WO2012115301A1 - Three-dimensional glasses lens and glasses using same - Google Patents

Three-dimensional glasses lens and glasses using same Download PDF

Info

Publication number
WO2012115301A1
WO2012115301A1 PCT/KR2011/001578 KR2011001578W WO2012115301A1 WO 2012115301 A1 WO2012115301 A1 WO 2012115301A1 KR 2011001578 W KR2011001578 W KR 2011001578W WO 2012115301 A1 WO2012115301 A1 WO 2012115301A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
glasses
axis
phase difference
lens
Prior art date
Application number
PCT/KR2011/001578
Other languages
French (fr)
Korean (ko)
Inventor
송영철
Original Assignee
Song Young-Chul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Song Young-Chul filed Critical Song Young-Chul
Publication of WO2012115301A1 publication Critical patent/WO2012115301A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques

Definitions

  • the present invention relates to a spectacle lens capable of viewing a three-dimensional stereoscopic image (3D image) with a sunglasses function and glasses using the same, more specifically, each polarized axis and the phase difference axis of the polarizer is different from the usual sunglasses
  • the present invention relates to a spectacle lens configured to enable viewing of a three-dimensional stereoscopic image and glasses using the same in a screen used as a function and supporting a 3D image.
  • the current three-dimensional image is showing the line to the public, as well as three-dimensional image broadcasting, is gradually expanding.
  • the stereoscopic image when the user wears glasses that selectively receive two stereoscopic images through the left and right eyes of the person, the person feels the stereoscopic sense of the image through the glasses.
  • Such glasses are glasses for stereoscopic images.
  • the left and right eyes of a real person accept different images, and by automatically analyzing these different images in the brain, the 3D sense of three-dimensional space is felt through the human eye.
  • the factor of recognizing a 3D space is that a different image is incident through the left and right eyes. Therefore, due to this principle, two images must be taken to realize a stereoscopic image. Therefore, at least two stereoscopic image capturing images of images observed from different angles are separated and transferred to a display to realize stereoscopic images.
  • viewers viewing stereoscopic images should wear glasses for stereoscopic images, and the stereoscopic glasses for each image are provided with a filter function to display the two images displayed on the display. Accordingly, by performing the signal absorption in the differential direction, the viewer can view the respective selective images with the left and right eyes, thereby feeling the stereoscopic sense of the image.
  • stereoscopic images use two-dimensional planar images in combination with other additional tools to give a feeling and sense similar to three-dimensional reality, or manipulate the image by physical and mechanical forces to illuminate the perspective or spatiality of the image. It is a video method that makes people feel by mistake.
  • This 3D stereoscopic image is fundamentally based on the fact that humans have two eyes, and the principle that humans perceive objects in three dimensions is that the two eyes, which are horizontally spaced apart, retina from different angles. By accepting things through, two images are made by electric signal transmission to the cerebrum and synthesized.
  • the visual acuity of ordinary people provides perception of space in terms of color and three-dimensional (3D) observations.
  • a good realization of the optical requirements for a photographic system that provides an observer with three-dimensional stereoscopic images or stereo models is achieved by visual recognition of stereoscopic images or spaces.
  • Stimulus conditions for spatial recognition are classified into two groups.
  • the monocular group allows stereoscopic images with one eye and includes the relative size of the subject, interference, linear and spatial perspectives, the distribution of light and darkness, and the parallax of movement between the subject, background, and visual perception.
  • the binocular group uses the two coordinated mobility of both eyes, which is due to the visual convergence where the optical axis converges strongly at a convergence angle of 23 ° at a point close to 150 mm from parallel for the remote vision and two different visual viewpoints.
  • the geometric image is stereoscopic vision that provides two different retinal images for the left and right eyes.
  • the bodily sensation is perceived when both eyes of the person see the real world because of the different images on the retina due to the distance between the two eyes.
  • the inconsistency of the image that occurs in the retina is the horizontal distance to the same target point in the image projected on the retina.
  • Parallax refers to the horizontal distance between two points of an image projected on a monitor, which is an important factor in determining the width of the discrepancy.
  • a positive parallax is called a positive parallax when the observation point is farther than the solid plane and occurs when the distance between the eyes is less than or equal to the distance between the eyes. .
  • Negative parallax refers to the case where the parallax is closer than the three-dimensional plane, and occurs when the line of sight intersects and makes a sense of the protruding three-dimensional feeling.
  • Application No. '10 -2003-0059794 ' relates to a polarizing glasses device, wherein image information corresponding to parallax is disposed in an opposite relationship to an image display screen on which the image information corresponding to the parallax is separately displayed in the first area and the second area, and the image display screen.
  • Polarizing glasses for viewing an image displayed on the image display screen of a three-dimensional image display device having a polarizing plate and a phase difference plate bonded to a position corresponding to the first area or the second area of the front surface of the polarizing plate to change the polarization direction.
  • An apparatus comprising: a polarization separating means comprising a first coronal region for correlating with one eye of a left eye and a right eye and a second coronal region for correlating with a second eye while separating a specific polarization and a first polarization separating means
  • First polarization direction converting means adhered to the first surface of the tubular region and a second side opposite to the first surface of the second tubular region of the polarization separating means; The second polarization direction converting means adhered to the surface is shown.
  • the general 3D glasses lens as described above has a problem that when the user wears, the dizziness may be felt when the reflection of the glass or mirror is seen as the direction of the phase difference axis and the polarization axis on the left and right sides are different.
  • the 3D eyeglass lens had an uncomfortable point to be used as sunglasses because the polarization axes did not cross each other.
  • the present invention has been made to solve the above problems, the first polarizing plate and the second polarizing plate is formed continuously when forming the spectacle lens, wherein the polarization axis, the phase difference axis and the polarization axis of the second polarizing plate In order to make the phase difference axis orthogonal to each other, the color of the spectacle lens naturally occurs due to the diffraction of the light. It is an object of the present invention to provide glasses using the spectacle lens.
  • a first coating paper made of polymethyl methacrylate (PMMA) and a first coating paper continuously formed after the first coating paper, and comprising a polarization axis of the polarizing plate and a phase difference axis formed at an angle with the polarization axis.
  • a second polarizing plate and a second polarizing plate which are continuously formed after the first polarizing plate and have a polarization axis and a phase difference axis like the first polarizing plate, and have a polarization axis and a phase difference axis rotated by 90 ° with respect to the polarization axis and the phase difference axis of the first polarizing plate.
  • a second coated paper which is continuously formed after the polarizing plate and the second polarizing plate and composed of polymethyl methacrylate (PMMA) is configured to be integrated.
  • An optically transparent adhesive which is an adhesive, is attached between the first coated paper, the first polarizing plate, the second polarizing plate, and the second coated paper.
  • the first polarizing plate and the second polarizing plate may be configured as circular polarized light, respectively.
  • the angle between the polarization axis and the phase difference axis at the binding points of the first polarizing plate and the second polarizing plate may be formed between 75 ° and 105 °, respectively.
  • the spectacles using the spectacle lens it is configured to be perpendicular to each other when the phase difference axis of the 3D spectacle lenses respectively configured on both sides is extended.
  • the first polarizing plate and the second polarizing plate are continuously formed when the spectacle lens is formed, wherein the polarization axis, the phase difference axis and the second polarizing plate of the first polarizing plate
  • the polarization axis and the retardation axis are orthogonal to each other, so that the color of the spectacle lens naturally occurs due to the diffraction of the light.It is usually used as a sunglasses function to filter out the glare of the light passing through the spectacle lens.
  • the spectacle lens and the spectacle lens for viewing in 3D stereoscopic image To provide yonghan glasses as it will invention is that high economy and efficiency.
  • FIG. 1 is a perspective view showing the prior art
  • FIG. 2 is a diagram and an illustration showing viewing a stereoscopic image with the 3D glasses lens of FIG. 1.
  • FIG. 2 is a diagram and an illustration showing viewing a stereoscopic image with the 3D glasses lens of FIG. 1.
  • FIG. 3 is a plan view and a configuration diagram showing the present invention preferably
  • FIG. 4 is a front view showing a preferred embodiment of the present invention
  • FIG. 5 is a plan view and a configuration diagram of another embodiment of the present invention.
  • FIG. 6 is a front view showing another embodiment of the present invention.
  • polarization axes 200 and retardation axes 300 are respectively provided on both sides of the 3D glasses lens 100 of the three-dimensional (3D) glasses 10 which are widely used.
  • the phase difference axis 300 is formed at a predetermined angle on the polarization axis 200 but is orthogonal to the symmetry of the 3D glasses lens 100 configured to both sides, so that the image emitted from the stereoscopic image display device 400 is formed. It is common to see through eyes.
  • the 3D glasses 10 have a polarization axis 200 and a phase difference axis 300 of the 3D glasses lens 100.
  • the polarization axis 420 is attached to the horizontal polarization axis 421 and the vertical polarization axis 422, respectively.
  • the 3D glasses lens 100 When the stereoscopic image emitted from the stereoscopic image display device 400 reaches the 3D glasses lens 100 through the horizontal polarization axis 421 and the vertical polarization axis 422 of the stereoscopic image display device 400, the 3D glasses Since the phase difference axis 300 of the lens 100 is orthogonal, the wearer can check a stereoscopic image.
  • the direction of the polarization axis 200 and the phase difference axis 300 on the left and right sides are different, so the user may feel dizzy when they see the reflection on the glass or mirror. There is a problem that can be felt.
  • the first polarizing plate 30 is formed successively after the first coated paper 50 and the first coated paper 50 and comprises a polarization axis 31 of the polarizing plate and a phase difference axis 32 formed at an angle with the polarization axis 31. ) And the first polarizing plate 30 are continuously formed, and have a polarization axis 41 and a retardation axis 42, like the first polarizing plate 30, but have a polarization axis 31 of the first polarizing plate 30.
  • PMMA Polymethyl Methacrylate
  • the second polarizing plate 40 having the polarization axis 41 and the phase difference axis 42 rotated by 90 ° with respect to the phase difference axis 32 and the second polarizing plate 40 are continuously formed, and the polymethyl meta
  • the second coated paper 60 composed of acrylate (PMMA) is integrated.
  • the optically transparent adhesive 70 which is an adhesive, is attached to the first coating paper 50, the first polarizing plate 30, the second polarizing plate 40, and the second coating paper 60.
  • PMMA Polymethyl methacrylate
  • the PMMA material is colorless and can transmit ultraviolet rays up to 270 nm without absorbing the full wave of visible light.
  • the colorability is very good, it is possible to obtain a wide range of shades from pale to dark.
  • the first polarizing plate 30 and the second polarizing plate 40 should be composed of circularly polarized light, respectively.
  • circularly polarized light is light whose electromagnetic vibration of light waves is the original vibration.
  • One component of the magnetic field or the electric field has a constant amplitude, but the vibration direction is rotated perpendicular to the traveling direction of the light. The angle of inclination of 45 ° to the main surface of the wave plate is sufficient.
  • circularly polarized light passes through it, it becomes linearly polarized light.
  • the angle of the lens is limited, so tilting your face while watching 3D images will damage the 3D image effect. For example, you can create a more natural viewing environment and watch a lot of people at the same time.
  • the angles between the polarization axes 31 and 41 and the angles between the phase difference axes 32 and 42 at the mutually binding points of the first polarizing plate 30 and the second polarizing plate 40 are between 75 ° and 105 °, respectively. It should be configured to be able to make the angle of.
  • sunglasses combined three-dimensional glasses lens configured as described above are as follows.
  • An optical clear adhesive (OCA) 70 is attached to one surface of the first coated paper 50 made of PMMA, and is continuously formed after the optical clear adhesive 70, and the polarization axis of the polarizing plate is And a first polarizing plate 30 composed of a phase difference axis 32 formed at an angle with the polarization axis 31, and then attaching the optical transparent adhesive 70 to the optical transparent adhesive. It is continuously formed after the adhesive 70 and has a polarization axis 41 and a retardation axis 42, like the first polarizing plate 30, but has a polarization axis 31 and a retardation axis of the first polarizing plate 30.
  • the second polarizing plate 40 having a polarization axis 41 and a phase difference axis 42 rotated by 90 °, and the optical transparent adhesive 70 is attached again and then formed continuously.
  • the second coating paper 60 made of a material is integrated to form the lens 20.
  • the first polarizing plate 30 and the second polarizing plate 40 should each be composed of circularly polarized light.
  • the polarization axes 32 and 42 are orthogonal to each other, and the color is applied to the spectacle lens 20 by diffraction of light.
  • This is a natural color generated when natural light passes through each circular circular polarization in the 90 ° direction, and it can represent a natural and eye-free color even when no color is added to the spectacle lens 20.
  • you will also have sunglasses.
  • the angle between the polarization axes 31 and 41 and the angle between the phase difference axes 32 and 42 are respectively between 75 ° and 105 °. 3D video can be viewed even if the angle is made, it is also possible to configure by applying this.
  • phase difference axes 32 and 42 of the 3D spectacle lenses 20 respectively configured on both sides are described. It is preferable to be configured to be orthogonal to each other when extending, but as described above, the angle and phase difference axis between the polarization axes 31 and 41 at the intersection point when the first polarizing plate 30 and the second polarizing plate 40 are mutually bound.
  • the angle between 32 and 42 may be configured in this way because viewing of the 3D image is possible even when the angle is between 75 ° and 105 °, respectively.
  • the lens 20 configured to orthogonally cross the polarization axis 31 and the phase difference axis 42 formed in the first polarizing plate 30 and the phase difference axis 32 and the second polarization plate 40.
  • the lens 20 ' is configured to be symmetrical with the lens 20, but the polarization axis 31' and the phase difference axis 32 'of the first polarizing plate 30' and the polarization axis of the second polarizing plate 40 '
  • the 41 'and the phase difference axis 42' are orthogonal to each other so as to be a 3D glasses 10 capable of viewing 3D images.
  • the polarization axis of the general polarized sunglass is composed of 90 °
  • the 3D glasses lens 100 is composed of 0 ° and 90 °, respectively, it was inconvenient to use as sunglasses.
  • the polarization axis 31 of the first polarizing plate 30 and the polarization axis 41 of the second polarizing plate 40 intersect each other to have a natural color and simultaneously transmit to the spectacle lens 20. Due to the light, the glare is further filtered out, eliminating direct fatigue in the eyes and providing comfort.
  • the directionality of the phase difference axis 300 and the polarization axis 200 on the left and right side is different, the problem that could feel dizziness when seeing the reflection on the glass or mirror As shown in the present invention, dizziness is eliminated by allowing the polarization axes 31 and 41 of the first polarizing plate 30 and the second polarizing plate 40 to be 90 degrees apart.
  • the phase difference axes 32 and 42 should have a predetermined angle from the polarization axes 31 and 41.
  • the first polarizing plate 30 and the second polarizing plate 40 are continuously formed when the spectacle lens 20 is formed, wherein the first polarizing plate 30
  • the polarization axis 31, the phase difference axis 32 and the polarization axis 41 and the phase difference axis 42 of the second polarizing plate 40 are orthogonal to each other, so that color is naturally generated in the spectacle lens by diffraction of light.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention relates to a three-dimensional glasses lens and glasses using the three-dimensional lens, and more specifically, to a glasses lens and glasses using the glasses lens, the glasses lens which has a first polarizer and a second polarizer formed consecutively when forming the glasses lens, wherein a polarized light axis of the first polarizer and a phase difference axis, and a polarized light axis of the second polarizer and a phase difference axis are orthogonally placed from each other so that color occurs naturally on the glasses lens due to the diffraction of light, thereby enabling use thereof as sunglasses, bringing comfort to the eyes by further filtering out the glare from light penetrating through the glasses lens, and when wearing a regular 3D lens, a user may be dizzy from looking at reflections in a glass or a mirror due to the difference in the directionality of the phase difference axis and the polarized light axis of the left and the right sides, but the present invention resolves the dizziness and enables the wearer to watch a 3D image supported display in 3D.

Description

3차원 안경렌즈와 이를 이용한 안경3D Glasses and Glasses Using the Same
본 발명은 선글라스 기능이 포함된 3차원 입체영상(3D 영상)이 시청 가능한 안경렌즈와 이를 이용한 안경에 관한 것으로, 보다 상세하게는 편광판에 구성되는 각각의 편광 축과 위상차 축을 서로 다르게 하여 평소에는 선글라스 기능으로 사용하고, 3D영상이 지원되는 화면에서는 3차원 입체영상으로 시청이 가능토록 구성된 안경렌즈와 이를 이용한 안경에 관한 것이다.The present invention relates to a spectacle lens capable of viewing a three-dimensional stereoscopic image (3D image) with a sunglasses function and glasses using the same, more specifically, each polarized axis and the phase difference axis of the polarizer is different from the usual sunglasses The present invention relates to a spectacle lens configured to enable viewing of a three-dimensional stereoscopic image and glasses using the same in a screen used as a function and supporting a 3D image.
3차원 입체영상의 기술발전은 1920년대에 편광방식과 1948년에 광학 홀로그램(Hologram)방식이 개발되었고, 1980년대에 편광 안경이 개발되었으며, 현재는 다양한 입체방송 서비스에 대한 연구가 진행되고 있다.In the technological development of 3D stereoscopic image, polarization method was developed in 1920s, optical hologram method was developed in 1948, polarized glasses were developed in 1980s, and various stereoscopic broadcasting services are being studied.
현재의 입체영상은 디지털 시대의 개막과 더불어 입체영상방송은 물론 입체 게임이 대중들에게 선을 보이고, 점차 확대되고 있는 실정이다. 이러한 입체영상은 2개의 입체영상을 사람의 좌, 우 눈을 통하여 선택적으로 받아들이는 안경을 착용하면, 사람은 안경을 통하여 영상에 대한 입체감을 느끼게 되는 것이다. 이러한 안경이 입체 영상용 안경인 것이다.With the opening of the digital era, the current three-dimensional image is showing the line to the public, as well as three-dimensional image broadcasting, is gradually expanding. In the stereoscopic image, when the user wears glasses that selectively receive two stereoscopic images through the left and right eyes of the person, the person feels the stereoscopic sense of the image through the glasses. Such glasses are glasses for stereoscopic images.
한편, 실제 사람의 좌, 우 눈은 서로 다른 영상을 받아들이고 있으며, 이 다른 영상을 뇌에서 자동적으로 분석함으로서 사람의 눈을 통하여 3차원적인 공간에 대한 입체감을 느끼게 되는 것이다.On the other hand, the left and right eyes of a real person accept different images, and by automatically analyzing these different images in the brain, the 3D sense of three-dimensional space is felt through the human eye.
이와 같이 사람이 3차원 공간을 인식하는 요인은 좌, 우 눈을 통하여 다른 영상을 입사되기 때문이다. 그러므로 이러한 원리로 인하여 입체 영상을 구현하기 위해서는 두 개의 영상을 촬영해야 한다. 따라서 최소한 두 개의 입체 영상 취득용 카메라로 서로 다른 각도에서 관찰되는 영상들을 촬영하고, 이를 분리하여 디스플레이로 전달하면 입체 영상이 구현되는 것이다.In this way, the factor of recognizing a 3D space is that a different image is incident through the left and right eyes. Therefore, due to this principle, two images must be taken to realize a stereoscopic image. Therefore, at least two stereoscopic image capturing images of images observed from different angles are separated and transferred to a display to realize stereoscopic images.
이와 더불어 입체영상을 보는 시청자 측에서는 입체 영상을 좌, 우 눈으로 보기 위하여, 입체 영상용 안경을 착용해야 하며, 이러한 입체 영상용 안경은 각 렌즈에 필터(Filter)기능이 마련되어 디스플레이에 표시된 두 영상에 따라 차별적 방향의 신호 흡수를 수행함으로서, 시청자는 좌, 우 눈으로 각각의 선택적인 영상을 볼 수 있고, 이에 따라 영상에 대한 입체감을 느끼게 되는 것이다.In addition, in order to view stereoscopic images with the left and right eyes, viewers viewing stereoscopic images should wear glasses for stereoscopic images, and the stereoscopic glasses for each image are provided with a filter function to display the two images displayed on the display. Accordingly, by performing the signal absorption in the differential direction, the viewer can view the respective selective images with the left and right eyes, thereby feeling the stereoscopic sense of the image.

일반적으로 입체영상은 2차원적 평면이미지를 3차원적 실상과 비슷한 느낌과 감각이 오도록 기타 부수적인 도구를 병합하여 사용하거나 물리적, 기계적 힘으로 그 영상을 조작 동형 시켜 그 이미지의 원근감이나 공간성이 착시나, 착각에 의해 사람에게 느껴지도록 하는 영상방법이다. 이러한 3차원 입체영상을 실현하는 데는 근본적으로 인간이 두 개의 눈을 가지고 있다는 사실에 근거하며, 인간이 사물을 입체로 인식하는 원리는 수평적으로 이격되어 위치한 인간의 두 눈이 각기 다른 각도에서 망막을 통하여 사물을 받아들이고, 두 개의 상이 전기신호화 하여 대뇌로 전달되어 합성됨으로써 가능한 것이다.In general, stereoscopic images use two-dimensional planar images in combination with other additional tools to give a feeling and sense similar to three-dimensional reality, or manipulate the image by physical and mechanical forces to illuminate the perspective or spatiality of the image. It is a video method that makes people feel by mistake. This 3D stereoscopic image is fundamentally based on the fact that humans have two eyes, and the principle that humans perceive objects in three dimensions is that the two eyes, which are horizontally spaced apart, retina from different angles. By accepting things through, two images are made by electric signal transmission to the cerebrum and synthesized.
평상적인 사람의 시력은 색과 3차원(3D : Three Dimension)라는 관찰에 있어서 공간의 인식을 제공하게 된다. 관찰자에게 3차원의 입체영상이나 스테레오 모델을 제공하는 사진 시스템에 대한 광학적 요구사항의 양호한 실현은 입체영상이나 공간의 시각 인식에 의해 이루어진다.The visual acuity of ordinary people provides perception of space in terms of color and three-dimensional (3D) observations. A good realization of the optical requirements for a photographic system that provides an observer with three-dimensional stereoscopic images or stereo models is achieved by visual recognition of stereoscopic images or spaces.
공간 인식에 대한 자극 조건은 2개의 집단으로 분류된다.Stimulus conditions for spatial recognition are classified into two groups.
단안집단은 한쪽 눈으로 입체 영상을 허용하며, 피사체의 상대적 크기, 간섭, 선형 및 공간형 투시와 빛과 어둠의 분배, 피사체와 배경과 시각인식의 이동 시차 등을 포함한다.The monocular group allows stereoscopic images with one eye and includes the relative size of the subject, interference, linear and spatial perspectives, the distribution of light and darkness, and the parallax of movement between the subject, background, and visual perception.
쌍안집단은 양쪽 눈의 2개의 좌표형 이동성을 사용하는데, 이것은 광학축이 원격 비젼을 위한 평행으로부터 150mm의 가까운 점에서 23°의 수렴각으로 강하게 수렴하는 시각적 수렴과 2개의 상이한 시각적 관찰점으로 인하여 기하학적 영상이 좌우측 눈에 대해 2개의 다른 망막영상을 제공하는 입체영상 시각인 것이다.The binocular group uses the two coordinated mobility of both eyes, which is due to the visual convergence where the optical axis converges strongly at a convergence angle of 23 ° at a point close to 150 mm from parallel for the remote vision and two different visual viewpoints. The geometric image is stereoscopic vision that provides two different retinal images for the left and right eyes.
체감은 사람의 양쪽 눈이 실세계를 볼 때, 두 눈 사이의 거리로 인해 망막에 맺히는 상이 서로 다르므로 해서 지각되는 것이다.The bodily sensation is perceived when both eyes of the person see the real world because of the different images on the retina due to the distance between the two eyes.
망막에서 발생하는 상의 불일치란 망막에 투사된 이미지에서 동일한 대상점에 대한 수평거리를 말하는데 이 거리로 인해 사람은 입체감을 느끼게 되는 것이다.The inconsistency of the image that occurs in the retina is the horizontal distance to the same target point in the image projected on the retina.
반면, 시차라는 것은 모니터 상에 투시된 이미지의 두 지점사이의 수평거리를 말하는데 불일치의 폭을 결정하는 중요한 요소이다. 양(+)의 시차는 관측점이 입체평면보다 멀리 있는 경우를 양의 시차라 하고, 눈 사이의 거리와 같거나 작을 때 발생되며, 시차가 0보다 큰 경우를 말하며 안쪽으로 들어간 깊이 효과를 보게 된다.Parallax, on the other hand, refers to the horizontal distance between two points of an image projected on a monitor, which is an important factor in determining the width of the discrepancy. A positive parallax is called a positive parallax when the observation point is farther than the solid plane and occurs when the distance between the eyes is less than or equal to the distance between the eyes. .
음(-)의 시차는 입체평면보다 가까이 있는 경우를 말하고, 시선이 교차될 때 발생하며 돌출된 입체감을 느끼게 한다. 이상과 같은 사람 눈의 특성을 이용하여 입체영상을 실현하고자 하는 연구가 오래전부터 꾸준히 연구되어 왔다.Negative parallax refers to the case where the parallax is closer than the three-dimensional plane, and occurs when the line of sight intersects and makes a sense of the protruding three-dimensional feeling. Research into realizing three-dimensional images using the characteristics of the human eye as described above has been steadily studied for a long time.
오랜 기간 연구로 인해 최근에는 일반적인 안경의 착용과 같이 형성되며, 입체적으로 보이는 안경렌즈나 영상장치를 사람의 눈을 통하여 접할 수 있는 것이 실현되고 있다. 상기와 같이 입체적 기능을 가진 제품에 대해 살펴보게 되면,Due to a long period of research, recently, it has been realized that the glasses and imaging devices that are formed in the same way as general glasses are worn through the human eye. Looking at the product having a three-dimensional function as described above,
출원번호 ‘10-2003-0059794’는 편광안경장치에 관한 것으로, 시차에 대응한 화상정보가 제 1 에어리어와 제 2 에어리어에 각각 따로 표시되는 화상표시 스크린과 그 화상표시 스크린에 대향관계로 배치된 편광판과 그 편광판의 전방면의 제 1에어리어 또는 제 2 에어리어에 대응하는 위치에 접착되어 편광방향을 변환하는 위상차 판을 구비한 입체 화상 표시장치의 상기 화상표시 스크린에 표시되는 화상을 보기위한 편광안경장치에 있어서, 특정한 편광을 분리함과 함께 좌안 및 우안 중 한쪽 눈으로 관상하기 위한 제 1 관상영역과 다른 쪽 눈으로 관상하기 위한 제 2 관상영역으로 이루어진 편광분리수단과 상기 편광분리수단의 제 1관상영역의 제 1 면에 접착된 제 1 편광방향 변환수단과 상기 편광분리수단의 제 2관상영역의 상기 제 1 면과 반대 측의 제 2 면에 접착된 제 2 편광방향 변환수단을 나타내고 있다.Application No. '10 -2003-0059794 'relates to a polarizing glasses device, wherein image information corresponding to parallax is disposed in an opposite relationship to an image display screen on which the image information corresponding to the parallax is separately displayed in the first area and the second area, and the image display screen. Polarizing glasses for viewing an image displayed on the image display screen of a three-dimensional image display device having a polarizing plate and a phase difference plate bonded to a position corresponding to the first area or the second area of the front surface of the polarizing plate to change the polarization direction. An apparatus comprising: a polarization separating means comprising a first coronal region for correlating with one eye of a left eye and a right eye and a second coronal region for correlating with a second eye while separating a specific polarization and a first polarization separating means First polarization direction converting means adhered to the first surface of the tubular region and a second side opposite to the first surface of the second tubular region of the polarization separating means; The second polarization direction converting means adhered to the surface is shown.

상기와 같은 일반적인 3D용 안경렌즈는 사용자가 착용할 경우 좌우측의 위상차 축과 편광 축의 방향성이 상이함에 따라 유리나 거울에 반사되는 모습을 볼 경우 어지러움을 느낄 수 있는 문제점이 있었다. 그리고 3D용 안경렌즈는 편광 축이 교차하지 않아 선글라스로 사용하기에도 불편한 점을 가지고 있었다.The general 3D glasses lens as described above has a problem that when the user wears, the dizziness may be felt when the reflection of the glass or mirror is seen as the direction of the phase difference axis and the polarization axis on the left and right sides are different. In addition, the 3D eyeglass lens had an uncomfortable point to be used as sunglasses because the polarization axes did not cross each other.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 안경렌즈를 형성 시 제 1편광판과 제 2편광판이 연속적으로 형성되는데, 이때 제 1편광판의 편광 축, 위상차 축과 제 2편광판의 편광 축, 위상차 축을 서로 직교하도록 하여 빛의 회절에 의해 자연스레 안경렌즈에 컬러가 발생하게 되어 평소에는 선글라스 기능으로 사용하고, 3D 영상이 지원되는 화면에서는 3차원 입체영상으로 시청이 가능하도록 하는 안경렌즈와 상기 안경렌즈를 이용한 안경을 제공하고자 하는 것을 그 목적으로 한다.The present invention has been made to solve the above problems, the first polarizing plate and the second polarizing plate is formed continuously when forming the spectacle lens, wherein the polarization axis, the phase difference axis and the polarization axis of the second polarizing plate In order to make the phase difference axis orthogonal to each other, the color of the spectacle lens naturally occurs due to the diffraction of the light. It is an object of the present invention to provide glasses using the spectacle lens.

이에 상기 목적을 달성하기 위한 3차원 렌즈와 이를 이용한 안경에 있어서,In the three-dimensional lens and glasses using the same to achieve the above object,
안경렌즈에 있어서, 폴리메틸메타크릴레이트(PMMA : Polymethyl Methacrylate) 로 구성된 제 1코팅지와 상기 제 1코팅지에 이어 연속적으로 형성되되 편광판의 편광 축과 상기 편광 축과 각도를 가지며 형성된 위상차 축으로 구성된 제 1편광판과 상기 제 1편광판에 이어 연속적으로 형성되되 상기 제 1편광판과 같이 편광 축과 위상차 축을 가지되 상기 제 1편광판의 편광 축, 위상차 축을 기준으로 90°회전시킨 편광 축과 위상차 축을 가진 제 2편광판 및 상기 제 2편광판에 이어 연속적으로 형성되되 폴리메틸메타크릴레이트(PMMA)로 구성된 제 2코팅지가 일체화되어 구성되는 것으로 이루어진 것을 특징으로 한다. 상기 제 1코팅지, 제 1편광판, 제 2편광판 및 제 2코팅지의 사이에는 접착제인 광학용 투명접착제가 부착되어 구성되는 것을 특징으로 한다. 여기서 상기 제 1편광판과 제 2편광판은 각각 원편광으로 구성하는 것을 특징으로 한다.In the spectacle lens, a first coating paper made of polymethyl methacrylate (PMMA) and a first coating paper continuously formed after the first coating paper, and comprising a polarization axis of the polarizing plate and a phase difference axis formed at an angle with the polarization axis. A second polarizing plate and a second polarizing plate which are continuously formed after the first polarizing plate and have a polarization axis and a phase difference axis like the first polarizing plate, and have a polarization axis and a phase difference axis rotated by 90 ° with respect to the polarization axis and the phase difference axis of the first polarizing plate. A second coated paper which is continuously formed after the polarizing plate and the second polarizing plate and composed of polymethyl methacrylate (PMMA) is configured to be integrated. An optically transparent adhesive, which is an adhesive, is attached between the first coated paper, the first polarizing plate, the second polarizing plate, and the second coated paper. The first polarizing plate and the second polarizing plate may be configured as circular polarized light, respectively.
또한, 상기 제 1편광판과 제 2편광판의 상호 결착하는 결착점에서 편광 축 사이의 각도와 위상차 축사이의 각도는 각각 75°에서 105°사이의 각을 이루어도 가능한 것을 특징으로 한다.In addition, the angle between the polarization axis and the phase difference axis at the binding points of the first polarizing plate and the second polarizing plate may be formed between 75 ° and 105 °, respectively.
상기 안경렌즈를 이용한 안경에 있어서, 양측으로 각각 구성되는 3D안경렌즈의 위상차 축을 연장하였을 시 서로 직교되도록 구성하는 것을 특징으로 한다.In the spectacles using the spectacle lens, it is configured to be perpendicular to each other when the phase difference axis of the 3D spectacle lenses respectively configured on both sides is extended.

본 발명에 따르면 3차원 안경렌즈와 이를 이용한 안경을 사용하게 되면, 안경렌즈의 형성 시 제 1편광판과 제 2편광판이 연속적으로 형성되는데, 이때 제 1편광판의 편광 축, 위상차 축과 제 2편광판의 편광 축, 위상차 축을 서로 직교하도록 하여 빛의 회절에 의해 자연스레 안경렌즈에 컬러가 발생하게 되어 평소에는 선글라스 기능으로 사용하고, 안경렌즈를 관통한 빛에 대한 눈부심을 한층 더 걸러주게 되어 눈에 대해 편안함을 가질 수 있으며, 일반 3D안경렌즈의 착용 시 좌우측의 위상차 축과 편광 축의 방향성이 상이함에 따라 유리나 거울에 반사되는 모습을 볼 경우 어지러움을 느낄 수 있지만 본 발명으로 인해 어지러움을 해소할 수 있고, 3D 영상이 지원되는 화면에서는 3차원 입체영상으로 시청이 가능하도록 하는 안경렌즈와 상기 안경렌즈를 이용한 안경을 제공할 수 있어 그 경제성과 효율성이 높은 발명이라 하겠다.According to the present invention, when the three-dimensional spectacle lens and the glasses using the same are used, the first polarizing plate and the second polarizing plate are continuously formed when the spectacle lens is formed, wherein the polarization axis, the phase difference axis and the second polarizing plate of the first polarizing plate The polarization axis and the retardation axis are orthogonal to each other, so that the color of the spectacle lens naturally occurs due to the diffraction of the light.It is usually used as a sunglasses function to filter out the glare of the light passing through the spectacle lens. When you wear a normal 3D glasses lens, you can feel dizziness when you see the reflection on the glass or mirror as the direction of the retardation axis and the polarization axis on the left and right sides are different, but can solve the dizziness due to the present invention, On the screen that supports 3D image, the spectacle lens and the spectacle lens for viewing in 3D stereoscopic image To provide yonghan glasses as it will invention is that high economy and efficiency.

도 1은 종래기술을 나타내는 사시도1 is a perspective view showing the prior art
도 2는 도 1의 3D안경렌즈로 입체영상을 보는 것을 나타내는 도표와 실시도FIG. 2 is a diagram and an illustration showing viewing a stereoscopic image with the 3D glasses lens of FIG. 1. FIG.
도 3은 본 발명을 바람직하게 나타내는 평면도와 구성도3 is a plan view and a configuration diagram showing the present invention preferably
도 4는 본 발명의 바람직한 실시 예를 나타내는 정면도4 is a front view showing a preferred embodiment of the present invention
도 5는 본 발명의 다른 실시 예를 평면도와 구성도5 is a plan view and a configuration diagram of another embodiment of the present invention;
도 6은 본 발명의 다른 실시 예를 나타내는 정면도6 is a front view showing another embodiment of the present invention
이에 도면을 참고로 하여 상세하게 설명하게 되면,When described in detail with reference to the drawings,
도 1과 도 2에 도시한 바와 같이 일반적으로 널리 사용되고 있는 3차원(Three Dimension 이하 3D)안경(10)의 3D안경렌즈(100)의 양측에는 편광 축(200)과 위상차 축(300)이 각각 구성되는데, 상기 위상차 축(300)은 상기 편광 축(200)에서 일정한 각도를 형성하되 양측으로 구성되는 3D안경렌즈(100)의 대칭 시 직교하도록 되어 있어 입체영상표시장치(400)에서 발산되는 영상을 눈을 통해 보는 것이 일반적인 것이다.As shown in FIGS. 1 and 2, polarization axes 200 and retardation axes 300 are respectively provided on both sides of the 3D glasses lens 100 of the three-dimensional (3D) glasses 10 which are widely used. The phase difference axis 300 is formed at a predetermined angle on the polarization axis 200 but is orthogonal to the symmetry of the 3D glasses lens 100 configured to both sides, so that the image emitted from the stereoscopic image display device 400 is formed. It is common to see through eyes.

이에 대한 원리를 설명함에 있어 입체영상을 보는 것을 예를 들게 되면,In explaining the principle of this, taking an example of watching stereoscopic images,
3D안경(10)에서 3D안경렌즈(100)의 편광 축(200)과 위상차 축(300)으로 되어 있다. 그리고 입체영상을 발산하는 입체영상표시장치(400)의 렌즈(410)에서는 편광 축(420이 각각 가로편광 축(421)과 세로편광 축(422)이 부착되어 있는 것이다.The 3D glasses 10 have a polarization axis 200 and a phase difference axis 300 of the 3D glasses lens 100. In the lens 410 of the stereoscopic image display device 400 that emits a stereoscopic image, the polarization axis 420 is attached to the horizontal polarization axis 421 and the vertical polarization axis 422, respectively.
상기 입체영상표시장치(400)에서 발산되는 입체영상이 입체영상표시장치(400)의 가로편광 축(421)과 세로편광 축(422)을 거쳐 3D안경렌즈(100)에 도달하게 되면, 3D안경렌즈(100)의 위상차 축(300)이 직교되어 있어 착용자가 입체영상을 확인할 수 있게 되는 것이다.When the stereoscopic image emitted from the stereoscopic image display device 400 reaches the 3D glasses lens 100 through the horizontal polarization axis 421 and the vertical polarization axis 422 of the stereoscopic image display device 400, the 3D glasses Since the phase difference axis 300 of the lens 100 is orthogonal, the wearer can check a stereoscopic image.

상기와 같이 일반적인 3D안경렌즈(100)를 사용자가 착용할 경우 좌측과 우측의 편광 축(200)과 위상차 축(300)의 방향성이 상이함에 따라 사용자가 유리나 거울에 반사되는 모습을 볼 경우 어지러움을 느낄 수 있는 문제점이 있다.As described above, when the user wears the general 3D glasses lens 100, the direction of the polarization axis 200 and the phase difference axis 300 on the left and right sides are different, so the user may feel dizzy when they see the reflection on the glass or mirror. There is a problem that can be felt.

상기와 같은 문제를 보완하기 위해 개발된 본 발명을 도 3 내지 도 5에 도시한 바를 바탕으로 설명하게 되면, 안경렌즈(20)에 있어서, 폴리메틸메타크릴레이트(PMMA : Polymethyl Methacrylate) 로 구성된 제 1코팅지(50)와 상기 제 1코팅지(50)에 이어 연속적으로 형성되되 편광판의 편광 축(31)과 상기 편광 축(31)과 각도를 가지며 형성된 위상차 축(32)으로 구성된 제 1편광판(30)과 상기 제 1편광판(30)에 이어 연속적으로 형성되되 상기 제 1편광판(30)과 같이 편광 축(41)과 위상차 축(42)을 가지되 상기 제 1편광판(30)의 편광 축(31), 위상차 축(32)을 기준으로 90°회전시킨 편광 축(41)과 위상차 축(42)을 가진 제 2편광판(40) 및 상기 제 2편광판(40)에 이어 연속적으로 형성되되 폴리메틸메타크릴레이트(PMMA)로 구성된 제 2코팅지(60)가 일체화되어 구성되어진다. 여기서 상기 제 1코팅지(50), 제 1편광판(30), 제 2편광판(40) 및 제 2코팅지(60)의 사이에는 접착제인 광학용 투명접착제(70)가 부착되어 구성되어야 한다.Referring to the present invention developed to solve the above problems based on the bar shown in Figures 3 to 5, in the spectacle lens 20, the agent consisting of polymethyl methacrylate (PMMA: Polymethyl Methacrylate) The first polarizing plate 30 is formed successively after the first coated paper 50 and the first coated paper 50 and comprises a polarization axis 31 of the polarizing plate and a phase difference axis 32 formed at an angle with the polarization axis 31. ) And the first polarizing plate 30 are continuously formed, and have a polarization axis 41 and a retardation axis 42, like the first polarizing plate 30, but have a polarization axis 31 of the first polarizing plate 30. ), The second polarizing plate 40 having the polarization axis 41 and the phase difference axis 42 rotated by 90 ° with respect to the phase difference axis 32 and the second polarizing plate 40 are continuously formed, and the polymethyl meta The second coated paper 60 composed of acrylate (PMMA) is integrated. In this case, the optically transparent adhesive 70, which is an adhesive, is attached to the first coating paper 50, the first polarizing plate 30, the second polarizing plate 40, and the second coating paper 60.

상기 제 1코팅지(50)와 제 2코팅지(60)에 사용되는 폴리메틸메타크릴레이트(Polymethyl Methacrylate 이하 PMMA)는 보통 ‘아크릴 수지’라고 부르며, 1930년대에 연구 개발되어 공업화가 시작되었다. 현존하는 수지 중 가장 오래된 역사를 가진 수지의 일종으로 가장 투명하고 내후성이 좋은 것이다. 그래서 유기유리, 전기부품 및 건축재료 등 광범위하게 이용되고 있는 것이다.Polymethyl methacrylate (PMMA) used for the first coated paper 50 and the second coated paper 60 is commonly referred to as an “acrylic resin”, and researched and developed in the 1930s and started industrialization. It is the kind of resin that has the oldest history among the existing resins, and is the most transparent and weather resistant. Therefore, it is widely used in organic glass, electric parts and building materials.
상기 PMMA 재질은 무색으로서 가시광선의 전파장을 흡수하지 않고 자외선도 270nm까지 투과할 수 있다. 또한 착색성이 매우 좋아 흐린 색에서부터 짙은 색까지 광범위한 색조를 얻을 수 있는 것이다. 그리고 열 또는 일광에서도 변색 또는 퇴색되지 않는 특성이 있으며, 표면이 광택성이 있고, 가벼우며, 내약품성이 좋아서 강알칼리 및 그 염류에 침식되지 않는 것이다.The PMMA material is colorless and can transmit ultraviolet rays up to 270 nm without absorbing the full wave of visible light. In addition, the colorability is very good, it is possible to obtain a wide range of shades from pale to dark. In addition, there is a characteristic that does not discolor or fade even in heat or sunlight, the surface is glossy, light, and good chemical resistance is not eroded by strong alkalis and salts thereof.
또한, 유기사의 염류, 유지, 지방족 탄화수소에도 강하며, 내후성은 플라스틱 중에서는 가장 좋으며, 성형성 및 가공성이 좋아 방풍유리, 광학렌즈, 안경 등에 많이 사용되고 있는 것이다.It is also resistant to salts, fats and oils, and aliphatic hydrocarbons of organic sand, and has the best weatherability among plastics, and is widely used in windshields, optical lenses, glasses, and the like because of its good formability and processability.

상기 제 1편광판(30)과 제 2편광판(40)은 각각 원편광으로 구성되는 것이어야 한다.The first polarizing plate 30 and the second polarizing plate 40 should be composed of circularly polarized light, respectively.
여기서 원편광은 광파의 전자기장 진동이 원진동인 빛으로, 자기장이나 전기장 중 하나의 성분이 진폭은 일정하지만, 진동방향이 빛의 진행방향에 수직인 채로 회전하게 되는데, 이를 만들기 위해서는 직선편광을 사분의 일 파장판의 주면에 45°기울여 입사시키면 되는 것이다. 반대로 원편광이 이것을 지나면 직선편광이 된다. Here, circularly polarized light is light whose electromagnetic vibration of light waves is the original vibration. One component of the magnetic field or the electric field has a constant amplitude, but the vibration direction is rotated perpendicular to the traveling direction of the light. The angle of inclination of 45 ° to the main surface of the wave plate is sufficient. Conversely, when circularly polarized light passes through it, it becomes linearly polarized light.
직선편광 렌즈의 경우는 렌즈의 각도에 제한이 있어 3D영상의 시청 시 얼굴을 기울이면 3D영상 효과가 손상을 입게 되고, 원편광 렌즈의 경우에는 얼굴을 좌우로 기울여도 3D영상의 효과가 유지되며, 좀 더 자연스러운 시청환경을 만들 수 있고, 많이 사람이 동시에 시청하는 것도 가능한 것이다.In the case of linear polarized lenses, the angle of the lens is limited, so tilting your face while watching 3D images will damage the 3D image effect. For example, you can create a more natural viewing environment and watch a lot of people at the same time.

상기 제 1편광판(30)과 제 2편광판(40)의 상호 결착하는 결착점에서 편광 축(31, 41) 사이의 각도와 위상차 축(32, 42) 사이의 각도는 각각 75°에서 105°사이의 각을 이루어도 가능하도록 구성되어야 한다.The angles between the polarization axes 31 and 41 and the angles between the phase difference axes 32 and 42 at the mutually binding points of the first polarizing plate 30 and the second polarizing plate 40 are between 75 ° and 105 °, respectively. It should be configured to be able to make the angle of.

또한, 도 5에 도시한 바와 같이 상기 안경렌즈(20)를 이용한 안경(10)에 있어서, 양측으로 각각 구성되는 3D안경렌즈(20, 20‘)의 위상차 축(32, 42)을 연장하였을 시 서로 직교되도록 구성하여야 한다.In addition, in the glasses 10 using the spectacle lens 20 as shown in FIG. 5, when the phase difference axes 32 and 42 of the 3D spectacle lenses 20 and 20 'respectively configured on both sides are extended. It should be configured to be orthogonal to each other.

상기와 같이 구성된 본 발명인 선글라스 겸용 3차원 안경렌즈에 따른 작용을 설명하면 다음과 같다.Referring to the operation according to the present invention sunglasses combined three-dimensional glasses lens configured as described above are as follows.

도 3 또는 도 4에 도시한 바와 같이 안경렌즈(20)에 있어서,In the spectacle lens 20 as shown in Fig. 3 or 4,
PMMA 재질로 구성된 제 1코팅지(50)의 일면에 광학용 투명접착제(OCA : Optical clear adhesive)(70)를 부착하게 되고, 상기 광학용 투명접착제(70)에 이어 연속적으로 형성되되 편광판의 편광 축(31)과 상기 편광 축(31)과 각도를 가지며 형성된 위상차 축(32)으로 구성된 제 1편광판(30)을 부착하고, 다시 상기 광학용 투명접착제(70)를 부착하게 되고, 상기 광학용 투명접착제(70)에 이어 연속적으로 형성되되 상기 제 1편광판(30)과 같이 편광 축(41)과 위상차 축(42)을 가지되 상기 제 1편광판(30)의 편광 축(31), 위상차 축(32)을 기준으로 90°회전시킨 편광 축(41)과 위상차 축(42)을 가진 제 2편광판(40)을 부착하고, 상기 광학용 투명접착제(70)를 또다시 부착 후 연속적으로 형성되되 PMMA 재질로 구성된 제 2코팅지(60)가 일체화되도록 하여 렌즈(20)를 구성하는 것이다. 여기서 상기 제 1편광판(30)과 제 2편광판(40)은 각각 원편광으로 구성되는 것이어야 한다.An optical clear adhesive (OCA) 70 is attached to one surface of the first coated paper 50 made of PMMA, and is continuously formed after the optical clear adhesive 70, and the polarization axis of the polarizing plate is And a first polarizing plate 30 composed of a phase difference axis 32 formed at an angle with the polarization axis 31, and then attaching the optical transparent adhesive 70 to the optical transparent adhesive. It is continuously formed after the adhesive 70 and has a polarization axis 41 and a retardation axis 42, like the first polarizing plate 30, but has a polarization axis 31 and a retardation axis of the first polarizing plate 30. 32 is attached to the second polarizing plate 40 having a polarization axis 41 and a phase difference axis 42 rotated by 90 °, and the optical transparent adhesive 70 is attached again and then formed continuously. The second coating paper 60 made of a material is integrated to form the lens 20. In this case, the first polarizing plate 30 and the second polarizing plate 40 should each be composed of circularly polarized light.

또한, 상기 제 1편광판(30)과 제 2편광판(40)의 연속적으로 부착 시 편광 축(32, 42)이 서로 직교하도록 하여 부착하는데, 이때 빛의 회절에 의해 안경렌즈(20)에 컬러가 발생하게 되는데, 이는 자연광이 각각의 90°방향의 원편광을 통과할 때 발생되는 자연적인 색상으로서 안경렌즈(20)에 색상을 넣지 않은 상황에서도 자연적이고 눈에 전혀 부담이 없는 컬러를 나타낼 수 있어 자연스레 선글라스 기능도 가질 수 있게 되는 것이다.In addition, when the first polarizing plate 30 and the second polarizing plate 40 are continuously attached, the polarization axes 32 and 42 are orthogonal to each other, and the color is applied to the spectacle lens 20 by diffraction of light. This is a natural color generated when natural light passes through each circular circular polarization in the 90 ° direction, and it can represent a natural and eye-free color even when no color is added to the spectacle lens 20. Naturally, you will also have sunglasses.

상기 제 1편광판(30)과 제 2편광판(40)의 상호 결착 시 교차점에서 편광 축(31, 41) 사이의 각도와 위상차 축(32, 42) 사이의 각도는 각각 75°에서 105°사이의 각을 이루어도 3D영상의 시청이 가능함으로 이를 적용하여 구성하는 것도 가능하다. When the first polarizing plate 30 and the second polarizing plate 40 are bound to each other, the angle between the polarization axes 31 and 41 and the angle between the phase difference axes 32 and 42 are respectively between 75 ° and 105 °. 3D video can be viewed even if the angle is made, it is also possible to configure by applying this.

또한, 도 5에 도시한 바와 같이 상기 안경렌즈(20)를 이용한 안경(10)에 있어서, 양측으로 각각 구성되는 3D안경렌즈(20, 20‘)의 위상차 축(32, 42)을 연장하였을 시 서로 직교되도록 구성하여야 한다.In addition, in the glasses 10 using the spectacle lens 20 as shown in FIG. 5, when the phase difference axes 32 and 42 of the 3D spectacle lenses 20 and 20 'respectively configured on both sides are extended. It should be configured to be orthogonal to each other.

도 5 내지 도 6에 도시한 바와 같이 다른 실시 예를 설명하게 되면, 상기 안경렌즈(20)를 이용한 안경에 있어서, 양측으로 각각 구성되는 3D안경렌즈(20)의 위상차 축(32, 42)을 연장하였을 시 서로 직교되도록 구성하여야 하는 것이 바람직하나 앞서 기술한 바와 같이 상기 제 1편광판(30)과 제 2편광판(40)의 상호 결착 시 교차점에서 편광 축(31, 41) 사이의 각도와 위상차 축(32, 42) 사이의 각도는 각각 75°에서 105°사이의 각을 이루어도 3D영상의 시청이 가능함으로 이와 같이 구성할 수도 있다. As described with reference to FIGS. 5 to 6, in the case of using the spectacle lens 20, the phase difference axes 32 and 42 of the 3D spectacle lenses 20 respectively configured on both sides are described. It is preferable to be configured to be orthogonal to each other when extending, but as described above, the angle and phase difference axis between the polarization axes 31 and 41 at the intersection point when the first polarizing plate 30 and the second polarizing plate 40 are mutually bound. The angle between 32 and 42 may be configured in this way because viewing of the 3D image is possible even when the angle is between 75 ° and 105 °, respectively.

상기 제 1편광판(30)에 구성되는 편광 축(31)과 위상차 축(32)과 제 2편광판(40)에 구성되는 편광 축(41)과 위상차 축(42)을 서로 직교하도록 구성된 렌즈(20)에 상기 렌즈(20)와 대칭되도록 렌즈(20‘)를 구성하되 제 1편광판(30’)의 편광 축(31‘)과 위상차 축(32’)과 제 2편광판(40‘)의 편광 축(41’)과 위상차 축(42‘)이 서로 직교가 되도록 하여 3D영상의 시청을 할 수 있는 3D안경(10)이 되도록 하는 것이다.The lens 20 configured to orthogonally cross the polarization axis 31 and the phase difference axis 42 formed in the first polarizing plate 30 and the phase difference axis 32 and the second polarization plate 40. The lens 20 'is configured to be symmetrical with the lens 20, but the polarization axis 31' and the phase difference axis 32 'of the first polarizing plate 30' and the polarization axis of the second polarizing plate 40 ' The 41 'and the phase difference axis 42' are orthogonal to each other so as to be a 3D glasses 10 capable of viewing 3D images.

일반 편광선글라스의 편광 축은 90°로 이루어져 있으며, 3D안경렌즈(100)는 0°와 90°가 각각 구성되어 있어 선글라스로서는 사용하기가 불편한 점이 많았다.The polarization axis of the general polarized sunglass is composed of 90 °, the 3D glasses lens 100 is composed of 0 ° and 90 °, respectively, it was inconvenient to use as sunglasses.

하지만 본 발명은 제 1편광판(30)의 편광 축(31)과 제 2편광판(40)의 편광 축(41)을 서로 교차하여 배치함에 따라 자연적인 컬러를 가짐과 동시에 안경렌즈(20)로 투과되는 빛으로 인해 눈부심을 한층 더 걸러주게 되어 있어 눈에 직접적인 피로감을 없애주며, 더불어 편안함도 가질 수 있도록 한 것이다.However, according to the present invention, the polarization axis 31 of the first polarizing plate 30 and the polarization axis 41 of the second polarizing plate 40 intersect each other to have a natural color and simultaneously transmit to the spectacle lens 20. Due to the light, the glare is further filtered out, eliminating direct fatigue in the eyes and providing comfort.
또한, 종래의 3D안경렌즈(100)를 착용할 경우 좌측과 우측의 위상차 축(300)과 편광 축(200)의 방향성이 상이함에 따라 유리나 거울에 반사되는 모습을 볼 경우 어지러움을 느낄 수 있었던 문제점을 본 발명과 같이 제 1편광판(30)과 제 2편광판(40)의 편광 축(31, 41)이 각기 90°차이나도록 하여 어지러움을 해소시킨 것이다.In addition, when wearing the conventional 3D glasses lens 100, the directionality of the phase difference axis 300 and the polarization axis 200 on the left and right side is different, the problem that could feel dizziness when seeing the reflection on the glass or mirror As shown in the present invention, dizziness is eliminated by allowing the polarization axes 31 and 41 of the first polarizing plate 30 and the second polarizing plate 40 to be 90 degrees apart.

또한, 본 발명과 같은 안경렌즈(20)와 같은 원리를 통해 가능한 다른 실시 예를 보게 되면, 편광 축(31, 41)의 각도에 따라 TV용, 극장용(0°), 모니터용, 노트북용, 극장용(-45°, +45°, 90°) 등 다양하게 사용할 수 있는 것이다. 이때 위상차 축(32, 42)은 편광 축(31, 41)에서부터 일정 각도를 가지고 있어야 하는 것이다.In addition, according to the same principle as the spectacle lens 20 of the present invention to see another embodiment possible, depending on the angle of the polarization axis (31, 41) for TV, theater (0 °), monitor, notebook , Theater use (-45 °, + 45 °, 90 °), etc. In this case, the phase difference axes 32 and 42 should have a predetermined angle from the polarization axes 31 and 41.

본 발명에 따르면 3차원 안경렌즈와 이를 이용한 안경을 사용하게 되면, 안경렌즈(20)의 형성 시 제 1편광판(30)과 제 2편광판(40)이 연속적으로 형성되는데, 이때 제 1편광판(30)의 편광 축(31), 위상차 축(32)과 제 2편광판(40)의 편광 축(41), 위상차 축(42)을 서로 직교하도록 하여 빛의 회절에 의해 자연스레 안경렌즈에 컬러가 발생하게 되어 평소에는 선글라스 기능으로 사용하고, 안경렌즈(20)를 관통한 빛에 대한 눈부심을 한층 더 걸러주게 되어 눈에 대해 편안함을 가질 수 있으며, 일반 3D안경렌즈(100)의 착용 시 좌우측의 위상차 축(300)과 편광 축(200)의 방향성이 상이함에 따라 유리나 거울에 반사되는 모습을 볼 경우 어지러움을 느낄 수 있지만 본 발명으로 인해 어지러움을 해소할 수 있고, 3D 영상이 지원되는 화면에서는 3차원 입체영상으로 시청이 가능하도록 하는 안경렌즈와 상기 안경렌즈를 이용한 안경을 제공할 수 있어 그 경제성과 효율성이 높은 발명이라 하겠다.According to the present invention, when the three-dimensional spectacle lens and the glasses using the same are used, the first polarizing plate 30 and the second polarizing plate 40 are continuously formed when the spectacle lens 20 is formed, wherein the first polarizing plate 30 The polarization axis 31, the phase difference axis 32 and the polarization axis 41 and the phase difference axis 42 of the second polarizing plate 40 are orthogonal to each other, so that color is naturally generated in the spectacle lens by diffraction of light. It is usually used as a sunglasses function, to further filter the glare for the light penetrating through the eyeglass lens 20 can have comfort for the eyes, the phase difference between the left and right sides when wearing the normal 3D glasses lens 100 As the direction of the axis 300 and the polarization axis 200 are different, the dizziness may be felt when looking at the reflection on the glass or the mirror, but the dizziness may be resolved due to the present invention, and the 3D image is supported on a 3D screen. Can watch in 3D Glasses may provide glasses with the lens and the spectacle lens so that it will as the invention their high economy and efficiency.

Claims (7)

  1. 안경렌즈에 있어서,
    폴리메틸메타크릴레이트(PMMA : Polymethyl Methacrylate) 로 구성된 제 1코팅지;
    상기 제 1코팅지에 이어 연속적으로 형성되되 편광판의 편광 축과 상기 편광 축과 각도를 가지며 형성된 위상차 축으로 구성된 제 1편광판;
    상기 제 1편광판에 이어 연속적으로 형성되되 상기 제 1편광판의 편광 축과 위상차 축을 기준으로 각각 90°회전시킨 편광 축과 위상차 축을 가진 제 2편광판;
    상기 제 2편광판에 이어 연속적으로 형성되되 폴리메틸메타크릴레이트(PMMA)로 구성된 제 2코팅지; 가 일체화되어 구성되는 것을 특징으로 하는 3차원 안경렌즈

    In the spectacle lens,
    A first coated paper composed of polymethyl methacrylate (PMMA);
    A first polarizing plate formed continuously after the first coated paper and having a polarization axis of the polarizing plate and a phase difference axis formed at an angle with the polarization axis;
    A second polarizer formed continuously after the first polarizer and having a polarization axis and a phase difference axis rotated by 90 ° with respect to the polarization axis and the phase difference axis of the first polarizing plate;
    A second coated paper continuously formed after the second polarizing plate and composed of polymethyl methacrylate (PMMA); 3D glasses lens characterized in that the unit is configured

  2. 제 1항에 있어서,
    상기 제 1코팅지, 제 1편광판, 제 2편광판 및 제 2코팅지의 사이에는 접착제인 광학용 투명접착제가 부착되어 구성되는 것을 특징으로 하는 3차원 안경렌즈



    The method of claim 1,
    A three-dimensional spectacle lens comprising an optical transparent adhesive, which is an adhesive, is attached between the first coated paper, the first polarizing plate, the second polarizing plate, and the second coated paper.



  3. 제 1항에 있어서,
    상기 제 1편광판과 제 2편광판은 각각 원편광으로 구성하는 것을 특징으로 하는 3차원 안경렌즈



    The method of claim 1,
    The first polarizing plate and the second polarizing plate are each configured as a circular polarized light 3D glasses



  4. 제 1항에 있어서,
    상기 제 1편광판과 제 2편광판의 결착 시 편광축과 위상차 축의 교차점을 기준으로 상기 각각의 편광 축과, 위상차 축사이의 각도는 각각 75°이상 105°이하 사이의 각을 이루게 구성되는 것을 특징으로 하는 3차원 안경렌즈



    The method of claim 1,
    When the first polarizing plate and the second polarizing plate is bonded to each other based on the intersection point of the polarization axis and the retardation axis, the angle between each of the polarization axis and the retardation axis is configured to form an angle between 75 ° or more and 105 ° or less, respectively Dimensional glasses



  5. 상기 제1항 내지 제4항 중 어느 한 항의 안경렌즈를 이용한 안경에 있어서,
    양측으로 각각 구성되는 안경렌즈의 제 1편광판의 위상차 축을 연장하였을 시 서로 직교되도록 안경렌즈를 구성하는 것을 특징으로 하는 3차원 안경렌즈를 이용한 안경



    In the spectacles using the spectacle lens according to any one of claims 1 to 4,
    Eyeglasses using a three-dimensional spectacle lens, characterized in that the spectacle lens is configured to be orthogonal to each other when the phase difference axis of the first polarizing plate of the spectacle lens composed of both sides is extended



  6. 상기 제1항 내지 제4항 중 어느 한 항의 안경렌즈를 이용한 안경에 있어서,
    양측으로 각각 구성되는 안경렌즈의 제 1편광판 편광 축들은 가상의 수평이동시 겹침 되게 동일한 각도로 구성되고, 각각의 위상차 축을 연장하였을 시 서로 직교되도록 안경렌즈를 구성하는 것을 특징으로 하는 3차원 안경렌즈를 이용한 안경



    In the spectacles using the spectacle lens according to any one of claims 1 to 4,
    The polarizing axes of the first polarizing plate of the spectacle lenses respectively configured at both sides are configured at the same angle to overlap each other in the virtual horizontal movement, and the three-dimensional spectacle lenses are configured to be orthogonal to each other when the retardation axes are extended. Used glasses



  7. 상기 제1항 내지 제4항 중 어느 한 항의 안경렌즈를 이용한 안경에 있어서,
    양측으로 각각 구성되는 안경렌즈의 제 1편광판 편광 축들은 가상의 수평 이동 시 겹침 되게 동일한 각도로 구성되고, 각각의 위상차 축을 연장하였을 시 위상차 축 사이의 각도는 각각 75°에서 105°사이의 각을 이루게 구성되는 것을 특징으로 하는 3차원 안경렌즈를 이용한 안경

    In the spectacles using the spectacle lens according to any one of claims 1 to 4,
    The polarizing axes of the first polarizing plates of the spectacle lenses respectively configured at both sides are configured to overlap at the same time in the virtual horizontal movement, and when the retardation axes are extended, the angles between the retardation axes are respectively 75 ° to 105 °. Glasses using a three-dimensional spectacle lens, characterized in that configured

PCT/KR2011/001578 2011-02-21 2011-03-08 Three-dimensional glasses lens and glasses using same WO2012115301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110014864A KR101367656B1 (en) 2011-02-21 2011-02-21 3 Sunglasses combined use three dimensions spectacles lens
KR10-2011-0014864 2011-02-21

Publications (1)

Publication Number Publication Date
WO2012115301A1 true WO2012115301A1 (en) 2012-08-30

Family

ID=46721060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001578 WO2012115301A1 (en) 2011-02-21 2011-03-08 Three-dimensional glasses lens and glasses using same

Country Status (2)

Country Link
KR (1) KR101367656B1 (en)
WO (1) WO2012115301A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011096A1 (en) * 2013-09-26 2015-03-27 Valeo Vision LIGHTWEIGHT ANTI-GLARE AND VISION GOGGLES WITH THREE DIMENSIONS
US9897809B2 (en) 2013-09-26 2018-02-20 Valeo Vision Data-display glasses comprising an anti-glare screen
US9915831B2 (en) 2013-09-26 2018-03-13 Valeo Vision Adaptive optical filter for spectacle lenses
US10195982B2 (en) 2013-09-26 2019-02-05 Valeo Vision Driving assistance method and device
US10254545B2 (en) 2013-09-26 2019-04-09 Valeo Vision Data-display glasses comprising an anti-glare screen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968910B1 (en) * 2012-09-03 2019-04-16 엘지디스플레이 주식회사 Polarization glasses for 3D display device
KR102250858B1 (en) * 2019-10-23 2021-05-11 주식회사 스포컴 High resolution lens unit having antifogging function and goggle comprising the same
KR102405540B1 (en) * 2019-10-23 2022-06-07 주식회사 스포컴 High resolution lens unit having antifogging function and goggle comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298920A (en) * 1997-11-26 1999-10-29 Sharp Corp Image system
KR20040022158A (en) * 2002-09-06 2004-03-11 소니 가부시끼 가이샤 Polarizing eyeglass device
US7106509B2 (en) * 2002-09-06 2006-09-12 Colorlink, Inc. Filter for enhancing vision and/or protecting the eyes and method of making a filter
KR20100137695A (en) * 2009-06-23 2010-12-31 주식회사 링크텍스 Stereoscopic image system adapted for liquid crystal shutter and eyewear filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298920A (en) * 1997-11-26 1999-10-29 Sharp Corp Image system
KR20040022158A (en) * 2002-09-06 2004-03-11 소니 가부시끼 가이샤 Polarizing eyeglass device
US7106509B2 (en) * 2002-09-06 2006-09-12 Colorlink, Inc. Filter for enhancing vision and/or protecting the eyes and method of making a filter
KR20100137695A (en) * 2009-06-23 2010-12-31 주식회사 링크텍스 Stereoscopic image system adapted for liquid crystal shutter and eyewear filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011096A1 (en) * 2013-09-26 2015-03-27 Valeo Vision LIGHTWEIGHT ANTI-GLARE AND VISION GOGGLES WITH THREE DIMENSIONS
WO2015044286A1 (en) * 2013-09-26 2015-04-02 Valeo Vision Anti-glare 3d glasses
US9897809B2 (en) 2013-09-26 2018-02-20 Valeo Vision Data-display glasses comprising an anti-glare screen
US9915831B2 (en) 2013-09-26 2018-03-13 Valeo Vision Adaptive optical filter for spectacle lenses
US10073275B2 (en) 2013-09-26 2018-09-11 Valeo Vision Anti-glare 3D glasses
US10195982B2 (en) 2013-09-26 2019-02-05 Valeo Vision Driving assistance method and device
US10254545B2 (en) 2013-09-26 2019-04-09 Valeo Vision Data-display glasses comprising an anti-glare screen

Also Published As

Publication number Publication date
KR20120095508A (en) 2012-08-29
KR101367656B1 (en) 2014-02-28

Similar Documents

Publication Publication Date Title
KR101367656B1 (en) 3 Sunglasses combined use three dimensions spectacles lens
TWI759508B (en) Adaptive lenses for near-eye displays
WO2009066408A4 (en) Display device, display method and head-up display
EP2924991B1 (en) Three-dimensional image display system, method and device
WO2007133918A2 (en) Enhancement of visual perception iii
WO2015186735A1 (en) Mirror display system
JP4546505B2 (en) Spatial image projection apparatus and method
JP2019512109A (en) Autostereoscopic screen
CN106842599A (en) A kind of 3D visual imagings method and realize the glasses of 3D visual imagings
US7545405B2 (en) Enhancement of visual perception II
US20160070112A1 (en) Adjustable optical stereoscopic glasses
JP2018508841A (en) Adjustable optical stereo glasses
JP2012022278A (en) Video virtual feeling glasses
CN104246579A (en) Three-dimensional eyeglasses for viewing 2D image or object image as 3D image
US20130176526A1 (en) Semi-rim three dimensional glasses
Zhang Design of Head mounted displays
KR101093929B1 (en) Method and system for displaying 3-dimensional images using depth map
CN209086560U (en) Augmented reality 3 d display device
GB2478358A (en) Viewing device providing an increase in depth perception
US20060152580A1 (en) Auto-stereoscopic volumetric imaging system and method
TW201209479A (en) 3D image display device and signal controlling method therefor
KR101231232B1 (en) 3-dimensional image providing apparatus
WO2015035248A1 (en) Adjustable optical stereoscopic glasses
CN104270628A (en) Naked eye suspended stereo display system based on Fresnel lenses and using method thereof
KR20080093789A (en) Optical sheet for generating stereo scopic images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/10/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11859181

Country of ref document: EP

Kind code of ref document: A1