WO2012157314A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2012157314A1
WO2012157314A1 PCT/JP2012/055181 JP2012055181W WO2012157314A1 WO 2012157314 A1 WO2012157314 A1 WO 2012157314A1 JP 2012055181 W JP2012055181 W JP 2012055181W WO 2012157314 A1 WO2012157314 A1 WO 2012157314A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
radiating element
antenna device
tuning circuit
reactance
Prior art date
Application number
PCT/JP2012/055181
Other languages
French (fr)
Japanese (ja)
Inventor
藤枝重雪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012157314A1 publication Critical patent/WO2012157314A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable
    • H01Q9/145Length of element or elements adjustable by varying the electrical length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to a small antenna device in which the resonance frequency of the antenna is variable.
  • Patent Document 1 discloses a small antenna device that can switch the resonance frequency of an antenna.
  • FIG. 1 is a perspective view showing a configuration example of the antenna device.
  • a dielectric core antenna 1 includes a rectangular parallelepiped dielectric core 2 having a predetermined dielectric constant, an electrode 3 is formed on the upper surface of the dielectric core 2, and the lower surface facing the same.
  • An electrode 4 is formed on the substrate.
  • a third electrode 5 that connects between the first and second electrodes 3 and 4 is formed on one surface that connects these opposing surfaces.
  • a notch 6 having a predetermined length and width is provided in parallel to the first electrode 3 and the second electrode 4 from one edge of the third electrode 5, and the variable capacitor 7 is provided between the upper and lower edges of the notch 6. Is connected.
  • the dielectric core antenna 1 is fed by directly connecting the inner conductor 9 of the coaxial cable 8 to a predetermined point of the second electrode 4.
  • the variable width of the variable amount of reactance of the variable capacitance element 7 is not large, and the frequency cannot be varied over a wide band.
  • a nonlinear element such as the variable capacitance element 7 is deteriorated in characteristics due to distortion when a large amount of power is input. Therefore, a stable characteristic cannot be obtained in an antenna device that handles high power.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an antenna device capable of adjusting a resonance frequency over a wide band and solving the problem of distortion due to a tuning circuit.
  • the antenna device of the present invention is configured as follows. (1) a radiating element having a first end opened and a second end connected to the feeder circuit side; A first tuning circuit connected between an intermediate point from the first end to the second end of the radiating element and the power supply circuit, and the tuning circuit includes a plurality of short-circuit paths configured by reactance elements. And a switch that switches between these short-circuit paths.
  • the reactance circuit is provided between the second end of the radiating element and the midpoint.
  • the plurality of short-circuit paths include a circuit constituted by an inductor or a capacitor.
  • a second tuning circuit is provided between the second end of the radiating element and the power feeding circuit, and the second tuning circuit includes a plurality of short-circuit paths formed of reactance elements, and these It is assumed that the switch is configured by a switch for switching the short-circuit path.
  • a third tuning circuit is provided between the intermediate point and the first end of the radiating element, and the third tuning circuit includes a plurality of short-circuit paths formed of reactance elements. And a switch for switching these short-circuit paths.
  • a part of the radiating element and the first tuning circuit is composed of a conductor pattern formed on a dielectric substrate.
  • a part of the radiating element and the first tuning circuit is composed of a conductor pattern formed on a flexible substrate.
  • the said flexible substrate is arrange
  • the present invention it is possible to adjust the frequency over a wide band by switching a plurality of short-circuit paths of the tuning circuit.
  • the tuning circuit since no nonlinear element is used in the tuning circuit, characteristic deterioration due to distortion due to the nonlinear element does not occur.
  • FIG. 1 is a perspective view of the antenna device disclosed in Patent Document 1.
  • FIG. FIG. 2 is a circuit diagram of the antenna device of the first embodiment.
  • FIG. 3 is a circuit configuration example of the first tuning circuit 31 shown in FIG.
  • FIG. 4 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 101.
  • FIG. 5 is a circuit diagram of the antenna device of the second embodiment.
  • FIG. 6 is a circuit diagram of the antenna device of the third embodiment.
  • FIG. 7 is a circuit diagram of the first tuning circuit 31 shown in FIG.
  • FIG. 8 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 103.
  • FIG. 9 is a circuit diagram of the antenna device 104 according to the fourth embodiment.
  • FIG. 10 is a diagram illustrating the frequency characteristics of the return loss (S11) of the antenna device 104.
  • FIG. 11 is a circuit diagram of the antenna device 105 of the fifth embodiment.
  • FIG. 2 is a circuit diagram of the antenna device of the first embodiment.
  • the antenna device 101 includes a radiating element 20, a first tuning circuit 31, and a matching circuit 40.
  • the first end P1 of the radiating element 20 is opened, and the second end P2 of the radiating element 20 is connected to the matching circuit 40 (that is, to the feeding circuit side).
  • the matching circuit 40 matches the impedance between the radiating element 20 and the feeding circuit connected to the feeding circuit connection end FP.
  • the inductor Ls is connected in series and the inductor Lp is connected to the shunt.
  • the first tuning circuit 31 is a circuit capable of switching the reactance, and is connected between the midpoint Pm of the radiating element 20 and the second end P2.
  • the first tuning circuit 31 is composed of a plurality of short-circuit paths composed of reactance elements and a switch for switching these short-circuit paths.
  • the first tuning circuit 31 is a circuit that connects (short-circuits) the intermediate point Pm of the radiating element 20 and the second end P2 via a reactance element.
  • FIG. 3 is a circuit configuration example of the first tuning circuit 31.
  • the first tuning circuit 31 includes reactance elements La, Ca, Cb and the like and a switch 311. For example, if the switch 311 selects the connection portion (1) of the reactance element La, the intermediate point Pm of the radiating element 20 and the second end P2 are connected (short-circuited) via the reactance element La. Further, when the switch 311 selects, for example, the open end (0), the midpoint Pm of the radiating element 20 is in an open (non-short circuit) state with respect to the second end P2.
  • the resonance frequency is determined at the portion from the second end P2 to the first end P1 of the radiating element 20 (with the original radiating element 20).
  • the switch 311 of the first tuning circuit 31 selects the connection portion (1) ⁇ of the reactance element La
  • the second tuning circuit 31 passes through the reactance element La of the first tuning circuit 31 from the second end P2 of the radiation element 20.
  • the resonance frequency is determined by the portion up to the first end P1 of the radiating element. At this resonance frequency, almost no current is distributed in the path from the second end P2 of the radiating element 20 to the midpoint Pm.
  • the first tuning circuit 31 acts as a short circuit path provided to the radiating element 20, and the physical current path length of the radiating element can be changed by the short circuit path.
  • a reactance variable circuit is inserted in series with respect to a location close to the matching circuit 40 to adjust the frequency, a series resistance component is generated, which causes a gain deterioration.
  • the physical current path length does not change, it is difficult to adjust the frequency over a wide band.
  • FIG. 4 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 101.
  • the return loss characteristic RL0 is a characteristic when the first tuning circuit 31 is open
  • the return loss characteristic RL1 is a characteristic when the first tuning circuit 31 selects the reactance element La
  • the return loss characteristic RLn is This is a characteristic when the first tuning circuit 31 selects the reactance element Cb.
  • the resonance frequency of the antenna device can be adjusted over a wide band by switching the switch 311 in the first tuning circuit 31.
  • a non-linear element such as a variable capacitance diode is not used, distortion does not occur.
  • FIG. 5 is a circuit diagram of the antenna device of the second embodiment.
  • the antenna device 102 includes a radiating element 20, reactance elements L 1 and L 2, a first tuning circuit 31, and a matching circuit 40.
  • the first end P1 of the radiating element 20 is open.
  • a tuning circuit 31 is connected between the second end P2 of the radiating element 20 and the midpoint Pm.
  • a reactance circuit including a reactance element L2 is connected between the second end P2 of the radiating element 20 and the midpoint Pm.
  • a reactance circuit including a reactance element L1 is connected between the second end P2 of the radiating element 20 and the matching circuit 40.
  • the reactance element L2 increases the inductance component from the second end P2 of the radiating element 20 to the midpoint Pm.
  • the reactance element L1 increases an inductance component from the second end P2 of the radiating element 20 to the matching circuit 40.
  • the physical length of the radiating element 20 required to obtain a predetermined resonance frequency can be shortened by the inductance component of the reactance element L1.
  • the path length from the second end P2 of the radiating element 20 to the midpoint Pm can be shortened by the inductance component of the reactance element L2. Accordingly, the path from the intermediate point Pm to the first end P1, that is, the part contributing to radiation can be made long, so that a high gain can be maintained while being small.
  • FIG. 6 is a circuit diagram of the antenna device of the third embodiment.
  • the antenna device 103 includes a radiating element 20, reactance elements L 1 and L 2, a first tuning circuit 31, and a matching circuit 40.
  • the first end P1 of the radiating element 20 is open.
  • a tuning circuit 31 is connected between the second end P2 of the radiating element 20 and the midpoint Pm.
  • a reactance circuit including a reactance element L2 is connected between the second end P2 of the radiating element 20 and the midpoint Pm.
  • a reactance circuit including a reactance element L1 is connected between the second end P2 of the radiating element 20 and the matching circuit 40.
  • the configuration of the first tuning circuit 31 is different from the antenna device 102 shown in FIG.
  • FIG. 7 is a circuit diagram of the first tuning circuit 31.
  • the first tuning circuit 31 includes a plurality of LC parallel circuits in which inductors and capacitors are connected in parallel.
  • An LC parallel circuit including an inductor La and a capacitor Ca is connected to the connection portion (1) of the switch 311. Further, an LC parallel circuit including an inductor Lb and a capacitor Cb is connected to the connection portion (2).
  • the LC parallel circuit is similarly connected to the other connection portions. If the switch 311 selects the connection portion (1), the intermediate point Pm of the radiating element 20 and the second end P2 are connected via an LC parallel circuit including an inductor La and a capacitor Ca. If the switch 311 selects the connection portion (2), the intermediate point Pm of the radiating element 20 and the second end P2 are connected via an LC parallel circuit including the inductor Lb and the capacitor Cb.
  • FIG. 8 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 103.
  • the return loss characteristics RL11 and RL12 are characteristics when the switch 311 of the first tuning circuit 31 is selecting the connection (1), and the return loss characteristics RL21 and RL22 are the switch 311 selecting the connection (2) It is a characteristic when doing.
  • return loss characteristics RLn1 and RLn2 are characteristics when the switch 311 selects the connection (n).
  • inductive and capacitive resonance frequencies can be obtained by inserting an LC parallel circuit into a part of the current path of the radiating element 20. That is, resonance occurs at two resonance frequencies, that is, a resonance frequency mainly in the path passing through the inductor in the LC parallel circuit and a resonance frequency mainly in the path passing through the capacitor. Then, by switching LC parallel circuits having different inductance values and capacitance values with a switch, the pair of the two resonance frequencies can be switched, and the resonance frequency of the antenna device can be adjusted over a wide band.
  • FIG. 9 is a circuit diagram of the antenna device 104 according to the fourth embodiment.
  • the antenna device 104 includes a radiating element 20, reactance elements L 1 and L 2, a first tuning circuit 31, a second tuning circuit 32, and a matching circuit 40.
  • the first end P1 of the radiating element 20 is open.
  • a tuning circuit 31 is connected between the second end P2 of the radiating element 20 and the midpoint Pm.
  • a reactance circuit including a reactance element L2 is connected between the second end P2 of the radiating element 20 and the midpoint Pm.
  • the reactance circuit by the reactance element L1 and the second tuning circuit 32 are connected.
  • the second tuning circuit 32 includes a plurality of reactance elements and a switch for switching them.
  • the resonance frequency is adjusted by a combination of switching of the switch of the first tuning circuit 31 and switching of the switch of the second tuning circuit 32.
  • the shift amount of the resonance frequency per reactance change of the first tuning circuit 31 is larger than the shift amount of the resonance frequency per reactance change of the second tuning circuit 32. Therefore, the reactance value to be switched by each tuning circuit may be determined so that the resonance frequency is coarsely adjusted by the first tuning circuit 31 and finely adjusted by the second tuning circuit 32.
  • FIG. 10 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 104.
  • the return loss characteristics RL11 and RL12 are characteristics when the switch 311 of the first tuning circuit 31 is selecting the connection (1), and the return loss characteristics RL21 and RL22 are the switch 311 selecting the connection (2) It is a characteristic when doing.
  • return loss characteristics RLn1 and RLn2 are characteristics when the switch 311 selects the connection (n).
  • the return loss characteristics RL11, RL21, and RLn1 are characteristics when the switch of the second tuning circuit 32 selects the first connection portion, and the return loss characteristics RL12, RL22, and RLn2 are the characteristics of the second tuning circuit 32. This is a characteristic when the switch selects the second connection portion.
  • the resonance frequency of the antenna device can be finely adjusted over a wide band.
  • FIG. 11 is a circuit diagram of the antenna device 105 of the fifth embodiment.
  • the antenna device 105 includes a radiating element 20, reactance elements L 1 and L 2, a first tuning circuit 31, a third tuning circuit 33, and a matching circuit 40.
  • the first end P1 of the radiating element 20 is open.
  • a tuning circuit 31 is connected between the second end P2 of the radiating element 20 and the midpoint Pm.
  • a third tuning circuit 33 is connected between the first end P1 of the radiating element 20 and the midpoint Pm.
  • the third tuning circuit 33 includes a plurality of reactance elements and a switch for switching them.
  • the resonance frequency is adjusted by a combination of switching of the switch of the first tuning circuit 31 and switching of the switch of the third tuning circuit 33.
  • the resonance frequency shift amount per reactance change of the first tuning circuit 31 is larger than the resonance frequency shift amount per reactance change of the third tuning circuit 33. Therefore, as in the case of the fourth embodiment, the resonance frequency is roughly adjusted by the first tuning circuit 31 and finely adjusted by the third tuning circuit 33. You just have to decide.
  • the circuit and characteristics of the antenna device have been described, but some forms can be taken in terms of structure.
  • the radiating element 20 and a part of the first tuning circuit 31 are configured by a conductor pattern on a block-like or plate-like dielectric substrate.
  • a part of the radiating element 20 and the first tuning circuit 31 is formed of a conductor pattern on a flexible substrate.
  • the radiating element 20 is configured by a conductor pattern on a dielectric substrate
  • a part of the first tuning circuit 31 is configured by a conductor pattern on a flexible substrate, and the flexible substrate is disposed along the dielectric substrate. May be.
  • a part of the radiating element 20 and the tuning circuit 31 may be configured as a conductor pattern on a flexible substrate, and the flexible substrate may be disposed along the dielectric substrate.
  • the second tuning circuit 32 and the third tuning circuit 33 which may be formed on a dielectric substrate or a flexible substrate.
  • the reactance elements of the first to third tuning circuits can be configured with a conductor pattern on a dielectric substrate or a flexible substrate, but a chip component may be mounted as necessary.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An antenna device (101) is provided with a radiating element (20), a first tuning circuit (31) and a matching circuit (40). The radiating element (20) has an opened first terminal (P1) and a second terminal (P2) connected (on the feeder circuit side) to the matching circuit (40). The matching circuit (40) matches impedance between a feeder circuit, which is connected to a feeder circuit connection terminal (FP), and the radiating element (20). The first tuning circuit (31) allows for switching reactance and is connected between the mid-point (Pm) and the second terminal (P2) of the radiating element (20). The first tuning circuit (31) comprises a plurality of short circuit paths formed from reactance elements, and a switch which switches these short circuit paths. The resonance frequency of the antenna device is adjusted by the switching of this switch.

Description

アンテナ装置Antenna device
 本発明はアンテナの共振周波数が可変である小型のアンテナ装置に関するものである。 The present invention relates to a small antenna device in which the resonance frequency of the antenna is variable.
 アンテナの共振周波数を切り替えられるようにした小型のアンテナ装置が特許文献1に示されている。図1はそのアンテナ装置の構成例を示す斜視図である。
 図1において、誘電体コア・アンテナ1は、所定の誘電率を持つ直方体の誘電体コア2を備え、誘電体コア2の上側の面上に電極3が形成され、それと対向する下側の面に電極4が形成されている。これらの対向する面の間を連結する1つの面には、第1と第2の電極3、4の間を連結する第3の電極5が形成される。
Patent Document 1 discloses a small antenna device that can switch the resonance frequency of an antenna. FIG. 1 is a perspective view showing a configuration example of the antenna device.
In FIG. 1, a dielectric core antenna 1 includes a rectangular parallelepiped dielectric core 2 having a predetermined dielectric constant, an electrode 3 is formed on the upper surface of the dielectric core 2, and the lower surface facing the same. An electrode 4 is formed on the substrate. A third electrode 5 that connects between the first and second electrodes 3 and 4 is formed on one surface that connects these opposing surfaces.
 第3の電極5の一方の縁から第1の電極3及び第2の電極4に平行に、所定の長さと幅の切り込み6が設けられ、この切り込み6の上下の縁の間に可変コンデンサ7が接続されている。この誘電体コア・アンテナ1は同軸ケーブル8の内部導体9を第2の電極4の所定の点に直接接続することによって給電される。 A notch 6 having a predetermined length and width is provided in parallel to the first electrode 3 and the second electrode 4 from one edge of the third electrode 5, and the variable capacitor 7 is provided between the upper and lower edges of the notch 6. Is connected. The dielectric core antenna 1 is fed by directly connecting the inner conductor 9 of the coaxial cable 8 to a predetermined point of the second electrode 4.
特開平9-55619号公報Japanese Patent Laid-Open No. 9-55619
 特許文献1に示されているアンテナ装置においては、可変容量素子7のリアクタンス可変量の可変幅が大きくなく、広帯域に亘る周波数可変ができない。また、可変容量素子7のような非線形素子は一般に、大電力が入力した際に歪みによる特性劣化が生じてしまう。そのため、大電力を扱うアンテナ装置においては安定した特性を得ることはできない。 In the antenna device shown in Patent Document 1, the variable width of the variable amount of reactance of the variable capacitance element 7 is not large, and the frequency cannot be varied over a wide band. In general, a nonlinear element such as the variable capacitance element 7 is deteriorated in characteristics due to distortion when a large amount of power is input. Therefore, a stable characteristic cannot be obtained in an antenna device that handles high power.
 本発明は上述の課題を解決するためになされ、その目的は、広帯域に亘って共振周波数を調整でき、また同調回路による歪の問題を解消したアンテナ装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an antenna device capable of adjusting a resonance frequency over a wide band and solving the problem of distortion due to a tuning circuit.
 本発明のアンテナ装置は次のように構成する。
(1)第1端が開放され、第2端が給電回路側に接続された放射素子と、
 前記放射素子の第1端から第2端までの途中点と前記給電回路との間に接続される第1の同調回路と、を備え、前記同調回路はリアクタンス素子で構成された複数の短絡経路およびこれらの短絡経路を切り替えるスイッチで構成されたことを特徴とする。
The antenna device of the present invention is configured as follows.
(1) a radiating element having a first end opened and a second end connected to the feeder circuit side;
A first tuning circuit connected between an intermediate point from the first end to the second end of the radiating element and the power supply circuit, and the tuning circuit includes a plurality of short-circuit paths configured by reactance elements. And a switch that switches between these short-circuit paths.
(2)共振周波数調整用のリアクタンス素子を含むリアクタンス回路を設ける場合は前記放射素子の第2端と前記途中点との間に備えることが好ましい。 (2) When a reactance circuit including a reactance element for adjusting the resonance frequency is provided, it is preferable that the reactance circuit is provided between the second end of the radiating element and the midpoint.
(3)また、共振周波数調整用のリアクタンス素子を含むリアクタンス回路を設ける場合は前記放射素子の第2端と前記給電回路との間に備えることが好ましい。 (3) Moreover, when providing the reactance circuit containing the reactance element for resonance frequency adjustment, it is preferable to provide between the 2nd end of the said radiation element, and the said electric power feeding circuit.
(4)前記複数の短絡経路はインダクタまたはキャパシタで構成された回路を含むことが好ましい。 (4) It is preferable that the plurality of short-circuit paths include a circuit constituted by an inductor or a capacitor.
(5)必要に応じて、前記放射素子の第2端と前記給電回路との間に第2の同調回路を備え、前記第2の同調回路はリアクタンス素子で構成された複数の短絡経路およびこれらの短絡経路を切り替えるスイッチで構成されたものとする。 (5) If necessary, a second tuning circuit is provided between the second end of the radiating element and the power feeding circuit, and the second tuning circuit includes a plurality of short-circuit paths formed of reactance elements, and these It is assumed that the switch is configured by a switch for switching the short-circuit path.
(6)また、必要に応じて、前記途中点と前記放射素子の第1端との間に第3の同調回路を備え、前記第3の同調回路はリアクタンス素子で構成された複数の短絡経路およびこれらの短絡経路を切り替えるスイッチで構成されたものとする。 (6) If necessary, a third tuning circuit is provided between the intermediate point and the first end of the radiating element, and the third tuning circuit includes a plurality of short-circuit paths formed of reactance elements. And a switch for switching these short-circuit paths.
(7)前記放射素子および前記第1の同調回路の一部は誘電体基体上に形成された導体パターンで構成されていることが好ましい。 (7) It is preferable that a part of the radiating element and the first tuning circuit is composed of a conductor pattern formed on a dielectric substrate.
(8)前記放射素子および前記第1の同調回路の一部はフレキシブル基板上に形成された導体パターンで構成されていることが好ましい。 (8) It is preferable that a part of the radiating element and the first tuning circuit is composed of a conductor pattern formed on a flexible substrate.
(9)また、前記フレキシブル基板は誘電体基体上に沿って配置されていることが好ましい。 (9) Moreover, it is preferable that the said flexible substrate is arrange | positioned along a dielectric substrate.
 本発明によれば、同調回路の複数の短絡経路を切り替えることで、広帯域に亘る周波数調整が可能となる。また同調回路に非線形素子を用いないので、非線形素子による歪に起因する特性劣化も生じない。 According to the present invention, it is possible to adjust the frequency over a wide band by switching a plurality of short-circuit paths of the tuning circuit. In addition, since no nonlinear element is used in the tuning circuit, characteristic deterioration due to distortion due to the nonlinear element does not occur.
図1は特許文献1に示されているアンテナ装置の斜視図である。FIG. 1 is a perspective view of the antenna device disclosed in Patent Document 1. FIG. 図2は第1の実施形態のアンテナ装置の回路図である。FIG. 2 is a circuit diagram of the antenna device of the first embodiment. 図3は図2に示されている第1の同調回路31の回路構成例である。FIG. 3 is a circuit configuration example of the first tuning circuit 31 shown in FIG. 図4はアンテナ装置101のリターンロス(S11)の周波数特性を示す図である。FIG. 4 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 101. In FIG. 図5は第2の実施形態のアンテナ装置の回路図である。FIG. 5 is a circuit diagram of the antenna device of the second embodiment. 図6は第3の実施形態のアンテナ装置の回路図である。FIG. 6 is a circuit diagram of the antenna device of the third embodiment. 図7は図6に示されている第1の同調回路31の回路図である。FIG. 7 is a circuit diagram of the first tuning circuit 31 shown in FIG. 図8はアンテナ装置103のリターンロス(S11)の周波数特性を示す図である。FIG. 8 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 103. In FIG. 図9は第4の実施形態のアンテナ装置104の回路図である。FIG. 9 is a circuit diagram of the antenna device 104 according to the fourth embodiment. 図10はアンテナ装置104のリターンロス(S11)の周波数特性を示す図である。FIG. 10 is a diagram illustrating the frequency characteristics of the return loss (S11) of the antenna device 104. In FIG. 図11は第5の実施形態のアンテナ装置105の回路図である。FIG. 11 is a circuit diagram of the antenna device 105 of the fifth embodiment.
《第1の実施形態》
 図2は第1の実施形態のアンテナ装置の回路図である。このアンテナ装置101は、放射素子20、第1の同調回路31および整合回路40を備えている。放射素子20は第1端P1が開放され、放射素子20の第2端P2は整合回路40に(すなわち給電回路側に)接続されている。整合回路40は給電回路接続端FPに接続される給電回路と放射素子20とのインピーダンスを整合させる。この例では直列に接続されたインダクタLsとシャントに接続されたインダクタLpとで構成されている。
<< First Embodiment >>
FIG. 2 is a circuit diagram of the antenna device of the first embodiment. The antenna device 101 includes a radiating element 20, a first tuning circuit 31, and a matching circuit 40. The first end P1 of the radiating element 20 is opened, and the second end P2 of the radiating element 20 is connected to the matching circuit 40 (that is, to the feeding circuit side). The matching circuit 40 matches the impedance between the radiating element 20 and the feeding circuit connected to the feeding circuit connection end FP. In this example, the inductor Ls is connected in series and the inductor Lp is connected to the shunt.
 第1の同調回路31はリアクタンスを切り替えることのできる回路であり、放射素子20の途中点Pmと第2端P2との間に接続されている。この第1の同調回路31はリアクタンス素子で構成された複数の短絡経路およびこれらの短絡経路を切り替えるスイッチで構成されている。この第1の同調回路31は放射素子20の途中点Pmと第2端P2との間をリアクタンス素子を介して接続(短絡)する回路である。 The first tuning circuit 31 is a circuit capable of switching the reactance, and is connected between the midpoint Pm of the radiating element 20 and the second end P2. The first tuning circuit 31 is composed of a plurality of short-circuit paths composed of reactance elements and a switch for switching these short-circuit paths. The first tuning circuit 31 is a circuit that connects (short-circuits) the intermediate point Pm of the radiating element 20 and the second end P2 via a reactance element.
 図3は前記第1の同調回路31の回路構成例である。この第1の同調回路31はリアクタンス素子La,Ca,Cb等とスイッチ311を備えている。スイッチ311が例えばリアクタンス素子Laの接続部(1) を選択すれば、放射素子20の途中点Pmと第2端P2とがリアクタンス素子Laを介して接続(短絡)されることになる。また、スイッチ311が例えば開放端(0) を選択すれば、放射素子20の途中点Pmは第2端P2に対してオープン(非短絡)状態となる。 FIG. 3 is a circuit configuration example of the first tuning circuit 31. The first tuning circuit 31 includes reactance elements La, Ca, Cb and the like and a switch 311. For example, if the switch 311 selects the connection portion (1) of the reactance element La, the intermediate point Pm of the radiating element 20 and the second end P2 are connected (short-circuited) via the reactance element La. Further, when the switch 311 selects, for example, the open end (0), the midpoint Pm of the radiating element 20 is in an open (non-short circuit) state with respect to the second end P2.
 第1の同調回路31がオープンである場合、放射素子20の第2端P2から第1端P1までの部分で(元々の放射素子20で)共振周波数が定まる。第1の同調回路31のスイッチ311がリアクタンス素子Laの接続部(1) を選択している状態では、放射素子20の第2端P2から第1の同調回路31のリアクタンス素子Laを経由して放射素子の第1端P1までの部分で共振周波数が定まる。この共振周波数では放射素子20の第2端P2から途中点Pmまでの経路に電流は殆ど分布しない。 When the first tuning circuit 31 is open, the resonance frequency is determined at the portion from the second end P2 to the first end P1 of the radiating element 20 (with the original radiating element 20). In a state where the switch 311 of the first tuning circuit 31 selects the connection portion (1) の of the reactance element La, the second tuning circuit 31 passes through the reactance element La of the first tuning circuit 31 from the second end P2 of the radiation element 20. The resonance frequency is determined by the portion up to the first end P1 of the radiating element. At this resonance frequency, almost no current is distributed in the path from the second end P2 of the radiating element 20 to the midpoint Pm.
 このように第1の同調回路31は放射素子20に付与される短絡経路として作用し、この短絡経路によって放射素子の物理的な電流経路長を変えることができる。因みに、整合回路40に近い箇所に対して直列にリアクタンス可変回路を挿入して周波数調整を行う構造では直列抵抗成分が生じるので、これが利得劣化の要因となる。また、物理的な電流経路長は変わらないので広帯域に亘る周波数調整が困難である。 Thus, the first tuning circuit 31 acts as a short circuit path provided to the radiating element 20, and the physical current path length of the radiating element can be changed by the short circuit path. Incidentally, in a structure in which a reactance variable circuit is inserted in series with respect to a location close to the matching circuit 40 to adjust the frequency, a series resistance component is generated, which causes a gain deterioration. Further, since the physical current path length does not change, it is difficult to adjust the frequency over a wide band.
 図4はアンテナ装置101のリターンロス(S11)の周波数特性を示す図である。リターンロス特性RL0は、第1の同調回路31がオープンであるときの特性、リターンロス特性RL1は、第1の同調回路31がリアクタンス素子Laを選択しているときの特性、リターンロス特性RLnは第1の同調回路31がリアクタンス素子Cbを選択しているときの特性である。このように、第1の同調回路31内のスイッチ311の切り替えによって、アンテナ装置の共振周波数を広帯域に亘って調整できる。また、可変容量ダイオードのような非線形素子を用いないので、歪みが生じることもない。 FIG. 4 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 101. FIG. The return loss characteristic RL0 is a characteristic when the first tuning circuit 31 is open, the return loss characteristic RL1 is a characteristic when the first tuning circuit 31 selects the reactance element La, and the return loss characteristic RLn is This is a characteristic when the first tuning circuit 31 selects the reactance element Cb. In this way, the resonance frequency of the antenna device can be adjusted over a wide band by switching the switch 311 in the first tuning circuit 31. Further, since a non-linear element such as a variable capacitance diode is not used, distortion does not occur.
《第2の実施形態》
 図5は第2の実施形態のアンテナ装置の回路図である。このアンテナ装置102は、放射素子20、リアクタンス素子L1,L2、第1の同調回路31および整合回路40を備えている。放射素子20の第1端P1は開放されている。放射素子20の第2端P2と途中点Pmとの間に同調回路31が接続されている。放射素子20の第2端P2と途中点Pmとの間にリアクタンス素子L2によるリアクタンス回路が接続されている。放射素子20の第2端P2と整合回路40との間にリアクタンス素子L1によるリアクタンス回路が接続されている。
<< Second Embodiment >>
FIG. 5 is a circuit diagram of the antenna device of the second embodiment. The antenna device 102 includes a radiating element 20, reactance elements L 1 and L 2, a first tuning circuit 31, and a matching circuit 40. The first end P1 of the radiating element 20 is open. A tuning circuit 31 is connected between the second end P2 of the radiating element 20 and the midpoint Pm. A reactance circuit including a reactance element L2 is connected between the second end P2 of the radiating element 20 and the midpoint Pm. A reactance circuit including a reactance element L1 is connected between the second end P2 of the radiating element 20 and the matching circuit 40.
 前記リアクタンス素子L2は放射素子20の第2端P2から途中点Pmまでのインダクタンス成分を増大させる。また、前記リアクタンス素子L1は放射素子20の第2端P2から整合回路40までのインダクタンス成分を増大させる。リアクタンス素子L1のインダクタンス成分により、所定の共振周波数を得るために要する放射素子20の物理長を短くすることができる。また、リアクタンス素子L2のインダクタンス成分により、放射素子20の第2端P2から途中点Pmまでの経路長を短くできる。その分、途中点Pmから第1端P1までの経路すなわち放射に寄与する部分を長くとることができるので小型でありながら高い利得が維持できる。 The reactance element L2 increases the inductance component from the second end P2 of the radiating element 20 to the midpoint Pm. The reactance element L1 increases an inductance component from the second end P2 of the radiating element 20 to the matching circuit 40. The physical length of the radiating element 20 required to obtain a predetermined resonance frequency can be shortened by the inductance component of the reactance element L1. Further, the path length from the second end P2 of the radiating element 20 to the midpoint Pm can be shortened by the inductance component of the reactance element L2. Accordingly, the path from the intermediate point Pm to the first end P1, that is, the part contributing to radiation can be made long, so that a high gain can be maintained while being small.
《第3の実施形態》
 図6は第3の実施形態のアンテナ装置の回路図である。このアンテナ装置103は、放射素子20、リアクタンス素子L1,L2、第1の同調回路31および整合回路40を備えている。放射素子20の第1端P1は開放されている。放射素子20の第2端P2と途中点Pmとの間に同調回路31が接続されている。放射素子20の第2端P2と途中点Pmとの間にリアクタンス素子L2によるリアクタンス回路が接続されている。放射素子20の第2端P2と整合回路40との間にリアクタンス素子L1によるリアクタンス回路が接続されている。
<< Third Embodiment >>
FIG. 6 is a circuit diagram of the antenna device of the third embodiment. The antenna device 103 includes a radiating element 20, reactance elements L 1 and L 2, a first tuning circuit 31, and a matching circuit 40. The first end P1 of the radiating element 20 is open. A tuning circuit 31 is connected between the second end P2 of the radiating element 20 and the midpoint Pm. A reactance circuit including a reactance element L2 is connected between the second end P2 of the radiating element 20 and the midpoint Pm. A reactance circuit including a reactance element L1 is connected between the second end P2 of the radiating element 20 and the matching circuit 40.
 図5に示したアンテナ装置102と異なるのは第1の同調回路31の構成である。図7はこの第1の同調回路31の回路図である。この第1の同調回路31はインダクタとキャパシタが並列接続されたLC並列回路を複数備えている。スイッチ311の接続部(1) にはインダクタLaとキャパシタCaによるLC並列回路が接続されている。また、接続部(2) にはインダクタLbとキャパシタCbによるLC並列回路が接続されている。他の接続部についても同様にLC並列回路が接続されている。スイッチ311が接続部(1) を選択すれば、放射素子20の途中点Pmと第2端P2とがインダクタLaとキャパシタCaによるLC並列回路を介して接続されることになる。また、スイッチ311が接続部(2) を選択すれば、放射素子20の途中点Pmと第2端P2とがインダクタLbとキャパシタCbによるLC並列回路を介して接続されることになる。 The configuration of the first tuning circuit 31 is different from the antenna device 102 shown in FIG. FIG. 7 is a circuit diagram of the first tuning circuit 31. The first tuning circuit 31 includes a plurality of LC parallel circuits in which inductors and capacitors are connected in parallel. An LC parallel circuit including an inductor La and a capacitor Ca is connected to the connection portion (1) of the switch 311. Further, an LC parallel circuit including an inductor Lb and a capacitor Cb is connected to the connection portion (2). The LC parallel circuit is similarly connected to the other connection portions. If the switch 311 selects the connection portion (1), the intermediate point Pm of the radiating element 20 and the second end P2 are connected via an LC parallel circuit including an inductor La and a capacitor Ca. If the switch 311 selects the connection portion (2), the intermediate point Pm of the radiating element 20 and the second end P2 are connected via an LC parallel circuit including the inductor Lb and the capacitor Cb.
 図8はアンテナ装置103のリターンロス(S11)の周波数特性を示す図である。リターンロス特性RL11およびRL12は、第1の同調回路31のスイッチ311が接続部(1) を選択しているときの特性、リターンロス特性RL21およびRL22は、スイッチ311が接続部(2) を選択しているときの特性である。同様に、リターンロス特性RLn1およびRLn2は、スイッチ311が接続部(n) を選択しているときの特性である。 FIG. 8 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 103. FIG. The return loss characteristics RL11 and RL12 are characteristics when the switch 311 of the first tuning circuit 31 is selecting the connection (1), and the return loss characteristics RL21 and RL22 are the switch 311 selecting the connection (2) It is a characteristic when doing. Similarly, return loss characteristics RLn1 and RLn2 are characteristics when the switch 311 selects the connection (n).
 このように、放射素子20の電流経路の一部にLC並列回路を挿入することにより、誘導性と容量性の共振周波数を得ることができる。すなわち、LC並列回路のうち主にインダクタを通る経路での共振周波数と、主にキャパシタを通る経路での共振周波数の二つの共振周波数で共振することになる。そして、インダクタンス値とキャパシタンス値の異なるLC並列回路をスイッチで切り替えることで、前記2つの共振周波数の対を切り替えることができ、アンテナ装置の共振周波数を広帯域に亘って調整できる。 Thus, inductive and capacitive resonance frequencies can be obtained by inserting an LC parallel circuit into a part of the current path of the radiating element 20. That is, resonance occurs at two resonance frequencies, that is, a resonance frequency mainly in the path passing through the inductor in the LC parallel circuit and a resonance frequency mainly in the path passing through the capacitor. Then, by switching LC parallel circuits having different inductance values and capacitance values with a switch, the pair of the two resonance frequencies can be switched, and the resonance frequency of the antenna device can be adjusted over a wide band.
《第4の実施形態》
 図9は第4の実施形態のアンテナ装置104の回路図である。このアンテナ装置104は、放射素子20、リアクタンス素子L1,L2、第1の同調回路31、第2の同調回路32および整合回路40を備えている。放射素子20の第1端P1は開放されている。放射素子20の第2端P2と途中点Pmとの間に同調回路31が接続されている。放射素子20の第2端P2と途中点Pmとの間にリアクタンス素子L2によるリアクタンス回路が接続されている。整合回路40と放射素子20の第2端P2との間に、リアクタンス素子L1によるリアクタンス回路および第2の同調回路32が接続されている。
<< Fourth Embodiment >>
FIG. 9 is a circuit diagram of the antenna device 104 according to the fourth embodiment. The antenna device 104 includes a radiating element 20, reactance elements L 1 and L 2, a first tuning circuit 31, a second tuning circuit 32, and a matching circuit 40. The first end P1 of the radiating element 20 is open. A tuning circuit 31 is connected between the second end P2 of the radiating element 20 and the midpoint Pm. A reactance circuit including a reactance element L2 is connected between the second end P2 of the radiating element 20 and the midpoint Pm. Between the matching circuit 40 and the second end P2 of the radiating element 20, the reactance circuit by the reactance element L1 and the second tuning circuit 32 are connected.
 第2の同調回路32は図3に示した第1の同調回路と同様に、複数のリアクタンス素子とそれらを切り替えるスイッチとで構成されている。このアンテナ装置104は第1の同調回路31のスイッチの切り替えと第2の同調回路32のスイッチの切り替えとの組み合わせによって共振周波数の調整がなされる。第1の同調回路31のリアクタンス変化当たりの共振周波数のシフト量は第2の同調回路32のリアクタンス変化当たりの共振周波数のシフト量より大きい。したがって、共振周波数は第1の同調回路31で粗調整し、第2の同調回路32で微調整するように、それぞれの同調回路で切り替えるリアクタンスの値を定めればよい。 As with the first tuning circuit shown in FIG. 3, the second tuning circuit 32 includes a plurality of reactance elements and a switch for switching them. In the antenna device 104, the resonance frequency is adjusted by a combination of switching of the switch of the first tuning circuit 31 and switching of the switch of the second tuning circuit 32. The shift amount of the resonance frequency per reactance change of the first tuning circuit 31 is larger than the shift amount of the resonance frequency per reactance change of the second tuning circuit 32. Therefore, the reactance value to be switched by each tuning circuit may be determined so that the resonance frequency is coarsely adjusted by the first tuning circuit 31 and finely adjusted by the second tuning circuit 32.
 図10はアンテナ装置104のリターンロス(S11)の周波数特性を示す図である。リターンロス特性RL11およびRL12は、第1の同調回路31のスイッチ311が接続部(1) を選択しているときの特性、リターンロス特性RL21およびRL22は、スイッチ311が接続部(2) を選択しているときの特性である。同様に、リターンロス特性RLn1およびRLn2は、スイッチ311が接続部(n) を選択しているときの特性である。そして、リターンロス特性RL11,RL21,RLn1は第2の同調回路32のスイッチが第1の接続部を選択しているときの特性、リターンロス特性RL12,RL22,RLn2は第2の同調回路32のスイッチが第2の接続部を選択しているときの特性である。 FIG. 10 is a diagram showing the frequency characteristics of the return loss (S11) of the antenna device 104. FIG. The return loss characteristics RL11 and RL12 are characteristics when the switch 311 of the first tuning circuit 31 is selecting the connection (1), and the return loss characteristics RL21 and RL22 are the switch 311 selecting the connection (2) It is a characteristic when doing. Similarly, return loss characteristics RLn1 and RLn2 are characteristics when the switch 311 selects the connection (n). The return loss characteristics RL11, RL21, and RLn1 are characteristics when the switch of the second tuning circuit 32 selects the first connection portion, and the return loss characteristics RL12, RL22, and RLn2 are the characteristics of the second tuning circuit 32. This is a characteristic when the switch selects the second connection portion.
 このように二つの同調回路31,32を用いることによって、アンテナ装置の共振周波数を広帯域に亘り、且つ細かく調整できる。 Thus, by using the two tuning circuits 31 and 32, the resonance frequency of the antenna device can be finely adjusted over a wide band.
《第5の実施形態》
 図11は第5の実施形態のアンテナ装置105の回路図である。このアンテナ装置105は、放射素子20、リアクタンス素子L1,L2、第1の同調回路31、第3の同調回路33および整合回路40を備えている。放射素子20の第1端P1は開放されている。放射素子20の第2端P2と途中点Pmとの間に同調回路31が接続されている。放射素子20の第1端P1と途中点Pmとの間に第3の同調回路33が接続されている。
<< Fifth Embodiment >>
FIG. 11 is a circuit diagram of the antenna device 105 of the fifth embodiment. The antenna device 105 includes a radiating element 20, reactance elements L 1 and L 2, a first tuning circuit 31, a third tuning circuit 33, and a matching circuit 40. The first end P1 of the radiating element 20 is open. A tuning circuit 31 is connected between the second end P2 of the radiating element 20 and the midpoint Pm. A third tuning circuit 33 is connected between the first end P1 of the radiating element 20 and the midpoint Pm.
 第3の同調回路33は図3に示した第1の同調回路と同様に、複数のリアクタンス素子とそれらを切り替えるスイッチとで構成されている。このアンテナ装置105は第1の同調回路31のスイッチの切り替えと第3の同調回路33のスイッチの切り替えとの組み合わせによって共振周波数の調整がなされる。第1の同調回路31のリアクタンス変化当たりの共振周波数のシフト量は第3の同調回路33のリアクタンス変化当たりの共振周波数のシフト量より大きい。したがって、第4の実施形態の場合と同様に、共振周波数は第1の同調回路31で粗調整し、第3の同調回路33で微調整するように、それぞれの同調回路で切り替えるリアクタンスの値を定めればよい。 As with the first tuning circuit shown in FIG. 3, the third tuning circuit 33 includes a plurality of reactance elements and a switch for switching them. In the antenna device 105, the resonance frequency is adjusted by a combination of switching of the switch of the first tuning circuit 31 and switching of the switch of the third tuning circuit 33. The resonance frequency shift amount per reactance change of the first tuning circuit 31 is larger than the resonance frequency shift amount per reactance change of the third tuning circuit 33. Therefore, as in the case of the fourth embodiment, the resonance frequency is roughly adjusted by the first tuning circuit 31 and finely adjusted by the third tuning circuit 33. You just have to decide.
《第6の実施形態》
 第1~第5の実施形態では、アンテナ装置の回路と特性について示したが、構造上は幾つかの形態をとることができる。例えば放射素子20および第1の同調回路31の一部はブロック状または板状の誘電体基体上に導体パターンで構成する。また、放射素子20および第1の同調回路31の一部はフレキシブル基板上に導体パターンで構成する。さらには、放射素子20は誘電体基体上に導体パターンで構成し、第1の同調回路31の一部はフレキシブル基板上に導体パターンで構成し、このフレキシブル基板は誘電体基体上に沿って配置してもよい。また、放射素子20および同調回路31の一部をフレキシブル基板上に導体パターンで構成し、このフレキシブル基板を誘電体基体上に沿って配置してもよい。第2の同調回路32や第3の同調回路33についても同様であり、誘電体基体上やフレキシブル基板上に形成すればよい。また、第1~第3の同調回路のリアクタンス素子は誘電体基体上やフレキシブル基板上に導体パターンで構成することができるが、必要に応じてチップ部品を搭載してもよい。
<< Sixth Embodiment >>
In the first to fifth embodiments, the circuit and characteristics of the antenna device have been described, but some forms can be taken in terms of structure. For example, the radiating element 20 and a part of the first tuning circuit 31 are configured by a conductor pattern on a block-like or plate-like dielectric substrate. Further, a part of the radiating element 20 and the first tuning circuit 31 is formed of a conductor pattern on a flexible substrate. Furthermore, the radiating element 20 is configured by a conductor pattern on a dielectric substrate, and a part of the first tuning circuit 31 is configured by a conductor pattern on a flexible substrate, and the flexible substrate is disposed along the dielectric substrate. May be. Alternatively, a part of the radiating element 20 and the tuning circuit 31 may be configured as a conductor pattern on a flexible substrate, and the flexible substrate may be disposed along the dielectric substrate. The same applies to the second tuning circuit 32 and the third tuning circuit 33, which may be formed on a dielectric substrate or a flexible substrate. The reactance elements of the first to third tuning circuits can be configured with a conductor pattern on a dielectric substrate or a flexible substrate, but a chip component may be mounted as necessary.
FP…給電回路接続端
L1…リアクタンス素子
L2…リアクタンス素子
La,Ca,Cb…リアクタンス素子
P1…第1端
P2…第2端
Pm…途中点
20…放射素子
31…第1の同調回路
32…第2の同調回路
33…第3の同調回路
40…整合回路
101~105…アンテナ装置
311…スイッチ
FP ... feed circuit connection end L1 ... reactance element L2 ... reactance elements La, Ca, Cb ... reactance element P1 ... first end P2 ... second end Pm ... midpoint 20 ... radiation element 31 ... first tuning circuit 32 ... first 2 tuning circuit 33 ... third tuning circuit 40 ... matching circuits 101 to 105 ... antenna device 311 ... switch

Claims (9)

  1.  第1端が開放され、第2端が給電回路側に接続された放射素子と、
     前記放射素子の第1端から第2端までの途中点と前記給電回路との間に接続される第1の同調回路と、を備え、
     前記同調回路はリアクタンス素子で構成された複数の短絡経路およびこれらの短絡経路を切り替えるスイッチで構成されたことを特徴とするアンテナ装置。
    A radiating element having a first end opened and a second end connected to the feeder circuit;
    A first tuning circuit connected between an intermediate point from the first end to the second end of the radiating element and the feeder circuit;
    2. The antenna device according to claim 1, wherein the tuning circuit includes a plurality of short-circuit paths configured by reactance elements and a switch for switching the short-circuit paths.
  2.  前記放射素子の第2端と前記途中点との間にリアクタンス素子を含むリアクタンス回路を備えた、請求項1に記載のアンテナ装置。 The antenna device according to claim 1, further comprising a reactance circuit including a reactance element between a second end of the radiating element and the midpoint.
  3.  前記放射素子の第2端と前記給電回路との間にリアクタンス素子を含むリアクタンス回路を備えた、請求項1または2に記載のアンテナ装置。 The antenna device according to claim 1 or 2, further comprising a reactance circuit including a reactance element between a second end of the radiating element and the feeding circuit.
  4.  前記複数の短絡経路はインダクタまたはキャパシタで構成された回路を含む、請求項1~3のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 3, wherein the plurality of short-circuit paths include a circuit including an inductor or a capacitor.
  5.  前記放射素子の第2端と前記給電回路との間に第2の同調回路を備え、
     前記第2の同調回路はリアクタンス素子で構成された複数の短絡経路およびこれらの短絡経路を切り替えるスイッチで構成された、請求項1~4のいずれかに記載のアンテナ装置。
    A second tuning circuit is provided between the second end of the radiating element and the feeder circuit;
    The antenna device according to any one of claims 1 to 4, wherein the second tuning circuit includes a plurality of short-circuit paths configured by reactance elements and a switch for switching the short-circuit paths.
  6.  前記途中点と前記放射素子の第1端との間に第3の同調回路を備え、
     前記第3の同調回路はリアクタンス素子で構成された複数の短絡経路およびこれらの短絡経路を切り替えるスイッチで構成された、請求項1~4のいずれかに記載のアンテナ装置。
    A third tuning circuit is provided between the intermediate point and the first end of the radiating element;
    The antenna device according to any one of claims 1 to 4, wherein the third tuning circuit includes a plurality of short-circuit paths configured by reactance elements and a switch for switching the short-circuit paths.
  7.  前記放射素子および前記第1の同調回路の一部は誘電体基体上に形成された導体パターンで構成された請求項1~4のいずれかに記載のアンテナ装置。 5. The antenna device according to claim 1, wherein a part of the radiating element and the first tuning circuit is configured by a conductor pattern formed on a dielectric substrate.
  8.  前記放射素子および前記第1の同調回路の一部はフレキシブル基板上に形成された導体パターンで構成された請求項1~4のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 4, wherein a part of the radiating element and the first tuning circuit is configured by a conductor pattern formed on a flexible substrate.
  9.  前記フレキシブル基板は誘電体基体上に沿って配置された、請求項8に記載のアンテナ装置。 The antenna device according to claim 8, wherein the flexible substrate is disposed along a dielectric substrate.
PCT/JP2012/055181 2011-05-19 2012-03-01 Antenna device WO2012157314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011112209 2011-05-19
JP2011-112209 2011-05-19

Publications (1)

Publication Number Publication Date
WO2012157314A1 true WO2012157314A1 (en) 2012-11-22

Family

ID=47176656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055181 WO2012157314A1 (en) 2011-05-19 2012-03-01 Antenna device

Country Status (1)

Country Link
WO (1) WO2012157314A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026199A1 (en) 2013-08-23 2015-02-26 Samsung Electronics Co., Ltd. Electronic device and method of operating the same
CN105474460A (en) * 2013-08-23 2016-04-06 三星电子株式会社 Electronic device and method of operating the same
CN105811079A (en) * 2014-12-31 2016-07-27 联想(北京)有限公司 Antenna device and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114856A (en) * 1998-09-30 2000-04-21 Nec Saitama Ltd Reversed f antenna and radio equipment using the same
JP2004096341A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Antenna apparatus including inverted f antenna with variable resonance frequency
JP2011015034A (en) * 2009-06-30 2011-01-20 Murata Mfg Co Ltd Antenna structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114856A (en) * 1998-09-30 2000-04-21 Nec Saitama Ltd Reversed f antenna and radio equipment using the same
JP2004096341A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Antenna apparatus including inverted f antenna with variable resonance frequency
JP2011015034A (en) * 2009-06-30 2011-01-20 Murata Mfg Co Ltd Antenna structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026199A1 (en) 2013-08-23 2015-02-26 Samsung Electronics Co., Ltd. Electronic device and method of operating the same
CN105474460A (en) * 2013-08-23 2016-04-06 三星电子株式会社 Electronic device and method of operating the same
EP3036792A1 (en) * 2013-08-23 2016-06-29 Samsung Electronics Co., Ltd. Electronic device and method of operating the same
EP3036792A4 (en) * 2013-08-23 2017-04-05 Samsung Electronics Co., Ltd. Electronic device and method of operating the same
US9960489B2 (en) 2013-08-23 2018-05-01 Samsung Electronics Co., Ltd. Electronic device and method of operating the same
CN105474460B (en) * 2013-08-23 2018-08-10 三星电子株式会社 Electronic equipment and its operating method
CN105811079A (en) * 2014-12-31 2016-07-27 联想(北京)有限公司 Antenna device and electronic device
CN105811079B (en) * 2014-12-31 2020-05-26 联想(北京)有限公司 Antenna device and electronic equipment

Similar Documents

Publication Publication Date Title
US10038420B2 (en) Transformer and wireless communication apparatus
JP4508190B2 (en) Antenna and wireless communication device
US8094080B2 (en) Antenna and radio communication apparatus
JP4645922B2 (en) Wireless device having an antenna device suitable for operating over multiple bands
JP4775770B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE
US9190721B2 (en) Antenna device
JP2005150937A (en) Antenna structure and communication apparatus provided with the same
JP5928433B2 (en) High frequency circuit module
JP2012160817A (en) Antenna and wireless communication device
CA2813829A1 (en) A loop antenna for mobile handset and other applications
WO2016114181A1 (en) Transformer-type phase shifter, phase-shift circuit, and communication terminal device
US10283870B2 (en) Tunable antenna
US20100188169A1 (en) Reactance Varying Device
WO2012157314A1 (en) Antenna device
WO2007145114A1 (en) Surface-mounted antenna and antenna device
EP3949017A1 (en) Tuning a magnetic antenna
US9666939B2 (en) Antenna bandwidth expander
JP5838846B2 (en) Impedance conversion element and communication terminal device
EP2091104A1 (en) Antenna device
JP5241599B2 (en) Harmonic termination circuit
WO2014021081A1 (en) Antenna apparatus
JP5305255B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE
JP2005109864A (en) Balun transformer and electronic apparatus using the same
JP2006319451A (en) Antenna system and mobile wireless terminal
JP2007288742A (en) Small wideband antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP