WO2013087639A1 - Electrically variable impedance matching network for an hf power transistor - Google Patents

Electrically variable impedance matching network for an hf power transistor Download PDF

Info

Publication number
WO2013087639A1
WO2013087639A1 PCT/EP2012/075108 EP2012075108W WO2013087639A1 WO 2013087639 A1 WO2013087639 A1 WO 2013087639A1 EP 2012075108 W EP2012075108 W EP 2012075108W WO 2013087639 A1 WO2013087639 A1 WO 2013087639A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance matching
matching network
tunable
network according
electrically tunable
Prior art date
Application number
PCT/EP2012/075108
Other languages
German (de)
French (fr)
Inventor
Olof Bengtsson
Felix Goelden
Holger Maune
Rolf Jakoby
Wolfgang Heinrich
Original Assignee
Forschungsverbund Berlin E.V.
Technische Universität Berlin
Technische Universität Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungsverbund Berlin E.V., Technische Universität Berlin, Technische Universität Darmstadt filed Critical Forschungsverbund Berlin E.V.
Publication of WO2013087639A1 publication Critical patent/WO2013087639A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • H01L2924/30111Impedance matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/378A variable capacitor being added in the output circuit, e.g. collector, drain, of an amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/391Indexing scheme relating to amplifiers the output circuit of an amplifying stage comprising an LC-network

Definitions

  • the invention relates to an electrically tunable impedance matching network
  • the application of the invention takes place primarily for RF power transistors in
  • Base stations of mobile networks It can also be used in amplifiers for mobile
  • Subscribers eg in mobile phones
  • RF amplifiers for others
  • Impedanzanpassnetzwerk within the housing of an RF power transistor or a monolithic microwave circuit (MMIC) known.
  • Housing is designed.
  • High-power transistors basically have a plurality of parallel fingers. With the increasing number of fingers, the impedance that needs to be adjusted becomes smaller and the matching requires a high quality of the matching network. To avoid this, static pre-matching networks are used inside the enclosure. Because these matching networks are immutable, they only provide for a specific one
  • the large difference between the transistor impedance and the external load impedance (typically 50 ⁇ ) makes energy efficient tuning difficult.
  • the invention was based on the object of enabling a dynamic tuning of the load and source impedance and making the transistor easier to adapt. Furthermore, a multi-band / broadband operation and a dynamic load modulation for increased back-off efficiency is to be made possible.
  • an electrically tunable matching network having a pre-match within the transistor assembly, both effective for input and output, is combined in the housing of the RF power transistor.
  • the following elements produced by any known technology are used as controllable components which are integrated into the transistor housing: Continuously tunable ferroelectric components, continuously tunable RF MEMS or semiconductor components that are electronically tunable.
  • the tunable components may be single elements or they may be disposed on a carrier substrate which is installed in the transistor package.
  • the tunable components may be completed by solid elements located either outside the transistor chip or directly on the substrate which also carries the tunable circuits.
  • the adaptation can be done adaptively over several frequencies and
  • the adaptation can be changed in operation with regard to the frequency to be adjusted, which enables a multi-band operation or an adaptive reconfigurability.
  • Adaptation can be adaptively adjusted to increase efficiency with signal power, allowing for energy efficient load modulation.
  • the tuning can adaptively be adapted to the external parameters
  • the tunable components can be integrated into the housing using today's manufacturing technologies.
  • the adaptation of the load impedance may be integrated into the transistor.
  • the applicability of the according to the application impedance matching network can be considered quite versatile. It is not limited to RF power transistors for base station applications but can also be used in amplifiers for mobile subscribers (eg in mobile phones). Also, the frequency range is not limited by the solution according to the invention. A limitation arises only by the technology used (transistor and tuning elements).
  • the transistor By integrating a control loop (controller, transducer) into the housing, the transistor can be considered intelligent because it can adapt itself to different operating conditions (frequencies, power levels, etc.). In this regard, the invention is also a contribution to cognitive
  • FIG. 1 shows the realization of an electrically tunable impedance matching network with two tunable series capacitors, schematically as a 4-terminal transistor assembly (a) and as a corresponding circuit diagram (b),
  • FIG. 2 shows a second embodiment of an electrically tunable impedance matching network with a fixed and a tunable chip capacitance, schematically as a 4-terminal transistor assembly (a) and as a corresponding circuit diagram (b),
  • FIG. 3 shows a further generalized schematic illustration of a transistor with a tunable balancing network in a standard 4-pin module
  • Figure 4 a generalized schematic diagram of a transistor with a tunable balancing network, wherein the control circuit for the adaptation is also integrated into the housing.
  • Fig. 1 shows an electrically tunable impedance matching network 1 with two tunable series capacitors 2, 3, as pre-matching of a transistor 12.
  • the circuit 4 shown in Fig. 1 (b) represents the external DC power supply.
  • the two varactors are driven by the same control voltage Vbias 5 controlled. Depending on the requirements, the voltage may be at ground 6 (dashed line) or at Vdd 7 or another potential be related.
  • Vbias »Vdd large tuning voltages
  • resistance electrodes integrated on the BST chip or additional chip components can be used.
  • FIG. 2 shows a second embodiment of an electrically tunable impedance matching network 8 built into the transistor housing with a fixed chip capacitance 9 and only one tunable BST chip 10 (BST: barium strontium titanium at).
  • BST barium strontium titanium at
  • a possible improvement in this embodiment is that the full range of varactor tuning can be used if the capacitance of the fixed capacitor 9 is much greater than that of the tuning capacitor 10.
  • the reference of Vbias to Vdd is more promising, because then all voltage values will be zero can be used up to the maximum possible / required control voltage Vbias.
  • the design as provided within the assembly vote as shown in FIG. 2 can also be applied to the input side of the module, d. H. for adaptive source impedance matching, taking into account the same considerations as they apply to the output side.
  • the inductance for the RF decoupling of Vbias should be as close to the housing as possible. It is conceivable to integrate such a coil in the housing, if enough space is available.
  • the connection of the individual components is produced by bonding wires 13.
  • Fig. 3 shows a further generalized schematic diagram of a transistor with a tunable balancing network in an assembly.
  • the tunable balancing network can provide two degrees of freedom.
  • Generation of the tuning voltages, as required by barium strontium titanate or MEMS based varactors, as well as the adaptive adjustment loop are typically provided outside the transistor package.
  • control circuit control circuit: DC / DC converters, look-up tables and control algorithms as well as sensors
  • the control circuit may also be integrated in the housing.
  • control circuit is supplied with a voltage and all required control voltages are generated directly in the transistor housing. This also allows higher tuning voltages because of the contact protection.
  • a control line e.g., a single-wire line
  • a further alternative is to completely decouple the supply of the tuning voltage from the RF signals and thus to avoid additional components for the control voltage supply (DC feed block).
  • the tunable impedance matching networks can be implemented in any technology, ie integrated on the substrate or with additional chip components (eg as LTCC modules).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

The invention relates to an electrically variable impedance matching network within the housing of an HF power transistor. The invention is used primarily for HF power transistors in base stations of mobile radio networks; it can also be used in amplifiers for mobile subscribers (e.g. in mobile telephones) and in HF amplifiers for other applications. The problem addressed by the invention is that of enabling dynamic variability of the load and source impedance and making the transistor more easily adaptable. In addition, a multiband/broadband working method and a dynamic load modulation for increased back-off efficiency is to be enabled.

Description

ELEKTRISCH ABSTIMMBARES IMPEDANZANPASSNETZWERK FÜR EINEN HF - LEISTUNGSTRANSISTOR ELECTRICALLY TUNABLE IMPEDANCE FITTING NETWORK FOR AN HF POWER TRANSISTOR
Beschreibung description
Die Erfindung betrifft ein elektrisch abstimmbares Impedanzanpassnetzwerk The invention relates to an electrically tunable impedance matching network
innerhalb des Gehäuses eines HF-Leistungstransistors.  within the housing of an RF power transistor.
Die Anwendung der Erfindung erfolgt vorrangig für HF-Leistungstransistoren in The application of the invention takes place primarily for RF power transistors in
Basisstationen von Mobilfunknetzen; sie kann auch in Verstärkern für mobile  Base stations of mobile networks; It can also be used in amplifiers for mobile
Teilnehmer (z. B. in Mobiltelefonen) und in HF- Verstärkern für andere  Subscribers (eg in mobile phones) and in RF amplifiers for others
Anwendungen angewendet werden.  Applications are applied.
Den Anmeldern sind derzeit keine Lösungen für ein elektrisch abstimmbares Applicants are currently unable to find solutions for an electrically tunable one
Impedanzanpassnetzwerk innerhalb des Gehäuses eines HF-Leistungstransistors oder eines monolithischen Mikrowellenschaltkreises (MMIC) bekannt.  Impedanzanpassnetzwerk within the housing of an RF power transistor or a monolithic microwave circuit (MMIC) known.
Die bekannten Einrichtungen, die bereits einen Vorabgleich innerhalb ihres The well-known facilities that already have a pre-adjustment within their
Gehäuses besitzen, z. B. LDMOS-Transistoren, nutzen nicht-abstimmbare Chip- Kapazitäten [1 ], [2]. Auch wurde eine Abstimmung der Anpassung durch Bond- Draht-Optimierung und durch dielektrische Einlagen [4] vorgeschlagen, jedoch liefern diese nur eine Festabstimmung [3].  Own housing, z. As LDMOS transistors, use non-tunable chip capacitances [1], [2]. Also, a tuning of the matching by bond wire optimization and by dielectric inserts [4] has been proposed, but these provide only a fixed tuning [3].
Bekannt ist es, einen zusätzlichen Gehäuseanschluss für den Zugang zum Chip zwecks Abstimmung vorzusehen, jedoch enthält diese Lösung keine steuerbaren Komponenten innerhalb des Gehäuses, sondern nur den Zugriff auf den  It is known to provide an additional housing connection for access to the chip for the purpose of tuning, but this solution contains no controllable components within the housing, but only access to the
Transistor [5].  Transistor [5].
Für integrierte Mikrowellenschaltungen wurden bereits integrierte Impedanzanpassnetzwerke vorgeschlagen [6]; diese sind jedoch nur einmalig und nicht elektrisch abstimmbar.  For integrated microwave circuits, integrated impedance matching networks have already been proposed [6]; However, these are only unique and not electrically tunable.
Elektrisch abstimmbare Netzwerke sind bislang hauptsächlich für Hybrid- Anordnungen mit Abstimmung außerhalb des Gehäuses bekannt [7].  Electrically tunable networks have hitherto been known mainly for hybrid arrangements with tuning outside the housing [7].
Die Schrift [8] schlägt die Verwendung einer Vielzahl von MEMS-Schaltern vor, welche auch innerhalb des Transistorgehäuses platziert sein können. Dieses System ist, u. a. durch die Verwendung eines Übertragers, sehr komplex und daher für den der Erfindung zugrunde liegenden Zweck ungeeignet. Scripture [8] suggests the use of a plurality of MEMS switches, which may also be placed inside the transistor package. This System is, among other things by the use of a transformer, very complex and therefore unsuitable for the purpose underlying the invention.
In der Schrift [9] wurde die spezielle Verwendung von ferroelektrischen In Scripture [9] was the specific use of ferroelectric
Komponenten für abstimmbare Ausgangs-Anpassungsnetzwerke vorgeschlagen. In der Schrift [10] wird ein MMIC-Leistungsverstärker mit einem integrierten Anpassungsnetzwerk beschrieben, jedoch ohne Angaben dazu, wie das Components for tunable output matching networks proposed. The document [10] describes an MMIC power amplifier with an integrated matching network, but without details, such as the
Gehäuse konzipiert ist. Housing is designed.
Hochleistungstransistoren weisen grundsätzlich eine Vielzahl von parallelen Fingern auf. Mit der steigenden Anzahl der Finger wird die Impedanz, die angepasst werden muss, kleiner und die Anpassung erfordert eine hohe Güte des Anpassnetzwerkes. Um dies zu vermeiden, werden statische Voranpas- sungs- Netzwerke (pre-matching) innerhalb des Gehäuses verwendet. Da diese Anpassnetzwerke unveränderlich sind, bieten sie nur für eine bestimmte High-power transistors basically have a plurality of parallel fingers. With the increasing number of fingers, the impedance that needs to be adjusted becomes smaller and the matching requires a high quality of the matching network. To avoid this, static pre-matching networks are used inside the enclosure. Because these matching networks are immutable, they only provide for a specific one
Frequenz eine Anpassung unabhängig von der Signalleistung. Der Betrieb in unterschiedlichen Frequenzbändern benötigt jedoch eine unterschiedliche Anpassung, d. h. eine andere Voranpassung. Frequency an adjustment regardless of the signal power. However, the operation in different frequency bands requires a different adaptation, d. H. another preadjustment.
Auch der große Unterschied zwischen der Transistor-Impedanz und der äußeren Lastimpedanz (in der Regel 50 Ω) macht eine energieeffiziente Abstimmung schwierig.  Also, the large difference between the transistor impedance and the external load impedance (typically 50 Ω) makes energy efficient tuning difficult.
Der Erfindung lag die Aufgabe zugrunde, eine dynamische Abstimmbarkeit der Last- und Quellimpedanz zu ermöglichen und den Transistor leichter anpassbar zu machen. Weiterhin soll eine Multiband/Breitband-Arbeitsweise und eine dynamische Lastmodulation für eine erhöhte BackOff- Effizienz ermöglicht werden. The invention was based on the object of enabling a dynamic tuning of the load and source impedance and making the transistor easier to adapt. Furthermore, a multi-band / broadband operation and a dynamic load modulation for increased back-off efficiency is to be made possible.
Die Lösung der Aufgabe erfolgt entsprechend den Merkmalen des Anspruchs 1 . Die weiteren Ansprüche stellen zweckmäßige Ausgestaltungen der erfindungsgemäßen Lösung dar. The object is achieved according to the features of claim 1. The other claims represent expedient embodiments of the inventive solution.
Erfindungsgemäß ist ein elektrisch abstimmbares Anpassungsnetzwerk mit einer Voranpassung innerhalb der Transistor-Baugruppe, beide für den Eingang und für den Ausgang wirksam, im Gehäuse des HF-Leistungstransistors kombiniert. In zweckmäßiger Weise gelangen als steuerbare Komponenten, welche in das Transistorgehäuse integriert sind, folgende nach beliebigen bekannten Technologien hergestellte Elemente zum Einsatz: Kontinuierlich abstimmbare ferroelektrische Komponenten, kontinuierlich abstimmbare bzw. schaltbare RF- MEMS oder Halbleiter-Komponenten, welche elektronisch abstimmbar sind. Die abstimmbaren Komponenten können Einzelelemente sein oder sie können auf einem Trägersubstrat angeordnet sein, welches im Transistorgehäuse eingebaut ist. Die abstimmbaren Komponenten können durch feste Elemente vervollständigt sein, welche entweder au ßerhalb des Transistor-Chips oder direkt auf dem Substrat angeordnet sind, das auch die abstimmbaren Schaltkreise trägt. In accordance with the present invention, an electrically tunable matching network having a pre-match within the transistor assembly, both effective for input and output, is combined in the housing of the RF power transistor. Conveniently, the following elements produced by any known technology are used as controllable components which are integrated into the transistor housing: Continuously tunable ferroelectric components, continuously tunable RF MEMS or semiconductor components that are electronically tunable. The tunable components may be single elements or they may be disposed on a carrier substrate which is installed in the transistor package. The tunable components may be completed by solid elements located either outside the transistor chip or directly on the substrate which also carries the tunable circuits.
Durch die Anordnung von abstimmbaren Komponenten für das integrierte Impedanzanpassnetzwerk innerhalb des Gehäuses des HF-Leistungstransistors können folgende Verbesserungen erreicht werden:  By arranging tunable components for the integrated impedance matching network within the housing of the RF power transistor, the following improvements can be achieved:
1 . Die Anpassung kann adaptiv über mehrere Frequenzen erfolgen und 1 . The adaptation can be done adaptively over several frequencies and
ermöglicht damit den Betrieb in verschiedenen Frequenzbändern. Das bedeutet, dass nur eine Komponente unabhängig von der beabsichtigten Anwendung erzeugt werden muss.  allows operation in different frequency bands. This means that only one component needs to be created, regardless of the intended application.
2. Die Anpassung kann im Betrieb hinsichtlich der anzupassenden Frequenz geändert werden, was einen Multi-Band-Betrieb oder eine adaptive Rekonfigurierbarkeit ermöglicht.  2. The adaptation can be changed in operation with regard to the frequency to be adjusted, which enables a multi-band operation or an adaptive reconfigurability.
3. Die Anpassung kann zur Effizienzerhöhung mit der Signalleistung adaptiv angepasst werden, was eine energieeffiziente Lastmodulation ermöglicht. 3. Adaptation can be adaptively adjusted to increase efficiency with signal power, allowing for energy efficient load modulation.
4. Die Abstimmung kann adaptiv an die äu ßeren Parameter angepasst 4. The tuning can adaptively be adapted to the external parameters
werden, wie zum Beispiel, wenn bei einer Basisstation von Mobilfunknetzen ein Hindernis vor der mit dem Leistungsverstärker verbundenen Antenne vorhanden ist.  such as when there is an obstacle in front of the base station of mobile networks in front of the antenna connected to the power amplifier.
5. Die abstimmbaren Komponenten können in das Gehäuse unter Nutzung heutiger Herstellungstechnologien integriert werden.  5. The tunable components can be integrated into the housing using today's manufacturing technologies.
6. Unter Voraussetzung der Verwendung geeigneter Technologien, z. B. der BST Dickfilmtechnologie, sind auch Hochleistungsanwendungen möglich ohne Verschlechterung der Linearität oder Einflüsse der Selbstaktuierung der abstimmbaren Komponenten.  6. Subject to the use of appropriate technologies, eg. As the BST thick film technology, high performance applications are possible without deterioration of the linearity or influences of Selbstaktuierung the tunable components.
Zusätzlich zu diesen Aspekten kann die Adaption der Lastimpedanz, zum Beispiel einer durch die Umgebung variablen Antennenfußimpedanz, in den Transistor integriert werden.  In addition to these aspects, the adaptation of the load impedance, for example, an environmentally variable antenna foot impedance, may be integrated into the transistor.
Die Anwendbarkeit des anmeldungsgemäßen Impedanzanpassnetzwerkes kann als ziemlich vielseitig angesehen werden. Sie ist nicht auf HF-Leistungstransistoren für Basisstationen-Anwendung begrenzt, sondern kann auch in Verstärkern für mobile Teilnehmer (z. B. in Mobiltelefonen) angewendet werden. Auch ist der Frequenzbereich nicht durch die erfindungsgemäße Lösung begrenzt. Eine Begrenzung ergibt sich nur durch die angewendete Technologie (Transistor und Abstimmelemente). The applicability of the according to the application impedance matching network can be considered quite versatile. It is not limited to RF power transistors for base station applications but can also be used in amplifiers for mobile subscribers (eg in mobile phones). Also, the frequency range is not limited by the solution according to the invention. A limitation arises only by the technology used (transistor and tuning elements).
Durch Integration eines Regelkreises (Steuerung, Messwertaufnehmer) in das Gehäuse kann der Transistor als intelligent gelten, weil er sich an verschiedene Betriebsbedingungen (Frequenzen, Leistungsstufen usw.) selbst anpassen kann. In dieser Hinsicht ist die Erfindung auch ein Beitrag für kognitive  By integrating a control loop (controller, transducer) into the housing, the transistor can be considered intelligent because it can adapt itself to different operating conditions (frequencies, power levels, etc.). In this regard, the invention is also a contribution to cognitive
Funkanwendungen. Radio applications.
Im Folgenden soll die Erfindung an Ausführungsbeispielen und anhand der angefügten Figuren näher erläutert werden. Es zeigen: In the following, the invention will be explained in more detail with reference to exemplary embodiments and with reference to the appended figures. Show it:
Figur 1 : die Realisierung eines elektrisch abstimmbaren Impedanzanpassnetzwerks mit zwei abstimmbaren Serien-Kondensatoren, schematisch als 4-Anschluss-Transistor-Baugruppe (a) und als entsprechendes Schaltbild (b), 1 shows the realization of an electrically tunable impedance matching network with two tunable series capacitors, schematically as a 4-terminal transistor assembly (a) and as a corresponding circuit diagram (b),
Figur 2: eine zweite Ausführung eines elektrisch abstimmbaren Impedanzanpassnetzwerkes mit einer festen und einer abstimmbaren Chip- Kapazität, schematisch als 4-Anschluss-Transistor-Baugruppe (a) und als entsprechendes Schaltbild (b),  2 shows a second embodiment of an electrically tunable impedance matching network with a fixed and a tunable chip capacitance, schematically as a 4-terminal transistor assembly (a) and as a corresponding circuit diagram (b),
Figur 3: eine weiter generalisierte schematische Abbildung eines Transistors mit einem abstimmbaren Abgleichnetzwerk in einer Standard-4pin- Baugruppe,  FIG. 3 shows a further generalized schematic illustration of a transistor with a tunable balancing network in a standard 4-pin module,
Figur 4: eine generalisierte schematische Abbildung eines Transistors mit einem abstimmbaren Abgleichnetzwerk, wobei der Regelkreis für die Anpassung ebenfalls in das Gehäuse integriert ist.  Figure 4: a generalized schematic diagram of a transistor with a tunable balancing network, wherein the control circuit for the adaptation is also integrated into the housing.
Fig. 1 zeigt ein elektrisch abstimmbares Impedanzanpassnetzwerk 1 mit zwei abstimmbaren Serien-Kondensatoren 2, 3, als Voranpassung eines Transistors 12. Der in Fig. 1 (b) dargestellte Schaltkreis 4 stellt die externe Gleichstromversorgung dar. Die zwei Varaktoren werden durch die gleiche Steuerspannung Vbias 5 gesteuert. In Abhängigkeit von den Erfordernissen kann die Spannung auf Masse 6 (gestrichelt gezeichnet) oder auf Vdd 7 oder ein anderes Potential bezogen sein. Diese Ausführung benötigt keine Chip-Komponenten innerhalb der Baugruppe, jedoch kann wegen der Serien-Anordnung von zwei abstimmbaren Kapazitäten 2, 3 ein gewisser Betrag der Abstimmbarkeit der Varaktoren verloren gehen. Dieser Effekt kann durch die Verwendung von großen Abstimmspannungen (Vbias » Vdd) gemildert werden. Fig. 1 shows an electrically tunable impedance matching network 1 with two tunable series capacitors 2, 3, as pre-matching of a transistor 12. The circuit 4 shown in Fig. 1 (b) represents the external DC power supply. The two varactors are driven by the same control voltage Vbias 5 controlled. Depending on the requirements, the voltage may be at ground 6 (dashed line) or at Vdd 7 or another potential be related. This embodiment does not require any chip components within the package, however, due to the series arrangement of two tunable capacitors 2, 3, a certain amount of tunability of the varactors may be lost. This effect can be mitigated by using large tuning voltages (Vbias »Vdd).
Für die HF-Entkopplung können Widerstandselektroden, die auf dem BST-Chip integriert sind, oder zusätzlich Chip-Komponenten eingesetzt werden.  For RF decoupling, resistance electrodes integrated on the BST chip or additional chip components can be used.
Fig. 2 zeigt eine zweite Ausführung eines in das Transistorgehäuse eingebauten elektrisch abstimmbaren Impedanzanpassnetzwerkes 8 mit einer festen Chip- Kapazität 9 und nur einem abstimmbaren BST-Chip 10 (BST: Barium-Strontium- Titan at). FIG. 2 shows a second embodiment of an electrically tunable impedance matching network 8 built into the transistor housing with a fixed chip capacitance 9 and only one tunable BST chip 10 (BST: barium strontium titanium at).
Eine mögliche Verbesserung bei dieser Ausführung ist, dass der volle Abstim- mungsumfang des Varaktors genutzt werden kann, wenn die Kapazität des Festkondensators 9 wesentlich größer ist als die des Abstimmungskondensators 10. Der Bezug von Vbias auf Vdd ist vielversprechender, weil dann alle Spannungswerte von Null bis zur maximal möglichen/benötigten Steuerspannung Vbias verwendet werden können.  A possible improvement in this embodiment is that the full range of varactor tuning can be used if the capacitance of the fixed capacitor 9 is much greater than that of the tuning capacitor 10. The reference of Vbias to Vdd is more promising, because then all voltage values will be zero can be used up to the maximum possible / required control voltage Vbias.
Die Ausführung als innerhalb der Baugruppe vorgesehene Abstimmung gemäß Fig. 2 kann auch für die Eingangsseite der Baugruppe angewendet werden, d. h. für die adaptive Quellimpedanzanpassung, unter Berücksichtigung der gleichen Überlegungen wie sie für die Ausgangsseite gelten. Die Induktivität für die HF- Entkopplung von Vbias sollte so dicht wie möglich am Gehäuse angeordnet sein. Es ist vorstellbar, eine derartige Spule auch in das Gehäuse zu integrieren, wenn genügend Platz zur Verfügung steht. Die Verbindung der einzelnen Komponenten wird durch Bond-Drähte 13 hergestellt.  The design as provided within the assembly vote as shown in FIG. 2 can also be applied to the input side of the module, d. H. for adaptive source impedance matching, taking into account the same considerations as they apply to the output side. The inductance for the RF decoupling of Vbias should be as close to the housing as possible. It is conceivable to integrate such a coil in the housing, if enough space is available. The connection of the individual components is produced by bonding wires 13.
Fig. 3 zeigt eine weiter generalisierte schematische Abbildung eines Transistors mit einem abstimmbaren Abgleichnetzwerk in einer Baugruppe. Durch Anwendung einer Standard-4pin-Baugruppe kann das abstimmbare Abgleichnetzwerk zwei Freiheitsgrade bereitstellen. Die Erzeugung der Abstimmspannungen, wie sie von Varaktoren basierend auf Barium-Strontium-Titanat oder MEMS benötigt werden, als auch der Regelkreis für die adaptive Anpassung werden in der Regel außerhalb des Transistorgehäuses vorgesehen. Fig. 3 shows a further generalized schematic diagram of a transistor with a tunable balancing network in an assembly. By using a standard 4-pin assembly, the tunable balancing network can provide two degrees of freedom. Generation of the tuning voltages, as required by barium strontium titanate or MEMS based varactors, as well as the adaptive adjustment loop are typically provided outside the transistor package.
Wenn mehr Freiheitsstufen in Betracht gezogen werden sollen (z. B. ein zusätz- liches Eingangs-Impedanzanpassnetzwerk), kann der Regelkreis (Control Circuit: DC/DC-Wandler, Lookup-Tabellen und Steueralgorithmen als auch Sensoren) für die Anpassung, wie Fig. 4 zeigt, ebenfalls in das Gehäuse integriert sein. If more degrees of freedom are to be considered (eg an additional 4), the control circuit (control circuit: DC / DC converters, look-up tables and control algorithms as well as sensors) for adaptation, as shown in FIG. 4, may also be integrated in the housing.
Der Steuerkreis wird mit einer Spannung gespeist und alle erforderlichen Steuerspannungen werden direkt im Transistor-Gehäuse erzeugt. Dies ermöglicht auch höhere Abstimmspannungen wegen des Berührungsschutzes. Für den Datenaustausch mit dem Sende-/Empfangsgerät kann zusätzlich auch eine Steuerleitung (z.B. eine Eindraht-Leitung) hinzugefügt werden. The control circuit is supplied with a voltage and all required control voltages are generated directly in the transistor housing. This also allows higher tuning voltages because of the contact protection. In addition, for the data exchange with the transceiver, a control line (e.g., a single-wire line) may be added.
Eine weitere Alternative ist, die Speisung der Abstimmspannung vollständig von den HF-Signalen zu entkoppeln und somit zusätzliche Komponenten zur Steuerspannungszuführung (DC-Feed-Block) zu vermeiden. Die abstimmbaren Impedanzanpassnetzwerke können in beliebiger Technologie, d.h. auf dem Substrat integriert oder mit zusätzlichen Chip-Komponenten (z.B. als LTCC-Module) ausgeführt sein. A further alternative is to completely decouple the supply of the tuning voltage from the RF signals and thus to avoid additional components for the control voltage supply (DC feed block). The tunable impedance matching networks can be implemented in any technology, ie integrated on the substrate or with additional chip components (eg as LTCC modules).
Referenzen references
[1 ] Hybrid Transistor, US-Patent Nr. 4393392, 1983. [1] Hybrid Transistor, U.S. Patent No. 4,393,392, 1983.
[2] K. Goverdhanam et al., "Distributet Effects in High Power LDMOS  [2] K. Goverdhanam et al., "Distributed Effects in High Power LDMOS
Transistors", MTTS 2005.  Transistors ", MTTS 2005.
[3] Bond Wire Tuning of RF Power Transistors and Amplifiers, US-Patentanmeldung Nr. 20020134993, 2002.  [3] Bond Wire Tuning of RF Power Transistors and Amplifiers, US Patent Application No. 20020134993, 2002.
[4] Functional lid for RF Power Package, US-Patent Nr. 6392298, 2004.  [4] Functional lid for RF Power Package, US Patent No. 6392298, 2004.
[5] Radio Frequency Power Amplifier Device, US-Patent Nr. 31174, 2004.  [5] Radio Frequency Power Amplifier Device, US Patent No. 31174, 2004.
[6] Tunable Impedance Matching Network for a MIC Power Amplifier Module, US-Patent Nr 5973567, 1999.  [6] Tunable Impedance Matching Network for a MIC Power Amplifier Module, US Pat. No. 5,973,567, 1999.
[7] Tunable Power Amplifier Matching Circuit, US-Patent Nr. 6859104, 2005.  [7] Tunable Power Amplifier Matching Circuit, US Pat. No. 6,859,104, 2005.
[8] MEMS-tuned High Power, High Efficiency, Wide Bandwidth Power  [8] MEMS-tuned High Power, High Efficiency, Wide Bandwidth Power
Amplifier, US-Patentanmeldung Nr. 20040100341 A1  Amplifier, U.S. Patent Application No. 20040100341 A1
[9] Tunable power amplifier matching circuit, US-Patent Nr. 7009455  [9] Tunable power amplifier matching circuit, U.S. Patent No. 7009455
[10] Neo, W.C.E.; Yu Lin; Xiao-dong Liu; de Vreede, L.C.N.; Larson, L.E.;  [10] Neo, W.C.E .; Yu Lin; Xiao-dong Liu; de Vreede, L.C.N .; Larson, L.E .;
Spirito, M.; Pelk, M.J.; Buisman, K.; Akhnoukh, A.; Anton de Graauw; Nanver, L.K.; "Adaptive Multi-Band Multi-Mode Power Amplifier Using Integrated Varactor-Based Tunable Matching Networks", IEEE Journal of Solid-State Circuits, vol. 41 , no.9, pp.2166-2176, Sept. 2006  Spirito, M .; Pelk, M.J .; Buisman, K .; Akhnoukh, A .; Anton de Graauw; Nanver, L.K .; "Adaptive Multi-Band Multi-Mode Power Amplifiers Using Integrated Varactor-Based Tunable Matching Networks", IEEE Journal of Solid-State Circuits, vol. 41, no.9, pp.2166-2176, Sept. 2006

Claims

Patentansprüche claims
1 . Elektrisch abstimmbares Impedanzanpassnetzwerk (1 ) für eine Anpassung eines Leistungstransistors (12) für HF-Signale, wobei das elektrisch abstimmbare Impedanznetzwerk (1 ) in einem Gehäuse des 1 . An electrically tunable impedance matching network (1) for matching a power transistor (12) for RF signals, wherein the electrically tunable impedance network (1) is housed in a housing of the
Leistungstransistors angeordnet ist,  Power transistor is arranged,
dadurch gekennzeichnet, dass eine Abstimmspannung (Vbias) zur Abstimmung des elektrisch abstimmbaren Impedanzanpassnetzwerkes (1 ) von den HF-Signalen entkoppelt ist und von einer Speisespannung (Vdd) des Leistungstransistors (12) unabhängig einstellbar ist.  characterized in that a tuning voltage (Vbias) for tuning the electrically tunable impedance matching network (1) is decoupled from the RF signals and is independently adjustable from a supply voltage (Vdd) of the power transistor (12).
2. Elektrisch abstimmbares Impedanzanpassnetzwerk nach Anspruch 1 , dadurch gekennzeichnet, dass das Impedanzanpassnetzwerk 2. An electrically tunable impedance matching network according to claim 1, characterized in that the impedance matching network
kontinuierlich abstimmbare ferroelektrische Komponenten (2, 3, 10) umfasst.  continuously tunable ferroelectric components (2, 3, 10).
3. Elektrisch abstimmbares Impedanznetzwerk nach Anspruch 2, dadurch gekennzeichnet, dass die ferroelektrischen Komponenten (2, 3, 10) mit BST-Dickschichttechnologie hergestellt sind. 3. An electrically tunable impedance network according to claim 2, characterized in that the ferroelectric components (2, 3, 10) are made with BST thick film technology.
4. Elektrisch abstimmbares Impedanzanpassnetzwerk nach Anspruch 1 , dadurch gekennzeichnet, dass das Impedanzanpassnetzwerk 4. An electrically tunable impedance matching network according to claim 1, characterized in that the impedance matching network
kontinuierlich abstimmbare bzw. schaltbare RF-MEMS (2, 3, 10) umfasst.  continuously tunable RF-MEMS (2, 3, 10).
5. Elektrisch abstimmbares Impedanzanpassnetzwerk nach Anspruch 1 , dadurch gekennzeichnet, dass das Impedanzanpassnetzwerk elektronisch abstimmbare Halbleiter-Komponenten (2, 3, 10) umfasst. 5. An electrically tunable impedance matching network according to claim 1, characterized in that the impedance matching network comprises electronically tunable semiconductor components (2, 3, 10).
6. Elektrisch abstimmbares Impedanzanpassnetzwerk nach einem der 6. Electrically tunable impedance matching network according to one of
Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die abstimmbaren Komponenten (2, 3, 10) Einzelelemente sind.  Claims 2 to 5, characterized in that the tunable components (2, 3, 10) are individual elements.
7. Elektrisch abstimmbares Impedanzanpassnetzwerk nach einem der 7. An electrically tunable impedance matching network according to any one of
Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die abstimmbaren Komponenten (2, 3, 10) auf einem Trägersubstrat angeordnet sind, welches mit dem Transistor in das gleiche Gehäuse eingebaut ist. Claims 2 to 5, characterized in that the tunable components (2, 3, 10) are arranged on a carrier substrate, which is incorporated with the transistor in the same housing.
8. Elektrisch abstimmbares Impedanzanpassnetzwerk nach Anspruch 7, dadurch gekennzeichnet, dass die abstimmbaren Komponenten (2, 3, 10) durch feste Elemente vervollständigt sind, die au ßerhalb des Transistor- Chips angeordnet sind. 8. An electrically tunable impedance matching network according to claim 7, characterized in that the tunable components (2, 3, 10) are completed by fixed elements which are arranged outside the transistor chip ß.
9. Elektrisch abstimmbares Impedanzanpassnetzwerk nach Anspruch 6, dadurch gekennzeichnet, dass die abstimmbaren Komponenten (2, 3, 10) durch feste Elemente vervollständigt sind, die direkt auf dem An electrically tunable impedance matching network according to claim 6, characterized in that the tunable components (2, 3, 10) are completed by solid elements placed directly on the
Trägersubstrat angeordnet sind, das auch die steuerbaren Komponenten trägt.  Carrier substrate are arranged, which also carries the controllable components.
10. Elektrisch abstimmbares Impedanzanpassnetzwerk nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Transistor durch einen GaN Chip realisiert ist 10. An electrically tunable impedance matching network according to one of the preceding claims, characterized in that the transistor is realized by a GaN chip
11 . Elektrisch abstimmbares Impedanzanpassnetzwerk nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Gehäuse weiterhin eine mikroelektronische Schaltung umfasst, die die Abstimmspannung zur Verfügung stellt. 11. An electrically tunable impedance matching network according to any one of the preceding claims, characterized in that the housing further comprises a microelectronic circuit providing the tuning voltage.
12. Verfahren zur Verstärkung von HF-Signalen mittels eines 12. A method for amplifying RF signals by means of a
Leistungstransistors gekennzeichnet durch die Verwendung eines elektrisch abstimmbaren Impedanznetzwerkes nach einem der vorangehenden Ansprüche, wobei die im Verfahren verwendete  Power transistor characterized by the use of an electrically tunable impedance network according to one of the preceding claims, wherein the used in the method
Abstimmspannung deutlich größer als die Speisespannung ist.  Tuning voltage is significantly greater than the supply voltage.
PCT/EP2012/075108 2011-12-14 2012-12-11 Electrically variable impedance matching network for an hf power transistor WO2013087639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011088617.6 2011-12-14
DE102011088617A DE102011088617A1 (en) 2011-12-14 2011-12-14 Electrically tunable impedance matching network of an RF power transistor

Publications (1)

Publication Number Publication Date
WO2013087639A1 true WO2013087639A1 (en) 2013-06-20

Family

ID=47561540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/075108 WO2013087639A1 (en) 2011-12-14 2012-12-11 Electrically variable impedance matching network for an hf power transistor

Country Status (2)

Country Link
DE (1) DE102011088617A1 (en)
WO (1) WO2013087639A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9589916B2 (en) 2015-02-10 2017-03-07 Infineon Technologies Ag Inductively coupled transformer with tunable impedance match network

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31174A (en) 1861-01-22 Harness for preventing the fore legs of horses from interfering
US4393392A (en) 1980-06-23 1983-07-12 Power Hybrids, Incorporated Hybrid transistor
US5973567A (en) 1997-06-16 1999-10-26 Hughes Electronics Corporation Tunable impedance matching network for a mic power amplifier module
US6392298B1 (en) 2000-02-28 2002-05-21 Ericsson Inc. Functional lid for RF power package
US20020134993A1 (en) 2001-03-20 2002-09-26 Ericsson Inc. Bond wire tuning of RF power transistors and amplifiers
US20040100341A1 (en) 2002-11-22 2004-05-27 Luetzelschwab Roland C. Mems-tuned high power, high efficiency, wide bandwidth power amplifier
US6859104B2 (en) 2001-04-11 2005-02-22 Kyocera Wireless Corp. Tunable power amplifier matching circuit
US20050206457A1 (en) * 2004-03-17 2005-09-22 James Martin Amplifier system and method
EP1748487A2 (en) * 2005-07-26 2007-01-31 Infineon Tehnologies AG Semiconductor power device and RF signal amplifier
US20110089529A1 (en) * 2009-10-16 2011-04-21 Infineon Technologies North America Corp. Open Cavity Leadless Surface Mountable Package for High Power RF Applications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416023B2 (en) * 2010-06-08 2013-04-09 Nxp B.V. System and method for compensating for changes in an output impedance of a power amplifier

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31174A (en) 1861-01-22 Harness for preventing the fore legs of horses from interfering
US4393392A (en) 1980-06-23 1983-07-12 Power Hybrids, Incorporated Hybrid transistor
US5973567A (en) 1997-06-16 1999-10-26 Hughes Electronics Corporation Tunable impedance matching network for a mic power amplifier module
US6392298B1 (en) 2000-02-28 2002-05-21 Ericsson Inc. Functional lid for RF power package
US20020134993A1 (en) 2001-03-20 2002-09-26 Ericsson Inc. Bond wire tuning of RF power transistors and amplifiers
US6859104B2 (en) 2001-04-11 2005-02-22 Kyocera Wireless Corp. Tunable power amplifier matching circuit
US7009455B2 (en) 2001-04-11 2006-03-07 Kyocera Wireless Corp. Tunable power amplifier matching circuit
US20040100341A1 (en) 2002-11-22 2004-05-27 Luetzelschwab Roland C. Mems-tuned high power, high efficiency, wide bandwidth power amplifier
US20050206457A1 (en) * 2004-03-17 2005-09-22 James Martin Amplifier system and method
EP1748487A2 (en) * 2005-07-26 2007-01-31 Infineon Tehnologies AG Semiconductor power device and RF signal amplifier
US20110089529A1 (en) * 2009-10-16 2011-04-21 Infineon Technologies North America Corp. Open Cavity Leadless Surface Mountable Package for High Power RF Applications

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
EDMUND NEO W C ET AL: "Adaptive Multi-Band Multi-Mode Power Amplifier Using Integrated Varactor-Based Tunable Matching Networks", IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 41, no. 9, 1 September 2006 (2006-09-01), pages 2166 - 2176, XP003023540, ISSN: 0018-9200, DOI: 10.1109/JSSC.2006.880586 *
FARAZ ALI ET AL: "Efficiency enhancement of a tunable RF power amplifier by second harmonic manipulation using thin-film BST varactor", MICROWAVE CONFERENCE PROCEEDINGS (APMC), 2010 ASIA-PACIFIC, IEEE, 7 December 2010 (2010-12-07), pages 434 - 436, XP031929047, ISBN: 978-1-4244-7590-2 *
HOLGER MAUNE ET AL: "Tunable impedance matching networks for agile RF power amplifiers", MICROWAVE SYMPOSIUM DIGEST (MTT), 2011 IEEE MTT-S INTERNATIONAL, IEEE, 5 June 2011 (2011-06-05), pages 1 - 4, XP032006629, ISBN: 978-1-61284-754-2, DOI: 10.1109/MWSYM.2011.5972681 *
K. GOVERDHANAM ET AL.: "Distributet Effects in High Power LDMOS Transistors", MTTS, 2005
NEO, W.C.E.; YU LIN; XIAO-DONG LIU; DE VREEDE, L.C.N.; LARSON, L.E.; SPIRITO, M.; PELK, M.J.; BUISMAN, K.; AKHNOUKH, A.; ANTON DE: "Adaptive Multi-Band Multi-Mode Power Amplifier Using Integrated Varactor-Based Tunable Matching Networks", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 41, no. 9, September 2006 (2006-09-01), pages 2166 - 2176, XP003023540, DOI: doi:10.1109/JSSC.2006.880586

Also Published As

Publication number Publication date
DE102011088617A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
DE102005058875B4 (en) matching
DE102008050743B4 (en) Impedance matching circuit for adapting planar antennas
DE60125100T2 (en) Impedance matching network
DE102005048409B4 (en) Amplifier arrangement for ultra-wideband applications and methods
DE102017114368B4 (en) COMBINED DOHERTY CHIREIX AMPLIFIER
DE69817941T2 (en) High-frequency circuit arrangement, input unit and transceiver
DE102014102699B4 (en) Front-end circuit
DE102013220362A1 (en) IMPEDANCE FITTING NETWORK WITH IMPROVED GATE FACTOR AND METHOD FOR ADAPTING AN IMPEDANCE
DE112016006457T5 (en) Adaptive tuning network for combinable filters
DE112018001855T5 (en) DEVICE AND METHOD FOR PRELOADING POWER AMPLIFIERS
DE102016108117A1 (en) System and method for controlling a high-frequency switch
DE102017104382B4 (en) LC network for a power amplifier with selectable impedance
DE102013202124A1 (en) Adjustable impedance matching network
DE102010029258A1 (en) Impedance matching of transmitting and receiving antennas
DE112006001884B4 (en) Electrical component
DE112013002919T5 (en) Acoustic Wave Resonator Tuning Circuits
DE102015106509A1 (en) System and method for a high-frequency integrated circuit
DE102014102521B4 (en) Tunable RF filter circuit
DE102017130292A1 (en) Compact class F chip and wire-matching polo
DE112013003228T5 (en) Time variant antenna with switched capacitor arrangement on silicon
DE102021206757A1 (en) ADJUSTABLE FILTERS WITH MUTUAL COUPLED INDUCTIVITIES
WO2014032907A1 (en) Capacitor having an improved linear behavior
DE102021208603A1 (en) POWER AMPLIFIER MODULES WITH CONTROLLABLE NOISE FILTERS FOR ENVELOPE TRACKING
WO2002058239A2 (en) Electric circuit module, circuit module arrangement and use of said circuit module and of said circuit module arrangement
DE112020000387T5 (en) Apparatus and methods for biasing power amplifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12816029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12816029

Country of ref document: EP

Kind code of ref document: A1