WO2013108379A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2013108379A1
WO2013108379A1 PCT/JP2012/050953 JP2012050953W WO2013108379A1 WO 2013108379 A1 WO2013108379 A1 WO 2013108379A1 JP 2012050953 W JP2012050953 W JP 2012050953W WO 2013108379 A1 WO2013108379 A1 WO 2013108379A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
catalyst
control
temperature
Prior art date
Application number
PCT/JP2012/050953
Other languages
French (fr)
Japanese (ja)
Inventor
典昭 熊谷
▲吉▼岡 衛
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280067505.9A priority Critical patent/CN104053875B/en
Priority to PCT/JP2012/050953 priority patent/WO2013108379A1/en
Priority to US14/373,216 priority patent/US9222387B2/en
Priority to JP2013554148A priority patent/JP5790790B2/en
Priority to EP12865774.9A priority patent/EP2806127B1/en
Publication of WO2013108379A1 publication Critical patent/WO2013108379A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0619Air-fuel ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/12Catalyst or filter state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0622Air-fuel ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0694Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/474Catalyst warm up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • a filter provided in an exhaust system of an internal combustion engine for collecting and removing particulates (PM) in the exhaust generally, the collected PM is oxidized and removed, so that the PM collecting ability of the filter is obtained. Is maintained.
  • a technique described in Patent Document 1 has been developed as a technique for suppressing the occurrence of cracks in a filter.
  • the average temperature increase rate in the filter is 100 ° C./min or less in the region where the average temperature of the filter is 100 ° C. to 700 ° C.
  • the oxidation condition of PM in the filter is adjusted.
  • Patent Document 2 a sensor for detecting a desired parameter is provided in an exhaust system of an internal combustion engine, and a heater for heating the sensor for the purpose of increasing the detection accuracy of the sensor or the like. May be added.
  • a heater for heating the sensor for the purpose of increasing the detection accuracy of the sensor or the like.
  • Patent Document 2 discloses a technique for gently controlling the heating of the sensor by the heater so that the temperature difference between the inside of the heater and the surface does not exceed a predetermined value.
  • an electrically heated catalyst may be provided in the exhaust passage.
  • This electrically heated catalyst enables rapid activation of a catalyst having exhaust purification ability by heat from a heating element that generates heat by supplying power.
  • the electrically heated catalyst is intended for exhaust purification, so that the exhaust from the internal combustion engine flows into the electrically heated catalyst. ing. Therefore, it becomes a structure which can receive much energy from the exhaust_gas
  • the temperature of the electrically heated catalyst itself is relatively low, and therefore the applicant of the present invention is likely to cause a temperature difference in the heating element that causes cracks. I found it. Therefore, it is inferred that it is necessary to appropriately control the thermal energy received from the exhaust gas flowing into the electrically heated catalyst at the time of cold start of the internal combustion engine.
  • the necessity has been sufficiently studied. Absent.
  • the present invention relates to an internal combustion engine control device that is provided in an exhaust passage of an internal combustion engine and heats a catalyst having an exhaust purification capability by heat from a heating element that generates heat by supplying power.
  • the electric heating type so that a temperature difference in the heating element, which is a temperature difference between the catalyst and the predetermined part of the heating element of the electric heating catalyst at the time of cold start of the internal combustion engine, falls within a predetermined temperature range.
  • the heating element is heated by supplying electric power (energization) to the heating element, and the catalyst having the exhaust purification ability is heated by the heat.
  • the catalyst is supported on a carrier as a heating element
  • a form in which the heating element is installed on the upstream side of the catalyst, and the generated heat is transmitted to the catalyst, and the like can be mentioned.
  • the determination means suppresses the occurrence of cracks in the heating element in the electrically heated catalyst via the exhaust gas discharged from the internal combustion engine and flowing into the electrically heated catalyst.
  • An amount of suppression of energy input to the electrically heated catalyst (hereinafter referred to as “input energy”) is determined. Specifically, in the electrically heated catalyst, if the temperature difference in the heating element related to the heating element becomes too large, cracks may be generated in the heating element. An amount of suppression of input energy through the exhaust from the internal combustion engine is determined by the determining means so as to be within the temperature range. The suppression of the input energy according to the present invention is compared with the input energy when the exhaust from the internal combustion engine is exhausted depending on the operating state of the internal combustion engine when crack suppression in the heating element is not considered. And keep it low.
  • the temperature difference between the heat generating bodies is defined as the temperature difference between the parts in the heat generating body where cracks are likely to occur depending on the size and shape of the electrically heated catalyst provided in the exhaust passage.
  • the outer surface of the heating element is a heat dissipation surface to the outside, it tends to be at a lower temperature than the inside of the heating element, and therefore, due to the temperature difference between the outer surface of the heating element and the inside, There are cases where cracks are likely to occur in the heating element.
  • the temperature difference between the outer surface of the heating element and the inside thereof can be defined as the temperature difference in the heating element.
  • a control means controls the driving
  • the energy of the exhaust gas from the internal combustion engine that is, the energy of the exhaust gas flowing into the electrically heated catalyst reflects the suppression amount, and as a result, the temperature increase of the electrically heated catalyst due to the exhaust gas is alleviated.
  • the electric heating catalyst itself is in a relatively low temperature state, and thus there is a tendency that a temperature difference is likely to occur between predetermined parts of the heating element.
  • By suppressing the input energy to the electrically heated catalyst it is possible to suppress the expansion of the temperature difference in the heat generating body at the time of cold start, thereby avoiding the generation of cracks in the heat generating body.
  • the prior art increases the input energy in order to activate the electrically heated catalyst when the internal combustion engine is cold-started, but the present invention differs from the prior art in that it controls the operating state of the internal combustion engine. Therefore, the input energy via the exhaust is suppressed.
  • the determination means includes the electric heating for causing the temperature difference within the heating element to fall within the predetermined temperature range based on an elapsed time from a cold start of the internal combustion engine.
  • An upper limit integrated value which is an upper limit value of an integrated value of a predetermined parameter related to the exhaust amount flowing through the catalyst, is calculated as an amount of suppression of the input energy, and the control means is provided from a cold start of the internal combustion engine.
  • the engine output of the internal combustion engine may be controlled so that the actual integrated value of the predetermined parameter does not exceed or approaches the upper limit integrated value calculated by the determining means. Good.
  • the input energy input to the electrically heated catalyst through the exhaust is grasped through an integrated value from the cold start of a predetermined parameter related to the exhaust amount flowing through the electrically heated catalyst. is there. It is reasonably considered that the input energy to the electrically heated catalyst increases as the integrated value of the displacement increases. Therefore, the input energy to the electrically heated catalyst at the cold start can be grasped through a predetermined parameter related to the exhaust amount, for example, an integrated value of parameters such as the intake amount in the internal combustion engine and the exhaust amount itself. Then, the determining means calculates the upper limit integrated value of the predetermined parameter, and the control means compares the actual integrated value with the upper limit integrated value so that the temperature difference within the heat generating body falls within the predetermined temperature range.
  • the engine output of the internal combustion engine is controlled so that the actual integrated value does not exceed the upper limit integrated value or approaches the upper limit integrated value. Thereby, it is possible to avoid the occurrence of cracks in the heating element during the cold start.
  • the engine output of the internal combustion engine can be controlled via the intake air amount and the like.
  • a mode of controlling the exhaust air / fuel ratio of the internal combustion engine can be adopted.
  • the determination unit is configured to allow the temperature difference within the heating element to fall within the predetermined temperature range based on an elapsed time from a cold start of the internal combustion engine.
  • An upper limit integrated value which is an upper limit value of an integrated value of a predetermined parameter related to the exhaust amount flowing through the electrically heated catalyst, is calculated as an amount of suppression of the input energy, and the control means is configured to start from a cold start of the internal combustion engine.
  • the exhaust air-fuel ratio by fuel combustion in the internal combustion engine is adjusted so that the actual integrated value of the predetermined parameter does not exceed or approaches the upper limit integrated value calculated by the determining means Then, the exhaust gas temperature may be controlled.
  • the input energy input to the electrically heated catalyst through the exhaust gas is grasped through an integrated value from a cold start of a predetermined parameter, and the exhaust air-fuel ratio by fuel combustion in the internal combustion engine is set. Based on this, the input energy by the exhaust gas that actually flows into the electrically heated catalyst is controlled.
  • some relationship can be found between the exhaust air-fuel ratio due to fuel combustion and the exhaust temperature. Therefore, in the present invention, it is possible to control the input energy to the electrically heated catalyst by adjusting the exhaust air-fuel ratio and controlling the exhaust temperature. As a result, the heat generating body at the cold start of the internal combustion engine can be controlled. The expansion of the temperature difference can be suppressed and the occurrence of cracks can be avoided.
  • the control means increases the exhaust air-fuel ratio so that the exhaust air-fuel ratio becomes richer as the actual integrated value of the predetermined parameter increases.
  • the exhaust gas temperature may be lowered by adjusting the combustion conditions in In the case of a spark ignition type internal combustion engine, generally, when the exhaust air-fuel ratio is close to the stoichiometry, the exhaust temperature becomes high, and the exhaust temperature decreases as the exhaust air-fuel ratio moves to the rich side. Therefore, as the actual integrated value of the predetermined parameter increases, the combustion condition is adjusted so that the exhaust air-fuel ratio becomes a richer air-fuel ratio as the difference between the actual integrated value and the upper limit integrated value increases. As a result, the exhaust gas temperature can be lowered, and the energy input to the electrically heated catalyst can be suppressed.
  • the determination means is estimated or detected by the estimation means.
  • the temperature difference between predetermined portions of the heating element tends to decrease as the temperature of the electrically heated catalyst increases. And, as the temperature difference becomes smaller, the possibility that cracks will occur in the heat generating body becomes lower, and even if the amount of suppression of the input energy through the exhaust is made smaller as the temperature of the electrically heated catalyst becomes higher, Generation of cracks can be easily avoided.
  • the degree of control of the operating state of the internal combustion engine by the control means is relaxed, and it is possible to realize an output close to the original engine output and an exhaust air-fuel ratio state that should be originally intended.
  • the control apparatus for an internal combustion engine described above the control of the operation state of the internal combustion engine according to the amount of suppression of the input energy by the control means is performed in a predetermined acceleration period immediately after the cold start of the internal combustion engine. You may be made to be. By doing so, the control of the operation state of the internal combustion engine by the control means is performed for a limited period, and the deviation from the operation state of the internal combustion engine that should be performed can be suppressed as much as possible.
  • control device for an internal combustion engine up to the above can be applied to an internal combustion engine mounted on a hybrid vehicle.
  • the amount of energy to be charged into the electrically heated catalyst may be adjusted based on an event specific to the hybrid vehicle.
  • the internal combustion engine is mounted on a hybrid vehicle that uses the internal combustion engine and a motor driven by power supplied from a power source as power sources.
  • the determination means may increase the amount of suppression of the input energy to the electrically heated catalyst as the vehicle speed of the hybrid vehicle at the cold start of the internal combustion engine increases.
  • PHV plug-in hybrid
  • the present invention relates to a control device for an internal combustion engine mounted on a hybrid vehicle that uses an internal combustion engine and a motor driven by electric power supplied from a power source as a power source.
  • An electric heating type catalyst that heats a catalyst having an exhaust purification capability by heat from a heating element that generates heat when supplied with electric power; and the hybrid vehicle includes a power source for the motor while the internal combustion engine is stopped.
  • a pre-starting heating means for supplying electric power to the electrically heated catalyst and generating heat before starting the internal combustion engine.
  • the pre-starting heat generating means has a temperature difference in the heating element within a predetermined temperature range that is a temperature difference between predetermined portions of the heating element of the electric heating catalyst even if the internal combustion engine is cold started. Power is supplied to the electrically heated catalyst based on the vehicle speed of the hybrid vehicle so that the temperature of the electrically heated catalyst is raised.
  • the above invention relates to a control device for an internal combustion engine mounted on a hybrid vehicle.
  • a relatively large amount of intake air is supplied to the internal combustion engine together with the cold start, and as a result, a large amount of exhaust gas flows into the electrically heated catalyst.
  • the situation can be mentioned.
  • a large amount of exhaust gas flows into the electrically heated catalyst during the cold start, as a result, the input energy to the electrically heated catalyst increases, which may increase the temperature difference in the heating element.
  • the electrically heated catalyst is generated by the pre-starting heating means based on the vehicle speed at that time.
  • the temperature is raised. If the temperature of the electrically heated catalyst rises, even if the exhaust flows, the temperature difference in the heat generating body is difficult to increase as described above, and therefore, depending on the vehicle speed when the internal combustion engine is cold started, In other words, the electric heating type catalyst is heated prior to the actual cold start in accordance with the intake amount (or exhaust amount) related to the vehicle speed, thereby preventing the temperature difference in the heating element from expanding. is there. Therefore, the present invention avoids the expansion of the temperature difference in the heat generating body by supplying power to the electric heating catalyst while taking into consideration the input energy through the exhaust to the electric heating catalyst.
  • the pre-starting heat generating means may supply power so that the temperature of the electrically heated catalyst increases as the vehicle speed of the hybrid vehicle increases. By doing so, it is possible to prevent an increase in the temperature difference within the heat generating body based on the energy input through the exhaust to the electrically heated catalyst.
  • the internal combustion engine is controlled appropriately so that the temperature difference that causes cracks does not occur in the heating element that generates heat when energized in the electrically heated catalyst. Providing equipment.
  • FIG. 1 is a diagram showing a schematic configuration of a hybrid vehicle including a control device for an internal combustion engine according to an embodiment of the present invention and using the internal combustion engine and a motor as power sources.
  • FIG. 2 is a first cross-sectional view showing a configuration of an electrically heated catalyst for purifying exhaust gas of an internal combustion engine mounted on the hybrid vehicle shown in FIG. 1.
  • FIG. 3 is a second cross-sectional view showing the configuration of an electrically heated catalyst for purifying exhaust gas of an internal combustion engine mounted on the hybrid vehicle shown in FIG. 1. It is a figure which shows the temperature transition of each site
  • FIG. 6 is a diagram showing a correlation between an engine speed and an integrated Ga upper limit for calculating a throttle opening upper limit in the control flow shown in FIG. 5. It is a figure which shows transition of integrating
  • FIG. 6 is a first diagram showing the temperature transition of each part of the electrically heated catalyst and the transition of the temperature difference in the carrier when the control flow shown in FIG. 5 is performed.
  • FIG. 6 is a second diagram showing the temperature transition of each part of the electrically heated catalyst and the transition of the temperature difference in the carrier when the control flow shown in FIG. 5 is performed. It is a 2nd flowchart regarding the control for suppressing the expansion of the temperature difference in the support
  • FIG. 11 is a first diagram showing the correlation between the engine speed and the temperature of the electrically heated catalyst for determining the exhaust air-fuel ratio in the control flow shown in FIG. 10.
  • FIG. 11 is a second diagram showing the correlation between the engine speed and the temperature of the electrically heated catalyst for determining the exhaust air-fuel ratio in the control flow shown in FIG. 10.
  • FIG. 11 is a third diagram showing the correlation between the engine speed and the temperature of the electrically heated catalyst for determining the exhaust air-fuel ratio in the control flow shown in FIG. 10. It is a figure which shows transition of the integrating
  • FIG. 1 shows a hybrid vehicle 100 including a hybrid system having an internal combustion engine having a control device according to an embodiment of the present invention and two motor generators (hereinafter simply referred to as “motors”) as separate drive sources. It is a figure which shows schematic structure of these.
  • the hybrid vehicle 100 includes the internal combustion engine 10 as a main power source, and includes a motor 21a and a motor 21b as auxiliary power sources.
  • the crankshaft of the internal combustion engine 10 is connected to the output shaft 23, and the output shaft 23 is connected to the power split mechanism 22.
  • the power split mechanism 22 is connected to the motor 21 a via the power transmission shaft 24 and is also connected to the motor 21 b via the power transmission shaft 25.
  • the power split mechanism 22 switches the transmission of the output of the internal combustion engine and the auxiliary power source and the like by the planetary gear mechanism.
  • a reduction gear 26 is connected to the power transmission shaft 25 connected to the motor 21 b, and drive wheels 28 are connected to the reduction gear 26 via a drive shaft 27.
  • the speed reducer 26 is configured by combining a plurality of gears, reduces the rotational speed of the power transmission shaft 25, and transmits the output from the internal combustion engine 10, the motor 21 a, and the motor 21 b to the drive shaft 27.
  • the motors 21 a and 21 b are electrically connected to a PCU (Power Control Unit) 29 including an inverter (not shown), and the PCU 29 is further electrically connected to the battery 30.
  • the PCU 29 converts the DC power extracted from the battery 30 into AC power and supplies the AC power to the motors 21 a and 21 b, and converts the AC power generated by the motors 21 a and 21 b into DC power and supplies it to the battery 30. It is the electric power control unit comprised by these.
  • the motors 21a and 21b are constituted by AC synchronous motors. When an excitation current is applied, the motors 21a and 21b generate torque, and when torque is applied from the outside, for example, the power split mechanism 22 is driven from the internal combustion engine 10.
  • a hybrid vehicle 100 shown in FIG. 1 is a so-called plug-in hybrid vehicle, and is provided with a charging plug 31 so that electric power can be supplied from an external power source 32.
  • the intake passage 12 of the internal combustion engine 1 is provided with an air flow meter 13 for detecting the intake flow rate of the passage, and a throttle valve 14 for adjusting the intake flow rate of the intake passage 12 is provided downstream thereof.
  • the exhaust passage 2 of the internal combustion engine 1 is provided with an EHC (electrically heated catalyst) 1 for purifying exhaust gas.
  • the EHC 1 is a device that raises the temperature of a catalyst supported on a carrier by energizing an electrode laid on the carrier, and a specific configuration thereof will be described later.
  • the hybrid vehicle 100 having the hybrid system configured as described above is an electronic control unit for controlling the fuel injection in the internal combustion engine 10 and the PCU 29 that controls power transfer between the motors 21a and 21b and the battery 30.
  • An ECU 20 is provided. Specifically, the crank position sensor 11 and the accelerator opening sensor 15 are electrically connected to the ECU 20, and the operation state of the internal combustion engine 10 is grasped by passing each detection value. Further, the ECU 20 is also electrically connected to a water temperature sensor 16 that detects the coolant temperature of the internal combustion engine 10, the air flow meter 13, and the throttle valve 14. The ECU 20 also monitors the amount of power stored in the battery 30 via the PCU 29.
  • the ECU 20 determines that the amount of power stored in the battery 30 is decreasing, power is generated by transmitting the engine output of the internal combustion engine 1 to the motor 21 a, and the electricity generated by the motor 21 a is generated via the PCU 29. Is stored.
  • the ECU 20 is also electrically connected to the temperature sensor 6a and the air-fuel ratio sensor 6b shown in FIG. 2, and is further electrically connected so that energization to the EHC 1 can be controlled.
  • FIG. 2 is a cross-sectional view of the EHC 1 along the exhaust flow direction, and the white arrows in FIG. 2 indicate the exhaust flow direction in the exhaust passage 2.
  • FIG. 3 is a cross-sectional view taken along the line BB shown in FIG.
  • the EHC 1 includes a catalyst carrier 3, a case 4, a mat 5, and an electrode 7.
  • the catalyst carrier 3 is accommodated in the case 4.
  • the catalyst carrier 3 is formed in a cylindrical shape, and is installed so that its central axis is coaxial with the central axis A of the exhaust passage 2.
  • the central axis A is a central axis common to the exhaust passage 2, the catalyst carrier 3, and the case 4.
  • a three-way catalyst 13 is supported on the catalyst carrier 3.
  • the catalyst supported on the catalyst carrier 3 is not limited to a three-way catalyst, and may be an oxidation catalyst, an occlusion reduction type NOx catalyst, or a selective reduction type NOx catalyst. It can be selected as appropriate.
  • the catalyst carrier 3 is formed of a material that generates electric resistance when heated.
  • An example of the material of the catalyst carrier 3 is SiC.
  • the catalyst carrier 3 has a plurality of passages extending in the direction in which the exhaust flows (that is, in the direction of the central axis A) and having a cross section perpendicular to the direction in which the exhaust flows in a honeycomb shape. Exhaust gas flows through this passage.
  • the cross-sectional shape of the catalyst carrier 3 in the direction orthogonal to the central axis A may be an ellipse or the like.
  • a pair of electrodes 7 are connected to the outer peripheral surface of the catalyst carrier 3.
  • the electrode 7 is formed by a surface electrode 7a and a shaft electrode 7b.
  • the surface electrode 7 a extends along the outer circumferential surface of the catalyst carrier 3 in the circumferential direction and the axial direction, that is, so as to cover the outer circumferential surface of the catalyst carrier 3.
  • the surface electrodes 7 a are provided on the outer peripheral surface of the catalyst carrier 3 so as to face each other with the catalyst carrier 3 interposed therebetween.
  • One end of the shaft electrode 7b is connected to the surface electrode 7a.
  • the other end of the shaft electrode 7 b protrudes outside the case 4 through the electrode chamber 9 formed in the case 4.
  • Electric power is supplied from the battery 30 to the electrode 7 configured as described above, and the catalyst carrier 3 is energized.
  • the catalyst carrier 3 When the catalyst carrier 3 generates heat due to this energization, the three-way catalyst 13 supported on the catalyst carrier 3 is heated and its activation is promoted. In this way, the power supply for activating the catalyst in the EHC 1 via the electrode 7 is controlled by the ECU 20.
  • the case 4 is made of metal.
  • a material for forming the case 4 a stainless steel material can be exemplified.
  • a mat 5 is sandwiched between the inner wall surface of the case 4 and the outer peripheral surface of the catalyst carrier 3. That is, the catalyst carrier 3 is supported by the mat 5 in the case 4.
  • the mat 5 is made of an electrical insulating material. Examples of the material for forming the mat 5 include ceramic fibers mainly composed of alumina. As described above, since the mat 5 is sandwiched between the catalyst carrier 3 and the case 4, electricity is prevented from leaking to the case 4 when the catalyst carrier 3 is energized.
  • the mat 5 is divided into an upstream portion 5a and a downstream portion 5b, and a space is formed between the upstream portion 5a and the downstream portion 5b.
  • An electrode chamber 9 for passing the axial electrode 7b is defined.
  • the mat 5 may be divided into an upstream portion 5a and a downstream portion 5b, and a space serving as an electrode chamber may be defined by forming a through hole only in a portion through which the electrode 7 of the mat 5 passes.
  • an electrode support member 8 that supports the shaft electrode 7b is provided in a through-hole that is opened in the case 4 so as to pass the shaft electrode 7b.
  • the electrode support member 8 is formed of an electrical insulating material, and insulation between the case 4 and the shaft electrode 7b is maintained.
  • the catalyst carrier 3 corresponds to the heating element according to the present invention.
  • the heating element according to the present invention is not limited to the carrier supporting the catalyst.
  • the heating element may be a structure installed on the upstream side of the catalyst. In this case, the heat generated by the heating element is the catalyst. As a result, the catalyst is heated.
  • FIG. 4 is a diagram for schematically explaining the transition of the temperature of the catalyst carrier 3 of the EHC 1 when the internal combustion engine 10 is cold started.
  • FIG. 4A is a cross-sectional view when the EHC 1 is cut in a direction orthogonal to the central axis. In FIG. 4A, the electrode 7 is omitted for convenience.
  • FIG. 4B is a diagram showing the temperature transition of each part of the catalyst carrier 3 when the internal combustion engine 10 is cold-started.
  • the horizontal axis represents time
  • the vertical axis represents the temperature of the catalyst carrier 3
  • the alternate long and short dash line represents the temperature of the side wall surface of the catalyst carrier 3 (the surface in contact with the mat 5).
  • FIG. 4C shows a change in temperature difference ⁇ T between the side wall surface of the catalyst carrier 3 and the vicinity of the side wall inside the catalyst carrier 3 during cold start of the internal combustion engine 10 (hereinafter, referred to as “temperature difference in the carrier”).
  • FIG. 5 is a flowchart of the output suppression control performed by the ECU 20, and the control is repeatedly executed by the ECU 20 every predetermined time.
  • the ECU 20 substantially corresponds to a computer including a CPU, a memory, and the like, and the control according to the flowchart shown in FIG. 5 and various controls described later are executed by executing a control program there.
  • a predetermined opening A0 is a threshold value for determining whether or not there is a rapid acceleration request for the internal combustion engine 10 included in the hybrid system. If an affirmative determination is made in S101, the process proceeds to S102, and if a negative determination is made, this control is terminated.
  • the cold start of the internal combustion engine is an engine start when the temperature of the internal combustion engine is relatively low.
  • the vehicle 100 travels with only the driving force of the motors 21a and 21b according to the travel request of the driver, and the drive of the internal combustion engine 1 together with both motors. Since “HV traveling” that travels by force is switched as appropriate, cold start in the internal combustion engine 10 is engine start when the entire hybrid system is stopped, and the traveling state of the vehicle 100 is from EV traveling to HV traveling. Includes engine start when switched.
  • the engine start of the internal combustion engine 10 is a cold start is based on the coolant temperature by the water temperature sensor 16, the time that the internal combustion engine 10 has been stopped (ie, the soak time of the internal combustion engine 10), or the like. It is judged. If a positive determination is made in S102, the process proceeds to S103, and if a negative determination is made, the present control is terminated.
  • the temperature of the catalyst carrier 3 of the EHC 1 (hereinafter referred to as “EHC temperature”) Tehc is calculated based on the detection value of the temperature sensor 6a, and the EHC temperature Tehc and the internal combustion engine 10 are cold-started.
  • the upper limit value (hereinafter referred to as “integrated intake air amount upper limit”) of the integrated value of the intake air amount (hereinafter referred to as “integrated intake air amount”) in the cold start acceleration state of the internal combustion engine ) Is calculated.
  • the upper limit of the integrated intake air amount is a limit value related to the integrated intake air amount that is set in order to suppress rapid energy input to the catalyst carrier 3. Therefore, the integrated intake air amount upper limit corresponds to the “suppression amount of input energy via exhaust” in the present invention, and the processing according to S103 corresponds to processing by the determining means according to the present invention.
  • FIG. 6 is a map in which the horizontal axis represents the elapsed time since the cold start, and the vertical axis represents the integrated intake air amount upper limit gasummax.
  • the integrated intake air amount upper limit gasummax can be calculated based on the elapsed time from the cold start.
  • the integrated intake air amount upper limit gasummax As the elapsed time becomes shorter, the integrated intake air amount upper limit gasummax also decreases, and the increase rate of the integrated intake air amount upper limit tends to increase with time.
  • the catalyst carrier 3 tends to generate a larger temperature difference ⁇ T within the carrier if its EHC temperature is low.
  • the relative relationship between the elapsed time and the cumulative intake air amount upper limit gasummax is set so that the value of the cumulative intake air amount upper limit gasummax with respect to the elapsed time becomes smaller as the bed temperature Tehc itself of the catalyst carrier 3 is lower. ing.
  • the integrated intake air amount upper limit gasummax is calculated based on both the elapsed time from the cold start and the EHC temperature Tehc, so that energy input is performed based on the thermal state of the catalyst carrier 3 accurately. Can be realized.
  • S104 is performed in parallel with the process S103.
  • S104 the actual intake air amount Ga from the cold start of the internal combustion engine 10 is integrated, and the integrated intake air amount gasum is calculated. Specifically, a process for integrating the detection values of the air flow meter 13 is performed.
  • the determination process of S105 is performed.
  • S105 it is determined whether or not the integrated intake air amount gasum calculated in S104 is larger than the integrated intake air amount upper limit gasummax calculated in S103.
  • An affirmative determination in S105 means that excessive energy is input to the catalyst carrier 3 at the time of cold start, and the temperature difference ⁇ T in the carrier may be increased.
  • the target opening (hereinafter referred to as the following) of the throttle valve 14 for satisfying the intake amount necessary for realizing the acceleration request according to the accelerator opening.
  • Tatag (referred to as “target throttle opening”) is calculated.
  • the target throttle is determined from the control map stored in the ECU 20.
  • An opening degree tagag is calculated.
  • the opening (hereinafter referred to as “throttle opening upper limit”) tamax of the throttle valve 14 to be taken in order to realize the integrated intake air amount upper limit gasummax calculated in S103 is determined.
  • the throttle opening upper limit tamax is a limit value related to the opening of the throttle valve 14 that realizes an intake air amount for preventing the in-carrier temperature difference ⁇ T of the catalyst carrier 3 from being excessively increased.
  • the determination of the throttle opening upper limit tamax will be described with reference to FIG.
  • FIG. 7 is a map in which the horizontal axis is the engine rotation speed and the vertical axis is the throttle opening upper limit tamax. By following this map, the throttle opening upper limit tamax can be calculated based on the engine speed.
  • the opening degree of the throttle valve 14 increases as the engine speed increases. Further, as described above, the lower the bed temperature Tehc of the catalyst carrier 3, the larger the temperature difference ⁇ T in the carrier in the catalyst carrier 3 tends to increase. Therefore, it is preferable to keep the energy input to the EHC 1 lower. Therefore, as shown in FIG. 6, the throttle opening upper limit tamax is calculated as shown in FIG. 7 in view of the fact that the value of the integrated intake air amount upper limit gasummax is calculated as the EHC temperature Tehc decreases.
  • the relative relationship between the engine rotation speed and the throttle opening upper limit tamax is set so that the value of the throttle opening upper limit tamax with respect to the engine rotation speed decreases as the value of the integrated intake amount upper limit gasummax decreases.
  • the throttle opening upper limit tamax is determined based on both the engine speed and the integrated intake air amount upper limit gasummax reflecting the EHC temperature Tehc, so that the thermal state of the catalyst carrier 3 can be accurately taken into account.
  • intake air amount control for energy input can be realized.
  • S108 it is determined whether or not the target throttle opening degree tagag is larger than the throttle opening upper limit tamax. In other words, if the intake amount increases, the exhaust amount flowing into the EHC 1 increases, and as a result, the energy input to the EHC 1 increases. As a result, the determination process in S108 determines the requested operating state of the internal combustion engine 10. It is determined whether or not the intake air amount to be realized is an intake air amount that can increase the temperature difference ⁇ T in the carrier. Therefore, if an affirmative determination is made in S108, it can be reasonably determined that the temperature difference ⁇ T in the carrier can be increased, and the routine proceeds to S109, where the value of the target throttle opening degree tag is limited to the throttle opening upper limit tamax. On the other hand, if a negative determination is made in S108, no restriction on the target throttle opening degree tag is performed.
  • the opening degree of the throttle valve 14 is controlled according to the target throttle opening degree tagag.
  • the target throttle opening degree tag is restricted in S109 so that the opening degree of the throttle valve 14 becomes the restriction opening degree. If not, the opening degree of the throttle valve 14 is controlled to be the value calculated in S106.
  • the process of S110 ends, the process proceeds to S111.
  • S111 it is determined whether or not a predetermined time has elapsed since the internal combustion engine 10 started cold start.
  • This predetermined time is defined as a time until the EHC temperature Tehc rises to some extent and reaches a state in which no crack is generated due to the temperature difference ⁇ T in the carrier. Therefore, if an affirmative determination is made in S111, the present control is terminated because the possibility of cracking in the catalyst carrier 3 is low, and if a negative determination is made, there is still a possibility that the EHC 1 may crack.
  • the processes after S103 are repeated.
  • the continuation of the main control is determined as the predetermined time elapses. Alternatively, the continuation of the main control may be determined based on the current EHC temperature Tehc. From the above, the processing of S103 to S111 described above corresponds to the processing by the control means according to the present invention.
  • the present output suppression control when the internal combustion engine 10 is cold started, the accumulated intake air amount is excessively increased in the carrier temperature difference ⁇ T in the catalyst carrier 3 according to various parameters including the EHC temperature Tehc. Control is performed so as not to exceed the limit value for preventing enlargement. As a result, it is possible to suppress the occurrence of cracks in EHC1.
  • an upper limit value is set for the integrated intake air amount, and the output is suppressed as a result in order to suppress it.
  • this control limits the integrated intake amount immediately after the cold start of the internal combustion engine 10, the situation where the output is not suddenly restricted during the acceleration does not occur. It becomes difficult to let you feel.
  • FIG. 8A shows the transition of the integrated intake air amount when the output suppression control shown in FIG. 5 is performed
  • FIG. 8B illustrates the transition of the intake air amount Ga.
  • the transition indicated by the solid line relates to the present output suppression control
  • the broken line relates to the related art, that is, relates to the form in which the intake air amount restriction process based on the integrated intake air amount upper limit is not performed. Is.
  • FIG. 8A shows the transition of the integrated intake air amount when the output suppression control shown in FIG. 5 is performed
  • FIG. 8B illustrates the transition of the intake air amount Ga.
  • the transition indicated by the solid line relates to the present output suppression control
  • the broken line relates to the related art, that is, relates to the form in which the intake air amount restriction process based on the integrated intake air amount upper limit is not performed. Is.
  • FIG. 8B shows the transition of the intake air amount when the restriction of the integrated intake air amount is performed.
  • the intake air amount Ga is also kept low immediately after the start of the cold start acceleration, compared to the case where the upper limit of the integrated intake air amount is not set. Therefore, as described above, since the intake air amount Ga is not suddenly reduced in order to suppress the expansion of the temperature difference in the carrier, it is possible to avoid a situation in which the output of the internal combustion engine 10 is greatly restricted during acceleration. Therefore, it becomes possible to reduce the deterioration of the dribabil.
  • FIG. 9A and FIG. 9B the temperature transition of the side wall surface of the catalyst carrier 3 and the vicinity of the side wall is illustrated in the upper part of each figure, and the transition of the temperature difference ⁇ T in the carrier is illustrated in the lower part of each figure.
  • line L1 shows the temperature transition of the side wall surface of catalyst carrier 3 when this output suppression control is performed
  • line L2 shows the catalyst carrier when this output suppression control is performed.
  • 3 shows a temperature transition in the vicinity of the side wall, and a temperature difference ⁇ T in the carrier, which is a temperature difference between the side wall surface and the side wall near the both lines, is indicated by a line L5.
  • the line L3 indicates the temperature transition of the side wall surface of the catalyst carrier 3 in the prior art, that is, when the output suppression control is not performed
  • the line L4 indicates the side wall of the catalyst carrier 3 in the prior art.
  • the temperature transition in the vicinity is shown, and the temperature difference ⁇ T in the carrier, which is the temperature difference between the side wall surface and the side wall vicinity related to both lines, is indicated by a line L6.
  • FIG. 9A is a diagram showing the transition of each parameter when the EHC temperature is relatively low at the initial stage of acceleration in the cold start acceleration state of the internal combustion engine 10, and conversely, FIG. 9B shows the EHC at the initial stage of acceleration. It is a figure which shows transition of each parameter when temperature is comparatively high.
  • ⁇ T1 the temperature range below the criterion corresponds to the “predetermined temperature range” in the present invention
  • the degree of expansion of the temperature difference ⁇ T in the carrier decreases as the EHC temperature in the initial stage of acceleration increases. Therefore, the higher the EHC temperature in the early stage of acceleration, the higher the integrated intake air amount upper limit value can be set, and the reduction (suppression amount) in engine output of the internal combustion engine 10 can be reduced.
  • the correlation between the EHC temperature and the integrated intake air amount upper limit is reflected in the control map shown in FIG.
  • the present invention for avoiding the occurrence of cracks in the EHC 1 in the internal combustion engine 10 mounted on the hybrid vehicle 100 has been described.
  • the present invention is a vehicle driven only by the internal combustion engine 10, that is, The present invention is also applicable to the internal combustion engine 10 in a vehicle that does not use a motor driven by electric power as a power source. Furthermore, even if the internal combustion engine 10 is a compression self-ignition internal combustion engine, the present invention can be applied.
  • the control when it is determined in S111 that the predetermined time has elapsed, the control is terminated, but in this case, the setting of the integrated intake air amount upper limit is not performed, so that the internal combustion engine 10 exhibits.
  • the upper limit of the output There is a possibility that the upper limit of the output that can be changed rapidly. Therefore, after the predetermined time has elapsed, the setting of the integrated intake air amount upper limit is not stopped immediately, but the value of the integrated intake air amount upper limit is gradually increased so as to finally reach a state where there is substantially no upper limit. Thus, a sudden change in the output of the internal combustion engine 10 may be avoided.
  • the adjustment for changing the upper limit value of the integrated intake air amount is not necessarily performed after the determination of the elapse of the predetermined time in S111, and the possibility of occurrence of cracks does not increase according to the temperature difference ⁇ T in the carrier.
  • the adjustment process may be started at a certain timing after the elapse of the predetermined time. Note that the change in the intake air amount due to the adjustment appears in the change in the intake air amount during the suppression return period in FIG.
  • FIG. 10 is a flowchart of the exhaust air-fuel ratio control for suppressing the occurrence of cracks in the EHC 1, and among the processes constituting the control, substantially the same process as the process constituting the output suppression control shown in FIG. Are given the same reference numerals and are not described in detail.
  • the processing of S106 to S110 of the output suppression control shown in FIG. 5 is replaced with S201 and S202. Therefore, if an affirmative determination is made in S105, the processing of S201 and S202 is performed, and the process proceeds to S111.
  • the internal combustion engine 1 in order to eliminate excessive input energy to the EHC 1 that may cause cracks in the temperature difference ⁇ T in the carrier due to the difference between the intake air amount integrated gasum and the integrated intake air amount upper limit gasummax, the internal combustion engine 1
  • the control amount for shifting the air-fuel ratio of the exhaust gas from the exhaust gas to the rich side that is, the control amount related to the exhaust air-fuel ratio for bringing the stoichiometric air-fuel ratio to the rich-side air-fuel ratio, " Is determined.
  • the internal combustion engine 10 is a spark ignition type internal combustion engine (gasoline engine), usually, the combustion conditions are controlled so that the exhaust air-fuel ratio becomes an air-fuel ratio in the vicinity of the stoichiometry in order to optimize the combustion efficiency.
  • this normal combustion control is referred to as normal stoichiometric control from the viewpoint of the exhaust air-fuel ratio.
  • the exhaust temperature basically becomes relatively high, so that the energy of the exhaust flowing into the EHC 1 is also in a high energy state.
  • the present invention pays attention to the fact that the exhaust under normal stoichiometric control has such high energy, and in order to reduce the energy of the exhaust in S201, the exhaust air-fuel ratio is set to the rich side.
  • the combustion condition in the internal combustion engine 10 is adjusted so as to shift to, that is, the rich control amount is determined.
  • FIGS. 11 to 13 are control maps that define the correlation between the engine speed and the exhaust air-fuel ratio, with the horizontal axis representing the engine speed of the internal combustion engine 10 and the vertical axis representing the exhaust air-fuel ratio. Further, the correlation is defined for each EHC temperature, and according to this map, the exhaust air for suppressing the input energy to the EHC 1 based on the engine speed of the internal combustion engine 10 and the EHC temperature of the EUC 1.
  • the fuel ratio that is, the rich control amount can be calculated. As described above, as the EHC temperature becomes higher, the temperature difference ⁇ T in the carrier becomes harder to increase.
  • the rich control amount may be determined according to any control map shown in FIGS.
  • FIGS the characteristics of the control map shown in each figure will be described below.
  • ⁇ Control map shown in FIG. 11> In this control map, the correlation between the engine speed and the exhaust air / fuel ratio is set so that the rich control amount increases as the initial engine speed of the internal combustion engine decreases and the rich control amount decreases as the engine speed increases. Has been. If the rich control amount is determined according to the control map, the exhaust air-fuel ratio is strongly enriched at a low temperature at which the EHC 1 is likely to crack, that is, immediately after the cold start of the internal combustion engine 10, so that the acceleration air-fuel ratio is increased.
  • Control map shown in FIG. 13 a correlation between the engine speed and the exhaust air / fuel ratio, which is positioned between the control map shown in FIG. 11 and the control map shown in FIG. 12, is set. Specifically, the engine speed of the internal combustion engine is set. The rich control amount is constant regardless of the speed, and the rich control amount changes according to the EHC temperature. Therefore, if the rich control amount is determined according to the control map, a tendency regarding the rich control amount between the case of using the control map shown in FIG. 11 and the case of using the control map shown in FIG. 12 is obtained.
  • the rich control amount can be determined according to any one of the control maps of FIGS.
  • the process proceeds to S202, and based on the rich control amount determined in S201, the exhaust air-fuel ratio is shifted to the rich side in order to suppress the input energy to EHC1.
  • the fuel injection amount in the internal combustion engine 10 is adjusted to achieve the target rich exhaust air-fuel ratio.
  • the process of S202 ends, the process proceeds to S111, and the determination process described above is performed.
  • the exhaust air / fuel ratio control is performed in this manner, when the internal combustion engine 10 is cold-started, the actual integrated intake air amount exceeds the integrated intake air amount upper limit according to various parameters including the EHC temperature Tehc.
  • the rich control of the exhaust air-fuel ratio is performed so that the temperature difference ⁇ T in the carrier at the catalyst carrier 3 does not excessively increase, and as a result, the energy input to the EHC 1 via the exhaust is suppressed.
  • the input energy to the EHC 1 is suppressed without limiting the intake air amount, and therefore the output of the internal combustion engine 10 is not limited.
  • the fuel consumption may increase due to the rich control performed by increasing the fuel injection amount by this control.
  • FIG. 14A shows the transition of the integrated intake air amount when the exhaust air-fuel ratio control shown in FIG. 10 is performed
  • FIG. 14B shows the air-fuel ratio of the exhaust from the internal combustion engine 10, that is, EHC.
  • the transition of the air-fuel ratio of the exhaust gas flowing in is illustrated.
  • the transition of the integrated intake air amount upper limit setting in FIG. 14A relates to the integrated intake air amount upper limit setting gasummax calculated in S103 based on the control map shown in FIG.
  • the present invention relates to the actual intake air amount in the internal combustion engine 10 when WOT acceleration (full throttle acceleration) is performed as an example of acceleration at the time of start-up.
  • the actual intake air amount has exceeded the integrated intake air amount upper limit gasummax after t1 has elapsed since the start of WOT acceleration at the time of cold start.
  • the processing of S201 and S202 in the control is performed.
  • the transition of the exhaust air-fuel ratio at this time will be described with reference to FIG. 14B.
  • the fuel injection amount is temporarily increased to correspond to the start of WOT acceleration.
  • the normal stoichiometric control is performed so that the exhaust air-fuel ratio becomes an air-fuel ratio in the vicinity of the stoichiometric.
  • the exhaust air-fuel ratio is controlled to the rich side by the rich control related to the processing of S201 and S202.
  • This rich control is performed to suppress the input energy to the EHC 1 due to the exhaust as described above.
  • the exhaust air-fuel ratio control is terminated, and the exhaust air-fuel ratio by the normal stoichiometric control is completed. Transition to control.
  • FIG. 15A and FIG. 15B illustrate the temperature transition of the side wall surface and the vicinity of the side wall of the catalyst carrier 3, and the lower stage of FIG. 15A illustrates the transition of the temperature difference ⁇ T in the carrier.
  • a line L11 indicates a temperature transition of the side wall surface of the catalyst carrier 3 when the exhaust air-fuel ratio control is performed
  • a line L12 indicates a time when the exhaust air-fuel ratio control is performed.
  • the temperature transition in the vicinity of the side wall of the catalyst carrier 3 is shown, and the temperature difference ⁇ T in the carrier, which is the temperature difference between the side wall surface and the side wall near the both lines, is indicated by a line L15 in the lower part of FIG. 15A. .
  • a line L13 shows the temperature transition of the side wall surface of the catalyst carrier 3 in the prior art when the exhaust air-fuel ratio control is not performed, that is, the line L14 shows the catalyst carrier 3 in the prior art.
  • the temperature transition in the vicinity of the side wall is shown, and the temperature difference ⁇ T in the carrier, which is the temperature difference between the side wall surface and the side wall near the both lines, is indicated by a line L16 in the lower part of FIG. 15A.
  • FIG. 15A is a diagram showing the transition of each parameter when the EHC temperature is relatively low at the initial stage of acceleration in the cold start acceleration state of the internal combustion engine 10, and conversely, FIG. 15B shows the EHC at the initial stage of acceleration. It is a figure which shows transition of each parameter when temperature is comparatively high.
  • 15A shows the transition of the temperature difference ⁇ T in the carrier when the exhaust air-fuel ratio control is performed (that is, the transition represented by the line L15 when the EHC temperature is low), and FIG.
  • the change in the temperature difference ⁇ T in the carrier when the exhaust air-fuel ratio control is performed that is, the line L17 corresponding to the case where the EHC temperature is high
  • FIG. 15C shows a comparison with the transition represented by.
  • the exhaust air / fuel control is performed, so that the temperature difference ⁇ T in the carrier can be reduced compared to the case of the prior art even at a low temperature at which the temperature difference ⁇ T in the carrier is easily increased. Can be maintained below ⁇ T1 (the temperature range below the criterion corresponds to the “predetermined temperature range” in the present invention). Further, as indicated by a line L17 in FIG. 15C, when the EHC temperature in the initial stage of acceleration is increased, the degree of expansion of the in-carrier temperature difference ⁇ T is reduced.
  • the rich control amount determined in S201 that is, the extent of the air-fuel ratio shift from the stoichiometric vicinity to the rich side, may be reduced as the EHC temperature in the early stage of acceleration increases. By doing in this way, the fuel consumption for exhaust enrichment performed for crack suppression can be suppressed.
  • FIG. 16 is a flowchart of control for suppressing the occurrence of cracks in the EHC 1 as a modified example of the output suppression control shown in FIG. 5, and among the processes constituting the control, the output suppression control shown in FIG.
  • the same reference numerals are assigned to processes that are substantially the same as the processes that constitute, and the detailed description thereof is omitted.
  • the output suppression control illustrated in FIG. 16 is obtained by replacing the process of S107 of the output suppression control illustrated in FIG. 5 with S301.
  • the throttle opening upper limit tamax is determined in the same manner as in S107.
  • the throttle opening upper limit tamax is determined in addition to the engine rotational speed of the internal combustion engine 10 and the integrated intake air amount upper limit gasummax.
  • the vehicle speed of the hybrid vehicle 100 is considered. Accordingly, a method for determining the throttle opening upper limit tamax in S301 will be described based on FIG.
  • the throttle opening upper limit tamax is determined using the control map shown in FIG. 17A and the control map shown in FIG.
  • the control map shown in FIG. 17A is substantially the same as the control map shown in FIG.
  • the correlation between the engine speed and the throttle opening upper limit tamax is selected based on the integrated intake amount upper limit gasummax.
  • three correlations correlations represented by line L21, line L22, and line L23
  • the integrated intake air amount upper limit gasumumax are illustrated, for example, the integrated intake air amount upper limit calculated in S103. It is assumed that the above correlation represented by the line L21 is selected based on gasummax.
  • a control map in which the vehicle speed of the hybrid vehicle 100 is reflected in the throttle opening upper limit tamax based on the correlation represented by the selected line L21 (see FIG. 17B). Is prepared. If the vehicle speed of the hybrid vehicle 100 is high at the time of cold start of the internal combustion engine 10 in which this output suppression control is executed, even if the opening of the throttle valve 14 is the same as when the vehicle speed is low, it is inevitably necessary. In particular, the amount of intake air taken into the internal combustion engine 10 increases, which may lead to an increase in input energy to the EHC 1 via the exhaust gas. Therefore, in the control map shown in FIG.
  • the correlation between the engine speed and the throttle opening upper limit tamax is set so that the intake air amount is further suppressed as the vehicle speed of the hybrid vehicle 100 increases.
  • the control map shown in FIG. 17 (b) corresponds to the correlation related to the line L21 in FIG. 17 (a).
  • the vehicle speed also applies to the correlation related to the line L22, the line L23, etc.
  • a control map reflecting the above is prepared.
  • the throttle opening upper limit tamax determination processing in S301 is performed, and thereafter, the processing from S108 onward is performed.
  • the output suppression control shown in FIG. 16 when the internal combustion engine 10 is cold-started, the integrated intake air amount is changed in the carrier in the catalyst carrier 3 according to various parameters including the EHC temperature Tehc.
  • the temperature difference ⁇ T is controlled so as not to exceed a limit value for preventing the temperature difference ⁇ T from excessively expanding.
  • the vehicle speed at the time of control is reflected on the upper limit value of the integrated intake air amount, it is possible to accurately avoid the increase in the temperature difference ⁇ T in the carrier even in the cold start of the internal combustion engine 10 from the soak state.
  • FIG. 18 is a flowchart of control for suppressing the occurrence of cracks in the EHC 1 as a modified example of the exhaust air-fuel ratio control shown in FIG. 10, and the exhaust air shown in FIG. Processes that are substantially the same as the processes that constitute the fuel ratio control are given the same reference numerals, and detailed descriptions thereof are omitted.
  • the exhaust air / fuel ratio control shown in FIG. 18 is obtained by replacing the process of S201 of the exhaust air / fuel ratio control shown in FIG. 10 with S401.
  • the process of S401 performed after an affirmative determination in S105 will be described.
  • the rich control amount of the exhaust air-fuel ratio is determined.
  • the hybrid at the time of this control is determined.
  • the vehicle speed of the vehicle 100 is taken into account. Accordingly, the method for determining the rich control amount in S401 will be described based on FIG.
  • the rich control amount is determined using the control map shown in FIG. 19A and the control map shown in FIG.
  • the control map shown in FIG. 19A is substantially the same as the control map shown in FIG. 12 corresponding to the process of S201, and therefore detailed description thereof is omitted. Then, according to the control map shown in FIG.
  • the correlation between the engine speed and the exhaust air / fuel ratio is selected based on the EHC temperature.
  • four correlations correspondences represented by line L31, line L32, line L33, and line L34
  • line L31, line L32, line L33, and line L34 correspondences represented by line L31, line L32, line L33, and line L34
  • line L32 correspondences represented by line L32 based on the EHC temperature. It is assumed that the above correlation is selected.
  • a control map in which the vehicle speed of the hybrid vehicle 100 is reflected in the rich control amount based on the correlation represented by the selected line L32. It is prepared. If the vehicle speed of the hybrid vehicle 100 is high during the cold start of the internal combustion engine 10 where the exhaust air-fuel ratio control is executed, even if the opening of the throttle valve 14 is the same as when the vehicle speed is low, Inevitably, the amount of intake air taken into the internal combustion engine 10 increases, which may lead to an increase in input energy to the EHC 1 via the exhaust gas. Therefore, in the control map shown in FIG.
  • the correlation between the engine speed and the exhaust air / fuel ratio is set so that the exhaust air / fuel ratio shifts to a richer side as the vehicle speed of the hybrid vehicle 100 increases.
  • the correlation indicated by 3 is set.
  • the control map shown in FIG. 19 (b) corresponds to the correlation related to the line L32 in FIG. 19 (a), but of course the vehicle speed also relates to the correlation related to the line L33, the line L34, etc.
  • a control map reflecting the above is prepared.
  • the rich control amount determination process in S401 is performed, and thereafter, the processes in and after S202 are performed.
  • the exhaust air-fuel ratio control shown in FIG. 18 the exhaust air-fuel ratio is changed according to various parameters including the EHC temperature Tehc when the internal combustion engine 10 is cold-started. Control is performed so that the internal temperature difference ⁇ T does not excessively increase. In particular, since the vehicle speed at the time of control is reflected in the rich control amount, it is possible to accurately avoid the increase in the temperature difference ⁇ T in the carrier even in the cold start of the internal combustion engine 10 from the soak state.
  • FIG. 20 shows a case where power is supplied to the EHC 1 in advance before the internal combustion engine 10 is cold-started and its EHC temperature is raised, so that energy is input via exhaust during the subsequent cold-start.
  • 5 is a flowchart of control for preventing the temperature difference ⁇ T in the carrier from excessively increasing in the catalyst carrier 3, and this control is referred to as pre-startup EHC energization control.
  • the control is repeatedly executed as appropriate by the ECU 20 while the internal combustion engine 10 is stopped.
  • the EHC temperature Tehc is acquired.
  • the estimation and calculation of the EHC temperature are performed based on the exhaust gas temperature detected by the temperature sensor 6a as shown in the above embodiments.
  • the vehicle speed evspd of the hybrid vehicle 100 is acquired based on the value detected by the crank position sensor 11.
  • the target EHC temperature which is a target temperature when the EHC 1 is energized in advance and the temperature thereof is increased in a state where the internal combustion engine 10 is stopped, that is, before the cold start of the internal combustion engine 10 is performed.
  • tempev is calculated.
  • This target EHC temperature tempev is preliminarily determined in advance at the time when exhaust gas flows so that the internal combustion engine 10 is cold-started and the exhaust gas flows into EHC 1 so that the temperature difference ⁇ T in the carrier that causes cracking does not increase excessively. It is set to keep the temperature raised.
  • the temperature difference ⁇ T in the carrier is less likely to increase as shown in the above-described embodiments (for example, FIGS. 9B and 15B).
  • the calculation of the target EHC temperature tempev is performed according to the control map shown in FIG.
  • the horizontal axis represents the vehicle speed evspd and the vertical axis represents the target EHC temperature tempev, which defines the correlation between the two.
  • the target EHC temperature tempev is set to be higher as the vehicle speed evspd is higher.
  • the target EHC temperature tempev is calculated based on the vehicle speed evspd acquired in S502, according to the control map shown in FIG.
  • the EHC temperature is based on the vehicle speed of the hybrid vehicle 100 while the internal combustion engine 10 is stopped, and the in-carrier temperature difference ⁇ T that causes cracks is generated.
  • the temperature is controlled so as not to expand too much. Therefore, even if the internal combustion engine 10 is cold-started during the travel of the hybrid vehicle 100 thereafter, the generation of cracks due to the flow of exhaust gas into the EHC 1 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transportation (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Automation & Control Theory (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A control device for an internal combustion engine, comprising an electric heating catalyst for heating an exhaust-purifying catalyst by heat from a heat-generating body which generates heat by the supply of electricity, the control device also comprising: a determination means for determining the amount of fed energy suppressed by the exhaust to the electric heating catalyst, so that a heat-generating body internal temperature difference, which is the temperature difference between predetermined regions of the heat-generating body of the electric heating catalyst, remains within a predetermined temperature range during cold startup of the internal combustion engine; and a control means for controlling the operating state of the internal combustion engine in accordance with the suppressed amount of fed energy determined by the determination means. The occurrence of cracking in the heat-generating body of the electric heating catalyst is minimized by this configuration.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine.
 内燃機関の排気系に設けられ、排気中のパティキュレート(PM)を捕集、除去するためのフィルタにおいては、一般には捕集されたPMを酸化除去することで、該フィルタのPM捕集能力の維持が図られる。このようにフィルタにおいて捕集PMの酸化除去が行われる際には、その酸化反応によって生じる熱によって、フィルタ内に急激な温度勾配が発生し、フィルタのクラックや溶損を引き起こす可能性がある。そこで、フィルタでのクラックの発生等を抑制する技術として、例えば、特許文献1に記載の技術が開発されている。当該技術では、PM酸化時のフィルタ内の温度勾配を小さくするために、フィルタの平均温度が100℃~700℃の領域においては、フィルタ内の平均温度上昇率が100℃/分以下となるように、フィルタでのPMの酸化条件が調整される。 In a filter provided in an exhaust system of an internal combustion engine for collecting and removing particulates (PM) in the exhaust, generally, the collected PM is oxidized and removed, so that the PM collecting ability of the filter is obtained. Is maintained. As described above, when the collected PM is oxidized and removed in the filter, a rapid temperature gradient is generated in the filter due to heat generated by the oxidation reaction, which may cause cracking or melting of the filter. Therefore, for example, a technique described in Patent Document 1 has been developed as a technique for suppressing the occurrence of cracks in a filter. In this technique, in order to reduce the temperature gradient in the filter during PM oxidation, the average temperature increase rate in the filter is 100 ° C./min or less in the region where the average temperature of the filter is 100 ° C. to 700 ° C. In addition, the oxidation condition of PM in the filter is adjusted.
 また、特許文献2に示すように、内燃機関の排気系には、所望のパラメータを検出するためのセンサが設けられ、そして当該センサの検出精度を高める等の目的でセンサを加熱するためのヒータが併設される場合がある。この場合、ヒータによってセンサを加熱しようとした際に、センサに水分が付着していると、加熱されたセンサ側と水分側との温度差によって、センサにクラックが生じる可能性がある。そこで、特許文献2には、ヒータ内部と表面との温度差が所定値を越えないように、ヒータによるセンサの加熱制御を緩やかに行う技術が開示されている。 As shown in Patent Document 2, a sensor for detecting a desired parameter is provided in an exhaust system of an internal combustion engine, and a heater for heating the sensor for the purpose of increasing the detection accuracy of the sensor or the like. May be added. In this case, when moisture is attached to the sensor when the sensor is heated by the heater, the sensor may crack due to a temperature difference between the heated sensor side and the moisture side. Therefore, Patent Document 2 discloses a technique for gently controlling the heating of the sensor by the heater so that the temperature difference between the inside of the heater and the surface does not exceed a predetermined value.
特開平9-287433号公報JP-A-9-287433 特開2004-360526号公報JP 2004-360526 A
 内燃機関からの排気を効果的に浄化するために、その排気通路に電気加熱式触媒が備えられる場合がある。この電気加熱式触媒は、電力供給により発熱する発熱体からの熱によって、排気浄化能を有する触媒の速やかな活性化を可能とする。電気加熱式触媒は、先行技術に示された排気系に設けられたセンサとは異なり、排気浄化を目的とするものであるから、内燃機関からの排気が当該電気加熱式触媒に流れ込む構成となっている。そのため、流れ込む排気から多くのエネルギーを受け取り得る構成となり、その結果、当該エネルギーに起因して、電気加熱式触媒の発熱体内にクラックの原因となる温度差が生じてしまうおそれがある。 In order to effectively purify the exhaust from the internal combustion engine, an electrically heated catalyst may be provided in the exhaust passage. This electrically heated catalyst enables rapid activation of a catalyst having exhaust purification ability by heat from a heating element that generates heat by supplying power. Unlike the sensor provided in the exhaust system shown in the prior art, the electrically heated catalyst is intended for exhaust purification, so that the exhaust from the internal combustion engine flows into the electrically heated catalyst. ing. Therefore, it becomes a structure which can receive much energy from the exhaust_gas | exhaustion which flows in. As a result, there exists a possibility that the temperature difference which causes a crack may arise in the heat generating body of an electrically heated catalyst due to the said energy.
 特に、内燃機関の冷間始動時においては、電気加熱式触媒の温度自体も比較的低温な状態となっているため、クラックの原因となる発熱体内の温度差が生じやすいことを本出願人は見出した。したがって、内燃機関の冷間始動時における、電気加熱式触媒に流れ込む排気から受け取る熱エネルギーを適切に制御する必要性が推察されるが、先行技術においては、その必要性について十分に検討がなされていない。 In particular, at the time of cold start of the internal combustion engine, the temperature of the electrically heated catalyst itself is relatively low, and therefore the applicant of the present invention is likely to cause a temperature difference in the heating element that causes cracks. I found it. Therefore, it is inferred that it is necessary to appropriately control the thermal energy received from the exhaust gas flowing into the electrically heated catalyst at the time of cold start of the internal combustion engine. However, in the prior art, the necessity has been sufficiently studied. Absent.
 本発明は、上記した問題点に鑑みてなされたものであり、電気加熱式触媒を備える内燃機関において、電気加熱式触媒において通電により発熱する発熱体内にクラックの原因となる温度差が生じないように、内燃機関の運転状態を適切に制御する、内燃機関の制御装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and in an internal combustion engine including an electrically heated catalyst, a temperature difference that causes cracks does not occur in the heating element that generates heat when energized in the electrically heated catalyst. Another object of the present invention is to provide a control device for an internal combustion engine that appropriately controls the operating state of the internal combustion engine.
 本発明において、上記課題を解決するために、内燃機関の冷間始動時に、該内燃機関から排出され、電気加熱式触媒の発熱体内の温度差を生み出す、排気を介した該触媒への投入エネルギーと、内燃機関の運転状態との関係に着目した。これにより、内燃機関の運転状態に応じて排気が有するエネルギー、すなわち電気加熱式触媒に投入されるエネルギーが変動することを踏まえ、内燃機関の冷間始動時における発熱体内でのクラック発生を効果的に抑制することが可能となる。 In the present invention, in order to solve the above-mentioned problem, when the internal combustion engine is cold-started, energy that is discharged from the internal combustion engine and creates a temperature difference in the heating element of the electrically heated catalyst is supplied to the catalyst via the exhaust gas. And the relationship between the operating state of the internal combustion engine. As a result, it is possible to effectively generate cracks in the heating element during a cold start of the internal combustion engine, taking into account that the energy of the exhaust, that is, the energy input to the electrically heated catalyst, varies according to the operating state of the internal combustion engine. Can be suppressed.
 詳細には、本発明は、内燃機関の制御装置であって、内燃機関の排気通路に設けられ、電力の供給により発熱する発熱体からの熱で排気浄化能を有する触媒を加熱する電気加熱式触媒と、前記内燃機関の冷間始動時における、前記電気加熱式触媒の前記発熱体での所定部位間の温度差である発熱体内温度差が所定温度範囲内に収まるように、該電気加熱式触媒への排気を介した投入エネルギーの抑制量を決定する決定手段と、前記決定手段によって決定された前記投入エネルギーの抑制量に応じて、前記内燃機関の運転状態を制御する制御手段と、を備える。 More specifically, the present invention relates to an internal combustion engine control device that is provided in an exhaust passage of an internal combustion engine and heats a catalyst having an exhaust purification capability by heat from a heating element that generates heat by supplying power. The electric heating type so that a temperature difference in the heating element, which is a temperature difference between the catalyst and the predetermined part of the heating element of the electric heating catalyst at the time of cold start of the internal combustion engine, falls within a predetermined temperature range. Determining means for determining an amount of suppression of input energy via exhaust to the catalyst, and control means for controlling an operating state of the internal combustion engine according to the amount of suppression of input energy determined by the determination means. Prepare.
 上記内燃機関に設けられる電気加熱式触媒では、発熱体への電力供給(通電)によって該発熱体を発熱させ、その熱により排気浄化能を有する触媒の加熱が行われる。その一例としては、発熱体としての担体に触媒が担持されている形態や、発熱体が触媒の上流側に設置され、その発熱が触媒に伝達されるような形態等が挙げられる。そして、本発明に係る内燃機関の制御装置では、決定手段により、電気加熱式触媒での発熱体のクラック発生を抑制するために、内燃機関から排出され電気加熱式触媒に流れ込む排気を介して該電気加熱式触媒に投入されるエネルギー(以下、「投入エネルギー」という)の抑制量が決定される。具体的には、電気加熱式触媒では、発熱体に関する発熱体内温度差が大きくなり過ぎると、発熱体にクラックが生じ得ることを踏まえて、当該発熱体内温度差がクラックの発生を回避し得る所定温度範囲内に収まるように、内燃機関からの排気を介した投入エネルギーの抑制量が、決定手段によって決定される。なお、本発明に係る投入エネルギーの抑制とは、発熱体でのクラック抑制を考慮しない場合での、内燃機関の運転状態に応じて該内燃機関からの排気を介した場合の投入エネルギーと比較して、低く抑えることを言う。 In the electric heating type catalyst provided in the internal combustion engine, the heating element is heated by supplying electric power (energization) to the heating element, and the catalyst having the exhaust purification ability is heated by the heat. As an example, a form in which the catalyst is supported on a carrier as a heating element, a form in which the heating element is installed on the upstream side of the catalyst, and the generated heat is transmitted to the catalyst, and the like can be mentioned. In the control device for an internal combustion engine according to the present invention, the determination means suppresses the occurrence of cracks in the heating element in the electrically heated catalyst via the exhaust gas discharged from the internal combustion engine and flowing into the electrically heated catalyst. An amount of suppression of energy input to the electrically heated catalyst (hereinafter referred to as “input energy”) is determined. Specifically, in the electrically heated catalyst, if the temperature difference in the heating element related to the heating element becomes too large, cracks may be generated in the heating element. An amount of suppression of input energy through the exhaust from the internal combustion engine is determined by the determining means so as to be within the temperature range. The suppression of the input energy according to the present invention is compared with the input energy when the exhaust from the internal combustion engine is exhausted depending on the operating state of the internal combustion engine when crack suppression in the heating element is not considered. And keep it low.
 また、発熱体内温度差は、排気通路に設けられる電気加熱式触媒の大きさや形状等に応じて、クラックが生じやすい発熱体内の部位間の温度差として定義されるものである。一般に、発熱体の外表面は、外部への放熱面となるため、発熱体の内部と比べて低温となりやすく、そのため、発熱体の外表面とその内部との間の温度差に起因して、発熱体にクラックが生じやすい場合がある。このような場合では、発熱体の外表面とその内部との間の温度差を上記発熱体内温度差と定義することができる。そして、決定手段によって決定された投入エネルギーの抑制量を実現するために、制御手段が、内燃機関の運転状態を制御する。これにより、内燃機関からの排気が有するエネルギー、すなわち電気加熱式触媒に流れ込む排気のエネルギーが、当該抑制量を反映したものとなり、結果として、排気による電気加熱式触媒の温度上昇が緩和される。これにより、温度差が生じやすくクラックの原因となりやすい所定部位間における発熱体内温度差が過度に広がることを回避することができる。 Also, the temperature difference between the heat generating bodies is defined as the temperature difference between the parts in the heat generating body where cracks are likely to occur depending on the size and shape of the electrically heated catalyst provided in the exhaust passage. Generally, since the outer surface of the heating element is a heat dissipation surface to the outside, it tends to be at a lower temperature than the inside of the heating element, and therefore, due to the temperature difference between the outer surface of the heating element and the inside, There are cases where cracks are likely to occur in the heating element. In such a case, the temperature difference between the outer surface of the heating element and the inside thereof can be defined as the temperature difference in the heating element. And in order to implement | achieve the suppression amount of the input energy determined by the determination means, a control means controls the driving | running state of an internal combustion engine. Thereby, the energy of the exhaust gas from the internal combustion engine, that is, the energy of the exhaust gas flowing into the electrically heated catalyst reflects the suppression amount, and as a result, the temperature increase of the electrically heated catalyst due to the exhaust gas is alleviated. Thereby, it is possible to avoid excessively widening of the temperature difference in the heat generating body between the predetermined portions that are likely to cause a temperature difference and cause a crack.
 特に内燃機関の冷間始動時は、電気加熱式触媒自体が比較的低温状態となっているため、発熱体の所定部位間において温度差が生じやすい傾向があるが、上記の通り、制御手段により電気加熱式触媒への投入エネルギーが抑制されることで、冷間始動時の発熱体内温度差の拡大を抑制し、以て、発熱体でのクラックの発生を回避することができる。従来技術は、内燃機関の冷間始動時においては、電気加熱式触媒の活性化を図るために投入エネルギーを増やすものであるが、本発明は、従来技術と異なり内燃機関の運転状態の制御を介して、排気を介した投入エネルギーの抑制を図るものである。 In particular, when the internal combustion engine is cold started, the electric heating catalyst itself is in a relatively low temperature state, and thus there is a tendency that a temperature difference is likely to occur between predetermined parts of the heating element. By suppressing the input energy to the electrically heated catalyst, it is possible to suppress the expansion of the temperature difference in the heat generating body at the time of cold start, thereby avoiding the generation of cracks in the heat generating body. The prior art increases the input energy in order to activate the electrically heated catalyst when the internal combustion engine is cold-started, but the present invention differs from the prior art in that it controls the operating state of the internal combustion engine. Therefore, the input energy via the exhaust is suppressed.
 ここで、上記内燃機関の制御装置において、前記決定手段は、前記内燃機関の冷間始動からの経過時間に基づいて、前記発熱体内温度差が前記所定温度範囲内に収まるための、前記電気加熱式触媒を流れる排気量に関連する所定パラメータの積算値の上限値である上限積算値を、前記投入エネルギーの抑制量として算出し、そして、前記制御手段は、前記内燃機関の冷間始動からの前記所定パラメータの実際の積算値が、前記決定手段によって算出された前記上限積算値を超えないように、又は該上限積算値に近づくように、該内燃機関の機関出力を制御するようにしてもよい。 Here, in the control apparatus for an internal combustion engine, the determination means includes the electric heating for causing the temperature difference within the heating element to fall within the predetermined temperature range based on an elapsed time from a cold start of the internal combustion engine. An upper limit integrated value, which is an upper limit value of an integrated value of a predetermined parameter related to the exhaust amount flowing through the catalyst, is calculated as an amount of suppression of the input energy, and the control means is provided from a cold start of the internal combustion engine. The engine output of the internal combustion engine may be controlled so that the actual integrated value of the predetermined parameter does not exceed or approaches the upper limit integrated value calculated by the determining means. Good.
 すなわち、上記発明では、電気加熱式触媒に排気を介して投入される投入エネルギーを、電気加熱式触媒を流れる排気量に関連する所定パラメータの、冷間始動時からの積算値を通して把握するものである。排気量の積算値が多くなるに従い電気加熱式触媒への投入エネルギーが増加すると合理的に考えられる。そこで、排気量に関連する所定パラメータ、例えば、内燃機関における吸気量や、排気量そのもの等のパラメータの積算値を介して、冷間始動時の電気加熱式触媒への投入エネルギーが把握できる。そして、決定手段が、その所定パラメータの上限積算値を算出するとともに、制御手段が、実際の積算値とその上限積算値とを比較して、発熱体内温度差が所定温度範囲内に収まるべく、実際の積算値が上限積算値を超えないように、もしくは当該上限積算値に近づくように、内燃機関の機関出力を制御する。これにより、冷間始動時の発熱体でのクラック発生を回避することができる。なお、内燃機関の機関出力は、吸気量等を介して制御することができる。 That is, in the above invention, the input energy input to the electrically heated catalyst through the exhaust is grasped through an integrated value from the cold start of a predetermined parameter related to the exhaust amount flowing through the electrically heated catalyst. is there. It is reasonably considered that the input energy to the electrically heated catalyst increases as the integrated value of the displacement increases. Therefore, the input energy to the electrically heated catalyst at the cold start can be grasped through a predetermined parameter related to the exhaust amount, for example, an integrated value of parameters such as the intake amount in the internal combustion engine and the exhaust amount itself. Then, the determining means calculates the upper limit integrated value of the predetermined parameter, and the control means compares the actual integrated value with the upper limit integrated value so that the temperature difference within the heat generating body falls within the predetermined temperature range. The engine output of the internal combustion engine is controlled so that the actual integrated value does not exceed the upper limit integrated value or approaches the upper limit integrated value. Thereby, it is possible to avoid the occurrence of cracks in the heating element during the cold start. The engine output of the internal combustion engine can be controlled via the intake air amount and the like.
 また、上記制御手段による内燃機関の運転状態の制御の別法として、内燃機関の排気空燃比を制御する形態も採用できる。具体的には、上記内燃機関の制御装置において、前記決定手段は、前記内燃機関の冷間始動からの経過時間に基づいて、前記発熱体内温度差が前記所定温度範囲内に収まるための、前記電気加熱式触媒を流れる排気量に関連する所定パラメータの積算値の上限値である上限積算値を、前記投入エネルギーの抑制量として算出し、前記制御手段は、前記内燃機関の冷間始動からの前記所定パラメータの実際の積算値が、前記決定手段によって算出された前記上限積算値を超えないように、又は該上限積算値に近づくように、該内燃機関での燃料燃焼による排気空燃比を調整し、排気温度を制御するようにしてもよい。 Further, as another method of controlling the operation state of the internal combustion engine by the control means, a mode of controlling the exhaust air / fuel ratio of the internal combustion engine can be adopted. Specifically, in the control device for an internal combustion engine, the determination unit is configured to allow the temperature difference within the heating element to fall within the predetermined temperature range based on an elapsed time from a cold start of the internal combustion engine. An upper limit integrated value, which is an upper limit value of an integrated value of a predetermined parameter related to the exhaust amount flowing through the electrically heated catalyst, is calculated as an amount of suppression of the input energy, and the control means is configured to start from a cold start of the internal combustion engine. The exhaust air-fuel ratio by fuel combustion in the internal combustion engine is adjusted so that the actual integrated value of the predetermined parameter does not exceed or approaches the upper limit integrated value calculated by the determining means Then, the exhaust gas temperature may be controlled.
 すなわち、上記発明では、電気加熱式触媒に排気を介して投入される投入エネルギーを、所定パラメータの、冷間始動時からの積算値を通して把握するとともに、内燃機関での燃料燃焼による排気空燃比に基づいて、実際に電気加熱式触媒に流れ込む排気による投入エネルギーが制御される。内燃機関においては、燃料燃焼による排気空燃比と排気温度との間には、何らかの関連性が見出せる。そこで、本発明では、排気空燃比を調整し排気温度を制御することで、電気加熱式触媒への投入エネルギーを制御することが可能となり、その結果、内燃機関の冷間始動時における、発熱体内温度差の拡大を抑制し、クラック発生の回避を図ることができる。 That is, in the above invention, the input energy input to the electrically heated catalyst through the exhaust gas is grasped through an integrated value from a cold start of a predetermined parameter, and the exhaust air-fuel ratio by fuel combustion in the internal combustion engine is set. Based on this, the input energy by the exhaust gas that actually flows into the electrically heated catalyst is controlled. In an internal combustion engine, some relationship can be found between the exhaust air-fuel ratio due to fuel combustion and the exhaust temperature. Therefore, in the present invention, it is possible to control the input energy to the electrically heated catalyst by adjusting the exhaust air-fuel ratio and controlling the exhaust temperature. As a result, the heat generating body at the cold start of the internal combustion engine can be controlled. The expansion of the temperature difference can be suppressed and the occurrence of cracks can be avoided.
 そして、例えば、前記内燃機関が火花点火式内燃機関である場合には、前記制御手段は、前記所定パラメータの実際の積算値が大きくなるほど、排気空燃比がよりリッチ側になるように前記内燃機関における燃焼条件を調整し、排気温度を低下させてもよい。火花点火式内燃機関の場合、一般的には、排気空燃比がストイキ近傍となるときに、排気温度が高温となり、排気空燃比がリッチ側に移るにつれて、排気温度が低下する。そこで、所定パラメータの実際の積算値が大きくなることで、実際の積算値と上限積算値との乖離が大きくなるに従い、排気空燃比をよりリッチ側の空燃比とするように燃焼条件を調整することで、排気温度を低下させ、以て、電気加熱式触媒への投入エネルギーを抑制することが可能となる。 For example, when the internal combustion engine is a spark ignition type internal combustion engine, the control means increases the exhaust air-fuel ratio so that the exhaust air-fuel ratio becomes richer as the actual integrated value of the predetermined parameter increases. The exhaust gas temperature may be lowered by adjusting the combustion conditions in In the case of a spark ignition type internal combustion engine, generally, when the exhaust air-fuel ratio is close to the stoichiometry, the exhaust temperature becomes high, and the exhaust temperature decreases as the exhaust air-fuel ratio moves to the rich side. Therefore, as the actual integrated value of the predetermined parameter increases, the combustion condition is adjusted so that the exhaust air-fuel ratio becomes a richer air-fuel ratio as the difference between the actual integrated value and the upper limit integrated value increases. As a result, the exhaust gas temperature can be lowered, and the energy input to the electrically heated catalyst can be suppressed.
 ここで、上述までの内燃機関の制御装置において、前記電気加熱式触媒の温度を推定、又は検出する推定手段を、更に備える場合、前記決定手段は、前記推定手段によって推定、又は検出された前記電気加熱式触媒の温度が高くなるほど、電気加熱式触媒への排気を介した投入エネルギーの抑制量を低減するようにしてもよい。本出願人は、電気加熱式触媒の温度が高くなるに従い、発熱体での所定部位間での温度差が小さくなる傾向があることを見出した。そして、当該温度差が小さくなるほど、発熱体内でクラックが発生する可能性は低くなることを踏まえると、電気加熱式触媒の温度が高くなるほど排気を介した投入エネルギーの抑制量を小さくしても、クラックの発生を容易に回避することが可能となる。その結果、制御手段による内燃機関の運転状態の制御の程度が緩和され、本来の機関出力に近い出力の実現や、本来あるべき排気空燃比の状態の実現が可能となる。 Here, in the control device for an internal combustion engine up to the above, in the case where it further comprises estimation means for estimating or detecting the temperature of the electrically heated catalyst, the determination means is estimated or detected by the estimation means. As the temperature of the electrically heated catalyst becomes higher, the amount of energy that is input through the exhaust to the electrically heated catalyst may be reduced. The present applicant has found that the temperature difference between predetermined portions of the heating element tends to decrease as the temperature of the electrically heated catalyst increases. And, as the temperature difference becomes smaller, the possibility that cracks will occur in the heat generating body becomes lower, and even if the amount of suppression of the input energy through the exhaust is made smaller as the temperature of the electrically heated catalyst becomes higher, Generation of cracks can be easily avoided. As a result, the degree of control of the operating state of the internal combustion engine by the control means is relaxed, and it is possible to realize an output close to the original engine output and an exhaust air-fuel ratio state that should be originally intended.
 ここで、内燃機関の冷間始動直後においては、上記のとおり、電気加熱式触媒に比較的高い投入エネルギーの排気が流れ込むと、発熱体内温度差が拡大する恐れがあり、それに起因してクラックが生じ得る。そして、比較的高い投入エネルギーを有する排気が排出されるケースとして、冷間始動直後の加速時が挙げられる。そこで、上述までの内燃機関の制御装置において、前記制御手段による前記投入エネルギーの抑制量に応じた前記内燃機関の運転状態の制御は、該内燃機関の冷間始動直後の所定の加速期間において行われるようにしてもよい。このようにすることで、制御手段による内燃機関の運転状態の制御を限られた期間に行うことになり、本来行われるべき内燃機関の運転状態からの乖離を可及的に抑えることができる。 Here, immediately after the cold start of the internal combustion engine, as described above, if the exhaust gas having a relatively high input energy flows into the electrically heated catalyst, the temperature difference in the heat generating body may be increased, and cracks are caused thereby. Can occur. An example of a case where exhaust having relatively high input energy is discharged is during acceleration immediately after a cold start. Therefore, in the control apparatus for an internal combustion engine described above, the control of the operation state of the internal combustion engine according to the amount of suppression of the input energy by the control means is performed in a predetermined acceleration period immediately after the cold start of the internal combustion engine. You may be made to be. By doing so, the control of the operation state of the internal combustion engine by the control means is performed for a limited period, and the deviation from the operation state of the internal combustion engine that should be performed can be suppressed as much as possible.
 また、上述までの内燃機関の制御装置を、ハイブリッド車両に搭載される内燃機関に対しても適用できる。その場合、更には、ハイブリッド車両特有の事象に基づいて、電気加熱式触媒への投入エネルギーの抑制量を調整してもよい。具体的には、上述までの内燃機関の制御装置において、その内燃機関は、該内燃機関と、電源からの供給電力によって駆動されるモータとを動力源とするハイブリッド車両に搭載され、その場合、前記決定手段は、前記内燃機関の冷間始動時における前記ハイブリッド車両の車両速度が高くなるほど、前記電気加熱式触媒への投入エネルギーの抑制量を増大するようにしてもよい。 Also, the control device for an internal combustion engine up to the above can be applied to an internal combustion engine mounted on a hybrid vehicle. In that case, the amount of energy to be charged into the electrically heated catalyst may be adjusted based on an event specific to the hybrid vehicle. Specifically, in the control device for an internal combustion engine described above, the internal combustion engine is mounted on a hybrid vehicle that uses the internal combustion engine and a motor driven by power supplied from a power source as power sources. The determination means may increase the amount of suppression of the input energy to the electrically heated catalyst as the vehicle speed of the hybrid vehicle at the cold start of the internal combustion engine increases.
 一般に、内燃機関とモータを駆動源として備えるハイブリッド車両では、モータのみでの駆動、モータと内燃機関による駆動が、駆動負荷や電源の電力供給能力等の状況に応じて適宜切り替えられる。そのため、車両自体は走行しながらも、内燃機関は機関停止している状態にある状況が生じ得、そのため内燃機関が冷間始動する際にはハイブリッド車両の車両速度が比較的高くなっている状況もあり得る。特に、PHV(プラグインハイブリッド)と呼ばれる形式のハイブリッド車両では、その構成上、モータのみで走行可能な領域が一般的なハイブリッド車両よりも広く設定されるため、内燃機関の冷間始動時における車両の高速化の傾向が強くなる。そして、ハイブリッド車両の車両速度が高い状態で内燃機関の冷間始動が行われると、冷間始動と同時に比較的多量の吸気が内燃機関に供給され、結果として電気加熱式触媒に多くの投入エネルギーを導くことになり、以てクラックを誘発しやすくなる。そこで、上記のように、内燃機関の冷間始動時におけるハイブリッド車両の車両速度が高くなるほど、電気加熱式触媒への投入エネルギーの抑制量を増大することで、すなわち投入エネルギーをより抑制することで、発熱体内温度差の拡大を回避することができる。 Generally, in a hybrid vehicle equipped with an internal combustion engine and a motor as drive sources, the drive with only the motor and the drive with the motor and the internal combustion engine are appropriately switched depending on the situation such as the drive load and the power supply capability of the power source. Therefore, there may be a situation where the engine itself is stopped while the vehicle itself is running, and therefore the vehicle speed of the hybrid vehicle is relatively high when the internal combustion engine is cold started. There is also a possibility. In particular, a hybrid vehicle of a type called PHV (plug-in hybrid) has a configuration in which a region in which only a motor can travel is set wider than that of a general hybrid vehicle. The trend of speeding up becomes stronger. When a cold start of the internal combustion engine is performed with the vehicle speed of the hybrid vehicle being high, a relatively large amount of intake air is supplied to the internal combustion engine simultaneously with the cold start, resulting in a large amount of input energy to the electrically heated catalyst. As a result, cracks are easily induced. Therefore, as described above, the higher the vehicle speed of the hybrid vehicle at the time of cold start of the internal combustion engine, the more the amount of suppression of the input energy to the electrically heated catalyst is increased, that is, the input energy is further suppressed. In addition, it is possible to avoid an increase in temperature difference in the heating element.
 ここで、本発明を別の側面から捉えることが可能である。具体的には、本発明は、内燃機関と、電源からの供給電力によって駆動されるモータとを動力源とするハイブリッド車両に搭載された、該内燃機関の制御装置であって、内燃機関の排気通路に設けられ、電力の供給により発熱する発熱体からの熱で排気浄化能を有する触媒を加熱する電気加熱式触媒と、前記ハイブリッド車両が、前記内燃機関が停止した状態で前記モータを動力源として走行しているときに、前記電気加熱式触媒に電力を供給し前記発熱体を、該内燃機関の始動前に発熱させる始動前発熱手段と、を備える。そして、前記始動前発熱手段は、仮に前記内燃機関が冷間始動した場合でも、前記電気加熱式触媒の前記発熱体における所定部位間での温度差である発熱体内温度差が所定温度範囲内に収まるように、前記ハイブリッド車両の車両速度に基づいて該電気加熱式触媒への電力供給を行い該電気加熱式触媒を昇温させる。 Here, it is possible to grasp the present invention from another aspect. Specifically, the present invention relates to a control device for an internal combustion engine mounted on a hybrid vehicle that uses an internal combustion engine and a motor driven by electric power supplied from a power source as a power source. An electric heating type catalyst that heats a catalyst having an exhaust purification capability by heat from a heating element that generates heat when supplied with electric power; and the hybrid vehicle includes a power source for the motor while the internal combustion engine is stopped. And a pre-starting heating means for supplying electric power to the electrically heated catalyst and generating heat before starting the internal combustion engine. Further, the pre-starting heat generating means has a temperature difference in the heating element within a predetermined temperature range that is a temperature difference between predetermined portions of the heating element of the electric heating catalyst even if the internal combustion engine is cold started. Power is supplied to the electrically heated catalyst based on the vehicle speed of the hybrid vehicle so that the temperature of the electrically heated catalyst is raised.
 上記発明は、ハイブリッド車両に搭載される内燃機関の制御装置に係る発明である。上述までのように、ハイブリッド車両における内燃機関の冷間始動時の特徴として、冷間始動とともに、比較的多量の吸気が内燃機関に供給され、その結果、電気加熱式触媒に多量の排気が流れ込む状況があり得る点が挙げられる。このように冷間始動時に多量の排気が電気加熱式触媒に流れ込むと、結果として電気加熱式触媒への投入エネルギーが増加し、発熱体内温度差が拡大する恐れがある。そこで、上記発明では、内燃機関が停止しモータで車両が駆動されている状態から、仮に内燃機関が冷間始動した場合、そのときの車両速度に基づいて、始動前発熱手段によって電気加熱式触媒を昇温される。電気加熱式触媒の温度が上がれば、仮に排気が流れ込んでも発熱体内温度差が拡大しにくくなるのは上記のとおりであり、そこで、仮に内燃機関が冷間始動した場合の車両速度に応じて、換言すれば車両速度に関連する吸気量(もしくは排気量)に応じて、電気加熱式触媒を実際の冷間始動に先んじて加熱しておくことで、発熱体内温度差の拡大を予防するものである。したがって、本発明は、電気加熱式触媒への排気を介した投入エネルギーを踏まえながら、発熱体内温度差の拡大を電気加熱式触媒への電力供給によって回避するものである。 The above invention relates to a control device for an internal combustion engine mounted on a hybrid vehicle. As described above, as a feature at the time of cold start of the internal combustion engine in the hybrid vehicle, a relatively large amount of intake air is supplied to the internal combustion engine together with the cold start, and as a result, a large amount of exhaust gas flows into the electrically heated catalyst. The situation can be mentioned. As described above, when a large amount of exhaust gas flows into the electrically heated catalyst during the cold start, as a result, the input energy to the electrically heated catalyst increases, which may increase the temperature difference in the heating element. Therefore, in the above invention, when the internal combustion engine is cold-started from the state in which the internal combustion engine is stopped and the vehicle is driven by the motor, the electrically heated catalyst is generated by the pre-starting heating means based on the vehicle speed at that time. The temperature is raised. If the temperature of the electrically heated catalyst rises, even if the exhaust flows, the temperature difference in the heat generating body is difficult to increase as described above, and therefore, depending on the vehicle speed when the internal combustion engine is cold started, In other words, the electric heating type catalyst is heated prior to the actual cold start in accordance with the intake amount (or exhaust amount) related to the vehicle speed, thereby preventing the temperature difference in the heating element from expanding. is there. Therefore, the present invention avoids the expansion of the temperature difference in the heat generating body by supplying power to the electric heating catalyst while taking into consideration the input energy through the exhaust to the electric heating catalyst.
 また、上記内燃機関の制御装置において、前記始動前発熱手段は、前記ハイブリッド車両の車両速度が高くなるほど、前記電気加熱式触媒の温度が高くなるように電力供給を行うようにしてもよい。このようにすることで、電気加熱式触媒への排気を介した投入エネルギーを的確に踏まえて、発熱体内温度差の拡大の予防を実現できる。 Further, in the control device for an internal combustion engine, the pre-starting heat generating means may supply power so that the temperature of the electrically heated catalyst increases as the vehicle speed of the hybrid vehicle increases. By doing so, it is possible to prevent an increase in the temperature difference within the heat generating body based on the energy input through the exhaust to the electrically heated catalyst.
 電気加熱式触媒を備える内燃機関において、電気加熱式触媒において通電により発熱する発熱体内にクラックの原因となる温度差が生じないように、内燃機関の運転状態を適切に制御する、内燃機関の制御装置を提供する。 In an internal combustion engine equipped with an electrically heated catalyst, the internal combustion engine is controlled appropriately so that the temperature difference that causes cracks does not occur in the heating element that generates heat when energized in the electrically heated catalyst. Providing equipment.
本発明の実施例に係る内燃機関の制御装置を含む、該内燃機関とモータとを動力源とするハイブリッド車両の概略構成を示す図である。1 is a diagram showing a schematic configuration of a hybrid vehicle including a control device for an internal combustion engine according to an embodiment of the present invention and using the internal combustion engine and a motor as power sources. 図1に示すハイブリッド車両に搭載される内燃機関の排気浄化のための電気加熱式触媒の構成を示す第一の断面図である。FIG. 2 is a first cross-sectional view showing a configuration of an electrically heated catalyst for purifying exhaust gas of an internal combustion engine mounted on the hybrid vehicle shown in FIG. 1. 図1に示すハイブリッド車両に搭載される内燃機関の排気浄化のための電気加熱式触媒の構成を示す第二の断面図である。FIG. 3 is a second cross-sectional view showing the configuration of an electrically heated catalyst for purifying exhaust gas of an internal combustion engine mounted on the hybrid vehicle shown in FIG. 1. 図2、図3に示す電気加熱式触媒における担体内の各部位の温度推移を示す図である。It is a figure which shows the temperature transition of each site | part in the support | carrier in the electrically heated catalyst shown to FIG. 2, FIG. 本発明の実施例に係る内燃機関の制御装置によって実行される、電気加熱式触媒の担体内温度差の拡大を抑制するための制御に関する第一のフローチャートである。It is a 1st flowchart regarding the control for suppressing the expansion of the temperature difference in the support | carrier of an electrically heated catalyst performed by the control apparatus of the internal combustion engine which concerns on the Example of this invention. 図5に示す制御フローにおいて積算Ga上限を算出するための、冷間始動からの経過時間と、電気加熱式触媒の温度との相関を示す図である。It is a figure which shows the correlation with the elapsed time from the cold start for calculating the integrated Ga upper limit in the control flow shown in FIG. 5, and the temperature of an electrically heated catalyst. 図5に示す制御フローにおいてスロットル開度上限を算出するための、機関回転速度と、積算Ga上限との相関を示す図である。FIG. 6 is a diagram showing a correlation between an engine speed and an integrated Ga upper limit for calculating a throttle opening upper limit in the control flow shown in FIG. 5. 図5に示す制御フローが行われたときの、冷間始動からの積算Ga、およびGaの推移を示す図である。It is a figure which shows transition of integrating | accumulating Ga from a cold start, and Ga when the control flow shown in FIG. 5 is performed. 図5に示す制御フローが行われたときの、電気加熱式触媒の各部位の温度推移、および担体内温度差の推移を示す第一の図である。FIG. 6 is a first diagram showing the temperature transition of each part of the electrically heated catalyst and the transition of the temperature difference in the carrier when the control flow shown in FIG. 5 is performed. 図5に示す制御フローが行われたときの、電気加熱式触媒の各部位の温度推移、および担体内温度差の推移を示す第二の図である。FIG. 6 is a second diagram showing the temperature transition of each part of the electrically heated catalyst and the transition of the temperature difference in the carrier when the control flow shown in FIG. 5 is performed. 本発明の実施例に係る内燃機関の制御装置によって実行される、電気加熱式触媒の担体内温度差の拡大を抑制するための制御に関する第二のフローチャートである。It is a 2nd flowchart regarding the control for suppressing the expansion of the temperature difference in the support | carrier of an electrically heated catalyst performed by the control apparatus of the internal combustion engine which concerns on the Example of this invention. 図10に示す制御フローにおいて排気空燃比を決定するための、機関回転速度と、電気加熱式触媒の温度との相関を示す第一の図である。FIG. 11 is a first diagram showing the correlation between the engine speed and the temperature of the electrically heated catalyst for determining the exhaust air-fuel ratio in the control flow shown in FIG. 10. 図10に示す制御フローにおいて排気空燃比を決定するための、機関回転速度と、電気加熱式触媒の温度との相関を示す第二の図である。FIG. 11 is a second diagram showing the correlation between the engine speed and the temperature of the electrically heated catalyst for determining the exhaust air-fuel ratio in the control flow shown in FIG. 10. 図10に示す制御フローにおいて排気空燃比を決定するための、機関回転速度と、電気加熱式触媒の温度との相関を示す第三の図である。FIG. 11 is a third diagram showing the correlation between the engine speed and the temperature of the electrically heated catalyst for determining the exhaust air-fuel ratio in the control flow shown in FIG. 10. 図10に示す制御フローが行われたときの、冷間始動からの積算Ga、および排気空燃比の推移を示す図である。It is a figure which shows transition of the integrating | accumulating Ga from a cold start, and an exhaust air fuel ratio when the control flow shown in FIG. 10 is performed. 図10に示す制御フローが行われたときの、電気加熱式触媒の各部位の温度推移、および担体内温度差の推移を示す図である。It is a figure which shows transition of the temperature transition of each site | part of an electrically heated catalyst, and transition of the temperature difference in a support | carrier when the control flow shown in FIG. 10 is performed. 図10に示す制御フローが行われたときの、電気加熱式触媒の各部位の温度推移を示す図である。It is a figure which shows the temperature transition of each site | part of an electrically heated catalyst when the control flow shown in FIG. 10 is performed. 図10に示す制御フローが行われたときの、電気加熱式触媒の温度ごとの担体内温度差の推移を示す図である。It is a figure which shows transition of the temperature difference in a support | carrier for every temperature of an electrically heated catalyst when the control flow shown in FIG. 10 is performed. 本発明の実施例に係る内燃機関の制御装置によって実行される、電気加熱式触媒の担体内温度差の拡大を抑制するための制御に関する第三のフローチャートである。It is a 3rd flowchart regarding the control for suppressing the expansion of the temperature difference in the support | carrier of an electrically heated catalyst performed by the control apparatus of the internal combustion engine which concerns on the Example of this invention. 図10に示す制御フローにおいてスロットル開度上限を決定するための、機関回転速度と、積算Ga上限、車両速度との相関を示す図である。It is a figure which shows the correlation with an engine speed for determining the throttle opening upper limit in the control flow shown in FIG. 10, an integrated Ga upper limit, and a vehicle speed. 本発明の実施例に係る内燃機関の制御装置によって実行される、電気加熱式触媒の担体内温度差の拡大を抑制するための制御に関する第四のフローチャートである。It is a 4th flowchart regarding the control for suppressing the expansion of the temperature difference in the support | carrier of an electrically heated catalyst performed by the control apparatus of the internal combustion engine which concerns on the Example of this invention. 図18に示す制御フローにおいて排気空燃比を決定するための、機関回転速度と、電気加熱式触媒の温度と、車両速度との相関を示す図である。It is a figure which shows the correlation with the engine speed for determining an exhaust air fuel ratio in the control flow shown in FIG. 18, the temperature of an electrically heated catalyst, and a vehicle speed. 本発明の実施例に係る内燃機関の制御装置によって実行される、電気加熱式触媒の担体内温度差の拡大を抑制するための制御に関する第五のフローチャートである。It is a 5th flowchart regarding the control for suppressing the expansion of the temperature difference in the support | carrier of an electrically heated catalyst performed by the control apparatus of the internal combustion engine which concerns on the Example of this invention. 図20に示す制御フローにおいて目標EHC温度を決定するための、車両速度との相関を示す図である。It is a figure which shows the correlation with the vehicle speed for determining target EHC temperature in the control flow shown in FIG.
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.
 <ハイブリッドシステムの概略構成>
 図1は、本発明の実施例に係る制御装置を有する内燃機関と、それとは別の駆動源としての二台のモータジェネレータ(以下、単に「モータ」という)を有するハイブリッドシステムを備えるハイブリッド車両100の概略構成を示す図である。ハイブリッド車両100は、主動力源として内燃機関10を有し、また、補助動力源としては、モータ21aおよびモータ21bを有している。
<Schematic configuration of hybrid system>
FIG. 1 shows a hybrid vehicle 100 including a hybrid system having an internal combustion engine having a control device according to an embodiment of the present invention and two motor generators (hereinafter simply referred to as “motors”) as separate drive sources. It is a figure which shows schematic structure of these. The hybrid vehicle 100 includes the internal combustion engine 10 as a main power source, and includes a motor 21a and a motor 21b as auxiliary power sources.
 先ず、ハイブリッドシステムについて説明を行う。内燃機関10のクランクシャフトは出力軸23に連結され、出力軸23は動力分割機構22に連結されている。動力分割機構22は、動力伝達軸24を介してモータ21aと連結されるとともに、動力伝達軸25を介してモータ21bとも連結されている。ここで、動力分割機構22は、遊星歯車機構によって内燃機関および補助動力源の出力等の伝達を切り替える。また、モータ21bに連結される動力伝達軸25には、減速機26が連結され、減速機26には、ドライブシャフト27を介して駆動輪28が連結されている。減速機26は、複数の歯車を組み合わせて構成され、動力伝達軸25の回転数を減速して、内燃機関10、モータ21a及びモータ21bからの出力をドライブシャフト27に伝達する。 First, the hybrid system will be described. The crankshaft of the internal combustion engine 10 is connected to the output shaft 23, and the output shaft 23 is connected to the power split mechanism 22. The power split mechanism 22 is connected to the motor 21 a via the power transmission shaft 24 and is also connected to the motor 21 b via the power transmission shaft 25. Here, the power split mechanism 22 switches the transmission of the output of the internal combustion engine and the auxiliary power source and the like by the planetary gear mechanism. A reduction gear 26 is connected to the power transmission shaft 25 connected to the motor 21 b, and drive wheels 28 are connected to the reduction gear 26 via a drive shaft 27. The speed reducer 26 is configured by combining a plurality of gears, reduces the rotational speed of the power transmission shaft 25, and transmits the output from the internal combustion engine 10, the motor 21 a, and the motor 21 b to the drive shaft 27.
 ここで、モータ21aおよび21bは、図示されないインバータを含むPCU(Power Control Unit)29と電気的に接続され、当該PCU29は、更にバッテリ30と電気的に接続されている。PCU29は、バッテリ30から取り出した直流電力を交流電力に変換して、モータ21a、21bに供給するとともに、モータ21a、21bによって発電された交流電力を直流電力に変換してバッテリ30に供給するように構成された電力制御ユニットである。詳細には、モータ21aおよび21bは、交流同期型の電動機で構成され、励磁電流が印加されるとトルクを発生するとともに、外部からトルクが加えられると、例えば内燃機関10から動力分割機構22を介して運動エネルギーが入力されると、その運動エネルギーを電気エネルギーに変換することによって電力を発生させる。発生した電力は、PCU29を介してバッテリ30へ供給される。また、モータ21bは、車両の減速時に発電機として作用し、駆動輪28からドライブシャフト27及び減速機26を介して動力伝達軸25に伝達される運動エネルギーを電気エネルギーに変換する、いわゆる回生発電を行うことができ、それによって発生した電力もPCU29を介してバッテリ30へ供給される。また、図1に示すハイブリッド車両100は、いわゆるプラグインハイブリッド車両であり、外部電源32からの電力供給が可能となるように充電プラグ31が設けられている。 Here, the motors 21 a and 21 b are electrically connected to a PCU (Power Control Unit) 29 including an inverter (not shown), and the PCU 29 is further electrically connected to the battery 30. The PCU 29 converts the DC power extracted from the battery 30 into AC power and supplies the AC power to the motors 21 a and 21 b, and converts the AC power generated by the motors 21 a and 21 b into DC power and supplies it to the battery 30. It is the electric power control unit comprised by these. More specifically, the motors 21a and 21b are constituted by AC synchronous motors. When an excitation current is applied, the motors 21a and 21b generate torque, and when torque is applied from the outside, for example, the power split mechanism 22 is driven from the internal combustion engine 10. When kinetic energy is input via the power, electric power is generated by converting the kinetic energy into electrical energy. The generated electric power is supplied to the battery 30 via the PCU 29. The motor 21b acts as a generator when the vehicle is decelerated, and converts so-called regenerative power generation from kinetic energy transmitted from the drive wheels 28 to the power transmission shaft 25 via the drive shaft 27 and the speed reducer 26 into electric energy. The electric power generated thereby is also supplied to the battery 30 via the PCU 29. A hybrid vehicle 100 shown in FIG. 1 is a so-called plug-in hybrid vehicle, and is provided with a charging plug 31 so that electric power can be supplied from an external power source 32.
 図1に示すハイブリッド車両100の主動力源となる内燃機関1は、燃焼室内に燃料噴射を行う燃料噴射弁(不図示)と点火プラグ(不図示)を有する火花点火式内燃機関である。内燃機関1の吸気通路12には、該通路の吸気流量を検出するためのエアフローメータ13が設けられ、その下流側に吸気通路12の吸気流量を調整するスロットル弁14が設けられている。また、内燃機関1の排気通路2には、排気浄化を行うためのEHC(電気加熱式触媒)1が設けられている。EHC1は、その担体に敷設された電極への通電により担体に担持されている触媒の昇温を図る装置であるが、その具体的な構成については後述する。 1 is a spark ignition internal combustion engine having a fuel injection valve (not shown) for injecting fuel into a combustion chamber and an ignition plug (not shown). The intake passage 12 of the internal combustion engine 1 is provided with an air flow meter 13 for detecting the intake flow rate of the passage, and a throttle valve 14 for adjusting the intake flow rate of the intake passage 12 is provided downstream thereof. The exhaust passage 2 of the internal combustion engine 1 is provided with an EHC (electrically heated catalyst) 1 for purifying exhaust gas. The EHC 1 is a device that raises the temperature of a catalyst supported on a carrier by energizing an electrode laid on the carrier, and a specific configuration thereof will be described later.
 上述のように構成されるハイブリッドシステムを有するハイブリッド車両100には、内燃機関10における燃料噴射や、モータ21a、21bとバッテリ30間の電力授受を制御するPCU29を制御するための電子制御ユニットであるECU20が設けられている。具体的には、ECU20には、クランクポジションセンサ11やアクセル開度センサ15が電気的に接続されており、それぞれの検出値が渡されることで、内燃機関10の運転状態が把握される。更に、ECU20は、内燃機関10の冷却水温度を検出する水温センサ16、および上記エアフローメータ13、スロットル弁14とも電気的に接続されている。また、ECU20は、PCU29を介してバッテリ30での蓄電量の監視等も行う。例えば、バッテリ30の蓄電量が低下しているとECU20が判断すると、内燃機関1の機関出力をモータ21aに伝達させることで発電を行い、モータ21aで発電された電気がPCU29を介してバッテリ30へ蓄電される。また、ECU20には、図2に示す温度センサ6aや空燃比センサ6bとも電気的に接続され、更に、EHC1への通電を制御可能となるようにも電気的接続が形成されている。 The hybrid vehicle 100 having the hybrid system configured as described above is an electronic control unit for controlling the fuel injection in the internal combustion engine 10 and the PCU 29 that controls power transfer between the motors 21a and 21b and the battery 30. An ECU 20 is provided. Specifically, the crank position sensor 11 and the accelerator opening sensor 15 are electrically connected to the ECU 20, and the operation state of the internal combustion engine 10 is grasped by passing each detection value. Further, the ECU 20 is also electrically connected to a water temperature sensor 16 that detects the coolant temperature of the internal combustion engine 10, the air flow meter 13, and the throttle valve 14. The ECU 20 also monitors the amount of power stored in the battery 30 via the PCU 29. For example, when the ECU 20 determines that the amount of power stored in the battery 30 is decreasing, power is generated by transmitting the engine output of the internal combustion engine 1 to the motor 21 a, and the electricity generated by the motor 21 a is generated via the PCU 29. Is stored. The ECU 20 is also electrically connected to the temperature sensor 6a and the air-fuel ratio sensor 6b shown in FIG. 2, and is further electrically connected so that energization to the EHC 1 can be controlled.
 <EHCの概略構成>
 ここで、EHC1の具体的な構成について図2および図3に基づいて説明する。図2は、排気の流れ方向に沿ったEHC1の断面図であり、図2における白抜き矢印は、排気通路2における排気の流れ方向を示している。また、図3は、図2に示すB-B断面図である。EHC1は、触媒担体3、ケース4、マット5、及び電極7を備えている。触媒担体3はケース4に収容されている。触媒担体3は、円柱状に形成されており、その中心軸が排気通路2の中心軸Aと同軸となるように設置されている。中心軸Aは、排気通路2、触媒担体3、及びケース4で共通の中心軸である。触媒担体3には三元触媒13が担持されている。なお、触媒担体3に担持される触媒は、三元触媒に限られるものではなく、酸化触媒、吸蔵還元型NOx触媒、又は選択還元型NOx触媒であってもよく、排気浄化に適した触媒を適宜選択できる。
<Schematic configuration of EHC>
Here, a specific configuration of the EHC 1 will be described with reference to FIGS. 2 and 3. FIG. 2 is a cross-sectional view of the EHC 1 along the exhaust flow direction, and the white arrows in FIG. 2 indicate the exhaust flow direction in the exhaust passage 2. FIG. 3 is a cross-sectional view taken along the line BB shown in FIG. The EHC 1 includes a catalyst carrier 3, a case 4, a mat 5, and an electrode 7. The catalyst carrier 3 is accommodated in the case 4. The catalyst carrier 3 is formed in a cylindrical shape, and is installed so that its central axis is coaxial with the central axis A of the exhaust passage 2. The central axis A is a central axis common to the exhaust passage 2, the catalyst carrier 3, and the case 4. A three-way catalyst 13 is supported on the catalyst carrier 3. The catalyst supported on the catalyst carrier 3 is not limited to a three-way catalyst, and may be an oxidation catalyst, an occlusion reduction type NOx catalyst, or a selective reduction type NOx catalyst. It can be selected as appropriate.
 触媒担体3は、通電されると電気抵抗となって発熱する材料によって形成されている。触媒担体3の材料としては、SiCを例示することができる。触媒担体3は、排気の流れる方向(すなわち、中心軸Aの方向)に伸び且つ排気の流れる方向と垂直な断面がハニカム状をなす複数の通路を有している。この通路を排気が流通する。なお、中心軸Aと直交する方向の触媒担体3の断面形状は楕円形等であっても良い。 The catalyst carrier 3 is formed of a material that generates electric resistance when heated. An example of the material of the catalyst carrier 3 is SiC. The catalyst carrier 3 has a plurality of passages extending in the direction in which the exhaust flows (that is, in the direction of the central axis A) and having a cross section perpendicular to the direction in which the exhaust flows in a honeycomb shape. Exhaust gas flows through this passage. The cross-sectional shape of the catalyst carrier 3 in the direction orthogonal to the central axis A may be an ellipse or the like.
 触媒担体3の外周面には一対の電極7が接続されている。電極7は、表面電極7a及び軸電極7bによって形成されている。表面電極7aは、触媒担体3の外周面に沿って周方向及び軸方向に、すなわち触媒担体3の外周面を覆うように延びている。また、表面電極7aは、触媒担体3の外周面に該触媒担体3を挟んで互いに対向するように設けられている。軸電極7bの一端は表面電極7aに接続されている。そして、ケース4内に形成された電極室9を通って軸電極7bの他端がケース4の外側に突出している。このように構成される電極7に対して、バッテリ30から電力が供給され、触媒担体3への通電が行われる。この通電によって触媒担体3が発熱すると、触媒担体3に担持された三元触媒13が加熱され、その活性化が促進される。このように電極7を介したEHC1内の触媒の活性化のための電力供給は、ECU20により制御される。 A pair of electrodes 7 are connected to the outer peripheral surface of the catalyst carrier 3. The electrode 7 is formed by a surface electrode 7a and a shaft electrode 7b. The surface electrode 7 a extends along the outer circumferential surface of the catalyst carrier 3 in the circumferential direction and the axial direction, that is, so as to cover the outer circumferential surface of the catalyst carrier 3. The surface electrodes 7 a are provided on the outer peripheral surface of the catalyst carrier 3 so as to face each other with the catalyst carrier 3 interposed therebetween. One end of the shaft electrode 7b is connected to the surface electrode 7a. The other end of the shaft electrode 7 b protrudes outside the case 4 through the electrode chamber 9 formed in the case 4. Electric power is supplied from the battery 30 to the electrode 7 configured as described above, and the catalyst carrier 3 is energized. When the catalyst carrier 3 generates heat due to this energization, the three-way catalyst 13 supported on the catalyst carrier 3 is heated and its activation is promoted. In this way, the power supply for activating the catalyst in the EHC 1 via the electrode 7 is controlled by the ECU 20.
 ここで、ケース4は、金属によって形成されている。ケース4を形成する材料としては、ステンレス鋼材を例示することができる。ケース4の内壁面と触媒担体3の外周面との間にはマット5が挟み込まれている。つまり、ケース4内において、触媒担体3がマット5によって支持されている。このマット5は、電気絶縁材によって形成されている。マット5を形成する材料としては、アルミナを主成分とするセラミックファイバーを例示することができる。このように、マット5が触媒担体3とケース4との間に挟み込まれていることで、触媒担体3に通電したときに、ケース4へ電気が漏れ出ることが抑制される。またマット5は、上流側部分5aと下流側部分5bとに分割されており、該上流側部分5aと下流側部分5bとの間には空間が形成されており、当該空間は、電極7の軸電極7bを通すための電極室9を画定する。なお、マット5を上流側部分5aと下流側部分5bとに分割することなく、マット5の電極7が通る部分にのみ貫通孔を空けることで、電極室となる空間を画定してもよい。 Here, the case 4 is made of metal. As a material for forming the case 4, a stainless steel material can be exemplified. A mat 5 is sandwiched between the inner wall surface of the case 4 and the outer peripheral surface of the catalyst carrier 3. That is, the catalyst carrier 3 is supported by the mat 5 in the case 4. The mat 5 is made of an electrical insulating material. Examples of the material for forming the mat 5 include ceramic fibers mainly composed of alumina. As described above, since the mat 5 is sandwiched between the catalyst carrier 3 and the case 4, electricity is prevented from leaking to the case 4 when the catalyst carrier 3 is energized. The mat 5 is divided into an upstream portion 5a and a downstream portion 5b, and a space is formed between the upstream portion 5a and the downstream portion 5b. An electrode chamber 9 for passing the axial electrode 7b is defined. The mat 5 may be divided into an upstream portion 5a and a downstream portion 5b, and a space serving as an electrode chamber may be defined by forming a through hole only in a portion through which the electrode 7 of the mat 5 passes.
 また、軸電極7bを通すためにケース4に開けられている貫通孔には、軸電極7bを支持する電極支持部材8が設けられている。この電極支持部材8は電気絶縁材によって形成されており、ケース4と軸電極7bとの間の絶縁性が保たれている。 Also, an electrode support member 8 that supports the shaft electrode 7b is provided in a through-hole that is opened in the case 4 so as to pass the shaft electrode 7b. The electrode support member 8 is formed of an electrical insulating material, and insulation between the case 4 and the shaft electrode 7b is maintained.
 なお、本実施例においては、触媒担体3が本発明に係る発熱体に相当する。ただし、本発明に係る発熱体は触媒を担持する担体に限られるものではなく、例えば、発熱体は触媒の上流側に設置された構造体であってもよく、この場合発熱体による熱が触媒に伝達されることで、触媒の加熱が行われることになる。 In this embodiment, the catalyst carrier 3 corresponds to the heating element according to the present invention. However, the heating element according to the present invention is not limited to the carrier supporting the catalyst. For example, the heating element may be a structure installed on the upstream side of the catalyst. In this case, the heat generated by the heating element is the catalyst. As a result, the catalyst is heated.
 <EHCにおける熱分布、および冷間始動時の出力抑制制御>
 図4は、内燃機関10の冷間始動時におけるEHC1の触媒担体3の温度の推移を概略的に説明するための図である。図4(a)は、EHC1をその中心軸に直交する方向で切断した場合の断面図である。なお、図4(a)においては、電極7を便宜的に省略している。図4(b)は、内燃機関10の冷間始動時における触媒担体3の各部位の温度推移を示す図である。図4(b)において、横軸は時間を表しており、縦軸は触媒担体3の温度を表しており、一点鎖線は、触媒担体3の側壁面(マット5と接している面)の温度推移を表し、破線は、触媒担体3内部の側壁近傍部(例えば、側壁面から内側に5mm程度入った部位)の温度推移を表し、実線は、触媒担体3の中央部の温度推移を表している。図4(c)は、内燃機関10の冷間始動時における、触媒担体3の側壁面とその内部の側壁近傍部との間の温度差(以下、「担体内温度差」という)ΔTの推移を示す図である。
<EHC heat distribution and output suppression control during cold start>
FIG. 4 is a diagram for schematically explaining the transition of the temperature of the catalyst carrier 3 of the EHC 1 when the internal combustion engine 10 is cold started. FIG. 4A is a cross-sectional view when the EHC 1 is cut in a direction orthogonal to the central axis. In FIG. 4A, the electrode 7 is omitted for convenience. FIG. 4B is a diagram showing the temperature transition of each part of the catalyst carrier 3 when the internal combustion engine 10 is cold-started. In FIG. 4B, the horizontal axis represents time, the vertical axis represents the temperature of the catalyst carrier 3, and the alternate long and short dash line represents the temperature of the side wall surface of the catalyst carrier 3 (the surface in contact with the mat 5). The broken line represents the temperature transition in the vicinity of the side wall inside the catalyst carrier 3 (for example, a portion entering about 5 mm inward from the side wall surface), and the solid line represents the temperature transition in the center of the catalyst carrier 3. Yes. FIG. 4C shows a change in temperature difference ΔT between the side wall surface of the catalyst carrier 3 and the vicinity of the side wall inside the catalyst carrier 3 during cold start of the internal combustion engine 10 (hereinafter, referred to as “temperature difference in the carrier”). FIG.
 触媒担体3が排気によって昇温する場合、触媒担体3の側壁面は、マット5への放熱量が多いため、その内部に比べて温度が上昇し難い。そのため、図4に示すように、内燃機関10の冷間始動時に、内燃機関10からの排気によって触媒担体3に投入されるエネルギーが急増すると、触媒担体3における側壁面と内部との間に温度差が生じる。特に、触媒担体3の側壁面とその側壁近傍部との間の温度差ΔTは大きくなり易い。そして、このような触媒担体3における側壁面と側壁近傍部との間の温度差ΔTが拡大し過ぎると、触媒担体3にクラックが生じる虞がある。 When the temperature of the catalyst carrier 3 is increased by exhaust, the side wall surface of the catalyst carrier 3 has a large amount of heat released to the mat 5, and therefore, the temperature hardly rises compared to the inside. Therefore, as shown in FIG. 4, when the energy input to the catalyst carrier 3 is rapidly increased by exhaust from the internal combustion engine 10 during the cold start of the internal combustion engine 10, the temperature between the side wall surface and the inside of the catalyst carrier 3 is increased. There is a difference. In particular, the temperature difference ΔT between the side wall surface of the catalyst carrier 3 and the vicinity of the side wall tends to increase. And when the temperature difference (DELTA) T between the side wall surface in such a catalyst carrier 3 and a side wall vicinity part expands too much, there exists a possibility that a crack may arise in the catalyst carrier 3. FIG.
 EHC1においては、触媒担体3にクラックが生じてしまうと、該クラック部分の電気抵抗値がその他の部分よりも高くなる。そのため、EHC1に通電した際に、触媒担体3における通電量の分布が不均一となり、触媒担体3においてより大きな温度差が生じ、クラックの更なる増大・増加を招く虞があるため、微小のクラックでもその発生は避けなければならない。 In EHC1, if a crack occurs in the catalyst carrier 3, the electrical resistance value of the cracked portion becomes higher than that of the other portions. Therefore, when the EHC 1 is energized, the distribution of the energization amount in the catalyst carrier 3 becomes non-uniform, a larger temperature difference occurs in the catalyst carrier 3, and there is a risk of further increase / increase of cracks. But it must be avoided.
 そこで、特にクラックが生じやすい内燃機関10の冷間始動時に、触媒担体3にクラックが生じるのを抑制する制御を行うのが好ましく、当該制御の具体的な実施例について、図5に基づいて説明する。図5は、ECU20によって行われる出力抑制制御のフローチャートであり、当該制御は、ECU20によって所定の時間毎に繰り返し実行される。このECU20は、実質的にはCPU、メモリ等を含むコンピュータに相当し、そこで制御プログラムが実行されることで図5に示すフローチャートに係る制御や後述の各種の制御が実行される。 In view of this, it is preferable to perform control for suppressing the generation of cracks in the catalyst carrier 3 during the cold start of the internal combustion engine 10 which is particularly prone to cracks. A specific embodiment of the control will be described with reference to FIG. To do. FIG. 5 is a flowchart of the output suppression control performed by the ECU 20, and the control is repeatedly executed by the ECU 20 every predetermined time. The ECU 20 substantially corresponds to a computer including a CPU, a memory, and the like, and the control according to the flowchart shown in FIG. 5 and various controls described later are executed by executing a control program there.
 先ず、S101では、アクセル開度センサ15による検出値に基づいて、車両100におけるアクセル開度が、基準となる所定開度A0より大きいか否かが判定される。この所定開度A0は、上記ハイブリッドシステムに含まれる内燃機関10に対して急速な加速要求があったか否かを判定するための閾値である。S101で肯定判定されるとS102へ進み、否定判定されると本制御を終了する。 First, in S101, based on the detected value by the accelerator opening sensor 15, it is determined whether or not the accelerator opening in the vehicle 100 is larger than a predetermined opening A0 as a reference. The predetermined opening A0 is a threshold value for determining whether or not there is a rapid acceleration request for the internal combustion engine 10 included in the hybrid system. If an affirmative determination is made in S101, the process proceeds to S102, and if a negative determination is made, this control is terminated.
 次に、S102では、内燃機関10に対して冷間始動要求が出されたか否かが判定される。一般に内燃機関の冷間始動とは、内燃機関の温度が比較的低温であるときの機関始動である。ただし、ハイブリッドシステムに含まれる内燃機関10においては、車両100が、ドライバーの走行要求に応じて、モータ21a、21bの駆動力のみで走行する「EV走行」と、両モータとともに内燃機関1の駆動力で走行する「HV走行」が適宜切り換えられることから、内燃機関10における冷間始動は、ハイブリッドシステム全体が停止しているときの機関始動と、車両100の走行状態がEV走行からHV走行へ切り換えられるときの機関始動が含まれる。なお、内燃機関10の機関始動が冷間始動であるか否かは、水温センサ16による冷却水温度や、内燃機関10が停止していた時間(すなわち、内燃機関10のソーク時間)等に基づいて、判断される。S102で肯定判定されるとS103へ進み、否定判定されると本制御を終了する。 Next, in S102, it is determined whether or not a cold start request has been issued to the internal combustion engine 10. Generally, the cold start of the internal combustion engine is an engine start when the temperature of the internal combustion engine is relatively low. However, in the internal combustion engine 10 included in the hybrid system, the vehicle 100 travels with only the driving force of the motors 21a and 21b according to the travel request of the driver, and the drive of the internal combustion engine 1 together with both motors. Since “HV traveling” that travels by force is switched as appropriate, cold start in the internal combustion engine 10 is engine start when the entire hybrid system is stopped, and the traveling state of the vehicle 100 is from EV traveling to HV traveling. Includes engine start when switched. Whether or not the engine start of the internal combustion engine 10 is a cold start is based on the coolant temperature by the water temperature sensor 16, the time that the internal combustion engine 10 has been stopped (ie, the soak time of the internal combustion engine 10), or the like. It is judged. If a positive determination is made in S102, the process proceeds to S103, and if a negative determination is made, the present control is terminated.
 次に、処理がS103へ進んだ場合について説明する。S101およびS102でともに肯定判定された場合、S103に進むことになる。このとき、内燃機関10は冷間始動において、比較的大きな加速要求が為され、結果としてEHC1の触媒担体3に投入されるエネルギーが急増し得る状態(以下、「冷間始動加速状態」という)に置かれていることになる。急激に触媒担体3への投入エネルギーが増加すると、図4に基づいて説明したようにクラック発生の要因となる担体内温度差が拡大し易くなる。そこで、S103以降の処理は触媒担体3のクラック発生を抑制するために行われる。 Next, the case where the process proceeds to S103 will be described. If both affirmative determination is made in S101 and S102, the process proceeds to S103. At this time, the internal combustion engine 10 is subjected to a relatively large acceleration request in the cold start, and as a result, the energy input to the catalyst carrier 3 of the EHC 1 can rapidly increase (hereinafter referred to as “cold start acceleration state”). Will be placed in. When the input energy to the catalyst carrier 3 is suddenly increased, the temperature difference in the carrier, which causes the generation of cracks, is easily increased as described with reference to FIG. Therefore, the processing after S103 is performed in order to suppress the occurrence of cracks in the catalyst carrier 3.
 そして、S103では、温度センサ6aの検出値に基づいて、EHC1の触媒担体3の温度(以下、「EHC温度」という)Tehcが算出されるとともに、そのEHC温度Tehcと内燃機関10が冷間始動してからの経過時間に基づいて、冷間始動加速状態にある内燃機関10での吸気量の積算値(以下、「積算吸気量」という)の上限値(以下、「積算吸気量上限」という)が算出される。この積算吸気量上限は、触媒担体3への急激なエネルギー投入を抑制するために設定される、積算吸気量に関する制限値である。したがって、積算吸気量上限は、本発明における「排気を介した投入エネルギーの抑制量」に相当し、そして、S103に係る処理が、本発明に係る決定手段による処理に相当する。 In S103, the temperature of the catalyst carrier 3 of the EHC 1 (hereinafter referred to as “EHC temperature”) Tehc is calculated based on the detection value of the temperature sensor 6a, and the EHC temperature Tehc and the internal combustion engine 10 are cold-started. On the basis of the elapsed time since then, the upper limit value (hereinafter referred to as “integrated intake air amount upper limit”) of the integrated value of the intake air amount (hereinafter referred to as “integrated intake air amount”) in the cold start acceleration state of the internal combustion engine ) Is calculated. The upper limit of the integrated intake air amount is a limit value related to the integrated intake air amount that is set in order to suppress rapid energy input to the catalyst carrier 3. Therefore, the integrated intake air amount upper limit corresponds to the “suppression amount of input energy via exhaust” in the present invention, and the processing according to S103 corresponds to processing by the determining means according to the present invention.
 ここで、図6に基づいて、積算吸気量上限gasummaxの算出例について説明する。図6は、横軸を冷間始動からの経過時間、縦軸を積算吸気量上限gasummaxとするマップである。このマップに従うことで冷間始動からの経過時間に基づいて、積算吸気量上限gasummaxが算出できる。当該マップにおいては、図6に示すように、当該経過時間が短くなるほど積算吸気量上限gasummaxも小さくなり、そして時間の経過とともに積算吸気量上限の増加率は大きくなる傾向がある。また、本出願人は、触媒担体3については、そのEHC温度が低ければ、担体内温度差ΔTがより大きく発生し易くなる傾向を見出した。そこで、触媒担体3の床温Tehc自体が低いほど、高い状態と比べて経過時間に対する積算吸気量上限gasummaxの値が小さくなるように、当該経過時間と積算吸気量上限gasummaxの相対関係が設定されている。このように、冷間始動からの経過時間とEHC温度Tehcの両者に基づいて積算吸気量上限gasummaxが算出されることで、触媒担体3の熱的な状態を的確に踏まえた上でのエネルギー投入が実現できることになる。 Here, an example of calculating the integrated intake air amount upper limit gasummax will be described with reference to FIG. FIG. 6 is a map in which the horizontal axis represents the elapsed time since the cold start, and the vertical axis represents the integrated intake air amount upper limit gasummax. By following this map, the integrated intake air amount upper limit gasummax can be calculated based on the elapsed time from the cold start. In the map, as shown in FIG. 6, as the elapsed time becomes shorter, the integrated intake air amount upper limit gasummax also decreases, and the increase rate of the integrated intake air amount upper limit tends to increase with time. Further, the present applicant has found that the catalyst carrier 3 tends to generate a larger temperature difference ΔT within the carrier if its EHC temperature is low. Therefore, the relative relationship between the elapsed time and the cumulative intake air amount upper limit gasummax is set so that the value of the cumulative intake air amount upper limit gasummax with respect to the elapsed time becomes smaller as the bed temperature Tehc itself of the catalyst carrier 3 is lower. ing. As described above, the integrated intake air amount upper limit gasummax is calculated based on both the elapsed time from the cold start and the EHC temperature Tehc, so that energy input is performed based on the thermal state of the catalyst carrier 3 accurately. Can be realized.
 また、S102で肯定判定された後、処理S103と並列にS104が行われている。このS104では、内燃機関10の冷間始動からの実際の吸気量Gaの積算が行われ、積算吸気量gasumの算出が行われる。具体的には、エアフローメータ13の検出値の積算処理が行われる。上記S103およびS104の処理が行われた後に、S105の判定処理が行われる。S105では、S104で算出された積算吸気量gasumが、S103で算出された積算吸気量上限gasummaxより大きいか否かが判定される。S105における肯定判定は、冷間始動時に触媒担体3に過大なエネルギーが投入され、担体内温度差ΔTが拡大する可能性があることを意味する。そこで、S105で肯定判定された場合は、その過大なエネルギー投入を抑制するためにS106以降の処理が行われる。一方で、S105で否定判定された場合には、担体内温度差ΔTはクラック発生が懸念される程度には拡大しないと考えられるので、S106以降の処理は行われず、本制御を終了する。 Further, after an affirmative determination is made in S102, S104 is performed in parallel with the process S103. In S104, the actual intake air amount Ga from the cold start of the internal combustion engine 10 is integrated, and the integrated intake air amount gasum is calculated. Specifically, a process for integrating the detection values of the air flow meter 13 is performed. After the processes of S103 and S104 are performed, the determination process of S105 is performed. In S105, it is determined whether or not the integrated intake air amount gasum calculated in S104 is larger than the integrated intake air amount upper limit gasummax calculated in S103. An affirmative determination in S105 means that excessive energy is input to the catalyst carrier 3 at the time of cold start, and the temperature difference ΔT in the carrier may be increased. Therefore, if an affirmative determination is made in S105, the processing after S106 is performed in order to suppress the excessive energy input. On the other hand, if a negative determination is made in S105, it is considered that the temperature difference ΔT in the carrier does not increase to the extent that there is a concern about the occurrence of cracks. Therefore, the processing after S106 is not performed, and this control is terminated.
 次に、S106では、アクセル開度センサ15の検出値に基づいて、アクセル開度に応じた加速要求を実現するために必要な吸気量を満たすための、スロットル弁14の目標開度(以下、「目標スロットル開度」という)tatagが算出される。具体的には、検出されたアクセル開度と、内燃機関10の機関回転速度、およびモータ21a、21bの出力トルクとの相対関係を踏まえて、ECU20内に格納されている制御マップから、目標スロットル開度tatagが算出される。S106の処理が終了すると、S107へ進む。 Next, in S106, based on the detected value of the accelerator opening sensor 15, the target opening (hereinafter referred to as the following) of the throttle valve 14 for satisfying the intake amount necessary for realizing the acceleration request according to the accelerator opening. Tatag) (referred to as “target throttle opening”) is calculated. Specifically, based on the relative relationship between the detected accelerator opening, the engine speed of the internal combustion engine 10, and the output torque of the motors 21a and 21b, the target throttle is determined from the control map stored in the ECU 20. An opening degree tagag is calculated. When the process of S106 ends, the process proceeds to S107.
 S107では、S103で算出された積算吸気量上限gasummaxを実現するために採るべきスロットル弁14の開度(以下、「スロットル開度上限」という)tamaxが決定される。このスロットル開度上限tamaxは、触媒担体3の担体内温度差ΔTを過大に拡大させないための吸気量を実現する、スロットル弁14の開度に関する制限値である。このスロットル開度上限tamaxの決定について、図7に基づいて説明する。図7は、横軸を機関回転速度、縦軸をスロットル開度上限tamaxとするマップである。このマップに従うことで機関回転速度に基づいて、スロットル開度上限tamaxが算出できる。内燃機関10の一般的な特性として、機関回転速度が高くなるに従ってスロットル弁14の開度は大きくなる。また、上述のように、触媒担体3の床温Tehcが低いほど、触媒担体3における担体内温度差ΔTが拡大する傾向にあるため、EHC1に投入されるエネルギーをより低く抑えるのが好ましい。そこで、図6に示すように、EHC温度Tehcが小さくなるほど、積算吸気量上限gasummaxの値がより小さな値として算出されることを踏まえて、図7に示すように、スロットル開度上限tamaxは、積算吸気量上限gasummaxの値が小さくなるほど、機関回転速度に対するスロットル開度上限tamaxの値が小さくなるように、当該機関回転速度とスロットル開度上限tamaxの相対関係が設定されている。このように、機関回転速度と、EHC温度Tehcが反映された積算吸気量上限gasummaxの両者に基づいてスロットル開度上限tamaxが決定されることで、触媒担体3の熱的な状態を的確に踏まえた上でのエネルギー投入のための吸気量制御が実現できることになる。S107の処理が終了すると、S108へ進む。 In S107, the opening (hereinafter referred to as “throttle opening upper limit”) tamax of the throttle valve 14 to be taken in order to realize the integrated intake air amount upper limit gasummax calculated in S103 is determined. The throttle opening upper limit tamax is a limit value related to the opening of the throttle valve 14 that realizes an intake air amount for preventing the in-carrier temperature difference ΔT of the catalyst carrier 3 from being excessively increased. The determination of the throttle opening upper limit tamax will be described with reference to FIG. FIG. 7 is a map in which the horizontal axis is the engine rotation speed and the vertical axis is the throttle opening upper limit tamax. By following this map, the throttle opening upper limit tamax can be calculated based on the engine speed. As a general characteristic of the internal combustion engine 10, the opening degree of the throttle valve 14 increases as the engine speed increases. Further, as described above, the lower the bed temperature Tehc of the catalyst carrier 3, the larger the temperature difference ΔT in the carrier in the catalyst carrier 3 tends to increase. Therefore, it is preferable to keep the energy input to the EHC 1 lower. Therefore, as shown in FIG. 6, the throttle opening upper limit tamax is calculated as shown in FIG. 7 in view of the fact that the value of the integrated intake air amount upper limit gasummax is calculated as the EHC temperature Tehc decreases. The relative relationship between the engine rotation speed and the throttle opening upper limit tamax is set so that the value of the throttle opening upper limit tamax with respect to the engine rotation speed decreases as the value of the integrated intake amount upper limit gasummax decreases. Thus, the throttle opening upper limit tamax is determined based on both the engine speed and the integrated intake air amount upper limit gasummax reflecting the EHC temperature Tehc, so that the thermal state of the catalyst carrier 3 can be accurately taken into account. In addition, intake air amount control for energy input can be realized. When the process of S107 ends, the process proceeds to S108.
 S108では、目標スロットル開度tatagがスロットル開度上限tamaxより大きいか否かが判定される。換言すれば、吸気量が増加すればEHC1に流れ込む排気量が増え、結果としてEHC1に投入されるエネルギーが増加することを踏まえると、S108の判定処理は、要求された内燃機関10の運転状態を実現するための吸気量が、担体内温度差ΔTを拡大させ得る吸気量であるか否かを判定するものである。したがって、S108で肯定判定されると、担体内温度差ΔTが拡大し得ると合理的に判断でき、S109に進んで、目標スロットル開度tatagの値が、スロットル開度上限tamaxに制限される。一方で、S108で否定判定されると、目標スロットル開度tatagに関する制限は行われない。 In S108, it is determined whether or not the target throttle opening degree tagag is larger than the throttle opening upper limit tamax. In other words, if the intake amount increases, the exhaust amount flowing into the EHC 1 increases, and as a result, the energy input to the EHC 1 increases. As a result, the determination process in S108 determines the requested operating state of the internal combustion engine 10. It is determined whether or not the intake air amount to be realized is an intake air amount that can increase the temperature difference ΔT in the carrier. Therefore, if an affirmative determination is made in S108, it can be reasonably determined that the temperature difference ΔT in the carrier can be increased, and the routine proceeds to S109, where the value of the target throttle opening degree tag is limited to the throttle opening upper limit tamax. On the other hand, if a negative determination is made in S108, no restriction on the target throttle opening degree tag is performed.
 そして、S108、S109の処理後、S110において、目標スロットル開度tatagに従って、スロットル弁14の開度が制御される。この結果、S109で目標スロットル開度tatagに制限がかけられている場合には、スロットル弁14の開度がその制限開度になるように、S109で目標スロットル開度tatagに制限がかけられていない場合には、スロットル弁14の開度はS106で算出された値になるように制御される。S110の処理が終了すると、S111へ進む。 Then, after the processing of S108 and S109, in S110, the opening degree of the throttle valve 14 is controlled according to the target throttle opening degree tagag. As a result, when the target throttle opening degree tag is restricted in S109, the target throttle opening degree tag is restricted in S109 so that the opening degree of the throttle valve 14 becomes the restriction opening degree. If not, the opening degree of the throttle valve 14 is controlled to be the value calculated in S106. When the process of S110 ends, the process proceeds to S111.
 S111では、内燃機関10が冷間始動を開始してから、所定時間が経過したか否かが判定される。この所定時間は、EHC温度Tehcがある程度上昇し、担体内温度差ΔTに起因してクラックが発生しない状態に至るまでの時間として定義される。したがって、S111で肯定判定されると、触媒担体3にクラックが生じる可能性が低いとして本制御を終了し、否定判定されると、依然としてEHC1にはクラック発生の可能性があることになるため、S103以降の処理が繰り返されることになる。なお、上記S111では、所定時間の経過に従って本制御の継続が判定されるが、別法として、現時点におけるEHC温度Tehcに基づいて本制御の継続を判定してもよい。以上より、上述したS103-S111の処理が、本発明に係る制御手段による処理に相当する。 In S111, it is determined whether or not a predetermined time has elapsed since the internal combustion engine 10 started cold start. This predetermined time is defined as a time until the EHC temperature Tehc rises to some extent and reaches a state in which no crack is generated due to the temperature difference ΔT in the carrier. Therefore, if an affirmative determination is made in S111, the present control is terminated because the possibility of cracking in the catalyst carrier 3 is low, and if a negative determination is made, there is still a possibility that the EHC 1 may crack. The processes after S103 are repeated. In S111, the continuation of the main control is determined as the predetermined time elapses. Alternatively, the continuation of the main control may be determined based on the current EHC temperature Tehc. From the above, the processing of S103 to S111 described above corresponds to the processing by the control means according to the present invention.
 このように、本出力抑制制御によれば、内燃機関10の冷間始動時に、EHC温度Tehcを初めとする諸パラメータに従って、積算吸気量が、触媒担体3での担体内温度差ΔTが過度に拡大しないための制限値を超えないように制御されることになる。その結果、EHC1でのクラック発生を抑制することが可能となる。なお、本制御では、積算吸気量に上限値を設定し、その抑制を図るため、内燃機関10の出力が結果として抑制されることになる。しかしながら、本制御は、内燃機関10の冷間始動直後から積算吸気量を制限するため、加速途中に出力が急に制限されるような事態には至らず、そのためハイブリッド車両100のドラビリ悪化をドライバーに感じさせにくくなる。 Thus, according to the present output suppression control, when the internal combustion engine 10 is cold started, the accumulated intake air amount is excessively increased in the carrier temperature difference ΔT in the catalyst carrier 3 according to various parameters including the EHC temperature Tehc. Control is performed so as not to exceed the limit value for preventing enlargement. As a result, it is possible to suppress the occurrence of cracks in EHC1. In this control, an upper limit value is set for the integrated intake air amount, and the output is suppressed as a result in order to suppress it. However, since this control limits the integrated intake amount immediately after the cold start of the internal combustion engine 10, the situation where the output is not suddenly restricted during the acceleration does not occur. It becomes difficult to let you feel.
 ここで、本発明に係る制御装置の効果を、図8、図9A、図9Bに基づいて説明する。まず、図8(a)は、図5に示す出力抑制制御が行われた際の積算吸気量の推移を示し、図8(b)は吸気量Gaの推移を例示する。なお、図8においては、実線で示される推移が本出力抑制制御に係るものであり、破線が従来技術に係るもの、すなわち積算吸気量上限による吸気量の制限処理が行われていない形態に係るものである。図8(a)に示すように、本制御では、冷間始動の加速開始直後から積算吸気量上限が設定されるため、当該設定が無い場合と比べて、加速初期の積算吸気量の増加率は低くなっている。その後、S111の判定によって本制御を終了することで、積算吸気量上限の設定が解除されることで、積算吸気量の増加率は、当該設定が無い場合と同程度となる。 Here, the effect of the control device according to the present invention will be described with reference to FIGS. 8, 9A, and 9B. First, FIG. 8A shows the transition of the integrated intake air amount when the output suppression control shown in FIG. 5 is performed, and FIG. 8B illustrates the transition of the intake air amount Ga. In FIG. 8, the transition indicated by the solid line relates to the present output suppression control, and the broken line relates to the related art, that is, relates to the form in which the intake air amount restriction process based on the integrated intake air amount upper limit is not performed. Is. As shown in FIG. 8 (a), in this control, since the upper limit of the integrated intake air amount is set immediately after the start of the cold start acceleration, the rate of increase of the integrated intake air amount at the initial stage of acceleration compared to the case where there is no such setting. Is low. Thereafter, by terminating the present control by the determination in S111, the setting of the integrated intake air amount upper limit is canceled, so that the increase rate of the integrated intake air amount becomes approximately the same as the case where there is no such setting.
 そして、このような積算吸気量の制限が行われたときの吸気量の推移が図8(b)に示されている。これからも分かるように、本制御では、積算吸気量上限の設定が無い場合と比べて、冷間始動の加速開始直後から吸気量Gaも低く抑えられている。そのため、上記のように、担体内温度差の拡大を抑制するために急に吸気量Gaが絞られるようなことがないため、加速途中に内燃機関10の出力が大きく制限される事態を回避でき、以てドラビリの悪化を軽減させることが可能となる。 FIG. 8B shows the transition of the intake air amount when the restriction of the integrated intake air amount is performed. As can be seen, in this control, the intake air amount Ga is also kept low immediately after the start of the cold start acceleration, compared to the case where the upper limit of the integrated intake air amount is not set. Therefore, as described above, since the intake air amount Ga is not suddenly reduced in order to suppress the expansion of the temperature difference in the carrier, it is possible to avoid a situation in which the output of the internal combustion engine 10 is greatly restricted during acceleration. Therefore, it becomes possible to reduce the deterioration of the dribabil.
 次に、図9Aおよび図9Bにおいて、各図の上段に触媒担体3の側壁面および側壁近傍部の温度推移、および各図の下段に担体内温度差ΔTの推移を例示する。詳細には、両図において、線L1は、本出力抑制制御が行われた際の触媒担体3の側壁面の温度推移を示し、線L2は、本出力抑制制御が行われた際の触媒担体3の側壁近傍部の温度推移を示し、両線に係る側壁面と側壁近傍部との間の温度差である担体内温度差ΔTが、線L5で示されている。同様に、両図において、線L3は、本出力抑制制御が行われていない場合、すなわち従来技術における触媒担体3の側壁面の温度推移を示し、線L4は、従来技術における触媒担体3の側壁近傍部の温度推移を示し、両線に係る側壁面と側壁近傍部との間の温度差である担体内温度差ΔTが、線L6で示されている。 Next, in FIG. 9A and FIG. 9B, the temperature transition of the side wall surface of the catalyst carrier 3 and the vicinity of the side wall is illustrated in the upper part of each figure, and the transition of the temperature difference ΔT in the carrier is illustrated in the lower part of each figure. In detail, in both figures, line L1 shows the temperature transition of the side wall surface of catalyst carrier 3 when this output suppression control is performed, and line L2 shows the catalyst carrier when this output suppression control is performed. 3 shows a temperature transition in the vicinity of the side wall, and a temperature difference ΔT in the carrier, which is a temperature difference between the side wall surface and the side wall near the both lines, is indicated by a line L5. Similarly, in both figures, the line L3 indicates the temperature transition of the side wall surface of the catalyst carrier 3 in the prior art, that is, when the output suppression control is not performed, and the line L4 indicates the side wall of the catalyst carrier 3 in the prior art. The temperature transition in the vicinity is shown, and the temperature difference ΔT in the carrier, which is the temperature difference between the side wall surface and the side wall vicinity related to both lines, is indicated by a line L6.
 また、図9Aは、内燃機関10の冷間始動加速状態においてその加速初期にEHC温度が比較的低い場合の各パラメータの推移を示す図であり、反対に、図9Bは、その加速初期にEHC温度が比較的高い場合の各パラメータの推移を示す図である。これらの図からも分かるように、本出力抑制制御が行われることで、担体内温度差ΔTが拡大し易い低温時でも、従来技術の場合と比べて、担体内温度差ΔTを触媒担体3のクラック発生の閾値であるΔT1(当該クライテリア以下の温度範囲が、本発明における「所定温度範囲」に相当する。)以下に維持できる。 FIG. 9A is a diagram showing the transition of each parameter when the EHC temperature is relatively low at the initial stage of acceleration in the cold start acceleration state of the internal combustion engine 10, and conversely, FIG. 9B shows the EHC at the initial stage of acceleration. It is a figure which shows transition of each parameter when temperature is comparatively high. As can be seen from these figures, by performing this output suppression control, the temperature difference ΔT in the carrier is reduced in the catalyst carrier 3 as compared with the case of the prior art even at a low temperature at which the temperature difference ΔT in the carrier is easy to expand. It can be maintained below ΔT1 (the temperature range below the criterion corresponds to the “predetermined temperature range” in the present invention), which is the threshold value for occurrence of cracks.
 また、図9Aの下段と図9Bの下段を比較しても理解できるように、加速初期でのEHC温度が高くなると、担体内温度差ΔTの拡大の程度が縮小する。そこで、加速初期でのEHC温度が高くなるほど、積算吸気量上限の値を高く設定し、内燃機関10の機関出力の低下(抑制量)を軽減することが可能となる。そして、このようにEHC温度と積算吸気量上限との相関が、図6に示す制御マップに反映されている。したがって、本出力抑制制御によれば、クラック発生の閾値を上記ΔT1よりも低いΔT2に設定しても、担体内温度差ΔTをそのΔT2以下に維持でき、且つ、内燃機関10の出力の抑制程度を軽減することが可能となる。 Further, as can be understood by comparing the lower stage of FIG. 9A and the lower stage of FIG. 9B, the degree of expansion of the temperature difference ΔT in the carrier decreases as the EHC temperature in the initial stage of acceleration increases. Therefore, the higher the EHC temperature in the early stage of acceleration, the higher the integrated intake air amount upper limit value can be set, and the reduction (suppression amount) in engine output of the internal combustion engine 10 can be reduced. Thus, the correlation between the EHC temperature and the integrated intake air amount upper limit is reflected in the control map shown in FIG. Therefore, according to this output suppression control, even if the crack generation threshold is set to ΔT2 lower than ΔT1, the in-carrier temperature difference ΔT can be maintained below ΔT2 and the output of the internal combustion engine 10 can be suppressed. Can be reduced.
 <変形例>
 なお、上記実施例では、ハイブリッド車両100に搭載された内燃機関10における、EHC1でのクラック発生を回避するための発明に言及したが、本発明は、内燃機関10のみで駆動される車両、すなわち電力によって駆動されるモータを動力源としない車両における、当該内燃機関10に対しても、適用可能である。更に、内燃機関10は、圧縮自着火式内燃機関であっても、本発明は適用可能である。
<Modification>
In the above embodiment, the invention for avoiding the occurrence of cracks in the EHC 1 in the internal combustion engine 10 mounted on the hybrid vehicle 100 has been described. However, the present invention is a vehicle driven only by the internal combustion engine 10, that is, The present invention is also applicable to the internal combustion engine 10 in a vehicle that does not use a motor driven by electric power as a power source. Furthermore, even if the internal combustion engine 10 is a compression self-ignition internal combustion engine, the present invention can be applied.
 また、上記出力抑制制御では、S111にて所定時間経過したと判断された場合は、当該制御は終了されるが、その場合、積算吸気量上限の設定が行われなくなるため、内燃機関10が発揮し得る出力の上限が急激に変動する虞がある。そこで、所定時間経過後において、直ちに積算吸気量上限の設定を中止するのではなく、積算吸気量上限の値を徐々に大きくし、最終的には実質的に上限が無い状態に至るようにすることで、内燃機関10の出力の急変を回避するようにしてもよい。また、この積算吸気量上限の値を除変する調整は、必ずしもS111における所定時間の経過の判断を待って行う必要はなく、担体内温度差ΔTに応じて、クラック発生の可能性が高まらない範囲で、所定時間の経過時点よりもある程度先のタイミングで当該調整処理を開始してもよい。なお、当該調整による吸気量の除変は、図8(b)の抑制復帰期間における吸気量推移に表れている。 Further, in the output suppression control, when it is determined in S111 that the predetermined time has elapsed, the control is terminated, but in this case, the setting of the integrated intake air amount upper limit is not performed, so that the internal combustion engine 10 exhibits. There is a possibility that the upper limit of the output that can be changed rapidly. Therefore, after the predetermined time has elapsed, the setting of the integrated intake air amount upper limit is not stopped immediately, but the value of the integrated intake air amount upper limit is gradually increased so as to finally reach a state where there is substantially no upper limit. Thus, a sudden change in the output of the internal combustion engine 10 may be avoided. Further, the adjustment for changing the upper limit value of the integrated intake air amount is not necessarily performed after the determination of the elapse of the predetermined time in S111, and the possibility of occurrence of cracks does not increase according to the temperature difference ΔT in the carrier. In the range, the adjustment process may be started at a certain timing after the elapse of the predetermined time. Note that the change in the intake air amount due to the adjustment appears in the change in the intake air amount during the suppression return period in FIG.
 本発明に係る内燃機関10の制御装置の第二の実施例について、図10-図15Cに基づいて説明する。図10は、EHC1におけるクラック発生を抑制するための排気空燃比制御のフローチャートであり、当該制御を構成する各処理のうち、図5に示す出力抑制制御を構成する処理と実質的に同一の処理は、同じ参照番号を付すことで、その詳細な説明を割愛する。具体的には、図10に示す排気空燃比制御は、図5に示す出力抑制制御のS106-S110の処理が、S201およびS202に置き換えられたものである。したがって、S105にて肯定判定されると、S201、S202の処理が行われ、S111へと至る。 A second embodiment of the control device for the internal combustion engine 10 according to the present invention will be described with reference to FIGS. FIG. 10 is a flowchart of the exhaust air-fuel ratio control for suppressing the occurrence of cracks in the EHC 1, and among the processes constituting the control, substantially the same process as the process constituting the output suppression control shown in FIG. Are given the same reference numerals and are not described in detail. Specifically, in the exhaust air-fuel ratio control shown in FIG. 10, the processing of S106 to S110 of the output suppression control shown in FIG. 5 is replaced with S201 and S202. Therefore, if an affirmative determination is made in S105, the processing of S201 and S202 is performed, and the process proceeds to S111.
 詳細には、S201では、吸気量積算gasumと積算吸気量上限gasummaxとの差分に起因する、担体内温度差ΔTがクラック発生し得るEHC1への過剰な投入エネルギーを解消するために、内燃機関1からの排気の空燃比をリッチ側へと移行させる、その制御量(すなわち、ストイキ空燃比をリッチ側の空燃比に至らしめるための排気空燃比に関する制御量であって、以降、「リッチ制御量」という。)が決定される。内燃機関10は火花点火式内燃機関(ガソリンエンジン)であるため、通常は、燃焼効率の好適化のためにその排気空燃比がストイキ近傍の空燃比になるように、燃焼条件が制御される。本明細書では、この通常の燃焼制御を、排気空燃比の観点から、通常ストイキ制御と称する。この通常ストイキ制御では、燃焼効率の好適化の結果、基本的には排気温度が比較的高くなり、そのためEHC1に流れ込む排気が有するエネルギーも高エネルギーの状態となる。本発明は、通常ストイキ制御が行われている排気がこのように高エネルギーを有している状態であることに着目し、S201において排気の有するエネルギーを低下させるために、排気空燃比をリッチ側に移行させるように内燃機関10での燃焼条件を調整する、すなわち上記リッチ制御量を決定する。 More specifically, in S201, in order to eliminate excessive input energy to the EHC 1 that may cause cracks in the temperature difference ΔT in the carrier due to the difference between the intake air amount integrated gasum and the integrated intake air amount upper limit gasummax, the internal combustion engine 1 The control amount for shifting the air-fuel ratio of the exhaust gas from the exhaust gas to the rich side (that is, the control amount related to the exhaust air-fuel ratio for bringing the stoichiometric air-fuel ratio to the rich-side air-fuel ratio, ") Is determined. Since the internal combustion engine 10 is a spark ignition type internal combustion engine (gasoline engine), usually, the combustion conditions are controlled so that the exhaust air-fuel ratio becomes an air-fuel ratio in the vicinity of the stoichiometry in order to optimize the combustion efficiency. In this specification, this normal combustion control is referred to as normal stoichiometric control from the viewpoint of the exhaust air-fuel ratio. In this normal stoichiometric control, as a result of optimizing the combustion efficiency, the exhaust temperature basically becomes relatively high, so that the energy of the exhaust flowing into the EHC 1 is also in a high energy state. The present invention pays attention to the fact that the exhaust under normal stoichiometric control has such high energy, and in order to reduce the energy of the exhaust in S201, the exhaust air-fuel ratio is set to the rich side. The combustion condition in the internal combustion engine 10 is adjusted so as to shift to, that is, the rich control amount is determined.
 ここで、リッチ制御量の具体的な決定方法について、図11-図13に基づいて説明する。図11-図13は、横軸を内燃機関10の機関回転速度、縦軸を排気空燃比とし、機関回転速度と排気空燃比との相関関係を画定する制御マップである。また、EHC温度ごとに、当該相関関係が定義されており、このマップに従うことで、内燃機関10の機関回転速度とEUC1のEHC温度に基づいて、EHC1への投入エネルギーを抑制するための排気空燃比、換言すれば上記リッチ制御量が算出できる。なお、上記の通りEHC温度が高くなるほど担体内温度差ΔTは拡大しにくくなることから、これらの制御マップにおいては、EHC温度が低い場合は、EHC温度が高い場合と比べて、機関回転速度に対する排気空燃比の相間がよりリッチ側となるように、換言すれば、リッチ制御量が増加するように、EHC温度ごとの上記相関関係が設定されている。 Here, a specific method for determining the rich control amount will be described with reference to FIGS. FIGS. 11 to 13 are control maps that define the correlation between the engine speed and the exhaust air-fuel ratio, with the horizontal axis representing the engine speed of the internal combustion engine 10 and the vertical axis representing the exhaust air-fuel ratio. Further, the correlation is defined for each EHC temperature, and according to this map, the exhaust air for suppressing the input energy to the EHC 1 based on the engine speed of the internal combustion engine 10 and the EHC temperature of the EUC 1. The fuel ratio, that is, the rich control amount can be calculated. As described above, as the EHC temperature becomes higher, the temperature difference ΔT in the carrier becomes harder to increase. Therefore, in these control maps, when the EHC temperature is low, the engine rotational speed is higher than when the EHC temperature is high. The above correlation for each EHC temperature is set so that the phase of the exhaust air-fuel ratio becomes richer, in other words, the rich control amount increases.
 本実施例では、図11-図13の示されるいずれの制御マップに従って、リッチ制御量を決定してもよい。ここで、各図に示された制御マップの特徴について、以下に説明する。
<図11に示す制御マップ>
 本制御マップでは、内燃機関の機関回転速度が低い加速初期ほどリッチ制御量が大きくなり、機関回転速度が高くなるほどリッチ制御量が小さくなるように、機関回転速度と排気空燃比の相関関係が設定されている。当該制御マップに従ってリッチ制御量が決定されれば、EHC1においてクラックが生じやすい低温時、すなわち内燃機関10の冷間始動直後の加速初期において排気空燃比のリッチ化が強く行われることで、加速の全期間(加速初期から加速終了までの期間)におけるリッチ制御量の総和を抑えながら、効率的に担体内温度差が拡大するのを回避することができる。一方で、機関回転速度が低い加速初期に常に排気空燃比のリッチ化が強く行われることで、加速が途中で中止された場合等には、過剰なリッチ制御が行われてしまうことになる。
<図12に示す制御マップ>
 本制御マップは、図11に示す制御マップの反対の、機関回転速度と排気空燃比の相関関係が設定されており、具体的には、内燃機関の機関回転速度が高い加速後期ほどリッチ制御量が大きくなり、機関回転速度が低くなるほどリッチ制御量が小さくなる。したがって、当該制御マップに従ってリッチ制御量が決定されれば、加速途中で加速が中止された場合等に、過剰なリッチ制御が行われることは回避できるが、加速の全期間におけるリッチ制御量の総和が増加する傾向にある。
<図13に示す制御マップ>
 本制御マップは、図11に示す制御マップと図12に示す制御マップの中間に位置付けられる、機関回転速度と排気空燃比の相関関係が設定されており、具体的には、内燃機関の機関回転速度にかかわらずリッチ制御量は一定であり、EHC温度に応じてそのリッチ制御量が変化する。したがって、当該制御マップに従ってリッチ制御量が決定されれば、図11に示す制御マップによる場合と図12に示す制御マップによる場合の中間の、リッチ制御量に関する傾向が得られることになる。
In the present embodiment, the rich control amount may be determined according to any control map shown in FIGS. Here, the characteristics of the control map shown in each figure will be described below.
<Control map shown in FIG. 11>
In this control map, the correlation between the engine speed and the exhaust air / fuel ratio is set so that the rich control amount increases as the initial engine speed of the internal combustion engine decreases and the rich control amount decreases as the engine speed increases. Has been. If the rich control amount is determined according to the control map, the exhaust air-fuel ratio is strongly enriched at a low temperature at which the EHC 1 is likely to crack, that is, immediately after the cold start of the internal combustion engine 10, so that the acceleration air-fuel ratio is increased. While suppressing the sum of the rich control amounts in the entire period (the period from the initial acceleration to the end of acceleration), it is possible to avoid the temperature difference in the carrier from being efficiently expanded. On the other hand, since the exhaust air-fuel ratio is always richly enriched at the beginning of acceleration when the engine speed is low, excessive rich control is performed when acceleration is stopped halfway.
<Control map shown in FIG. 12>
In this control map, the correlation between the engine speed and the exhaust air / fuel ratio, which is opposite to the control map shown in FIG. 11, is set. Specifically, the rich control amount is increased in the later stage of acceleration when the engine speed of the internal combustion engine is higher. As the engine speed increases, the rich control amount decreases. Therefore, if the rich control amount is determined according to the control map, it is possible to avoid excessive rich control when the acceleration is stopped in the middle of acceleration, etc., but the sum of the rich control amounts over the entire acceleration period. Tend to increase.
<Control map shown in FIG. 13>
In this control map, a correlation between the engine speed and the exhaust air / fuel ratio, which is positioned between the control map shown in FIG. 11 and the control map shown in FIG. 12, is set. Specifically, the engine speed of the internal combustion engine is set. The rich control amount is constant regardless of the speed, and the rich control amount changes according to the EHC temperature. Therefore, if the rich control amount is determined according to the control map, a tendency regarding the rich control amount between the case of using the control map shown in FIG. 11 and the case of using the control map shown in FIG. 12 is obtained.
 このように、各制御マップに応じた特徴を踏まえ、S201では、適宜、図11-図13の何れかの制御マップに従って、リッチ制御量を決定することができる。S201が終了するとS202へ進み、S201で決定されたリッチ制御量に基づいて、EHC1への投入エネルギーを抑制すべく、排気空燃比をリッチ側に移行させる。本実施例では、内燃機関10での燃料噴射量が調整されて、目的とするリッチ側の排気空燃比の実現が図られる。S202の処理が終了すると、S111へ進み、上述した判定処理が行われる。 As described above, based on the characteristics according to each control map, in S201, the rich control amount can be determined according to any one of the control maps of FIGS. When S201 ends, the process proceeds to S202, and based on the rich control amount determined in S201, the exhaust air-fuel ratio is shifted to the rich side in order to suppress the input energy to EHC1. In this embodiment, the fuel injection amount in the internal combustion engine 10 is adjusted to achieve the target rich exhaust air-fuel ratio. When the process of S202 ends, the process proceeds to S111, and the determination process described above is performed.
 このように本排気空燃比制御が行われると、内燃機関10の冷間始動時に、EHC温度Tehcを初めとする諸パラメータに従って、実際の積算吸気量が積算吸気量上限を超えてしまった場合には、触媒担体3での担体内温度差ΔTが過度に拡大しないように、排気空燃比のリッチ制御が行われ、結果として排気を介してEHC1に投入されるエネルギーが抑制される。なお、本制御では、実施例1に係る出力抑制制御とは異なり、吸気量を制限せずにEHC1への投入エネルギーの抑制が図られるため、内燃機関10の出力が制限されることはない。しかしながら、本制御により燃料噴射量の増量によるリッチ制御が行われることで、燃料消費量が増加する場合がある。 When the exhaust air / fuel ratio control is performed in this manner, when the internal combustion engine 10 is cold-started, the actual integrated intake air amount exceeds the integrated intake air amount upper limit according to various parameters including the EHC temperature Tehc. The rich control of the exhaust air-fuel ratio is performed so that the temperature difference ΔT in the carrier at the catalyst carrier 3 does not excessively increase, and as a result, the energy input to the EHC 1 via the exhaust is suppressed. In this control, unlike the output suppression control according to the first embodiment, the input energy to the EHC 1 is suppressed without limiting the intake air amount, and therefore the output of the internal combustion engine 10 is not limited. However, the fuel consumption may increase due to the rich control performed by increasing the fuel injection amount by this control.
 ここで、上記発明に係る制御装置の効果を、図14、図15A、図15B、図15Cに基づいて説明する。まず、図14(a)は、図10に示す排気空燃比制御が行われた際の積算吸気量の推移を示し、図14(b)は内燃機関10からの排気の空燃比、すなわちEHCに流れ込む排気の空燃比の推移を例示する。なお、図14(a)における積算吸気量上限設定の推移は、図6に示す制御マップに基づいてS103で算出された積算吸気量上限設定gasummaxに関するものであり、WOT加速時の推移は、冷間始動時の加速の一例としてのWOT加速(フルスロットル加速)を行った際の内燃機関10における実際の吸気量に関するものである。 Here, the effect of the control device according to the invention will be described with reference to FIGS. 14, 15A, 15B, and 15C. First, FIG. 14A shows the transition of the integrated intake air amount when the exhaust air-fuel ratio control shown in FIG. 10 is performed, and FIG. 14B shows the air-fuel ratio of the exhaust from the internal combustion engine 10, that is, EHC. The transition of the air-fuel ratio of the exhaust gas flowing in is illustrated. The transition of the integrated intake air amount upper limit setting in FIG. 14A relates to the integrated intake air amount upper limit setting gasummax calculated in S103 based on the control map shown in FIG. The present invention relates to the actual intake air amount in the internal combustion engine 10 when WOT acceleration (full throttle acceleration) is performed as an example of acceleration at the time of start-up.
 そして、図14に示す例では、冷間始動時にWOT加速を開始してから、t1経過後に実際の吸気量が積算吸気量上限gasummaxを超えたことになり、したがって、この時点以降、排気空燃比制御におけるS201、S202の処理が行われることになる。このときの排気空燃比の推移を図14(b)に基づいて説明すると、WOT加速開始直後では、WOT加速開始に対応すべく一時的に燃料噴射量が増量されるため排気空燃比がリッチ側に振れるが、その後は排気空燃比がストイキ近傍の空燃比になるように、上記通常ストイキ制御が行われる。そして、時間t1が経過すると、上記S201とS202の処理に係るリッチ制御により、排気空燃比がリッチ側に制御される。このリッチ制御は、上記のとおり排気による、EHC1への投入エネルギーを抑制するために行われるものである。その後、S111にて所定時間経過したとき、すなわちEHC1にてクラック発生の可能性が低いと判断された時間t2が経過したときに、上記排気空燃比制御が終了し、通常ストイキ制御による排気空燃比の制御へと移行する。 In the example shown in FIG. 14, the actual intake air amount has exceeded the integrated intake air amount upper limit gasummax after t1 has elapsed since the start of WOT acceleration at the time of cold start. The processing of S201 and S202 in the control is performed. The transition of the exhaust air-fuel ratio at this time will be described with reference to FIG. 14B. Immediately after the start of WOT acceleration, the fuel injection amount is temporarily increased to correspond to the start of WOT acceleration. However, after that, the normal stoichiometric control is performed so that the exhaust air-fuel ratio becomes an air-fuel ratio in the vicinity of the stoichiometric. When the time t1 elapses, the exhaust air-fuel ratio is controlled to the rich side by the rich control related to the processing of S201 and S202. This rich control is performed to suppress the input energy to the EHC 1 due to the exhaust as described above. Thereafter, when a predetermined time has elapsed in S111, that is, when the time t2 when it is determined that the possibility of occurrence of cracks is low in EHC1, the exhaust air-fuel ratio control is terminated, and the exhaust air-fuel ratio by the normal stoichiometric control is completed. Transition to control.
 次に、図15Aの上段、図15Bに、触媒担体3の側壁面および側壁近傍部の温度推移、および図15Aの下段に担体内温度差ΔTの推移を例示する。詳細には、両図において、線L11は、上記排気空燃比制御が行われた際の触媒担体3の側壁面の温度推移を示し、線L12は、上記排気空燃比制御が行われた際の触媒担体3の側壁近傍部の温度推移を示し、両線に係る側壁面と側壁近傍部との間の温度差である担体内温度差ΔTが、図15Aの下段において線L15で示されている。同様に、両図において、線L13は、上記排気空燃比制御が行われていない場合、すなわち従来技術における触媒担体3の側壁面の温度推移を示し、線L14は、従来技術における触媒担体3の側壁近傍部の温度推移を示し、両線に係る側壁面と側壁近傍部との間の温度差である担体内温度差ΔTが、図15Aの下段において線L16で示されている。 Next, the upper stage of FIG. 15A and FIG. 15B illustrate the temperature transition of the side wall surface and the vicinity of the side wall of the catalyst carrier 3, and the lower stage of FIG. 15A illustrates the transition of the temperature difference ΔT in the carrier. Specifically, in both figures, a line L11 indicates a temperature transition of the side wall surface of the catalyst carrier 3 when the exhaust air-fuel ratio control is performed, and a line L12 indicates a time when the exhaust air-fuel ratio control is performed. The temperature transition in the vicinity of the side wall of the catalyst carrier 3 is shown, and the temperature difference ΔT in the carrier, which is the temperature difference between the side wall surface and the side wall near the both lines, is indicated by a line L15 in the lower part of FIG. 15A. . Similarly, in both figures, a line L13 shows the temperature transition of the side wall surface of the catalyst carrier 3 in the prior art when the exhaust air-fuel ratio control is not performed, that is, the line L14 shows the catalyst carrier 3 in the prior art. The temperature transition in the vicinity of the side wall is shown, and the temperature difference ΔT in the carrier, which is the temperature difference between the side wall surface and the side wall near the both lines, is indicated by a line L16 in the lower part of FIG. 15A.
 また、図15Aは、内燃機関10の冷間始動加速状態においてその加速初期にEHC温度が比較的低い場合の各パラメータの推移を示す図であり、反対に、図15Bは、その加速初期にEHC温度が比較的高い場合の各パラメータの推移を示す図である。そして、図15Aの下段に示す、上記排気空燃比制御が行われた際の担体内温度差ΔTの推移(すなわち、EHC温度が低い場合に対応する線L15で表される推移)と、図15Bには示されていないが、図15Bに示す温度推移から算出される、上記排気空燃比制御が行われた際の担体内温度差ΔTの推移(すなわち、EHC温度が高い場合に対応する線L17で表される推移)との比較を図15Cに示す。 FIG. 15A is a diagram showing the transition of each parameter when the EHC temperature is relatively low at the initial stage of acceleration in the cold start acceleration state of the internal combustion engine 10, and conversely, FIG. 15B shows the EHC at the initial stage of acceleration. It is a figure which shows transition of each parameter when temperature is comparatively high. 15A shows the transition of the temperature difference ΔT in the carrier when the exhaust air-fuel ratio control is performed (that is, the transition represented by the line L15 when the EHC temperature is low), and FIG. Although not shown in FIG. 15, the change in the temperature difference ΔT in the carrier when the exhaust air-fuel ratio control is performed (that is, the line L17 corresponding to the case where the EHC temperature is high) calculated from the temperature change shown in FIG. 15B. FIG. 15C shows a comparison with the transition represented by.
 これらの図からも分かるように、本排気空燃制御が行われることで、担体内温度差ΔTが拡大し易い低温時でも、従来技術の場合と比べて、担体内温度差ΔTを触媒担体3のクラック発生の閾値であるΔT1(当該クライテリア以下の温度範囲が、本発明における「所定温度範囲」に相当する。)以下に維持できる。また、図15Cに線L17で示すように、加速初期でのEHC温度が高くなると、担体内温度差ΔTの拡大の程度が縮小する。そこで、加速初期でのEHC温度が高くなるほど、S201で決定されるリッチ制御量、すなわち、ストイキ近傍からリッチ側への空燃比移行の程度を小さくするようにしてもよい。このようにすることで、クラック抑制のために行われる排気のリッチ化のための燃料消費量を抑制できる。 As can be seen from these drawings, the exhaust air / fuel control is performed, so that the temperature difference ΔT in the carrier can be reduced compared to the case of the prior art even at a low temperature at which the temperature difference ΔT in the carrier is easily increased. Can be maintained below ΔT1 (the temperature range below the criterion corresponds to the “predetermined temperature range” in the present invention). Further, as indicated by a line L17 in FIG. 15C, when the EHC temperature in the initial stage of acceleration is increased, the degree of expansion of the in-carrier temperature difference ΔT is reduced. Therefore, the rich control amount determined in S201, that is, the extent of the air-fuel ratio shift from the stoichiometric vicinity to the rich side, may be reduced as the EHC temperature in the early stage of acceleration increases. By doing in this way, the fuel consumption for exhaust enrichment performed for crack suppression can be suppressed.
 本発明に係る内燃機関10の制御装置の第三の実施例について、図16、図17に基づいて説明する。図16は、図5に示される出力抑制制御の変形例としての、EHC1におけるクラック発生を抑制するための制御のフローチャートであり、当該制御を構成する各処理のうち、図5に示す出力抑制制御を構成する処理と実質的に同一の処理は、同じ参照番号を付すことで、その詳細な説明を割愛する。具体的には、図16に示す出力抑制制御は、図5に示す出力抑制制御のS107の処理が、S301に置き換えられたものである。 A third embodiment of the control device for the internal combustion engine 10 according to the present invention will be described with reference to FIGS. FIG. 16 is a flowchart of control for suppressing the occurrence of cracks in the EHC 1 as a modified example of the output suppression control shown in FIG. 5, and among the processes constituting the control, the output suppression control shown in FIG. The same reference numerals are assigned to processes that are substantially the same as the processes that constitute, and the detailed description thereof is omitted. Specifically, the output suppression control illustrated in FIG. 16 is obtained by replacing the process of S107 of the output suppression control illustrated in FIG. 5 with S301.
 そこで、S106の処理が終了した後に行われるS301の処理について説明する。S301では、S107と同様に、スロットル開度上限tamaxが決定されるが、本実施例ではその決定の際に、内燃機関10の機関回転速度と積算吸気量上限gasummaxに加えて、本制御時のハイブリッド車両100の車両速度が考慮される。そこで、図17に基づいて、S301におけるスロットル開度上限tamaxの決定方法について説明する。本実施例では、図17(a)に示される制御マップと、図17(b)に示される制御マップを用いて、スロットル開度上限tamaxが決定される。図17(a)に示される制御マップは、S106の処理に対応する、図7に示される制御マップと実質的に同じものであるからその詳細な説明は割愛する。そして、図17(a)に示される制御マップに従えば、積算吸気量上限gasummaxに基づいて、機関回転速度とスロットル開度上限tamaxの相関関係が選択される。本実施例では、積算吸気量上限gasumumaxに応じた3つの相関関係(線L21、線L22、線L23で表される相関関係)が例示されており、例えば、S103で算出された積算吸気量上限gasummaxに基づいて線L21で表される上記相関関係が選択されるものとする。 Therefore, the process of S301 performed after the process of S106 is completed will be described. In S301, the throttle opening upper limit tamax is determined in the same manner as in S107. In this embodiment, in addition to the engine rotational speed of the internal combustion engine 10 and the integrated intake air amount upper limit gasummax, the throttle opening upper limit tamax is determined. The vehicle speed of the hybrid vehicle 100 is considered. Accordingly, a method for determining the throttle opening upper limit tamax in S301 will be described based on FIG. In this embodiment, the throttle opening upper limit tamax is determined using the control map shown in FIG. 17A and the control map shown in FIG. The control map shown in FIG. 17A is substantially the same as the control map shown in FIG. 7 corresponding to the process of S106, and therefore detailed description thereof is omitted. Then, according to the control map shown in FIG. 17A, the correlation between the engine speed and the throttle opening upper limit tamax is selected based on the integrated intake amount upper limit gasummax. In this embodiment, three correlations (correlations represented by line L21, line L22, and line L23) corresponding to the integrated intake air amount upper limit gasumumax are illustrated, for example, the integrated intake air amount upper limit calculated in S103. It is assumed that the above correlation represented by the line L21 is selected based on gasummax.
 更に、本実施例では、選択された線L21で表される相関関係をベースとして、ハイブリッド車両100の車両速度を、スロットル開度上限tamaxに反映させた制御マップ(図17(b)を参照)が用意されている。本出力抑制制御が実行される内燃機関10の冷間始動時に、ハイブリッド車両100の車両速度が高くなっていると、スロットル弁14の開度が車両速度が低い場合と同じであっても、必然的に内燃機関10に取り込まれる吸気量が多くなり、それは、排気を介したEHC1への投入エネルギーの増大を招く可能性がある。そこで、図17(b)に示される制御マップでは、ハイブリッド車両100の車両速度が高くなるに従い、吸気量をより抑制するように、機関回転速度とスロットル開度上限tamaxの相関関係が設定されている。具体的には、車両速度EV=0km/hのときは、線L21-1で示される相関関係が設定され、車両速度EV=50、90km/hのときは、それぞれ線L21-2、L21-3で示される相関関係が設定されている。なお、図17(b)に示される制御マップは図17(a)中の線L21に係る相関関係に対応するものであるが、もちろん、線L22、線L23等に係る相関関係についても車両速度が反映された制御マップが用意されている。 Further, in the present embodiment, a control map in which the vehicle speed of the hybrid vehicle 100 is reflected in the throttle opening upper limit tamax based on the correlation represented by the selected line L21 (see FIG. 17B). Is prepared. If the vehicle speed of the hybrid vehicle 100 is high at the time of cold start of the internal combustion engine 10 in which this output suppression control is executed, even if the opening of the throttle valve 14 is the same as when the vehicle speed is low, it is inevitably necessary. In particular, the amount of intake air taken into the internal combustion engine 10 increases, which may lead to an increase in input energy to the EHC 1 via the exhaust gas. Therefore, in the control map shown in FIG. 17B, the correlation between the engine speed and the throttle opening upper limit tamax is set so that the intake air amount is further suppressed as the vehicle speed of the hybrid vehicle 100 increases. Yes. Specifically, when the vehicle speed EV = 0 km / h, the correlation indicated by the line L21-1 is set, and when the vehicle speed EV = 50, 90 km / h, the lines L21-2, L21- The correlation indicated by 3 is set. The control map shown in FIG. 17 (b) corresponds to the correlation related to the line L21 in FIG. 17 (a). Of course, the vehicle speed also applies to the correlation related to the line L22, the line L23, etc. A control map reflecting the above is prepared.
 このように図17(a)、(b)に示される制御マップを利用することで、S301におけるスロットル開度上限tamaxの決定処理が行われ、その後、S108以降の処理が行われることになる。このように、図16に示される出力抑制制御が行われることで、内燃機関10の冷間始動時に、EHC温度Tehcを初めとする諸パラメータに従って、積算吸気量が、触媒担体3での担体内温度差ΔTが過度に拡大しないための制限値を超えないように制御されることになる。特に積算吸気量の上限値に制御時の車両速度が反映されることで、ソーク状態からの内燃機関10の冷間始動においても的確に担体内温度差ΔTの拡大を回避できる。 Thus, by using the control maps shown in FIGS. 17A and 17B, the throttle opening upper limit tamax determination processing in S301 is performed, and thereafter, the processing from S108 onward is performed. Thus, by performing the output suppression control shown in FIG. 16, when the internal combustion engine 10 is cold-started, the integrated intake air amount is changed in the carrier in the catalyst carrier 3 according to various parameters including the EHC temperature Tehc. The temperature difference ΔT is controlled so as not to exceed a limit value for preventing the temperature difference ΔT from excessively expanding. In particular, since the vehicle speed at the time of control is reflected on the upper limit value of the integrated intake air amount, it is possible to accurately avoid the increase in the temperature difference ΔT in the carrier even in the cold start of the internal combustion engine 10 from the soak state.
 本発明に係る内燃機関10の制御装置の第四の実施例について、図18、図19に基づいて説明する。図18は、図10に示される排気空燃比制御の変形例としての、EHC1におけるクラック発生を抑制するための制御のフローチャートであり、当該制御を構成する各処理のうち、図10に示す排気空燃比制御を構成する処理と実質的に同一の処理は、同じ参照番号を付すことで、その詳細な説明を割愛する。具体的には、図18に示す排気空燃比制御は、図10に示す排気空燃比制御のS201の処理が、S401に置き換えられたものである。 A fourth embodiment of the control apparatus for the internal combustion engine 10 according to the present invention will be described with reference to FIGS. FIG. 18 is a flowchart of control for suppressing the occurrence of cracks in the EHC 1 as a modified example of the exhaust air-fuel ratio control shown in FIG. 10, and the exhaust air shown in FIG. Processes that are substantially the same as the processes that constitute the fuel ratio control are given the same reference numerals, and detailed descriptions thereof are omitted. Specifically, the exhaust air / fuel ratio control shown in FIG. 18 is obtained by replacing the process of S201 of the exhaust air / fuel ratio control shown in FIG. 10 with S401.
 そこで、S105で肯定判定された後に行われるS401の処理について説明する。S401では、S201と同様に、排気空燃比のリッチ制御量が決定されるが、本実施例ではその決定の際に、内燃機関10の機関回転速度とEHC温度に加えて、本制御時のハイブリッド車両100の車両速度が考慮される。そこで、図19に基づいて、S401におけるリッチ制御量の決定方法について説明する。本実施例では、図19(a)に示される制御マップと、図19(b)に示される制御マップを用いて、リッチ制御量が決定される。図19(a)に示される制御マップは、S201の処理に対応する、図12に示される制御マップと実質的に同じものであるからその詳細な説明は割愛する。そして、図19(a)に示される制御マップに従えば、EHC温度に基づいて、機関回転速度と排気空燃比の相関関係が選択される。本実施例では、EHC温度に応じた4つの相関関係(線L31、線L32、線L33、線L34で表される相関関係)が例示されており、例えば、EHC温度に基づいて線L32で表される上記相関関係が選択されるものとする。 Therefore, the process of S401 performed after an affirmative determination in S105 will be described. In S401, as in S201, the rich control amount of the exhaust air-fuel ratio is determined. In this embodiment, in addition to the engine speed and EHC temperature of the internal combustion engine 10, the hybrid at the time of this control is determined. The vehicle speed of the vehicle 100 is taken into account. Accordingly, the method for determining the rich control amount in S401 will be described based on FIG. In the present embodiment, the rich control amount is determined using the control map shown in FIG. 19A and the control map shown in FIG. The control map shown in FIG. 19A is substantially the same as the control map shown in FIG. 12 corresponding to the process of S201, and therefore detailed description thereof is omitted. Then, according to the control map shown in FIG. 19A, the correlation between the engine speed and the exhaust air / fuel ratio is selected based on the EHC temperature. In this embodiment, four correlations (correspondences represented by line L31, line L32, line L33, and line L34) according to the EHC temperature are illustrated, for example, represented by a line L32 based on the EHC temperature. It is assumed that the above correlation is selected.
 次に、本実施例では、選択された線L32で表される相関関係をベースとして、ハイブリッド車両100の車両速度を、リッチ制御量に反映させた制御マップ(図19(b)を参照)が用意されている。本排気空燃比制御が実行される内燃機関10の冷間始動時に、ハイブリッド車両100の車両速度が高くなっていると、スロットル弁14の開度が車両速度が低い場合と同じであっても、必然的に内燃機関10に取り込まれる吸気量が多くなり、それは、排気を介したEHC1への投入エネルギーの増大を招く可能性がある。そこで、図19(b)に示される制御マップでは、ハイブリッド車両100の車両速度が高くなるに従い、排気空燃比をよりリッチ側に移行させるように、機関回転速度と排気空燃比の相関関係が設定されている。具体的には、車両速度EV=0km/hのときは、線L32-1で示される相関関係が設定され、車両速度EV=50、90km/hのときは、それぞれ線L32-2、L32-3で示される相関関係が設定されている。なお、図19(b)に示される制御マップは図19(a)中の線L32に係る相関関係に対応するものであるが、もちろん、線L33、線L34等に係る相関関係についても車両速度が反映された制御マップが用意されている。 Next, in the present embodiment, a control map (see FIG. 19B) in which the vehicle speed of the hybrid vehicle 100 is reflected in the rich control amount based on the correlation represented by the selected line L32. It is prepared. If the vehicle speed of the hybrid vehicle 100 is high during the cold start of the internal combustion engine 10 where the exhaust air-fuel ratio control is executed, even if the opening of the throttle valve 14 is the same as when the vehicle speed is low, Inevitably, the amount of intake air taken into the internal combustion engine 10 increases, which may lead to an increase in input energy to the EHC 1 via the exhaust gas. Therefore, in the control map shown in FIG. 19B, the correlation between the engine speed and the exhaust air / fuel ratio is set so that the exhaust air / fuel ratio shifts to a richer side as the vehicle speed of the hybrid vehicle 100 increases. Has been. Specifically, the correlation indicated by the line L32-1 is set when the vehicle speed EV = 0 km / h, and the lines L32-2 and L32- are respectively set when the vehicle speed EV = 50 and 90 km / h. The correlation indicated by 3 is set. The control map shown in FIG. 19 (b) corresponds to the correlation related to the line L32 in FIG. 19 (a), but of course the vehicle speed also relates to the correlation related to the line L33, the line L34, etc. A control map reflecting the above is prepared.
 このように図19(a)、(b)に示される制御マップを利用することで、S401におけるリッチ制御量の決定処理が行われ、その後、S202以降の処理が行われることになる。このように、図18に示される排気空燃比制御が行われることで、内燃機関10の冷間始動時に、EHC温度Tehcを初めとする諸パラメータに従って、排気空燃比が、触媒担体3での担体内温度差ΔTが過度に拡大しないように制御されることになる。特にリッチ制御量に制御時の車両速度が反映されることで、ソーク状態からの内燃機関10の冷間始動においても的確に担体内温度差ΔTの拡大を回避できる。 As described above, by using the control maps shown in FIGS. 19A and 19B, the rich control amount determination process in S401 is performed, and thereafter, the processes in and after S202 are performed. Thus, by performing the exhaust air-fuel ratio control shown in FIG. 18, the exhaust air-fuel ratio is changed according to various parameters including the EHC temperature Tehc when the internal combustion engine 10 is cold-started. Control is performed so that the internal temperature difference ΔT does not excessively increase. In particular, since the vehicle speed at the time of control is reflected in the rich control amount, it is possible to accurately avoid the increase in the temperature difference ΔT in the carrier even in the cold start of the internal combustion engine 10 from the soak state.
 本発明に係る内燃機関10の制御装置の第五の実施例について、図20、図21に基づいて説明する。図20は、内燃機関10の冷間始動前に事前にEHC1に電力供給を行って、そのEHC温度を上昇させることで、その後の冷間始動時に排気を介してエネルギーが投入されたときに、触媒担体3において担体内温度差ΔTが拡大しすぎないようにするための制御のフローチャートであり、当該制御を始動前EHC通電制御と称する。当該制御は、内燃機関10が停止している状態において、ECU20により適宜繰り返し実行される。 A fifth embodiment of the control apparatus for the internal combustion engine 10 according to the present invention will be described with reference to FIGS. FIG. 20 shows a case where power is supplied to the EHC 1 in advance before the internal combustion engine 10 is cold-started and its EHC temperature is raised, so that energy is input via exhaust during the subsequent cold-start. 5 is a flowchart of control for preventing the temperature difference ΔT in the carrier from excessively increasing in the catalyst carrier 3, and this control is referred to as pre-startup EHC energization control. The control is repeatedly executed as appropriate by the ECU 20 while the internal combustion engine 10 is stopped.
 まず、S501では、EHC温度Tehcの取得が行われる。EHC温度の推定、算出については、上述までの実施例に示した通り、温度センサ6aにより検出される排気温度等に基づいて行われる。その後、S502で、クランクポジションセンサ11による検出値に基づいて、ハイブリッド車両100の車両速度evspdが取得される。S502の処理が終了すると、S503へ進む。 First, in S501, the EHC temperature Tehc is acquired. The estimation and calculation of the EHC temperature are performed based on the exhaust gas temperature detected by the temperature sensor 6a as shown in the above embodiments. Thereafter, in S502, the vehicle speed evspd of the hybrid vehicle 100 is acquired based on the value detected by the crank position sensor 11. When the process of S502 ends, the process proceeds to S503.
 S503では、内燃機関10が停止している状態で、すなわち内燃機関10の冷間始動が行われる前の状態で、予めEHC1に通電しその温度を上昇させる際の目標温度である、目標EHC温度tempevが算出される。この目標EHC温度tempevは、仮に内燃機関10が冷間始動し、排気がEHC1に流れ込むことでクラック発生の原因である担体内温度差ΔTが拡大しすぎないように、排気が流れ込む時点において予めEHC温度を上昇させておくために設定されるものである。内燃機関10の冷間始動時直後のEHC温度が高い場合ほど、担体内温度差ΔTが拡大しにくくなるのは、上述までの実施例(例えば、図9B、図15B)に示す通りである。 In S503, the target EHC temperature, which is a target temperature when the EHC 1 is energized in advance and the temperature thereof is increased in a state where the internal combustion engine 10 is stopped, that is, before the cold start of the internal combustion engine 10 is performed. tempev is calculated. This target EHC temperature tempev is preliminarily determined in advance at the time when exhaust gas flows so that the internal combustion engine 10 is cold-started and the exhaust gas flows into EHC 1 so that the temperature difference ΔT in the carrier that causes cracking does not increase excessively. It is set to keep the temperature raised. As the EHC temperature immediately after the cold start of the internal combustion engine 10 is higher, the temperature difference ΔT in the carrier is less likely to increase as shown in the above-described embodiments (for example, FIGS. 9B and 15B).
 そこで、目標EHC温度tempevの算出については、図21に示される制御マップに従って行われる。当該制御マップは、横軸が車両速度evspdを表し、縦軸が目標EHC温度tempevを表し、両者の相関関係を定めている。当該相対関係においては、車両速度evspdが高くなるほど、目標EHC温度tempevも高くなるように設定されている。これは、車両速度evspdがより高いときに内燃機関10が冷間始動した場合、より多くの吸気が内燃機関10に取り込まれ、その結果、排気を介してより多くのエネルギーがEHC1に投入され、担体内温度差ΔTが拡大し過ぎてしまうことを考慮し、より高い目標EHC温度を設定することで、その担体内温度差ΔTの拡大を抑制することを目的としていることによる。以上より、S503では、図21に示される制御マップに従って、S502で取得された車両速度evspdに基づいて目標EHC温度tempevが算出される。S503の処理が終了すると、S504へ進む。 Therefore, the calculation of the target EHC temperature tempev is performed according to the control map shown in FIG. In the control map, the horizontal axis represents the vehicle speed evspd and the vertical axis represents the target EHC temperature tempev, which defines the correlation between the two. In the relative relationship, the target EHC temperature tempev is set to be higher as the vehicle speed evspd is higher. This is because if the internal combustion engine 10 is cold-started when the vehicle speed evspd is higher, more intake air is taken into the internal combustion engine 10, and as a result, more energy is input to the EHC 1 via the exhaust, In consideration of the fact that the temperature difference ΔT in the carrier is excessively increased, it is intended to suppress the expansion of the temperature difference ΔT in the carrier by setting a higher target EHC temperature. As described above, in S503, the target EHC temperature tempev is calculated based on the vehicle speed evspd acquired in S502, according to the control map shown in FIG. When the processing of S503 ends, the process proceeds to S504.
 S504では、S501で取得されたEHC温度Tehcが、S503で算出された目標EHC温度tempevより大きいか否かが判定される。そして、S504で肯定判定されればEHC1への通電は行われず(S505の処理)、一方で否定判定されればEHC1への通電が、EHC温度が目標EHC温度tempevに到達するように行われる(S506の処理)。 In S504, it is determined whether or not the EHC temperature Tehc acquired in S501 is higher than the target EHC temperature tempev calculated in S503. If an affirmative determination is made in S504, energization to EHC1 is not performed (processing of S505). On the other hand, if a negative determination is made, energization to EHC1 is performed so that the EHC temperature reaches the target EHC temperature tempev ( Process of S506).
 このように本始動前EHC通電制御が行われれば、内燃機関10が停止している状態で、ハイブリッド車両100の車両速度に基づいてEHC温度が、クラック発生の原因となる担体内温度差ΔTが拡大し過ぎない温度になるように制御される。そのため、その後ハイブリッド車両100の走行中に内燃機関10が冷間始動しても、EHC1への排気の流れ込みによるクラックの発生を抑制することができる。 If the pre-startup EHC energization control is performed in this way, the EHC temperature is based on the vehicle speed of the hybrid vehicle 100 while the internal combustion engine 10 is stopped, and the in-carrier temperature difference ΔT that causes cracks is generated. The temperature is controlled so as not to expand too much. Therefore, even if the internal combustion engine 10 is cold-started during the travel of the hybrid vehicle 100 thereafter, the generation of cracks due to the flow of exhaust gas into the EHC 1 can be suppressed.
 1・・・・EHC(電気加熱式触媒)
 2・・・・排気通路
 3・・・・触媒担体
 4・・・・ケース
 5・・・・マット
 7・・・・電極
 10・・・・内燃機関
 12・・・・吸気通路
 13・・・・エアフローメータ
 14・・・・スロットル弁
 20・・・・ECU
 21a、21b・・・・モータ(モータジェネレータ)
 30・・・・バッテリ
 100・・・・ハイブリッド車両
1 .... EHC (electrically heated catalyst)
2 ... Exhaust passage 3 ... Catalyst carrier 4 ... Case 5 ... Matte 7 ... Electrode 10 ... Internal combustion engine 12 ... Intake passage 13 ...・ Air flow meter 14 ... Throttle valve 20 ... ECU
21a, 21b... Motor (motor generator)
30 ... Battery 100 ... Hybrid vehicle

Claims (10)

  1.  内燃機関の排気通路に設けられ、電力の供給により発熱する発熱体からの熱で排気浄化能を有する触媒を加熱する電気加熱式触媒と、
     前記内燃機関の冷間始動時における、前記電気加熱式触媒の前記発熱体での所定部位間の温度差である発熱体内温度差が所定温度範囲内に収まるように、該電気加熱式触媒への排気を介した投入エネルギーの抑制量を決定する決定手段と、
     前記決定手段によって決定された前記投入エネルギーの抑制量に応じて、前記内燃機関の運転状態を制御する制御手段と、
     を備える、内燃機関の制御装置。
    An electrically heated catalyst that is provided in an exhaust passage of the internal combustion engine and heats a catalyst having exhaust purification ability with heat from a heating element that generates heat by supplying power;
    When the internal combustion engine is cold-started, the electric heating type catalyst is supplied to the electric heating type catalyst so that the temperature difference between the predetermined parts of the electric heating type catalyst in the heating element is within a predetermined temperature range. A determining means for determining a suppression amount of input energy via the exhaust;
    Control means for controlling the operating state of the internal combustion engine in accordance with the amount of suppression of the input energy determined by the determining means;
    An internal combustion engine control device comprising:
  2.  前記決定手段は、前記内燃機関の冷間始動からの経過時間に基づいて、前記発熱体内温度差が前記所定温度範囲内に収まるための、前記電気加熱式触媒を流れる排気量に関連する所定パラメータの積算値の上限値である上限積算値を、前記投入エネルギーの抑制量として算出し、
     前記制御手段は、前記内燃機関の冷間始動からの前記所定パラメータの実際の積算値が、前記決定手段によって算出された前記上限積算値を超えないように、又は該上限積算値に近づくように、該内燃機関の機関出力を制御する、
     請求項1に記載の内燃機関の制御装置。
    The determining means is a predetermined parameter related to an exhaust amount flowing through the electrically heated catalyst so that the temperature difference in the heat generating body falls within the predetermined temperature range based on an elapsed time from a cold start of the internal combustion engine. An upper limit integrated value that is an upper limit value of the integrated value is calculated as a suppression amount of the input energy,
    The control means prevents the actual integrated value of the predetermined parameter from the cold start of the internal combustion engine from exceeding or close to the upper limit integrated value calculated by the determining means. Controlling the engine output of the internal combustion engine;
    The control apparatus for an internal combustion engine according to claim 1.
  3.  前記所定パラメータは、前記内燃機関における吸気量である、
     請求項2に記載の内燃機関の制御装置。
    The predetermined parameter is an intake air amount in the internal combustion engine.
    The control apparatus for an internal combustion engine according to claim 2.
  4.  前記決定手段は、前記内燃機関の冷間始動からの経過時間に基づいて、前記発熱体内温度差が前記所定温度範囲内に収まるための、前記電気加熱式触媒を流れる排気量に関連する所定パラメータの積算値の上限値である上限積算値を、前記投入エネルギーの抑制量として算出し、
     前記制御手段は、前記内燃機関の冷間始動からの前記所定パラメータの実際の積算値が、前記決定手段によって算出された前記上限積算値を超えないように、又は該上限積算値に近づくように、該内燃機関での燃料燃焼による排気空燃比を調整し、排気温度を制御する、
     請求項1に記載の内燃機関の制御装置。
    The determining means is a predetermined parameter related to an exhaust amount flowing through the electrically heated catalyst so that the temperature difference in the heat generating body falls within the predetermined temperature range based on an elapsed time from a cold start of the internal combustion engine. An upper limit integrated value that is an upper limit value of the integrated value is calculated as a suppression amount of the input energy,
    The control means prevents the actual integrated value of the predetermined parameter from the cold start of the internal combustion engine from exceeding or close to the upper limit integrated value calculated by the determining means. Adjusting the exhaust air-fuel ratio by fuel combustion in the internal combustion engine and controlling the exhaust temperature;
    The control apparatus for an internal combustion engine according to claim 1.
  5.  前記内燃機関は火花点火式内燃機関であって、
     前記制御手段は、前記所定パラメータの実際の積算値が大きくなるほど、排気空燃比がよりリッチ側になるように前記内燃機関における燃焼条件を調整し、排気温度を低下させる、
     請求項4に記載の内燃機関の制御装置。
    The internal combustion engine is a spark ignition internal combustion engine,
    The control means adjusts the combustion condition in the internal combustion engine so that the exhaust air-fuel ratio becomes richer as the actual integrated value of the predetermined parameter becomes larger, and lowers the exhaust temperature.
    The control device for an internal combustion engine according to claim 4.
  6.  前記電気加熱式触媒の温度を推定、又は検出する推定手段を、更に備え、
     前記決定手段は、前記推定手段によって推定、又は検出された前記電気加熱式触媒の温度が高くなるほど、電気加熱式触媒への排気を介した投入エネルギーの抑制量を低減する、
     請求項1から請求項5の何れか1項に記載の内燃機関の制御装置。
    Estimating means for estimating or detecting the temperature of the electrically heated catalyst is further provided,
    The determining means reduces the amount of suppression of input energy via exhaust to the electrically heated catalyst as the temperature of the electrically heated catalyst estimated or detected by the estimating means increases.
    The control device for an internal combustion engine according to any one of claims 1 to 5.
  7.  前記制御手段による前記投入エネルギーの抑制量に応じた前記内燃機関の運転状態の制御は、該内燃機関の冷間始動直後の所定の加速期間において行われる、
     請求項1から請求項6の何れか1項に記載の内燃機関の制御装置。
    Control of the operating state of the internal combustion engine according to the amount of suppression of the input energy by the control means is performed in a predetermined acceleration period immediately after the cold start of the internal combustion engine.
    The control device for an internal combustion engine according to any one of claims 1 to 6.
  8.  前記内燃機関は、該内燃機関と、電源からの供給電力によって駆動されるモータとを動力源とするハイブリッド車両に搭載され、
     前記決定手段は、前記内燃機関の冷間始動時における前記ハイブリッド車両の車両速度が高くなるほど、前記電気加熱式触媒への投入エネルギーの抑制量を増大する、
     請求項1から請求項7の何れか1項に記載の内燃機関の制御装置。
    The internal combustion engine is mounted on a hybrid vehicle having a power source of the internal combustion engine and a motor driven by power supplied from a power source,
    The determining means increases the amount of suppression of input energy to the electrically heated catalyst as the vehicle speed of the hybrid vehicle at the cold start of the internal combustion engine increases.
    The control device for an internal combustion engine according to any one of claims 1 to 7.
  9.  内燃機関と、電源からの供給電力によって駆動されるモータとを動力源とするハイブリッド車両に搭載された、該内燃機関の制御装置であって、
     内燃機関の排気通路に設けられ、電力の供給により発熱する発熱体からの熱で排気浄化能を有する触媒を加熱する電気加熱式触媒と、
     前記ハイブリッド車両が、前記内燃機関が停止した状態で前記モータを動力源として走行しているときに、前記電気加熱式触媒に電力を供給し前記発熱体を、該内燃機関の始動前に発熱させる始動前発熱手段と、を備え、
     前記始動前発熱手段は、仮に前記内燃機関が冷間始動した場合でも、前記電気加熱式触媒の前記発熱体における所定部位間での温度差である発熱体内温度差が所定温度範囲内に収まるように、前記ハイブリッド車両の車両速度に基づいて該電気加熱式触媒への電力供給を行い該電気加熱式触媒を昇温させる、
     内燃機関の制御装置。
    A control device for an internal combustion engine mounted on a hybrid vehicle having a power source of an internal combustion engine and a motor driven by power supplied from a power source,
    An electrically heated catalyst that is provided in an exhaust passage of the internal combustion engine and heats a catalyst having exhaust purification ability with heat from a heating element that generates heat by supplying power;
    When the hybrid vehicle is running using the motor as a power source with the internal combustion engine stopped, the electric heating catalyst is supplied with electric power to cause the heating element to generate heat before starting the internal combustion engine. Heating means before starting,
    The pre-starting heat generating means is configured so that a temperature difference within the heat generating body, which is a temperature difference between predetermined portions of the heating element of the electric heating catalyst, falls within a predetermined temperature range even if the internal combustion engine is cold started. In addition, the electric heating catalyst is heated based on the vehicle speed of the hybrid vehicle to raise the temperature of the electric heating catalyst.
    Control device for internal combustion engine.
  10.  前記始動前発熱手段は、前記ハイブリッド車両の車両速度が高くなるほど、前記電気加熱式触媒の温度が高くなるように電力供給を行う、
     請求項9に記載の内燃機関の制御装置。
    The pre-starting heat generating means supplies power so that the temperature of the electric heating catalyst increases as the vehicle speed of the hybrid vehicle increases.
    The control device for an internal combustion engine according to claim 9.
PCT/JP2012/050953 2012-01-18 2012-01-18 Control device for internal combustion engine WO2013108379A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280067505.9A CN104053875B (en) 2012-01-18 2012-01-18 The control device of internal combustion engine
PCT/JP2012/050953 WO2013108379A1 (en) 2012-01-18 2012-01-18 Control device for internal combustion engine
US14/373,216 US9222387B2 (en) 2012-01-18 2012-01-18 Control apparatus for an internal combustion engine
JP2013554148A JP5790790B2 (en) 2012-01-18 2012-01-18 Control device for internal combustion engine
EP12865774.9A EP2806127B1 (en) 2012-01-18 2012-01-18 Control apparatus for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/050953 WO2013108379A1 (en) 2012-01-18 2012-01-18 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013108379A1 true WO2013108379A1 (en) 2013-07-25

Family

ID=48798827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050953 WO2013108379A1 (en) 2012-01-18 2012-01-18 Control device for internal combustion engine

Country Status (5)

Country Link
US (1) US9222387B2 (en)
EP (1) EP2806127B1 (en)
JP (1) JP5790790B2 (en)
CN (1) CN104053875B (en)
WO (1) WO2013108379A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002146A1 (en) * 2014-07-01 2016-01-07 トヨタ自動車株式会社 Control device and method for internal combustion engine
JP2016205353A (en) * 2015-04-28 2016-12-08 トヨタ自動車株式会社 Control device of vehicle
JP2017165179A (en) * 2016-03-15 2017-09-21 トヨタ自動車株式会社 Hybrid vehicle
WO2019088187A1 (en) * 2017-11-06 2019-05-09 株式会社デンソー Control device and control method for vehicle exhaust purification system
JP2019085108A (en) * 2019-01-29 2019-06-06 トヨタ自動車株式会社 Hybrid vehicle
JP2020033978A (en) * 2018-08-31 2020-03-05 トヨタ自動車株式会社 Vehicle, and vehicle control method
DE102021101634A1 (en) 2020-01-29 2021-07-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control device and internal combustion engine control method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319241B2 (en) * 2015-09-11 2018-05-09 マツダ株式会社 Automobile with generator drive engine
US9777613B2 (en) * 2015-09-15 2017-10-03 GM Global Technology Operations LLC Regulation of a diesel exhaust after-treatment system via exhaust energy determination
US20180115750A1 (en) * 2016-10-26 2018-04-26 Yueh-Han Li Image recording method for use activity of transport means
DE102017223046A1 (en) * 2017-12-18 2019-06-19 Zf Friedrichshafen Ag Method for warming up a pneumatic clutch actuator
JP6828705B2 (en) * 2018-03-12 2021-02-10 トヨタ自動車株式会社 Vehicle control device
JP7047677B2 (en) * 2018-08-31 2022-04-05 トヨタ自動車株式会社 Vehicle and vehicle control method
FR3086004B1 (en) * 2018-09-18 2020-09-11 Psa Automobiles Sa PROCESS FOR LEARNING A RICHNESS CORRECTION OF A COLD ENGINE
GB2579647B (en) 2018-12-10 2022-12-07 Bamford Excavators Ltd Engine system
GB2585951B (en) 2019-07-26 2023-02-01 Bamford Excavators Ltd System for working machine
US11016712B2 (en) * 2019-08-07 2021-05-25 Ford Global Technologies, Llc Systems and methods for generating a customized display in a vehicle
CN114013421B (en) * 2020-07-17 2024-03-08 上海汽车集团股份有限公司 Method and device for removing carbon deposit of particle catcher
US11708065B2 (en) * 2021-02-19 2023-07-25 Ford Global Technologies, Llc Electrical power control method
KR20230098962A (en) * 2021-12-27 2023-07-04 현대자동차주식회사 Method for EHC Line Leakage Diagnosis and Automobile Exhaust System Thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287433A (en) 1996-04-18 1997-11-04 Matsushita Electric Ind Co Ltd Exhaust gas filter cleaning method and exhaust gas filter cleaning device
JP2004360526A (en) 2003-06-03 2004-12-24 Hitachi Ltd Control device for internal combustion engine equipped with exhaust gas sensor with heater
JP2005140088A (en) * 2003-11-10 2005-06-02 Toyota Motor Corp Control device for secondary air supply device
JP2007002794A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for cylinder direct injection type spark ignition internal combustion engine
JP2009189921A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Current flow control system for use in catalyst device heated by current flow
JP2010116861A (en) * 2008-11-13 2010-05-27 Aisan Ind Co Ltd Vehicle controller
JP2010236544A (en) * 2009-03-13 2010-10-21 Toyota Motor Corp Exhaust emission control device and method for hybrid vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943846A1 (en) * 1999-09-13 2001-03-15 Emitec Emissionstechnologie Device with heating element for exhaust gas cleaning
EP1728996A1 (en) 2005-05-31 2006-12-06 Nissan Motor Co., Ltd. Combustion control method and apparatus for a direct injection spark ignition internal combustion engine
JP4197038B2 (en) * 2007-03-27 2008-12-17 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP4240130B2 (en) * 2007-03-29 2009-03-18 トヨタ自動車株式会社 Catalyst heating device for hybrid vehicle
US8209970B2 (en) * 2007-05-15 2012-07-03 GM Global Technology Operations LLC Hybrid cold start strategy using electrically heated catalyst
WO2011111176A1 (en) * 2010-03-10 2011-09-15 トヨタ自動車株式会社 Vehicle and method for electrifying catalyst device
WO2011114482A1 (en) * 2010-03-18 2011-09-22 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US8549839B2 (en) * 2010-04-28 2013-10-08 GM Global Technology Operations LLC Hydrocarbon energy storage and release control systems and methods
US8720193B2 (en) * 2010-05-11 2014-05-13 GM Global Technology Operations LLC Hybrid catalyst radiant preheating system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287433A (en) 1996-04-18 1997-11-04 Matsushita Electric Ind Co Ltd Exhaust gas filter cleaning method and exhaust gas filter cleaning device
JP2004360526A (en) 2003-06-03 2004-12-24 Hitachi Ltd Control device for internal combustion engine equipped with exhaust gas sensor with heater
JP2005140088A (en) * 2003-11-10 2005-06-02 Toyota Motor Corp Control device for secondary air supply device
JP2007002794A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for cylinder direct injection type spark ignition internal combustion engine
JP2009189921A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Current flow control system for use in catalyst device heated by current flow
JP2010116861A (en) * 2008-11-13 2010-05-27 Aisan Ind Co Ltd Vehicle controller
JP2010236544A (en) * 2009-03-13 2010-10-21 Toyota Motor Corp Exhaust emission control device and method for hybrid vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414934B (en) * 2014-07-01 2019-11-08 丰田自动车株式会社 The control device and method of internal combustion engine
US10428714B2 (en) 2014-07-01 2019-10-01 Toyota Jidosha Kabushiki Kaisha Control device and method for internal combustion engine
WO2016002146A1 (en) * 2014-07-01 2016-01-07 トヨタ自動車株式会社 Control device and method for internal combustion engine
CN106414934A (en) * 2014-07-01 2017-02-15 丰田自动车株式会社 Control device and method for internal combustion engine
US20170114694A1 (en) * 2014-07-01 2017-04-27 Toyota Jidosha Kabushiki Kaisha Control device and method for internal combustion engine
JP2016014342A (en) * 2014-07-01 2016-01-28 トヨタ自動車株式会社 Control device for internal combustion engine
JP2016205353A (en) * 2015-04-28 2016-12-08 トヨタ自動車株式会社 Control device of vehicle
JP2017165179A (en) * 2016-03-15 2017-09-21 トヨタ自動車株式会社 Hybrid vehicle
WO2019088187A1 (en) * 2017-11-06 2019-05-09 株式会社デンソー Control device and control method for vehicle exhaust purification system
JP2020033978A (en) * 2018-08-31 2020-03-05 トヨタ自動車株式会社 Vehicle, and vehicle control method
JP6996456B2 (en) 2018-08-31 2022-01-17 トヨタ自動車株式会社 Vehicle and vehicle control method
JP2019085108A (en) * 2019-01-29 2019-06-06 トヨタ自動車株式会社 Hybrid vehicle
DE102021101634A1 (en) 2020-01-29 2021-07-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control device and internal combustion engine control method
JP2021116775A (en) * 2020-01-29 2021-08-10 トヨタ自動車株式会社 Controller of internal combustion engine
US11293361B2 (en) 2020-01-29 2022-04-05 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine and control method for internal combustion engine

Also Published As

Publication number Publication date
US9222387B2 (en) 2015-12-29
JPWO2013108379A1 (en) 2015-05-11
EP2806127A4 (en) 2017-05-17
JP5790790B2 (en) 2015-10-07
EP2806127A1 (en) 2014-11-26
CN104053875A (en) 2014-09-17
CN104053875B (en) 2016-09-14
EP2806127B1 (en) 2018-07-04
US20140352283A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP5790790B2 (en) Control device for internal combustion engine
WO2011114451A1 (en) Vehicle control device
EP2549074B1 (en) Exhaust emission control device for internal combustion engine
JP4502024B2 (en) Abnormality judgment device for electrically heated catalyst
KR102220601B1 (en) Vehicle and control method for vehicle
JP5476748B2 (en) Hybrid vehicle
JP5553019B2 (en) Internal combustion engine start control device for hybrid vehicle
JP5794029B2 (en) Control device for hybrid vehicle
JP2010242724A (en) Control device of vehicle
WO2011114519A1 (en) Vehicle control device
JP2014159255A (en) Control device for hybrid vehicle
JP5904156B2 (en) Control device for internal combustion engine
JP2009248888A (en) Control device of hybrid vehicle
CN110872968B (en) Vehicle and control method of vehicle
JP2015075068A (en) Vehicle control device
JP2019151202A (en) Exhaust purification system for internal combustion engine
JP5387432B2 (en) Control device for hybrid vehicle
JP2009299644A (en) Vehicle and method for controlling the same
JP4853415B2 (en) Exhaust gas purification system for internal combustion engine
JP6390505B2 (en) Vehicle control device
JP2008239077A (en) Vehicle and control method thereof
JP2018105190A (en) Exhaust emission control device for internal combustion engine
JP2013040564A (en) Control device for internal combustion engine
JP2015155276A (en) Vehicle control device
JP2014218947A (en) Catalyst warmup control device of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14373216

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012865774

Country of ref document: EP