圧を供給するための電源供給ラインから電流を引抜くことにより入力電流を制御する入力電流制御回路を備えてもよい。 Further, in any one of the above configurations, an input current control circuit that controls an input current by drawing a current from a power supply line for supplying a voltage from the rectifier circuit to the primary winding may be provided.
 また、上記いずれかの構成において、
 前記整流回路の出力電圧の立ち上がりの位相角を検出する位相角検出回路と、
 前記位相角検出回路により検出された位相角に応じた電流量にて前記位相制御式調光器がオンとなった瞬間に、前記整流回路から前記1次巻線へ電圧を供給するための電源供給ラインから電流を引抜く電流引抜制御を行うと共に、前記電源供給ラインから電流を引抜くことにより入力電流を制御する電流引抜及び入力電流制御回路と、を備え、
 前記電流引抜及び入力電流制御回路は、電流を引抜く回路を前記電流引抜制御用と前記入力電流の制御用で共用するようにしてもよい。
In any of the above configurations,
A phase angle detection circuit for detecting a phase angle of a rise of the output voltage of the rectifier circuit;
A power supply for supplying a voltage from the rectifier circuit to the primary winding at the moment when the phase control dimmer is turned on with an amount of current corresponding to the phase angle detected by the phase angle detection circuit. A current drawing control for drawing current from a supply line, and a current drawing and input current control circuit for controlling an input current by drawing current from the power supply line, and
The current drawing and input current control circuit may share a circuit for drawing current for controlling the current drawing and controlling the input current.
 また、上記いずれかの構成において、前記整流回路の出力電圧の位相角が90°以上から、平均入力電流を増加させるように制御するようにしてもよい。 In any of the above-described configurations, the average input current may be controlled to increase from the phase angle of the output voltage of the rectifier circuit being 90 ° or more.
 また、上記構成において、前記整流回路の出力電圧に応じて前記スイッチング素子のスイッチング周波数は可変であり、
 前記スイッチング周波数に応じて前記1次平均電流検出回路の平均化するサンプリング時間は可変であるようにしてもよい。
In the above configuration, the switching frequency of the switching element is variable according to the output voltage of the rectifier circuit,
The sampling time for averaging of the primary average current detection circuit may be variable according to the switching frequency.
 また、本発明のLED照明装置は、上記いずれかの構成のスイッチング電源回路と、前記スイッチング電源回路の出力側に接続されるLED負荷と、を備えた構成とする。 The LED lighting device of the present invention includes a switching power supply circuit having any one of the above-described configurations and an LED load connected to the output side of the switching power supply circuit.
 本発明によると、スイッチング電源回路に流れ込む平均入力電流をほぼ一定に保持することにより、位相制御式調光器の誤動作を抑制することができる。 According to the present invention, it is possible to suppress malfunction of the phase control dimmer by maintaining the average input current flowing into the switching power supply circuit substantially constant.
本発明の第1実施形態に係るスイッチング電源回路の構成図である。1 is a configuration diagram of a switching power supply circuit according to a first embodiment of the present invention. 本発明の第1実施形態に係る1次電流検出回路の一構成例を示す図である。It is a figure which shows the example of 1 structure of the primary current detection circuit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る1次平均電流検出回路の一構成例を示す図である。It is a figure which shows one structural example of the primary average current detection circuit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る2次電流オンデューティ比検出回路の一構成例を示す図である。It is a figure which shows the example of 1 structure of the secondary current on-duty ratio detection circuit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る第1乗算回路の一構成例を示す図である。It is a figure which shows the example of 1 structure of the 1st multiplication circuit which concerns on 1st Embodiment of this invention. 本発明の実施形態に係る平均入力電流の波形例を示す図である。It is a figure which shows the example of a waveform of the average input current which concerns on embodiment of this invention. 本発明の第1実施形態に係る位相角と引抜き電流量の関係の一例を示す図である。It is a figure which shows an example of the relationship between the phase angle and drawing current amount which concern on 1st Embodiment of this invention. 本発明の第2実施形態に係るスイッチング電源回路の構成図である。It is a block diagram of the switching power supply circuit which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る入力電流制御回路の一構成例を示す図である。It is a figure which shows one structural example of the input current control circuit which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るスイッチング電源回路の構成図である。It is a block diagram of the switching power supply circuit which concerns on 3rd Embodiment of this invention. LED照明システムの従来例を示す構成図である。It is a block diagram which shows the prior art example of an LED lighting system. 調光器の位相角を変化させた場合の調光器出力波形と全波整流回路出力波形を示す図である。It is a figure which shows a dimmer output waveform and a full wave rectifier circuit output waveform at the time of changing the phase angle of a dimmer. 従来に係る平均入力電流の波形例を示す図である。It is a figure which shows the example of a waveform of the average input current which concerns on the past.
 以下に本発明の一実施形態について図面を参照して説明する。なお、ここではスイッチング電源回路の負荷としてLED負荷を用いたLED照明装置を一例に挙げて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Here, an LED lighting device using an LED load as a load of the switching power supply circuit will be described as an example.
<第1実施形態>
 本発明の第1実施形態に係るスイッチング電源回路の構成を図1に示す。図1に示すスイッチング電源回路10は、所謂フライバック方式コンバータであり、前段側に位相制御式調光器2を介して交流電源1が接続される。スイッチング電源回路10と、整流平滑回路120の出力側に接続された複数のLEDが直列接続されて成るLEDアレイ15と、からLED照明装置が構成される。
<First Embodiment>
The configuration of the switching power supply circuit according to the first embodiment of the present invention is shown in FIG. A switching power supply circuit 10 shown in FIG. 1 is a so-called flyback converter, and an AC power supply 1 is connected to a front stage side via a phase control dimmer 2. An LED lighting device is configured by the switching power supply circuit 10 and the LED array 15 in which a plurality of LEDs connected to the output side of the rectifying and smoothing circuit 120 are connected in series.
 スイッチング電源回路10は、全波整流回路101と、分圧回路102と、位相角検出回路103と、電流引抜回路104と、抵抗R11と、1次ピーク電流制御回路131と、基準電圧生成回路132と、1次電流制御用であるスイッチング素子109と、1次電流検出回路110と、トランス119と、整流平滑回路120を備えている。 The switching power supply circuit 10 includes a full-wave rectifier circuit 101, a voltage dividing circuit 102, a phase angle detection circuit 103, a current extraction circuit 104, a resistor R11, a primary peak current control circuit 131, and a reference voltage generation circuit 132. And a switching element 109 for primary current control, a primary current detection circuit 110, a transformer 119, and a rectifying and smoothing circuit 120.
 1次ピーク電流制御回路131は、発振回路105と、RSフリップフロップ106と、ゲートドライバ107と、電圧比較回路108を有している。基準電圧生成回路132は、1次平均電流検出回路111と、1次制御基準電圧生成回路112と、制御基準電圧出力回路113と、2次電流オンデューティ比検出回路114と、第1乗算回路115と、エラーアンプ116と、基準電圧源117と、第2乗算回路118を有している。 The primary peak current control circuit 131 includes an oscillation circuit 105, an RS flip-flop 106, a gate driver 107, and a voltage comparison circuit 108. The reference voltage generation circuit 132 includes a primary average current detection circuit 111, a primary control reference voltage generation circuit 112, a control reference voltage output circuit 113, a secondary current on-duty ratio detection circuit 114, and a first multiplication circuit 115. And an error amplifier 116, a reference voltage source 117, and a second multiplier circuit 118.
 トランス119は、1次巻線119Aと、2次巻線119Bと、補助巻線119Cを備える。1次巻線119Aと2次巻線119Bの極性は逆となっている。2次巻線119Bと補助巻線119Cは極性が同じであり、補助巻線119Cには2次巻線119Bに生じる電圧に比例した電圧が発生する。 The transformer 119 includes a primary winding 119A, a secondary winding 119B, and an auxiliary winding 119C. The polarities of the primary winding 119A and the secondary winding 119B are reversed. The secondary winding 119B and the auxiliary winding 119C have the same polarity, and a voltage proportional to the voltage generated in the secondary winding 119B is generated in the auxiliary winding 119C.
 1次巻線119Aの一端には、全波整流回路101が接続される。1次巻線119Aの他端には、NチャンネルMOSトランジスタで構成されるスイッチング素子109のドレインが接続される。2次巻線119Bの両端は整流平滑回路120の入力側に接続される。 A full-wave rectifier circuit 101 is connected to one end of the primary winding 119A. The other end of the primary winding 119A is connected to the drain of the switching element 109 formed of an N-channel MOS transistor. Both ends of the secondary winding 119B are connected to the input side of the rectifying and smoothing circuit 120.
 補助巻線119Cの一端はグランド電位に接続され、他端は2次電流オンデューティ比検出回路114の入力端に接続される。 One end of the auxiliary winding 119C is connected to the ground potential, and the other end is connected to the input end of the secondary current on-duty ratio detection circuit 114.
 位相制御式調光器2は、前述した図11に示す構成と同様である。交流電源1から出力された交流電圧は位相制御式調光器2により位相制御され、位相制御後の交流電圧が全波整流回路101により全波整流されて1次巻線119Aに印加される。 The phase control dimmer 2 has the same configuration as that shown in FIG. The AC voltage output from the AC power source 1 is phase-controlled by the phase control dimmer 2, and the AC voltage after phase control is full-wave rectified by the full-wave rectifier circuit 101 and applied to the primary winding 119A.
 スイッチング素子109をオンとすると、1次巻線119Aに流れる1次電流が徐々に増加し、発生する磁束によりトランス119のコアが磁化され、コアにエネルギーが蓄積される。そして、スイッチング素子109をオフとすると、エネルギーが開放されて、2次巻線119Bに流れる2次電流が立ち上がった後、徐々に減少する。 When the switching element 109 is turned on, the primary current flowing through the primary winding 119A gradually increases, and the core of the transformer 119 is magnetized by the generated magnetic flux, and energy is accumulated in the core. When the switching element 109 is turned off, the energy is released and the secondary current flowing in the secondary winding 119B rises and then gradually decreases.
 1次電流検出回路110は、スイッチング素子109に流れる1次電流を検出する回路であり、検出電圧信号を電圧比較回路108に出力すると共に、1次平均電流検出回路111にも出力する。 The primary current detection circuit 110 is a circuit that detects a primary current flowing through the switching element 109, and outputs a detection voltage signal to the voltage comparison circuit 108 and also to the primary average current detection circuit 111.
 1次電流検出回路110の一構成例を図2に示す。図2に示す1次電流検出回路110は、スイッチング素子109のソースに一端が接続されて他端がグランド電位に接続される電流検出用抵抗R110と、電流検出用抵抗110により電流・電圧変換された電圧を増幅させて検出電圧信号として出力するバッファ回路110Aから構成される。 A configuration example of the primary current detection circuit 110 is shown in FIG. The primary current detection circuit 110 shown in FIG. 2 is subjected to current / voltage conversion by a current detection resistor R110 having one end connected to the source of the switching element 109 and the other end connected to the ground potential, and the current detection resistor 110. The buffer circuit 110A outputs the detected voltage signal as a detected voltage signal.
 1次平均電流検出回路111は、1次電流検出回路110により検出された1次電流を所定のサンプリング時間ごとに平均化し、その平均結果を検出電圧信号として出力する回路である。 The primary average current detection circuit 111 is a circuit that averages the primary current detected by the primary current detection circuit 110 every predetermined sampling time and outputs the average result as a detection voltage signal.
 1次平均電流検出回路111の一構成例を図3に示す。図3に示す1次平均電流検出回路111は、入力電圧を積分する積分回路として構成され、抵抗R111及びR112と、コンデンサC111と、オペアンプOP111から構成される。 An example of the configuration of the primary average current detection circuit 111 is shown in FIG. The primary average current detection circuit 111 shown in FIG. 3 is configured as an integration circuit that integrates an input voltage, and includes resistors R111 and R112, a capacitor C111, and an operational amplifier OP111.
 制御基準電圧出力回路113は、分圧回路102により分圧された全波整流回路101の出力電圧を入力され、入力された電圧に応じた制御基準電圧を出力する回路である。 The control reference voltage output circuit 113 is a circuit that receives the output voltage of the full-wave rectifier circuit 101 divided by the voltage dividing circuit 102 and outputs a control reference voltage corresponding to the input voltage.
 1次制御基準電圧生成回路112は、制御基準電圧出力回路113から出力された制御基準電圧と、1次平均電流検出回路111から出力された検出電圧を比較することにより、1次制御基準電圧を生成して出力する回路である。 The primary control reference voltage generation circuit 112 compares the control reference voltage output from the control reference voltage output circuit 113 with the detection voltage output from the primary average current detection circuit 111 to obtain the primary control reference voltage. A circuit that generates and outputs.
 2次電流オン期間検出回路114は、2次電流が流れる期間(2次電流オン期間)のスイッチング周期に占める比率である2次電流オンデューティ比を検出する回路であり、検出信号を第1乗算回路115へ出力する。 The secondary current on-period detection circuit 114 is a circuit that detects a secondary current on-duty ratio that is a ratio of a period in which the secondary current flows (secondary current on period) to a switching cycle, and firstly multiplies the detection signal by the first multiplication. Output to the circuit 115.
 2次電流オン期間検出回路114の一構成例を図4に示す。図4に示す2次電流オン期間検出回路114は、入力端が補助巻線119Cの一端に接続される波形整形回路114Aと、基準電圧源114Bを備えている。 An example of the configuration of the secondary current on period detection circuit 114 is shown in FIG. The secondary current on period detection circuit 114 shown in FIG. 4 includes a waveform shaping circuit 114A whose input end is connected to one end of the auxiliary winding 119C, and a reference voltage source 114B.
 スイッチング素子109がオンとなると、1次電流が徐々に増加し、スイッチング素子109がオフとなると、2次電流が立ち上がって徐々に減少する。2次電流が流れている期間は補助巻線119Cに電圧が発生する。2次電流が流れて補助巻線119Cの電圧が発生している期間は補助巻線電圧が基準電圧源114Bによる基準電圧以上となり、波形整形回路114Aは、これを検出している間はLowレベルの出力電圧V114を出力する。そして、2次電流がゼロとなると、補助巻線電圧が低下し始め、基準電圧を下回る。これを波形整形回路114Aが検出すると、波形整形回路114Aは出力電圧V114をHighレベルとして出力する。即ち、2次電流のオンデューティ比がパルス電圧信号として検出される。 When the switching element 109 is turned on, the primary current gradually increases, and when the switching element 109 is turned off, the secondary current rises and gradually decreases. During the period when the secondary current is flowing, a voltage is generated in the auxiliary winding 119C. During the period when the secondary current flows and the voltage of the auxiliary winding 119C is generated, the auxiliary winding voltage becomes equal to or higher than the reference voltage by the reference voltage source 114B, and the waveform shaping circuit 114A is at the low level while detecting this. Output voltage V114. When the secondary current becomes zero, the auxiliary winding voltage starts to decrease and falls below the reference voltage. When the waveform shaping circuit 114A detects this, the waveform shaping circuit 114A outputs the output voltage V114 as a high level. That is, the on-duty ratio of the secondary current is detected as a pulse voltage signal.
 第1乗算回路115は、1次制御基準電圧生成回路112により生成された1次制御基準電圧に対して2次電流オンデューティ比検出回路114により検出された2次電流オンデューティ比を乗算する回路である。 The first multiplication circuit 115 multiplies the primary control reference voltage generated by the primary control reference voltage generation circuit 112 by the secondary current on duty ratio detected by the secondary current on duty ratio detection circuit 114. It is.
 第1乗算回路115の一構成例を図5に示す。図5に示す第1乗算回路115は、反転回路115Aと、スイッチ115B及び115Cと、平滑回路115Dを備えている。スイッチ115Bとスイッチ115Cは、1次制御基準電圧生成回路112の出力端とグランド電位との間に直列接続され、スイッチ115Bと115Cの接続点は平滑回路115Dの入力端に接続される。 One configuration example of the first multiplication circuit 115 is shown in FIG. The first multiplication circuit 115 shown in FIG. 5 includes an inverting circuit 115A, switches 115B and 115C, and a smoothing circuit 115D. The switches 115B and 115C are connected in series between the output terminal of the primary control reference voltage generation circuit 112 and the ground potential, and the connection point between the switches 115B and 115C is connected to the input terminal of the smoothing circuit 115D.
 2次電流オンデューティ比検出回路114の出力は反転回路115Aにより反転され、その反転結果によりスイッチ115Bがスイッチングされる。また、2次電流オンデューティ比検出回路114の出力によりスイッチ115Cがスイッチングされる。このようなスイッチングにより、平滑回路115Dの出力端から1次制御基準電圧と2次電流オンデューティ比の乗算結果である電圧信号が出力される。 The output of the secondary current on-duty ratio detection circuit 114 is inverted by the inversion circuit 115A, and the switch 115B is switched according to the inversion result. The switch 115C is switched by the output of the secondary current on-duty ratio detection circuit 114. By such switching, a voltage signal that is a result of multiplication of the primary control reference voltage and the secondary current on-duty ratio is output from the output terminal of the smoothing circuit 115D.
 エラーアンプ116は、第1乗算回路115の出力と基準電圧源117による第1基準電圧の誤差を増幅する回路である。 The error amplifier 116 is a circuit that amplifies an error between the output of the first multiplier circuit 115 and the first reference voltage caused by the reference voltage source 117.
 第2乗算回路118は、分圧回路102により分圧された全波整流回路101の出力電圧に対してエラーアンプ116の出力を乗算し、乗算結果を第2基準電圧として電圧比較回路108に出力する回路である。 The second multiplication circuit 118 multiplies the output voltage of the full-wave rectification circuit 101 divided by the voltage dividing circuit 102 by the output of the error amplifier 116, and outputs the multiplication result to the voltage comparison circuit 108 as a second reference voltage. Circuit.
 図2に示すように、電圧比較回路108の非反転入力端子には1次電流検出回路110から出力される検出電圧が入力され、電圧比較回路108の反転入力端子には第2乗算回路118から出力される第2基準電圧が入力される。電圧比較回路108の出力端にはRSフリップフロップ106のセット端子が接続される。 As shown in FIG. 2, the detection voltage output from the primary current detection circuit 110 is input to the non-inverting input terminal of the voltage comparison circuit 108, and the second multiplication circuit 118 is input to the inverting input terminal of the voltage comparison circuit 108. The output second reference voltage is input. The set terminal of the RS flip-flop 106 is connected to the output terminal of the voltage comparison circuit 108.
 発振回路105は、発振パルスをRSフリップフロップ106のリセット端子に出力する回路であり、全波整流回路101の出力電圧(即ち、入力電圧Vin)に応じて可変とした周波数の発振パルスを出力する。ここでは、入力電圧Vinが高くなる程、周波数を高くなるようにしている。これは、仮に一定の周波数とした場合、入力電圧が高くなると1次電流が電圧に応じて大きくなり、出力電流のリップルが大きくなるからである。また、スイッチング電源から放射されるノイズが大きくなり、ノイズ対策部品が多く必要となってしまうからである。特に定格出力が低い10Wクラス以下の電源装置では、製品自体が小型で安価なため、ノイズ対策部品を増やすことは難しい。 The oscillation circuit 105 is a circuit that outputs an oscillation pulse to the reset terminal of the RS flip-flop 106, and outputs an oscillation pulse having a frequency that is variable according to the output voltage (that is, the input voltage Vin) of the full-wave rectification circuit 101. . Here, the higher the input voltage Vin, the higher the frequency. This is because if the frequency is constant, the primary current increases according to the voltage when the input voltage increases, and the ripple of the output current increases. In addition, noise radiated from the switching power supply increases, and many noise countermeasure components are required. In particular, in a power supply device with a rated output of 10 W or less, it is difficult to increase the number of noise countermeasure components because the product itself is small and inexpensive.
 RSフリップフロップ106のQバー出力端子は、ゲートドライバ107の入力端に接続される。ゲートドライバ107の出力端は、スイッチング素子109のゲートに接続される。 The Q bar output terminal of the RS flip-flop 106 is connected to the input terminal of the gate driver 107. The output terminal of the gate driver 107 is connected to the gate of the switching element 109.
 発振回路105の出力がHighレベルとなると、RSフリップフロップ106がリセットされ、スイッチング素子109はゲートドライバ107によりオンとされる。その後、1次電流が増加してゆき、第2基準電圧に対応する電流値に1次電流が到達すると、電圧比較回路108の出力によりRSフリップフロップがセットされ、スイッチング素子109はゲートドライバ107によりオフとされる。その後、再び発振回路105のHighレベル出力によりスイッチング素子109がオンとされる。このようにして、1次電流のピーク値が制御される。 When the output of the oscillation circuit 105 becomes a high level, the RS flip-flop 106 is reset, and the switching element 109 is turned on by the gate driver 107. After that, when the primary current increases and the primary current reaches the current value corresponding to the second reference voltage, the RS flip-flop is set by the output of the voltage comparison circuit 108, and the switching element 109 is controlled by the gate driver 107. It is turned off. Thereafter, the switching element 109 is turned on again by the high level output of the oscillation circuit 105. In this way, the peak value of the primary current is controlled.
 このように、本実施形態では、分圧回路102により分圧された全波整流回路101の出力電圧に基づいて基準電圧生成回路132が第2基準電圧を生成し、生成された第2基準電圧に対応する電流値に一致するよう1次電流のピーク値が1次ピーク電流制御回路131により制御される。これにより、入力電圧Vinが高くなった場合に、1次電流のピーク値を増加させ、スイッチング電源回路10に流れ込む平均入力電流Iinが減少することを抑え、平均入力電流Iinをほぼ一定に保持することが可能となる。従って、位相制御式調光器2内のトライアックTri1に流れる電流が保持電流を下回ることを抑え、トライアックTri1のオフによる調光器の誤動作を抑制できる。これにより、LEDアレイ15のチラツキの発生を抑えることができる。図6に入力電圧Vin(上段)と本実施形態による平均入力電流Iin(中段)の波形例を示すが、平均入力電流Iinがほぼ一定に保持されている。 As described above, in the present embodiment, the reference voltage generation circuit 132 generates the second reference voltage based on the output voltage of the full-wave rectification circuit 101 divided by the voltage dividing circuit 102, and the generated second reference voltage. The peak value of the primary current is controlled by the primary peak current control circuit 131 so as to match the current value corresponding to. As a result, when the input voltage Vin increases, the peak value of the primary current is increased, the average input current Iin flowing into the switching power supply circuit 10 is suppressed from decreasing, and the average input current Iin is held substantially constant. It becomes possible. Therefore, it is possible to suppress the current flowing in the triac Tri1 in the phase control dimmer 2 from being lower than the holding current, and to suppress malfunction of the dimmer due to the triac Tri1 being turned off. Thereby, generation | occurrence | production of the flicker of the LED array 15 can be suppressed. FIG. 6 shows a waveform example of the input voltage Vin (upper stage) and the average input current Iin (middle stage) according to the present embodiment, and the average input current Iin is held substantially constant.
 また、位相制御により位相制御式調光器2内のトライアックTri1がオンとなった際は、調光器内のコンデンサC1及びインダクタL1(図11)と、スイッチング電源回路内の容量、インダクタ、抵抗とで共振現象が生じるため、トライアックTri1に流れる電流が振動により保持電流を下回り易くなり、調光器の誤動作が生じ易い。 Further, when the triac Tri1 in the phase control dimmer 2 is turned on by phase control, the capacitor C1 and the inductor L1 (FIG. 11) in the dimmer and the capacitance, inductor, resistance in the switching power supply circuit Therefore, the current flowing through the triac Tri1 is likely to be lower than the holding current due to vibration, and the malfunction of the dimmer is likely to occur.
 そこで、本実施形態に係るスイッチング電源回路には、位相角検出回路103と、電流引抜回路104も備えられている。位相角検出回路103は、全波整流回路101の出力電圧が立ち上がるタイミングの位相角(即ち、位相制御式調光器2による立ち上がりの位相角)を検出する回路である。電流引抜回路104は、位相角検出回路103により検出された立ち上がりの位相角に応じた引抜き電流量で、位相制御式調光器2内のトライアックTri1がオンとなった瞬間から所定時間(例えば数百μs)だけ全波整流回路101と1次巻線119Aの間に設けられた電源供給ラインL1から電流を引抜く。立ち上がりの位相角と引抜き電流量との関係の一例を図7に示す。 Therefore, the switching power supply circuit according to the present embodiment is also provided with a phase angle detection circuit 103 and a current drawing circuit 104. The phase angle detection circuit 103 is a circuit that detects the phase angle at which the output voltage of the full-wave rectifier circuit 101 rises (that is, the phase angle of the rise by the phase control dimmer 2). The current extraction circuit 104 is an extraction current amount corresponding to the rising phase angle detected by the phase angle detection circuit 103, and a predetermined time (for example, several times) from the moment when the triac Tri1 in the phase control dimmer 2 is turned on. The current is drawn from the power supply line L1 provided between the full-wave rectifier circuit 101 and the primary winding 119A for only 100 μs). An example of the relationship between the rising phase angle and the amount of extraction current is shown in FIG.
 図7に示すように、位相角が90°以上の場合は90°より小さい場合に比べて引抜き電流量を増やしている(図7の例では20mAに比べて30mA)。これは、位相角が90°以上になると入力電圧が下がってくるため、調光器がオンとなった瞬間に発生するリンギングにより、トライアックTri1がオフし易くなるためである。また、入力電圧が下がってくると、不図示のフィルタ等の回路上のコンデンサに蓄えられているエネルギーからスイッチング素子109に電流を供給するようになり、調光器2からスイッチング電源回路10への入力電流が減ってしまい、トライアックTri1がオフし易くなるためである。 As shown in FIG. 7, when the phase angle is 90 ° or more, the amount of extraction current is increased compared to the case where it is smaller than 90 ° (in the example of FIG. 7, 30 mA compared to 20 mA). This is because the triac Tri1 is easily turned off by ringing that occurs at the moment when the dimmer is turned on because the input voltage is lowered when the phase angle is 90 ° or more. Further, when the input voltage decreases, a current is supplied to the switching element 109 from the energy stored in a capacitor on a circuit (not shown) such as a filter, and the current from the dimmer 2 to the switching power supply circuit 10 is increased. This is because the input current decreases and the triac Tri1 is easily turned off.
 このような構成により、位相制御式調光器2内のトライアックTri1がオンとなった際は、調光器内のコンデンサC1及びインダクタL1に蓄えられたエネルギーを電流の引抜きにより放電できるので、共振現象の発生を抑えることができる。 With such a configuration, when the triac Tri1 in the phase control dimmer 2 is turned on, the energy stored in the capacitor C1 and the inductor L1 in the dimmer can be discharged by drawing current. Occurrence of the phenomenon can be suppressed.
 また、上述したように、発振回路105の発振周波数、即ちスイッチング素子109のスイッチング周波数は、全波整流回路101の出力電圧、即ち入力電圧Vinに応じて可変としている。そこで、1次平均電流検出回路111における平均化のサンプリング時間をスイッチング周波数に応じて可変とすることが望ましい。特に入力電圧Vinが高い場合にスイッチング周波数は高くなるので、サンプリング時間を短くすることで早めに1次電流ピークを制御することができ、制御の遅れによる平均入力電流Iinの変動を抑えることができる。従って、より平均入力電流Iinを一定に保持することが可能となる。 As described above, the oscillation frequency of the oscillation circuit 105, that is, the switching frequency of the switching element 109 is variable according to the output voltage of the full-wave rectification circuit 101, that is, the input voltage Vin. Therefore, it is desirable that the averaging sampling time in the primary average current detection circuit 111 is variable according to the switching frequency. In particular, when the input voltage Vin is high, the switching frequency becomes high, so that the primary current peak can be controlled early by shortening the sampling time, and fluctuations in the average input current Iin due to control delay can be suppressed. . Therefore, the average input current Iin can be kept constant.
<第2実施形態>
 本発明の第2実施形態に係るスイッチング電源回路の構成を図8に示す。図8に示すスイッチング電源回路20の構成の第1実施形態(図1)との相違点は、入力電流制御回路201をさらに備えていることである。
<Second Embodiment>
FIG. 8 shows the configuration of a switching power supply circuit according to the second embodiment of the present invention. The difference of the configuration of the switching power supply circuit 20 shown in FIG. 8 from the first embodiment (FIG. 1) is that an input current control circuit 201 is further provided.
 入力電流制御回路201は、調光器2がオンした瞬間からオフするまでの期間、電源供給ラインL1から電流を引抜くことにより、入力電流を制御する回路である。 The input current control circuit 201 is a circuit that controls the input current by drawing current from the power supply line L1 during the period from the moment when the dimmer 2 is turned on until it is turned off.
 入力電流制御回路201の一構成例を図9に示す。図9に示す入力電流制御回路201は、電源供給ラインL1からの電流引抜き制御用であるスイッチング素子201Aと、電流検出用抵抗201Bと、バッファ回路201Cと、基準電圧源201Dと、コンパレータ201Eと、発振器201Fと、RSフリップフロップ201Gと、ゲートドライバ201Hを備えている。入力電流制御回路201は、基準電圧源201Dによる基準電圧に対応する電流量で繰り返し電流を電源供給ラインL1から引抜く。 An example of the configuration of the input current control circuit 201 is shown in FIG. An input current control circuit 201 shown in FIG. 9 includes a switching element 201A for current extraction control from the power supply line L1, a current detection resistor 201B, a buffer circuit 201C, a reference voltage source 201D, a comparator 201E, An oscillator 201F, an RS flip-flop 201G, and a gate driver 201H are provided. The input current control circuit 201 repeatedly draws a current from the power supply line L1 with a current amount corresponding to the reference voltage by the reference voltage source 201D.
 これにより、1次ピーク電流制御回路131により制御される1次電流のピーク値を低くすることが可能となるので、整流平滑回路120におけるコンデンサの容量を小さくしたとしても、LEDアレイ15に出力される出力電流Ioutのリップルを小さくできる。従って、スイッチング電源回路の小型化、低コスト化が可能となる。 As a result, the peak value of the primary current controlled by the primary peak current control circuit 131 can be lowered. Therefore, even if the capacitance of the capacitor in the rectifying and smoothing circuit 120 is reduced, the peak value is output to the LED array 15. The ripple of the output current Iout can be reduced. Accordingly, the switching power supply circuit can be reduced in size and cost.
<第3実施形態>
 本発明の第3実施形態に係るスイッチング電源回路の構成を図10に示す。図10に示すスイッチング電源回路30は、電流引抜き及び入力電流制御回路301を備えていることを特徴とする。
<Third Embodiment>
FIG. 10 shows a configuration of a switching power supply circuit according to the third embodiment of the present invention. A switching power supply circuit 30 shown in FIG. 10 includes a current extraction and input current control circuit 301.
 電流引抜き及び入力電流制御回路301は、第1実施形態で説明したように、位相角検出回路103により検出される位相角に応じた電流量にて位相制御式調光器2内のトライアックTri1がオンとなった際に電流を引抜く動作を行うと共に、第2実施形態で説明したように、調光器2がオンした瞬間からオフするまでの期間、電源供給ラインL1から電流を引き抜いて入力電流を制御する。 As described in the first embodiment, the current extraction and input current control circuit 301 is configured so that the triac Tri1 in the phase control dimmer 2 has a current amount corresponding to the phase angle detected by the phase angle detection circuit 103. In addition to performing an operation of drawing current when turned on, as described in the second embodiment, the current is drawn and input from the power supply line L1 during the period from when the dimmer 2 is turned on until it is turned off. Control the current.
 電流引抜き及び入力電流制御回路301は、例えば図9に示す電流を引抜く回路を位相角に応じた電流引抜き用と入力電流制御用に共用しているので、スイッチング電源回路30の小型化、低コスト化を図ることができる。 The current extraction and input current control circuit 301 shares, for example, a circuit for extracting current shown in FIG. 9 for current extraction and input current control in accordance with the phase angle. Cost can be reduced.
<第4実施形態>
 次に、本発明の第4実施形態について説明する。第1~第3実施形態では、全波整流回路101より位相角が90°以上の電圧が出力された際、1次巻線119Aに流れる1次電流のピーク値が減ってくることが予想される。より詳細には、スイッチング電源回路を小型化する場合、トランスの小型化が必要となるが、そのためにはスイッチング素子109のスイッチング周波数範囲を上げる必要がある。位相角が90°以上となって入力電圧が小さくなると、スイッチング周波数が低くなるが、スイッチング周波数範囲の下限より低くはできないため、1次電流のピーク値が減ってくる。
<Fourth embodiment>
Next, a fourth embodiment of the present invention will be described. In the first to third embodiments, when a voltage having a phase angle of 90 ° or more is output from the full-wave rectifier circuit 101, the peak value of the primary current flowing through the primary winding 119A is expected to decrease. The More specifically, when the switching power supply circuit is downsized, the transformer needs to be downsized. For this purpose, it is necessary to increase the switching frequency range of the switching element 109. When the phase angle is 90 ° or more and the input voltage is reduced, the switching frequency is lowered. However, since it cannot be lower than the lower limit of the switching frequency range, the peak value of the primary current is reduced.
 そこで、本実施形態では、位相角が90°以上から平均入力電流を増加させるように制御することにより、調光器内のトライアックに流れる電流が保持電流を下回って調光器が誤動作することを抑制できる。より具体的には、例えば、電流引抜回路104の引抜き電流量を増加させたり、1次制御基準電圧生成回路112から得られる1次制御基準電圧を上げてゆくことにより1次電流のピーク値を増加させればよい。本実施形態による平均入力電流Iinの波形例を図6の下段に示す。 Therefore, in this embodiment, by controlling so that the average input current is increased from the phase angle of 90 ° or more, the current flowing through the triac in the dimmer is lower than the holding current, and the dimmer malfunctions. Can be suppressed. More specifically, for example, the peak value of the primary current is increased by increasing the extraction current amount of the current extraction circuit 104 or increasing the primary control reference voltage obtained from the primary control reference voltage generation circuit 112. Increase it. A waveform example of the average input current Iin according to the present embodiment is shown in the lower part of FIG.
 以上、本発明の一実施形態について説明したが、本発明に係るLED照明装置の具体例としては、LED電球、シーリングライト、及び直管型ライト等を挙げることができる。 Although one embodiment of the present invention has been described above, specific examples of the LED lighting device according to the present invention include an LED bulb, a ceiling light, and a straight tube light.
   1 交流電源
   2 位相制御式調光器
   10 スイッチング電源回路
   15 LEDアレイ
   101 全波整流回路
   102 分圧回路
   103 位相角検出回路
   104 電流引抜回路
   105 発振回路
   106 RSフリップフロップ
   107 ゲートドライバ
   108 電圧比較回路
   109 スイッチング素子
   110 1次電流検出回路
   111 1次平均電流検出回路
   112 1次制御基準電圧生成回路
   113 制御基準電圧出力回路
   114 2次電流オンデューティ比検出回路
   115 第1乗算回路
   116 エラーアンプ
   117 基準電圧源
   118 第2乗算回路
   119 トランス
   119A 1次巻線
   119B 2次巻線
   119C 補助巻線
   120 整流平滑回路
   131 1次ピーク電流制御回路
   132 基準電圧生成回路
   L1 電源供給ライン
   R11 抵抗
   201 入力電流制御回路
   301 電流引抜き及び入力電流制御回路
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Phase control type dimmer 10 Switching power supply circuit 15 LED array 101 Full wave rectifier circuit 102 Voltage divider circuit 103 Phase angle detection circuit 104 Current drawing circuit 105 Oscillation circuit 106 RS flip-flop 107 Gate driver 108 Voltage comparison circuit 109 Switching element 110 Primary current detection circuit 111 Primary average current detection circuit 112 Primary control reference voltage generation circuit 113 Control reference voltage output circuit 114 Secondary current on-duty ratio detection circuit 115 First multiplication circuit 116 Error amplifier 117 Reference voltage source 118 Second multiplying circuit 119 Transformer 119A Primary winding 119B Secondary winding 119C Auxiliary winding 120 Rectifier smoothing circuit 131 Primary peak current control circuit 132 Reference voltage generating circuit L1 Power supply Supply line R11 resistor 201 Input current control circuit 301 current sink and the input current control circuit

Claims (8)

  1.  位相制御式調光器を介して交流電源と接続可能な整流回路と、
     前記整流回路から電圧が供給される1次巻線と、2次巻線とを有するトランスと、
     前記2次巻線と負荷の間に接続される整流平滑回路と、
     前記1次巻線に接続されるスイッチング素子と、を備えたフライバック方式のスイッチング電源回路であって、
     前記整流回路の出力電圧を分圧する分圧回路と、
     前記分圧回路により分圧された前記整流回路の出力電圧に基づいて基準電圧を生成する基準電圧生成回路と、
     前記基準電圧生成回路により生成された基準電圧に対応する電流値に一致するよう前記スイッチング素子をスイッチングして1次電流のピーク値を制御する1次ピーク電流制御回路と、
     を備えたことを特徴とするスイッチング電源回路。
    A rectifier circuit connectable to an AC power supply via a phase control dimmer;
    A transformer having a primary winding to which a voltage is supplied from the rectifier circuit and a secondary winding;
    A rectifying / smoothing circuit connected between the secondary winding and a load;
    A switching device connected to the primary winding, and a flyback switching power supply circuit comprising:
    A voltage dividing circuit for dividing the output voltage of the rectifier circuit;
    A reference voltage generating circuit that generates a reference voltage based on the output voltage of the rectifier circuit divided by the voltage dividing circuit;
    A primary peak current control circuit that controls the peak value of the primary current by switching the switching element so as to coincide with the current value corresponding to the reference voltage generated by the reference voltage generation circuit;
    A switching power supply circuit comprising:
  2.  前記基準電圧生成回路は、
     前記分圧回路により分圧された前記整流回路の出力電圧に応じた制御基準電圧を出力する制御基準電圧出力回路と、
     1次電流の平均を検出する1次平均電流検出回路と、
     前記制御基準電圧出力回路の出力と前記1次平均電流検出回路の検出出力とを比較することにより1次制御基準電圧を生成する1次制御基準電圧生成回路と、
     2次電流のオンデューティ比を検出する2次電流オンデューティ比検出回路と、
     前記1次制御基準電圧生成回路の出力に対して前記2次電流オンデューティ比検出回路の出力を乗算する第1乗算回路と、
     基準電圧源と、
     前記第1乗算回路の乗算結果と前記基準電圧源による基準電圧の誤差を増幅するエラーアンプと、
     前記分圧回路により分圧された前記整流回路の出力電圧に対して前記エラーアンプの出力を乗算して乗算結果を前記基準電圧として出力する第2乗算回路と、
     を備えたことを特徴とする請求項1に記載のスイッチング電源回路。
    The reference voltage generation circuit includes:
    A control reference voltage output circuit that outputs a control reference voltage corresponding to the output voltage of the rectifier circuit divided by the voltage divider circuit;
    A primary average current detection circuit for detecting an average of primary currents;
    A primary control reference voltage generation circuit that generates a primary control reference voltage by comparing the output of the control reference voltage output circuit with the detection output of the primary average current detection circuit;
    A secondary current on-duty ratio detection circuit for detecting an on-duty ratio of the secondary current;
    A first multiplication circuit that multiplies the output of the primary control reference voltage generation circuit by the output of the secondary current on-duty ratio detection circuit;
    A reference voltage source;
    An error amplifier for amplifying an error between a multiplication result of the first multiplication circuit and a reference voltage by the reference voltage source;
    A second multiplier circuit that multiplies the output voltage of the rectifier circuit divided by the voltage divider circuit by the output of the error amplifier and outputs a multiplication result as the reference voltage;
    The switching power supply circuit according to claim 1, further comprising:
  3.  前記整流回路の出力電圧の立ち上がりの位相角を検出する位相角検出回路と、
     前記位相角検出回路により検出された位相角に応じた電流量にて前記位相制御式調光器がオンとなった瞬間に、前記整流回路から前記1次巻線へ電圧を供給するための電源供給ラインから電流を引抜く電流引抜回路と、を備えたことを特徴とする請求項1又は請求項2に記載のスイッチング電源回路。
    A phase angle detection circuit for detecting a phase angle of a rise of the output voltage of the rectifier circuit;
    A power supply for supplying voltage from the rectifier circuit to the primary winding at the moment when the phase control dimmer is turned on with an amount of current corresponding to the phase angle detected by the phase angle detection circuit. The switching power supply circuit according to claim 1, further comprising: a current drawing circuit that draws a current from the supply line.
  4.  前記整流回路から前記1次巻線へ電圧を供給するための電源供給ラインから電流を引抜くことにより入力電流を制御する入力電流制御回路を備えたことを特徴とする請求項1~請求項3のいずれか1項に記載のスイッチング電源回路。 4. An input current control circuit for controlling an input current by drawing a current from a power supply line for supplying a voltage from the rectifier circuit to the primary winding. The switching power supply circuit according to any one of the above.
  5.  前記整流回路の出力電圧の立ち上がりの位相角を検出する位相角検出回路と、
     前記位相角検出回路により検出された位相角に応じた電流量にて前記位相制御式調光器がオンとなった瞬間に、前記整流回路から前記1次巻線へ電圧を供給するための電源供給ラインから電流を引抜く電流引抜制御を行うと共に、前記電源供給ラインから電流を引抜くことにより入力電流を制御する電流引抜及び入力電流制御回路と、を備え、
     前記電流引抜及び入力電流制御回路は、電流を引抜く回路を前記電流引抜制御用と前記入力電流の制御用で共用することを特徴とする請求項1~請求項4のいずれか1項に記載のスイッチング電源回路。
    A phase angle detection circuit for detecting a phase angle of a rise of the output voltage of the rectifier circuit;
    A power supply for supplying a voltage from the rectifier circuit to the primary winding at the moment when the phase control dimmer is turned on with an amount of current corresponding to the phase angle detected by the phase angle detection circuit. A current drawing control for drawing current from a supply line, and a current drawing and input current control circuit for controlling an input current by drawing current from the power supply line, and
    The current drawing / input current control circuit shares a circuit for drawing a current for controlling the current drawing and for controlling the input current, according to any one of claims 1 to 4. Switching power supply circuit.
  6.  前記整流回路の出力電圧の位相角が90°以上から、平均入力電流を増加させるように制御することを特徴とする請求項1~請求項5のいずれか1項に記載のスイッチング電源回路。 The switching power supply circuit according to any one of claims 1 to 5, wherein the average input current is controlled to increase from a phase angle of an output voltage of the rectifier circuit of 90 ° or more.
  7.  前記整流回路の出力電圧に応じて前記スイッチング素子のスイッチング周波数は可変であり、
     前記スイッチング周波数に応じて前記1次平均電流検出回路の平均化するサンプリング時間は可変であることを特徴とする請求項2に記載のスイッチング電源回路。
    The switching frequency of the switching element is variable according to the output voltage of the rectifier circuit,
    The switching power supply circuit according to claim 2, wherein a sampling time for averaging of the primary average current detection circuit is variable in accordance with the switching frequency.
  8.  請求項1~請求項7のいずれか1項に記載のスイッチング電源回路と、前記スイッチング電源回路の出力側に接続されるLED負荷と、を備えたことを特徴とするLED照明装置。 8. An LED illumination device comprising: the switching power supply circuit according to claim 1; and an LED load connected to an output side of the switching power supply circuit.
PCT/JP2013/063135 2012-05-17 2013-05-10 Switching power supply circuit and led lighting device WO2013172259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012113174 2012-05-17
JP2012-113174 2012-05-17

Publications (1)

Publication Number Publication Date
WO2013172259A1 true WO2013172259A1 (en) 2013-11-21

Family

ID=49583665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063135 WO2013172259A1 (en) 2012-05-17 2013-05-10 Switching power supply circuit and led lighting device

Country Status (1)

Country Link
WO (1) WO2013172259A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323899A (en) * 2014-08-05 2016-02-10 宜昌普泰克电力科技有限公司 Voltage-reducing energy-saving apparatus for gas lamp
CN109287050A (en) * 2018-10-26 2019-01-29 株洲市众普森技术有限公司 A kind of output and light adjusting circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069506A (en) * 2010-08-23 2012-04-05 Sharp Corp Led drive circuit and led illumination lamp using this
JP2012085486A (en) * 2010-10-14 2012-04-26 Steady Design Ltd Dc power supply circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069506A (en) * 2010-08-23 2012-04-05 Sharp Corp Led drive circuit and led illumination lamp using this
JP2012085486A (en) * 2010-10-14 2012-04-26 Steady Design Ltd Dc power supply circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323899A (en) * 2014-08-05 2016-02-10 宜昌普泰克电力科技有限公司 Voltage-reducing energy-saving apparatus for gas lamp
CN109287050A (en) * 2018-10-26 2019-01-29 株洲市众普森技术有限公司 A kind of output and light adjusting circuit

Similar Documents

Publication Publication Date Title
US8749174B2 (en) Load current management circuit
US9232606B2 (en) Switch-mode power supply, control circuit and associated dimming method
US8872444B2 (en) Lighting device for solid-state light source and illumination apparatus including same
Hu et al. A new current-balancing method for paralleled LED strings
US9729068B2 (en) Switching mode converter
US9485819B2 (en) Single stage LED driver system, control circuit and associated control method
US8680783B2 (en) Bias voltage generation using a load in series with a switch
TWI633807B (en) Switching power supply system, control circuit and associated control method
US9131568B2 (en) Light-emitting diode driving apparatus and semiconductor device
JP5761301B2 (en) Lighting device and lighting apparatus
US9184661B2 (en) Power conversion with controlled capacitance charging including attach state control
KR20120056162A (en) Led driving apparatus
JP6403042B2 (en) Power supply apparatus and lighting apparatus using the same
JP6391429B2 (en) Switching converter, control circuit thereof, control method, lighting apparatus using the same, and electronic apparatus
US10492254B2 (en) Power supply circuit and LED driving circuit
EP2819292B1 (en) Dc power supply circuit
WO2013128509A1 (en) Dc power supply circuit
US9723668B2 (en) Switching converter and lighting device using the same
WO2013172259A1 (en) Switching power supply circuit and led lighting device
WO2016104345A1 (en) Non-isolated power supply device
KR101496819B1 (en) Single stage forward-flyback converter, power supplying apparatus and power suppying apparatus for light emitting diode
KR101367383B1 (en) Ac led dimmer
Wang et al. Design and implementation of a single-stage high-efficacy LED driver with dynamic voltage regulation
KR101029874B1 (en) Ac led dimmer and dimming method thereby
US20150009722A1 (en) Power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791484

Country of ref document: EP

Kind code of ref document: A1