WO2013015036A1 - Autofocus system and operational control method for same - Google Patents

Autofocus system and operational control method for same Download PDF

Info

Publication number
WO2013015036A1
WO2013015036A1 PCT/JP2012/065308 JP2012065308W WO2013015036A1 WO 2013015036 A1 WO2013015036 A1 WO 2013015036A1 JP 2012065308 W JP2012065308 W JP 2012065308W WO 2013015036 A1 WO2013015036 A1 WO 2013015036A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
lens
frame
image
face image
Prior art date
Application number
PCT/JP2012/065308
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 正
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013015036A1 publication Critical patent/WO2013015036A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method

Definitions

  • This invention relates to an autofocus system and its operation control method.
  • a contrast method (so-called optical path length difference method) using a plurality of AF CCDs has been proposed as an AF (auto focus) method.
  • the focus lens is controlled so that the focus evaluation value obtained from the first AF CCD is equal to the focus evaluation value obtained from the second AF CCD.
  • Patent Document 1 In the case of a subject with low contrast such as a face, the focus lens is moved per unit time in an infinite / closest direction with an amplitude larger than a reference value (Patent Document 1). There are those that increase the driving speed of the lens (Patent Document 2) and those that calculate the shooting distance when a face is detected (Patent Document 3).
  • auto-focus is also designed so as to be suitable for imaging a human face. Even when the focusing speed is moved in accordance with the difference between the two focus evaluation values in the so-called optical path length difference type auto-focusing, it is often designed to be suitable for focusing when imaging a human face. It is done. However, because buildings and nature other than the human face have high spatial frequencies, so-called hunting occurs when the optical path length difference autofocus is designed to be suitable for focusing when imaging the human face. May end up.
  • An object of the present invention is to enable focusing relatively quickly even when imaging a human face without causing hunting as much as possible.
  • the auto-focus system includes a first solid-state electronic imaging device and a second solid-state electronic device that are optically arranged at equal intervals in the front-rear direction with respect to the position of the subject image formed by the focus lens.
  • the first contrast of the image in the AF frame and the subject image captured by the second solid-state electronic image sensor within the AF frame A focus / lens moving means for moving the focus lens to a position where the second contrast of the image matches, a face image determining means for determining whether a face image is detected in the AF frame, and the face image determination
  • the focus / lens moving means A focus / lens movement control means for controlling the focus / lens movement means is provided so that the moving speed is faster than when it is determined that a face image is not detected in the AF frame. .
  • the present invention also provides an operation control method suitable for the auto focus system. That is, in this method, the first and second solid-state electronic imaging devices in which the focus / lens moving means are optically arranged at equal intervals in the front / rear direction with respect to the position of the subject image formed by the focus / lens.
  • the focus lens moving unit is configured to select a first of the images in the AF frame among the subject images captured by the first solid-state electronic image sensor. The focus lens is moved to a position where the second contrast of the image within the AF frame of the subject image captured by the second solid-state electronic image sensor matches the second contrast.
  • the focus / lens movement control means determines that the face image is within the AF frame by the face image determination means.
  • the focus / lens moving means causes the focus / lens moving speed to be increased in response to the determination that the face image has been released compared to when it is determined that no face image is detected within the AF frame. -It controls the lens moving means.
  • the first solid-state electronic image sensor and the second solid-state electronic image sensor are disposed at optically equidistant positions relative to the position of the subject image formed by the focus lens. .
  • the focus lens is moved to a position where the contrast matches.
  • the moving speed of the focus lens increases.
  • the focus lens can be positioned relatively quickly at the in-focus position, and when no face is detected in the AF frame, the speed is relatively slow compared to when the face is detected. Since the focus lens is positioned, the occurrence of hunting can be prevented.
  • a contrast difference detecting means for detecting a difference between the first contrast and the second contrast may be further provided.
  • the focus / lens moving means increases the moving speed of the focus / lens as the contrast difference between the first contrast and the second contrast detected by the contrast difference detecting means increases. It will be.
  • a zoom lens that changes the focal length without changing the imaging position of the subject image, a diaphragm that adjusts the brightness of the subject image, a setting device that sets the moving speed of the focus lens by the focus lens moving means, and And a moving speed determining means for determining the moving speed of the focus lens by the focus lens moving means based on the zoom position of the zoom lens, the aperture value of the diaphragm and the moving speed set by the setting device. May be.
  • the focus / lens movement control means increases the movement speed determined by the movement speed determination means when, for example, the face image setting means determines that a face image is detected within the AF frame. It may be a thing.
  • a third solid-state electronic image sensor that is disposed at a position optically equal to the position of the subject image formed by the focus lens and outputs a video signal representing the subject image may be further provided.
  • the face image determination means will determine whether a face image is detected in the AF frame from the video signal output from the third solid-state electronic image sensor.
  • FIG. 2 shows an optical configuration of a taking lens unit.
  • the relationship between the AF CCD and the imaging position of the subject image is shown.
  • the relationship between the AF evaluation value and the focus / lens position is shown.
  • the relationship between the imaging range and the AF frame is shown.
  • the relationship between the AF evaluation value and the focus / lens position is shown.
  • the relationship between the AF evaluation value and the focus / lens position is shown.
  • It is a flowchart which shows the process sequence of a photographic lens unit.
  • the appearance of the taking lens unit is shown.
  • FIG. 1 shows an embodiment of the present invention, and shows an optical configuration of a part of a photographing lens unit 1 and a camera body 20 used for broadcasting or the like.
  • the taking lens unit 1 is detachably attached to the camera body 20.
  • the photographic lens unit 1 includes a focus lens (focus lens group) 2, a zoom lens (zoom lens group) 3, and a front relay so as to have an optical axis common to the optical axis O1 of the photographic lens unit 1
  • a lens (front relay / lens group) 5 and a rear relay / lens (rear relay / lens group) 7 are included.
  • a diaphragm 4 is arranged between the zoom lens 3 and the front relay lens 5 so that the optical axis O1 of the photographing lens unit 1 passes through the center.
  • a half mirror 6 is arranged between the front relay lens 5 and the rear relay lens 7.
  • the camera body 20 is provided with a color separation prism 21 having an optical axis common to the optical axis O1 of the photographing lens unit 1 when the photographing lens unit 1 is mounted.
  • the color separation prism 21 includes a first prism 22, a second prism 23, and a third prism 24, and incident light is separated into a red component, a green component, and a blue component.
  • An imaging CCD 26 and a third imaging CCD 27 are arranged.
  • the photographing lens unit 1 includes an AF relay lens (AF relay lens) that uses a part of the light reflected at the center of the half mirror 6 as an optical axis [optical axis for AF (auto focus)] O2.
  • Lens group 8 is provided.
  • a total reflection mirror 9 is provided after the AF relay lens 8.
  • a split prism 10 composed of a first prism 11 and a second prism 12 is provided in the total reflection direction of the total reflection mirror 9.
  • a first AF CCD 13 and a second AF CCD 14 are provided on the exit surface of the first prism 11 and the exit surface of the second prism 12, respectively.
  • the light beam incident on the photographic lens unit 1 passes through the focus lens 2, zoom lens 3, aperture 4, front relay lens 5, half mirror 6 and rear relay lens 7, and enters the camera body 20. Led.
  • the light beam is decomposed into a red light component, a green light component, and a blue light component, respectively, and the first image pickup CCD 25, the second image pickup CCD 26, and the third image pickup device.
  • a subject image is formed on each of the CCDs 27 for use.
  • Video signals representing subject images of the red light component, the green light component, and the blue light component are output from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27, respectively.
  • the light beam incident on the taking lens unit 1 is partially reflected by the half mirror 6.
  • the light beam reflected by the half mirror 6 passes through the AF relay lens 8 and is totally reflected by the total reflection mirror 9.
  • the light beam totally reflected by the total reflection mirror 9 enters the split prism 10, a part of the light enters the first AF CCD 13, and the rest enters the second AF CCD 14.
  • An AF signal is output from each of the first AF CCD 13 and the second AF CCD 14.
  • FIG. 2 shows the relationship of the optical distances of the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13, and the second AF CCD 14.
  • An optical system for making light incident on the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13 and the second AF CCD 14 is represented by a lens 30. ing.
  • the optical distances until the light enters the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27 are all equal.
  • the optical distance until it enters the first AF CCD 13 is arranged a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • the optical distance until the light enters the second AF CCD 14 is arranged after a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • the positional relationship between the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13, and the second AF CCD 14 (optically front and rear, etc.) The position of the interval is defined.
  • the first imaging CCD 25 the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13 and the second AF CCD 14 are arranged on the same optical axis
  • the first imaging CCD This is equivalent to the first AF CCD 13 and the second AF CCD 14 being arranged at equal intervals before and after the CCD 25 for image pickup, the second image pickup CCD 26, and the third image pickup CCD 27.
  • FIG. 3 shows the relationship between the AF evaluation value and the position of the focus lens 2.
  • the graph G13 is obtained based on the signal output from the first AF CCD 13, and the graph G14 is obtained based on the signal output from the second AF CCD 14.
  • the focus lens position P1 which is the intersection of the graphs G13 and G14 obtained from the signals of the first AF CCD 13 and the second AF CCD 14, respectively, is the first imaging CCD 25, the second imaging CCD 25, and the second imaging CCD. This is the position of the focus lens 2 where the subject image is focused on the imaging CCD 26 and the third imaging CCD 27.
  • FIG. 4 is a block diagram mainly showing an electrical configuration of the taking lens unit 1.
  • FIG. 4 also shows an electrical configuration of the focus / AF frame operation unit 70 attached to the photographing lens unit 1.
  • the overall operation of the photographic lens unit 1 is controlled by the CPU 50.
  • An EEPROM 51 that stores predetermined data is connected to the CPU 50.
  • the signal output from the first AF CCD 13 included in the photographing lens unit 1 is converted into digital data by the analog / digital conversion circuit 31.
  • High frequency components are extracted from the converted digital data by the high pass filter 32.
  • Only digital data corresponding to the image in the AF frame is extracted in the gate circuit 33 from the extracted digital data representing the high frequency component.
  • the digital data that has passed through the gate circuit 33 is integrated in the integrating circuit 34 field by field, and data representing the integrated value is input to the CPU 50 in one field cycle.
  • the signal output from the second AF CCD 14 included in the photographic lens unit 1 is converted into digital data by the analog / digital conversion circuit 41, and the high frequency component passes through the high pass filter 42. pass.
  • Digital data corresponding to the image in the AF frame passes through the gate circuit 43 and is integrated by the integration circuit 44.
  • the output data of the integrating circuit 44 is input to the CPU 50.
  • the data representing the integrated value output from the integrating circuits 43 and 44 indicates the height of the contrast of the subject image picked up by the first AF CCD 13 and the second AF CCD 14, and this contrast height. Is the AF evaluation value shown in FIG.
  • the focus lens position P1 at the intersection of the graph G13 obtained from the first AF CCD 13 and the graph G14 obtained from the second AF CCD 14 is inputted integration. It is calculated based on the value (AF evaluation value).
  • Driving data is generated in the CPU 50 so that the focus lens 2 is moved to the calculated position.
  • the generated drive data is converted into an analog control signal by the digital / analog conversion circuit 54.
  • the converted analog control signal is amplified by the amplifier circuit 58 and applied to the focus motor 59.
  • the focus lens 2 is positioned at the focus position P1 by the focus motor 59.
  • the position of the focus lens 2 is detected by the position detection sensor 60, and the detection signal is converted into digital data by the analog / digital conversion circuit 52 and input to the CPU 50.
  • the CPU 50 feedback control is performed so that the focus lens 2 is positioned at the in-focus position P1.
  • zoom request signal When a zoom request signal is given to the taking lens unit 1 by rotating the zoom ring or the like, the zoom request signal is converted into digital data by the analog / digital conversion circuit 52.
  • the CPU 50 generates zoom control data indicating the zoom amount from the converted digital data.
  • the generated zoom control data is converted into an analog control signal by the digital / analog conversion circuit 54, amplified by the amplification circuit 55, and given to the zoom motor 56.
  • a zoom motor 3 controls the zoom lens 3 to a desired zoom position.
  • a position detection sensor 57 detects the position of the zoom lens 3 and performs feedback control.
  • the aperture control data is output from the CPU 50 according to the rotation of the aperture ring, etc., and converted into digital control data by the digital / analog conversion circuit 54.
  • the converted digital control data is converted into an analog control signal by the digital / analog conversion circuit 54 and amplified by the amplifier circuit 61.
  • the amplified analog control signal is given to the diaphragm motor 62, and the diaphragm 4 is controlled.
  • the position detection sensor 63 detects the aperture value of the aperture 4 and performs feedback control.
  • the focus / AF frame operation unit 70 is attached to the photographing lens unit 1.
  • the photographing lens unit 1 and the focus / AF frame operation unit 70 are connected by a cable between a terminal 53 formed on the CPU 50 of the photographing lens unit 1 and a terminal 74 formed on the focus / AF frame operation unit 70. Is done.
  • the overall operation of the photographic lens unit 1 is controlled by the operation unit CPU73.
  • the focus request signal is input to the operation unit CPU 73.
  • the focus / AF frame operation unit 70 is formed with a focusing knob (see FIG. 5) as will be described later, and a focus request signal corresponding to the rotation angle of the focusing knob is given to the focus / AF frame operation unit 70. It is done.
  • the focus request signal is given to the taking lens unit 1, and the focus lens 2 is controlled so as to have a focus amount corresponding to the focus request signal (manual focus).
  • the focus / AF frame operation unit 70 receives an AF frame movement signal given from a joy stick (see FIG. 5).
  • the AF frame moves within the imaging range to a position defined according to the input AF frame movement signal.
  • a focus request signal is input to the operation unit CPU 73.
  • a signal indicating the position of the AF frame is given from the focus / AF frame operation unit 70 to the gate circuits 33 and 43 via the CPU 50 of the photographing lens unit 1.
  • the gate circuits 33 and 43 are controlled so that digital data corresponding to the image in the AF frame passes. Control is performed so that the AF frame is in focus.
  • the focus / AF frame operation unit 70 is a digital image obtained by digitizing video signals output from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27 included in the camera body 20. Input image data. This digital image data is given to the image memory 71 and temporarily stored. Image data is read from the image memory 71 and input to the image processing circuit 72. In the image processing circuit 72, face detection processing is performed to determine whether a face image is detected within the AF frame. When a face image is detected within the AF frame, the detection signal is input to the CPU 50 of the taking lens unit 1.
  • a setting signal from an AF speed setting dial (setting device) 75 is also input to the focus / AF frame operation unit 70.
  • the AF setting speed setting dial 75 moves the focus lens 2 so that the focus lens 2 is at the focus lens position P1 (see FIG. 3) during auto-focusing. This is to set the movement speed.
  • FIG. 5 shows an external view of the focus / AF frame setting unit 70, and is a plan view.
  • an AF speed setting dial 75 capable of setting two stages of a slow setting speed and a fast setting speed is formed.
  • an AT start switch 76 which is set when the AF frame follows the detected face image when face image detection is performed.
  • the joy stick 77 for moving the AF frame up, down, left and right is formed.
  • an AF start switch 78 that is set when the autofocus process is started is formed.
  • the above-described manual focusing knob 80 is formed on the right end surface (right side in FIG. 5) of the focus / AF frame setting unit 70, and the left end surface (left side in FIG. 5) is attached to the photographing lens unit 1.
  • An attachment member 83 is formed. Furthermore, connectors 81 and 82 to which cables and the like are connected are formed on the front side (lower side in FIG. 5) of the focus / AF frame setting unit 70.
  • FIG. 6 shows the relationship between the imaging range 90 and the AF frame 91.
  • the AF frame 91 can be moved vertically and horizontally within a range (captured subject image) 90 that can be imaged by the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • the AF frame 91 moves by operating the joy stick 77 as described above.
  • the focus lens 2 is driven so that an image included in the AF frame is in focus.
  • the imaging ranges 90 of the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, and the first AF CCD 13 and the second AF CCD 14 are equal.
  • FIG. 7 shows the relationship between the AF evaluation value and the focus lens position when a face image is included in the AF frame.
  • the difference between the AF evaluation values of the graph G13 obtained from the first AF CCD 13 and the graph G14 obtained from the second AF CCD 14 gradually decreases as the focus position of the target focus lens 2 is approached. Therefore, natural focusing control can be performed by determining the moving speed of the focus lens 2 in accordance with the difference in AF evaluation values (indicated by arrows).
  • a human face As a subject to be photographed, a human face is often imaged. However, since the contrast of the face is low, when the face is included in the AF frame, the difference in AF evaluation values is small as indicated by arrows. Since the human face is often imaged, it is generally considered that the moving speed of the focus lens 2 is determined based on the difference in AF evaluation values obtained when the human face is imaged. This is because the focus lens 2 can be positioned at the in-focus position relatively quickly when imaging a human face.
  • FIG. 8 shows the relationship between the AF evaluation value and the focus / lens position when the face image is not included in the AF frame.
  • the moving speed of the focus lens 2 when a face image is detected in the AF frame is relatively higher than the moving speed of the focus lens 2 when no face image is detected in the AF frame. It's what makes it faster.
  • the focus lens 2 can be quickly moved to the target position P1 even when a face image is detected in the AF frame, and hunting can be prevented even if the face image is not detected in the AF frame. It becomes like this.
  • FIG. 9 is a flowchart showing a processing procedure of the photographing lens unit 1.
  • the initial setting of the taking lens unit 1 is performed (step 101), and processing other than auto focus is performed (step 102).
  • AF auto focus
  • the set aperture position IP of the aperture 4 is read (step 104).
  • the zoom position ZP of the zoom lens 3 is read (step 105)
  • the position of the AF speed setting dial 75 is read (step 106).
  • An AF speed (moving speed of the focus lens 2) FS is calculated from each read value, and set to the calculated AF speed FS (step 107). The calculation of the AF speed will be described later.
  • the calculated AF speed FS is corrected so as to increase. Specifically, the calculated AF speed FS is corrected by multiplying the calculated AF speed FS by a coefficient k (1 ⁇ k, for example, 1.2 to 1.4) (step 109). ). If no face image is detected in the AF frame (YES in step), the contrast in the image in the AF frame is not low, and the process of step 109, which is a correction process that increases the calculated AF speed FS, is skipped.
  • k (1 ⁇ k, for example, 1.2 to 1.4
  • the focus evaluation value fa obtained from the first AF CCD 13 and the AF evaluation value fb obtained from the second AF CCD 14 are read (step 110), and the difference between the read AF evaluation values fa and fb is The AF speed FS is multiplied (step 111).
  • the focus lens 2 is moved based on the value of the AF speed FS (step 112). Since the difference between the AF evaluation values fa and fb becomes smaller as the focus position P1 is approached, the focus lens 2 gradually becomes slower as it approaches the focus position P1, and is positioned at the focus position P1 by a natural operation. .
  • step 113 The processing from step 102 is repeated until the photographing lens unit 1 is turned off (step 113).
  • the AF speed FS is calculated so that the AF speed FS when the face image is not detected in the AF frame is an appropriate speed, and is calculated when the face image is detected in the AF frame.
  • the AF speed FS is corrected so as to increase, the AF speed FS is calculated so that the AF speed FS when the face image is detected in the AF frame becomes an appropriate speed (rapid speed). If the face image is not detected within the frame, the calculated AF speed FS may be corrected so as to become slow.
  • the AF speed FS when a face image is detected in the AF frame may be relatively faster than the AF speed FS when no face image is detected in the AF frame.
  • the sensitivity of the focus lens 2 is S
  • the sensitivity S is expressed by Equation 1.
  • x represents the entire stroke of the focus lens 2
  • ⁇ x1 is a position error of the focus lens 2 that can be determined to be in focus.
  • AF speed FS 1 / S.
  • the AF speed FS calculated in this way is multiplied by a coefficient corresponding to the set position of the AF speed setting dial 75. For example, when a slow setting speed is set, a coefficient k1 (k1 ⁇ 1 and, for example, 0.9) is multiplied. When a fast setting speed is set, a coefficient k2 (k2> 1 and, for example, 1.1) is multiplied. .
  • the AF speed FS is calculated by calculation, but the relationship between the aperture position IP, the zoom position IP, the value of the AF speed setting dial 75 and the AF speed FS is stored in advance in a table.
  • the AF speed FS may be read from the table.
  • the AF speed FS read from the table may be corrected, or the corrected AF speed may be stored in the table.
  • the AF speed may be determined by actually trial and error using values of several aperture positions IP, zoom positions ZP, and AF speed setting dial 75.
  • FIG. 10 is a flowchart showing the processing procedure of the taking lens unit 1. In FIG. 10, the same processes as those shown in FIG.
  • the AF evaluation value fa obtained from the first AF CCD 13 and the AF evaluation value fb obtained from the second AF CCD 14 are read (step 107). Step 110).
  • the difference between the read AF evaluation values fa and fb is multiplied by a coefficient k. Since the coefficient k is 1 or more, the difference between the AF evaluation values fa and fb increases. The difference between the AF evaluation values fa and fb multiplied by the coefficient k is multiplied by the set AF speed FS (step 114). Even if the contrast is low, such as a face image, the difference between the AF evaluation values fa and fb becomes large, so that the AF speed FS increases and the focus lens can be moved quickly.
  • the difference between the AF evaluation values fa and fb is not performed without performing the process of multiplying the difference between the read AF evaluation values fa and fb by the coefficient k. Is multiplied by the set AF speed FS (step 111). Since the contrast in the AF frame is high, even if the difference between the read AF evaluation values fa and fb cannot be multiplied by the coefficient k, the difference between the AF evaluation values fa and fb is multiplied by the set AF speed FS. As a result, the focus lens 2 moves quickly.
  • the photographing lens unit 1 described above includes two AF CCDs, the first AF CCD 13 and the second AF CCD 14, but the photographing lens unit shown in the embodiment shown in FIGS. 1A includes a third AF CCD 15 in addition to the first AF CCD 13 and the second AF CCD 14.
  • face image detection is performed using a video signal obtained from the imaging CCD 26 included in the camera body 20, but in this embodiment, it is included in the photographing lens unit 1A.
  • Face image detection is performed using a video signal obtained from the third AF CCD 15.
  • FIG. 11 shows the appearance of the taking lens unit 1A partially showing the internal configuration.
  • FIG. 11 is a side view of the taking lens unit 1A. In this figure, the same components as those shown in FIG.
  • a focus ring 121, a zoom lens 122, and an iris ring 123 are rotatably provided on the outer periphery of the photographing lens unit 1A.
  • the focus ring 121 is rotated, the focus lens moves in the optical axis direction according to the rotation, and when the zoom lens 122 is rotated, the zoom amount of the zoom lens is adjusted according to the rotation. It is done.
  • the iris ring 123 is rotated, the aperture value is adjusted.
  • the split prism 130 includes a first prism 131, a second prism 132, and a third prism 133. A part of the light beam incident on the splitting prism 130 is emitted from each of the first prism 131, the second prism 132, or the third prism 133, and the first AF CCD 13, the second AF CCD 14, or the The light enters the third AF CCD 15.
  • the first AF CCD 13 and the second AF CCD 14 obtain the AF evaluation value as described above based on the signals output from the first AF CCD 13 and the second AF CCD 14. Then, face image detection is performed using the video signal output from the third AF CCD 15.
  • FIG. 12 is a block diagram showing an electrical configuration of the photographing lens unit 1A. In this figure, the same components as those shown in FIG.
  • the photographing lens unit 1A includes an AF CPU 45. Position information of the AF frame is given to the gate circuits 33 and 43 through the AF CPU 45, and an AF evaluation value in the AF frame is given to the CPU 50.
  • Various switches included in the focus / AF frame operation unit 70A, an output signal from 75A, and a focus request generated by operating the AT switch 78
  • a signal auto focus
  • a signal indicating the rotation amount of the focus ring 121, and the like are input to the operation unit CPU73.
  • the data indicating the position of the AF frame from the operation unit CPU 73 of the focus / AF frame operation unit 70A to the lens CPU 50 of the photographing lens unit 1A, and the manual focus amount specified by the rotation amount of the focus ring 121 are indicated.
  • a focus request signal indicating a request for data and auto-focus is output.
  • the video signal output from the third AF CCD 15 included in the photographing lens unit 1A is converted into digital image data by the analog / digital conversion circuit 46 and input to the signal processing circuit 47.
  • Digital image data that has undergone predetermined signal processing in the signal processing circuit 47 is input to the image signal processing circuit 72 via the image memory 71 of the focus / AF frame operation unit 70A.
  • the image signal processing circuit 72 performs face image detection processing.
  • the position data of the detected face image is input to the operation unit CPU 73.
  • the operation unit CPU 73 determines that the face image is included in the AF frame, as described above, the moving speed of the focus lens 3 when the focus lens 3 is positioned at the in-focus position is relatively high. Made fast.
  • a face image can be detected without using the imaging CCD 26 included in the camera body 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Abstract

The purpose of the present invention is to rapidly position a focusing lens at the focal position when a face image is present in an AF frame. First and second AF CCDs are disposed at positions corresponding to the optical distance in front of and behind the focal position of an image of a subject image taken by an imaging lens. Two graphs indicating the relationship between the focusing lens position and an AF evaluation value are obtained on the basis of signals obtained from the first and second AF CCDs. The intersection position of the graphs is used as the movement position of the focusing lens. The AF speed (FS) which is the movement speed of the focusing lens, is set (step 107). When a face image is detected in the AF frame (step 108: YES), the set AF speed is multiplied by a coefficient (k) of 1 or greater and corrected (step 109). The focusing lens is moved at an AF speed that is a multiple of the difference (fa - fb) of the two graphs indicating the relationship between the focusing lens position and the AF evaluation value (step 111, 112).

Description

オート・フォーカス・システムおよびその動作制御方法Auto focus system and operation control method thereof
 この発明は,オート・フォーカス・システムおよびその動作制御方法に関する。 This invention relates to an autofocus system and its operation control method.
 AF(オート・フォーカス)方式として,複数枚のAF用CCDを使用したコントラスト方式(いわゆる光路長差方式)が提案されている。この光路長差方式では,第1のAF用CCDから得られる焦点評価値と第2のAF用CCDから得られる焦点評価値とが等しくなるようにフォーカス・レンズが制御される。2つの焦点評価値の差に応じてフォーカシング速度を設定することで合焦までの自然な動作が得られる(非特許文献1)。 A contrast method (so-called optical path length difference method) using a plurality of AF CCDs has been proposed as an AF (auto focus) method. In this optical path length difference method, the focus lens is controlled so that the focus evaluation value obtained from the first AF CCD is equal to the focus evaluation value obtained from the second AF CCD. By setting the focusing speed according to the difference between the two focus evaluation values, a natural operation until focusing is obtained (Non-Patent Document 1).
 また,顔のようなコントラストが低い被写体の場合,基準値よりも大きな振幅で無限/至近方向にフォーカスレンズを単位時間当たり移動させるもの(特許文献1),被写体が接近している場合にはフォーカスレンズの駆動速度を増加させるもの(特許文献2),顔が検出されると,撮影距離が算出されるもの(特許文献3)などがある。 Also, in the case of a subject with low contrast such as a face, the focus lens is moved per unit time in an infinite / closest direction with an amplitude larger than a reference value (Patent Document 1). There are those that increase the driving speed of the lens (Patent Document 2) and those that calculate the shooting distance when a face is detected (Patent Document 3).
特開2010-156731号JP 2010-156731 特開2010-152162号JP 2010-152162 特開2009-294416号JP2009-294416
 一般的には人間の顔を撮像することが多いので,人間の顔を撮像するときに適するようにオート・フォーカスも設計される。いわゆる光路長差方式のオート・フォーカスにおいて2つの焦点評価値の差に応じてフォーカシング速度を移動させる場合においても,人間の顔を撮像するときのフォーカシングに適するように設計されることが多いと考えられる。しかしながら,人間の顔以外の建物,自然などは空間周波数が高いので,光路長差方式のオート・フォーカスにおいて,人間の顔を撮像するときのフォーカシングに適するように設計されると,いわゆるハンチングが起きてしまうことがある。 Generally, since a human face is often imaged, auto-focus is also designed so as to be suitable for imaging a human face. Even when the focusing speed is moved in accordance with the difference between the two focus evaluation values in the so-called optical path length difference type auto-focusing, it is often designed to be suitable for focusing when imaging a human face. It is done. However, because buildings and nature other than the human face have high spatial frequencies, so-called hunting occurs when the optical path length difference autofocus is designed to be suitable for focusing when imaging the human face. May end up.
 この発明は,できるだけハンチングが起こすことなく,人間の顔を撮像する場合であっても比較的速く合焦できるようにすることを目的とする。 An object of the present invention is to enable focusing relatively quickly even when imaging a human face without causing hunting as much as possible.
 この発明によるオート・フォーカス・システムは,フォーカス・レンズにより結像される被写体像の位置に対して光学的に前後等間隔の位置に配置された第1の固体電子撮像素子および第2の固体電子撮像素子,上記第1の固体電子撮像素子により撮像された被写体像のうちAF枠内の画像の第1のコントラストと上記第2の固体電子撮像素子により撮像された被写体像のうち上記AF枠内の画像の第2のコントラストとが一致する位置にフォーカス・レンズを移動するフォーカス・レンズ移動手段,上記AF枠内に顔画像が検出されたかどうかを判定する顔画像判定手段,ならびに上記顔画像判定手段によって上記AF枠内に顔画像が検出されたと判定されたことに応じて,上記フォーカス・レンズ移動手段によるフォーカス・レンズの移動速度を,上記AF枠内に顔画像が検出されないと判定されたときと比べて速くするように上記フォーカス・レンズ移動手段を制御するフォーカス・レンズ移動制御手段を備えていることを特徴とする。 The auto-focus system according to the present invention includes a first solid-state electronic imaging device and a second solid-state electronic device that are optically arranged at equal intervals in the front-rear direction with respect to the position of the subject image formed by the focus lens. Among the subject images captured by the imaging device and the first solid-state electronic image sensor, the first contrast of the image in the AF frame and the subject image captured by the second solid-state electronic image sensor within the AF frame A focus / lens moving means for moving the focus lens to a position where the second contrast of the image matches, a face image determining means for determining whether a face image is detected in the AF frame, and the face image determination In response to the determination that the face image is detected within the AF frame by the means, the focus / lens moving means A focus / lens movement control means for controlling the focus / lens movement means is provided so that the moving speed is faster than when it is determined that a face image is not detected in the AF frame. .
 この発明は,上記オート・フォーカス・システムに適した動作制御方法も提供している。すなわち,この方法は,フォーカス・レンズ移動手段が,フォーカス・レンズにより結像される被写体像の位置に対して光学的に前後等間隔の位置に配置された第1の固体電子撮像素子および第2の固体電子撮像素子を備えたオート・フォーカス・システムの動作制御方法において,フォーカス・レンズ移動手段が,上記第1の固体電子撮像素子により撮像された被写体像のうちAF枠内の画像の第1のコントラストと上記第2の固体電子撮像素子により撮像された被写体像のうち上記AF枠内の画像の第2のコントラストとが一致する位置にフォーカス・レンズを移動し,顔画像判定手段が,上記AF枠内に顔画像が検出されたかどうかを判定し,フォーカス・レンズ移動制御手段が,上記顔画像判定手段によって上記AF枠内に顔画像が検出されたと判定されたことに応じて,上記フォーカス・レンズ移動手段によるフォーカス・レンズの移動速度を,上記AF枠内に顔画像が検出されないと判定されたときと比べて速くするように上記フォーカス・レンズ移動手段を制御するものである。 The present invention also provides an operation control method suitable for the auto focus system. That is, in this method, the first and second solid-state electronic imaging devices in which the focus / lens moving means are optically arranged at equal intervals in the front / rear direction with respect to the position of the subject image formed by the focus / lens. In the operation control method of the auto-focus system including the solid-state electronic image sensor, the focus lens moving unit is configured to select a first of the images in the AF frame among the subject images captured by the first solid-state electronic image sensor. The focus lens is moved to a position where the second contrast of the image within the AF frame of the subject image captured by the second solid-state electronic image sensor matches the second contrast. It is determined whether or not a face image is detected within the AF frame, and the focus / lens movement control means determines that the face image is within the AF frame by the face image determination means. The focus / lens moving means causes the focus / lens moving speed to be increased in response to the determination that the face image has been released compared to when it is determined that no face image is detected within the AF frame. -It controls the lens moving means.
 この発明によると,フォーカス・レンズにより結像される被写体像の位置に対して光学的に前後等間隔の位置に第1の固体電子撮像素子と第2の固体電子撮像素子とが配置されている。第1の固体電子撮像素子により撮像された被写体像のうちAF枠内の画像の第1のコントラストと第2の固体電子撮像素子により撮像された被写体像のうちAF枠内の画像の第2のコントラストとが一致する位置にフォーカス・レンズが移動させられる。AF枠内に顔が検出されると,フォーカス・レンズの移動速度が速くなる。AF枠内に顔が検出されたときには,比較的速くフォーカス・レンズを合焦位置に位置決めでき,かつAF枠内に顔が検出されないときには,顔が検出されたときとは相対的には遅い速度でフォーカス・レンズが位置決めされるのでハンチングが起きてしまうのを未然に防止できる。 According to the present invention, the first solid-state electronic image sensor and the second solid-state electronic image sensor are disposed at optically equidistant positions relative to the position of the subject image formed by the focus lens. . The first contrast of the image in the AF frame among the subject images captured by the first solid-state electronic image sensor and the second of the images in the AF frame among the subject images captured by the second solid-state electronic image sensor. The focus lens is moved to a position where the contrast matches. When a face is detected within the AF frame, the moving speed of the focus lens increases. When a face is detected in the AF frame, the focus lens can be positioned relatively quickly at the in-focus position, and when no face is detected in the AF frame, the speed is relatively slow compared to when the face is detected. Since the focus lens is positioned, the occurrence of hunting can be prevented.
 上記第1のコントラストと上記第2のコントラストとの差を検出するコントラスト差検出手段をさらに備えてもよい。この場合,上記フォーカス・レンズ移動手段は,たとえば,上記コントラスト差検出手段によって検出された上記第1のコントラストと上記第2のコントラストとのコントラスト差が大きいほどフォーカス・レンズの移動速度を大きくするものとなろう。 A contrast difference detecting means for detecting a difference between the first contrast and the second contrast may be further provided. In this case, the focus / lens moving means increases the moving speed of the focus / lens as the contrast difference between the first contrast and the second contrast detected by the contrast difference detecting means increases. It will be.
 上記被写体像の結像位置を変えずに焦点距離を変えるズーム・レンズ,上記被写体像の明るさを調整する絞り,上記フォーカス・レンズ移動手段によるフォーカス・レンズの移動速度を設定する設定器,および上記ズーム・レンズのズーム位置,上記絞りの絞り値および上記設定器により設定された移動速度にもとづいて,上記フォーカス・レンズ移動手段によるフォーカス・レンズの移動速度を決定する移動速度決定手段をさらに備えてもよい。 A zoom lens that changes the focal length without changing the imaging position of the subject image, a diaphragm that adjusts the brightness of the subject image, a setting device that sets the moving speed of the focus lens by the focus lens moving means, and And a moving speed determining means for determining the moving speed of the focus lens by the focus lens moving means based on the zoom position of the zoom lens, the aperture value of the diaphragm and the moving speed set by the setting device. May be.
 上記フォーカス・レンズ移動制御手段は,たとえば,上記顔画像設定手段によって上記AF枠内に顔画像が検出されたと判定されたことに応じて,上記移動速度決定手段により決定された移動速度を速くするものでもよい。 The focus / lens movement control means increases the movement speed determined by the movement speed determination means when, for example, the face image setting means determines that a face image is detected within the AF frame. It may be a thing.
 フォーカス・レンズにより結像される被写体像の位置と光学的に等しい位置に配置され,被写体像を表わす映像信号を出力する第3の固体電子撮像素子をさらに備えてもよい。この場合,上記顔画像判定手段は,上記第3の固体電子撮像素子から出力された映像信号から上記AF枠内に顔画像が検出されたかどうかを判定するものとなろう。 A third solid-state electronic image sensor that is disposed at a position optically equal to the position of the subject image formed by the focus lens and outputs a video signal representing the subject image may be further provided. In this case, the face image determination means will determine whether a face image is detected in the AF frame from the video signal output from the third solid-state electronic image sensor.
撮影レンズ・ユニットの光学的構成を示している。2 shows an optical configuration of a taking lens unit. AF用CCDと被写体像の結像位置との関係を示している。The relationship between the AF CCD and the imaging position of the subject image is shown. AF評価値とフォーカス・レンズ位置との関係を示している。The relationship between the AF evaluation value and the focus / lens position is shown. 撮影レンズ・ユニットの電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of a photographic lens unit. フォーカス/AF枠操作ユニットの外観を示す平面図である。It is a top view which shows the external appearance of a focus / AF frame operation unit. 撮像範囲とAF枠との関係を示している。The relationship between the imaging range and the AF frame is shown. AF評価値とフォーカス・レンズ位置との関係を示している。The relationship between the AF evaluation value and the focus / lens position is shown. AF評価値とフォーカス・レンズ位置との関係を示している。The relationship between the AF evaluation value and the focus / lens position is shown. 撮影レンズ・ユニットの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a photographic lens unit. 撮影レンズ・ユニットの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a photographic lens unit. 撮影レンズ・ユニットの外観を示している。The appearance of the taking lens unit is shown. 撮影レンズ・ユニットの電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of a photographic lens unit.
 図1は,この発明の実施例を示すもので,放送用などに利用される撮影レンズ・ユニット1とカメラ本体20の一部の光学的構成を示している。 FIG. 1 shows an embodiment of the present invention, and shows an optical configuration of a part of a photographing lens unit 1 and a camera body 20 used for broadcasting or the like.
 撮影レンズ・ユニット1は着脱自在にカメラ本体20に装着されている。 The taking lens unit 1 is detachably attached to the camera body 20.
 撮影レンズ・ユニット1には,撮影レンズ・ユニット1の光軸O1と共通の光軸をもつようにフォーカス・レンズ(フォーカス・レンズ群)2,ズーム・レンズ(ズーム・レンズ群)3,前側リレー・レンズ(前側リレー・レンズ群)5および後側リレー・レンズ(後側リレー・レンズ群)7が含まれている。ズーム・レンズ3と前側リレー・レンズ5との間には,撮影レンズ・ユニット1の光軸O1が中心を通るように絞り4が配置されている。また,前側リレー・レンズ5と後側リレー・レンズ7との間にはハーフ・ミラー6が配置されている。 The photographic lens unit 1 includes a focus lens (focus lens group) 2, a zoom lens (zoom lens group) 3, and a front relay so as to have an optical axis common to the optical axis O1 of the photographic lens unit 1 A lens (front relay / lens group) 5 and a rear relay / lens (rear relay / lens group) 7 are included. A diaphragm 4 is arranged between the zoom lens 3 and the front relay lens 5 so that the optical axis O1 of the photographing lens unit 1 passes through the center. A half mirror 6 is arranged between the front relay lens 5 and the rear relay lens 7.
 カメラ本体20には,撮影レンズ・ユニット1が装着されたときに撮影レンズ・ユニット1の光軸O1と共通の光軸をもつ色分解プリズム21が設けられている。この色分解プリズム21には,第1のプリズム22,第2のプリズム23および第3のプリズム24が含まれており,入射した光が赤色成分,緑色成分および青色成分に分解される。第1のプリズム22の出射面に対向する位置,第2のプリズム23の出射面に対向する位置および第3のプリズム24の出射面に対向する位置に,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27がそれぞれ配置されている。 The camera body 20 is provided with a color separation prism 21 having an optical axis common to the optical axis O1 of the photographing lens unit 1 when the photographing lens unit 1 is mounted. The color separation prism 21 includes a first prism 22, a second prism 23, and a third prism 24, and incident light is separated into a red component, a green component, and a blue component. The first imaging CCD 25, the second imaging CCD 25, the second imaging prism 25, the second prism 23, the third prism 24, the second prism 23, the second prism 23, and the third prism 24, respectively. An imaging CCD 26 and a third imaging CCD 27 are arranged.
 さらに,撮影レンズ・ユニット1には,ハーフ・ミラー6の中心で反射した一部の光を光軸[AF(オート・フォーカス)用光軸]O2とするAF用リレー・レンズ(AF用リレー・レンズ群)8が設けられている。AF用リレー・レンズ8の後段には全反射ミラー9が設けられている。全反射ミラー9の全反射方向には第1のプリズム11と第2のプリズム12とから構成される分割プリズム10が設けられている。第1のプリズム11の出射面および第2のプリズム12の出射面には第1のAF用CCD13および第2のAF用CCD14がそれぞれ設けられている。 Further, the photographing lens unit 1 includes an AF relay lens (AF relay lens) that uses a part of the light reflected at the center of the half mirror 6 as an optical axis [optical axis for AF (auto focus)] O2. Lens group) 8 is provided. A total reflection mirror 9 is provided after the AF relay lens 8. A split prism 10 composed of a first prism 11 and a second prism 12 is provided in the total reflection direction of the total reflection mirror 9. A first AF CCD 13 and a second AF CCD 14 are provided on the exit surface of the first prism 11 and the exit surface of the second prism 12, respectively.
 撮影レンズ・ユニット1に入射した光線束は,フォーカス・レンズ2,ズーム・レンズ3,絞り4,前側リレー・レンズ5,ハーフ・ミラー6および後側リレー・レンズ7を透過してカメラ本体20に導かれる。カメラ本体20に含まれる光分解プリズム21において,光線束は,赤色光成分,緑色光成分および青色光成分にそれぞれ分解され,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27のそれぞれにおいて被写体像が結像する。第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27のそれぞれから赤色光成分,緑色光成分および青色光成分の被写体像を表わす映像信号が出力されることとなる。 The light beam incident on the photographic lens unit 1 passes through the focus lens 2, zoom lens 3, aperture 4, front relay lens 5, half mirror 6 and rear relay lens 7, and enters the camera body 20. Led. In the light decomposing prism 21 included in the camera body 20, the light beam is decomposed into a red light component, a green light component, and a blue light component, respectively, and the first image pickup CCD 25, the second image pickup CCD 26, and the third image pickup device. A subject image is formed on each of the CCDs 27 for use. Video signals representing subject images of the red light component, the green light component, and the blue light component are output from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27, respectively.
 撮影レンズ・ユニット1に入射した光線束は,ハーフ・ミラー6において一部が反射する。ハーフ・ミラー6において反射した光線束は,AF用リレー・レンズ8を透過し,全反射ミラー9において全反射する。全反射ミラー9において全反射した光線束は分割プリズム10に入射し,一部が第1のAF用CCD13に入射し,残りが第2のAF用CCD14に入射する。第1のAF用CCD13および第2のAF用CCD14のそれぞれからAF用の信号が出力することとなる。 The light beam incident on the taking lens unit 1 is partially reflected by the half mirror 6. The light beam reflected by the half mirror 6 passes through the AF relay lens 8 and is totally reflected by the total reflection mirror 9. The light beam totally reflected by the total reflection mirror 9 enters the split prism 10, a part of the light enters the first AF CCD 13, and the rest enters the second AF CCD 14. An AF signal is output from each of the first AF CCD 13 and the second AF CCD 14.
 図2は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1のAF用CCD13および第2のAF用CCD14の光学的距離の関係を示している。 FIG. 2 shows the relationship of the optical distances of the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13, and the second AF CCD 14.
 第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1のAF用CCD13および第2のAF用CCD14に光を入射させるための光学系がレンズ30によって表わされている。 An optical system for making light incident on the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13 and the second AF CCD 14 is represented by a lens 30. ing.
 第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27に入射するまでの光学的距離は,いずれも等しい。これに対して,第1のAF用CCD13に入射するまでの光学的距離は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27から所定の距離だけ前に配置された場合に等しく,第2のAF用CCD14に入射するまでの光学的距離は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27から所定の距離だけ後に配置された場合に等しくなるように,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1のAF用CCD13および第2のAF用CCD14の位置関係(光学的に前後等間隔の位置)が規定されている。仮に同一光軸上に第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1のAF用CCD13および第2のAF用CCD14が配置されると,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27の前後等間隔の位置に第1のAF用CCD13および第2のAF用CCD14が配置されていることと等価となる。 The optical distances until the light enters the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27 are all equal. On the other hand, the optical distance until it enters the first AF CCD 13 is arranged a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. In this case, the optical distance until the light enters the second AF CCD 14 is arranged after a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. The positional relationship between the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13, and the second AF CCD 14 (optically front and rear, etc.) The position of the interval is defined. If the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13 and the second AF CCD 14 are arranged on the same optical axis, the first imaging CCD This is equivalent to the first AF CCD 13 and the second AF CCD 14 being arranged at equal intervals before and after the CCD 25 for image pickup, the second image pickup CCD 26, and the third image pickup CCD 27.
 図3は,AF評価値とフォーカス・レンズ2の位置との関係を示している。 FIG. 3 shows the relationship between the AF evaluation value and the position of the focus lens 2.
 第1のAF用CCD13から出力される信号にもとづいてグラフG13が得られ,第2のAF用CCD14から出力される信号にもとづいてグラフG14が得られる。 The graph G13 is obtained based on the signal output from the first AF CCD 13, and the graph G14 is obtained based on the signal output from the second AF CCD 14.
 上述したように,仮に同一光軸上に第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1のAF用CCD13および第2のAF用CCD14が配置されると,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27の前後等間隔の位置に第1のAF用CCD13および第2のAF用CCD14が配置されていることと等価であるから,第1のAF用CCD13および第2のAF用CCD14のそれぞれの信号から得られたグラフG13およびG14との交点であるフォーカス・レンズ位置P1が,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27に被写体像が合焦するフォーカス・レンズ2の位置となる。 As described above, if the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first AF CCD 13, and the second AF CCD 14 are arranged on the same optical axis. This is equivalent to the first AF CCD 13 and the second AF CCD 14 being arranged at equal intervals before and after the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. Therefore, the focus lens position P1, which is the intersection of the graphs G13 and G14 obtained from the signals of the first AF CCD 13 and the second AF CCD 14, respectively, is the first imaging CCD 25, the second imaging CCD 25, and the second imaging CCD. This is the position of the focus lens 2 where the subject image is focused on the imaging CCD 26 and the third imaging CCD 27.
 図4は,撮影レンズ・ユニット1の主として電気的構成を示すブロック図である。図4には,撮影レンズ・ユニット1に装着されるフォーカス/AF枠操作ユニット70の電気的構成も図示されている。 FIG. 4 is a block diagram mainly showing an electrical configuration of the taking lens unit 1. FIG. 4 also shows an electrical configuration of the focus / AF frame operation unit 70 attached to the photographing lens unit 1.
 撮影レンズ・ユニット1の全体の動作は,CPU50によって統括される。CPU50には所定のデータを記憶するEEPROM51が接続されている。 The overall operation of the photographic lens unit 1 is controlled by the CPU 50. An EEPROM 51 that stores predetermined data is connected to the CPU 50.
 上述したように撮影レンズ・ユニット1に含まれる第1のAF用CCD13から出力される信号は,アナログ/ディジタル変換回路31においてディジタル・データに変換される。変換されたディジタル・データは,ハイ・パス・フィルタ32において高周波数成分が抽出される。抽出された高周波数成分を表わすディジタル・データは,ゲート回路33において,AF枠内の画像に対応するディジタル・データのみが抽出される。ゲート回路33を通過したディジタル・データは,積算回路34に1フィールドずつ積算され,その積算値を表わすデータが1フィールド周期でCPU50に入力する。 As described above, the signal output from the first AF CCD 13 included in the photographing lens unit 1 is converted into digital data by the analog / digital conversion circuit 31. High frequency components are extracted from the converted digital data by the high pass filter 32. Only digital data corresponding to the image in the AF frame is extracted in the gate circuit 33 from the extracted digital data representing the high frequency component. The digital data that has passed through the gate circuit 33 is integrated in the integrating circuit 34 field by field, and data representing the integrated value is input to the CPU 50 in one field cycle.
 同様に,撮影レンズ・ユニット1に含まれる第2のAF用CCD14から出力される信号は,アナログ/ディジタル変換回路41においてディジタル・データにおいて変換され,その高周波数成分がハイ・パス・フィルタ42を通過する。AF枠内の画像に対応するディジタル・データがゲート回路43を通過し,積算回路44で積算される。積算回路44の出力データがCPU50に入力する。 Similarly, the signal output from the second AF CCD 14 included in the photographic lens unit 1 is converted into digital data by the analog / digital conversion circuit 41, and the high frequency component passes through the high pass filter 42. pass. Digital data corresponding to the image in the AF frame passes through the gate circuit 43 and is integrated by the integration circuit 44. The output data of the integrating circuit 44 is input to the CPU 50.
 積算回路43および44から出力された積算値を表すデータは,第1のAF用CCD13および第2のAF用CCD14において撮像された被写体像のコントラストの高さを示しており,このコントラストの高さが図3において示したAF評価値となる。 The data representing the integrated value output from the integrating circuits 43 and 44 indicates the height of the contrast of the subject image picked up by the first AF CCD 13 and the second AF CCD 14, and this contrast height. Is the AF evaluation value shown in FIG.
 オート・フォーカスの場合には,上述したように,第1のAF用CCD13から得られるグラフG13と第2のAF用CCD14から得られるグラフG14との交点のフォーカス・レンズ位置P1が,入力した積算値(AF評価値)にもとづいて算出される。算出された位置にフォーカス・レンズ2が移動させられるようにCPU50において駆動データが生成される。生成された駆動データは,ディジタル/アナログ変換回路54においてアナログ制御信号に変換される。変換されたアナログ制御信号は,増幅回路58において増幅されてフォーカス・モータ59に与えられる。フォーカス・モータ59によってフォーカス・レンズ2が合焦位置P1に位置決めされる。フォーカス・レンズ2の位置は,位置検出センサ60において検出され,その検出信号は,アナログ/ディジタル変換回路52においてディジタル・データに変換されてCPU50に入力する。CPU50において,フォーカス・レンズ2が合焦位置P1に位置決めされるようにフィードバック制御されることとなる。 In the case of auto-focusing, as described above, the focus lens position P1 at the intersection of the graph G13 obtained from the first AF CCD 13 and the graph G14 obtained from the second AF CCD 14 is inputted integration. It is calculated based on the value (AF evaluation value). Driving data is generated in the CPU 50 so that the focus lens 2 is moved to the calculated position. The generated drive data is converted into an analog control signal by the digital / analog conversion circuit 54. The converted analog control signal is amplified by the amplifier circuit 58 and applied to the focus motor 59. The focus lens 2 is positioned at the focus position P1 by the focus motor 59. The position of the focus lens 2 is detected by the position detection sensor 60, and the detection signal is converted into digital data by the analog / digital conversion circuit 52 and input to the CPU 50. In the CPU 50, feedback control is performed so that the focus lens 2 is positioned at the in-focus position P1.
 撮影レンズ・ユニット1にズーム・リングの回転などによりズーム要求信号が与えられると,そのズーム要求信号は,アナログ/ディジタル変換回路52においてディジタル・データに変換される。変換されたディジタル・データからCPU50においてズーム量を示すズーム制御データが生成される。生成されたズーム制御データは,ディジタル/アナログ変換回路54においてアナログ制御信号に変換され,増幅回路55において増幅されてズーム・モータ56に与えられる。ズーム・モータ56によってズーム・レンズ3が所望のズーム位置に制御させられる。位置検出センサ57によってズーム・レンズ3の位置が検出され,フィードバック制御される。 When a zoom request signal is given to the taking lens unit 1 by rotating the zoom ring or the like, the zoom request signal is converted into digital data by the analog / digital conversion circuit 52. The CPU 50 generates zoom control data indicating the zoom amount from the converted digital data. The generated zoom control data is converted into an analog control signal by the digital / analog conversion circuit 54, amplified by the amplification circuit 55, and given to the zoom motor 56. A zoom motor 3 controls the zoom lens 3 to a desired zoom position. A position detection sensor 57 detects the position of the zoom lens 3 and performs feedback control.
 また,CPU50からは絞りリングの回転などに応じて絞り制御データが出力され,ディジタル/アナログ変換回路54においてディジタル制御データに変換される。変換されたディジタル制御データは,ディジタル/アナログ変換回路54においてアナログ制御信号に変換され,増幅回路61において増幅される。増幅されたアナログ制御信号が絞りモータ62に与えられ,絞り4が制御される。位置検出センサ63によって絞り4の絞り値が検出され,フィードバック制御される。 Further, the aperture control data is output from the CPU 50 according to the rotation of the aperture ring, etc., and converted into digital control data by the digital / analog conversion circuit 54. The converted digital control data is converted into an analog control signal by the digital / analog conversion circuit 54 and amplified by the amplifier circuit 61. The amplified analog control signal is given to the diaphragm motor 62, and the diaphragm 4 is controlled. The position detection sensor 63 detects the aperture value of the aperture 4 and performs feedback control.
 上述したように,撮影レンズ・ユニット1には,フォーカス/AF枠操作ユニット70が装着されている。撮影レンズ・ユニット1とフォーカス/AF枠操作ユニット70とは,撮影レンズ・ユニット1のCPU50に形成されている端子53とフォーカス/AF枠操作ユニット70に形成されている端子74とがケーブルで接続される。 As described above, the focus / AF frame operation unit 70 is attached to the photographing lens unit 1. The photographing lens unit 1 and the focus / AF frame operation unit 70 are connected by a cable between a terminal 53 formed on the CPU 50 of the photographing lens unit 1 and a terminal 74 formed on the focus / AF frame operation unit 70. Is done.
 撮影レンズ・ユニット1の全体の動作は,操作ユニットCPU73によって統括される。 The overall operation of the photographic lens unit 1 is controlled by the operation unit CPU73.
 フォーカス/AF枠操作ユニット70にフォーカス要求信号が与えられると,そのフォーカス要求信号は,操作ユニットCPU73に入力する。フォーカス/AF枠操作ユニット70には後述するようにフォーカシング・ノブ(図5参照)が形成されており,そのフォーカシング・ノブの回転角度に応じたフォーカス要求信号がフォーカス/AF枠操作ユニット70に与えられる。フォーカス要求信号は,撮影レンズ・ユニット1に与えられ,そのフォーカス要求信号に応じたフォーカス量となるようにフォーカス・レンズ2が制御させられる(マニアル・フォーカス)。 When a focus request signal is given to the focus / AF frame operation unit 70, the focus request signal is input to the operation unit CPU 73. The focus / AF frame operation unit 70 is formed with a focusing knob (see FIG. 5) as will be described later, and a focus request signal corresponding to the rotation angle of the focusing knob is given to the focus / AF frame operation unit 70. It is done. The focus request signal is given to the taking lens unit 1, and the focus lens 2 is controlled so as to have a focus amount corresponding to the focus request signal (manual focus).
 フォーカス/AF枠操作ユニット70には,ジョイ・スティック(図5参照)から与えられるAF枠移動信号が入力する。入力したAF枠移動信号にしたがって規定される位置にAF枠が撮像範囲内で移動する。 The focus / AF frame operation unit 70 receives an AF frame movement signal given from a joy stick (see FIG. 5). The AF frame moves within the imaging range to a position defined according to the input AF frame movement signal.
 オート・フォーカスの場合もフォーカス要求信号が操作ユニットCPU73に入力する。オート・フォーカスの場合,AF枠の位置を示す信号は,フォーカス/AF枠操作ユニット70から撮影レンズ・ユニット1のCPU50を介してゲート回路33および43に与えられる。上述したようにAF枠内の画像に相当するディジタル・データが通過するようにゲート回路33および43が制御される。AF枠内が合焦するように制御されるようになる。 In the case of auto focus, a focus request signal is input to the operation unit CPU 73. In the case of auto focus, a signal indicating the position of the AF frame is given from the focus / AF frame operation unit 70 to the gate circuits 33 and 43 via the CPU 50 of the photographing lens unit 1. As described above, the gate circuits 33 and 43 are controlled so that digital data corresponding to the image in the AF frame passes. Control is performed so that the AF frame is in focus.
 また,フォーカス/AF枠操作ユニット70には,カメラ本体20に含まれる第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27から出力される映像信号がディジタル化されたディジタル画像データも入力する。このディジタル画像データは,画像メモリ71に与えられ,一時的に記憶される。画像データは画像メモリ71から読み出され,画像処理回路72に入力する。画像処理回路72において,AF枠内に顔画像が検出されるかどうかの顔検出処理が行われる。AF枠内に顔画像が検出されると,その検出信号が撮影レンズ・ユニット1のCPU50に入力する。 Further, the focus / AF frame operation unit 70 is a digital image obtained by digitizing video signals output from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27 included in the camera body 20. Input image data. This digital image data is given to the image memory 71 and temporarily stored. Image data is read from the image memory 71 and input to the image processing circuit 72. In the image processing circuit 72, face detection processing is performed to determine whether a face image is detected within the AF frame. When a face image is detected within the AF frame, the detection signal is input to the CPU 50 of the taking lens unit 1.
 さらに,フォーカス/AF枠操作ユニット70には,AFスピード設定ダイアル(設定器)75からの設定信号も入力する。AF設定スピード設定ダイアル75は,オート・フォーカスのときにフォーカス・レンズ2がフォーカス・レンズ位置P1(図3参照)となるようにフォーカス・レンズ2が移動させられるが,そのときのフォーカス・レンズ2の移動速度を設定するものである。遅い設定スピードと速い設定スピードとの二段階があるが,その他のスピードを設定できてもよいのはいうまでもない。 Furthermore, a setting signal from an AF speed setting dial (setting device) 75 is also input to the focus / AF frame operation unit 70. The AF setting speed setting dial 75 moves the focus lens 2 so that the focus lens 2 is at the focus lens position P1 (see FIG. 3) during auto-focusing. This is to set the movement speed. There are two stages, a slow setting speed and a fast setting speed, but it goes without saying that other speeds may be set.
 図5は,フォーカス/AF枠設定ユニット70の外観を示すもので,平面図である。 FIG. 5 shows an external view of the focus / AF frame setting unit 70, and is a plan view.
 フォーカス/AF枠設定ユニット70の上面には,上述したように,遅い設定スピードと速い設定スピードとの二段階を設定できるAFスピード設定ダイアル75が形成されている。このAFスピード設定ダイアル75の右下には,顔画像検出が行われる場合に,検出された顔画像にAF枠を追従させるときに設定されるATスタート・スイッチ76が形成されている。ATスタート・スイッチ76の下には,上述したようにAF枠を上下左右に移動させるためのジョイ・スティック77が形成されている。このジョイ・スティック77の下には,オート・フォーカス処理を開始させるときに設定されるAFスタート・スイッチ78が形成されている。 On the upper surface of the focus / AF frame setting unit 70, as described above, an AF speed setting dial 75 capable of setting two stages of a slow setting speed and a fast setting speed is formed. At the lower right of the AF speed setting dial 75, there is formed an AT start switch 76 which is set when the AF frame follows the detected face image when face image detection is performed. Under the AT start switch 76, as described above, the joy stick 77 for moving the AF frame up, down, left and right is formed. Under the joy stick 77, an AF start switch 78 that is set when the autofocus process is started is formed.
 フォーカス/AF枠設定ユニット70の右端面(図5において右側)には上述した手動フォーカシング・ノブ80が形成されており,左端面(図5において左側)には撮影レンズ・ユニット1に取り付けるための取り付け部材83が形成されている。さらに,フォーカス/AF枠設定ユニット70の手前の側面(図5において下側)にはケーブル等が接続されるコネクタ81および82が形成されている。 The above-described manual focusing knob 80 is formed on the right end surface (right side in FIG. 5) of the focus / AF frame setting unit 70, and the left end surface (left side in FIG. 5) is attached to the photographing lens unit 1. An attachment member 83 is formed. Furthermore, connectors 81 and 82 to which cables and the like are connected are formed on the front side (lower side in FIG. 5) of the focus / AF frame setting unit 70.
 図6は,撮像範囲90とAF枠91との関係を示している。 FIG. 6 shows the relationship between the imaging range 90 and the AF frame 91.
 第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27によって撮像可能な範囲(撮像された被写体像)90内においてAF枠91が上下左右に移動自在となる。このAF枠91は,上述したように,ジョイ・スティック77の操作により移動する。オート・フォーカスのときには,AF枠内に含まれる画像が合焦するようにフォーカス・レンズ2が駆動させられる。第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1のAF用CCD13および第2のAF用CCD14の撮像範囲90は等しいのはいうまでもない。 The AF frame 91 can be moved vertically and horizontally within a range (captured subject image) 90 that can be imaged by the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. The AF frame 91 moves by operating the joy stick 77 as described above. During auto focus, the focus lens 2 is driven so that an image included in the AF frame is in focus. Needless to say, the imaging ranges 90 of the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, and the first AF CCD 13 and the second AF CCD 14 are equal.
 図7および図8は,AF評価値とフォーカス・レンズ位置との関係を示している。 7 and 8 show the relationship between the AF evaluation value and the focus lens position.
 図7は,AF枠内に顔画像が含まれている場合のAF評価値とフォーカス・レンズ位置との関係を示している。 FIG. 7 shows the relationship between the AF evaluation value and the focus lens position when a face image is included in the AF frame.
 第1のAF用CCD13から得られるグラフG13と第2のAF用CCD14から得られるグラフG14とのAF評価値の差は,目標とするフォーカス・レンズ2の合焦位置に近づくにつれて徐々に小さくなるので,そのAF評価値の差(矢印で示す)に応じてフォーカス・レンズ2の移動速度を決定すると自然なフォーカシング制御ができる。 The difference between the AF evaluation values of the graph G13 obtained from the first AF CCD 13 and the graph G14 obtained from the second AF CCD 14 gradually decreases as the focus position of the target focus lens 2 is approached. Therefore, natural focusing control can be performed by determining the moving speed of the focus lens 2 in accordance with the difference in AF evaluation values (indicated by arrows).
 撮影対象として,人間の顔を撮像することが多いが,顔のコントラストは低いので,AF枠内に顔が含まれている場合には,矢印で示すようにAF評価値の差が小さい。人間の顔を撮像することが多いので,人間の顔を撮像したときに得られるAF評価値の差を基準にフォーカス・レンズ2の移動速度を決定することが一般的であると考えられる。人間の顔を撮像するときに比較的迅速にフォーカス・レンズ2を合焦位置に位置決めできるからである。 As a subject to be photographed, a human face is often imaged. However, since the contrast of the face is low, when the face is included in the AF frame, the difference in AF evaluation values is small as indicated by arrows. Since the human face is often imaged, it is generally considered that the moving speed of the focus lens 2 is determined based on the difference in AF evaluation values obtained when the human face is imaged. This is because the focus lens 2 can be positioned at the in-focus position relatively quickly when imaging a human face.
 図8は,AF枠内に顔画像が含まれていない場合のAF評価値とフォーカス・レンズ位置との関係を示している。 FIG. 8 shows the relationship between the AF evaluation value and the focus / lens position when the face image is not included in the AF frame.
 建物,自然など顔画像以外の撮影対象の場合にはコントラストが高い。このために,矢印で示すようにAF評価値の差にもとづいてフォーカス・レンズ2の移動速度を決定する場合,人間の顔を撮像したときに得られるAF評価値の差を基準にフォーカス・レンズ2の移動速度を決定するように規定されていると,フォーカス・レンズ2の移動速度が速くなってしまい,フォーカス・レンズ2を目標位置P1に正確に位置決めできずに,いわゆるハンチングが生じてしまうことがある。 High contrast for shooting objects other than face images such as buildings and nature. Therefore, when the moving speed of the focus lens 2 is determined based on the difference in AF evaluation values as indicated by the arrows, the focus lens is based on the difference in AF evaluation values obtained when a human face is imaged. 2 is determined, the movement speed of the focus lens 2 increases, and the focus lens 2 cannot be accurately positioned at the target position P1, and so-called hunting occurs. Sometimes.
 この実施例では,AF枠内に顔画像が検出された場合のフォーカス・レンズ2の移動速度を,AF枠内に顔画像が検出されない場合のフォーカス・レンズ2の移動速度に比べて相対的に速くするものである。これにより,AF枠内に顔画像が検出された場合でもフォーカス・レンズ2を目標位置P1に迅速に移動でき,かつAF枠内に顔画像が検出されない場合でもハンチングが生じるのを未然に防止できるようになる。 In this embodiment, the moving speed of the focus lens 2 when a face image is detected in the AF frame is relatively higher than the moving speed of the focus lens 2 when no face image is detected in the AF frame. It's what makes it faster. As a result, the focus lens 2 can be quickly moved to the target position P1 even when a face image is detected in the AF frame, and hunting can be prevented even if the face image is not detected in the AF frame. It becomes like this.
 図9は,撮影レンズ・ユニット1の処理手順を示すフローチャートである。 FIG. 9 is a flowchart showing a processing procedure of the photographing lens unit 1.
 撮影レンズ・ユニット1の初期設定が行われ(ステップ101),オート・フォーカス以外の処理が行われる(ステップ102)。 The initial setting of the taking lens unit 1 is performed (step 101), and processing other than auto focus is performed (step 102).
 AFスタート・スイッチ78によりオート・フォーカスが設定されるなどによりAF(オート・フォーカス)処理が必要と判断されると(ステップ103),設定されている絞り4の絞り位置IPが読み取られる(ステップ104)。つづいて,ズーム・レンズ3のズーム位置ZPが読み取られ(ステップ105),AFスピード設定ダイアル75の位置が読み取られる(ステップ106)。読み取られた各値からAF速度(フォーカス・レンズ2の移動速度)FSが算出され,算出されたAF速度FSに設定される(ステップ107)。AF速度の算出については後述する。 When it is determined that AF (auto focus) processing is necessary, for example, when auto focus is set by the AF start switch 78 (step 103), the set aperture position IP of the aperture 4 is read (step 104). ). Subsequently, the zoom position ZP of the zoom lens 3 is read (step 105), and the position of the AF speed setting dial 75 is read (step 106). An AF speed (moving speed of the focus lens 2) FS is calculated from each read value, and set to the calculated AF speed FS (step 107). The calculation of the AF speed will be described later.
 AF枠に顔画像が検出されると(ステップ108でYES),AF枠内の画像のコントラストが低いと考えられるので,そのコントラストが低くてもフォーカス・レンズ2が迅速に移動させられるように,算出されたAF速度FSが速くなるように補正される。具体的には,算出されたAF速度FSに係数k(1<kであり,たとえば,1.2から1.4)が乗じられることにより,算出されたAF速度FSが速くなるように補正される(ステップ109)。AF枠に顔画像が検出されなければ(ステップでYES),AF枠内の画像のコントラストは低くないので,算出されたAF速度FSが速くなるような補正処理であるステップ109の処理はスキップされる。 When a face image is detected in the AF frame (YES in step 108), it is considered that the contrast of the image in the AF frame is low, so that the focus lens 2 can be moved quickly even if the contrast is low. The calculated AF speed FS is corrected so as to increase. Specifically, the calculated AF speed FS is corrected by multiplying the calculated AF speed FS by a coefficient k (1 <k, for example, 1.2 to 1.4) (step 109). ). If no face image is detected in the AF frame (YES in step), the contrast in the image in the AF frame is not low, and the process of step 109, which is a correction process that increases the calculated AF speed FS, is skipped. The
 第1のAF用CCD13から得られるフォーカス評価値faと第2のAF用CCD14から得られるAF評価値fbとが読み取られ(ステップ110),読み取られたAF評価値faとfbとの差が,AF速度FSに乗じられる(ステップ111)。AF速度FSの値にもとづいてフォーカス・レンズ2が移動させられる(ステップ112)。合焦位置P1に近づくほどAF評価値faとfbとの差が小さくなるので,フォーカス・レンズ2は合焦位置P1に近づくと徐々に遅くなり,自然な動作で合焦位置P1に位置決めされる。 The focus evaluation value fa obtained from the first AF CCD 13 and the AF evaluation value fb obtained from the second AF CCD 14 are read (step 110), and the difference between the read AF evaluation values fa and fb is The AF speed FS is multiplied (step 111). The focus lens 2 is moved based on the value of the AF speed FS (step 112). Since the difference between the AF evaluation values fa and fb becomes smaller as the focus position P1 is approached, the focus lens 2 gradually becomes slower as it approaches the focus position P1, and is positioned at the focus position P1 by a natural operation. .
 撮影レンズ・ユニット1がオフされるまでステップ102からの処理が繰り返される(ステップ113)。 The processing from step 102 is repeated until the photographing lens unit 1 is turned off (step 113).
 上述の実施例では,AF枠内に顔画像が検出されないときのAF速度FSが適切な速度となるようにAF速度FSが算出され,AF枠内に顔画像が検出されると,算出されたAF速度FSが速くなるように補正されているが,AF枠内に顔画像が検出されたときのAF速度FSが適切な速度(迅速な速度)となるようにAF速度FSが算出され,AF枠内に顔画像が検出されないと,算出されたAF速度FSが遅くなるように補正してもよい。AF枠内に顔画像が検出されたときのAF速度FSが,AF枠内に顔画像が検出されないときのAF速度FSよりも相対的に速ければよい。 In the above-described embodiment, the AF speed FS is calculated so that the AF speed FS when the face image is not detected in the AF frame is an appropriate speed, and is calculated when the face image is detected in the AF frame. Although the AF speed FS is corrected so as to increase, the AF speed FS is calculated so that the AF speed FS when the face image is detected in the AF frame becomes an appropriate speed (rapid speed). If the face image is not detected within the frame, the calculated AF speed FS may be corrected so as to become slow. The AF speed FS when a face image is detected in the AF frame may be relatively faster than the AF speed FS when no face image is detected in the AF frame.
 上述したAF速度FSを算出する処理(ステップ107の処理)について述べる。 The process for calculating the AF speed FS described above (the process of step 107) will be described.
 AF速度FSは,フォーカス・レンズ2の感度に反比例するものと考えられるから,その感度が算出される。フォーカス・レンズ2の感度をSとすると,感度Sは,式1によって表わされる。但し,xは,フォーカス・レンズ2の全ストロークを示し,Δx1は,合焦と判断できるフォーカス・レンズ2の位置誤差である。
 S=x/Δx1・・・式1
Since the AF speed FS is considered to be inversely proportional to the sensitivity of the focus lens 2, the sensitivity is calculated. If the sensitivity of the focus lens 2 is S, the sensitivity S is expressed by Equation 1. Here, x represents the entire stroke of the focus lens 2, and Δx1 is a position error of the focus lens 2 that can be determined to be in focus.
S = x / Δx1 Equation 1
 フォーカス・レンズ2による位置誤差(ピントずれ量)Δx1と結像側でのピントずれ量Δx2とは,βをフォーカス・レンズ2を除くレンズ系(ズーム・レンズ3を含み,読み取られたズーム位置ZPが利用される)による結像倍率とすると,式2によって表わされる。
 Δx2=β2・Δx1・・・式2
The position error (focus amount) Δx1 due to the focus lens 2 and the focus amount Δx2 on the image forming side are expressed as follows: β is a lens system excluding the focus lens 2 (including the zoom lens 3 and the read zoom position ZP Is used, the image forming magnification is expressed by Equation 2.
Δx2 = β 2 · Δx1 Equation 2
 また,焦点深度は,絞り4の絞り値(Fナンバ,読み取られた絞り位置IP)をFN,最小錯乱円径をδとすると式3となる。
 Δx2=FN・δ・・・式3
Further, the depth of focus is expressed by Equation 3, where the aperture value (F number, read aperture position IP) of the aperture 4 is FN, and the minimum circle of confusion is δ.
Δx2 = FN · δ Equation 3
 式2と式3とから,fをレンズ全系の焦点距離,fをフォーカス・レンズ2の焦点距離とすると,位置誤差Δx1は,式4となる。但し,f=f・β。
 Δx1=(1/β)・FN・δ=(f/f)・FN・δ・・・式4
From Equation 2 and Equation 3, if f is the focal length of the entire lens system and f F is the focal length of the focus lens 2, the position error Δx1 is Equation 4. However, f = f F · β.
Δx1 = (1 / β 2 ) · FN · δ = (f F / f) 2 · FN · δ Equation 4
 式4と式1とからフォーカス・レンズ2の感度Sが算出できるので,AF速度FS=1/Sとなる。このようにして算出されたAF速度FSにAFスピード設定ダイアル75の設定位置に応じた係数が乗じられる。例えば遅い設定スピードが設定されていると係数k1(k1<1であり,たとえば0.9 )が乗じられ,速い設定スピードが設定されていると係数k2(k2>1であり,たとえば1.1 )が乗じられる。 Since the sensitivity S of the focus lens 2 can be calculated from Equation 4 and Equation 1, AF speed FS = 1 / S. The AF speed FS calculated in this way is multiplied by a coefficient corresponding to the set position of the AF speed setting dial 75. For example, when a slow setting speed is set, a coefficient k1 (k1 <1 and, for example, 0.9) is multiplied. When a fast setting speed is set, a coefficient k2 (k2> 1 and, for example, 1.1) is multiplied. .
 上述の実施例では,計算によりAF速度FSを算出しているが,絞り位置IP,ズーム位置IP,AFスピード設定ダイアル75の値とAF速度FSとの関係を予めテーブルに格納しておき,そのテーブルからAF速度FSを読み取るようにしてもよい。テーブルから読み取られたAF速度FSを補正するようにしてもよいし,テーブルに補正されたAF速度を格納しておいてもよい。また,AF速度は,いくつかの絞り位置IP,ズーム位置ZP,AFスピード設定ダイアル75の値を用いて実際に試行錯誤しながら決定してもよい。 In the above embodiment, the AF speed FS is calculated by calculation, but the relationship between the aperture position IP, the zoom position IP, the value of the AF speed setting dial 75 and the AF speed FS is stored in advance in a table. The AF speed FS may be read from the table. The AF speed FS read from the table may be corrected, or the corrected AF speed may be stored in the table. Further, the AF speed may be determined by actually trial and error using values of several aperture positions IP, zoom positions ZP, and AF speed setting dial 75.
 図10は,撮影レンズ・ユニット1の処理手順を示すフローチャートである。図10において,図9に示すものと同一の処理については同一符号を付して説明を省略する。 FIG. 10 is a flowchart showing the processing procedure of the taking lens unit 1. In FIG. 10, the same processes as those shown in FIG.
 上述したように,AF速度FSが設定されると(ステップ107),第1のAF用CCD13から得られるAF評価値faと第2のAF用CCD14から得られるAF評価値fbとが読み取られる(ステップ110)。 As described above, when the AF speed FS is set (step 107), the AF evaluation value fa obtained from the first AF CCD 13 and the AF evaluation value fb obtained from the second AF CCD 14 are read (step 107). Step 110).
 AF枠内に顔画像が検出されると(ステップ108でYES),読み取られたAF評価値faとfbとの差に係数kが乗じられる。係数kは1以上であるから,AF評価値faとfbとの差が大きくなる。係数kが乗じられたAF評価値faとfbとの差に,設定されたAF速度FSが乗じられる(ステップ114)。顔画像のようにコントラストが低いものであってもAF評価値faとfbとの差が大きくなるので,AF速度FSが速くなり,迅速にフォーカス・レンズを動かすことができる。 When a face image is detected within the AF frame (YES in step 108), the difference between the read AF evaluation values fa and fb is multiplied by a coefficient k. Since the coefficient k is 1 or more, the difference between the AF evaluation values fa and fb increases. The difference between the AF evaluation values fa and fb multiplied by the coefficient k is multiplied by the set AF speed FS (step 114). Even if the contrast is low, such as a face image, the difference between the AF evaluation values fa and fb becomes large, so that the AF speed FS increases and the focus lens can be moved quickly.
 AF枠内に顔画像が検出されないと(ステップ108でNO),読み取られたAF評価値faとfbとの差に係数kを乗じる処理が行われることなく,AF評価値faとfbとの差に,設定されたAF速度FSが乗じられる(ステップ111)。AF枠内のコントラストは高いので,読み取られたAF評価値faとfbとの差に係数kを乗じられなくとも,AF評価値faとfbとの差に,設定されたAF速度FSが乗じられるだけで,迅速にフォーカス・レンズ2が移動することとなる。 If a face image is not detected in the AF frame (NO in step 108), the difference between the AF evaluation values fa and fb is not performed without performing the process of multiplying the difference between the read AF evaluation values fa and fb by the coefficient k. Is multiplied by the set AF speed FS (step 111). Since the contrast in the AF frame is high, even if the difference between the read AF evaluation values fa and fb cannot be multiplied by the coefficient k, the difference between the AF evaluation values fa and fb is multiplied by the set AF speed FS. As a result, the focus lens 2 moves quickly.
 図11および図12は,他の実施例を示すものである。 11 and 12 show another embodiment.
 上述した撮影レンズ・ユニット1では,第1のAF用CCD13および第2のAF用CCD14の二つのAF用CCDが含まれているが,図11および図12に示す実施例に示す撮影レンズ・ユニット1Aでは,第1のAF用CCD13および第2のAF用CCD14に加えて第3のAF用CCD15が含まれている。上述した実施例では,カメラ本体20に含まれている撮像用CCD26などから得られる映像信号を用いて顔画像検出が行われているが,この実施例では撮影レンズ・ユニット1Aに含まれている第3のAF用CCD15から得られる映像信号を用いて顔画像検出が行われる。 The photographing lens unit 1 described above includes two AF CCDs, the first AF CCD 13 and the second AF CCD 14, but the photographing lens unit shown in the embodiment shown in FIGS. 1A includes a third AF CCD 15 in addition to the first AF CCD 13 and the second AF CCD 14. In the above-described embodiment, face image detection is performed using a video signal obtained from the imaging CCD 26 included in the camera body 20, but in this embodiment, it is included in the photographing lens unit 1A. Face image detection is performed using a video signal obtained from the third AF CCD 15.
 図11は,一部内部構成を示した撮影レンズ・ユニット1Aの外観を示している。図11は,撮影レンズ・ユニット1Aを側面から見たものである。この図において,図1に示すものと同一物については同一符号を付して説明を省略する。 FIG. 11 shows the appearance of the taking lens unit 1A partially showing the internal configuration. FIG. 11 is a side view of the taking lens unit 1A. In this figure, the same components as those shown in FIG.
 撮影レンズ・ユニット1Aの外周には,フォーカス・リング121,ズーム・レンズ122およびアイリス・リング123が回転自在に設けられている。フォーカス・リング121が回転させられると,その回転に応じてフォーカス・レンズが光軸方向に移動し,ズーム・レンズ122が回転させられると,その回転に応じてズーム・レンズのズーム量が調整させられる。アイリス・リング123が回転させられると,絞り値が調整させられる。 A focus ring 121, a zoom lens 122, and an iris ring 123 are rotatably provided on the outer periphery of the photographing lens unit 1A. When the focus ring 121 is rotated, the focus lens moves in the optical axis direction according to the rotation, and when the zoom lens 122 is rotated, the zoom amount of the zoom lens is adjusted according to the rotation. It is done. When the iris ring 123 is rotated, the aperture value is adjusted.
 図11に示すレンズ・ユニット1Aでは,全反射ミラー9において全反射した光線束は,分割プリズム130に入射する。分割プリズム130には,第1のプリズム131,第2のプリズム132および第3のプリズム133が含まれている。分割プリズム130に入射した光線束の一部は,第1のプリズム131,第2のプリズム132または第3のプリズム133のそれぞれから出射し,第1のAF用CCD13,第2のAF用CCD14または第3のAF用CCD15のそれぞれに入射する。第1のAF用CCD13および第2のAF用CCD14は,上述したように,第1のAF用CCD13および第2のAF用CCD14から出力された信号にもとづいて上述したようにAF評価値が得られ,第3のAF用CCD15から出力された映像信号を用いて顔画像検出が行われる。 In the lens unit 1A shown in FIG. 11, the light beam totally reflected by the total reflection mirror 9 enters the splitting prism 130. The split prism 130 includes a first prism 131, a second prism 132, and a third prism 133. A part of the light beam incident on the splitting prism 130 is emitted from each of the first prism 131, the second prism 132, or the third prism 133, and the first AF CCD 13, the second AF CCD 14, or the The light enters the third AF CCD 15. As described above, the first AF CCD 13 and the second AF CCD 14 obtain the AF evaluation value as described above based on the signals output from the first AF CCD 13 and the second AF CCD 14. Then, face image detection is performed using the video signal output from the third AF CCD 15.
 図12は,撮影レンズ・ユニット1Aの電気的構成を示すブロック図である。この図において,図4に示すものと同一物については同一符号を付して説明を省略する。 FIG. 12 is a block diagram showing an electrical configuration of the photographing lens unit 1A. In this figure, the same components as those shown in FIG.
 撮影レンズ・ユニット1AにはAFCPU45が含まれている。このAFCPU45を介してAF枠の位置情報がゲート回路33,43に与えられ,AF枠内のAF評価値がCPU50に与えられる。 The photographing lens unit 1A includes an AF CPU 45. Position information of the AF frame is given to the gate circuits 33 and 43 through the AF CPU 45, and an AF evaluation value in the AF frame is given to the CPU 50.
 フォーカス・AF枠操作ユニット70Aに含まれている各種スイッチ類(AFスピード・スイッチ75,ATスタート・スイッチ76,ジョグ・スティック77など)75Aからの出力信号,ATスイッチ78の操作により発生するフォーカス要求信号(オート・フォーカス),フォーカス・リング121の回転量を示す信号などは,操作ユニットCPU73に入力する。これにより,フォーカス・/AF枠操作ユニット70Aの操作ユニットCPU73から撮影レンズ・ユニット1AのレンズCPU50にAF枠の位置を示すデータ,フォーカス・リング121の回転量により特定されるマニアル・フォーカス量を示すデータ,オート・フォーカスの要求を示すフォーカス要求信号が出力されることとなる。 Various switches (AF speed switch 75, AT start switch 76, jog stick 77, etc.) included in the focus / AF frame operation unit 70A, an output signal from 75A, and a focus request generated by operating the AT switch 78 A signal (auto focus), a signal indicating the rotation amount of the focus ring 121, and the like are input to the operation unit CPU73. Thus, the data indicating the position of the AF frame from the operation unit CPU 73 of the focus / AF frame operation unit 70A to the lens CPU 50 of the photographing lens unit 1A, and the manual focus amount specified by the rotation amount of the focus ring 121 are indicated. A focus request signal indicating a request for data and auto-focus is output.
 撮影レンズ・ユニット1Aに含まれている第3のAF用CCD15から出力される映像信号は,アナログ/ディジタル変換回路46においてディジタル画像データに変換されて信号処理回路47に入力する。信号処理回路47において所定の信号処理が行われたディジタル画像データはフォーカス/AF枠操作ユニット70Aの画像メモリ71を介して画像信号処理回路72に入力する。画像信号処理回路72において顔画像の検出処理が行われる。検出された顔画像の位置データは操作ユニットCPU73に入力する。操作ユニットCPU73において,AF枠内に顔画像が含まれていると判断されると上述したように,フォーカス・レンズ3を合焦位置に位置決めするときのフォーカス・レンズ3の移動速度が相対的に速くさせられる。 The video signal output from the third AF CCD 15 included in the photographing lens unit 1A is converted into digital image data by the analog / digital conversion circuit 46 and input to the signal processing circuit 47. Digital image data that has undergone predetermined signal processing in the signal processing circuit 47 is input to the image signal processing circuit 72 via the image memory 71 of the focus / AF frame operation unit 70A. The image signal processing circuit 72 performs face image detection processing. The position data of the detected face image is input to the operation unit CPU 73. When the operation unit CPU 73 determines that the face image is included in the AF frame, as described above, the moving speed of the focus lens 3 when the focus lens 3 is positioned at the in-focus position is relatively high. Made fast.
 このように,撮影レンズ・ユニット1Aに第3のAF用CCD15を設けることにより,カメラ本体20に含まれている撮像用CCD26などを利用せずに顔画像を検出できるようになる。 As described above, by providing the third AF CCD 15 in the photographing lens unit 1A, a face image can be detected without using the imaging CCD 26 included in the camera body 20.
 1,1A 撮影レンズ・ユニット
 13,14 AF用CCD(第1の固体電子撮像素子,第2の固体電子撮像素子)
 50 CPU(顔画像判定手段,フォーカス・レンズ移動制御手段)
 59 フォーカス・レンズ・モータ(フォーカス・レンズ移動手段)
1,1A Imaging lens unit 13,14 AF CCD (first solid-state electronic image sensor, second solid-state electronic image sensor)
50 CPU (face image determination means, focus / lens movement control means)
59 Focus lens motor (focus / lens moving means)

Claims (6)

  1.  フォーカス・レンズにより結像される被写体像の位置に対して光学的に前後等間隔の位置に配置された第1の固体電子撮像素子および第2の固体電子撮像素子,
     上記第1の固体電子撮像素子により撮像された被写体像のうちAF枠内の画像の第1のコントラストと上記第2の固体電子撮像素子により撮像された被写体像のうち上記AF枠内の画像の第2のコントラストとが一致する位置にフォーカス・レンズを移動するフォーカス・レンズ移動手段,
     上記AF枠内に顔画像が検出されたかどうかを判定する顔画像判定手段,ならびに
     上記顔画像判定手段によって上記AF枠内に顔画像が検出されたと判定されたことに応じて,上記フォーカス・レンズ移動手段によるフォーカス・レンズの移動速度を,上記AF枠内に顔画像が検出されないと判定されたときと比べて速くするように上記フォーカス・レンズ移動手段を制御するフォーカス・レンズ移動制御手段,
     を備えたオート・フォーカス・システム。
    A first solid-state electronic image pickup device and a second solid-state electronic image pickup device which are optically arranged at equally spaced positions relative to the position of the subject image formed by the focus lens;
    Of the subject image captured by the first solid-state electronic image sensor, the first contrast of the image in the AF frame and the image of the image in the AF frame among the subject image captured by the second solid-state electronic image sensor. Focus lens moving means for moving the focus lens to a position where the second contrast matches,
    Face image determining means for determining whether or not a face image is detected in the AF frame, and the focus lens in response to the face image determining means determining that a face image is detected in the AF frame A focus / lens movement control means for controlling the focus / lens movement means so as to make the movement speed of the focus / lens by the movement means faster than when it is determined that a face image is not detected in the AF frame;
    Auto focus system with
  2.  上記第1のコントラストと上記第2のコントラストとの差を検出するコントラスト差検出手段をさらに備え,
     上記フォーカス・レンズ移動手段は,
     上記コントラスト差検出手段によって検出された上記第1のコントラストと上記第2のコントラストとのコントラスト差が大きいほどフォーカス・レンズの移動速度を大きくするものである,
     請求項1に記載のオート・フォーカス・システム。
    A contrast difference detecting means for detecting a difference between the first contrast and the second contrast;
    The focus lens moving means is
    The moving speed of the focus lens is increased as the contrast difference between the first contrast and the second contrast detected by the contrast difference detecting means is larger.
    The autofocus system according to claim 1.
  3.  上記被写体像の結像位置を変えずに焦点距離を変えるズーム・レンズ,
     上記被写体像の明るさを調整する絞り,
     上記フォーカス・レンズ移動手段によるフォーカス・レンズの移動速度を設定する設定器,および
     上記ズーム・レンズのズーム位置,上記絞りの絞り値および上記設定器により設定された移動速度にもとづいて,上記フォーカス・レンズ移動手段によるフォーカス・レンズの移動速度を決定する移動速度決定手段,
     をさらに備えた請求項1または2に記載のオート・フォーカス・システム。
    A zoom lens that changes the focal length without changing the imaging position of the subject image,
    A diaphragm for adjusting the brightness of the subject image,
    A setter for setting the moving speed of the focus lens by the focus / lens moving means, and the focus / lens moving position based on the zoom position of the zoom lens, the aperture value of the iris and the moving speed set by the setting device. Moving speed determining means for determining the moving speed of the focus lens by the lens moving means;
    The autofocus system according to claim 1 or 2, further comprising:
  4.  上記フォーカス・レンズ移動制御手段は,
     上記顔画像設定手段によって上記AF枠内に顔画像が検出されたと判定されたことに応じて,上記移動速度決定手段により決定された移動速度を速くするものである,
     請求項3に記載のオート・フォーカス・システム。
    The focus lens movement control means is:
    In response to determining that a face image is detected within the AF frame by the face image setting means, the movement speed determined by the movement speed determination means is increased.
    The autofocus system according to claim 3.
  5.  フォーカス・レンズにより結像される被写体像の位置と光学的に等しい位置に配置され,被写体像を表わす映像信号を出力する第3の固体電子撮像素子をさらに備え,
     上記顔画像判定手段は,
     上記第3の固体電子撮像素子から出力された映像信号から上記AF枠内に顔画像が検出されたかどうかを判定するものである,
     請求項1から4のうち,いずれか一項に記載のオート・フォーカス・システム。
    A third solid-state electronic image sensor which is disposed at a position optically equal to the position of the subject image formed by the focus lens and outputs a video signal representing the subject image;
    The face image judging means
    It is determined whether a face image is detected in the AF frame from the video signal output from the third solid-state electronic image sensor.
    The autofocus system according to any one of claims 1 to 4.
  6.  フォーカス・レンズ移動手段が,フォーカス・レンズにより結像される被写体像の位置に対して光学的に前後等間隔の位置に配置された第1の固体電子撮像素子および第2の固体電子撮像素子を備えたオート・フォーカス・システムの動作制御方法において,
     フォーカス・レンズ移動手段が,上記第1の固体電子撮像素子により撮像された被写体像のうちAF枠内の画像の第1のコントラストと上記第2の固体電子撮像素子により撮像された被写体像のうち上記AF枠内の画像の第2のコントラストとが一致する位置にフォーカス・レンズを移動し,
     顔画像判定手段が,上記AF枠内に顔画像が検出されたかどうかを判定し,
     フォーカス・レンズ移動制御手段が,上記顔画像判定手段によって上記AF枠内に顔画像が検出されたと判定されたことに応じて,上記フォーカス・レンズ移動手段によるフォーカス・レンズの移動速度を,上記AF枠内に顔画像が検出されないと判定されたときと比べて速くするように上記フォーカス・レンズ移動手段を制御する,
     オート・フォーカス・システムの動作制御方法。
    The focus / lens moving means includes a first solid-state electronic image sensor and a second solid-state electronic image sensor, which are optically arranged at equally spaced positions relative to the position of the subject image formed by the focus lens. In the operation control method of the equipped auto focus system,
    Of the subject image captured by the first solid-state electronic image sensor, the focus / lens moving means includes a first contrast of an image in the AF frame and a subject image captured by the second solid-state electronic image sensor. Move the focus lens to a position where the second contrast of the image in the AF frame matches,
    Face image determination means determines whether a face image is detected within the AF frame;
    When the focus / lens movement control means determines that the face image is detected in the AF frame by the face image determination means, the focus / lens movement means determines the movement speed of the focus / lens by the focus / lens movement means. Controlling the focus / lens moving means to be faster than when it is determined that a face image is not detected within the frame;
    Operation control method of auto focus system.
PCT/JP2012/065308 2011-07-28 2012-06-15 Autofocus system and operational control method for same WO2013015036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-164944 2011-07-28
JP2011164944 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013015036A1 true WO2013015036A1 (en) 2013-01-31

Family

ID=47600895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065308 WO2013015036A1 (en) 2011-07-28 2012-06-15 Autofocus system and operational control method for same

Country Status (1)

Country Link
WO (1) WO2013015036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812669A (en) * 2016-05-13 2016-07-27 大族激光科技产业集团股份有限公司 Curved automatic imaging focusing method and system
CN106094162A (en) * 2016-08-26 2016-11-09 英华达(上海)科技有限公司 A kind of focusing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292779A (en) * 2004-03-12 2005-10-20 Fujinon Corp Autofocus system
JP2007065593A (en) * 2005-09-02 2007-03-15 Fujinon Corp Autofocus system
JP2010156731A (en) * 2008-12-26 2010-07-15 Canon Inc Automatic focus adjustment device and control method therefor
JP2011118058A (en) * 2009-12-01 2011-06-16 Fujifilm Corp Characteristic adjustment method and characteristic adjustment device for imaging element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292779A (en) * 2004-03-12 2005-10-20 Fujinon Corp Autofocus system
JP2007065593A (en) * 2005-09-02 2007-03-15 Fujinon Corp Autofocus system
JP2010156731A (en) * 2008-12-26 2010-07-15 Canon Inc Automatic focus adjustment device and control method therefor
JP2011118058A (en) * 2009-12-01 2011-06-16 Fujifilm Corp Characteristic adjustment method and characteristic adjustment device for imaging element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812669A (en) * 2016-05-13 2016-07-27 大族激光科技产业集团股份有限公司 Curved automatic imaging focusing method and system
CN105812669B (en) * 2016-05-13 2019-04-23 大族激光科技产业集团股份有限公司 Curved surface automated imaging focusing method and system
CN106094162A (en) * 2016-08-26 2016-11-09 英华达(上海)科技有限公司 A kind of focusing method

Similar Documents

Publication Publication Date Title
JP3992992B2 (en) Subject image acquisition device
JP2008165142A (en) Photographing apparatus and focusing method
US7864239B2 (en) Lens barrel and imaging apparatus
JP5089154B2 (en) Auto focus system
JP2010139666A (en) Imaging device
JP2007322596A (en) Camera provided with focusing device
JP5056168B2 (en) Focus adjustment device and imaging device
JP2011107716A (en) Automatic focusing device
JP2010243843A (en) Autofocus system
WO2002099497A1 (en) Device for determining focused state of taking lens
JP2011090143A (en) Focal point detecting device and camera
WO2013015036A1 (en) Autofocus system and operational control method for same
WO2016035642A1 (en) Imaging device, imaging device body, and lens barrel
JP4994733B2 (en) Automatic focusing device and imaging device
JP2007065593A (en) Autofocus system
JP2009109792A (en) Autofocusing device and camera using it
JPH11331676A (en) Automatic focus controller
JP2006215285A (en) Autofocus system
JP5475417B2 (en) Image sensor characteristic adjustment method and characteristic adjustment apparatus
JP5417899B2 (en) Focus detection apparatus and imaging apparatus
JP5389117B2 (en) Imaging apparatus, automatic focus adjustment apparatus, and automatic focus adjustment method
JP5447549B2 (en) Focus adjustment device and imaging device
JP2007299007A (en) Object image acquiring apparatus
JP2007086434A (en) Imaging apparatus and method for focusing imaging apparatus
JP2005062237A (en) Automatic focus system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP