WO2012133309A1 - Fluidized bed drying device and fluidized bed drying equipment - Google Patents

Fluidized bed drying device and fluidized bed drying equipment Download PDF

Info

Publication number
WO2012133309A1
WO2012133309A1 PCT/JP2012/057755 JP2012057755W WO2012133309A1 WO 2012133309 A1 WO2012133309 A1 WO 2012133309A1 JP 2012057755 W JP2012057755 W JP 2012057755W WO 2012133309 A1 WO2012133309 A1 WO 2012133309A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
drying
gas
coal
fluidized
Prior art date
Application number
PCT/JP2012/057755
Other languages
French (fr)
Japanese (ja)
Inventor
大浦 康二
昇吾 澤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011073144A external-priority patent/JP5738037B2/en
Priority claimed from JP2011079356A external-priority patent/JP5822504B2/en
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2012233947A priority Critical patent/AU2012233947B2/en
Publication of WO2012133309A1 publication Critical patent/WO2012133309A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/084Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/447Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass

Definitions

  • the present invention relates to a fluidized bed drying apparatus for drying while flowing a material to be dried with a fluidized gas, and a fluidized bed drying apparatus including a fluidized bed drying apparatus for drying while flowing a wet raw material.
  • the combined coal gasification combined power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power by gasifying coal and combining it with combined cycle power generation.
  • This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
  • Conventional coal gasification combined power generation facilities generally have a coal supply device, a drying device, a coal gasification furnace, a gas purification device, a gas turbine facility, a steam turbine facility, an exhaust heat recovery boiler, a gas purification device, and the like. ing. Therefore, the coal is dried and then pulverized, supplied to the coal gasifier as pulverized coal, and air is taken in. The coal gas is combusted and gasified in this coal gasifier, and the product gas (combustible) Gas) is produced. Then, the product gas is purified and then supplied to the gas turbine equipment to burn and generate high-temperature and high-pressure combustion gas to drive the turbine.
  • the exhaust gas after driving the turbine recovers thermal energy by the exhaust heat recovery boiler, generates steam and supplies it to the steam turbine equipment, and drives the turbine. As a result, power generation is performed.
  • the exhaust gas from which the thermal energy has been recovered is released into the atmosphere through a chimney after harmful substances are removed by the gas purification device.
  • the coal used in such a coal gasification combined power generation facility is not only a high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite, but also a comparison such as sub-bituminous coal and lignite
  • high-grade coal high-grade coal
  • low-grade coal low-grade coal
  • This low-grade coal has a large amount of moisture to be brought in, and the power generation efficiency decreases due to this moisture. For this reason, in the case of low-grade coal, it is necessary to dry the coal with the above-described drying apparatus to remove moisture and then pulverize and supply the coal gasifier.
  • Patent Document 1 As a drying apparatus for drying such coal, there is one described in Patent Document 1 below.
  • a dispersion plate is horizontally attached to the bottom side inside the apparatus body, and a fluidized bed is formed on the upper part, while a hot air inlet is formed on the lower part.
  • a coal supply unit is provided at one end of the apparatus main body, a dry coal discharge unit is provided at the other end, a plurality of baffle plates are provided in the fluidized bed, and a large number of freeboard units above it are provided.
  • the current plate is attached.
  • low-grade coal has a larger amount of water than high-grade coal, and thus fluidization failure occurs in the drying apparatus, which may cause coal drying failure. Therefore, it is necessary to reduce the amount of coal to be input, and there is a problem that the processing amount decreases.
  • the fluidized bed drying apparatus discharges the steam generated when the wet raw material is dried while supplying the fluidized gas and the fluidized gas to the outside of the apparatus as generated steam.
  • Fluidized bed drying equipment with fluidized bed drying equipment can improve the heat utilization efficiency and air utilization efficiency of the equipment by recovering the heat of the generated steam or using the generated steam as fluidized gas. it can.
  • a large amount of scattered dust (dust) is mixed in the generated steam.
  • a large amount of dust mixed in the generated steam may adversely affect the apparatus for recovering latent heat and the apparatus for supplying again as fluidized gas.
  • the present invention solves the above-described problems, and fluidized bed drying capable of efficiently removing dust from the generated bed discharged from the fluidized bed drying apparatus and the fluidized bed drying apparatus that can improve the drying efficiency.
  • the purpose is to provide equipment.
  • the fluidized bed drying apparatus of the present invention includes a drying container having a hollow shape, a wet raw material charging unit for charging a wet raw material into one end of the drying container, and the other end of the drying container.
  • a dry matter discharge unit that discharges a dried product obtained by heating and drying the wet raw material
  • a fluidized gas supply unit that forms a fluidized bed with the wet raw material by supplying a fluidizing gas to a lower part of the drying container
  • a guide device that guides the steam from the dry matter discharge part side to the wet raw material input part side and guides it to the gas discharge part.
  • the wet raw material flows by the fluidizing gas.
  • a fluidized bed is formed, and the wet raw material of the fluidized bed is heated by the heating unit to be dried to become a dry product.
  • the dry product is discharged to the outside from the dry product discharge unit, while the fluidized gas and the wet raw material are discharged. Vapor generated by drying is discharged from the gas discharge portion to the outside.
  • the fluidized gas and the generated steam are guided from the dry matter discharge part side to the wet raw material input part side by the guide device and guided to the gas discharge part, and are accompanied by the fluidized gas and the generated steam.
  • the dried material particles are returned to the wet raw material input part side, mixed with the wet raw material and dried again in the fluidized bed, and it becomes possible to promote the heat drying of the wet raw material input from the wet raw material input part.
  • the drying efficiency of the wet raw material can be improved.
  • the guide device is provided in a free board part above the fluidized bed, and the fluidized gas flowing from the dried material discharge part side to the wet raw material charging part side and the generation It has a collision plate that separates particles of the dry matter that accompanies the steam when it collides.
  • the fluidized gas and the generated steam can flow from the dry matter discharge unit side to the wet raw material input unit side by the collision plate and can be appropriately guided to the gas discharge unit, and the dry matter accompanying the fluidized gas and the generated steam.
  • the particles collide with the impingement plate the accompanying dry matter particles are properly separated and fall into the fluidized bed, and as a result, the dry matter separation performance can be improved.
  • the collision plate is opposed to the flow direction of the fluidized gas and the generated steam, and is arranged with a plurality of predetermined intervals in the flow direction, and is formed by the plurality of the collision plates.
  • the lower end of the colliding plate group is arranged at a position inclined upward from the wet raw material charging part side toward the dry matter discharge part side.
  • the fluidized gas and the generated steam are dried by disposing the lower end of the collision plate group formed of a plurality of collision plates at a position inclined upward from the wet raw material charging portion side toward the dry matter discharge portion side. It will flow from the material discharge part side to the wet raw material input part side, and this fluidized gas and generated steam can flow appropriately and be led to the gas discharge part.
  • the guide device is provided on a free board portion above the fluidized bed, and includes an inclined plate that is inclined upward from the wet raw material charging portion side toward the dry matter discharge portion side. It is characterized by having.
  • the fluidized gas and the generated steam flow along the lower surface of the inclined plate to the dry matter discharge unit side, and then flow over the inclined plate to the wet raw material charging unit side.
  • the dry matter discharge part side While being able to guide from the dry matter discharge part side to the wet raw material input part side and appropriately lead to the gas discharge part, particles of the dry matter accompanying the fluidized gas and the generated steam fall on the inclined plate, The particles of the dried product can be properly returned to the wet raw material charging part side along the upper surface of the inclined plate.
  • a transport device is provided that transports the particles of the dried material dropped onto the inclined plate by the plurality of impingement plates to the wet raw material charging unit side in the drying container. Yes.
  • the guide device includes a partition plate that is provided in the free board portion above the fluidized bed and partitions the wet raw material input portion and the gas discharge portion. .
  • the fluidized gas and the generated steam introduced from the dry matter discharge part side to the wet raw material input part side are transferred from the wet raw material input part to the outside. It is prevented from being discharged, and fluidized gas and generated steam can be properly introduced.
  • the fluidized bed drying equipment of the present invention includes a drying container, an input portion for supplying a wet raw material to one end of the drying container, and a discharge for discharging a dry product obtained by heating and drying the wet raw material from the other end of the drying container.
  • the wet raw material charged in the drying container is separated into a drying chamber in which the wet raw material is dried and a chamber chamber vertically below the drying chamber, and a gas can be supplied from the chamber chamber to the drying chamber.
  • a fluidized bed drying apparatus comprising a steam discharge unit for discharging generated steam generated by drying the wet raw material of the fluidized bed from above the drying container, and drying the wet raw material having a high water content in the dry container.
  • the fluidized bed drying facility can efficiently remove dust from the generated steam discharged from the fluidized bed drying device by adopting the above configuration.
  • the fluidized bed drying device further includes a heating unit including a pipe disposed inside the fluidized bed of the drying container and a superheated medium supply device that supplies a superheated medium to the pipe.
  • a heating unit including a pipe disposed inside the fluidized bed of the drying container and a superheated medium supply device that supplies a superheated medium to the pipe.
  • the cooling trap in the generated steam line, guides the cooled generated steam to a region vertically above the fluidized bed inside the drying container, It is preferable to further comprise a superheating means for superheating with the generated steam inside.
  • the generated steam that has passed through the cooling trap can be heated to high temperature using heat in the apparatus system, and can be used for various applications.
  • the cooling trap in the generated steam line, and the cooled generated steam is superheated by a superheating medium flowing through the piping in a region after passing through the inside of the fluidized bed of the heating means. It is preferable to further include an overheating means. Thereby, the generated steam that has passed through the cooling trap can be heated to high temperature using heat in the apparatus system, and can be used for various applications.
  • a line for branching a part of the generated steam heated by the superheating means and supplying the fluidized gas as the fluidized gas to the fluidized gas supply unit is preferable to further include a line for branching a part of the generated steam heated by the superheating means and supplying the fluidized gas as the fluidized gas to the fluidized gas supply unit.
  • a heat recovery system that branches a part of the generated steam heated by the superheating means and recovers the heat of the generated steam.
  • the guide device is provided.
  • the particles of dry matter accompanying the fluidized gas and generated steam can be returned to the wet raw material input side to be mixed with the wet raw material, improving the drying efficiency of the wet raw material by promoting the heat drying of the wet raw material. can do.
  • FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic side view of the fluidized bed drying apparatus according to the first embodiment.
  • FIG. 3 is a schematic plan view of the fluidized bed drying apparatus according to the first embodiment.
  • FIG. 4 is a schematic side view of a fluidized bed drying apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic side view of a fluidized bed drying apparatus according to Example 3 of the present invention.
  • FIG. 6 is a schematic side view of a fluidized bed drying apparatus according to Example 4 of the present invention.
  • FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic side view of the fluidized bed drying apparatus according to the first embodiment.
  • FIG. 3 is a schematic
  • FIG. 7 is a schematic side view of a fluidized bed drying apparatus according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic view showing an embodiment of a combined coal gasification combined power generation facility to which a fluidized bed drying facility according to Embodiment 6 of the present invention is applied.
  • FIG. 9 is a schematic view showing a fluidized bed drying facility including the fluidized bed drying apparatus according to Example 6 shown in FIG.
  • FIG. 10 is a schematic view showing a fluidized bed drying apparatus according to Example 6 shown in FIG.
  • FIG. 11 is a schematic diagram illustrating a fluidized bed drying facility including the fluidized bed drying apparatus according to the seventh embodiment.
  • FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic side view of the fluidized bed drying apparatus of Embodiment 1.
  • FIG. These are the schematic plan views of the fluidized-bed drying apparatus of Example 1.
  • FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic side view of the fluidized bed drying apparatus of Embodiment 1.
  • FIG. These are the schematic plan views of the fluidized-bed drying apparatus of Example 1.
  • FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic side view of the fluidized bed drying apparatus of Embodiment 1.
  • FIG. These are the schematic plan views
  • the combined coal gasification combined power generation facility (IGCC: Integrated Coal Gasification Combined Cycle) of Example 1 employs an air combustion method in which coal gas is generated in a gasification furnace using air as an oxidant, and is purified by a gas purification device. Coal gas is supplied as fuel gas to gas turbine equipment to generate electricity. That is, the combined coal gasification combined power generation facility of this embodiment is a power generation facility of an air combustion system (air blowing). In this case, low-grade coal is used as the wet raw material supplied to the gasifier.
  • the coal gasification combined power generation facility 10 includes a coal supply device 11, a fluidized bed drying device 12, a pulverized coal machine (mill) 13, a coal gasification furnace 14, and a char recovery device 15. , A gas refining device 16, a gas turbine facility 17, a steam turbine facility 18, a generator 19, and a heat recovery steam generator (HRSG) 20.
  • the coal feeder 11 includes a raw coal bunker 21, a coal feeder 22, and a crusher 23.
  • the raw coal bunker 21 can store low-grade coal, and can drop a predetermined amount of low-grade coal into the coal feeder 22.
  • the coal feeder 22 can transport the low-grade coal dropped from the raw coal bunker 21 by a conveyor or the like and drop it on the crusher 23.
  • the crusher 23 can crush the dropped low-grade coal into a predetermined size.
  • the fluidized bed drying device 12 supplies drying steam (superheated steam) to the low-grade coal introduced by the coal feeder 11 so as to heat and dry the low-grade coal while flowing. Moisture contained in the graded coal can be removed.
  • the fluidized bed drying device 12 is provided with a cooler 31 for cooling the dried low-grade coal taken out from the lower portion, and the dried and cooled dried coal is stored in the dried coal bunker 32.
  • the fluidized bed drying apparatus 12 is provided with a dry coal cyclone 33 and a dry coal electrostatic precipitator 34 for separating dry coal particles from steam taken out from above, and the dry coal particles separated from the steam are dried coal bunker. 32 is stored.
  • the steam from which the dry coal has been separated by the dry coal electrostatic precipitator 34 is compressed by the steam compressor 35 and then supplied to the fluidized bed drying device 12 as drying steam.
  • the pulverized coal machine 13 is a coal pulverizer, and produces pulverized coal by pulverizing the low-grade coal (dried coal) dried by the fluidized bed dryer 12 into fine particles. That is, in the pulverized coal machine 13, the dry coal stored in the dry coal bunker 32 is dropped by the coal feeder 36, and this dry coal) is converted into low-grade coal having a predetermined particle size or less, that is, pulverized coal. .
  • the pulverized coal after being pulverized by the pulverized coal machine 13 is separated from the conveying gas by the pulverized coal bag filters 37a and 37b and stored in the pulverized coal supply hoppers 38a and 38b.
  • the coal gasification furnace 14 can supply pulverized coal processed by the pulverized coal machine 13 and can be recycled by returning the char (unburned coal) recovered by the char recovery device 15. .
  • the coal gasification furnace 14 is connected to the compressed air supply line 41 from the gas turbine equipment 17 (compressor 61), and can supply the compressed air compressed by the gas turbine equipment 17.
  • the air separation device 42 separates and generates nitrogen and oxygen from air in the atmosphere.
  • a first nitrogen supply line 43 is connected to the coal gasifier 14, and a pulverized coal supply hopper is connected to the first nitrogen supply line 43.
  • Charging lines 44a and 44b from 38a and 38b are connected.
  • the second nitrogen supply line 45 is also connected to the coal gasification furnace 14, and the char return line 46 from the char recovery device 15 is connected to the second nitrogen supply line 45.
  • the oxygen supply line 47 is connected to the compressed air supply line 41.
  • nitrogen is used as a carrier gas for coal and char
  • oxygen is used as an oxidant.
  • the coal gasification furnace 14 is, for example, a spouted bed type gasification furnace, which combusts and gasifies coal, char, air (oxygen) supplied therein or water vapor as a gasifying agent, and produces carbon dioxide.
  • a combustible gas (product gas, coal gas) containing carbon as a main component is generated, and a gasification reaction takes place using this combustible gas as a gasifying agent.
  • the coal gasification furnace 14 is provided with a foreign matter removing device 48 that removes foreign matter mixed with pulverized coal.
  • the coal gasification furnace 14 is not limited to the spouted bed gasification furnace, and may be a fluidized bed gasification furnace or a fixed bed gasification furnace.
  • the coal gasification furnace 14 is provided with a gas generation line 49 for combustible gas toward the char recovery device 15, and can discharge combustible gas containing char.
  • a gas generation line 49 for combustible gas toward the char recovery device 15, and can discharge combustible gas containing char.
  • the combustible gas may be cooled to a predetermined temperature and then supplied to the char recovery device 15.
  • the char collection device 15 has a dust collector 51 and a supply hopper 52.
  • the dust collector 51 is constituted by one or a plurality of bag filters or cyclones, and can separate char contained in the combustible gas generated in the coal gasification furnace 14.
  • the combustible gas from which the char has been separated is sent to the gas purification device 16 through the gas discharge line 53.
  • the supply hopper 52 stores the char separated from the combustible gas by the dust collector 51.
  • a bin may be disposed between the dust collector 51 and the supply hopper 52, and a plurality of supply hoppers 52 may be connected to the bin.
  • a char return line 46 from the supply hopper 52 is connected to the second nitrogen supply line 45.
  • the gas purification device 16 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas from which the char has been separated by the char recovery device 15.
  • the gas purifier 16 purifies the combustible gas to produce fuel gas and supplies it to the gas turbine equipment 17.
  • the sulfur is finally removed by removing it with the amine absorbing solution. Is recovered as gypsum and used effectively.
  • the gas turbine equipment 17 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64.
  • the combustor 62 has a compressed air supply line 65 connected to the compressor 61, a fuel gas supply line 66 connected to the gas purifier 16, and a combustion gas supply line 67 connected to the turbine 63.
  • the gas turbine equipment 17 is provided with a compressed air supply line 41 extending from the compressor 61 to the coal gasification furnace 14, and a booster 68 is provided in the middle.
  • the compressed air supplied from the compressor 61 and the fuel gas supplied from the gas purifier 16 are mixed and burned, and the rotating shaft 64 is rotated by the generated combustion gas in the turbine 63. By doing so, the generator 19 can be driven.
  • the steam turbine facility 18 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 17, and the generator 19 is connected to the base end portion of the rotating shaft 64.
  • the exhaust heat recovery boiler 20 is provided in the exhaust gas line 70 from the gas turbine equipment 17 (the turbine 63), and generates steam by exchanging heat between the air and the high temperature exhaust gas. Therefore, the exhaust heat recovery boiler 20 is provided with the steam supply line 71 between the steam turbine equipment 18 and the turbine 69 of the steam turbine equipment 18, the steam recovery line 72 is provided, and the steam recovery line 72 is provided with the condenser 73. Yes. Therefore, in the steam turbine facility 18, the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 20, and the generator 19 can be driven by rotating the rotating shaft 64.
  • the exhaust gas from which heat has been recovered by the exhaust heat recovery boiler 20 has harmful substances removed by the gas purification device 74, and the purified exhaust gas is discharged from the chimney 75 to the atmosphere.
  • raw coal low-grade coal
  • the machine 22 drops the crusher 23 where it is crushed to a predetermined size.
  • the crushed low-grade coal is heated and dried by the fluidized bed drying device 12, cooled by the cooler 31, and stored in the dry coal bunker 32.
  • the steam taken out from the upper part of the fluidized bed drying device 12 is separated into dry coal particles by the dry coal cyclone 33 and the dry coal electrostatic precipitator 34 and compressed by the steam compressor 35 before being supplied to the fluidized bed drying device 12. Returned as drying steam.
  • the dry coal particles separated from the steam are stored in the dry coal bunker 32.
  • the dry coal stored in the dry coal bunker 32 is fed into the pulverized coal machine 13 by the coal feeder 36, where it is pulverized into fine particles to produce pulverized coal, and through the pulverized coal bag filters 37a and 37b. And stored in the pulverized coal supply hoppers 38a and 38b.
  • the pulverized coal stored in the pulverized coal supply hoppers 38 a and 38 b is supplied to the coal gasification furnace 14 through the first nitrogen supply line 43 by nitrogen supplied from the air separation device 42.
  • the char recovered by the char recovery device 15 described later is supplied to the coal gasification furnace 14 through the second nitrogen line 45 by nitrogen supplied from the air separation device 42.
  • the compressed air extracted from the gas turbine equipment 17 to be described later is boosted by the booster 68 and then supplied to the coal gasification furnace 14 through the compressed air supply line 41 together with oxygen supplied from the air separation device 42.
  • the supplied pulverized coal and char are combusted by compressed air (oxygen), and the pulverized coal and char are gasified to generate combustible gas (coal gas) mainly composed of carbon dioxide. Can be generated.
  • the combustible gas is discharged from the coal gasifier 14 through the gas generation line 49 and sent to the char recovery device 15.
  • the combustible gas is first supplied to the dust collector 51, whereby the char contained in the gas is separated from the combustible gas.
  • the combustible gas from which the char has been separated is sent to the gas purification device 16 through the gas discharge line 53.
  • the fine char separated from the combustible gas is deposited on the supply hopper 52, returned to the coal gasifier 14 through the char return line 46, and recycled.
  • the combustible gas from which the char has been separated by the char recovery device 15 is gas purified by removing impurities such as sulfur compounds and nitrogen compounds in the gas purification device 16 to produce fuel gas.
  • the gas turbine facility 17 when the compressor 61 generates compressed air and supplies the compressed air to the combustor 62, the combustor 62 is supplied from the compressed air supplied from the compressor 61 and the gas purification device 16. Combustion gas is generated by mixing with fuel gas and combusting, and the turbine 63 is driven by this combustion gas, so that the generator 19 can be driven via the rotating shaft 64 to generate power.
  • the exhaust gas discharged from the turbine 63 in the gas turbine equipment 17 generates steam by exchanging heat with air in the exhaust heat recovery boiler 20, and supplies the generated steam to the steam turbine equipment 18. .
  • the generator 69 can be driven through the rotating shaft 64 to generate electric power by driving the turbine 69 with the steam supplied from the exhaust heat recovery boiler 20.
  • the fluidized bed drying apparatus 12 includes a drying container 101, a raw coal charging port (wet raw material charging unit) 102, a dry coal discharging port (dry matter discharging unit) 103, and a fluidization It has a gas supply port (fluidized gas supply unit) 104, a gas discharge port (gas discharge unit) 105, and a heat transfer tube (heating unit) 106.
  • a drying container 101 a raw coal charging port (wet raw material charging unit) 102, a dry coal discharging port (dry matter discharging unit) 103, and a fluidization It has a gas supply port (fluidized gas supply unit) 104, a gas discharge port (gas discharge unit) 105, and a heat transfer tube (heating unit) 106.
  • the drying container 101 has a hollow box shape, and is formed with a raw coal charging port 102 for charging raw coal on one end side, and on the other end side, dried charcoal for discharging a dried product obtained by heating and drying raw coal.
  • a discharge port 103 is formed.
  • the drying container 101 is provided with a dispersion plate 107 having a plurality of openings at a predetermined distance from the bottom plate 101a at the lower portion, and fluidized gas (superheated steam) is supplied into the drying container 101 to the bottom plate 101a.
  • a fluidizing gas supply port 104 is formed.
  • the drying container 101 is formed with a gas discharge port 105 for discharging the fluidized gas and the generated steam at the top.
  • the drying container 101 is retained by the ceiling portion 101b being inclined upward toward the gas discharge port 105, and the fluidized gas and the generated steam flowing along the inclined ceiling portion 101b. It is comprised so that it may be guide
  • the drying container 101 is supplied with raw coal from the raw coal inlet 102 and supplied with fluidizing gas from the fluidizing gas supply port 104 through the dispersion plate 107, so that a predetermined thickness is provided above the dispersion plate 107.
  • a fluidized bed S is formed, and a free board portion F is formed above the fluidized bed S.
  • a heat transfer pipe 106 that circulates in the fluidized bed S from the outside through the drying container 101 is disposed, and the raw coal can be heated and dried by the superheated steam flowing in the heat transfer pipe 106.
  • fluidized gas is supplied from the fluidized gas supply port 104 to the fluidized bed S through the dispersion plate 107, and moisture contained therein is evaporated by drying the raw coal in the fluidized bed S. Steam is generated.
  • the fluidized gas and generated steam are discharged from the gas outlet 105.
  • the fluidized gas and generated steam are introduced from the dry coal outlet 103 side to the raw coal inlet 102 side.
  • An inclined plate (guide plate) 111, a collision plate 112, and a flow guide plate (partition plate) 113 are provided as guide devices that guide the gas discharge port 105.
  • the inclined plate 111 is inclined upward from the raw coal inlet 102 side toward the dry coal outlet 103 side at the free board portion F above the fluidized bed S, and the base end portion of the raw plate in the drying vessel 101 is inclined. While being arranged with a predetermined gap from the wall surface on the charcoal inlet 102 side, the tip portion is arranged with a predetermined gap from the wall surface on the dry charcoal discharge port 103 side in the drying container 101, and both side portions are not spaced from each wall surface in the drying container 101. Closely fixed.
  • the gap formed between the inclined plate 111 and the upper surface of the fluidized bed S is set so as to gradually increase from the raw coal input port 102 side toward the dry coal discharge port 103, and the fluidized gas
  • the generated steam can be guided to the dry coal discharge port 103 side, and can be guided from the dry coal discharge port 103 side to the raw coal input port 102 side.
  • the collision plate 112 collides with the fluidized gas and the generated steam that are introduced from the dry coal discharge port 103 side to the raw coal input port 102 side above the inclined plate 111. It separates particles of dry matter that accompany the chemical gas and generated steam. Therefore, a plurality of collision plates 112 are provided between the ceiling portion 101 b of the drying container 101 and the inclined plate 111 in the free board portion F.
  • the plurality of collision plates 112 are arranged along the substantially vertical direction so as to oppose the flow of fluidized gas and generated steam flowing from the dry coal discharge port 103 side to the raw coal input port 102 side, and the collision By arranging the plates 112 at a predetermined interval, a flow path is ensured so that the fluidized gas and the generated steam can meander and flow.
  • the drying container 101 has a raw coal inlet 102 and a gas outlet 105 disposed on one end side, and a gas outlet 105 is disposed above the raw coal inlet 102.
  • the flow guide plate 113 is arrange
  • the inclination angle of the flow guide plate 113 is substantially the same as the raw coal charging angle at the raw coal charging port 102. Therefore, the gap formed between the flow guide plate 113 and the upper surface of the fluidized bed S is set so as to gradually decrease from the raw coal input port 102 side toward the inclined plate 111 (dry coal discharge port 103). ing.
  • the raw coal is supplied from the raw coal inlet 102 to the drying container 101 and the fluidized gas is supplied from the fluidized gas supply port 104 through the dispersion plate 107.
  • a fluidized bed S having a predetermined thickness is formed above the dispersion plate 107. The raw coal moves through the fluidized bed S to the dry coal discharge port 103 side by the fluidizing gas, and is heated and dried by receiving heat from the heat transfer tube 106 at this time.
  • the raw coal is heated and dried by the heat from the heat transfer pipe 106 while moving from the raw coal inlet 102 to the dry coal outlet 103, but immediately after being supplied from the raw coal inlet 102, that is, At a position below the flow guide plate 113, it is in a preheated state, and moisture hardly evaporates.
  • the water evaporation starts, gradually increases and becomes maximum, and reaches the dry coal discharge port 103. As it approaches, moisture evaporation decreases.
  • the steam generated by heating and drying the raw coal in the fluidized bed S at a position below the inclined plate 111 rises together with the fluidizing gas, and flows toward the dry coal discharge port 103 along the lower surface of the inclined plate 111. .
  • the fluidizing gas and the generated steam are detoured on the wall surface on the dry coal discharge port 103 side in the drying container 101 and flow in the space above the inclined plate 111 toward the raw coal input port 102.
  • the fluidized gas and the generated steam collide with the plurality of collision plates 112, whereby the particles of dry coal accompanying the fluidized gas and the generated vapor are separated and fall on the inclined plate 111.
  • the dry coal particles descend toward the raw coal inlet 102 along the upper surface of the inclined plate 111, and fall into the fluidized bed S together with the raw coal before drying introduced from the raw coal inlet 102.
  • the raw coal before drying and the particles of the dry coal are mixed in the fluidized bed S, drying of the raw coal before drying is promoted.
  • the dry coal from which the raw coal has been dried is discharged to the outside from the dry coal discharge port 103, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 113 and flow upward.
  • the gas is discharged from the gas discharge port 105 to the outside.
  • the drying container 101 having a hollow shape, the raw coal charging port 102 for charging raw coal into one end side of the drying container 101, and the other end of the drying container 101 are provided.
  • the fluidized gas and the generated steam are guided from the dry coal discharge port 103 side to the raw coal input port 102 side by the inclined plate 111 and guided to the gas discharge port 105.
  • the dry coal particles accompanying the coal are separated from the fluidized gas and the generated steam, returned to the raw coal inlet 102 side, mixed with the raw coal before drying, and moved through the fluidized bed S again. It becomes possible to accelerate the heat drying of the raw coal introduced from the port 102, and the drying efficiency of the raw coal can be improved.
  • the free board portion F above the fluidized bed S is provided with an inclined plate 111 that is inclined upward from the raw coal input port 102 side toward the dry coal discharge port 103 side. Yes. Accordingly, the fluidized gas and the generated steam flow along the lower surface of the inclined plate 111 toward the dry coal discharge port 103, and then flow over the inclined plate 111 toward the raw coal inlet 102.
  • the generated steam can be introduced from the dry coal discharge port 103 side to the raw coal input port 102 side to be properly guided to the gas discharge port 105, and the dry coal particles accompanying the fluidized gas and the generated steam are inclined.
  • the dried charcoal particles can be dropped onto the plate 111 and properly returned to the raw coal inlet 102 side along the upper surface of the inclined plate 111.
  • the fluidized gas and the generated steam which are introduced from the dry coal discharge port 103 side to the raw coal input port 102 side, collide with the upper side of the inclined plate 111 and are accompanied by the dry coal.
  • a plurality of collision plates 112 are provided to separate the particles. Therefore, when the fluidized gas and the generated steam flow from the dry coal discharge port 103 side to the raw coal input port 102 side above the inclined plate 111, the particles of the accompanying dry coal are caused to collide with the plurality of collision plates 112. It will be separated properly and fall, and the separation performance of dry coal can be improved.
  • the flow guide plate 113 that partitions the raw coal charging port 102 and the gas discharging port 105 is provided in the free board part F above the fluidized bed S. Therefore, the raw coal inlet 102 and the gas outlet 105 are partitioned by the flow guide plate 113, so that the fluidized gas and generated steam introduced from the dry coal outlet 103 side to the raw coal inlet 102 side are supplied to the raw coal inlet. Exhaust from the charcoal inlet 102 is prevented, and fluidized gas and generated steam can be properly introduced.
  • the flow guide plate 113 is inclined downward from the raw coal inlet 102 side toward the dry coal outlet 103 side, and the base end portion has a predetermined gap from the wall surface on the raw coal inlet 102 side in the drying container 101.
  • the distal end portion is disposed with a predetermined gap from the proximal end portion of the inclined plate 111. Therefore, the fluidized gas and the generated steam that are guided to the raw coal inlet 102 are appropriately guided to the gas outlet 105 by the inclined guide plate 113. Further, the dry charcoal particles separated from the fluidized gas and the generated steam slide down the inclined plate 111 and are reintroduced into the preheating region of the fluidized bed S from between the inclined plate 111 and the flow guide plate 113.
  • FIG. 4 is a schematic side view of a fluidized bed drying apparatus according to Example 2 of the present invention.
  • symbol is attached
  • the fluidized bed drying apparatus 12 includes a drying container 101, a raw coal inlet 102, a dry coal outlet 103, a fluidized gas supply port 104, and a gas outlet 105. And a heat transfer tube 106.
  • the drying container 101 includes an inclined belt 121 as a guide device that guides the fluidized gas and generated steam from the dry coal discharge port 103 side to the raw coal input port 102 side and guides them to the gas discharge port 105, and a collision plate 112. And the flow guide plate 113 is provided.
  • the inclined belt 121 is configured by an endless conveying belt wound between a driving roller and a driven roller.
  • the inclined belt 121 functions not only as an inclined plate, but also with dry charcoal particles dropped by a plurality of collision plates 112. It has a function as a transfer device for transferring to the raw coal input port 102 side.
  • the gap formed between the inclined belt 121 and the upper surface of the fluidized bed S is set so as to gradually increase from the raw coal input port 102 toward the dry coal discharge port 103, and the fluidized gas
  • the generated steam can be guided to the dry coal discharge port 103 side, and can be guided from the dry coal discharge port 103 to the raw coal input port 102 side.
  • the inclined belt 121 is disposed in the free board portion F above the fluidized bed S so as to be inclined upward from the raw coal input port 102 side toward the dry coal discharge port 103 side. While the tip of the flow guide plate 113 is arranged with a predetermined gap, the tip is arranged with a predetermined gap from the wall on the dry charcoal discharge port 103 side of the drying container 101, and the driving roller and the driven roller are each wall surface of the drying container 101. Is supported rotatably. Therefore, the inclined belt 121 operates in the direction of the arrow shown in FIG. 4, so that the dry coal particles dropped on the upper surface can be conveyed to the raw coal inlet 102 side.
  • the raw coal is supplied to the drying container 101 from the raw coal inlet 102 and the fluidizing gas is supplied from the fluidizing gas supply port 104 through the dispersion plate 107, so that A fluidized bed S having a predetermined thickness is formed.
  • the raw coal moves through the fluidized bed S to the dry coal discharge port 103 side by the fluidizing gas, and is heated and dried by receiving heat from the heat transfer tube 106 at this time.
  • the raw coal is heated and dried by the heat from the heat transfer pipe 106 while moving from the raw coal inlet 102 to the dry coal outlet 103, but immediately after being supplied from the raw coal inlet 102, that is, At a position below the flow guide plate 113, it is in a preheated state, and moisture hardly evaporates.
  • the steam generated by heating and drying the raw coal in the fluidized bed S at a position below the inclined belt 121 rises together with the fluidizing gas and flows to the dry coal discharge port 103 side along the lower surface of the inclined belt 121.
  • the fluidized gas and the generated steam are detoured on the wall surface of the drying container 101 on the dry coal discharge port 103 side, and flow in the space above the inclined belt 121 to the raw coal input port 102 side.
  • the fluidized gas and the generated steam collide with the plurality of collision plates 112, whereby the particles of the dry coal accompanying the fluidized gas and the generated steam are separated and fall on the inclined belt 121.
  • the dry coal particles are moved to the raw coal charging port 102 side by the driven inclined belt 121 and fall into the fluidized bed S together with the raw coal before drying supplied from the raw coal charging port 102.
  • the raw coal before drying and the particles of the dry coal are mixed in the fluidized bed S, drying of the raw coal before drying is promoted.
  • the dry coal from which the raw coal has been dried is discharged to the outside from the dry coal discharge port 103, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 113 and flow upward.
  • the gas is discharged from the gas discharge port 105 to the outside.
  • the fluidizing gas and the generated steam are introduced into the drying vessel 101 from the dry coal discharge port 103 side to the raw coal input port 102 side, and the gas discharge port.
  • An inclined belt 121 that functions as a guide device that leads to 105 and a conveying device that conveys the particles of the dried dry coal to the raw coal charging port 102 side is provided.
  • the fluidized gas and the generated steam rising from the fluidized bed S are guided from the dry coal discharge port 103 side to the raw coal input port 102 side by the inclined belt 121 and are guided to the gas discharge port 105.
  • the dry coal particles accompanying the gasified gas and generated steam are separated from the fluidized gas and generated steam, returned to the raw coal inlet 102 side, mixed with the raw coal before drying, and moved through the fluidized bed S again.
  • FIG. 5 is a schematic side view of a fluidized bed drying apparatus according to Example 3 of the present invention.
  • symbol is attached
  • the fluidized bed drying apparatus 12 includes a drying container 101, a raw coal inlet 102, a dry coal outlet 103, a fluidized gas supply port 104, and a gas outlet 105. And a heat transfer tube 106.
  • the drying container 101 includes an inclined head 131, a collision plate 112, a guide device that guides the fluidized gas and generated steam from the dry coal discharge port 103 side to the raw coal input port 102 side and guides them to the gas discharge port 105.
  • a flow guide plate 113 is provided.
  • the inclined head 131 has a hollow shape and can supply superheated steam inside, and has a plurality of injection nozzles 131a mounted on the upper surface portion, and not only functions as an inclined plate but also a plurality of collisions. It has a function as a transport device that transports dry charcoal particles dropped by the plate 112 to the raw coal inlet 102 side.
  • the gap formed between the inclined head 131 and the upper surface of the fluidized bed S is set so as to gradually increase from the raw coal inlet 102 side toward the dry coal outlet 103, and the fluidized gas
  • the generated steam can be guided to the dry coal discharge port 103 side, and can be guided from the dry coal discharge port 103 to the raw coal input port 102 side.
  • the inclined head 131 is disposed at the free board portion F above the fluidized bed S so as to be inclined upward from the raw coal input port 102 side toward the dry coal discharge port 103 side. Is disposed with a predetermined gap from the tip of the flow guide plate 113, while the tip is disposed with a predetermined gap from the wall on the drying coal discharge port 103 side in the drying vessel 101, and both side portions are arranged on each wall of the drying vessel 101. It is fixed.
  • each injection nozzle 131a can inject superheated steam toward the raw coal inlet 102 side. Therefore, the inclined head 131 can convey the dry coal particles falling on the upper surface to the raw coal inlet 102 side by injecting superheated steam from each injection nozzle 131a in the direction of the arrow shown in FIG.
  • the raw coal is supplied to the drying container 101 from the raw coal inlet 102 and the fluidizing gas is supplied from the fluidizing gas supply port 104 through the dispersion plate 107, so that A fluidized bed S having a predetermined thickness is formed.
  • the raw coal moves through the fluidized bed S to the dry coal discharge port 103 side by the fluidizing gas, and is heated and dried by receiving heat from the heat transfer tube 106 at this time.
  • the raw coal is heated and dried by the heat from the heat transfer pipe 106 while moving from the raw coal inlet 102 to the dry coal outlet 103, but immediately after being supplied from the raw coal inlet 102, that is, At a position below the flow guide plate 113, it is in a preheated state, and moisture hardly evaporates.
  • the steam generated by heating and drying the raw coal in the fluidized bed S at a position below the inclined head 131 rises together with the fluidizing gas and flows to the dry coal discharge port 103 side along the lower surface of the inclined head 131.
  • the fluidized gas and the generated steam are detoured on the wall surface on the dry coal discharge port 103 side in the drying container 101 and flow in the space above the inclined head 131 toward the raw coal input port 102.
  • the fluidized gas and the generated steam collide with the plurality of collision plates 112, whereby the particles of the dry coal accompanying the fluidized gas and the generated steam are separated and fall on the inclined head 131.
  • the dry coal particles are blown off to the raw coal charging port 102 side by the superheated steam injected from each injection nozzle 131a and fall into the fluidized bed S together with the raw coal before drying supplied from the raw coal charging port 102.
  • the raw coal before drying and the particles of the dry coal are mixed in the fluidized bed S, drying of the raw coal before drying is promoted.
  • the dry coal from which the raw coal has been dried is discharged to the outside from the dry coal discharge port 103, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 113 and flow upward.
  • the gas is discharged from the gas discharge port 105 to the outside.
  • the fluidized gas and the generated steam are introduced into the drying vessel 101 from the dry coal discharge port 103 side to the raw coal input port 102 side, and the gas discharge port.
  • An inclined head 131 that functions as a guide device that leads to 105 and a conveying device that conveys the particles of the dry coal that has fallen to the raw coal charging port 102 side is provided.
  • the fluidized gas and the generated steam rising from the fluidized bed S are guided from the dry coal discharge port 103 side to the raw coal input port 102 side by the inclined head 131 and are guided to the gas discharge port 105.
  • the dry coal particles accompanying the gasified gas and generated steam are separated from the fluidized gas and generated steam, returned to the raw coal inlet 102 side, mixed with the raw coal before drying, and moved through the fluidized bed S again.
  • the fluidized gas and the generated steam flow over the inclined head 131 and collide with the plurality of collision plates 112, the accompanying dry charcoal particles are separated and fall on the inclined head 131.
  • the superheated steam injected from the injection nozzle 131a is transported to the raw coal input port 102 side and supplied to the preheating region of the fluidized bed S. This dry coal is appropriately mixed with the raw coal before drying and dried. Can be promoted.
  • the inclined head 131 having the inclined belt 121 and the injection nozzle 131a is provided as the conveying device, but the present invention is not limited to this configuration.
  • a vibrator may be provided on the inclined plate, and the inclined plate may be vibrated to convey dry charcoal particles.
  • a scraping member may be movably provided on the inclined plate.
  • FIG. 6 is a schematic side view of a fluidized bed drying apparatus according to Example 4 of the present invention.
  • symbol is attached
  • the fluidized bed drying apparatus 12 ⁇ / b> A includes a drying container 201, a raw coal charging port (wet raw material charging unit) 202, a dry coal discharging port (dry matter discharging unit) 203, A fluidized gas supply port (fluidized gas supply unit) 204, a gas discharge port (gas discharge unit) 205, and a heat transfer tube (heating unit) 206 are provided.
  • the drying container 201 has a hollow box shape, and is formed with a raw coal charging port 202 for charging raw coal on one end side, and on the other end side, dried charcoal for discharging a dried product obtained by heating and drying raw coal.
  • a discharge port 203 is formed.
  • the drying container 201 is provided with a dispersion plate 207 having a plurality of openings at a predetermined distance from the bottom plate 201a at the lower portion, and supplies fluidized gas (superheated steam) into the drying container 201 to the bottom plate 201a.
  • a fluidizing gas supply port 204 is formed.
  • the drying container 201 is formed with a gas discharge port 205 for discharging the fluidized gas and the generated steam at the top.
  • the ceiling 201b is inclined upward from the dry matter discharge port 203 toward the gas discharge port 205, and the fluidized gas and the generated vapor flow along the inclined ceiling 201b. Therefore, it is configured to be guided to the gas discharge port 205 without staying.
  • the drying container 201 is supplied with raw coal from the raw coal inlet 202 and fluidized gas is supplied from the fluidized gas supply port 204 through the dispersion plate 207, so that a predetermined thickness is provided above the dispersion plate 207.
  • a fluidized bed S is formed, and a free board portion F is formed above the fluidized bed S.
  • tube 206 which penetrates the drying container 201 from the exterior and circulates the inside of the fluidized bed S is arrange
  • fluidized gas is supplied from the fluidized gas supply port 204 to the fluidized bed S through the dispersion plate 207, and moisture contained therein is evaporated by drying the raw coal in the fluidized bed S. Steam is generated.
  • the fluidized gas and generated steam are discharged from the gas outlet 205.
  • the fluidized gas and generated steam are introduced from the dry matter outlet 203 side to the raw coal inlet 202 side.
  • a collision plate 212 and a flow guide plate (partition plate) 213 are provided as a guide device that leads to the gas discharge port 205.
  • the collision plate 212 collides with the fluidized gas and generated steam introduced from the dry matter discharge port 203 side to the raw coal input port 202 side at the upper part of the free board portion F, so that the fluidized gas and generated steam are collided.
  • the particles of dry matter accompanying the slab are separated.
  • the collision plate group 214 is formed by providing a plurality of collision plates 212 at the upper part of the free board portion F and below the ceiling portion 201b of the drying container 201.
  • the collision plate group 214 is arranged along the substantially vertical direction so as to face the flow of fluidized gas and generated steam flowing from the dry matter discharge port 203 side to the raw coal input port 202 side, and the collision plate By arranging 212 at a predetermined interval, a flow path is ensured so that fluidized gas and generated steam can meander and flow.
  • the collision plate group 214 functions to guide the fluidized gas and generated steam in the drying container 201 from the dry matter discharge port 203 side to the raw coal input port 202 side. That is, the collision plate group 214 is disposed at a position where the lower end is inclined upward from the raw coal input port 202 side toward the dry coal discharge port 203 side. That is, the lower end of the collision plate group 214 is arranged so as to draw a virtual inclined surface L that is inclined upward from the raw coal input port 202 side toward the dry matter discharge port 203 side. Therefore, the gap formed between the virtual inclined surface L and the upper surface of the fluidized bed S is set so as to gradually increase from the raw coal input port 202 side toward the dry matter discharge port 203. The conversion gas and the generated steam can be led to the dry matter discharge port 203 side, and can be led from the dry matter discharge port 203 to the raw coal charging port 202 side.
  • the drying container 201 has a raw coal inlet 202 and a gas outlet 205 arranged on one end side, and a gas outlet 205 is arranged above the raw coal inlet 202.
  • the flow guide plate 213 is arrange
  • 201 is disposed with a predetermined gap from the wall surface on the raw coal inlet 202 side in 201, while the front end portion is disposed with a predetermined gap from the lower end portion of the collision plate 212, and both side portions are in close contact with each wall surface in the drying container 201 without a gap. It is fixed.
  • the raw coal is supplied to the drying container 201 from the raw coal inlet 202 and the fluidizing gas is supplied from the fluidizing gas supply port 204 through the dispersion plate 207, so that A fluidized bed S having a predetermined thickness is formed.
  • the raw coal moves through the fluidized bed S to the dry matter discharge port 203 side by the fluidized gas, and is heated and dried by receiving heat from the heat transfer tube 206 at this time.
  • the raw coal is heated and dried by the heat from the heat transfer pipe 206 while moving from the raw coal inlet 202 to the dry matter outlet 203, that is, immediately after being supplied from the raw coal inlet 202, that is, At a position below the flow guide plate 213, it is in a preheated state, and moisture hardly evaporates.
  • the water evaporation starts, gradually increases to the maximum, and the water evaporation decreases as the dry matter discharge port 203 is approached.
  • the steam generated by heating and drying the raw coal in the fluidized bed S at the lower position of the collision plate group 214 rises together with the fluidized gas and flows to the dry matter discharge port 203 side by the collision plate group 214.
  • the fluidized gas and the generated steam flow around the wall on the dry matter discharge port 203 side in the drying container 201 and flow toward the raw coal input port 202 side.
  • the fluidized gas and the generated steam collide with the plurality of collision plates 212, whereby the particles of dry coal accompanying the fluidized gas and the generated steam are separated and fall into the fluidized bed S.
  • drying of the raw coal before drying is promoted.
  • the dry coal from which the raw coal has been dried is discharged to the outside from the dry matter discharge port 203, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 213 and flow upward.
  • the gas is discharged from the gas discharge port 205 to the outside.
  • the drying container 201 having a hollow shape, the raw coal charging port 202 for charging raw coal into one end side of the drying container 201, and the other end of the drying container 201 are provided.
  • the gas outlet 205 for discharging fluidized gas and generated steam from above the raw coal inlet 202 on one end side of the drying vessel 201, the heat transfer pipe 206 for heating the raw coal of the fluidized bed S, the fluidized gas and generated
  • a collision plate 212 is provided as a guide device that guides the steam from the dry coal discharge port 203 side to the raw coal input port 202 side and guides it to the gas discharge port 205.
  • the fluidized gas and generated steam rising from the fluidized bed S are led from the dry coal discharge port 203 side to the raw coal input port 202 side by the collision plate group 214 and are guided to the gas discharge port 205.
  • the particles of the dry coal accompanying the fluidized gas and the generated steam are separated from the fluidized gas and the generated steam, returned to the raw coal inlet 202 side, mixed with the raw coal before drying, and moved through the fluidized bed S again. In other words, it becomes possible to accelerate the heat drying of the raw coal input from the raw coal input port 202, and the drying efficiency of the raw coal can be improved.
  • the collision plate group 214 is opposed to the flow direction of the fluidized gas and the generated steam, and a plurality of predetermined intervals are arranged in the same direction. Is disposed at a position inclined upward from the raw coal input port 202 side toward the dry coal discharge port 203 side. Accordingly, the lower end of the collision plate group 214 is arranged so as to draw a virtual inclined surface L that is inclined upward from the raw coal input port 202 side toward the dry matter discharge port 203 side, so that fluidized gas and generated steam are generated. After flowing to the dry coal discharge port 203 side, it flows to the raw coal input port 202 side, and this fluidized gas and generated steam can be properly introduced and led to the gas discharge port 205.
  • FIG. 7 is a schematic side view of a fluidized bed drying apparatus according to Example 5 of the present invention.
  • symbol is attached
  • the fluidized bed drying apparatus 12 ⁇ / b> A includes a drying container 201, a raw coal inlet 202, a dry coal outlet 203, a fluidized gas supply port 204, and a gas outlet 205. And a heat transfer tube 206.
  • the drying container 201 includes a collision plate 222 as a guide device that guides the fluidized gas and generated steam from the dry matter discharge port 203 side to the raw coal input port 202 side and guides them to the gas discharge port 205, and a flow guide plate. 213 is provided.
  • the collision plate 222 collides with the fluidized gas and the generated steam that are introduced from the dry matter discharge port 203 side to the raw coal input port 202 side at the upper part of the free board portion F, so that the fluidized gas and the generated steam are collided.
  • the particles of dry matter accompanying the slab are separated. Therefore, in the upper part of the free board part F, the collision board group 224 is formed by being provided below the ceiling part 201b of the drying container 201 and providing the plurality of collision boards 222.
  • the collision plate group 224 is disposed at a predetermined angle so as to face the flow of fluidized gas and generated steam flowing from the dry matter discharge port 203 side to the raw coal input port 202 side, and the collision plate 222.
  • each collision plate 222 has an inclination angle such that the lower end faces the raw coal inlet 202 side.
  • the collision plate group 224 functions to guide the fluidized gas and generated steam in the drying container 201 from the dry matter discharge port 203 side to the raw coal input port 202 side. That is, the collision plate group 224 is disposed at a position where the lower end is inclined upward from the raw coal inlet 202 side toward the dry coal outlet 203 side. That is, the lower end of the collision plate group 224 is disposed so as to draw a virtual inclined surface L that is inclined upward from the raw coal input port 202 side toward the dry matter discharge port 203 side.
  • the raw coal is supplied to the drying container 201 from the raw coal inlet 202 and the fluidizing gas is supplied from the fluidizing gas supply port 204 through the dispersion plate 207, so that A fluidized bed S having a predetermined thickness is formed.
  • the raw coal moves through the fluidized bed S to the dry matter discharge port 203 side by the fluidized gas, and is heated and dried by receiving heat from the heat transfer tube 206 at this time.
  • the raw coal is heated and dried by the heat from the heat transfer pipe 206 while moving from the raw coal inlet 202 to the dry matter outlet 203, that is, immediately after being supplied from the raw coal inlet 202, that is, At a position below the flow guide plate 213, it is in a preheated state, and moisture hardly evaporates.
  • the water evaporation starts, gradually increases to the maximum, and the water evaporation decreases as the dry matter discharge port 203 is approached.
  • the steam generated by heating and drying the raw coal in the fluidized bed S at a position below the collision plate group 224 rises together with the fluidized gas, and is dried according to the inclination angle of the plurality of collision plates 222, particularly the collision plates 222. It flows to the object discharge port 203 side. Then, the fluidized gas and the generated steam flow around the wall on the dry matter discharge port 203 side in the drying container 201 and flow toward the raw coal input port 202 side. At this time, the fluidized gas and the generated steam collide with the plurality of collision plates 222, whereby the particles of the dry coal accompanying the fluidized gas and the generated steam are separated and fall into the fluidized bed S.
  • the fluidized gas and the generated steam are introduced into the drying vessel 201 from the dry coal discharge port 203 side to the raw coal input port 202 side, and the gas discharge port.
  • a collision plate 222 is provided as a guide device leading to 205, and the collision plate 222 is inclined so that the lower end faces the raw coal inlet 202 side.
  • the fluidized gas and generated steam rising from the fluidized bed S are guided from the dry coal discharge port 203 side to the raw coal input port 202 side by the plurality of collision plates 222 and guided to the gas discharge port 205.
  • the particles of the dry coal accompanying the fluidized gas and the generated steam are separated from the fluidized gas and the generated steam, returned to the raw coal inlet 202 side, mixed with the raw coal before drying, and moved through the fluidized bed S again.
  • the lower end of the collision plate group 224 is disposed at a position inclined upward from the raw coal charging port 202 side toward the dry coal discharge port 203 side, and each lower side of each collision plate 222 is the original. Although it inclined so that it might face the charcoal inlet 202 side, it can function as a guide apparatus only by inclining each collision board 222 so that a lower end may face the raw coal inlet 202 side.
  • the inclined plate 111, the inclined belt 121, the inclined head 131, the collision plates 112, 212, 222, and the flow guide plates 113, 213 are provided as the guide device of the present invention. Heating may be performed to prevent particle adhesion and condensation of fluidized gas and generated steam. In this case, an electric heater, a heat transfer tube through which superheated steam flows, or the like may be used.
  • low grade coal was used as a wet raw material, it is applicable even if it is high grade coal, and it is not limited to coal, but can be used as a renewable biologically derived organic resource.
  • Example 6 an example in which the fluidized-bed drying facility according to the present invention is applied to a coal gasification combined power generation facility (coal gasification combined power generation system) will be described. It is not limited.
  • a power generation system using product charcoal dried in a fluidized bed drying facility product charcoal dried in a fluidized bed drying facility is supplied to a boiler furnace, a steam turbine is driven by steam generated in the boiler furnace, and a generator is used. It can also be used in a power generation system using a brown coal fired boiler that obtains output.
  • the method is not limited.
  • lignite is used as a wet raw material (substance to be dried)
  • any material having a high water content may be used, and low-grade coal including sub-bituminous coal, sludge, etc. may be used. it can.
  • FIG. 8 is a schematic view showing an embodiment of a combined coal gasification combined power generation facility to which a fluidized bed drying facility according to Embodiment 6 of the present invention is applied.
  • FIG. 9 is a schematic view showing a fluidized bed drying facility including the fluidized bed drying apparatus according to Example 6 shown in FIG.
  • an integrated coal gasification combined cycle (IGCC) facility 310 includes a fluidized-bed drying facility 400 that dries lignite 432 as fuel to produce product coal 440, and product coal 440.
  • a mill 320 that is pulverized into pulverized coal 340, a coal gasification furnace 313 that processes pulverized coal 340 and converts it into gasified gas 342, and a gas turbine (GT) 314 that is operated using the gasified gas 342 as fuel.
  • GT gas turbine
  • a heat recovery steam generator (HRSG) 316 that introduces turbine exhaust gas 346 from the gas turbine 314, a steam turbine (ST) 318 that is operated by the steam 348 generated by the exhaust heat recovery boiler 316, Gas turbine 314 And / or a generator (G) 319 coupled to the steam turbine 318.
  • the coal gasification combined power generation facility 310 is connected to the condenser 334 that condenses the steam discharged from the steam turbine 318 and returns the steam to the exhaust heat recovery boiler 316, and is connected to the gas turbine 314 and rotates together with the gas turbine 314.
  • the air is separated into nitrogen (N 2 ) and oxygen (O 2 ), the separated oxygen is supplied to a pipe through which the air compressed by the compressor 336 flows, and nitrogen is supplied from the mill 320.
  • An air separation device (ASU) 338 that supplies the transport path of the pulverized coal 340 transported to the coal gasification furnace 313. Note that the air 354 compressed by the compressor 336 is supplied to the coal gasifier 313 and the combustor 326.
  • the lignite 432 is dried by the fluidized bed drying facility 400 to produce the product coal 440, and the pulverized coal 340 obtained by pulverizing the product coal 440 by the mill 320 is gasified by the coal gasification furnace 313.
  • the gasified gas 342 which is a product gas is obtained.
  • the coal gasification combined power generation facility 310 removes dust and gas purifies the gasified gas 342 with the cyclone 322 and the gas purifier 324, and then supplies the gasified gas 342 to the combustor 326 of the gas turbine 314 as a power generation means, where it is burned and heated Generate high-pressure combustion gas 350.
  • the coal gasification combined power generation facility 310 drives the gas turbine 314 with the combustion gas 350.
  • a gas turbine 314 is connected to a generator 319, and the generator 319 generates electric power by driving the gas turbine 314.
  • the turbine exhaust gas 346 after driving the gas turbine 314 still has a temperature of about 500 to 600 ° C.
  • the coal gasification combined cycle power generation facility 310 sends the turbine exhaust gas 346 to the exhaust heat recovery boiler (HRSG) 316, and the exhaust heat recovery boiler (HRSG) 316 recovers the thermal energy of the turbine exhaust gas 346.
  • the coal gasification combined cycle power generation facility 310 generates steam 348 by heat energy recovered from the turbine exhaust gas 346 by an exhaust heat recovery boiler (HRSG) 316, and drives the steam turbine 318 by the steam 348.
  • the coal gasification combined cycle power generation facility 310 removes NOx and SOx components from the exhaust gas 352, which is the gas from which the thermal energy is recovered from the turbine exhaust gas 346 by the exhaust heat recovery boiler (HRSG) 316, and then removes the NOx and SOx components by the gas purification device 330. Through the atmosphere.
  • the fluidized bed drying facility 400 includes a supply hopper 401 that supplies lignite 432 having a high moisture content, which is one of wet raw materials, and fluidized bed drying that dries the supplied lignite 432.
  • a cooling trap 403 that cools the apparatus 402, the generated steam 434 discharged from the fluidized bed drying apparatus 402, removes dust in the generated steam 434, and superheating means 404 that superheats the generated steam 435a cooled by the cooling trap 403.
  • a branching unit 405 that branches the generated steam 435b heated by the superheating means 404, a cooler 410 that cools the dried lignite 438 extracted from the fluidized bed drying apparatus 402 to produce product coal 440, and a branching unit 405.
  • Recovery system 411 for recovering the heat of generated steam 435b, and generated steam 4 for which heat has been recovered by heat recovery system 411 Comprising a water treatment unit 412 that processes the 5b discharged as waste water 442, a circulator 414 supplies to the fluidized bed dryer 402 as a fluidizing steam 436 circulate generating steam 435b branched by the branching unit 405, a.
  • the fluidized bed drying facility 400 serves as a pipe connecting the parts, and a generated steam line L 1 that discharges generated steam 434 generated when drying the lignite 432 to the outside of the fluidized bed drying apparatus 402 and guides it to the branching section 405.
  • a line branched by the branching unit 405 a line L 2 to be supplied to the fluidized bed dryer 402 as a fluidizing steam (fluidizing gas) 436, produced by cooling the dried brown coal 438 in condenser 410
  • the supply hopper 401 is a facility for storing lignite 432.
  • the supply hopper 401 supplies the stored lignite 432 into the fluidized bed drying device 402.
  • the fluidized bed drying apparatus 402 forms a fluidized bed with the lignite 432 supplied from the supply hopper 401 and the fluidized steam 436, moves the lignite 432, heats it with heating means, and dries the lignite 432 to dry lignite 438. And In the fluidized bed drying apparatus 402, fluidized steam 436 and steam generated when drying the lignite 432 are mixed to generate generated steam 434.
  • the fluidized bed drying apparatus 402 includes a heat transfer member 428 as a heating means provided therein, a superheated steam supply device (high temperature gas supply means) 429 capable of supplying superheated steam (high temperature gas) A to the heat transfer member 428, and .
  • FIG. 10 is a schematic view showing a fluidized bed drying apparatus according to Example 6 shown in FIG. 10 shows a schematic configuration of the cooling trap 403 and the superheating means 404 in addition to the fluidized bed drying apparatus 402.
  • the fluidized bed drying apparatus 402 includes a drying container 420 into which the lignite 432 is introduced, an input unit (input port) 422 into which the lignite 432 is input, and a discharge unit that discharges the dry lignite 438 obtained by drying the lignite 432 ( 423, a gas dispersion plate 424 provided inside the drying container 420, a fluidized gas supply unit (fluidized gas supply port) 426 that supplies the fluidized steam 436 to the drying container 420, and generated steam 434. And a steam discharge part (steam discharge port) 427 for discharging the steam.
  • the fluidized bed drying apparatus 402 includes a heat transfer member 428 as a heating unit provided inside, and a superheated steam supply device (a high-temperature gas) A that can supply superheated steam (high-temperature gas) A to the heat transfer member 428 ( High temperature gas supply means) 429 (see FIG. 9).
  • the drying container 420 is divided into a drying chamber 450 located on the upper side in the vertical direction (upper side in the drawing) and a chamber chamber 452 located on the lower side in the vertical direction (lower side in the drawing) by the gas dispersion plate 424. Yes.
  • the drying chamber 450 is a region to which lignite 432 is supplied
  • the chamber chamber 452 is a region to which fluidized steam (fluidized gas) 436 is supplied.
  • the fluidized vapor 436 supplied to the chamber chamber 452 passes through the gas dispersion plate 424 and is supplied to the drying chamber 450.
  • the fluidized bed 455 is formed by the lignite 432 being moved by the fluidized steam 436.
  • the charging unit 422 is connected to one end of the drying chamber 450 of the drying container 420.
  • the input unit 422 is connected to the supply hopper 401 and inputs the lignite 432 supplied from the supply hopper 401 into the drying chamber 450 at one end.
  • the discharge part 423 is connected to the lower side in the vertical direction of the other end of the drying chamber 450 of the drying container 420, that is, in the vicinity of the gas dispersion plate 424.
  • the discharge unit 423 is connected to a pipe connected to the cooler 410, and discharges the dried lignite 438 in the drying chamber 450 to the pipe.
  • the gas dispersion plate 424 has a large number of through holes 424a.
  • the gas dispersion plate 424 makes the gas flowable between the drying chamber 450 and the chamber chamber 452 while suppressing the lignite 432 in the drying chamber 450 from falling into the chamber chamber 452.
  • the fluidizing gas supply unit 426 is connected to the chamber chamber 452 and supplies the fluidizing vapor 436 supplied from the line L 2 into the chamber chamber 452.
  • the steam discharge unit 427 is connected to the upper surface of the drying chamber 450. Steam discharge portion 427 guides the steam generated 434 in the drying vessel 420 to generate steam line L 1.
  • the fluidized bed drying apparatus 402 is provided with a plurality of dividing plates 454 arranged in the drying chamber 450 in this embodiment.
  • the number of divided plates is four.
  • the dividing plate 454 is a plate extending in the width direction and the vertical direction of the drying container 420, and a surface orthogonal to a line connecting the input unit 422 and the discharge unit 423 is a front surface (surface having the largest area). It is. As shown in FIG. 10, the dividing plate 454 has a lower end in the vertical direction in contact with the gas dispersion plate 424, and an upper end in the vertical direction is located below the upper end of the fluidized bed 455.
  • the dividing plate 454 is disposed in the entire drying chamber 450.
  • the plurality of divided plates 454 are arranged at a predetermined interval in the direction from the input unit 422 to the discharge unit 423. Accordingly, the fluidized bed drying apparatus 402 is divided into a plurality of drying compartments 450a, 450b, 450c, 450d, and 450e in the direction from the input unit 422 to the discharge unit 423 in the drying chamber 450 of the drying container 420 by the plurality of dividing plates 454. Divided.
  • the drying compartments 450a, 450b, 450c, 450d, and 450e are arranged in the order of the drying compartment 450a, the drying compartment 450b, the drying compartment 450c, the drying compartment 450d, and the drying compartment 450e from the input unit 422 to the discharge unit 423. ing.
  • the chamber chamber 452 is also divided into five chamber chambers 452a, 452b, 452c, 452d, and 452e corresponding to the drying chambers 450a, 450b, 450c, 450d, and 450e.
  • Five fluidizing gas supply units 426 are provided corresponding to the chamber compartments 452a, 452b, 452c, 452d, and 452e, and fluidized steam 436 is provided in each of the chamber compartments 452a, 452b, 452c, 452d, and 452e.
  • the heat transfer member 428 is arranged in a direction extending in the width direction in each fluidized bed 455 of the drying compartments 450a, 450b, 450c, 450d, and 450e.
  • brown coal 432 is introduced into the drying compartment 450a of the drying container 420 by the supply hopper 401, and fluidized steam 436 is introduced into the chamber compartment 452a.
  • the fluidized vapor 436 introduced into the chamber chamber 452a passes through the through hole 424a of the gas dispersion plate 424 and flows into the drying compartment 450a.
  • the fluidized steam 436 that has flowed into the drying compartment 450a blows up and flows the lignite 432 introduced into the drying compartment 450a.
  • the fluidized bed drying apparatus 402 forms the fluidized bed 455 in which the brown coal 432 flows in the drying compartment 450a.
  • a part of the lignite 432 fluidized in the drying compartment 450a moves upward in the vertical direction from the dividing plate 454, moves in the direction indicated by the arrow 456a, and moves to the drying compartment 450b.
  • fluidized steam 436 is also introduced into the chamber compartment 452b.
  • the fluidized vapor 436 introduced into the chamber chamber 452b passes through the through hole 424a of the gas dispersion plate 424 and flows into the drying compartment 450b.
  • the fluidized steam 436 that has flowed into the drying compartment 450b blows up and flows the lignite 432 charged into the drying compartment 450b.
  • the fluidized bed drying apparatus 402 forms the fluidized bed 455 in which the lignite 432 flows in the drying compartment 450b.
  • Part of the lignite 432 fluidized in the drying compartment 450b moves upward in the vertical direction with respect to the dividing plate 454, moves in the direction indicated by the arrow 456b, and moves to the drying compartment 450c.
  • the fluidized bed drying apparatus 402 constitutes a fluidized bed 455 together with fluidized steam 436 to which lignite 432 moved in the drying compartments 450c, 450d, and 450e is similarly supplied.
  • a part of lignite 432 of the fluidized bed 455 in the drying compartment 450c moves to the upper side in the vertical direction than the dividing plate 454, moves in the direction indicated by the arrow 456c, and moves to the drying compartment 450d.
  • Part of the lignite 432 in the fluidized bed 455 of the drying compartment 450d moves to the upper side in the vertical direction than the dividing plate 454, moves in the direction indicated by the arrow 456d, and moves to the drying compartment 450e.
  • the fluidized bed drying apparatus 402 discharges the lignite that has reached the discharge unit 423 out of the lignite 432 that is the fluidized bed 455 in the drying compartment 450e as the dry lignite 438 from the discharge unit 423.
  • the fluidized bed 455 is formed in a portion including the drying compartments 450 a, 450 b, 450 c, 450 d, and 450 e, which are portions on the lower side in the vertical direction of the drying chamber 450.
  • the lignite 432 is moved to form a fluidized bed 455, and sequentially passes through the drying compartments 450a, 450b, 450c, 450d, and 450e in this order, and is discharged from the discharge unit 423.
  • the lignite 432 is gradually dried when passing through the drying compartments 450a, 450b, 450c, 450d, and 450e, and becomes the dried lignite 438 when discharged from the discharge unit 423.
  • a free board portion F is formed in a portion of the drying chamber 450 on the upper side in the vertical direction from the fluidized bed 455.
  • This free board part F becomes an area
  • the fluidized steam 436 is steam at a certain temperature or higher, and heats the lignite 432 while flowing, thereby drying the lignite 432.
  • the heat transfer member 428 is disposed in a region where the fluidized bed 455 of the drying compartments 450a, 450b, 450c, 450d, and 450e is formed.
  • the heat transfer member 428 is a heating unit that heats the lignite 432 of the fluidized bed 455 and removes moisture in the lignite 432, and is a pipe through which the superheated steam A can flow.
  • the heat transfer member 428 dries the lignite 432 constituting the fluidized bed 455 using the latent heat of the high-temperature superheated steam A supplied and circulated inside.
  • the heat transfer member 428 discharges the superheated steam A used for drying as condensed water B to the outside of the fluidized bed drying apparatus 402.
  • the heat transfer member 428 condenses the superheated steam A in a region in contact with the fluidized bed 455 to form a liquid (moisture), which is effective for heating the lignite 432 by the condensed latent heat radiated at this time.
  • the high-temperature superheated steam A to be circulated through the heat transfer member 428 may be any heat medium that involves a phase change, and examples thereof include Freon, pentane, and ammonia.
  • the heat transfer member 428 is not limited to a configuration using a pipe for circulating a heat medium. The heat transfer member 428 only needs to be able to supply heat to the lignite 432 and dry it. For example, an electric heater may be installed.
  • the generated steam 434 generated when the lignite 432 is dried by the heat transfer member 428 flows to the free board portion F on the upper side in the vertical direction (downstream in the flow direction of the generated steam 434).
  • Superheated steam supplying device 429 via a heating line L 4 and supplies the superheated steam A heat transfer member 428.
  • the heat transfer member 428 provided inside the fluidized bed 455 heats the lignite 432 of the fluidized bed 455 to dry the lignite 432.
  • the generated steam 434 generated by drying the lignite 432 flows from the fluidized bed 455 into the free board portion F. Then, the generated steam 434 that has flowed into the free board section F is discharged from the steam discharge section 427 to the outside of the fluidized bed drying apparatus 402.
  • Generating steam 434 discharged from the steam discharge section 427 is supplied to generate steam line L 1.
  • the fluidized bed drying apparatus 402 divides the drying chamber 450 into a plurality of drying compartments 450a, 450b, 450c, 450d, and 450e, and moves to the plurality of drying compartments 450a, 450b, 450c, while moving from the input unit 422 to the discharge unit 423.
  • lignite can be dried more uniformly. That is, it is possible to suppress the occurrence of lignite 432 that reaches the discharge part 423 in a short time due to the flow of the fluidized bed 455 and the lignite 432 that does not reach the discharge part 423 even after a long time.
  • a part of the lignite 432 on the upper side of the fluidized bed 455 moves to the next drying compartment, so that the moisture content is relatively small in one drying compartment and moves upward.
  • the lignite 432 being moved can be moved to the next drying compartment. That is, the lignite 432 that has a relatively high moisture content and is not dried in the dry compartment is heavy, and thus is moved to the lower side of the dry compartment and can be dried in the dry compartment.
  • the lignite 432 moves to the next drying compartment after being dried to a certain level in each of the drying compartments 450a, 450b, 450c, 450d, and 450e. It can be made into the dry state to the extent.
  • the drying chamber 450 is divided into a plurality of drying compartments by the dividing plate 454, but is not limited thereto.
  • the fluidized bed drying apparatus 420 can suppress the stay and settling of the lignite 432 regardless of the shape of the drying chamber 450, and can suppress the blockage of the lignite 432 in the drying chamber. Any shape that can be dried uniformly is acceptable.
  • Cooling trap 403 a fluidized bed dryer generating steam 434 from the steam discharge portion 427 is discharged to generate steam line L 1 of 402 and cooled, to separate the dust (solid component), such as dust contained in the generated steam 434 .
  • the cooling trap 403 includes a cooling mechanism 480 that cools the generated steam 434, and a collection unit 482 that collects water droplets containing dust aggregated as the generated steam 434 is cooled. Note that the cooling trap 403 may include a collection unit that is cooled to a predetermined temperature or less, in which the cooling mechanism 480 and the collection unit 482 are integrated.
  • Cooling mechanism 480 of the cold trap 402 can use various cooling mechanisms, a double pipe structure disposed a pipe covering the periphery of generating steam line L 1, the pipe covering the periphery of generating steam line L 1 mechanism and for cooling the steam generated 434 of the cooling medium flowed generating steam line L 1, the Peltier elements are arranged around the steam generated line L 1, it can be used a structure such to cool the generated steam line L 1.
  • cooling mechanism 480 does not include an active cooling mechanism, mechanism for cooling the steam generated 434 generated vapor line L 1 by causing a predetermined distance passed and You can also Collecting portion 482 of the cooling trap 403 includes a plurality of plate-like members disposed in generating steam line L 1.
  • the plate-like member may have a net shape having a large number of holes.
  • the cooling trap 403 cools the generated steam 434 to be saturated steam. At this time, moisture in the steam is agglomerated using dust as a core. That is, the water droplet is formed in a state containing dust.
  • the cooling trap 403 removes or reduces the dust contained in the generated steam 434 by collecting the water droplets containing the dust in the collection unit. Note that the generated steam 434 passes through the cooling trap 403 and becomes a generated steam 435a in which the temperature is lowered and dust is removed or reduced.
  • Superheating means 404 flows through the steam generated line L 1, a means for superheating the steam generated 435a that has passed through the cold trap 403. As shown in FIG. 10, the superheating means 404 introduces the generated steam line L 1 into the fluidized bed drying apparatus 402, specifically, the free board portion F of the drying container 420, and generates the generated steam line L 1. The steam 435 a is superheated with the generated steam 434 inside the fluidized bed drying device 402. Superheating means 404, by superheating the steam generated 435a through the generation steam line L 1, the generated steam 435b became hotter than the steam generated 435a.
  • the superheating means 404 is preferably a pipe formed of a material that easily absorbs heat from the outside as a pipe through which the generated steam 435a flows. Further, it is preferable that the superheating means 404 has a shape in which the piping is bent at the free board portion F and the generated steam 435a moves a longer distance at the free board portion F. Moreover, it can heat also by heat exchange with the condensed water of the heat-transfer member 428 exit.
  • Branch 405 flows through the steam generated line L 1, a mechanism for splitting the generated steam 435b that has passed through the heating means 404 into two lines.
  • One line branched by the branching unit 405, connected to the heat recovery system 410 and the other line is connected to the circulating device 414 as the branch line L 2.
  • the cooler 410 cools the dried powder obtained by mixing the solid component 444 with the dried lignite 438 extracted from the fluidized bed drying device 402. Cooler 410 discharges from the product line L 3 The cooled powder as product coal 440. This product charcoal 440 is supplied to the gasifier 313 as described above.
  • the heat recovery system 411 is a system that recovers the heat of the generated steam 435b by heat exchange or the like.
  • the generated steam 435b flowing through one of the pipes branched by the branching section 405 is, for example, steam at 405 to 110 ° C.
  • the heat recovery system 411 performs heat recovery for the generated steam 435b.
  • the water treatment unit 412 is a treatment device that treats the generated steam 435b heat recovered by the heat recovery system 411.
  • the water treatment unit 412 treats the generated steam 435b heat recovered by the heat recovery system 411, and discharges the generated steam 435b to the outside of the fluidized bed drying facility 400 as drainage 442.
  • the circulating apparatus 414 is interposed in the branch line L 2, and sends the air flowing through the branch line L 2 in a predetermined direction. Specifically, the circulating apparatus 414 is branched by the branching unit 405 sends the generated steam 435b through the branch line L 2 to the fluidized bed dryer 402. The generated steam 435b sent into the fluidized bed drying device 402 is used as fluidized steam 436 that causes the fluidized bed of lignite 432 to flow.
  • the fluidized bed drying equipment 400 of the present embodiment reuses a part of the generated steam 435b as a fluidizing medium for fluidizing the fluidized bed, the present invention is not limited to this, for example, nitrogen, carbon dioxide or Low oxygen concentration air containing these gases may be used.
  • the generated steam 434 is cooled by the cooling trap 403 and dust is collected, whereby the dust in the generated steam 434 can be efficiently removed or reduced with a simple configuration. .
  • positioned downstream of the gas flow rather than the cooling trap 403 can be extended, and the frequency
  • the fluidized bed drying facility 400 of the present embodiment uses the generated steam 435a that has passed through the cooling trap 403 by the superheating means 404 as a heat source in the system of the fluidized bed drying facility 400, specifically, the free board portion F of the drying container 420.
  • Heat is recovered from the generated steam 435b discharged from the fluidized bed drying device 402 by overheating (heat exchange) with the heat of the generated steam 434 to generate the generated steam 435b.
  • the fluidized bed drying apparatus 400 of the present embodiment can efficiently remove dust from the generated steam by cooling the generated steam 434 with the cooling trap 403 and then reheating it with the superheating means 404.
  • the latent heat of steam can be recovered.
  • the generated steam 435a can be heated without providing a new heat source.
  • the heat source may be condensed water returning from the heat transfer member 428.
  • the fluidized bed drying equipment 400 of the present embodiment uses a part of the generated steam 435b after being branched by the branching unit 405 in the heat recovery system 411, the remaining part is used as fluidized steam. It is not limited to.
  • the fluidized bed drying facility 400 may effectively utilize the heat of the generated steam 435b after being heated by the heating means 404.
  • FIG. 11 is a schematic diagram illustrating a fluidized bed drying facility including the fluidized bed drying apparatus according to the seventh embodiment.
  • a fluidized bed drying facility 500 shown in FIG. 11 includes a supply hopper 401, a fluidized bed drying device 402, a cooling trap 403, a superheating means 510, a branching unit 405, a cooler 410, a heat recovery system 411, water A processing unit 412 and a circulation device 414 are provided.
  • fluidized bed drying equipment 500 includes a generating steam line L 1 as a pipe connecting the respective units, a branch line L 2, the product line L 3, the.
  • the fluidized bed drying equipment 500 is abbreviate
  • Superheating means 510 flows through the steam generated line L 1, a means for superheating the steam generated 435a that has passed through the cold trap 403. As shown in FIG. 11, the superheating means 510 includes a portion where the generated steam 435 a that has passed through the cooling trap 403 of the generated steam line L 1 and a region where the condensed water B of the heat transfer member 428 flows, that is, the heat transfer member 428. Out of the drying container 420 through which the condensed water B after passing through the inside of the drying container 420 flows, the generated steam 435a is superheated with the condensed water B.
  • the superheating means 510 is a mechanism that performs heat exchange between the generated steam 435a and the condensed water B.
  • Superheating means 510 by superheating the steam generated 435a through the steam generated line L 1 in the condensed water B, and generates steam 435b became hotter than the steam generated 435a.
  • the superheating means 510 uses a pipe formed of a material that easily absorbs heat from the outside as a pipe through which the generated steam 435a flows.
  • the fluidized bed drying facility 500 can obtain the same effect as the fluidized bed drying facility by using the superheating means 510 to superheat the generated steam 435a with the heat of the condensed water B flowing through the heat transfer member 428. Further, since the condensed water B is generated when the superheated steam A superheats the fluidized bed, it does not affect other processes even if it is used to superheat the generated steam 435a. Moreover, since the condensed water B is a used substance, the utilization efficiency of heat generated in the fluidized bed drying facility 500 can be improved by utilizing the heat of the condensed water B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

This fluidized bed drying device or fluidized bed drying equipment includes: a hollow drying vessel (101), a raw coal inlet (102) on one end of the drying vessel (101) to introduce raw coal, a dried coal outlet (103) to discharge, from the other end of the drying vessel (101), dried coal obtained by heat drying raw coal, a fluidization gas supply portion (104) that forms a fluidized bed (S) with raw coal by supplying fluidization gas to the lower part of the drying vessel (101), a gas outlet (105) that releases fluidization gas and generated steam from a higher point than the raw coal inlet (102) formed on one end of the drying vessel (101), a heat transfer tube (106) that heats the raw coal in the fluidized bed (S), and an inclined plate (111) that leads fluidization gas and generated steam to the gas outlet (105) by guiding fluidization gas and generated steam from the dried coal outlet (103) side to the raw coal inlet (102) side.

Description

流動層乾燥装置及び流動層乾燥設備Fluidized bed drying apparatus and fluidized bed drying equipment
 本発明は、流動化ガスにより被乾燥物を流動させながら乾燥させる流動層乾燥装置及び、湿潤原料を流動させながら乾燥させる流動層乾燥装置を備える流動層乾燥設備に関するものである。 The present invention relates to a fluidized bed drying apparatus for drying while flowing a material to be dried with a fluidized gas, and a fluidized bed drying apparatus including a fluidized bed drying apparatus for drying while flowing a wet raw material.
 例えば、石炭ガス化複合発電設備は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べてさらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。 For example, the combined coal gasification combined power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power by gasifying coal and combining it with combined cycle power generation. This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
 従来の石炭ガス化複合発電設備は、一般的に、給炭装置、乾燥装置、石炭ガス化炉、ガス精製装置、ガスタービン設備、蒸気タービン設備、排熱回収ボイラ、ガス浄化装置などを有している。従って、石炭が乾燥されてから粉砕され、石炭ガス化炉に対して、微粉炭として供給されると共に、空気が取り込まれ、この石炭ガス化炉で石炭が燃焼ガス化されて生成ガス(可燃性ガス)が生成される。そして、この生成ガスがガス精製されてからガスタービン設備に供給されることで燃焼して高温・高圧の燃焼ガスを生成し、タービンを駆動する。タービンを駆動した後の排気ガスは、排熱回収ボイラで熱エネルギが回収され、蒸気を生成して蒸気タービン設備に供給され、タービンを駆動する。これにより発電が行なわれる。一方、熱エネルギが回収された排気ガスは、ガス浄化装置で有害物質が除去された後、煙突を介して大気へ放出される。 Conventional coal gasification combined power generation facilities generally have a coal supply device, a drying device, a coal gasification furnace, a gas purification device, a gas turbine facility, a steam turbine facility, an exhaust heat recovery boiler, a gas purification device, and the like. ing. Therefore, the coal is dried and then pulverized, supplied to the coal gasifier as pulverized coal, and air is taken in. The coal gas is combusted and gasified in this coal gasifier, and the product gas (combustible) Gas) is produced. Then, the product gas is purified and then supplied to the gas turbine equipment to burn and generate high-temperature and high-pressure combustion gas to drive the turbine. The exhaust gas after driving the turbine recovers thermal energy by the exhaust heat recovery boiler, generates steam and supplies it to the steam turbine equipment, and drives the turbine. As a result, power generation is performed. On the other hand, the exhaust gas from which the thermal energy has been recovered is released into the atmosphere through a chimney after harmful substances are removed by the gas purification device.
 ところで、このような石炭ガス化複合発電設備にて使用する石炭は、瀝青炭や無煙炭のように高い発熱量を有する高品位の石炭(高品位炭)だけでなく、亜瀝青炭や褐炭のように比較的低い発熱量を有する低品位の石炭(低品位炭)がある。この低品位炭は、持ち込まれる水分量が多く、この水分により発電効率が低下してしまう。そのため、低品位炭の場合には、上述した乾燥装置により石炭を乾燥して水分を除去してから粉砕して石炭ガス化炉に供給する必要がある。 By the way, the coal used in such a coal gasification combined power generation facility is not only a high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite, but also a comparison such as sub-bituminous coal and lignite There is a low-grade coal (low-grade coal) with a low calorific value. This low-grade coal has a large amount of moisture to be brought in, and the power generation efficiency decreases due to this moisture. For this reason, in the case of low-grade coal, it is necessary to dry the coal with the above-described drying apparatus to remove moisture and then pulverize and supply the coal gasifier.
 このような石炭を乾燥する乾燥装置としては、下記特許文献1に記載されたものがある。この特許文献1に記載された流動層を用いた石炭の乾燥分級装置は、装置本体の内部の底側に分散板を水平に取付け、その上部に流動層を形成する一方、下部に熱風入口を設け、また、装置本体の一端側に石炭の供給部を設ける一方、他端部に乾燥炭の排出部を設け、更に、流動層に複数のバッフル板を設け、その上方のフリーボード部に多数の整流板を取付けたものである。 As a drying apparatus for drying such coal, there is one described in Patent Document 1 below. In this coal dry classification apparatus using a fluidized bed described in Patent Document 1, a dispersion plate is horizontally attached to the bottom side inside the apparatus body, and a fluidized bed is formed on the upper part, while a hot air inlet is formed on the lower part. In addition, a coal supply unit is provided at one end of the apparatus main body, a dry coal discharge unit is provided at the other end, a plurality of baffle plates are provided in the fluidized bed, and a large number of freeboard units above it are provided. The current plate is attached.
 また、石炭ガス化複合発電設備は、褐炭(湿潤原料)を燃料として用いた場合、ガス化炉内に持ち込まれる水分量が多く、この水分の蒸発潜熱のためガス化炉内温度が低下し発電効率が低下してしまう。高水分炭の利用のためには流動層乾燥装置を設け、この流動層乾燥装置により石炭を乾燥して水分を除去してから粉砕して石炭ガス化炉に供給する必要がある。流動層乾燥装置としては、特許文献2に記載されている流動層乾燥装置がある。 In addition, when coal gasification combined power generation facilities use lignite (wet raw material) as fuel, a large amount of water is brought into the gasification furnace, and the temperature inside the gasification furnace decreases due to the latent heat of vaporization of the water, resulting in power generation. Efficiency will decrease. In order to use high moisture coal, it is necessary to provide a fluidized bed dryer, dry the coal with this fluidized bed dryer to remove moisture, and then pulverize and supply it to the coal gasifier. As a fluidized bed drying apparatus, there is a fluidized bed drying apparatus described in Patent Document 2.
特開平11-083319号公報Japanese Patent Application Laid-Open No. 11-083319 特開2008-89243号公報JP 2008-89243 A
 上述したように低品位炭は、高品位炭に比べて水分量が多いことから、乾燥装置における流動化不良が発生し、石炭の乾燥不良が発生するおそれがある。そのため、投入する石炭の量を減少させる必要があり、処理量が減少してしまうという問題がある。 As described above, low-grade coal has a larger amount of water than high-grade coal, and thus fluidization failure occurs in the drying apparatus, which may cause coal drying failure. Therefore, it is necessary to reduce the amount of coal to be input, and there is a problem that the processing amount decreases.
 また、流動層乾燥装置は、流動化ガスを供給しつつ湿潤原料を乾燥させる際に発生する蒸気と流動化ガスとを発生蒸気として装置外部に排出する。流動層乾燥装置を有する流動層乾燥設備は、発生蒸気の熱を回収したり、発生蒸気を流動化ガスとして利用したりすることで、装置の熱利用効率や空気の利用効率を向上させることができる。しかしながら、この発生蒸気には、大量の飛散粉塵(ダスト)が混入している。このため、発生蒸気に混入した大量の粉塵が潜熱を回収する装置や、流動化ガスとして再度供給する装置に対して悪影響を与える恐れがある。 In addition, the fluidized bed drying apparatus discharges the steam generated when the wet raw material is dried while supplying the fluidized gas and the fluidized gas to the outside of the apparatus as generated steam. Fluidized bed drying equipment with fluidized bed drying equipment can improve the heat utilization efficiency and air utilization efficiency of the equipment by recovering the heat of the generated steam or using the generated steam as fluidized gas. it can. However, a large amount of scattered dust (dust) is mixed in the generated steam. For this reason, a large amount of dust mixed in the generated steam may adversely affect the apparatus for recovering latent heat and the apparatus for supplying again as fluidized gas.
 本発明は、上述した課題を解決するものであり、乾燥効率の向上を可能とする流動層乾燥装置及び流動層乾燥装置から排出される発生蒸気から粉塵を効率よく除去することができる流動層乾燥設備を提供することを目的とする。 The present invention solves the above-described problems, and fluidized bed drying capable of efficiently removing dust from the generated bed discharged from the fluidized bed drying apparatus and the fluidized bed drying apparatus that can improve the drying efficiency. The purpose is to provide equipment.
 上記の目的を達成するための本発明の流動層乾燥装置は、中空形状をなす乾燥容器と、該乾燥容器の一端側に湿潤原料を投入する湿潤原料投入部と、前記乾燥容器の他端側から前記湿潤原料が加熱乾燥された乾燥物を排出する乾燥物排出部と、前記乾燥容器の下部に流動化ガスを供給することで前記湿潤原料と共に流動層を形成する流動化ガス供給部と、前記乾燥容器の一端側における前記湿潤原料投入部より上方から流動化ガス及び発生蒸気を排出するガス排出部と、前記流動層の前記湿潤原料を加熱する加熱部と、前記流動化ガス及び前記発生蒸気を前記乾燥物排出部側から前記湿潤原料投入部側に導流させて前記ガス排出部に導くガイド装置と、を備えることを特徴とするものである。 In order to achieve the above object, the fluidized bed drying apparatus of the present invention includes a drying container having a hollow shape, a wet raw material charging unit for charging a wet raw material into one end of the drying container, and the other end of the drying container. A dry matter discharge unit that discharges a dried product obtained by heating and drying the wet raw material, and a fluidized gas supply unit that forms a fluidized bed with the wet raw material by supplying a fluidizing gas to a lower part of the drying container, A gas discharge unit for discharging fluidized gas and generated steam from above the wet raw material input unit on one end side of the drying container, a heating unit for heating the wet raw material of the fluidized bed, the fluidized gas and the generation And a guide device that guides the steam from the dry matter discharge part side to the wet raw material input part side and guides it to the gas discharge part.
 従って、湿潤原料投入部から湿潤原料が乾燥容器内に投入されると共に、流動化ガス供給部から流動化ガスが乾燥容器の下部に供給されると、湿潤原料が流動化ガスにより流動することで流動層が形成され、この流動層の湿潤原料が加熱部により加熱されることで乾燥して乾燥物となり、この乾燥物が乾燥物排出部から外部に排出される一方、流動化ガスと湿潤原料が乾燥することで発生した蒸気がガス排出部から外部に排出される。このとき、この流動化ガス及び発生蒸気は、ガイド装置により乾燥物排出部側から湿潤原料投入部側に導流されてガス排出部に導かれることとなり、この流動化ガス及び発生蒸気に同伴する乾燥物の粒子が湿潤原料投入部側に戻され、湿潤原料と混在されて再び流動層で乾燥されることとなり、湿潤原料投入部から投入された湿潤原料の加熱乾燥を促進することが可能となり、湿潤原料の乾燥効率を向上することができる。 Therefore, when the wet raw material is charged into the drying container from the wet raw material charging part and the fluidizing gas is supplied to the lower part of the drying container from the fluidizing gas supply part, the wet raw material flows by the fluidizing gas. A fluidized bed is formed, and the wet raw material of the fluidized bed is heated by the heating unit to be dried to become a dry product. The dry product is discharged to the outside from the dry product discharge unit, while the fluidized gas and the wet raw material are discharged. Vapor generated by drying is discharged from the gas discharge portion to the outside. At this time, the fluidized gas and the generated steam are guided from the dry matter discharge part side to the wet raw material input part side by the guide device and guided to the gas discharge part, and are accompanied by the fluidized gas and the generated steam. The dried material particles are returned to the wet raw material input part side, mixed with the wet raw material and dried again in the fluidized bed, and it becomes possible to promote the heat drying of the wet raw material input from the wet raw material input part. The drying efficiency of the wet raw material can be improved.
 本発明の流動層乾燥装置では、前記ガイド装置は、前記流動層の上方のフリーボード部に設けられ、前記乾燥物排出部側から前記湿潤原料投入部側に流動する前記流動化ガス及び前記発生蒸気が衝突することで、同伴する前記乾燥物の粒子を分離する衝突板を有することを特徴としている。 In the fluidized bed drying apparatus of the present invention, the guide device is provided in a free board part above the fluidized bed, and the fluidized gas flowing from the dried material discharge part side to the wet raw material charging part side and the generation It has a collision plate that separates particles of the dry matter that accompanies the steam when it collides.
 従って、流動化ガス及び発生蒸気は、衝突板により乾燥物排出部側から湿潤原料投入部側に流れ、適正にガス排出部に導くことができると共に、流動化ガス及び発生蒸気に同伴する乾燥物の粒子が衝突板に衝突することで、同伴する乾燥物の粒子が適正に分離されて流動層に落下することとなり、その結果、乾燥物の分離性能を向上することができる。 Therefore, the fluidized gas and the generated steam can flow from the dry matter discharge unit side to the wet raw material input unit side by the collision plate and can be appropriately guided to the gas discharge unit, and the dry matter accompanying the fluidized gas and the generated steam. When the particles collide with the impingement plate, the accompanying dry matter particles are properly separated and fall into the fluidized bed, and as a result, the dry matter separation performance can be improved.
 本発明の流動層乾燥装置では、前記衝突板は、前記流動化ガス及び前記発生蒸気の流れ方向に対向すると共に、当該流れ方向に複数所定間隔をあけて配置され、複数の前記衝突板で形成される衝突板群の下端が前記湿潤原料投入部側から前記乾燥物排出部側に向けて上方に傾斜する位置に配置されることを特徴としている。 In the fluidized bed drying apparatus of the present invention, the collision plate is opposed to the flow direction of the fluidized gas and the generated steam, and is arranged with a plurality of predetermined intervals in the flow direction, and is formed by the plurality of the collision plates. The lower end of the colliding plate group is arranged at a position inclined upward from the wet raw material charging part side toward the dry matter discharge part side.
 従って、複数の衝突板で形成される衝突板群の下端が湿潤原料投入部側から乾燥物排出部側に向けて上方に傾斜する位置に配置されることで、流動化ガス及び発生蒸気が乾燥物排出部側から湿潤原料投入部側に流れることとなり、この流動化ガス及び発生蒸気を適正に流動してガス排出部に導くことができる。 Therefore, the fluidized gas and the generated steam are dried by disposing the lower end of the collision plate group formed of a plurality of collision plates at a position inclined upward from the wet raw material charging portion side toward the dry matter discharge portion side. It will flow from the material discharge part side to the wet raw material input part side, and this fluidized gas and generated steam can flow appropriately and be led to the gas discharge part.
 本発明の流動層乾燥装置では、前記ガイド装置は、前記流動層の上方のフリーボード部に設けられ、前記湿潤原料投入部側から前記乾燥物排出部側に向けて上方に傾斜する傾斜板を有することを特徴としている。 In the fluidized bed drying apparatus of the present invention, the guide device is provided on a free board portion above the fluidized bed, and includes an inclined plate that is inclined upward from the wet raw material charging portion side toward the dry matter discharge portion side. It is characterized by having.
 従って、流動化ガス及び発生蒸気は、傾斜板の下面に沿って乾燥物排出部側に流れ、その後、傾斜板の上方を湿潤原料投入部側に流れることとなり、この流動化ガス及び発生蒸気を乾燥物排出部側から湿潤原料投入部側に導流して適正にガス排出部に導くことができると共に、流動化ガス及び発生蒸気に同伴する乾燥物の粒子が傾斜板に落下することで、この乾燥物の粒子を傾斜板の上面に沿って湿潤原料投入部側に適正に戻すことができる。 Accordingly, the fluidized gas and the generated steam flow along the lower surface of the inclined plate to the dry matter discharge unit side, and then flow over the inclined plate to the wet raw material charging unit side. While being able to guide from the dry matter discharge part side to the wet raw material input part side and appropriately lead to the gas discharge part, particles of the dry matter accompanying the fluidized gas and the generated steam fall on the inclined plate, The particles of the dried product can be properly returned to the wet raw material charging part side along the upper surface of the inclined plate.
 本発明の流動層乾燥装置では、前記複数の衝突板により前記傾斜板上に落下した前記乾燥物の粒子を前記乾燥容器における前記湿潤原料投入部側に搬送する搬送装置が設けられることを特徴としている。 In the fluidized bed drying apparatus of the present invention, a transport device is provided that transports the particles of the dried material dropped onto the inclined plate by the plurality of impingement plates to the wet raw material charging unit side in the drying container. Yes.
 従って、流動化ガス及び発生蒸気が傾斜板の上方を流れて複数の衝突板に衝突すると、同伴する乾燥物の粒子が分離されて傾斜板上に落下し、この乾燥物は、搬送装置により乾燥容器における湿潤原料投入部側に搬送されることとなり、この乾燥物を適正に湿潤原料と混合させることができる。 Therefore, when the fluidized gas and the generated steam flow over the inclined plate and collide with a plurality of collision plates, the accompanying dry matter particles are separated and fall on the inclined plate, and this dried matter is dried by the conveying device. It will be conveyed to the wet raw material input part side in a container, and this dry matter can be mixed with a wet raw material appropriately.
 本発明の流動層乾燥装置では、前記ガイド装置は、前記流動層の上方の前記フリーボード部に設けられ、前記湿潤原料投入部と前記ガス排出部とを仕切る仕切板を有することを特徴としている。 In the fluidized bed drying apparatus of the present invention, the guide device includes a partition plate that is provided in the free board portion above the fluidized bed and partitions the wet raw material input portion and the gas discharge portion. .
 従って、仕切板により湿潤原料投入部とガス排出部とが仕切られることで、乾燥物排出部側から湿潤原料投入部側に導流する流動化ガス及び発生蒸気が、湿潤原料投入部から外部に排出されることが防止され、流動化ガス及び発生蒸気を適正に導流することが可能となる。 Therefore, by separating the wet raw material input part and the gas discharge part by the partition plate, the fluidized gas and the generated steam introduced from the dry matter discharge part side to the wet raw material input part side are transferred from the wet raw material input part to the outside. It is prevented from being discharged, and fluidized gas and generated steam can be properly introduced.
 本発明の流動層乾燥設備は、乾燥容器、前記乾燥容器の一方の端部に湿潤原料を投入する投入部、前記乾燥容器の他方の端部から湿潤原料が加熱乾燥した乾燥物を排出する排出部、前記乾燥容器内に投入された湿潤原料が乾燥される乾燥室と前記乾燥室よりも鉛直方向下側のチャンバ室とに分離し、前記チャンバ室から前記乾燥室内にガスを供給可能な貫通孔が形成されたガス分散板、前記乾燥室で湿潤原料と共に流動層を形成する流動化ガスを、前記チャンバ室に供給する流動化ガス供給部および前記流動化ガスが供給されて形成された前記流動層の前記湿潤原料が乾燥されることにより発生する発生蒸気を前記乾燥容器の上方から排出する蒸気排出部を備え、水分含量が高い前記湿潤原料を前記乾燥容器内で乾燥する流動層乾燥装置と、前記流動層乾燥装置の前記蒸気排出部から排出される発生蒸気を外部に排出する発生蒸気ラインと、前記発生蒸気ラインに介装され、前記発生蒸気を冷却し前記発生蒸気に含まれる粉塵を除去する冷却トラップと、前記排出部から排出された前記湿潤原料を乾燥させた乾燥物を冷却する冷却器と、を備えることを特徴とする。 The fluidized bed drying equipment of the present invention includes a drying container, an input portion for supplying a wet raw material to one end of the drying container, and a discharge for discharging a dry product obtained by heating and drying the wet raw material from the other end of the drying container. The wet raw material charged in the drying container is separated into a drying chamber in which the wet raw material is dried and a chamber chamber vertically below the drying chamber, and a gas can be supplied from the chamber chamber to the drying chamber. A gas dispersion plate having holes formed therein, a fluidizing gas supplying a fluidizing gas forming a fluidized bed together with a wet raw material in the drying chamber, and the fluidizing gas being supplied to the chamber chamber A fluidized bed drying apparatus comprising a steam discharge unit for discharging generated steam generated by drying the wet raw material of the fluidized bed from above the drying container, and drying the wet raw material having a high water content in the dry container. When The generated steam line that discharges the generated steam discharged from the steam discharge unit of the fluidized bed drying device to the outside, and the generated steam line that cools the generated steam and removes dust contained in the generated steam. And a cooler that cools a dried product obtained by drying the wet raw material discharged from the discharge unit.
 流動層乾燥設備は、上記構成とすることで、流動層乾燥装置から排出される発生蒸気から粉塵を効率よく除去することができる。 The fluidized bed drying facility can efficiently remove dust from the generated steam discharged from the fluidized bed drying device by adopting the above configuration.
 ここで、前記流動層乾燥装置は、前記乾燥容器の前記流動層の内部に配置された配管および前記配管に過熱媒体を供給する過熱媒体供給装置を有する加熱手段を、さらに備えることが好ましい。これにより、湿潤原料をより効率よく乾燥させることができる。 Here, it is preferable that the fluidized bed drying device further includes a heating unit including a pipe disposed inside the fluidized bed of the drying container and a superheated medium supply device that supplies a superheated medium to the pipe. Thereby, a wet raw material can be dried more efficiently.
 また、前記発生蒸気ラインにおける前記冷却トラップの下流側に介装され、前記冷却された前記発生蒸気を前記乾燥容器の内部の前記流動層よりも鉛直方向上側の領域に案内し、前記乾燥容器の内部の発生蒸気で過熱する過熱手段をさらに備えることが好ましい。これにより、冷却トラップを通過した発生蒸気を装置系内の熱を利用して高温にすることができ、各種用途に用いることができる。 In addition, it is interposed downstream of the cooling trap in the generated steam line, guides the cooled generated steam to a region vertically above the fluidized bed inside the drying container, It is preferable to further comprise a superheating means for superheating with the generated steam inside. Thereby, the generated steam that has passed through the cooling trap can be heated to high temperature using heat in the apparatus system, and can be used for various applications.
 また、前記発生蒸気ラインにおける前記冷却トラップの下流側に介装され、前記冷却された前記発生蒸気を前記加熱手段の前記流動層の内部を通過した後の領域の前記配管を流れる過熱媒体で過熱する過熱手段をさらに備えることが好ましい。これにより、冷却トラップを通過した発生蒸気を装置系内の熱を利用して高温にすることができ、各種用途に用いることができる。 In addition, it is interposed downstream of the cooling trap in the generated steam line, and the cooled generated steam is superheated by a superheating medium flowing through the piping in a region after passing through the inside of the fluidized bed of the heating means. It is preferable to further include an overheating means. Thereby, the generated steam that has passed through the cooling trap can be heated to high temperature using heat in the apparatus system, and can be used for various applications.
 また、前記過熱手段で加熱された前記発生蒸気の一部を分岐し、前記流動化ガスとして前記流動化ガス供給部に供給するラインと、をさらに備えることが好ましい。これにより、装置系内に発生した熱および蒸気を効率よく利用することができる。 Further, it is preferable to further include a line for branching a part of the generated steam heated by the superheating means and supplying the fluidized gas as the fluidized gas to the fluidized gas supply unit. Thereby, the heat and steam generated in the apparatus system can be used efficiently.
 また、前記過熱手段で加熱された前記発生蒸気の一部を分岐し、前記発生蒸気の熱を回収する熱回収システムと、をさらに備えることが好ましい。これにより、装置系内に発生した熱を効率よく利用することができる。 Further, it is preferable to further include a heat recovery system that branches a part of the generated steam heated by the superheating means and recovers the heat of the generated steam. Thereby, the heat generated in the apparatus system can be used efficiently.
 本発明の流動層乾燥装置によれば、乾燥容器内で、流動化ガス及び発生蒸気を乾燥物排出部側から湿潤原料投入部側に導流させてガス排出部に導く該ガイド装置を設けるので、この流動化ガス及び発生蒸気に同伴する乾燥物の粒子を湿潤原料投入部側に戻して湿潤原料と混在することができ、湿潤原料の加熱乾燥を促進することで湿潤原料の乾燥効率を向上することができる。 According to the fluidized bed drying apparatus of the present invention, since the fluidizing gas and the generated steam are introduced from the dry matter discharge part side to the wet raw material input part side and guided to the gas discharge part in the drying container, the guide device is provided. The particles of dry matter accompanying the fluidized gas and generated steam can be returned to the wet raw material input side to be mixed with the wet raw material, improving the drying efficiency of the wet raw material by promoting the heat drying of the wet raw material. can do.
 本発明の流動層乾燥設備によれば、流動層乾燥装置から排出される発生蒸気から粉塵を効率よく除去することができるという効果を奏する。 According to the fluidized bed drying facility of the present invention, there is an effect that dust can be efficiently removed from the generated steam discharged from the fluidized bed drying apparatus.
図1は、本発明の実施例1に係る流動層乾燥装置が適用された石炭ガス化複合発電設備の概略構成図である。FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied. 図2は、実施例1の流動層乾燥装置の概略側面図である。FIG. 2 is a schematic side view of the fluidized bed drying apparatus according to the first embodiment. 図3は、実施例1の流動層乾燥装置の概略平面図である。FIG. 3 is a schematic plan view of the fluidized bed drying apparatus according to the first embodiment. 図4は、本発明の実施例2に係る流動層乾燥装置の概略側面図である。FIG. 4 is a schematic side view of a fluidized bed drying apparatus according to Embodiment 2 of the present invention. 図5は、本発明の実施例3に係る流動層乾燥装置の概略側面図である。FIG. 5 is a schematic side view of a fluidized bed drying apparatus according to Example 3 of the present invention. 図6は、本発明の実施例4に係る流動層乾燥装置の概略側面図である。FIG. 6 is a schematic side view of a fluidized bed drying apparatus according to Example 4 of the present invention. 図7は、本発明の実施例5に係る流動層乾燥装置の概略側面図である。FIG. 7 is a schematic side view of a fluidized bed drying apparatus according to Embodiment 5 of the present invention. 図8は、本発明の実施例6に係る流動層乾燥設備を適用した石炭ガス化複合発電設備の一実施例を示す概略図である。FIG. 8 is a schematic view showing an embodiment of a combined coal gasification combined power generation facility to which a fluidized bed drying facility according to Embodiment 6 of the present invention is applied. 図9は、図8に示す実施例6に係る流動層乾燥装置を備える流動層乾燥設備を示す概略図である。FIG. 9 is a schematic view showing a fluidized bed drying facility including the fluidized bed drying apparatus according to Example 6 shown in FIG. 図10は、図9に示す実施例6に係る流動層乾燥装置を示す概略図である。FIG. 10 is a schematic view showing a fluidized bed drying apparatus according to Example 6 shown in FIG. 図11は、実施例7に係る流動層乾燥装置を備える流動層乾燥設備を示す概略図である。FIG. 11 is a schematic diagram illustrating a fluidized bed drying facility including the fluidized bed drying apparatus according to the seventh embodiment.
 以下に添付図面を参照して、本発明に係る流動層乾燥装置及び流動層乾燥設備の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of a fluidized bed drying apparatus and a fluidized bed drying facility according to the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.
 図1は、本発明の実施例1に係る流動層乾燥装置が適用された石炭ガス化複合発電設備の概略構成図、図2は、実施例1の流動層乾燥装置の概略側面図、図3は、実施例1の流動層乾燥装置の概略平面図である。 FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied. FIG. 2 is a schematic side view of the fluidized bed drying apparatus of Embodiment 1. FIG. These are the schematic plan views of the fluidized-bed drying apparatus of Example 1. FIG.
 実施例1の石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)は、空気を酸化剤としてガス化炉で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。即ち、本実施例の石炭ガス化複合発電設備は、空気燃焼方式(空気吹き)の発電設備である。この場合、ガス化炉に供給する湿潤原料として低品位炭を使用している。 The combined coal gasification combined power generation facility (IGCC: Integrated Coal Gasification Combined Cycle) of Example 1 employs an air combustion method in which coal gas is generated in a gasification furnace using air as an oxidant, and is purified by a gas purification device. Coal gas is supplied as fuel gas to gas turbine equipment to generate electricity. That is, the combined coal gasification combined power generation facility of this embodiment is a power generation facility of an air combustion system (air blowing). In this case, low-grade coal is used as the wet raw material supplied to the gasifier.
 実施例1において、図1に示すように、石炭ガス化複合発電設備10は、給炭装置11、流動層乾燥装置12、微粉炭機(ミル)13、石炭ガス化炉14、チャー回収装置15、ガス精製装置16、ガスタービン設備17、蒸気タービン設備18、発電機19、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)20を有している。 In Example 1, as shown in FIG. 1, the coal gasification combined power generation facility 10 includes a coal supply device 11, a fluidized bed drying device 12, a pulverized coal machine (mill) 13, a coal gasification furnace 14, and a char recovery device 15. , A gas refining device 16, a gas turbine facility 17, a steam turbine facility 18, a generator 19, and a heat recovery steam generator (HRSG) 20.
 給炭装置11は、原炭バンカ21と、石炭供給機22と、クラッシャ23とを有している。原炭バンカ21は、低品位炭を貯留可能であって、所定量の低品位炭を石炭供給機22に投下することができる。石炭供給機22は、原炭バンカ21から投下された低品位炭をコンベアなどにより搬送し、クラッシャ23に投下することができる。このクラッシャ23は、投下された低品位炭を所定の大きさに破砕することができる。 The coal feeder 11 includes a raw coal bunker 21, a coal feeder 22, and a crusher 23. The raw coal bunker 21 can store low-grade coal, and can drop a predetermined amount of low-grade coal into the coal feeder 22. The coal feeder 22 can transport the low-grade coal dropped from the raw coal bunker 21 by a conveyor or the like and drop it on the crusher 23. The crusher 23 can crush the dropped low-grade coal into a predetermined size.
 流動層乾燥装置12は、給炭装置11により投入された低品位炭に対して乾燥用蒸気(過熱蒸気)を供給することで、この低品位炭を流動させながら加熱乾燥するものであり、低品位炭が含有する水分を除去することができる。そして、この流動層乾燥装置12は、下部から取り出された乾燥済の低品位炭を冷却する冷却器31が設けられ、乾燥冷却済の乾燥炭が乾燥炭バンカ32に貯留される。また、流動層乾燥装置12は、上部から取り出された蒸気から乾燥炭の粒子を分離する乾燥炭サイクロン33と乾燥炭電気集塵機34が設けられ、蒸気から分離された乾燥炭の粒子が乾燥炭バンカ32に貯留される。なお、乾燥炭電気集塵機34で乾燥炭が分離された蒸気は、蒸気圧縮機35で圧縮されてから流動層乾燥装置12に乾燥用蒸気として供給される。 The fluidized bed drying device 12 supplies drying steam (superheated steam) to the low-grade coal introduced by the coal feeder 11 so as to heat and dry the low-grade coal while flowing. Moisture contained in the graded coal can be removed. The fluidized bed drying device 12 is provided with a cooler 31 for cooling the dried low-grade coal taken out from the lower portion, and the dried and cooled dried coal is stored in the dried coal bunker 32. Further, the fluidized bed drying apparatus 12 is provided with a dry coal cyclone 33 and a dry coal electrostatic precipitator 34 for separating dry coal particles from steam taken out from above, and the dry coal particles separated from the steam are dried coal bunker. 32 is stored. The steam from which the dry coal has been separated by the dry coal electrostatic precipitator 34 is compressed by the steam compressor 35 and then supplied to the fluidized bed drying device 12 as drying steam.
 微粉炭機13は、石炭粉砕機であって、流動層乾燥装置12により乾燥された低品位炭(乾燥炭)を細かい粒子状に粉砕して微粉炭を製造するものである。即ち、微粉炭機13は、乾燥炭バンカ32に貯留された乾燥炭が石炭供給機36により投下され、この乾燥炭)を所定粒径以下の低品位炭、つまり、微粉炭とするものである。そして、微粉炭機13で粉砕後の微粉炭は、微粉炭バグフィルタ37a,37bにより搬送用ガスから分離され、微粉炭供給ホッパ38a,38bに貯留される。 The pulverized coal machine 13 is a coal pulverizer, and produces pulverized coal by pulverizing the low-grade coal (dried coal) dried by the fluidized bed dryer 12 into fine particles. That is, in the pulverized coal machine 13, the dry coal stored in the dry coal bunker 32 is dropped by the coal feeder 36, and this dry coal) is converted into low-grade coal having a predetermined particle size or less, that is, pulverized coal. . The pulverized coal after being pulverized by the pulverized coal machine 13 is separated from the conveying gas by the pulverized coal bag filters 37a and 37b and stored in the pulverized coal supply hoppers 38a and 38b.
 石炭ガス化炉14は、微粉炭機13で処理された微粉炭が供給可能であると共に、チャー回収装置15で回収されたチャー(石炭の未燃分)が戻されてリサイクル可能となっている。 The coal gasification furnace 14 can supply pulverized coal processed by the pulverized coal machine 13 and can be recycled by returning the char (unburned coal) recovered by the char recovery device 15. .
 即ち、石炭ガス化炉14は、ガスタービン設備17(圧縮機61)から圧縮空気供給ライン41が接続されており、このガスタービン設備17で圧縮された圧縮空気が供給可能となっている。空気分離装置42は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン43が石炭ガス化炉14に接続され、この第1窒素供給ライン43に微粉炭供給ホッパ38a,38bからの給炭ライン44a,44bが接続されている。また、第2窒素供給ライン45も石炭ガス化炉14に接続され、この第2窒素供給ライン45にチャー回収装置15からのチャー戻しライン46が接続されている。更に、酸素供給ライン47は、圧縮空気供給ライン41に接続されている。この場合、窒素は、石炭やチャーの搬送用ガスとして利用され、酸素は、酸化剤として利用される。 That is, the coal gasification furnace 14 is connected to the compressed air supply line 41 from the gas turbine equipment 17 (compressor 61), and can supply the compressed air compressed by the gas turbine equipment 17. The air separation device 42 separates and generates nitrogen and oxygen from air in the atmosphere. A first nitrogen supply line 43 is connected to the coal gasifier 14, and a pulverized coal supply hopper is connected to the first nitrogen supply line 43. Charging lines 44a and 44b from 38a and 38b are connected. The second nitrogen supply line 45 is also connected to the coal gasification furnace 14, and the char return line 46 from the char recovery device 15 is connected to the second nitrogen supply line 45. Further, the oxygen supply line 47 is connected to the compressed air supply line 41. In this case, nitrogen is used as a carrier gas for coal and char, and oxygen is used as an oxidant.
 石炭ガス化炉14は、例えば、噴流床形式のガス化炉であって、内部に供給された石炭、チャー、空気(酸素)、またはガス化剤としての水蒸気を燃焼・ガス化すると共に、二酸化炭素を主成分とする可燃性ガス(生成ガス、石炭ガス)が発生し、この可燃性ガスをガス化剤としてガス化反応が起こる。なお、石炭ガス化炉14は、微粉炭の混入した異物を除去する異物除去装置48が設けられている。この場合、石炭ガス化炉14は噴流床ガス化炉に限らず、流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化炉14は、チャー回収装置15に向けて可燃性ガスのガス生成ライン49が設けられており、チャーを含む可燃性ガスが排出可能となっている。この場合、ガス生成ライン49にガス冷却器を設けることで、可燃性ガスを所定温度まで冷却してからチャー回収装置15に供給するとよい。 The coal gasification furnace 14 is, for example, a spouted bed type gasification furnace, which combusts and gasifies coal, char, air (oxygen) supplied therein or water vapor as a gasifying agent, and produces carbon dioxide. A combustible gas (product gas, coal gas) containing carbon as a main component is generated, and a gasification reaction takes place using this combustible gas as a gasifying agent. The coal gasification furnace 14 is provided with a foreign matter removing device 48 that removes foreign matter mixed with pulverized coal. In this case, the coal gasification furnace 14 is not limited to the spouted bed gasification furnace, and may be a fluidized bed gasification furnace or a fixed bed gasification furnace. The coal gasification furnace 14 is provided with a gas generation line 49 for combustible gas toward the char recovery device 15, and can discharge combustible gas containing char. In this case, by providing a gas cooler in the gas generation line 49, the combustible gas may be cooled to a predetermined temperature and then supplied to the char recovery device 15.
 チャー回収装置15は、集塵装置51と供給ホッパ52とを有している。この場合、集塵装置51は、1つまたは複数のバグフィルタやサイクロンにより構成され、石炭ガス化炉14で生成された可燃性ガスに含有するチャーを分離することができる。そして、チャーが分離された可燃性ガスは、ガス排出ライン53を通してガス精製装置16に送られる。供給ホッパ52は、集塵装置51で可燃性ガスから分離されたチャーを貯留するものである。なお、集塵装置51と供給ホッパ52との間にビンを配置し、このビンに複数の供給ホッパ52を接続するように構成してもよい。そして、供給ホッパ52からのチャー戻しライン46が第2窒素供給ライン45に接続されている。 The char collection device 15 has a dust collector 51 and a supply hopper 52. In this case, the dust collector 51 is constituted by one or a plurality of bag filters or cyclones, and can separate char contained in the combustible gas generated in the coal gasification furnace 14. The combustible gas from which the char has been separated is sent to the gas purification device 16 through the gas discharge line 53. The supply hopper 52 stores the char separated from the combustible gas by the dust collector 51. A bin may be disposed between the dust collector 51 and the supply hopper 52, and a plurality of supply hoppers 52 may be connected to the bin. A char return line 46 from the supply hopper 52 is connected to the second nitrogen supply line 45.
 ガス精製装置16は、チャー回収装置15によりチャーが分離された可燃性ガスに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製装置16は、可燃性ガスを精製して燃料ガスを製造し、これをガスタービン設備17に供給する。なお、このガス精製装置16では、チャーが分離された可燃性ガス中にはまだ硫黄分(HS)が含まれているため、アミン吸収液によって除去することで、硫黄分を最終的には石膏として回収し、有効利用する。 The gas purification device 16 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas from which the char has been separated by the char recovery device 15. The gas purifier 16 purifies the combustible gas to produce fuel gas and supplies it to the gas turbine equipment 17. In the gas purifier 16, since the combustible gas from which the char is separated still contains sulfur (H 2 S), the sulfur is finally removed by removing it with the amine absorbing solution. Is recovered as gypsum and used effectively.
 ガスタービン設備17は、圧縮機61、燃焼器62、タービン63を有しており、圧縮機61とタービン63は、回転軸64により連結されている。燃焼器62は、圧縮機61から圧縮空気供給ライン65が接続されると共に、ガス精製装置16から燃料ガス供給ライン66が接続され、タービン63に燃焼ガス供給ライン67が接続されている。また、ガスタービン設備17は、圧縮機61から石炭ガス化炉14に延びる圧縮空気供給ライン41が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気とガス精製装置16から供給された燃料ガスとを混合して燃焼し、タービン63にて、発生した燃焼ガスにより回転軸64を回転することで発電機19を駆動することができる。 The gas turbine equipment 17 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64. The combustor 62 has a compressed air supply line 65 connected to the compressor 61, a fuel gas supply line 66 connected to the gas purifier 16, and a combustion gas supply line 67 connected to the turbine 63. Further, the gas turbine equipment 17 is provided with a compressed air supply line 41 extending from the compressor 61 to the coal gasification furnace 14, and a booster 68 is provided in the middle. Therefore, in the combustor 62, the compressed air supplied from the compressor 61 and the fuel gas supplied from the gas purifier 16 are mixed and burned, and the rotating shaft 64 is rotated by the generated combustion gas in the turbine 63. By doing so, the generator 19 can be driven.
 蒸気タービン設備18は、ガスタービン設備17における回転軸64に連結されるタービン69を有しており、発電機19は、この回転軸64の基端部に連結されている。排熱回収ボイラ20は、ガスタービン設備17(タービン63)からの排ガスライン70に設けられており、空気と高温の排ガスとの間で熱交換を行うことで、蒸気を生成するものである。そのため、排熱回収ボイラ20は、蒸気タービン設備18のタービン69との間に蒸気供給ライン71が設けられると共に、蒸気回収ライン72が設けられ、蒸気回収ライン72に復水器73が設けられている。従って、蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気によりタービン69が駆動し、回転軸64を回転することで発電機19を駆動することができる。 The steam turbine facility 18 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 17, and the generator 19 is connected to the base end portion of the rotating shaft 64. The exhaust heat recovery boiler 20 is provided in the exhaust gas line 70 from the gas turbine equipment 17 (the turbine 63), and generates steam by exchanging heat between the air and the high temperature exhaust gas. Therefore, the exhaust heat recovery boiler 20 is provided with the steam supply line 71 between the steam turbine equipment 18 and the turbine 69 of the steam turbine equipment 18, the steam recovery line 72 is provided, and the steam recovery line 72 is provided with the condenser 73. Yes. Therefore, in the steam turbine facility 18, the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 20, and the generator 19 can be driven by rotating the rotating shaft 64.
 そして、排熱回収ボイラ20で熱が回収された排ガスは、ガス浄化装置74により有害物質を除去され、浄化された排ガスは、煙突75から大気へ放出される。 Then, the exhaust gas from which heat has been recovered by the exhaust heat recovery boiler 20 has harmful substances removed by the gas purification device 74, and the purified exhaust gas is discharged from the chimney 75 to the atmosphere.
 ここで、実施例1の石炭ガス化複合発電設備10の作動について説明する。 Here, the operation of the coal gasification combined cycle facility 10 of the first embodiment will be described.
 実施例1の石炭ガス化複合発電設備10において、給炭装置11にて、原炭(低品位炭)が原炭バンカ21に貯留されており、この原炭バンカ21の低品位炭が石炭供給機22によりクラッシャ23に投下され、ここで所定の大きさに破砕される。そして、破砕された低品位炭は、流動層乾燥装置12により加熱乾燥された後、冷却器31により冷却され、乾燥炭バンカ32に貯留される。また、流動層乾燥装置12の上部から取り出された蒸気は、乾燥炭サイクロン33及び乾燥炭電気集塵機34により乾燥炭の粒子が分離され、蒸気圧縮機35で圧縮されてから流動層乾燥装置12に乾燥用蒸気として戻される。一方、蒸気から分離された乾燥炭の粒子は、乾燥炭バンカ32に貯留される。 In the coal gasification combined power generation facility 10 of the first embodiment, raw coal (low-grade coal) is stored in the raw coal bunker 21 by the coal feeder 11, and the low-grade coal of the raw coal bunker 21 is supplied to the coal. The machine 22 drops the crusher 23 where it is crushed to a predetermined size. The crushed low-grade coal is heated and dried by the fluidized bed drying device 12, cooled by the cooler 31, and stored in the dry coal bunker 32. Further, the steam taken out from the upper part of the fluidized bed drying device 12 is separated into dry coal particles by the dry coal cyclone 33 and the dry coal electrostatic precipitator 34 and compressed by the steam compressor 35 before being supplied to the fluidized bed drying device 12. Returned as drying steam. On the other hand, the dry coal particles separated from the steam are stored in the dry coal bunker 32.
 乾燥炭バンカ32に貯留される乾燥炭は、石炭供給機36により微粉炭機13に投入され、ここで、細かい粒子状に粉砕されて微粉炭が製造され、微粉炭バグフィルタ37a,37bを介して微粉炭供給ホッパ38a,38bに貯留される。この微粉炭供給ホッパ38a,38bに貯留される微粉炭は、空気分離装置42から供給される窒素により第1窒素供給ライン43を通して石炭ガス化炉14に供給される。また、後述するチャー回収装置15で回収されたチャーが、空気分離装置42から供給される窒素により第2窒素ライン45を通して石炭ガス化炉14に供給される。更に、後述するガスタービン設備17から抽気された圧縮空気が昇圧機68で昇圧された後、空気分離装置42から供給される酸素と共に圧縮空気供給ライン41を通して石炭ガス化炉14に供給される。 The dry coal stored in the dry coal bunker 32 is fed into the pulverized coal machine 13 by the coal feeder 36, where it is pulverized into fine particles to produce pulverized coal, and through the pulverized coal bag filters 37a and 37b. And stored in the pulverized coal supply hoppers 38a and 38b. The pulverized coal stored in the pulverized coal supply hoppers 38 a and 38 b is supplied to the coal gasification furnace 14 through the first nitrogen supply line 43 by nitrogen supplied from the air separation device 42. Further, the char recovered by the char recovery device 15 described later is supplied to the coal gasification furnace 14 through the second nitrogen line 45 by nitrogen supplied from the air separation device 42. Further, the compressed air extracted from the gas turbine equipment 17 to be described later is boosted by the booster 68 and then supplied to the coal gasification furnace 14 through the compressed air supply line 41 together with oxygen supplied from the air separation device 42.
 石炭ガス化炉14では、供給された微粉炭及びチャーが圧縮空気(酸素)により燃焼し、微粉炭及びチャーがガス化することで、二酸化炭素を主成分とする可燃性ガス(石炭ガス)を生成することができる。そして、この可燃性ガスは、石炭ガス化炉14からガス生成ライン49を通して排出され、チャー回収装置15に送られる。 In the coal gasification furnace 14, the supplied pulverized coal and char are combusted by compressed air (oxygen), and the pulverized coal and char are gasified to generate combustible gas (coal gas) mainly composed of carbon dioxide. Can be generated. The combustible gas is discharged from the coal gasifier 14 through the gas generation line 49 and sent to the char recovery device 15.
 このチャー回収装置15にて、可燃性ガスは、まず、集塵装置51に供給されることで、ここで可燃性ガスからこのガスに含有するチャーが分離される。そして、チャーが分離された可燃性ガスは、ガス排出ライン53を通してガス精製装置16に送られる。一方、可燃性ガスから分離した微粒チャーは、供給ホッパ52に堆積され、チャー戻しライン46を通して石炭ガス化炉14に戻されてリサイクルされる。 In the char recovery device 15, the combustible gas is first supplied to the dust collector 51, whereby the char contained in the gas is separated from the combustible gas. The combustible gas from which the char has been separated is sent to the gas purification device 16 through the gas discharge line 53. On the other hand, the fine char separated from the combustible gas is deposited on the supply hopper 52, returned to the coal gasifier 14 through the char return line 46, and recycled.
 チャー回収装置15によりチャーが分離された可燃性ガスは、ガス精製装置16にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガスが製造される。そして、ガスタービン設備17では、圧縮機61が圧縮空気を生成して燃焼器62に供給すると、この燃焼器62は、圧縮機61から供給される圧縮空気と、ガス精製装置16から供給される燃料ガスとを混合し、燃焼することで燃焼ガスを生成し、この燃焼ガスによりタービン63を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。 The combustible gas from which the char has been separated by the char recovery device 15 is gas purified by removing impurities such as sulfur compounds and nitrogen compounds in the gas purification device 16 to produce fuel gas. In the gas turbine facility 17, when the compressor 61 generates compressed air and supplies the compressed air to the combustor 62, the combustor 62 is supplied from the compressed air supplied from the compressor 61 and the gas purification device 16. Combustion gas is generated by mixing with fuel gas and combusting, and the turbine 63 is driven by this combustion gas, so that the generator 19 can be driven via the rotating shaft 64 to generate power.
 そして、ガスタービン設備17におけるタービン63から排出された排気ガスは、排熱回収ボイラ20にて、空気と熱交換を行うことで蒸気を生成し、この生成した蒸気を蒸気タービン設備18に供給する。蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気によりタービン69を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。 The exhaust gas discharged from the turbine 63 in the gas turbine equipment 17 generates steam by exchanging heat with air in the exhaust heat recovery boiler 20, and supplies the generated steam to the steam turbine equipment 18. . In the steam turbine facility 18, the generator 69 can be driven through the rotating shaft 64 to generate electric power by driving the turbine 69 with the steam supplied from the exhaust heat recovery boiler 20.
 その後、ガス浄化装置74では、排熱回収ボイラ20から排出された排気ガスの有害物質が除去され、浄化された排ガスが煙突75から大気へ放出される。 Thereafter, in the gas purification device 74, harmful substances in the exhaust gas discharged from the exhaust heat recovery boiler 20 are removed, and the purified exhaust gas is discharged from the chimney 75 to the atmosphere.
 以下、上述した石炭ガス化複合発電設備10における流動層乾燥装置12について詳細に説明する。 Hereinafter, the fluidized bed drying device 12 in the coal gasification combined power generation facility 10 described above will be described in detail.
 流動層乾燥装置12は、図2及び図3に示すように、乾燥容器101と、原炭投入口(湿潤原料投入部)102と、乾燥炭排出口(乾燥物排出部)103と、流動化ガス供給口(流動化ガス供給部)104と、ガス排出口(ガス排出部)105と、伝熱管(加熱部)106とを有している。 2 and 3, the fluidized bed drying apparatus 12 includes a drying container 101, a raw coal charging port (wet raw material charging unit) 102, a dry coal discharging port (dry matter discharging unit) 103, and a fluidization It has a gas supply port (fluidized gas supply unit) 104, a gas discharge port (gas discharge unit) 105, and a heat transfer tube (heating unit) 106.
 乾燥容器101は、中空箱型形状をなしており、一端側に原炭を投入する原炭投入口102が形成される一方、他端側に原炭を加熱乾燥した乾燥物を排出する乾燥炭排出口103が形成されている。また、乾燥容器101は、下部に底板101aから所定距離をあけて複数の開口を有する分散板107が設けられており、この底板101aに乾燥容器101内に流動化ガス(過熱蒸気)を供給する流動化ガス供給口104が形成されている。更に、乾燥容器101は、上部に流動化ガス及び発生蒸気を排出するガス排出口105が形成されている。この場合、乾燥容器101は、天井部101bがこのガス排出口105に向けて上方に傾斜しており、流動化ガス及び発生蒸気がこの傾斜した天井部101bに沿って流れることで、滞留することなくガス排出口105に導かれるように構成されている。 The drying container 101 has a hollow box shape, and is formed with a raw coal charging port 102 for charging raw coal on one end side, and on the other end side, dried charcoal for discharging a dried product obtained by heating and drying raw coal. A discharge port 103 is formed. Further, the drying container 101 is provided with a dispersion plate 107 having a plurality of openings at a predetermined distance from the bottom plate 101a at the lower portion, and fluidized gas (superheated steam) is supplied into the drying container 101 to the bottom plate 101a. A fluidizing gas supply port 104 is formed. Further, the drying container 101 is formed with a gas discharge port 105 for discharging the fluidized gas and the generated steam at the top. In this case, the drying container 101 is retained by the ceiling portion 101b being inclined upward toward the gas discharge port 105, and the fluidized gas and the generated steam flowing along the inclined ceiling portion 101b. It is comprised so that it may be guide | induced to the gas exhaust port 105, without.
 この乾燥容器101は、原炭投入口102から原炭が供給されると共に、流動化ガス供給口104から分散板107を通して流動化ガスが供給されることで、この分散板107の上方に所定厚さの流動層Sが形成されると共に、この流動層Sの上方にフリーボード部Fが形成される。そして、外部から乾燥容器101を貫通して流動層S内を循環する伝熱管106が配置されており、この伝熱管106内を流れる過熱蒸気により原炭を加熱して乾燥することができる。 The drying container 101 is supplied with raw coal from the raw coal inlet 102 and supplied with fluidizing gas from the fluidizing gas supply port 104 through the dispersion plate 107, so that a predetermined thickness is provided above the dispersion plate 107. A fluidized bed S is formed, and a free board portion F is formed above the fluidized bed S. A heat transfer pipe 106 that circulates in the fluidized bed S from the outside through the drying container 101 is disposed, and the raw coal can be heated and dried by the superheated steam flowing in the heat transfer pipe 106.
 また、乾燥容器101は、流動化ガスが流動化ガス供給口104から分散板107を通して流動層Sに供給されると共に、この流動層Sで原炭が乾燥することで含有する水分が蒸発して蒸気が発生する。この流動化ガス及び発生蒸気は、ガス排出口105から排出されるが、本実施例では、この流動化ガス及び発生蒸気を乾燥炭排出口103側から原炭投入口102側に導流させてガス排出口105に導くガイド装置としての傾斜板(ガイド板)111と、衝突板112と、導流板(仕切板)113を設けている。 In the drying container 101, fluidized gas is supplied from the fluidized gas supply port 104 to the fluidized bed S through the dispersion plate 107, and moisture contained therein is evaporated by drying the raw coal in the fluidized bed S. Steam is generated. The fluidized gas and generated steam are discharged from the gas outlet 105. In this embodiment, the fluidized gas and generated steam are introduced from the dry coal outlet 103 side to the raw coal inlet 102 side. An inclined plate (guide plate) 111, a collision plate 112, and a flow guide plate (partition plate) 113 are provided as guide devices that guide the gas discharge port 105.
 傾斜板111は、流動層Sの上方のフリーボード部Fにて、原炭投入口102側から乾燥炭排出口103側に向けて上方に傾斜しており、基端部が乾燥容器101における原炭投入口102側の壁面と所定隙間をもって配置される一方、先端部が乾燥容器101における乾燥炭排出口103側の壁面と所定隙間をもって配置され、両側部が乾燥容器101における各壁面と隙間なく密着して固定されている。そのため、傾斜板111と流動層Sの上面との間に形成される隙間が、原炭投入口102側から乾燥炭排出口103に向って徐々に大きくなるように設定されており、流動化ガス及び発生蒸気を乾燥炭排出口103側に導くと共に、この乾燥炭排出口103側から原炭投入口102側に導くことができる。 The inclined plate 111 is inclined upward from the raw coal inlet 102 side toward the dry coal outlet 103 side at the free board portion F above the fluidized bed S, and the base end portion of the raw plate in the drying vessel 101 is inclined. While being arranged with a predetermined gap from the wall surface on the charcoal inlet 102 side, the tip portion is arranged with a predetermined gap from the wall surface on the dry charcoal discharge port 103 side in the drying container 101, and both side portions are not spaced from each wall surface in the drying container 101. Closely fixed. Therefore, the gap formed between the inclined plate 111 and the upper surface of the fluidized bed S is set so as to gradually increase from the raw coal input port 102 side toward the dry coal discharge port 103, and the fluidized gas The generated steam can be guided to the dry coal discharge port 103 side, and can be guided from the dry coal discharge port 103 side to the raw coal input port 102 side.
 衝突板112は、フリーボード部Fにて、傾斜板111の上方に、乾燥炭排出口103側から原炭投入口102側に導流する流動化ガス及び発生蒸気が衝突することで、この流動化ガス及び発生蒸気に同伴する乾燥物の粒子を分離するものである。そのため、衝突板112は、フリーボード部Fにて、乾燥容器101の天井部101bと傾斜板111との間に複数設けられている。この複数の衝突板112は、乾燥炭排出口103側から原炭投入口102側に流れる流動化ガス及び発生蒸気の流れに対向するようにほぼ鉛直方向に沿って配置されており、且つ、衝突板112同士が所定間隔をもって配置されることで、流動化ガス及び発生蒸気が蛇行して流れることができるような流路が確保されている。 In the free board portion F, the collision plate 112 collides with the fluidized gas and the generated steam that are introduced from the dry coal discharge port 103 side to the raw coal input port 102 side above the inclined plate 111. It separates particles of dry matter that accompany the chemical gas and generated steam. Therefore, a plurality of collision plates 112 are provided between the ceiling portion 101 b of the drying container 101 and the inclined plate 111 in the free board portion F. The plurality of collision plates 112 are arranged along the substantially vertical direction so as to oppose the flow of fluidized gas and generated steam flowing from the dry coal discharge port 103 side to the raw coal input port 102 side, and the collision By arranging the plates 112 at a predetermined interval, a flow path is ensured so that the fluidized gas and the generated steam can meander and flow.
 また、乾燥容器101は、一端部側に原炭投入口102及びガス排出口105が配置されており、この原炭投入口102より上方にガス排出口105が配置されている。そして、導流板113は、原炭投入口102とガス排出口105とを仕切るように配置されている。即ち、導流板113は、流動層Sの上方のフリーボード部Fにて、原炭投入口102側から乾燥炭排出口103側に向けて下方に傾斜しており、基端部が乾燥容器101における原炭投入口102側の壁面と所定隙間をもって配置される一方、先端部が傾斜板111の基端部と所定隙間をもって配置され、両側部が乾燥容器101における各壁面と隙間なく密着して固定されている。この場合、導流板113の傾斜角度は、原炭投入口102における原炭の投入角度とほぼ同様の角度となっている。そのため、導流板113と流動層Sの上面との間に形成される隙間は、原炭投入口102側から傾斜板111(乾燥炭排出口103)に向って徐々に小さくなるように設定されている。 Further, the drying container 101 has a raw coal inlet 102 and a gas outlet 105 disposed on one end side, and a gas outlet 105 is disposed above the raw coal inlet 102. And the flow guide plate 113 is arrange | positioned so that the raw coal input port 102 and the gas exhaust port 105 may be partitioned off. That is, the flow guide plate 113 is inclined downward from the raw coal inlet 102 side toward the dry coal outlet 103 side in the free board portion F above the fluidized bed S, and the base end portion is a drying container. 101 is disposed with a predetermined gap with the wall surface on the raw coal inlet 102 side in 101, while the tip portion is disposed with a predetermined gap with the base end portion of the inclined plate 111, and both side portions are in close contact with each wall surface in the drying container 101 without a gap. Is fixed. In this case, the inclination angle of the flow guide plate 113 is substantially the same as the raw coal charging angle at the raw coal charging port 102. Therefore, the gap formed between the flow guide plate 113 and the upper surface of the fluidized bed S is set so as to gradually decrease from the raw coal input port 102 side toward the inclined plate 111 (dry coal discharge port 103). ing.
 ここで、実施例1の流動層乾燥装置12の作動について説明する。 Here, the operation of the fluidized bed drying apparatus 12 of Example 1 will be described.
 流動層乾燥装置12において、乾燥容器101に対して、原炭投入口102から原炭が供給されると共に、流動化ガス供給口104から分散板107を通して流動化ガスが供給されることで、この分散板107の上方に所定厚さの流動層Sが形成される。原炭は、流動化ガスにより流動層Sを乾燥炭排出口103側に移動し、このとき、伝熱管106から熱を受けることで加熱されて乾燥される。この場合、原炭は、原炭投入口102から乾燥炭排出口103まで移動する間に、伝熱管106からの熱により加熱乾燥されるが、原炭投入口102から投入された直後、つまり、導流板113の下方位置では、予熱状態にあり、水分はほとんど蒸発しない。その後、原炭は、予熱領域、つまり、導流板113の下方位置を超えて傾斜板111の下方位置に移動すると、水分蒸発が始まり、徐々に増加して最大となり、乾燥炭排出口103に近づくにつれて水分蒸発が減少する。 In the fluidized bed drying device 12, the raw coal is supplied from the raw coal inlet 102 to the drying container 101 and the fluidized gas is supplied from the fluidized gas supply port 104 through the dispersion plate 107. A fluidized bed S having a predetermined thickness is formed above the dispersion plate 107. The raw coal moves through the fluidized bed S to the dry coal discharge port 103 side by the fluidizing gas, and is heated and dried by receiving heat from the heat transfer tube 106 at this time. In this case, the raw coal is heated and dried by the heat from the heat transfer pipe 106 while moving from the raw coal inlet 102 to the dry coal outlet 103, but immediately after being supplied from the raw coal inlet 102, that is, At a position below the flow guide plate 113, it is in a preheated state, and moisture hardly evaporates. After that, when the raw coal moves to the preheating region, that is, beyond the lower position of the flow guide plate 113 to the lower position of the inclined plate 111, the water evaporation starts, gradually increases and becomes maximum, and reaches the dry coal discharge port 103. As it approaches, moisture evaporation decreases.
 そして、傾斜板111の下方位置における流動層Sで原炭が加熱乾燥されることで発生した蒸気は、流動化ガスと共に上昇し、傾斜板111の下面に沿って乾燥炭排出口103側に流れる。そして、流動化ガス及び発生蒸気は、乾燥容器101における乾燥炭排出口103側の壁面で迂回し、傾斜板111の上方の空間を原炭投入口102側に流れる。このとき、流動化ガス及び発生蒸気は、複数の衝突板112に衝突することで、流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が分離されて傾斜板111上に落下する。そして、乾燥炭の粒子は、傾斜板111の上面に沿って原炭投入口102側に降下し、この原炭投入口102から投入される乾燥前の原炭と共に流動層Sに落下する。ここで、乾燥前の原炭と乾燥炭の粒子が流動層Sで混合されることで、乾燥前の原炭の乾燥が促進される。その後、原炭が乾燥された乾燥炭は、乾燥炭排出口103から外部に排出され、乾燥炭の粒子が分離された流動化ガス及び発生蒸気は、導流板113に案内されて上方に流れ、ガス排出口105から外部に排出される。 The steam generated by heating and drying the raw coal in the fluidized bed S at a position below the inclined plate 111 rises together with the fluidizing gas, and flows toward the dry coal discharge port 103 along the lower surface of the inclined plate 111. . The fluidizing gas and the generated steam are detoured on the wall surface on the dry coal discharge port 103 side in the drying container 101 and flow in the space above the inclined plate 111 toward the raw coal input port 102. At this time, the fluidized gas and the generated steam collide with the plurality of collision plates 112, whereby the particles of dry coal accompanying the fluidized gas and the generated vapor are separated and fall on the inclined plate 111. Then, the dry coal particles descend toward the raw coal inlet 102 along the upper surface of the inclined plate 111, and fall into the fluidized bed S together with the raw coal before drying introduced from the raw coal inlet 102. Here, when the raw coal before drying and the particles of the dry coal are mixed in the fluidized bed S, drying of the raw coal before drying is promoted. Thereafter, the dry coal from which the raw coal has been dried is discharged to the outside from the dry coal discharge port 103, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 113 and flow upward. The gas is discharged from the gas discharge port 105 to the outside.
 このように実施例1の流動層乾燥装置にあっては、中空形状をなす乾燥容器101と、乾燥容器101の一端側に原炭を投入する原炭投入口102と、乾燥容器101の他端側から原炭が加熱乾燥された乾燥炭を排出する乾燥炭排出口103と、乾燥容器101の下部に流動化ガスを供給することで原炭と共に流動層Sを形成する流動化ガス供給口104と、乾燥容器101の一端側における原炭投入口102より上方から流動化ガス及び発生蒸気を排出するガス排出口105と、流動層Sの原炭を加熱する伝熱管106と、流動化ガス及び発生蒸気を乾燥炭排出口103側から原炭投入口102側に導流させてガス排出口105に導くガイド装置として傾斜板111とを設けている。 Thus, in the fluidized bed drying apparatus of Example 1, the drying container 101 having a hollow shape, the raw coal charging port 102 for charging raw coal into one end side of the drying container 101, and the other end of the drying container 101 are provided. A dry coal discharge port 103 for discharging dry coal obtained by heating and drying the raw coal from the side, and a fluidized gas supply port 104 for forming a fluidized bed S together with the raw coal by supplying a fluidizing gas to the lower part of the drying vessel 101. A gas outlet 105 for discharging fluidized gas and generated steam from above the raw coal inlet 102 on one end side of the drying vessel 101, a heat transfer tube 106 for heating the raw coal of the fluidized bed S, a fluidized gas and An inclined plate 111 is provided as a guide device that guides the generated steam from the dry coal discharge port 103 side to the raw coal input port 102 side and guides it to the gas discharge port 105.
 従って、原炭投入口102から原炭が乾燥容器101内に投入されると共に、流動化ガス供給口104から流動化ガスが乾燥容器101の下部から分散板107を通して供給されると、原炭が流動化ガスにより流動することで流動層Sが形成され、この流動層Sの原炭が流動化ガスにより移動するとき、伝熱管106により加熱されることで乾燥して乾燥炭となり、この乾燥炭が乾燥炭排出口103から外部に排出される一方、流動化ガスと原炭が乾燥することで発生した蒸気がガス排出口105から外部に排出される。このとき、流動化ガス及び発生蒸気は、傾斜板111により乾燥炭排出口103側から原炭投入口102側に導流されてガス排出口105に導かれることとなり、この流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が流動化ガス及び発生蒸気から分離されて原炭投入口102側に戻され、乾燥前の原炭と混在されて再び流動層Sを移動することとなり、原炭投入口102から投入された原炭の加熱乾燥を促進することが可能となり、原炭の乾燥効率を向上することができる。 Therefore, when raw coal is introduced into the drying container 101 from the raw coal inlet 102 and fluidized gas is supplied from the lower part of the drying container 101 through the dispersion plate 107 from the fluidized gas supply port 104, the raw coal is supplied. When fluidized gas flows, a fluidized bed S is formed. When the raw coal of the fluidized bed S moves by fluidized gas, it is heated by the heat transfer tube 106 to be dried to become dry coal. Is discharged to the outside from the dry coal discharge port 103, while steam generated by drying the fluidized gas and raw coal is discharged to the outside from the gas discharge port 105. At this time, the fluidized gas and the generated steam are guided from the dry coal discharge port 103 side to the raw coal input port 102 side by the inclined plate 111 and guided to the gas discharge port 105. The dry coal particles accompanying the coal are separated from the fluidized gas and the generated steam, returned to the raw coal inlet 102 side, mixed with the raw coal before drying, and moved through the fluidized bed S again. It becomes possible to accelerate the heat drying of the raw coal introduced from the port 102, and the drying efficiency of the raw coal can be improved.
 また、実施例1の流動層乾燥装置では、流動層Sの上方のフリーボード部Fに、原炭投入口102側から乾燥炭排出口103側に向けて上方に傾斜する傾斜板111を設けている。従って、流動化ガス及び発生蒸気は、傾斜板111の下面に沿って乾燥炭排出口103側に流れ、その後、傾斜板111の上方を原炭投入口102側に流れることとなり、この流動化ガス及び発生蒸気を乾燥炭排出口103側から原炭投入口102側に導流して適正にガス排出口105に導くことができると共に、流動化ガス及び発生蒸気に同伴する乾燥炭の粒子を傾斜板111上に落下させ、この乾燥炭の粒子を傾斜板111の上面に沿って原炭投入口102側に適正に戻すことができる。 Further, in the fluidized bed drying apparatus of Example 1, the free board portion F above the fluidized bed S is provided with an inclined plate 111 that is inclined upward from the raw coal input port 102 side toward the dry coal discharge port 103 side. Yes. Accordingly, the fluidized gas and the generated steam flow along the lower surface of the inclined plate 111 toward the dry coal discharge port 103, and then flow over the inclined plate 111 toward the raw coal inlet 102. In addition, the generated steam can be introduced from the dry coal discharge port 103 side to the raw coal input port 102 side to be properly guided to the gas discharge port 105, and the dry coal particles accompanying the fluidized gas and the generated steam are inclined. The dried charcoal particles can be dropped onto the plate 111 and properly returned to the raw coal inlet 102 side along the upper surface of the inclined plate 111.
 また、実施例1の流動層乾燥装置では、傾斜板111の上方に、乾燥炭排出口103側から原炭投入口102側に導流する流動化ガス及び発生蒸気が衝突して同伴する乾燥炭の粒子が分離される複数の衝突板112を設けている。従って、流動化ガス及び発生蒸気が傾斜板111の上方を乾燥炭排出口103側から原炭投入口102側に流れるとき、複数の衝突板112に衝突することで、同伴する乾燥炭の粒子が適正に分離されて落下することとなり、乾燥炭の分離性能を向上することができる。 Moreover, in the fluidized bed drying apparatus of Example 1, the fluidized gas and the generated steam, which are introduced from the dry coal discharge port 103 side to the raw coal input port 102 side, collide with the upper side of the inclined plate 111 and are accompanied by the dry coal. A plurality of collision plates 112 are provided to separate the particles. Therefore, when the fluidized gas and the generated steam flow from the dry coal discharge port 103 side to the raw coal input port 102 side above the inclined plate 111, the particles of the accompanying dry coal are caused to collide with the plurality of collision plates 112. It will be separated properly and fall, and the separation performance of dry coal can be improved.
 この場合、乾燥容器101の内部に流動化ガス及び発生蒸気から乾燥炭の粒子を分離する複数の衝突板112を設けることで、乾燥容器101の外部に集塵装置などを不要としたり、負荷軽減による小型化や簡素化を可能とすることができる。その結果、系統の圧力損失が低減され、発生蒸気からの熱回収量を増加することができる。そして、乾燥容器101の外部で流動化ガス及び発生蒸気から乾燥炭の粒子を分離する際に懸念される結露の発生を防止することができる。 In this case, by providing a plurality of collision plates 112 for separating dry charcoal particles from fluidized gas and generated steam inside the dry container 101, a dust collector or the like is not required outside the dry container 101, and the load is reduced. It is possible to reduce the size and simplify the operation. As a result, the pressure loss of the system is reduced and the amount of heat recovered from the generated steam can be increased. And the generation | occurrence | production of the dew condensation concerned when isolate | separating the particle | grains of dry charcoal from the fluidization gas and generated vapor | steam outside the drying container 101 can be prevented.
 また、実施例1の流動層乾燥装置では、流動層Sの上方のフリーボード部Fに、原炭投入口102とガス排出口105とを仕切る導流板113を設けている。従って、導流板113により原炭投入口102とガス排出口105とが仕切られることで、乾燥炭排出口103側から原炭投入口102側に導流する流動化ガス及び発生蒸気が、原炭投入口102から外部に排出されることが防止され、流動化ガス及び発生蒸気を適正に導流することが可能となる。 Further, in the fluidized bed drying apparatus of the first embodiment, the flow guide plate 113 that partitions the raw coal charging port 102 and the gas discharging port 105 is provided in the free board part F above the fluidized bed S. Therefore, the raw coal inlet 102 and the gas outlet 105 are partitioned by the flow guide plate 113, so that the fluidized gas and generated steam introduced from the dry coal outlet 103 side to the raw coal inlet 102 side are supplied to the raw coal inlet. Exhaust from the charcoal inlet 102 is prevented, and fluidized gas and generated steam can be properly introduced.
 この場合、導流板113は、原炭投入口102側から乾燥炭排出口103側に向けて下方に傾斜し、基端部が乾燥容器101における原炭投入口102側の壁面と所定隙間をもって配置され、先端部が傾斜板111の基端部と所定隙間をもって配置されている。従って、原炭投入口102側に導流する流動化ガス及び発生蒸気は、傾斜した導流板113により適正にガス排出口105に導かれる。また、流動化ガス及び発生蒸気から分離した乾燥炭の粒子は、傾斜板111を滑り落ち、この傾斜板111と導流板113との間から流動層Sの予熱領域に再投入されることとなり、未乾燥の原炭の乾燥を促進することが可能となる。更に、導流板113と乾燥容器101の壁面との間に隙間が設けられることで、流動化ガスや発生蒸気が導流板113と乾燥容器101の壁面との間に滞留することが防止される。 In this case, the flow guide plate 113 is inclined downward from the raw coal inlet 102 side toward the dry coal outlet 103 side, and the base end portion has a predetermined gap from the wall surface on the raw coal inlet 102 side in the drying container 101. The distal end portion is disposed with a predetermined gap from the proximal end portion of the inclined plate 111. Therefore, the fluidized gas and the generated steam that are guided to the raw coal inlet 102 are appropriately guided to the gas outlet 105 by the inclined guide plate 113. Further, the dry charcoal particles separated from the fluidized gas and the generated steam slide down the inclined plate 111 and are reintroduced into the preheating region of the fluidized bed S from between the inclined plate 111 and the flow guide plate 113. It becomes possible to promote drying of undried raw coal. Further, by providing a gap between the flow guide plate 113 and the wall surface of the drying container 101, fluidized gas and generated steam are prevented from staying between the flow guide plate 113 and the wall surface of the drying container 101. The
 図4は、本発明の実施例2に係る流動層乾燥装置の概略側面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 FIG. 4 is a schematic side view of a fluidized bed drying apparatus according to Example 2 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the function similar to the Example mentioned above, and detailed description is abbreviate | omitted.
 実施例2において、図4に示すように、流動層乾燥装置12は、乾燥容器101と、原炭投入口102と、乾燥炭排出口103と、流動化ガス供給口104と、ガス排出口105と、伝熱管106とを有している。 In Example 2, as shown in FIG. 4, the fluidized bed drying apparatus 12 includes a drying container 101, a raw coal inlet 102, a dry coal outlet 103, a fluidized gas supply port 104, and a gas outlet 105. And a heat transfer tube 106.
 また、乾燥容器101は、流動化ガス及び発生蒸気を乾燥炭排出口103側から原炭投入口102側に導流させてガス排出口105に導くガイド装置としての傾斜ベルト121と、衝突板112と、導流板113を設けている。そして、この傾斜ベルト121は、駆動ローラ及び従動ローラとの間に無端の搬送ベルトが掛け回して構成され、傾斜板としての機能だけでなく、複数の衝突板112により落下した乾燥炭の粒子を原炭投入口102側に搬送する搬送装置としての機能を有する。そのため、傾斜ベルト121と流動層Sの上面との間に形成される隙間が、原炭投入口102側から乾燥炭排出口103に向って徐々に大きくなるように設定されており、流動化ガス及び発生蒸気を乾燥炭排出口103側に導くと共に、この乾燥炭排出口103から原炭投入口102側に導くことができる。 Further, the drying container 101 includes an inclined belt 121 as a guide device that guides the fluidized gas and generated steam from the dry coal discharge port 103 side to the raw coal input port 102 side and guides them to the gas discharge port 105, and a collision plate 112. And the flow guide plate 113 is provided. The inclined belt 121 is configured by an endless conveying belt wound between a driving roller and a driven roller. The inclined belt 121 functions not only as an inclined plate, but also with dry charcoal particles dropped by a plurality of collision plates 112. It has a function as a transfer device for transferring to the raw coal input port 102 side. Therefore, the gap formed between the inclined belt 121 and the upper surface of the fluidized bed S is set so as to gradually increase from the raw coal input port 102 toward the dry coal discharge port 103, and the fluidized gas The generated steam can be guided to the dry coal discharge port 103 side, and can be guided from the dry coal discharge port 103 to the raw coal input port 102 side.
 この傾斜ベルト121は、流動層Sの上方のフリーボード部Fにて、原炭投入口102側から乾燥炭排出口103側に向けて上方に傾斜するように配置されており、基端部が導流板113の先端部と所定隙間をもって配置される一方、先端部が乾燥容器101における乾燥炭排出口103側の壁面と所定隙間をもって配置され、駆動ローラ及び従動ローラが乾燥容器101における各壁面に回転自在に支持されている。そのため、傾斜ベルト121は、図4に示す矢印方向に作動することで、上面に落下した乾燥炭の粒子を原炭投入口102側に搬送することができる。 The inclined belt 121 is disposed in the free board portion F above the fluidized bed S so as to be inclined upward from the raw coal input port 102 side toward the dry coal discharge port 103 side. While the tip of the flow guide plate 113 is arranged with a predetermined gap, the tip is arranged with a predetermined gap from the wall on the dry charcoal discharge port 103 side of the drying container 101, and the driving roller and the driven roller are each wall surface of the drying container 101. Is supported rotatably. Therefore, the inclined belt 121 operates in the direction of the arrow shown in FIG. 4, so that the dry coal particles dropped on the upper surface can be conveyed to the raw coal inlet 102 side.
 従って、乾燥容器101に対して、原炭投入口102から原炭が供給されると共に、流動化ガス供給口104から分散板107を通して流動化ガスが供給されることで、この分散板107の上方に所定厚さの流動層Sが形成される。原炭は、流動化ガスにより流動層Sを乾燥炭排出口103側に移動し、このとき、伝熱管106から熱を受けることで加熱されて乾燥される。この場合、原炭は、原炭投入口102から乾燥炭排出口103まで移動する間に、伝熱管106からの熱により加熱乾燥されるが、原炭投入口102から投入された直後、つまり、導流板113の下方位置では、予熱状態にあり、水分はほとんど蒸発しない。その後、原炭は、予熱領域、つまり、導流板113の下方位置を超えて傾斜ベルト121の下方位置に移動すると、水分蒸発が始まり、徐々に増加して最大となり、乾燥炭排出口103に近づくにつれて水分蒸発が減少する。 Accordingly, the raw coal is supplied to the drying container 101 from the raw coal inlet 102 and the fluidizing gas is supplied from the fluidizing gas supply port 104 through the dispersion plate 107, so that A fluidized bed S having a predetermined thickness is formed. The raw coal moves through the fluidized bed S to the dry coal discharge port 103 side by the fluidizing gas, and is heated and dried by receiving heat from the heat transfer tube 106 at this time. In this case, the raw coal is heated and dried by the heat from the heat transfer pipe 106 while moving from the raw coal inlet 102 to the dry coal outlet 103, but immediately after being supplied from the raw coal inlet 102, that is, At a position below the flow guide plate 113, it is in a preheated state, and moisture hardly evaporates. After that, when the raw coal moves to the preheating region, that is, the lower position of the flow guide plate 113 and moves to the lower position of the inclined belt 121, the water evaporation starts, gradually increases and becomes maximum, and reaches the dry coal discharge port 103. As it approaches, moisture evaporation decreases.
 そして、傾斜ベルト121の下方位置における流動層Sで原炭が加熱乾燥されることで発生した蒸気は、流動化ガスと共に上昇し、傾斜ベルト121の下面に沿って乾燥炭排出口103側に流れる。そして、流動化ガス及び発生蒸気は、乾燥容器101における乾燥炭排出口103側の壁面で迂回し、傾斜ベルト121の上方の空間を原炭投入口102側に流れる。このとき、流動化ガス及び発生蒸気は、複数の衝突板112に衝突することで、流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が分離されて傾斜ベルト121上に落下する。すると、乾燥炭の粒子は、駆動する傾斜ベルト121により原炭投入口102側に移動され、この原炭投入口102から投入される乾燥前の原炭と共に流動層Sに落下する。ここで、乾燥前の原炭と乾燥炭の粒子が流動層Sで混合されることで、乾燥前の原炭の乾燥が促進される。その後、原炭が乾燥された乾燥炭は、乾燥炭排出口103から外部に排出され、乾燥炭の粒子が分離された流動化ガス及び発生蒸気は、導流板113に案内されて上方に流れ、ガス排出口105から外部に排出される。 Then, the steam generated by heating and drying the raw coal in the fluidized bed S at a position below the inclined belt 121 rises together with the fluidizing gas and flows to the dry coal discharge port 103 side along the lower surface of the inclined belt 121. . The fluidized gas and the generated steam are detoured on the wall surface of the drying container 101 on the dry coal discharge port 103 side, and flow in the space above the inclined belt 121 to the raw coal input port 102 side. At this time, the fluidized gas and the generated steam collide with the plurality of collision plates 112, whereby the particles of the dry coal accompanying the fluidized gas and the generated steam are separated and fall on the inclined belt 121. Then, the dry coal particles are moved to the raw coal charging port 102 side by the driven inclined belt 121 and fall into the fluidized bed S together with the raw coal before drying supplied from the raw coal charging port 102. Here, when the raw coal before drying and the particles of the dry coal are mixed in the fluidized bed S, drying of the raw coal before drying is promoted. Thereafter, the dry coal from which the raw coal has been dried is discharged to the outside from the dry coal discharge port 103, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 113 and flow upward. The gas is discharged from the gas discharge port 105 to the outside.
 このように実施例2の流動層乾燥装置にあっては、乾燥容器101内に、流動化ガス及び発生蒸気を乾燥炭排出口103側から原炭投入口102側に導流させてガス排出口105に導くガイド装置及び落下した乾燥炭の粒子を原炭投入口102側に搬送する搬送装置として機能する傾斜ベルト121を設けている。 As described above, in the fluidized bed drying apparatus of the second embodiment, the fluidizing gas and the generated steam are introduced into the drying vessel 101 from the dry coal discharge port 103 side to the raw coal input port 102 side, and the gas discharge port. An inclined belt 121 that functions as a guide device that leads to 105 and a conveying device that conveys the particles of the dried dry coal to the raw coal charging port 102 side is provided.
 従って、流動層Sから上昇する流動化ガス及び発生蒸気は、傾斜ベルト121により乾燥炭排出口103側から原炭投入口102側に導流されてガス排出口105に導かれることとなり、この流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が流動化ガス及び発生蒸気から分離されて原炭投入口102側に戻され、乾燥前の原炭と混在されて再び流動層Sを移動することとなり、原炭投入口102から投入された原炭の加熱乾燥を促進することが可能となり、原炭の乾燥効率を向上することができる。 Accordingly, the fluidized gas and the generated steam rising from the fluidized bed S are guided from the dry coal discharge port 103 side to the raw coal input port 102 side by the inclined belt 121 and are guided to the gas discharge port 105. The dry coal particles accompanying the gasified gas and generated steam are separated from the fluidized gas and generated steam, returned to the raw coal inlet 102 side, mixed with the raw coal before drying, and moved through the fluidized bed S again. Thus, it becomes possible to promote the heat drying of the raw coal input from the raw coal input port 102, and the drying efficiency of the raw coal can be improved.
 また、流動化ガス及び発生蒸気が傾斜ベルト121の上方を流れて複数の衝突板112に衝突すると、同伴する乾燥炭の粒子が分離されて傾斜ベルト121上に落下し、この乾燥炭は、駆動する傾斜ベルト121により原炭投入口102側に搬送されて流動層Sの予熱領域に投入されることとなり、この乾燥炭を適正に乾燥前の原炭に混合させて乾燥を促進することができる。 Further, when the fluidized gas and the generated steam flow over the inclined belt 121 and collide with the plurality of collision plates 112, the accompanying dry coal particles are separated and fall on the inclined belt 121, and this dry coal is driven. Is transported to the raw coal charging port 102 side by the inclined belt 121 to be introduced into the preheating region of the fluidized bed S, and drying can be promoted by properly mixing this dry coal with the raw coal before drying. .
 図5は、本発明の実施例3に係る流動層乾燥装置の概略側面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 FIG. 5 is a schematic side view of a fluidized bed drying apparatus according to Example 3 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the function similar to the Example mentioned above, and detailed description is abbreviate | omitted.
 実施例3において、図5に示すように、流動層乾燥装置12は、乾燥容器101と、原炭投入口102と、乾燥炭排出口103と、流動化ガス供給口104と、ガス排出口105と、伝熱管106とを有している。 In Example 3, as shown in FIG. 5, the fluidized bed drying apparatus 12 includes a drying container 101, a raw coal inlet 102, a dry coal outlet 103, a fluidized gas supply port 104, and a gas outlet 105. And a heat transfer tube 106.
 また、乾燥容器101は、流動化ガス及び発生蒸気を乾燥炭排出口103側から原炭投入口102側に導流させてガス排出口105に導くガイド装置として、傾斜ヘッド131、衝突板112、導流板113を設けている。そして、この傾斜ヘッド131は、中空形状をなして内部に過熱蒸気を供給可能であると共に、上面部に複数の噴射ノズル131aを装着しており、傾斜板としての機能だけでなく、複数の衝突板112により落下した乾燥炭の粒子を原炭投入口102側に搬送する搬送装置としての機能を有する。そのため、傾斜ヘッド131と流動層Sの上面との間に形成される隙間が、原炭投入口102側から乾燥炭排出口103に向って徐々に大きくなるように設定されており、流動化ガス及び発生蒸気を乾燥炭排出口103側に導くと共に、この乾燥炭排出口103から原炭投入口102側に導くことができる。 In addition, the drying container 101 includes an inclined head 131, a collision plate 112, a guide device that guides the fluidized gas and generated steam from the dry coal discharge port 103 side to the raw coal input port 102 side and guides them to the gas discharge port 105. A flow guide plate 113 is provided. The inclined head 131 has a hollow shape and can supply superheated steam inside, and has a plurality of injection nozzles 131a mounted on the upper surface portion, and not only functions as an inclined plate but also a plurality of collisions. It has a function as a transport device that transports dry charcoal particles dropped by the plate 112 to the raw coal inlet 102 side. Therefore, the gap formed between the inclined head 131 and the upper surface of the fluidized bed S is set so as to gradually increase from the raw coal inlet 102 side toward the dry coal outlet 103, and the fluidized gas The generated steam can be guided to the dry coal discharge port 103 side, and can be guided from the dry coal discharge port 103 to the raw coal input port 102 side.
 また、この傾斜ヘッド131は、流動層Sの上方のフリーボード部Fにて、原炭投入口102側から乾燥炭排出口103側に向けて上方に傾斜するように配置されており、基端部が導流板113の先端部と所定隙間をもって配置される一方、先端部が乾燥容器101における乾燥炭排出口103側の壁面と所定隙間をもって配置され、両側部が乾燥容器101における各壁面に固定されている。そして、傾斜ヘッド131は、各噴射ノズル131aが原炭投入口102側に向けて過熱蒸気を噴射可能となっている。そのため、傾斜ヘッド131は、図5に示す矢印方向に各噴射ノズル131aから過熱蒸気を噴射することで、上面に落下した乾燥炭の粒子を原炭投入口102側に搬送することができる。 In addition, the inclined head 131 is disposed at the free board portion F above the fluidized bed S so as to be inclined upward from the raw coal input port 102 side toward the dry coal discharge port 103 side. Is disposed with a predetermined gap from the tip of the flow guide plate 113, while the tip is disposed with a predetermined gap from the wall on the drying coal discharge port 103 side in the drying vessel 101, and both side portions are arranged on each wall of the drying vessel 101. It is fixed. In the inclined head 131, each injection nozzle 131a can inject superheated steam toward the raw coal inlet 102 side. Therefore, the inclined head 131 can convey the dry coal particles falling on the upper surface to the raw coal inlet 102 side by injecting superheated steam from each injection nozzle 131a in the direction of the arrow shown in FIG.
 従って、乾燥容器101に対して、原炭投入口102から原炭が供給されると共に、流動化ガス供給口104から分散板107を通して流動化ガスが供給されることで、この分散板107の上方に所定厚さの流動層Sが形成される。原炭は、流動化ガスにより流動層Sを乾燥炭排出口103側に移動し、このとき、伝熱管106から熱を受けることで加熱されて乾燥される。この場合、原炭は、原炭投入口102から乾燥炭排出口103まで移動する間に、伝熱管106からの熱により加熱乾燥されるが、原炭投入口102から投入された直後、つまり、導流板113の下方位置では、予熱状態にあり、水分はほとんど蒸発しない。その後、原炭は、予熱領域、つまり、導流板113の下方位置を超えて傾斜ヘッド131の下方位置に移動すると、水分蒸発が始まり、徐々に増加して最大となり、乾燥炭排出口103に近づくにつれて水分蒸発が減少する。 Accordingly, the raw coal is supplied to the drying container 101 from the raw coal inlet 102 and the fluidizing gas is supplied from the fluidizing gas supply port 104 through the dispersion plate 107, so that A fluidized bed S having a predetermined thickness is formed. The raw coal moves through the fluidized bed S to the dry coal discharge port 103 side by the fluidizing gas, and is heated and dried by receiving heat from the heat transfer tube 106 at this time. In this case, the raw coal is heated and dried by the heat from the heat transfer pipe 106 while moving from the raw coal inlet 102 to the dry coal outlet 103, but immediately after being supplied from the raw coal inlet 102, that is, At a position below the flow guide plate 113, it is in a preheated state, and moisture hardly evaporates. After that, when the raw coal moves to the preheating region, that is, the lower position of the flow guide plate 113 and moves to the lower position of the inclined head 131, the water evaporation starts, gradually increases and becomes maximum, and reaches the dry coal discharge port 103. As it approaches, moisture evaporation decreases.
 そして、傾斜ヘッド131の下方位置における流動層Sで原炭が加熱乾燥されることで発生した蒸気は、流動化ガスと共に上昇し、傾斜ヘッド131の下面に沿って乾燥炭排出口103側に流れる。そして、流動化ガス及び発生蒸気は、乾燥容器101における乾燥炭排出口103側の壁面で迂回し、傾斜ヘッド131の上方の空間を原炭投入口102側に流れる。このとき、流動化ガス及び発生蒸気は、複数の衝突板112に衝突することで、流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が分離されて傾斜ヘッド131上に落下する。すると、乾燥炭の粒子は、各噴射ノズル131aから噴射される過熱蒸気により原炭投入口102側に吹き飛ばされ、この原炭投入口102から投入される乾燥前の原炭と共に流動層Sに落下する。ここで、乾燥前の原炭と乾燥炭の粒子が流動層Sで混合されることで、乾燥前の原炭の乾燥が促進される。その後、原炭が乾燥された乾燥炭は、乾燥炭排出口103から外部に排出され、乾燥炭の粒子が分離された流動化ガス及び発生蒸気は、導流板113に案内されて上方に流れ、ガス排出口105から外部に排出される。 Then, the steam generated by heating and drying the raw coal in the fluidized bed S at a position below the inclined head 131 rises together with the fluidizing gas and flows to the dry coal discharge port 103 side along the lower surface of the inclined head 131. . The fluidized gas and the generated steam are detoured on the wall surface on the dry coal discharge port 103 side in the drying container 101 and flow in the space above the inclined head 131 toward the raw coal input port 102. At this time, the fluidized gas and the generated steam collide with the plurality of collision plates 112, whereby the particles of the dry coal accompanying the fluidized gas and the generated steam are separated and fall on the inclined head 131. Then, the dry coal particles are blown off to the raw coal charging port 102 side by the superheated steam injected from each injection nozzle 131a and fall into the fluidized bed S together with the raw coal before drying supplied from the raw coal charging port 102. To do. Here, when the raw coal before drying and the particles of the dry coal are mixed in the fluidized bed S, drying of the raw coal before drying is promoted. Thereafter, the dry coal from which the raw coal has been dried is discharged to the outside from the dry coal discharge port 103, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 113 and flow upward. The gas is discharged from the gas discharge port 105 to the outside.
 このように実施例3の流動層乾燥装置にあっては、乾燥容器101内に、流動化ガス及び発生蒸気を乾燥炭排出口103側から原炭投入口102側に導流させてガス排出口105に導くガイド装置及び落下した乾燥炭の粒子を原炭投入口102側に搬送する搬送装置として機能する傾斜ヘッド131を設けている。 As described above, in the fluidized bed drying apparatus of the third embodiment, the fluidized gas and the generated steam are introduced into the drying vessel 101 from the dry coal discharge port 103 side to the raw coal input port 102 side, and the gas discharge port. An inclined head 131 that functions as a guide device that leads to 105 and a conveying device that conveys the particles of the dry coal that has fallen to the raw coal charging port 102 side is provided.
 従って、流動層Sから上昇する流動化ガス及び発生蒸気は、傾斜ヘッド131により乾燥炭排出口103側から原炭投入口102側に導流されてガス排出口105に導かれることとなり、この流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が流動化ガス及び発生蒸気から分離されて原炭投入口102側に戻され、乾燥前の原炭と混在されて再び流動層Sを移動することとなり、原炭投入口102から投入された原炭の加熱乾燥を促進することが可能となり、原炭の乾燥効率を向上することができる。 Accordingly, the fluidized gas and the generated steam rising from the fluidized bed S are guided from the dry coal discharge port 103 side to the raw coal input port 102 side by the inclined head 131 and are guided to the gas discharge port 105. The dry coal particles accompanying the gasified gas and generated steam are separated from the fluidized gas and generated steam, returned to the raw coal inlet 102 side, mixed with the raw coal before drying, and moved through the fluidized bed S again. Thus, it becomes possible to promote the heat drying of the raw coal input from the raw coal input port 102, and the drying efficiency of the raw coal can be improved.
 また、流動化ガス及び発生蒸気が傾斜ヘッド131の上方を流れて複数の衝突板112に衝突すると、同伴する乾燥炭の粒子が分離されて傾斜ヘッド131上に落下し、この乾燥炭は、各噴射ノズル131aから噴射される過熱蒸気により原炭投入口102側に搬送されて流動層Sの予熱領域に投入されることとなり、この乾燥炭を適正に乾燥前の原炭に混合させて乾燥を促進することができる。 Further, when the fluidized gas and the generated steam flow over the inclined head 131 and collide with the plurality of collision plates 112, the accompanying dry charcoal particles are separated and fall on the inclined head 131. The superheated steam injected from the injection nozzle 131a is transported to the raw coal input port 102 side and supplied to the preheating region of the fluidized bed S. This dry coal is appropriately mixed with the raw coal before drying and dried. Can be promoted.
 なお、上述した実施例2、3では、搬送装置として傾斜ベルト121や噴射ノズル131aを有する傾斜ヘッド131を設けたが、この構成に限定されるものではない。例えば、傾斜板に加振機を設けて傾斜板を振動させて乾燥炭の粒子を搬送するようにしてもよい。また、傾斜板の上に掻き取り部材を移動自在に設けたりしてもよい。 In the second and third embodiments described above, the inclined head 131 having the inclined belt 121 and the injection nozzle 131a is provided as the conveying device, but the present invention is not limited to this configuration. For example, a vibrator may be provided on the inclined plate, and the inclined plate may be vibrated to convey dry charcoal particles. Further, a scraping member may be movably provided on the inclined plate.
 図6は、本発明の実施例4に係る流動層乾燥装置の概略側面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 FIG. 6 is a schematic side view of a fluidized bed drying apparatus according to Example 4 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the function similar to the Example mentioned above, and detailed description is abbreviate | omitted.
 実施例4において、図6に示すように、流動層乾燥装置12Aは、乾燥容器201と、原炭投入口(湿潤原料投入部)202と、乾燥炭排出口(乾燥物排出部)203と、流動化ガス供給口(流動化ガス供給部)204と、ガス排出口(ガス排出部)205と、伝熱管(加熱部)206とを有している。 In Example 4, as shown in FIG. 6, the fluidized bed drying apparatus 12 </ b> A includes a drying container 201, a raw coal charging port (wet raw material charging unit) 202, a dry coal discharging port (dry matter discharging unit) 203, A fluidized gas supply port (fluidized gas supply unit) 204, a gas discharge port (gas discharge unit) 205, and a heat transfer tube (heating unit) 206 are provided.
 乾燥容器201は、中空箱型形状をなしており、一端側に原炭を投入する原炭投入口202が形成される一方、他端側に原炭を加熱乾燥した乾燥物を排出する乾燥炭排出口203が形成されている。また、乾燥容器201は、下部に底板201aから所定距離をあけて複数の開口を有する分散板207が設けられており、この底板201aに乾燥容器201内に流動化ガス(過熱蒸気)を供給する流動化ガス供給口204が形成されている。更に、乾燥容器201は、上部に流動化ガス及び発生蒸気を排出するガス排出口205が形成されている。この場合、乾燥容器201は、天井部201bが乾燥物排出口203からガス排出口205に向けて上方に傾斜しており、流動化ガス及び発生蒸気がこの傾斜した天井部201bに沿って流れることで、滞留することなくガス排出口205に導かれるように構成されている。 The drying container 201 has a hollow box shape, and is formed with a raw coal charging port 202 for charging raw coal on one end side, and on the other end side, dried charcoal for discharging a dried product obtained by heating and drying raw coal. A discharge port 203 is formed. Further, the drying container 201 is provided with a dispersion plate 207 having a plurality of openings at a predetermined distance from the bottom plate 201a at the lower portion, and supplies fluidized gas (superheated steam) into the drying container 201 to the bottom plate 201a. A fluidizing gas supply port 204 is formed. Further, the drying container 201 is formed with a gas discharge port 205 for discharging the fluidized gas and the generated steam at the top. In this case, in the drying container 201, the ceiling 201b is inclined upward from the dry matter discharge port 203 toward the gas discharge port 205, and the fluidized gas and the generated vapor flow along the inclined ceiling 201b. Therefore, it is configured to be guided to the gas discharge port 205 without staying.
 この乾燥容器201は、原炭投入口202から原炭が供給されると共に、流動化ガス供給口204から分散板207を通して流動化ガスが供給されることで、この分散板207の上方に所定厚さの流動層Sが形成されると共に、この流動層Sの上方にフリーボード部Fが形成される。そして、外部から乾燥容器201を貫通して流動層S内を循環する伝熱管206が配置されており、この伝熱管206内を流れる過熱蒸気により原炭を加熱して乾燥することができる。 The drying container 201 is supplied with raw coal from the raw coal inlet 202 and fluidized gas is supplied from the fluidized gas supply port 204 through the dispersion plate 207, so that a predetermined thickness is provided above the dispersion plate 207. A fluidized bed S is formed, and a free board portion F is formed above the fluidized bed S. And the heat transfer pipe | tube 206 which penetrates the drying container 201 from the exterior and circulates the inside of the fluidized bed S is arrange | positioned, and raw coal can be heated and dried with the superheated steam which flows through this heat transfer pipe | tube 206 inside.
 また、乾燥容器201は、流動化ガスが流動化ガス供給口204から分散板207を通して流動層Sに供給されると共に、この流動層Sで原炭が乾燥することで含有する水分が蒸発して蒸気が発生する。この流動化ガス及び発生蒸気は、ガス排出口205から排出されるが、本実施例では、この流動化ガス及び発生蒸気を乾燥物排出口203側から原炭投入口202側に導流させてガス排出口205に導くガイド装置としての衝突板212と、導流板(仕切板)213を設けている。 In the drying container 201, fluidized gas is supplied from the fluidized gas supply port 204 to the fluidized bed S through the dispersion plate 207, and moisture contained therein is evaporated by drying the raw coal in the fluidized bed S. Steam is generated. The fluidized gas and generated steam are discharged from the gas outlet 205. In this embodiment, the fluidized gas and generated steam are introduced from the dry matter outlet 203 side to the raw coal inlet 202 side. A collision plate 212 and a flow guide plate (partition plate) 213 are provided as a guide device that leads to the gas discharge port 205.
 衝突板212は、フリーボード部Fの上部にて、乾燥物排出口203側から原炭投入口202側に導流する流動化ガス及び発生蒸気が衝突することで、この流動化ガス及び発生蒸気に同伴する乾燥物の粒子を分離するものである。そのため、フリーボード部Fの上部にて、乾燥容器201の天井部201bの下方に位置して複数の衝突板212が設けられることで、衝突板群214が形成されている。この衝突板群214は、乾燥物排出口203側から原炭投入口202側に流れる流動化ガス及び発生蒸気の流れに対向するようにほぼ鉛直方向に沿って配置されており、且つ、衝突板212同士が所定間隔をもって配置されることで、流動化ガス及び発生蒸気が蛇行して流れることができるような流路が確保されている。 The collision plate 212 collides with the fluidized gas and generated steam introduced from the dry matter discharge port 203 side to the raw coal input port 202 side at the upper part of the free board portion F, so that the fluidized gas and generated steam are collided. The particles of dry matter accompanying the slab are separated. For this reason, the collision plate group 214 is formed by providing a plurality of collision plates 212 at the upper part of the free board portion F and below the ceiling portion 201b of the drying container 201. The collision plate group 214 is arranged along the substantially vertical direction so as to face the flow of fluidized gas and generated steam flowing from the dry matter discharge port 203 side to the raw coal input port 202 side, and the collision plate By arranging 212 at a predetermined interval, a flow path is ensured so that fluidized gas and generated steam can meander and flow.
 また、この衝突板群214は、乾燥容器201内の流動化ガス及び発生蒸気を乾燥物排出口203側から原炭投入口202側に導くように機能する。即ち、衝突板群214は、下端が原炭投入口202側から乾燥炭排出口203側に向けて上方に傾斜する位置に配置されている。つまり、衝突板群214の下端が、原炭投入口202側から乾燥物排出口203側に向けて上方に傾斜する仮想傾斜面Lを描くように配置されている。そのため、この仮想傾斜面Lと流動層Sの上面との間に形成される隙間が、原炭投入口202側から乾燥物排出口203に向って徐々に大きくなるように設定されており、流動化ガス及び発生蒸気を乾燥物排出口203側に導くと共に、この乾燥物排出口203から原炭投入口202側に導くことができる。 Also, the collision plate group 214 functions to guide the fluidized gas and generated steam in the drying container 201 from the dry matter discharge port 203 side to the raw coal input port 202 side. That is, the collision plate group 214 is disposed at a position where the lower end is inclined upward from the raw coal input port 202 side toward the dry coal discharge port 203 side. That is, the lower end of the collision plate group 214 is arranged so as to draw a virtual inclined surface L that is inclined upward from the raw coal input port 202 side toward the dry matter discharge port 203 side. Therefore, the gap formed between the virtual inclined surface L and the upper surface of the fluidized bed S is set so as to gradually increase from the raw coal input port 202 side toward the dry matter discharge port 203. The conversion gas and the generated steam can be led to the dry matter discharge port 203 side, and can be led from the dry matter discharge port 203 to the raw coal charging port 202 side.
 また、乾燥容器201は、一端部側に原炭投入口202及びガス排出口205が配置されており、この原炭投入口202より上方にガス排出口205が配置されている。そして、導流板213は、原炭投入口202とガス排出口205とを仕切るように配置されている。即ち、導流板213は、流動層Sの上方のフリーボード部Fにて、原炭投入口202側から乾燥物排出口203側に向けて下方に傾斜しており、基端部が乾燥容器201における原炭投入口202側の壁面と所定隙間をもって配置される一方、先端部が衝突板212の下端部と所定隙間をもって配置され、両側部が乾燥容器201における各壁面と隙間なく密着して固定されている。 Further, the drying container 201 has a raw coal inlet 202 and a gas outlet 205 arranged on one end side, and a gas outlet 205 is arranged above the raw coal inlet 202. And the flow guide plate 213 is arrange | positioned so that the raw coal input port 202 and the gas exhaust port 205 may be partitioned off. That is, the flow guide plate 213 is inclined downward in the free board portion F above the fluidized bed S from the raw coal input port 202 side toward the dry matter discharge port 203 side, and the base end portion is a drying container. 201 is disposed with a predetermined gap from the wall surface on the raw coal inlet 202 side in 201, while the front end portion is disposed with a predetermined gap from the lower end portion of the collision plate 212, and both side portions are in close contact with each wall surface in the drying container 201 without a gap. It is fixed.
 従って、乾燥容器201に対して、原炭投入口202から原炭が供給されると共に、流動化ガス供給口204から分散板207を通して流動化ガスが供給されることで、この分散板207の上方に所定厚さの流動層Sが形成される。原炭は、流動化ガスにより流動層Sを乾燥物排出口203側に移動し、このとき、伝熱管206から熱を受けることで加熱されて乾燥される。この場合、原炭は、原炭投入口202から乾燥物排出口203まで移動する間に、伝熱管206からの熱により加熱乾燥されるが、原炭投入口202から投入された直後、つまり、導流板213の下方位置では、予熱状態にあり、水分はほとんど蒸発しない。その後、原炭は、予熱領域、つまり、導流板213の下方位置を超えて移動すると、水分蒸発が始まり、徐々に増加して最大となり、乾燥物排出口203に近づくにつれて水分蒸発が減少する。 Accordingly, the raw coal is supplied to the drying container 201 from the raw coal inlet 202 and the fluidizing gas is supplied from the fluidizing gas supply port 204 through the dispersion plate 207, so that A fluidized bed S having a predetermined thickness is formed. The raw coal moves through the fluidized bed S to the dry matter discharge port 203 side by the fluidized gas, and is heated and dried by receiving heat from the heat transfer tube 206 at this time. In this case, the raw coal is heated and dried by the heat from the heat transfer pipe 206 while moving from the raw coal inlet 202 to the dry matter outlet 203, that is, immediately after being supplied from the raw coal inlet 202, that is, At a position below the flow guide plate 213, it is in a preheated state, and moisture hardly evaporates. After that, when the raw coal moves beyond the preheating region, that is, the lower position of the flow guide plate 213, the water evaporation starts, gradually increases to the maximum, and the water evaporation decreases as the dry matter discharge port 203 is approached. .
 そして、衝突板群214の下方位置における流動層Sで原炭が加熱乾燥されることで発生した蒸気は、流動化ガスと共に上昇し、衝突板群214により乾燥物排出口203側に流れる。そして、流動化ガス及び発生蒸気は、乾燥容器201における乾燥物排出口203側の壁面で迂回して原炭投入口202側に流れる。このとき、流動化ガス及び発生蒸気は、複数の衝突板212に衝突することで、流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が分離されて流動層Sに落下する。ここで、乾燥前の原炭と乾燥炭の粒子が流動層Sで混合されることで、乾燥前の原炭の乾燥が促進される。その後、原炭が乾燥された乾燥炭は、乾燥物排出口203から外部に排出され、乾燥炭の粒子が分離された流動化ガス及び発生蒸気は、導流板213に案内されて上方に流れ、ガス排出口205から外部に排出される。 Then, the steam generated by heating and drying the raw coal in the fluidized bed S at the lower position of the collision plate group 214 rises together with the fluidized gas and flows to the dry matter discharge port 203 side by the collision plate group 214. Then, the fluidized gas and the generated steam flow around the wall on the dry matter discharge port 203 side in the drying container 201 and flow toward the raw coal input port 202 side. At this time, the fluidized gas and the generated steam collide with the plurality of collision plates 212, whereby the particles of dry coal accompanying the fluidized gas and the generated steam are separated and fall into the fluidized bed S. Here, when the raw coal before drying and the particles of the dry coal are mixed in the fluidized bed S, drying of the raw coal before drying is promoted. Thereafter, the dry coal from which the raw coal has been dried is discharged to the outside from the dry matter discharge port 203, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 213 and flow upward. The gas is discharged from the gas discharge port 205 to the outside.
 このように実施例4の流動層乾燥装置にあっては、中空形状をなす乾燥容器201と、乾燥容器201の一端側に原炭を投入する原炭投入口202と、乾燥容器201の他端側から原炭が加熱乾燥した乾燥炭を排出する乾燥炭排出口203と、乾燥容器201の下部に流動化ガスを供給することで原炭と共に流動層Sを形成する流動化ガス供給口204と、乾燥容器201の一端側における原炭投入口202より上方から流動化ガス及び発生蒸気を排出するガス排出口205と、流動層Sの原炭を加熱する伝熱管206と、流動化ガス及び発生蒸気を乾燥炭排出口203側から原炭投入口202側に導流させてガス排出口205に導くガイド装置として衝突板212とを設けている。 Thus, in the fluidized bed drying apparatus of Example 4, the drying container 201 having a hollow shape, the raw coal charging port 202 for charging raw coal into one end side of the drying container 201, and the other end of the drying container 201 are provided. A dry coal discharge port 203 for discharging dry coal obtained by heating and drying the raw coal from the side, and a fluidized gas supply port 204 for forming a fluidized bed S together with the raw coal by supplying a fluidizing gas to the lower part of the drying vessel 201; The gas outlet 205 for discharging fluidized gas and generated steam from above the raw coal inlet 202 on one end side of the drying vessel 201, the heat transfer pipe 206 for heating the raw coal of the fluidized bed S, the fluidized gas and generated A collision plate 212 is provided as a guide device that guides the steam from the dry coal discharge port 203 side to the raw coal input port 202 side and guides it to the gas discharge port 205.
 従って、流動層Sから上昇する流動化ガス及び発生蒸気は、衝突板群214により乾燥炭排出口203側から原炭投入口202側に導流されてガス排出口205に導かれることとなり、この流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が流動化ガス及び発生蒸気から分離されて原炭投入口202側に戻され、乾燥前の原炭と混在されて再び流動層Sを移動することとなり、原炭投入口202から投入された原炭の加熱乾燥を促進することが可能となり、原炭の乾燥効率を向上することができる。 Therefore, the fluidized gas and generated steam rising from the fluidized bed S are led from the dry coal discharge port 203 side to the raw coal input port 202 side by the collision plate group 214 and are guided to the gas discharge port 205. The particles of the dry coal accompanying the fluidized gas and the generated steam are separated from the fluidized gas and the generated steam, returned to the raw coal inlet 202 side, mixed with the raw coal before drying, and moved through the fluidized bed S again. In other words, it becomes possible to accelerate the heat drying of the raw coal input from the raw coal input port 202, and the drying efficiency of the raw coal can be improved.
 また、実施例4の流動層乾燥装置では、衝突板群214を、流動化ガス及び発生蒸気の流れ方向に対向すると共に、同方向に複数所定間隔をあけて配置し、衝突板群214の下端を原炭投入口202側から乾燥炭排出口203側に向けて上方に傾斜する位置に配置している。従って、衝突板群214の下端が原炭投入口202側から乾燥物排出口203側に向けて上方に傾斜する仮想傾斜面Lを描くように配置されることで、流動化ガス及び発生蒸気が乾燥炭排出口203側に流れてから原炭投入口202側に流れることとなり、この流動化ガス及び発生蒸気を適正に導流してガス排出口205に導くことができる。 Further, in the fluidized bed drying apparatus of the fourth embodiment, the collision plate group 214 is opposed to the flow direction of the fluidized gas and the generated steam, and a plurality of predetermined intervals are arranged in the same direction. Is disposed at a position inclined upward from the raw coal input port 202 side toward the dry coal discharge port 203 side. Accordingly, the lower end of the collision plate group 214 is arranged so as to draw a virtual inclined surface L that is inclined upward from the raw coal input port 202 side toward the dry matter discharge port 203 side, so that fluidized gas and generated steam are generated. After flowing to the dry coal discharge port 203 side, it flows to the raw coal input port 202 side, and this fluidized gas and generated steam can be properly introduced and led to the gas discharge port 205.
 図7は、本発明の実施例5に係る流動層乾燥装置の概略側面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 FIG. 7 is a schematic side view of a fluidized bed drying apparatus according to Example 5 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the function similar to the Example mentioned above, and detailed description is abbreviate | omitted.
 実施例5において、図7に示すように、流動層乾燥装置12Aは、乾燥容器201と、原炭投入口202と、乾燥炭排出口203と、流動化ガス供給口204と、ガス排出口205と、伝熱管206とを有している。 In Example 5, as shown in FIG. 7, the fluidized bed drying apparatus 12 </ b> A includes a drying container 201, a raw coal inlet 202, a dry coal outlet 203, a fluidized gas supply port 204, and a gas outlet 205. And a heat transfer tube 206.
 また、乾燥容器201は、流動化ガス及び発生蒸気を乾燥物排出口203側から原炭投入口202側に導流させてガス排出口205に導くガイド装置としての衝突板222と、導流板213を設けている。 Further, the drying container 201 includes a collision plate 222 as a guide device that guides the fluidized gas and generated steam from the dry matter discharge port 203 side to the raw coal input port 202 side and guides them to the gas discharge port 205, and a flow guide plate. 213 is provided.
 衝突板222は、フリーボード部Fの上部にて、乾燥物排出口203側から原炭投入口202側に導流する流動化ガス及び発生蒸気が衝突することで、この流動化ガス及び発生蒸気に同伴する乾燥物の粒子を分離するものである。そのため、フリーボード部Fの上部にて、乾燥容器201の天井部201bの下方に位置して複数の衝突板222が設けられることで、衝突板群224が形成されている。この衝突板群224は、乾燥物排出口203側から原炭投入口202側に流れる流動化ガス及び発生蒸気の流れに対向するように所定角度傾斜して配置されており、且つ、衝突板222同士が所定間隔をもって配置されることで、流動化ガス及び発生蒸気が蛇行して流れることができるような流路が確保されている。この場合、各衝突板222は、下端が原炭投入口202側を向くような傾斜角度となっている。 The collision plate 222 collides with the fluidized gas and the generated steam that are introduced from the dry matter discharge port 203 side to the raw coal input port 202 side at the upper part of the free board portion F, so that the fluidized gas and the generated steam are collided. The particles of dry matter accompanying the slab are separated. Therefore, in the upper part of the free board part F, the collision board group 224 is formed by being provided below the ceiling part 201b of the drying container 201 and providing the plurality of collision boards 222. The collision plate group 224 is disposed at a predetermined angle so as to face the flow of fluidized gas and generated steam flowing from the dry matter discharge port 203 side to the raw coal input port 202 side, and the collision plate 222. By arranging them at a predetermined interval, a flow path is ensured so that the fluidized gas and the generated steam can meander and flow. In this case, each collision plate 222 has an inclination angle such that the lower end faces the raw coal inlet 202 side.
 また、衝突板群224は、乾燥容器201内の流動化ガス及び発生蒸気を乾燥物排出口203側から原炭投入口202側に導くように機能する。即ち、衝突板群224は、下端が原炭投入口202側から乾燥炭排出口203側に向けて上方に傾斜する位置に配置されている。つまり、衝突板群224の下端が、原炭投入口202側から乾燥物排出口203側に向けて上方に傾斜する仮想傾斜面Lを描くように配置されている。 Also, the collision plate group 224 functions to guide the fluidized gas and generated steam in the drying container 201 from the dry matter discharge port 203 side to the raw coal input port 202 side. That is, the collision plate group 224 is disposed at a position where the lower end is inclined upward from the raw coal inlet 202 side toward the dry coal outlet 203 side. That is, the lower end of the collision plate group 224 is disposed so as to draw a virtual inclined surface L that is inclined upward from the raw coal input port 202 side toward the dry matter discharge port 203 side.
 従って、乾燥容器201に対して、原炭投入口202から原炭が供給されると共に、流動化ガス供給口204から分散板207を通して流動化ガスが供給されることで、この分散板207の上方に所定厚さの流動層Sが形成される。原炭は、流動化ガスにより流動層Sを乾燥物排出口203側に移動し、このとき、伝熱管206から熱を受けることで加熱されて乾燥される。この場合、原炭は、原炭投入口202から乾燥物排出口203まで移動する間に、伝熱管206からの熱により加熱乾燥されるが、原炭投入口202から投入された直後、つまり、導流板213の下方位置では、予熱状態にあり、水分はほとんど蒸発しない。その後、原炭は、予熱領域、つまり、導流板213の下方位置を超えて移動すると、水分蒸発が始まり、徐々に増加して最大となり、乾燥物排出口203に近づくにつれて水分蒸発が減少する。 Accordingly, the raw coal is supplied to the drying container 201 from the raw coal inlet 202 and the fluidizing gas is supplied from the fluidizing gas supply port 204 through the dispersion plate 207, so that A fluidized bed S having a predetermined thickness is formed. The raw coal moves through the fluidized bed S to the dry matter discharge port 203 side by the fluidized gas, and is heated and dried by receiving heat from the heat transfer tube 206 at this time. In this case, the raw coal is heated and dried by the heat from the heat transfer pipe 206 while moving from the raw coal inlet 202 to the dry matter outlet 203, that is, immediately after being supplied from the raw coal inlet 202, that is, At a position below the flow guide plate 213, it is in a preheated state, and moisture hardly evaporates. After that, when the raw coal moves beyond the preheating region, that is, the lower position of the flow guide plate 213, the water evaporation starts, gradually increases to the maximum, and the water evaporation decreases as the dry matter discharge port 203 is approached. .
 そして、衝突板群224下方位置における流動層Sで原炭が加熱乾燥されることで発生した蒸気は、流動化ガスと共に上昇し、複数の衝突板222、特に、衝突板222の傾斜角度により乾燥物排出口203側に流れる。そして、流動化ガス及び発生蒸気は、乾燥容器201における乾燥物排出口203側の壁面で迂回して原炭投入口202側に流れる。このとき、流動化ガス及び発生蒸気は、複数の衝突板222に衝突することで、流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が分離されて流動層Sに落下する。ここで、乾燥前の原炭と乾燥炭の粒子が流動層Sで混合されることで、乾燥前の原炭の乾燥が促進される。その後、原炭が乾燥された乾燥炭は、乾燥物排出口203から外部に排出され、乾燥炭の粒子が分離された流動化ガス及び発生蒸気は、導流板213に案内されて上方に流れ、ガス排出口205から外部に排出される。 Then, the steam generated by heating and drying the raw coal in the fluidized bed S at a position below the collision plate group 224 rises together with the fluidized gas, and is dried according to the inclination angle of the plurality of collision plates 222, particularly the collision plates 222. It flows to the object discharge port 203 side. Then, the fluidized gas and the generated steam flow around the wall on the dry matter discharge port 203 side in the drying container 201 and flow toward the raw coal input port 202 side. At this time, the fluidized gas and the generated steam collide with the plurality of collision plates 222, whereby the particles of the dry coal accompanying the fluidized gas and the generated steam are separated and fall into the fluidized bed S. Here, when the raw coal before drying and the particles of the dry coal are mixed in the fluidized bed S, drying of the raw coal before drying is promoted. Thereafter, the dry coal from which the raw coal has been dried is discharged to the outside from the dry matter discharge port 203, and the fluidized gas and the generated steam from which the dry coal particles are separated are guided by the flow guide plate 213 and flow upward. The gas is discharged from the gas discharge port 205 to the outside.
 このように実施例5の流動層乾燥装置にあっては、乾燥容器201内に、流動化ガス及び発生蒸気を乾燥炭排出口203側から原炭投入口202側に導流させてガス排出口205に導くガイド装置として衝突板222を設け、この衝突板222を下端が原炭投入口202側を向くように傾斜させている。 As described above, in the fluidized bed drying apparatus of Example 5, the fluidized gas and the generated steam are introduced into the drying vessel 201 from the dry coal discharge port 203 side to the raw coal input port 202 side, and the gas discharge port. A collision plate 222 is provided as a guide device leading to 205, and the collision plate 222 is inclined so that the lower end faces the raw coal inlet 202 side.
 従って、流動層Sから上昇する流動化ガス及び発生蒸気は、複数の衝突板222により乾燥炭排出口203側から原炭投入口202側に導流されてガス排出口205に導かれることとなり、この流動化ガス及び発生蒸気に同伴する乾燥炭の粒子が流動化ガス及び発生蒸気から分離されて原炭投入口202側に戻され、乾燥前の原炭と混在されて再び流動層Sを移動することとなり、原炭投入口202から投入された原炭の加熱乾燥を促進することが可能となり、原炭の乾燥効率を向上することができる。 Therefore, the fluidized gas and generated steam rising from the fluidized bed S are guided from the dry coal discharge port 203 side to the raw coal input port 202 side by the plurality of collision plates 222 and guided to the gas discharge port 205. The particles of the dry coal accompanying the fluidized gas and the generated steam are separated from the fluidized gas and the generated steam, returned to the raw coal inlet 202 side, mixed with the raw coal before drying, and moved through the fluidized bed S again. Thus, it becomes possible to promote the heat drying of the raw coal input from the raw coal input port 202, and the drying efficiency of the raw coal can be improved.
 なお、この実施例5では、衝突板群224の下端を原炭投入口202側から乾燥炭排出口203側に向けて上方に傾斜する位置に配置し、且つ、各衝突板222を下端が原炭投入口202側を向くように傾斜させたが、各衝突板222を下端が原炭投入口202側を向くように傾斜させるだけでもガイド装置として機能することが可能である。 In the fifth embodiment, the lower end of the collision plate group 224 is disposed at a position inclined upward from the raw coal charging port 202 side toward the dry coal discharge port 203 side, and each lower side of each collision plate 222 is the original. Although it inclined so that it might face the charcoal inlet 202 side, it can function as a guide apparatus only by inclining each collision board 222 so that a lower end may face the raw coal inlet 202 side.
 また、上述した実施例4、5では、ガス排出口205が原炭投入口202の上方に配置されていることから、ガス排出口205の煙突効果によりガス排出口205の下方が負圧状態となることで、流動層Sから上昇する流動化ガス及び発生蒸気が、乾燥炭排出口203側から原炭投入口202側に導流されてガス排出口205に導かれやすくなる。この場合、導流板213も衝突板212,222と共にガイド装置として機能する。 In Examples 4 and 5 described above, since the gas outlet 205 is disposed above the raw coal inlet 202, the lower part of the gas outlet 205 is in a negative pressure state due to the chimney effect of the gas outlet 205. As a result, the fluidized gas and generated steam rising from the fluidized bed S are guided from the dry coal discharge port 203 side to the raw coal input port 202 side and are easily guided to the gas discharge port 205. In this case, the flow guide plate 213 also functions as a guide device together with the collision plates 212 and 222.
 また、上述した各実施例では、本発明のガイド装置として、傾斜板111、傾斜ベルト121、傾斜ヘッド131、衝突板112,212,222、導流板113,213を設けたが、それぞれ原炭粒子の付着や流動化ガス及び発生蒸気の凝縮を防止するために加熱してもよく、この場合、電気ヒータ、過熱蒸気が流れる伝熱管などを用いればよい。 In each of the above-described embodiments, the inclined plate 111, the inclined belt 121, the inclined head 131, the collision plates 112, 212, 222, and the flow guide plates 113, 213 are provided as the guide device of the present invention. Heating may be performed to prevent particle adhesion and condensation of fluidized gas and generated steam. In this case, an electric heater, a heat transfer tube through which superheated steam flows, or the like may be used.
 また、上述した各実施例では、湿潤原料として低品位炭を使用したが、高品位炭であっても適用可能であり、また、石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。 Moreover, in each Example mentioned above, although low grade coal was used as a wet raw material, it is applicable even if it is high grade coal, and it is not limited to coal, but can be used as a renewable biologically derived organic resource. For example, it is also possible to use thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellets and chips) made from these raw materials. .
 次に、図8から図10を用いて、流動層乾燥装置を備える流動層乾燥設備の実施例(実施例6)について説明する。実施例6では、本発明に係る流動層乾燥設備を石炭ガス化複合発電設備(石炭ガス化複合発電システム)に適用した例を説明するが、本発明の適用対象は石炭ガス化複合発電設備に限定されるものではない。例えば、流動層乾燥設備で乾燥した製品炭を用いた発電システムとして流動層乾燥設備で乾燥した製品炭をボイラ火炉に供給し、当該ボイラ火炉で発生した蒸気で蒸気タービンを駆動して発電機により出力を得る褐炭炊ボイラによる発電システムに用いることもできる。また、本発明を石炭ガス化複合発電設備に適用する場合でも、その方式は問わない。また、本実施例では、湿潤原料(被乾燥物)として褐炭を用いる場合で説明するが、水分含量の高いものであればよく、亜瀝青炭等を含む低品位炭や、スラッジ等を用いることもできる。 Next, an example (Example 6) of a fluidized bed drying facility equipped with a fluidized bed drying apparatus will be described with reference to FIGS. In Example 6, an example in which the fluidized-bed drying facility according to the present invention is applied to a coal gasification combined power generation facility (coal gasification combined power generation system) will be described. It is not limited. For example, as a power generation system using product charcoal dried in a fluidized bed drying facility, product charcoal dried in a fluidized bed drying facility is supplied to a boiler furnace, a steam turbine is driven by steam generated in the boiler furnace, and a generator is used. It can also be used in a power generation system using a brown coal fired boiler that obtains output. Even when the present invention is applied to a coal gasification combined power generation facility, the method is not limited. In this embodiment, the case where lignite is used as a wet raw material (substance to be dried) is described. However, any material having a high water content may be used, and low-grade coal including sub-bituminous coal, sludge, etc. may be used. it can.
 図8は、本発明の実施例6に係る流動層乾燥設備を適用した石炭ガス化複合発電設備の一実施例を示す概略図である。図9は、図8に示す実施例6に係る流動層乾燥装置を備える流動層乾燥設備を示す概略図である。 FIG. 8 is a schematic view showing an embodiment of a combined coal gasification combined power generation facility to which a fluidized bed drying facility according to Embodiment 6 of the present invention is applied. FIG. 9 is a schematic view showing a fluidized bed drying facility including the fluidized bed drying apparatus according to Example 6 shown in FIG.
 図8に示すように、石炭ガス化複合発電(Integrated Coal Gasification Combined Cycle:IGCC)設備310は、燃料である褐炭432を乾燥させて製品炭440とする流動層乾燥設備400と、製品炭440を粉砕して微粉炭340とするミル320と、微粉炭340を処理してガス化ガス342に変換する石炭ガス化炉313と、前記ガス化ガス342を燃料として運転されるガスタービン(GT)314と、ガスタービン314からのタービン排ガス346を導入する排熱回収ボイラ(Heat Recovery Steam Generator:HRSG)316と、排熱回収ボイラ316で生成した蒸気348により運転される蒸気タービン(ST)318と、ガスタービン314および/または蒸気タービン318と連結された発電機(G)319と、を備える。また、石炭ガス化複合発電設備310は、蒸気タービン318から排出された蒸気を凝縮し排熱回収ボイラ316に戻す復水器334と、ガスタービン314と連結されガスタービン314と共に回転し、空気354を圧縮する圧縮機336と、空気を窒素(N)と酸素(O)とに分離し、分離した酸素を圧縮機336で圧縮された空気が流れる配管に供給し、窒素をミル320から石炭ガス化炉313に搬送される微粉炭340の搬送経路に供給する空気分離装置(ASU)338と、を備える。なお、圧縮機336が圧縮した空気354は、石炭ガス化炉313と燃焼器326とに供給される。 As shown in FIG. 8, an integrated coal gasification combined cycle (IGCC) facility 310 includes a fluidized-bed drying facility 400 that dries lignite 432 as fuel to produce product coal 440, and product coal 440. A mill 320 that is pulverized into pulverized coal 340, a coal gasification furnace 313 that processes pulverized coal 340 and converts it into gasified gas 342, and a gas turbine (GT) 314 that is operated using the gasified gas 342 as fuel. A heat recovery steam generator (HRSG) 316 that introduces turbine exhaust gas 346 from the gas turbine 314, a steam turbine (ST) 318 that is operated by the steam 348 generated by the exhaust heat recovery boiler 316, Gas turbine 314 And / or a generator (G) 319 coupled to the steam turbine 318. In addition, the coal gasification combined power generation facility 310 is connected to the condenser 334 that condenses the steam discharged from the steam turbine 318 and returns the steam to the exhaust heat recovery boiler 316, and is connected to the gas turbine 314 and rotates together with the gas turbine 314. , The air is separated into nitrogen (N 2 ) and oxygen (O 2 ), the separated oxygen is supplied to a pipe through which the air compressed by the compressor 336 flows, and nitrogen is supplied from the mill 320. An air separation device (ASU) 338 that supplies the transport path of the pulverized coal 340 transported to the coal gasification furnace 313. Note that the air 354 compressed by the compressor 336 is supplied to the coal gasifier 313 and the combustor 326.
 この石炭ガス化複合発電設備310は、流動層乾燥設備400で褐炭432を乾燥させて製品炭440を生成し、この製品炭440をミル320で粉砕した微粉炭340を石炭ガス化炉313でガス化し、生成ガスであるガス化ガス342を得る。石炭ガス化複合発電設備310は、ガス化ガス342をサイクロン322およびガス精製装置324で除塵およびガス精製した後、発電手段であるガスタービン314の燃焼器326に供給し、ここで燃焼して高温・高圧の燃焼ガス350を生成する。そして、石炭ガス化複合発電設備310は、この燃焼ガス350によってガスタービン314を駆動する。石炭ガス化複合発電設備310は、ガスタービン314が発電機319と連結されており、ガスタービン314を駆動することによって発電機319で電力を発生させる。ここで、ガスタービン314を駆動した後のタービン排ガス346は、まだ約500~600℃の温度を持っている。石炭ガス化複合発電設備310は、タービン排ガス346を排熱回収ボイラ(HRSG)316に送り、排熱回収ボイラ(HRSG)316でタービン排ガス346の熱エネルギーを回収する。石炭ガス化複合発電設備310は、排熱回収ボイラ(HRSG)316で、タービン排ガス346から回収した熱エネルギーによって蒸気348を生成し、この蒸気348によって蒸気タービン318を駆動する。石炭ガス化複合発電設備310は、排熱回収ボイラ(HRSG)316でタービン排ガス346から熱エネルギーを回収したガスである排ガス352から、ガス浄化装置330でNOxおよびSOx分を除去した後、煙突332を介して大気中へ放出する。 In this coal gasification combined cycle power generation facility 310, the lignite 432 is dried by the fluidized bed drying facility 400 to produce the product coal 440, and the pulverized coal 340 obtained by pulverizing the product coal 440 by the mill 320 is gasified by the coal gasification furnace 313. The gasified gas 342 which is a product gas is obtained. The coal gasification combined power generation facility 310 removes dust and gas purifies the gasified gas 342 with the cyclone 322 and the gas purifier 324, and then supplies the gasified gas 342 to the combustor 326 of the gas turbine 314 as a power generation means, where it is burned and heated Generate high-pressure combustion gas 350. The coal gasification combined power generation facility 310 drives the gas turbine 314 with the combustion gas 350. In the coal gasification combined power generation facility 310, a gas turbine 314 is connected to a generator 319, and the generator 319 generates electric power by driving the gas turbine 314. Here, the turbine exhaust gas 346 after driving the gas turbine 314 still has a temperature of about 500 to 600 ° C. The coal gasification combined cycle power generation facility 310 sends the turbine exhaust gas 346 to the exhaust heat recovery boiler (HRSG) 316, and the exhaust heat recovery boiler (HRSG) 316 recovers the thermal energy of the turbine exhaust gas 346. The coal gasification combined cycle power generation facility 310 generates steam 348 by heat energy recovered from the turbine exhaust gas 346 by an exhaust heat recovery boiler (HRSG) 316, and drives the steam turbine 318 by the steam 348. The coal gasification combined cycle power generation facility 310 removes NOx and SOx components from the exhaust gas 352, which is the gas from which the thermal energy is recovered from the turbine exhaust gas 346 by the exhaust heat recovery boiler (HRSG) 316, and then removes the NOx and SOx components by the gas purification device 330. Through the atmosphere.
 以下、図9を用いて、流動層乾燥設備400について説明する。図9に示すように、流動層乾燥設備400は、被乾燥物として湿潤原料の1つである水分含量が高い褐炭432を供給する供給ホッパ401と、供給された褐炭432を乾燥させる流動層乾燥装置402と、流動層乾燥装置402から排出される発生蒸気434を冷却し、発生蒸気434中の粉塵を除去する冷却トラップ403と、冷却トラップ403で冷却された発生蒸気435aを過熱する過熱手段404と、過熱手段404で過熱された発生蒸気435bを分岐する分岐部405と、流動層乾燥装置402から抜き出された乾燥褐炭438を冷却して製品炭440とする冷却器410と、分岐部405の下流側に介装され、発生蒸気435bの熱を回収する熱回収システム411と、熱回収システム411で熱を回収された発生蒸気435bを処理して排水442として排出する水処理部412と、分岐部405で分岐された発生蒸気435bを循環させ流動化蒸気436として流動層乾燥装置402に供給する循環装置414と、を備える。 Hereinafter, the fluidized bed drying facility 400 will be described with reference to FIG. As shown in FIG. 9, the fluidized bed drying facility 400 includes a supply hopper 401 that supplies lignite 432 having a high moisture content, which is one of wet raw materials, and fluidized bed drying that dries the supplied lignite 432. A cooling trap 403 that cools the apparatus 402, the generated steam 434 discharged from the fluidized bed drying apparatus 402, removes dust in the generated steam 434, and superheating means 404 that superheats the generated steam 435a cooled by the cooling trap 403. A branching unit 405 that branches the generated steam 435b heated by the superheating means 404, a cooler 410 that cools the dried lignite 438 extracted from the fluidized bed drying apparatus 402 to produce product coal 440, and a branching unit 405. Recovery system 411 for recovering the heat of generated steam 435b, and generated steam 4 for which heat has been recovered by heat recovery system 411 Comprising a water treatment unit 412 that processes the 5b discharged as waste water 442, a circulator 414 supplies to the fluidized bed dryer 402 as a fluidizing steam 436 circulate generating steam 435b branched by the branching unit 405, a.
 また、流動層乾燥設備400は、各部を接続する配管として、褐炭432を乾燥させる際に発生する発生蒸気434を流動層乾燥装置402の外部に排出し分岐部405に案内する発生蒸気ラインLと、分岐部405で分岐されたラインであり、流動化蒸気(流動化ガス)436として流動層乾燥装置402内に供給するラインLと、乾燥褐炭438を冷却器410で冷却して生成した製品炭440を排出する製品ラインLと、を備える。 In addition, the fluidized bed drying facility 400 serves as a pipe connecting the parts, and a generated steam line L 1 that discharges generated steam 434 generated when drying the lignite 432 to the outside of the fluidized bed drying apparatus 402 and guides it to the branching section 405. When a line branched by the branching unit 405, a line L 2 to be supplied to the fluidized bed dryer 402 as a fluidizing steam (fluidizing gas) 436, produced by cooling the dried brown coal 438 in condenser 410 It includes a product line L 3 for discharging the product coal 440, a.
 供給ホッパ401は、褐炭432を貯留する設備である。供給ホッパ401は、貯留している褐炭432を流動層乾燥装置402内に供給する。 The supply hopper 401 is a facility for storing lignite 432. The supply hopper 401 supplies the stored lignite 432 into the fluidized bed drying device 402.
 流動層乾燥装置402は、供給ホッパ401から供給される褐炭432と流動化蒸気436とで流動層を形成し褐炭432を移動させつつ、加熱手段で加熱することで褐炭432を乾燥させ乾燥褐炭438とする。また、流動層乾燥装置402は、流動化蒸気436と褐炭432の乾燥時に生じる蒸気とが混合され発生蒸気434となる。流動層乾燥装置402は、内部に設けられた加熱手段としての伝熱部材428と、伝熱部材428に過熱蒸気(高温ガス)Aを供給可能な過熱蒸気供給装置(高温ガス供給手段)429と、を備える。 The fluidized bed drying apparatus 402 forms a fluidized bed with the lignite 432 supplied from the supply hopper 401 and the fluidized steam 436, moves the lignite 432, heats it with heating means, and dries the lignite 432 to dry lignite 438. And In the fluidized bed drying apparatus 402, fluidized steam 436 and steam generated when drying the lignite 432 are mixed to generate generated steam 434. The fluidized bed drying apparatus 402 includes a heat transfer member 428 as a heating means provided therein, a superheated steam supply device (high temperature gas supply means) 429 capable of supplying superheated steam (high temperature gas) A to the heat transfer member 428, and .
 次に図10を用いて、流動層乾燥装置402について説明する。ここで、図10は、図9に示す実施例6に係る流動層乾燥装置を示す概略図である。なお、図10には、流動層乾燥装置402に加え、冷却トラップ403および過熱手段404の概略構成も示す。 Next, the fluidized bed drying apparatus 402 will be described with reference to FIG. Here, FIG. 10 is a schematic view showing a fluidized bed drying apparatus according to Example 6 shown in FIG. 10 shows a schematic configuration of the cooling trap 403 and the superheating means 404 in addition to the fluidized bed drying apparatus 402.
 流動層乾燥装置402は、内部に褐炭432が投入される乾燥容器420と、褐炭432が投入される投入部(投入口)422と、褐炭432を乾燥させた乾燥褐炭438を排出する排出部(排出口)423と、乾燥容器420の内部に設けられたガス分散板424と、流動化蒸気436を乾燥容器420に供給する流動化ガス供給部(流動化ガス供給口)426と、発生蒸気434を排出する蒸気排出部(蒸気排出口)427と、を備える。また、流動層乾燥装置402は、上述したように、内部に設けられた加熱手段としての伝熱部材428と、伝熱部材428に過熱蒸気(高温ガス)Aを供給可能な過熱蒸気供給装置(高温ガス供給手段)429とを備える(図9参照)。 The fluidized bed drying apparatus 402 includes a drying container 420 into which the lignite 432 is introduced, an input unit (input port) 422 into which the lignite 432 is input, and a discharge unit that discharges the dry lignite 438 obtained by drying the lignite 432 ( 423, a gas dispersion plate 424 provided inside the drying container 420, a fluidized gas supply unit (fluidized gas supply port) 426 that supplies the fluidized steam 436 to the drying container 420, and generated steam 434. And a steam discharge part (steam discharge port) 427 for discharging the steam. In addition, as described above, the fluidized bed drying apparatus 402 includes a heat transfer member 428 as a heating unit provided inside, and a superheated steam supply device (a high-temperature gas) A that can supply superheated steam (high-temperature gas) A to the heat transfer member 428 ( High temperature gas supply means) 429 (see FIG. 9).
 乾燥容器420は、ガス分散板424によって内部の空間が、鉛直方向上方側(図示上側)に位置する乾燥室450と鉛直方向下方側(図示下側)に位置するチャンバ室452とに区分けされている。なお、乾燥室450は、褐炭432が供給される領域であり、チャンバ室452は、流動化蒸気(流動化ガス)436が供給される領域である。乾燥容器420は、チャンバ室452に供給された流動化蒸気436がガス分散板424を通過して乾燥室450に供給される。乾燥室450は、流動化蒸気436により褐炭432が移動されることで、流動層455が形成される。 The drying container 420 is divided into a drying chamber 450 located on the upper side in the vertical direction (upper side in the drawing) and a chamber chamber 452 located on the lower side in the vertical direction (lower side in the drawing) by the gas dispersion plate 424. Yes. The drying chamber 450 is a region to which lignite 432 is supplied, and the chamber chamber 452 is a region to which fluidized steam (fluidized gas) 436 is supplied. In the drying container 420, the fluidized vapor 436 supplied to the chamber chamber 452 passes through the gas dispersion plate 424 and is supplied to the drying chamber 450. In the drying chamber 450, the fluidized bed 455 is formed by the lignite 432 being moved by the fluidized steam 436.
 投入部422は、乾燥容器420の乾燥室450の一方の端部に連結されている。投入部422は、供給ホッパ401と連結しており、供給ホッパ401から供給された褐炭432を一方の端部の乾燥室450に投入する。排出部423は、乾燥容器420の乾燥室450の他方の端部の鉛直方向下側、つまり、ガス分散板424の近傍に連結されている。排出部423は、冷却器410と連結した配管と連結しており、当該配管に乾燥室450内の乾燥褐炭438を排出する。 The charging unit 422 is connected to one end of the drying chamber 450 of the drying container 420. The input unit 422 is connected to the supply hopper 401 and inputs the lignite 432 supplied from the supply hopper 401 into the drying chamber 450 at one end. The discharge part 423 is connected to the lower side in the vertical direction of the other end of the drying chamber 450 of the drying container 420, that is, in the vicinity of the gas dispersion plate 424. The discharge unit 423 is connected to a pipe connected to the cooler 410, and discharges the dried lignite 438 in the drying chamber 450 to the pipe.
 また、ガス分散板424は、多数の貫通孔424aが形成されている。ガス分散板424は、乾燥室450内の褐炭432がチャンバ室452内に落下することを抑制しつつ、乾燥室450とチャンバ室452との間でガスが流通可能な状態とする。流動化ガス供給部426は、チャンバ室452に連結しており、ラインLから供給される流動化蒸気436をチャンバ室452内に供給する。蒸気排出部427は、乾燥室450の上面に連結されている。蒸気排出部427は、乾燥容器420内の発生蒸気434を発生蒸気ラインLに案内する。 The gas dispersion plate 424 has a large number of through holes 424a. The gas dispersion plate 424 makes the gas flowable between the drying chamber 450 and the chamber chamber 452 while suppressing the lignite 432 in the drying chamber 450 from falling into the chamber chamber 452. The fluidizing gas supply unit 426 is connected to the chamber chamber 452 and supplies the fluidizing vapor 436 supplied from the line L 2 into the chamber chamber 452. The steam discharge unit 427 is connected to the upper surface of the drying chamber 450. Steam discharge portion 427 guides the steam generated 434 in the drying vessel 420 to generate steam line L 1.
 ここで、流動層乾燥装置402は、乾燥室450の内部に配置された複数、本実施例では分割板454を備える。また、本実施例では分割板の枚数を4枚としたがこれに限るものではなく最も相応しい枚数にて構成される。分割板454は、乾燥容器420の幅方向及び鉛直方向に延在する板であり、投入部422と排出部423とを結んだ線に直交する面が正面(面積が最も大きい面)となる板である。分割板454は、図10に示すように、鉛直方向下側の端部がガス分散板424と接しており、鉛直方向上側の端部が流動層455の上端よりも下側の位置となる。また、分割板454は、乾燥室450全域に配置されている。また、複数の分割板454は、投入部422から排出部423に向かう方向に所定の間隔で配置されている。これにより、流動層乾燥装置402は、複数の分割板454によって乾燥容器420の乾燥室450内が投入部422から排出部423に向かう方向において複数の乾燥分室450a、450b、450c、450d、450eに分割される。なお、乾燥分室450a、450b、450c、450d、450eは、投入部422から排出部423に向かって、乾燥分室450a、乾燥分室450b、乾燥分室450c、乾燥分室450d、乾燥分室450eの順で配置されている。また、チャンバ室452も、乾燥分室450a、450b、450c、450d、450eに対応して5つのチャンバ分室452a、452b、452c、452d、452eに分割されている。 Here, the fluidized bed drying apparatus 402 is provided with a plurality of dividing plates 454 arranged in the drying chamber 450 in this embodiment. In this embodiment, the number of divided plates is four. However, the number is not limited to this, and the number of divided plates is the most suitable. The dividing plate 454 is a plate extending in the width direction and the vertical direction of the drying container 420, and a surface orthogonal to a line connecting the input unit 422 and the discharge unit 423 is a front surface (surface having the largest area). It is. As shown in FIG. 10, the dividing plate 454 has a lower end in the vertical direction in contact with the gas dispersion plate 424, and an upper end in the vertical direction is located below the upper end of the fluidized bed 455. Further, the dividing plate 454 is disposed in the entire drying chamber 450. The plurality of divided plates 454 are arranged at a predetermined interval in the direction from the input unit 422 to the discharge unit 423. Accordingly, the fluidized bed drying apparatus 402 is divided into a plurality of drying compartments 450a, 450b, 450c, 450d, and 450e in the direction from the input unit 422 to the discharge unit 423 in the drying chamber 450 of the drying container 420 by the plurality of dividing plates 454. Divided. The drying compartments 450a, 450b, 450c, 450d, and 450e are arranged in the order of the drying compartment 450a, the drying compartment 450b, the drying compartment 450c, the drying compartment 450d, and the drying compartment 450e from the input unit 422 to the discharge unit 423. ing. The chamber chamber 452 is also divided into five chamber chambers 452a, 452b, 452c, 452d, and 452e corresponding to the drying chambers 450a, 450b, 450c, 450d, and 450e.
 また、流動化ガス供給部426は、チャンバ分室452a、452b、452c、452d、452eに対応して5つ設けられており、それぞれのチャンバ分室452a、452b、452c、452d、452eに流動化蒸気436を供給する。伝熱部材428は、乾燥分室450a、450b、450c、450d、450eのそれぞれの流動層455に幅方向に延在する向きで配置されている。 Five fluidizing gas supply units 426 are provided corresponding to the chamber compartments 452a, 452b, 452c, 452d, and 452e, and fluidized steam 436 is provided in each of the chamber compartments 452a, 452b, 452c, 452d, and 452e. Supply. The heat transfer member 428 is arranged in a direction extending in the width direction in each fluidized bed 455 of the drying compartments 450a, 450b, 450c, 450d, and 450e.
 流動層乾燥装置402は、供給ホッパ401により褐炭432が乾燥容器420の乾燥分室450a内に投入され、チャンバ分室452aに流動化蒸気436が導入される。チャンバ室452a内に導入された流動化蒸気436は、ガス分散板424の貫通孔424aを通過して乾燥分室450a内に流入する。乾燥分室450a内に流入した流動化蒸気436は、乾燥分室450a内に投入された褐炭432を吹き上げ、流動させる。これにより、流動層乾燥装置402は、乾燥分室450a内に、褐炭432が流動する流動層455が形成される。乾燥分室450aで流動化された褐炭432の一部は、分割板454よりも鉛直方向上側に移動し、矢印456aに示す方向に移動し、乾燥分室450bに移動する。 In the fluidized bed drying apparatus 402, brown coal 432 is introduced into the drying compartment 450a of the drying container 420 by the supply hopper 401, and fluidized steam 436 is introduced into the chamber compartment 452a. The fluidized vapor 436 introduced into the chamber chamber 452a passes through the through hole 424a of the gas dispersion plate 424 and flows into the drying compartment 450a. The fluidized steam 436 that has flowed into the drying compartment 450a blows up and flows the lignite 432 introduced into the drying compartment 450a. Thereby, the fluidized bed drying apparatus 402 forms the fluidized bed 455 in which the brown coal 432 flows in the drying compartment 450a. A part of the lignite 432 fluidized in the drying compartment 450a moves upward in the vertical direction from the dividing plate 454, moves in the direction indicated by the arrow 456a, and moves to the drying compartment 450b.
 流動層乾燥装置402は、チャンバ分室452bにも流動化蒸気436が導入される。チャンバ室452b内に導入された流動化蒸気436は、ガス分散板424の貫通孔424aを通過して乾燥分室450b内に流入する。乾燥分室450b内に流入した流動化蒸気436は、乾燥分室450b内に投入された褐炭432を吹き上げ、流動させる。これにより、流動層乾燥装置402は、乾燥分室450b内に、褐炭432が流動する流動層455が形成される。乾燥分室450bで流動化された褐炭432の一部は、分割板454よりも鉛直方向上側に移動し、矢印456bに示す方向に移動し、乾燥分室450cに移動する。流動層乾燥装置402は、乾燥分室450c、450d、450eでも同様に移動した褐炭432が供給される流動化蒸気436とともに流動層455を構成する。また、乾燥分室450cの流動層455の褐炭432の一部は、分割板454よりも鉛直方向上側に移動し、矢印456cに示す方向に移動し、乾燥分室450dに移動する。乾燥分室450dの流動層455の褐炭432の一部は、分割板454よりも鉛直方向上側に移動し、矢印456dに示す方向に移動し、乾燥分室450eに移動する。流動層乾燥装置402は、乾燥分室450eで流動層455となっている褐炭432のうち、排出部423に到達した褐炭を乾燥褐炭438として排出部423から排出する。 In the fluidized bed drying apparatus 402, fluidized steam 436 is also introduced into the chamber compartment 452b. The fluidized vapor 436 introduced into the chamber chamber 452b passes through the through hole 424a of the gas dispersion plate 424 and flows into the drying compartment 450b. The fluidized steam 436 that has flowed into the drying compartment 450b blows up and flows the lignite 432 charged into the drying compartment 450b. Thereby, the fluidized bed drying apparatus 402 forms the fluidized bed 455 in which the lignite 432 flows in the drying compartment 450b. Part of the lignite 432 fluidized in the drying compartment 450b moves upward in the vertical direction with respect to the dividing plate 454, moves in the direction indicated by the arrow 456b, and moves to the drying compartment 450c. The fluidized bed drying apparatus 402 constitutes a fluidized bed 455 together with fluidized steam 436 to which lignite 432 moved in the drying compartments 450c, 450d, and 450e is similarly supplied. Moreover, a part of lignite 432 of the fluidized bed 455 in the drying compartment 450c moves to the upper side in the vertical direction than the dividing plate 454, moves in the direction indicated by the arrow 456c, and moves to the drying compartment 450d. Part of the lignite 432 in the fluidized bed 455 of the drying compartment 450d moves to the upper side in the vertical direction than the dividing plate 454, moves in the direction indicated by the arrow 456d, and moves to the drying compartment 450e. The fluidized bed drying apparatus 402 discharges the lignite that has reached the discharge unit 423 out of the lignite 432 that is the fluidized bed 455 in the drying compartment 450e as the dry lignite 438 from the discharge unit 423.
 このように、流動層乾燥装置402は、乾燥室450の鉛直方向下方側の部分である乾燥分室450a、450b、450c、450d、450eを含む部分に流動層455が形成される。褐炭432は、投入部422で投入された後、流動層455を構成して移動され、乾燥分室450a、450b、450c、450d、450eをこの順で順番に通過し、排出部423から排出される。なお、褐炭432は、乾燥分室450a、450b、450c、450d、450eの通過時に徐々に乾燥され、排出部423からの排出時には乾燥褐炭438となっている。 Thus, in the fluidized bed drying apparatus 402, the fluidized bed 455 is formed in a portion including the drying compartments 450 a, 450 b, 450 c, 450 d, and 450 e, which are portions on the lower side in the vertical direction of the drying chamber 450. After the lignite 432 is input at the input unit 422, the lignite 432 is moved to form a fluidized bed 455, and sequentially passes through the drying compartments 450a, 450b, 450c, 450d, and 450e in this order, and is discharged from the discharge unit 423. . The lignite 432 is gradually dried when passing through the drying compartments 450a, 450b, 450c, 450d, and 450e, and becomes the dried lignite 438 when discharged from the discharge unit 423.
 流動層乾燥装置402は、乾燥室450の流動層455よりも鉛直方向上方側の部分にフリーボード部Fが形成される。このフリーボード部Fは、流動層455の褐炭432が乾燥されることにより発生蒸気434が発生する領域となる。なお、流動化蒸気436は、一定温度以上の蒸気であり、褐炭432を流動させつつ加熱することで、褐炭432を乾燥させる。 In the fluidized bed drying apparatus 402, a free board portion F is formed in a portion of the drying chamber 450 on the upper side in the vertical direction from the fluidized bed 455. This free board part F becomes an area | region where the generated steam 434 generate | occur | produces when the lignite 432 of the fluidized bed 455 is dried. Note that the fluidized steam 436 is steam at a certain temperature or higher, and heats the lignite 432 while flowing, thereby drying the lignite 432.
 次に、伝熱部材428は、上述したように、乾燥分室450a、450b、450c、450d、450eの流動層455が形成される領域に配置されている。伝熱部材428は、流動層455の褐炭432を加熱し、褐炭432中の水分を除去する加熱手段であり、過熱蒸気Aが流通可能な配管である。伝熱部材428は、内部に供給されて流通される高温の過熱蒸気Aの潜熱を利用して流動層455を構成する褐炭432を乾燥させる。伝熱部材428は、乾燥に利用された過熱蒸気Aを凝縮水Bとして流動層乾燥装置402の外部に排出する。 Next, as described above, the heat transfer member 428 is disposed in a region where the fluidized bed 455 of the drying compartments 450a, 450b, 450c, 450d, and 450e is formed. The heat transfer member 428 is a heating unit that heats the lignite 432 of the fluidized bed 455 and removes moisture in the lignite 432, and is a pipe through which the superheated steam A can flow. The heat transfer member 428 dries the lignite 432 constituting the fluidized bed 455 using the latent heat of the high-temperature superheated steam A supplied and circulated inside. The heat transfer member 428 discharges the superheated steam A used for drying as condensed water B to the outside of the fluidized bed drying apparatus 402.
 すなわち、伝熱部材428は、流動層455と接している領域で過熱蒸気Aを凝縮させて液体(水分)にすることで、この際に放熱される凝縮潜熱で褐炭432の乾燥の加熱に有効利用する。なお、伝熱部材428に流通させる高温の過熱蒸気Aとしては、相変化を伴う熱媒であればいずれでもよく、例えばフロンやペンタンやアンモニア等を例示することができる。また、伝熱部材428は、熱媒体を流通させる配管を用いる構成に限定されない。伝熱部材428は、褐炭432に熱を供給し乾燥させることができればよく、例えば電気ヒータを設置してもよい。なお、伝熱部材428によって褐炭432が乾燥される際に発生する発生蒸気434は、鉛直方向上方側(発生蒸気434の流れ方向の下流側)のフリーボード部Fへ流れる。過熱蒸気供給装置429は、加熱ラインLを介して、伝熱部材428に過熱蒸気Aを供給している。 That is, the heat transfer member 428 condenses the superheated steam A in a region in contact with the fluidized bed 455 to form a liquid (moisture), which is effective for heating the lignite 432 by the condensed latent heat radiated at this time. Use. Note that the high-temperature superheated steam A to be circulated through the heat transfer member 428 may be any heat medium that involves a phase change, and examples thereof include Freon, pentane, and ammonia. Further, the heat transfer member 428 is not limited to a configuration using a pipe for circulating a heat medium. The heat transfer member 428 only needs to be able to supply heat to the lignite 432 and dry it. For example, an electric heater may be installed. The generated steam 434 generated when the lignite 432 is dried by the heat transfer member 428 flows to the free board portion F on the upper side in the vertical direction (downstream in the flow direction of the generated steam 434). Superheated steam supplying device 429 via a heating line L 4, and supplies the superheated steam A heat transfer member 428.
 流動層乾燥装置402において、流動層455の内部に設けられた伝熱部材428は、流動層455の褐炭432を加熱することにより、褐炭432を乾燥させる。褐炭432を乾燥させることにより発生した発生蒸気434は、流動層455からフリーボード部Fに流れ込む。そして、フリーボード部Fに流れ込んだ発生蒸気434は、蒸気排出部427から流動層乾燥装置402の外部に排出される。蒸気排出部427から排出された発生蒸気434は、発生蒸気ラインLに供給される。 In the fluidized bed drying apparatus 402, the heat transfer member 428 provided inside the fluidized bed 455 heats the lignite 432 of the fluidized bed 455 to dry the lignite 432. The generated steam 434 generated by drying the lignite 432 flows from the fluidized bed 455 into the free board portion F. Then, the generated steam 434 that has flowed into the free board section F is discharged from the steam discharge section 427 to the outside of the fluidized bed drying apparatus 402. Generating steam 434 discharged from the steam discharge section 427 is supplied to generate steam line L 1.
 流動層乾燥装置402は、乾燥室450を複数の乾燥分室450a、450b、450c、450d、450eに分割し、投入部422から排出部423まで移動する間に複数の乾燥分室450a、450b、450c、450d、450eを順番に通過する構成とすることで、褐炭をより均一に乾燥させることができる。つまり、流動層455の流れによって短時間で排出部423まで到達する褐炭432や、長時間経過しても排出部423に到達しない褐炭432が生じることを抑制できる。 The fluidized bed drying apparatus 402 divides the drying chamber 450 into a plurality of drying compartments 450a, 450b, 450c, 450d, and 450e, and moves to the plurality of drying compartments 450a, 450b, 450c, while moving from the input unit 422 to the discharge unit 423. By setting it as the structure which passes 450d and 450e in order, lignite can be dried more uniformly. That is, it is possible to suppress the occurrence of lignite 432 that reaches the discharge part 423 in a short time due to the flow of the fluidized bed 455 and the lignite 432 that does not reach the discharge part 423 even after a long time.
 また、本実施例のように、流動層455の上側の一部の褐炭432が次の乾燥分室に移動する構成とすることで、1つの乾燥分室の中で含有水分が比較的少なく上側に移動している褐炭432を次の乾燥分室に移動させることができる。つまり、当該乾燥分室の中で含有水分が比較的多く、乾燥されていない褐炭432は、重いため、乾燥分室の下側に移動され、当該乾燥分室の中で乾燥させることができる。これにより、褐炭432は、それぞれの乾燥分室450a、450b、450c、450d、450eで一定程度まで乾燥された後に次の乾燥分室に移動するため、排出部423に到達した状態では、高い確率で一定程度まで乾燥された状態とすることができる。 Further, as in the present embodiment, a part of the lignite 432 on the upper side of the fluidized bed 455 moves to the next drying compartment, so that the moisture content is relatively small in one drying compartment and moves upward. The lignite 432 being moved can be moved to the next drying compartment. That is, the lignite 432 that has a relatively high moisture content and is not dried in the dry compartment is heavy, and thus is moved to the lower side of the dry compartment and can be dried in the dry compartment. As a result, the lignite 432 moves to the next drying compartment after being dried to a certain level in each of the drying compartments 450a, 450b, 450c, 450d, and 450e. It can be made into the dry state to the extent.
 また、本実施例の流動層乾燥装置402は、褐炭432を好適に乾燥できるため、乾燥室450を分割板454で複数の乾燥分室に分割した形状としたがこれに限定されない。流動層乾燥装置420は、乾燥室450の形状によらず、褐炭432の滞留、沈降を抑制することができ、乾燥室内での褐炭432の閉塞が生じることを抑制することができ、褐炭432を均一に乾燥させることができる形状であればよい。 Moreover, since the fluidized bed drying apparatus 402 of the present embodiment can dry the lignite 432 suitably, the drying chamber 450 is divided into a plurality of drying compartments by the dividing plate 454, but is not limited thereto. The fluidized bed drying apparatus 420 can suppress the stay and settling of the lignite 432 regardless of the shape of the drying chamber 450, and can suppress the blockage of the lignite 432 in the drying chamber. Any shape that can be dried uniformly is acceptable.
 図9および図10を用いて、流動層乾燥設備400の他の構成要素の説明を続ける。冷却トラップ403は、流動層乾燥装置402の蒸気排出部427から発生蒸気ラインLに排出された発生蒸気434を冷却し、発生蒸気434中に含まれる粉塵等のダスト(固形成分)を分離する。冷却トラップ403は、発生蒸気434を冷却する冷却機構480と、発生蒸気434が冷却されることで凝集したダストを含む水滴を捕集する捕集部482と、を有する。なお、冷却トラップ403は、冷却機構480と捕集部482とを一体化した一定温度以下に冷却した捕集部を備える構成としてもよい。冷却トラップ402の冷却機構480は、種々の冷却機構を用いることができ、発生蒸気ラインLの周囲を覆う配管を配置して二重管構造とし、発生蒸気ラインLの周囲を覆う配管に冷却媒体を流して発生蒸気ラインLの発生蒸気434を冷却する機構や、発生蒸気ラインLの周りにペルチェ素子を配置し、発生蒸気ラインLを冷やす構造等を用いることができる。また、冷却性能が落ち、配管を長くする必要があるが、冷却機構480は、積極的な冷却機構を備えず、発生蒸気ラインLを一定距離通過させることで発生蒸気434を冷却する機構とすることもできる。冷却トラップ403の捕集部482は、発生蒸気ラインLに配置された複数枚の板状部材で構成される。なお、板状部材は、多数の穴が開いた網形状でもよい。冷却トラップ403は、発生蒸気434を冷却し飽和蒸気とする。この時蒸気中の水分はダストをコアとして凝集する。つまり、水滴はダストを含んだ状態で形成される。冷却トラップ403は、このダストを含んだ水滴を捕集部で捕集することで、発生蒸気434中に含まれるダストを除去または低減する。なお、発生蒸気434は、冷却トラップ403を通過することで、温度が低下し、かつダストを除去または低減した発生蒸気435aとなる。 The description of the other components of the fluidized bed drying facility 400 will be continued using FIGS. 9 and 10. Cooling trap 403, a fluidized bed dryer generating steam 434 from the steam discharge portion 427 is discharged to generate steam line L 1 of 402 and cooled, to separate the dust (solid component), such as dust contained in the generated steam 434 . The cooling trap 403 includes a cooling mechanism 480 that cools the generated steam 434, and a collection unit 482 that collects water droplets containing dust aggregated as the generated steam 434 is cooled. Note that the cooling trap 403 may include a collection unit that is cooled to a predetermined temperature or less, in which the cooling mechanism 480 and the collection unit 482 are integrated. Cooling mechanism 480 of the cold trap 402 can use various cooling mechanisms, a double pipe structure disposed a pipe covering the periphery of generating steam line L 1, the pipe covering the periphery of generating steam line L 1 mechanism and for cooling the steam generated 434 of the cooling medium flowed generating steam line L 1, the Peltier elements are arranged around the steam generated line L 1, it can be used a structure such to cool the generated steam line L 1. Further, it fell cooling performance, it is necessary to lengthen the pipe, cooling mechanism 480 does not include an active cooling mechanism, mechanism for cooling the steam generated 434 generated vapor line L 1 by causing a predetermined distance passed and You can also Collecting portion 482 of the cooling trap 403 includes a plurality of plate-like members disposed in generating steam line L 1. The plate-like member may have a net shape having a large number of holes. The cooling trap 403 cools the generated steam 434 to be saturated steam. At this time, moisture in the steam is agglomerated using dust as a core. That is, the water droplet is formed in a state containing dust. The cooling trap 403 removes or reduces the dust contained in the generated steam 434 by collecting the water droplets containing the dust in the collection unit. Note that the generated steam 434 passes through the cooling trap 403 and becomes a generated steam 435a in which the temperature is lowered and dust is removed or reduced.
 過熱手段404は、発生蒸気ラインLを流れ、冷却トラップ403を通過した発生蒸気435aを過熱する手段である。過熱手段404は、図10に示すように、発生蒸気ラインLを流動層乾燥装置402の内部、具体的には乾燥容器420のフリーボード部Fに導入し、発生蒸気ラインLを流れる発生蒸気435aを流動層乾燥装置402の内部にある発生蒸気434で過熱する。過熱手段404は、発生蒸気ラインLを流れる発生蒸気435aを過熱することで、発生蒸気435aよりも高温になった発生蒸気435bとする。なお、過熱手段404は、発生蒸気435aが流れる配管として外部から熱を吸収しやすい材料で形成した配管を用いることが好ましい。また、過熱手段404は、フリーボード部Fで配管を屈曲させ、発生蒸気435aがフリーボード部Fでより長い距離移動する形状とすることが好ましい。また、伝熱部材428出口の凝縮水との熱交換によっても加熱する事ができる。 Superheating means 404 flows through the steam generated line L 1, a means for superheating the steam generated 435a that has passed through the cold trap 403. As shown in FIG. 10, the superheating means 404 introduces the generated steam line L 1 into the fluidized bed drying apparatus 402, specifically, the free board portion F of the drying container 420, and generates the generated steam line L 1. The steam 435 a is superheated with the generated steam 434 inside the fluidized bed drying device 402. Superheating means 404, by superheating the steam generated 435a through the generation steam line L 1, the generated steam 435b became hotter than the steam generated 435a. Note that the superheating means 404 is preferably a pipe formed of a material that easily absorbs heat from the outside as a pipe through which the generated steam 435a flows. Further, it is preferable that the superheating means 404 has a shape in which the piping is bent at the free board portion F and the generated steam 435a moves a longer distance at the free board portion F. Moreover, it can heat also by heat exchange with the condensed water of the heat-transfer member 428 exit.
 分岐部405は、発生蒸気ラインLを流れ、過熱手段404を通過した発生蒸気435bを2つのラインに分岐する機構である。分岐部405で分岐された一方のラインは、熱回収システム410に連結し、他方のラインは、分岐ラインLとして循環装置414に連結する。 Branch 405 flows through the steam generated line L 1, a mechanism for splitting the generated steam 435b that has passed through the heating means 404 into two lines. One line branched by the branching unit 405, connected to the heat recovery system 410 and the other line is connected to the circulating device 414 as the branch line L 2.
 冷却器410は、流動層乾燥装置402から抜き出された乾燥褐炭438に固形成分444が混合された乾燥した粉体を冷却する。冷却器410は、冷却した粉体を製品炭440として製品ラインLから排出する。この製品炭440は、上述したように、ガス化炉313に供給される。 The cooler 410 cools the dried powder obtained by mixing the solid component 444 with the dried lignite 438 extracted from the fluidized bed drying device 402. Cooler 410 discharges from the product line L 3 The cooled powder as product coal 440. This product charcoal 440 is supplied to the gasifier 313 as described above.
 熱回収システム411は、発生蒸気435bの熱を熱交換等で回収するシステムである。分岐部405により分岐された一方の配管を流れる発生蒸気435bは、例えば405~110℃の蒸気である。熱回収システム411は、この発生蒸気435bに対して熱回収を行う。水処理部412は、熱回収システム411で熱回収された発生蒸気435bを処理する処理装置である。水処理部412は、熱回収システム411で熱回収された発生蒸気435bを処理し、排水442として流動層乾燥設備400の外部に排出する。 The heat recovery system 411 is a system that recovers the heat of the generated steam 435b by heat exchange or the like. The generated steam 435b flowing through one of the pipes branched by the branching section 405 is, for example, steam at 405 to 110 ° C. The heat recovery system 411 performs heat recovery for the generated steam 435b. The water treatment unit 412 is a treatment device that treats the generated steam 435b heat recovered by the heat recovery system 411. The water treatment unit 412 treats the generated steam 435b heat recovered by the heat recovery system 411, and discharges the generated steam 435b to the outside of the fluidized bed drying facility 400 as drainage 442.
 また、循環装置414は、分岐ラインLに介装されており、分岐ラインLを流れる空気を所定方向に送る。具体的には、循環装置414は、分岐部405で分岐され分岐ラインLを流れる発生蒸気435bを流動層乾燥装置402内に送る。なお、流動層乾燥装置402内に送られる発生蒸気435bは、褐炭432の流動層を流動させる流動化蒸気436として利用される。なお、本実施例の流動層乾燥設備400は、流動層を流動化させる流動化媒体として、発生蒸気435bの一部を再利用しているが、これに限定されず、例えば窒素、二酸化炭素またはこれらのガスを含む低酸素濃度の空気を用いてもよい。 Further, the circulating apparatus 414 is interposed in the branch line L 2, and sends the air flowing through the branch line L 2 in a predetermined direction. Specifically, the circulating apparatus 414 is branched by the branching unit 405 sends the generated steam 435b through the branch line L 2 to the fluidized bed dryer 402. The generated steam 435b sent into the fluidized bed drying device 402 is used as fluidized steam 436 that causes the fluidized bed of lignite 432 to flow. In addition, although the fluidized bed drying equipment 400 of the present embodiment reuses a part of the generated steam 435b as a fluidizing medium for fluidizing the fluidized bed, the present invention is not limited to this, for example, nitrogen, carbon dioxide or Low oxygen concentration air containing these gases may be used.
 この石炭ガス化複合発電設備310によれば、高い水分を有する褐炭432を用いてガス化する場合においても、効率的な流動層乾燥装置402により褐炭432を乾燥しているので、ガス化効率が向上し、長期間に亙って安定して発電を行うことができる。 According to this coal gasification combined power generation facility 310, even when gasifying using lignite 432 having a high moisture content, since the lignite 432 is dried by the efficient fluidized bed drying device 402, the gasification efficiency is improved. The power generation can be improved stably over a long period of time.
 本実施例の流動層乾燥設備400は、冷却トラップ403により発生蒸気434を冷却してダストを捕集することで、簡単な構成で効率よく発生蒸気434中のダストを除去または低減することができる。発生蒸気434中のダストを効率よく除去、低減することで、冷却トラップ403よりもガス流れの下流側に配置されている各部にダストが与える影響を少なくすることができる。これにより、冷却トラップ403よりもガス流れの下流側に配置されている各部の装置寿命を延ばすことができ、メンテナンスの回数や頻度を減らすことができる。 In the fluidized bed drying facility 400 of the present embodiment, the generated steam 434 is cooled by the cooling trap 403 and dust is collected, whereby the dust in the generated steam 434 can be efficiently removed or reduced with a simple configuration. . By efficiently removing and reducing the dust in the generated steam 434, it is possible to reduce the influence of the dust on each part arranged downstream of the cooling trap 403 in the gas flow. Thereby, the apparatus lifetime of each part arrange | positioned downstream of the gas flow rather than the cooling trap 403 can be extended, and the frequency | count and frequency of a maintenance can be reduced.
 また、本実施例の流動層乾燥設備400は、過熱手段404で冷却トラップ403を通過した発生蒸気435aを流動層乾燥設備400の系内の熱源、具体的には乾燥容器420のフリーボード部Fの発生蒸気434の熱、により過熱(熱交換)し発生蒸気435bとすることで、流動層乾燥装置402から排出された発生蒸気435bから熱を回収することができる。以上より、本実施例の流動層乾燥設備400は、発生蒸気434を冷却トラップ403で冷却した後、過熱手段404で再過熱することで、発生蒸気から効率よくダストを除去することができかつ発生蒸気の潜熱を回収することができる。また、発生蒸気を過熱する熱源として、乾燥容器420のフリーボード部Fの発生蒸気434の熱を用いることで、新たな熱源を設けることなく、発生蒸気435aを過熱することができる。また、前述したように、加熱源としては伝熱部材428から戻る凝縮水でも良い。 In addition, the fluidized bed drying facility 400 of the present embodiment uses the generated steam 435a that has passed through the cooling trap 403 by the superheating means 404 as a heat source in the system of the fluidized bed drying facility 400, specifically, the free board portion F of the drying container 420. Heat is recovered from the generated steam 435b discharged from the fluidized bed drying device 402 by overheating (heat exchange) with the heat of the generated steam 434 to generate the generated steam 435b. From the above, the fluidized bed drying apparatus 400 of the present embodiment can efficiently remove dust from the generated steam by cooling the generated steam 434 with the cooling trap 403 and then reheating it with the superheating means 404. The latent heat of steam can be recovered. Further, by using the heat of the generated steam 434 of the free board portion F of the drying container 420 as a heat source for heating the generated steam, the generated steam 435a can be heated without providing a new heat source. Further, as described above, the heat source may be condensed water returning from the heat transfer member 428.
 なお、本実施例の流動層乾燥設備400は、分岐部405により分岐された後の発生蒸気435bの一部を熱回収システム411で利用し、残りの部分を流動化蒸気として利用したが、これに限定されない。流動層乾燥設備400は、過熱手段404により過熱した後の発生蒸気435bの熱を有効利用するようにしてもよい。 In addition, although the fluidized bed drying equipment 400 of the present embodiment uses a part of the generated steam 435b after being branched by the branching unit 405 in the heat recovery system 411, the remaining part is used as fluidized steam. It is not limited to. The fluidized bed drying facility 400 may effectively utilize the heat of the generated steam 435b after being heated by the heating means 404.
 図11を用いて実施例7に係る流動層乾燥設備を説明する。ここで、図11は、実施例7に係る流動層乾燥装置を備える流動層乾燥設備を示す概略図である。図11に示す流動層乾燥設備500は、供給ホッパ401と、流動層乾燥装置402と、冷却トラップ403と、過熱手段510と、分岐部405と、冷却器410と、熱回収システム411と、水処理部412と、循環装置414と、を備える。また、流動層乾燥設備500は、各部を接続する配管として発生蒸気ラインLと、分岐ラインLと、製品ラインLと、を備える。なお、流動層乾燥設備500は、過熱手段510以外の各部の構成は、流動層乾燥設備400と同様であるので、説明は省略する。 A fluidized bed drying facility according to Example 7 will be described with reference to FIG. Here, FIG. 11 is a schematic diagram illustrating a fluidized bed drying facility including the fluidized bed drying apparatus according to the seventh embodiment. A fluidized bed drying facility 500 shown in FIG. 11 includes a supply hopper 401, a fluidized bed drying device 402, a cooling trap 403, a superheating means 510, a branching unit 405, a cooler 410, a heat recovery system 411, water A processing unit 412 and a circulation device 414 are provided. Moreover, fluidized bed drying equipment 500 includes a generating steam line L 1 as a pipe connecting the respective units, a branch line L 2, the product line L 3, the. In addition, since the structure of each part other than the superheating means 510 is the same as the fluidized bed drying equipment 400, the fluidized bed drying equipment 500 is abbreviate | omitted description.
 過熱手段510は、発生蒸気ラインLを流れ、冷却トラップ403を通過した発生蒸気435aを過熱する手段である。過熱手段510は、図11に示すように、発生蒸気ラインLの冷却トラップ403を通過した発生蒸気435aが流れる部分と、伝熱部材428の凝縮水Bが流れる領域、つまり伝熱部材428のうち乾燥容器420の内部を通過した後の凝縮水Bが流れる乾燥容器420の外部の部分とを隣接または接触させ、発生蒸気435aを凝縮水Bで過熱する。過熱手段510は、発生蒸気435aと凝縮水Bとの間で熱交換を実行させる機構である。過熱手段510は、発生蒸気ラインLを流れる発生蒸気435aを凝縮水Bで過熱することで、発生蒸気435aよりも高温になった発生蒸気435bとする。なお、過熱手段510は、発生蒸気435aが流れる配管として外部から熱を吸収しやすい材料で形成した配管を用いることが好ましい。 Superheating means 510 flows through the steam generated line L 1, a means for superheating the steam generated 435a that has passed through the cold trap 403. As shown in FIG. 11, the superheating means 510 includes a portion where the generated steam 435 a that has passed through the cooling trap 403 of the generated steam line L 1 and a region where the condensed water B of the heat transfer member 428 flows, that is, the heat transfer member 428. Out of the drying container 420 through which the condensed water B after passing through the inside of the drying container 420 flows, the generated steam 435a is superheated with the condensed water B. The superheating means 510 is a mechanism that performs heat exchange between the generated steam 435a and the condensed water B. Superheating means 510, by superheating the steam generated 435a through the steam generated line L 1 in the condensed water B, and generates steam 435b became hotter than the steam generated 435a. In addition, it is preferable that the superheating means 510 uses a pipe formed of a material that easily absorbs heat from the outside as a pipe through which the generated steam 435a flows.
 流動層乾燥設備500は、過熱手段510を用いて伝熱部材428を流れる凝縮水Bの熱で発生蒸気435aを過熱することで、上記の流動層乾燥設備と同様の効果を得ることができる。また、凝縮水Bは、過熱蒸気Aが流動層を過熱することで生成されるものであるため、発生蒸気435aの過熱に用いても他の処理に影響を与えない。また、凝縮水Bは、使用済みの物質であるため、凝縮水Bの熱を利用することで、流動層乾燥設備500で発生する熱の利用効率を向上させることができる。 The fluidized bed drying facility 500 can obtain the same effect as the fluidized bed drying facility by using the superheating means 510 to superheat the generated steam 435a with the heat of the condensed water B flowing through the heat transfer member 428. Further, since the condensed water B is generated when the superheated steam A superheats the fluidized bed, it does not affect other processes even if it is used to superheat the generated steam 435a. Moreover, since the condensed water B is a used substance, the utilization efficiency of heat generated in the fluidized bed drying facility 500 can be improved by utilizing the heat of the condensed water B.
 10、310 石炭ガス化複合発電設備
 11 給炭装置
 12,12A 流動層乾燥装置
 13 微粉炭機
 14 石炭ガス化炉
 15 チャー回収装置
 16 ガス精製装置
 17 ガスタービン設備
 18 蒸気タービン設備
 19 発電機
 20 排熱回収ボイラ
 101,201 乾燥容器
 102,202 原炭投入口(湿潤原料投入部)
 103,203 乾燥炭排出口(乾燥物排出部)
 104,204 流動化ガス供給口(流動化ガス供給部)
 105,205 ガス排出口(ガス排出部)
 106,206 伝熱管(加熱部)
 107,207 分散板
 111 傾斜板(ガイド装置)
 112,212,222 衝突板(ガイド装置)
 113,213 導流板(ガイド装置)
 121 傾斜ベルト(ガイド装置、搬送装置)
 131 傾斜ヘッド(ガイド装置、搬送装置)
 400 流動層乾燥設備
 401 供給ホッパ
 402 流動層乾燥装置
 403 冷却トラップ
 404、510 過熱手段
 405 分岐部
 410 冷却器
 411 熱回収システム
 420 乾燥容器
 422 投入部
 423 排出部
 424 ガス分散板
 426 流動化ガス供給部
 427 蒸気排出部
 428 伝熱部材
 429 過熱蒸気供給装置
 432 褐炭
 434、435a、435b 発生蒸気
 436 流動化蒸気
 438 乾燥褐炭
 440 製品炭
 442 排水
 450 乾燥室
 450a、450b、450c、450d、450e 乾燥分室
 452 チャンバ室
 452a、452b、452c、452d、452e チャンバ分室
 454 分割板
 455 流動層
 456a、456b、456c、456d 矢印
 A 過熱蒸気
 B 凝縮水
 F フリーボード部
 L 発生蒸気ライン
 L ライン
 L 製品ライン
 L 加熱ライン
DESCRIPTION OF SYMBOLS 10,310 Coal gasification combined cycle power generation equipment 11 Coal supply equipment 12,12A Fluidized bed drying equipment 13 Pulverized coal machine 14 Coal gasification furnace 15 Char recovery equipment 16 Gas purification equipment 17 Gas turbine equipment 18 Steam turbine equipment 19 Generator 20 Exhaust Heat recovery boiler 101, 201 Drying container 102, 202 Raw coal inlet (wet raw material inlet)
103,203 Dry coal discharge port (dry matter discharge part)
104,204 Fluidized gas supply port (fluidized gas supply unit)
105,205 Gas outlet (gas outlet)
106,206 Heat transfer tube (heating unit)
107,207 Dispersion plate 111 Inclination plate (guide device)
112, 212, 222 Colliding plate (guide device)
113,213 Current guide plate (guide device)
121 Inclined belt (guide device, transport device)
131 Inclined head (guide device, transport device)
400 Fluidized Bed Drying Equipment 401 Supply Hopper 402 Fluidized Bed Dryer 403 Cooling Trap 404, 510 Superheater 405 Branching Section 410 Cooler 411 Heat Recovery System 420 Drying Container 422 Input Portion 423 Discharge Portion 424 Gas Dispersion Plate 426 Fluidized Gas Supply Portion 427 Steam discharge unit 428 Heat transfer member 429 Superheated steam supply device 432 Brown coal 434, 435a, 435b Generated steam 436 Fluidized steam 438 Dry brown coal 440 Product coal 442 Drainage 450 Drying chamber 450a, 450b, 450c, 450d, 450e Drying compartment 452 Chamber chambers 452a, 452b, 452c, 452d, 452e chamber compartments 454 divided plate 455 fluidized layer 456a, 456b, 456c, 456d arrow A superheated steam B condensate F freeboard L 1 generates steam la Down L 2 line L 3 product line L 4 heating line

Claims (12)

  1.  中空形状をなす乾燥容器と、
     該乾燥容器の一端側に湿潤原料を投入する湿潤原料投入部と、
     前記乾燥容器の他端側から前記湿潤原料が加熱乾燥された乾燥物を排出する乾燥物排出部と、
     前記乾燥容器の下部に流動化ガスを供給することで前記湿潤原料と共に流動層を形成する流動化ガス供給部と、
     前記乾燥容器の一端側における前記湿潤原料投入部より上方から流動化ガス及び発生蒸気を排出するガス排出部と、
     前記流動層の前記湿潤原料を加熱する加熱部と、
     前記流動化ガス及び前記発生蒸気を前記乾燥物排出部側から前記湿潤原料投入部側に導流させて前記ガス排出部に導くガイド装置と、
     を備えることを特徴とする流動層乾燥装置。
    A drying container having a hollow shape;
    A wet raw material charging unit for charging the wet raw material to one end of the drying container;
    A dry matter discharge section for discharging a dry matter obtained by heating and drying the wet raw material from the other end of the drying container;
    A fluidized gas supply unit that forms a fluidized bed with the wet raw material by supplying a fluidized gas to a lower portion of the drying container;
    A gas discharge part for discharging fluidized gas and generated steam from above the wet raw material input part on one end side of the drying container;
    A heating unit for heating the wet raw material of the fluidized bed;
    A guide device for guiding the fluidized gas and the generated steam from the dry matter discharge unit side to the wet raw material input unit side to guide the gas discharge unit;
    A fluidized bed drying apparatus comprising:
  2.  前記ガイド装置は、前記流動層の上方のフリーボード部に設けられ、前記乾燥物排出部側から前記湿潤原料投入部側に導流する前記流動化ガス及び前記発生蒸気が衝突することで、同伴する前記乾燥物の粒子を分離する衝突板を有することを特徴とする請求項1に記載の流動層乾燥装置。 The guide device is provided in a free board part above the fluidized bed, and the entrained gas and the generated steam collide with the fluidized gas introduced from the dry matter discharge part side to the wet raw material input part side. The fluidized bed drying apparatus according to claim 1, further comprising an impingement plate that separates particles of the dried product.
  3.  前記衝突板は、前記流動化ガス及び前記発生蒸気の流れ方向に対向すると共に、当該流れ方向に複数所定間隔をあけて配置され、複数の前記衝突板で形成される衝突板群の下端が前記湿潤原料投入部側から前記乾燥物排出部側に向けて上方に傾斜する位置に配置されることを特徴とする請求項2に記載の流動層乾燥装置。 The collision plates are opposed to the flow direction of the fluidized gas and the generated steam, and are arranged at a plurality of predetermined intervals in the flow direction. The fluidized bed drying apparatus according to claim 2, wherein the fluidized bed drying apparatus is disposed at a position inclined upward from the wet raw material charging unit side toward the dry matter discharge unit side.
  4.  前記ガイド装置は、前記流動層の上方のフリーボード部に設けられ、前記湿潤原料投入部側から前記乾燥物排出部側に向けて上方に傾斜する傾斜板を有することを特徴とする請求項2または3に記載の流動層乾燥装置。 The said guide apparatus is provided in the free board part above the said fluidized bed, and has an inclination board which inclines upwards from the said wet raw material injection | throwing-in part side toward the said dry matter discharge | emission part side. Or the fluidized bed drying apparatus according to 3;
  5.  前記複数の衝突板により前記傾斜板上に落下した前記乾燥物の粒子を前記乾燥容器における前記湿潤原料投入部側に搬送する搬送装置が設けられることを特徴とする請求項2から4のいずれか一つに記載の流動層乾燥装置。 5. The apparatus according to claim 2, further comprising: a transport device configured to transport the particles of the dried material dropped on the inclined plate by the plurality of collision plates to the wet raw material charging unit side in the drying container. The fluidized bed drying apparatus according to one.
  6.  前記ガイド装置は、前記流動層の上方の前記フリーボード部に設けられ、前記湿潤原料投入部と前記ガス排出部とを仕切る仕切板を有することを特徴とする請求項1から5のいずれか一つに記載の流動層乾燥装置。 The said guide apparatus is provided in the said free board part above the said fluidized bed, and has a partition plate which partitions off the said wet raw material injection | throwing-in part and the said gas discharge part, The one of Claim 1 to 5 characterized by the above-mentioned. Fluidized bed drying apparatus as described in one.
  7.  乾燥容器、前記乾燥容器の一方の端部に湿潤原料を投入する投入部、前記乾燥容器の他方の端部から湿潤原料が加熱乾燥した乾燥物を排出する排出部、前記乾燥容器内に投入された湿潤原料が乾燥される乾燥室と前記乾燥室よりも鉛直方向下側のチャンバ室とに分離し、前記チャンバ室から前記乾燥室内にガスを供給可能な貫通孔が形成されたガス分散板、前記乾燥室で湿潤原料と共に流動層を形成する流動化ガスを、前記チャンバ室に供給する流動化ガス供給部および前記流動化ガスが供給されて形成された前記流動層の前記湿潤原料が乾燥されることにより発生する発生蒸気を前記乾燥容器の上方から排出する蒸気排出部を備え、水分含量が高い前記湿潤原料を前記乾燥容器内で乾燥する流動層乾燥装置と、
     前記流動層乾燥装置の前記蒸気排出部から排出される発生蒸気を外部に排出する発生蒸気ラインと、
     前記発生蒸気ラインに介装され、前記発生蒸気を冷却し前記発生蒸気に含まれる粉塵を除去する冷却トラップと、
     前記排出部から排出された前記湿潤原料を乾燥させた乾燥物を冷却する冷却器と、を備えることを特徴とする流動層乾燥設備。
    A drying container, an input part for supplying wet raw material to one end of the drying container, a discharge part for discharging dry material obtained by heating and drying the wet raw material from the other end of the drying container, and being input into the drying container A gas dispersion plate in which a through hole capable of supplying gas from the chamber chamber to the drying chamber is formed by separating the wet raw material into a drying chamber and a chamber chamber vertically below the drying chamber; In the drying chamber, a fluidizing gas that forms a fluidized bed with a wet raw material is supplied to the chamber chamber, and a fluidizing gas supply unit that supplies the fluidizing gas to the wet raw material in the fluidized bed that is formed. A fluidized bed drying apparatus that includes a steam discharge unit that discharges generated steam generated from the top of the drying container, and dries the wet raw material having a high water content in the drying container;
    A generated steam line for discharging generated steam discharged from the steam discharge unit of the fluidized bed drying apparatus to the outside,
    A cooling trap interposed in the generated steam line for cooling the generated steam and removing dust contained in the generated steam;
    A fluidized bed drying facility comprising: a cooler that cools a dried product obtained by drying the wet raw material discharged from the discharge unit.
  8.  前記流動層乾燥装置は、前記乾燥容器の前記流動層の内部に配置された配管および前記配管に過熱媒体を供給する過熱媒体供給装置を有する加熱手段を、さらに備えることを特徴とする請求項7に記載の流動層乾燥設備。 The said fluidized bed drying apparatus is further equipped with the heating means which has a superheated medium supply apparatus which supplies a superheated medium to the piping arrange | positioned inside the said fluidized bed of the said drying container, and the said piping. Fluidized bed drying equipment described in 1.
  9.  前記発生蒸気ラインにおける前記冷却トラップの下流側に介装され、前記冷却された前記発生蒸気を前記乾燥容器の内部の前記流動層よりも鉛直方向上側の領域に案内し、前記乾燥容器の内部の発生蒸気で過熱する過熱手段をさらに備えることを特徴とする請求項7または8に記載の流動層乾燥設備。 The cooling steam is interposed downstream of the cooling trap in the generated steam line, and the cooled generated steam is guided to a region vertically above the fluidized bed inside the drying container, and inside the drying container The fluidized bed drying facility according to claim 7 or 8, further comprising superheating means for superheating with generated steam.
  10.  前記発生蒸気ラインにおける前記冷却トラップの下流側に介装され、前記冷却された前記発生蒸気を前記加熱手段の前記流動層の内部を通過した後の領域の前記配管を流れる過熱媒体で過熱する過熱手段をさらに備えることを特徴とする請求項8に記載の流動層乾燥設備。 Superheating that is interposed downstream of the cooling trap in the generated steam line and overheats the cooled generated steam with a superheating medium that flows through the piping in a region after passing through the inside of the fluidized bed of the heating means. The fluidized bed drying facility according to claim 8, further comprising means.
  11.  前記過熱手段で加熱された前記発生蒸気の一部を分岐し、前記流動化ガスとして前記流動化ガス供給部に供給する分岐ラインと、をさらに備えることを特徴とする請求項9または10に記載の流動層乾燥設備。 The branch line for branching a part of the generated steam heated by the superheating means and supplying the fluidized gas to the fluidized gas supply unit is further provided. Fluidized bed drying equipment.
  12.  前記過熱手段で加熱された前記発生蒸気の一部を分岐し、前記発生蒸気の熱を回収する熱回収システムと、をさらに備えることを特徴とする請求項9から11のいずれか一つに記載の流動層乾燥設備。 12. The heat recovery system according to claim 9, further comprising: a heat recovery system that branches a part of the generated steam heated by the superheating means and recovers heat of the generated steam. Fluidized bed drying equipment.
PCT/JP2012/057755 2011-03-29 2012-03-26 Fluidized bed drying device and fluidized bed drying equipment WO2012133309A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012233947A AU2012233947B2 (en) 2011-03-29 2012-03-26 Fluid bed drying apparatus and fluid bed drying facility

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-073144 2011-03-29
JP2011073144A JP5738037B2 (en) 2011-03-29 2011-03-29 Fluidized bed dryer
JP2011-079356 2011-03-31
JP2011079356A JP5822504B2 (en) 2011-03-31 2011-03-31 Fluidized bed drying equipment

Publications (1)

Publication Number Publication Date
WO2012133309A1 true WO2012133309A1 (en) 2012-10-04

Family

ID=46931027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057755 WO2012133309A1 (en) 2011-03-29 2012-03-26 Fluidized bed drying device and fluidized bed drying equipment

Country Status (2)

Country Link
AU (1) AU2012233947B2 (en)
WO (1) WO2012133309A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534816A (en) * 2014-12-24 2015-04-22 湖南中和制药有限公司 Fluidized drying bed
CN110243167A (en) * 2019-06-17 2019-09-17 惠州丰和粮食有限公司 Multistage rice flour drying device
US20200385300A1 (en) * 2017-06-29 2020-12-10 Guohao Yu Wet sludge drying method and fluidized bed dryer
WO2021196485A1 (en) * 2020-03-30 2021-10-07 河南龙成煤高效技术应用有限公司 Material drying device and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218797A (en) * 1987-03-05 1988-09-12 Mitsubishi Heavy Ind Ltd Drying of coal
WO2006044264A2 (en) * 2004-10-12 2006-04-27 Great River Energy Apparatus for heat treatment of particulate materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044264A1 (en) * 2010-09-27 2012-04-05 Koepruelue Yusuf Kemal Method for the cold sterilization and pasteurization of opaque, translucent or transparent liquids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218797A (en) * 1987-03-05 1988-09-12 Mitsubishi Heavy Ind Ltd Drying of coal
WO2006044264A2 (en) * 2004-10-12 2006-04-27 Great River Energy Apparatus for heat treatment of particulate materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534816A (en) * 2014-12-24 2015-04-22 湖南中和制药有限公司 Fluidized drying bed
CN104534816B (en) * 2014-12-24 2016-05-18 湖南中和制药有限公司 Boiling-bed drying
US20200385300A1 (en) * 2017-06-29 2020-12-10 Guohao Yu Wet sludge drying method and fluidized bed dryer
CN110243167A (en) * 2019-06-17 2019-09-17 惠州丰和粮食有限公司 Multistage rice flour drying device
WO2021196485A1 (en) * 2020-03-30 2021-10-07 河南龙成煤高效技术应用有限公司 Material drying device and application thereof

Also Published As

Publication number Publication date
AU2012233947A1 (en) 2013-10-10
AU2012233947B2 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
WO2012133309A1 (en) Fluidized bed drying device and fluidized bed drying equipment
JP2012233073A (en) Fluidized bed drying facility, and gasification combined power generation system using coal
JP5851884B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP5896821B2 (en) Gasification combined cycle system using fluidized bed drying equipment and coal
JP5748559B2 (en) Fluidized bed dryer
JP5738037B2 (en) Fluidized bed dryer
WO2012133549A1 (en) Wet material supplying facility and gasification composite power generation system using wet material
AU2015202159B2 (en) Fluid bed drying apparatus and fluid bed drying facility
JP5931505B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP2013170767A (en) Fluid bed drying device
JP5777402B2 (en) Fluidized bed dryer
JP5822504B2 (en) Fluidized bed drying equipment
JP2012225518A (en) Fluidized bed drying apparatus
JP5812896B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP5922338B2 (en) Fluidized bed drying equipment and gasification combined cycle power generation system using fluidized bed drying equipment
JP2013210179A (en) Device for decompressing and drying wet fuel
JP2014145577A (en) Drying system of wet fuel
JP2012241990A (en) Fluidized bed drying device
JP2012241987A (en) Fluidized bed drying device
JP2014159935A (en) Fuel processing facility
JP6091922B2 (en) Fluidized bed dryer
JP5713801B2 (en) Fluidized bed dryer
WO2012161131A1 (en) Fluidized bed drying device
JP2012233634A (en) Fluidized bed drying apparatus, and gasification composite power generation system using coal
JP5693326B2 (en) Fluidized bed dryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012233947

Country of ref document: AU

Date of ref document: 20120326

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12764645

Country of ref document: EP

Kind code of ref document: A1