WO2012133338A1 - Solar cell module, method for producing solar cell module, and tab wire - Google Patents

Solar cell module, method for producing solar cell module, and tab wire Download PDF

Info

Publication number
WO2012133338A1
WO2012133338A1 PCT/JP2012/057791 JP2012057791W WO2012133338A1 WO 2012133338 A1 WO2012133338 A1 WO 2012133338A1 JP 2012057791 W JP2012057791 W JP 2012057791W WO 2012133338 A1 WO2012133338 A1 WO 2012133338A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab wire
solar cell
wire
adhesive layer
tab
Prior art date
Application number
PCT/JP2012/057791
Other languages
French (fr)
Japanese (ja)
Inventor
須賀 保博
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Publication of WO2012133338A1 publication Critical patent/WO2012133338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module in which a plurality of solar cells are connected by a tab wire, and particularly to a linear tab wire, a solar cell module using the tab wire, and a method for manufacturing the solar cell module.
  • a plurality of adjacent solar cells are connected by a tab wire serving as an interconnector.
  • One end side of the tab wire is connected to the front surface electrode of one solar battery cell, and the other end side is connected to the back surface electrode of the adjacent solar battery cell, thereby connecting the solar battery cells in series.
  • one surface of the tab wire is bonded to the surface electrode of one solar cell, and the other surface of the other end is bonded to the back electrode of the adjacent solar cell.
  • a bus bar electrode is formed on the light receiving surface by screen printing of silver paste, and an Ag electrode is formed on the back surface connection portion of the solar cell.
  • Al electrodes and Ag electrodes are formed in regions other than the connection portion on the back surface of the solar battery cell.
  • the tab wire 50 is formed by providing solder coat layers 52 on both sides of a ribbon-like copper foil 51.
  • the tab wire is a rectangular copper wire having a width of 1 to 3 mm obtained by slitting a copper foil rolled to a thickness of about 0.05 to 0.2 mm or rolling a copper wire into a flat plate shape. It is formed by performing solder plating, dip soldering, or the like.
  • connection between the solar battery cell and the tab wire is performed by disposing the tab wire on each electrode of the solar battery cell and applying heat and pressure with a heating bonder to melt and cool the solder formed on the tab wire surface ( Patent Document 1).
  • a conductive adhesive film that can be connected by thermocompression treatment at a relatively low temperature is used to connect the front and back electrodes of the solar battery cell and the tab wire (Patent Document 2).
  • a conductive adhesive film a film obtained by dispersing spherical or scaly conductive particles having an average particle size on the order of several ⁇ m in a thermosetting binder resin composition is used.
  • the conductive adhesive film is interposed between the front electrode and the back electrode and the tab wire, and then thermally pressed by a heating bonder from above the tab wire, so that the binder resin exhibits fluidity and the electrode and tab. While flowing out from between the wires, the conductive particles conduct between the electrode and the tab wire, and in this state, the binder resin is thermally cured. Thereby, the string by which the several photovoltaic cell was connected in series by the tab wire is formed.
  • a plurality of solar cells in which the tab wire and the front and back electrodes are connected using a conductive adhesive film are made of a surface protective material having translucency such as glass and translucent plastic, and PET (Poly Ethylene Terephthalate) ) And the like, and a back protective material made of a film such as ethylene vinyl acetate resin (EVA).
  • a surface protective material having translucency such as glass and translucent plastic, and PET (Poly Ethylene Terephthalate)
  • EVA ethylene vinyl acetate resin
  • the tab wire needs to be formed into a flat copper wire by slitting a copper foil rolled to a thickness of about 0.05 to 0.2 mm or rolling a copper wire into a flat plate shape. And manufacturing man-hours increase.
  • the tab wire made of a rectangular conductor has a width of about 2 to 3 mm, and when this is adhered to the light receiving surface of the solar battery cell, a shadow loss corresponding to the width of the tab wire occurs.
  • an object of the present invention is to provide a tab wire that can be easily manufactured and can reduce shadow loss, a solar cell using the tab wire, and a method for manufacturing a solar cell module.
  • the solar cell module according to the present invention is bonded to a plurality of solar cells and electrodes formed on the surface of the solar cell and the back surface of the adjacent solar cell, A plurality of tab wires connecting the plurality of solar cells, and the tab wires are linearly bonded to the electrodes by an adhesive layer covering an outer peripheral surface including an adhesive portion with the electrodes. It is.
  • the manufacturing method of the solar cell module which concerns on this invention uses a linear tab wire, arrange
  • the step of arranging the other end side of the tab wire on the back electrode, and the pressure bonding of the tab wire to the surface electrode and the back electrode, and flowing between the surface electrode and the back electrode and the tab wire A step of adhering the tab wire to the front electrode and the back electrode by an agent layer.
  • the tab wire according to the present invention is bonded to the electrodes formed on the front surface of the solar battery cell and the back surface of the adjacent solar battery cell, and the tab wire connecting the plurality of solar battery cells is linear.
  • the longitudinal direction at least 50% of the outer peripheral surface is covered with the adhesive layer, and is bonded to the electrode by the adhesive layer.
  • a linear tab wire by using a linear tab wire, a step of forming and slitting a rolled copper foil and a step of rolling a copper wire into a flat plate shape are not required, and it is possible to reduce manufacturing equipment and man-hours. In addition, the manufacturing cost can be reduced. Further, according to the present invention, by using a linear tab wire, the area placed on the light receiving surface of the solar battery cell can be reduced as compared with the case where a flat tab wire is used. And reduction in photoelectric conversion efficiency due to shadow loss can be suppressed.
  • FIG. 1 is an exploded perspective view showing a solar cell module.
  • FIG. 2 is a cross-sectional view showing strings of solar cells.
  • FIG. 3 is a plan view showing a back electrode and a connection part of the solar battery cell.
  • FIG. 4 is a cross-sectional view showing a bonding state of tab wires.
  • FIG. 5 is a diagram for explaining a cross-sectional dimension of the wire.
  • 6A and 6B are diagrams showing a tab wire in which a wire is covered with an adhesive layer in advance, FIG. 6A is a sectional view, and FIG. 6B is a perspective view.
  • FIG. 7 is a cross-sectional view showing a conductive adhesive film.
  • FIG. 8 is a diagram showing a conductive adhesive film wound in a reel shape.
  • FIG. 9 is a perspective view showing an embodiment.
  • FIG. 10 is a perspective view showing a comparative example.
  • FIG. 11 is a perspective view showing a conventional tab line.
  • a solar cell module 1 to which the present invention is applied has a string 4 in which a plurality of solar cells 2 are connected in series by a tab wire 3 serving as an interconnector.
  • a matrix 5 in which a plurality of 4 are arranged is provided.
  • the solar cell module 1 is laminated together with the front cover 7 provided on the light receiving surface side and the back sheet 8 provided on the back surface side, with the matrix 5 sandwiched between the sealing adhesive sheets 6.
  • a metal frame 9 such as aluminum is attached to the periphery.
  • sealing adhesive for example, a translucent sealing material such as ethylene vinyl acetate resin (EVA) is used.
  • EVA ethylene vinyl acetate resin
  • surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
  • back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
  • Each solar battery cell 2 of the solar battery module has a photoelectric conversion element 10.
  • the photoelectric conversion element 10 includes a single crystal silicon photoelectric conversion element, a crystalline silicon solar cell using a polycrystalline photoelectric conversion element, a cell made of amorphous silicon and a cell made of microcrystalline silicon or amorphous silicon germanium.
  • Various photoelectric conversion elements 10 such as a thin film silicon solar cell using a photoelectric conversion element, a so-called compound thin film type, an organic type, and a quantum dot type can be used.
  • the photoelectric conversion element 10 is provided with a finger electrode 12 for collecting electricity generated inside and a bus bar electrode 11 for collecting electricity of the finger electrode 12 on the light receiving surface side.
  • the bus bar electrode 11 and the finger electrode 12 are formed by baking after the Ag paste is applied to the surface to be the light receiving surface of the solar battery cell 2 by screen printing or the like.
  • the finger electrode 12 has a plurality of lines having a width of about 50 to 200 ⁇ m, for example, approximately parallel to each other at a predetermined interval, for example, every 2 mm, over the entire light receiving surface.
  • the bus bar electrodes 11 are formed so as to be substantially orthogonal to the finger electrodes 12, and a plurality of bus bar electrodes 11 are formed according to the area of the solar battery cell 2.
  • the photoelectric conversion element 10 is provided with a back electrode 13 made of aluminum or silver on the back side opposite to the light receiving surface.
  • the back electrode 13 is formed of an electrode made of aluminum or silver on the back surface of the solar battery cell 2 by, for example, screen printing or sputtering.
  • the back electrode 13 has a tab line connecting portion 14 to which a tab line 3 described later is connected.
  • the solar battery cell 2 is electrically connected to each bus bar electrode 11 formed on the surface by the tab wire 3 and the back electrode 13 of the adjacent solar battery cell 2, thereby connecting the strings connected in series. 4 is configured.
  • the tab wire 3 and the bus bar electrode 11 and the back electrode 13 are connected by an adhesive layer 16 provided on the outer peripheral surface of the tab wire 3.
  • the tab wire 3 electrically connects each of the adjacent solar cells 2X, 2Y, 2Z.
  • a 2.0 m wire 15 is provided, and an adhesive layer 16 is provided on the outer peripheral surface of the wire 15 for bonding to the bus bar electrode 11 and the back electrode 13 of the solar battery cell 2.
  • the wire 15 is made of a linear conductive material, and for example, a conductive material such as a copper wire, a gold wire, or an aluminum wire is used.
  • the solar cell module 1 uses the wire 15 which consists of a linear conductive wire as the tab wire 3, and the process of forming and slitting rolled copper foil and the process of rolling a copper wire into flat form become unnecessary. Therefore, it is possible to reduce manufacturing equipment and man-hours, and to reduce manufacturing costs.
  • the solar cell module 1 uses the wire 15 as the tab wire 3, thereby narrowing the area placed on the light receiving surface of the solar cell 2 as compared with the case where a flat tab wire is used. And reduction in photoelectric conversion efficiency due to shadow loss can be suppressed.
  • the wire 15 has a cross-sectional area in the range of 0.5 to 13.0 mm 2 . This is because the solar cell module 1 is for electrically connecting the solar cells 2 via the tab wires 3, so that if the cross-sectional area of the wire 15 is smaller than 0.5 mm 2 , the conduction of the tab wires 3 is achieved. This is because the resistance increases and the photoelectric conversion efficiency may be reduced. Moreover, since the tab wire 3 is adhered to the light receiving surface of the solar battery cell 2 in the solar cell module 1, if the cross-sectional area of the wire 15 is larger than 13.0 mm 2 , the shadow loss due to the tab wire 3 is greatly affected. This is because there is a possibility of becoming.
  • the wire 15 may have a circular or elliptical cross section.
  • the wire 15 has an x-axis (major axis) radius of b and y-axis (minor axis) a of orthogonal coordinates passing through the center of a circle (ellipse) constituting the cross section.
  • the following relationship is satisfied. 0.4 ⁇ a ⁇ 2 (Unit: mm) a ⁇ b ⁇ 2 (unit: mm)
  • the tab wire 3 satisfies the above-described range of the cross-sectional area, and can suppress the increase in conduction resistance and the influence of shadow loss.
  • the adhesive layer 16 covers the outer peripheral surface of the wire 15 to adhere the tab wire 3 to the bus bar electrode 11 and the back electrode 13 of the solar battery cell 2.
  • the adhesive layer 16 may be formed in a paste shape and may cover the outer peripheral surface of the wire 15 of the tab wire 3 in advance, or may be formed in a film shape, and the solar battery cell 2.
  • the tab wire 3 is bonded to each of the electrodes 11 and 13, the outer periphery of the wire 15 is placed on the electrodes 11 and 13 and the wire 15 is placed on the adhesive film and then heated and pressed by the heating bonder 20.
  • the surface may be coated (FIG. 4).
  • curing the adhesive layer 16 at a lamination process can also be used.
  • the adhesive layer 16 is a thermosetting binder resin layer containing conductive particles 23 at a high density.
  • the adhesive layer 16 preferably has a minimum melt viscosity of 100 to 100,000 Pa ⁇ s from the viewpoint of indentability. If the minimum melt viscosity of the adhesive layer 16 is too low, the resin will flow during the process of low pressure bonding to main curing, and connection failure or protrusion to the cell light receiving surface is likely to occur, causing a decrease in the light receiving rate. Moreover, even if the minimum melt viscosity is too high, defects are likely to occur when the film is adhered, and the connection reliability may be adversely affected.
  • the minimum melt viscosity can be measured while a sample is loaded in a predetermined amount of rotational viscometer and raised at a predetermined temperature increase rate.
  • the conductive particles 23 used for the adhesive layer 16 are not particularly limited.
  • metal particles such as nickel, gold, silver, and copper, resin particles that are plated with gold, and resin particles that are plated with gold. Examples thereof include those in which the outermost layer of the applied particles is provided with an insulating coating.
  • the number of the conductive particles 23 that overlap each other can be increased, and good conduction reliability can be ensured.
  • the adhesive layer 16 preferably has a viscosity of about 10 to 10000 kPa ⁇ s at room temperature, more preferably 10 to 5000 kPa ⁇ s.
  • the adhesive layer 16 has a viscosity in the range of 10 to 10,000 kPa ⁇ s, when the adhesive layer 16 is wound in a tape-like reel, so-called protrusion can be prevented and a predetermined tack force can be obtained. Can be maintained.
  • composition of the binder resin layer of the adhesive layer 16 is not particularly limited as long as it does not impair the above-described characteristics, but more preferably a film-forming resin, a liquid epoxy resin, a latent curing agent, and a silane coupling. Containing the agent.
  • the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used.
  • a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
  • the liquid epoxy resin is not particularly limited as long as it has fluidity at room temperature, and all commercially available epoxy resins can be used.
  • Specific examples of such epoxy resins include naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, phenol aralkyl type epoxy resins.
  • Resins, naphthol type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and the like can be used. These may be used alone or in combination of two or more. Moreover, you may use it combining suitably with other organic resins, such as an acrylic resin.
  • the latent curing agent various curing agents such as a heat curing type and a UV curing type can be used.
  • the latent curing agent does not normally react but is activated by some trigger and starts the reaction.
  • the trigger includes heat, light, pressurization, etc., and can be selected and used depending on the application.
  • a latent curing agent composed of imidazoles, amines, sulfonium salts, onium salts and the like can be used.
  • silane coupling agent epoxy, amino, mercapto sulfide, ureido, etc. can be used.
  • an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved.
  • an inorganic filler as another additive composition.
  • an inorganic filler silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited.
  • FIG. 8 is a diagram schematically showing an example of the product form of the adhesive layer 16.
  • the adhesive layer 16 is formed in a tape shape by laminating a binder resin layer on a release substrate 24. This tape-like conductive adhesive film is wound and laminated on the reel 25 so that the peeling substrate 24 is on the outer peripheral side.
  • the release substrate 24 is not particularly limited, and PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), or the like can be used.
  • the adhesive layer 16 may have a transparent cover film on the binder resin layer.
  • the conductive adhesive film having a film shape has been described as the adhesive layer 16, but there is no problem even if it is in a paste form.
  • the adhesive layer 16 may be an insulating adhesive that does not contain conductive particles in the binder resin layer.
  • the tab wire 3 is bonded by the wire 15 being in direct contact with the bus bar electrode 11 and the back surface electrode 13 to achieve conduction, and the adhesive layer 16 is sealed by sealing the periphery thereof.
  • a film-like or paste-like conductive adhesive containing the conductive particles 23 and a film-like or paste-like insulating adhesive not containing the conductive particles 23 are defined as “adhesive layer 16”.
  • the adhesive layer 16 is not limited to a reel shape, and may be a strip shape. As shown in FIG. 8, when the adhesive layer 16 is provided as a reel product wound, the adhesive layer 16 is prevented from being deformed by setting the viscosity of the adhesive layer 16 in the range of 10 to 10,000 kPa ⁇ s. And a predetermined dimension can be maintained. Similarly, when two or more adhesive layers 16 are stacked in a strip shape, deformation can be prevented and a predetermined dimension can be maintained.
  • Such an adhesive layer 16 dissolves the conductive particles 23, the film-forming resin, the liquid epoxy resin, the latent curing agent, and the silane coupling agent in a solvent.
  • a solvent toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
  • the solution for resin production obtained by dissolving is applied to the wire 15 and then dried to volatilize the solvent, thereby obtaining the tab wire 3 in which the adhesive layer 16 is previously provided on the outer peripheral surface of the wire 15. .
  • the tab wire 3 is bonded to each electrode 11, 13, the tab wire 3 is disposed on the bus bar electrode 11 and the tab wire connecting portion 14 of the back electrode 13, and a predetermined amount is applied from above the tab wire 3 by a heating bonder Heat-pressed with temperature and pressure.
  • the tab wire 3 is cured between the adhesive portions where the binder resin of the adhesive layer 16 flows on the outer peripheral surface of the wire 15 and contacts the electrodes 11 and 13, and the conductive particles 23 are connected to the tab wire 3. It is sandwiched between the bus bar electrode 11 and the back electrode 13.
  • the adhesive layer 16 can adhere the tab wire 3 onto each electrode and can be conductively connected.
  • the adhesive layer 16 is formed into a film, an adhesive film is obtained by applying a solution for resin production obtained by dissolution onto a release sheet and volatilizing the solvent.
  • the adhesive film is cut to a predetermined length for the bus bar electrode and the back electrode, and after the release sheet is peeled off, the adhesive layer 16 is temporarily attached onto the electrodes 11 and 13 on the front and back surfaces of the solar battery cell 2. Is done.
  • the wire 15 cut to a predetermined length is disposed on the adhesive layer 16 in an overlapping manner. Thereafter, the adhesive layer 16 is heat-pressed from above the tab wire 3 with a heating bonder at a predetermined temperature and pressure.
  • the tab wire 3 is cured after the binder resin flows and covers the outer peripheral surface including the adhesive portions that come into contact with the electrodes 11 and 13 of the wire 15, so that the conductive particles 23 become the tab wire 3 and the bus bar electrode. 11 and the back electrode 13.
  • the adhesive layer 16 can adhere the tab wire 3 onto each electrode and can be conductively connected.
  • the adhesive layer 16 covers at least 50% of the outer peripheral surface of the wire 15 and preferably covers 50 to 80%. This is because if the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16 is lower than 50%, the amount necessary for bonding the wire 15 and the electrodes 11 and 13 cannot be secured, and the adhesive strength may be insufficient. Because there is. Further, if the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16 is about 80%, it is sufficient to ensure the adhesive strength. However, if the coverage is higher than 90%, the binder resin is not heated when the wire 15 is hot-pressed. This is because the light receiving efficiency may be reduced by protruding from the bus bar electrode 11 onto the light receiving surface of the solar battery cell 2.
  • the tab wire 3 in which the adhesive layer 16 is provided on the outer peripheral surface of the wire 15 in advance is covered by the adhesive layer 16 out of the surface area of the wire 15. It is determined by the ratio between the area and the area where the wire 15 is exposed.
  • the coverage of the wire 15 of the film-like adhesive layer 16 disposed on each electrode 11, 13 is covered by the adhesive layer 16 out of the surface area of the wire 15 when the wire 15 is heated and pressurized. It is determined by the ratio of the area where the wire 15 is exposed and the area where the wire 15 is exposed.
  • the solar battery cell 2 having the bus bar electrode 11 is described as an example, but the present invention does not have the bus bar electrode 11 and directly bonds the tab wire 3 onto the finger electrode 12.
  • the so-called bus bar-less solar cell 2 can be applied.
  • the bus bar-less structure includes, for example, a structure having an intermittent portion where the bus bar electrode 11 is not provided in the central portion of the solar battery cell 2 and partially including the bus bar electrode 11 only at the outer edge portion of the solar battery cell.
  • FIG. 9 is a perspective view illustrating an embodiment
  • FIG. 10 is a perspective view illustrating a comparative example.
  • a tab wire having a length of 5 cm previously covered with the adhesive layer 16 was used, and each tab wire was applied to the Ag electrode 30 of the glass substrate 31 having the entire surface formed with the Ag electrode 30. Bonded by hot pressing one by one. The hot pressing conditions were all 180 ° C., 15 sec, and 0.5 MPa.
  • the adhesive strength is a 90 ° peel test in which each tab wire is peeled in 90 ° direction from the adhesive layer 16 bonded to the Ag electrode 30 (JIS K6854-1).
  • the adhesive strength (N / mm) was measured.
  • the resistance value (m ⁇ ) was measured by a four-terminal method in which a current terminal and a voltage terminal were connected to each other from two tab wires.
  • Example 1 a cylindrical copper wire was used as the wire 15.
  • the cross-section of the wire 15 is a circle with a radius of 1.0 mm and a cross-sectional area of 3.14 mm 2 .
  • the outer peripheral surface of the wire 15 was coat
  • the adhesive layer 16 has a thickness of 10 ⁇ m.
  • Example 2 was the same as Example 1 except that the coverage of the adhesive layer 16 was 60%.
  • Example 3 was the same as Example 1 except that the coverage of the adhesive layer 16 was 80%.
  • Example 4 was the same as Example 1 except that the coverage of the adhesive layer 16 was 90%.
  • Example 5 the cross section of the wire 15 is a circle having a radius of 0.45 mm, the cross-sectional area is 0.64 mm 2 , and the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16 is 80%.
  • the conditions were the same as in Example 1.
  • Example 6 the cross section of the wire 15 is a circle having a radius of 2.00 mm, the cross-sectional area is 12.56 mm 2 , and the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16 is 80%.
  • the conditions were the same as in Example 1.
  • Example 7 a copper wire having an elliptical cross section was used as the wire 15.
  • the cross section of the wire 15 is an ellipse having a major axis b of 0.70 mm and a minor axis a of 0.60 mm, and a sectional area of 1.32 mm 2 .
  • the outer peripheral surface of the wire 15 was coat
  • the adhesive layer 16 has a thickness of 10 ⁇ m.
  • Example 8 was the same as Example 1 except that the outer peripheral surface of the wire 15 was covered with an adhesive layer 16 containing no conductive particles, and the coverage was 80%.
  • Comparative Example 1 a rectangular copper foil was used.
  • the copper foil has a width of 2 mm, a thickness of 50 ⁇ m, and a cross-sectional area of 1.26 mm 2 .
  • both surfaces of the copper foil were covered with an adhesive layer 16 containing conductive particles.
  • the adhesive layer 16 has a thickness of 20 ⁇ m.
  • the adhesive layer 16 was prepared by blending an epoxy resin, a latent curing agent, and an organic solvent (toluene) for diluting them.
  • nickel particles of 2 to 5 ⁇ m were further blended so as to have a weight ratio of 5% t.
  • this adhesive solution was applied and dried so as to cover the outer peripheral surface of the wire 15 by 50 to 90%.
  • Comparative Example 1 the adhesive solution was applied onto a copper foil having a thickness of 50 ⁇ m and dried, and then cut into a width of 2 mm and a length of 5 cm.
  • Table 1 shows the measurement results.
  • the adhesive strength was 0.6 to 2.0 N / mm regardless of pressing at a low pressure such as 0.5 MPa, which can withstand practical use. It can be seen that it is.
  • the initial conduction resistance value was 5 to 10 m ⁇ , and it was 8 to 13 m ⁇ even after the thermal shock test.
  • the adhesive strength was as good as 1.6 N / mm, but the initial conduction resistance was as high as 50 m ⁇ , and the resistance value could be detected due to poor conduction after the thermal shock test. There wasn't.
  • 1 solar cell module 1 solar cell module, 2 solar cell, 3 tab wire, 4 strings, 5 matrix, 6 sheet, 7 surface cover, 8 back sheet, 9 metal frame, 10 photoelectric conversion element, 11 bus bar electrode, 12 finger electrode, 13 back surface Electrode, 14 tab wire connection, 15 wire, 16 adhesive layer, 23 conductive particles, 24 release substrate, 25 reel, 30 Ag electrode, 31 glass substrate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is tab wire that is easily produced and capable of reducing shadow loss. A solar cell module is provided with a plurality of solar cells (2), and tab wire (3) that connects the plurality of solar cells (2) to one another by being adhered to electrodes (11, 13) formed respectively on the front surface of a solar cell (2) and on the rear surface of a neighboring solar cell (2). Therein, the tab wire (3) is adhered to the electrodes (11, 13) by a linear adhesive layer (16) that covers an outer surface that includes the adhesion sections with the electrodes (11, 13).

Description

太陽電池モジュール、太陽電池モジュールの製造方法、タブ線Solar cell module, method for manufacturing solar cell module, tab wire
 本発明は、タブ線によって複数の太陽電池セルが接続された太陽電池モジュールに関し、特に線状のタブ線、このタブ線を用いた太陽電池モジュール及び太陽電池モジュールの製造方法に関するものである。
 本出願は、日本国において2011年3月25日に出願された日本特許出願番号特願2011-68685を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
The present invention relates to a solar cell module in which a plurality of solar cells are connected by a tab wire, and particularly to a linear tab wire, a solar cell module using the tab wire, and a method for manufacturing the solar cell module.
This application claims priority on the basis of Japanese Patent Application No. 2011-68685 filed on Mar. 25, 2011 in Japan. This application is incorporated herein by reference. Incorporated.
 例えば結晶シリコン系太陽電池モジュールでは、複数の隣接する太陽電池セルが、インターコネクタとなるタブ線により接続されている。タブ線は、その一端側を一の太陽電池セルの表面電極に接続され、他端側を隣接する太陽電池セルの裏面電極に接続することにより、各太陽電池セルを直列に接続する。このとき、タブ線は、一端側の一面側が一の太陽電池セルの表面電極に接着され、他端側の他面側が隣接する太陽電池セルの裏面電極に接着されている。 For example, in a crystalline silicon solar cell module, a plurality of adjacent solar cells are connected by a tab wire serving as an interconnector. One end side of the tab wire is connected to the front surface electrode of one solar battery cell, and the other end side is connected to the back surface electrode of the adjacent solar battery cell, thereby connecting the solar battery cells in series. At this time, one surface of the tab wire is bonded to the surface electrode of one solar cell, and the other surface of the other end is bonded to the back electrode of the adjacent solar cell.
 具体的に、太陽電池セルは、受光面に銀ペーストのスクリーン印刷によりバスバー電極が形成され、太陽電池セルの裏面接続部にAg電極が形成されている。なお、太陽電池セル裏面の接続部以外の領域はAl電極やAg電極が形成されている。 Specifically, in the solar cell, a bus bar electrode is formed on the light receiving surface by screen printing of silver paste, and an Ag electrode is formed on the back surface connection portion of the solar cell. In addition, Al electrodes and Ag electrodes are formed in regions other than the connection portion on the back surface of the solar battery cell.
 また、図11に示すように、タブ線50は、リボン状銅箔51の両面にハンダコート層52が設けられることにより形成される。具体的に、タブ線は、厚さ0.05~0.2mm程度に圧延した銅箔をスリットし、あるいは銅ワイヤーを平板状に圧延するなどして得た幅1~3mmの平角銅線に、ハンダメッキやディップハンダ付け等を施すことにより形成される。 As shown in FIG. 11, the tab wire 50 is formed by providing solder coat layers 52 on both sides of a ribbon-like copper foil 51. Specifically, the tab wire is a rectangular copper wire having a width of 1 to 3 mm obtained by slitting a copper foil rolled to a thickness of about 0.05 to 0.2 mm or rolling a copper wire into a flat plate shape. It is formed by performing solder plating, dip soldering, or the like.
 太陽電池セルとタブ線との接続は、タブ線を太陽電池セルの各電極上に配置し、加熱ボンダーによって熱加圧することにより、タブ線表面に形成したハンダを溶融、冷却することにより行う(特許文献1)。 The connection between the solar battery cell and the tab wire is performed by disposing the tab wire on each electrode of the solar battery cell and applying heat and pressure with a heating bonder to melt and cool the solder formed on the tab wire surface ( Patent Document 1).
 しかし、半田付けでは約260℃と高温による接続処理が行われるため、太陽電池セルの反りや、タブ線と表面電極及び裏面電極との接続部に生じる内部応力、さらにフラックスの残渣等により、太陽電池セルの表面電極及び裏面電極とタブ線との間の接続信頼性が低下することが懸念される。 However, since soldering is performed at a high temperature of about 260 ° C., the solar cells are warped, the internal stress generated at the connection between the tab wire and the front and back electrodes, the residue of the flux, etc. There is a concern that the connection reliability between the front and back electrodes of the battery cell and the tab wire is lowered.
 そこで、従来、太陽電池セルの表面電極及び裏面電極とタブ線との接続に、比較的低い温度での熱圧着処理による接続が可能な導電性接着フィルムが使用されている(特許文献2)。このような導電性接着フィルムとしては、平均粒径が数μmオーダーの球状または鱗片状の導電性粒子を熱硬化型バインダー樹脂組成物に分散してフィルム化したものが使用されている。 Therefore, conventionally, a conductive adhesive film that can be connected by thermocompression treatment at a relatively low temperature is used to connect the front and back electrodes of the solar battery cell and the tab wire (Patent Document 2). As such a conductive adhesive film, a film obtained by dispersing spherical or scaly conductive particles having an average particle size on the order of several μm in a thermosetting binder resin composition is used.
 導電性接着フィルムは、表面電極及び裏面電極とタブ線との間に介在された後、タブ線の上から加熱ボンダーによって熱加圧されることにより、バインダー樹脂が流動性を示して電極、タブ線間より流出されるとともに、導電性粒子が電極とタブ線間の導通を図り、この状態でバインダー樹脂が熱硬化する。これにより、タブ線によって複数の太陽電池セルが直列接続されたストリングスが形成される。 The conductive adhesive film is interposed between the front electrode and the back electrode and the tab wire, and then thermally pressed by a heating bonder from above the tab wire, so that the binder resin exhibits fluidity and the electrode and tab. While flowing out from between the wires, the conductive particles conduct between the electrode and the tab wire, and in this state, the binder resin is thermally cured. Thereby, the string by which the several photovoltaic cell was connected in series by the tab wire is formed.
 導電性接着フィルムを用いてタブ線と表面電極及び裏面電極とが接続された複数の太陽電池セルは、ガラス、透光性プラスチックなどの透光性を有する表面保護材と、PET(Poly Ethylene Terephthalate)等のフィルムからなる背面保護材との間に、エチレンビニルアセテート樹脂(EVA)等の透光性を有する封止材により封止される。 A plurality of solar cells in which the tab wire and the front and back electrodes are connected using a conductive adhesive film are made of a surface protective material having translucency such as glass and translucent plastic, and PET (Poly Ethylene Terephthalate) ) And the like, and a back protective material made of a film such as ethylene vinyl acetate resin (EVA).
特開2004-356349号公報JP 2004-356349 A 特開2008-135654号公報JP 2008-135654 A
 しかし、上述したように、タブ線は、厚さ0.05~0.2mm程度に圧延した銅箔をスリットし、あるいは銅ワイヤーを平板状に圧延するなどして、平角銅線を形成する必要があり、製造工数が増える。 However, as described above, the tab wire needs to be formed into a flat copper wire by slitting a copper foil rolled to a thickness of about 0.05 to 0.2 mm or rolling a copper wire into a flat plate shape. And manufacturing man-hours increase.
 また、平角導線からなるタブ線は、幅2~3mm程度の幅を有し、これを太陽電池セルの受光面に接着した場合、タブ線の幅に応じたシャドーロスが発生してしまう。 In addition, the tab wire made of a rectangular conductor has a width of about 2 to 3 mm, and when this is adhered to the light receiving surface of the solar battery cell, a shadow loss corresponding to the width of the tab wire occurs.
 そこで、本発明は、製造が容易で、またシャドーロスの低減を図ることができるタブ線、当該タブ線を用いた太陽電池セル及び太陽電池モジュールの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a tab wire that can be easily manufactured and can reduce shadow loss, a solar cell using the tab wire, and a method for manufacturing a solar cell module.
 上述した課題を解決するために、本発明に係る太陽電池モジュールは、複数の太陽電池セルと、上記太陽電池セルの表面及び隣接する太陽電池セルの裏面にそれぞれ形成された電極上に接着され、複数の上記太陽電池セル同士を接続するタブ線とを備え、上記タブ線は、線状をなし、上記電極との接着部を含む外周面を覆う接着剤層によって上記電極と接着されているものである。 In order to solve the above-described problem, the solar cell module according to the present invention is bonded to a plurality of solar cells and electrodes formed on the surface of the solar cell and the back surface of the adjacent solar cell, A plurality of tab wires connecting the plurality of solar cells, and the tab wires are linearly bonded to the electrodes by an adhesive layer covering an outer peripheral surface including an adhesive portion with the electrodes. It is.
 また、本発明に係る太陽電池モジュールの製造方法は、線状のタブ線を用い、太陽電池セルの表面電極に上記タブ線の一端側を配置し、上記太陽電池セルと隣接する太陽電池セルの裏面電極に上記タブ線の他端側を配置する工程と、上記タブ線を上記表面電極及び上記裏面電極へ熱加圧し、上記表面電極及び上記裏面電極と上記タブ線との間に流動した接着剤層によって上記タブ線を上記表面電極及び上記裏面電極へ接着する工程とを有するものである。 Moreover, the manufacturing method of the solar cell module which concerns on this invention uses a linear tab wire, arrange | positions the one end side of the said tab wire in the surface electrode of a photovoltaic cell, and the photovoltaic cell adjacent to the said photovoltaic cell The step of arranging the other end side of the tab wire on the back electrode, and the pressure bonding of the tab wire to the surface electrode and the back electrode, and flowing between the surface electrode and the back electrode and the tab wire A step of adhering the tab wire to the front electrode and the back electrode by an agent layer.
 また、本発明に係るタブ線は、太陽電池セルの表面及び隣接する太陽電池セルの裏面にそれぞれ形成された電極上に接着され、複数の上記太陽電池セル同士を接続するタブ線において、線状をなし、長手方向に亘って少なくとも外周面の50%が接着剤層によって覆われ、上記接着剤層によって上記電極と接着されるものである。 Further, the tab wire according to the present invention is bonded to the electrodes formed on the front surface of the solar battery cell and the back surface of the adjacent solar battery cell, and the tab wire connecting the plurality of solar battery cells is linear. In the longitudinal direction, at least 50% of the outer peripheral surface is covered with the adhesive layer, and is bonded to the electrode by the adhesive layer.
 本発明によれば、線状のタブ線を用いることにより、圧延銅箔を形成しスリットする工程や、銅線を平板状に圧延する工程が不要となり、製造設備や工数の削減を図ることができ、また、製造コストを抑えることもできる。また、本発明によれば、線状のタブ線を用いることにより、平板状のタブ線を用いた場合に比して、太陽電池セルの受光面に載置される面積を狭小化することができ、シャドーロスによる光電変換効率の低減を抑えることができる。 According to the present invention, by using a linear tab wire, a step of forming and slitting a rolled copper foil and a step of rolling a copper wire into a flat plate shape are not required, and it is possible to reduce manufacturing equipment and man-hours. In addition, the manufacturing cost can be reduced. Further, according to the present invention, by using a linear tab wire, the area placed on the light receiving surface of the solar battery cell can be reduced as compared with the case where a flat tab wire is used. And reduction in photoelectric conversion efficiency due to shadow loss can be suppressed.
図1は、太陽電池モジュールを示す分解斜視図である。FIG. 1 is an exploded perspective view showing a solar cell module. 図2は、太陽電池セルのストリングスを示す断面図である。FIG. 2 is a cross-sectional view showing strings of solar cells. 図3は、太陽電池セルの裏面電極及び接続部を示す平面図である。FIG. 3 is a plan view showing a back electrode and a connection part of the solar battery cell. 図4は、タブ線の接着状態を示す断面図である。FIG. 4 is a cross-sectional view showing a bonding state of tab wires. 図5は、線材の断面寸法を説明するための図である。FIG. 5 is a diagram for explaining a cross-sectional dimension of the wire. 図6は、予め線材が接着剤層によって被覆されたタブ線を示す図であり、図6Aは断面図、図6Bは斜視図である。6A and 6B are diagrams showing a tab wire in which a wire is covered with an adhesive layer in advance, FIG. 6A is a sectional view, and FIG. 6B is a perspective view. 図7は、導電性接着フィルムを示す断面図である。FIG. 7 is a cross-sectional view showing a conductive adhesive film. 図8は、リール状に巻回された導電性接着フィルムを示す図である。FIG. 8 is a diagram showing a conductive adhesive film wound in a reel shape. 図9は、実施例を示す斜視図である。FIG. 9 is a perspective view showing an embodiment. 図10は、比較例を示す斜視図である。FIG. 10 is a perspective view showing a comparative example. 図11は、従来のタブ線を示す斜視図である。FIG. 11 is a perspective view showing a conventional tab line.
 以下、本発明が適用されたタブ線、このタブ線を用いた太陽電池モジュール及び太陽電池モジュールの製造方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。 Hereinafter, a tab wire to which the present invention is applied, a solar cell module using the tab wire, and a method for manufacturing the solar cell module will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the present invention.
 [太陽電池モジュール]
 本発明が適用された太陽電池モジュール1は、図1~図3に示すように、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、このストリングス4を複数配列したマトリクス5を備える。そして、太陽電池モジュール1は、このマトリクス5が封止接着剤のシート6で挟まれ、受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより形成される。
[Solar cell module]
As shown in FIGS. 1 to 3, a solar cell module 1 to which the present invention is applied has a string 4 in which a plurality of solar cells 2 are connected in series by a tab wire 3 serving as an interconnector. A matrix 5 in which a plurality of 4 are arranged is provided. And the solar cell module 1 is laminated together with the front cover 7 provided on the light receiving surface side and the back sheet 8 provided on the back surface side, with the matrix 5 sandwiched between the sealing adhesive sheets 6. Finally, a metal frame 9 such as aluminum is attached to the periphery.
 封止接着剤としては、例えばエチレンビニルアセテート樹脂(EVA)等の透光性封止材が用いられる。また、表面カバー7としては、例えば、ガラスや透光性プラスチック等の透光性の材料が用いられる。また、バックシート8としては、ガラスやアルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。 As the sealing adhesive, for example, a translucent sealing material such as ethylene vinyl acetate resin (EVA) is used. Moreover, as the surface cover 7, for example, a light-transmitting material such as glass or light-transmitting plastic is used. Further, as the back sheet 8, a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
 太陽電池モジュールの各太陽電池セル2は、光電変換素子10を有する。光電変換素子10は、単結晶型シリコン光電変換素子、多結晶型光電変換素子を用いる結晶シリコン系太陽電池や、アモルファスシリコンからなるセルと微結晶シリコンやアモルファスシリコンゲルマニウムからなるセルとを積層させた光電変換素子を用いた薄膜シリコン系太陽電池、いわゆる化合物薄膜系、有機系、量子ドット型など、各種光電変換素子10を用いることができる。 Each solar battery cell 2 of the solar battery module has a photoelectric conversion element 10. The photoelectric conversion element 10 includes a single crystal silicon photoelectric conversion element, a crystalline silicon solar cell using a polycrystalline photoelectric conversion element, a cell made of amorphous silicon and a cell made of microcrystalline silicon or amorphous silicon germanium. Various photoelectric conversion elements 10 such as a thin film silicon solar cell using a photoelectric conversion element, a so-called compound thin film type, an organic type, and a quantum dot type can be used.
 また、光電変換素子10は、受光面側に内部で発生した電気を集電するフィンガー電極12とフィンガー電極12の電気を集電するバスバー電極11とが設けられている。バスバー電極11及びフィンガー電極12は、太陽電池セル2の受光面となる表面にAgペーストがスクリーン印刷等により塗布された後、焼成されることにより形成される。また、フィンガー電極12は、受光面の全面に亘って、例えば約50~200μm程度の幅を有するラインが、所定間隔、例えば2mmおきに、ほぼ平行に複数形成されている。バスバー電極11は、フィンガー電極12と略直交するように形成され、また、太陽電池セル2の面積に応じて複数形成されている。 Further, the photoelectric conversion element 10 is provided with a finger electrode 12 for collecting electricity generated inside and a bus bar electrode 11 for collecting electricity of the finger electrode 12 on the light receiving surface side. The bus bar electrode 11 and the finger electrode 12 are formed by baking after the Ag paste is applied to the surface to be the light receiving surface of the solar battery cell 2 by screen printing or the like. Further, the finger electrode 12 has a plurality of lines having a width of about 50 to 200 μm, for example, approximately parallel to each other at a predetermined interval, for example, every 2 mm, over the entire light receiving surface. The bus bar electrodes 11 are formed so as to be substantially orthogonal to the finger electrodes 12, and a plurality of bus bar electrodes 11 are formed according to the area of the solar battery cell 2.
 また、光電変換素子10は、受光面と反対の裏面側に、アルミニウムや銀からなる裏面電極13が設けられている。裏面電極13は、図2及び図3に示すように、アルミニウムや銀からなる電極が例えばスクリーン印刷やスパッタ等により太陽電池セル2の裏面に形成される。裏面電極13は、後述するタブ線3が接続されるタブ線接続部14を有する。 The photoelectric conversion element 10 is provided with a back electrode 13 made of aluminum or silver on the back side opposite to the light receiving surface. As shown in FIGS. 2 and 3, the back electrode 13 is formed of an electrode made of aluminum or silver on the back surface of the solar battery cell 2 by, for example, screen printing or sputtering. The back electrode 13 has a tab line connecting portion 14 to which a tab line 3 described later is connected.
 そして、太陽電池セル2は、タブ線3によって、表面に形成された各バスバー電極11と、隣接する太陽電池セル2の裏面電極13とが電気的に接続され、これにより直列に接続されたストリングス4を構成する。タブ線3とバスバー電極11及び裏面電極13とは、タブ線3の外周面に設けられた接着剤層16によって接続される。 The solar battery cell 2 is electrically connected to each bus bar electrode 11 formed on the surface by the tab wire 3 and the back electrode 13 of the adjacent solar battery cell 2, thereby connecting the strings connected in series. 4 is configured. The tab wire 3 and the bus bar electrode 11 and the back electrode 13 are connected by an adhesive layer 16 provided on the outer peripheral surface of the tab wire 3.
 [タブ線]
 タブ線3は、図2に示すように、隣接する太陽電池セル2X、2Y、2Zの各間を電気的に接続するものであり、図4に示すように、例えば、直径が0.2mm~2.0mの線材15を備え、線材15の外周面には太陽電池セル2のバスバー電極11や裏面電極13との接着を図る接着剤層16が設けられている。
[Tab line]
As shown in FIG. 2, the tab wire 3 electrically connects each of the adjacent solar cells 2X, 2Y, 2Z. As shown in FIG. A 2.0 m wire 15 is provided, and an adhesive layer 16 is provided on the outer peripheral surface of the wire 15 for bonding to the bus bar electrode 11 and the back electrode 13 of the solar battery cell 2.
 線材15は、線状の導電材からなり、例えば銅ワイヤーや金ワイヤー、アルミワイヤーなどの導電性を有する材料が用いられる。太陽電池モジュール1は、タブ線3として、線状の導電性のワイヤーからなる線材15を用いることにより、圧延銅箔を形成しスリットする工程や、銅線を平板状に圧延する工程が不要となり、製造設備や工数の削減を図ることができ、また、製造コストを抑えることもできる。また、太陽電池モジュール1は、タブ線3として、線材15を用いることにより、平板状のタブ線を用いた場合に比して、太陽電池セル2の受光面に載置される面積を狭小化することができ、シャドーロスによる光電変換効率の低減を抑えることができる。 The wire 15 is made of a linear conductive material, and for example, a conductive material such as a copper wire, a gold wire, or an aluminum wire is used. The solar cell module 1 uses the wire 15 which consists of a linear conductive wire as the tab wire 3, and the process of forming and slitting rolled copper foil and the process of rolling a copper wire into flat form become unnecessary. Therefore, it is possible to reduce manufacturing equipment and man-hours, and to reduce manufacturing costs. Moreover, the solar cell module 1 uses the wire 15 as the tab wire 3, thereby narrowing the area placed on the light receiving surface of the solar cell 2 as compared with the case where a flat tab wire is used. And reduction in photoelectric conversion efficiency due to shadow loss can be suppressed.
 [断面積]
 線材15は、断面積が0.5~13.0mmの範囲のものを用いる。これは、太陽電池モジュール1は、タブ線3を介して各太陽電池セル2を電気的に接続するものであるため、線材15の断面積が0.5mmよりも小さいとタブ線3の導通抵抗が高くなり、光電変換効率が低減するおそれがあるためである。また、太陽電池モジュール1は、タブ線3が太陽電池セル2の受光面に接着されるため、線材15の断面積が13.0mmよりも大きくなると、タブ線3によるシャドーロスの影響が大きくなるおそれがあるためである。
[Cross sectional area]
The wire 15 has a cross-sectional area in the range of 0.5 to 13.0 mm 2 . This is because the solar cell module 1 is for electrically connecting the solar cells 2 via the tab wires 3, so that if the cross-sectional area of the wire 15 is smaller than 0.5 mm 2 , the conduction of the tab wires 3 is achieved. This is because the resistance increases and the photoelectric conversion efficiency may be reduced. Moreover, since the tab wire 3 is adhered to the light receiving surface of the solar battery cell 2 in the solar cell module 1, if the cross-sectional area of the wire 15 is larger than 13.0 mm 2 , the shadow loss due to the tab wire 3 is greatly affected. This is because there is a possibility of becoming.
 [楕円形]
 また、線材15は、断面が円形又は楕円形のものを用いることができる。この場合、図5に示すように、線材15は、断面を構成する円(楕円)の中心を通る直交座標のx軸(長軸)の半径をb、y軸(短軸)の半径をaとした場合、以下の関係を満たす。
0.4≦a≦2 (単位mm)
a≦b≦2 (単位mm)
 これにより、タブ線3は、上述した断面積の範囲を満たし、導通抵抗の上昇やシャドーロスの影響を抑えることができる。
[Oblong]
Further, the wire 15 may have a circular or elliptical cross section. In this case, as shown in FIG. 5, the wire 15 has an x-axis (major axis) radius of b and y-axis (minor axis) a of orthogonal coordinates passing through the center of a circle (ellipse) constituting the cross section. The following relationship is satisfied.
0.4 ≦ a ≦ 2 (Unit: mm)
a ≦ b ≦ 2 (unit: mm)
As a result, the tab wire 3 satisfies the above-described range of the cross-sectional area, and can suppress the increase in conduction resistance and the influence of shadow loss.
 [接着剤層]
 接着剤層16は、線材15の外周面を覆うことにより、タブ線3を太陽電池セル2のバスバー電極11や裏面電極13に接着させるものである。接着剤層16は、図6A及び図6Bに示すように、ペースト状に形成し、予めタブ線3の線材15の外周面を被覆してもよく、あるいはフィルム状に形成し、太陽電池セル2の各電極11,13にタブ線3を接着させる際に、電極11,13上に配置し、線材15をこの接着フィルム上に配置した後、加熱ボンダー20により加熱押圧することにより線材15の外周面を被覆してもよい(図4)。また、太陽電池セル2に未硬化の接着剤層16、封止材を積層させ、ラミネート工程にて接着層16を硬化させる一括接続方法を用いることもできる。
[Adhesive layer]
The adhesive layer 16 covers the outer peripheral surface of the wire 15 to adhere the tab wire 3 to the bus bar electrode 11 and the back electrode 13 of the solar battery cell 2. As shown in FIG. 6A and FIG. 6B, the adhesive layer 16 may be formed in a paste shape and may cover the outer peripheral surface of the wire 15 of the tab wire 3 in advance, or may be formed in a film shape, and the solar battery cell 2. When the tab wire 3 is bonded to each of the electrodes 11 and 13, the outer periphery of the wire 15 is placed on the electrodes 11 and 13 and the wire 15 is placed on the adhesive film and then heated and pressed by the heating bonder 20. The surface may be coated (FIG. 4). Moreover, the batch connection method of laminating | stacking the uncured adhesive bond layer 16 and the sealing material on the photovoltaic cell 2, and hardening | curing the adhesive layer 16 at a lamination process can also be used.
 接着剤層16は、図7に示すように、導電性粒子23が高密度に含有された熱硬化性のバインダー樹脂層である。また、接着剤層16は、押し込み性の観点から、バインダー樹脂の最低溶融粘度が、100~100000Pa・sであることが好ましい。接着剤層16は、最低溶融粘度が低すぎると低圧着から本硬化の過程で樹脂が流動してしまい接続不良やセル受光面へのはみ出しが生じやすく、受光率低下の原因ともなる。また、最低溶融粘度が高すぎてもフィルム貼着時に不良を発生しやすく、接続信頼性に悪影響が出る場合もある。なお、最低溶融粘度については、サンプルを所定量回転式粘度計に装填し、所定の昇温速度で上昇させながら測定することができる。 As shown in FIG. 7, the adhesive layer 16 is a thermosetting binder resin layer containing conductive particles 23 at a high density. The adhesive layer 16 preferably has a minimum melt viscosity of 100 to 100,000 Pa · s from the viewpoint of indentability. If the minimum melt viscosity of the adhesive layer 16 is too low, the resin will flow during the process of low pressure bonding to main curing, and connection failure or protrusion to the cell light receiving surface is likely to occur, causing a decrease in the light receiving rate. Moreover, even if the minimum melt viscosity is too high, defects are likely to occur when the film is adhered, and the connection reliability may be adversely affected. The minimum melt viscosity can be measured while a sample is loaded in a predetermined amount of rotational viscometer and raised at a predetermined temperature increase rate.
 接着剤層16に用いられる導電性粒子23としては、特に制限されず、例えば、ニッケル、金、銀、銅などの金属粒子、樹脂粒子に金めっきなどを施したもの、樹脂粒子に金めっきを施した粒子の最外層に絶縁被覆を施したものなどを挙げることができる。なお、導電性粒子23として、扁平なフレーク状金属粒子を含有することにより、互いに重なり合う導電性粒子23の数を増加させ、良好な導通信頼性を確保することができる。 The conductive particles 23 used for the adhesive layer 16 are not particularly limited. For example, metal particles such as nickel, gold, silver, and copper, resin particles that are plated with gold, and resin particles that are plated with gold. Examples thereof include those in which the outermost layer of the applied particles is provided with an insulating coating. In addition, by containing flat flaky metal particles as the conductive particles 23, the number of the conductive particles 23 that overlap each other can be increased, and good conduction reliability can be ensured.
 また、接着剤層16は、常温付近での粘度が10~10000kPa・sであることが好ましく、さらに好ましくは、10~5000kPa・sである。接着剤層16の粘度が10~10000kPa・sの範囲であることにより、接着剤層16をテープ状のリール巻とした場合において、いわゆるはみ出しを防止することができ、また、所定のタック力を維持することができる。 Further, the adhesive layer 16 preferably has a viscosity of about 10 to 10000 kPa · s at room temperature, more preferably 10 to 5000 kPa · s. When the adhesive layer 16 has a viscosity in the range of 10 to 10,000 kPa · s, when the adhesive layer 16 is wound in a tape-like reel, so-called protrusion can be prevented and a predetermined tack force can be obtained. Can be maintained.
 接着剤層16のバインダー樹脂層の組成は、上述のような特徴を害さない限り、特に制限されないが、より好ましくは、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤とを含有する。 The composition of the binder resin layer of the adhesive layer 16 is not particularly limited as long as it does not impair the above-described characteristics, but more preferably a film-forming resin, a liquid epoxy resin, a latent curing agent, and a silane coupling. Containing the agent.
 膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の種々の樹脂を使用することができ、その中でも膜形成状態、接続信頼性等の観点からフェノキシ樹脂が好適に用いられる。 The film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation. As the film-forming resin, various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used. Among them, a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
 液状エポキシ樹脂としては、常温で流動性を有していれば、特に制限はなく、市販のエポキシ樹脂が全て使用可能である。このようなエポキシ樹脂としては、具体的には、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などを用いることができる。これらは単独でも、2種以上を組み合わせて用いてもよい。また、アクリル樹脂など他の有機樹脂と適宜組み合わせて使用してもよい。 The liquid epoxy resin is not particularly limited as long as it has fluidity at room temperature, and all commercially available epoxy resins can be used. Specific examples of such epoxy resins include naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, phenol aralkyl type epoxy resins. Resins, naphthol type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and the like can be used. These may be used alone or in combination of two or more. Moreover, you may use it combining suitably with other organic resins, such as an acrylic resin.
 潜在性硬化剤としては、加熱硬化型、UV硬化型などの各種硬化剤が使用できる。潜在性硬化剤は、通常では反応せず、何かしらのトリガーにより活性化し、反応を開始する。トリガーには、熱、光、加圧などがあり、用途により選択して用いることができる。液状エポキシ樹脂を使用する場合は、イミダゾール類、アミン類、スルホニウム塩、オニウム塩などからなる潜在性硬化剤を使用することができる。 As the latent curing agent, various curing agents such as a heat curing type and a UV curing type can be used. The latent curing agent does not normally react but is activated by some trigger and starts the reaction. The trigger includes heat, light, pressurization, etc., and can be selected and used depending on the application. When using a liquid epoxy resin, a latent curing agent composed of imidazoles, amines, sulfonium salts, onium salts and the like can be used.
 シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これらの中でも、本実施の形態では、エポキシ系シランカップリング剤が好ましく用いられる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。 As the silane coupling agent, epoxy, amino, mercapto sulfide, ureido, etc. can be used. Among these, in this Embodiment, an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved.
 また、その他の添加組成物として、無機フィラーを含有することが好ましい。無機フィラーを含有することにより、圧着時における樹脂層の流動性を調整し、粒子捕捉率を向上させることができる。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができ、無機フィラーの種類は特に限定されるものではない。 Moreover, it is preferable to contain an inorganic filler as another additive composition. By containing an inorganic filler, the fluidity of the resin layer during pressure bonding can be adjusted, and the particle capture rate can be improved. As the inorganic filler, silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited.
 図8は、接着剤層16の製品形態の一例を模式的に示す図である。この接着剤層16は、剥離基材24上にバインダー樹脂層が積層され、テープ状に成型されている。このテープ状の導電性接着フィルムは、リール25に剥離基材24が外周側となるように巻回積層される。剥離基材24としては、特に制限はなく、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)などを用いることができる。また、接着剤層16は、バインダー樹脂層上に透明なカバーフィルムを有する構成としてもよい。 FIG. 8 is a diagram schematically showing an example of the product form of the adhesive layer 16. The adhesive layer 16 is formed in a tape shape by laminating a binder resin layer on a release substrate 24. This tape-like conductive adhesive film is wound and laminated on the reel 25 so that the peeling substrate 24 is on the outer peripheral side. The release substrate 24 is not particularly limited, and PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), or the like can be used. Further, the adhesive layer 16 may have a transparent cover film on the binder resin layer.
 上記では、接着剤層16として、フィルム形状を有する導電性接着フィルムについて説明したが、ペースト状であっても問題は無い。また、接着剤層16は、バインダー樹脂層に導電性粒子を含有しない絶縁性接着剤であってもよい。絶縁性接着剤を用いた場合、タブ線3は、線材15が直接バスバー電極11や裏面電極13と接触し、導通が図られ、接着剤層16はその周囲を封止することにより接着する。本願では、導電性粒子23を含有するフィルム状またはペースト状の導電性接着剤、及び導電性粒子23を含有しないフィルム状またはペースト状の絶縁性接着剤を「接着剤層16」と定義する。 In the above description, the conductive adhesive film having a film shape has been described as the adhesive layer 16, but there is no problem even if it is in a paste form. The adhesive layer 16 may be an insulating adhesive that does not contain conductive particles in the binder resin layer. When the insulating adhesive is used, the tab wire 3 is bonded by the wire 15 being in direct contact with the bus bar electrode 11 and the back surface electrode 13 to achieve conduction, and the adhesive layer 16 is sealed by sealing the periphery thereof. In the present application, a film-like or paste-like conductive adhesive containing the conductive particles 23 and a film-like or paste-like insulating adhesive not containing the conductive particles 23 are defined as “adhesive layer 16”.
 なお、接着剤層16は、リール形状に限らず、短冊形状であってもよい。図8に示すように接着剤層16が巻き取られたリール製品として提供される場合、接着剤層16の粘度を10~10000kPa・sの範囲とすることにより、接着剤層16の変形を防止し、所定の寸法を維持することができる。また、接着剤層16が短冊形状で2枚以上積層された場合も同様に、変形を防止し、所定の寸法を維持することができる。 The adhesive layer 16 is not limited to a reel shape, and may be a strip shape. As shown in FIG. 8, when the adhesive layer 16 is provided as a reel product wound, the adhesive layer 16 is prevented from being deformed by setting the viscosity of the adhesive layer 16 in the range of 10 to 10,000 kPa · s. And a predetermined dimension can be maintained. Similarly, when two or more adhesive layers 16 are stacked in a strip shape, deformation can be prevented and a predetermined dimension can be maintained.
 このような接着剤層16は、導電性粒子23と、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤とを溶剤に溶解させる。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。 Such an adhesive layer 16 dissolves the conductive particles 23, the film-forming resin, the liquid epoxy resin, the latent curing agent, and the silane coupling agent in a solvent. As the solvent, toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
 溶解させて得られた樹脂生成用溶液は、線材15に塗布された後、乾燥させて溶剤を揮発させることにより、予め接着剤層16が線材15の外周面に設けられたタブ線3を得る。タブ線3を各電極11,13に接着する際には、タブ線3がバスバー電極11上及び裏面電極13のタブ線接続部14上に配置され、タブ線3の上から加熱ボンダーによって所定の温度、圧力で熱加圧される。これにより、タブ線3は、接着剤層16のバインダー樹脂が線材15の外周面を流動して各電極11,13と接触する接着部の間で硬化し、導電性粒子23がタブ線3とバスバー電極11や裏面電極13との間で挟持される。これにより、接着剤層16は、タブ線3を各電極上に接着させると共に、導通接続させることができる。 The solution for resin production obtained by dissolving is applied to the wire 15 and then dried to volatilize the solvent, thereby obtaining the tab wire 3 in which the adhesive layer 16 is previously provided on the outer peripheral surface of the wire 15. . When the tab wire 3 is bonded to each electrode 11, 13, the tab wire 3 is disposed on the bus bar electrode 11 and the tab wire connecting portion 14 of the back electrode 13, and a predetermined amount is applied from above the tab wire 3 by a heating bonder Heat-pressed with temperature and pressure. Thereby, the tab wire 3 is cured between the adhesive portions where the binder resin of the adhesive layer 16 flows on the outer peripheral surface of the wire 15 and contacts the electrodes 11 and 13, and the conductive particles 23 are connected to the tab wire 3. It is sandwiched between the bus bar electrode 11 and the back electrode 13. Thus, the adhesive layer 16 can adhere the tab wire 3 onto each electrode and can be conductively connected.
 一方、接着剤層16をフィルム状に形成する場合、溶解させて得られた樹脂生成用溶液を剥離シート上に塗布し、溶剤を揮発させることにより、接着フィルムを得る。接着フィルムは、バスバー電極用及び裏面電極用に所定の長さにカットされ、剥離シートが剥離された後、接着剤層16が太陽電池セル2の表裏面の各電極11,13上に仮貼りされる。同様に、所定の長さにカットされた線材15が接着剤層16上に重畳配置される。その後、接着剤層16は、タブ線3の上から加熱ボンダーによって所定の温度、圧力で熱加圧される。これにより、タブ線3は、バインダー樹脂が流動して線材15の各電極11,13と接触する接着部を含む外周面を覆った後に硬化して、導電性粒子23がタブ線3とバスバー電極11や裏面電極13との間で挟持される。これにより、接着剤層16は、タブ線3を各電極上に接着させると共に、導通接続させることができる。 On the other hand, when the adhesive layer 16 is formed into a film, an adhesive film is obtained by applying a solution for resin production obtained by dissolution onto a release sheet and volatilizing the solvent. The adhesive film is cut to a predetermined length for the bus bar electrode and the back electrode, and after the release sheet is peeled off, the adhesive layer 16 is temporarily attached onto the electrodes 11 and 13 on the front and back surfaces of the solar battery cell 2. Is done. Similarly, the wire 15 cut to a predetermined length is disposed on the adhesive layer 16 in an overlapping manner. Thereafter, the adhesive layer 16 is heat-pressed from above the tab wire 3 with a heating bonder at a predetermined temperature and pressure. As a result, the tab wire 3 is cured after the binder resin flows and covers the outer peripheral surface including the adhesive portions that come into contact with the electrodes 11 and 13 of the wire 15, so that the conductive particles 23 become the tab wire 3 and the bus bar electrode. 11 and the back electrode 13. Thus, the adhesive layer 16 can adhere the tab wire 3 onto each electrode and can be conductively connected.
 [接着剤層16の被覆率]
 接着剤層16は、少なくとも線材15の外周面の50%を覆い、好ましくは50~80%を覆う。これは、接着剤層16による線材15の外周面の被覆率が50%より低いと、線材15と各電極11,13との接着に必要な量を確保できず、接着強度が足りなくなるおそれがあるためである。また、接着剤層16による線材15の外周面の被覆率は、80%程度まであれば接着強度の確保に十分であるが、90%より高くなると、線材15の熱加圧時に、バインダー樹脂がバスバー電極11上から太陽電池セル2の受光面上にはみ出し、受光効率が低下するおそれがあるためである。
[Coverage of adhesive layer 16]
The adhesive layer 16 covers at least 50% of the outer peripheral surface of the wire 15 and preferably covers 50 to 80%. This is because if the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16 is lower than 50%, the amount necessary for bonding the wire 15 and the electrodes 11 and 13 cannot be secured, and the adhesive strength may be insufficient. Because there is. Further, if the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16 is about 80%, it is sufficient to ensure the adhesive strength. However, if the coverage is higher than 90%, the binder resin is not heated when the wire 15 is hot-pressed. This is because the light receiving efficiency may be reduced by protruding from the bus bar electrode 11 onto the light receiving surface of the solar battery cell 2.
 接着剤層16による線材15の外周面の被覆率は、予め線材15の外周面に接着剤層16を設けたタブ線3では、線材15の表面積のうち、接着剤層16によって被覆されている面積と、線材15が露出している面積との比によって求める。 Regarding the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16, the tab wire 3 in which the adhesive layer 16 is provided on the outer peripheral surface of the wire 15 in advance is covered by the adhesive layer 16 out of the surface area of the wire 15. It is determined by the ratio between the area and the area where the wire 15 is exposed.
 また、各電極11,13上に配置されるフィルム状の接着剤層16の線材15の被覆率は、線材15を熱加圧した際に、線材15の表面積のうち、接着剤層16によって被覆されている面積と、線材15が露出している面積との比によって求める。 Moreover, the coverage of the wire 15 of the film-like adhesive layer 16 disposed on each electrode 11, 13 is covered by the adhesive layer 16 out of the surface area of the wire 15 when the wire 15 is heated and pressurized. It is determined by the ratio of the area where the wire 15 is exposed and the area where the wire 15 is exposed.
 なお、上述した実施の形態では、太陽電池セル2として、バスバー電極11を有するものを例に説明したが、本発明は、バスバー電極11を有さずタブ線3を直接フィンガー電極12上に接着するいわゆるバスバーレス構造の太陽電池セル2に適用することもできる。なお、バスバーレス構造には、例えば太陽電池セル2の中央部にバスバー電極11を設けない間欠部を有するとともに太陽電池セルの外側縁部にのみ部分的にバスバー電極11を備えた構造も含む。 In the above-described embodiment, the solar battery cell 2 having the bus bar electrode 11 is described as an example, but the present invention does not have the bus bar electrode 11 and directly bonds the tab wire 3 onto the finger electrode 12. The so-called bus bar-less solar cell 2 can be applied. The bus bar-less structure includes, for example, a structure having an intermittent portion where the bus bar electrode 11 is not provided in the central portion of the solar battery cell 2 and partially including the bus bar electrode 11 only at the outer edge portion of the solar battery cell.
 次いで、本発明の実施例について比較例とともに説明する。図9は実施例を説明する斜視図であり、図10は比較例を説明する斜視図である。実施例、比較例ともに、予め接着剤層16によって被覆された長さ5cmのタブ線を用い、各タブ線を、表面に全面Ag電極30が形成されたガラス基板31の当該Ag電極30に2本ずつ熱加圧して接着した。熱加圧条件は、いずれも180℃、15sec、0.5MPaとした。サンプル作成後、タブ線の接着強度(N/mm)、2つのタブ線間における初期抵抗値(mΩ)及び熱衝撃試験(85℃、85%RH、500hr)後の抵抗値(mΩ)を測定した。 Next, examples of the present invention will be described together with comparative examples. FIG. 9 is a perspective view illustrating an embodiment, and FIG. 10 is a perspective view illustrating a comparative example. In each of the examples and comparative examples, a tab wire having a length of 5 cm previously covered with the adhesive layer 16 was used, and each tab wire was applied to the Ag electrode 30 of the glass substrate 31 having the entire surface formed with the Ag electrode 30. Bonded by hot pressing one by one. The hot pressing conditions were all 180 ° C., 15 sec, and 0.5 MPa. After preparing the sample, measure the adhesive strength (N / mm) of the tab wire, the initial resistance value (mΩ) between the two tab wires, and the resistance value (mΩ) after the thermal shock test (85 ° C., 85% RH, 500 hr). did.
 接着強度、抵抗値測定の具体的な方法としては、接着強度は、各タブ線をAg電極30に接着された接着剤層16から90°方向で剥離する90°剥離試験(JIS K6854-1)を行い、接着強度(N/mm)を測定した。また、抵抗値は2本のタブ線上より電流端子及び電圧端子をそれぞれ接続する4端子法により抵抗値(mΩ)を測定した。 As a specific method for measuring the adhesive strength and resistance value, the adhesive strength is a 90 ° peel test in which each tab wire is peeled in 90 ° direction from the adhesive layer 16 bonded to the Ag electrode 30 (JIS K6854-1). The adhesive strength (N / mm) was measured. Further, the resistance value (mΩ) was measured by a four-terminal method in which a current terminal and a voltage terminal were connected to each other from two tab wires.
 実施例1は、線材15として円柱状の銅ワイヤーを用いた。線材15の断面は、半径1.0mmの円形で、断面積が3.14mmである。また、導電性粒子を含有した接着剤層16によって線材15の外周面を被覆し、被覆率は50%とした。また、接着剤層16の厚さは10μmである。 In Example 1, a cylindrical copper wire was used as the wire 15. The cross-section of the wire 15 is a circle with a radius of 1.0 mm and a cross-sectional area of 3.14 mm 2 . Moreover, the outer peripheral surface of the wire 15 was coat | covered with the adhesive bond layer 16 containing electroconductive particle, and the coverage was 50%. The adhesive layer 16 has a thickness of 10 μm.
 実施例2は、接着剤層16の被覆率を60%とした以外は、実施例1と同条件とした。 Example 2 was the same as Example 1 except that the coverage of the adhesive layer 16 was 60%.
 実施例3は、接着剤層16の被覆率を80%とした以外は、実施例1と同条件とした。 Example 3 was the same as Example 1 except that the coverage of the adhesive layer 16 was 80%.
 実施例4は、接着剤層16の被覆率を90%とした以外は、実施例1と同条件とした。 Example 4 was the same as Example 1 except that the coverage of the adhesive layer 16 was 90%.
 実施例5は、線材15の断面が、半径0.45mmの円形で、断面積が0.64mmであり、接着剤層16による線材15の外周面の被覆率を80%とした以外は、実施例1と同条件とした。 In Example 5, the cross section of the wire 15 is a circle having a radius of 0.45 mm, the cross-sectional area is 0.64 mm 2 , and the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16 is 80%. The conditions were the same as in Example 1.
 実施例6は、線材15の断面が、半径2.00mmの円形で、断面積が12.56mmであり、接着剤層16による線材15の外周面の被覆率を80%とした以外は、実施例1と同条件とした。 In Example 6, the cross section of the wire 15 is a circle having a radius of 2.00 mm, the cross-sectional area is 12.56 mm 2 , and the coverage of the outer peripheral surface of the wire 15 by the adhesive layer 16 is 80%. The conditions were the same as in Example 1.
 実施例7は、線材15として断面楕円形状の銅ワイヤーを用いた。線材15の断面は、長軸bが0.70mm、短軸aが0.60mmの楕円形で、断面積が1.32mmである。また、導電性粒子を含有した接着剤層16によって線材15の外周面を被覆し、被覆率は80%とした。また、接着剤層16の厚さは10μmである。 In Example 7, a copper wire having an elliptical cross section was used as the wire 15. The cross section of the wire 15 is an ellipse having a major axis b of 0.70 mm and a minor axis a of 0.60 mm, and a sectional area of 1.32 mm 2 . Moreover, the outer peripheral surface of the wire 15 was coat | covered with the adhesive bond layer 16 containing electroconductive particle, and the coverage was 80%. The adhesive layer 16 has a thickness of 10 μm.
 実施例8は、導電性粒子を含有しない接着剤層16によって線材15の外周面を被覆し、被覆率を80%とした以外は、実施例1と同条件とした。 Example 8 was the same as Example 1 except that the outer peripheral surface of the wire 15 was covered with an adhesive layer 16 containing no conductive particles, and the coverage was 80%.
 比較例1は、平角形状の銅箔を用いた。銅箔は、幅2mm、厚さ50μmであり、断面積が1.26mmである。また、導電性粒子を含有した接着剤層16によって銅箔の両面を被覆した。また、接着剤層16の厚さは20μmである。 In Comparative Example 1, a rectangular copper foil was used. The copper foil has a width of 2 mm, a thickness of 50 μm, and a cross-sectional area of 1.26 mm 2 . Moreover, both surfaces of the copper foil were covered with an adhesive layer 16 containing conductive particles. The adhesive layer 16 has a thickness of 20 μm.
 なお、接着剤層16は、エポキシ樹脂及び潜在性硬化剤、これらを希釈するための有機溶剤(トルエン)を配合し、接着剤溶液を作成した。導電性を有する接着剤層16では、さらに2~5μmのニッケル粒子を重量比5%tとなるように配合した。実施例1~8では、この接着剤溶液を線材15の外周面を50~90%覆うように塗布、乾燥させた。また比較例1では、この接着剤溶液を厚さ50μmの銅箔上に塗布、乾燥させた後、幅2mm、長さ5cmにカットした。 The adhesive layer 16 was prepared by blending an epoxy resin, a latent curing agent, and an organic solvent (toluene) for diluting them. In the adhesive layer 16 having conductivity, nickel particles of 2 to 5 μm were further blended so as to have a weight ratio of 5% t. In Examples 1 to 8, this adhesive solution was applied and dried so as to cover the outer peripheral surface of the wire 15 by 50 to 90%. In Comparative Example 1, the adhesive solution was applied onto a copper foil having a thickness of 50 μm and dried, and then cut into a width of 2 mm and a length of 5 cm.
 測定結果を表1に示す。 Table 1 shows the measurement results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~8では、0.5MPaといった低圧力での押圧にもかかわらず、いずれも接着強度が、0.6~2.0N/mmとなり、実用に耐えられるものであることがわかる。また、実施例1~8では、いずれも初期の導通抵抗値が5~10mΩであり、また、熱衝撃試験後においても8~13mΩであった。これにより、実施例1~8では、初期値及び熱衝撃試験後の抵抗値の上昇も殆ど見られず、光電変換効率が低減することがない。一方、比較例1においては、接着強度は1.6N/mmと良好であったが、初期の導通抵抗が50mΩと高く、熱衝撃試験後は導通不良のために抵抗値を検出することができなかった。 As shown in Table 1, in Examples 1 to 8, the adhesive strength was 0.6 to 2.0 N / mm regardless of pressing at a low pressure such as 0.5 MPa, which can withstand practical use. It can be seen that it is. In each of Examples 1 to 8, the initial conduction resistance value was 5 to 10 mΩ, and it was 8 to 13 mΩ even after the thermal shock test. As a result, in Examples 1 to 8, there is almost no increase in the initial value and the resistance value after the thermal shock test, and the photoelectric conversion efficiency is not reduced. On the other hand, in Comparative Example 1, the adhesive strength was as good as 1.6 N / mm, but the initial conduction resistance was as high as 50 mΩ, and the resistance value could be detected due to poor conduction after the thermal shock test. There wasn't.
1 太陽電池モジュール、2 太陽電池セル、3 タブ線、4 ストリングス、5 マトリクス、6 シート、7 表面カバー、8 バックシート、9 金属フレーム、10 光電変換素子、11 バスバー電極、12 フィンガー電極、13 裏面電極、14 タブ線接続部、15 線材、16 接着剤層、23 導電性粒子、24 剥離基材、25 リール、30 Ag電極、31 ガラス基板 1 solar cell module, 2 solar cell, 3 tab wire, 4 strings, 5 matrix, 6 sheet, 7 surface cover, 8 back sheet, 9 metal frame, 10 photoelectric conversion element, 11 bus bar electrode, 12 finger electrode, 13 back surface Electrode, 14 tab wire connection, 15 wire, 16 adhesive layer, 23 conductive particles, 24 release substrate, 25 reel, 30 Ag electrode, 31 glass substrate

Claims (14)

  1.  複数の太陽電池セルと、上記太陽電池セルの表面及び隣接する太陽電池セルの裏面にそれぞれ形成された電極上に接着され、複数の上記太陽電池セル同士を接続するタブ線とを備え、
     上記タブ線は、線状をなし、上記電極との接着部を含む外周面を覆う接着剤層によって上記電極と接着されている太陽電池モジュール。
    A plurality of solar cells, and a tab wire that is bonded onto the respective electrodes formed on the surface of the solar cell and the back surface of the adjacent solar cell, and connects the plurality of solar cells,
    The said tab wire is a solar cell module which is adhere | attached on the said electrode with the adhesive bond layer which comprises linear form and covers the outer peripheral surface containing the adhesion part with the said electrode.
  2.  上記タブ線は、上記接着剤層が長手方向に亘って形成されることにより、上記接着剤層によって少なくとも外周面の50%が覆われている請求項1記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein at least 50% of the outer peripheral surface of the tab wire is covered with the adhesive layer by forming the adhesive layer in the longitudinal direction.
  3.  上記タブ線は、上記接着剤層によって外周面の50~80%が覆われている請求項2記載の太陽電池モジュール。 The solar cell module according to claim 2, wherein 50 to 80% of the outer peripheral surface of the tab wire is covered with the adhesive layer.
  4.  上記タブ線は、断面円形状又は楕円形状をなし、
     断面長軸方向の半径をbとし、断面短軸方向の半径をaとしたとき、下記式を満たす請求項1記載の太陽電池モジュール。
     0.4≦a≦2 (単位mm)
     a≦b≦2 (単位mm)
    The tab line has a circular cross section or an elliptical shape,
    2. The solar cell module according to claim 1, wherein b is a radius in the major axis direction of the cross section and a is a radius in the minor axis direction of the cross section.
    0.4 ≦ a ≦ 2 (Unit: mm)
    a ≦ b ≦ 2 (unit: mm)
  5.  上記タブ線は、断面積が0.5~13.0(mm)である請求項1~請求項4のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 4, wherein the tab wire has a cross-sectional area of 0.5 to 13.0 (mm 2 ).
  6.  線状のタブ線を用い、
     太陽電池セルの表面電極に上記タブ線の一端側を配置し、上記太陽電池セルと隣接する太陽電池セルの裏面電極に上記タブ線の他端側を配置する工程と、
     上記タブ線を上記表面電極及び上記裏面電極へ熱加圧し、上記表面電極及び上記裏面電極と上記タブ線との間に流動した接着剤層によって上記タブ線を上記表面電極及び上記裏面電極へ接着する工程とを有する太陽電池モジュールの製造方法。
    Using a linear tab line,
    Arranging one end side of the tab wire on the surface electrode of the solar battery cell, and arranging the other end side of the tab wire on the back electrode of the solar battery cell adjacent to the solar battery cell;
    The tab wire is heat-pressed to the front electrode and the back electrode, and the tab wire is bonded to the front electrode and the back electrode by an adhesive layer that flows between the front electrode and the back electrode and the tab wire. The manufacturing method of the solar cell module which has a process to do.
  7.  上記タブ線は、外周面に予め設けられた上記接着剤層によって、外周面の50~80%が覆われている請求項6記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 6, wherein 50 to 80% of the outer peripheral surface of the tab wire is covered with the adhesive layer provided in advance on the outer peripheral surface.
  8.  上記タブ線は、上記表面電極及び上記裏面電極に配置された接着剤層によって、外周面の50~80%が覆われている請求項6記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 6, wherein 50 to 80% of the outer peripheral surface of the tab wire is covered with an adhesive layer disposed on the front electrode and the back electrode.
  9.  上記タブ線は、断面円形状又は楕円形状をなし、
     断面長軸方向の半径をbとし、断面短軸方向の半径をaとしたとき、下記式を満たす請求項6~8のいずれか1項に記載の太陽電池モジュールの製造方法。
     0.4≦a≦2 (単位mm)
     a≦b≦2 (単位mm)
    The tab line has a circular cross section or an elliptical shape,
    The method for producing a solar cell module according to any one of claims 6 to 8, wherein the following equation is satisfied, where b is a radius in the major axis direction of the cross section and a is a radius in the minor axis direction of the cross section.
    0.4 ≦ a ≦ 2 (Unit: mm)
    a ≦ b ≦ 2 (unit: mm)
  10.  上記タブ線は、断面積が0.5~13.0(mm)である請求項6~請求項9のいずれか1項に記載の太陽電池モジュールの製造方法。 10. The method for manufacturing a solar cell module according to claim 6, wherein the tab wire has a cross-sectional area of 0.5 to 13.0 (mm 2 ).
  11.  太陽電池セルの表面及び隣接する太陽電池セルの裏面にそれぞれ形成された電極上に接着され、複数の上記太陽電池セル同士を接続するタブ線において、
     線状をなし、長手方向に亘って少なくとも外周面の50%が接着剤層によって覆われ、上記接着剤層によって上記電極と接着されるタブ線。
    In the tab wires that are bonded onto the electrodes formed on the front surface of the solar cell and the back surface of the adjacent solar cell, respectively, and connecting the plurality of solar cells,
    A tab wire that is linear and has at least 50% of the outer peripheral surface covered with an adhesive layer in the longitudinal direction and is bonded to the electrode by the adhesive layer.
  12.  上記接着剤層によって外周面の50~80%が覆われている請求項11記載のタブ線。 The tab wire according to claim 11, wherein 50 to 80% of the outer peripheral surface is covered with the adhesive layer.
  13.  断面円形状又は楕円形状をなし、
     断面長軸方向の半径をbとし、断面短軸方向の半径をaとしたとき、下記式を満たす請求項11又は請求項12に記載のタブ線。
     0.4≦a≦2 (単位mm)
     a≦b≦2 (単位mm)
    It has a circular or oval cross section,
    The tab wire according to claim 11 or 12, wherein a radius in the major axis direction of the cross section is b and a radius in the minor axis direction of the cross section is a, the following formula is satisfied.
    0.4 ≦ a ≦ 2 (Unit: mm)
    a ≦ b ≦ 2 (unit: mm)
  14.  断面積が0.5~13.0(mm)である請求項11~請求項13のいずれか1項に記載のタブ線。 The tab wire according to any one of claims 11 to 13, wherein the cross-sectional area is 0.5 to 13.0 (mm 2 ).
PCT/JP2012/057791 2011-03-25 2012-03-26 Solar cell module, method for producing solar cell module, and tab wire WO2012133338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-068685 2011-03-25
JP2011068685A JP5798772B2 (en) 2011-03-25 2011-03-25 Solar cell module, method for manufacturing solar cell module, tab wire

Publications (1)

Publication Number Publication Date
WO2012133338A1 true WO2012133338A1 (en) 2012-10-04

Family

ID=46931055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057791 WO2012133338A1 (en) 2011-03-25 2012-03-26 Solar cell module, method for producing solar cell module, and tab wire

Country Status (3)

Country Link
JP (1) JP5798772B2 (en)
TW (1) TW201251065A (en)
WO (1) WO2012133338A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136589A1 (en) * 2022-06-14 2023-12-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives INTERCONNECTION ELEMENT, PHOTOVOLTAIC CHAIN AND ASSOCIATED METHODS

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960946B1 (en) 2014-06-26 2020-11-18 LG Electronics Inc. Solar cell module
JP6491555B2 (en) * 2014-07-07 2019-03-27 エルジー エレクトロニクス インコーポレイティド Solar cell module and manufacturing method thereof
KR20160038694A (en) * 2014-09-30 2016-04-07 엘지전자 주식회사 Solar cell and solar cell panel including the same
KR20170017776A (en) * 2015-08-05 2017-02-15 엘지전자 주식회사 Ribbon for solar cell panel and method for manufacturing the same, and solar cell panel
JP6877897B2 (en) * 2016-06-22 2021-05-26 シャープ株式会社 Solar cell module
US10700223B2 (en) 2016-12-01 2020-06-30 Shin-Etsu Chemical Co., Ltd. High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell
JP2019117860A (en) * 2017-12-27 2019-07-18 シャープ株式会社 Double-sided light-receiving solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036867A (en) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
JPH0918034A (en) * 1995-06-28 1997-01-17 Canon Inc Electrode structure of photovoltaic element and its manufacturing method
JP2005536894A (en) * 2002-08-29 2005-12-02 デイ4 エネルギー インコーポレイテッド Photovoltaic battery electrode, photovoltaic battery and photovoltaic module
JP2007103535A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2008263163A (en) * 2007-03-19 2008-10-30 Sanyo Electric Co Ltd Solar battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036867A (en) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
JPH0918034A (en) * 1995-06-28 1997-01-17 Canon Inc Electrode structure of photovoltaic element and its manufacturing method
JP2005536894A (en) * 2002-08-29 2005-12-02 デイ4 エネルギー インコーポレイテッド Photovoltaic battery electrode, photovoltaic battery and photovoltaic module
JP2007103535A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
JP2008263163A (en) * 2007-03-19 2008-10-30 Sanyo Electric Co Ltd Solar battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136589A1 (en) * 2022-06-14 2023-12-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives INTERCONNECTION ELEMENT, PHOTOVOLTAIC CHAIN AND ASSOCIATED METHODS
EP4293730A1 (en) * 2022-06-14 2023-12-20 Commissariat à l'énergie atomique et aux énergies alternatives Interconnection element, photovoltaic string and related methods

Also Published As

Publication number Publication date
TW201251065A (en) 2012-12-16
JP2012204666A (en) 2012-10-22
JP5798772B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2012133338A1 (en) Solar cell module, method for producing solar cell module, and tab wire
JP5415396B2 (en) Solar cell module manufacturing method and solar cell module
WO2012128366A1 (en) Solar cell module, manufacturing method for solar cell module, and reel-wound body with tab wire wound therearound
KR101435312B1 (en) Solar cell module, and production method for solar cell module
JP5676944B2 (en) Solar cell module and method for manufacturing solar cell module
JP5356347B2 (en) Solar cell module and method for manufacturing solar cell module
WO2013035667A1 (en) Solar cell module manufacturing method, solar cell module, and tab wire connection method
JP5480120B2 (en) Solar cell module, solar cell module manufacturing method, solar cell, and tab wire connection method
JP5892584B2 (en) Solar cell module and method for manufacturing solar cell module
WO2012077784A1 (en) Solar cell module, and method of manufacturing solar cell module
JP5828582B2 (en) Solar cell module, method for manufacturing solar cell module, conductive adhesive
JP5759220B2 (en) Solar cell module and method for manufacturing solar cell module
WO2013121877A1 (en) Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module
WO2012099257A1 (en) Solar cell module and method of manufacturing solar cell module
JP2016021577A (en) Solar cell module, manufacturing method of solar cell module, conductive adhesive
JP2016167641A (en) Solar battery module and manufacturing method for the same
JP2016001765A (en) Solar cell module and manufacturing method of the solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763011

Country of ref document: EP

Kind code of ref document: A1