WO2013065477A1 - Communication system - Google Patents

Communication system Download PDF

Info

Publication number
WO2013065477A1
WO2013065477A1 PCT/JP2012/076751 JP2012076751W WO2013065477A1 WO 2013065477 A1 WO2013065477 A1 WO 2013065477A1 JP 2012076751 W JP2012076751 W JP 2012076751W WO 2013065477 A1 WO2013065477 A1 WO 2013065477A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
packet
path
communication path
unit
Prior art date
Application number
PCT/JP2012/076751
Other languages
French (fr)
Japanese (ja)
Inventor
水谷 昌彦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013541693A priority Critical patent/JP5784139B2/en
Publication of WO2013065477A1 publication Critical patent/WO2013065477A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing

Definitions

  • the present invention relates to communication systems.
  • the time taken for a packet transmitted from a certain device to arrive at the destination device through the relay device is not constant, and depending on the line status and device load on the passing route. Frame discarding or a significant delay may occur, and the quality of goods may be lower than when a synchronous transmission method is used.
  • Ethernet technology which determines that the current communication path is faulty and switches the data communication path to the backup path when the reception interval exceeds a predetermined interval (for example, 3.5 times the transmission interval). Based on Ethernet network linear protection switching technology is known (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 when a control packet for confirming connectivity is received, a predetermined allowance is set between the reception time of the control packet and the reception time of the control packet received immediately before that. Compared with the time (for example, 3.5 times the transmission interval), if the time difference is equal to or longer than the allowable time, path switching from the active system to the standby system is executed, and if less than the allowable time, the active system to the spare system Route switching is not performed.
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to suppress deterioration in quality of service caused by delay of data packet in packet communication low.
  • the present application includes a plurality of means for solving the above-mentioned problems.
  • the communication path of the data packet is prepared in advance.
  • the first communication control device is The data transmission unit for transmitting the data packet including the user data to the second communication control device via either the working system or the spare system communication path, and the communication route in advance for each of the working system and the spare system.
  • a control packet transmission unit that transmits the same control packet to the second communication control apparatus at a predetermined timing; And a path switching instruction unit instructing the data transmission unit to switch the communication path of the data bucket from the current system to the standby system when receiving a path switching request from the second communication control device.
  • the second communication control device is A time difference measurement unit for measuring a time difference from the reception time of the control packet received via the communication path of the protection system to the reception time of the same control packet received via the communication path of the active system, and the time difference measurement unit And a path switching request unit configured to transmit a path switching request to the first communication control device when the measured time difference is equal to or more than a predetermined first threshold.
  • FIG. 2 is a block diagram showing an example of a detailed functional configuration of a communication control device 20. It is a figure which shows an example of the data structure of the transmission path
  • FIG. 6 is a view showing an example of the data structure of the switchback threshold value table 285 stored in threshold value DB28. It is a figure which shows an example of the data structure of the control packet 40 for delay measurement.
  • FIG. 6 is a view showing an example of the data structure of a measurement result report packet 41. It is a figure which shows an example of the data structure of the control packet for switching determination.
  • FIG. 6 is a diagram showing an example of a data structure of a user data packet 43.
  • FIG. 6 is a view showing an example of the data structure of a switching request packet 44.
  • FIG. 8 is a view showing an example of the data structure of a switching response packet 45.
  • FIG. 6 is a view showing an example of the data structure of a switching completion notification packet 46.
  • FIG. It is a figure which shows an example of the data structure of the switchback request packet 47. As shown in FIG. It is a figure which shows an example of the data structure of the switchback response packet. It is a figure which shows an example of the data structure of the switchback completion notification packet 49. As shown in FIG. It is a flowchart which shows an example of measurement operation
  • FIG. 3 is a block diagram showing an example of a detailed functional configuration of a relay device 30. It is a figure which shows an example of the data structure of the transmission destination table 340 stored in transmission destination DB34.
  • FIG. 6 is a diagram showing an example of a data structure of a warning packet 50.
  • 5 is a flowchart showing an example of the operation of the relay device 30. It is a flowchart which shows an example of switching operation
  • FIG. 1 is a system configuration diagram showing an example of the configuration of a communication system 10 according to an embodiment of the present invention.
  • the communication system 10 includes a plurality of communication control devices 20.
  • Each communication control device 20 is connected to a communication device 14 such as a user terminal or a server via an access network 13. Further, each communication control device 20 is connected to another communication control device 20 via the backbone network 12 having a plurality of relay devices 30.
  • the backbone network 12 is a packet switching network, but may be a frame switching network or the like as long as it is an accumulation switching system.
  • the management device 11 presets communication paths of the working system and the protection system for each of the two communication control devices 20 in the communication system 10 for each of the transmission and reception communication paths, and necessary information (for example, communication)
  • a VLAN ID for identifying a path, a transfer destination of a data packet, etc. is set in each of the communication control unit 20 and the relay unit 30.
  • FIG. 2 is a block diagram showing an example of a detailed functional configuration of the communication control device 20.
  • the communication control device 20 includes a data transmission / reception unit 21, a transmission route DB 22, a route switching instruction unit 23, a delay DB 24, a control packet sending unit 25, a route type DB 26, a time difference measurement unit 27, a threshold DB 28, and a route switching request unit 29. .
  • a transmission path table 220 as shown in FIG. 3 is stored in the transmission path DB 22.
  • a path indicating the type of communication path to which the user data packet including the data is to be sent in association with the service ID 221 identifying each service provided by the data transmitted and received by the communication device 14.
  • a type 222 and a service level 223 indicating the degree of delay time allowed for the service are stored.
  • "W” described in the column of the service level 223 represents that it is a communication path of the working system
  • "P" represents that it is a communication path of the protection system.
  • the transmission path table 220 illustrated in FIG. 3 the information of the service ID 221 and the service level 223 is set in advance, and when a data packet including data for providing the corresponding service is actually transmitted, the data The type of the communication path through which the packet is transmitted is stored in the path type 222. Further, the transmission path table 220 illustrated in FIG. 3 is provided in the transmission path DB 22 for each other communication control device 20 of the transmission destination of the communication packet.
  • the service includes, for example, high-quality video streaming, low-quality video streaming, voice communication, and best-effort data communication.
  • the amount of data per unit time is large, and the communication device 14 on the receiving side can not store data for a very long time, so the allowable delay time is Short, for example, the service level is 1.
  • the amount of data per unit time is not so large, and the communication device 14 on the receiving side can store data for a relatively long time, so an allowable delay time can be obtained. Can be longer than high quality video streaming. However, if it is too long, the video will be cut off, so it will be shorter than the service like voice call, for example, the service level will be 2.
  • the service level is 3, for example.
  • the restriction on delay is even smaller than the other services described above, and the service level is 4, for example.
  • a delay table 240 as shown in FIG. 4 is stored.
  • a delay amount 243 indicating a time difference until reception of the same control packet via the communication path of the current system is stored based on the reception time of the control packet received via the communication path.
  • the delay amount 243 in the first line of the delay table 240 in FIG. 4 is that the control packet received via the active communication path with the VLANID 241 of “V001” is the standby communication path with the reference VLAN ID 242 of “V002”. It indicates that the communication control device 20 on the receiving side has arrived with a delay of 2 milliseconds on the basis of the reception time of the control packet received via the network.
  • the control packet received through the communication path of the active system of VLANID 241 of “V003” is of the standby system of reference VLAN ID 242 of “V004”. It indicates that the communication control apparatus 20 on the receiving side has arrived one millisecond earlier with reference to the reception time of the control packet received via the communication path.
  • a route type table 260 as shown in FIG. 5 is stored.
  • the type of communication route is stored in the route type table 260 in association with the VLAN ID 261 that identifies each communication route.
  • the path type table 260 illustrated in FIG. 5 is provided in the path type DB 26 for each of the other communication control devices 20 of the transmission destination of the communication packet.
  • a switching threshold table 280 as shown in FIG. 6 and a switching back threshold table 285 as shown in FIG. 7 are stored.
  • the time difference corresponds to the switching threshold 281 in correspondence with the switching threshold 281 indicating the threshold of the time difference for switching the communication path of the data packet including data for providing service to the standby system.
  • This time difference means that the communication control device 20 on the receiving side receives the same control packet via the working communication path from the reception time when the specific control packet described later is received via the spare system communication path.
  • Point to the time difference up to The switching threshold in each service level is determined in advance based on the allowable range of the delay time required for each service included in each service level, and is set in each communication control device 20 by the management device 11, for example.
  • the service level 287 of the service for switching back from the spare system to the active system is stored in association with the switching back threshold 286 indicating that the time difference is less than the switching back threshold 286.
  • the backbone network 12 is normally designed to continue using the active communication path, and if there is no problem with the quality of service, it may be preferable to continue using the active system as much as possible from the viewpoint of operation as well. There are many. Therefore, the communication path is switched from the backup system to the active system at a stage where the difference in delay time between the active system and the backup system is reduced.
  • the switchback threshold is preferably sufficiently shorter than the switching threshold (for example, about half of the switching threshold).
  • the control packet transmission unit 25 creates two control packets 40 for delay measurement having a data structure as shown in FIG. 8 at a predetermined timing (for example, a timing instructed by the management apparatus 11).
  • the control packet 40 includes a header 400 and a payload 401, and the payload 401 includes a message ID 402, a VLAN ID 403, a sequence number 404, and a transmission time 405.
  • the control packet transmitter 25 stores information indicating that the control packet 40 is the control packet 40 for delay measurement in the message ID 402 in the two control packets 40 created, and the same numerical value is stored in the sequence number 404. Store. Then, the control packet transmission unit 25 stores the identification information of the communication path of the current system in the VLAN ID 403 of one control packet 40 with reference to the path type DB 26, and the communication path of the backup system in the VLAN ID 403 of the other control packet 40. Stores identification information of
  • control packet transmission unit 25 sets the current time to the transmission time 405 of one control packet 40 and transmits it to the communication control apparatus 20 via the communication path of the active system, and the transmission time 405 of the other control packet 40.
  • the current time is set to and transmitted to the communication control apparatus 20 via the communication path of the spare system.
  • the time at the time of transmission of each control packet 40 is set to each transmission time 405, the information of the time set to the transmission time 405 of the two control packets 40 may not have the same value. .
  • the control packet transmission unit 25 repeats the process of transmitting the control packet 40 for delay measurement with the same sequence number to both the active and standby communication paths at predetermined time intervals (for example, every 100 milliseconds) a plurality of times. . Then, the control packet transmitter 25 receives the measurement result report packet 41 as shown in FIG. 9 from the communication control apparatus 20 of the transmission destination of the control packet 40 for delay measurement.
  • the measurement result report packet 41 includes a header 410 and a payload 411, and the payload 411 includes a message ID 412, a VLAN ID 413, a VLAN ID 414, and a measurement result 415.
  • the message ID 412 stores information indicating that the measurement result report packet 41 is a packet for measurement result report.
  • the VLAN ID 413 stores identification information of the communication path of the current system for which the delay time is to be measured.
  • the VLAN ID 414 stores identification information of the communication path of the backup system, which is the measurement standard of the delay time.
  • the communication control device 20 of the transmission source of the measurement result report packet 41 uses the communication path of the working system from the reception time when the control packet 40 for delay measurement is received via the communication path of the protection system. A time difference until reception of the control packet 40 for delay measurement having the same sequence number is stored.
  • the control packet transmission unit 25 sets the VLAN ID 413 included in the measurement result report packet 41 as the VLAN ID 241 and sets the VLAN ID 414 included in the measurement result report packet 41 as the reference VLAN ID 242 as the measurement result report packet.
  • the measurement result 415 contained in 41 is stored in the delay table 240 in the delay DB 24 as the delay amount 243.
  • the control packet 40 for delay measurement and the measurement result report packet 41 are, for example, ITU-T Y.3. It can be configured based on the format of Vendor Specific Message (VSM) frame or Automatic Protection Switching (APS) frame defined in 1731.
  • VSM Vendor Specific Message
  • APS Automatic Protection Switching
  • control packet transmission unit 25 creates two control packets 42 for switching determination of the data structure as shown in FIG. 10, for example.
  • the control packet 42 includes a header 420 and a payload 421, and the payload 421 includes a message ID 422, a VLAN ID 423, a sequence number 424, and service information 425.
  • the control packet transmitter 25 stores information indicating that the control packet 42 is the control packet 42 for switching determination in the message ID 422 in the two control packets 42 created, and the same numerical value is stored in the sequence number 424.
  • the service ID, path type, and service level information 426 is stored in the service information 425 for the path type set in the transmission path table 220.
  • the service information 425 may be included in at least one of the two control packets 42 created.
  • control packet transmission unit 25 stores the identification information of the communication path of the current system in the VLANID 423 of one control packet 42 with reference to the path type DB 26, and the communication path of the backup system in the VLANID 423 of the other control packet 42. Stores identification information of
  • the control packet 42 is, for example, ITU-T Y.3. It can be configured based on the format of a Continuity Check Message (CCM) frame defined in 1731.
  • CCM Continuity Check Message
  • control packet transmitter 25 refers to the delay table 240 of the delay DB 24 based on the identification information of the active communication path set in the VLAN ID 423, and the delay amount associated with the active VLAN ID. Extract
  • the control packet transmitter 25 transmits the control packet 42 at a timing.
  • the control packet 42 having the identification information of the communication path of the active system in the VLAN ID 423 is transmitted to the communication control device 20 via the communication path of the active system at the timing earlier than the extracted delay amount by time.
  • the control packet 42 having the identification information of the communication path of the protection system in the VLAN ID 423 is transmitted to the communication control device 20 via the communication path of the protection system.
  • the control packet transmitter 25 transmits the control packet 42.
  • a control packet 42 having identification information of the communication path of the active system in the VLAN ID 423 is transmitted to the communication control device 20 via the communication path of the active system at a timing after the extracted delay amount time than the power timing.
  • the control packet 42 having the identification information of the communication path of the protection system in the VLAN ID 423 is transmitted to the communication control device 20 via the communication path of the protection system.
  • the control packet transmitter 25 transmits the control packet 42 for switching determination having the same sequence number whose transmission timing has been adjusted, every predetermined time (for example, every 100 milliseconds).
  • the data transmission / reception unit 21 When the data transmission / reception unit 21 receives user data from the communication device 14 via the access network 13, the data transmission / reception unit 21 refers to the transmission path DB 22 to select the communication control device 20 to which the communication device 14 serving as the destination of the user data is connected.
  • the transmission route table 220 is identified.
  • the data transmitting / receiving unit 21 refers to the identified transmission route table 220 to identify the route type associated with the service ID of the service provided by the user data.
  • the data transmitting / receiving unit 21 refers to the route type table 260 in the route type DB 26, and identifies VLANID corresponding to the specified route type as identification information of a communication route to which user data is to be transmitted.
  • the data transmitting / receiving unit 21 starts providing the service by the user data in order to delete the route type associated with the service ID of the service from the transmission route table 220.
  • the data transmitting / receiving unit 21 associates the service type of the service with the path type indicating the active system.
  • the data transmitting / receiving unit 21 creates a user data packet 43 as shown in FIG. 11, for example.
  • the user data packet 43 includes a header 430 and a payload 431, and the payload 431 stores user data.
  • a DA 432 indicating the address of the communication control apparatus 20 of the destination of the user data packet 43
  • an SA 433 indicating the address of the communication control apparatus 20 of the transmission source of the user data packet 43
  • the user data packet 43 are transmitted.
  • the VLAN ID 434 of the communication path, the sequence number 435 for uniquely identifying the user data packet 43, and the service ID 436 of the service provided by the data contained in the user data packet 43 are stored.
  • the data transmission / reception unit 21 refers to the delay table 240 of the delay DB 24 to identify the active communication path. Extract the delay amount associated with the information.
  • the data transmitting / receiving unit 21 communicates the active communication at a timing before the timing to transmit the created measurement result report packet 41 by the time corresponding to the extracted delay amount. It transmits to the communication control apparatus 20 via a route.
  • the data transmitting / receiving unit 21 uses the current measurement system at a timing after the extracted delay amount for a time portion of the extracted measurement result report packet 41 than the transmission timing. It transmits to the communication control apparatus 20 via the following communication path.
  • the communication of both the active system and the backup system includes the user data packet including the corresponding service ID in the header. It transmits to another communication control apparatus 20 via a path.
  • the data transmitting / receiving unit 21 is a user data packet including the corresponding service ID in the header and Among the user data packets transmitted through both communication paths, transmission of user data packets through the communication path corresponding to the designated VLAN ID is stopped.
  • the time difference measurement unit 27 When the time difference measurement unit 27 receives the control packet 40 for delay measurement shown in FIG. 8 from the other communication control device 20 opposed thereto via the communication paths of the working system and the protection system, the time difference measurement unit 27 From the transmission time of the control packet 40 for delay measurement through the communication path, measurement of the time difference of the transmission time of the control packet 40 for delay measurement through the communication path of the working system is started. At this time, the time difference measurement unit 27 sets the time obtained by subtracting the transmission time 405 in the control packet 40 from the reception time of the control packet 40 for delay measurement as the transmission time of the communication path.
  • the time difference measurement unit 27 calculates, as a measurement result, an average of time differences measured for a predetermined number (for example, 100) of control packet sets for delay measurement. Then, the time difference measurement unit 27 creates a measurement result report packet 41 (see FIG. 9) including the calculated measurement result, and controls the communication of the transmission source of the control packet 40 for delay measurement of the created measurement result report packet 41. It transmits to the apparatus 20, for example via the communication path of a backup system.
  • the time difference measurement unit 27 when the time difference measurement unit 27 receives the control packet 42 for switching determination shown in FIG. 10 via the communication paths of the active system and the backup system, the time difference measurement unit 27 performs switching determination via the communication path of the backup system. The time difference from the reception time at which the control packet 42 for control is received to the reception of the control packet 42 for switching determination via the communication path of the working system is measured. Then, the time difference measurement unit 27 transmits the measurement result to the path switching request unit 29 together with the service information included in the control packet 42 for switching determination.
  • the path switching request unit 29 When the path switching request unit 29 receives the measurement result of the time difference from the time difference measurement unit 27, the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the time difference indicated by the measurement result is stored in the switching threshold table 280 at least. It is determined whether or not any switching threshold value or more is reached.
  • the path switching request unit 29 extracts the service level associated with the largest switching threshold among the corresponding switching thresholds from the switching threshold table 280. Then, the route switching request unit 29 further extracts the service level associated with the currently used route type in the service information received from the time difference measuring unit 27 from the extracted service levels.
  • the service information received from the time difference measurement unit 27 includes the service level associated with the route type of the active system, it means that the user data packet of the service level passes through the communication route of the active system. Means that it has been sent. If the service information received from the time difference measurement unit 27 does not include the service level associated with the currently used route type, the user data packet of the service level is transmitted via the backup communication route. It means being done.
  • the path switching request unit 29 creates a switching request packet 44 as shown in FIG. 12, for example, and sends the created switching request packet 44 to the communication control device 20 of the transmission source of the control packet 42 for switching determination. For example, it transmits via the communication path of a backup system.
  • the switching request packet 44 includes a header 440 and a payload 441, and the payload 441 has a message ID 442 indicating that the packet is a switching request packet, and a switching threshold table.
  • the service level 443 extracted with reference to 280 is stored.
  • the path switching request unit 29 receives, for example, a switching response packet 45 as shown in FIG. 13 from the communication control device 20 of the transmission destination of the switching request packet 44.
  • the switching response packet 45 includes a header 450 and a payload 451, and the payload 451 has a message ID 452 indicating that the packet is a switching response packet, and a service to be switched.
  • the path switching request unit 29 sets the user data packet 43 (see FIG. 11) including the service ID specified by the service ID 453 of the switching response packet 45 in the header to the active and standby systems.
  • the user data packet 43 including the specified service ID in the header, and the communication routes of the active system and the spare system for the user data packet 43 including the same sequence number in the header. It is determined whether the payloads 431 of the user data packets 43 received via the address match.
  • the path switching request unit creates, for example, a switching completion notification packet 46 as shown in FIG. 14 and transmits the created switching completion notification packet 46 to the communication control apparatus 20 of the transmission source of the user data packet 43.
  • the switching completion notification packet 46 includes a header 460 and a payload 461.
  • the payload 461 includes a message ID 462 indicating that the packet is a switching completion notification packet, and a target of switching. And the service ID 463 of the service to be stored.
  • the path switching request unit 29 receives the measurement result of the time difference from the time difference measurement unit 27, the path switching request unit 29 refers to the switching back threshold table 285 in the threshold DB 28 and stores the time difference indicated by the measurement result in the switching back threshold table 285 It is determined whether it is less than at least one of the reversion thresholds that have been made.
  • the path switching request unit 29 extracts the service level associated with the largest reversion threshold among the corresponding reversion thresholds from the reversion threshold table 285. Do. Then, the route switching request unit 29 further extracts the service level associated with the route type of the spare system in the service information received from the time difference measuring unit 27 from the extracted service levels.
  • the path switching request unit 29 creates, for example, a switchback request packet 47 as shown in FIG. 15, and creates the switchback request packet 47 as the communication control device 20 of the transmission source of the control packet 42 for switching determination. , For example, via a spare communication path.
  • the failback request packet 47 includes a header 470 and a payload 471, and the payload 471 has a message ID 472 indicating that the packet is a failback request packet, and The service level 473 extracted with reference to the return threshold table 285 is stored.
  • the path switch request unit 29 receives a switchback response packet 48 as shown in FIG. 16, for example, from the communication control device 20 of the transmission destination of the switchback request packet 47.
  • the failback response packet 48 includes a header 480 and a payload 481, and the payload 481 includes a message ID 482 indicating that the packet is a failback response packet, and a target of failback.
  • the service ID 483 of the service to be stored.
  • the path switch request unit 29 uses the user data packet 43 (see FIG. 11) including the service ID specified by the service ID 483 of the switch back response packet 48 in the header. It receives via each communication path of the spare system. Then, the path switching request unit 29 is a user data packet 43 including the specified service ID in the header, and for the user data packet 43 having the same sequence number, through the respective communication paths of the active system and the spare system. It is determined whether the data of the received user data packet 43 match.
  • the path switching request unit creates, for example, a switchback completion notification packet 49 as shown in FIG. 17 and transmits the created switchback completion notification packet 49 to the communication control apparatus 20 of the transmission source of the user data packet 43.
  • the failback completion notification packet 49 includes a header 490 and a payload 491, and the payload 491 includes a message ID 492 indicating that the packet is a failback completion notification packet, and a failback. And the service ID 493 of the service to be a target of.
  • the switching request packet 44, the switching response packet 45, the switching completion notifying packet 46, the switching back request packet 47, the switching back response packet 48, and the switching back completion notification packet 49 are, for example, ITU-T Y.3. It can be configured based on the format of Vendor Specific Message (VSM) frame or Automatic Protection Switching (APS) frame defined in 1731.
  • VSM Vendor Specific Message
  • APS Automatic Protection Switching
  • the path switching instruction unit 23 refers to the transmission path table 220 in the transmission path DB 22 and copes with the service level included in the received switching request packet 44. It extracts the service ID which is attached and which is associated with the route type of the current system.
  • the service ID with the highest associated service level (the lowest service level numerical value) is extracted. If multiple service IDs are extracted, the service ID of the service with the highest priority is extracted from the service IDs according to the predetermined priority for each service.
  • the path switching instructing unit 23 instructs the data transmitting / receiving unit 21 to start double transmission together with the extracted service ID. Then, the path switching instructing unit 23 transmits the switching response packet 45 (see FIG. 13) including the service ID to the communication control device 20 of the transmission source of the switching request packet 44 via, for example, the communication path of the protection system.
  • the path switching instructing unit 23 instructs the data transmitting / receiving unit 21 to finish double transmission together with the service ID included in the switching completion notification packet 46. . Then, the path switching instruction unit 23 refers to the transmission path table 220 and rewrites the path type associated with the service ID into information indicating a communication path of the protection system.
  • the path switching instruction unit 23 refers to the transmission path table 220 in the transmission path DB 22, and the service included in the received switchback request packet 47.
  • the service ID that is associated with the level and that is associated with the spare route type is extracted.
  • the service ID with the highest associated service level (the lowest service level numerical value) is extracted. If multiple service IDs are extracted, the service ID of the service with the highest priority is extracted from the service IDs according to the predetermined priority for each service.
  • the path switching instructing unit 23 instructs the data transmitting / receiving unit 21 to start double transmission together with the extracted service ID. Then, the path switching instructing unit 23 transmits the switchback response packet 48 (see FIG. 16) including the service ID to the communication control device 20 of the transmission source of the switchback request packet 47 via, for example, the communication path of the protection system. Do.
  • the path switching instructing unit 23 sends the data transmission / reception unit 21 the dual transmission end together with the service ID included in the switchback completion notification packet 49. To direct. Then, the path switching instruction unit 23 refers to the transmission path table 220, and rewrites the path type associated with the service ID into information indicating the currently used communication path.
  • FIG. 18 is a flow chart showing an example of the measurement operation of the transmission time difference between the communication paths of the working system and the protection system.
  • the communication control device 20 starts the operation shown in the flowchart in accordance with an instruction from the management device 11 in a time zone in which the possibility of occurrence of congestion such as midnight or light is low.
  • the communication control device 20-1 on the transmission side and the communication control device 20-2 on the reception side in the system configuration of FIG. 1 will be described as an operation subject.
  • control packet transmitter 25 of the communication control device 20-1 creates the control packet 40 for measuring the delay time shown in FIG. 8 and communicates the created control packet 40 with the communication path of the active system and the backup system. It transmits to the communication control device 20-2 via each of the paths (S100).
  • the time difference measurement unit 27 of the communication control device 20-2 receives the control packet 40 through the communication paths of the working system and the protection system, and for delay measurement received through the communication path of the protection system. From the transmission time of the control packet 40, the time difference of the transmission time of the control packet 40 for delay measurement received through the communication path of the working system is measured (S101).
  • the time difference measurement unit 27 creates the measurement result report packet 41 (see FIG. 9) including the measurement result, and sends the created measurement result report packet 41 to the communication control device 20-1 via, for example, the communication path of the spare system. And transmit (S102).
  • the control packet transmission unit 25 of the communication control device 20-1 delays the information of the VLAN ID 414 and the measurement result 415 contained in the measurement result report packet 41 in correspondence with the VLAN ID 413 contained in the received measurement result report packet 41. (S103).
  • control packet transmitter 25 of the communication control device 20-1 creates two control packets 42 for switching determination shown in FIG. 10, and based on the delay amount stored in the delay table 240 in the delay DB 24.
  • the transmission timing is adjusted, and the control packet 42 created is transmitted to each of the communication paths of the active system and the spare system at predetermined time intervals (for example, every 100 milliseconds) (S104).
  • FIG. 19 is a flowchart showing an example of the switching operation of the communication control device 20 on the receiving side in the first embodiment.
  • the communication control device 20-2 on the receiving side will be described as an operation subject in the system configuration of FIG.
  • the time difference measurement unit 27 when the time difference measurement unit 27 receives the control packet 42 for switching determination shown in FIG. 10 via the communication paths of the active system and the backup system, the time difference measurement unit 27 performs switching determination via the communication path of the backup system.
  • the reception time difference until reception of the control packet 42 for switching determination via the communication path of the active system from the reception time at which the control packet 42 for E4 is received is measured (S200). Then, the time difference measurement unit 27 transmits the measurement result to the path switching request unit 29 together with the service information included in the control packet 42 for switching determination.
  • the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the switching threshold indicated by the measurement result received from the time difference measuring unit 27 is the switching threshold with the largest value (4000 mm in the example of FIG. 6). It is judged whether it is more than switching threshold 4 which is second) (S201).
  • the path switching request unit 29 extracts service levels 1 to 4 associated with the switching threshold 4 from the switching threshold table 280. Then, the route switching request unit 29 is associated with the currently used route type in the service information received from the time difference measurement unit 27 among the extracted service levels 1 to 4 (ie, the active communication route Further extract the service level of the service).
  • the route switching request unit 29 creates the switching request packet 44 (see FIG. 12) including the extracted service level, and sends the created switching request packet 44 to the communication control device 20-1, for example, It transmits via (S202).
  • the time difference measurement unit 27 performs step S200 again. Execute the process shown in.
  • the path switch request unit 29 continues to be specified by the service ID 453 of the switch response packet 45.
  • the user data packet 43 (see FIG. 11) including the service ID in the header is received via the communication paths of the active system and the standby system.
  • the path switching request unit 29 is a user data packet 43 including the specified service ID in the header, and for the user data packet 43 having the same sequence number, through the respective communication paths of the active system and the spare system. It is determined whether the data of the received user data packet 43 match (S210).
  • the path switching request unit 29 creates the switching completion notification packet 46 shown in FIG. Then, the route switching request unit 29 transmits the created switching completion notification packet 46 to the communication control device 20-1 via, for example, the communication route of the protection system (S211), and the time difference measuring unit 27 indicates again to step S200. Execute the process.
  • data of a set of user data packets 43 having the same sequence number received via respective communication paths of the active system and the spare system may be compared by a predetermined number (for example, 1000 packets) or more. If the packets do not continuously match for more than 100 packets (S210: No), the path switching request unit 29 notifies the communication control device 20-1 of an error (S212), and the time difference measurement unit 27 repeats step S200 again. Execute the process shown in.
  • step S201 when the time difference is less than the switching threshold 4 (S201: No), the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the time difference indicated by the measurement result received from the time difference measurement unit 27 However, it is determined whether or not the switching threshold value 3 (100 milliseconds in the example of FIG. 6), which is the next largest, is not less than (S203).
  • the path switching request unit 29 extracts the service level associated with the switching threshold 3 from the switching threshold table 280. Then, the route switching request unit 29 is associated with the currently used route type in the service information received from the time difference measurement unit 27 among the extracted service levels (ie, provided via the currently used communication route). Further extract the service level of the service.
  • the route switching request unit 29 creates the switching request packet 44 (see FIG. 12) including the extracted service level, and sends the created switching request packet 44 to the communication control device 20-1 via, for example, the communication route of the spare system. And transmit (S204), and execute the processing shown in step S209. If there is no service level of the service being provided through the active communication path among the service levels 1 to 3, it is not necessary to execute path switching, so the time difference measurement unit 27 performs step S200 again. Execute the process shown in.
  • step S203 when the time difference is less than the switching threshold 3 (S203: No), the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the time difference indicated by the measurement result received from the time difference measurement unit 27 However, it is determined whether or not the switching threshold value 2 (30 milliseconds in the example of FIG. 6), which is the next largest, is not less than (S205).
  • the path switching request unit 29 extracts the service level associated with the switching threshold 2 from the switching threshold table 280. Then, the route switching request unit 29 is associated with the currently used route type in the service information received from the time difference measurement unit 27 among the extracted service levels (ie, provided via the currently used communication route). Further extract the service level of the service.
  • the route switching request unit 29 creates the switching request packet 44 (see FIG. 12) including the extracted service level, and sends the created switching request packet 44 to the communication control device 20-1 via, for example, the communication route of the spare system. And transmits (S206), and executes the processing shown in step S209. If there is no service level of the service being provided through the active communication path in the service levels 1 and 2, there is no need to execute path switching, so the time difference measurement unit 27 performs step S200 again. Execute the process shown in.
  • step S205 when the time difference is less than the switching threshold 2 (S205: No), the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the time difference indicated by the measurement result received from the time difference measurement unit 27 However, it is determined whether or not the switching threshold value 1 (10 milliseconds in the example of FIG. 6) which is the smallest value or more.
  • the time difference measurement unit 27 executes the process shown in step S200 again.
  • the path switching request unit 29 extracts the service level 1 associated with the switching threshold 1 from the switching threshold table 280. Then, if the extracted service level 1 is associated with the currently used route type in the service information received from the time difference measurement unit 27 (ie, provided via the currently used communication route), the route switching request unit 29 If so, the switch request packet 44 (see FIG. 12) including the service level is created.
  • the path switching request unit 29 transmits the created switching request packet 44 to the communication control device 20-1 via, for example, the communication path of the protection system (S208), and executes the processing shown in step S209.
  • the service level 1 is not the service level of the service being provided via the active communication path, it is not necessary to execute path switching, so the time difference measuring unit 27 repeats the process shown in step S200. Run.
  • FIG. 20 is a flowchart showing an example of the switching operation of the communication control apparatus 20 on the transmission side.
  • the communication control device 20-1 on the transmission side in the system configuration of FIG. 1 will be described as an operation subject.
  • the path switching instructing unit 23 refers to the transmission path table 220 in the transmission path DB 22 and receives the received switching request packet 44. Extract the service ID of the service that is associated with the included service level and that is associated with the active route type (ie, of the service being provided via the active communication route) (S301 ).
  • the path switching instructing unit 23 extracts one service ID having the highest service level (the lowest numerical value of the service level) among the extracted service IDs (S302), and the switching response including the extracted service ID
  • the packet 45 (see FIG. 13) is transmitted to the communication control device 20-2, for example, via the communication path of the protection system (S303).
  • the route switching instructing unit 23 instructs the data transmitting / receiving unit 21 to start double transmission together with the service ID (S 304), and determines whether the switching completion notification packet 46 shown in FIG. S305).
  • the path switching instructing unit 23 notifies the administrator of the communication control apparatus 20, the management apparatus 11 or the like of an error indicating a failure in switching.
  • the path switching instruction unit 23 instructs the data transmission / reception unit 21 to finish double transmission together with the service ID included in the received switching completion notification packet 46 (S305: S306). Then, the path switching instruction unit 23 refers to the transmission path table 220 in the transmission path DB 22 and rewrites the path type associated with the service ID into information indicating the communication path of the protection system (S307), The process shown in step S300 is executed again.
  • FIG. 21 is a flowchart showing an example of the switching back operation of the communication control device 20 on the receiving side.
  • the communication control device 20-2 on the receiving side in the system configuration of FIG. 1 will be described as an operation subject.
  • the time difference measurement unit 27 when the time difference measurement unit 27 receives the control packet 42 for switching determination shown in FIG. 10 via the communication paths of the active system and the backup system, the time difference measurement unit 27 performs switching determination via the communication path of the backup system.
  • the reception time difference until reception of the control packet 42 for switching determination via the communication path of the active system from the reception time at which the control packet 42 for E4 is received is measured (S400). Then, the time difference measurement unit 27 transmits the measurement result to the path switching request unit 29 together with the service information included in the control packet 42 for switching determination.
  • the path switching request unit 29 refers to the switching back threshold table 285 in the threshold DB 28, and the switching back threshold 1 in which the time difference indicated by the measurement result received from the time difference measuring unit 27 is the smallest value is the switching back threshold. It is determined whether it is less than 5 milliseconds (in the example of FIG. 7) (S401).
  • the path switch request unit 29 extracts the service levels 1 to 4 associated with the switchback threshold 1 from the switchback threshold table 285. Then, the route switching request unit 29 is associated with the route type of the spare system in the service information received from the time difference measuring unit 27 among the extracted service levels 1 to 4 (that is, the communication route of the spare system is Further extract the service level of the service).
  • the path switching request unit 29 creates the failback request packet 47 (see FIG. 15) including the extracted service level, and sends the created failback request packet 47 to the communication control device 20-1, for example, the communication route of the spare system. (S402).
  • the time difference measurement unit 27 performs step again. The process shown in S400 is performed.
  • the path switching request unit 29 continues to specify by the service ID 483 of the switchback response packet 48.
  • the user data packet 43 (see FIG. 11) including the specified service ID in the header is received through the communication paths of the active system and the spare system.
  • the path switching request unit 29 is a user data packet 43 including the specified service ID in the header, and for the user data packet 43 having the same sequence number, through the respective communication paths of the active system and the spare system. It is determined whether the data of the received user data packet 43 match (S410).
  • the path switching request unit 29 creates the failback completion notification packet 49 shown in FIG. Then, the path switching request unit 29 transmits the created switchback completion notification packet 49 to the communication control device 20-1 via, for example, the communication path of the backup system (S411), and the time difference measurement unit 27 returns to step S400 again. Execute the indicated process.
  • data of a set of user data packets 43 having the same sequence number received via respective communication paths of the active system and the spare system may be compared by a predetermined number (for example, 1000 packets) or more. If the packets do not continuously match for more than 100 packets (S410: No), the path switching request unit 29 notifies the communication control device 20-1 of an error (S412), and the time difference measurement unit 27 again performs step S400. Execute the process shown in.
  • step S401 when the time difference is the switchback threshold 1 or more (S401: No), the path switch request unit 29 refers to the switchback threshold table 285 in the threshold DB 28, and the measurement result received from the time difference measurement unit 27 is It is determined whether the time difference to be indicated is less than the next smaller return threshold value 2 (15 milliseconds in the example of FIG. 7) (S403).
  • the path switch request unit 29 extracts the service level associated with the switchback threshold 2 from the switchback threshold table 285. Then, the route switching request unit 29 is associated with the route type of the spare system in the service information received from the time difference measurement unit 27 among the extracted service levels (ie, provided via the communication route of the spare system). Further extract the service level of the service.
  • the path switching request unit 29 creates the failback request packet 47 (see FIG. 15) including the extracted service level, and sends the created failback request packet 47 to the communication control device 20-1, for example, the communication route of the spare system. (S404), and the process shown in step S409 is executed. If there is no service level of the service being provided through the communication path of the spare system among the service levels 2 to 4, it is not necessary to execute path switching back, so the time difference measurement unit 27 performs step again. The process shown in S400 is performed.
  • step S403 when the time difference is the switchback threshold 2 or more (S403: No), the path switching request unit 29 refers to the switchback threshold table 285 in the threshold DB 28, and the measurement result received from the time difference measurement unit 27 It is determined whether the time difference indicated by is less than the next smaller return threshold value 3 (50 milliseconds in the example of FIG. 7) (S405).
  • the path switching request unit 29 extracts the service level associated with the switchback threshold 3 from the switchback threshold table 285. Then, the route switching request unit 29 is associated with the route type of the spare system in the service information received from the time difference measurement unit 27 among the extracted service levels (ie, provided via the communication route of the spare system). Further extract the service level of the service.
  • the path switching request unit 29 creates the failback request packet 47 (see FIG. 15) including the extracted service level, and sends the created failback request packet 47 to the communication control device 20-1, for example, the communication route of the spare system. (S406), and the process shown in step S409 is executed.
  • the time difference measurement unit 27 performs step again. The process shown in S400 is performed.
  • step S405 when the time difference is the switchback threshold 3 or more (S405: No), the path switch request unit 29 refers to the switchback threshold table 285 in the threshold DB 28, and the measurement result received from the time difference measurement unit 27 is It is determined whether the indicated time difference is less than the largest return threshold 4 (S407).
  • the time difference measurement unit 27 executes the processing shown in step S400 again.
  • the path switching request unit 29 extracts the service level 4 associated with the switchback threshold 4 from the switchback threshold table 285. Then, if the extracted service level 4 is associated with the route type of the spare system in the service information received from the time difference measurement unit 27 (ie, provided via the communication route of the spare system), the route switching request unit 29 Medium), create a failback request packet 47 (see FIG. 15) including the service level.
  • the path switching request unit 29 transmits the created switchback request packet 47 to the communication control device 20-1, for example, via the communication path of the protection system (S408), and executes the processing shown in step S409. If the service at service level 4 is not being provided via the spare communication path, it is not necessary to execute path switching back, so the time difference measurement unit 27 executes the process shown in step S400 again. .
  • FIG. 22 is a flowchart showing an example of the switching back operation of the communication control device 20 on the transmission side.
  • the communication control device 20-1 on the transmission side will be described as an operation subject in the system configuration of FIG.
  • the path switch instructing unit 23 refers to the transmission path table 220 in the transmission path DB 22 and receives the switchback request packet. Extract the service ID of the service that is associated with the service level 47 and that is associated with the spare route type (that is, of the service being provided via the spare communication route) (S501).
  • the path switching instructing unit 23 extracts one service ID having the highest service level (the lowest value of the service level) among the extracted service IDs (S 502), and performs failback including the extracted service ID.
  • the response packet 48 (see FIG. 16) is transmitted to the communication control device 20-2, for example, via the communication path of the protection system (S503).
  • the route switching instructing unit 23 instructs the data transmitting / receiving unit 21 to start double transmission together with the service ID (S 504), and determines whether or not the switchback completion notification packet 49 shown in FIG. 17 has been received. (S505).
  • the path switching instruction unit 23 notifies the administrator of the communication control apparatus 20, the management apparatus 11, and the like of an error indicating failure in switching back.
  • the path switching instruction unit 23 instructs the data transmission / reception unit 21 to finish double transmission together with the service ID included in the received switchback completion notification packet 49. To do (S506). Then, the path switching instruction unit 23 refers to the transmission path table 220 in the transmission path DB 22 and rewrites the path type associated with the service ID into information indicating the currently used communication path (S507), The process shown in step S500 is executed again.
  • the communication system 10 of the present embodiment it is possible to suppress the deterioration of the quality of service caused by the delay of data packets in packet communication.
  • the communication control device 20 in the embodiment described above measures the transmission time difference between the communication path of the working system and the protection system with the opposing communication control device 20, and the communication on the receiving side based on the measurement result.
  • the transmission timing is adjusted so that communication packets transmitted through the communication paths of the active system and the standby system arrive almost simultaneously, so that there is a low possibility of occurrence of congestion. It is possible to accurately detect an increase in transmission delay (occurrence of congestion) of the communication path of the working system based on the reception timing of the control packet for switching determination received through the communication path.
  • the communication control unit 20 in the above-described embodiment can also arrive at the communication control unit 20 on the receiving side substantially simultaneously, taking into consideration the transmission delay of each of the communication paths of the working system and the protection system. Even if switching of the communication path is executed between the active system and the spare system, the delay of the user data packet 43 before and after the switching can be prevented from increasing.
  • the communication control device 20 in the above-described embodiment can set the threshold for switching or switching back the communication route for each service level, switching of the communication route is prioritized from services with a small amount of delay tolerance. It can be implemented and can enhance the stability of the service.
  • the communication control device 20 in the above embodiment transmits the same user data packet 43 to both the active system and the standby system, and the user data packet of the predetermined number or more in the communication path of the switching destination.
  • the signal 43 can be continuously received normally, the switching of the communication path is completed, so that it is possible to prevent the loss of data due to the switching of the communication path.
  • the communication control device 20 in the above-described embodiment switches the communication path back to the active system if the transmission delay of the active system becomes smaller after switching the communication path to the standby system, the current-use system has higher reliability.
  • the time to use the communication path of the system can be longer.
  • it is possible to reduce the number of packets to be sent to the communication path of the protection system it is possible to provide a margin for the communication band of the communication path of the protection system, and to detect an increase in transmission delay of the active system.
  • the delay of the reference control packet 42 can be reduced, and an increase in the transmission delay of the working system can be detected more accurately.
  • the system configuration of this embodiment is the same as that of FIG.
  • the relay device 30 included in the communication path of the active system predicts the occurrence of congestion and issues a warning, and based on the warning, the communication control device 20-2 on the receiving side is the communication control device on the transmitting side.
  • the point of transmitting the switching request packet 44 to 20-1 is different from the first embodiment.
  • FIG. 23 is a block diagram showing an example of a detailed functional configuration of the relay device 30.
  • the relay device 30 includes a packet reception unit 31, a transmission buffer 32, a packet transmission unit 33, a transmission destination DB 34, and a warning transmission unit 35.
  • the transmission destination table 340 stores a VLAN ID 341 identifying each communication path, and an address 342 of the communication control apparatus 20 serving as the termination of the communication path.
  • the packet receiving unit 31 receives a communication packet such as the user data packet 43 from the communication control device 20 or another relay device 30, and stores the received communication packet in the transmission buffer 32.
  • the packet transmitter 33 relays the communication packet stored in the transmission buffer 32 to the relay destination designated for each communication path stored in the header.
  • the warning transmission unit 35 monitors the data amount of data stored in the transmission buffer 32, and when the data amount becomes equal to or more than a predetermined ratio (for example, 80%) of the capacity of the transmission buffer 32, The identification information of the communication path stored in the header of each stored user data packet 43, that is, the VLAN ID is extracted.
  • a predetermined ratio for example, 80%
  • the warning transmission unit 35 creates a warning packet 50 as shown in FIG. 25, for example.
  • the warning packet 50 includes a header 500 and a payload 501, and the payload 501 stores a message ID 502 indicating that the packet is a warning packet, and a VLAN ID 503 of a communication path including the own apparatus. .
  • the warning packet 50 is, for example, ITU-T Y.3. It can be configured based on the format of Vendor Specific Message (VSM) frame or Automatic Protection Switching (APS) frame defined in 1731.
  • VSM Vendor Specific Message
  • APS Automatic Protection Switching
  • the warning transmission unit 35 extracts the address of the communication control device 20 corresponding to the extracted VLANID from the transmission destination DB 34, and transmits the generated warning packet 50 to the extracted address.
  • FIG. 26 is a flowchart illustrating an example of the operation of the relay device 30.
  • the warning transmission unit 35 monitors the data amount of data stored in the transmission buffer 32, and determines whether the data amount is equal to or more than the warning threshold (S600). If the amount of data in the transmission buffer 32 becomes equal to or greater than the warning threshold (S600: Yes), the warning transmission unit 35 uses the VLAN ID stored in the header of each user data packet 43 stored in the transmission buffer 32. Extract (S601).
  • the warning transmission unit 35 creates the warning packet 50 shown in FIG. Then, the warning transmission unit 35 extracts the address of the communication control device 20 corresponding to the extracted VLANID from the transmission destination DB 34, and transmits the generated warning packet 50 to the extracted address (S602). Then, the warning transmission unit 35 stands by for a predetermined time (for example, several seconds) until the path switching is completed (S603), and executes the processing shown in step S600 again.
  • a predetermined time for example, several seconds
  • FIG. 27 is a flowchart showing an example of the switching operation of the communication control device 20 on the receiving side in the second embodiment. Note that, in FIG. 27, the processes given the same reference numerals as those in FIG. 19 are the same as the processes in FIG.
  • the time difference measurement unit 27 determines whether the warning packet 50 has been received (S220). When the warning packet 50 has not been received (S220: No), the time difference measurement unit 27 executes the process shown in step S200.
  • the time difference measurement unit 27 extracts the service levels 1 to 4 associated with the switching threshold 4 from the switching threshold table 280. Then, among the extracted service levels 1 to 4, the route switching request unit 29 is associated with the currently used route type in the service information received from the time difference measurement unit 27 immediately before that (that is, Further extract the service level of the service (provided through the communication path).
  • the route switching request unit 29 creates the switching request packet 44 (see FIG. 12) including the extracted service level, and sends the created switching request packet 44 to the communication control device 20-1 via, for example, the communication route of the spare system. It transmits (S202), and performs the process shown to step S209.
  • the fact that the amount of data in the transmission buffer of the relay device 30 increases means that data transmission waiting occurs for some reason, such as a line failure or a high processing load of the relay device 30 on the communication path. It is shown that. Then, when the free space of the transmission buffer decreases due to the increase of data waiting for transmission, discarding of data and further transmission waiting in the relay apparatus 30 upstream thereof occur, which increases the possibility of occurrence of congestion.
  • the relay device 30 of the present embodiment transmits a warning indicating that congestion may occur to the communication control device 20, and performs communication control.
  • the device 20 is urged to switch the route.
  • path switching can be performed before congestion occurs, and the quality of service can be stably maintained high.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the difference between the transmission times of the communication paths of the working system and the protection system is measured in advance, and in a situation where congestion does not occur, communication transmitted via the communication paths of the working system and the protection system.
  • the packets arrive at the receiving side communication control apparatus 20 almost simultaneously, and the control packet transmitted via the working communication path is based on the control packet transmitted via the spare communication path.
  • the delay amount is measured and communication path switching is performed when the measured delay amount exceeds a predetermined threshold value, the present invention is not limited to this.
  • the arrival interval of the control packet transmitted through the communication path of the active system is statistically processed to determine the occurrence of congestion of the communication path of the active system, and when it is determined that congestion has occurred, the communication path is reserved. You may switch to the system.
  • the average value (point of dispersion zero) obtained here is the arrival time interval predicted by the receiver, and there is some difference in the communication path when the predicted value and the actual frame arrival interval are separated by 3 ⁇ or more (see FIG. It is determined that congestion occurs and the communication path is switched from the active system to the spare system.
  • the time at which the next control packet should be received can be calculated from the predicted arrival interval (fixed value) and the time at which the control packet was actually received.
  • the average value and the variance of the difference can be calculated.
  • the difference exceeds a certain threshold
  • the variance 3 ⁇ which may be ⁇ or 2 ⁇
  • the communication control device 20 receives the control packet transmitted through the communication path of the protection system, and then receives the control packet transmitted through the communication path of the active system. If the time difference between the two exceeds the predetermined threshold, priority is given to a service with a high demand for delay time, but the present invention is not limited to this, and a priority is given to a service with low demand for delay time. It may be switched to a spare system.
  • the communication path of the protection system may have lower reliability than the communication path of the active system because it has the property of a backup of the active system.
  • the congestion of the communication path can be resolved while maintaining the quality of the service high.
  • the communication control apparatus 20 when switching back the communication path from the active system to the standby system after switching the communication path from the active system to the active system, the communication control apparatus 20 gives priority to the service with strict requirements for delay time and switches it to the active system. Although it was made to return, this invention is not limited to this. For example, a service with a low demand for delay time may be switched back to the active system in preference.
  • the delay amount of the active system increases until the delay amount of the communication path of the active system exceeds the switching threshold. Therefore, the quality of the service with severe requirements for delay time is degraded by giving priority to the service with a low demand for delay time and switching back to the active system until the failure occurring in the active system is completely eliminated. Can be reduced.
  • each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. Further, each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD Solid State Drive
  • control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Provided is a communication system that can lower the degradation of service qualities caused by the delays of data packets in packet communications. According to a communication system of the invention: the difference in transfer time between the communication path of a currently used channel and the communication path of a standby channel is measured in advance; it is arranged that under circumstances where no congestions have occurred, communication packets transmitted via the communication path of the currently used channel and communication packets transmitted via the communication path of the standby channel should reach a communication control apparatus on the receiving side nearly at the same time; a delay amount of a control packet transmitted via the communication path of the currently used channel is measured with reference to a control packet transmitted via the communication path of the standby channel; and when the measured delay amount exceeds a predetermined threshold value, the communication path of data packets is switched from the currently used channel to the standby channel.

Description

通信システムCommunications system
 本発明は、通信システムに関する。 The present invention relates to communication systems.
 通信の大容量化や通信により提供されるサービスの多様化に伴い、キャリアサービス網や企業インフラには高い信頼性と通信品質が求められる。このような通信インフラでは、近年、高性能な通信装置の開発コストや導入、運用コストの削減等の観点からパケット通信技術の採用が検討されている。 With the increase in communication capacity and diversification of services provided by communication, carrier service networks and enterprise infrastructures are required to have high reliability and communication quality. In such a communication infrastructure, in recent years, adoption of packet communication technology has been considered from the viewpoints of development cost and introduction of a high-performance communication device and reduction of operation cost.
 しかし、パケット通信技術を利用したコネクションレス通信方式では、ある装置から送信されたパケットが中継装置を経て宛先装置に到着するまでの時間は一定ではなく、通過経路上の回線状況や装置負荷によってはフレーム廃棄あるいは大幅な遅延が生じる可能性があり、同期伝送方式を用いた場合に比べて通品品質が低くなる場合がある。 However, in the connectionless communication method using packet communication technology, the time taken for a packet transmitted from a certain device to arrive at the destination device through the relay device is not constant, and depending on the line status and device load on the passing route. Frame discarding or a significant delay may occur, and the quality of goods may be lower than when a synchronous transmission method is used.
 これを回避するために、送信装置と宛先装置との間に現用系と予備系の通信経路を設定し、現用系の通信経路に接続性を確認するための制御パケットを定期的に送信し、受信間隔が所定間隔(例えば送信間隔の3.5倍)以上になった場合に、現用系の通信経路の障害と判定し、データの通信経路を予備系に切り替える、イーサネット(登録商標)技術をベースにしたイーサ網リニアプロテクション切り替え技術が知られている(例えば、非特許文献1参照)。 In order to avoid this, communication paths of the working system and the protection system are set between the transmitting device and the destination device, and a control packet for checking connectivity is periodically transmitted to the communication path of the working system, Ethernet technology, which determines that the current communication path is faulty and switches the data communication path to the backup path when the reception interval exceeds a predetermined interval (for example, 3.5 times the transmission interval). Based on Ethernet network linear protection switching technology is known (see, for example, Non-Patent Document 1).
 ところで、上記非特許文献1の技術では、接続性を確認するための制御パケットを受信した場合に、その受信時刻と、その直前に受信した制御パケットの受信時刻との時間差を予め定められた許容時間(例えば送信間隔の3.5倍)と比較し、当該時間差が許容時間以上であれば現用系から予備系への経路切替が実行され、許容時間未満であれば現用系から予備系への経路切替は実行されない。 By the way, in the technique of Non-Patent Document 1, when a control packet for confirming connectivity is received, a predetermined allowance is set between the reception time of the control packet and the reception time of the control packet received immediately before that. Compared with the time (for example, 3.5 times the transmission interval), if the time difference is equal to or longer than the allowable time, path switching from the active system to the standby system is executed, and if less than the allowable time, the active system to the spare system Route switching is not performed.
 しかし、これでは、直前に受信した制御パケットが既に遅延していた場合には、その遅延している制御パケットとの時間差で経路切替が判断されてしまうため、実際に制御パケットを受信すべきタイミングからはかなり遅延していたとしても、直前の制御パケットの受信時刻からの経過時間が許容時間未満であれば、経路切替が実行されないことになる。複数の制御パケットが少しずつ遅延していると、遅延時間が累積し、実際に制御パケットを受信すべきタイミングからの遅延量はさらに大きくなる。 However, in this case, when the control packet received immediately before is already delayed, path switching is determined by the time difference from the delayed control packet, so the timing at which the control packet should be actually received is However, even if there is a considerable delay, if the elapsed time from the reception time of the immediately preceding control packet is less than the allowable time, path switching will not be performed. When a plurality of control packets are delayed little by little, the delay time is accumulated, and the amount of delay from the timing at which the control packets should actually be received becomes larger.
 単位時間当たりに伝送されるデータ量があまり多くない音声通話等の通信データであれば、データパケットの欠落や遅延がサービスの品質に与える影響はそれ程大きくはない。しかし、通信の大容量化により、単位時間当たりに伝送されるデータ量が多くなっており、1つのデータパケットに格納されるデータ量も多くなってきたため、1つのデータパケットの欠落や遅延がサービスに与える影響が大きくなってきている。 In the case of communication data such as voice communication in which the amount of data to be transmitted per unit time is not very large, the influence of missing data packets or delay on the quality of service is not so great. However, with the increase in communication capacity, the amount of data to be transmitted per unit time has increased, and the amount of data stored in one data packet has also increased. The impact on the
 特に、大容量のデータを扱う映像ストリーミングや、リズムの連続性が必要な音楽コンテンツのストリーミングでは、データパケットの欠落や遅延によるサービス本質の劣化がユーザにわかりやすいため、サービスに与える影響が特に大きい。 In particular, in video streaming that handles a large amount of data and streaming of music content that requires rhythmic continuity, the degradation of the nature of service due to missing data packets or delays is particularly noticeable to users, so the impact on services is particularly large.
 本発明は上記事情を鑑みてなされたものであり、本発明の目的は、パケット通信におけるデータパケットの遅延に起因するサービスの品質の劣化を低く抑えることにある。 The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to suppress deterioration in quality of service caused by delay of data packet in packet communication low.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
 本願は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、現用系の通信経路に輻輳が発生した場合に、データパケットの通信経路を、予め準備しておいた予備系の通信経路に切り替える通信システムであって、
 第1の通信制御装置と、
 現用系および予備系のそれぞれの通信経路を介して前記第1の通信制御装置に接続される第2の通信制御装置と
を備え、
 前記第1の通信制御装置は、
 現用系または予備系のいずれかの通信経路を介してユーザデータを含むデータパケットを前記第2の通信制御装置へ送信するデータ送信部と
 現用系および予備系のそれぞれの通信経路を介して、予め定められたタイミングで同一の制御パケットを前記第2の通信制御装置へ送信する制御パケット送信部と、
 前記第2の通信制御装置から経路切替要求を受信した場合に、前記データバケットの通信経路を、現用系から予備系に切り替えるよう前記データ送信部に指示する経路切替指示部と
を有し、
 前記第2の通信制御装置は、
 予備系の通信経路を介して受信した制御パケットの受信時刻から、現用系の通信経路を介して受信した同一の制御パケットの受信時刻までの時間差を測定する時間差測定部と、前記時間差測定部によって測定された時間差が予め定められた第1の閾値以上である場合に、前記第1の通信制御装置に経路切替要求を送信する経路切替要求部と
を有することを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above-mentioned problems. For example, when congestion occurs in the communication path of the current system, the communication path of the data packet is prepared in advance. A communication system for switching to a reserved communication path,
A first communication control device,
And a second communication control device connected to the first communication control device via respective communication paths of an active system and a standby system,
The first communication control device is
The data transmission unit for transmitting the data packet including the user data to the second communication control device via either the working system or the spare system communication path, and the communication route in advance for each of the working system and the spare system. A control packet transmission unit that transmits the same control packet to the second communication control apparatus at a predetermined timing;
And a path switching instruction unit instructing the data transmission unit to switch the communication path of the data bucket from the current system to the standby system when receiving a path switching request from the second communication control device.
The second communication control device is
A time difference measurement unit for measuring a time difference from the reception time of the control packet received via the communication path of the protection system to the reception time of the same control packet received via the communication path of the active system, and the time difference measurement unit And a path switching request unit configured to transmit a path switching request to the first communication control device when the measured time difference is equal to or more than a predetermined first threshold.
 本発明の通信システムによれば、パケット通信におけるデータパケットの遅延に起因するサービスの品質の劣化を低く抑えることができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the communication system of the present invention, it is possible to suppress the deterioration of the quality of service caused by the delay of data packets in packet communication.
Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明の一実施形態に係る通信システム10の構成の一例を示すシステム構成図である。It is a system configuration figure showing an example of composition of communication system 10 concerning one embodiment of the present invention. 通信制御装置20の詳細な機能構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a detailed functional configuration of a communication control device 20. 送信経路DB22に格納される送信経路テーブル220のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the transmission path | route table 220 stored in transmission path | route DB22. 遅延DB24に格納される遅延テーブル240のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the delay table 240 stored in delay DB24. 経路種別DB26に格納される経路種別テーブル260のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the route classification table 260 stored in route classification DB26. 閾値DB28に格納される切替閾値テーブル280のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the switching threshold value table 280 stored in threshold value DB28. 閾値DB28に格納される切戻閾値テーブル285のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the switchback threshold value table 285 stored in threshold value DB28. 遅延測定用の制御パケット40のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the control packet 40 for delay measurement. 測定結果報告パケット41のデータ構造の一例を示す図である。FIG. 6 is a view showing an example of the data structure of a measurement result report packet 41. 切替判定用の制御パケット42のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the control packet for switching determination. ユーザデータパケット43のデータ構造の一例を示す図である。FIG. 6 is a diagram showing an example of a data structure of a user data packet 43. 切替要求パケット44のデータ構造の一例を示す図である。FIG. 6 is a view showing an example of the data structure of a switching request packet 44. 切替応答パケット45のデータ構造の一例を示す図である。FIG. 8 is a view showing an example of the data structure of a switching response packet 45. 切替完了通知パケット46のデータ構造の一例を示す図である。FIG. 6 is a view showing an example of the data structure of a switching completion notification packet 46. 切戻要求パケット47のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the switchback request packet 47. As shown in FIG. 切戻応答パケット48のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the switchback response packet. 切戻完了通知パケット49のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the switchback completion notification packet 49. As shown in FIG. 現用系と予備系の通信経路の伝送時間差の測定動作の一例を示すフローチャートである。It is a flowchart which shows an example of measurement operation | movement of the transmission time difference of the communication path of an active system and a protection system. 第1の実施形態における受信側の通信制御装置20の切替動作の一例を示すフローチャートである。It is a flowchart which shows an example of switching operation | movement of the communication control apparatus 20 of the receiving side in 1st Embodiment. 送信側の通信制御装置20の切替動作の一例を示すフローチャートである。It is a flowchart which shows an example of switching operation | movement of the communication control apparatus 20 of a transmission side. 受信側の通信制御装置20の切戻動作の一例を示すフローチャートである。It is a flowchart which shows an example of the switchback operation | movement of the communication control apparatus 20 of the receiving side. 送信側の通信制御装置20の切戻動作の一例を示すフローチャートである。It is a flowchart which shows an example of the switchback operation | movement of the communication control apparatus 20 of the transmission side. 中継装置30の詳細な機能構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of a detailed functional configuration of a relay device 30. 送信先DB34に格納される送信先テーブル340のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the transmission destination table 340 stored in transmission destination DB34. 警告パケット50のデータ構造の一例を示す図である。FIG. 6 is a diagram showing an example of a data structure of a warning packet 50. 中継装置30の動作の一例を示すフローチャートである。5 is a flowchart showing an example of the operation of the relay device 30. 第2の実施形態における受信側の通信制御装置20の切替動作の一例を示すフローチャートである。It is a flowchart which shows an example of switching operation | movement of the communication control apparatus 20 of the receiving side in 2nd Embodiment.
 まず、本発明の第1の実施形態について図面を参照しながら説明する。 First, a first embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る通信システム10の構成の一例を示すシステム構成図である。通信システム10は、複数の通信制御装置20を備える。それぞれの通信制御装置20は、アクセス網13を介して、ユーザ端末やサーバ等の通信装置14に接続される。また、それぞれの通信制御装置20は、複数の中継装置30を有する基幹網12を介して、他の通信制御装置20に接続される。なお、本実施形態において、基幹網12は、パケット交換網であるが、蓄積交換方式であればフレーム交換網等であってもよい。 FIG. 1 is a system configuration diagram showing an example of the configuration of a communication system 10 according to an embodiment of the present invention. The communication system 10 includes a plurality of communication control devices 20. Each communication control device 20 is connected to a communication device 14 such as a user terminal or a server via an access network 13. Further, each communication control device 20 is connected to another communication control device 20 via the backbone network 12 having a plurality of relay devices 30. In the present embodiment, the backbone network 12 is a packet switching network, but may be a frame switching network or the like as long as it is an accumulation switching system.
 管理装置11は、通信システム10内の2台の通信制御装置20毎に、送信および受信のそれぞれの通信経路について、現用系および予備系の通信経路を予め設定し、必要な情報(例えば、通信経路を識別するVLANIDやデータパケットの転送先等)をそれぞれの通信制御装置20および中継装置30に設定する。 The management device 11 presets communication paths of the working system and the protection system for each of the two communication control devices 20 in the communication system 10 for each of the transmission and reception communication paths, and necessary information (for example, communication) A VLAN ID for identifying a path, a transfer destination of a data packet, etc.) is set in each of the communication control unit 20 and the relay unit 30.
 図1に示す例では、通信システム10が備える複数の通信制御装置20のうち、通信制御装置20-1と通信制御装置20-2について、各中継装置30を介してデータパケットが通信制御装置20-1から通信制御装置20-2へ送信される方向において、現用系の通信経路(実線矢印)および予備系の通信経路(破線矢印)が予め設定されている様子を模式的に示している。 In the example illustrated in FIG. 1, among the plurality of communication control devices 20 included in the communication system 10, data packets of the communication control device 20-1 and the communication control device 20-2 are transmitted via the relay devices 30. A state in which the communication path of the active system (solid arrow) and the communication path of the backup system (dashed arrow) are set in advance in the direction of transmission from -1 to the communication control device 20-2.
 以下では、図1のシステム構成を例に、受信側の通信制御装置20-2が現用系の通信経路を介して送信されたデータパケットの遅延の増大を検出した場合に、送信側の通信制御装置20-1が、データパケットの送信経路を、現用系から予備系に切り替える処理について説明する。 In the following, taking the system configuration of FIG. 1 as an example, communication control on the transmitting side when the communication control device 20-2 on the receiving side detects an increase in the delay of data packets transmitted through the communication path of the active system. A process of switching the data packet transmission path from the active system to the standby system will be described.
 図2は、通信制御装置20の詳細な機能構成の一例を示すブロック図である。通信制御装置20は、データ送受信部21、送信経路DB22、経路切替指示部23、遅延DB24、制御パケット送信部25、経路種別DB26、時間差測定部27、閾値DB28、および経路切替要求部29を有する。 FIG. 2 is a block diagram showing an example of a detailed functional configuration of the communication control device 20. As shown in FIG. The communication control device 20 includes a data transmission / reception unit 21, a transmission route DB 22, a route switching instruction unit 23, a delay DB 24, a control packet sending unit 25, a route type DB 26, a time difference measurement unit 27, a threshold DB 28, and a route switching request unit 29. .
 送信経路DB22には、例えば図3に示すような送信経路テーブル220が格納されている。送信経路テーブル220には、通信装置14によって送受信されるデータによって提供されるそれぞれのサービスを識別するサービスID221に対応付けて、当該データを含むユーザデータパケットを送出すべき通信経路の種別を示す経路種別222、および、当該サービスにおいて許容される遅延時間の短さの程度を示すサービスレベル223が格納される。サービスレベル223の欄に記載した「W」は現用系の通信経路であることを表わしており、「P」は予備系の通信経路であることを表わしている。 For example, a transmission path table 220 as shown in FIG. 3 is stored in the transmission path DB 22. In the transmission path table 220, a path indicating the type of communication path to which the user data packet including the data is to be sent, in association with the service ID 221 identifying each service provided by the data transmitted and received by the communication device 14. A type 222 and a service level 223 indicating the degree of delay time allowed for the service are stored. "W" described in the column of the service level 223 represents that it is a communication path of the working system, and "P" represents that it is a communication path of the protection system.
 図3に例示した送信経路テーブル220では、サービスID221およびサービスレベル223の情報は予め設定されており、実際に該当するサービスを提供するためのデータを含むデータパケットが送信された場合に、当該データパケットが送信された通信経路の種別が経路種別222に格納される。また、図3に例示した送信経路テーブル220は、通信パケットの送信先の他の通信制御装置20毎に送信経路DB22内に設けられる。 In the transmission path table 220 illustrated in FIG. 3, the information of the service ID 221 and the service level 223 is set in advance, and when a data packet including data for providing the corresponding service is actually transmitted, the data The type of the communication path through which the packet is transmitted is stored in the path type 222. Further, the transmission path table 220 illustrated in FIG. 3 is provided in the transmission path DB 22 for each other communication control device 20 of the transmission destination of the communication packet.
 ここで、サービスとは、例えば、高画質の映像ストリーミングや、低画質の映像ストリーミング、音声通話、ベストエフォート方式のデータ通信などがある。また、例えば、高画質の映像ストリーミングのようなサービスでは、単位時間当たりのデータ量が多く、受信側の通信装置14であまり長時間のデータを蓄積することができないため、許容される遅延時間は短く、例えばサービスレベルが1となる。 Here, the service includes, for example, high-quality video streaming, low-quality video streaming, voice communication, and best-effort data communication. Also, for example, in services such as high-quality video streaming, the amount of data per unit time is large, and the communication device 14 on the receiving side can not store data for a very long time, so the allowable delay time is Short, for example, the service level is 1.
 また、低画質の映像ストリーミングのようなサービスでは、単位時間当たりのデータ量がそれ程多くなく、受信側の通信装置14で比較的長時間のデータを蓄積することができるため、許容される遅延時間は高画質の映像ストリーミングよりは長くとることができる。しかし、あまり長すぎると映像が途切れてしまうため、音声通話のようなサービスよりは短く、例えばサービスレベルが2となる。 Also, in services such as low-quality video streaming, the amount of data per unit time is not so large, and the communication device 14 on the receiving side can store data for a relatively long time, so an allowable delay time can be obtained. Can be longer than high quality video streaming. However, if it is too long, the video will be cut off, so it will be shorter than the service like voice call, for example, the service level will be 2.
 また、音声通話のようなサービスでは、単位時間当たりのデータ量は少ないが、会話が成り立つ程度の遅延に抑える必要があるため、例えばサービスレベルが3となる。また、ベストエフォート方式のデータ通信のようなサービスでは、上記の他のサービスに比べて遅延に関する制限はさらに少なく、例えばサービスレベルが4となる。 Further, in a service such as voice communication, although the amount of data per unit time is small, it is necessary to suppress the delay to such an extent that a conversation can be established, so the service level is 3, for example. Also, in a service such as best effort data communication, the restriction on delay is even smaller than the other services described above, and the service level is 4, for example.
 遅延DB24には、例えば図4に示すような遅延テーブル240が格納される。遅延テーブル240には、それぞれの現用系の通信経路を識別するVLANID241に対応付けて、遅延量の算出基準となる制御パケットを伝送した予備系の通信経路を識別する基準VLANID242、および、当該予備系の通信経路を介して受信した制御パケットの受信時刻を基準として、当該現用系の通信経路を介して同一の制御パケットを受信するまでの時間差を示す遅延量243が格納される。 In the delay DB 24, for example, a delay table 240 as shown in FIG. 4 is stored. In the delay table 240, a reference VLAN ID 242 for identifying a communication path of a backup system that has transmitted a control packet serving as a calculation reference of the delay amount in association with the VLANID 241 for identifying each active communication path; A delay amount 243 indicating a time difference until reception of the same control packet via the communication path of the current system is stored based on the reception time of the control packet received via the communication path.
 例えば、図4の遅延テーブル240の一行目の遅延量243は、VLANID241が「V001」の現用系の通信経路を介して受信した制御パケットが、基準VLANID242が「V002」の予備系の通信経路を介して受信した制御パケットの受信時刻を基準として、2ミリ秒遅れて受信側の通信制御装置20に到達したことを示している。 For example, the delay amount 243 in the first line of the delay table 240 in FIG. 4 is that the control packet received via the active communication path with the VLANID 241 of “V001” is the standby communication path with the reference VLAN ID 242 of “V002”. It indicates that the communication control device 20 on the receiving side has arrived with a delay of 2 milliseconds on the basis of the reception time of the control packet received via the network.
 また、例えば、図4の遅延テーブル240の二行目の遅延量243は、VLANID241が「V003」の現用系の通信経路を介して受信した制御パケットが、基準VLANID242が「V004」の予備系の通信経路を介して受信した制御パケットの受信時刻を基準として、1ミリ秒早く受信側の通信制御装置20に到達したことを示している。 Further, for example, in the delay amount 243 of the second line of the delay table 240 in FIG. 4, the control packet received through the communication path of the active system of VLANID 241 of “V003” is of the standby system of reference VLAN ID 242 of “V004”. It indicates that the communication control apparatus 20 on the receiving side has arrived one millisecond earlier with reference to the reception time of the control packet received via the communication path.
 経路種別DB26には、例えば図5に示すような経路種別テーブル260が格納される。経路種別テーブル260には、それぞれの通信経路を識別するVLANID261に対応付けて、当該通信経路の種別が格納されている。なお、図5に例示した経路種別テーブル260は、通信パケットの送信先の他の通信制御装置20毎に経路種別DB26内に設けられる。 In the route type DB 26, for example, a route type table 260 as shown in FIG. 5 is stored. The type of communication route is stored in the route type table 260 in association with the VLAN ID 261 that identifies each communication route. The path type table 260 illustrated in FIG. 5 is provided in the path type DB 26 for each of the other communication control devices 20 of the transmission destination of the communication packet.
 閾値DB28には、例えば図6に示すような切替閾値テーブル280、および、例えば図7に示すような切戻閾値テーブル285が格納される。切替閾値テーブル280には、サービスを提供するためのデータを含むデータパケットの通信経路を、現用系から予備系に切り替えるための時間差の閾値を示す切替閾値281に対応付けて、時間差が切替閾値281以上となった場合に、現用系から予備系に切り替えるサービスのサービスレベル282が格納される。 In the threshold DB 28, for example, a switching threshold table 280 as shown in FIG. 6 and a switching back threshold table 285 as shown in FIG. 7 are stored. In the switching threshold table 280, the time difference corresponds to the switching threshold 281 in correspondence with the switching threshold 281 indicating the threshold of the time difference for switching the communication path of the data packet including data for providing service to the standby system. When the above occurs, the service level 282 of the service for switching from the active system to the standby system is stored.
 この時間差とは、受信側の通信制御装置20が、予備系の通信経路を介して後述する特定の制御パケットを受信した受信時刻から、現用系の通信経路を介して同一の制御パケットを受信するまでの時間差を指す。それぞれのサービスレベルにおける切替閾値は、それぞれのサービスレベルに含まれるそれぞれのサービスに要求される遅延時間の許容範囲に基づいて予め定められ、例えば管理装置11によって各通信制御装置20に設定される。 This time difference means that the communication control device 20 on the receiving side receives the same control packet via the working communication path from the reception time when the specific control packet described later is received via the spare system communication path. Point to the time difference up to The switching threshold in each service level is determined in advance based on the allowable range of the delay time required for each service included in each service level, and is set in each communication control device 20 by the management device 11, for example.
 また、切戻閾値テーブル285には、サービスを提供するためのデータを含むデータパケットの通信経路を、現用系から予備系に切り替えた後に、再び予備系から現用系に切り戻すための時間差の閾値を示す切戻閾値286に対応付けて、時間差が切戻閾値286未満となった場合に、予備系から現用系に切り戻すサービスのサービスレベル287が格納される。 Also, in the switchback threshold table 285, the threshold of the time difference for switching back from the spare system to the active system after switching the communication path of the data packet including the data for providing the service from the active system to the standby system. The service level 287 of the service for switching back from the spare system to the active system is stored in association with the switching back threshold 286 indicating that the time difference is less than the switching back threshold 286.
 なお、基幹網12は、通常は現用系の通信経路を使い続けるように設計されており、サービスの品質に問題がなければ、運用の面からも極力現用系を使い続けた方が好ましい場合が多い。そのため、現用系と予備系の遅延時間の差が少なくなった段階で通信経路を予備系から現用系に切り戻すようにしている。 It should be noted that the backbone network 12 is normally designed to continue using the active communication path, and if there is no problem with the quality of service, it may be preferable to continue using the active system as much as possible from the viewpoint of operation as well. There are many. Therefore, the communication path is switched from the backup system to the active system at a stage where the difference in delay time between the active system and the backup system is reduced.
 しかし、切戻閾値をあまり長くしすぎると、切り戻した直後に再び切り替える事態が発生する可能性が高まり、切り替えや切り戻しに伴って基幹網12内に発生する無駄なトラフィックが多くなるため、切戻閾値は、切替閾値よりも十分に短く(例えば切替閾値の半分程度)することが好ましい。 However, if the reversion threshold is too long, the possibility of switching again immediately after reversion is increased, and wasteful traffic generated in the backbone network 12 accompanying switching and reversion increases. The switchback threshold is preferably sufficiently shorter than the switching threshold (for example, about half of the switching threshold).
 図2に戻って説明を続ける。制御パケット送信部25は、所定のタイミング(例えば、管理装置11から指示されたタイミング)で、例えば図8に示すようなデータ構造の遅延測定用の制御パケット40を2つ作成する。制御パケット40には、ヘッダ400およびペイロード401が含まれ、ペイロード401には、メッセージID402、VLANID403、シーケンス番号404、および送信時刻405が含まれる。 Returning to FIG. 2, the description will be continued. The control packet transmission unit 25 creates two control packets 40 for delay measurement having a data structure as shown in FIG. 8 at a predetermined timing (for example, a timing instructed by the management apparatus 11). The control packet 40 includes a header 400 and a payload 401, and the payload 401 includes a message ID 402, a VLAN ID 403, a sequence number 404, and a transmission time 405.
 制御パケット送信部25は、作成した2つの制御パケット40において、メッセージID402には当該制御パケット40が遅延測定用の制御パケット40であることを示す情報を格納し、シーケンス番号404に同一の数値を格納する。そして、制御パケット送信部25は、経路種別DB26を参照して、一方の制御パケット40のVLANID403に現用系の通信経路の識別情報を格納し、他方の制御パケット40のVLANID403に予備系の通信経路の識別情報を格納する。 The control packet transmitter 25 stores information indicating that the control packet 40 is the control packet 40 for delay measurement in the message ID 402 in the two control packets 40 created, and the same numerical value is stored in the sequence number 404. Store. Then, the control packet transmission unit 25 stores the identification information of the communication path of the current system in the VLAN ID 403 of one control packet 40 with reference to the path type DB 26, and the communication path of the backup system in the VLAN ID 403 of the other control packet 40. Stores identification information of
 そして、制御パケット送信部25は、一方の制御パケット40の送信時刻405に現在時刻を設定して現用系の通信経路を介して通信制御装置20へ送信し、他方の制御パケット40の送信時刻405に現在時刻を設定して予備系の通信経路を介して通信制御装置20へ送信する。なお、それぞれの制御パケット40の送信時の時刻がそれぞれの送信時刻405に設定されていれば、2つの制御パケット40の送信時刻405に設定される時刻の情報は同一の値でなくてもよい。 Then, the control packet transmission unit 25 sets the current time to the transmission time 405 of one control packet 40 and transmits it to the communication control apparatus 20 via the communication path of the active system, and the transmission time 405 of the other control packet 40. The current time is set to and transmitted to the communication control apparatus 20 via the communication path of the spare system. In addition, if the time at the time of transmission of each control packet 40 is set to each transmission time 405, the information of the time set to the transmission time 405 of the two control packets 40 may not have the same value. .
 制御パケット送信部25は、同一のシーケンス番号の遅延測定用の制御パケット40を現用系と予備系の双方の通信経路に送出する処理を、所定時間毎(例えば100ミリ秒毎)に複数回繰り返す。そして、制御パケット送信部25は、図9に示すような測定結果報告パケット41を、当該遅延測定用の制御パケット40の送信先の通信制御装置20から受信する。測定結果報告パケット41には、ヘッダ410およびペイロード411が含まれ、ペイロード411には、メッセージID412、VLANID413、VLANID414、および測定結果415が含まれる。 The control packet transmission unit 25 repeats the process of transmitting the control packet 40 for delay measurement with the same sequence number to both the active and standby communication paths at predetermined time intervals (for example, every 100 milliseconds) a plurality of times. . Then, the control packet transmitter 25 receives the measurement result report packet 41 as shown in FIG. 9 from the communication control apparatus 20 of the transmission destination of the control packet 40 for delay measurement. The measurement result report packet 41 includes a header 410 and a payload 411, and the payload 411 includes a message ID 412, a VLAN ID 413, a VLAN ID 414, and a measurement result 415.
 メッセージID412には、当該測定結果報告パケット41が測定結果報告用のパケットであることを示す情報が格納される。VLANID413には、遅延時間の測定対象となった現用系の通信経路の識別情報が格納される。VLANID414には、遅延時間の測定基準となった予備系の通信経路の識別情報が格納される。測定結果415には、当該測定結果報告パケット41の送信元の通信制御装置20が、予備系の通信経路を介して遅延測定用の制御パケット40を受信した受信時刻から、現用系の通信経路を介して同一のシーケンス番号を有する遅延測定用の制御パケット40を受信するまでの時間差が格納される。 The message ID 412 stores information indicating that the measurement result report packet 41 is a packet for measurement result report. The VLAN ID 413 stores identification information of the communication path of the current system for which the delay time is to be measured. The VLAN ID 414 stores identification information of the communication path of the backup system, which is the measurement standard of the delay time. In the measurement result 415, the communication control device 20 of the transmission source of the measurement result report packet 41 uses the communication path of the working system from the reception time when the control packet 40 for delay measurement is received via the communication path of the protection system. A time difference until reception of the control packet 40 for delay measurement having the same sequence number is stored.
 測定結果報告パケット41を受信した場合、制御パケット送信部25は、測定結果報告パケット41に含まれるVLANID413をVLANID241として、測定結果報告パケット41に含まれているVLANID414を基準VLANID242として、測定結果報告パケット41に含まれている測定結果415を遅延量243として、それぞれ遅延DB24内の遅延テーブル240に格納する。 When the measurement result report packet 41 is received, the control packet transmission unit 25 sets the VLAN ID 413 included in the measurement result report packet 41 as the VLAN ID 241 and sets the VLAN ID 414 included in the measurement result report packet 41 as the reference VLAN ID 242 as the measurement result report packet. The measurement result 415 contained in 41 is stored in the delay table 240 in the delay DB 24 as the delay amount 243.
 なお、遅延測定用の制御パケット40や測定結果報告パケット41は、例えばITU-T Y.1731で定義されているVSM(Vendor Specific Message)フレームやAPS(Automatic Protection Switching)フレームのフォーマットをベースとして構成することができる。 The control packet 40 for delay measurement and the measurement result report packet 41 are, for example, ITU-T Y.3. It can be configured based on the format of Vendor Specific Message (VSM) frame or Automatic Protection Switching (APS) frame defined in 1731.
 次に、制御パケット送信部25は、例えば図10に示すようなデータ構造の切替判定用の制御パケット42を2つ作成する。制御パケット42には、ヘッダ420およびペイロード421が含まれ、ペイロード421には、メッセージID422、VLANID423、シーケンス番号424、およびサービス情報425が含まれる。 Next, the control packet transmission unit 25 creates two control packets 42 for switching determination of the data structure as shown in FIG. 10, for example. The control packet 42 includes a header 420 and a payload 421, and the payload 421 includes a message ID 422, a VLAN ID 423, a sequence number 424, and service information 425.
 制御パケット送信部25は、作成した2つの制御パケット42において、メッセージID422には当該制御パケット42が切替判定用の制御パケット42であることを示す情報を格納し、シーケンス番号424には同一の数値を格納し、サービス情報425には送信経路テーブル220において経路種別に値が設定されているものについて、サービスID、経路種別、およびサービスレベルの情報426が格納される。なお、サービス情報425は、作成した2つの制御パケット42の少なくともいずれかに含まれていればよい。 The control packet transmitter 25 stores information indicating that the control packet 42 is the control packet 42 for switching determination in the message ID 422 in the two control packets 42 created, and the same numerical value is stored in the sequence number 424. The service ID, path type, and service level information 426 is stored in the service information 425 for the path type set in the transmission path table 220. The service information 425 may be included in at least one of the two control packets 42 created.
 そして、制御パケット送信部25は、経路種別DB26を参照して、一方の制御パケット42のVLANID423に現用系の通信経路の識別情報を格納し、他方の制御パケット42のVLANID423に予備系の通信経路の識別情報を格納する。 Then, the control packet transmission unit 25 stores the identification information of the communication path of the current system in the VLANID 423 of one control packet 42 with reference to the path type DB 26, and the communication path of the backup system in the VLANID 423 of the other control packet 42. Stores identification information of
 なお、制御パケット42は、例えばITU-T Y.1731で定義されているCCM(Continuity Check Message)フレームのフォーマットをベースとして構成することができる。 The control packet 42 is, for example, ITU-T Y.3. It can be configured based on the format of a Continuity Check Message (CCM) frame defined in 1731.
 次に、制御パケット送信部25は、VLANID423に設定されている現用系の通信経路の識別情報に基づいて遅延DB24の遅延テーブル240を参照し、当該現用系のVLANIDに対応付けられている遅延量を抽出する。 Next, the control packet transmitter 25 refers to the delay table 240 of the delay DB 24 based on the identification information of the active communication path set in the VLAN ID 423, and the delay amount associated with the active VLAN ID. Extract
 抽出した遅延量が正の値である場合(即ち、予備系の通信経路よりも現用系の通信経路の方が遅延が大きい場合)、制御パケット送信部25は、制御パケット42を送信すべきタイミングよりも、当該抽出した遅延量の時間分前のタイミングで、VLANID423に現用系の通信経路の識別情報を有する制御パケット42を、現用系の通信経路を介して通信制御装置20へ送信し、制御パケット42を送信すべきタイミングで、VLANID423に予備系の通信経路の識別情報を有する制御パケット42を、予備系の通信経路を介して通信制御装置20へ送信する。 When the extracted delay amount is a positive value (that is, when the delay of the active communication path is larger than that of the backup communication path), the control packet transmitter 25 transmits the control packet 42 at a timing. The control packet 42 having the identification information of the communication path of the active system in the VLAN ID 423 is transmitted to the communication control device 20 via the communication path of the active system at the timing earlier than the extracted delay amount by time. At the timing when the packet 42 is to be transmitted, the control packet 42 having the identification information of the communication path of the protection system in the VLAN ID 423 is transmitted to the communication control device 20 via the communication path of the protection system.
 一方、抽出した遅延量が負の値である場合(即ち、予備系の通信経路よりも現用系の通信経路の方が遅延が小さい場合)、制御パケット送信部25は、制御パケット42を送信すべきタイミングよりも、当該抽出した遅延量の時間分後のタイミングで、VLANID423に現用系の通信経路の識別情報を有する制御パケット42を、現用系の通信経路を介して通信制御装置20へ送信し、制御パケット42を送信すべきタイミングで、VLANID423に予備系の通信経路の識別情報を有する制御パケット42を、予備系の通信経路を介して通信制御装置20へ送信する。 On the other hand, when the extracted delay amount is a negative value (ie, when the delay of the active communication path is smaller than that of the standby communication path), the control packet transmitter 25 transmits the control packet 42. A control packet 42 having identification information of the communication path of the active system in the VLAN ID 423 is transmitted to the communication control device 20 via the communication path of the active system at a timing after the extracted delay amount time than the power timing. At the timing when the control packet 42 is to be transmitted, the control packet 42 having the identification information of the communication path of the protection system in the VLAN ID 423 is transmitted to the communication control device 20 via the communication path of the protection system.
 これにより、現用系の通信経路と予備系の通信経路のそれぞれを介して送信された同一のシーケンス番号を有する切替判定用の制御パケット42は、いずれの通信経路にも輻輳が発生していない場合には、ほぼ同一のタイミングで受信側の通信制御装置20において受信されることになる。輻輳が発生していない場合の受信側の通信制御装置20での受信タイミングを精度よく合わせるためには、現用系の通信経路と予備系の通信経路の伝送時間の差の測定は、基幹網12に輻輳が発生している可能性が低い時間帯(例えば深夜や明方など)に実行されることが好ましい。 As a result, when the control packet 42 for switching determination having the same sequence number transmitted through each of the active communication path and the backup communication path is not congested in any of the communication paths. Is received by the communication control apparatus 20 on the receiving side at almost the same timing. In order to precisely match the reception timing in the communication control apparatus 20 on the receiving side when congestion does not occur, the measurement of the difference in transmission time between the communication path of the active system and the communication path of the standby system It is preferable to be performed at a time zone where there is a low possibility that congestion has occurred (for example, midnight, light, etc.).
 なお、制御パケット送信部25は、送信タイミングを調整した同一のシーケンス番号を有する切替判定用の制御パケット42を、所定時間毎(例えば100ミリ秒毎)に送信する。 The control packet transmitter 25 transmits the control packet 42 for switching determination having the same sequence number whose transmission timing has been adjusted, every predetermined time (for example, every 100 milliseconds).
 データ送受信部21は、アクセス網13を介して通信装置14からユーザデータを受信した場合に、送信経路DB22を参照して、当該ユーザデータの宛先となる通信装置14が接続する通信制御装置20の送信経路テーブル220を特定する。そして、データ送受信部21は、特定した送信経路テーブル220を参照して、当該ユーザデータによって提供されるサービスのサービスIDに対応付けられている経路種別を特定する。そして、データ送受信部21は、経路種別DB26内の経路種別テーブル260を参照して、特定した経路種別に対応するVLANIDを、ユーザデータを送信すべき通信経路の識別情報として特定する。 When the data transmission / reception unit 21 receives user data from the communication device 14 via the access network 13, the data transmission / reception unit 21 refers to the transmission path DB 22 to select the communication control device 20 to which the communication device 14 serving as the destination of the user data is connected. The transmission route table 220 is identified. Then, the data transmitting / receiving unit 21 refers to the identified transmission route table 220 to identify the route type associated with the service ID of the service provided by the user data. Then, the data transmitting / receiving unit 21 refers to the route type table 260 in the route type DB 26, and identifies VLANID corresponding to the specified route type as identification information of a communication route to which user data is to be transmitted.
 なお、サービスの提供が終了した場合、データ送受信部21は、当該サービスのサービスIDに対応付けられている経路種別を送信経路テーブル220から削除するため、当該ユーザデータによるサービスの提供を開始する場合、データ送受信部21は、送信経路テーブル220において、当該サービスのサービスIDに現用系を示す経路種別を対応付ける。 In the case where the provision of the service is ended, the data transmitting / receiving unit 21 starts providing the service by the user data in order to delete the route type associated with the service ID of the service from the transmission route table 220. In the transmission path table 220, the data transmitting / receiving unit 21 associates the service type of the service with the path type indicating the active system.
 そして、データ送受信部21は、例えば図11に示すようなユーザデータパケット43を作成する。ユーザデータパケット43には、ヘッダ430およびペイロード431が含まれ、ペイロード431にはユーザデータが格納される。ヘッダ430には、ユーザデータパケット43の宛先の通信制御装置20のアドレスを示すDA432と、ユーザデータパケット43の送信元の通信制御装置20のアドレスを示すSA433と、当該ユーザデータパケット43を送信する通信経路のVLANID434と、当該ユーザデータパケット43を一意に識別するためのシーケンス番号435と、当該ユーザデータパケット43に含まれているデータによって提供されるサービスのサービスID436とが格納される。 Then, the data transmitting / receiving unit 21 creates a user data packet 43 as shown in FIG. 11, for example. The user data packet 43 includes a header 430 and a payload 431, and the payload 431 stores user data. In the header 430, a DA 432 indicating the address of the communication control apparatus 20 of the destination of the user data packet 43, an SA 433 indicating the address of the communication control apparatus 20 of the transmission source of the user data packet 43, and the user data packet 43 are transmitted. The VLAN ID 434 of the communication path, the sequence number 435 for uniquely identifying the user data packet 43, and the service ID 436 of the service provided by the data contained in the user data packet 43 are stored.
 そして、データ送受信部21は、作成したユーザデータパケット43を送信すべき通信経路の経路種別が現用系である場合に、遅延DB24の遅延テーブル240を参照して、当該現用系の通信経路の識別情報に対応付けられている遅延量を抽出する。 Then, when the path type of the communication path to which the created user data packet 43 is to be transmitted is the active system, the data transmission / reception unit 21 refers to the delay table 240 of the delay DB 24 to identify the active communication path. Extract the delay amount associated with the information.
 抽出した遅延量が正の値である場合、データ送受信部21は、作成した測定結果報告パケット41を、送信すべきタイミングよりも当該抽出した遅延量の時間分前のタイミングで、現用系の通信経路を介して通信制御装置20へ送信する。 When the extracted delay amount is a positive value, the data transmitting / receiving unit 21 communicates the active communication at a timing before the timing to transmit the created measurement result report packet 41 by the time corresponding to the extracted delay amount. It transmits to the communication control apparatus 20 via a route.
 一方、抽出した遅延量が負の値である場合、データ送受信部21は、作成した測定結果報告パケット41を、送信すべきタイミングよりも当該抽出した遅延量の時間分後のタイミングで、現用系の通信経路を介して通信制御装置20へ送信する。 On the other hand, when the extracted delay amount is a negative value, the data transmitting / receiving unit 21 uses the current measurement system at a timing after the extracted delay amount for a time portion of the extracted measurement result report packet 41 than the transmission timing. It transmits to the communication control apparatus 20 via the following communication path.
 また、データ送受信部21は、経路切替指示部23からサービスIDと共に2重送信開始を指示された場合に、該当するサービスIDをヘッダに含むユーザデータパケットを、現用系および予備系の両方の通信経路を介して他の通信制御装置20へ送信する。 Further, when the data transmission / reception unit 21 is instructed by the path switching instruction unit 23 to start double transmission together with the service ID, the communication of both the active system and the backup system includes the user data packet including the corresponding service ID in the header. It transmits to another communication control apparatus 20 via a path.
 そして、経路切替指示部23からサービスIDおよびVLANIDと共に2重送信終了を指示された場合、データ送受信部21は、該当するサービスIDをヘッダに含むユーザデータパケットであって、現用系および予備系の両方の通信経路を介して送信していたユーザデータパケットのうち、指示されたVLANIDに対応する通信経路を介するユーザデータパケットの送信を停止する。 Then, when it is instructed from the path switching instructing unit 23 to finish double transmission together with the service ID and VLAN ID, the data transmitting / receiving unit 21 is a user data packet including the corresponding service ID in the header and Among the user data packets transmitted through both communication paths, transmission of user data packets through the communication path corresponding to the designated VLAN ID is stopped.
 時間差測定部27は、現用系および予備系のそれぞれの通信経路を介して、対向する他の通信制御装置20から図8に示した遅延測定用の制御パケット40を受信した場合に、予備系の通信経路を介した遅延測定用の制御パケット40の伝送時間から、現用系の通信経路を介した遅延測定用の制御パケット40の伝送時間の時間差の測定を開始する。このとき、時間差測定部27は、遅延測定用の制御パケット40の受信時刻から、当該制御パケット40内の送信時刻405を差し引いた時間を、その通信経路の伝送時間とする。 When the time difference measurement unit 27 receives the control packet 40 for delay measurement shown in FIG. 8 from the other communication control device 20 opposed thereto via the communication paths of the working system and the protection system, the time difference measurement unit 27 From the transmission time of the control packet 40 for delay measurement through the communication path, measurement of the time difference of the transmission time of the control packet 40 for delay measurement through the communication path of the working system is started. At this time, the time difference measurement unit 27 sets the time obtained by subtracting the transmission time 405 in the control packet 40 from the reception time of the control packet 40 for delay measurement as the transmission time of the communication path.
 そして、時間差測定部27は、所定個数(例えば100個)の遅延測定用の制御パケット40の組について測定した時間差の平均を測定結果として算出する。そして、時間差測定部27は、算出した測定結果を含む測定結果報告パケット41(図9参照)を作成し、作成した測定結果報告パケット41を、遅延測定用の制御パケット40の送信元の通信制御装置20へ、例えば予備系の通信経路を介して送信する。 Then, the time difference measurement unit 27 calculates, as a measurement result, an average of time differences measured for a predetermined number (for example, 100) of control packet sets for delay measurement. Then, the time difference measurement unit 27 creates a measurement result report packet 41 (see FIG. 9) including the calculated measurement result, and controls the communication of the transmission source of the control packet 40 for delay measurement of the created measurement result report packet 41. It transmits to the apparatus 20, for example via the communication path of a backup system.
 また、時間差測定部27は、現用系および予備系のそれぞれの通信経路を介して、図10に示した切替判定用の制御パケット42を受信した場合に、予備系の通信経路を介して切替判定用の制御パケット42を受信した受信時刻から、現用系の通信経路を介して切替判定用の制御パケット42を受信するまでの時間差を測定する。そして、時間差測定部27は、測定結果を、切替判定用の制御パケット42に含まれているサービス情報と共に経路切替要求部29へ送信する。 Further, when the time difference measurement unit 27 receives the control packet 42 for switching determination shown in FIG. 10 via the communication paths of the active system and the backup system, the time difference measurement unit 27 performs switching determination via the communication path of the backup system. The time difference from the reception time at which the control packet 42 for control is received to the reception of the control packet 42 for switching determination via the communication path of the working system is measured. Then, the time difference measurement unit 27 transmits the measurement result to the path switching request unit 29 together with the service information included in the control packet 42 for switching determination.
 経路切替要求部29は、時間差測定部27から時間差の測定結果を受信した場合に、閾値DB28内の切替閾値テーブル280を参照し、測定結果が示す時間差が切替閾値テーブル280に格納されている少なくともいずれかの切替閾値以上となっているか否かを判定する。 When the path switching request unit 29 receives the measurement result of the time difference from the time difference measurement unit 27, the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the time difference indicated by the measurement result is stored in the switching threshold table 280 at least. It is determined whether or not any switching threshold value or more is reached.
 少なくともいずれかの切替閾値以上となっている場合、経路切替要求部29は、該当する切替閾値の中で最大の切替閾値に対応付けられているサービスレベルを切替閾値テーブル280から抽出する。そして、経路切替要求部29は、抽出したサービスレベルの中から、時間差測定部27から受信したサービス情報において現用系の経路種別に対応付けられているサービスレベルをさらに抽出する。 If it is equal to or higher than at least one of the switching thresholds, the path switching request unit 29 extracts the service level associated with the largest switching threshold among the corresponding switching thresholds from the switching threshold table 280. Then, the route switching request unit 29 further extracts the service level associated with the currently used route type in the service information received from the time difference measuring unit 27 from the extracted service levels.
 時間差測定部27から受信したサービス情報の中に、現用系の経路種別に対応付けられているサービスレベルが含まれているということは、そのサービスレベルのユーザデータパケットが現用系の通信経路を介して送信されていることを意味している。時間差測定部27から受信したサービス情報の中に、現用系の経路種別に対応付けられているサービスレベルが含まれていなければ、そのサービスレベルのユーザデータパケットが予備系の通信経路を介して送信されていることを意味している。 If the service information received from the time difference measurement unit 27 includes the service level associated with the route type of the active system, it means that the user data packet of the service level passes through the communication route of the active system. Means that it has been sent. If the service information received from the time difference measurement unit 27 does not include the service level associated with the currently used route type, the user data packet of the service level is transmitted via the backup communication route. It means being done.
 次に、経路切替要求部29は、例えば図12に示すような切替要求パケット44を作成し、作成した切替要求パケット44を、切替判定用の制御パケット42の送信元の通信制御装置20へ、例えば予備系の通信経路を介して送信する。ここで、切替要求パケット44には、例えば図12に示すように、ヘッダ440およびペイロード441が含まれ、ペイロード441には、当該パケットが切替要求パケットであることを示すメッセージID442と、切替閾値テーブル280を参照して抽出したサービスレベル443とが格納される。 Next, the path switching request unit 29 creates a switching request packet 44 as shown in FIG. 12, for example, and sends the created switching request packet 44 to the communication control device 20 of the transmission source of the control packet 42 for switching determination. For example, it transmits via the communication path of a backup system. Here, as shown in FIG. 12, for example, the switching request packet 44 includes a header 440 and a payload 441, and the payload 441 has a message ID 442 indicating that the packet is a switching request packet, and a switching threshold table. The service level 443 extracted with reference to 280 is stored.
 次に、経路切替要求部29は、切替要求パケット44の送信後に、当該切替要求パケット44の送信先の通信制御装置20から例えば図13に示すような切替応答パケット45を受信する。切替応答パケット45には、例えば図13に示すように、ヘッダ450およびペイロード451が含まれ、ペイロード451には、当該パケットが切替応答パケットであることを示すメッセージID452と、切り替えの対象となるサービスのサービスID453とが格納される。 Next, after transmitting the switching request packet 44, the path switching request unit 29 receives, for example, a switching response packet 45 as shown in FIG. 13 from the communication control device 20 of the transmission destination of the switching request packet 44. For example, as shown in FIG. 13, the switching response packet 45 includes a header 450 and a payload 451, and the payload 451 has a message ID 452 indicating that the packet is a switching response packet, and a service to be switched. And the service ID 453 of the
 切替応答パケット45を受信した場合、経路切替要求部29は、当該切替応答パケット45のサービスID453で指定されたサービスIDをヘッダに含むユーザデータパケット43(図11参照)を、現用系および予備系のそれぞれの通信経路を介して受信する。そして、経路切替要求部29は、指定されたサービスIDをヘッダに含むユーザデータパケット43であって、同一のシーケンス番号をヘッダに含むユーザデータパケット43について、現用系および予備系のそれぞれの通信経路を介して受信したユーザデータパケット43のペイロード431が一致するか否かを判定する。 When the switching response packet 45 is received, the path switching request unit 29 sets the user data packet 43 (see FIG. 11) including the service ID specified by the service ID 453 of the switching response packet 45 in the header to the active and standby systems. Through each communication path of The route switching request unit 29 is the user data packet 43 including the specified service ID in the header, and the communication routes of the active system and the spare system for the user data packet 43 including the same sequence number in the header. It is determined whether the payloads 431 of the user data packets 43 received via the address match.
 現用系および予備系のそれぞれの通信経路を介して受信した同一のシーケンス番号を有するユーザデータパケット43の組のデータが、所定個数(例えば100パケット)以上連続して一致した場合、経路切替要求部29は、例えば図14に示すような切替完了通知パケット46を作成し、作成した切替完了通知パケット46を、ユーザデータパケット43の送信元の通信制御装置20へ送信する。 If the data of the set of user data packets 43 having the same sequence number received through the communication paths of the active system and the spare system continuously matches a predetermined number (for example, 100 packets) or more, the path switching request unit The packet 29 creates, for example, a switching completion notification packet 46 as shown in FIG. 14 and transmits the created switching completion notification packet 46 to the communication control apparatus 20 of the transmission source of the user data packet 43.
 切替完了通知パケット46には、例えば図14に示すように、ヘッダ460およびペイロード461が含まれ、ペイロード461には、当該パケットが切替完了通知パケットであることを示すメッセージID462と、切り替えの対象となるサービスのサービスID463とが格納される。 For example, as shown in FIG. 14, the switching completion notification packet 46 includes a header 460 and a payload 461. The payload 461 includes a message ID 462 indicating that the packet is a switching completion notification packet, and a target of switching. And the service ID 463 of the service to be stored.
 また、経路切替要求部29は、時間差測定部27から時間差の測定結果を受信した場合に、閾値DB28内の切戻閾値テーブル285を参照し、測定結果が示す時間差が切戻閾値テーブル285に格納されている少なくともいずれかの切戻閾値未満となっているか否かを判定する。 Further, when the path switching request unit 29 receives the measurement result of the time difference from the time difference measurement unit 27, the path switching request unit 29 refers to the switching back threshold table 285 in the threshold DB 28 and stores the time difference indicated by the measurement result in the switching back threshold table 285 It is determined whether it is less than at least one of the reversion thresholds that have been made.
 少なくともいずれかの切戻閾値未満となっている場合、経路切替要求部29は、該当する切戻閾値の中で最大の切戻閾値に対応付けられているサービスレベルを切戻閾値テーブル285から抽出する。そして、経路切替要求部29は、抽出したサービスレベルの中から、時間差測定部27から受信したサービス情報において予備系の経路種別に対応付けられているサービスレベルをさらに抽出する。 If it is less than at least one of the reversion thresholds, the path switching request unit 29 extracts the service level associated with the largest reversion threshold among the corresponding reversion thresholds from the reversion threshold table 285. Do. Then, the route switching request unit 29 further extracts the service level associated with the route type of the spare system in the service information received from the time difference measuring unit 27 from the extracted service levels.
 次に、経路切替要求部29は、例えば図15に示すような切戻要求パケット47を作成し、作成した切戻要求パケット47を、切替判定用の制御パケット42の送信元の通信制御装置20へ、例えば予備系の通信経路を介して送信する。ここで、切戻要求パケット47には、例えば図15に示すように、ヘッダ470およびペイロード471が含まれ、ペイロード471には、当該パケットが切戻要求パケットであることを示すメッセージID472と、切戻閾値テーブル285を参照して抽出したサービスレベル473とが格納される。 Next, the path switching request unit 29 creates, for example, a switchback request packet 47 as shown in FIG. 15, and creates the switchback request packet 47 as the communication control device 20 of the transmission source of the control packet 42 for switching determination. , For example, via a spare communication path. Here, as shown in FIG. 15, for example, the failback request packet 47 includes a header 470 and a payload 471, and the payload 471 has a message ID 472 indicating that the packet is a failback request packet, and The service level 473 extracted with reference to the return threshold table 285 is stored.
 次に、経路切替要求部29は、切戻要求パケット47の送信後に、当該切戻要求パケット47の送信先の通信制御装置20から例えば図16に示すような切戻応答パケット48を受信する。切戻応答パケット48には、例えば図16に示すように、ヘッダ480およびペイロード481が含まれ、ペイロード481には、当該パケットが切戻応答パケットであることを示すメッセージID482と、切り戻しの対象となるサービスのサービスID483とが格納される。 Next, after transmitting the switchback request packet 47, the path switch request unit 29 receives a switchback response packet 48 as shown in FIG. 16, for example, from the communication control device 20 of the transmission destination of the switchback request packet 47. For example, as shown in FIG. 16, the failback response packet 48 includes a header 480 and a payload 481, and the payload 481 includes a message ID 482 indicating that the packet is a failback response packet, and a target of failback. And the service ID 483 of the service to be stored.
 切戻応答パケット48を受信した場合、経路切替要求部29は、当該切戻応答パケット48のサービスID483で指定されたサービスIDをヘッダに含むユーザデータパケット43(図11参照)を、現用系および予備系のそれぞれの通信経路を介して受信する。そして、経路切替要求部29は、指定されたサービスIDをヘッダに含むユーザデータパケット43であって、同一のシーケンス番号を有するユーザデータパケット43について、現用系および予備系のそれぞれの通信経路を介して受信したユーザデータパケット43のデータが一致するか否かを判定する。 When the switch back response packet 48 is received, the path switch request unit 29 uses the user data packet 43 (see FIG. 11) including the service ID specified by the service ID 483 of the switch back response packet 48 in the header. It receives via each communication path of the spare system. Then, the path switching request unit 29 is a user data packet 43 including the specified service ID in the header, and for the user data packet 43 having the same sequence number, through the respective communication paths of the active system and the spare system. It is determined whether the data of the received user data packet 43 match.
 現用系および予備系のそれぞれの通信経路を介して受信した同一のシーケンス番号を有するユーザデータパケット43の組のデータが、所定個数(例えば100パケット)以上連続して一致した場合、経路切替要求部29は、例えば図17に示すような切戻完了通知パケット49を作成し、作成した切戻完了通知パケット49を、ユーザデータパケット43の送信元の通信制御装置20へ送信する。 If the data of the set of user data packets 43 having the same sequence number received through the communication paths of the active system and the spare system continuously matches a predetermined number (for example, 100 packets) or more, the path switching request unit The packet 29 creates, for example, a switchback completion notification packet 49 as shown in FIG. 17 and transmits the created switchback completion notification packet 49 to the communication control apparatus 20 of the transmission source of the user data packet 43.
 切戻完了通知パケット49には、例えば図17に示すように、ヘッダ490およびペイロード491が含まれ、ペイロード491には、当該パケットが切戻完了通知パケットであることを示すメッセージID492と、切り戻しの対象となるサービスのサービスID493とが格納される。 For example, as illustrated in FIG. 17, the failback completion notification packet 49 includes a header 490 and a payload 491, and the payload 491 includes a message ID 492 indicating that the packet is a failback completion notification packet, and a failback. And the service ID 493 of the service to be a target of.
 なお、切替要求パケット44、切替応答パケット45、切替完了通知パケット46、切戻要求パケット47、切戻応答パケット48、および切戻完了通知パケット49は、例えばITU-T Y.1731で定義されているVSM(Vendor Specific Message)フレームやAPS(Automatic Protection Switching)フレームのフォーマットをベースとして構成することができる。 The switching request packet 44, the switching response packet 45, the switching completion notifying packet 46, the switching back request packet 47, the switching back response packet 48, and the switching back completion notification packet 49 are, for example, ITU-T Y.3. It can be configured based on the format of Vendor Specific Message (VSM) frame or Automatic Protection Switching (APS) frame defined in 1731.
 図2に戻って説明を続ける。経路切替指示部23は、図12に示した切替要求パケット44を受信した場合に、送信経路DB22内の送信経路テーブル220を参照し、受信した切替要求パケット44に含まれているサービスレベルに対応付けられており、かつ、現用系の経路種別が対応付けられているサービスIDを抽出する。 Returning to FIG. 2, the description will be continued. When the switching request packet 44 shown in FIG. 12 is received, the path switching instruction unit 23 refers to the transmission path table 220 in the transmission path DB 22 and copes with the service level included in the received switching request packet 44. It extracts the service ID which is attached and which is associated with the route type of the current system.
 該当するサービスIDが複数ある場合には、対応付けられているサービスレベルが最も高い(サービスレベルの数値が最も低い)サービスIDを抽出する。それでもサービスIDが複数抽出された場合には、そのサービスIDの中で、予め定められたサービス毎の優先度に従い、優先度の最も高いサービスのサービスIDを抽出する。 When there are a plurality of corresponding service IDs, the service ID with the highest associated service level (the lowest service level numerical value) is extracted. If multiple service IDs are extracted, the service ID of the service with the highest priority is extracted from the service IDs according to the predetermined priority for each service.
 そして、経路切替指示部23は、抽出したサービスIDと共に2重送信開始をデータ送受信部21に指示する。そして、経路切替指示部23は、当該サービスIDを含む切替応答パケット45(図13参照)を、切替要求パケット44の送信元の通信制御装置20へ例えば予備系の通信経路を介して送信する。 Then, the path switching instructing unit 23 instructs the data transmitting / receiving unit 21 to start double transmission together with the extracted service ID. Then, the path switching instructing unit 23 transmits the switching response packet 45 (see FIG. 13) including the service ID to the communication control device 20 of the transmission source of the switching request packet 44 via, for example, the communication path of the protection system.
 そして、図14に示した切替完了通知パケット46を受信した場合、経路切替指示部23は、当該切替完了通知パケット46に含まれているサービスIDと共に2重送信終了をデータ送受信部21に指示する。そして、経路切替指示部23は、送信経路テーブル220を参照して、当該サービスIDに対応付けられている経路種別を、予備系の通信経路を示す情報に書き換える。 Then, when the switching completion notification packet 46 shown in FIG. 14 is received, the path switching instructing unit 23 instructs the data transmitting / receiving unit 21 to finish double transmission together with the service ID included in the switching completion notification packet 46. . Then, the path switching instruction unit 23 refers to the transmission path table 220 and rewrites the path type associated with the service ID into information indicating a communication path of the protection system.
 また、図15に示した切戻要求パケット47を受信した場合、経路切替指示部23は、送信経路DB22内の送信経路テーブル220を参照し、受信した切戻要求パケット47に含まれているサービスレベルに対応付けられており、かつ、予備系の経路種別が対応付けられているサービスIDを抽出する。 When the switchback request packet 47 shown in FIG. 15 is received, the path switching instruction unit 23 refers to the transmission path table 220 in the transmission path DB 22, and the service included in the received switchback request packet 47. The service ID that is associated with the level and that is associated with the spare route type is extracted.
 該当するサービスIDが複数ある場合には、対応付けられているサービスレベルが最も高い(サービスレベルの数値が最も低い)サービスIDを抽出する。それでもサービスIDが複数抽出された場合には、そのサービスIDの中で、予め定められたサービス毎の優先度に従い、優先度の最も高いサービスのサービスIDを抽出する。 When there are a plurality of corresponding service IDs, the service ID with the highest associated service level (the lowest service level numerical value) is extracted. If multiple service IDs are extracted, the service ID of the service with the highest priority is extracted from the service IDs according to the predetermined priority for each service.
 そして、経路切替指示部23は、抽出したサービスIDと共に2重送信開始をデータ送受信部21に指示する。そして、経路切替指示部23は、当該サービスIDを含む切戻応答パケット48(図16参照)を、切戻要求パケット47の送信元の通信制御装置20へ例えば予備系の通信経路を介して送信する。 Then, the path switching instructing unit 23 instructs the data transmitting / receiving unit 21 to start double transmission together with the extracted service ID. Then, the path switching instructing unit 23 transmits the switchback response packet 48 (see FIG. 16) including the service ID to the communication control device 20 of the transmission source of the switchback request packet 47 via, for example, the communication path of the protection system. Do.
 そして、図17に示した切戻完了通知パケット49を受信した場合、経路切替指示部23は、当該切戻完了通知パケット49に含まれているサービスIDと共に2重送信終了をデータ送受信部21に指示する。そして、経路切替指示部23は、送信経路テーブル220を参照して、当該サービスIDに対応付けられている経路種別を、現用系の通信経路を示す情報に書き換える。 Then, when the switchback completion notification packet 49 shown in FIG. 17 is received, the path switching instructing unit 23 sends the data transmission / reception unit 21 the dual transmission end together with the service ID included in the switchback completion notification packet 49. To direct. Then, the path switching instruction unit 23 refers to the transmission path table 220, and rewrites the path type associated with the service ID into information indicating the currently used communication path.
 次に、通信システム10の動作をフローチャートを用いて説明する。図18は、現用系と予備系の通信経路の伝送時間差の測定動作の一例を示すフローチャートである。通信制御装置20は、例えば深夜や明方等の輻輳が発生している可能性が低い時間帯に、管理装置11からの指示により、本フローチャートに示す動作を開始する。なお、本フローチャートでは、図1のシステム構成における送信側の通信制御装置20-1と受信側の通信制御装置20-2を動作主体として説明する。 Next, the operation of the communication system 10 will be described using a flowchart. FIG. 18 is a flow chart showing an example of the measurement operation of the transmission time difference between the communication paths of the working system and the protection system. The communication control device 20 starts the operation shown in the flowchart in accordance with an instruction from the management device 11 in a time zone in which the possibility of occurrence of congestion such as midnight or light is low. In this flowchart, the communication control device 20-1 on the transmission side and the communication control device 20-2 on the reception side in the system configuration of FIG. 1 will be described as an operation subject.
 まず、通信制御装置20-1の制御パケット送信部25は、図8に示した遅延時間測定用の制御パケット40を作成し、作成した制御パケット40を、現用系の通信経路および予備系の通信経路のそれぞれを介して通信制御装置20-2へ送信する(S100)。 First, the control packet transmitter 25 of the communication control device 20-1 creates the control packet 40 for measuring the delay time shown in FIG. 8 and communicates the created control packet 40 with the communication path of the active system and the backup system. It transmits to the communication control device 20-2 via each of the paths (S100).
 次に、通信制御装置20-2の時間差測定部27は、現用系および予備系のそれぞれの通信経路を介して制御パケット40を受信し、予備系の通信経路を介して受信した遅延測定用の制御パケット40の伝送時間から、現用系の通信経路を介して受信した遅延測定用の制御パケット40の伝送時間の時間差を測定する(S101)。 Next, the time difference measurement unit 27 of the communication control device 20-2 receives the control packet 40 through the communication paths of the working system and the protection system, and for delay measurement received through the communication path of the protection system. From the transmission time of the control packet 40, the time difference of the transmission time of the control packet 40 for delay measurement received through the communication path of the working system is measured (S101).
 そして、時間差測定部27は、測定結果を含む測定結果報告パケット41(図9参照)を作成し、作成した測定結果報告パケット41を、通信制御装置20-1へ例えば予備系の通信経路を介して送信する(S102)。通信制御装置20-1の制御パケット送信部25は、受信した測定結果報告パケット41に含まれるVLANID413に対応付けて、測定結果報告パケット41に含まれているVLANID414および測定結果415の情報を遅延DB24に格納する(S103)。 Then, the time difference measurement unit 27 creates the measurement result report packet 41 (see FIG. 9) including the measurement result, and sends the created measurement result report packet 41 to the communication control device 20-1 via, for example, the communication path of the spare system. And transmit (S102). The control packet transmission unit 25 of the communication control device 20-1 delays the information of the VLAN ID 414 and the measurement result 415 contained in the measurement result report packet 41 in correspondence with the VLAN ID 413 contained in the received measurement result report packet 41. (S103).
 そして、通信制御装置20-1の制御パケット送信部25は、図10に示した切替判定用の制御パケット42を2つ作成し、遅延DB24内の遅延テーブル240に格納されている遅延量に基づいて送信タイミングを調整して、所定時間毎(例えば100ミリ秒毎)に、現用系および予備系のそれぞれの通信経路に作成した制御パケット42を送信する(S104)。 Then, the control packet transmitter 25 of the communication control device 20-1 creates two control packets 42 for switching determination shown in FIG. 10, and based on the delay amount stored in the delay table 240 in the delay DB 24. The transmission timing is adjusted, and the control packet 42 created is transmitted to each of the communication paths of the active system and the spare system at predetermined time intervals (for example, every 100 milliseconds) (S104).
 図19は、第1の実施形態における受信側の通信制御装置20の切替動作の一例を示すフローチャートである。なお、本フローチャートでは、図1のシステム構成において、受信側の通信制御装置20-2を動作主体として説明する。 FIG. 19 is a flowchart showing an example of the switching operation of the communication control device 20 on the receiving side in the first embodiment. In this flowchart, the communication control device 20-2 on the receiving side will be described as an operation subject in the system configuration of FIG.
 まず、時間差測定部27は、現用系および予備系のそれぞれの通信経路を介して、図10に示した切替判定用の制御パケット42を受信した場合に、予備系の通信経路を介して切替判定用の制御パケット42を受信した受信時刻から、現用系の通信経路を介して切替判定用の制御パケット42を受信するまでの受信時間差を測定する(S200)。そして、時間差測定部27は、測定結果を、切替判定用の制御パケット42に含まれているサービス情報と共に経路切替要求部29へ送信する。 First, when the time difference measurement unit 27 receives the control packet 42 for switching determination shown in FIG. 10 via the communication paths of the active system and the backup system, the time difference measurement unit 27 performs switching determination via the communication path of the backup system. The reception time difference until reception of the control packet 42 for switching determination via the communication path of the active system from the reception time at which the control packet 42 for E4 is received is measured (S200). Then, the time difference measurement unit 27 transmits the measurement result to the path switching request unit 29 together with the service information included in the control packet 42 for switching determination.
 次に、経路切替要求部29は、閾値DB28内の切替閾値テーブル280を参照し、時間差測定部27から受信した測定結果が示す時間差が、もっとも値の大きい切替閾値(図6の例では4000ミリ秒)である切替閾値4以上か否かを判定する(S201)。 Next, the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the switching threshold indicated by the measurement result received from the time difference measuring unit 27 is the switching threshold with the largest value (4000 mm in the example of FIG. 6). It is judged whether it is more than switching threshold 4 which is second) (S201).
 時間差が切替閾値4以上である場合(S201:Yes)、経路切替要求部29は、切替閾値4に対応付けられているサービスレベル1~4を切替閾値テーブル280から抽出する。そして、経路切替要求部29は、抽出したサービスレベル1~4の中から、時間差測定部27から受信したサービス情報において現用系の経路種別に対応付けられている(即ち、現用系の通信経路を介して提供中の)サービスのサービスレベルをさらに抽出する。 If the time difference is equal to or greater than the switching threshold 4 (S201: Yes), the path switching request unit 29 extracts service levels 1 to 4 associated with the switching threshold 4 from the switching threshold table 280. Then, the route switching request unit 29 is associated with the currently used route type in the service information received from the time difference measurement unit 27 among the extracted service levels 1 to 4 (ie, the active communication route Further extract the service level of the service).
 次に、経路切替要求部29は、抽出したサービスレベルを含む切替要求パケット44(図12参照)を作成し、作成した切替要求パケット44を通信制御装置20-1へ例えば予備系の通信経路を介して送信する(S202)。なお、サービスレベル1~4の中に、現用系の通信経路を介して提供中のサービスのサービスレベルが存在しない場合、経路の切り替えを実行する必要はないため、時間差測定部27は再びステップS200に示した処理を実行する。 Next, the route switching request unit 29 creates the switching request packet 44 (see FIG. 12) including the extracted service level, and sends the created switching request packet 44 to the communication control device 20-1, for example, It transmits via (S202). When there is no service level of the service being provided through the active communication path among the service levels 1 to 4, there is no need to execute path switching, so the time difference measurement unit 27 performs step S200 again. Execute the process shown in.
 次に、通信制御装置20-1から切替応答パケット45(図13参照)を受信した場合(S209:Yes)、経路切替要求部29は、引き続き、当該切替応答パケット45のサービスID453で指定されたサービスIDをヘッダに含むユーザデータパケット43(図11参照)を、現用系および予備系のそれぞれの通信経路を介して受信する。そして、経路切替要求部29は、指定されたサービスIDをヘッダに含むユーザデータパケット43であって、同一のシーケンス番号を有するユーザデータパケット43について、現用系および予備系のそれぞれの通信経路を介して受信したユーザデータパケット43のデータが一致するか否かを判定する(S210)。 Next, when the switch response packet 45 (see FIG. 13) is received from the communication control device 20-1 (S209: Yes), the path switch request unit 29 continues to be specified by the service ID 453 of the switch response packet 45. The user data packet 43 (see FIG. 11) including the service ID in the header is received via the communication paths of the active system and the standby system. Then, the path switching request unit 29 is a user data packet 43 including the specified service ID in the header, and for the user data packet 43 having the same sequence number, through the respective communication paths of the active system and the spare system. It is determined whether the data of the received user data packet 43 match (S210).
 現用系および予備系のそれぞれの通信経路を介して受信した同一のシーケンス番号を有するユーザデータパケット43の組のデータが、所定個数(例えば100パケット)以上連続して一致した場合(S210:Yes)、経路切替要求部29は、図14に示した切替完了通知パケット46を作成する。そして、経路切替要求部29は、作成した切替完了通知パケット46を、例えば予備系の通信経路を介して通信制御装置20-1へ送信し(S211)、時間差測定部27は再びステップS200に示した処理を実行する。 When the data of the set of user data packets 43 having the same sequence number received through the communication paths of the active system and the spare system continuously match a predetermined number (for example, 100 packets) or more (S210: Yes) The path switching request unit 29 creates the switching completion notification packet 46 shown in FIG. Then, the route switching request unit 29 transmits the created switching completion notification packet 46 to the communication control device 20-1 via, for example, the communication route of the protection system (S211), and the time difference measuring unit 27 indicates again to step S200. Execute the process.
 一方、現用系および予備系のそれぞれの通信経路を介して受信した同一のシーケンス番号を有するユーザデータパケット43の組のデータについて、所定個数(例えば1000パケット)以上比較しても、所定個数(例えば100パケット)以上連続して一致しなかった場合(S210:No)、経路切替要求部29は、通信制御装置20-1に対してエラーを通知し(S212)、時間差測定部27は再びステップS200に示した処理を実行する。 On the other hand, data of a set of user data packets 43 having the same sequence number received via respective communication paths of the active system and the spare system may be compared by a predetermined number (for example, 1000 packets) or more. If the packets do not continuously match for more than 100 packets (S210: No), the path switching request unit 29 notifies the communication control device 20-1 of an error (S212), and the time difference measurement unit 27 repeats step S200 again. Execute the process shown in.
 ステップS201において、時間差が切替閾値4未満である場合(S201:No)、経路切替要求部29は、閾値DB28内の切替閾値テーブル280を参照し、時間差測定部27から受信した測定結果が示す時間差が、次に値の大きい切替閾値3(図6の例では100ミリ秒)以上か否かを判定する(S203)。 In step S201, when the time difference is less than the switching threshold 4 (S201: No), the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the time difference indicated by the measurement result received from the time difference measurement unit 27 However, it is determined whether or not the switching threshold value 3 (100 milliseconds in the example of FIG. 6), which is the next largest, is not less than (S203).
 時間差が切替閾値3以上である場合(S203:Yes)、経路切替要求部29は、切替閾値3に対応付けられているサービスレベルを切替閾値テーブル280から抽出する。そして、経路切替要求部29は、抽出したサービスレベルの中から、時間差測定部27から受信したサービス情報において現用系の経路種別に対応付けられている(即ち、現用系の通信経路を介して提供中の)サービスのサービスレベルをさらに抽出する。 If the time difference is equal to or greater than the switching threshold 3 (S203: Yes), the path switching request unit 29 extracts the service level associated with the switching threshold 3 from the switching threshold table 280. Then, the route switching request unit 29 is associated with the currently used route type in the service information received from the time difference measurement unit 27 among the extracted service levels (ie, provided via the currently used communication route). Further extract the service level of the service.
 そして、経路切替要求部29は、抽出したサービスレベルを含む切替要求パケット44(図12参照)を作成し、作成した切替要求パケット44を通信制御装置20-1へ例えば予備系の通信経路を介して送信し(S204)、ステップS209に示した処理を実行する。なお、サービスレベル1~3の中に、現用系の通信経路を介して提供中のサービスのサービスレベルが存在しない場合、経路の切り替えを実行する必要はないため、時間差測定部27は再びステップS200に示した処理を実行する。 Then, the route switching request unit 29 creates the switching request packet 44 (see FIG. 12) including the extracted service level, and sends the created switching request packet 44 to the communication control device 20-1 via, for example, the communication route of the spare system. And transmit (S204), and execute the processing shown in step S209. If there is no service level of the service being provided through the active communication path among the service levels 1 to 3, it is not necessary to execute path switching, so the time difference measurement unit 27 performs step S200 again. Execute the process shown in.
 ステップS203において、時間差が切替閾値3未満である場合(S203:No)、経路切替要求部29は、閾値DB28内の切替閾値テーブル280を参照し、時間差測定部27から受信した測定結果が示す時間差が、次に値の大きい切替閾値2(図6の例では30ミリ秒)以上か否かを判定する(S205)。 In step S203, when the time difference is less than the switching threshold 3 (S203: No), the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the time difference indicated by the measurement result received from the time difference measurement unit 27 However, it is determined whether or not the switching threshold value 2 (30 milliseconds in the example of FIG. 6), which is the next largest, is not less than (S205).
 時間差が切替閾値2以上である場合(S205:Yes)、経路切替要求部29は、切替閾値2に対応付けられているサービスレベルを切替閾値テーブル280から抽出する。そして、経路切替要求部29は、抽出したサービスレベルの中から、時間差測定部27から受信したサービス情報において現用系の経路種別に対応付けられている(即ち、現用系の通信経路を介して提供中の)サービスのサービスレベルをさらに抽出する。 If the time difference is equal to or greater than the switching threshold 2 (S205: Yes), the path switching request unit 29 extracts the service level associated with the switching threshold 2 from the switching threshold table 280. Then, the route switching request unit 29 is associated with the currently used route type in the service information received from the time difference measurement unit 27 among the extracted service levels (ie, provided via the currently used communication route). Further extract the service level of the service.
 そして、経路切替要求部29は、抽出したサービスレベルを含む切替要求パケット44(図12参照)を作成し、作成した切替要求パケット44を通信制御装置20-1へ例えば予備系の通信経路を介して送信し(S206)、ステップS209に示した処理を実行する。なお、サービスレベル1および2の中に、現用系の通信経路を介して提供中のサービスのサービスレベルが存在しない場合、経路の切り替えを実行する必要はないため、時間差測定部27は再びステップS200に示した処理を実行する。 Then, the route switching request unit 29 creates the switching request packet 44 (see FIG. 12) including the extracted service level, and sends the created switching request packet 44 to the communication control device 20-1 via, for example, the communication route of the spare system. And transmits (S206), and executes the processing shown in step S209. If there is no service level of the service being provided through the active communication path in the service levels 1 and 2, there is no need to execute path switching, so the time difference measurement unit 27 performs step S200 again. Execute the process shown in.
 ステップS205において、時間差が切替閾値2未満である場合(S205:No)、経路切替要求部29は、閾値DB28内の切替閾値テーブル280を参照し、時間差測定部27から受信した測定結果が示す時間差が、もっとも値の小さい切替閾値1(図6の例では10ミリ秒)以上か否かを判定する(S207)。時間差が切替閾値1未満である場合(S207:No)、経路の切り替えを実行する必要はないため、時間差測定部27は再びステップS200に示した処理を実行する。 In step S205, when the time difference is less than the switching threshold 2 (S205: No), the path switching request unit 29 refers to the switching threshold table 280 in the threshold DB 28, and the time difference indicated by the measurement result received from the time difference measurement unit 27 However, it is determined whether or not the switching threshold value 1 (10 milliseconds in the example of FIG. 6) which is the smallest value or more. When the time difference is less than the switching threshold 1 (S207: No), it is not necessary to execute the switching of the path, so the time difference measurement unit 27 executes the process shown in step S200 again.
 時間差が切替閾値1以上である場合(S207:Yes)、経路切替要求部29は、切替閾値1に対応付けられているサービスレベル1を切替閾値テーブル280から抽出する。そして、経路切替要求部29は、抽出したサービスレベル1が、時間差測定部27から受信したサービス情報において現用系の経路種別に対応付けられていれば(即ち、現用系の通信経路を介して提供中であれば)、当該サービスレベルを含む切替要求パケット44(図12参照)を作成する。 If the time difference is equal to or greater than the switching threshold 1 (S207: Yes), the path switching request unit 29 extracts the service level 1 associated with the switching threshold 1 from the switching threshold table 280. Then, if the extracted service level 1 is associated with the currently used route type in the service information received from the time difference measurement unit 27 (ie, provided via the currently used communication route), the route switching request unit 29 If so, the switch request packet 44 (see FIG. 12) including the service level is created.
 そして、経路切替要求部29は、作成した切替要求パケット44を通信制御装置20-1へ例えば予備系の通信経路を介して送信し(S208)、ステップS209に示した処理を実行する。なお、サービスレベル1が、現用系の通信経路を介して提供中のサービスのサービスレベルではない場合、経路の切り替えを実行する必要はないため、時間差測定部27は再びステップS200に示した処理を実行する。 Then, the path switching request unit 29 transmits the created switching request packet 44 to the communication control device 20-1 via, for example, the communication path of the protection system (S208), and executes the processing shown in step S209. When the service level 1 is not the service level of the service being provided via the active communication path, it is not necessary to execute path switching, so the time difference measuring unit 27 repeats the process shown in step S200. Run.
 図20は、送信側の通信制御装置20の切替動作の一例を示すフローチャートである。なお、本フローチャートでは、図1のシステム構成における送信側の通信制御装置20-1を動作主体として説明する。 FIG. 20 is a flowchart showing an example of the switching operation of the communication control apparatus 20 on the transmission side. In this flowchart, the communication control device 20-1 on the transmission side in the system configuration of FIG. 1 will be described as an operation subject.
 まず、経路切替指示部23は、図12に示した切替要求パケット44を受信した場合に(S300:Yes)、送信経路DB22内の送信経路テーブル220を参照して、受信した切替要求パケット44に含まれているサービスレベルに対応付けられており、かつ、現用系の経路種別が対応付けられている(即ち、現用系の通信経路を介して提供中のサービスの)サービスIDを抽出する(S301)。 First, when the path switching instruction unit 23 receives the switching request packet 44 shown in FIG. 12 (S300: Yes), the path switching instructing unit 23 refers to the transmission path table 220 in the transmission path DB 22 and receives the received switching request packet 44. Extract the service ID of the service that is associated with the included service level and that is associated with the active route type (ie, of the service being provided via the active communication route) (S301 ).
 次に、経路切替指示部23は、抽出したサービスIDの中でサービスレベルが最も高い(サービスレベルの数値が最も低い)サービスIDを1つ抽出し(S302)、抽出したサービスIDを含む切替応答パケット45(図13参照)を、通信制御装置20-2へ例えば予備系の通信経路を介して送信する(S303)。 Next, the path switching instructing unit 23 extracts one service ID having the highest service level (the lowest numerical value of the service level) among the extracted service IDs (S302), and the switching response including the extracted service ID The packet 45 (see FIG. 13) is transmitted to the communication control device 20-2, for example, via the communication path of the protection system (S303).
 次に、経路切替指示部23は、当該サービスIDと共に2重送信開始をデータ送受信部21に指示し(S304)、図14に示した切替完了通知パケット46を受信したか否かを判定する(S305)。切替完了通知パケット46ではなくエラー通知を受信した場合、経路切替指示部23は、通信制御装置20の管理者や管理装置11等に切り替えの失敗を示すエラーを通知する。 Next, the route switching instructing unit 23 instructs the data transmitting / receiving unit 21 to start double transmission together with the service ID (S 304), and determines whether the switching completion notification packet 46 shown in FIG. S305). When not receiving the switching completion notifying packet 46 but receiving an error notification, the path switching instructing unit 23 notifies the administrator of the communication control apparatus 20, the management apparatus 11 or the like of an error indicating a failure in switching.
 切替完了通知パケット46を受信した場合(S305:Yes)、経路切替指示部23は、受信した切替完了通知パケット46に含まれているサービスIDと共に2重送信終了をデータ送受信部21に指示する(S306)。そして、経路切替指示部23は、送信経路DB22内の送信経路テーブル220を参照して、当該サービスIDに対応付けられている経路種別を、予備系の通信経路を示す情報に書き換え(S307)、再びステップS300に示した処理を実行する。 When the switching completion notification packet 46 is received (S305: Yes), the path switching instruction unit 23 instructs the data transmission / reception unit 21 to finish double transmission together with the service ID included in the received switching completion notification packet 46 (S305: S306). Then, the path switching instruction unit 23 refers to the transmission path table 220 in the transmission path DB 22 and rewrites the path type associated with the service ID into information indicating the communication path of the protection system (S307), The process shown in step S300 is executed again.
 図21は、受信側の通信制御装置20の切戻動作の一例を示すフローチャートである。なお、本フローチャートでは、図1のシステム構成における受信側の通信制御装置20-2を動作主体として説明する。 FIG. 21 is a flowchart showing an example of the switching back operation of the communication control device 20 on the receiving side. In this flowchart, the communication control device 20-2 on the receiving side in the system configuration of FIG. 1 will be described as an operation subject.
 まず、時間差測定部27は、現用系および予備系のそれぞれの通信経路を介して、図10に示した切替判定用の制御パケット42を受信した場合に、予備系の通信経路を介して切替判定用の制御パケット42を受信した受信時刻から、現用系の通信経路を介して切替判定用の制御パケット42を受信するまでの受信時間差を測定する(S400)。そして、時間差測定部27は、測定結果を、切替判定用の制御パケット42に含まれているサービス情報と共に経路切替要求部29へ送信する。 First, when the time difference measurement unit 27 receives the control packet 42 for switching determination shown in FIG. 10 via the communication paths of the active system and the backup system, the time difference measurement unit 27 performs switching determination via the communication path of the backup system. The reception time difference until reception of the control packet 42 for switching determination via the communication path of the active system from the reception time at which the control packet 42 for E4 is received is measured (S400). Then, the time difference measurement unit 27 transmits the measurement result to the path switching request unit 29 together with the service information included in the control packet 42 for switching determination.
 次に、経路切替要求部29は、閾値DB28内の切戻閾値テーブル285を参照し、時間差測定部27から受信した測定結果が示す時間差が、もっとも値の小さい切戻閾値である切戻閾値1(図7の例では5ミリ秒)未満か否かを判定する(S401)。 Next, the path switching request unit 29 refers to the switching back threshold table 285 in the threshold DB 28, and the switching back threshold 1 in which the time difference indicated by the measurement result received from the time difference measuring unit 27 is the smallest value is the switching back threshold. It is determined whether it is less than 5 milliseconds (in the example of FIG. 7) (S401).
 時間差が切戻閾値1未満である場合(S401:Yes)、経路切替要求部29は、切戻閾値1に対応付けられているサービスレベル1~4を切戻閾値テーブル285から抽出する。そして、経路切替要求部29は、抽出したサービスレベル1~4の中から、時間差測定部27から受信したサービス情報において予備系の経路種別に対応付けられている(即ち、予備系の通信経路を介して提供中の)サービスのサービスレベルをさらに抽出する。 If the time difference is less than the switchback threshold 1 (S401: Yes), the path switch request unit 29 extracts the service levels 1 to 4 associated with the switchback threshold 1 from the switchback threshold table 285. Then, the route switching request unit 29 is associated with the route type of the spare system in the service information received from the time difference measuring unit 27 among the extracted service levels 1 to 4 (that is, the communication route of the spare system is Further extract the service level of the service).
 そして、経路切替要求部29は、抽出したサービスレベルを含む切戻要求パケット47(図15参照)を作成し、作成した切戻要求パケット47を通信制御装置20-1へ例えば予備系の通信経路を介して送信する(S402)。なお、サービスレベル1~4の中に、予備系の通信経路を介して提供中のサービスのサービスレベルが存在しない場合、経路の切り戻しを実行する必要はないため、時間差測定部27は再びステップS400に示した処理を実行する。 Then, the path switching request unit 29 creates the failback request packet 47 (see FIG. 15) including the extracted service level, and sends the created failback request packet 47 to the communication control device 20-1, for example, the communication route of the spare system. (S402). When there is no service level of the service being provided via the communication path of the spare system among the service levels 1 to 4, there is no need to execute path switching back, so the time difference measurement unit 27 performs step again. The process shown in S400 is performed.
 次に、通信制御装置20-1から切戻応答パケット48(図16参照)を受信した場合(S409:Yes)、経路切替要求部29は、引き続き、当該切戻応答パケット48のサービスID483で指定されたサービスIDをヘッダに含むユーザデータパケット43(図11参照)を、現用系および予備系のそれぞれの通信経路を介して受信する。そして、経路切替要求部29は、指定されたサービスIDをヘッダに含むユーザデータパケット43であって、同一のシーケンス番号を有するユーザデータパケット43について、現用系および予備系のそれぞれの通信経路を介して受信したユーザデータパケット43のデータが一致するか否かを判定する(S410)。 Next, when the switchback response packet 48 (see FIG. 16) is received from the communication control device 20-1 (S409: Yes), the path switching request unit 29 continues to specify by the service ID 483 of the switchback response packet 48. The user data packet 43 (see FIG. 11) including the specified service ID in the header is received through the communication paths of the active system and the spare system. Then, the path switching request unit 29 is a user data packet 43 including the specified service ID in the header, and for the user data packet 43 having the same sequence number, through the respective communication paths of the active system and the spare system. It is determined whether the data of the received user data packet 43 match (S410).
 現用系および予備系のそれぞれの通信経路を介して受信した同一のシーケンス番号を有するユーザデータパケット43の組のデータが、所定個数(例えば100パケット)以上連続して一致した場合(S410:Yes)、経路切替要求部29は、図17に示した切戻完了通知パケット49を作成する。そして、経路切替要求部29は、作成した切戻完了通知パケット49を、例えば予備系の通信経路を介して通信制御装置20-1へ送信し(S411)、時間差測定部27は再びステップS400に示した処理を実行する。 When the data of the set of user data packets 43 having the same sequence number received through the communication paths of the active system and the standby system continuously match a predetermined number (for example, 100 packets) or more (S410: Yes) The path switching request unit 29 creates the failback completion notification packet 49 shown in FIG. Then, the path switching request unit 29 transmits the created switchback completion notification packet 49 to the communication control device 20-1 via, for example, the communication path of the backup system (S411), and the time difference measurement unit 27 returns to step S400 again. Execute the indicated process.
 一方、現用系および予備系のそれぞれの通信経路を介して受信した同一のシーケンス番号を有するユーザデータパケット43の組のデータについて、所定個数(例えば1000パケット)以上比較しても、所定個数(例えば100パケット)以上連続して一致しなかった場合(S410:No)、経路切替要求部29は、通信制御装置20-1に対してエラーを通知し(S412)、時間差測定部27は再びステップS400に示した処理を実行する。 On the other hand, data of a set of user data packets 43 having the same sequence number received via respective communication paths of the active system and the spare system may be compared by a predetermined number (for example, 1000 packets) or more. If the packets do not continuously match for more than 100 packets (S410: No), the path switching request unit 29 notifies the communication control device 20-1 of an error (S412), and the time difference measurement unit 27 again performs step S400. Execute the process shown in.
 ステップS401において、時間差が切戻閾値1以上である場合(S401:No)、経路切替要求部29は、閾値DB28内の切戻閾値テーブル285を参照し、時間差測定部27から受信した測定結果が示す時間差が、次に値の小さい切戻閾値2(図7の例では15ミリ秒)未満か否かを判定する(S403)。 In step S401, when the time difference is the switchback threshold 1 or more (S401: No), the path switch request unit 29 refers to the switchback threshold table 285 in the threshold DB 28, and the measurement result received from the time difference measurement unit 27 is It is determined whether the time difference to be indicated is less than the next smaller return threshold value 2 (15 milliseconds in the example of FIG. 7) (S403).
 時間差が切戻閾値2未満である場合(S403:Yes)、経路切替要求部29は、切戻閾値2に対応付けられているサービスレベルを切戻閾値テーブル285から抽出する。そして、経路切替要求部29は、抽出したサービスレベルの中から、時間差測定部27から受信したサービス情報において予備系の経路種別に対応付けられている(即ち、予備系の通信経路を介して提供中の)サービスのサービスレベルをさらに抽出する。 If the time difference is less than the switchback threshold 2 (S403: Yes), the path switch request unit 29 extracts the service level associated with the switchback threshold 2 from the switchback threshold table 285. Then, the route switching request unit 29 is associated with the route type of the spare system in the service information received from the time difference measurement unit 27 among the extracted service levels (ie, provided via the communication route of the spare system). Further extract the service level of the service.
 そして、経路切替要求部29は、抽出したサービスレベルを含む切戻要求パケット47(図15参照)を作成し、作成した切戻要求パケット47を通信制御装置20-1へ例えば予備系の通信経路を介して送信し(S404)、ステップS409に示した処理を実行する。なお、サービスレベル2~4の中に、予備系の通信経路を介して提供中のサービスのサービスレベルが存在しない場合、経路の切り戻しを実行する必要はないため、時間差測定部27は再びステップS400に示した処理を実行する。 Then, the path switching request unit 29 creates the failback request packet 47 (see FIG. 15) including the extracted service level, and sends the created failback request packet 47 to the communication control device 20-1, for example, the communication route of the spare system. (S404), and the process shown in step S409 is executed. If there is no service level of the service being provided through the communication path of the spare system among the service levels 2 to 4, it is not necessary to execute path switching back, so the time difference measurement unit 27 performs step again. The process shown in S400 is performed.
 ステップS403において、時間差が切戻閾値2以上である場合(S403:No)、経路切替要求部29は、閾値DB28内の切戻閾値テーブル285を参照して、時間差測定部27から受信した測定結果が示す時間差が、次に値の小さい切戻閾値3(図7の例では50ミリ秒)未満か否かを判定する(S405)。 In step S403, when the time difference is the switchback threshold 2 or more (S403: No), the path switching request unit 29 refers to the switchback threshold table 285 in the threshold DB 28, and the measurement result received from the time difference measurement unit 27 It is determined whether the time difference indicated by is less than the next smaller return threshold value 3 (50 milliseconds in the example of FIG. 7) (S405).
 時間差が切戻閾値3未満である場合(S405:Yes)、経路切替要求部29は、切戻閾値3に対応付けられているサービスレベルを切戻閾値テーブル285から抽出する。そして、経路切替要求部29は、抽出したサービスレベルの中から、時間差測定部27から受信したサービス情報において予備系の経路種別に対応付けられている(即ち、予備系の通信経路を介して提供中の)サービスのサービスレベルをさらに抽出する。 If the time difference is less than the switchback threshold 3 (S405: Yes), the path switching request unit 29 extracts the service level associated with the switchback threshold 3 from the switchback threshold table 285. Then, the route switching request unit 29 is associated with the route type of the spare system in the service information received from the time difference measurement unit 27 among the extracted service levels (ie, provided via the communication route of the spare system). Further extract the service level of the service.
 そして、経路切替要求部29は、抽出したサービスレベルを含む切戻要求パケット47(図15参照)を作成し、作成した切戻要求パケット47を通信制御装置20-1へ例えば予備系の通信経路を介して送信し(S406)、ステップS409に示した処理を実行する。なお、サービスレベル3および4の中に、予備系の通信経路を介して提供中のサービスのサービスレベルが存在しない場合、経路の切り戻しを実行する必要はないため、時間差測定部27は再びステップS400に示した処理を実行する。 Then, the path switching request unit 29 creates the failback request packet 47 (see FIG. 15) including the extracted service level, and sends the created failback request packet 47 to the communication control device 20-1, for example, the communication route of the spare system. (S406), and the process shown in step S409 is executed. When there is no service level of the service being provided through the communication path of the spare system in service levels 3 and 4, it is not necessary to execute path switching back, so the time difference measurement unit 27 performs step again. The process shown in S400 is performed.
 ステップS405において、時間差が切戻閾値3以上である場合(S405:No)、経路切替要求部29は、閾値DB28内の切戻閾値テーブル285を参照し、時間差測定部27から受信した測定結果が示す時間差が、もっとも値の大きい切戻閾値4未満か否かを判定する(S407)。時間差が切戻閾値4以上である場合(S407:No)、経路の切り戻しを実行する必要はないため、時間差測定部27は再びステップS400に示した処理を実行する。 In step S405, when the time difference is the switchback threshold 3 or more (S405: No), the path switch request unit 29 refers to the switchback threshold table 285 in the threshold DB 28, and the measurement result received from the time difference measurement unit 27 is It is determined whether the indicated time difference is less than the largest return threshold 4 (S407). When the time difference is equal to or more than the switching back threshold 4 (S407: No), since it is not necessary to execute the switching back of the path, the time difference measurement unit 27 executes the processing shown in step S400 again.
 時間差が切戻閾値4未満である場合(S407:Yes)、経路切替要求部29は、切戻閾値4に対応付けられているサービスレベル4を切戻閾値テーブル285から抽出する。そして、経路切替要求部29は、抽出したサービスレベル4が、時間差測定部27から受信したサービス情報において予備系の経路種別に対応付けられていれば(即ち、予備系の通信経路を介して提供中であれば)、当該サービスレベルを含む切戻要求パケット47(図15参照)を作成する。 If the time difference is less than the switchback threshold 4 (S407: Yes), the path switching request unit 29 extracts the service level 4 associated with the switchback threshold 4 from the switchback threshold table 285. Then, if the extracted service level 4 is associated with the route type of the spare system in the service information received from the time difference measurement unit 27 (ie, provided via the communication route of the spare system), the route switching request unit 29 Medium), create a failback request packet 47 (see FIG. 15) including the service level.
 そして、経路切替要求部29は、作成した切戻要求パケット47を通信制御装置20-1へ例えば予備系の通信経路を介して送信し(S408)、ステップS409に示した処理を実行する。なお、サービスレベル4のサービスが、予備系の通信経路を介して提供中ではない場合、経路の切り戻しを実行する必要はないため、時間差測定部27は再びステップS400に示した処理を実行する。 Then, the path switching request unit 29 transmits the created switchback request packet 47 to the communication control device 20-1, for example, via the communication path of the protection system (S408), and executes the processing shown in step S409. If the service at service level 4 is not being provided via the spare communication path, it is not necessary to execute path switching back, so the time difference measurement unit 27 executes the process shown in step S400 again. .
 図22は、送信側の通信制御装置20の切戻動作の一例を示すフローチャートである。なお、本フローチャートでは、図1のシステム構成において、送信側の通信制御装置20-1を動作主体として説明する。 FIG. 22 is a flowchart showing an example of the switching back operation of the communication control device 20 on the transmission side. In this flowchart, the communication control device 20-1 on the transmission side will be described as an operation subject in the system configuration of FIG.
 まず、経路切替指示部23は、図15に示した切戻要求パケット47を受信した場合に(S500:Yes)、送信経路DB22内の送信経路テーブル220を参照して、受信した切戻要求パケット47に含まれているサービスレベルに対応付けられており、かつ、予備系の経路種別が対応付けられている(即ち、予備系の通信経路を介して提供中のサービスの)サービスIDを抽出する(S501)。 First, when the path switching instruction unit 23 receives the switchback request packet 47 shown in FIG. 15 (S500: Yes), the path switch instructing unit 23 refers to the transmission path table 220 in the transmission path DB 22 and receives the switchback request packet. Extract the service ID of the service that is associated with the service level 47 and that is associated with the spare route type (that is, of the service being provided via the spare communication route) (S501).
 次に、経路切替指示部23は、抽出したサービスIDの中でサービスレベルが最も高い(サービスレベルの数値が最も低い)サービスIDを1つ抽出し(S502)、抽出したサービスIDを含む切戻応答パケット48(図16参照)を、通信制御装置20-2へ例えば予備系の通信経路を介して送信する(S503)。 Next, the path switching instructing unit 23 extracts one service ID having the highest service level (the lowest value of the service level) among the extracted service IDs (S 502), and performs failback including the extracted service ID. The response packet 48 (see FIG. 16) is transmitted to the communication control device 20-2, for example, via the communication path of the protection system (S503).
 次に、経路切替指示部23は、当該サービスIDと共に2重送信開始をデータ送受信部21に指示し(S504)、図17に示した切戻完了通知パケット49を受信したか否かを判定する(S505)。切戻完了通知パケット49ではなくエラー通知を受信した場合、経路切替指示部23は、通信制御装置20の管理者や管理装置11等に切り戻しの失敗を示すエラーを通知する。 Next, the route switching instructing unit 23 instructs the data transmitting / receiving unit 21 to start double transmission together with the service ID (S 504), and determines whether or not the switchback completion notification packet 49 shown in FIG. 17 has been received. (S505). When not receiving the switchback completion notification packet 49 but receiving an error notification, the path switching instruction unit 23 notifies the administrator of the communication control apparatus 20, the management apparatus 11, and the like of an error indicating failure in switching back.
 切戻完了通知パケット49を受信した場合(S505:Yes)、経路切替指示部23は、受信した切戻完了通知パケット49に含まれているサービスIDと共に2重送信終了をデータ送受信部21に指示する(S506)。そして、経路切替指示部23は、送信経路DB22内の送信経路テーブル220を参照して、当該サービスIDに対応付けられている経路種別を、現用系の通信経路を示す情報に書き換え(S507)、再びステップS500に示した処理を実行する。 When the switchback completion notification packet 49 is received (S505: Yes), the path switching instruction unit 23 instructs the data transmission / reception unit 21 to finish double transmission together with the service ID included in the received switchback completion notification packet 49. To do (S506). Then, the path switching instruction unit 23 refers to the transmission path table 220 in the transmission path DB 22 and rewrites the path type associated with the service ID into information indicating the currently used communication path (S507), The process shown in step S500 is executed again.
 以上、本発明の第1の実施形態について説明した。 The first embodiment of the present invention has been described above.
 上記説明から明らかなように、本実施形態の通信システム10によれば、パケット通信におけるデータパケットの遅延に起因するサービスの品質の劣化を低く抑えることができる。 As apparent from the above description, according to the communication system 10 of the present embodiment, it is possible to suppress the deterioration of the quality of service caused by the delay of data packets in packet communication.
 また、上記した実施形態における通信制御装置20は、対向する通信制御装置20との間で、現用系と予備系の通信経路の伝送時間差を測定し、その測定結果に基づいて、受信側の通信制御装置20において、現用系と予備系のそれぞれの通信経路を介して送信された通信パケットがほぼ同時に到達するように送信タイミングを調整するため、輻輳が発生している可能性が低い予備系の通信経路を介して受信した切替判定用の制御パケット42の受信タイミングを基準として、現用系の通信経路の伝送遅延の増加(輻輳の発生)を精度よく検出することができる。 Further, the communication control device 20 in the embodiment described above measures the transmission time difference between the communication path of the working system and the protection system with the opposing communication control device 20, and the communication on the receiving side based on the measurement result. In the control system 20, the transmission timing is adjusted so that communication packets transmitted through the communication paths of the active system and the standby system arrive almost simultaneously, so that there is a low possibility of occurrence of congestion. It is possible to accurately detect an increase in transmission delay (occurrence of congestion) of the communication path of the working system based on the reception timing of the control packet for switching determination received through the communication path.
 また、上記した実施形態における通信制御装置20は、ユーザデータパケット43についても、現用系と予備系のそれぞれの通信経路の伝送遅延を考慮して受信側の通信制御装置20においてほぼ同時に到達するように送信タイミングを調整するため、現用系と予備系との間で通信経路の切り替えが実行されても、切り替え前後におけるユーザデータパケット43の遅延の増大を防止することができる。 In addition, the communication control unit 20 in the above-described embodiment can also arrive at the communication control unit 20 on the receiving side substantially simultaneously, taking into consideration the transmission delay of each of the communication paths of the working system and the protection system. Even if switching of the communication path is executed between the active system and the spare system, the delay of the user data packet 43 before and after the switching can be prevented from increasing.
 また、上記した実施形態における通信制御装置20は、通信経路の切り替えや切り戻しの閾値をサービスレベル毎に設定することができるため、遅延に対する許容量の少ないサービスから優先して通信経路の切り替えを実行することができ、サービスの安定性を高めることができる。 In addition, since the communication control device 20 in the above-described embodiment can set the threshold for switching or switching back the communication route for each service level, switching of the communication route is prioritized from services with a small amount of delay tolerance. It can be implemented and can enhance the stability of the service.
 また、上記した実施形態における通信制御装置20は、通信経路の切り替えに際して、現用系および予備系の両方に同一のユーザデータパケット43を送信し、切り替え先の通信経路において所定個数以上のユーザデータパケット43が連続して正常に受信できた場合に、通信経路の切り替えを完了するため、通信経路の切り替えに起因するデータの欠落を防止することができる。 Further, when switching the communication path, the communication control device 20 in the above embodiment transmits the same user data packet 43 to both the active system and the standby system, and the user data packet of the predetermined number or more in the communication path of the switching destination. When the signal 43 can be continuously received normally, the switching of the communication path is completed, so that it is possible to prevent the loss of data due to the switching of the communication path.
 また、上記した実施形態における通信制御装置20は、通信経路を予備系に切り替えた後に、現用系の伝送遅延が小さくなれば、通信経路を再び現用系に切り戻すため、より信頼性の高い現用系の通信経路を使用する時間をより長くとることができる。また、これにより、予備系の通信経路に流すパケットを少なくすることができるため、予備系の通信経路の通信帯域に余裕を持たせることができ、現用系の伝送遅延の増加を検出するための基準となる予備系の制御パケット42の遅延を少なくすることができ、現用系の伝送遅延の増加をより精度よく検出することができる。 In addition, since the communication control device 20 in the above-described embodiment switches the communication path back to the active system if the transmission delay of the active system becomes smaller after switching the communication path to the standby system, the current-use system has higher reliability. The time to use the communication path of the system can be longer. In addition, since it is possible to reduce the number of packets to be sent to the communication path of the protection system, it is possible to provide a margin for the communication band of the communication path of the protection system, and to detect an increase in transmission delay of the active system. The delay of the reference control packet 42 can be reduced, and an increase in the transmission delay of the working system can be detected more accurately.
 次に、本発明の第2の実施形態について図面を参照しながら説明する。 Next, a second embodiment of the present invention will be described with reference to the drawings.
 本実施形態のシステム構成は、図1と同様である。本実施形態では、現用系の通信経路に含まれる中継装置30が輻輳の発生を予測して警告を出し、その警告に基づいて、受信側の通信制御装置20-2が送信側の通信制御装置20-1に切替要求パケット44を送信する点が、第1の実施形態とは異なる。 The system configuration of this embodiment is the same as that of FIG. In the present embodiment, the relay device 30 included in the communication path of the active system predicts the occurrence of congestion and issues a warning, and based on the warning, the communication control device 20-2 on the receiving side is the communication control device on the transmitting side. The point of transmitting the switching request packet 44 to 20-1 is different from the first embodiment.
 図23は、中継装置30の詳細な機能構成の一例を示すブロック図である。中継装置30は、パケット受信部31、送信バッファ32、パケット送信部33、送信先DB34、および警告送信部35を有する。 FIG. 23 is a block diagram showing an example of a detailed functional configuration of the relay device 30. As shown in FIG. The relay device 30 includes a packet reception unit 31, a transmission buffer 32, a packet transmission unit 33, a transmission destination DB 34, and a warning transmission unit 35.
 送信先DB34には、例えば図24に示すような送信先テーブル340が格納されている。送信先テーブル340には、それぞれの通信経路を識別するVLANID341、および、当該通信経路の終端となる通信制御装置20のアドレス342が格納されている。 In the transmission destination DB 34, for example, a transmission destination table 340 as shown in FIG. 24 is stored. The transmission destination table 340 stores a VLAN ID 341 identifying each communication path, and an address 342 of the communication control apparatus 20 serving as the termination of the communication path.
 パケット受信部31は、通信制御装置20または他の中継装置30からユーザデータパケット43等の通信パケットを受信し、受信した通信パケットを送信バッファ32に格納する。パケット送信部33は、送信バッファ32に格納された通信パケットを、そのヘッダに格納された通信経路毎に指定された中継先へ中継する。 The packet receiving unit 31 receives a communication packet such as the user data packet 43 from the communication control device 20 or another relay device 30, and stores the received communication packet in the transmission buffer 32. The packet transmitter 33 relays the communication packet stored in the transmission buffer 32 to the relay destination designated for each communication path stored in the header.
 警告送信部35は、送信バッファ32に格納されているデータのデータ量を監視し、当該データ量が送信バッファ32の容量の所定割合(例えば80%)以上になった場合に、送信バッファ32に格納されているそれぞれのユーザデータパケット43のヘッダに格納されている通信経路の識別情報、即ちVLANIDを抽出する。 The warning transmission unit 35 monitors the data amount of data stored in the transmission buffer 32, and when the data amount becomes equal to or more than a predetermined ratio (for example, 80%) of the capacity of the transmission buffer 32, The identification information of the communication path stored in the header of each stored user data packet 43, that is, the VLAN ID is extracted.
 そして、警告送信部35は、例えば図25に示すような警告パケット50を作成する。警告パケット50には、ヘッダ500およびペイロード501が含まれ、ペイロード501には、当該パケットが警告パケットであることを示すメッセージID502と、自装置が含まれている通信経路のVLANID503とが格納される。 Then, the warning transmission unit 35 creates a warning packet 50 as shown in FIG. 25, for example. The warning packet 50 includes a header 500 and a payload 501, and the payload 501 stores a message ID 502 indicating that the packet is a warning packet, and a VLAN ID 503 of a communication path including the own apparatus. .
 なお、警告パケット50は、例えばITU-T Y.1731で定義されているVSM(Vendor Specific Message)フレームやAPS(Automatic Protection Switching)フレームのフォーマットをベースとして構成することができる。 The warning packet 50 is, for example, ITU-T Y.3. It can be configured based on the format of Vendor Specific Message (VSM) frame or Automatic Protection Switching (APS) frame defined in 1731.
 そして、警告送信部35は、抽出したVLANIDに対応する通信制御装置20のアドレスを送信先DB34から抽出し、抽出したアドレス宛に、作成した警告パケット50を送信する。 Then, the warning transmission unit 35 extracts the address of the communication control device 20 corresponding to the extracted VLANID from the transmission destination DB 34, and transmits the generated warning packet 50 to the extracted address.
 図26は、中継装置30の動作の一例を示すフローチャートである。 FIG. 26 is a flowchart illustrating an example of the operation of the relay device 30.
 まず、警告送信部35は、送信バッファ32に格納されているデータのデータ量を監視し、当該データ量が警告閾値以上になったか否かを判定する(S600)。送信バッファ32内のデータ量が警告閾値以上になった場合(S600:Yes)、警告送信部35は、送信バッファ32に格納されているそれぞれのユーザデータパケット43のヘッダに格納されているVLANIDを抽出する(S601)。 First, the warning transmission unit 35 monitors the data amount of data stored in the transmission buffer 32, and determines whether the data amount is equal to or more than the warning threshold (S600). If the amount of data in the transmission buffer 32 becomes equal to or greater than the warning threshold (S600: Yes), the warning transmission unit 35 uses the VLAN ID stored in the header of each user data packet 43 stored in the transmission buffer 32. Extract (S601).
 次に、警告送信部35は、図25に示した警告パケット50を作成する。そして、警告送信部35は、抽出したVLANIDに対応する通信制御装置20のアドレスを送信先DB34から抽出し、抽出したアドレス宛に、作成した警告パケット50を送信する(S602)。そして、警告送信部35は、経路切替が完了するまで所定時間(例えば数秒間)待機し(S603)、再びステップS600に示した処理を実行する。 Next, the warning transmission unit 35 creates the warning packet 50 shown in FIG. Then, the warning transmission unit 35 extracts the address of the communication control device 20 corresponding to the extracted VLANID from the transmission destination DB 34, and transmits the generated warning packet 50 to the extracted address (S602). Then, the warning transmission unit 35 stands by for a predetermined time (for example, several seconds) until the path switching is completed (S603), and executes the processing shown in step S600 again.
 図27は、第2の実施形態における受信側の通信制御装置20の切替動作の一例を示すフローチャートである。なお、以下に説明する点を除き、図27において、図19と同じ符号を付した処理は、図19における処理と同様の処理であるため説明を省略する。 FIG. 27 is a flowchart showing an example of the switching operation of the communication control device 20 on the receiving side in the second embodiment. Note that, in FIG. 27, the processes given the same reference numerals as those in FIG. 19 are the same as the processes in FIG.
 まず、時間差測定部27は、警告パケット50を受信したか否かを判定する(S220)。警告パケット50を受信していない場合(S220:No)、時間差測定部27は、ステップS200に示した処理を実行する。 First, the time difference measurement unit 27 determines whether the warning packet 50 has been received (S220). When the warning packet 50 has not been received (S220: No), the time difference measurement unit 27 executes the process shown in step S200.
 一方、警告パケット50を受信した場合(S220:Yes)、時間差測定部27は、切替閾値4に対応付けられているサービスレベル1~4を切替閾値テーブル280から抽出する。そして、経路切替要求部29は、抽出したサービスレベル1~4の中から、その直前に時間差測定部27から受信したサービス情報において現用系の経路種別に対応付けられている(即ち、現用系の通信経路を介して提供中の)サービスのサービスレベルをさらに抽出する。 On the other hand, when the warning packet 50 is received (S220: Yes), the time difference measurement unit 27 extracts the service levels 1 to 4 associated with the switching threshold 4 from the switching threshold table 280. Then, among the extracted service levels 1 to 4, the route switching request unit 29 is associated with the currently used route type in the service information received from the time difference measurement unit 27 immediately before that (that is, Further extract the service level of the service (provided through the communication path).
 そして、経路切替要求部29は、抽出したサービスレベルを含む切替要求パケット44(図12参照)を作成し、作成した切替要求パケット44を通信制御装置20-1へ例えば予備系の通信経路を介して送信し(S202)、ステップS209に示した処理を実行する。 Then, the route switching request unit 29 creates the switching request packet 44 (see FIG. 12) including the extracted service level, and sends the created switching request packet 44 to the communication control device 20-1 via, for example, the communication route of the spare system. It transmits (S202), and performs the process shown to step S209.
 以上、本発明の第2の実施形態について説明した。 The second embodiment of the present invention has been described above.
 中継装置30の送信バッファ内のデータ量が多くなるということは、回線の障害や通信経路上の中継装置30の処理負荷が高くなっているなど、何らかの原因でデータの送信待ちが発生していることを示している。そして、送信待ちのデータの増加により送信バッファの空き容量が少なくなると、データの破棄や、その上流の中継装置30でのさらなる送信待ちが起こり、輻輳が発生する可能性が高まる。 The fact that the amount of data in the transmission buffer of the relay device 30 increases means that data transmission waiting occurs for some reason, such as a line failure or a high processing load of the relay device 30 on the communication path. It is shown that. Then, when the free space of the transmission buffer decreases due to the increase of data waiting for transmission, discarding of data and further transmission waiting in the relay apparatus 30 upstream thereof occur, which increases the possibility of occurrence of congestion.
 そこで、本実施形態の中継装置30は、送信バッファ内のデータ量が所定の閾値を越えた場合に、輻輳が発生する可能性があることを示す警告を通信制御装置20へ送信し、通信制御装置20に経路切替を促す。これにより、輻輳が発生する前に、経路切替を実行することができ、サービスの品質を安定的に高く保つことができる。 Therefore, when the amount of data in the transmission buffer exceeds a predetermined threshold, the relay device 30 of the present embodiment transmits a warning indicating that congestion may occur to the communication control device 20, and performs communication control. The device 20 is urged to switch the route. Thus, path switching can be performed before congestion occurs, and the quality of service can be stably maintained high.
 なお、本発明は、上記した各実施形態に限定されるものではなく、様々な変形例が含まれる。上記した実施形態では、現用系と予備系の通信経路の伝送時間の差を予め測定し、輻輳が発生していない状況では、現用系と予備系のそれぞれの通信経路を介して送信された通信パケットが受信側の通信制御装置20にほぼ同時に到着するようにしておき、予備系の通信経路を介して送信された制御パケットを基準として、現用系の通信経路を介して送信された制御パケットの遅延量を測定し、測定した遅延量が予め定めた閾値を越えた場合に通信経路の切り替えを実行するが、本発明はこれに限られない。 The present invention is not limited to the above-described embodiments, and includes various modifications. In the embodiment described above, the difference between the transmission times of the communication paths of the working system and the protection system is measured in advance, and in a situation where congestion does not occur, communication transmitted via the communication paths of the working system and the protection system. The packets arrive at the receiving side communication control apparatus 20 almost simultaneously, and the control packet transmitted via the working communication path is based on the control packet transmitted via the spare communication path. Although the delay amount is measured and communication path switching is performed when the measured delay amount exceeds a predetermined threshold value, the present invention is not limited to this.
 例えば、現用系の通信経路を介して送信された制御パケットの到着間隔を統計処理して、現用系の通信経路の輻輳の発生を判定し、輻輳が発生したと判定した場合に通信経路を予備系に切り替えるようにしてもよい。 For example, the arrival interval of the control packet transmitted through the communication path of the active system is statistically processed to determine the occurrence of congestion of the communication path of the active system, and when it is determined that congestion has occurred, the communication path is reserved. You may switch to the system.
 例えば、(1)一定間隔で送信される制御パケットの送信間隔が受信側の通信制御装置20に設定されていない場合には、先ず、現用系の通信経路を介してある一定期間に受信した制御パケットの受信時刻について、その到着時間間隔の平均値と分散を算出する。この平均値と分散を用いて正規分布モデルを用いることで3σ(設定によってはσや2σでもよい)以内に収まる到着時間間隔の誤差範囲を決定する。 For example, (1) When the transmission interval of control packets transmitted at constant intervals is not set in the communication control device 20 on the receiving side, first, control received for a certain period via the communication path of the active system The average value and the variance of the arrival time intervals are calculated for the packet reception time. By using a normal distribution model using this average value and the variance, the error range of the arrival time interval that falls within 3σ (may be σ or 2σ depending on the setting) is determined.
 ここで得た平均値(分散ゼロの点)が、受信装置が予測する到着時間間隔であり、その予測値と実際のフレーム到着間隔が3σ以上離れた場合には通信経路に何らかの異変が有る(輻輳の発生)と判定し、通信経路を現用系から予備系に切り替える。 The average value (point of dispersion zero) obtained here is the arrival time interval predicted by the receiver, and there is some difference in the communication path when the predicted value and the actual frame arrival interval are separated by 3σ or more (see FIG. It is determined that congestion occurs and the communication path is switched from the active system to the spare system.
 また、(2)一定間隔で送信される制御パケットの送信間隔が受信側の通信制御装置20に設定されている場合には、上記と同様に、現用系の通信経路を介してある一定期間に受信した制御パケットの受信時刻について、その到着時間間隔の平均値と分散を算出する。これは到着間隔の変動を調べるための統計データとなる。この統計データの平均値と予め設定された到着間隔との誤差が3σ(設定によってはσや2σでもよい)以上乖離した場合に、通信経路に何らかの問題が発生している(輻輳の発生)と判定する。 (2) When transmission intervals of control packets transmitted at fixed intervals are set in the communication control device 20 on the receiving side, similarly to the above, for a fixed period via the communication path of the active system For the reception time of the received control packet, the average value and the variance of the arrival time interval are calculated. This is statistical data for examining changes in the arrival interval. If the error between the average value of this statistical data and the arrival interval set in advance deviates by more than 3σ (may be σ or 2σ depending on the setting), there is a problem in the communication path (occurrence of congestion) judge.
 受信間隔の変動については、上記(1)の場合と同様に通信状態が正常か否かを判断する。また、予測到着間隔(一定値)と実際に制御パケットを受信した時刻とから、次の制御パケットを受信するはずの時刻を算出することができる。予測到着時刻と実際に制御パケットを受信した時刻との差分を統計処理することにより、差分の平均値と分散を算出することができる。このとき(A)差分が一定閾値を上回った場合、(B)観測された差分の変動が分散3σ(σまたは2σでもよい)を超える場合に、それぞれ異常状態と判断する。 Regarding the fluctuation of the reception interval, it is determined whether the communication state is normal or not as in the case of the above (1). Also, the time at which the next control packet should be received can be calculated from the predicted arrival interval (fixed value) and the time at which the control packet was actually received. By statistically processing the difference between the predicted arrival time and the time when the control packet was actually received, the average value and the variance of the difference can be calculated. At this time, when (A) the difference exceeds a certain threshold, (B) when the variation of the observed difference exceeds the variance 3σ (which may be σ or 2σ), it is determined that each is an abnormal state.
 また、(3)一定間隔で送信される制御パケットの受信時刻が受信側の通信制御装置20に設定されている場合には、上記(2)の場合の後半と同様に、設定到着時刻と実際の到着時刻との差分について統計処理を行い、(A)または(B)の場合にそれぞれ異常発生を判断することができる。 (3) When the reception time of the control packet transmitted at a constant interval is set in the communication control device 20 on the reception side, the set arrival time and the actual time as in the second half in the case of (2) above. The statistical processing is performed on the difference from the arrival time of (a), and in the case of (A) or (B), it is possible to determine the occurrence of an abnormality.
 また、上記した実施形態において、通信制御装置20は、予備系の通信経路を介して送信された制御パケットを受信してから、現用系の通信経路を介して送信された制御パケットを受信するまでの時間差が予め定めた閾値を越えた場合に、遅延時間に対する要求の厳しいサービスを優先して予備系に切り替えたが、本発明はこれに限られず、遅延時間に対する要求の緩いサービスを優先して予備系に切り替えるようにしてもよい。 In the above-described embodiment, the communication control device 20 receives the control packet transmitted through the communication path of the protection system, and then receives the control packet transmitted through the communication path of the active system. If the time difference between the two exceeds the predetermined threshold, priority is given to a service with a high demand for delay time, but the present invention is not limited to this, and a priority is given to a service with low demand for delay time. It may be switched to a spare system.
 遅延時間に対する要求の緩いサービスのユーザデータパケットであっても、通信経路を予備系に切り替えることで、現用系の通信帯域にその分の空きができ、現用系の通信経路の輻輳を解消することができる。また、予備系の通信経路は、現用系の予備としての性質を有するため、現用系の通信経路よりも信頼性が低い場合がある。 Even if it is a user data packet of a service with a loose demand for delay time, switching the communication route to the backup system makes it possible to make room for the communication bandwidth of the active system, and eliminate congestion on the active system communication route. Can. Further, the communication path of the protection system may have lower reliability than the communication path of the active system because it has the property of a backup of the active system.
 そこで、遅延時間に対する要求の厳しいサービスを現用系に残しながら現用系の通信経路の輻輳を解消することにより、当該サービスの品質を高く保ちつつ、通信経路の輻輳を解消することができる。 Therefore, by eliminating the congestion of the communication path of the active system while leaving the service with a strict request for delay time in the active system, the congestion of the communication path can be resolved while maintaining the quality of the service high.
 また、上記した実施形態では、通信制御装置20は、通信経路を現用系から予備系に切り替えた後に、現用系に切り戻す場合に、遅延時間に対する要求の厳しいサービスを優先して現用系に切り戻すようにしたが、本発明はこれに限られない。例えば、遅延時間に対する要求の緩いサービスを優先して現用系に切り戻すようにしてもよい。 Further, in the above-described embodiment, when switching back the communication path from the active system to the standby system after switching the communication path from the active system to the active system, the communication control apparatus 20 gives priority to the service with strict requirements for delay time and switches it to the active system. Although it was made to return, this invention is not limited to this. For example, a service with a low demand for delay time may be switched back to the active system in preference.
 例えば、現用系に障害が断続的に発生する場合には、通信経路を予備系から現用系に切り戻した後に、再び遅延量の増加により予備系に切り替えることになる。そのような場合、現用系の通信経路の遅延量が切替閾値を越えるまでは、現用系の遅延量が増加することになる。そのため、現用系に発生した障害が完全に解消されるまでは、遅延時間に対する要求の緩いサービスを優先して現用系に切り戻すようにすることで、遅延時間に対する要求の厳しいサービスの品質の低下を抑えることができる。 For example, when a failure occurs intermittently in the current system, after switching back the communication path from the protection system to the current system, it is switched to the protection system again due to the increase of the delay amount. In such a case, the delay amount of the active system increases until the delay amount of the communication path of the active system exceeds the switching threshold. Therefore, the quality of the service with severe requirements for delay time is degraded by giving priority to the service with a low demand for delay time and switching back to the active system until the failure occurring in the active system is completely eliminated. Can be reduced.
 また、上記した各実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明が、必ずしも説明した全ての構成要素を備えるものに限定されるものではない。また、ある実施形態の構成の一部を、他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に、他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the described components. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現されてもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. Further, each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Further, control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.
10・・・通信システム、11・・・管理装置、12・・・基幹網、13・・・アクセス網、14・・・通信装置、20・・・通信制御装置、21・・・データ送受信部、22・・・送信経路DB、23・・・経路切替指示部、24・・・遅延DB、25・・・制御パケット送信部、26・・・経路種別DB、27・・・時間差測定部、28・・・閾値DB、29・・・経路切替要求部、30・・・中継装置、31・・・パケット受信部、32・・・送信バッファ、33・・・パケット送信部、34・・・送信先DB、35・・・警告送信部、40・・・制御パケット、41・・・測定結果報告パケット、42・・・制御パケット、43・・・ユーザデータパケット、44・・・切替要求パケット、45・・・切替応答パケット、46・・・切替完了通知パケット、47・・・切戻要求パケット、48・・・切戻応答パケット、49・・・切戻完了通知パケット、50・・・警告パケット DESCRIPTION OF SYMBOLS 10 ... Communication system, 11 ... Management apparatus, 12 ... Basic network, 13 ... Access network, 14 ... Communication apparatus, 20 ... Communication control apparatus, 21 ... Data transmission / reception part 22, transmission route DB, 23: route switching instruction unit, 24: delay DB, 25: control packet transmission unit, 26: route type DB, 27: time difference measurement unit, 28: threshold DB, 29: route switching request unit, 30: relay device, 31: packet reception unit, 32: transmission buffer, 33: packet transmission unit, 34: Transmission destination DB, 35: Warning transmission unit, 40: Control packet, 41: Measurement result report packet, 42: Control packet, 43: User data packet, 44: Switching request packet , 45 ... switching response packet, 46 ... Replacement completion notification packet, 47 ... changeback request packet, 48 ... changeback response packet, 49 ... changeback completion notice packet, 50 ... warning packet

Claims (7)

  1.  現用系の通信経路に輻輳が発生した場合に、データパケットの通信経路を、予め準備しておいた予備系の通信経路に切り替える通信システムであって、
     第1の通信制御装置と、
     現用系および予備系のそれぞれの通信経路を介して前記第1の通信制御装置に接続される第2の通信制御装置と
    を備え、
     前記第1の通信制御装置は、
     現用系または予備系のいずれかの通信経路を介してユーザデータを含むデータパケットを前記第2の通信制御装置へ送信するデータ送信部と
     現用系および予備系のそれぞれの通信経路を介して、予め定められたタイミングで同一の制御パケットを前記第2の通信制御装置へ送信する制御パケット送信部と、
     前記第2の通信制御装置から経路切替要求を受信した場合に、前記データバケットの通信経路を、現用系から予備系に切り替えるよう前記データ送信部に指示する経路切替指示部と
    を有し、
     前記第2の通信制御装置は、
     予備系の通信経路を介して受信した制御パケットの受信時刻から、現用系の通信経路を介して受信した同一の制御パケットの受信時刻までの時間差を測定する時間差測定部と、
     前記時間差測定部によって測定された時間差が予め定められた第1の閾値以上である場合に、前記第1の通信制御装置に経路切替要求を送信する経路切替要求部と
    を有することを特徴とする通信システム。
    A communication system for switching a communication path of data packets to a communication path of a backup system prepared in advance when congestion occurs in the communication path of the active system,
    A first communication control device,
    And a second communication control device connected to the first communication control device via respective communication paths of an active system and a standby system,
    The first communication control device is
    The data transmission unit for transmitting the data packet including the user data to the second communication control device via either the working system or the spare system communication path, and the communication route in advance for each of the working system and the spare system. A control packet transmission unit that transmits the same control packet to the second communication control apparatus at a predetermined timing;
    And a path switching instruction unit instructing the data transmission unit to switch the communication path of the data bucket from the current system to the standby system when receiving a path switching request from the second communication control device.
    The second communication control device is
    A time difference measurement unit that measures a time difference between the reception time of the control packet received via the communication path of the protection system and the reception time of the same control packet received via the communication path of the active system;
    And a path switching request unit for transmitting a path switching request to the first communication control device when the time difference measured by the time difference measuring unit is equal to or greater than a predetermined first threshold. Communications system.
  2.  請求項1に記載の通信システムであって、
     前記時間差測定部は、
     現用系および予備系の通信経路のいずれにも輻輳が発生していない場合に、それぞれの通信経路を介して前記第1の通信制御装置から受信した制御パケットの受信時刻の差を測定し、測定結果を前記第1の通信制御装置に通知し、
     前記制御パケット送信部は、
     前記第2の通信制御装置から前記受信時刻の差の測定結果を受信し、当該受信時刻の差が現用系の通信経路を介する制御パケットの方が早く前記第2の通信制御装置に到着することを示す場合に、予備系の通信経路に制御パケットを送出してから前記受信時刻の差に相当する時間が経過した後に同一の制御パケットを現用系の通信経路へ送出し、
     前記受信時刻の差が現用系の通信経路を介する制御パケットの方が遅く前記第2の通信制御装置に到着することを示す場合に、現用系の通信経路に制御パケットを送出してから前記受信時刻の差に相当する時間が経過した後に同一の制御パケットを予備系の通信経路へ送出することを特徴とする通信システム。
    The communication system according to claim 1, wherein
    The time difference measurement unit
    When congestion does not occur in any of the active and standby communication paths, the difference between the reception times of control packets received from the first communication control device via the respective communication paths is measured and measured. Notifying the first communication control device of the result;
    The control packet transmission unit
    The measurement result of the difference in the reception time is received from the second communication control apparatus, and the control packet via the communication path of the current system arrives at the second communication control apparatus earlier than the difference in the reception time. , And sends the same control packet to the communication path of the current system after a time equivalent to the difference in the reception time has elapsed since the control packet was sent to the communication path of the protection system.
    When the difference in the reception time indicates that the control packet via the communication path of the current system arrives later in the second communication control device, the control packet is sent out to the communication path of the current system before the reception A communication system characterized in that the same control packet is sent out to a communication path of a spare system after a time corresponding to a time difference has elapsed.
  3.  請求項2に記載の通信システムであって、
     前記データ送信部は、
     前記受信時刻の差が現用系の通信経路を介する制御パケットの方が早く前記第2の通信制御装置に到着することを示す場合に、データパケットを現用系の通信経路へ送出する際にはデータパケットを送信すべきタイミングから前記受信時刻の差に相当する時間が経過した後に当該データパケットを送出し、データパケットを予備系の通信経路へ送出する際にはデータパケットを送信すべきタイミングで当該データパケットを送出し、
     前記受信時刻の差が現用系の通信経路を介する制御パケットの方が遅く前記第2の通信制御装置に到着することを示す場合に、データパケットを現用系の通信経路へ送出する際にはデータパケットを送信すべきタイミングで当該データパケットを送出し、データパケットを予備系の通信経路へ送出する際にはデータパケットを送信すべきタイミングから前記受信時刻の差に相当する時間が経過した後に当該データパケットを送出することを特徴とする通信システム。
    The communication system according to claim 2, wherein
    The data transmission unit
    When the data packet is sent to the communication path of the current system when the difference in the reception time indicates that the control packet via the communication path of the current system arrives earlier in the second communication control apparatus The data packet is sent after a time corresponding to the difference in the reception time has elapsed from the timing when the packet should be sent, and when the data packet is sent out to the communication path of the spare system, the data packet is sent at the timing when it should be sent. Send out data packets,
    When the data packet is sent to the communication path of the current system when the difference in the reception time indicates that the control packet via the communication path of the current system arrives later in the second communication control device When transmitting the data packet at the timing to transmit the packet and transmitting the data packet to the communication path of the spare system, the data packet is transmitted after the time equivalent to the difference of the reception time has elapsed from the timing to transmit the data packet. A communication system characterized by transmitting data packets.
  4.  請求項1から3のいずれか一項に記載の通信システムであって、
     前記第2の通信制御装置は、
     許容される遅延時間の短さの程度を示すサービスレベルに対応付けて、当該サービスにおいて許容される遅延時間を示す前記第1の閾値を格納する閾値格納部をさらに備え、
     前記経路切替要求部は、
     予備系の通信経路を介して制御パケットを受信した時刻から、現用系の通信経路を介して同一の制御パケットを受信した時刻までの時間差が、前記閾値格納部内に格納されている少なくともいずれかの閾値を越えている場合に、当該閾値に対応付けて前記閾値格納部に格納されているサービスレベルを、前記経路切替要求に含めて前記第1の通信制御装置へ送信し、
     前記経路切替指示部は、
     前記第2の通信制御装置から受信した経路切替要求に含まれているサービスレベルに対応するサービスを提供するためのデータを含むデータパケット通信経路を、現用系の通信経路から予備系の通信経路に切り替えるよう前記データ送信部に指示することを特徴とする通信システム。
    The communication system according to any one of claims 1 to 3, wherein
    The second communication control device is
    And a threshold storage unit storing the first threshold indicating a delay time allowed for the service in association with a service level indicating a degree of shortness of the allowed delay time;
    The route switching request unit
    At least one of the time differences stored in the threshold storage unit from the time when the control packet is received through the communication path of the protection system to the time when the same control packet is received through the communication path of the working system. If the threshold is exceeded, the service level stored in the threshold storage unit in association with the threshold is included in the path switching request and transmitted to the first communication control device.
    The route switching instruction unit
    A data packet communication path including data for providing a service corresponding to the service level included in the path switching request received from the second communication control device from the communication path of the active system to the communication path of the backup system A communication system comprising: instructing the data transmission unit to switch.
  5.  請求項1から4のいずれか一項に記載の通信システムであって、
     前記データ送信部は、
     前記経路切替指示部から経路の切替を指示された場合に、前記第2の通信制御装置から経路切替完了通知を受信するまでは、現用系および予備系の通信経路の両方に同一のデータパケットを送出し、
     前記経路切替要求部は、
     前記第1の通信制御装置に経路切替要求を送信した後に、現用系の通信経路を介して受信したデータパケットと同一のデータパケットを、予備系の通信経路を介して予め定められた数以上連続して受信できた場合に、経路切替完了通知を前記第1の通信制御装置へ送信することを特徴とする通信システム。
    The communication system according to any one of claims 1 to 4, wherein
    The data transmission unit
    When path switching is instructed from the path switching instruction unit, the same data packet is transmitted to both the active and standby communication paths until the path switching completion notification is received from the second communication control unit. Send out
    The route switching request unit
    After transmitting the path switching request to the first communication control device, the same data packet as the data packet received through the communication path of the active system is continuously continued by a predetermined number or more through the communication path of the standby system. And a path switching completion notification is transmitted to the first communication control apparatus when the communication is successfully received.
  6.  請求項1から5のいずれか一項に記載の通信システムであって、
     前記経路切替要求部は、
     前記経路切替要求を送信した後に、前記時間差測定部によって測定された時間差が、前記第1の閾値よりも短い第2の閾値未満となった場合に、前記第1の通信制御装置に経路切戻要求を送信し、
     前記経路切替指示部は、
     前記第2の通信制御装置から経路切戻要求を受信した場合に、前記データバケットの通信経路を、予備系から現用系に切り戻すよう前記データ送信部に指示することを特徴とする通信システム。
    The communication system according to any one of claims 1 to 5, wherein
    The route switching request unit
    When the time difference measured by the time difference measurement unit becomes less than a second threshold shorter than the first threshold after transmitting the route switching request, the route return back to the first communication control device Send a request,
    The route switching instruction unit
    A communication system characterized by instructing the data transmission unit to switch back the communication path of the data bucket from the backup system to the active system when receiving a path switchback request from the second communication control apparatus.
  7.  請求項1から6のいずれか一項に記載の通信システムであって、
     現用系の通信経路上に設けられる1以上の中継装置をさらに備え、
     それぞれの前記中継装置は、
     送信すべき通信パケットを蓄積する送信バッファ内のデータ量が予め定められた閾値以上となった場合に、輻輳が発生する可能性が高いことを示す警告情報を前記第2の通信制御装置へ送信する警告送信部を有し、
     前記経路切替要求部は、
     前記中継装置から前記警告情報を受信した場合に、前記第1の通信制御装置へ前記経路切替要求を送信することを特徴とする通信システム。
    The communication system according to any one of claims 1 to 6, wherein
    It further comprises one or more relay devices provided on the working communication path,
    Each of the relay devices is
    When the amount of data in the transmission buffer for storing communication packets to be transmitted becomes equal to or greater than a predetermined threshold value, warning information indicating that congestion is likely to occur is transmitted to the second communication control device. Have a warning transmitter to
    The route switching request unit
    A communication system characterized by transmitting the route switching request to the first communication control device when the warning information is received from the relay device.
PCT/JP2012/076751 2011-11-01 2012-10-17 Communication system WO2013065477A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013541693A JP5784139B2 (en) 2011-11-01 2012-10-17 Communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-240594 2011-11-01
JP2011240594 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013065477A1 true WO2013065477A1 (en) 2013-05-10

Family

ID=48191834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076751 WO2013065477A1 (en) 2011-11-01 2012-10-17 Communication system

Country Status (2)

Country Link
JP (1) JP5784139B2 (en)
WO (1) WO2013065477A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3217608A4 (en) * 2014-12-05 2017-11-15 Huawei Technologies Co., Ltd. Switchback delay method, device, and system
JP2018037797A (en) * 2016-08-30 2018-03-08 沖電気工業株式会社 Monitoring device, communication apparatus, and program
JP2018064251A (en) * 2016-10-14 2018-04-19 富士通株式会社 Setting method and server device
WO2019006704A1 (en) * 2017-07-05 2019-01-10 华为技术有限公司 Path computation method, apparatus and system
CN109428742A (en) * 2017-08-22 2019-03-05 华为技术有限公司 Based on time delay transmission path control method, network controller and system
CN110475329A (en) * 2018-05-11 2019-11-19 维沃移动通信有限公司 Wireless communications method, device and the network equipment
CN111314163A (en) * 2019-12-03 2020-06-19 深信服科技股份有限公司 Data packet transmission method and system
WO2020170850A1 (en) * 2019-02-20 2020-08-27 日本電信電話株式会社 Network controller device, network control system, control method for controlling communication network and program
WO2022123774A1 (en) * 2020-12-11 2022-06-16 日本電信電話株式会社 Video communication system, video communication method, video transmission device, video reception device, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268669A (en) * 1993-03-11 1994-09-22 Oki Electric Ind Co Ltd Bus switching system
JPH0879254A (en) * 1994-08-31 1996-03-22 Oki Electric Ind Co Ltd Signal system selection and output device
JPH08186582A (en) * 1994-12-28 1996-07-16 Fujitsu Ltd Inter-digital exchange relay system and digital exchange
WO2010100837A1 (en) * 2009-03-06 2010-09-10 日本電気株式会社 Communication rate control method, transmission apparatus, and communication system
JP2011188046A (en) * 2010-03-05 2011-09-22 Hitachi Ltd Packet communication system and method for controlling packet communication apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268669A (en) * 1993-03-11 1994-09-22 Oki Electric Ind Co Ltd Bus switching system
JPH0879254A (en) * 1994-08-31 1996-03-22 Oki Electric Ind Co Ltd Signal system selection and output device
JPH08186582A (en) * 1994-12-28 1996-07-16 Fujitsu Ltd Inter-digital exchange relay system and digital exchange
WO2010100837A1 (en) * 2009-03-06 2010-09-10 日本電気株式会社 Communication rate control method, transmission apparatus, and communication system
JP2011188046A (en) * 2010-03-05 2011-09-22 Hitachi Ltd Packet communication system and method for controlling packet communication apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3866412A1 (en) * 2014-12-05 2021-08-18 Huawei Technologies Co., Ltd. Method, device, and system for deferring switchback
EP3217608A4 (en) * 2014-12-05 2017-11-15 Huawei Technologies Co., Ltd. Switchback delay method, device, and system
US11146484B2 (en) 2014-12-05 2021-10-12 Huawei Technologies Co., Ltd. Method, device, and system for deferring switchback
JP2018037797A (en) * 2016-08-30 2018-03-08 沖電気工業株式会社 Monitoring device, communication apparatus, and program
JP2018064251A (en) * 2016-10-14 2018-04-19 富士通株式会社 Setting method and server device
WO2019006704A1 (en) * 2017-07-05 2019-01-10 华为技术有限公司 Path computation method, apparatus and system
CN109428742A (en) * 2017-08-22 2019-03-05 华为技术有限公司 Based on time delay transmission path control method, network controller and system
EP3661133A4 (en) * 2017-08-22 2020-07-22 Huawei Technologies Co., Ltd. Delay-based transmission path control method, network controller and system
CN109428742B (en) * 2017-08-22 2020-12-15 华为技术有限公司 Delay transmission path control method, network controller and system
US11245605B2 (en) 2017-08-22 2022-02-08 Huawei Technologies Co., Ltd. Latency-based transmission path control method, network controller, and system
CN110475329B (en) * 2018-05-11 2020-11-06 维沃移动通信有限公司 Wireless communication method, device and network equipment
CN110475329A (en) * 2018-05-11 2019-11-19 维沃移动通信有限公司 Wireless communications method, device and the network equipment
WO2020170850A1 (en) * 2019-02-20 2020-08-27 日本電信電話株式会社 Network controller device, network control system, control method for controlling communication network and program
JP2020136925A (en) * 2019-02-20 2020-08-31 日本電信電話株式会社 Network controller device, network control system, communication network control method, and program
JP7151537B2 (en) 2019-02-20 2022-10-12 日本電信電話株式会社 NETWORK CONTROLLER DEVICE, NETWORK CONTROL SYSTEM, COMMUNICATION NETWORK CONTROL METHOD AND PROGRAM
CN111314163A (en) * 2019-12-03 2020-06-19 深信服科技股份有限公司 Data packet transmission method and system
WO2022123774A1 (en) * 2020-12-11 2022-06-16 日本電信電話株式会社 Video communication system, video communication method, video transmission device, video reception device, and program

Also Published As

Publication number Publication date
JPWO2013065477A1 (en) 2015-04-02
JP5784139B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
WO2013065477A1 (en) Communication system
EP2730096B1 (en) Apparatus and method for protection in a data center
US7921224B2 (en) Method of maintaining traffic services through congestion caused by network failovers
JP5883743B2 (en) Method for reducing communication interruption time in packet communication networks
US20070211623A1 (en) Failure recovery method, network device, and program
JP2004533142A (en) Reuse of bandwidth reservation in protection and restoration techniques for dynamically allocated rings
US6473815B1 (en) Queue sharing
US8520534B2 (en) In-service throughput testing in distributed router/switch architectures
EP3253010A1 (en) Network relay device, gateway redundancy system, program, and redundancy method
WO2013072253A1 (en) Dynamic bandwidth adjustment in packet transport network
US11252585B2 (en) Access network node, radio communication system, communication method and program
EP3226452A1 (en) Method, device, terminal device and system for adjusting working state of aggregated link
JP5816960B2 (en) Communications system
CN109088822B (en) Data flow forwarding method, device, system, computer equipment and storage medium
US20080062996A1 (en) Consumer Edge Initiated Pseudo-Wire Multi-Homing in Access Networks
US20220141124A1 (en) Network controller device, network control system, control method for controlling communication network and program
US9185038B2 (en) Technique for controlling a load state of a physical link carrying a plurality of virtual links
JP2016154291A (en) Node
US10536366B1 (en) Methods and apparatus for controlling and making link bundle advertisements to support routing decisions
CN112737940A (en) Data transmission method and device
US8139499B2 (en) Method and arrangement for determining transmission delay differences
US11411879B2 (en) Transmission system management device and transmission system design method
US20080205269A1 (en) Method and system for rerouting traffic
JPWO2005117365A1 (en) Communication control device and communication control method
JP2012205143A (en) Router and metric management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846697

Country of ref document: EP

Kind code of ref document: A1