WO2013118541A1 - Tomographic image measurement device - Google Patents

Tomographic image measurement device Download PDF

Info

Publication number
WO2013118541A1
WO2013118541A1 PCT/JP2013/050613 JP2013050613W WO2013118541A1 WO 2013118541 A1 WO2013118541 A1 WO 2013118541A1 JP 2013050613 W JP2013050613 W JP 2013050613W WO 2013118541 A1 WO2013118541 A1 WO 2013118541A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
tomographic image
light beam
optical
Prior art date
Application number
PCT/JP2013/050613
Other languages
French (fr)
Japanese (ja)
Inventor
俊道 青田
康 照井
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2013118541A1 publication Critical patent/WO2013118541A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • G01B9/02028Two or more reference or object arms in one interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/45Multiple detectors for detecting interferometer signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements

Definitions

  • the present invention relates to an optical tomographic image measurement apparatus, and in particular, measures light by dividing light from a light source into signal light and reference light, and optically interfering the signal light and reference light that have passed through the inspection object for detection processing.
  • the present invention relates to an optical tomographic image measurement apparatus that acquires structural information in the depth direction from the surface of a target object.
  • OCT Optical Coherence Tomography
  • the OCT apparatus divides the light emitted from the light source into signal light and reference light, optically interferes with the signal light and the reference light that have passed through the object to be detected, and detects interference light.
  • This is an optical tomographic image measurement apparatus that acquires structural information in the depth direction from the surface of a measurement target object.
  • the above-mentioned OCT measurement methods can be broadly divided into two types: Time domain OCT (TD-OCT) measurement method and Fourier Domain OCT (FD-OCT) measurement method.
  • TD-OCT Time domain OCT
  • FD-OCT Fourier Domain OCT
  • the TD-OCT measurement method is a method of acquiring the interference reflected light intensity distribution corresponding to the position in the depth direction of the measurement object by measuring the interference light intensity while changing the optical path length of the reference light.
  • a typical patent of TD-OCT is shown in Patent Document 1.
  • an interference signal between a signal light and a reference light that has passed through a measurement object is measured by decomposing the signal into a wavelength spectrum, and the measurement signal is Fourier transformed to obtain a position in the depth direction of the measurement object. This is a method of acquiring a corresponding interference reflected light intensity distribution.
  • SD-OCT Spectrum-Domain-OCT
  • the interference light between the reflected or scattered light from the measurement sample and the reference light is dispersed with a spectroscope and an array detector is used to generate the interference signal.
  • This is a method of detecting a spectrum and acquiring an interference reflected light intensity distribution.
  • the other is a method called Swept-Source-OCT (SS-OCT), which uses a light source that instantaneously oscillates a single wavelength and scans the oscillation wavelength temporally.
  • SS-OCT Swept-Source-OCT
  • the interference reflected light intensity distribution is acquired by Fourier-transforming the spectrum of the interference signal obtained by scanning the oscillation wavelength from the light source.
  • Patent Document 2 is cited as an apparatus invention for performing surface profile measurement and optical cross-sectional image capturing by the SS-OCT method.
  • Patent Document 3 is an invention relating to an optical measurement apparatus that measures optical characteristics of a measurement sample using TD-OCT measurement.
  • the present invention discloses an optical measurement apparatus that shortens the measurement time in TD-OCT measurement.
  • the realization method includes photoelectric conversion by providing an optical multiplexer / demultiplexer that divides the reference light in an optical measurement device using light of a short coherent length and a reference light modulation mechanism that performs different modulation on each divided reference light.
  • Information on multiple measurement points with different depths is included in the combined light of the reference light and measurement light incident on the detector, and the optical characteristics of these multiple measurement points are output from the output of the photoelectric converter by the computer.
  • the optical measurement device is configured so that data is calculated.
  • JP-A-4-174345 JP 2007-24677 A Japanese Patent Laid-Open No. 10-267830
  • the measurement range in the optical axis direction of SS-OCT (the distance in the depth direction that can be measured by one wavelength scan) is proportional to the coherent length of the light source.
  • the coherent length of a wavelength scanning laser depends on the wavelength shift that occurs during the data sampling time.
  • the wavelength shift is reduced by reducing the data sampling time.
  • the data sampling time is determined by the time required for sampling in the analog / digital (AD) conversion circuit when converting the analog electric signal of the interference signal detected by the light receiver into a digital signal. Therefore, the data sampling time is finite, and there is a limit to expanding the measurement range in the optical axis direction determined from the data sampling time.
  • the wavelength shift can be reduced and the measurement range can be widened.
  • the wavelength sweep speed is decreased, the measurement time becomes longer.
  • the measurement range in the optical axis direction and the wavelength sweep speed are in a trade-off relationship, and there is a problem in simultaneously reducing the measurement time and expanding the measurement range.
  • the present invention does not require a reference light mirror moving mechanism, enables both shortening of the measurement time and expansion of the depth direction measurement range, and provides a highly sensitive optical tomography measurement apparatus. It is to provide.
  • the optical tomography measuring apparatus has the following configuration.
  • a first light splitting means for splitting the light emitted from the light source into reference light and signal light; an irradiating means for irradiating the sample with the signal light; and a second light splitting the reference light into a plurality of reference light groups.
  • a light splitting means, a third light splitting means for splitting the signal light reflected or scattered from the sample into a plurality of signal light groups, one reference light of the reference light group and one signal of the signal light group A plurality of detectors for detecting an interference signal with light, and a reference light and a signal light forming an interference signal detected by the same detector, wherein the detection from the first dividing means A unit in which a difference between an optical path length through which the reference light has passed to the detector and an optical path length through which the signal light has passed from the first dividing means to the detector is different for each of a plurality of detectors.
  • Optical tomographic image measuring device A unit in which a difference between an optical path length through which the reference light has passed to the detector and an optical path length through
  • the measurement range in the depth direction by a single wavelength scan is expanded, so that a drive system for the reference mirror is not required and measurement can be performed in a short time. Also, the cost of the equipment will be low. In addition, since measurement can be performed for a short time, noise caused by movement of the measurement sample during measurement can be reduced, and optical tomographic measurement can be performed with high sensitivity and high accuracy.
  • 1 shows an embodiment of an optical tomographic imaging apparatus according to the present invention.
  • 1 shows an embodiment of an optical tomographic imaging apparatus according to the present invention (simultaneous measurement of different measurement positions).
  • 1 is an example of an optical tomographic imaging apparatus according to the present invention (preventing light interference between units);
  • the light emitted from the light generation means characterized by instantaneously oscillating a single wavelength and temporally scanning the oscillation wavelength is divided into signal light and reference light. Further, the reference light is divided into a plurality of reference lights (reference light group).
  • the signal light is applied to the sample to be measured, and the signal light scattered or reflected from the sample is divided into a plurality of signal lights (signal light group).
  • the reference light group and the signal light group are optical path bodies that give different optical path lengths for each reference light in the reference light group, or optical paths that give different optical path lengths for each signal light in the signal light group.
  • the signal light group that passes through the body and the signal light group that has passed through the sample is multiplexed by a multiplexing means.
  • the interference light from the combining means is detected by the detecting means.
  • the reflected light intensity distribution corresponding to the depth position of the sample is acquired from the Fourier transform of the wavelength spectrum obtained by detecting the interference signal.
  • Interfering the reference light and the signal light that have passed through the optical path lengths having different lengths means that the presence or absence of cross-sections at different data positions in the depth direction of the sample is measured by the TD-OCT measurement technique.
  • Scanning the transmission wavelength and detecting the light intensity of the interference light continuously measures the presence or absence of cross-sections around different sample positions in the different depth directions using the SS-OCT measurement technique. It corresponds to.
  • FIG. 1 is a schematic configuration diagram of an optical tomographic image measurement apparatus according to an embodiment of the present invention.
  • a light source 1 characterized by instantaneously oscillating a single wavelength and temporally scanning the oscillation wavelength.
  • the light emitted from the light source 1 is divided into signal light LS1 and reference light LR1. It has a light splitting means 2.
  • a wavelength scanning laser constituted by a semiconductor amplifier SOA (semiconductor optical amplifier), a resonator, and a wavelength selection filter
  • a wavelength selection filter for example, a combination of a diffraction grating and a polygon mirror, a combination of a diffraction grating and a polygon mirror, a one using a Fabry-Perot filter, or the like is used.
  • the light splitting means 2 for example, a fiber coupler may be used. More specifically, it is composed of a 1 ⁇ 2 optical fiber coupler, and the light from the light source can be divided into two.
  • the light splitting means 5R for further splitting the reference light LR1 dispersed by the light splitting means 2 into a plurality of reference light groups LR2 is provided.
  • the signal light LS1 dispersed by the light splitting means 2 passes through the probe 6 for guiding the signal light LS1 to the sample 11, and further passes through the collimator lens 12 depending on the sample 11, and is irradiated on the sample 11.
  • the reflected or scattered light LS3 from the measurement sample due to the irradiation of the signal light LS2 from the probe 6 passes through the optical circulator 3 for guiding the reflected or scattered light LS3 to the light detection unit, and further passes through the optical circulator 3.
  • the signal light LS4 passes through the light dividing means 5S that divides the signal light LS4 into a plurality of lights, and becomes the signal light group LS5.
  • a fiber coupler can be used for the light splitting means 5R and 5S. More specifically, the light dividing means 5R is composed of, for example, a 1 ⁇ 3 optical fiber coupler, and divides one reference light into two or more, for example, three reference light groups. Similarly, the light dividing means 5R is composed of, for example, a 1 ⁇ 3 optical fiber coupler, and divides one reference light into two or more, for example, three reference light groups.
  • Each reference light of the reference light group LR2 passes through the optical path bodies 17 having different optical path lengths, and is combined with each signal light of the signal light group LS5 passing through the sample 11 by the optical multiplexing means 7.
  • a fiber coupler can be used as the optical multiplexing means. More specifically, for example, a 2 ⁇ 1 optical fiber coupler can be used as the optical multiplexing means 7 that combines the reference light and the signal light.
  • the combined interference light group LC1 is detected by the light detection means 8D, and the A / D conversion circuit 9 generates a digital wavelength spectrum based on the analog signal obtained from the light detection means 8D.
  • the wavelength spectrum is Fourier transformed by the computer 10 to calculate a reflected light intensity distribution corresponding to the depth position of the sample.
  • the cross section included in the sample 11 can be measured by the reflected light intensity distribution.
  • a combination of an SOA, a resonator, and a wavelength selection filter is used as the light source 1.
  • a combination of a light source having a broad spectrum and a wavelength tunable filter may be used.
  • a supercontinuum light source can be used as the light source having a broad spectrum
  • an FFP (fiber Fabry-Perot) filter can be used as the wavelength tunable filter.
  • the optical path body 17 that gives different optical path lengths to the optical path lengths of the respective reference lights of the reference light group LR2 gives different optical path lengths to the respective reference lights with respect to the optical paths of the reference light group LR2.
  • the optical path lengths of 17 are different (for example, optical fibers having different lengths are used), and the signal light group LS5 passing through the sample 11 has the same optical path length.
  • the configuration is such that different optical path lengths are given to the optical path lengths of the respective reference lights in the reference light group LR2, but a different optical path length may be given to the optical path lengths of the respective signal lights in the signal light group LS5.
  • the optical path lengths of the reference light group LR2 may be the same, and the optical fibers 4 used for the signal light group LS5 may have different lengths in order to provide different optical path lengths for the signal light group LS5. .
  • the length of the optical path of the reference light group LR2 is the same or the length of the signal light group LS5 is the same, but the optical path lengths of the reference light and the signal light that interfere with each other are equal. Or approximately equal. Then, by varying the optical path difference between the reference light and the signal light that interfere with each other, different depth regions of the sample 11 can be observed simultaneously.
  • the interference between the reference light and the signal light that have passed through the optical path lengths having different lengths is performed by measuring the presence / absence of a cross section at a different sample position in the depth direction of the sample, scanning the transmission wavelength, and performing interference
  • the light intensity of light it is possible to continuously detect the presence or absence of cross sections around different sample positions in the different depth directions.
  • the measurement of the cross-sectional direction of the sample 11 can be investigated over a wide range simultaneously in a short time.
  • FIG. 2 is a schematic configuration diagram of an optical tomographic image measuring apparatus having a configuration provided with means for dividing light from the light source 1 into a plurality of units, and is a form using a plurality of units 18 of the first embodiment.
  • the light split by the light splitting means 19 corresponds to the light emitted from the light source 1 of the first embodiment, and is split by the light splitting means 2 into reference light LR1 and signal light LS1.
  • optical tomographic images can be acquired at different measurement positions of the sample.
  • the light splitting means 19 for splitting the light from the light source 1 into a plurality of parts for example, a 1 ⁇ 3 optical fiber coupler can be used. There are two or more light splitting means.
  • FIG. 2 for convenience, there are a plurality of samples, but different positions of the same sample may be measured simultaneously, or different samples may be measured simultaneously.
  • FIG. 3 is another schematic configuration diagram of the optical tomographic image measurement apparatus.
  • the light splitting means 19 that splits the light from the light source 1 into a plurality of light paths, and the optical path bodies 20 that give different optical path lengths between the light splitting means 19 and each of the light splitting means 2 are provided.
  • An optical tomographic image measurement apparatus system comprising: The configuration of each unit is the same as that of the second embodiment.
  • the optical path length between the light splitting means 19 that splits the light from the light source 1 into a plurality and the light splitting means that splits the split light into two of signal light and reference light is different.
  • the optical path body 20 that gives the optical path length for example, fibers having different lengths are used. This makes it possible to distinguish the sample reflected light of a plurality of optical axes even when the measurement samples are close to each other or overlapped.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a tomographic image capture device, etc., with which it is possible to rapidly acquire a coherent reflected light intensity distribution of an object to be measured. A tomographic image measurement device comprises a unit, configured from: a first light beam segmenting means for segmenting a light beam which is emitted from a light source into a reference light beam and a signal light beam; an illumination means for illuminating a sample with the signal light beam; a second light beam segmenting means for segmenting the reference light into a group of a plurality of reference light beams; a third light beam segmenting means which segments the signal light beam which is either reflected or scattered from the sample into a group of a plurality of signal light beams; and a plurality of detectors which detect a coherence signal of one reference light beam of the reference light beam group and one signal light beam of the signal light beam group. A reference light beam and a signal light beam form a coherent signal which is detected with the same detectors, and the difference between the light beam path length in which the reference light beam passes from the first segmenting means to the detectors and the light beam path length in which the signal light beam passes from the first segmenting means to the detectors varies for each of the plurality of detectors.

Description

光断層画像測定装置Optical tomographic image measuring device
 本発明は、光断層画像測定装置に関し、特に光源からの光を信号光と参照光に分け、被検査物を経由した信号光と参照光とを、光学的に干渉させ検出処理することにより測定対象物体の表面から深さ方向の構造情報を取得する光断層画像測定装置に関する。 The present invention relates to an optical tomographic image measurement apparatus, and in particular, measures light by dividing light from a light source into signal light and reference light, and optically interfering the signal light and reference light that have passed through the inspection object for detection processing. The present invention relates to an optical tomographic image measurement apparatus that acquires structural information in the depth direction from the surface of a target object.
 近年、測定試料の内部構造を非破壊で、高分解能に得ることができる手段として、Optical Coherence Tomography(OCT:光干渉断層計)が知られている。OCT装置は、光源から出射された光を、信号光と参照光とに分割し、被検査物を経由した信号光と参照光とを光学的に干渉させ、干渉光を検出処理することにより、測定対象物体の表面から深さ方向の構造情報を取得する光断層画像測定装置である。 In recent years, Optical Coherence Tomography (OCT: Optical Coherence Tomography) is known as a means that can obtain the internal structure of a measurement sample nondestructively and with high resolution. The OCT apparatus divides the light emitted from the light source into signal light and reference light, optically interferes with the signal light and the reference light that have passed through the object to be detected, and detects interference light. This is an optical tomographic image measurement apparatus that acquires structural information in the depth direction from the surface of a measurement target object.
 上記のOCTの計測方法には、大きく分けてTime domain OCT(TD-OCT)計測法とFourier Domain OCT(FD-OCT)計測法の2種類がある。 The above-mentioned OCT measurement methods can be broadly divided into two types: Time domain OCT (TD-OCT) measurement method and Fourier Domain OCT (FD-OCT) measurement method.
 TD-OCT計測法は、参照光の光路長を変更しながら干渉光強度を測定することにより、測定対象物の深さ方向の位置に対応した干渉反射光強度分布を取得する方法である。TD-OCTの代表的な特許を特許文献1に示す。 The TD-OCT measurement method is a method of acquiring the interference reflected light intensity distribution corresponding to the position in the depth direction of the measurement object by measuring the interference light intensity while changing the optical path length of the reference light. A typical patent of TD-OCT is shown in Patent Document 1.
 FD-OCT計測は、測定対象物を経由した信号光と参照光との干渉信号を波長スペクトルに分解して測定し、測定信号をフーリエ変換することで、測定対象物の深さ方向の位置に対応した干渉反射光強度分布を取得する方法である。 In the FD-OCT measurement, an interference signal between a signal light and a reference light that has passed through a measurement object is measured by decomposing the signal into a wavelength spectrum, and the measurement signal is Fourier transformed to obtain a position in the depth direction of the measurement object. This is a method of acquiring a corresponding interference reflected light intensity distribution.
 FD-OCT計測には、二つの方式がある。一つはSpectrum Domain-OCT(SD-OCT)方式で、測定試料からの反射あるいは散乱した光と参照光との干渉光を分光器で分光し、アレー検出器等を使うことで、干渉信号のスペクトルを検出し、干渉反射光強度分布を取得する方法である。 There are two methods for FD-OCT measurement. One is the Spectrum-Domain-OCT (SD-OCT) method, where the interference light between the reflected or scattered light from the measurement sample and the reference light is dispersed with a spectroscope and an array detector is used to generate the interference signal. This is a method of detecting a spectrum and acquiring an interference reflected light intensity distribution.
 もう一方は、Swept Source-OCT(SS-OCT)と呼ばれる方式で、光源に瞬間的には単波長発振し、時間的に発振波長を走査するような光源を用いる。光源からの発振波長を走査することで得られた干渉信号のスペクトルをフーリエ変換することで干渉反射光強度分布を取得する方法である。 The other is a method called Swept-Source-OCT (SS-OCT), which uses a light source that instantaneously oscillates a single wavelength and scans the oscillation wavelength temporally. In this method, the interference reflected light intensity distribution is acquired by Fourier-transforming the spectrum of the interference signal obtained by scanning the oscillation wavelength from the light source.
 SS-OCT法による表面プロファイル測定および光断面画像撮影を行うための装置発明には特許文献2が挙げられる。 Patent Document 2 is cited as an apparatus invention for performing surface profile measurement and optical cross-sectional image capturing by the SS-OCT method.
 特許文献3は、TD-OCT計測を用い、測定試料の光学特性を測定する光学測定装置についての発明である。この発明はTD-OCT計測において、測定時間を短縮した光学測定装置が開示されている。実現方法は、短コヒーレント長の光を用いた光学測定装置内に参照光を分割する光合分波器と、分割された各参照光に異なる変調を施す参照光変調機構を設けることによって、光電変換器に入射される、参照光と測定光の合波光に深さの異なる複数の測定点に関する情報が含まれるようにしておき、コンピュータによって光電変換器の出力から、それら複数の測定点に関する光学特性データが算出されるように光学測定装置を構成している。 Patent Document 3 is an invention relating to an optical measurement apparatus that measures optical characteristics of a measurement sample using TD-OCT measurement. The present invention discloses an optical measurement apparatus that shortens the measurement time in TD-OCT measurement. The realization method includes photoelectric conversion by providing an optical multiplexer / demultiplexer that divides the reference light in an optical measurement device using light of a short coherent length and a reference light modulation mechanism that performs different modulation on each divided reference light. Information on multiple measurement points with different depths is included in the combined light of the reference light and measurement light incident on the detector, and the optical characteristics of these multiple measurement points are output from the output of the photoelectric converter by the computer. The optical measurement device is configured so that data is calculated.
特開平4-174345号公報JP-A-4-174345 特開2007-24677号公報JP 2007-24677 A 特開平10-267830号公報Japanese Patent Laid-Open No. 10-267830
 OCTでは、短時間に広い範囲を計測することが求められる。SS-OCTの光軸方向の測定範囲(一回の波長走査で測定可能な深さ方向の距離)は、光源のコヒーレント長に比例する。波長走査レーザのコヒーレント長は、データサンプリング時間中に起こる波長シフトに依存する。波長シフトΔλ[nm]は干渉信号のデータサンプリング時間Δt[s]と波長掃引速度V[nm/s]とで決定され、(1)式で表される。
〔数1〕
  Δλ=Δt・V      …(1)
In OCT, it is required to measure a wide range in a short time. The measurement range in the optical axis direction of SS-OCT (the distance in the depth direction that can be measured by one wavelength scan) is proportional to the coherent length of the light source. The coherent length of a wavelength scanning laser depends on the wavelength shift that occurs during the data sampling time. The wavelength shift Δλ [nm] is determined by the data sampling time Δt [s] of the interference signal and the wavelength sweep speed V [nm / s], and is expressed by equation (1).
[Equation 1]
Δλ = Δt · V (1)
 データサンプリング時間を減らすことで波長シフトは小さくなる。これによりコヒーレント長は長くなり測定範囲を広くすることができる。しかし、データサンプリング時間は、アナログ/デジタル(AD)変換回路において、受光器で検出した干渉信号のアナログ電気信号からデジタル信号に変換する際の標本化にかかる時間で決定される。そのため、データサンプリング時間は有限であり、データサンプル時間から決まる光軸方向の測定範囲拡大には限度がある。 The wavelength shift is reduced by reducing the data sampling time. As a result, the coherent length is increased and the measurement range can be widened. However, the data sampling time is determined by the time required for sampling in the analog / digital (AD) conversion circuit when converting the analog electric signal of the interference signal detected by the light receiver into a digital signal. Therefore, the data sampling time is finite, and there is a limit to expanding the measurement range in the optical axis direction determined from the data sampling time.
 波長掃引速度を遅くすることで波長シフトを小さくし、測定範囲を広くすることができる。しかし、波長掃引速度を遅くすると計測時間が長くなってしまう。光軸方向の測定範囲と波長掃引速度はトレードオフの関係にあり、計測時間の短縮と測定範囲の拡大を同時に図ることには問題があった。 遅 く By slowing down the wavelength sweep speed, the wavelength shift can be reduced and the measurement range can be widened. However, if the wavelength sweep speed is decreased, the measurement time becomes longer. The measurement range in the optical axis direction and the wavelength sweep speed are in a trade-off relationship, and there is a problem in simultaneously reducing the measurement time and expanding the measurement range.
 また、一回の波長走査で測定可能な測定範囲をさらに広げるためには、TD-OCTのように参照光のミラーの位置を移動させ、再度測定する必要があった。このため測定には、ミラーのサブミクロンオーダの精密な移動機構を用意する必要があるため、ミラーの移動により測定には長い時間が必要とされた。 Also, in order to further expand the measurement range that can be measured by one wavelength scan, it was necessary to move the position of the mirror of the reference beam as in TD-OCT and perform measurement again. For this reason, since it is necessary to prepare a precise movement mechanism of the submicron order of the mirror for the measurement, a long time is required for the measurement due to the movement of the mirror.
 長時間の測定は、測定中の測定対象位置の変動が大きくなるためシグナルノイズ比が悪化していた。 In long-time measurement, the signal-to-noise ratio was deteriorated because the position of the measurement object during measurement increased greatly.
 本発明は、上記の課題に鑑み、参照光のミラーの移動機構を必要とせず、測定時間の短時間化と深さ方向測定範囲の拡大の両立を可能とし、高感度な光断層計測装置を提供することにある。 In view of the above-described problems, the present invention does not require a reference light mirror moving mechanism, enables both shortening of the measurement time and expansion of the depth direction measurement range, and provides a highly sensitive optical tomography measurement apparatus. It is to provide.
 本発明にかかる光断層計測装置は以下の構成を備える。 The optical tomography measuring apparatus according to the present invention has the following configuration.
 光源から出射された光を参照光と信号光に分割する第一の光分割手段と、前記信号光を試料に照射する照射手段と、前記参照光を複数の参照光群に分割する第二の光分割手段と、前記試料から反射または散乱された信号光を複数の信号光群に分割する第三の光分割手段と、前記参照光群の一つの参照光と前記信号光群の一つの信号光との干渉信号を検出する複数の検出器と、から構成され、同一の前記検出器で検出される干渉信号を形成する参照光と信号光であって、前記第一の分割手段から前記検出器まで当該参照光が通過した光路長と前記第一の分割手段から前記検出器まで当該信号光が通過した光路長との差が、複数の検出器ごとに異なることを特徴とするユニットを備える光断層画像測定装置。 A first light splitting means for splitting the light emitted from the light source into reference light and signal light; an irradiating means for irradiating the sample with the signal light; and a second light splitting the reference light into a plurality of reference light groups. A light splitting means, a third light splitting means for splitting the signal light reflected or scattered from the sample into a plurality of signal light groups, one reference light of the reference light group and one signal of the signal light group A plurality of detectors for detecting an interference signal with light, and a reference light and a signal light forming an interference signal detected by the same detector, wherein the detection from the first dividing means A unit in which a difference between an optical path length through which the reference light has passed to the detector and an optical path length through which the signal light has passed from the first dividing means to the detector is different for each of a plurality of detectors. Optical tomographic image measuring device.
 本発明により、一回の波長走査による深さ方向の測定範囲が拡大することで、参照ミラーの駆動系を不要とし、短時間で計測することができる。また装置原価も廉価となる。また、短時間測定が可能となることで、計測中の測定試料移動が起因となるノイズを低減でき、高感度、高精度に光断層計測が可能となる。 According to the present invention, the measurement range in the depth direction by a single wavelength scan is expanded, so that a drive system for the reference mirror is not required and measurement can be performed in a short time. Also, the cost of the equipment will be low. In addition, since measurement can be performed for a short time, noise caused by movement of the measurement sample during measurement can be reduced, and optical tomographic measurement can be performed with high sensitivity and high accuracy.
本発明に係る光断層画像撮像装置の一実施例。1 shows an embodiment of an optical tomographic imaging apparatus according to the present invention. 本発明に係る光断層画像撮像装置の一実施例(異なる測定位置の同時測定)。1 shows an embodiment of an optical tomographic imaging apparatus according to the present invention (simultaneous measurement of different measurement positions). 本発明に係る光断層画像撮像装置の一実施例(ユニット間の光の干渉を防ぐ)。1 is an example of an optical tomographic imaging apparatus according to the present invention (preventing light interference between units);
 本発明の原理について説明する。 The principle of the present invention will be described.
 瞬間的には単波長発振し、時間的に発振波長を走査することを特徴とする光発生手段から出射された光を、信号光と参照光に分割する。さらに参照光を複数の参照光に分割する(参照光群)。 The light emitted from the light generation means characterized by instantaneously oscillating a single wavelength and temporally scanning the oscillation wavelength is divided into signal light and reference light. Further, the reference light is divided into a plurality of reference lights (reference light group).
 信号光は、測定対象の試料に照射し、試料からの散乱あるいは反射された信号光を複数の信号光に分割する(信号光群)。参照光群と信号光群は、前記参照光群の各参照光ごとに長さの異なる光路長を与える光路体または、前記信号光群の各信号光ごとに長さの異なる光路長を与える光路体を通り、前記参照光群と試料を経由した前記信号光群を合波する合波手段により合波する。前記合波手段による干渉光は、検出手段により干渉光の光強度を検出する。干渉信号の検出により得られた波長スペクトルのフーリエ変換から試料の深さ位置に対応した反射光強度分布を取得することを特徴とする。 The signal light is applied to the sample to be measured, and the signal light scattered or reflected from the sample is divided into a plurality of signal lights (signal light group). The reference light group and the signal light group are optical path bodies that give different optical path lengths for each reference light in the reference light group, or optical paths that give different optical path lengths for each signal light in the signal light group The signal light group that passes through the body and the signal light group that has passed through the sample is multiplexed by a multiplexing means. The interference light from the combining means is detected by the detecting means. The reflected light intensity distribution corresponding to the depth position of the sample is acquired from the Fourier transform of the wavelength spectrum obtained by detecting the interference signal.
 長さの異なる光路長を通過した参照光と信号光を干渉することは、TD-OCT計測の手法で試料の深さ方向で異なる資料位置の断面の有無を計測していることを意味する。そして、発信波長を走査して干渉光の光強度を検出することは、前記異なる深さ方向で異なる試料位置の周辺の断面の有無をSS-OCT計測の手法で連続的に計測していることに相当する。 Interfering the reference light and the signal light that have passed through the optical path lengths having different lengths means that the presence or absence of cross-sections at different data positions in the depth direction of the sample is measured by the TD-OCT measurement technique. Scanning the transmission wavelength and detecting the light intensity of the interference light continuously measures the presence or absence of cross-sections around different sample positions in the different depth directions using the SS-OCT measurement technique. It corresponds to.
 以下、図面を参照して本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施例における光断層画像測定装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of an optical tomographic image measurement apparatus according to an embodiment of the present invention.
 瞬間的には単波長発振し、時間的に発振波長を走査することを特徴とする光源1があり、光源1から出射された光を信号光LS1と参照光LR1の二つに光を分割する光分割手段2を有する。 There is a light source 1 characterized by instantaneously oscillating a single wavelength and temporally scanning the oscillation wavelength. The light emitted from the light source 1 is divided into signal light LS1 and reference light LR1. It has a light splitting means 2.
 光源1として、たとえば半導体増幅器SOA(semiconductor optical amplifier)、共振器、および波長選択フィルタによって構成された波長走査レーザを使用することができる。波長選択フィルタとしては、たとえば、回折格子とポリゴンミラーを組み合わせたもの、回折格子とポリゴンミラーを組み合わせたもの、ファブリペローフィルタを用いたものなどを使用する。また、光分割手段2として、例えばファイバカプラを用いればよい。より具体的には、1×2の光ファイバカプラから構成されており、光源からの光を二つに分けることができる。 As the light source 1, for example, a wavelength scanning laser constituted by a semiconductor amplifier SOA (semiconductor optical amplifier), a resonator, and a wavelength selection filter can be used. As the wavelength selection filter, for example, a combination of a diffraction grating and a polygon mirror, a combination of a diffraction grating and a polygon mirror, a one using a Fabry-Perot filter, or the like is used. Further, as the light splitting means 2, for example, a fiber coupler may be used. More specifically, it is composed of a 1 × 2 optical fiber coupler, and the light from the light source can be divided into two.
 光分割手段2により分光された参照光LR1を複数の参照光である参照光群LR2にさらに分割するための光分割手段5Rを有する。一方、光分割手段2により分光された信号光LS1は、該信号光LS1を試料11に導くためのプローブ6を通過し、さらに試料11によってはコリメータレンズ12を通過して、試料11に照射される。 The light splitting means 5R for further splitting the reference light LR1 dispersed by the light splitting means 2 into a plurality of reference light groups LR2 is provided. On the other hand, the signal light LS1 dispersed by the light splitting means 2 passes through the probe 6 for guiding the signal light LS1 to the sample 11, and further passes through the collimator lens 12 depending on the sample 11, and is irradiated on the sample 11. The
 プローブ6からの信号光LS2の照射による測定試料からの反射または散乱光LS3は、該反射または散乱光LS3を光検出部へ導くための光サーキュレータ3を通過し、さらに光サーキュレータ3を通過した該信号光LS4を複数の光に分割する光分割手段5Sを通過し、信号光群LS5となる。 The reflected or scattered light LS3 from the measurement sample due to the irradiation of the signal light LS2 from the probe 6 passes through the optical circulator 3 for guiding the reflected or scattered light LS3 to the light detection unit, and further passes through the optical circulator 3. The signal light LS4 passes through the light dividing means 5S that divides the signal light LS4 into a plurality of lights, and becomes the signal light group LS5.
 光分割手段5R,5Sはファイバカプラを用いることができる。より具体的には、光分割手段5Rは、たとえば1×3の光ファイバカプラから構成されており、一つの参照光を2本以上、例えば3本の参照光群に分ける。光分割手段5Rも同様に、たとえば1×3の光ファイバカプラから構成されており、一つの参照光を2本以上、例えば3本の参照光群に分ける。 A fiber coupler can be used for the light splitting means 5R and 5S. More specifically, the light dividing means 5R is composed of, for example, a 1 × 3 optical fiber coupler, and divides one reference light into two or more, for example, three reference light groups. Similarly, the light dividing means 5R is composed of, for example, a 1 × 3 optical fiber coupler, and divides one reference light into two or more, for example, three reference light groups.
 参照光群LR2の各参照光は、それぞれ異なる光路長の光路体17を通過し、試料11を経由した信号光群LS5の各信号光と光合波手段7により合波される。光合波手段として、ファイバカプラを用いることができる。より具体的には、参照光と信号光を合波する光合波手段7としては、たとえば2×1光ファイバカプラを使用することができる。 Each reference light of the reference light group LR2 passes through the optical path bodies 17 having different optical path lengths, and is combined with each signal light of the signal light group LS5 passing through the sample 11 by the optical multiplexing means 7. A fiber coupler can be used as the optical multiplexing means. More specifically, for example, a 2 × 1 optical fiber coupler can be used as the optical multiplexing means 7 that combines the reference light and the signal light.
 合波した干渉光群LC1は光検出手段8Dにより検出され、光検出手段8Dより得られたアナログ信号に基づきA/D変換回路9がデジタルの波長スペクトルを生成する。 The combined interference light group LC1 is detected by the light detection means 8D, and the A / D conversion circuit 9 generates a digital wavelength spectrum based on the analog signal obtained from the light detection means 8D.
 該波長スペクトルは、計算機10によりフーリエ変換され、試料の深さ位置に対応した反射光強度分布を算出する。該反射光強度分布により、試料11中に含まれる断面を測定することができる。 The wavelength spectrum is Fourier transformed by the computer 10 to calculate a reflected light intensity distribution corresponding to the depth position of the sample. The cross section included in the sample 11 can be measured by the reflected light intensity distribution.
 なお、本実施例では光源1としてSOA、共振器、および波長選択フィルタを組み合わせたものを使用したが、スペクトルが広帯域の光源と波長可変フィルタを組み合わせたものでもかまわない。スペクトルが広帯域の光源としてはたとえば、スーパーコンティニューム光源を使用し、波長可変フィルタとしては、たとえば、FFP(ファイバーファブリペロー)型フィルタを用いることができる。 In this embodiment, a combination of an SOA, a resonator, and a wavelength selection filter is used as the light source 1. However, a combination of a light source having a broad spectrum and a wavelength tunable filter may be used. For example, a supercontinuum light source can be used as the light source having a broad spectrum, and an FFP (fiber Fabry-Perot) filter can be used as the wavelength tunable filter.
 さらに、本実施例において、前記参照光群LR2の各参照光の光路長に異なる光路長を与える光路体17は、参照光群LR2の光路について各参照光に異なる光路長を与えるため、光路体17の光路長を異なる長さとし(例えば長さの異なる光ファイバを使用する)、試料11を経由した信号光群LS5については、同じ光路長とする形態をとった。ここでは、参照光群LR2の各参照光の光路長に異なる光路長を与える形態をとったが、信号光群LS5の各信号光の光路長に異なる光路長を与える形態をとっても良い。この場合たとえば、参照光群LR2の各光路長は同じにし、信号光群LS5の光路については、異なる光路長を与えるために、信号光群LS5に使用する光ファイバ4を異なる長さとしてもよい。 Furthermore, in this embodiment, the optical path body 17 that gives different optical path lengths to the optical path lengths of the respective reference lights of the reference light group LR2 gives different optical path lengths to the respective reference lights with respect to the optical paths of the reference light group LR2. The optical path lengths of 17 are different (for example, optical fibers having different lengths are used), and the signal light group LS5 passing through the sample 11 has the same optical path length. Here, the configuration is such that different optical path lengths are given to the optical path lengths of the respective reference lights in the reference light group LR2, but a different optical path length may be given to the optical path lengths of the respective signal lights in the signal light group LS5. In this case, for example, the optical path lengths of the reference light group LR2 may be the same, and the optical fibers 4 used for the signal light group LS5 may have different lengths in order to provide different optical path lengths for the signal light group LS5. .
 本質的なのは、参照光群LR2の光路の長さを同じにすることもしくは信号光群LS5の長さを同じにすることが重要なのではなく、互いに干渉させる参照光と信号光の光路長を等しく、もしくはほぼ等しくすることが重要である。そして、互いに干渉させる参照光と信号光の光路差をばらつかせることにより、試料11の異なる深さ領域を同時に観察することが可能となる。 Essentially, it is not important that the length of the optical path of the reference light group LR2 is the same or the length of the signal light group LS5 is the same, but the optical path lengths of the reference light and the signal light that interfere with each other are equal. Or approximately equal. Then, by varying the optical path difference between the reference light and the signal light that interfere with each other, different depth regions of the sample 11 can be observed simultaneously.
 本発明によれば、長さの異なる光路長を通過した参照光と信号光を干渉することは、試料の深さ方向で異なる試料位置の断面の有無を計測し、発信波長を走査して干渉光の光強度を検出することは、前記異なる深さ方向で異なる試料位置の周辺の断面の有無を連続的に検出することができる。これにより、短時間に同時に試料11の断面方向の計測を広範囲に亘り調べることができる。 According to the present invention, the interference between the reference light and the signal light that have passed through the optical path lengths having different lengths is performed by measuring the presence / absence of a cross section at a different sample position in the depth direction of the sample, scanning the transmission wavelength, and performing interference By detecting the light intensity of light, it is possible to continuously detect the presence or absence of cross sections around different sample positions in the different depth directions. Thereby, the measurement of the cross-sectional direction of the sample 11 can be investigated over a wide range simultaneously in a short time.
 図2は、光源1からの光を複数に分割する手段が備わった構成をとる光断層画像測定装置の概略構成図であり、実施例1のユニット18を複数使用した形態である。 FIG. 2 is a schematic configuration diagram of an optical tomographic image measuring apparatus having a configuration provided with means for dividing light from the light source 1 into a plurality of units, and is a form using a plurality of units 18 of the first embodiment.
 実施例1の光源1と、光源1から出射された光を複数の光に分割する光分割手段19を有する。該光分割手段19で分けられた光が、実施例1の光源1から出射された光に相当し、光分割手段2で参照光LR1と信号光LS1の二つに分割される。 The light source 1 of the first embodiment and the light splitting means 19 that splits the light emitted from the light source 1 into a plurality of lights. The light split by the light splitting means 19 corresponds to the light emitted from the light source 1 of the first embodiment, and is split by the light splitting means 2 into reference light LR1 and signal light LS1.
 試料の異なる測定位置(深さ方向以外の二次元的な位置)に信号光LS2を照射すれば、試料の異なる測定位置で、光断層画像を取得することが可能となる。 If the signal light LS2 is irradiated to different measurement positions (two-dimensional positions other than the depth direction) of the sample, optical tomographic images can be acquired at different measurement positions of the sample.
 光源1からの光を複数に分割する光分割手段19として、例えば1×3光ファイバカプラを使用することができる。光分割手段は二つ以上とする。 As the light splitting means 19 for splitting the light from the light source 1 into a plurality of parts, for example, a 1 × 3 optical fiber coupler can be used. There are two or more light splitting means.
 なお、図2では、便宜上試料が複数あるように記載されているが、同一の試料の異なる位置を同時に計測してもよいし、異なる試料を同時に測定してもよい。 In FIG. 2, for convenience, there are a plurality of samples, but different positions of the same sample may be measured simultaneously, or different samples may be measured simultaneously.
 図3は、光断層画像測定装置の別の概略構成図である。実施例3は、光源1からの光を複数に分割する光分割手段19と、該光分割手段19と各光分割手段2との間の光路長について、それぞれ異なる光路長を与える光路体20を備えることを特徴とする光断層画像測定装置システムである。各ユニットの構成は、実施例2と同じである。 FIG. 3 is another schematic configuration diagram of the optical tomographic image measurement apparatus. In the third embodiment, the light splitting means 19 that splits the light from the light source 1 into a plurality of light paths, and the optical path bodies 20 that give different optical path lengths between the light splitting means 19 and each of the light splitting means 2 are provided. An optical tomographic image measurement apparatus system comprising: The configuration of each unit is the same as that of the second embodiment.
 本実施例3において、光源1からの光を複数に分割する光分割手段19と、分割した光を信号光と参照光の二つに光を分割する光分割手段との間の光路長に異なる光路長を与える光路体20としては、例えば長さの異なるファイバを使用する。これにより、測定試料の位置が近接している場合や、重なっている場合であっても、複数の光軸の試料反射光を区別することが可能となる。 In the third embodiment, the optical path length between the light splitting means 19 that splits the light from the light source 1 into a plurality and the light splitting means that splits the split light into two of signal light and reference light is different. As the optical path body 20 that gives the optical path length, for example, fibers having different lengths are used. This makes it possible to distinguish the sample reflected light of a plurality of optical axes even when the measurement samples are close to each other or overlapped.
1 光源
2、5R、5S、19 光分割手段
3 光サーキュレータ
4 光ファイバ
6 プローブ
7 光合波手段
8D 光検出手段
9 A/D変換回路
10 計算機
11 試料
12 コリメータレンズ
17、20 光路体
18 ユニット
LC1 干渉光群
LR1 参照光
LR2 参照光群
LN 分割光
LS1、LS2、LS4 信号光
LS3 反射または散乱光
LS5 信号光群
DESCRIPTION OF SYMBOLS 1 Light source 2, 5R, 5S, 19 Light splitting means 3 Optical circulator 4 Optical fiber 6 Probe 7 Optical multiplexing means 8D Optical detection means 9 A / D conversion circuit 10 Computer 11 Sample 12 Collimator lens 17, 20 Optical path body 18 Unit LC1 Interference Light group LR1 Reference light LR2 Reference light group LN Split light LS1, LS2, LS4 Signal light LS3 Reflected or scattered light LS5 Signal light group

Claims (9)

  1.  光源から出射された光を参照光と信号光に分割する第一の光分割手段と、
     前記信号光を試料に照射する照射手段と、
     前記参照光を複数の参照光群に分割する第二の光分割手段と、
     前記試料から反射または散乱された信号光を複数の信号光群に分割する第三の光分割手段と、
     前記参照光群の一つの参照光と前記信号光群の一つの信号光との干渉信号を検出する複数の検出器と、から構成され、
     同一の前記検出器で検出される干渉信号を形成する参照光と信号光であって、前記第一の分割手段から前記検出器まで当該参照光が通過した光路長と前記第一の分割手段から前記検出器まで当該信号光が通過した光路長との差が、複数の検出器ごとに異なることを特徴とするユニットを備える光断層画像測定装置。
    First light splitting means for splitting light emitted from the light source into reference light and signal light;
    Irradiating means for irradiating the sample with the signal light;
    Second light splitting means for splitting the reference light into a plurality of reference light groups;
    Third light splitting means for splitting the signal light reflected or scattered from the sample into a plurality of signal light groups;
    A plurality of detectors for detecting an interference signal between one reference light of the reference light group and one signal light of the signal light group;
    Reference light and signal light forming an interference signal detected by the same detector, the optical path length through which the reference light has passed from the first splitting means to the detector, and the first splitting means An optical tomographic image measurement apparatus comprising a unit, wherein a difference from an optical path length through which the signal light has passed to the detector differs for each of a plurality of detectors.
  2.  請求項1の光断層画像測定装置において、
     前記検出器を参照光群の参照光と信号光群の信号光との対ごとに複数備えることを特徴とする光断層画像測定装置。
    The optical tomographic image measurement apparatus according to claim 1.
    An optical tomographic image measurement apparatus comprising a plurality of detectors for each pair of reference light of a reference light group and signal light of a signal light group.
  3.  請求項1の光断層画像測定装置において、
     前記出射された光の波長が時間的に変化する光源を備えることを特徴とする光断層画像測定装置。
    The optical tomographic image measurement apparatus according to claim 1.
    An optical tomographic image measurement apparatus comprising: a light source that changes a wavelength of the emitted light with time.
  4.  請求項1の光断層画像測定装置において、
     同一の前記検出器で検出される干渉信号を形成する参照光と信号光とを合波する光合波手段を有することを特徴とする光断層画像測定装置。
    The optical tomographic image measurement apparatus according to claim 1.
    An optical tomographic image measuring apparatus comprising optical combining means for combining reference light and signal light forming an interference signal detected by the same detector.
  5.  請求項1の光断層画像測定装置において、
     同一の前記検出器で検出される干渉信号を形成する参照光と信号光であって、前記第二の分割手段から前記検出器まで当該参照光が通過した光路長と前記第三の分割手段から前記検出器まで当該信号光が通過した光路長との差が、複数の検出器ごとに異なることを特徴とする光断層画像測定装置。
    The optical tomographic image measurement apparatus according to claim 1.
    Reference light and signal light that form an interference signal detected by the same detector, the optical path length through which the reference light has passed from the second splitting means to the detector, and the third splitting means An optical tomographic image measurement apparatus, wherein a difference from an optical path length through which the signal light has passed to the detector differs for each of a plurality of detectors.
  6.  請求項1のユニットを複数有し、
     光源から出射された光を前記ユニットごとに分割する第四の光分割手段を有することを特徴とする光断層画像測定装置。
    A plurality of units of claim 1;
    An optical tomographic image measurement apparatus comprising: a fourth light splitting unit that splits light emitted from a light source for each unit.
  7.  請求項6の光断層画像測定装置において、
     前記出射された光の波長が時間的に変化する光源を備えることを特徴とする光断層画像測定装置。
    The optical tomographic image measurement apparatus according to claim 6.
    An optical tomographic image measurement apparatus comprising: a light source that changes a wavelength of the emitted light with time.
  8.  請求項6の光断層画像測定装置において、
     前記各ユニットにおいて測定される試料は、同一の試料の異なる試料位置であることを特徴とする光断層画像測定装置。
    The optical tomographic image measurement apparatus according to claim 6.
    The optical tomographic image measuring apparatus according to claim 1, wherein the samples measured in each unit are different sample positions of the same sample.
  9.  請求項1のユニットを複数有し、
     光源から出射された光を前記ユニットごとに分割する第四の光分割手段を有し、
     前記第四の光分割手段から各ユニットの前記第一の光分割手段までの光路長が互いに異なることを特徴とする光断層画像測定装置。
    A plurality of units of claim 1;
    Having a fourth light splitting means for splitting the light emitted from the light source for each unit;
    An optical tomographic image measurement apparatus, wherein optical path lengths from the fourth light dividing means to the first light dividing means of each unit are different from each other.
PCT/JP2013/050613 2012-02-08 2013-01-16 Tomographic image measurement device WO2013118541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012024642A JP2013160699A (en) 2012-02-08 2012-02-08 Optical tomographic image measuring device
JP2012-024642 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118541A1 true WO2013118541A1 (en) 2013-08-15

Family

ID=48947310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050613 WO2013118541A1 (en) 2012-02-08 2013-01-16 Tomographic image measurement device

Country Status (2)

Country Link
JP (1) JP2013160699A (en)
WO (1) WO2013118541A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013177A1 (en) * 2015-07-22 2017-01-26 Medlumics S.L. High-speed optical coherence tomography using multiple interferometers with suppressed multiple scattering cross-talk
WO2023275929A1 (en) * 2021-06-28 2023-01-05 日本電気株式会社 Optical coherence tomography device, optical coherence tomography method, and recording medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6463051B2 (en) * 2014-09-10 2019-01-30 株式会社トーメーコーポレーション Optical tomography system
JP2017173305A (en) * 2016-02-10 2017-09-28 株式会社トーメーコーポレーション Wavelength coding multi-beam light coherence tomography
JP7119286B2 (en) * 2017-03-31 2022-08-17 株式会社ニデック OCT device
WO2019016887A1 (en) * 2017-07-19 2019-01-24 宏 小川 Tomographic image imaging device
JP6803887B2 (en) * 2018-10-10 2020-12-23 株式会社吉田製作所 Optical interference tomographic image generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267830A (en) * 1997-03-26 1998-10-09 Kowa Co Optical measuring device
JP2005283471A (en) * 2004-03-30 2005-10-13 Topcon Corp Optical image measuring instrument
JP2006194679A (en) * 2005-01-12 2006-07-27 Tokyo Electron Ltd Temperature/thickness measuring device, temperature/thickness measuring method, temperature/thickness measuring system, controlling system, and controlling method
JP2008216183A (en) * 2007-03-07 2008-09-18 Tokyo Electron Ltd Device and method for measuring temperature
JP2010261858A (en) * 2009-05-08 2010-11-18 Canon Inc Optical interference tomographic imaging device
JP2011214969A (en) * 2010-03-31 2011-10-27 Canon Inc Imaging apparatus and imaging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267830A (en) * 1997-03-26 1998-10-09 Kowa Co Optical measuring device
JP2005283471A (en) * 2004-03-30 2005-10-13 Topcon Corp Optical image measuring instrument
JP2006194679A (en) * 2005-01-12 2006-07-27 Tokyo Electron Ltd Temperature/thickness measuring device, temperature/thickness measuring method, temperature/thickness measuring system, controlling system, and controlling method
JP2008216183A (en) * 2007-03-07 2008-09-18 Tokyo Electron Ltd Device and method for measuring temperature
JP2010261858A (en) * 2009-05-08 2010-11-18 Canon Inc Optical interference tomographic imaging device
JP2011214969A (en) * 2010-03-31 2011-10-27 Canon Inc Imaging apparatus and imaging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013177A1 (en) * 2015-07-22 2017-01-26 Medlumics S.L. High-speed optical coherence tomography using multiple interferometers with suppressed multiple scattering cross-talk
CN108139199A (en) * 2015-07-22 2018-06-08 梅德路米克斯有限公司 Multiple scattering crosstalk is repressed, high speed optical coherence tomographies using multiple interferometers
CN108139199B (en) * 2015-07-22 2020-12-25 梅德路米克斯有限公司 High-speed optical coherence tomography using multiple interferometers with multiple scattering crosstalk suppressed
WO2023275929A1 (en) * 2021-06-28 2023-01-05 日本電気株式会社 Optical coherence tomography device, optical coherence tomography method, and recording medium

Also Published As

Publication number Publication date
JP2013160699A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
WO2013118541A1 (en) Tomographic image measurement device
JP4505807B2 (en) Multiplexed spectral interferometric optical coherence tomography
KR101336048B1 (en) Optical tomographic imaging method and optical tomographic imaging apparatus
US5892583A (en) High speed inspection of a sample using superbroad radiation coherent interferometer
US6014214A (en) High speed inspection of a sample using coherence processing of scattered superbroad radiation
US5905572A (en) Sample inspection using interference and/or correlation of scattered superbroad radiation
JP4461258B2 (en) Correction method in optical tomography
JP4895277B2 (en) Optical tomographic imaging system
JP2007101250A (en) Optical tomographic imaging method
JP2005249704A (en) Tomographic apparatus
JP2010032426A (en) Optical coherence tomographic imaging method and optical coherence tomographic imaging apparatus
JP2008128709A (en) Optical tomographic imaging apparatus
CN104204775A (en) Optical coherence tomography apparatus and optical coherence tomography method
EP1870030A1 (en) Apparatus and method for frequency domain optical coherence tomography
JP2007240453A (en) Spectroscopic coherence tomography device
JP6405037B2 (en) Instantaneous time-domain optical coherence tomography
JP2005283155A (en) Dispersion correcting apparatus in light interference sectional image imaging method
JP4852651B2 (en) Multiplexed spectral interferometric optical coherence tomography
JP2013152191A (en) Multi-wavelength interferometer
WO2019131298A1 (en) Optical beam controller and optical interference tomographic imaging device using same
JP2008089349A (en) Optical tomographic imaging system
JP5772783B2 (en) Optical tomographic image acquisition device
WO2013015349A1 (en) Optical tomographic image measuring apparatus and optical tomographic image measuring system
JP2013096877A (en) Measuring device
JP5149923B2 (en) Multiplexed spectral interferometric optical coherence tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747180

Country of ref document: EP

Kind code of ref document: A1