WO2012086301A1 - Signal control device, computer program and signal control method - Google Patents

Signal control device, computer program and signal control method Download PDF

Info

Publication number
WO2012086301A1
WO2012086301A1 PCT/JP2011/074012 JP2011074012W WO2012086301A1 WO 2012086301 A1 WO2012086301 A1 WO 2012086301A1 JP 2011074012 W JP2011074012 W JP 2011074012W WO 2012086301 A1 WO2012086301 A1 WO 2012086301A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal control
time
blue
traffic
vehicle
Prior art date
Application number
PCT/JP2011/074012
Other languages
French (fr)
Japanese (ja)
Inventor
西村 茂樹
雅文 小林
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010284925A external-priority patent/JP5605212B2/en
Priority claimed from JP2010284926A external-priority patent/JP5678645B2/en
Priority claimed from JP2010293186A external-priority patent/JP5672001B2/en
Priority claimed from JP2011051897A external-priority patent/JP5729028B2/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2012086301A1 publication Critical patent/WO2012086301A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles

Definitions

  • the present invention relates to a signal control device for controlling the color of a signal lamp at an intersection, a computer program for realizing the signal control device, and a signal control method.
  • a traffic signal controller that stores a plurality of signal control parameters and performs traffic signal control by selecting a signal control parameter designated in advance according to time is known.
  • the traffic demand is grasped in advance before the start of operation, the traffic demand is patterned according to time, and a plurality of signal control parameters to be applied to each traffic demand pattern are set.
  • the setting of the signal control parameter by the traffic signal control device of Patent Document 1 is based on travel locus information acquired from the in-vehicle device (for example, probe information, probe information is also referred to as FCD [floating car data]). Since it is calculated, it is effective when the probe information for calculating the travel time can be acquired at a frequency of about once every several traffic signal cycles. However, the penetration rate of vehicles equipped with in-vehicle devices that can transmit probe information is not necessarily high, and there is a high possibility that probe information cannot be acquired to the extent that travel time can be obtained in a timely manner. For this reason, it has been desired to realize appropriate signal control according to traffic conditions.
  • the present invention has been made in view of such circumstances, a signal control device capable of realizing appropriate signal control according to traffic conditions, a computer program and a signal control method for realizing the signal control device.
  • the purpose is to provide.
  • a signal control device is a signal for controlling the lamp color of a signal lamp for an inflow path that flows into an intersection according to the amount of traffic of the vehicle having transmission means for transmitting information indicating the running state of the vehicle.
  • a calculation means for calculating a traffic frequency of the vehicle having the transmission means in an arbitrary time zone, and a blue time of the signal lamp according to the traffic frequency calculated by the calculation means
  • Selecting means for selecting one signal control method from a plurality of signal control methods determined in advance to control the signal.
  • the signal control device is the signal control system according to the first invention, wherein the plurality of signal control methods include a signal control method using a traffic index based on information indicating a running state of the vehicle, and a signal control method not using the traffic index.
  • the selecting means is configured to select a signal control method using the traffic index or a signal control method not using the traffic index according to the magnitude of the traffic frequency calculated by the calculating means. It is characterized by.
  • the signal control device is the signal control device according to the first or second aspect, wherein the plurality of signal control methods are a plurality determined for each traffic index according to a traffic index based on information indicating a running state of the vehicle. And a second signal control method for determining one signal control parameter from among the signal control parameters.
  • a signal control device is the signal control device according to any one of the first invention to the third invention, wherein the plurality of signal control methods are selected according to time from a plurality of signal control parameters determined for each time zone. Including a first signal control method for determining one signal control parameter.
  • the signal control device is the signal control apparatus according to the first or second aspect, wherein the plurality of signal control methods are configured for each time zone and the traffic according to a traffic index based on information indicating a time and a running state of the vehicle. It includes a third signal control method for determining one signal control parameter from among a plurality of signal control parameters determined for each index.
  • the signal control device is the signal control device according to any one of the first to fifth aspects, wherein the selection unit is configured to output the first signal when the traffic frequency calculated by the calculation unit is smaller than a first threshold value. A control method is selected, and if the control method is equal to or greater than the first threshold, either the second or third signal control method is selected.
  • the signal control device is the signal control apparatus according to the sixth aspect, wherein, when the traffic frequency calculated by the calculation means is greater than or equal to a second threshold value that is greater than the first threshold value, It is characterized by selecting.
  • the signal control device is the signal control device according to the seventh invention, wherein, in the seventh invention, the selection means is configured such that when the traffic frequency calculated by the calculation means is equal to or higher than the first threshold and smaller than the second threshold, It is configured to select a control method.
  • a signal control device is the signal control device according to any one of the sixth to eighth aspects of the present invention, obtained from probe information including a position of a vehicle traveling on an inflow path flowing into the intersection and a time passing through the position.
  • Specifying means for specifying the stop position of the vehicle based on the information indicating the travel state of the vehicle, and a first determination for determining whether the inflow path is excessive or insufficient based on the stop position specified by the specifying means
  • the selection means selects a fourth signal control method for determining a signal control parameter based on the determination result determined by the first determination means, instead of the third signal control method. It is comprised by these.
  • the signal control apparatus further comprises load factor calculation means for calculating a load factor of the inflow path on the basis of the traffic volume of the one inflow path flowing into the intersection.
  • the means is based on the load factor of the one inflow passage calculated by the load factor calculation means and the stop position on the other inflow passage that intersects the one inflow passage at the intersection, and the excess or deficiency of the blue time for each inflow passage It is characterized by determining.
  • the signal control device is the signal control device according to the ninth aspect, wherein the first determination means determines whether the blue time is excessive or insufficient for each inflow path based on stop positions on at least two inflow paths that intersect at the intersection. It is configured as described above.
  • a signal control device is the signal control device according to any one of the ninth to eleventh aspects, wherein the first determination means includes an inflow channel having a margin of blue time and an inflow channel having a shortage of blue time.
  • the first determination means includes an inflow channel having a margin of blue time and an inflow channel having a shortage of blue time.
  • the signal control device is the signal control device according to the twelfth invention, wherein the first setting means determines that there is no inflow channel having a shortage of green time for a predetermined time by the first determination means.
  • the blue time for each inflow channel is configured to return to a standard value.
  • a signal control device is the signal control apparatus according to the twelfth aspect or the thirteenth aspect, wherein the first setting means has an inflow in the blue time by the first determination means when a predetermined amount of blue time is allocated. When it is determined again that there is a road and an inflow route with insufficient blue hours, a predetermined amount of blue hours is assigned each time.
  • the signal control device is the signal control device according to any one of the twelfth to fourteenth aspects, wherein the priority order of the inflow passage flowing into the intersection is determined in advance, and the first setting means is the first setting means.
  • the determining means determines that there is a margin in the blue hours for the plurality of inflow paths
  • a predetermined amount of the blue time for the inflow paths having a low priority among the plurality of inflow paths is set as the blue time for the inflow paths that are insufficient. It is comprised so that it may allocate.
  • a signal control device is the signal control device according to any one of the twelfth to fourteenth aspects, wherein the priority order of the inflow passage flowing into the intersection is determined in advance, and the first setting means is the first setting means.
  • the determining means determines that the green time is insufficient for a plurality of inflow paths, a predetermined amount of the blue time for the inflow paths with a margin is determined as blue for the inflow paths with higher priority among the plurality of inflow paths. It is configured to be assigned to time.
  • the signal control device is the signal control device according to any one of the ninth to sixteenth aspects, wherein the first determination means has a distance from the intersection to the stop position on the inflow path equal to or greater than a first distance threshold. In this case, it is determined that the blue time for the inflow channel is insufficient.
  • the signal control device is the signal control device according to the seventeenth aspect, wherein the first determination means has a distance from the intersection to the stop position on the inflow path that is equal to or smaller than a second distance threshold smaller than the first distance threshold. It is configured to determine that there is a margin in the blue time for the inflow channel.
  • the signal control device is the signal control device according to any one of the sixth to eighth aspects, wherein the difference between the travel time in the road section including the intersection and the reference travel time is smaller or larger than a threshold value. And a second determination means for determining whether or not the blue time for the road section is insufficient, wherein the selection means is determined by the second determination means instead of the third signal control method. A fifth signal control method for determining a signal control parameter based on the determination result is selected.
  • the margin is A second setting means is provided for setting signal information so as to allocate a part of the green time for a road section to the blue time for the insufficient road section.
  • the signal setting device determines that the second setting means determines that the road section or the blue time that the second determination means determines that there is a margin for the blue time is insufficient. When it is determined that any of the road sections does not exist, the increased / decreased blue time is returned to the original blue time.
  • the signal control device is the nineteenth aspect, wherein when the blue time for an arbitrary road section is longer than a standard value, the second determination means determines that the blue time for the road section has a margin Comprises a third setting means for setting signal information so as to allocate a part of the green time for the road section to another road section.
  • the signal control device determines the priority order of the road sections in advance. When it is determined that there is a margin in time, a part of the green time for a road section with a low priority among the plurality of road sections is allocated to the blue time for the lacking road section.
  • the signal control device sets the priority order of the road sections in advance.
  • a part of the blue hours for the road section with the margin is configured to be allocated to the blue hours for the road section having a higher priority among the plurality of road sections.
  • a signal control device is the signal control device according to any one of the nineteenth to twenty-fourth aspects, wherein the travel time on the road section is based on information indicating a traveling state of a vehicle traveling on the road section including the intersection.
  • Travel time calculation means for calculating the travel time, and the second determination means is configured to determine whether or not the blue time for the road section is insufficient using the travel time calculated by the travel time calculation means. It is characterized by being.
  • the threshold value is a substantially cycle length of the signal lamp device.
  • a computer program is for controlling a lamp color of a signal lamp for an inflow path flowing into an intersection according to the amount of traffic of the vehicle having transmission means for transmitting information indicating the running state of the vehicle to the computer.
  • the computer calculates the traffic frequency of the vehicle having the transmission means in an arbitrary time zone based on the traffic volume, and according to the calculated traffic frequency, A step of selecting one signal control method from a plurality of predetermined signal control methods for controlling the blue time of the signal lamp.
  • a signal control method is a signal for controlling the lamp color of a signal lamp for an inflow path that flows into an intersection according to the amount of traffic of the vehicle having transmission means for transmitting information indicating the running state of the vehicle.
  • a step of calculating a traffic frequency of the vehicle having the transmission means in an arbitrary time zone based on the traffic volume, and a blue time of the signal lamp according to the calculated traffic frequency Selecting one signal control method from among a plurality of predetermined signal control methods for controlling the signal.
  • the twenty-seventh invention and the twenty-eighth invention based on the amount of traffic of a vehicle (probe vehicle) having transmission means (for example, an in-vehicle device) for transmitting information indicating the running state of the vehicle, any The traffic frequency of the vehicle having the transmission means in the time zone is calculated.
  • the information indicating the traveling state is, for example, probe information (also referred to as FCD or floating car data) that can be received from the in-vehicle device via the road device, and the vehicle information at a predetermined cycle (for example, 1 second).
  • FCD probe information
  • FCD floating car data
  • the position and time, the identification code of the in-vehicle device (vehicle), and the like are included.
  • the traffic amount of the vehicle is, for example, the number of probe vehicles that have passed through the inflow path for each preset time zone.
  • the traffic frequency is, for example, the amount of vehicle traffic (number of probe vehicles) in an arbitrary time zone of a day during a predetermined period (for example, 1 month, 3 months, 6 months, 1 year, etc.) Collected every time a given period elapses, the total collected traffic volume is divided by the number of days in the given period to obtain a numerical value per day, and the average number of probe vehicles per day for any given time zone Can be sought.
  • one signal control method is selected from a plurality of predetermined signal control methods for controlling the blue time of the signal lamp.
  • the plurality of signal control methods depend on, for example, a signal control method that can be used even when the number of probe vehicles (frequency at which probe information is acquired) is small and the number of probe vehicles (frequency at which probe information is acquired). This is a signal control method with a tendency.
  • the signal control method selects a signal control method that can be used even when the probe information is acquired less frequently.
  • the signal control method depends on the probe information. Select. Thereby, appropriate signal control according to traffic conditions can be realized according to the number of probe vehicles (frequency of obtaining probe information).
  • the plurality of signal control methods include a signal control method using a traffic index based on information indicating a running state of the vehicle and a signal control method not using the traffic index.
  • the traffic index based on the information indicating the traveling state of the vehicle is, for example, the travel time of the road section obtained based on the probe information.
  • a signal control method using a traffic index is selected.
  • a signal control method not using a traffic index is selected.
  • the signal control method using the traffic index is, for example, a signal control method depending on the probe information, and the signal control method not using the traffic index is a signal control method almost independent of the probe information.
  • the signal control method that does not use traffic indicators includes not only a signal control method that does not take any traffic indicators into consideration, but also a signal control method in which signal control parameters (cycle length, split, offset, etc.) hardly change depending on traffic indicators. .
  • the signal control parameter hardly changes when, for example, the change of the green light time due to the change of the information indicating the running state of the vehicle is within several seconds or several percent.
  • the traffic condition depends on the signal control method that uses traffic indicators or the signal control method that does not use traffic indicators according to the calculated traffic frequency. Appropriate signal control according to the above can be realized.
  • the plurality of signal control methods are configured such that one signal control parameter is selected from a plurality of signal control parameters determined for each traffic index according to the traffic index based on the information indicating the running state of the vehicle.
  • a second signal control method to be determined is included.
  • a set of a plurality of signal control parameters for example, cycle length, split, offset, etc.
  • each traffic index for example, travel time of an arbitrary section of the road
  • the signal control parameter to be used is defined, and the signal control parameter corresponding to the actually measured travel time is selected. Effective signal control can be performed when the acquisition frequency of probe information is relatively high and traffic indicators such as travel time can be obtained in a timely manner.
  • the plurality of signal control methods include a first signal control method for determining one signal control parameter according to time from a plurality of signal control parameters determined for each time zone.
  • a first signal control method for example, a set of a plurality of signal control parameters (for example, cycle length, split, offset, etc.) is prepared, signal control parameters to be used for each time zone are determined, and time is set.
  • This is a method of selecting a signal control parameter in a corresponding time zone. It is possible to perform effective signal control for regions and time zones in which there is little fluctuation with respect to traffic demand assumed in advance.
  • the plurality of signal control methods are provided for each time zone and traffic according to a traffic index (for example, travel time of an arbitrary section of the road) based on information indicating the time and the running state of the vehicle.
  • a third signal control method for determining one signal control parameter from among a plurality of signal control parameters determined for each index is included.
  • a set of a plurality of signal control parameters for example, cycle length, split, offset, etc.
  • signal control parameters to be used for each time zone are determined, and time Another signal control parameter to be used is determined according to the traffic index for each specific time zone in the zone.
  • the first signal control method when the calculated traffic frequency (for example, the number of probe vehicles for each arbitrary time zone, the probe information acquisition frequency, etc.) is smaller than the first threshold value TH1, the first signal control method is selected. If the calculated traffic frequency is equal to or higher than the first threshold value TH1, either the second or third signal control method is selected.
  • the first threshold value TH1 is a threshold value for determining whether or not the probe information acquisition frequency is low.
  • the first threshold value TH1 is a value such as one per 30 minutes or one hour.
  • the probe information acquisition frequency is low, by selecting the first signal control method, it is possible to perform effective signal control for an area and a time zone in which there is little fluctuation with respect to the traffic demand assumed in advance.
  • a traffic index such as travel time in a timely manner by selecting the second or third signal control method, or assumed in advance Effective signal control can be performed when fluctuations in traffic demand are likely to occur.
  • the second threshold TH2 is a threshold for determining whether or not the probe information acquisition frequency is high.
  • the second threshold TH2 is a value such as 5 minutes, 10 minutes, or 15 minutes.
  • the calculated traffic frequency for example, the number of probe vehicles for each arbitrary time zone, the probe information acquisition frequency, etc.
  • a third signal control method is selected. Therefore, effective signal control can be performed when the acquisition frequency of the probe information is not so high and the traffic demand is likely to fluctuate in advance.
  • the selection means selects the fourth signal control method based on the determined determination result instead of the third signal control method.
  • the information indicating the traveling state is, for example, probe information (uplink information) that can be received from the in-vehicle device via the road device, and the position and time of the vehicle every predetermined period (for example, 1 second), in-vehicle Includes the identification code of the device (vehicle).
  • the excess or deficiency of the blue hours indicates whether the blue hours are insufficient or there is a margin in the blue hours. For example, if the stop position of a vehicle on a certain inflow path is relatively far from the intersection, it is considered that there are a considerable number of stopped vehicles between the stopped vehicle and the intersection. It is determined that the blue time for is insufficient. If the stop position of a vehicle on a certain inflow path is relatively close to the intersection, there are few stopped vehicles between the stopped vehicle and the intersection. It is determined that there is room in the blue hours for the road. By specifying the stop position of the vehicle, it is possible to determine whether the blue hours are excessive or insufficient. And effective signal control can be performed so that there is no excess or deficiency of the blue time of the signal lamp with respect to the inflow path which flows into an intersection.
  • the load factor of the inflow path is calculated based on the traffic volume of one inflow path that flows into the intersection.
  • the main road for example, a main road
  • the traffic volume on the main road one inflow road
  • the load factor is calculated based on the detected traffic volume.
  • the load factor can be obtained, for example, as a ratio of the inflow flow rate (unit / unit time) to the saturated traffic flow rate of the inflow channel.
  • the saturated traffic flow rate indicates the capacity of the inflow path, and is, for example, 1800 vehicles per hour.
  • the blue time for the inflow channel has a margin. Can be determined. Then, based on the calculated load factor of one inflow path (main road) and the stop position of the vehicle on another inflow path (secondary road) that intersects the one inflow path at the intersection, the blue hour of each inflow path Determine excess or deficiency. By specifying the load factor of the main road and the stop position of the vehicle on the secondary road, it is possible to determine whether the blue hours are excessive or insufficient.
  • the excess or deficiency of the blue time for each inflow path is determined based on the stop positions of the vehicles on at least two inflow paths that intersect at the intersection. That is, by specifying the stop position of the vehicle on each inflow path, it is possible to determine whether the blue time is excessive or insufficient for each inflow path.
  • a predetermined amount of blue time for the inflow channel with a margin of blue time is set to blue.
  • Signal information is set to be assigned to the blue time for the inflow channel where time is insufficient.
  • the predetermined amount is, for example, 2 seconds, 3 seconds, or the like. For example, if the blue time for an inflow channel that flows into an intersection is a standard value, the blue time for an inflow channel that lacks blue time is increased by a predetermined amount from the standard value, and the blue time for an inflow channel that has a margin of blue time Reduce the standard value by a predetermined amount.
  • the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
  • the blue time for each inflow channel is returned to the standard value.
  • the predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle.
  • the fourteenth aspect of the invention when it is determined again that there is an inflow channel with sufficient blue time and an inflow channel with insufficient blue time when a predetermined amount of blue time is allocated, Repeat the assignment of blue time for a fixed amount (eg 2 seconds, 3 seconds, 4 seconds, etc.). For example, while increasing the blue time for an inflow channel with insufficient blue time by a predetermined amount, the blue time for the inflow channel with a margin of blue time is decreased by a predetermined amount. Then, when it is determined again that the blue hours are excessive or insufficient, if there are still inflow channels with sufficient blue hours and inflow channels with insufficient blue hours, the same assignment is repeated again.
  • a fixed amount eg 2 seconds, 3 seconds, 4 seconds, etc.
  • the increase / decrease in the blue time by a predetermined amount ends when the upper limit value or lower limit value of the blue time is reached.
  • the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the blue time can be adjusted in real time according to the traffic situation that changes from moment to moment.
  • the priority order of the inflow channel flowing into the intersection is determined in advance.
  • the priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there. If it is determined that there is room in the blue hours for a plurality of inflow paths, an inflow path with a lower priority is selected from the plurality of inflow paths, and the predetermined amount of blue time for the selected inflow paths is insufficient for the blue time Assign to the blue hour for the current inflow.
  • the blue time for the inflow road with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the priority order of the inflow channel flowing into the intersection is determined in advance.
  • the priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there. If it is determined that there is a shortage of blue time for a plurality of inflow channels, a predetermined amount of blue time for an inflow channel with a margin of blue time is set to a blue amount for an inflow channel with a higher priority among the plurality of inflow channels. Assign to time.
  • the blue time needs to be made the longest, and the blue time for the inflow road with a higher priority is increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the second distance threshold Tr2 s ⁇ h, where G is the blue time for the inflow route, ⁇ G is the predetermined amount of fluctuation of the blue time, s is the saturation traffic flow rate of the inflow route, and h is the average vehicle head distance.
  • Tr2 s ⁇ h
  • the selection unit selects the fifth signal control method based on the determined determination result instead of the third signal control method.
  • the road section is, for example, a section that starts at a point upstream of the inflow path that flows into the intersection and ends at the outflow point of the intersection.
  • the information indicating the traveling state is, for example, uplink information that can be received from the in-vehicle device via the road device, and the position and time of the vehicle every predetermined period (for example, 1 second), the in-vehicle device (vehicle).
  • the reference travel time can be, for example, a standard travel time when there is no traffic jam.
  • the blue time it is determined whether the blue time is insufficient or the blue time has a margin. For example, when the difference between the travel time of the road section and the reference travel time is equal to or greater than the threshold, it is determined that the blue time for the road section is insufficient. Further, when the difference between the travel time of the road section and the reference travel time is smaller than the threshold value, it is determined that the blue time for the road section has a margin. Based on the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section. And effective signal control can be performed so that there is no excess or deficiency of the blue hours of the signal lamp for the road section including the intersection.
  • a part of the blue hour for the road section having a margin (for example, a predetermined amount) ) Is set to be assigned to the blue hour for the lacking road section.
  • the predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like.
  • the blue time for a road section with sufficient blue time is reduced by a predetermined amount and added to the blue time for a road section where the blue time is insufficient.
  • the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
  • the increased or decreased blue time is Return to blue hours.
  • the blue hour is increased or decreased from the standard value according to traffic conditions, for example, when the excess or deficiency of the blue hour is resolved, the signal control is performed using the initially set signal control parameters by returning the blue hour to the standard value. It can be carried out.
  • a part of the blue hours for the road section (for example, , A predetermined amount) is allocated to another road section (for example, a road section having a shortage of blue hours or a road section having a margin of blue hours). This makes it possible to return the blue hour to the standard value when the traffic volume decreases.
  • the priority order of road sections is determined in advance.
  • the priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there. If it is determined that there is a margin in green time for a plurality of road sections, a road section that lacks a part (for example, a predetermined amount) of blue hours for a road section with a low priority among the plurality of road sections. Assign to blue hours. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of road sections, the blue hours for the road sections with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • priorities of road sections are determined in advance.
  • the priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there.
  • a part (for example, a predetermined amount) of the blue hours for a road section with a margin is assigned to a road section with a higher priority among the plurality of road sections.
  • Assign to blue hours For example, when the intersection is more than a five-way road and the blue hours for a plurality of road sections are insufficient, the blue hours need to be made the longest and the blue hours for the road sections with higher priority are increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the travel time in the road section is calculated based on the information indicating the traveling state of the vehicle traveling in the road section including the intersection, and the difference between the calculated travel time and the reference travel time is greater than the threshold value. It is determined whether the green time for the road section is insufficient (whether it is insufficient or has a margin) depending on whether it is small or large. By calculating the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section.
  • the threshold value is the approximate cycle length of the signal lamp.
  • the approximate cycle length is, for example, a cycle length of about ⁇ 10%.
  • the present invention it is possible to realize appropriate signal control according to traffic conditions according to the number of probe vehicles (frequency of obtaining probe information).
  • FIG. 1 is a schematic diagram illustrating an outline of a signal control system including a signal control device according to a first embodiment.
  • FIG. 3 is an explanatory diagram illustrating an example of a configuration of a signal control device according to the first embodiment.
  • 6 is an explanatory diagram illustrating an example of a method for selecting a signal control method by the signal control device according to the first embodiment.
  • FIG. It is explanatory drawing which shows an example of the signal control parameter table used for the 1st and 3rd signal control system. It is explanatory drawing which shows an example of a 1st signal control system. It is explanatory drawing which shows an example of a 3rd signal control system. It is explanatory drawing which shows an example of the signal control parameter table used for a 2nd signal control system.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration of a signal control device according to a second embodiment. It is explanatory drawing which shows an example of the method of determining the excess and deficiency of the blue time based on the stop position of a vehicle. An example of the adjustment method of the blue time by the signal control apparatus of Embodiment 2 is shown. It is explanatory drawing which shows an example of the adjustment method of the blue time when the acquisition frequency of uplink information is low.
  • FIG. 6 is a schematic diagram illustrating an outline of a signal control system including a signal control device according to a third embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration of a signal control device according to a third embodiment. An example of the adjustment method of the blue time by the signal control apparatus of Embodiment 3 is shown.
  • FIG. 10 is a flowchart illustrating a processing procedure of the signal control apparatus according to the third embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration of a signal control device according to a fourth embodiment. It is explanatory drawing which shows an example of the method of determining the excess and deficiency of the blue hours based on travel time. An example of the adjustment method of the blue time by the signal control apparatus of Embodiment 4 is shown.
  • 10 is a flowchart illustrating a processing procedure of the signal control apparatus according to the fourth embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration of a signal control device according to a fifth embodiment. It is a schematic diagram which shows an example of the mode of the smoothness degree of the right turn direction of an intersection.
  • FIG. 1 is a schematic diagram showing an outline of a signal control system including the signal control apparatus according to the first embodiment.
  • the signal control system includes a signal control device 100, a traffic signal controller 1, a signal lamp 2, a road device 3, and the like.
  • the road R1 and the road R2 intersect at an intersection 20, and four inflow paths (21, 22, 23, 24) flow into the intersection 20.
  • Road sections 11 and 12 are provided between an appropriate point (starting point) upstream of the intersection 20 of the road R1 and an outflow point (ending point) of the intersection 20.
  • road sections 21 and 22 are provided between an appropriate point (starting point) upstream of the intersection 20 of the road R2 and an outflow point (ending point) of the intersection 20.
  • the starting ends of the road sections 11, 12, 21, and 22 can be appropriately set to such an extent that the travel time can be calculated.
  • signal lamps 2 for the roads R1 and R2 (inflow paths 21 to 24) are installed.
  • the traffic signal controller 1 controls the switching of the color of each signal lamp 2.
  • the on-road device 3 is installed in the vicinity of each outflow point of the intersection 20.
  • the vehicle 10 is equipped with an in-vehicle device 5 as transmission means for transmitting information indicating the traveling state of the vehicle 10.
  • the in-vehicle device 5 accumulates the time and the position of the vehicle 10 as travel locus information at a predetermined cycle (for example, every second).
  • the in-vehicle device 5 uses the probe information (such as the accumulated travel locus information and the identification code for identifying the in-vehicle device 5 (probe vehicle 10)) (Information indicating the running state of the vehicle) to the road device 3.
  • the vehicle speed is stopped at a predetermined threshold value (for example, 5 km / h) or less, or the vehicle direction is a predetermined threshold value (for example, The time and position at which an event such as a direction change that has changed by 5 degrees or more may occur.
  • the probe information means FCD (floating car data).
  • the on-road device 3 is a local communication device such as an optical beacon, a radio wave beacon, or a DSRC (Dedicated Short Range Communication), and transmits / receives information to / from the in-vehicle device 5 of the probe vehicle 10.
  • the road device 3 includes a communication unit 3a for communicating with the in-vehicle device 5, a communication control unit 3b for controlling the communication unit 3a, and the like.
  • the roadside device 3 receives the probe information (uplink information) from the in-vehicle device 5 and transmits the received probe information to the signal control device 100.
  • the roadside device 3 may be a mobile phone communication device, in which case it is not necessary to be installed near the outflow point of the intersection.
  • the road device 3 receives the time and the position of the vehicle for each predetermined period from the in-vehicle device as uplink information, and the received uplink information is converted into information on the time and position at which an event such as a stop or fluctuation occurs. You may transmit to the signal control apparatus 100, after processing.
  • the signal control device 100 receives (acquires) the probe information transmitted from the road device 3.
  • the signal control device 100 acquires the probe information, and thereby detects the probe vehicle 10 (an in-vehicle device 5 as a transmission unit that transmits the probe information) every arbitrary time zone (for example, 15 minutes, 30 minutes, 1 hour, etc.).
  • the probe vehicle 10 an in-vehicle device 5 as a transmission unit that transmits the probe information
  • every arbitrary time zone for example, 15 minutes, 30 minutes, 1 hour, etc.
  • One signal control method is selected from a plurality of defined signal control methods.
  • the traffic frequency of the vehicle having the transmission means is not necessarily transmitted from the vehicle having the transmission means (on-vehicle device), because the vehicle having the transmission means (on-vehicle device) does not always transmit probe information.
  • the road device 3 receives the probe information from the vehicle and the signal control device 100 acquires the probe information received by the road device 3, the signal control device 100 is provided with an in-vehicle device (transmission means) on the vehicle. And the number of probe vehicles 10 (frequency of obtaining probe information) can be obtained at that frequency.
  • the signal control apparatus 100 will be described.
  • FIG. 2 is an explanatory diagram showing an example of the configuration of the signal control apparatus 100 according to the first embodiment.
  • the signal control apparatus 100 includes a control unit 101, a communication unit 102, a traffic frequency calculation unit 103, a storage unit 104, a selection unit 105, a travel time calculation unit 106, and the like.
  • the communication unit 102 performs transmission / reception (communication) of information between the road device 3 and the traffic signal controller 1. For example, the communication unit 102 receives probe information that is information indicating the traveling state of the probe vehicle 10 from the road device 3.
  • the communication unit 102 can acquire the traffic amount of the probe vehicle 10 on the roads R1 and R2 by receiving the probe information.
  • the amount of traffic of the probe vehicle 10 is, for example, the number of probe vehicles 10 that have passed the roads R1 and R2 (inflow paths 21 to 24) every preset time period (for example, 15 minutes, 30 minutes, 1 hour, etc.). It is.
  • the traffic frequency calculation unit 103 has a function as calculation means for calculating the traffic frequency of the probe vehicle 10 in an arbitrary time zone based on the traffic volume of the probe vehicle 10.
  • the traffic frequency calculation unit 103 calculates the traffic frequency of the probe vehicle 10 in an arbitrary time zone based on the traffic volume acquired by the communication unit 102.
  • the traffic frequency is, for example, the amount of traffic of the probe vehicle 10 (the number of probe vehicles 10) in an arbitrary time period of a day for a predetermined period (for example, 1 month, 3 months, 6 months, 1 year, etc.) ), And every time a predetermined period elapses, the total amount of traffic collected is divided by the number of days in the predetermined period to obtain a numerical value per day. It can be obtained as an average per day.
  • the selection unit 105 has a function as a selection unit that selects one signal control method from a plurality of signal control methods determined in advance in order to control the blue time of the signal lamp device 2.
  • the selection unit 105 selects one signal control method from a plurality of signal control methods determined in advance in order to control the blue time of the signal lamp 2 according to the traffic frequency calculated by the traffic frequency calculation unit 103.
  • the signal control method can be used even when the number of probe vehicles 10 (frequency at which probe information is acquired) is small, and the number of probe vehicles 10 (frequency at which probe information is acquired). For example, a signal control method that tends to depend.
  • the selection unit 105 determines whether the signal control method using the traffic index based on the information indicating the running state of the vehicle or the signal control method not using the traffic index according to the magnitude of the traffic frequency calculated by the traffic frequency calculation unit 103. select.
  • the traffic index is, for example, a travel time calculated by a travel time calculation unit 106 to be described later based on the probe information.
  • the selection unit 105 selects a signal control method using a traffic index when the traffic frequency calculated by the traffic frequency calculation unit 103 is high, and selects the traffic index when the traffic frequency calculated by the traffic frequency calculation unit 103 is small. Select a signal control method that does not use.
  • the signal control method using the traffic index is, for example, a signal control method depending on the probe information, and the signal control method not using the traffic index is a signal control method almost independent of the probe information.
  • the signal control method that does not use traffic indicators includes not only a signal control method that does not take any traffic indicators into consideration, but also a signal control method in which signal control parameters (cycle length, split, offset, etc.) hardly change depending on traffic indicators. .
  • the signal control parameter hardly changes when, for example, the change of the green light time due to the change of the information indicating the running state of the vehicle is within several seconds or several percent.
  • the traffic condition depends on the signal control method that uses traffic indicators or the signal control method that does not use traffic indicators according to the calculated traffic frequency. Appropriate signal control according to the above can be realized.
  • Travel time calculation unit 106 calculates travel time as an example of a traffic index based on information (probe information) indicating the traveling state of the vehicle (probe vehicle 10).
  • the travel time calculation unit 106 extracts travel locus information for each identification code of the probe vehicle 10 from the probe information acquired via the communication unit 102, and based on the road section data of the road map data stored in the storage unit 104. Map matching processing is performed to obtain the road section in which each probe vehicle 10 (on-vehicle device 5) travels. Then, the travel time calculating unit 106 extracts the position closest to the start and end of the road section and the time at the position, and is closest to the start from the time at the position closest to the end. The travel time of the road section is calculated by subtracting the time at the position.
  • the travel time calculation unit 106 is not an essential configuration, and may be a configuration provided in a device external to the signal control device 100, for example, the in-vehicle device 5 or the road device 3. In that case, the signal control device 100 may acquire the travel time from the in-vehicle device 5 or the road device 3.
  • the storage unit 104 stores predetermined information such as acquired probe information, signal control parameters, and road map data.
  • FIG. 3 is an explanatory diagram illustrating an example of a signal control method selection method performed by the signal control apparatus 100 according to the first embodiment.
  • the horizontal axis indicates the time of the day
  • the vertical axis indicates the probe information acquisition frequency, which is the traffic frequency, that is, the number of probe vehicles 10 that pass.
  • the probe information acquisition frequency shown in FIG. 3 is, for example, divided into one hour every hour, and the amount of traffic of the probe vehicle 10 (the number of probe vehicles 10) in each time zone is a predetermined period (for example, 3 Month) and the total traffic volume collected when the predetermined period has passed is divided by the number of days in the predetermined period (three months) to obtain the numerical value per day. It can be obtained as an average of 10 units per hour per hour.
  • the probe information acquisition frequency between 8:00 and 9:00 is the total amount of traffic acquired every day for three months, and the total value is divided by the number of days corresponding to three months. Calculated as an average value per day.
  • the predetermined period is not limited to three months, and an appropriate period such as one month, two months, six months, or one year can be used.
  • the time zone is not limited to every hour, and an appropriate time zone such as every 5 minutes, every 10 minutes, every 15 minutes, every 30 minutes, every 2 hours, or the like can be used.
  • the selection of the signal control method based on the probe information acquisition frequency (traffic frequency) is performed by comparing the first threshold value TH1 and the second threshold value TH2 larger than the first threshold value TH1 with the probe information acquisition frequency.
  • the first threshold value TH1 is a threshold value for determining whether or not the probe information acquisition frequency is low.
  • the first threshold value TH1 is a value such as one per 30 minutes or one hour.
  • the second threshold value TH2 is a threshold value for determining whether or not the probe information acquisition frequency is high.
  • the second threshold value TH2 is a value such as one for 5 minutes, 10 minutes, or 15 minutes.
  • the first signal control method is selected in the time zone.
  • a set of a plurality of signal control parameters for example, cycle length, split, offset, etc.
  • signal control parameters to be used for each time zone are determined, and time is set. This is a method of selecting a signal control parameter in a corresponding time zone.
  • the first signal control method corresponds to a signal control method that does not use a traffic index.
  • the second signal control method is selected in that time zone.
  • a set of a plurality of signal control parameters for example, cycle length, split, offset, etc.
  • each traffic index for example, travel time of an arbitrary section of the road.
  • signal control parameters to be used are determined, and signal control parameters corresponding to actually measured traffic indexes are selected.
  • the third signal control method is selected in the time zone.
  • a set of a plurality of signal control parameters for example, cycle length, split, offset, etc.
  • signal control parameters to be used for each time zone are determined, and time Another signal control parameter to be used is determined in accordance with a traffic index (for example, travel time) for each specific time zone in the zone.
  • a traffic index for example, travel time
  • a signal control parameter corresponding to a traffic index actually measured in a specific time zone is selected while selecting a signal control parameter in a time zone corresponding to time.
  • the second and third signal control methods correspond to the signal control method using the traffic index.
  • the selection unit 105 can use the first signal control method that can be used even when the frequency at which the probe information is acquired is low.
  • the second or third signal control method depending on the probe information is selected. Thereby, appropriate signal control according to traffic conditions can be realized according to the number of probe vehicles 10 (frequency of obtaining probe information). Below, each signal control system is demonstrated.
  • FIG. 4 is an explanatory diagram showing an example of a signal control parameter table used for the first and third signal control methods.
  • seven types of signal control parameters classified by pattern numbers 1 to 7 are used.
  • the signal control parameter of pattern number 1 has a cycle length of 60 seconds, a split between road R1 and road R2 of 0.5: 0.5, and an offset of 0 seconds.
  • the signal control parameters for other pattern numbers are also shown in the figure.
  • the signal control parameter is an example and is not limited to the example of FIG. 4, and the number of signal control parameters (pattern number) is not limited to the example of FIG.
  • FIG. 5 is an explanatory diagram showing an example of the first signal control method.
  • a set of a plurality of signal control parameters is prepared, a signal control parameter to be used for each time zone is determined, and a signal control parameter in a time zone corresponding to time is set.
  • the method to select is described above, in the first signal control method, a set of a plurality of signal control parameters is prepared, a signal control parameter to be used for each time zone is determined, and a signal control parameter in a time zone corresponding to time is set. The method to select.
  • the first signal control method can perform effective signal control for an area and a time zone in which the fluctuation with respect to the traffic demand assumed in advance is small.
  • the selection unit 105 When the traffic frequency calculated by the traffic frequency calculation unit 103 (for example, the number of probe vehicles for each arbitrary time zone, the probe information acquisition frequency, etc.) is smaller than the first threshold value TH1, the selection unit 105 performs the first signal control. Select a method. When the probe information acquisition frequency is low, by selecting the first signal control method, it is possible to perform effective signal control for an area and a time zone in which there is little fluctuation with respect to the traffic demand assumed in advance.
  • FIG. 6 is an explanatory diagram showing an example of the third signal control method.
  • the third signal control method a set of a plurality of signal control parameters is prepared, and the signal control parameters to be used for each time zone as shown in FIG. 5 are determined, as shown in FIG.
  • Another signal control parameter to be used is determined in accordance with a traffic index (for example, travel time) for each specific time zone in such a time zone.
  • a traffic index for example, travel time
  • a calling condition, a calling pattern, and an execution time are determined for each specific time zone (for example, from 6:30 to 7:00).
  • the signal control parameter of the calling pattern is set for the time specified by the execution time. use.
  • the calling condition is that the travel time T1 of the road R1 is 300 seconds or more.
  • the travel time of the road R1 can be the larger travel time of the travel time of the road sections 11 and 12.
  • the calling condition is that the travel time T2 of the road R2 is 300 seconds or more.
  • the travel time on the road R2 can be the larger travel time of the travel times of the road sections 21 and 22. The same applies to other specific time zones.
  • the signal control parameter of pattern number 2 when the time reaches 6:00, the signal control parameter of pattern number 2 is used. As shown in FIG. 4, the signal control parameter of pattern number 2 has a cycle length of 90 seconds and a split between roads R1 and R2 of 0.6: 0.4.
  • the calling condition is determined as to whether or not the travel time T1 of the road R1 is 300 seconds or more.
  • This calling condition can determine whether or not the road R1 is congested compared to when the road R1 is not congested.
  • the signal control parameter of pattern number 3 is used.
  • the signal control parameter of pattern number 3 has a cycle length of 120 seconds and a split between roads R1 and R2 of 0.6: 0.4.
  • the signal control parameter of pattern number 2 is used between 6:00 and 7:00, and the road between 7:00 and 9:00
  • the rule is switched to the signal control parameter of pattern number 3 from the rule of thumb that the traffic demand of R1 increases.
  • the cycle length is normally set to about 120 seconds so that the road R1 cannot be fully produced.
  • the cycle length remains at 90 seconds, the number of vehicles that can pass through the intersection 20 during one cycle is limited, the number of vehicles waiting for traffic lights increases, and traffic congestion occurs. appear.
  • the signal control parameter of pattern number 3 is used between 7:00 and 9:00 and between 9:00 and 17:00. Then, it switches from the rule of thumb that the traffic demand of road R1 decreases to the signal control parameter of pattern number 4. However, if the congested situation does not change after the time 9:00 when it is predicted that the road R1 will be crowded, the signal control parameter of pattern number 3 must be used continuously. However, since the cycle length is shortened to 90 seconds by using the signal control parameter of pattern number 4, the congested traffic situation may become more serious.
  • the signal control parameter of pattern number 3 is continuously extended. Therefore, even when the traffic situation changes later than expected in advance, demand can be flexibly dealt with.
  • the third signal control method it is possible to perform effective signal control when the acquisition frequency of the probe information is not so high and the traffic demand is likely to fluctuate in advance. it can.
  • FIG. 7 is an explanatory diagram showing an example of a signal control parameter table used for the second signal control method.
  • 12 types of signal control parameters classified by pattern numbers 11 to 22 are used.
  • the signal control parameter of pattern number 11 has a cycle length of 60 seconds, a split between road R1 and road R2 of 0.5: 0.5, and an offset of 0 seconds.
  • the signal control parameters for other pattern numbers are also shown in the figure.
  • the signal control parameter is an example, and is not limited to the example in FIG. 7, and the number of signal control parameters (pattern number) is not limited to the example in FIG. 7. Further, the same signal control parameters in FIGS. 7 and 4 can be combined into the same pattern number.
  • FIG. 8 is an explanatory diagram showing an example of the second signal control method.
  • a set of a plurality of signal control parameters is prepared, and a signal control parameter to be used for each traffic index (for example, travel time of an arbitrary section of a road) is determined.
  • this is a method of selecting a signal control parameter corresponding to the actually measured traffic index.
  • the signal control parameter of the pattern number 11 when the travel time T1 of the road R1 is shorter than 120 seconds and the travel time T2 of the road R2 is shorter than 120 seconds, the signal control parameter of the pattern number 11 is used. As shown in FIG. 7, the signal control parameter of pattern number 11 has a cycle length of 60 seconds and a split of roads R1 and R2 of 0.5: 0.5.
  • the signal control parameter of the pattern number 15 is used. As shown in FIG. 7, the signal control parameter of pattern number 15 has a cycle length of 90 seconds and a split of roads R1 and R2 of 0.6: 0.4. By switching to the signal control parameter of pattern number 15, the blue time of the signal lamp 2 with respect to the road R1 is extended from 30 seconds to 54 seconds, and the traffic jam on the road R1 can be reduced.
  • FIG. 9 is a flowchart showing a processing procedure of the signal control apparatus 100 according to the first embodiment.
  • the control unit 101 calculates the probe information acquisition frequency for each time period based on the probe information collected in advance (S11).
  • the control unit 101 determines whether or not the calculated acquisition frequency is smaller than the first threshold value TH1 (S12). If the acquisition frequency is smaller than the first threshold value TH1 (YES in S12), the first signal control method is selected. (S13), the signal control parameter corresponding to the time is selected (S14), and the process is terminated.
  • the control unit 101 determines whether the calculated acquisition frequency is equal to or higher than the second threshold TH2 (S15). When the calculated acquisition frequency is equal to or greater than the second threshold TH2 (YES in S15), the control unit 101 selects the second signal control method (S16), and calculates the travel times of the roads R1 and R2 (S17). Then, a signal control parameter corresponding to the travel time of each road is selected (S18), and the process is terminated.
  • the control unit 101 When the calculated acquisition frequency is not equal to or higher than the second threshold TH2, that is, when the calculated acquisition frequency is equal to or higher than the first threshold TH1 and smaller than the second threshold (NO in S15), the control unit 101 performs the third signal control method. (S19), the travel times of the roads R1 and R2 are calculated (S20), the signal control parameters corresponding to the time and the travel time of each road are selected (S21), and the process is terminated.
  • the signal control device 100 can also be realized using a general-purpose computer including a CPU, a RAM, and the like. That is, the signal control device 100 can be realized on a computer by loading a program code defining each processing procedure as shown in FIG. 9 into a RAM provided in the computer and executing the program code by the CPU. it can.
  • the signal control device 100 outputs the selected signal control parameter to the traffic signal controller 1.
  • the traffic signal controller 1 controls the signal lamp 2 using the selected signal control parameter.
  • the signal control device 100 may be incorporated in the traffic signal controller 1.
  • the travel time is used as the traffic index obtained using the probe information.
  • the traffic index is not limited to the travel time, and the stop position upstream of the intersection of the probe vehicle is determined. It can also be used. This is because there is a correlation between the distance from the intersection to the stop position and the travel time.
  • the signal control parameter may be selected according to the stop position on each of the roads R1 and R2.
  • the signal control parameter table that defines the set of signal control parameters is stored.
  • the present invention is not limited to this, and the calculation is performed in real time by a calculation unit such as a CPU. Also good.
  • the signal control system according to the second embodiment has a configuration similar to the configuration illustrated in FIG. 1 and includes a signal control device 200, a traffic signal controller 1, a signal lamp 2, a road device 3, and the like.
  • the signal control device 200 receives (acquires) the uplink information transmitted from the road device 3.
  • the signal control device 200 determines the excess or deficiency of the blue time of the signal lamp 2 for each of the inflow paths 21 to 24 using the received uplink information.
  • the signal control device 200 sets signal information (signal parameter) to adjust the blue time.
  • the signal control device 200 transmits signal information (signal parameters) set by itself to the traffic signal controller 1.
  • the traffic signal controller 1 receives the signal information transmitted by the signal control device 200, and controls the switching of the lamp color of the signal lamp device 2 using the received signal information. That is, the signal control apparatus 200 implements the fourth signal control method based on the determined determination result.
  • FIG. 10 is an explanatory diagram showing an example of the configuration of the signal control apparatus 200 according to the second embodiment.
  • the signal control apparatus 200 includes a control unit 101, a communication unit 102, a stop position specifying unit 107, a selection unit 105, a blue time determination unit 108, a signal information setting unit 109, uplink information, signal information, and the like.
  • symbol is attached
  • the communication unit 102 performs transmission / reception (communication) of information between the road device 3 and the traffic signal controller 1. For example, the communication unit 102 receives uplink information including information indicating the traveling state of the vehicle 10 from the road device 3.
  • the stop position specifying unit 107 has a function of specifying means for specifying the stop position of the vehicle on each of the inflow paths 21 to 24. That is, the stop position specifying unit 107 identifies the vehicle by the identification code included in the uplink information of the vehicle 10, determines whether the identified vehicle 10 has stopped on the inflow paths 21 to 24, and stopped. Is determined, the distance E from the intersection 20 to the stop position is calculated, and the calculated distance E is output to the blue time determination unit 108.
  • the stop position of the vehicle on each of the inflow paths 21 to 24 can be specified, for example, between the intersection 20 and an outflow point of another intersection adjacent to the intersection 20. If the distance from the intersection 20 to the adjacent intersection is long, it may be specified whether the vehicle has stopped between the intersection 20 and an appropriate point upstream of the intersection 20.
  • Whether or not the vehicle 10 has stopped can be determined based on whether or not the speed of the vehicle 10 has become 0 based on the uplink information. It can also be determined that the vehicle 10 has stopped when the speed of the vehicle 10 is a threshold value (for example, 5 km / h) for a predetermined time (for example, 5 seconds) or longer. When the same vehicle 10 stops a plurality of times on the inflow paths 21 to 24, the stop position farthest upstream from the intersection is set as the stop position of the vehicle 10. Moreover, when the uplink information is received from a plurality of vehicles and the stop is determined, it is preferable to specify the stop position of the vehicle that has stopped most upstream among these vehicles.
  • the blue time determination unit 108 has a function as a first determination unit that determines whether the blue time of the signal lamp 2 is excessive or insufficient. That is, the green time determination unit 108 determines whether the blue time is excessive or insufficient for the inflow path based on the stop position of the vehicle 10 on each of the inflow paths 21 to 24 specified by the stop position specifying unit 107. In addition, when the shortage or surplus of the blue time is determined in both the inflow channels 21 and 23 facing each other at the intersection 20, the more critical (higher severity) may be selected. The same applies to the inflow channels 22 and 24 facing each other at the intersection 20.
  • FIG. 11 is an explanatory diagram showing an example of a method for determining whether the green time is excessive or insufficient based on the stop position of the vehicle 10.
  • the excess or deficiency of the blue hours indicates whether the blue hours are insufficient or there is a margin in the blue hours. For example, if the stop position of a vehicle on a certain inflow path is relatively far from the intersection, it is considered that there are a considerable number of stopped vehicles between the stopped vehicle and the intersection. It is determined that the blue time for is insufficient. If the stop position of a vehicle on a certain inflow path is relatively close to the intersection, there are few stopped vehicles between the stopped vehicle and the intersection. It is determined that there is room in the blue hours for the road.
  • Tr1 s ⁇ h ⁇ G ⁇ (R ⁇ t) / R may be set.
  • R is the red time
  • t 0 in the case of a green signal when the vehicle is stopped.
  • the queue increases by an average E / (Rt) per unit time during the time from the start of the red light (Rt), and this value is used.
  • the queue length at the start of blue can be estimated as E ⁇ R / (R ⁇ t).
  • the condition of E to satisfy E ⁇ R / (R ⁇ t) ⁇ s ⁇ h ⁇ G is E ⁇ s ⁇ h ⁇ G ⁇ (Rt) / R.
  • the distance E from the intersection of the stop position of the vehicle is the distance ⁇ s ⁇ h ⁇ corresponding to the number of vehicles that can pass during the time obtained by subtracting the predetermined variation ⁇ G from the blue time G for one cycle. If (G ⁇ G) ⁇ or less, it is determined that the blue time has a margin. Thereby, it can be determined that there is a margin in the green time by specifying the position of the stopped vehicle.
  • the signal information setting unit 109 serves as a setting means for setting signal information (blue time) so as to assign a predetermined amount of blue time for an inflow route with a margin of blue time to the blue time for an inflow route with insufficient blue time. It has a function.
  • a blue time allocation method that is, a blue time adjustment method will be described.
  • FIG. 12 shows an example of a blue time adjustment method by the signal control apparatus 200 according to the second embodiment.
  • FIG. 12 shows how the blue time is adjusted at the intersection 20 shown in FIG. 1 in accordance with the excess or deficiency of the blue time for each of the inflow paths 21 to 24. Since the inflow paths 21 and 23 face each other at the intersection, the signal color of the signal lamp 2 is controlled at the same timing. Similarly, since the inflow paths 22 and 24 also face each other at the intersection, the signal color of the signal lamp 2 has the same timing. It is controlled by.
  • the signal information setting unit 109 The signal information is set so that a predetermined amount of the blue time for the inflow path having a sufficient margin is allocated to the blue time for the inflow path where the blue time is insufficient.
  • the predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like.
  • the blue time for an inflow channel that flows into an intersection is a standard value
  • the blue time for an inflow channel that lacks blue time is increased by a predetermined amount from the standard value
  • the blue time for an inflow channel that has a margin of blue time Reduce the standard value by a predetermined amount.
  • the signal information setting unit 109 returns the blue hour for each inflow channel to a standard value.
  • the predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle.
  • the signal information setting unit 109 does not change the blue time for each inflow channel.
  • the vehicle 10 that can acquire the uplink information from the in-vehicle device 5 is a part of the vehicle traveling on the inflow path, and how often the uplink information can be acquired varies depending on the situation. obtain. Therefore, the blue time adjustment method can be changed according to the uplink information acquisition frequency (the number of probe vehicles).
  • the uplink information acquisition frequency the number of probe vehicles.
  • FIG. 13 is an explanatory diagram showing an example of a blue time adjustment method when the frequency of acquiring uplink information is low.
  • the cycle length of the signal lamp 2 is 90 seconds
  • the standard value of the blue time for a certain inflow path is 60 seconds.
  • the green time determination unit 108 determines that the blue time for the inflow path 21 is insufficient and the blue time for the inflow path 22 or the inflow path 24 intersecting the inflow path 21 has a margin
  • the signal information setting unit 109 The blue time for the inflow channel 21 in which the blue time is insufficient is increased from a standard value (60 seconds) by a predetermined amount (for example, 2 seconds) to 62 seconds, and the inflow channel 22 or the inflow channel 24 having a margin of blue time. Decrease the blue hour with respect to the standard value by a predetermined amount.
  • the blue time determination unit 108 determines again that the blue time for the inflow path 21 is insufficient and that the blue time for the inflow path 22 or the inflow path 24 intersecting the inflow path 21 has a margin. Even if it does, the blue time is not adjusted. In this way, by adjusting the blue time only once, when the amount of uplink information acquired is small, the adjustment range of the blue time is excessively increased based on the small amount of information. It is possible to prevent the occurrence of a shortage.
  • FIG. 14 is an explanatory diagram showing an example of a blue time adjustment method when the frequency of acquiring uplink information is high.
  • the cycle length of the signal lamp 2 is 90 seconds
  • the standard value of the blue time for a certain inflow path is 60 seconds.
  • the green time determination unit 108 determines that the blue time for the inflow path 21 is insufficient and the blue time for the inflow path 22 or the inflow path 24 intersecting the inflow path 21 has a margin
  • the signal information setting unit 109 The blue time for the inflow channel 21 in which the blue time is insufficient is increased from a standard value (60 seconds) by a predetermined amount (for example, 2 seconds) to 62 seconds, and the inflow channel 22 or the inflow channel 24 having a margin of blue time. Decrease the blue hour with respect to the standard value by a predetermined amount.
  • a predetermined amount of blue time is allocated, that is, after adjusting the blue time, the blue time for the inflow path 21 is insufficient in the blue time determination unit 108, and the inflow path 22 or the inflow path intersecting the inflow path 21
  • allocation of the blue time of a predetermined amount is repeated each time. For example, while increasing the blue time for an inflow channel with insufficient blue time by a predetermined amount, the blue time for the inflow channel with a margin of blue time is decreased by a predetermined amount.
  • the blue hours are excessive or insufficient, if there are still inflow channels with sufficient blue hours and inflow channels with insufficient blue hours, the same assignment is repeated again.
  • the increase / decrease in the blue time by a predetermined amount ends when the upper limit value or lower limit value of the blue time is reached.
  • the upper limit value of the blue time for the inflow channel 21 is 66 seconds.
  • the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the blue time can be adjusted in real time according to the traffic situation that changes from moment to moment.
  • the four inflow paths flow into the intersection.
  • the signal control device of the embodiment can be used.
  • the priority order of the inflow paths flowing into the intersection is determined in advance.
  • the priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there.
  • an inflow path with a lower priority is selected from the plurality of inflow paths, and the predetermined amount of blue time for the selected inflow paths is insufficient for the blue time Assign to the blue hour for the current inflow. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of inflow paths, the blue time for the inflow road with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • a predetermined amount of blue hours for the inflow paths with a margin in the blue hours is set to a plurality of inflow paths. Allocate blue hours for inflow channels with higher priority among inflow channels. For example, when the intersection is five or more roads and the blue hours for a plurality of inflow paths are insufficient, the blue time needs to be made the longest, and the blue time for the inflow road with a higher priority is increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the determination is made in two stages: (1) when the blue time is insufficient and (2) when there is room in the blue time.
  • the determination is not limited to this.
  • (1 It can also be determined in three stages: when there is a shortage of blue time, (2) when there is no room in blue time, and (3) when there is room in blue time.
  • when there is no room in the blue hours it means that if the blue hours are reduced, the current traffic volume cannot be obtained, and the blue hours cannot be reduced and it is not necessary to increase them.
  • the selection unit 105 has a function as a selection unit that selects one signal control method from among a plurality of signal control methods determined in advance to control the blue time of the signal lamp 2. .
  • the selection unit 105 replaces the third signal control method with the determination result and the signal information setting unit in the blue time determination unit 108.
  • the fourth signal control method using the signal information setting at 109 may be selected.
  • the selection unit 105 may not be provided.
  • the signal control apparatus 200 performs the fourth signal control method using the determination result in the blue time determination unit 108 and the signal information setting in the signal information setting unit 109.
  • FIG. 15 is a flowchart illustrating a processing procedure of the signal control device 200 when the frequency of acquiring uplink information is low.
  • the control unit 101 obtains vehicle uplink information (S31). Uplink information is acquired during the latest fixed time (for example, 10 minutes, 15 minutes, etc.) when the process of FIG. 15 is started.
  • the control unit 101 identifies the stop positions of the vehicles on the inflow paths 21 to 24 (S32), and determines the excess or deficiency of the blue time for the inflow paths 21 to 24 based on the identified stop positions (S33). .
  • the control unit 101 determines whether or not there are both an inflow channel in which the green time is insufficient and an inflow channel in which the blue time is sufficient (S34). In addition, when the blue hours are insufficient in both of the inflow channels (for example, the inflow channels 21 and 23) facing each other at the intersection, or when there is a margin in the blue time, the degree of excess or deficiency is high in both the inflow channels. You just have to choose one.
  • the control unit 101 sets the blue time for the inflow channel in which the blue time is insufficient from the standard value.
  • a predetermined amount for example, 2 seconds, 3 seconds, etc.
  • the blue time for the inflow path with a sufficient blue time is decreased from the standard value by a predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds, etc.) (S36). ), The process is terminated.
  • the blue time for the inflow path 21 is increased from the standard value by a predetermined amount, and the blue time for the inflow path 22 is set to the standard value. Reduce by a predetermined amount.
  • control unit 101 determines whether each inflow path has a margin in blue time. (S37). In other words, the control unit 101 determines whether or not there is an inflow path where the blue time is insufficient or an inflow path where there is no room for the blue time.
  • the control unit 101 When there is a surplus in the blue time in each inflow channel (YES in S37), that is, when there is no inflow channel in which the blue time is insufficient or there is no inflow channel in which there is no surplus in the blue time, the control unit 101 performs a predetermined time (for example, Then, it is determined whether or not a time corresponding to 2 to 3 cycles has elapsed in the signal cycle (S38). That is, it is determined whether or not an inflow path where the blue time is insufficient or an inflow path where there is no margin in the blue time continues for a predetermined time.
  • the control unit 101 performs the processing after step S31. If the predetermined time has elapsed (YES in S38), the blue time for each inflow path is not excessive or insufficient. Assuming that the shortage has been resolved, the blue time for each inflow channel is returned to the standard value (S39), and the process is terminated.
  • FIG. 16 is a flowchart showing a processing procedure of the signal control apparatus 200 when the uplink information acquisition frequency is high.
  • the control unit 101 acquires vehicle uplink information (S51). Uplink information is acquired during the latest fixed time (for example, 5 minutes, 10 minutes, etc.) when the process of FIG. 16 is started.
  • the control unit 101 identifies the stop positions of the vehicles on the inflow paths 21 to 24 (S52), and determines the excess or deficiency of the blue time for the inflow paths 21 to 24 based on the identified stop positions (S53). .
  • the control unit 101 determines whether or not there are both an inflow channel in which the green time is insufficient and an inflow channel in which the blue time is sufficient (S54). In addition, when the blue hours are insufficient in both of the inflow channels (for example, the inflow channels 21 and 23) facing each other at the intersection, or when there is a margin in the blue time, the degree of excess or deficiency is high in both the inflow channels. You just have to choose one.
  • the control unit 101 determines a predetermined amount of blue time for the inflow channel with insufficient green time (YES in S54). For example, 2 seconds, 3 seconds, etc.) are increased (S55), and the blue time with respect to the inflow path with a sufficient blue time is reduced by a predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds, etc.) (S56).
  • the blue time for the inflow channel 21 is insufficient and the blue time for the inflow channel 22 is sufficient
  • the blue time for the inflow channel 21 is increased by a predetermined amount
  • the blue time for the inflow channel 22 is decreased by a predetermined amount.
  • the control unit 101 determines whether or not the increased or decreased blue time has reached the upper limit value or the lower limit value (S57). If it is not the upper limit value or the lower limit value (NO in S57), the processing after step S51 is repeated. If the upper limit value or lower limit value is reached (YES in S57), the process ends.
  • the control unit 101 determines whether there is a margin in blue time in each inflow path. (S58). In other words, the control unit 101 determines whether or not there is an inflow path where the blue time is insufficient or an inflow path where there is no room for the blue time.
  • the control unit 101 performs a predetermined time (for example, It is determined whether or not a time corresponding to 2 to 3 cycles has elapsed in the signal cycle (S59). That is, it is determined whether or not an inflow path where the blue time is insufficient or an inflow path where there is no margin in the blue time continues for a predetermined time.
  • a predetermined time for example, It is determined whether or not a time corresponding to 2 to 3 cycles has elapsed in the signal cycle (S59). That is, it is determined whether or not an inflow path where the blue time is insufficient or an inflow path where there is no margin in the blue time continues for a predetermined time.
  • the control unit 101 performs the processing after step S51. If the predetermined time has not elapsed (NO in S59), the control unit 101 performs the processing after step S51. If the predetermined time has elapsed (YES in S59), the control unit 101 determines the blue time for the inflow path that is greater than the standard value. A predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds, etc.) is decreased (S60), the blue time for the inflow path with a green time smaller than the standard value is increased by a predetermined amount (S61), and the process of step S57 is performed.
  • a predetermined amount for example, 2 seconds, 3 seconds, 4 seconds, etc.
  • control unit 101 ends the process.
  • the present embodiment it is possible to perform control according to traffic conditions without being provided with a vehicle detector and without being restricted by preset signal control parameters. And the blue time with respect to the inflow channel where the blue time is insufficient can be increased, and the traffic flow can be smoothed. Further, it is possible to reduce the blue time with respect to the inflow channel having a margin of blue time, and to prevent a situation in which unnecessary blue time is given.
  • FIG. 17 is a schematic diagram showing an outline of a signal control system including the signal control apparatus according to the third embodiment.
  • a vehicle detector 30 for acquiring the traffic volume of the vehicle is provided.
  • the selection unit 105 may not be provided.
  • the road corresponding to the inflow paths 22 and 24 is a main road such as a main road, and corresponds to the inflow paths 21 and 23.
  • the road is a secondary road.
  • a vehicle detector 30 is installed on the main road upstream from the intersection 20 by an appropriate distance.
  • the vehicle detector 30 is, for example, an ultrasonic vehicle detector, and measures the traffic volume or occupancy rate per unit time and transmits the measurement data to the signal control device 110.
  • FIG. 18 is an explanatory diagram showing an example of the configuration of the signal control device 210 according to the third embodiment. A difference from the signal control device 200 of the second embodiment shown in FIG. 10 is that a load factor calculation unit 110 is provided.
  • the communication unit 102 receives measurement data from the vehicle detector 30.
  • the load factor calculation unit 110 has a function as load factor calculation means for calculating the load factor of the main road (inflow channels 22 and 24).
  • the load factor can be obtained, for example, as a ratio of the inflow flow rate (unit / unit time) to the saturated traffic flow rate of the inflow channel.
  • the saturated traffic flow rate indicates the capacity of the inflow path, and is, for example, 1800 vehicles per hour.
  • the green time determination unit 108 determines the excess or deficiency of the blue time with respect to the main road (inflow paths 22 and 24) based on the load factor calculated by the load factor calculation unit 110. For example, when the load factor of the inflow channel is large, it can be determined that the blue time for the inflow channel is insufficient, and when the load factor of the inflow channel is small, there is a margin in the blue time for the inflow channel. It can be determined that there is. Note that the excess or deficiency of the green time with respect to the secondary road is determined based on the stop position of the vehicle as in the first embodiment.
  • each inflow is based on the calculated load factor of one inflow path (main road) and the stop position of the vehicle on the other inflow paths (secondary roads) intersecting with the one inflow path (22, 24) at the intersection 20. It is possible to determine whether the blue hours are excessive or insufficient by specifying the load factor of the main road and the stop position of the vehicle on the secondary road.
  • the green time of the main road is G
  • the cycle length is C
  • the predetermined coefficient is a (a ⁇ 1.0)
  • the predetermined fluctuation amount of the blue time is ⁇ G (a predetermined fluctuation amount)
  • FIG. 19 shows an example of a blue time adjustment method by the signal control device 210 of the third embodiment.
  • FIG. 19 shows how the blue time is adjusted at the intersection 20 shown in FIG. 17 in accordance with the excess or deficiency of the blue time with respect to the main roads (inflow paths 22, 24) and secondary roads (inflow paths 21, 23). Is shown.
  • the signal information setting unit 108 The blue time for the main road is reduced from the standard value by a predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds, etc.), and the blue time for the secondary road is increased by a predetermined amount from the standard value.
  • a predetermined amount for example, 2 seconds, 3 seconds, 4 seconds, etc.
  • the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the main road and the secondary road Return the blue hour to the standard value.
  • the blue time for the main road has a margin.
  • the predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle.
  • the blue hours for the main road are insufficient, that is, when it is determined that there is no room for the blue hours
  • the blue hours for the main road and the secondary road are standard values regardless of the excess or shortage of the blue hours for the secondary road.
  • the blue hour assigned to the secondary road is returned to the blue hour for the primary road and returned to the standard value.
  • FIG. 20 is a flowchart illustrating a processing procedure of the signal control apparatus 210 according to the third embodiment.
  • the control unit 101 acquires vehicle uplink information (S71). Uplink information is acquired during the latest fixed time (for example, 10 minutes, 15 minutes, etc.) when the process of FIG. 20 is started.
  • the control unit 101 acquires the traffic volume of the main road (S72), and calculates the load factor of the main road (S73).
  • the control unit 101 identifies the stop position of the vehicle on the secondary road (S74), and determines whether the blue hours are excessive or insufficient for the main road and the secondary road (S75).
  • the control unit 101 determines whether the blue time for the secondary road is insufficient and the blue time for the main road has a margin (S76). When the blue time for the secondary road is insufficient and the blue time for the main road has a margin (YES in S76), the control unit 101 sets the blue time for the secondary road to a predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds) (S77), the blue time for the main road is decreased from the standard value by a predetermined amount (for example, 2 seconds, 3 and 4 seconds) (S78), and the process is terminated.
  • a predetermined amount for example, 2 seconds, 3 seconds, 4 seconds
  • the control unit 101 determines whether the blue time is free on the secondary road (S79), If there is a margin (YES in S79), it is determined whether or not a predetermined time (for example, a time corresponding to two to three cycles in the signal cycle) has passed (S80). If there is no room (NO in S79), the control unit 101 performs the process of step S81 described later without determining whether the predetermined time has elapsed.
  • a predetermined time for example, a time corresponding to two to three cycles in the signal cycle
  • control unit 101 repeats the processes in and after step S71. If the predetermined time has elapsed (YES in S80), the blue time for the main road and the secondary road is returned to the standard value. (S81), the process is terminated.
  • the blue time of the sub road can be adjusted without adversely affecting the main road.
  • the signal control devices 200 and 210 of the second and third embodiments can be realized by using a general-purpose computer including a CPU, a RAM, and the like. That is, as shown in FIG. 15, FIG. 16 and FIG. 20, the signal control device is loaded on the computer by loading the program code defining each processing procedure into a RAM provided in the computer and executing the program code by the CPU. 200, 210 can be realized.
  • the signal control device 110 may acquire a load factor calculated in advance by an external device.
  • the signal control devices 100 and 110 may be incorporated into the traffic signal controller 1.
  • the signal control system according to the fourth embodiment has a configuration similar to that illustrated in FIG. 1 and includes a signal control device 300, a traffic signal controller 1, a signal lamp 2, a road device 3, and the like.
  • the signal control device 300 receives (acquires) uplink information transmitted from the road device 3.
  • the signal control device 300 calculates the travel time of each road section 11, 12, 21, 22 using the received uplink information, and signal lights for the road section (11, 12) and the road section (21, 22). Judge the excess or deficiency of the blue time of the vessel 2.
  • the signal control device 300 determines that the blue time of the signal lamp 2 is excessive or insufficient, the signal control device 300 sets signal information (signal parameter) to adjust the blue time.
  • the signal control device 300 transmits signal information (signal parameters) set by itself to the traffic signal controller 1.
  • the traffic signal controller 1 receives the signal information transmitted by the signal control device 300, and controls the switching of the lamp color of the signal lamp device 2 using the received signal information. That is, the signal control device 300 implements the fifth signal control method based on the determined determination result.
  • FIG. 21 is an explanatory diagram showing an example of the configuration of the signal control apparatus 300 according to the fourth embodiment.
  • the signal control apparatus 300 includes a control unit 101, a communication unit 102, a travel time calculation unit 106, a selection unit 105, a blue time determination unit 108, a signal information setting unit 109, uplink information, signal information, and the like.
  • symbol is attached
  • the communication unit 102 performs transmission / reception (communication) of information between the road device 3 and the traffic signal controller 1. For example, the communication unit 102 receives uplink information including information indicating the traveling state of the vehicle 10 from the road device 3.
  • the travel time calculation unit 106 has a function as travel time calculation means for calculating the travel time of the road sections 11, 12, 21, and 22.
  • the travel time calculation unit 106 extracts travel locus information for each vehicle identification code from the uplink information acquired via the communication unit 102, and based on the road section data of the road map data stored in the storage unit 104. A map matching process is performed to obtain a road section in which each vehicle 10 (on-vehicle device 5) travels. Then, the travel time calculating unit 106 extracts the position closest to the start and end of the road section and the time at the position, and is closest to the start from the time at the position closest to the end. The travel time of the road section is calculated by subtracting the time at the position.
  • the travel time calculation unit 106 outputs the calculated travel times of the road sections 11, 12, 21, and 22 to the blue time determination unit 108.
  • the travel time calculation unit 106 is not an essential configuration, and may be a configuration provided in a device external to the signal control device 300, for example, the in-vehicle device 5 or the road device 3. In that case, the signal control device 300 may acquire travel time from the in-vehicle device 5 or the road device 3.
  • the blue hour determination unit 108 has a function as a second determination unit that determines whether the signal lamp 2 has excessive or insufficient blue hours. That is, the green time determination unit 108 uses the travel time calculated by the travel time calculation unit 106 to determine whether the blue time of the signal lamp 2 is excessive or insufficient for the road sections (11, 12) and the road sections (21, 22). judge.
  • the travel time is obtained for each of the road sections 11, 12, 21 and 22, and the excess or deficiency of the blue time is calculated by the road section (11, 12) including the road sections 11 and 12, or the road sections 21 and 22. Determination is made for each summarized road section (21, 22). Since the road sections 11 and 12 face each other at the intersection, the color of the signal lamp 2 is controlled at the same timing. Similarly, the road sections 21 and 22 also face each other at the intersection, so the lamp color of the signal lamp 2 is controlled at the same timing. Because it is done.
  • the road section as the travel time measurement section set in the vicinity of the intersection is a section including the intersection, but may be a section from the upstream side of the intersection to the front of the intersection. That is, any section may be set as long as it is considered to be appropriate for knowing the traffic demand of each inflow path flowing into the intersection.
  • FIG. 22 is an explanatory diagram showing an example of a method for determining excess or deficiency of blue hours based on travel time.
  • the travel times calculated by the travel time calculation unit 106 for the road sections 11 and 12 facing each other at the intersection 20 are t11 and t12.
  • standard travel times (reference travel times) when there is no traffic congestion on the road sections 11 and 12 are T11 and T12, respectively.
  • the determination condition of excess or deficiency of the blue hours for the road sections (11, 12) is that the difference between the travel time t11 of the road section 11 and the reference travel time T11 of the road section 11 and the travel of the road section 12
  • t1 is a value having a larger difference between the time t12 and the reference travel time T12 of the road section 12
  • a predetermined threshold is Th
  • the predetermined threshold Th can be set in advance and is, for example, approximately one cycle length of the signal lamp 2.
  • the approximate cycle length is, for example, a time length of about 1 cycle length ⁇ 10%.
  • the road sections 11 and 12 are described, but the excess or deficiency of the blue hours can be similarly determined for the other road sections 21 and 22. That is, the determination condition of the excess or deficiency of the blue hours for the road section (21, 22) is the difference between the travel time t21 of the road section 21 and the reference travel time T21 of the road section 21, the travel time t22 of the road section 22, and the road section.
  • t2 is a value having a larger difference from the reference travel time T22 of 22 and a predetermined threshold is Th
  • t2 ⁇ Th it is determined that the blue time is insufficient
  • t2 ⁇ Th is satisfied It can be determined that there is a margin in the blue hours.
  • the travel time in the road section is calculated based on the information indicating the traveling state of the vehicle traveling in the road section flowing into the intersection 20, and the difference between the calculated travel time and the reference travel time is calculated.
  • the excess or deficiency of the blue time for the road section is determined according to whether it is smaller or larger than the threshold. For example, when the difference between the travel time of the road section and the reference travel time is equal to or greater than the threshold, it is determined that the blue time for the road section is insufficient. Further, when the difference between the travel time of the road section and the reference travel time is smaller than the threshold value, it is determined that the blue time for the road section has a margin. By calculating the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section.
  • the signal information setting unit 109 assigns signal information (blue time) to allocate a part (for example, a predetermined amount) of the blue time for a road section with sufficient blue time to the blue time for a road section where the blue time is insufficient.
  • a function as setting means for setting is provided.
  • a road section with sufficient green time and a road section with insufficient blue time are two road sections that intersect each other at the target intersection for signal control, but if the end of the road section is provided before the intersection Even so, a point that intersects with another road section when the road section is extended in the direction of the intersection along the inflow path of the intersection may be the signal control target intersection.
  • the signal information setting unit 109 determines that the green time for an arbitrary road section is longer than the standard value and the green time for the road section has a margin
  • the signal information setting unit 109 For example, signal information is set so as to allocate a predetermined amount to other road sections.
  • a blue time allocation method that is, a blue time adjustment method will be described.
  • FIG. 23 shows an example of a blue time adjustment method by the signal control apparatus 300 according to the fourth embodiment.
  • FIG. 23 shows how the blue time is adjusted at the intersection 20 shown in FIG. 1 according to the excess or deficiency (blue time setting condition) of the blue hours (11, 12) and the road sections (21, 22). Indicates whether or not (setting contents).
  • the blue hours for the road sections (11, 12) are determined by a predetermined amount. Reduce and add to the blue hours for road sections (11, 12).
  • the predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like.
  • the blue hours for the road sections (21, 22) are insufficient and the blue hours for the road sections (11, 12) are sufficient, the blue hours for the road sections (11, 12) are reduced by a predetermined amount, Add to the blue hour for the interval (21, 22).
  • the predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like.
  • a part (for example, a predetermined amount) of the blue hours for the road sections with a margin is insufficient.
  • Signal information is set to be allocated to the blue hours for the road section.
  • the predetermined amount By setting the predetermined amount to a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds), the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
  • the road section that reduces the blue hours is changed to the road section that has the shortest blue hours.
  • Blue time can be allocated.
  • the blue time for the road section (11, 12) is reduced by a predetermined amount. It is added to the blue hours for the road sections (21, 22) which are road sections.
  • the blue time for the road section (21, 22) is reduced by a predetermined amount. , And added to the blue hours for the other road sections (11, 12).
  • the predetermined amount of blue time for the road section is set to another road section (for example, It may be assigned to a road section where the green time is insufficient or a road section where the blue time is sufficient. This makes it possible to return the blue hour to the standard value when the traffic volume decreases.
  • the blue time setting condition is other than the above, the blue time is not adjusted.
  • the blue hours are not adjusted for the road sections (11, 12) and (21, 22). Accordingly, signal control can be performed using the initially set signal control parameters without being affected by variations in traffic conditions.
  • the minimum value of the difference between the travel time and the reference travel time is smaller than the threshold value Th, it is possible to prevent the blue time from being adjusted. Thereby, when there is no room in the blue hours for other road sections, it is possible to prevent the occurrence of traffic jams due to the reduction of the blue hours.
  • the four inflow paths flow into the intersection.
  • the signal control device of the embodiment can be used. If there are five or more roads, if it is determined that there is a margin of blue hours for multiple road sections, the blue hours for the road section with the smallest difference between the travel time and the reference travel time among the multiple road sections Allocate quantification to the blue hours for road segments that lack.
  • the priority order of road sections for each inflow path flowing into the intersection may be determined in advance. The priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there.
  • a predetermined amount of the blue hours for the road sections having a low priority among the plurality of road sections is allocated to the blue hours for the lacking road sections. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of road sections, the blue hours for the road sections with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • a predetermined amount of green time for a road section with a margin is traveled among the plurality of road sections. Allocation is made to the blue time for the road section having the largest difference between the time and the reference travel time, or for the road section having a higher priority among the plurality of road sections. For example, when the intersection is more than a five-way road and the blue hours for a plurality of road sections are insufficient, the blue hours need to be made the longest and the blue hours for the road sections with higher priority are increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the reference travel times T11, T12, T21, and T22 are preset as initial values, and travel time data can be accumulated at any time, and can be updated whenever a certain period of time elapses.
  • the accumulated travel time can be updated to an average value, a 25th percentile value, a 50th percentile value, or the like.
  • the reference travel time can be maintained at a value that matches the change in traffic conditions according to the secular change.
  • the selection unit 105 has a function as a selection unit that selects one signal control method from among a plurality of signal control methods determined in advance to control the blue time of the signal lamp 2. .
  • the selection unit 105 replaces the third signal control method with the determination result and the signal information setting unit in the blue time determination unit 108.
  • the fifth signal control method using the signal information setting at 109 may be selected.
  • the selection unit 105 may not be provided.
  • the signal control device 300 performs the fifth signal control method using the determination result in the blue time determination unit 108 and the signal information setting in the signal information setting unit 109.
  • FIG. 24 is a flowchart showing a processing procedure of the signal control apparatus 300 according to the fourth embodiment.
  • the control unit 101 acquires vehicle uplink information (S91). Uplink information is acquired, for example, for the most recent fixed time (for example, 15 minutes) for starting the processing of FIG.
  • the control unit 101 calculates the travel time of each road section 11, 12, 21, and 22 (S92), and calculates the difference between the calculated travel time and the reference travel time (S93).
  • the control unit 101 compares the calculated difference, more specifically, the maximum value of the difference with a threshold value, and determines the excess or deficiency of the blue time for the road sections (11, 12), (21, 22) ( S94).
  • the control unit 101 determines whether or not there are both a road section with sufficient blue hours and a road section with insufficient blue hours (S95).
  • the control unit 101 determines a predetermined amount (for example, from the blue time for a road section with a margin of blue time). 2 seconds, 3 seconds, 4 seconds, etc.) is subtracted and added to the blue time for other road sections (for example, road sections where the blue time is insufficient) (S96), the process is terminated.
  • a predetermined amount for example, from the blue time for a road section with a margin of blue time. 2 seconds, 3 seconds, 4 seconds, etc.
  • control unit 101 When there is no road section with a margin of blue time and no road section with a shortage of blue time (NO in S95), the control unit 101 has a longer blue time than the standard value and a margin of blue time. It is determined whether there is a road section (S97).
  • the control unit 101 When there is a road section in which the green time is longer than the standard value and there is a margin in the blue time (YES in S97), the control unit 101 performs the process of step S96, and the blue time is longer than the standard value and the blue time. If there is no road section that has enough time (NO in S97), the green time is not adjusted (S98), and the process is terminated.
  • the signal control device 300 of this embodiment can also be realized using a general-purpose computer including a CPU, a RAM, and the like. That is, as shown in FIG. 24, the signal control device 300 can be realized on a computer by loading a program code defining each processing procedure into a RAM provided in the computer and executing the program code by the CPU. it can.
  • the signal control device 300 may be incorporated into the traffic signal controller 1.
  • the traffic signal signal control method can be broadly classified from the viewpoint of the signal control parameter setting method (for example, cycle length, split, offset, etc.), and fixed cycle control that sets the signal control parameter according to the time zone, and traffic conditions
  • the signal control parameter setting method for example, cycle length, split, offset, etc.
  • fixed cycle control that sets the signal control parameter according to the time zone, and traffic conditions
  • traffic sensitive control There are two types of traffic sensitive control in which signal control parameters are set accordingly.
  • the conventional fixed cycle control there is a problem that when the traffic situation changes due to a change in the road network, a change in surrounding facilities, etc., it is not possible to perform appropriate signal control following the change in the traffic situation.
  • the signal control system of the fifth embodiment has a configuration similar to the configuration illustrated in FIG. 1 and includes a signal control device 400, a traffic signal controller 1, a signal lamp 2, a road device 3, and the like.
  • the signal control device 400 receives (acquires) the probe information transmitted from the road device 3.
  • the signal control device 400 uses the received probe information to determine whether the vehicle is smoothly flowing out in a specific outflow direction.
  • the specific outflow direction is an outflow direction that grants passage permission to an inflow vehicle from the same direction independently of other outflow directions, for example, a right turn direction of an intersection with a right turn blue arrow.
  • a specific outflow direction is described as a right turn direction.
  • the specific outflow direction can include not only the right turn direction but also the left turn direction or the straight direction.
  • the right turn direction is a right turn direction in left-hand traffic as in Japan, for example, an outflow direction corresponding to the left turn direction in right-hand traffic as in the United States.
  • the vehicle is on the left side as in Japan.
  • the signal control device 400 determines that the outflow in the specific outflow direction is not smooth, the signal control device 400 sets signal information (signal parameter) to extend the blue time for the specific outflow direction.
  • the signal control device 400 transmits signal information (signal parameters) set by itself to the traffic signal controller 1.
  • the traffic signal controller 1 receives the signal information transmitted by the signal control device 400, and controls the switching of the lamp color of the signal lamp device 2 using the received signal information.
  • the signal control device 400 may be built in the traffic signal controller 1.
  • FIG. 25 is an explanatory diagram showing an example of the configuration of the signal control apparatus 400 according to the fifth embodiment.
  • the signal control apparatus 400 includes a control unit 101, a communication unit 102, a smoothness determination unit 401, a traffic volume determination unit 405, a traffic jam determination unit 406, a signal information setting unit 109, probe information, signal information, and the like.
  • the smoothness determination unit 401 includes a stop position calculation unit 402, a travel time calculation unit 403, a stop frequency calculation unit 404, and the like.
  • the communication unit 102 performs transmission / reception (communication) of information between the road device 3 and the traffic signal controller 1. For example, the communication unit 102 receives probe information of the vehicle 10 from the road device 3. In addition, the communication unit 102 communicates with an upstream point of the inflow path of the intersection 20 (for example, a point several hundred meters upstream from the intersection 20) and a downstream point of the outflow path of the intersection 20 (for example, another intersection adjacent to the intersection 20). Measurement data is received from a vehicle detector (not shown) installed at a point on the road in between. The vehicle detector is, for example, an ultrasonic vehicle detector, and can measure a traffic volume or an occupation rate per unit time.
  • the smoothness determination unit 401 has a function as a smoothness determination unit that determines whether or not the outflow in a specific outflow direction is smooth. Whether or not the outflow in a specific outflow direction (for example, the right turn direction) is smooth is determined by extracting the probe information of the vehicle that has traveled in the specific outflow direction from the acquired probe information and how smoothly the vehicle concerned intersects. It is determined by whether or not it was able to pass. To determine the smoothness, for example, how far the stop position of the vehicle is from the intersection, how long the vehicle traveled, or how many stops the vehicle had passed through the intersection Traffic indicators such as can be used. The details of the smoothness determination method will be described later.
  • the signal information setting unit 109 has a function as a blue time setting means for extending the blue time for a specific outflow direction.
  • the smoothness determination unit 401 determines that the right turn direction outflow is not smooth
  • the signal information setting unit 109 performs a signal to extend the blue time for permitting right turn direction under the control of the control unit 101.
  • Set control parameters Specifically, the signal control parameter is set so that the time of the right turn arrow is extended by a required time. The extension of the right turn arrow may be continued for several signal cycles, or may continue until the outflow in the right turn direction returns to a smooth state.
  • FIG. 26 is a schematic diagram showing an example of the degree of smoothness in the right turn direction at the intersection.
  • the outflow in the right turn direction is not smooth.
  • travel time the time until the vehicle turns right after passing the intersection
  • the number of times of stopping while traveling toward the intersection may increase.
  • indices such as the stop position of the vehicle, travel time, and the number of stops
  • the stop position calculation unit 402 calculates a stop position (for example, a distance from the intersection 20) of the vehicle that has flowed out of the intersection in the right turn direction from the acquired probe information.
  • a stop position for example, a distance from the intersection 20
  • the smoothness determination unit 401 has many vehicles waiting for a signal or the like ahead of a vehicle that flows in a specific outflow direction (for example, a right turn direction). Therefore, it is determined that the smoothness of the outflow is not good (bad).
  • FIG. 27 is an explanatory diagram showing an example of a method for determining the smoothness of the outflow in a specific outflow direction based on the stop position of the vehicle 10.
  • a threshold value Td from the probe information of the vehicle that has flowed in the right turn direction from the intersection, it is determined that the flow in the right turn direction is not smooth.
  • the threshold value Td is, for example, G for the blue time that can flow in the right turn direction (for example, the total time for right blue, right turn arrow, etc.), s for the saturated traffic flow rate of the inflow path to the intersection, and h for the average vehicle head distance.
  • Td s ⁇ h ⁇ G can be obtained. That is, if the distance E from the intersection of the stop position of the vehicle is equal to or greater than the distance corresponding to the number of vehicles that can pass during the possible turn time for one cycle, it is determined that the flow in the right turn direction is not smooth. To do.
  • the travel time calculation unit 403 determines, based on the acquired probe information, the travel time of the vehicle that has flowed out of the intersection in the right turn direction (for example, a point on the upstream side of the inflow path of the intersection and a point near the intersection of the road in the specific outflow direction The time required to pass through the road section between is calculated.
  • the smoothness determination unit 103 indicates that there are many vehicles waiting for traffic lights in front of the vehicle that flows in the right turn direction, so that the smoothness of the outflow is not good (bad). judge.
  • FIG. 28 is an explanatory diagram showing an example of a method for determining the smoothness of the outflow in a specific outflow direction based on the travel time of the vehicle 10.
  • a section between the point A of the inflow path 21 of the intersection 20 and the point B of the outflow path 31 in the right turn direction of the intersection 20 is defined as a road section L21.
  • the point A can be, for example, about 200 m to 300 m from the intersection 20, but is not limited thereto.
  • the point B can be made into the point about 10 m from the intersection 20, it is not limited to this, The position of the stop line of the intersection 20 may be sufficient.
  • the travel time calculation unit 403 calculates the travel time required to pass the road section L21 based on the probe information of the vehicle that has flowed in the right turn direction.
  • the travel time calculation unit 403 obtains a difference time T between the calculated travel time and the reference travel time.
  • the smoothness determination unit 401 determines that the outflow in the right turn direction is not smooth when the difference time T of the travel time is equal to or greater than the threshold Th.
  • the threshold Th is, for example, approximately one cycle length of the signal lamp device 2.
  • the approximate cycle length is, for example, a time length of about 1 cycle length ⁇ 10%.
  • the smoothness determination unit 401 determines that the outflow in the right turn direction is smooth when the difference time T of the travel time is less than the threshold Th.
  • the stop count calculation unit 404 travels from the acquired probe information to the stop count C of the vehicle that has flowed out of the intersection in the right turn direction (for example, from the upstream side of the intersection inflow path to the point near the intersection of the right turn outflow path). The number of times of stopping in the meantime) is calculated.
  • the smoothness determination unit 401 has a lot of vehicles waiting for traffic lights in front of the vehicle that flows in the right turn direction, and the smoothness of the outflow is not good (bad). If the number of stops C is less than the threshold value Tc, it is determined that the smoothness of the outflow in the right turn direction is good.
  • the threshold value Tc can be appropriately set according to the length of the road section for which the number of stops is calculated. For example, when the starting point of the road section for obtaining the number of stops is upstream of the intersection and the vehicle traveling at a normal speed can reach the intersection in about one cycle of the signal cycle, the threshold value Tc Can be 2. In other words, one stop is a stop at a red signal in the middle of the signal cycle. If there are two or more stops, there are many vehicles waiting for a signal, etc. Conceivable.
  • FIG. 29 is an explanatory diagram illustrating an example of smoothness determination conditions and determination results by the signal control apparatus 400 according to the fifth embodiment. As shown in FIG. 29, when the stop position E of the vehicle is used to determine whether or not the outflow is smooth, it is determined that the smoothness is poor when the stop position E (distance to the intersection) is equal to or greater than the threshold value Td. When the stop position E is less than the threshold value Td, it is determined that the smoothness is good.
  • the smoothness is Judge as good.
  • the number of stops C is equal to or greater than the threshold Tc, it is determined that the smoothness is poor, and when the number of stops C is less than the threshold Tc, it is determined that the smoothness is good.
  • any of the stop position, travel time, and number of stops may be used, or may be determined in combination.
  • the smoothness determination unit 401 may include any one of the stop position calculation unit 402, the travel time calculation unit 403, and the stop frequency calculation unit 404.
  • the traffic volume determination unit 405 has a function as traffic volume determination means for determining whether or not the traffic volume of the inflow path flowing into the intersection is equal to or less than a predetermined value.
  • the traffic volume is, for example, the number of vehicles passing per unit time. Then, the control unit 101 turns right with respect to the signal information setting unit 109 when the traffic volume of the inflow path is equal to or less than a predetermined value (for example, saturated flow rate ⁇ sum of blue hours in all outflow directions / cycle length). Extend the time.
  • the signal information setting unit 109 determines that the traffic volume of the inflow path flowing into the intersection is a predetermined value (for example, saturation flow rate ⁇ sum of blue hours in all outflow directions / cycle length). Extend the blue hour if:
  • the traffic volume on the inflow route exceeds the specified value, there are many vehicles (for example, straight-ahead vehicles) that flow into the intersection, so rather than extending only the blue hours in a specific outflow direction, The blue hours need to be extended. Therefore, even if only the blue hours in the right turn direction are extended, the improvement of the traffic situation cannot be expected, so the blue hours are not extended. Thereby, appropriate signal control can be realized.
  • FIG. 30 is a schematic diagram showing another example of the smoothness degree in the right turn direction at the intersection.
  • FIG. 30 when there are many vehicles (including not only right-turn vehicles but also straight-ahead vehicles) traveling along the inflow path of the intersection 20 (that is, when the traffic volume of the inflow path exceeds a predetermined value), turn right in the right turn direction. It is necessary to extend the blue time in the straight direction rather than extending only the arrow time. Therefore, in the case shown in FIG. 30, the blue time is not extended.
  • the traffic jam judgment unit 406 has a function as traffic jam judgment means for judging whether or not an outflow route that flows out from an intersection (eg, an outflow route in a right turn direction, an outflow route in a straight line direction) is congested.
  • an outflow route that flows out from an intersection eg, an outflow route in a right turn direction, an outflow route in a straight line direction
  • the traffic jam determination unit 406 determines whether there is a traffic jam based on the traffic volume measured by the vehicle sensor or the like. If no vehicle detector or the like is installed, the traffic jam determination unit 406 determines whether there is traffic jam based on the probe information of the vehicle that has flowed in the right turn direction.
  • the control unit 101 causes the signal information setting unit 109 to extend the time of the right turn arrow. That is, the signal information setting unit 109 determines that when the outflow in the right turn direction is not smooth and the outflow path that flows out of the intersection (for example, the outflow path in the right turn direction or the outflow path in the straight direction) is not congested. Extend time.
  • FIG. 31 is a schematic diagram showing another example of the smoothness degree in the right turn direction of the intersection.
  • FIG. 31 when the road in the right turn direction at the intersection 20 is congested, it is necessary to extend the blue time at the intersection on the downstream side in the right turn direction rather than extending only the time of the right turn arrow in the right turn direction. There is. Therefore, in the case shown in FIG. 31, the blue time is not extended. The same applies when the outflow direction is the straight direction.
  • the control unit 101 determines that the flow in the right turn direction is not smooth and the flow in the right turn direction becomes smooth, the control unit 101 shortens the time of the right turn arrow with respect to the signal information setting unit 109. For example, an instruction is given to return to the blue time before the extension. In addition, what is necessary is just to shorten the extended blue time, without returning to the blue time before extension. Thereby, it can prevent giving excessive blue time with respect to the right turn direction, and can implement
  • the control unit 101 instructs the signal information setting unit 109 to shorten the time of the right turn arrow after a predetermined time has elapsed since the extension. For example, an instruction is given to return to the blue time before the extension. In addition, what is necessary is just to shorten the extended blue time, without returning to the blue time before extension.
  • the predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle.
  • FIG. 32 is a flowchart illustrating an example of a processing procedure of the signal control device 400 according to the fifth embodiment.
  • the signal control device 400 according to the fifth embodiment acquires the probe information of the vehicle for a predetermined time (for example, 5 minutes, 10 minutes, etc.), and determines whether the flow in the right turn direction is smooth after the acquisition. If it is not smooth, extend the time of the right turn arrow. After extending the time of the right turn arrow, the signal control is performed with the extended right turn time for several signal cycles (for example, about 5 minutes and 10 minutes).
  • the control unit 101 acquires vehicle probe information (S101), and acquires the traffic volume of an inflow path and an outflow path (for example, a road in a right turn direction or a straight direction) at an intersection (S102).
  • vehicle probe information S101
  • the traffic volume on the outflow path in the right turn direction or straight direction may be measured data from a vehicle detector, or may be probe information of a right turn vehicle or a straight ahead vehicle.
  • the control unit 101 determines whether or not the traffic volume of the inflow path is equal to or less than a predetermined value (S103). If the traffic volume is equal to or less than the predetermined value (YES in S103), whether or not the right turn outflow path is congested. Is determined (S104).
  • the control unit 101 calculates the stop position of the right turn vehicle (S105), and determines whether the calculated stop position E is equal to or greater than the threshold Td (S105). S106). When the stop position E is equal to or greater than the threshold value Td (YES in S106), the control unit 101 extends the blue time (right turn arrow time) for showing the right turn (S107).
  • the control unit 101 determines whether or not a predetermined time (for example, a time of several signal cycles) has elapsed (S108). If the predetermined time has not elapsed (NO in S108), the processing of step S108 is continued. When the predetermined time has elapsed (YES in S108), the control unit 101 restores the blue time of the right turn display (S109) and ends the process.
  • a predetermined time for example, a time of several signal cycles
  • control unit 101 When the stop position E is less than the threshold value Td (NO in S106), the control unit 101 maintains the blue time of the right turn display (S110) and ends the process. When the traffic volume of the inflow path exceeds a predetermined value (NO in S103), or when the right turn outflow path is congested (YES in S104), the control unit 101 ends the process.
  • step S108 instead of the process of determining the elapse of the predetermined time in step S108, it is determined whether or not the stop position E is less than the threshold value Td, and when the stop position E is less than the threshold value Td, the right turn The indicated blue hour may be restored.
  • the travel time or the number of stops may be calculated to extend the blue time of the right turn display.
  • the present invention is not limited to this, and it is also possible to adopt a configuration in which determination of traffic volume or determination of traffic jam is performed after smoothness determination is always performed.
  • the specific outflow direction may be a left turn direction or a straight traveling direction.
  • the signal control apparatus 400 can be realized using a general-purpose computer including a CPU, a RAM, and the like. That is, the signal control device 100 can be realized on a computer by loading a computer program that defines each processing procedure as shown in FIG. 32 into a RAM provided in the computer and executing the computer program by the CPU. .
  • a signal control device for controlling the color of a signal lamp at an intersection, the signal obtained by probe information including the position of a vehicle traveling on an inflow path flowing into the intersection and the time passing through the position
  • a specifying unit that specifies a stop position of the vehicle based on information indicating a traveling state of the vehicle; and a determination unit that determines whether the blue time is excessive or insufficient with respect to the inflow path based on the stop position specified by the specifying unit.
  • the supplementary note 1 is characterized in that it is configured to determine the excess or deficiency of the blue hours for each inflow path based on a load factor and a stop position on another inflow path that intersects the one inflow path at the intersection.
  • Signal control device (Additional remark 3)
  • the said determination means is comprised so that the excess and deficiency of the blue time with respect to each inflow path may be determined based on the stop position on the at least 2 inflow path which cross
  • the signal control device according to any one of appendices 1 to 3, further comprising setting means for setting signal information to be assigned to the blue time for the inflow path.
  • the said setting means is comprised so that the blue time with respect to each inflow path may be returned to a standard value, when the determination means determines that there is no inflow path where the blue time is insufficient for a predetermined time.
  • Priorities of inflow paths flowing into the intersection are determined in advance, and when the setting means determines that the green time is insufficient for a plurality of inflow paths by the determination means, the margin The signal according to any one of appendices 4 to 6, wherein a predetermined amount of blue hours for a certain inflow path is assigned to a blue time for an inflow path with a higher priority among the plurality of inflow paths. Control device. (Supplementary note 9) When the distance from the intersection to the stop position on the inflow path is equal to or greater than the first threshold, the determination means is configured to determine that the blue time for the inflow path is insufficient.
  • the determination unit determines that the blue time for the inflow path has a margin.
  • the signal control device according to appendix 9, wherein the signal control device is configured. (Additional remark 11)
  • the computer program for making a computer perform the step for controlling the light color of the signal light apparatus of an intersection, the position of the vehicle which drive
  • a step of specifying a stop position of the vehicle based on information indicating a traveling state of the vehicle obtained from probe information including a time to perform the determination, and determining whether the blue time of the signal lamp is excessive or insufficient based on the specified stop position A computer program for executing the steps. (Additional remark 12)
  • the signal control method by the signal control apparatus for controlling the lamp color of the signal lamp at the intersection by the probe information including the position of the vehicle traveling on the inflow path flowing into the intersection and the time passing through the position Including a step of specifying a stop position of the vehicle based on the obtained information indicating the running state of the vehicle, and a step of determining whether the signal lamp is in excess or deficiency of the blue time based on the specified stop position.
  • a characteristic signal control method In Appendices 1, 11, and 12, the vehicle is based on information indicating the traveling state of the vehicle obtained from the probe information including the position of the vehicle traveling on the inflow path flowing into the intersection and the time passing through the position. The stop position on the inflow path is identified, and the excess or deficiency of the blue time for the inflow path is determined based on the identified stop position.
  • the information indicating the traveling state is, for example, probe information (uplink information) that can be received from the in-vehicle device via the road device, and the position and time of the vehicle every predetermined period (for example, 1 second), in-vehicle Includes the identification code of the device (vehicle).
  • the excess or deficiency of the blue hours indicates whether the blue hours are insufficient or there is a margin in the blue hours. For example, if the stop position of a vehicle on a certain inflow path is relatively far from the intersection, it is considered that there are a considerable number of stopped vehicles between the stopped vehicle and the intersection. It is determined that the blue time for is insufficient. If the stop position of a vehicle on a certain inflow path is relatively close to the intersection, there are few stopped vehicles between the stopped vehicle and the intersection. It is determined that there is room in the blue hours for the road. By specifying the stop position of the vehicle, it is possible to determine whether the blue hours are excessive or insufficient.
  • the load factor of the inflow path is calculated based on the traffic volume of one inflow path that flows into the intersection.
  • the traffic volume on the main road (one inflow road) is detected by a vehicle detector and the load factor is calculated based on the detected traffic volume.
  • the load factor can be obtained, for example, as a ratio of the inflow flow rate (unit / unit time) to the saturated traffic flow rate of the inflow channel.
  • the saturated traffic flow rate indicates the capacity of the inflow path, and is, for example, 1800 vehicles per hour.
  • the blue time for the inflow channel has a margin. Can be determined. Then, based on the calculated load factor of one inflow path (main road) and the stop position of the vehicle on another inflow path (secondary road) that intersects the one inflow path at the intersection, the blue hour of each inflow path Determine excess or deficiency. By specifying the load factor of the main road and the stop position of the vehicle on the secondary road, it is possible to determine whether the blue hours are excessive or insufficient. In Supplementary Note 3, the excess or deficiency of the blue time for each inflow path is determined based on the stop positions of the vehicles on at least two inflow paths that intersect at the intersection.
  • the stop position of the vehicle on each inflow path it is possible to determine whether the blue time is excessive or insufficient for each inflow path.
  • the predetermined amount of blue time for the inflow channel with a margin of blue time is determined as the blue hour.
  • the signal information is set so as to be allocated to the blue time for the inflow channel in which there is a shortage.
  • the predetermined amount is, for example, 2 seconds, 3 seconds, or the like.
  • the blue time for an inflow channel that flows into an intersection is a standard value
  • the blue time for an inflow channel that lacks blue time is increased by a predetermined amount from the standard value
  • the blue time for an inflow channel that has a margin of blue time Reduce the standard value by a predetermined amount.
  • the predetermined amount is a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds)
  • the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
  • the blue time for each inflow channel is returned to the standard value.
  • the predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle.
  • the increase / decrease in the blue time by a predetermined amount ends when the upper limit value or lower limit value of the blue time is reached.
  • the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the blue time can be adjusted in real time according to the traffic situation that changes from moment to moment.
  • the priority order of the inflow path flowing into the intersection is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there.
  • an inflow path with a lower priority is selected from the plurality of inflow paths, and the predetermined amount of blue time for the selected inflow paths is insufficient for the blue time Assign to the blue hour for the current inflow. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of inflow paths, the blue time for the inflow road with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the priority order of the inflow channels flowing into the intersection is determined in advance. The priority order can be determined by past traffic conditions.
  • a predetermined amount of blue time for an inflow channel with a margin of blue time is set to a blue amount for an inflow channel with a higher priority among the plurality of inflow channels. Assign to time. For example, when the intersection is five or more roads and the blue hours for a plurality of inflow paths are insufficient, the blue time needs to be made the longest, and the blue time for the inflow road with a higher priority is increased by a predetermined amount.
  • the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the green time is insufficient by specifying the position of the stopped vehicle.
  • a signal control apparatus comprising: determination means for determining whether or not the green time for the road section is insufficient.
  • determination means for determining whether or not the green time for the road section is insufficient.
  • the signal control apparatus according to appendix 1, further comprising setting means for setting signal information so as to be assigned to the green time for a road section.
  • the said setting means increased / decreased when it was determined that either the road section determined by the said determination means that there was a margin in the blue time or the road section determined that the blue time was insufficient did not exist
  • the signal control device according to appendix 2, wherein the blue time is returned to the original blue time.
  • the signal control device according to any one of appendices 1 to 6, wherein the travel time calculated in (1) is used to determine whether or not the blue time for the road section is insufficient.
  • the signal control device according to any one of supplementary notes 1 to 7, wherein the threshold value is a substantially cycle length of the signal lamp.
  • the computer program for making a computer perform the step for controlling the light color of the signal light apparatus of an intersection, the difference of the travel time in the road area containing the said intersection and reference
  • the difference between the travel time in the road section including the intersection and the reference travel time is smaller or larger than the threshold value And determining whether or not the green time for the road section is insufficient.
  • the green time for the road section is insufficient depending on whether the difference between the travel time in the road section including the intersection and the reference travel time is smaller or larger than the threshold (Whether it is deficient or has room).
  • the road section is, for example, a section that starts at a point upstream of the inflow path that flows into the intersection and ends at the outflow point of the intersection.
  • the information indicating the traveling state is, for example, uplink information that can be received from the in-vehicle device via the road device, and the position and time of the vehicle every predetermined period (for example, 1 second), the in-vehicle device (vehicle). Including the identification code.
  • the reference travel time can be, for example, a standard travel time when there is no traffic jam. In the determination of the blue time, it is determined whether the blue time is insufficient or the blue time has a margin. For example, when the difference between the travel time of the road section and the reference travel time is equal to or greater than the threshold, it is determined that the blue time for the road section is insufficient.
  • the blue time for the road section has a margin. Based on the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section.
  • a part of the blue time for a road section with a margin (for example, a predetermined amount) Signal information is set to allocate the blue hour for the road section lacking.
  • the predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like.
  • the blue time for a road section with sufficient blue time is reduced by a predetermined amount and added to the blue time for a road section where the blue time is insufficient.
  • the predetermined amount is a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds)
  • the blue time can be finely adjusted according to the excess or deficiency of the blue time.
  • the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
  • the increased or decreased blue hours are Go back in time.
  • the blue hour is increased or decreased from the standard value according to traffic conditions, for example, when the excess or deficiency of the blue hour is resolved, the signal control is performed using the initially set signal control parameters by returning the blue hour to the standard value. It can be carried out.
  • the green time for any road section is longer than the standard value and it is determined that the blue time for the road section has a margin
  • a part of the blue time for the road section (for example, (Predetermined amount) is allocated to another road section (for example, a road section having a shortage of blue hours or a road section having a margin of blue hours). This makes it possible to return the blue hour to the standard value when the traffic volume decreases.
  • the priority order of road sections is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there.
  • a road section that lacks a part (for example, a predetermined amount) of blue hours for a road section with a low priority among the plurality of road sections Assign to blue hours. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of road sections, the blue hours for the road sections with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the priority order of road sections is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be.
  • a part (for example, a predetermined amount) of the blue hours for a road section with a margin is assigned to a road section with a higher priority among the plurality of road sections.
  • Assign to blue hours For example, when the intersection is more than a five-way road and the blue hours for a plurality of road sections are insufficient, the blue hours need to be made the longest and the blue hours for the road sections with higher priority are increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
  • the travel time in the road section is calculated based on the information indicating the traveling state of the vehicle traveling on the road section including the intersection, and the difference between the calculated travel time and the reference travel time is smaller than the threshold value. Alternatively, it is determined whether or not the green time for the road section is insufficient (whether it is insufficient or has a margin) depending on whether it is large. By calculating the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section.
  • the threshold is the approximate cycle length of the signal lamp. The approximate cycle length is, for example, a cycle length of about ⁇ 10%. Thereby, it is possible to detect two signal waits based on the travel time of the road section, and it is possible to accurately determine whether the blue hours are excessive or insufficient.
  • a signal control apparatus for controlling a signal lamp that gives a passage permission independently of other outflow directions with respect to a specific outflow direction from an intersection, the position of the vehicle that has traveled in the specific outflow direction And smoothness determination means for determining whether or not the outflow in the specific outflow direction is smooth based on the probe information including the time passing through the position, and the smoothness determination means that the outflow is not smooth And a blue time setting means for extending the blue time with respect to the specific outflow direction when determined.
  • the smoothness determination means is configured to determine whether or not the outflow is smooth based on the stop position, travel time, or number of stops of the vehicle that has traveled in the specific outflow direction.
  • a signal control device (Additional remark 3) It is provided with the traffic volume determination means which determines whether the traffic volume of the inflow path which flows in into the said intersection is below a predetermined value, The said blue time setting means has a traffic volume predetermined by the said traffic volume determination means.
  • a signal control device configured to extend the blue time when it is determined that the value is less than or equal to the value.
  • the traffic congestion determination means which determines whether the outflow path which flows out out of the said intersection is congested, and the said blue time setting means determines that there is no traffic jam by the said traffic congestion determination means.
  • a signal control device characterized in that the signal control device is extended.
  • the green time setting means determines that the smoothness determining means does not smoothly flow out in the specific outflow direction, and the outflow in the specific outflow direction is smooth
  • a signal control device configured to shorten the blue time.
  • the said blue time setting means is comprised so that blue time may be shortened after progress for a predetermined time, when blue time is extended.
  • a signal control device for controlling a signal lamp that gives a passage permission independently of other outflow directions with respect to a specific outflow direction from an intersection, it proceeds in the specific outflow direction A step of determining whether or not the outflow in the specific outflow direction is smooth based on the probe information including the position of the vehicle and the time of passing the position, and if it is determined that the outflow is not smooth, Extending the blue time for the specific outflow direction.
  • Appendices 1, 7, and 8 whether or not the outflow in the specific outflow direction is smooth based on the probe information including the position of the vehicle traveling in the specific outflow direction and the time passing the position Determine.
  • the specific outflow direction is an outflow direction that grants passage permission to an inflow vehicle from the same direction independently of other outflow directions, for example, a right turn direction of an intersection with a right turn blue arrow.
  • the specific outflow direction can include not only the right turn direction but also the left turn direction.
  • the probe information can be acquired from, for example, a vehicle-mounted device via a road device, and includes the position and time of the vehicle every predetermined cycle (for example, 1 second), the identification code of the vehicle-mounted device (vehicle), and the like. Based on the acquired probe information, it is determined whether or not the outflow in the specific outflow direction is smooth. If it is determined that the outflow is not smooth, the blue time for the specific outflow direction is extended.
  • Whether or not the outflow in a specific outflow direction is smooth can be determined by extracting the probe information of the vehicle traveling in the specific outflow direction from the acquired probe information and how smoothly the vehicle can pass through the intersection. Judgment is based on whether or not. For smoothness determination, for example, how far the stop position of the vehicle is from the intersection, how long the vehicle traveled, or how many stops the vehicle was repeated before passing the intersection, etc.
  • the traffic indicator can be used. Based on the probe information, the degree of smoothness of the outflow in a specific outflow direction is determined. If smooth outflow is not performed, the blue time for permitting passage in the specific outflow direction is extended.
  • Appropriate signal control for a specific outflow direction from an intersection can be realized in response to a change in traffic conditions without providing facilities necessary for traffic sensitive control such as a vessel at each intersection.
  • it is determined whether or not the outflow is smooth based on the stop position, travel time, or number of stops of the vehicle that has traveled in the specific outflow direction.
  • the stop position of the vehicle for example, the distance from the intersection
  • the stop position of the vehicle may be obtained from the acquired probe information, and the distance between the stop position and the intersection is equal to or greater than the threshold value.
  • the smoothness of the outflow is not good (bad).
  • the travel time of the vehicle for example, the road section between the point upstream of the inflow path of the intersection and the point near the intersection of the road in the specific outflow direction is obtained from the acquired probe information. If the travel time is equal to or greater than the threshold, there are many vehicles waiting for traffic lights in front of the vehicle that flows in a specific direction, so the smoothness of the outflow is not good. It can be determined that it is bad.
  • the number of times of stop of the vehicle when using the number of times of stop of the vehicle, the number of times of stop of the vehicle from the acquired probe information (for example, the number of times of stop while traveling from the upstream side of the inflow path of the intersection to the point near the intersection of the road in the specific outflow direction) If the number of stops is equal to or greater than the threshold value, there are many vehicles waiting for traffic lights in front of the vehicle that flows out in a specific outflow direction, so it is determined that the smoothness of outflow is not good (bad). it can.
  • the traffic volume of the inflow path flowing into the intersection is acquired. For example, when a vehicle detector or the like is provided at the upstream point of the inflow path of the intersection, the traffic volume of the inflow path is acquired.
  • the traffic volume is, for example, the number of vehicles passing per unit time. And when the acquired traffic volume is below a predetermined value (for example, saturation flow rate x sum of blue hours in all outflow directions / cycle length), the blue hours are extended. If the traffic volume on the inflow route exceeds the specified value, there are many vehicles (for example, straight-ahead vehicles) that flow into the intersection, so rather than extending only the blue hours in a specific outflow direction, The blue hours need to be extended. Therefore, even if only the blue hours in a specific outflow direction are extended, the improvement of the traffic situation cannot be expected, so the blue hours are not extended. Thereby, appropriate signal control can be realized.
  • a predetermined value for example, saturation flow rate x sum of blue hours in all outflow directions / cycle length
  • an outflow path for example, an outflow path in a right turn direction or an outflow path in a straight line direction
  • Whether or not there is a traffic jam can be determined based on the traffic volume measured by the vehicle detector or the like when a vehicle detector or the like is installed on the road in the outflow direction. Further, when a vehicle detector or the like is not installed, the determination can be made based on the probe information of the vehicle that has flowed out in the outflow direction. When it is determined that there is no traffic jam, the blue time is extended. When the outflow route that flows out from the intersection is congested, it is necessary to extend the green time at the intersection on the downstream side of the road.
  • the predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided are a signal control device, computer program, and signal control method capable of achieving suitable signal control according to a traffic situation. A frequency-of-passage calculation unit (103) of the present invention calculates the frequency of passage of a probe vehicle for an arbitrary time period on the basis of the amount of traffic acquired at a communication unit (102). The frequency of passage, for example, can be obtained as the average per day for each of the arbitrary time periods for the probe vehicle. A selection unit (105) selects one signal control method from among a pre-defined plurality of signal control methods for controlling the time when a traffic light is blue depending upon the frequency of passage that has been calculated at the frequency-of-passage calculation unit (103).

Description

信号制御装置、コンピュータプログラム及び信号制御方法Signal control apparatus, computer program, and signal control method
 本発明は、交差点の信号灯器の灯色を制御するための信号制御装置、該信号制御装置を実現するためのコンピュータプログラム及び信号制御方法に関する。 The present invention relates to a signal control device for controlling the color of a signal lamp at an intersection, a computer program for realizing the signal control device, and a signal control method.
 複数の信号制御パラメータを記憶しておき、時刻に応じて予め指定した信号制御パラメータを選択して交通信号制御を行う交通信号制御機が知られている。この交通信号制御機では、運用開始前に予め交通需要を把握し、時刻別に交通需要をパターン化し、それぞれの交通需要パターンに適用する複数の信号制御パラメータを設定している。 A traffic signal controller that stores a plurality of signal control parameters and performs traffic signal control by selecting a signal control parameter designated in advance according to time is known. In this traffic signal controller, the traffic demand is grasped in advance before the start of operation, the traffic demand is patterned according to time, and a plurality of signal control parameters to be applied to each traffic demand pattern are set.
 しかし、運用開始後に交通需要そのものが変化した場合には、時刻別の交通需要が変化してしまい交通需要パターンに基づいた信号制御パラメータが交通状況に適合しなくなるおそれがある。そこで、車両の車載装置から取得した走行軌跡情報に基づいて交通管理区間の旅行時間を算出し、算出した旅行時間に応じた信号制御パラメータ(サイクル長、スプリット、オフセットなど)を設定する交通信号制御装置が開示されている(特許文献1参照)。 However, when the traffic demand itself changes after the start of operation, the traffic demand at each time changes, and the signal control parameter based on the traffic demand pattern may not be adapted to the traffic situation. Therefore, traffic signal control that calculates the travel time of the traffic management section based on the travel locus information acquired from the in-vehicle device of the vehicle and sets signal control parameters (cycle length, split, offset, etc.) according to the calculated travel time An apparatus is disclosed (see Patent Document 1).
特開2009-252066号公報JP 2009-252066 A
 特許文献1の交通信号制御装置による信号制御パラメータの設定は、車載装置から取得した走行軌跡情報(例えば、プローブ情報、プローブ情報はFCD[フローティング・カーデータ]とも称する。)に基づいて旅行時間を算出しているので、旅行時間を算出するためのプローブ情報が、例えば、交通信号の数サイクルに1度程度の頻度で取得することができる場合には、有効である。しかし、プローブ情報を送信することができる車載装置を搭載した車両の普及率は必ずしも高くなく、旅行時間をタイムリーに求めることができる程度にプローブ情報を取得することができない可能性も高い。このため、交通状況に応じて適切な信号制御を実現することが望まれていた。 The setting of the signal control parameter by the traffic signal control device of Patent Document 1 is based on travel locus information acquired from the in-vehicle device (for example, probe information, probe information is also referred to as FCD [floating car data]). Since it is calculated, it is effective when the probe information for calculating the travel time can be acquired at a frequency of about once every several traffic signal cycles. However, the penetration rate of vehicles equipped with in-vehicle devices that can transmit probe information is not necessarily high, and there is a high possibility that probe information cannot be acquired to the extent that travel time can be obtained in a timely manner. For this reason, it has been desired to realize appropriate signal control according to traffic conditions.
 本発明は、斯かる事情に鑑みてなされたものであり、交通状況に応じた適切な信号制御を実現することができる信号制御装置、該信号制御装置を実現するためのコンピュータプログラム及び信号制御方法を提供することを目的とする。 The present invention has been made in view of such circumstances, a signal control device capable of realizing appropriate signal control according to traffic conditions, a computer program and a signal control method for realizing the signal control device. The purpose is to provide.
 第1発明に係る信号制御装置は、車両の走行状態を示す情報を送信する送信手段を有する該車両の通行量に応じて交差点に流入する流入路に対する信号灯器の灯色を制御するための信号制御装置において、前記通行量に基づいて、任意の時間帯で前記送信手段を有する車両の通行頻度を算出する算出手段と、該算出手段で算出した通行頻度に応じて、前記信号灯器の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択する選択手段とを備えることを特徴とする。 A signal control device according to a first aspect of the present invention is a signal for controlling the lamp color of a signal lamp for an inflow path that flows into an intersection according to the amount of traffic of the vehicle having transmission means for transmitting information indicating the running state of the vehicle. In the control device, based on the traffic volume, a calculation means for calculating a traffic frequency of the vehicle having the transmission means in an arbitrary time zone, and a blue time of the signal lamp according to the traffic frequency calculated by the calculation means Selecting means for selecting one signal control method from a plurality of signal control methods determined in advance to control the signal.
 第2発明に係る信号制御装置は、第1発明において、前記複数の信号制御方式は、車両の走行状態を示す情報に基づく交通指標を用いる信号制御方式と該交通指標を用いない信号制御方式とを含み、前記選択手段は、前記算出手段で算出した通行頻度の大小に応じて前記交通指標を用いる信号制御方式か該交通指標を用いない信号制御方式かを選択するように構成してあることを特徴とする。 The signal control device according to a second invention is the signal control system according to the first invention, wherein the plurality of signal control methods include a signal control method using a traffic index based on information indicating a running state of the vehicle, and a signal control method not using the traffic index. And the selecting means is configured to select a signal control method using the traffic index or a signal control method not using the traffic index according to the magnitude of the traffic frequency calculated by the calculating means. It is characterized by.
 第3発明に係る信号制御装置は、第1発明又は第2発明において、前記複数の信号制御方式は、車両の走行状態を示す情報に基づく交通指標に応じて、該交通指標毎に定めた複数の信号制御パラメータの中から一の信号制御パラメータを決定する第2の信号制御方式を含むことを特徴とする。 The signal control device according to a third aspect of the present invention is the signal control device according to the first or second aspect, wherein the plurality of signal control methods are a plurality determined for each traffic index according to a traffic index based on information indicating a running state of the vehicle. And a second signal control method for determining one signal control parameter from among the signal control parameters.
 第4発明に係る信号制御装置は、第1発明乃至第3発明のいずれか1つにおいて、前記複数の信号制御方式は、時間帯毎に定めた複数の信号制御パラメータの中から時刻に応じて一の信号制御パラメータを決定する第1の信号制御方式を含むことを特徴とする。 A signal control device according to a fourth invention is the signal control device according to any one of the first invention to the third invention, wherein the plurality of signal control methods are selected according to time from a plurality of signal control parameters determined for each time zone. Including a first signal control method for determining one signal control parameter.
 第5発明に係る信号制御装置は、第1発明又は第2発明において、前記複数の信号制御方式は、時刻及び車両の走行状態を示す情報に基づく交通指標に応じて、時間帯毎及び該交通指標毎に定めた複数の信号制御パラメータの中から一の信号制御パラメータを決定する第3の信号制御方式を含むことを特徴とする。 The signal control device according to a fifth aspect of the present invention is the signal control apparatus according to the first or second aspect, wherein the plurality of signal control methods are configured for each time zone and the traffic according to a traffic index based on information indicating a time and a running state of the vehicle. It includes a third signal control method for determining one signal control parameter from among a plurality of signal control parameters determined for each index.
 第6発明に係る信号制御装置は、第1発明乃至第5発明のいずれか1つにおいて、前記選択手段は、前記算出手段で算出した通行頻度が第1閾値より小さい場合、前記第1の信号制御方式を選択し、前記第1閾値以上である場合、前記第2又は第3の信号制御方式のいずれかを選択するように構成してあることを特徴とする。 The signal control device according to a sixth aspect of the present invention is the signal control device according to any one of the first to fifth aspects, wherein the selection unit is configured to output the first signal when the traffic frequency calculated by the calculation unit is smaller than a first threshold value. A control method is selected, and if the control method is equal to or greater than the first threshold, either the second or third signal control method is selected.
 第7発明に係る信号制御装置は、第6発明において、前記選択手段は、前記算出手段で算出した通行頻度が前記第1閾値より大きい第2閾値以上である場合、前記第2の信号制御方式を選択するように構成してあることを特徴とする。 The signal control device according to a seventh aspect of the present invention is the signal control apparatus according to the sixth aspect, wherein, when the traffic frequency calculated by the calculation means is greater than or equal to a second threshold value that is greater than the first threshold value, It is characterized by selecting.
 第8発明に係る信号制御装置は、第7発明において、前記選択手段は、前記算出手段で算出した通行頻度が前記第1閾値以上であって前記第2閾値より小さい場合、前記第3の信号制御方式を選択するように構成してあることを特徴とする。 The signal control device according to an eighth invention is the signal control device according to the seventh invention, wherein, in the seventh invention, the selection means is configured such that when the traffic frequency calculated by the calculation means is equal to or higher than the first threshold and smaller than the second threshold, It is configured to select a control method.
 第9発明に係る信号制御装置は、第6発明乃至第8発明のいずれか1つにおいて、前記交差点に流入する流入路を走行する車両の位置及び該位置を通過する時刻を含むプローブ情報により得られた該車両の走行状態を示す情報に基づいて車両の停止位置を特定する特定手段と、該特定手段で特定した停止位置に基づいて前記流入路に対する青時間の過不足を判定する第1判定手段とを備え、前記選択手段は、前記第3の信号制御方式に代えて、前記第1判定手段で判定した判定結果に基づいて信号制御パラメータを決定する第4の信号制御方式を選択するように構成してあることを特徴とする。 A signal control device according to a ninth aspect of the present invention is the signal control device according to any one of the sixth to eighth aspects of the present invention, obtained from probe information including a position of a vehicle traveling on an inflow path flowing into the intersection and a time passing through the position. Specifying means for specifying the stop position of the vehicle based on the information indicating the travel state of the vehicle, and a first determination for determining whether the inflow path is excessive or insufficient based on the stop position specified by the specifying means And the selection means selects a fourth signal control method for determining a signal control parameter based on the determination result determined by the first determination means, instead of the third signal control method. It is comprised by these.
 第10発明に係る信号制御装置は、第9発明において、前記交差点に流入する一の流入路の交通量に基づいて該流入路の負荷率を算出する負荷率算出手段を備え、前記第1判定手段は、前記負荷率算出手段で算出した前記一の流入路の負荷率及び前記交差点で前記一の流入路と交差する他の流入路上の停止位置に基づいて各流入路に対する青時間の過不足を判定するように構成してあることを特徴とする。 According to a tenth aspect of the present invention, in the ninth aspect of the invention, the signal control apparatus further comprises load factor calculation means for calculating a load factor of the inflow path on the basis of the traffic volume of the one inflow path flowing into the intersection. The means is based on the load factor of the one inflow passage calculated by the load factor calculation means and the stop position on the other inflow passage that intersects the one inflow passage at the intersection, and the excess or deficiency of the blue time for each inflow passage It is characterized by determining.
 第11発明に係る信号制御装置は、第9発明において、前記第1判定手段は、前記交差点で交差する少なくとも2つの流入路上の停止位置に基づいて各流入路に対する青時間の過不足を判定するように構成してあることを特徴とする。 The signal control device according to an eleventh aspect of the present invention is the signal control device according to the ninth aspect, wherein the first determination means determines whether the blue time is excessive or insufficient for each inflow path based on stop positions on at least two inflow paths that intersect at the intersection. It is configured as described above.
 第12発明に係る信号制御装置は、第9発明乃至第11発明のいずれか1つにおいて、前記第1判定手段で青時間に余裕がある流入路と青時間が不足している流入路とが存在すると判定した場合、前記余裕がある流入路に対する青時間の所定量を前記不足している流入路に対する青時間に割り当てるべく信号情報を設定する第1設定手段を備えることを特徴とする。 A signal control device according to a twelfth aspect of the present invention is the signal control device according to any one of the ninth to eleventh aspects, wherein the first determination means includes an inflow channel having a margin of blue time and an inflow channel having a shortage of blue time. In the case where it is determined that there exists a first setting means for setting signal information so as to allocate a predetermined amount of the blue time for the inflow path with the margin to the blue time for the insufficient inflow path.
 第13発明に係る信号制御装置は、第12発明において、前記第1設定手段は、前記第1判定手段で所定時間の間、青時間が不足している流入路が存在しないと判定した場合、各流入路に対する青時間を標準値に戻すように構成してあることを特徴とする。 The signal control device according to a thirteenth invention is the signal control device according to the twelfth invention, wherein the first setting means determines that there is no inflow channel having a shortage of green time for a predetermined time by the first determination means. The blue time for each inflow channel is configured to return to a standard value.
 第14発明に係る信号制御装置は、第12発明又は第13発明において、前記第1設定手段は、所定量の青時間を割り当てた場合に、前記第1判定手段で青時間に余裕がある流入路と青時間が不足している流入路とが存在すると再度判定したときは、その都度所定量の青時間の割り当てを繰り返すように構成してあることを特徴とする。 A signal control device according to a fourteenth aspect of the present invention is the signal control apparatus according to the twelfth aspect or the thirteenth aspect, wherein the first setting means has an inflow in the blue time by the first determination means when a predetermined amount of blue time is allocated. When it is determined again that there is a road and an inflow route with insufficient blue hours, a predetermined amount of blue hours is assigned each time.
 第15発明に係る信号制御装置は、第12発明乃至第14発明のいずれか1つにおいて、前記交差点に流入する流入路の優先順位を予め定めておき、前記第1設定手段は、前記第1判定手段で複数の流入路に対する青時間に余裕があると判定した場合、前記複数の流入路のうち優先順位の低い流入路に対する青時間の所定量を前記不足している流入路に対する青時間に割り当てるように構成してあることを特徴とする。 The signal control device according to a fifteenth aspect of the present invention is the signal control device according to any one of the twelfth to fourteenth aspects, wherein the priority order of the inflow passage flowing into the intersection is determined in advance, and the first setting means is the first setting means. When it is determined by the determining means that there is a margin in the blue hours for the plurality of inflow paths, a predetermined amount of the blue time for the inflow paths having a low priority among the plurality of inflow paths is set as the blue time for the inflow paths that are insufficient. It is comprised so that it may allocate.
 第16発明に係る信号制御装置は、第12発明乃至第14発明のいずれか1つにおいて、前記交差点に流入する流入路の優先順位を予め定めておき、前記第1設定手段は、前記第1判定手段で複数の流入路に対して青時間が不足していると判定した場合、前記余裕がある流入路に対する青時間の所定量を前記複数の流入路のうち優先順位の高い流入路に対する青時間に割り当てるように構成してあることを特徴とする。 A signal control device according to a sixteenth aspect of the present invention is the signal control device according to any one of the twelfth to fourteenth aspects, wherein the priority order of the inflow passage flowing into the intersection is determined in advance, and the first setting means is the first setting means. When it is determined by the determining means that the green time is insufficient for a plurality of inflow paths, a predetermined amount of the blue time for the inflow paths with a margin is determined as blue for the inflow paths with higher priority among the plurality of inflow paths. It is configured to be assigned to time.
 第17発明に係る信号制御装置は、第9発明乃至第16発明のいずれか1つにおいて、前記第1判定手段は、前記交差点から流入路上の停止位置までの距離が第1距離閾値以上である場合、該流入路に対する青時間が不足していると判定するように構成してあることを特徴とする。 The signal control device according to a seventeenth aspect of the present invention is the signal control device according to any one of the ninth to sixteenth aspects, wherein the first determination means has a distance from the intersection to the stop position on the inflow path equal to or greater than a first distance threshold. In this case, it is determined that the blue time for the inflow channel is insufficient.
 第18発明に係る信号制御装置は、第17発明において、前記第1判定手段は、前記交差点から流入路上の停止位置までの距離が前記第1距離閾値より小さい第2距離閾値以下である場合、該流入路に対する青時間に余裕があると判定するように構成してあることを特徴とする。 The signal control device according to an eighteenth aspect of the present invention is the signal control device according to the seventeenth aspect, wherein the first determination means has a distance from the intersection to the stop position on the inflow path that is equal to or smaller than a second distance threshold smaller than the first distance threshold. It is configured to determine that there is a margin in the blue time for the inflow channel.
 第19発明に係る信号制御装置は、第6発明乃至第8発明のいずれか1つにおいて、前記交差点を含む道路区間での旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて前記道路区間に対する青時間が不足しているか否かを判定する第2判定手段を備え、前記選択手段は、前記第3の信号制御方式に代えて、前記第2判定手段で判定した判定結果に基づいて信号制御パラメータを決定する第5の信号制御方式を選択するように構成してあることを特徴とする。 The signal control device according to a nineteenth aspect of the present invention is the signal control device according to any one of the sixth to eighth aspects, wherein the difference between the travel time in the road section including the intersection and the reference travel time is smaller or larger than a threshold value. And a second determination means for determining whether or not the blue time for the road section is insufficient, wherein the selection means is determined by the second determination means instead of the third signal control method. A fifth signal control method for determining a signal control parameter based on the determination result is selected.
 第20発明に係る信号制御装置は、第19発明において、前記第2判定手段で青時間に余裕がある道路区間と青時間が不足している道路区間とが存在すると判定した場合、前記余裕がある道路区間に対する青時間の一部を前記不足している道路区間に対する青時間に割り当てるべく信号情報を設定する第2設定手段を備えることを特徴とする。 In the signal control device according to a twentieth aspect of the present invention, in the nineteenth aspect of the invention, when the second determination means determines that there is a road section with a margin of green time and a road section with a shortage of blue time, the margin is A second setting means is provided for setting signal information so as to allocate a part of the green time for a road section to the blue time for the insufficient road section.
 第21発明に係る信号制御装置は、第20発明において、前記第2設定手段は、前記第2判定手段で青時間に余裕があると判定した道路区間又は青時間が不足していると判定した道路区間のいずれかが存在しないと判定した場合、増減した青時間を元の青時間に戻すように構成してあることを特徴とする。 According to a twenty-first aspect of the present invention, in the twentieth aspect, the signal setting device determines that the second setting means determines that the road section or the blue time that the second determination means determines that there is a margin for the blue time is insufficient. When it is determined that any of the road sections does not exist, the increased / decreased blue time is returned to the original blue time.
 第22発明に係る信号制御装置は、第19発明において、任意の道路区間に対する青時間が標準値より長い場合に、前記第2判定手段で前記道路区間に対する青時間に余裕があると判定したときは、該道路区間に対する青時間の一部を他の道路区間に割り当てるべく信号情報を設定する第3設定手段を備えることを特徴とする。 The signal control device according to a twenty-second aspect of the invention is the nineteenth aspect, wherein when the blue time for an arbitrary road section is longer than a standard value, the second determination means determines that the blue time for the road section has a margin Comprises a third setting means for setting signal information so as to allocate a part of the green time for the road section to another road section.
 第23発明に係る信号制御装置は、第20発明又は第21発明において、前記道路区間の優先順位を予め定めておき、前記第2設定手段は、前記第2判定手段で複数の道路区間に対する青時間に余裕があると判定した場合、前記複数の道路区間のうち優先順位の低い道路区間に対する青時間の一部を前記不足している道路区間に対する青時間に割り当てるように構成してあることを特徴とする。 According to a twenty-third aspect of the present invention, in the twentieth aspect or the twenty-first aspect, the signal control device according to the twenty-third aspect of the present invention determines the priority order of the road sections in advance. When it is determined that there is a margin in time, a part of the green time for a road section with a low priority among the plurality of road sections is allocated to the blue time for the lacking road section. Features.
 第24発明に係る信号制御装置は、第20発明又は第21発明において、前記道路区間の優先順位を予め定めておき、前記第2設定手段は、前記第2判定手段で複数の道路区間に対する青時間が不足していると判定した場合、前記余裕がある道路区間に対する青時間の一部を前記複数の道路区間のうち優先順位の高い道路区間に対する青時間に割り当てるように構成してあることを特徴とする。 According to a twenty-fourth aspect of the present invention, in the twentieth aspect or the twenty-first aspect, the signal control device according to the twenty-fourth aspect of the present invention sets the priority order of the road sections in advance. When it is determined that time is insufficient, a part of the blue hours for the road section with the margin is configured to be allocated to the blue hours for the road section having a higher priority among the plurality of road sections. Features.
 第25発明に係る信号制御装置は、第19発明乃至第24発明のいずれか1つにおいて、前記交差点を含む道路区間を走行する車両の走行状態を示す情報に基づいて前記道路区間での旅行時間を算出する旅行時間算出手段を備え、前記第2判定手段は、前記旅行時間算出手段で算出した旅行時間を用いて前記道路区間に対する青時間が不足しているか否かを判定するように構成してあることを特徴とする。 A signal control device according to a twenty-fifth aspect of the present invention is the signal control device according to any one of the nineteenth to twenty-fourth aspects, wherein the travel time on the road section is based on information indicating a traveling state of a vehicle traveling on the road section including the intersection. Travel time calculation means for calculating the travel time, and the second determination means is configured to determine whether or not the blue time for the road section is insufficient using the travel time calculated by the travel time calculation means. It is characterized by being.
 第26発明に係る信号制御装置は、第19発明乃至第25発明のいずれか1つにおいて、前記閾値は、前記信号灯器の略サイクル長であることを特徴とする。 In the signal control device according to a twenty-sixth aspect of the present invention, in any one of the nineteenth to twenty-fifth aspects, the threshold value is a substantially cycle length of the signal lamp device.
 第27発明に係るコンピュータプログラムは、コンピュータに、車両の走行状態を示す情報を送信する送信手段を有する該車両の通行量に応じて交差点に流入する流入路に対する信号灯器の灯色を制御するためのステップを実行させるためのコンピュータプログラムにおいて、コンピュータに、前記通行量に基づいて、任意の時間帯で前記送信手段を有する車両の通行頻度を算出するステップと、算出した通行頻度に応じて、前記信号灯器の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択するステップとを実行させることを特徴とする。 A computer program according to a twenty-seventh aspect of the present invention is for controlling a lamp color of a signal lamp for an inflow path flowing into an intersection according to the amount of traffic of the vehicle having transmission means for transmitting information indicating the running state of the vehicle to the computer. In the computer program for executing the above step, the computer calculates the traffic frequency of the vehicle having the transmission means in an arbitrary time zone based on the traffic volume, and according to the calculated traffic frequency, A step of selecting one signal control method from a plurality of predetermined signal control methods for controlling the blue time of the signal lamp.
 第28発明に係る信号制御方法は、車両の走行状態を示す情報を送信する送信手段を有する該車両の通行量に応じて交差点に流入する流入路に対する信号灯器の灯色を制御するための信号制御装置による信号制御方法において、前記通行量に基づいて、任意の時間帯で前記送信手段を有する車両の通行頻度を算出するステップと、算出された通行頻度に応じて、前記信号灯器の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択するステップとを含むことを特徴とする。 A signal control method according to a twenty-eighth aspect of the invention is a signal for controlling the lamp color of a signal lamp for an inflow path that flows into an intersection according to the amount of traffic of the vehicle having transmission means for transmitting information indicating the running state of the vehicle. In the signal control method by the control device, a step of calculating a traffic frequency of the vehicle having the transmission means in an arbitrary time zone based on the traffic volume, and a blue time of the signal lamp according to the calculated traffic frequency Selecting one signal control method from among a plurality of predetermined signal control methods for controlling the signal.
 第1発明、第27発明及び第28発明にあっては、車両の走行状態を示す情報を送信する送信手段(例えば、車載装置)を有する車両(プローブ車両)の通行量に基づいて、任意の時間帯で送信手段を有する車両の通行頻度を算出する。走行状態を示す情報は、例えば、路上装置を介して車載装置から受信することができるプローブ情報(FCD、フローティング・カーデータとも称する)であり、所定の周期(例えば、1秒)毎の車両の位置及び時刻、車載装置(車両)の識別コードなどを含む。また、送信手段(車載装置)を有する車両であるか否かは、当該車両が送信したプローブ情報を受信することにより認識することができる。車両の通行量は、例えば、予め設定された時間帯毎に流入路を通行したプローブ車両の台数である。通行頻度は、例えば、1日の任意の時間帯での車両の通行量(プローブ車両の台数)を所定の期間(例えば、1か月、3か月、6か月、1年など)の間収集し、所定の期間が経過する都度、収集した通行量の合計を所定の期間の日数で除算して1日当たりの数値を求め、プローブ車両の台数の任意の時間帯毎の1日当たりの平均として求めることができる。 In the first invention, the twenty-seventh invention and the twenty-eighth invention, based on the amount of traffic of a vehicle (probe vehicle) having transmission means (for example, an in-vehicle device) for transmitting information indicating the running state of the vehicle, any The traffic frequency of the vehicle having the transmission means in the time zone is calculated. The information indicating the traveling state is, for example, probe information (also referred to as FCD or floating car data) that can be received from the in-vehicle device via the road device, and the vehicle information at a predetermined cycle (for example, 1 second). The position and time, the identification code of the in-vehicle device (vehicle), and the like are included. Further, whether or not the vehicle has a transmission means (on-vehicle device) can be recognized by receiving probe information transmitted by the vehicle. The traffic amount of the vehicle is, for example, the number of probe vehicles that have passed through the inflow path for each preset time zone. The traffic frequency is, for example, the amount of vehicle traffic (number of probe vehicles) in an arbitrary time zone of a day during a predetermined period (for example, 1 month, 3 months, 6 months, 1 year, etc.) Collected every time a given period elapses, the total collected traffic volume is divided by the number of days in the given period to obtain a numerical value per day, and the average number of probe vehicles per day for any given time zone Can be sought.
 算出した通行頻度に応じて、信号灯器の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択する。複数の信号制御方式は、例えば、プローブ車両の台数(プローブ情報が取得される頻度)が少ない場合でも用いることのできる信号制御方式、プローブ車両の台数(プローブ情報が取得される頻度)に依存する傾向がある信号制御方式などである。算出した通行頻度が小さい場合には、プローブ情報が取得される頻度が少ない場合でも用いることのできる信号制御方式を選択し、算出した通行頻度が大きい場合には、プローブ情報に依存する信号制御方式を選択する。これにより、プローブ車両の台数(プローブ情報の取得頻度)の多少に応じて、交通状況に応じた適切な信号制御を実現することができる。 Depending on the calculated traffic frequency, one signal control method is selected from a plurality of predetermined signal control methods for controlling the blue time of the signal lamp. The plurality of signal control methods depend on, for example, a signal control method that can be used even when the number of probe vehicles (frequency at which probe information is acquired) is small and the number of probe vehicles (frequency at which probe information is acquired). This is a signal control method with a tendency. When the calculated traffic frequency is low, select a signal control method that can be used even when the probe information is acquired less frequently. When the calculated traffic frequency is high, the signal control method depends on the probe information. Select. Thereby, appropriate signal control according to traffic conditions can be realized according to the number of probe vehicles (frequency of obtaining probe information).
 第2発明にあっては、複数の信号制御方式は、車両の走行状態を示す情報に基づく交通指標を用いる信号制御方式と当該交通指標を用いない信号制御方式とを含む。車両の走行状態を示す情報に基づく交通指標は、例えば、プローブ情報に基づいて得られる道路区間の旅行時間などである。そして、算出した通行頻度が大きい場合には、交通指標を用いる信号制御方式を選択し、算出した通行頻度が小さい場合には、交通指標を用いない信号制御方式を選択する。交通指標を用いる信号制御方式は、例えば、プローブ情報に依存する信号制御方式であり、交通指標を用いない信号制御方式は、プローブ情報にほとんど依存しない信号制御方式である。なお、交通指標を用いない信号制御方式には、交通指標を全く加味しない信号制御方式だけではなく、交通指標によって信号制御パラメータ(サイクル長、スプリット、オフセットなど)がほとんど変化しない信号制御方式も含む。信号制御パラメータがほとんど変化しないとは、例えば、車両の走行状態を示す情報の変動による青信号時間の変動が数秒以内又は数パーセント以内である場合である。算出した通行頻度の大小に応じて交通指標を用いる信号制御方式か交通指標を用いない信号制御方式かを選択するので、プローブ車両の台数(プローブ情報の取得頻度)の多少に応じて、交通状況に応じた適切な信号制御を実現することができる。 In the second invention, the plurality of signal control methods include a signal control method using a traffic index based on information indicating a running state of the vehicle and a signal control method not using the traffic index. The traffic index based on the information indicating the traveling state of the vehicle is, for example, the travel time of the road section obtained based on the probe information. When the calculated traffic frequency is large, a signal control method using a traffic index is selected. When the calculated traffic frequency is small, a signal control method not using a traffic index is selected. The signal control method using the traffic index is, for example, a signal control method depending on the probe information, and the signal control method not using the traffic index is a signal control method almost independent of the probe information. The signal control method that does not use traffic indicators includes not only a signal control method that does not take any traffic indicators into consideration, but also a signal control method in which signal control parameters (cycle length, split, offset, etc.) hardly change depending on traffic indicators. . The signal control parameter hardly changes when, for example, the change of the green light time due to the change of the information indicating the running state of the vehicle is within several seconds or several percent. Depending on the number of probe vehicles (acquisition frequency of probe information), the traffic condition depends on the signal control method that uses traffic indicators or the signal control method that does not use traffic indicators according to the calculated traffic frequency. Appropriate signal control according to the above can be realized.
 第3発明にあっては、複数の信号制御方式は、車両の走行状態を示す情報に基づく交通指標に応じて、交通指標毎に定めた複数の信号制御パラメータの中から一の信号制御パラメータを決定する第2の信号制御方式を含む。第2の信号制御方式は、例えば、複数の信号制御パラメータ(例えば、サイクル長、スプリット、オフセットなど)の組を用意しておき、交通指標(例えば、道路の任意の区間の旅行時間など)毎に使用する信号制御パラメータを定めておき、実際に計測された旅行時間に対応する信号制御パラメータを選択する方式である。プローブ情報の取得頻度が比較的高く、旅行時間などの交通指標をタイムリーに求めることができる場合に、有効な信号制御を行うことができる。 In the third aspect of the invention, the plurality of signal control methods are configured such that one signal control parameter is selected from a plurality of signal control parameters determined for each traffic index according to the traffic index based on the information indicating the running state of the vehicle. A second signal control method to be determined is included. In the second signal control method, for example, a set of a plurality of signal control parameters (for example, cycle length, split, offset, etc.) is prepared, and each traffic index (for example, travel time of an arbitrary section of the road) is prepared. The signal control parameter to be used is defined, and the signal control parameter corresponding to the actually measured travel time is selected. Effective signal control can be performed when the acquisition frequency of probe information is relatively high and traffic indicators such as travel time can be obtained in a timely manner.
 第4発明にあっては、複数の信号制御方式は、時間帯毎に定めた複数の信号制御パラメータの中から時刻に応じて一の信号制御パラメータを決定する第1の信号制御方式を含む。第1の信号制御方式は、例えば、複数の信号制御パラメータ(例えば、サイクル長、スプリット、オフセットなど)の組を用意しておき、時間帯毎に使用する信号制御パラメータを定めておき、時刻に対応する時間帯の信号制御パラメータを選択する方式である。事前に想定する交通需要に対する変動が少ない地域、時間帯に対して有効な信号制御を行うことができる。 In the fourth invention, the plurality of signal control methods include a first signal control method for determining one signal control parameter according to time from a plurality of signal control parameters determined for each time zone. In the first signal control method, for example, a set of a plurality of signal control parameters (for example, cycle length, split, offset, etc.) is prepared, signal control parameters to be used for each time zone are determined, and time is set. This is a method of selecting a signal control parameter in a corresponding time zone. It is possible to perform effective signal control for regions and time zones in which there is little fluctuation with respect to traffic demand assumed in advance.
 第5発明にあっては、複数の信号制御方式は、時刻及び車両の走行状態を示す情報に基づく交通指標(例えば、道路の任意の区間の旅行時間など)に応じて、時間帯毎及び交通指標毎に定めた複数の信号制御パラメータの中から一の信号制御パラメータを決定する第3の信号制御方式を含む。第3の信号制御方式は、例えば、複数の信号制御パラメータ(例えば、サイクル長、スプリット、オフセットなど)の組を用意しておき、時間帯毎に使用する信号制御パラメータを定めておくとともに、時間帯の中の特定の時間帯毎の交通指標に応じて使用する別の信号制御パラメータを定めておく。時刻に対応する時間帯の信号制御パラメータを選択するとともに、特定の時間帯で実際に計測された旅行時間に対応する信号制御パラメータを選択する方式である。プローブ情報の取得頻度があまり高くなく、かつ事前に想定した交通需要に対する変動が生じやすい場合に、有効な信号制御を行うことができる。 In the fifth invention, the plurality of signal control methods are provided for each time zone and traffic according to a traffic index (for example, travel time of an arbitrary section of the road) based on information indicating the time and the running state of the vehicle. A third signal control method for determining one signal control parameter from among a plurality of signal control parameters determined for each index is included. In the third signal control method, for example, a set of a plurality of signal control parameters (for example, cycle length, split, offset, etc.) is prepared, signal control parameters to be used for each time zone are determined, and time Another signal control parameter to be used is determined according to the traffic index for each specific time zone in the zone. This is a method of selecting a signal control parameter corresponding to a time and a signal control parameter corresponding to a travel time actually measured in a specific time zone. Effective signal control can be performed when the acquisition frequency of probe information is not so high and fluctuations in traffic demand assumed in advance are likely to occur.
 第6発明にあっては、算出した通行頻度(例えば、任意の時間帯毎のプローブ車両の台数、プローブ情報の取得頻度など)が第1閾値TH1より小さい場合、第1の信号制御方式を選択し、算出した通行頻度が第1閾値TH1以上である場合、第2又は第3の信号制御方式のいずれかを選択する。第1閾値TH1は、プローブ情報の取得頻度が少ないか否かを判定するための閾値であり、例えば、30分、1時間当たり1個などの値である。プローブ情報の取得頻度が低い場合には、第1の信号制御方式を選択することにより、事前に想定した交通需要に対する変動が少ない地域、時間帯に対して有効な信号制御を行うことができる。また、プローブ情報の取得頻度が低くない場合には、第2又は第3の信号制御方式を選択することにより、旅行時間などの交通指標をタイムリーに求めることができる場合、または事前に想定した交通需要に対する変動が生じやすい場合に、有効な信号制御を行うことができる。 In the sixth invention, when the calculated traffic frequency (for example, the number of probe vehicles for each arbitrary time zone, the probe information acquisition frequency, etc.) is smaller than the first threshold value TH1, the first signal control method is selected. If the calculated traffic frequency is equal to or higher than the first threshold value TH1, either the second or third signal control method is selected. The first threshold value TH1 is a threshold value for determining whether or not the probe information acquisition frequency is low. For example, the first threshold value TH1 is a value such as one per 30 minutes or one hour. When the probe information acquisition frequency is low, by selecting the first signal control method, it is possible to perform effective signal control for an area and a time zone in which there is little fluctuation with respect to the traffic demand assumed in advance. In addition, when the probe information acquisition frequency is not low, it is possible to obtain a traffic index such as travel time in a timely manner by selecting the second or third signal control method, or assumed in advance Effective signal control can be performed when fluctuations in traffic demand are likely to occur.
 第7発明にあっては、算出した通行頻度(例えば、任意の時間帯毎のプローブ車両の台数、プローブ情報の取得頻度など)が第1閾値TH1より大きい第2閾値TH2以上である場合、第2の信号制御方式を選択する。第2閾値TH2は、プローブ情報の取得頻度が高いか否かを判定するための閾値であり、例えば、5分、10分、15分当たり1個などの値である。プローブ情報の取得頻度が高い場合には、第2の信号制御方式を選択することにより、旅行時間などの交通指標をタイムリーに求めて有効な信号制御を行うことができる。 In the seventh invention, when the calculated traffic frequency (for example, the number of probe vehicles for each arbitrary time zone, the probe information acquisition frequency, etc.) is equal to or greater than the second threshold value TH2, which is greater than the first threshold value TH1, 2 signal control method is selected. The second threshold TH2 is a threshold for determining whether or not the probe information acquisition frequency is high. For example, the second threshold TH2 is a value such as 5 minutes, 10 minutes, or 15 minutes. When the probe information acquisition frequency is high, the traffic signal such as travel time can be obtained in a timely manner and effective signal control can be performed by selecting the second signal control method.
 第8発明にあっては、算出した通行頻度(例えば、任意の時間帯毎のプローブ車両の台数、プローブ情報の取得頻度など)が第1閾値TH1以上であって第2閾値TH2より小さい場合、第3の信号制御方式を選択する。これにより、プローブ情報の取得頻度があまり高くなく、かつ事前に想定した交通需要に対する変動が生じやすい場合に、有効な信号制御を行うことができる。 In the eighth invention, when the calculated traffic frequency (for example, the number of probe vehicles for each arbitrary time zone, the probe information acquisition frequency, etc.) is not less than the first threshold TH1 and smaller than the second threshold TH2, A third signal control method is selected. Thereby, effective signal control can be performed when the acquisition frequency of the probe information is not so high and the traffic demand is likely to fluctuate in advance.
 第9発明にあっては、交差点に流入する流入路を走行する車両の位置及び該位置を通過する時刻を含むプローブ情報により得られた該車両の走行状態を示す情報に基づいて車両の流入路上の停止位置を特定し、特定した停止位置に基づいて流入路に対する青時間の過不足を判定する。選択手段は、第3の信号制御方式に代えて、判定された判定結果に基づいて第4の信号制御方式を選択する。走行状態を示す情報は、例えば、路上装置を介して車載装置から受信することができるプローブ情報(アップリンク情報)であり、所定の周期(例えば、1秒)毎の車両の位置及び時刻、車載装置(車両)の識別コードなどを含む。青時間の過不足は、青時間が不足しているか、あるいは青時間に余裕があるかを示す。例えば、ある流入路上の車両の停止位置が、交差点から比較的離れている場合には、停止した車両と交差点との間には相当数の停止車両が存在していると考えられ、当該流入路に対する青時間は不足していると判定する。また、ある流入路上の車両の停止位置が、交差点から比較的近い場合には、停止した車両と交差点との間に存在する停止車両が少なく、単に赤信号で停止したものと考えられ、当該流入路に対する青時間に余裕があると判定する。車両の停止位置を特定することで青時間の過不足を判定することができる。そして、交差点に流入する流入路に対する信号灯器の青時間の過不足がないように有効な信号制御を行うことができる。 In the ninth invention, on the inflow path of the vehicle based on the information indicating the traveling state of the vehicle obtained from the probe information including the position of the vehicle traveling on the inflow path flowing into the intersection and the time passing through the position. The stop position is identified, and the excess or deficiency of the blue time with respect to the inflow path is determined based on the identified stop position. The selection means selects the fourth signal control method based on the determined determination result instead of the third signal control method. The information indicating the traveling state is, for example, probe information (uplink information) that can be received from the in-vehicle device via the road device, and the position and time of the vehicle every predetermined period (for example, 1 second), in-vehicle Includes the identification code of the device (vehicle). The excess or deficiency of the blue hours indicates whether the blue hours are insufficient or there is a margin in the blue hours. For example, if the stop position of a vehicle on a certain inflow path is relatively far from the intersection, it is considered that there are a considerable number of stopped vehicles between the stopped vehicle and the intersection. It is determined that the blue time for is insufficient. If the stop position of a vehicle on a certain inflow path is relatively close to the intersection, there are few stopped vehicles between the stopped vehicle and the intersection. It is determined that there is room in the blue hours for the road. By specifying the stop position of the vehicle, it is possible to determine whether the blue hours are excessive or insufficient. And effective signal control can be performed so that there is no excess or deficiency of the blue time of the signal lamp with respect to the inflow path which flows into an intersection.
 第10発明にあっては、交差点に流入する一の流入路の交通量に基づいて当該流入路の負荷率を算出する。交差点で主道路(例えば、幹線道路)と従道路とが交差する場合、主道路(一の流入路)の交通量を車両感知器などで検出し、検出した交通量に基づいて負荷率を算出する。負荷率は、例えば、流入路の飽和交通流率に対する流入流量(台/単位時間)の割合として求めることができる。飽和交通流率は、流入路の能力を示し、例えば、1時間当たり1800台である。流入路の負荷率が大きい場合には、当該流入路に対する青時間は不足していると判定することができ、流入路の負荷率が小さい場合には、当該流入路に対する青時間に余裕があると判定することができる。そして、算出した一の流入路(主道路)の負荷率及び交差点で当該一の流入路と交差する他の流入路(従道路)上の車両の停止位置に基づいて各流入路に対する青時間の過不足を判定する。主道路の負荷率及び従道路上の車両の停止位置を特定することで青時間の過不足を判定することができる。 In the tenth aspect of the invention, the load factor of the inflow path is calculated based on the traffic volume of one inflow path that flows into the intersection. When the main road (for example, a main road) and a secondary road intersect at an intersection, the traffic volume on the main road (one inflow road) is detected by a vehicle detector and the load factor is calculated based on the detected traffic volume. To do. The load factor can be obtained, for example, as a ratio of the inflow flow rate (unit / unit time) to the saturated traffic flow rate of the inflow channel. The saturated traffic flow rate indicates the capacity of the inflow path, and is, for example, 1800 vehicles per hour. When the load factor of the inflow channel is large, it can be determined that the blue time for the inflow channel is insufficient. When the load factor of the inflow channel is small, the blue time for the inflow channel has a margin. Can be determined. Then, based on the calculated load factor of one inflow path (main road) and the stop position of the vehicle on another inflow path (secondary road) that intersects the one inflow path at the intersection, the blue hour of each inflow path Determine excess or deficiency. By specifying the load factor of the main road and the stop position of the vehicle on the secondary road, it is possible to determine whether the blue hours are excessive or insufficient.
 第11発明にあっては、交差点で交差する少なくとも2つの流入路上の車両の停止位置に基づいて各流入路に対する青時間の過不足を判定する。すなわち、各流入路上の車両の停止位置を特定することで各流入路に対する青時間の過不足を判定することができる。 In the eleventh aspect of the invention, the excess or deficiency of the blue time for each inflow path is determined based on the stop positions of the vehicles on at least two inflow paths that intersect at the intersection. That is, by specifying the stop position of the vehicle on each inflow path, it is possible to determine whether the blue time is excessive or insufficient for each inflow path.
 第12発明にあっては、青時間に余裕がある流入路と青時間が不足している流入路とが存在すると判定した場合、青時間に余裕がある流入路に対する青時間の所定量を青時間が不足している流入路に対する青時間に割り当てるべく信号情報を設定する。所定量は、例えば、2秒、3秒などである。例えば、交差点に流入する流入路に対する青時間が標準値である場合、青時間が不足している流入路に対する青時間を標準値から所定量増やすとともに、青時間に余裕がある流入路に対する青時間を標準値から所定量減らす。所定量をサイクル長(例えば、90秒)に比べて小さい値(2秒、3秒、4秒など)にすることにより、青時間の過不足に応じて青時間を微調整することができる。また、アップリンク情報の取得量が少ない場合に少ない情報量に基づいて青時間の調整幅を大きくし過ぎた結果、却って青時間の過不足を助長する事態が生じることを防止することができる。 In the twelfth aspect of the invention, when it is determined that there are an inflow channel with a margin of blue time and an inflow channel with a short period of blue time, a predetermined amount of blue time for the inflow channel with a margin of blue time is set to blue. Signal information is set to be assigned to the blue time for the inflow channel where time is insufficient. The predetermined amount is, for example, 2 seconds, 3 seconds, or the like. For example, if the blue time for an inflow channel that flows into an intersection is a standard value, the blue time for an inflow channel that lacks blue time is increased by a predetermined amount from the standard value, and the blue time for an inflow channel that has a margin of blue time Reduce the standard value by a predetermined amount. By setting the predetermined amount to a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds), the blue time can be finely adjusted according to the excess or deficiency of the blue time. In addition, when the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
 第13発明にあっては、所定時間の間、青時間が不足している流入路が存在しないと判定した場合、各流入路に対する青時間を標準値に戻す。所定時間は、例えば、信号サイクルで2~3サイクル相当の時間とすることができる。交通状況によって青時間を標準値から増減させた場合に、例えば、所定時間経過後に青時間の不足が解消したときには、青時間を標準値に戻すことにより、当初設定された信号制御パラメータを用いて信号制御を行うことができる。 In the thirteenth aspect, when it is determined that there is no inflow channel with insufficient blue time for a predetermined time, the blue time for each inflow channel is returned to the standard value. The predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle. When the blue hour is increased or decreased from the standard value depending on the traffic situation, for example, when the shortage of the blue hour is resolved after the lapse of a predetermined time, the signal control parameter set initially is used by returning the blue hour to the standard value. Signal control can be performed.
 第14発明にあっては、所定量の青時間を割り当てた場合に、青時間に余裕がある流入路と青時間が不足している流入路とが存在すると再度判定したときは、その都度所定量(例えば、2秒、3秒、4秒など)の青時間の割り当てを繰り返す。例えば、青時間が不足している流入路に対する青時間を所定量増やすとともに、青時間に余裕がある流入路に対する青時間を所定量減らす。そして、再度青時間の過不足を判定した場合に、未だ青時間に余裕がある流入路と青時間が不足している流入路とが存在するときは、再度同様の割り当てを繰り返す。なお、所定量ずつの青時間の増減は、青時間の上限値又は下限値に達した時に終了する。これにより、青時間の過不足に応じて青時間を微調整することができる。また、アップリンク情報の取得量が比較的多い場合には、時々刻々変化する交通状況に応じてリアルタイムで青時間の調整を行うことができる。 In the fourteenth aspect of the invention, when it is determined again that there is an inflow channel with sufficient blue time and an inflow channel with insufficient blue time when a predetermined amount of blue time is allocated, Repeat the assignment of blue time for a fixed amount (eg 2 seconds, 3 seconds, 4 seconds, etc.). For example, while increasing the blue time for an inflow channel with insufficient blue time by a predetermined amount, the blue time for the inflow channel with a margin of blue time is decreased by a predetermined amount. Then, when it is determined again that the blue hours are excessive or insufficient, if there are still inflow channels with sufficient blue hours and inflow channels with insufficient blue hours, the same assignment is repeated again. Note that the increase / decrease in the blue time by a predetermined amount ends when the upper limit value or lower limit value of the blue time is reached. Thereby, the blue time can be finely adjusted according to the excess or deficiency of the blue time. In addition, when the amount of uplink information acquired is relatively large, the blue time can be adjusted in real time according to the traffic situation that changes from moment to moment.
 第15発明にあっては、交差点に流入する流入路の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある流入路であり、優先順位が低いほど青時間を短くすることができる流入路である。そして、複数の流入路に対する青時間に余裕があると判定した場合、当該複数の流入路のうち優先順位の低い流入路を選択し、選択した流入路に対する青時間の所定量を青時間が不足している流入路に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の流入路に対する青時間に余裕があるときは、最も青時間を短くすることができ優先順位が低い流入路に対する青時間を所定量減らす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。 In the fifteenth aspect of the invention, the priority order of the inflow channel flowing into the intersection is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there. If it is determined that there is room in the blue hours for a plurality of inflow paths, an inflow path with a lower priority is selected from the plurality of inflow paths, and the predetermined amount of blue time for the selected inflow paths is insufficient for the blue time Assign to the blue hour for the current inflow. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of inflow paths, the blue time for the inflow road with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
 第16発明にあっては、交差点に流入する流入路の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある流入路であり、優先順位が低いほど青時間を短くすることができる流入路である。そして、複数の流入路に対して青時間が不足していると判定した場合、青時間に余裕がある流入路に対する青時間の所定量を複数の流入路のうち優先順位の高い流入路に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の流入路に対する青時間が不足しているときは、最も青時間を長くする必要があり優先順位が高い流入路に対する青時間を所定量増やす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。 In the sixteenth aspect of the invention, the priority order of the inflow channel flowing into the intersection is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there. If it is determined that there is a shortage of blue time for a plurality of inflow channels, a predetermined amount of blue time for an inflow channel with a margin of blue time is set to a blue amount for an inflow channel with a higher priority among the plurality of inflow channels. Assign to time. For example, when the intersection is five or more roads and the blue hours for a plurality of inflow paths are insufficient, the blue time needs to be made the longest, and the blue time for the inflow road with a higher priority is increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
 第17発明にあっては、交差点から流入路上の車両の停止位置までの距離が第1距離閾値以上である場合、当該流入路に対する青時間が不足していると判定する。第1距離閾値Tr1は、例えば、当該流入路に対する青時間をG、当該流入路の飽和交通流率をs、平均車頭間隔をhとするとTr1=s×h×Gとすることができる。すなわち、車両の停止位置の交差点からの距離が、1サイクル分の青時間の間に通過することができる車両台数に対応する距離以上であれば、青時間が不足していると判定する。これにより、停止車両の位置を特定することにより青時間が不足していることを判定することができる。 In the seventeenth invention, when the distance from the intersection to the stop position of the vehicle on the inflow path is equal to or greater than the first distance threshold, it is determined that the blue time for the inflow path is insufficient. The first distance threshold Tr1 can be, for example, Tr1 = s × h × G, where G is the blue time for the inflow path, s is the saturation traffic flow rate of the inflow path, and h is the average vehicle head distance. That is, if the distance from the intersection of the stop position of the vehicle is equal to or greater than the distance corresponding to the number of vehicles that can pass during the blue time for one cycle, it is determined that the blue time is insufficient. Thereby, it can be determined that the green time is insufficient by specifying the position of the stopped vehicle.
 第18発明にあっては、交差点から流入路上の車両の停止位置までの距離が第1距離閾値Tr1より小さい第2距離閾値Tr2以下である場合、当該流入路に対する青時間に余裕があると判定する。第2閾値Tr2は、例えば、当該流入路に対する青時間をG、青時間の所定の変動量をΔG、当該流入路の飽和交通流率をs、平均車頭間隔をhとするとTr2=s×h×(G-ΔG)とすることができる。すなわち、車両の停止位置の交差点からの距離が、1サイクル分の青時間から所定の変動量を差し引いた時間の間に通過することができる車両台数に対応する距離以下であれば、青時間に余裕があると判定する。これにより、停止車両の位置を特定することにより青時間に余裕があることを判定することができる。 In the eighteenth aspect, when the distance from the intersection to the stop position of the vehicle on the inflow path is equal to or less than the second distance threshold Tr2 that is smaller than the first distance threshold Tr1, it is determined that there is a margin in the blue time for the inflow path. To do. The second threshold value Tr2 is, for example, Tr2 = s × h, where G is the blue time for the inflow route, ΔG is the predetermined amount of fluctuation of the blue time, s is the saturation traffic flow rate of the inflow route, and h is the average vehicle head distance. X (G−ΔG). That is, if the distance from the intersection of the stop position of the vehicle is equal to or less than the distance corresponding to the number of vehicles that can pass during the time obtained by subtracting the predetermined fluctuation amount from the blue time for one cycle, Judge that there is room. Thereby, it can be determined that there is a margin in the green time by specifying the position of the stopped vehicle.
 第19発明にあっては、交差点を含む道路区間での旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて道路区間に対する青時間が不足しているか否か(不足か又は余裕があるか)を判定する。選択手段は、第3の信号制御方式に代えて、判定された判定結果に基づいて第5の信号制御方式を選択する。道路区間は、例えば、交差点に流入する流入路の上流側の地点を始端とし、交差点の流出地点を終端とする区間である。走行状態を示す情報は、例えば、路上装置を介して車載装置から受信することができるアップリンク情報であり、所定の周期(例えば、1秒)毎の車両の位置及び時刻、車載装置(車両)の識別コードなどを含む。基準旅行時間は、例えば、渋滞していないときの標準的な旅行時間とすることができる。青時間の判定は、青時間が不足しているか、あるいは青時間に余裕があるかを判定する。例えば、道路区間の旅行時間と基準旅行時間との差分が閾値以上である場合、当該道路区間に対する青時間は不足していると判定する。また、道路区間の旅行時間と基準旅行時間との差分が閾値より小さい場合には、当該道路区間に対する青時間には余裕があると判定する。道路区間の旅行時間により、当該道路区間に対する青時間の過不足を判定することができる。そして、交差点を含む道路区間に対する信号灯器の青時間の過不足がないように有効な信号制御を行うことができる。 In the nineteenth invention, whether or not the blue time for the road section is insufficient depending on whether the difference between the travel time in the road section including the intersection and the reference travel time is smaller or larger than a threshold (insufficient) Or whether there is room. The selection unit selects the fifth signal control method based on the determined determination result instead of the third signal control method. The road section is, for example, a section that starts at a point upstream of the inflow path that flows into the intersection and ends at the outflow point of the intersection. The information indicating the traveling state is, for example, uplink information that can be received from the in-vehicle device via the road device, and the position and time of the vehicle every predetermined period (for example, 1 second), the in-vehicle device (vehicle). Including the identification code. The reference travel time can be, for example, a standard travel time when there is no traffic jam. In the determination of the blue time, it is determined whether the blue time is insufficient or the blue time has a margin. For example, when the difference between the travel time of the road section and the reference travel time is equal to or greater than the threshold, it is determined that the blue time for the road section is insufficient. Further, when the difference between the travel time of the road section and the reference travel time is smaller than the threshold value, it is determined that the blue time for the road section has a margin. Based on the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section. And effective signal control can be performed so that there is no excess or deficiency of the blue hours of the signal lamp for the road section including the intersection.
 第20発明にあっては、青時間に余裕がある道路区間と青時間が不足している道路区間とが存在すると判定した場合、余裕がある道路区間に対する青時間の一部(例えば、所定量)を不足している道路区間に対する青時間に割り当てるべく信号情報を設定する。所定量は、例えば、2秒、3秒、4秒などである。例えば、青時間に余裕がある道路区間に対する青時間を所定量減らし、青時間が不足している道路区間に対する青時間に加える。所定量をサイクル長(例えば、90秒)に比べて小さい値(2秒、3秒、4秒など)にすることにより、青時間の過不足に応じて青時間を微調整することができる。また、アップリンク情報の取得量が少ない場合に少ない情報量に基づいて青時間の調整幅を大きくし過ぎた結果、却って青時間の過不足を助長する事態が生じることを防止することができる。 In the twentieth invention, when it is determined that there is a road section having a margin of blue time and a road section having a short period of blue time, a part of the blue hour for the road section having a margin (for example, a predetermined amount) ) Is set to be assigned to the blue hour for the lacking road section. The predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like. For example, the blue time for a road section with sufficient blue time is reduced by a predetermined amount and added to the blue time for a road section where the blue time is insufficient. By setting the predetermined amount to a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds), the blue time can be finely adjusted according to the excess or deficiency of the blue time. In addition, when the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
 第21発明にあっては、青時間に余裕があると判定した道路区間又は青時間が不足していると判定した道路区間のいずれかが存在しないと判定した場合、増減した青時間を元の青時間に戻す。交通状況によって青時間を標準値から増減させた場合に、例えば、青時間の過不足が解消したときには、青時間を標準値に戻すことにより、当初設定された信号制御パラメータを用いて信号制御を行うことができる。 In the twenty-first invention, when it is determined that there is no road section determined that there is a margin in green time or road section determined that the blue time is insufficient, the increased or decreased blue time is Return to blue hours. When the blue hour is increased or decreased from the standard value according to traffic conditions, for example, when the excess or deficiency of the blue hour is resolved, the signal control is performed using the initially set signal control parameters by returning the blue hour to the standard value. It can be carried out.
 第22発明にあっては、任意の道路区間に対する青時間が標準値より長い場合に、当該道路区間に対する青時間に余裕があると判定したときは、当該道路区間に対する青時間の一部(例えば、所定量)を他の道路区間(例えば、青時間が不足している道路区間、あるいは青時間に余裕がある道路区間でもよい)に割り当てる。これにより、交通量が減少した場合に、青時間を標準値に戻すことが可能となる。 In the twenty-second aspect of the invention, when it is determined that there is room in the blue hours for the road section when the blue hours for any road section are longer than the standard value, a part of the blue hours for the road section (for example, , A predetermined amount) is allocated to another road section (for example, a road section having a shortage of blue hours or a road section having a margin of blue hours). This makes it possible to return the blue hour to the standard value when the traffic volume decreases.
 第23発明にあっては、道路区間の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある道路区間であり、優先順位が低いほど青時間を短くすることができる道路区間である。そして、複数の道路区間に対する青時間に余裕があると判定した場合、複数の道路区間のうち優先順位の低い道路区間に対する青時間の一部(例えば、所定量)を不足している道路区間に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の道路区間に対する青時間に余裕があるときは、最も青時間を短くすることができ優先順位が低い道路区間に対する青時間を所定量減らす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。 In the twenty-third invention, the priority order of road sections is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there. If it is determined that there is a margin in green time for a plurality of road sections, a road section that lacks a part (for example, a predetermined amount) of blue hours for a road section with a low priority among the plurality of road sections. Assign to blue hours. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of road sections, the blue hours for the road sections with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
 第24発明にあっては、道路区間の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある道路区間であり、優先順位が低いほど青時間を短くすることができる道路区間である。そして、複数の道路区間に対する青時間が不足していると判定した場合、余裕がある道路区間に対する青時間の一部(例えば、所定量)を複数の道路区間のうち優先順位の高い道路区間に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の道路区間に対する青時間が不足しているときは、最も青時間を長くする必要があり優先順位が高い道路区間に対する青時間を所定量増やす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。 In the twenty-fourth aspect, priorities of road sections are determined in advance. The priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there. If it is determined that the blue hours for a plurality of road sections are insufficient, a part (for example, a predetermined amount) of the blue hours for a road section with a margin is assigned to a road section with a higher priority among the plurality of road sections. Assign to blue hours. For example, when the intersection is more than a five-way road and the blue hours for a plurality of road sections are insufficient, the blue hours need to be made the longest and the blue hours for the road sections with higher priority are increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
 第25発明にあっては、交差点を含む道路区間を走行する車両の走行状態を示す情報に基づいて道路区間での旅行時間を算出し、算出した旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて道路区間に対する青時間が不足しているか否か(不足か又は余裕があるか)を判定する。道路区間の旅行時間を算出することにより、当該道路区間に対する青時間の過不足を判定することができる。 In the twenty-fifth aspect of the invention, the travel time in the road section is calculated based on the information indicating the traveling state of the vehicle traveling in the road section including the intersection, and the difference between the calculated travel time and the reference travel time is greater than the threshold value. It is determined whether the green time for the road section is insufficient (whether it is insufficient or has a margin) depending on whether it is small or large. By calculating the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section.
 第26発明にあっては、閾値は、信号灯器の略サイクル長である。略サイクル長とは、例えば、サイクル長±10%程度の時間長である。これにより、道路区間の旅行時間により、2回の信号待ちを検出することができ、青時間の過不足を精度良く判定することができる。 In the twenty-sixth aspect, the threshold value is the approximate cycle length of the signal lamp. The approximate cycle length is, for example, a cycle length of about ± 10%. Thereby, it is possible to detect two signal waits based on the travel time of the road section, and it is possible to accurately determine whether the blue hours are excessive or insufficient.
 本発明によれば、プローブ車両の台数(プローブ情報の取得頻度)の多少に応じて、交通状況に応じた適切な信号制御を実現することができる。 According to the present invention, it is possible to realize appropriate signal control according to traffic conditions according to the number of probe vehicles (frequency of obtaining probe information).
実施の形態1の信号制御装置を含む信号制御システムの概要を示す模式図である。1 is a schematic diagram illustrating an outline of a signal control system including a signal control device according to a first embodiment. 実施の形態1の信号制御装置の構成の一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of a configuration of a signal control device according to the first embodiment. 実施の形態1の信号制御装置による信号制御方式の選択方法の一例を示す説明図である。6 is an explanatory diagram illustrating an example of a method for selecting a signal control method by the signal control device according to the first embodiment. FIG. 第1及び第3の信号制御方式に用いる信号制御パラメータテーブルの一例を示す説明図である。It is explanatory drawing which shows an example of the signal control parameter table used for the 1st and 3rd signal control system. 第1の信号制御方式の一例を示す説明図である。It is explanatory drawing which shows an example of a 1st signal control system. 第3の信号制御方式の一例を示す説明図である。It is explanatory drawing which shows an example of a 3rd signal control system. 第2の信号制御方式に用いる信号制御パラメータテーブルの一例を示す説明図である。It is explanatory drawing which shows an example of the signal control parameter table used for a 2nd signal control system. 第2の信号制御方式の一例を示す説明図である。It is explanatory drawing which shows an example of a 2nd signal control system. 実施の形態1の信号制御装置の処理手順を示すフローチャートである。3 is a flowchart illustrating a processing procedure of the signal control apparatus according to the first embodiment. 実施の形態2の信号制御装置の構成の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a configuration of a signal control device according to a second embodiment. 車両の停止位置に基づく青時間の過不足を判定する方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of determining the excess and deficiency of the blue time based on the stop position of a vehicle. 実施の形態2の信号制御装置による青時間の調整方法の一例を示す。An example of the adjustment method of the blue time by the signal control apparatus of Embodiment 2 is shown. アップリンク情報の取得頻度が低い場合の青時間の調整方法の一例を示す説明図である。It is explanatory drawing which shows an example of the adjustment method of the blue time when the acquisition frequency of uplink information is low. アップリンク情報の取得頻度が高い場合の青時間の調整方法の一例を示す説明図である。It is explanatory drawing which shows an example of the adjustment method of the blue time when the acquisition frequency of uplink information is high. アップリンク情報の取得頻度が低い場合の信号制御装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the signal control apparatus when the acquisition frequency of uplink information is low. アップリンク情報の取得頻度が高い場合の信号制御装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the signal control apparatus when the acquisition frequency of uplink information is high. 実施の形態3の信号制御装置を含む信号制御システムの概要を示す模式図である。FIG. 6 is a schematic diagram illustrating an outline of a signal control system including a signal control device according to a third embodiment. 実施の形態3の信号制御装置の構成の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a configuration of a signal control device according to a third embodiment. 実施の形態3の信号制御装置による青時間の調整方法の一例を示す。An example of the adjustment method of the blue time by the signal control apparatus of Embodiment 3 is shown. 実施の形態3の信号制御装置の処理手順を示すフローチャートである。10 is a flowchart illustrating a processing procedure of the signal control apparatus according to the third embodiment. 実施の形態4の信号制御装置の構成の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a configuration of a signal control device according to a fourth embodiment. 旅行時間に基づく青時間の過不足を判定する方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of determining the excess and deficiency of the blue hours based on travel time. 実施の形態4の信号制御装置による青時間の調整方法の一例を示す。An example of the adjustment method of the blue time by the signal control apparatus of Embodiment 4 is shown. 実施の形態4の信号制御装置の処理手順を示すフローチャートである。10 is a flowchart illustrating a processing procedure of the signal control apparatus according to the fourth embodiment. 実施の形態5の信号制御装置の構成の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a configuration of a signal control device according to a fifth embodiment. 交差点の右折方向の円滑度合の様子の一例を示す模式図である。It is a schematic diagram which shows an example of the mode of the smoothness degree of the right turn direction of an intersection. 車両の停止位置に基づく特定の流出方向の流出の円滑度合を判定する方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of determining the smoothness of the outflow of the specific outflow direction based on the stop position of a vehicle. 車両の旅行時間に基づく特定の流出方向の流出の円滑度合を判定する方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of determining the smoothness of the outflow of the specific outflow direction based on the travel time of a vehicle. 実施の形態5の信号制御装置による円滑度合の判定条件と判定結果の一例を示す説明図である。It is explanatory drawing which shows an example of the determination condition of smoothness by the signal control apparatus of Embodiment 5, and a determination result. 交差点の右折方向の円滑度合の様子の他の例を示す模式図である。It is a schematic diagram which shows the other example of the mode of the smoothness degree of the right turn direction of an intersection. 交差点の右折方向の円滑度合の様子の他の例を示す模式図である。It is a schematic diagram which shows the other example of the mode of the smoothness degree of the right turn direction of an intersection. 実施の形態5の信号制御装置の処理手順の一例を示すフローチャートである。10 is a flowchart illustrating an example of a processing procedure of the signal control apparatus according to the fifth embodiment.
(実施の形態1)
 以下、本発明に係る信号制御装置の実施の形態を示す図面に基づいて説明する。図1は実施の形態1の信号制御装置を含む信号制御システムの概要を示す模式図である。図1に示すように、信号制御システムは、信号制御装置100、交通信号制御機1、信号灯器2、路上装置3などを備える。
(Embodiment 1)
Hereinafter, a signal control device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an outline of a signal control system including the signal control apparatus according to the first embodiment. As shown in FIG. 1, the signal control system includes a signal control device 100, a traffic signal controller 1, a signal lamp 2, a road device 3, and the like.
 図1に示すように、道路R1、道路R2は交差点20で交差し、交差点20には4つの流入路(21、22、23、24)が流入する構造をなす。道路R1の交差点20の上流側の適宜の地点(始端)と交差点20の流出地点(終端)との間で道路区間11、12を設けてある。同様に、道路R2の交差点20の上流側の適宜の地点(始端)と交差点20の流出地点(終端)との間で道路区間21、22を設けてある。道路区間11、12、21、22の始端は、旅行時間を算出することができる程度に適宜設定することができる。交差点20には、道路R1、R2(流入路21~24)に対する信号灯器2を設置してある。交通信号制御機1は、各信号灯器2の灯色の切り替えを制御する。路上装置3は、交差点20の各流出地点近傍に設置してある。 As shown in FIG. 1, the road R1 and the road R2 intersect at an intersection 20, and four inflow paths (21, 22, 23, 24) flow into the intersection 20. Road sections 11 and 12 are provided between an appropriate point (starting point) upstream of the intersection 20 of the road R1 and an outflow point (ending point) of the intersection 20. Similarly, road sections 21 and 22 are provided between an appropriate point (starting point) upstream of the intersection 20 of the road R2 and an outflow point (ending point) of the intersection 20. The starting ends of the road sections 11, 12, 21, and 22 can be appropriately set to such an extent that the travel time can be calculated. At the intersection 20, signal lamps 2 for the roads R1 and R2 (inflow paths 21 to 24) are installed. The traffic signal controller 1 controls the switching of the color of each signal lamp 2. The on-road device 3 is installed in the vicinity of each outflow point of the intersection 20.
 車両10には、車両10の走行状態を示す情報を送信する送信手段としての車載装置5が搭載されている。車載装置5は、所定の周期(例えば、1秒毎)に時刻、車両10の位置を走行軌跡情報として蓄積する。車載装置5を搭載したプローブ車両10が路上装置3の通信領域を通過する際、車載装置5は、蓄積した走行軌跡情報及び車載装置5(プローブ車両10)を識別する識別コードなどをプローブ情報(車両の走行状態を示す情報)として路上装置3へ送信する。車両走行軌跡として、所定の周期毎の時刻、車両の位置の代わりに、車両の速度が所定の閾値(例えば、時速5km/h)以下になった停止、あるいは車両の向きが所定の閾値(例えば、5度)以上変化した方向変動などのイベントが発生した時刻と位置とを蓄積してもよい。なお、以下の実施形態において、プローブ情報とは、FCD(フローティング・カーデータ)の意味である。 The vehicle 10 is equipped with an in-vehicle device 5 as transmission means for transmitting information indicating the traveling state of the vehicle 10. The in-vehicle device 5 accumulates the time and the position of the vehicle 10 as travel locus information at a predetermined cycle (for example, every second). When the probe vehicle 10 on which the in-vehicle device 5 is mounted passes through the communication area of the road device 3, the in-vehicle device 5 uses the probe information (such as the accumulated travel locus information and the identification code for identifying the in-vehicle device 5 (probe vehicle 10)) (Information indicating the running state of the vehicle) to the road device 3. As a vehicle travel locus, instead of the time and the vehicle position for each predetermined cycle, the vehicle speed is stopped at a predetermined threshold value (for example, 5 km / h) or less, or the vehicle direction is a predetermined threshold value (for example, The time and position at which an event such as a direction change that has changed by 5 degrees or more may occur. In the following embodiments, the probe information means FCD (floating car data).
 路上装置3は、光ビーコン、電波ビーコン、DSRC(Dedicated Short Range Communication:専用狭域通信)などの局所通信装置であり、プローブ車両10の車載装置5との間で情報の送受信を行う。路上装置3は、車載装置5との間で通信を行うための通信部3a、通信部3aを制御する通信制御部3bなどを備える。路上装置3は、車載装置5からプローブ情報(アップリンク情報)を受信し、受信したプローブ情報を信号制御装置100へ送信する。路上装置3は、携帯電話の通信装置でもよく、その場合、交差点の流出地点近傍に設置する必要は無い。また、路上装置3は、車載装置から所定の周期毎の時刻及び車両の位置をアップリンク情報として受信し、受信したアップリンク情報を停止又は変動などのイベントが発生した時刻と位置との情報に加工した上で、信号制御装置100へ送信してもよい。 The on-road device 3 is a local communication device such as an optical beacon, a radio wave beacon, or a DSRC (Dedicated Short Range Communication), and transmits / receives information to / from the in-vehicle device 5 of the probe vehicle 10. The road device 3 includes a communication unit 3a for communicating with the in-vehicle device 5, a communication control unit 3b for controlling the communication unit 3a, and the like. The roadside device 3 receives the probe information (uplink information) from the in-vehicle device 5 and transmits the received probe information to the signal control device 100. The roadside device 3 may be a mobile phone communication device, in which case it is not necessary to be installed near the outflow point of the intersection. Further, the road device 3 receives the time and the position of the vehicle for each predetermined period from the in-vehicle device as uplink information, and the received uplink information is converted into information on the time and position at which an event such as a stop or fluctuation occurs. You may transmit to the signal control apparatus 100, after processing.
 信号制御装置100は、路上装置3から送信されたプローブ情報を受信(取得)する。信号制御装置100は、プローブ情報を取得することにより、任意の時間帯(例えば、15分、30分、1時間など)毎のプローブ車両10(プローブ情報を送信する送信手段としての車載装置5を搭載した車両10)の台数(すなわち、プローブ情報の取得頻度)を算出し、算出したプローブ車両10の台数(プローブ情報の取得頻度)に応じて、信号灯器2の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択する。なお、送信手段を有する車両の通行頻度とは、送信手段(車載装置)を有する車両が必ずプローブ情報を送信するとは限らないので、車載装置(送信手段)を有する多くの車両の中から、実際に路上装置3がプローブ情報を車両から受信し、路上装置3で受信したプローブ情報を信号制御装置100が取得することにより、信号制御装置100は、車両に車載装置(送信手段)が設けられていることを認識し、その頻度でプローブ車両10の台数(プローブ情報の取得頻度)を求めることができる。以下、信号制御装置100について説明する。 The signal control device 100 receives (acquires) the probe information transmitted from the road device 3. The signal control device 100 acquires the probe information, and thereby detects the probe vehicle 10 (an in-vehicle device 5 as a transmission unit that transmits the probe information) every arbitrary time zone (for example, 15 minutes, 30 minutes, 1 hour, etc.). In order to calculate the number of mounted vehicles 10) (that is, the probe information acquisition frequency) and control the blue time of the signal lamp 2 in advance according to the calculated number of probe vehicles 10 (probe information acquisition frequency). One signal control method is selected from a plurality of defined signal control methods. In addition, the traffic frequency of the vehicle having the transmission means is not necessarily transmitted from the vehicle having the transmission means (on-vehicle device), because the vehicle having the transmission means (on-vehicle device) does not always transmit probe information. When the road device 3 receives the probe information from the vehicle and the signal control device 100 acquires the probe information received by the road device 3, the signal control device 100 is provided with an in-vehicle device (transmission means) on the vehicle. And the number of probe vehicles 10 (frequency of obtaining probe information) can be obtained at that frequency. Hereinafter, the signal control apparatus 100 will be described.
 図2は実施の形態1の信号制御装置100の構成の一例を示す説明図である。図2に示すように、信号制御装置100は、制御部101、通信部102、通行頻度算出部103、記憶部104、選択部105、旅行時間算出部106などを備える。 FIG. 2 is an explanatory diagram showing an example of the configuration of the signal control apparatus 100 according to the first embodiment. As shown in FIG. 2, the signal control apparatus 100 includes a control unit 101, a communication unit 102, a traffic frequency calculation unit 103, a storage unit 104, a selection unit 105, a travel time calculation unit 106, and the like.
 通信部102は、路上装置3及び交通信号制御機1との間で情報の送受信(通信)を行う。例えば、通信部102は、路上装置3からプローブ車両10の走行状態を示す情報であるプローブ情報を受信する。 The communication unit 102 performs transmission / reception (communication) of information between the road device 3 and the traffic signal controller 1. For example, the communication unit 102 receives probe information that is information indicating the traveling state of the probe vehicle 10 from the road device 3.
 通信部102は、プローブ情報を受信することにより、道路R1、R2でのプローブ車両10の通行量を取得することができる。プローブ車両10の通行量は、例えば、予め設定された時間帯(例えば、15分、30分、1時間など)毎に道路R1、R2(流入路21~24)を通行したプローブ車両10の台数である。 The communication unit 102 can acquire the traffic amount of the probe vehicle 10 on the roads R1 and R2 by receiving the probe information. The amount of traffic of the probe vehicle 10 is, for example, the number of probe vehicles 10 that have passed the roads R1 and R2 (inflow paths 21 to 24) every preset time period (for example, 15 minutes, 30 minutes, 1 hour, etc.). It is.
 通行頻度算出部103は、プローブ車両10の通行量に基づいて、任意の時間帯でのプローブ車両10の通行頻度を算出する算出手段としての機能を備える。 The traffic frequency calculation unit 103 has a function as calculation means for calculating the traffic frequency of the probe vehicle 10 in an arbitrary time zone based on the traffic volume of the probe vehicle 10.
 通行頻度算出部103は、通信部102で取得した通行量に基づいて、任意の時間帯でのプローブ車両10の通行頻度を算出する。通行頻度は、例えば、1日の任意の時間帯でのプローブ車両10の通行量(プローブ車両10の台数)を所定の期間(例えば、1か月、3か月、6か月、1年など)の間収集し、所定の期間が経過する都度、収集した通行量の合計を所定の期間の日数で除算して1日当たりの数値を求め、プローブ車両10の台数の任意の時間帯毎の1日当たりの平均として求めることができる。 The traffic frequency calculation unit 103 calculates the traffic frequency of the probe vehicle 10 in an arbitrary time zone based on the traffic volume acquired by the communication unit 102. The traffic frequency is, for example, the amount of traffic of the probe vehicle 10 (the number of probe vehicles 10) in an arbitrary time period of a day for a predetermined period (for example, 1 month, 3 months, 6 months, 1 year, etc.) ), And every time a predetermined period elapses, the total amount of traffic collected is divided by the number of days in the predetermined period to obtain a numerical value per day. It can be obtained as an average per day.
 選択部105は、信号灯器2の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択する選択手段としての機能を備える。 The selection unit 105 has a function as a selection unit that selects one signal control method from a plurality of signal control methods determined in advance in order to control the blue time of the signal lamp device 2.
 選択部105は、通行頻度算出部103で算出した通行頻度に応じて、信号灯器2の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択する。複数の信号制御方式は、例えば、プローブ車両10の台数(プローブ情報が取得される頻度)が少ない場合でも用いることのできる信号制御方式、プローブ車両10の台数(プローブ情報が取得される頻度)に依存する傾向がある信号制御方式などである。 The selection unit 105 selects one signal control method from a plurality of signal control methods determined in advance in order to control the blue time of the signal lamp 2 according to the traffic frequency calculated by the traffic frequency calculation unit 103. For example, the signal control method can be used even when the number of probe vehicles 10 (frequency at which probe information is acquired) is small, and the number of probe vehicles 10 (frequency at which probe information is acquired). For example, a signal control method that tends to depend.
 また、選択部105は、通行頻度算出部103で算出した通行頻度の大小に応じて、車両の走行状態を示す情報に基づく交通指標を用いる信号制御方式か交通指標を用いない信号制御方式かを選択する。交通指標は、例えば、プローブ情報に基づいて後述の旅行時間算出部106が算出する旅行時間などである。選択部105は、通行頻度算出部103で算出した通行頻度が大きい場合には、交通指標を用いる信号制御方式を選択し、通行頻度算出部103で算出した通行頻度が小さい場合には、交通指標を用いない信号制御方式を選択する。交通指標を用いる信号制御方式は、例えば、プローブ情報に依存する信号制御方式であり、交通指標を用いない信号制御方式は、プローブ情報にほとんど依存しない信号制御方式である。なお、交通指標を用いない信号制御方式には、交通指標を全く加味しない信号制御方式だけではなく、交通指標によって信号制御パラメータ(サイクル長、スプリット、オフセットなど)がほとんど変化しない信号制御方式も含む。信号制御パラメータがほとんど変化しないとは、例えば、車両の走行状態を示す情報の変動による青信号時間の変動が数秒以内又は数パーセント以内である場合である。算出した通行頻度の大小に応じて交通指標を用いる信号制御方式か交通指標を用いない信号制御方式かを選択するので、プローブ車両の台数(プローブ情報の取得頻度)の多少に応じて、交通状況に応じた適切な信号制御を実現することができる。 Further, the selection unit 105 determines whether the signal control method using the traffic index based on the information indicating the running state of the vehicle or the signal control method not using the traffic index according to the magnitude of the traffic frequency calculated by the traffic frequency calculation unit 103. select. The traffic index is, for example, a travel time calculated by a travel time calculation unit 106 to be described later based on the probe information. The selection unit 105 selects a signal control method using a traffic index when the traffic frequency calculated by the traffic frequency calculation unit 103 is high, and selects the traffic index when the traffic frequency calculated by the traffic frequency calculation unit 103 is small. Select a signal control method that does not use. The signal control method using the traffic index is, for example, a signal control method depending on the probe information, and the signal control method not using the traffic index is a signal control method almost independent of the probe information. The signal control method that does not use traffic indicators includes not only a signal control method that does not take any traffic indicators into consideration, but also a signal control method in which signal control parameters (cycle length, split, offset, etc.) hardly change depending on traffic indicators. . The signal control parameter hardly changes when, for example, the change of the green light time due to the change of the information indicating the running state of the vehicle is within several seconds or several percent. Depending on the number of probe vehicles (acquisition frequency of probe information), the traffic condition depends on the signal control method that uses traffic indicators or the signal control method that does not use traffic indicators according to the calculated traffic frequency. Appropriate signal control according to the above can be realized.
 旅行時間算出部106は、車両(プローブ車両10)の走行状態を示す情報(プローブ情報)に基づく交通指標の一例としての旅行時間を算出する。旅行時間算出部106は、通信部102を介して取得したプローブ情報からプローブ車両10の識別コード毎の走行軌跡情報を抽出し、記憶部104に記憶してある道路地図データの道路区間データに基づいてマップマッチング処理を行って、それぞれのプローブ車両10(車載装置5)が走行した道路区間を求める。そして、旅行時間算出部106は、道路区間の始端及び終端に最も接近している位置及びその位置での時刻を抽出し、終端に最も接近している位置における時刻から始端に最も接近している位置における時刻を差し引いて、当該道路区間の旅行時間を算出する。なお、旅行時間算出部106は必須の構成ではなく、信号制御装置100の外部の装置、例えば、車載装置5又は路上装置3に設ける構成であってもよい。その場合には、信号制御装置100は、車載装置5又は路上装置3から旅行時間を取得すればよい。 Travel time calculation unit 106 calculates travel time as an example of a traffic index based on information (probe information) indicating the traveling state of the vehicle (probe vehicle 10). The travel time calculation unit 106 extracts travel locus information for each identification code of the probe vehicle 10 from the probe information acquired via the communication unit 102, and based on the road section data of the road map data stored in the storage unit 104. Map matching processing is performed to obtain the road section in which each probe vehicle 10 (on-vehicle device 5) travels. Then, the travel time calculating unit 106 extracts the position closest to the start and end of the road section and the time at the position, and is closest to the start from the time at the position closest to the end. The travel time of the road section is calculated by subtracting the time at the position. The travel time calculation unit 106 is not an essential configuration, and may be a configuration provided in a device external to the signal control device 100, for example, the in-vehicle device 5 or the road device 3. In that case, the signal control device 100 may acquire the travel time from the in-vehicle device 5 or the road device 3.
 記憶部104は、取得したプローブ情報、信号制御パラメータ、道路地図データなどの所定の情報を記憶する。 The storage unit 104 stores predetermined information such as acquired probe information, signal control parameters, and road map data.
 次に、選択部105で信号制御方式を選択する選択方法の一例について説明する。図3は実施の形態1の信号制御装置100による信号制御方式の選択方法の一例を示す説明図である。図3において、横軸は1日の時刻を示し、縦軸は通行頻度であるプローブ情報の取得頻度、すなわち、プローブ車両10の通行台数を示す。 Next, an example of a selection method for selecting a signal control method by the selection unit 105 will be described. FIG. 3 is an explanatory diagram illustrating an example of a signal control method selection method performed by the signal control apparatus 100 according to the first embodiment. In FIG. 3, the horizontal axis indicates the time of the day, and the vertical axis indicates the probe information acquisition frequency, which is the traffic frequency, that is, the number of probe vehicles 10 that pass.
 図3に示すプローブ情報の取得頻度は、例えば、1日を1時間毎の時間帯で区切り、各時間帯でのプローブ車両10の通行量(プローブ車両10の台数)を所定の期間(例えば3か月)の間収集し、所定の期間が経過した時点で収集した通行量の合計を所定の期間(3か月)の日数で除算して1日当たりの数値を求めたものであり、プローブ車両10の台数の1時間毎の1日当たりの平均として求めることができる。例えば、時刻が8:00から9:00の間のプローブ情報の取得頻度は、3か月間の間、毎日取得した通行量を合計し、合計した値を3か月に相当する日数で除算して1日当たりの平均値として求めたものである。なお、所定の期間は、3か月に限定されるものではなく、1か月、2か月、6か月、1年など適宜の期間を用いることができる。また、時間帯も1時間毎に限定されるものではなく、5分毎、10分毎、15分毎、30分毎、2時間毎など適宜の時間帯を用いることができる。 The probe information acquisition frequency shown in FIG. 3 is, for example, divided into one hour every hour, and the amount of traffic of the probe vehicle 10 (the number of probe vehicles 10) in each time zone is a predetermined period (for example, 3 Month) and the total traffic volume collected when the predetermined period has passed is divided by the number of days in the predetermined period (three months) to obtain the numerical value per day. It can be obtained as an average of 10 units per hour per hour. For example, the probe information acquisition frequency between 8:00 and 9:00 is the total amount of traffic acquired every day for three months, and the total value is divided by the number of days corresponding to three months. Calculated as an average value per day. The predetermined period is not limited to three months, and an appropriate period such as one month, two months, six months, or one year can be used. Also, the time zone is not limited to every hour, and an appropriate time zone such as every 5 minutes, every 10 minutes, every 15 minutes, every 30 minutes, every 2 hours, or the like can be used.
 プローブ情報の取得頻度(通行頻度)による信号制御方式の選択は、予め定めた第1閾値TH1及び第1閾値TH1より大きい第2閾値TH2とプローブ情報の取得頻度とを比較して行う。第1閾値TH1は、プローブ情報の取得頻度が少ないか否かを判定するための閾値であり、例えば、30分、1時間当たり1個などの値である。また、第2閾値TH2は、プローブ情報の取得頻度が高いか否かを判定するための閾値であり、例えば、5分、10分、15分当たり1個などの値である。 The selection of the signal control method based on the probe information acquisition frequency (traffic frequency) is performed by comparing the first threshold value TH1 and the second threshold value TH2 larger than the first threshold value TH1 with the probe information acquisition frequency. The first threshold value TH1 is a threshold value for determining whether or not the probe information acquisition frequency is low. For example, the first threshold value TH1 is a value such as one per 30 minutes or one hour. The second threshold value TH2 is a threshold value for determining whether or not the probe information acquisition frequency is high. For example, the second threshold value TH2 is a value such as one for 5 minutes, 10 minutes, or 15 minutes.
 例えば、ある時間帯でプローブ情報の取得頻度(通行頻度)が第1閾値TH1より小さい場合、当該時間帯では第1の信号制御方式を選択する。第1の信号制御方式は、例えば、複数の信号制御パラメータ(例えば、サイクル長、スプリット、オフセットなど)の組を用意しておき、時間帯毎に使用する信号制御パラメータを定めておき、時刻に対応する時間帯の信号制御パラメータを選択する方式である。第1の信号制御方式は、交通指標を用いない信号制御方式に該当する。 For example, when the probe information acquisition frequency (traffic frequency) is smaller than the first threshold value TH1 in a certain time zone, the first signal control method is selected in the time zone. In the first signal control method, for example, a set of a plurality of signal control parameters (for example, cycle length, split, offset, etc.) is prepared, signal control parameters to be used for each time zone are determined, and time is set. This is a method of selecting a signal control parameter in a corresponding time zone. The first signal control method corresponds to a signal control method that does not use a traffic index.
 また、ある時間帯でプローブ情報の取得頻度(通行頻度)が第2閾値以上である場合、当該時間帯では第2の信号制御方式を選択する。第2の信号制御方式は、例えば、複数の信号制御パラメータ(例えば、サイクル長、スプリット、オフセットなど)の組を用意しておき、交通指標(例えば、道路の任意の区間の旅行時間など)毎に使用する信号制御パラメータを定めておき、実際に計測された交通指標に対応する信号制御パラメータを選択する方式である。 Also, if the probe information acquisition frequency (traffic frequency) is greater than or equal to the second threshold in a certain time zone, the second signal control method is selected in that time zone. In the second signal control method, for example, a set of a plurality of signal control parameters (for example, cycle length, split, offset, etc.) is prepared, and each traffic index (for example, travel time of an arbitrary section of the road) is prepared. In this method, signal control parameters to be used are determined, and signal control parameters corresponding to actually measured traffic indexes are selected.
 さらに、ある時間帯でプローブ情報の取得頻度(通行頻度)が第1閾値以上であり、かつ第2閾値より小さい場合、当該時間帯では第3の信号制御方式を選択する。第3の信号制御方式は、例えば、複数の信号制御パラメータ(例えば、サイクル長、スプリット、オフセットなど)の組を用意しておき、時間帯毎に使用する信号制御パラメータを定めておくとともに、時間帯の中の特定の時間帯毎の交通指標(例えば、旅行時間など)に応じて使用する別の信号制御パラメータを定めておく。時刻に対応する時間帯の信号制御パラメータを選択するとともに、特定の時間帯で実際に計測された交通指標に対応する信号制御パラメータを選択する方式である。第2及び第3の信号制御方式は、交通指標を用いる信号制御方式に該当する。 Further, when the probe information acquisition frequency (traffic frequency) is equal to or higher than the first threshold value and smaller than the second threshold value in a certain time zone, the third signal control method is selected in the time zone. In the third signal control method, for example, a set of a plurality of signal control parameters (for example, cycle length, split, offset, etc.) is prepared, signal control parameters to be used for each time zone are determined, and time Another signal control parameter to be used is determined in accordance with a traffic index (for example, travel time) for each specific time zone in the zone. In this method, a signal control parameter corresponding to a traffic index actually measured in a specific time zone is selected while selecting a signal control parameter in a time zone corresponding to time. The second and third signal control methods correspond to the signal control method using the traffic index.
 図3で示したように、選択部105は、通行頻度算出部103で算出した通行頻度が小さい場合には、プローブ情報が取得される頻度が少ない場合でも用いることのできる第1の信号制御方式を選択し、算出した通行頻度が大きい場合には、プローブ情報に依存する第2又は第3の信号制御方式を選択する。これにより、プローブ車両10の台数(プローブ情報の取得頻度)の多少に応じて、交通状況に応じた適切な信号制御を実現することができる。以下では、各信号制御方式について説明する。 As shown in FIG. 3, when the traffic frequency calculated by the traffic frequency calculation unit 103 is small, the selection unit 105 can use the first signal control method that can be used even when the frequency at which the probe information is acquired is low. When the calculated traffic frequency is large, the second or third signal control method depending on the probe information is selected. Thereby, appropriate signal control according to traffic conditions can be realized according to the number of probe vehicles 10 (frequency of obtaining probe information). Below, each signal control system is demonstrated.
 図4は第1及び第3の信号制御方式に用いる信号制御パラメータテーブルの一例を示す説明図である。図4の例では、パターン番号1~7で分類される7種類の信号制御パラメータを用いる。例えば、パターン番号1の信号制御パラメータは、サイクル長が60秒、道路R1と道路R2とのスプリットが0.5:0.5、オフセットが0秒である。他のパターン番号の信号制御パラメータも図示のとおりである。なお、信号制御パラメータは、一例であって、図4の例に限定されるものではなく、また、信号制御パラメータの数(パターン番号)も図4の例に限定されるものではない。 FIG. 4 is an explanatory diagram showing an example of a signal control parameter table used for the first and third signal control methods. In the example of FIG. 4, seven types of signal control parameters classified by pattern numbers 1 to 7 are used. For example, the signal control parameter of pattern number 1 has a cycle length of 60 seconds, a split between road R1 and road R2 of 0.5: 0.5, and an offset of 0 seconds. The signal control parameters for other pattern numbers are also shown in the figure. The signal control parameter is an example and is not limited to the example of FIG. 4, and the number of signal control parameters (pattern number) is not limited to the example of FIG.
 図5は第1の信号制御方式の一例を示す説明図である。上述のとおり、第1の信号制御方式は、複数の信号制御パラメータの組を用意しておき、時間帯毎に使用する信号制御パラメータを定めておき、時刻に対応する時間帯の信号制御パラメータを選択する方式である。 FIG. 5 is an explanatory diagram showing an example of the first signal control method. As described above, in the first signal control method, a set of a plurality of signal control parameters is prepared, a signal control parameter to be used for each time zone is determined, and a signal control parameter in a time zone corresponding to time is set. The method to select.
 図5に示すように、時刻が0:00から6:00までの間は、パターン番号1の信号制御パラメータを使用するように定めてある。また、時刻が6:00から7:00までの間は、パターン番号2の信号制御パラメータを使用するように定めてある。他の時刻についても図5に例示のとおりである。第1の信号制御方式は、事前に想定した交通需要に対する変動が少ない地域、時間帯に対して有効な信号制御を行うことができる。 As shown in FIG. 5, it is determined that the signal control parameter of pattern number 1 is used during the time from 0:00 to 6:00. Further, it is determined that the signal control parameter of pattern number 2 is used during the time from 6:00 to 7:00. Other times are as illustrated in FIG. The first signal control method can perform effective signal control for an area and a time zone in which the fluctuation with respect to the traffic demand assumed in advance is small.
 選択部105は、通行頻度算出部103で算出した通行頻度(例えば、任意の時間帯毎のプローブ車両の台数、プローブ情報の取得頻度など)が第1閾値TH1より小さい場合、第1の信号制御方式を選択する。プローブ情報の取得頻度が低い場合には、第1の信号制御方式を選択することにより、事前に想定した交通需要に対する変動が少ない地域、時間帯に対して有効な信号制御を行うことができる。 When the traffic frequency calculated by the traffic frequency calculation unit 103 (for example, the number of probe vehicles for each arbitrary time zone, the probe information acquisition frequency, etc.) is smaller than the first threshold value TH1, the selection unit 105 performs the first signal control. Select a method. When the probe information acquisition frequency is low, by selecting the first signal control method, it is possible to perform effective signal control for an area and a time zone in which there is little fluctuation with respect to the traffic demand assumed in advance.
 図6は第3の信号制御方式の一例を示す説明図である。上述のとおり、第3の信号制御方式は、複数の信号制御パラメータの組を用意しておき、図5に示すような時間帯毎に使用する信号制御パラメータを定めておくとともに、図6に示すような時間帯の中の特定の時間帯毎の交通指標(例えば、旅行時間など)に応じて使用する別の信号制御パラメータを定めておく。時刻に対応する時間帯の信号制御パラメータを選択するとともに、特定の時間帯で実際に計測された交通指標に対応する信号制御パラメータを選択する方式である。 FIG. 6 is an explanatory diagram showing an example of the third signal control method. As described above, in the third signal control method, a set of a plurality of signal control parameters is prepared, and the signal control parameters to be used for each time zone as shown in FIG. 5 are determined, as shown in FIG. Another signal control parameter to be used is determined in accordance with a traffic index (for example, travel time) for each specific time zone in such a time zone. In this method, a signal control parameter corresponding to a traffic index actually measured in a specific time zone is selected while selecting a signal control parameter in a time zone corresponding to time.
 図6に示すように、第3の信号制御方式は、特定の時間帯(例えば、6:30から7:00まで等)毎に呼出条件、呼出パターン、実行時間が定められている。第3の信号制御方式では、特定の時間帯において、呼出条件を充足するか否かを判定し、呼出条件を充足する場合、実行時間で特定される時間の間、呼出パターンの信号制御パラメータを使用する。 As shown in FIG. 6, in the third signal control method, a calling condition, a calling pattern, and an execution time are determined for each specific time zone (for example, from 6:30 to 7:00). In the third signal control method, it is determined whether or not the calling condition is satisfied in a specific time zone. When the calling condition is satisfied, the signal control parameter of the calling pattern is set for the time specified by the execution time. use.
 特定の時間帯として6:30から7:00までの間においては、呼出条件は、道路R1の旅行時間T1が300秒以上である。なお、道路R1の旅行時間は、道路区間11、12それぞれの旅行時間のうち大きい方の旅行時間とすることができる。 In the specific time zone between 6:30 and 7:00, the calling condition is that the travel time T1 of the road R1 is 300 seconds or more. The travel time of the road R1 can be the larger travel time of the travel time of the road sections 11 and 12.
 また、特定の時間帯として16:30から17:00までの間においては、呼出条件は、道路R2の旅行時間T2が300秒以上である。なお、道路R2の旅行時間は、道路区間21、22それぞれの旅行時間のうち大きい方の旅行時間とすることができる。他の特定時間帯についても同様である。 Further, during the period from 16:30 to 17:00 as a specific time zone, the calling condition is that the travel time T2 of the road R2 is 300 seconds or more. The travel time on the road R2 can be the larger travel time of the travel times of the road sections 21 and 22. The same applies to other specific time zones.
 次に、第3の信号制御方式について、さらに具体的に説明する。例えば、図5に示すように、時刻が6:00になった時点ではパターン番号2の信号制御パラメータを使用する。図4に示すように、パターン番号2の信号制御パラメータは、サイクル長が90秒であり、道路R1とR2とのスプリットが0.6:0.4である。 Next, the third signal control method will be described more specifically. For example, as shown in FIG. 5, when the time reaches 6:00, the signal control parameter of pattern number 2 is used. As shown in FIG. 4, the signal control parameter of pattern number 2 has a cycle length of 90 seconds and a split between roads R1 and R2 of 0.6: 0.4.
 図6に示すように、時刻が6:30になった時点では、道路R1の旅行時間T1が300秒以上であるか否かの呼出条件の判定が行われる。この呼出条件は、道路R1が非渋滞時に比べて道路R1が混雑しているか否かを判定することができるものである。そして、呼出条件を充足する場合、すなわち道路R1が混雑している場合、パターン番号3の信号制御パラメータを使用する。図4に示すように、パターン番号3の信号制御パラメータは、サイクル長が120秒であり、道路R1とR2とのスプリットが0.6:0.4である。パターン番号3の信号制御パラメータを呼び出して使用することにより、道路R1に対する信号灯器2の青時間は、54秒から72秒に延長され、道路R1の渋滞を解消する方向へ交通信号制御が行われる。 As shown in FIG. 6, when the time is 6:30, the calling condition is determined as to whether or not the travel time T1 of the road R1 is 300 seconds or more. This calling condition can determine whether or not the road R1 is congested compared to when the road R1 is not congested. When the calling condition is satisfied, that is, when the road R1 is congested, the signal control parameter of pattern number 3 is used. As shown in FIG. 4, the signal control parameter of pattern number 3 has a cycle length of 120 seconds and a split between roads R1 and R2 of 0.6: 0.4. By calling and using the signal control parameter of pattern number 3, the blue time of the signal lamp 2 for the road R1 is extended from 54 seconds to 72 seconds, and traffic signal control is performed in a direction to eliminate the traffic congestion on the road R1. .
 図5に示すように、第1の信号制御方式では、6:00から7:00までの間ではパターン番号2の信号制御パラメータを使用し、7:00から9:00までの間では、道路R1の交通需要が増大するという経験則からパターン番号3の信号制御パラメータに切り替える。しかし、道路R1が混雑し始めると予想された時刻7:00よりも実際に混雑し始める時刻が早くなった場合、本来であればサイクル長を120秒程度の長さにしなければ捌ききれない程度の交通量になっているにも関わらず、サイクル長を90秒のままにしているため、1サイクルの間に交差点20を通過できる車両の台数が限定され、信号待ちの車両が増加し渋滞が発生する。 As shown in FIG. 5, in the first signal control method, the signal control parameter of pattern number 2 is used between 6:00 and 7:00, and the road between 7:00 and 9:00 The rule is switched to the signal control parameter of pattern number 3 from the rule of thumb that the traffic demand of R1 increases. However, when the time when the road R1 starts to become crowded is earlier than the time 7:00 when the road R1 is expected to start being crowded, the cycle length is normally set to about 120 seconds so that the road R1 cannot be fully produced. Although the cycle length remains at 90 seconds, the number of vehicles that can pass through the intersection 20 during one cycle is limited, the number of vehicles waiting for traffic lights increases, and traffic congestion occurs. appear.
 第3の信号制御方式を採用することにより、時刻7:00よりも30分早い時刻6:30から7:00までの間に、旅行時間に応じて通常よりも早い段階で時刻7:00以降に使用される予定のパターン番号3の信号制御パラメータを使用することができるので、交通状況が事前の交通需要の予想よりも早く変化した場合でも柔軟に対応することができる。 By adopting the third signal control method, between time 6:30 and 7:00, 30 minutes earlier than time 7:00, after time 7:00 at an earlier stage than usual according to travel time Since the signal control parameter of the pattern number 3 scheduled to be used for the above can be used, it is possible to respond flexibly even when the traffic situation changes earlier than expected in advance.
 同様に、図5に示すように、第1の信号制御方式では、7:00から9:00までの間ではパターン番号3の信号制御パラメータを使用し、9:00から17:00までの間では、道路R1の交通需要が減少するという経験則からパターン番号4の信号制御パラメータに切り替える。しかし、道路R1の混雑がなくなると予想された時刻9:00を過ぎても混雑した状況が変化しなかった場合、本来であればパターン番号3の信号制御パラメータを継続して使用しなければならないところ、パターン番号4の信号制御パラメータを使用することによりサイクル長を90秒に短縮するため、混雑した交通状況がさらに深刻になる可能性がある。 Similarly, as shown in FIG. 5, in the first signal control method, the signal control parameter of pattern number 3 is used between 7:00 and 9:00 and between 9:00 and 17:00. Then, it switches from the rule of thumb that the traffic demand of road R1 decreases to the signal control parameter of pattern number 4. However, if the congested situation does not change after the time 9:00 when it is predicted that the road R1 will be crowded, the signal control parameter of pattern number 3 must be used continuously. However, since the cycle length is shortened to 90 seconds by using the signal control parameter of pattern number 4, the congested traffic situation may become more serious.
 第3の信号制御方式を採用することにより、時刻が9:00から10:00までの間で旅行時間T1が300秒以上となっている場合には、引き続きパターン番号3の信号制御パラメータを延長して使用するので、交通状況が事前の交通需要の予想よりも遅く変化した場合でも柔軟に対応することができる。 By adopting the third signal control method, when the travel time T1 is 300 seconds or more between 9:00 and 10:00, the signal control parameter of pattern number 3 is continuously extended. Therefore, even when the traffic situation changes later than expected in advance, demand can be flexibly dealt with.
 上述のように、第3の信号制御方式を選択することにより、プローブ情報の取得頻度があまり高くなく、かつ事前に想定した交通需要に対する変動が生じやすい場合に、有効な信号制御を行うことができる。 As described above, by selecting the third signal control method, it is possible to perform effective signal control when the acquisition frequency of the probe information is not so high and the traffic demand is likely to fluctuate in advance. it can.
 図7は第2の信号制御方式に用いる信号制御パラメータテーブルの一例を示す説明図である。図7の例では、パターン番号11~22で分類される12種類の信号制御パラメータを用いる。例えば、パターン番号11の信号制御パラメータは、サイクル長が60秒、道路R1と道路R2とのスプリットが0.5:0.5、オフセットが0秒である。他のパターン番号の信号制御パラメータも図示のとおりである。なお、信号制御パラメータは、一例であって、図7の例に限定されるものではなく、信号制御パラメータの数(パターン番号)も図7の例に限定されるものではない。また、図7と図4とで同じ信号制御パラメータは同一のパターン番号に纏めることもできる。 FIG. 7 is an explanatory diagram showing an example of a signal control parameter table used for the second signal control method. In the example of FIG. 7, 12 types of signal control parameters classified by pattern numbers 11 to 22 are used. For example, the signal control parameter of pattern number 11 has a cycle length of 60 seconds, a split between road R1 and road R2 of 0.5: 0.5, and an offset of 0 seconds. The signal control parameters for other pattern numbers are also shown in the figure. The signal control parameter is an example, and is not limited to the example in FIG. 7, and the number of signal control parameters (pattern number) is not limited to the example in FIG. 7. Further, the same signal control parameters in FIGS. 7 and 4 can be combined into the same pattern number.
 図8は第2の信号制御方式の一例を示す説明図である。上述のとおり、第2の信号制御方式は、複数の信号制御パラメータの組を用意しておき、交通指標(例えば、道路の任意の区間の旅行時間など)毎に使用する信号制御パラメータを定めておき、実際に計測された交通指標に対応する信号制御パラメータを選択する方式である。 FIG. 8 is an explanatory diagram showing an example of the second signal control method. As described above, in the second signal control method, a set of a plurality of signal control parameters is prepared, and a signal control parameter to be used for each traffic index (for example, travel time of an arbitrary section of a road) is determined. In other words, this is a method of selecting a signal control parameter corresponding to the actually measured traffic index.
 図8に示すように、道路R1の旅行時間T1が120秒より短く、道路R2の旅行時間T2が120秒より小さい場合、パターン番号11の信号制御パラメータを使用する。図7に示すように、パターン番号11の信号制御パラメータは、サイクル長が60秒であり、道路R1、R2のスプリットが0.5:0.5である。 As shown in FIG. 8, when the travel time T1 of the road R1 is shorter than 120 seconds and the travel time T2 of the road R2 is shorter than 120 seconds, the signal control parameter of the pattern number 11 is used. As shown in FIG. 7, the signal control parameter of pattern number 11 has a cycle length of 60 seconds and a split of roads R1 and R2 of 0.5: 0.5.
 そして、道路R2の旅行時間T2が120秒より短い状態のまま道路R1の旅行時間T1が増加して、240秒以上360未満となった場合、パターン番号15の信号制御パラメータを使用する。図7に示すように、パターン番号15の信号制御パラメータは、サイクル長が90秒であり、道路R1、R2のスプリットが0.6:0.4である。パターン番号15の信号制御パラメータに切り替えることにより、道路R1に対する信号灯器2の青時間は、30秒から54秒に延長され、道路R1の渋滞を緩和することができる。 Then, when the travel time T1 of the road R1 increases and becomes 240 seconds or more and less than 360 while the travel time T2 of the road R2 is shorter than 120 seconds, the signal control parameter of the pattern number 15 is used. As shown in FIG. 7, the signal control parameter of pattern number 15 has a cycle length of 90 seconds and a split of roads R1 and R2 of 0.6: 0.4. By switching to the signal control parameter of pattern number 15, the blue time of the signal lamp 2 with respect to the road R1 is extended from 30 seconds to 54 seconds, and the traffic jam on the road R1 can be reduced.
 上述のように、第2の信号制御方式を選択することにより、プローブ情報の取得頻度が比較的高く、旅行時間などの交通指標をタイムリーに求めることができる場合に、有効な信号制御を行うことができる。また、プローブ情報の取得頻度が低くない場合には、第2又は第3の信号制御方式を選択することにより、旅行時間などの交通指標をタイムリーに求めることができる場合、または事前に想定した交通需要に対する変動が生じやすい場合に、有効な信号制御を行うことができる。 As described above, by selecting the second signal control method, effective signal control is performed when the acquisition frequency of probe information is relatively high and traffic indicators such as travel time can be obtained in a timely manner. be able to. In addition, when the probe information acquisition frequency is not low, it is possible to obtain a traffic index such as travel time in a timely manner by selecting the second or third signal control method, or assumed in advance Effective signal control can be performed when fluctuations in traffic demand are likely to occur.
 次に、実施の形態1の信号制御装置100の動作について説明する。図9は実施の形態1の信号制御装置100の処理手順を示すフローチャートである。制御部101は、予め収集したプローブ情報に基づいて、時間帯毎のプローブ情報の取得頻度を算出する(S11)。 Next, the operation of the signal control apparatus 100 according to the first embodiment will be described. FIG. 9 is a flowchart showing a processing procedure of the signal control apparatus 100 according to the first embodiment. The control unit 101 calculates the probe information acquisition frequency for each time period based on the probe information collected in advance (S11).
 制御部101は、算出した取得頻度が第1閾値TH1より小さいか否かを判定し(S12)、取得頻度が第1閾値TH1より小さい場合(S12でYES)、第1の信号制御方式を選択し(S13)、時刻に応じた信号制御パラメータを選択し(S14)、処理を終了する。 The control unit 101 determines whether or not the calculated acquisition frequency is smaller than the first threshold value TH1 (S12). If the acquisition frequency is smaller than the first threshold value TH1 (YES in S12), the first signal control method is selected. (S13), the signal control parameter corresponding to the time is selected (S14), and the process is terminated.
 算出した取得頻度が第1閾値TH1より小さくない場合(S12でNO)、制御部101は、算出した取得頻度が第2閾値TH2以上であるか否かを判定する(S15)。算出した取得頻度が第2閾値TH2以上である場合(S15でYES)、制御部101は、第2の信号制御方式を選択し(S16)、道路R1、R2の旅行時間を算出し(S17)、各道路の旅行時間に応じた信号制御パラメータを選択し(S18)、処理を終了する。 When the calculated acquisition frequency is not smaller than the first threshold TH1 (NO in S12), the control unit 101 determines whether the calculated acquisition frequency is equal to or higher than the second threshold TH2 (S15). When the calculated acquisition frequency is equal to or greater than the second threshold TH2 (YES in S15), the control unit 101 selects the second signal control method (S16), and calculates the travel times of the roads R1 and R2 (S17). Then, a signal control parameter corresponding to the travel time of each road is selected (S18), and the process is terminated.
 算出した取得頻度が第2閾値TH2以上でない場合、すなわち算出した取得頻度が第1閾値TH1以上であって第2閾値より小さい場合(S15でNO)、制御部101は、第3の信号制御方式を選択し(S19)、道路R1、R2の旅行時間を算出し(S20)、時刻及び各道路の旅行時間に応じた信号制御パラメータを選択し(S21)、処理を終了する。 When the calculated acquisition frequency is not equal to or higher than the second threshold TH2, that is, when the calculated acquisition frequency is equal to or higher than the first threshold TH1 and smaller than the second threshold (NO in S15), the control unit 101 performs the third signal control method. (S19), the travel times of the roads R1 and R2 are calculated (S20), the signal control parameters corresponding to the time and the travel time of each road are selected (S21), and the process is terminated.
 なお、図9に示す処理は、所定の周期で繰り返し行うことができる。 Note that the process shown in FIG. 9 can be repeated at a predetermined cycle.
 実施の形態1の信号制装置100は、CPU、RAMなどを備えた汎用コンピュータを用いて実現することもできる。すなわち、図9に示すような、各処理手順を定めたプログラムコードをコンピュータに備えられたRAMにロードし、プログラムコードをCPUで実行することにより、コンピュータ上で信号制装置100を実現することができる。 The signal control device 100 according to the first embodiment can also be realized using a general-purpose computer including a CPU, a RAM, and the like. That is, the signal control device 100 can be realized on a computer by loading a program code defining each processing procedure as shown in FIG. 9 into a RAM provided in the computer and executing the program code by the CPU. it can.
 上述の実施の形態において、信号制御装置100は、選択した信号制御パラメータを交通信号制御機1へ出力する。交通信号制御機1は、選択された信号制御パラメータを用いて信号灯器2を制御する。なお、信号制御装置100を交通信号制御機1に組み込む構成とすることもできる。 In the above-described embodiment, the signal control device 100 outputs the selected signal control parameter to the traffic signal controller 1. The traffic signal controller 1 controls the signal lamp 2 using the selected signal control parameter. Note that the signal control device 100 may be incorporated in the traffic signal controller 1.
 上述の実施の形態では、プローブ情報を使って得られる交通指標として旅行時間を用いる構成であったが、交通指標は旅行時間に限定されるものではなく、プローブ車両の交差点上流側の停止位置を用いることもできる。交差点から停止位置までの距離と旅行時間とは、相関関係があるからである。旅行時間に代えてプローブ車両の停止位置を用いる場合には、道路R1、R2それぞれでの停止位置に応じて信号制御パラメータを選択すればよい。 In the above embodiment, the travel time is used as the traffic index obtained using the probe information. However, the traffic index is not limited to the travel time, and the stop position upstream of the intersection of the probe vehicle is determined. It can also be used. This is because there is a correlation between the distance from the intersection to the stop position and the travel time. When the stop position of the probe vehicle is used instead of the travel time, the signal control parameter may be selected according to the stop position on each of the roads R1 and R2.
 上述の実施の形態では、信号制御パラメータの組を定めた信号制御パラメータテーブルを記憶する構成であったが、これに限定されるものではなく、CPUなどの演算部によりリアルタイムで算出するようにしてもよい。 In the above-described embodiment, the signal control parameter table that defines the set of signal control parameters is stored. However, the present invention is not limited to this, and the calculation is performed in real time by a calculation unit such as a CPU. Also good.
(実施の形態2)
 実施の形態2の信号制御システムは、図1に例示した構成と同様の構成を有し、信号制御装置200、交通信号制御機1、信号灯器2、路上装置3などを備える。
(Embodiment 2)
The signal control system according to the second embodiment has a configuration similar to the configuration illustrated in FIG. 1 and includes a signal control device 200, a traffic signal controller 1, a signal lamp 2, a road device 3, and the like.
 信号制御装置200は、路上装置3から送信されたアップリンク情報を受信(取得)する。信号制御装置200は、受信したアップリンク情報を用いて、各流入路21~24に対する信号灯器2の青時間の過不足を判定する。また、信号制御装置200は、信号灯器2の青時間に過不足があると判定した場合、青時間を調整すべく信号情報(信号パラメータ)を設定する。信号制御装置200は、自身で設定した信号情報(信号パラメータ)を交通信号制御機1へ送信する。交通信号制御機1は、信号制御装置200が送信した信号情報を受信し、受信した信号情報を用いて信号灯器2の灯色の切り替えを制御する。すなわち、信号制御装置200は、判定された判定結果に基づいて第4の信号制御方式を実施する。 The signal control device 200 receives (acquires) the uplink information transmitted from the road device 3. The signal control device 200 determines the excess or deficiency of the blue time of the signal lamp 2 for each of the inflow paths 21 to 24 using the received uplink information. When the signal control device 200 determines that the blue time of the signal lamp device 2 is excessive or insufficient, the signal control device 200 sets signal information (signal parameter) to adjust the blue time. The signal control device 200 transmits signal information (signal parameters) set by itself to the traffic signal controller 1. The traffic signal controller 1 receives the signal information transmitted by the signal control device 200, and controls the switching of the lamp color of the signal lamp device 2 using the received signal information. That is, the signal control apparatus 200 implements the fourth signal control method based on the determined determination result.
 図10は実施の形態2の信号制御装置200の構成の一例を示す説明図である。図10に示すように、信号制御装置200は、制御部101、通信部102、停止位置特定部107、選択部105、青時間判定部108、信号情報設定部109、アップリンク情報及び信号情報などを記憶する記憶部104などを備える。なお、実施の形態1と同様の構成については同一の符号を付す。 FIG. 10 is an explanatory diagram showing an example of the configuration of the signal control apparatus 200 according to the second embodiment. As shown in FIG. 10, the signal control apparatus 200 includes a control unit 101, a communication unit 102, a stop position specifying unit 107, a selection unit 105, a blue time determination unit 108, a signal information setting unit 109, uplink information, signal information, and the like. Storage unit 104 or the like for storing. In addition, the same code | symbol is attached | subjected about the structure similar to Embodiment 1. FIG.
 通信部102は、路上装置3及び交通信号制御機1との間で情報の送受信(通信)を行う。例えば、通信部102は、路上装置3から車両10の走行状態を示す情報を含むアップリンク情報を受信する。 The communication unit 102 performs transmission / reception (communication) of information between the road device 3 and the traffic signal controller 1. For example, the communication unit 102 receives uplink information including information indicating the traveling state of the vehicle 10 from the road device 3.
 停止位置特定部107は、各流入路21~24上の車両の停止位置を特定する特定手段の機能を備える。すなわち、停止位置特定部107は、車両10のアップリンク情報に含まれる識別コードにより車両を識別するとともに、識別した車両10が流入路21~24上で停止したか否かを判定し、停止したと判定した場合、交差点20から停止位置までの距離Eを算出し、算出した距離Eを青時間判定部108へ出力する。 The stop position specifying unit 107 has a function of specifying means for specifying the stop position of the vehicle on each of the inflow paths 21 to 24. That is, the stop position specifying unit 107 identifies the vehicle by the identification code included in the uplink information of the vehicle 10, determines whether the identified vehicle 10 has stopped on the inflow paths 21 to 24, and stopped. Is determined, the distance E from the intersection 20 to the stop position is calculated, and the calculated distance E is output to the blue time determination unit 108.
 各流入路21~24上の車両の停止位置は、例えば、交差点20と、交差点20と隣り合う別の交差点の流出地点との間で特定することができる。なお、交差点20から隣の交差点までの距離が長い場合には、交差点20と交差点20の上流側の適当な地点との間で車両が停止したかどうかを特定すればよい。 The stop position of the vehicle on each of the inflow paths 21 to 24 can be specified, for example, between the intersection 20 and an outflow point of another intersection adjacent to the intersection 20. If the distance from the intersection 20 to the adjacent intersection is long, it may be specified whether the vehicle has stopped between the intersection 20 and an appropriate point upstream of the intersection 20.
 車両10が停止したか否かの判定は、アップリンク情報により車両10の速度が0になったか否かで判定することができる。また、車両10の速度が閾値(例えば、5km/h)の状態が一定時間(例えば、5秒など)以上継続した場合に停止したと判定することもできる。なお、同一車両10が流入路21~24上で複数回停止した場合には、交差点から上流側に最も離れた停止位置を車両10の停止位置とする。また、複数台の車両からアップリンク情報を受信して停止の判定を行った場合には、それらの車両のうち最も上流側に停止した車両の停止位置を特定することが好ましい。 Whether or not the vehicle 10 has stopped can be determined based on whether or not the speed of the vehicle 10 has become 0 based on the uplink information. It can also be determined that the vehicle 10 has stopped when the speed of the vehicle 10 is a threshold value (for example, 5 km / h) for a predetermined time (for example, 5 seconds) or longer. When the same vehicle 10 stops a plurality of times on the inflow paths 21 to 24, the stop position farthest upstream from the intersection is set as the stop position of the vehicle 10. Moreover, when the uplink information is received from a plurality of vehicles and the stop is determined, it is preferable to specify the stop position of the vehicle that has stopped most upstream among these vehicles.
 青時間判定部108は、信号灯器2の青時間の過不足を判定する第1判定手段としての機能を備える。すなわち、青時間判定部108は、停止位置特定部107で特定した各流入路21~24上の車両10の停止位置に基づいて、当該流入路に対する青時間の過不足を判定する。なお、交差点20で対向する流入路21及び23の両方で青時間の不足又は余剰が判定された場合には、よりクリティカルな(重大性が高い)方を選択すればよい。交差点20で対向する流入路22及び24の場合も同様である。 The blue time determination unit 108 has a function as a first determination unit that determines whether the blue time of the signal lamp 2 is excessive or insufficient. That is, the green time determination unit 108 determines whether the blue time is excessive or insufficient for the inflow path based on the stop position of the vehicle 10 on each of the inflow paths 21 to 24 specified by the stop position specifying unit 107. In addition, when the shortage or surplus of the blue time is determined in both the inflow channels 21 and 23 facing each other at the intersection 20, the more critical (higher severity) may be selected. The same applies to the inflow channels 22 and 24 facing each other at the intersection 20.
 図11は車両10の停止位置に基づく青時間の過不足を判定する方法の一例を示す説明図である。青時間の過不足は、青時間が不足しているか、あるいは青時間に余裕があるかを示す。例えば、ある流入路上の車両の停止位置が、交差点から比較的離れている場合には、停止した車両と交差点との間には相当数の停止車両が存在していると考えられ、当該流入路に対する青時間は不足していると判定する。また、ある流入路上の車両の停止位置が、交差点から比較的近い場合には、停止した車両と交差点との間に存在する停止車両が少なく、単に赤信号で停止したものと考えられ、当該流入路に対する青時間に余裕があると判定する。 FIG. 11 is an explanatory diagram showing an example of a method for determining whether the green time is excessive or insufficient based on the stop position of the vehicle 10. The excess or deficiency of the blue hours indicates whether the blue hours are insufficient or there is a margin in the blue hours. For example, if the stop position of a vehicle on a certain inflow path is relatively far from the intersection, it is considered that there are a considerable number of stopped vehicles between the stopped vehicle and the intersection. It is determined that the blue time for is insufficient. If the stop position of a vehicle on a certain inflow path is relatively close to the intersection, there are few stopped vehicles between the stopped vehicle and the intersection. It is determined that there is room in the blue hours for the road.
 より具体的には、図11Aに示すように、交差点から流入路上の車両の停止位置までの距離Eが第1距離閾値Tr1以上である場合、当該流入路に対する青時間が不足していると判定する。第1距離閾値Tr1は、例えば、当該流入路に対する青時間をG、当該流入路の飽和交通流率をs、平均車頭間隔をhとするとTr1=s×h×Gとすることができる。すなわち、車両の停止位置の交差点からの距離Eが、1サイクル分の青時間の間に通過することができる車両台数に対応する距離以上であれば、青時間が不足していると判定する。これにより、停止車両の位置を特定することにより青時間が不足していることを判定することができる。また、車両の停止位置が同じであっても、赤信号の残り時間が長いほど青信号開始時の待ち行列長は長くなる可能性は高いため、車両停止時の赤信号の残り時間tを考慮して、Tr1=s×h×G×(R-t)/Rとしても良い。ただし、Rは赤時間で、車両停止時に青信号の場合はt=0とする。この式の意味は以下の通りである。車両の停止位置の交差点からの距離をEとすると赤信号開始からの時間(R-t)の間に待ち行列は単位時間当たり平均E/(R-t)増加しており、この値を用いると青開始時の待ち行列長はE×R/(R-t)と推定できる。E×R/(R-t)<s×h×Gを満たすためのEの条件は、E<s×h×G×(R-t)/Rである。 More specifically, as shown in FIG. 11A, when the distance E from the intersection to the stop position of the vehicle on the inflow path is equal to or greater than the first distance threshold Tr1, it is determined that the blue time for the inflow path is insufficient. To do. The first distance threshold Tr1 can be, for example, Tr1 = s × h × G, where G is the blue time for the inflow path, s is the saturation traffic flow rate of the inflow path, and h is the average vehicle head distance. That is, if the distance E from the intersection of the vehicle stop positions is equal to or greater than the distance corresponding to the number of vehicles that can pass during one cycle of the blue hours, it is determined that the blue hours are insufficient. Thereby, it can be determined that the green time is insufficient by specifying the position of the stopped vehicle. Even if the stop position of the vehicle is the same, the longer the red signal remaining time, the longer the queue length at the start of the green signal is likely to be, so the remaining time t of the red signal when the vehicle is stopped is taken into account. Thus, Tr1 = s × h × G × (R−t) / R may be set. However, R is the red time, and t = 0 in the case of a green signal when the vehicle is stopped. The meaning of this formula is as follows. If the distance from the intersection of the stop position of the vehicle is E, the queue increases by an average E / (Rt) per unit time during the time from the start of the red light (Rt), and this value is used. And the queue length at the start of blue can be estimated as E × R / (R−t). The condition of E to satisfy E × R / (R−t) <s × h × G is E <s × h × G × (Rt) / R.
 また、図11Bに示すように、交差点から流入路上の車両の停止位置までの距離Eが第1距離閾値Tr1より小さい第2距離閾値Tr2以下である場合、当該流入路に対する青時間に余裕があると判定する。第2距離閾値Tr2は、例えば、当該流入路に対する青時間をG、青時間の所定の変動量をΔG(予め定めた変動量であって、過去の交通状況に応じて設定しておくことができる)、当該流入路の飽和交通流率をs、平均車頭間隔をhとするとTr2=s×h×(G-ΔG)とすることができる。すなわち、車両の停止位置の交差点からの距離Eが、1サイクル分の青時間Gから所定の変動量ΔGを差し引いた時間の間に通過することができる車両台数に対応する距離{s×h×(G-ΔG)}以下であれば、青時間に余裕があると判定する。これにより、停止車両の位置を特定することにより青時間に余裕があることを判定することができる。また、Tr1と同様、Tr2も車両停止時の赤信号の残り時間tを考慮して、Tr2=s×h×(G-ΔG)×(R-t)/Rとしてもよい(Rは赤時間)。 In addition, as shown in FIG. 11B, when the distance E from the intersection to the stop position of the vehicle on the inflow path is equal to or smaller than the second distance threshold Tr2 smaller than the first distance threshold Tr1, there is a margin in the blue time for the inflow path. Is determined. The second distance threshold Tr2 is, for example, G for the blue time for the inflow route and ΔG for the predetermined fluctuation amount of the blue time (a predetermined fluctuation amount that can be set according to past traffic conditions. It is possible to obtain Tr2 = s × h × (G−ΔG), where s is the saturation traffic flow rate of the inflow path and h is the average vehicle head distance. That is, the distance E from the intersection of the stop position of the vehicle is the distance {s × h × corresponding to the number of vehicles that can pass during the time obtained by subtracting the predetermined variation ΔG from the blue time G for one cycle. If (G−ΔG)} or less, it is determined that the blue time has a margin. Thereby, it can be determined that there is a margin in the green time by specifying the position of the stopped vehicle. Similarly to Tr1, Tr2 may be Tr2 = s × h × (G−ΔG) × (Rt) / R in consideration of the remaining time t of the red signal when the vehicle is stopped (R is the red time) ).
 図11に示すように、車両の停止位置を特定することで青時間の過不足を判定することができる。また、各流入路21~24上の車両の停止位置を特定することで各流入路21~24に対する青時間の過不足を判定することができる。 As shown in FIG. 11, it is possible to determine whether the blue hours are excessive or insufficient by specifying the stop position of the vehicle. Further, by specifying the stop position of the vehicle on each of the inflow paths 21 to 24, it is possible to determine whether the blue time is excessive or insufficient for each of the inflow paths 21 to 24.
 信号情報設定部109は、青時間に余裕がある流入路に対する青時間の所定量を青時間が不足している流入路に対する青時間に割り当てるべく信号情報(青時間)を設定する設定手段としての機能を備える。以下、青時間の割り当て方法、すなわち青時間の調整方法について説明する。 The signal information setting unit 109 serves as a setting means for setting signal information (blue time) so as to assign a predetermined amount of blue time for an inflow route with a margin of blue time to the blue time for an inflow route with insufficient blue time. It has a function. Hereinafter, a blue time allocation method, that is, a blue time adjustment method will be described.
 図12は実施の形態2の信号制御装置200による青時間の調整方法の一例を示す。図12は、図1に示す交差点20において、各流入路21~24に対する青時間の過不足に応じて、どのように青時間を調整するかを示す。なお、流入路21、23は交差点で対向するので、信号灯器2の灯色は同一タイミングで制御され、同様に流入路22、24も交差点で対向するので、信号灯器2の灯色は同一タイミングで制御される。 FIG. 12 shows an example of a blue time adjustment method by the signal control apparatus 200 according to the second embodiment. FIG. 12 shows how the blue time is adjusted at the intersection 20 shown in FIG. 1 in accordance with the excess or deficiency of the blue time for each of the inflow paths 21 to 24. Since the inflow paths 21 and 23 face each other at the intersection, the signal color of the signal lamp 2 is controlled at the same timing. Similarly, since the inflow paths 22 and 24 also face each other at the intersection, the signal color of the signal lamp 2 has the same timing. It is controlled by.
 図12に示すように、例えば、流入路21又は23に対する青時間が不足し、流入路22又は24に対する青時間に余裕がある場合、あるいは、流入路21又は23に対する青時間に余裕があり、流入路22又は24に対する青時間が不足している場合、すなわち、青時間に余裕がある流入路と青時間が不足している流入路とが存在する場合、信号情報設定部109は、青時間に余裕がある流入路に対する青時間の所定量を青時間が不足している流入路に対する青時間に割り当てるべく信号情報を設定する。所定量は、例えば、2秒、3秒、4秒などである。例えば、交差点に流入する流入路に対する青時間が標準値である場合、青時間が不足している流入路に対する青時間を標準値から所定量増やすとともに、青時間に余裕がある流入路に対する青時間を標準値から所定量減らす。所定量をサイクル長(例えば、90秒)に比べて小さい値(2秒、3秒、4秒など)にすることにより、青時間の過不足に応じて青時間を微調整することができる。 As shown in FIG. 12, for example, when the blue time for the inflow path 21 or 23 is insufficient and there is a margin for the blue time for the inflow path 22 or 24, or there is a margin for the blue time for the inflow path 21 or 23, When the blue time for the inflow channel 22 or 24 is insufficient, that is, when there is an inflow channel with a margin for blue time and an inflow channel with insufficient blue time, the signal information setting unit 109 The signal information is set so that a predetermined amount of the blue time for the inflow path having a sufficient margin is allocated to the blue time for the inflow path where the blue time is insufficient. The predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like. For example, if the blue time for an inflow channel that flows into an intersection is a standard value, the blue time for an inflow channel that lacks blue time is increased by a predetermined amount from the standard value, and the blue time for an inflow channel that has a margin of blue time Reduce the standard value by a predetermined amount. By setting the predetermined amount to a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds), the blue time can be finely adjusted according to the excess or deficiency of the blue time.
 また、流入路21~24で青時間に余裕がある状態が所定時間継続する場合、すなわち、所定時間の間、青時間が不足している流入路が存在しないと判定した場合、信号情報設定部109は、各流入路に対する青時間を標準値に戻す。所定時間は、例えば、信号サイクルで2~3サイクル相当の時間とすることができる。交通状況によって青時間を標準値から増減させた場合に、例えば、所定時間経過後に青時間の不足が解消したときには、青時間を標準値に戻すことにより、当初設定された信号制御パラメータを用いて信号制御を行うことができる。 Further, when the inflow passages 21 to 24 have a sufficient period of blue time for a predetermined time, that is, when it is determined that there is no inflow passage in which the blue time is insufficient for a predetermined time, the signal information setting unit 109 returns the blue hour for each inflow channel to a standard value. The predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle. When the blue hour is increased or decreased from the standard value depending on the traffic situation, for example, when the shortage of the blue hour is resolved after the lapse of a predetermined time, the signal control parameter set initially is used by returning the blue hour to the standard value. Signal control can be performed.
 また、流入路21又は23に対する青時間が不足し、流入路22又は24に対する青時間も不足している場合、信号情報設定部109は、各流入路に対する青時間を変更しない。 Further, when the blue time for the inflow channel 21 or 23 is insufficient and the blue time for the inflow channel 22 or 24 is also insufficient, the signal information setting unit 109 does not change the blue time for each inflow channel.
 車載装置5からアップリンク情報を取得することができる車両10は、流入路を走行する車両の一部であり、どの程度の頻度でアップリンク情報を取得することができるかは状況に応じて変わり得る。そこで、アップリンク情報の取得頻度(プローブ車両の多少)に応じて青時間の調整方法を変えることができる。以下、アップリンク情報の取得量が少ない場合(取得頻度が低い場合)と取得量が比較的多い場合(例えば、アップリンク情報の取得が普及した場合など)とに分けて説明する。 The vehicle 10 that can acquire the uplink information from the in-vehicle device 5 is a part of the vehicle traveling on the inflow path, and how often the uplink information can be acquired varies depending on the situation. obtain. Therefore, the blue time adjustment method can be changed according to the uplink information acquisition frequency (the number of probe vehicles). Hereinafter, the case where the acquisition amount of uplink information is small (when the acquisition frequency is low) and the case where the acquisition amount is relatively large (for example, when the acquisition of uplink information is widespread) will be described separately.
 図13はアップリンク情報の取得頻度が低い場合の青時間の調整方法の一例を示す説明図である。図13の例では、信号灯器2のサイクル長が90秒であるとし、ある流入路(例えば、流入路21)に対する青時間の標準値が60秒であるとする。 FIG. 13 is an explanatory diagram showing an example of a blue time adjustment method when the frequency of acquiring uplink information is low. In the example of FIG. 13, it is assumed that the cycle length of the signal lamp 2 is 90 seconds, and the standard value of the blue time for a certain inflow path (for example, the inflow path 21) is 60 seconds.
 青時間判定部108で流入路21に対する青時間が不足しており、流入路21に交差する流入路22又は流入路24に対する青時間に余裕があると判定した場合、信号情報設定部109は、青時間が不足している流入路21に対する青時間を標準値(60秒)から所定量(例えば、2秒)増やして62秒とするともに、青時間に余裕がある流入路22又は流入路24に対する青時間を標準値から所定量減らす。 When the green time determination unit 108 determines that the blue time for the inflow path 21 is insufficient and the blue time for the inflow path 22 or the inflow path 24 intersecting the inflow path 21 has a margin, the signal information setting unit 109 The blue time for the inflow channel 21 in which the blue time is insufficient is increased from a standard value (60 seconds) by a predetermined amount (for example, 2 seconds) to 62 seconds, and the inflow channel 22 or the inflow channel 24 having a margin of blue time. Decrease the blue hour with respect to the standard value by a predetermined amount.
 そして、青時間を調整した後、青時間判定部108で流入路21に対する青時間が不足しており、流入路21に交差する流入路22又は流入路24に対する青時間に余裕があると再度判定した場合でも、青時間の調整は行わない。このように、1度だけ青時間の調整を行うことにより、アップリンク情報の取得量が少ない場合に、少ない情報量に基づいて青時間の調整幅を大きくし過ぎた結果、却って青時間の過不足を助長する事態が生じることを防止することができる。 Then, after adjusting the blue time, the blue time determination unit 108 determines again that the blue time for the inflow path 21 is insufficient and that the blue time for the inflow path 22 or the inflow path 24 intersecting the inflow path 21 has a margin. Even if it does, the blue time is not adjusted. In this way, by adjusting the blue time only once, when the amount of uplink information acquired is small, the adjustment range of the blue time is excessively increased based on the small amount of information. It is possible to prevent the occurrence of a shortage.
 図14はアップリンク情報の取得頻度が高い場合の青時間の調整方法の一例を示す説明図である。図14の例でも、信号灯器2のサイクル長が90秒であるとし、ある流入路(例えば、流入路21)に対する青時間の標準値が60秒であるとする。 FIG. 14 is an explanatory diagram showing an example of a blue time adjustment method when the frequency of acquiring uplink information is high. In the example of FIG. 14 also, it is assumed that the cycle length of the signal lamp 2 is 90 seconds, and the standard value of the blue time for a certain inflow path (for example, the inflow path 21) is 60 seconds.
 青時間判定部108で流入路21に対する青時間が不足しており、流入路21に交差する流入路22又は流入路24に対する青時間に余裕があると判定した場合、信号情報設定部109は、青時間が不足している流入路21に対する青時間を標準値(60秒)から所定量(例えば、2秒)増やして62秒とするともに、青時間に余裕がある流入路22又は流入路24に対する青時間を標準値から所定量減らす。 When the green time determination unit 108 determines that the blue time for the inflow path 21 is insufficient and the blue time for the inflow path 22 or the inflow path 24 intersecting the inflow path 21 has a margin, the signal information setting unit 109 The blue time for the inflow channel 21 in which the blue time is insufficient is increased from a standard value (60 seconds) by a predetermined amount (for example, 2 seconds) to 62 seconds, and the inflow channel 22 or the inflow channel 24 having a margin of blue time. Decrease the blue hour with respect to the standard value by a predetermined amount.
 そして、所定量の青時間を割り当てた場合、すなわち青時間を調整した後、青時間判定部108で流入路21に対する青時間が不足しており、流入路21に交差する流入路22又は流入路24に対する青時間に余裕があると再度判定したときは、その都度所定量(例えば、2秒)の青時間の割り当てを繰り返す。例えば、青時間が不足している流入路に対する青時間を所定量増やすとともに、青時間に余裕がある流入路に対する青時間を所定量減らす。そして、再度青時間の過不足を判定した場合に、未だ青時間に余裕がある流入路と青時間が不足している流入路とが存在するときは、再度同様の割り当てを繰り返す。なお、所定量ずつの青時間の増減は、青時間の上限値又は下限値に達した時に終了する。図14の例では、流入路21に対する青時間の上限値を66秒としている。これにより、青時間の過不足に応じて青時間を微調整することができる。また、アップリンク情報の取得量が比較的多い場合には、時々刻々変化する交通状況に応じてリアルタイムで青時間の調整を行うことができる。 When a predetermined amount of blue time is allocated, that is, after adjusting the blue time, the blue time for the inflow path 21 is insufficient in the blue time determination unit 108, and the inflow path 22 or the inflow path intersecting the inflow path 21 When it is determined again that there is a margin in the blue time for 24, allocation of the blue time of a predetermined amount (for example, 2 seconds) is repeated each time. For example, while increasing the blue time for an inflow channel with insufficient blue time by a predetermined amount, the blue time for the inflow channel with a margin of blue time is decreased by a predetermined amount. Then, when it is determined again that the blue hours are excessive or insufficient, if there are still inflow channels with sufficient blue hours and inflow channels with insufficient blue hours, the same assignment is repeated again. Note that the increase / decrease in the blue time by a predetermined amount ends when the upper limit value or lower limit value of the blue time is reached. In the example of FIG. 14, the upper limit value of the blue time for the inflow channel 21 is 66 seconds. Thereby, the blue time can be finely adjusted according to the excess or deficiency of the blue time. In addition, when the amount of uplink information acquired is relatively large, the blue time can be adjusted in real time according to the traffic situation that changes from moment to moment.
 図1の例では、交差点に4つの流入路が流入する構造であったが、これに限定されるものではなく、5つ以上の流入路が流入する五差路以上の交差点であっても本実施の形態の信号制御装置を用いることができる。五差路以上の場合には、交差点に流入する流入路の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある流入路であり、優先順位が低いほど青時間を短くすることができる流入路である。そして、複数の流入路に対する青時間に余裕があると判定した場合、当該複数の流入路のうち優先順位の低い流入路を選択し、選択した流入路に対する青時間の所定量を青時間が不足している流入路に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の流入路に対する青時間に余裕があるときは、最も青時間を短くすることができ優先順位が低い流入路に対する青時間を所定量減らす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。 In the example of FIG. 1, the four inflow paths flow into the intersection. However, the present invention is not limited to this, and the present invention is not limited to this. The signal control device of the embodiment can be used. In the case of five or more roads, the priority order of the inflow paths flowing into the intersection is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there. If it is determined that there is room in the blue hours for a plurality of inflow paths, an inflow path with a lower priority is selected from the plurality of inflow paths, and the predetermined amount of blue time for the selected inflow paths is insufficient for the blue time Assign to the blue hour for the current inflow. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of inflow paths, the blue time for the inflow road with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
 また、五差路以上の場合には、同様に、複数の流入路に対して青時間が不足していると判定した場合、青時間に余裕がある流入路に対する青時間の所定量を複数の流入路のうち優先順位の高い流入路に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の流入路に対する青時間が不足しているときは、最も青時間を長くする必要があり優先順位が高い流入路に対する青時間を所定量増やす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。 In addition, in the case of five or more roads, similarly, when it is determined that the blue hours are insufficient for a plurality of inflow paths, a predetermined amount of blue hours for the inflow paths with a margin in the blue hours is set to a plurality of inflow paths. Allocate blue hours for inflow channels with higher priority among inflow channels. For example, when the intersection is five or more roads and the blue hours for a plurality of inflow paths are insufficient, the blue time needs to be made the longest, and the blue time for the inflow road with a higher priority is increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
 上述の例では、(1)青時間が不足する場合と(2)青時間に余裕がある場合の2段階で判断する構成であったが、これに限定されるものではなく、例えば、(1)青時間が不足する場合、(2)青時間に余裕がない場合、(3)青時間に余裕がある場合の3段階で判断することもできる。青時間に余裕がないとは、例えば、青時間を減らすと現在の交通量を捌くことができなくなる状態を表し、青時間を減らすことができず増やす必要もない場合を示す。 In the above-described example, the determination is made in two stages: (1) when the blue time is insufficient and (2) when there is room in the blue time. However, the determination is not limited to this. For example, (1 It can also be determined in three stages: when there is a shortage of blue time, (2) when there is no room in blue time, and (3) when there is room in blue time. For example, when there is no room in the blue hours, it means that if the blue hours are reduced, the current traffic volume cannot be obtained, and the blue hours cannot be reduced and it is not necessary to increase them.
 選択部105は、実施の形態1と同様に、信号灯器2の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択する選択手段としての機能を備える。 As in the first embodiment, the selection unit 105 has a function as a selection unit that selects one signal control method from among a plurality of signal control methods determined in advance to control the blue time of the signal lamp 2. .
 選択部105は、実施の形態1の第3の信号制御方式を選択する条件が充足する場合に、第3の信号制御方式に代えて、青時間判定部108での判定結果及び信号情報設定部109での信号情報設定を用いた第4の信号制御方式を選択してもよい。 When the condition for selecting the third signal control method of the first embodiment is satisfied, the selection unit 105 replaces the third signal control method with the determination result and the signal information setting unit in the blue time determination unit 108. The fourth signal control method using the signal information setting at 109 may be selected.
 また、選択部105を具備しない構成とすることもできる。この場合には、信号制御装置200は、青時間判定部108での判定結果及び信号情報設定部109での信号情報設定を用いた第4の信号制御方式を行う。 Also, the selection unit 105 may not be provided. In this case, the signal control apparatus 200 performs the fourth signal control method using the determination result in the blue time determination unit 108 and the signal information setting in the signal information setting unit 109.
 次に、実施の形態2の信号制御装置200の動作について説明する。図15はアップリンク情報の取得頻度が低い場合の信号制御装置200の処理手順を示すフローチャートである。制御部101は、車両のアップリンク情報を取得する(S31)。アップリンク情報の取得は、図15の処理を開始する直近の一定時間(例えば、10分、15分など)の間に取得する。 Next, the operation of the signal control apparatus 200 according to the second embodiment will be described. FIG. 15 is a flowchart illustrating a processing procedure of the signal control device 200 when the frequency of acquiring uplink information is low. The control unit 101 obtains vehicle uplink information (S31). Uplink information is acquired during the latest fixed time (for example, 10 minutes, 15 minutes, etc.) when the process of FIG. 15 is started.
 制御部101は、各流入路21~24上の車両の停止位置を特定し(S32)、特定した停止位置に基づいて、各流入路21~24に対する青時間の過不足を判定する(S33)。 The control unit 101 identifies the stop positions of the vehicles on the inflow paths 21 to 24 (S32), and determines the excess or deficiency of the blue time for the inflow paths 21 to 24 based on the identified stop positions (S33). .
 制御部101は、青時間が不足している流入路と青時間に余裕がある流入路がともに存在するか否かを判定する(S34)。なお、交差点で対向する流入路(例えば、流入路21と23)の両方で青時間が不足している場合、あるいは青時間に余裕がある場合、両方の流入路のうち、過不足度合が高い方を選択すればよい。 The control unit 101 determines whether or not there are both an inflow channel in which the green time is insufficient and an inflow channel in which the blue time is sufficient (S34). In addition, when the blue hours are insufficient in both of the inflow channels (for example, the inflow channels 21 and 23) facing each other at the intersection, or when there is a margin in the blue time, the degree of excess or deficiency is high in both the inflow channels. You just have to choose one.
 青時間が不足している流入路と青時間に余裕がある流入路がともに存在する場合(S34でYES)、制御部101は、青時間が不足している流入路に対する青時間を標準値から所定量(例えば、2秒、3秒など)増やし(S35)、青時間に余裕がある流入路に対する青時間を標準値から所定量(例えば、2秒、3秒、4秒など)減らし(S36)、処理を終了する。例えば、流入路21に対する青時間が不足し、流入路22に対する青時間に余裕ありと判定した場合、流入路21に対する青時間を標準値から所定量だけ増やし、流入路22に対する青時間を標準値から所定量だけ減らす。 When there are both an inflow channel in which the blue time is insufficient and an inflow channel in which the blue time is sufficient (YES in S34), the control unit 101 sets the blue time for the inflow channel in which the blue time is insufficient from the standard value. A predetermined amount (for example, 2 seconds, 3 seconds, etc.) is increased (S35), and the blue time for the inflow path with a sufficient blue time is decreased from the standard value by a predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds, etc.) (S36). ), The process is terminated. For example, when it is determined that the blue time for the inflow path 21 is insufficient and the blue time for the inflow path 22 is sufficient, the blue time for the inflow path 21 is increased from the standard value by a predetermined amount, and the blue time for the inflow path 22 is set to the standard value. Reduce by a predetermined amount.
 青時間が不足している流入路と青時間に余裕がある流入路がともに存在しない場合(S34でNO)、制御部101は、各流入路で青時間に余裕があるか否かを判定する(S37)。すなわち、制御部101は、青時間が不足する流入路、あるいは青時間に余裕がない流入路が存在するか否かを判定する。 If there is neither an inflow path with insufficient blue time nor an inflow path with a margin in blue time (NO in S34), the control unit 101 determines whether each inflow path has a margin in blue time. (S37). In other words, the control unit 101 determines whether or not there is an inflow path where the blue time is insufficient or an inflow path where there is no room for the blue time.
 各流入路で青時間に余裕がある場合(S37でYES)、すなわち、青時間が不足する流入路、あるいは青時間に余裕がない流入路が存在しない場合、制御部101は、所定時間(例えば、信号サイクルで2~3サイクル相当の時間)経過したか否かを判定する(S38)。すなわち、所定時間の間、青時間が不足する流入路、あるいは青時間に余裕がない流入路が存在しない状態が継続したかを判定する。 When there is a surplus in the blue time in each inflow channel (YES in S37), that is, when there is no inflow channel in which the blue time is insufficient or there is no inflow channel in which there is no surplus in the blue time, the control unit 101 performs a predetermined time (for example, Then, it is determined whether or not a time corresponding to 2 to 3 cycles has elapsed in the signal cycle (S38). That is, it is determined whether or not an inflow path where the blue time is insufficient or an inflow path where there is no margin in the blue time continues for a predetermined time.
 所定時間経過していない場合(S38でNO)、制御部101は、ステップS31以降の処理を行い、所定時間経過した場合(S38でYES)、各流入路に対する青時間に過不足がない又は過不足が解消されたとして、各流入路に対する青時間を標準値に戻し(S39)、処理を終了する。 If the predetermined time has not elapsed (NO in S38), the control unit 101 performs the processing after step S31. If the predetermined time has elapsed (YES in S38), the blue time for each inflow path is not excessive or insufficient. Assuming that the shortage has been resolved, the blue time for each inflow channel is returned to the standard value (S39), and the process is terminated.
 図16はアップリンク情報の取得頻度が高い場合の信号制御装置200の処理手順を示すフローチャートである。制御部101は、車両のアップリンク情報を取得する(S51)。アップリンク情報の取得は、図16の処理を開始する直近の一定時間(例えば、5分、10分など)の間に取得する。 FIG. 16 is a flowchart showing a processing procedure of the signal control apparatus 200 when the uplink information acquisition frequency is high. The control unit 101 acquires vehicle uplink information (S51). Uplink information is acquired during the latest fixed time (for example, 5 minutes, 10 minutes, etc.) when the process of FIG. 16 is started.
 制御部101は、各流入路21~24上の車両の停止位置を特定し(S52)、特定した停止位置に基づいて、各流入路21~24に対する青時間の過不足を判定する(S53)。 The control unit 101 identifies the stop positions of the vehicles on the inflow paths 21 to 24 (S52), and determines the excess or deficiency of the blue time for the inflow paths 21 to 24 based on the identified stop positions (S53). .
 制御部101は、青時間が不足している流入路と青時間に余裕がある流入路がともに存在するか否かを判定する(S54)。なお、交差点で対向する流入路(例えば、流入路21と23)の両方で青時間が不足している場合、あるいは青時間に余裕がある場合、両方の流入路のうち、過不足度合が高い方を選択すればよい。 The control unit 101 determines whether or not there are both an inflow channel in which the green time is insufficient and an inflow channel in which the blue time is sufficient (S54). In addition, when the blue hours are insufficient in both of the inflow channels (for example, the inflow channels 21 and 23) facing each other at the intersection, or when there is a margin in the blue time, the degree of excess or deficiency is high in both the inflow channels. You just have to choose one.
 青時間が不足している流入路と青時間に余裕がある流入路がともに存在する場合(S54でYES)、制御部101は、青時間が不足している流入路に対する青時間を所定量(例えば、2秒、3秒など)増やし(S55)、青時間に余裕がある流入路に対する青時間を所定量(例えば、2秒、3秒、4秒など)減らす(S56)。例えば、流入路21に対する青時間が不足し、流入路22に対する青時間に余裕ありと判定した場合、流入路21に対する青時間を所定量だけ増やし、流入路22に対する青時間を所定量だけ減らす。 When there are both an inflow channel with insufficient blue time and an inflow channel with a margin of blue time (YES in S54), the control unit 101 determines a predetermined amount of blue time for the inflow channel with insufficient green time (YES in S54). For example, 2 seconds, 3 seconds, etc.) are increased (S55), and the blue time with respect to the inflow path with a sufficient blue time is reduced by a predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds, etc.) (S56). For example, when it is determined that the blue time for the inflow channel 21 is insufficient and the blue time for the inflow channel 22 is sufficient, the blue time for the inflow channel 21 is increased by a predetermined amount, and the blue time for the inflow channel 22 is decreased by a predetermined amount.
 制御部101は、増加又は減少させた青時間が上限値又は下限値になったか否かを判定し(S57)、上限値又は下限値でない場合(S57でNO)、ステップS51以降の処理を繰り返し、上限値又は下限値でなった場合(S57でYES)、処理を終了する。 The control unit 101 determines whether or not the increased or decreased blue time has reached the upper limit value or the lower limit value (S57). If it is not the upper limit value or the lower limit value (NO in S57), the processing after step S51 is repeated. If the upper limit value or lower limit value is reached (YES in S57), the process ends.
 青時間が不足している流入路と青時間に余裕がある流入路がともに存在しない場合(S54でNO)、制御部101は、各流入路で青時間に余裕があるか否かを判定する(S58)。すなわち、制御部101は、青時間が不足する流入路、あるいは青時間に余裕がない流入路が存在するか否かを判定する。 When there is neither an inflow path with insufficient blue time nor an inflow path with a margin in blue time (NO in S54), the control unit 101 determines whether there is a margin in blue time in each inflow path. (S58). In other words, the control unit 101 determines whether or not there is an inflow path where the blue time is insufficient or an inflow path where there is no room for the blue time.
 各流入路で青時間に余裕がある場合(S58でYES)、すなわち、青時間が不足する流入路、あるいは青時間に余裕がない流入路が存在しない場合、制御部101は、所定時間(例えば、信号サイクルで2~3サイクル相当の時間)経過したか否かを判定する(S59)。すなわち、所定時間の間、青時間が不足する流入路、あるいは青時間に余裕がない流入路が存在しない状態が継続したかを判定する。 If there is a surplus in the blue time in each inflow channel (YES in S58), that is, if there is no inflow channel in which the blue time is insufficient or there is no inflow channel in which there is no surplus in the blue time, the control unit 101 performs a predetermined time (for example, It is determined whether or not a time corresponding to 2 to 3 cycles has elapsed in the signal cycle (S59). That is, it is determined whether or not an inflow path where the blue time is insufficient or an inflow path where there is no margin in the blue time continues for a predetermined time.
 所定時間経過していない場合(S59でNO)、制御部101は、ステップS51以降の処理を行い、所定時間経過した場合(S59でYES)、青時間が標準値より大きい流入路に対する青時間を所定量(例えば、2秒、3秒、4秒など)減らし(S60)、青時間が標準値より小さい流入路に対する青時間を所定量増やし(S61)、ステップS57の処理を行う。 If the predetermined time has not elapsed (NO in S59), the control unit 101 performs the processing after step S51. If the predetermined time has elapsed (YES in S59), the control unit 101 determines the blue time for the inflow path that is greater than the standard value. A predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds, etc.) is decreased (S60), the blue time for the inflow path with a green time smaller than the standard value is increased by a predetermined amount (S61), and the process of step S57 is performed.
 各流入路で青時間に余裕がない場合(S58でNO)、制御部101は、処理を終了する。 When there is no room for the blue time in each inflow path (NO in S58), the control unit 101 ends the process.
 上述のとおり、本実施の形態では、車両感知器を備えることなく、予め設定した信号制御パラメータの制約を受けることなく交通状況に応じた制御が可能となる。そして、青時間が不足している流入路に対する青時間を増やすことができ交通流の円滑化を図ることができる。また、青時間に余裕がある流入路に対する青時間を減らすことができ無駄な青時間を与える事態を防止することができる。 As described above, in the present embodiment, it is possible to perform control according to traffic conditions without being provided with a vehicle detector and without being restricted by preset signal control parameters. And the blue time with respect to the inflow channel where the blue time is insufficient can be increased, and the traffic flow can be smoothed. Further, it is possible to reduce the blue time with respect to the inflow channel having a margin of blue time, and to prevent a situation in which unnecessary blue time is given.
(実施の形態3)
 上述の実施の形態2では、アップリンク情報を取得して各流入路上の車両の停止位置を特定することにより、青時間の過不足を判定する構成であったが、車両の交通量と車両の停止位置の両方を用いて青時間の過不足を判定することもできる。
(Embodiment 3)
In the second embodiment described above, it is configured to determine whether the blue hours are excessive or insufficient by acquiring uplink information and identifying the stop position of the vehicle on each inflow path. It is also possible to determine whether the blue hours are excessive or insufficient by using both of the stop positions.
 図17は実施の形態3の信号制御装置を含む信号制御システムの概要を示す模式図である。図1に示す実施の形態1、2との相違点は、車両の交通量を取得するための車両感知器30を備える点である。なお、実施の形態2と同様に、選択部105を具備しない構成とすることもできる。 FIG. 17 is a schematic diagram showing an outline of a signal control system including the signal control apparatus according to the third embodiment. The difference from Embodiments 1 and 2 shown in FIG. 1 is that a vehicle detector 30 for acquiring the traffic volume of the vehicle is provided. Note that, similarly to the second embodiment, the selection unit 105 may not be provided.
 図17に示すように、交差点20には4つの流入路21~24が流入し、便宜上、流入路22、24に対応する道路を幹線道路などの主道路とし、流入路21、23に対応する道路を従道路とする。そして、交差点20から適宜の距離だけ上流側の主道路上に車両感知器30を設置してある。かかる構成により、実施の形態2では、主道路の交通量及び従道路の車両の停止位置に基づいて主道路及び従道路に対する青時間の過不足を判定する。 As shown in FIG. 17, four inflow paths 21 to 24 flow into the intersection 20. For convenience, the road corresponding to the inflow paths 22 and 24 is a main road such as a main road, and corresponds to the inflow paths 21 and 23. The road is a secondary road. A vehicle detector 30 is installed on the main road upstream from the intersection 20 by an appropriate distance. With this configuration, in the second embodiment, the excess or deficiency of the blue hours for the main road and the secondary road is determined based on the traffic volume on the main road and the stop position of the vehicle on the secondary road.
 車両感知器30は、例えば、超音波式の車両感知器であり、単位時間当たりの交通量又は占有率などを計測し、計測データを信号制御装置110へ送信する。 The vehicle detector 30 is, for example, an ultrasonic vehicle detector, and measures the traffic volume or occupancy rate per unit time and transmits the measurement data to the signal control device 110.
 図18は実施の形態3の信号制御装置210の構成の一例を示す説明図である。図10に示す実施の形態2の信号制御装置200との相違点は、負荷率算出部110を備える点である。 FIG. 18 is an explanatory diagram showing an example of the configuration of the signal control device 210 according to the third embodiment. A difference from the signal control device 200 of the second embodiment shown in FIG. 10 is that a load factor calculation unit 110 is provided.
 通信部102は、車両感知器30から計測データを受信する。 The communication unit 102 receives measurement data from the vehicle detector 30.
 負荷率算出部110は、主道路(流入路22、24)の負荷率を算出する負荷率算出手段としての機能を有する。負荷率は、例えば、流入路の飽和交通流率に対する流入流量(台/単位時間)の割合として求めることができる。飽和交通流率は、流入路の能力を示し、例えば、1時間当たり1800台である。 The load factor calculation unit 110 has a function as load factor calculation means for calculating the load factor of the main road (inflow channels 22 and 24). The load factor can be obtained, for example, as a ratio of the inflow flow rate (unit / unit time) to the saturated traffic flow rate of the inflow channel. The saturated traffic flow rate indicates the capacity of the inflow path, and is, for example, 1800 vehicles per hour.
 青時間判定部108は、負荷率算出部110で算出した負荷率に基づいて、主道路(流入路22、24)に対する青時間の過不足を判定する。例えば、流入路の負荷率が大きい場合には、当該流入路に対する青時間は不足していると判定することができ、流入路の負荷率が小さい場合には、当該流入路に対する青時間に余裕があると判定することができる。なお、従道路に対する青時間の過不足は、実施の形態1と同様に車両の停止位置に基づいて判定する。すなわち、算出した一の流入路(主道路)の負荷率及び交差点20で当該一の流入路(22、24と交差する他の流入路(従道路)上の車両の停止位置に基づいて各流入路に対する青時間の過不足を判定する。これにより、主道路の負荷率及び従道路上の車両の停止位置を特定することで青時間の過不足を判定することができる。 The green time determination unit 108 determines the excess or deficiency of the blue time with respect to the main road (inflow paths 22 and 24) based on the load factor calculated by the load factor calculation unit 110. For example, when the load factor of the inflow channel is large, it can be determined that the blue time for the inflow channel is insufficient, and when the load factor of the inflow channel is small, there is a margin in the blue time for the inflow channel. It can be determined that there is. Note that the excess or deficiency of the green time with respect to the secondary road is determined based on the stop position of the vehicle as in the first embodiment. That is, each inflow is based on the calculated load factor of one inflow path (main road) and the stop position of the vehicle on the other inflow paths (secondary roads) intersecting with the one inflow path (22, 24) at the intersection 20. It is possible to determine whether the blue hours are excessive or insufficient by specifying the load factor of the main road and the stop position of the vehicle on the secondary road.
 より具体的には、主道路の青時間をG、サイクル長をC、所定の係数をa(a≧1.0)、青時間の所定の変動量をΔG(予め定めた変動量であって、過去の交通状況に応じて設定しておくことができる)とし、従道路の負荷率をρとすると、負荷率ρ≦{(G-a×ΔG)/C}を充足する場合には、青時間に余裕があると判定し、充足しない場合には青時間が不足していると判定することができる。 More specifically, the green time of the main road is G, the cycle length is C, the predetermined coefficient is a (a ≧ 1.0), the predetermined fluctuation amount of the blue time is ΔG (a predetermined fluctuation amount, If the load factor of the secondary road is ρ, and the load factor ρ ≦ {(G−a × ΔG) / C} is satisfied, It can be determined that the green time is sufficient, and if it is not satisfied, it can be determined that the blue time is insufficient.
 なお、信号制御装置210の他の箇所は、実施の形態2の場合と同様であるので説明は省略する。 Note that other portions of the signal control device 210 are the same as those in the second embodiment, and a description thereof will be omitted.
 図19は実施の形態3の信号制御装置210による青時間の調整方法の一例を示す。図19は、図17に示す交差点20において、主道路(流入路22、24)及び従道路(流入路21、23)に対する青時間の過不足に応じて、どのように青時間を調整するかを示すものである。 FIG. 19 shows an example of a blue time adjustment method by the signal control device 210 of the third embodiment. FIG. 19 shows how the blue time is adjusted at the intersection 20 shown in FIG. 17 in accordance with the excess or deficiency of the blue time with respect to the main roads (inflow paths 22, 24) and secondary roads (inflow paths 21, 23). Is shown.
 図19に示すように、例えば、従道路(流入路21又は23)に対する青時間が不足し、主道路(流入路22又は24)に対する青時間に余裕がある場合、信号情報設定部108は、主道路に対する青時間を標準値から所定量(例えば、2秒、3秒、4秒など)減らし、従道路に対する青時間を標準値から所定量増やす。所定量をサイクル長(例えば、90秒)に比べて小さい値(2秒、3秒、4秒など)にすることにより、青時間の過不足に応じて青時間を微調整することができる。 As shown in FIG. 19, for example, when the blue time for the secondary road (inflow path 21 or 23) is insufficient and the blue time for the main road (inflow path 22 or 24) has room, the signal information setting unit 108 The blue time for the main road is reduced from the standard value by a predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds, etc.), and the blue time for the secondary road is increased by a predetermined amount from the standard value. By setting the predetermined amount to a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds), the blue time can be finely adjusted according to the excess or deficiency of the blue time.
 また、所定時間の間、従道路に対する青時間に余裕があると判定された場合(すなわち、青時間が不足と判定されない場合又は青時間に余裕がないと判定されない場合)、主道路及び従道路に対する青時間を標準値に戻す。なお、この場合、主道路に対する青時間は余裕がある。所定時間は、例えば、信号サイクルで2~3サイクル相当の時間とすることができる。交通状況によって青時間を標準値から増減させた場合に、例えば、所定時間経過後に青時間の不足が解消したときには、青時間を標準値に戻すことにより、当初設定された信号制御パラメータを用いて信号制御を行うことができる。 In addition, when it is determined that there is a margin in the green time for the secondary road for a predetermined time (that is, when it is not determined that the blue time is insufficient or the blue time is not sufficient), the main road and the secondary road Return the blue hour to the standard value. In this case, the blue time for the main road has a margin. The predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle. When the blue hour is increased or decreased from the standard value depending on the traffic situation, for example, when the shortage of the blue hour is resolved after the lapse of a predetermined time, the signal control parameter set initially is used by returning the blue hour to the standard value. Signal control can be performed.
 また、主道路に対する青時間が不足している場合、すなわち青時間に余裕がないと判定された場合、従道路に対する青時間の過不足に関わらず、主道路及び従道路に対する青時間を標準値に戻す。例えば、従道路に対する青時間を標準値から増やしていた状態において、主道路に対する青時間に不足が生じた場合には、従道路に割り振っていた青時間を主道路に対する青時間に戻して標準値にする。 In addition, when the blue hours for the main road are insufficient, that is, when it is determined that there is no room for the blue hours, the blue hours for the main road and the secondary road are standard values regardless of the excess or shortage of the blue hours for the secondary road. Return to. For example, when the blue hour for the secondary road is increased from the standard value and the blue hour for the main road is insufficient, the blue hour assigned to the secondary road is returned to the blue hour for the primary road and returned to the standard value. To.
 次に、実施の形態3の信号制御装置210の動作について説明する。図20は実施の形態3の信号制御装置210の処理手順を示すフローチャートである。制御部101は、車両のアップリンク情報を取得する(S71)。アップリンク情報の取得は、図20の処理を開始する直近の一定時間(例えば、10分、15分など)の間に取得する。 Next, the operation of the signal control device 210 according to the third embodiment will be described. FIG. 20 is a flowchart illustrating a processing procedure of the signal control apparatus 210 according to the third embodiment. The control unit 101 acquires vehicle uplink information (S71). Uplink information is acquired during the latest fixed time (for example, 10 minutes, 15 minutes, etc.) when the process of FIG. 20 is started.
 制御部101は、主道路の交通量を取得し(S72)、主道路の負荷率を算出する(S73)。制御部101は、従道路上の車両の停止位置を特定し(S74)、主道路及び従道路に対する青時間の過不足を判定する(S75)。 The control unit 101 acquires the traffic volume of the main road (S72), and calculates the load factor of the main road (S73). The control unit 101 identifies the stop position of the vehicle on the secondary road (S74), and determines whether the blue hours are excessive or insufficient for the main road and the secondary road (S75).
 制御部101は、従道路に対する青時間が不足し、主道路に対する青時間に余裕があるか否かを判定する(S76)。従道路に対する青時間が不足し、主道路に対する青時間に余裕がある場合(S76でYES)、制御部101は、従道路に対する青時間を標準値から所定量(例えば、2秒、3秒、4秒など)増やし(S77)、主道路に対する青時間を標準値から所定量(例えば、2秒、3、4秒秒など)減らし(S78)、処理を終了する。 The control unit 101 determines whether the blue time for the secondary road is insufficient and the blue time for the main road has a margin (S76). When the blue time for the secondary road is insufficient and the blue time for the main road has a margin (YES in S76), the control unit 101 sets the blue time for the secondary road to a predetermined amount (for example, 2 seconds, 3 seconds, 4 seconds) (S77), the blue time for the main road is decreased from the standard value by a predetermined amount (for example, 2 seconds, 3 and 4 seconds) (S78), and the process is terminated.
 従道路に対する青時間が不足せず、主道路に対する青時間に余裕がない場合(S76でNO)、制御部101は、従道路で青時間に余裕があるか否かを判定し(S79)、余裕がある場合(S79でYES)、余裕がある状態が所定時間(例えば、信号サイクルで2~3サイクル相当の時間)経過したか否かを判定する(S80)。余裕がない場合(S79でNO)、制御部101は、所定時間の経過の判定を行わずに後述のステップS81の処理を行う。 When the blue time for the secondary road is not short and there is no room for the blue time for the main road (NO in S76), the control unit 101 determines whether the blue time is free on the secondary road (S79), If there is a margin (YES in S79), it is determined whether or not a predetermined time (for example, a time corresponding to two to three cycles in the signal cycle) has passed (S80). If there is no room (NO in S79), the control unit 101 performs the process of step S81 described later without determining whether the predetermined time has elapsed.
 所定時間経過していない場合(S80でNO)、制御部101は、ステップS71以降の処理を繰り返し、所定時間経過した場合(S80でYES)、主道路及び従道路に対する青時間を標準値に戻し(S81)、処理を終了する。 If the predetermined time has not elapsed (NO in S80), the control unit 101 repeats the processes in and after step S71. If the predetermined time has elapsed (YES in S80), the blue time for the main road and the secondary road is returned to the standard value. (S81), the process is terminated.
 上述のとおり、実施の形態3にあっては、主道路に車両感知器を設置している場合に、主道路に悪影響を与えることなく従道路の青時間の調整を行うことができる。 As described above, in the third embodiment, when the vehicle detector is installed on the main road, the blue time of the sub road can be adjusted without adversely affecting the main road.
 実施の形態2、3の信号制装置200、210は、CPU、RAMなどを備えた汎用コンピュータを用いて実現することもできる。すなわち、図15、図16及び図20に示すような、各処理手順を定めたプログラムコードをコンピュータに備えられたRAMにロードし、プログラムコードをCPUで実行することにより、コンピュータ上で信号制装置200、210を実現することができる。 The signal control devices 200 and 210 of the second and third embodiments can be realized by using a general-purpose computer including a CPU, a RAM, and the like. That is, as shown in FIG. 15, FIG. 16 and FIG. 20, the signal control device is loaded on the computer by loading the program code defining each processing procedure into a RAM provided in the computer and executing the program code by the CPU. 200, 210 can be realized.
 実施の形態3において、負荷率算出部110を備える代わりに、外部の装置で予め算出された負荷率を信号制御装置110で取得する構成にすることもできる。 In the third embodiment, instead of including the load factor calculation unit 110, the signal control device 110 may acquire a load factor calculated in advance by an external device.
 上述の実施の形態において、信号制御装置100、110を交通信号制御機1に組み込む構成とすることもできる。 In the above-described embodiment, the signal control devices 100 and 110 may be incorporated into the traffic signal controller 1.
(実施の形態4)
 実施の形態4の信号制御システムは、図1に例示した構成と同様の構成を有し、信号制御装置300、交通信号制御機1、信号灯器2、路上装置3などを備える。
(Embodiment 4)
The signal control system according to the fourth embodiment has a configuration similar to that illustrated in FIG. 1 and includes a signal control device 300, a traffic signal controller 1, a signal lamp 2, a road device 3, and the like.
 信号制御装置300は、路上装置3から送信されたアップリンク情報を受信(取得)する。信号制御装置300は、受信したアップリンク情報を用いて、各道路区間11、12、21、22の旅行時間を算出して、道路区間(11、12)及び道路区間(21、22)に対する信号灯器2の青時間の過不足を判定する。また、信号制御装置300は、信号灯器2の青時間に過不足があると判定した場合、青時間を調整すべく信号情報(信号パラメータ)を設定する。信号制御装置300は、自身で設定した信号情報(信号パラメータ)を交通信号制御機1へ送信する。交通信号制御機1は、信号制御装置300が送信した信号情報を受信し、受信した信号情報を用いて信号灯器2の灯色の切り替えを制御する。すなわち、信号制御装置300は、判定された判定結果に基づいて第5の信号制御方式を実施する。 The signal control device 300 receives (acquires) uplink information transmitted from the road device 3. The signal control device 300 calculates the travel time of each road section 11, 12, 21, 22 using the received uplink information, and signal lights for the road section (11, 12) and the road section (21, 22). Judge the excess or deficiency of the blue time of the vessel 2. When the signal control device 300 determines that the blue time of the signal lamp 2 is excessive or insufficient, the signal control device 300 sets signal information (signal parameter) to adjust the blue time. The signal control device 300 transmits signal information (signal parameters) set by itself to the traffic signal controller 1. The traffic signal controller 1 receives the signal information transmitted by the signal control device 300, and controls the switching of the lamp color of the signal lamp device 2 using the received signal information. That is, the signal control device 300 implements the fifth signal control method based on the determined determination result.
 図21は実施の形態4の信号制御装置300の構成の一例を示す説明図である。図21に示すように、信号制御装置300は、制御部101、通信部102、旅行時間算出部106、選択部105、青時間判定部108、信号情報設定部109、アップリンク情報及び信号情報などを記憶する記憶部104などを備える。なお、実施の形態1と同様の構成については同一の符号を付す。 FIG. 21 is an explanatory diagram showing an example of the configuration of the signal control apparatus 300 according to the fourth embodiment. As shown in FIG. 21, the signal control apparatus 300 includes a control unit 101, a communication unit 102, a travel time calculation unit 106, a selection unit 105, a blue time determination unit 108, a signal information setting unit 109, uplink information, signal information, and the like. Storage unit 104 or the like for storing. In addition, the same code | symbol is attached | subjected about the structure similar to Embodiment 1. FIG.
 通信部102は、路上装置3及び交通信号制御機1との間で情報の送受信(通信)を行う。例えば、通信部102は、路上装置3から車両10の走行状態を示す情報を含むアップリンク情報を受信する。 The communication unit 102 performs transmission / reception (communication) of information between the road device 3 and the traffic signal controller 1. For example, the communication unit 102 receives uplink information including information indicating the traveling state of the vehicle 10 from the road device 3.
 旅行時間算出部106は、道路区間11、12、21、22の旅行時間を算出する旅行時間算出手段としての機能を備える。旅行時間算出部106は、通信部102を介して取得したアップリンク情報から車両の識別コード毎の走行軌跡情報を抽出し、記憶部104に記憶してある道路地図データの道路区間データに基づいてマップマッチング処理を行って、それぞれの車両10(車載装置5)が走行した道路区間を求める。そして、旅行時間算出部106は、道路区間の始端及び終端に最も接近している位置及びその位置での時刻を抽出し、終端に最も接近している位置における時刻から始端に最も接近している位置における時刻を差し引いて、当該道路区間の旅行時間を算出する。 The travel time calculation unit 106 has a function as travel time calculation means for calculating the travel time of the road sections 11, 12, 21, and 22. The travel time calculation unit 106 extracts travel locus information for each vehicle identification code from the uplink information acquired via the communication unit 102, and based on the road section data of the road map data stored in the storage unit 104. A map matching process is performed to obtain a road section in which each vehicle 10 (on-vehicle device 5) travels. Then, the travel time calculating unit 106 extracts the position closest to the start and end of the road section and the time at the position, and is closest to the start from the time at the position closest to the end. The travel time of the road section is calculated by subtracting the time at the position.
 旅行時間算出部106は、算出した道路区間11、12、21、22の旅行時間を青時間判定部108へ出力する。なお、旅行時間算出部106は必須の構成ではなく、信号制御装置300の外部の装置、例えば、車載装置5又は路上装置3に設ける構成であってもよい。その場合には、信号制御装置300は、車載装置5又は路上装置3から旅行時間を取得すればよい。 The travel time calculation unit 106 outputs the calculated travel times of the road sections 11, 12, 21, and 22 to the blue time determination unit 108. The travel time calculation unit 106 is not an essential configuration, and may be a configuration provided in a device external to the signal control device 300, for example, the in-vehicle device 5 or the road device 3. In that case, the signal control device 300 may acquire travel time from the in-vehicle device 5 or the road device 3.
 青時間判定部108は、信号灯器2の青時間の過不足を判定する第2判定手段としての機能を備える。すなわち、青時間判定部108は、旅行時間算出部106で算出した旅行時間を用いて、道路区間(11、12)、及び道路区間(21、22)に対する信号灯器2の青時間の過不足を判定する。 The blue hour determination unit 108 has a function as a second determination unit that determines whether the signal lamp 2 has excessive or insufficient blue hours. That is, the green time determination unit 108 uses the travel time calculated by the travel time calculation unit 106 to determine whether the blue time of the signal lamp 2 is excessive or insufficient for the road sections (11, 12) and the road sections (21, 22). judge.
 なお、旅行時間は、道路区間11、12、21、22それぞれについて求められ、青時間の過不足は、道路区間11、12を纏めた道路区間(11、12)、あるいは道路区間21、22を纏めた道路区間(21、22)毎に判定する。道路区間11、12は交差点で対向するので、信号灯器2の灯色は同一タイミングで制御され、同様に道路区間21、22も交差点で対向するので、信号灯器2の灯色は同一タイミングで制御されるからである。なお、ここでは交差点付近に設定した旅行時間の計測対象区間としての道路区間を、交差点を含む区間としているが、交差点の上流側の地点から交差点の手前までの区間としてもよい。すなわち、交差点に流入する各流入路の交通需要を知る上で適切と思われる区間であれば、どのように設定されていても構わない。 The travel time is obtained for each of the road sections 11, 12, 21 and 22, and the excess or deficiency of the blue time is calculated by the road section (11, 12) including the road sections 11 and 12, or the road sections 21 and 22. Determination is made for each summarized road section (21, 22). Since the road sections 11 and 12 face each other at the intersection, the color of the signal lamp 2 is controlled at the same timing. Similarly, the road sections 21 and 22 also face each other at the intersection, so the lamp color of the signal lamp 2 is controlled at the same timing. Because it is done. Here, the road section as the travel time measurement section set in the vicinity of the intersection is a section including the intersection, but may be a section from the upstream side of the intersection to the front of the intersection. That is, any section may be set as long as it is considered to be appropriate for knowing the traffic demand of each inflow path flowing into the intersection.
 以下、青時間の過不足を判定する方法について説明する。図22は旅行時間に基づく青時間の過不足を判定する方法の一例を示す説明図である。図22Aに示すように、交差点20で対向する道路区間11、12それぞれについて旅行時間算出部106で算出した旅行時間をt11、t12とする。また、道路区間11、12の渋滞していないときの標準的な旅行時間(基準旅行時間)をそれぞれT11、T12とする。 Hereinafter, a method for determining whether the green time is excessive or insufficient will be described. FIG. 22 is an explanatory diagram showing an example of a method for determining excess or deficiency of blue hours based on travel time. As shown in FIG. 22A, the travel times calculated by the travel time calculation unit 106 for the road sections 11 and 12 facing each other at the intersection 20 are t11 and t12. Further, standard travel times (reference travel times) when there is no traffic congestion on the road sections 11 and 12 are T11 and T12, respectively.
 図22Bに示すように、道路区間(11、12)に対する青時間の過不足の判定条件は、道路区間11の旅行時間t11と道路区間11の基準旅行時間T11との差分と道路区間12の旅行時間t12と道路区間12の基準旅行時間T12との差分の大きい方の値をt1とし、所定の閾値をThとすると、t1≧Thを満たす場合、青時間が不足していると判定し、t1<Thを満たす場合、青時間に余裕があると判定する。 As shown in FIG. 22B, the determination condition of excess or deficiency of the blue hours for the road sections (11, 12) is that the difference between the travel time t11 of the road section 11 and the reference travel time T11 of the road section 11 and the travel of the road section 12 When t1 is a value having a larger difference between the time t12 and the reference travel time T12 of the road section 12, and a predetermined threshold is Th, it is determined that the blue time is insufficient when t1 ≧ Th, and t1 <If Th is satisfied, it is determined that there is a margin in blue time.
 所定の閾値Thは、予め設定しておくことができ、例えば、信号灯器2の略1サイクル長である。略サイクル長とは、例えば、1サイクル長±10%程度の時間長である。これにより、道路区間の旅行時間、より具体的には、算出した旅行時間と基準旅行時間との差分を求め、当該差分が略1サイクル長より大きいか否かを判定することにより、2回の信号待ちを検出することができ、青時間の過不足を精度良く判定することができる。 The predetermined threshold Th can be set in advance and is, for example, approximately one cycle length of the signal lamp 2. The approximate cycle length is, for example, a time length of about 1 cycle length ± 10%. Thus, the travel time of the road section, more specifically, the difference between the calculated travel time and the reference travel time is obtained, and it is determined whether or not the difference is larger than approximately one cycle length. Waiting for a signal can be detected, and an excess or deficiency of blue hours can be accurately determined.
 なお、図22では、道路区間11、12について説明しているが、他方の道路区間21、22についても同様に青時間の過不足を判定することができる。すなわち、道路区間(21、22)に対する青時間の過不足の判定条件は、道路区間21の旅行時間t21と道路区間21の基準旅行時間T21との差分と道路区間22の旅行時間t22と道路区間22の基準旅行時間T22との差分の大きい方の値をt2とし、所定の閾値をThとすると、t2≧Thを満たす場合、青時間が不足していると判定し、t2<Thを満たす場合、青時間に余裕があると判定することができる。 In FIG. 22, the road sections 11 and 12 are described, but the excess or deficiency of the blue hours can be similarly determined for the other road sections 21 and 22. That is, the determination condition of the excess or deficiency of the blue hours for the road section (21, 22) is the difference between the travel time t21 of the road section 21 and the reference travel time T21 of the road section 21, the travel time t22 of the road section 22, and the road section. When t2 is a value having a larger difference from the reference travel time T22 of 22 and a predetermined threshold is Th, when t2 ≧ Th is satisfied, it is determined that the blue time is insufficient, and t2 <Th is satisfied It can be determined that there is a margin in the blue hours.
 図22で説明したように、交差点20に流入する道路区間を走行する車両の走行状態を示す情報に基づいて道路区間での旅行時間を算出し、算出した旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて道路区間に対する青時間の過不足を判定する。例えば、道路区間の旅行時間と基準旅行時間との差分が閾値以上である場合、当該道路区間に対する青時間は不足していると判定する。また、道路区間の旅行時間と基準旅行時間との差分が閾値より小さい場合には、当該道路区間に対する青時間には余裕があると判定する。道路区間の旅行時間を算出することにより、当該道路区間に対する青時間の過不足を判定することができる。 As described in FIG. 22, the travel time in the road section is calculated based on the information indicating the traveling state of the vehicle traveling in the road section flowing into the intersection 20, and the difference between the calculated travel time and the reference travel time is calculated. The excess or deficiency of the blue time for the road section is determined according to whether it is smaller or larger than the threshold. For example, when the difference between the travel time of the road section and the reference travel time is equal to or greater than the threshold, it is determined that the blue time for the road section is insufficient. Further, when the difference between the travel time of the road section and the reference travel time is smaller than the threshold value, it is determined that the blue time for the road section has a margin. By calculating the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section.
 信号情報設定部109は、青時間に余裕がある道路区間に対する青時間の一部(例えば、所定量)を青時間が不足している道路区間に対する青時間に割り当てるべく信号情報(青時間)を設定する設定手段としての機能を備える。 The signal information setting unit 109 assigns signal information (blue time) to allocate a part (for example, a predetermined amount) of the blue time for a road section with sufficient blue time to the blue time for a road section where the blue time is insufficient. A function as setting means for setting is provided.
 青時間に余裕がある道路区間と青時間が不足している道路区間とは、信号制御の対象交差点において互いに交差する2つの道路区間であるが、仮に道路区間の終端を交差点手前に設けた場合であっても、道路区間を交差点の流入路に沿って交差点の方向へ延伸したときに他の道路区間と交差する地点が信号制御対象の交差点であればよい。 A road section with sufficient green time and a road section with insufficient blue time are two road sections that intersect each other at the target intersection for signal control, but if the end of the road section is provided before the intersection Even so, a point that intersects with another road section when the road section is extended in the direction of the intersection along the inflow path of the intersection may be the signal control target intersection.
 また、信号情報設定部109は、青時間に余裕があると判定した道路区間又は青時間が不足していると判定した道路区間のいずれかが存在しないと判定した場合、増減した青時間を元の青時間に戻す。 In addition, when the signal information setting unit 109 determines that there is no road section that has been determined that there is a surplus in blue time or a road section that has been determined to have insufficient blue time, Return to the blue hour.
 また、信号情報設定部109は、任意の道路区間に対する青時間が標準値より長い場合に、当該道路区間に対する青時間に余裕があると判定したときは、当該道路区間に対する青時間の一部(例えば、所定量)を他の道路区間に割り当てるべく信号情報を設定する。以下、青時間の割り当て方法、すなわち青時間の調整方法について説明する。 If the signal information setting unit 109 determines that the green time for an arbitrary road section is longer than the standard value and the green time for the road section has a margin, the signal information setting unit 109 For example, signal information is set so as to allocate a predetermined amount to other road sections. Hereinafter, a blue time allocation method, that is, a blue time adjustment method will be described.
 図23は実施の形態4の信号制御装置300による青時間の調整方法の一例を示す。図23は、図1に示す交差点20において、道路区間(11、12)及び道路区間(21、22)に対する青時間の過不足(青時間設定条件)に応じて、どのように青時間を調整するか(設定内容)を示す。 FIG. 23 shows an example of a blue time adjustment method by the signal control apparatus 300 according to the fourth embodiment. FIG. 23 shows how the blue time is adjusted at the intersection 20 shown in FIG. 1 according to the excess or deficiency (blue time setting condition) of the blue hours (11, 12) and the road sections (21, 22). Indicates whether or not (setting contents).
 道路区間(11、12)に対する青時間が不足し、かつ道路区間(21、22)に対する青時間に余裕がある場合(青時間設定条件)、道路区間(21、22)に対する青時間を所定量減らし、道路区間(11、12)に対する青時間に加える。所定量は、例えば、2秒、3秒、4秒などである。 When the blue hours for the road sections (11, 12) are insufficient and the blue hours for the road sections (21, 22) have a margin (blue time setting condition), the blue hours for the road sections (21, 22) are determined by a predetermined amount. Reduce and add to the blue hours for road sections (11, 12). The predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like.
 同様に、道路区間(21、22)に対する青時間が不足し、かつ道路区間(11、12)に対する青時間に余裕がある場合、道路区間(11、12)に対する青時間を所定量減らし、道路区間(21、22)に対する青時間に加える。所定量は、例えば、2秒、3秒、4秒などである。 Similarly, when the blue hours for the road sections (21, 22) are insufficient and the blue hours for the road sections (11, 12) are sufficient, the blue hours for the road sections (11, 12) are reduced by a predetermined amount, Add to the blue hour for the interval (21, 22). The predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like.
 すなわち、青時間に余裕がある道路区間と青時間が不足している道路区間とが存在すると判定した場合、余裕がある道路区間に対する青時間の一部(例えば、所定量)を不足している道路区間に対する青時間に割り当てるべく信号情報を設定する。所定量をサイクル長(例えば、90秒)に比べて小さい値(2秒、3秒、4秒など)にすることにより、青時間の過不足に応じて青時間を微調整することができる。また、アップリンク情報の取得量が少ない場合に少ない情報量に基づいて青時間の調整幅を大きくし過ぎた結果、却って青時間の過不足を助長する事態が生じることを防止することができる。 In other words, when it is determined that there are road sections with a margin of blue hours and road sections with a short period of blue hours, a part (for example, a predetermined amount) of the blue hours for the road sections with a margin is insufficient. Signal information is set to be allocated to the blue hours for the road section. By setting the predetermined amount to a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds), the blue time can be finely adjusted according to the excess or deficiency of the blue time. In addition, when the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
 旅行時間と基準旅行時間との差分が最大の道路区間を特定し、予め設定された所定量の青時間を、他の道路区間に対する青時間から減らし、特定した道路区間の青時間に加えることにより、青時間が最も不足している道路区間に青時間を多く割り当てることが可能となる。 By identifying the road section with the largest difference between the travel time and the reference travel time, and reducing the predetermined amount of blue time from the blue time for other road sections and adding it to the blue time of the identified road section It becomes possible to allocate a lot of blue hours to the road section where the blue hours are the shortest.
 また、青時間を減らす道路区間を、旅行時間と基準旅行時間との差分が最小の道路区間にすることにより、青時間に最も余裕がある道路区間から青時間が最も不足している道路区間へ青時間を配分することができる。 In addition, by changing the road section that reduces the blue hours to the road section with the smallest difference between the travel time and the reference travel time, the road section that has the most margin in blue hours is changed to the road section that has the shortest blue hours. Blue time can be allocated.
 道路区間(11、12)に対する青時間が標準値より長く、かつ道路区間(11、12)に対する青時間に余裕がある場合、道路区間(11、12)に対する青時間を所定量減らし、他の道路区間である道路区間(21、22)に対する青時間に加える。 If the green time for the road section (11, 12) is longer than the standard value and the blue time for the road section (11, 12) has a margin, the blue time for the road section (11, 12) is reduced by a predetermined amount. It is added to the blue hours for the road sections (21, 22) which are road sections.
 同様に、道路区間(21、22)に対する青時間が標準値より長く、かつ道路区間(21、22)に対する青時間に余裕がある場合、道路区間(21、22)に対する青時間を所定量減らし、他の道路区間である道路区間(11、12)に対する青時間に加える。 Similarly, when the green time for the road section (21, 22) is longer than the standard value and the blue time for the road section (21, 22) has a margin, the blue time for the road section (21, 22) is reduced by a predetermined amount. , And added to the blue hours for the other road sections (11, 12).
 すなわち、任意の道路区間に対する青時間が標準値より長い場合に、当該道路区間に対する青時間に余裕があると判定したときは、当該道路区間に対する青時間の所定量を他の道路区間(例えば、青時間が不足している道路区間、あるいは青時間に余裕がある道路区間でもよい)に割り当てる。これにより、交通量が減少した場合に、青時間を標準値に戻すことが可能となる。 That is, when the green time for an arbitrary road section is longer than the standard value, and it is determined that the blue time for the road section has a margin, the predetermined amount of blue time for the road section is set to another road section (for example, It may be assigned to a road section where the green time is insufficient or a road section where the blue time is sufficient. This makes it possible to return the blue hour to the standard value when the traffic volume decreases.
 図23に示すように、青時間設定条件が上記以外の場合、青時間の加減を実施しない。例えば、道路区間(11、12)、及び道路区間(21、22)に対する青時間に余裕がある場合、すなわち、旅行時間と基準旅行時間との差分の最大値が閾値Thより小さい場合には、道路区間(11、12)、(21、22)に対する青時間の加減を実施しない。これにより、交通状況のばらつきに影響されず、当初設定された信号制御パラメータを用いて信号制御を行うことができる。 As shown in FIG. 23, when the blue time setting condition is other than the above, the blue time is not adjusted. For example, when there is a margin in the blue hours for the road sections (11, 12) and the road sections (21, 22), that is, when the maximum value of the difference between the travel time and the reference travel time is smaller than the threshold Th, The blue hours are not adjusted for the road sections (11, 12) and (21, 22). Accordingly, signal control can be performed using the initially set signal control parameters without being affected by variations in traffic conditions.
 なお、旅行時間と基準旅行時間との差分の最小値が閾値Thより小さい場合に、青時間の加減を実施しないようにすることもできる。これにより、他の道路区間に対する青時間に余裕がない場合、青時間が減らされることによる渋滞の発生を防止することができる。 In addition, when the minimum value of the difference between the travel time and the reference travel time is smaller than the threshold value Th, it is possible to prevent the blue time from being adjusted. Thereby, when there is no room in the blue hours for other road sections, it is possible to prevent the occurrence of traffic jams due to the reduction of the blue hours.
 また、図23には例示していないが、青時間に余裕があると判定した道路区間又は青時間が不足していると判定した道路区間のいずれかが存在しないと判定した場合、増減した青時間を元の青時間に戻すこともできる。交通状況によって青時間を標準値から増減させた場合に、例えば、青時間の過不足が解消したときには、青時間を標準値に戻すことにより、当初設定された信号制御パラメータを用いて信号制御を行うことができる。 In addition, although not illustrated in FIG. 23, when it is determined that there is no road section determined to have sufficient time for blue hours or road section determined to have insufficient blue time, You can also set the time back to the original blue time. When the blue hour is increased or decreased from the standard value according to traffic conditions, for example, when the excess or deficiency of the blue hour is resolved, the signal control is performed using the initially set signal control parameters by returning the blue hour to the standard value. It can be carried out.
 図1の例では、交差点に4つの流入路が流入する構造であったが、これに限定されるものではなく、5つ以上の流入路が流入する五差路以上の交差点であっても本実施の形態の信号制御装置を用いることができる。五差路以上の場合には、複数の道路区間に対する青時間に余裕があると判定した場合、複数の道路区間のうち旅行時間と基準旅行時間との差分が最小の道路区間に対する青時間の所定量を不足している道路区間に対する青時間に割り当てる。あるいは、交差点に流入する流入路毎の道路区間の優先順位を予め定めておいてもよい。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある道路区間であり、優先順位が低いほど青時間を短くすることができる道路区間である。そして、複数の道路区間に対する青時間に余裕があると判定した場合、複数の道路区間のうち優先順位の低い道路区間に対する青時間の所定量を不足している道路区間に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の道路区間に対する青時間に余裕があるときは、最も青時間を短くすることができ優先順位が低い道路区間に対する青時間を所定量減らす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。 In the example of FIG. 1, the four inflow paths flow into the intersection. However, the present invention is not limited to this, and the present invention is not limited to this. The signal control device of the embodiment can be used. If there are five or more roads, if it is determined that there is a margin of blue hours for multiple road sections, the blue hours for the road section with the smallest difference between the travel time and the reference travel time among the multiple road sections Allocate quantification to the blue hours for road segments that lack. Alternatively, the priority order of road sections for each inflow path flowing into the intersection may be determined in advance. The priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there. Then, when it is determined that there is a margin in the blue hours for a plurality of road sections, a predetermined amount of the blue hours for the road sections having a low priority among the plurality of road sections is allocated to the blue hours for the lacking road sections. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of road sections, the blue hours for the road sections with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
 また、五差路以上の場合には、同様に、複数の道路区間に対する青時間が不足していると判定した場合、余裕がある道路区間に対する青時間の所定量を複数の道路区間のうち旅行時間と基準旅行時間との差分が最大の道路区間、あるいは、複数の道路区間のうち優先順位の高い道路区間に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の道路区間に対する青時間が不足しているときは、最も青時間を長くする必要があり優先順位が高い道路区間に対する青時間を所定量増やす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。 Similarly, in the case of five or more roads, if it is determined that the green time for a plurality of road sections is insufficient, a predetermined amount of green time for a road section with a margin is traveled among the plurality of road sections. Allocation is made to the blue time for the road section having the largest difference between the time and the reference travel time, or for the road section having a higher priority among the plurality of road sections. For example, when the intersection is more than a five-way road and the blue hours for a plurality of road sections are insufficient, the blue hours need to be made the longest and the blue hours for the road sections with higher priority are increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
 基準旅行時間T11、T12、T21、T22は、初期値は予め設定し、随時旅行時間データを蓄積しておき、一定期間の経過の都度更新することができる。例えば、蓄積した旅行時間の平均値、25パーセンタイル値、50パーセンタイル値等に更新することができる。これにより、基準旅行時間を経年変化に応じた交通状況の変化に合わせた値に維持することができる。 The reference travel times T11, T12, T21, and T22 are preset as initial values, and travel time data can be accumulated at any time, and can be updated whenever a certain period of time elapses. For example, the accumulated travel time can be updated to an average value, a 25th percentile value, a 50th percentile value, or the like. As a result, the reference travel time can be maintained at a value that matches the change in traffic conditions according to the secular change.
 選択部105は、実施の形態1と同様に、信号灯器2の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択する選択手段としての機能を備える。 As in the first embodiment, the selection unit 105 has a function as a selection unit that selects one signal control method from among a plurality of signal control methods determined in advance to control the blue time of the signal lamp 2. .
 選択部105は、実施の形態1の第3の信号制御方式を選択する条件が充足する場合に、第3の信号制御方式に代えて、青時間判定部108での判定結果及び信号情報設定部109での信号情報設定を用いた第5の信号制御方式を選択してもよい。 When the condition for selecting the third signal control method of the first embodiment is satisfied, the selection unit 105 replaces the third signal control method with the determination result and the signal information setting unit in the blue time determination unit 108. The fifth signal control method using the signal information setting at 109 may be selected.
 また、選択部105を具備しない構成とすることもできる。この場合には、信号制御装置300は、青時間判定部108での判定結果及び信号情報設定部109での信号情報設定を用いた第5の信号制御方式を行う。 Also, the selection unit 105 may not be provided. In this case, the signal control device 300 performs the fifth signal control method using the determination result in the blue time determination unit 108 and the signal information setting in the signal information setting unit 109.
 次に、実施の形態4の信号制御装置300の動作について説明する。図24は実施の形態4の信号制御装置300の処理手順を示すフローチャートである。制御部101は、車両のアップリンク情報を取得する(S91)。アップリンク情報は、例えば、図24の処理を開始する直近の一定時間(例えば、15分など)の間取得する。 Next, the operation of the signal control apparatus 300 according to the fourth embodiment will be described. FIG. 24 is a flowchart showing a processing procedure of the signal control apparatus 300 according to the fourth embodiment. The control unit 101 acquires vehicle uplink information (S91). Uplink information is acquired, for example, for the most recent fixed time (for example, 15 minutes) for starting the processing of FIG.
 制御部101は、各道路区間11、12、21、22の旅行時間を算出し(S92)、算出した旅行時間と基準旅行時間との差分を算出する(S93)。制御部101は、算出した差分、より具体的には、差分の最大値と閾値とを比較して、道路区間(11、12)、(21、22)に対する青時間の過不足を判定する(S94)。 The control unit 101 calculates the travel time of each road section 11, 12, 21, and 22 (S92), and calculates the difference between the calculated travel time and the reference travel time (S93). The control unit 101 compares the calculated difference, more specifically, the maximum value of the difference with a threshold value, and determines the excess or deficiency of the blue time for the road sections (11, 12), (21, 22) ( S94).
 制御部101は、青時間に余裕がある道路区間と青時間が不足している道路区間がともに存在するか否かを判定する(S95)。 The control unit 101 determines whether or not there are both a road section with sufficient blue hours and a road section with insufficient blue hours (S95).
 青時間に余裕がある道路区間と青時間が不足している道路区間がともに存在する場合(S95でYES)、制御部101は、青時間に余裕がある道路区間に対する青時間から所定量(例えば、2秒、3秒、4秒など)を減じて他の道路区間(例えば、青時間が不足している道路区間など)に対する青時間に加えて(S96)、処理を終了する。 When there are both a road section with a margin of blue time and a road section with a short period of blue time (YES in S95), the control unit 101 determines a predetermined amount (for example, from the blue time for a road section with a margin of blue time). 2 seconds, 3 seconds, 4 seconds, etc.) is subtracted and added to the blue time for other road sections (for example, road sections where the blue time is insufficient) (S96), the process is terminated.
 青時間に余裕がある道路区間と青時間が不足している道路区間がともに存在しない場合(S95でNO)、制御部101は、青時間が標準値よりも長く、かつ青時間に余裕がある道路区間があるか否かを判定する(S97)。 When there is no road section with a margin of blue time and no road section with a shortage of blue time (NO in S95), the control unit 101 has a longer blue time than the standard value and a margin of blue time. It is determined whether there is a road section (S97).
 青時間が標準値よりも長く、かつ青時間に余裕がある道路区間がある場合(S97でYES)、制御部101は、ステップS96の処理を行い、青時間が標準値よりも長く、かつ青時間に余裕がある道路区間がない場合(S97でNO)、青時間の加減を実施せず(S98)、処理を終了する。 When there is a road section in which the green time is longer than the standard value and there is a margin in the blue time (YES in S97), the control unit 101 performs the process of step S96, and the blue time is longer than the standard value and the blue time. If there is no road section that has enough time (NO in S97), the green time is not adjusted (S98), and the process is terminated.
 本実施の形態の信号制装置300は、CPU、RAMなどを備えた汎用コンピュータを用いて実現することもできる。すなわち、図24に示すような、各処理手順を定めたプログラムコードをコンピュータに備えられたRAMにロードし、プログラムコードをCPUで実行することにより、コンピュータ上で信号制装置300を実現することができる。 The signal control device 300 of this embodiment can also be realized using a general-purpose computer including a CPU, a RAM, and the like. That is, as shown in FIG. 24, the signal control device 300 can be realized on a computer by loading a program code defining each processing procedure into a RAM provided in the computer and executing the program code by the CPU. it can.
 上述の実施の形態において、信号制御装置300を交通信号制御機1に組み込む構成とすることもできる。 In the above-described embodiment, the signal control device 300 may be incorporated into the traffic signal controller 1.
(実施の形態5)
 交通信号の信号制御方式を信号制御パラメータ(例えば、サイクル長、スプリット、オフセット等)の設定方式の視点で大別すると、時間帯に応じて信号制御パラメータを設定する定周期制御と、交通状況に応じて信号制御パラメータを設定する交通感応制御の2通りある。従来の定周期制御では、道路網の変化、周辺施設の変化等によって交通状況が変化した場合、交通状況の変化に追従した適切な信号制御を行うことができないという問題がある。例えば、右折の交通量に対して右折に対する青時間が不足すると、右折車両の待ち行列が右折レーンを越えて延伸して直進車線を閉塞し、直進車線の交通処理能力を低下させてしまう。一方、右折感応制御などの交通感応制御では、交差点からの特定の流出方向に対して交通状況の変化に追従した信号制御を行うことができるものの、交通状況を計測するための車両感知器を設置する必要があるため莫大な設備費用を必要とする点で問題があり、交通感応制御を実施していない交差点も多数存在する。以下では、交差点からの特定の流出方向に対する適切な信号制御について説明する。
(Embodiment 5)
The traffic signal signal control method can be broadly classified from the viewpoint of the signal control parameter setting method (for example, cycle length, split, offset, etc.), and fixed cycle control that sets the signal control parameter according to the time zone, and traffic conditions There are two types of traffic sensitive control in which signal control parameters are set accordingly. In the conventional fixed cycle control, there is a problem that when the traffic situation changes due to a change in the road network, a change in surrounding facilities, etc., it is not possible to perform appropriate signal control following the change in the traffic situation. For example, if the blue time for a right turn is insufficient with respect to the right turn traffic volume, the queue of the right turn vehicle extends beyond the right turn lane, blocks the straight lane, and reduces the traffic processing capacity of the straight lane. On the other hand, in traffic sensitive control such as right turn sensitive control, it is possible to perform signal control following changes in traffic conditions for a specific outflow direction from an intersection, but a vehicle detector is installed to measure traffic conditions. Therefore, there is a problem in that enormous equipment costs are required, and there are many intersections where traffic sensitive control is not implemented. In the following, appropriate signal control for a specific outflow direction from an intersection will be described.
 実施の形態5の信号制御システムは、図1に例示した構成と同様の構成を有し、信号制御装置400、交通信号制御機1、信号灯器2、路上装置3などを備える。 The signal control system of the fifth embodiment has a configuration similar to the configuration illustrated in FIG. 1 and includes a signal control device 400, a traffic signal controller 1, a signal lamp 2, a road device 3, and the like.
 信号制御装置400は、路上装置3から送信されたプローブ情報を受信(取得)する。信号制御装置400は、受信したプローブ情報を用いて、特定の流出方向への車両の流出が円滑であるか否かを判定する。特定の流出方向とは、他の流出方向とは独立に同一の方向からの流入車両に対して通行許可を付与する流出方向であり、例えば、右折青矢を備えた交差点の右折方向である。本実施の形態では、特定の流出方向を右折方向として説明する。なお、特定の流出方向は、右折方向に限らず左折方向又は直進方向も含むことができる。 The signal control device 400 receives (acquires) the probe information transmitted from the road device 3. The signal control device 400 uses the received probe information to determine whether the vehicle is smoothly flowing out in a specific outflow direction. The specific outflow direction is an outflow direction that grants passage permission to an inflow vehicle from the same direction independently of other outflow directions, for example, a right turn direction of an intersection with a right turn blue arrow. In the present embodiment, a specific outflow direction is described as a right turn direction. The specific outflow direction can include not only the right turn direction but also the left turn direction or the straight direction.
 また、本実施の形態において、右折方向とは、日本のように左側通行での右折方向であり、例えば、米国のように右側通行では左折方向に相当する流出方向である。以下では、日本のように左側通行であるとして説明する。 Further, in the present embodiment, the right turn direction is a right turn direction in left-hand traffic as in Japan, for example, an outflow direction corresponding to the left turn direction in right-hand traffic as in the United States. In the following description, it is assumed that the vehicle is on the left side as in Japan.
 信号制御装置400は、特定の流出方向への流出が円滑でないと判定した場合、特定の流出方向に対する青時間を延長すべく信号情報(信号パラメータ)を設定する。信号制御装置400は、自身で設定した信号情報(信号パラメータ)を交通信号制御機1へ送信する。交通信号制御機1は、信号制御装置400が送信した信号情報を受信し、受信した信号情報を用いて信号灯器2の灯色の切り替えを制御する。なお、信号制御装置400を交通信号制御機1に内蔵する構成としてもよい。 When the signal control device 400 determines that the outflow in the specific outflow direction is not smooth, the signal control device 400 sets signal information (signal parameter) to extend the blue time for the specific outflow direction. The signal control device 400 transmits signal information (signal parameters) set by itself to the traffic signal controller 1. The traffic signal controller 1 receives the signal information transmitted by the signal control device 400, and controls the switching of the lamp color of the signal lamp device 2 using the received signal information. The signal control device 400 may be built in the traffic signal controller 1.
 図25は実施の形態5の信号制御装置400の構成の一例を示す説明図である。図25に示すように、信号制御装置400は、制御部101、通信部102、円滑度判定部401、交通量判定部405、渋滞判定部406、信号情報設定部109、プローブ情報及び信号情報などを記憶する記憶部104などを備える。 FIG. 25 is an explanatory diagram showing an example of the configuration of the signal control apparatus 400 according to the fifth embodiment. As shown in FIG. 25, the signal control apparatus 400 includes a control unit 101, a communication unit 102, a smoothness determination unit 401, a traffic volume determination unit 405, a traffic jam determination unit 406, a signal information setting unit 109, probe information, signal information, and the like. Storage unit 104 or the like for storing.
 円滑度判定部401は、停止位置算出部402、旅行時間算出部403、停止回数算出部404などを備える。 The smoothness determination unit 401 includes a stop position calculation unit 402, a travel time calculation unit 403, a stop frequency calculation unit 404, and the like.
 通信部102は、路上装置3及び交通信号制御機1との間で情報の送受信(通信)を行う。例えば、通信部102は、路上装置3から車両10のプローブ情報を受信する。また、通信部102は、交差点20の流入路の上流地点(例えば、交差点20から数百m上流の地点)、交差点20の流出路の下流地点(例えば、交差点20と隣り合う別の交差点との間の道路上の地点)に設置された車両感知器(不図示)から計測データを受信する。車両感知器は、例えば、超音波式の車両感知器であり、単位時間当たりの交通量又は占有率などを計測することができる。 The communication unit 102 performs transmission / reception (communication) of information between the road device 3 and the traffic signal controller 1. For example, the communication unit 102 receives probe information of the vehicle 10 from the road device 3. In addition, the communication unit 102 communicates with an upstream point of the inflow path of the intersection 20 (for example, a point several hundred meters upstream from the intersection 20) and a downstream point of the outflow path of the intersection 20 (for example, another intersection adjacent to the intersection 20). Measurement data is received from a vehicle detector (not shown) installed at a point on the road in between. The vehicle detector is, for example, an ultrasonic vehicle detector, and can measure a traffic volume or an occupation rate per unit time.
 円滑度判定部401は、特定の流出方向への流出が円滑であるか否かを判定する円滑度判定手段としての機能を有する。特定の流出方向(例えば、右折方向)への流出が円滑であるか否かは、取得したプローブ情報から特定の流出方向へ走行した車両のプローブ情報を抽出し、当該車両がどの程度円滑に交差点を通過することができたか否かで判定する。円滑度の判定には、例えば、車両の停止位置が交差点からどの程度は離れていたか、車両の旅行時間がどの程度であったか、あるいは車両が交差点を通過するまでの間にどの程度停止を繰り返したかなどの交通指標を使用することができる。なお、円滑度の判定方法の詳細は後述する。 The smoothness determination unit 401 has a function as a smoothness determination unit that determines whether or not the outflow in a specific outflow direction is smooth. Whether or not the outflow in a specific outflow direction (for example, the right turn direction) is smooth is determined by extracting the probe information of the vehicle that has traveled in the specific outflow direction from the acquired probe information and how smoothly the vehicle concerned intersects. It is determined by whether or not it was able to pass. To determine the smoothness, for example, how far the stop position of the vehicle is from the intersection, how long the vehicle traveled, or how many stops the vehicle had passed through the intersection Traffic indicators such as can be used. The details of the smoothness determination method will be described later.
 信号情報設定部109は、特定の流出方向に対する青時間を延長する青時間設定手段としての機能を有する。信号情報設定部109は、円滑度判定部401で右折方向の流出が円滑でないと判定された場合、制御部101の制御の下、右折方向の通行を許可するための青時間を延長すべく信号制御パラメータを設定する。具体的には、右折矢の時間を所要の時間だけ延長するように信号制御パラメータを設定する。なお、右折矢の延長は、信号サイクルの数サイクル分継続してもよく、あるいは右折方向への流出が円滑な状態に戻るまで継続してもよい。 The signal information setting unit 109 has a function as a blue time setting means for extending the blue time for a specific outflow direction. When the smoothness determination unit 401 determines that the right turn direction outflow is not smooth, the signal information setting unit 109 performs a signal to extend the blue time for permitting right turn direction under the control of the control unit 101. Set control parameters. Specifically, the signal control parameter is set so that the time of the right turn arrow is extended by a required time. The extension of the right turn arrow may be continued for several signal cycles, or may continue until the outflow in the right turn direction returns to a smooth state.
 このように、プローブ情報に基づいて特定の流出方向(例えば、右折方向)の流出の円滑度合を判定し、円滑な流出が行われていない場合には、特定の流出方向の通行を許可するための青時間を延長するので、車両感知器などの交通感応制御に必要な設備を交差点毎に設けることなく、交通状況の変化に対応して、交差点からの特定の流出方向に対する適切な信号制御を実現することができる。 Thus, in order to determine the smoothness of the outflow in a specific outflow direction (for example, the right turn direction) based on the probe information, and permit passage in the specific outflow direction when smooth outflow is not performed Therefore, appropriate signal control for specific outflow directions from intersections can be performed in response to changes in traffic conditions without installing facilities necessary for traffic sensitivity control such as vehicle detectors at each intersection. Can be realized.
 図26交差点の右折方向の円滑度合の様子の一例を示す模式図である。図26に示すように、交差点20の流入路から右折方向へ流出する車両が多数存在する場合には、右折方向への流出は円滑ではない。例えば、車両が交差点から遠い地点で停止する場合、車両が交差点を右折して通過するまでの時間(旅行時間)が長くなる場合、あるいは交差点へ向かって走行する途中で停止する回数が増える場合がある。そこで、車両の停止位置、旅行時間、停止回数などの指標を用いることで、車両が交差点を右折するのがどの程度円滑であったかを判定することができる。以下、円滑度合の判定について具体的に説明する。 FIG. 26 is a schematic diagram showing an example of the degree of smoothness in the right turn direction at the intersection. As shown in FIG. 26, when there are many vehicles flowing out from the inflow path of the intersection 20 in the right turn direction, the outflow in the right turn direction is not smooth. For example, when the vehicle stops at a point far from the intersection, the time until the vehicle turns right after passing the intersection (travel time) becomes longer, or the number of times of stopping while traveling toward the intersection may increase. is there. Thus, by using indices such as the stop position of the vehicle, travel time, and the number of stops, it is possible to determine how smoothly the vehicle is turning right at the intersection. Hereinafter, the determination of the smoothness will be specifically described.
 停止位置算出部402は、取得されたプローブ情報から交差点を右折方向へ流出した車両の停止位置(例えば、交差点20からの距離でもよい)を算出する。円滑度判定部401は、停止位置と交差点との距離Eが閾値Td以上である場合、特定の流出方向(例えば、右折方向)へ流出する車両の前方には信号待ち等の車両が多く存在するので、流出の円滑度合は良くない(悪い)と判定する。 The stop position calculation unit 402 calculates a stop position (for example, a distance from the intersection 20) of the vehicle that has flowed out of the intersection in the right turn direction from the acquired probe information. When the distance E between the stop position and the intersection is equal to or greater than the threshold value Td, the smoothness determination unit 401 has many vehicles waiting for a signal or the like ahead of a vehicle that flows in a specific outflow direction (for example, a right turn direction). Therefore, it is determined that the smoothness of the outflow is not good (bad).
 図27は車両10の停止位置に基づく特定の流出方向の流出の円滑度合を判定する方法の一例を示す説明図である。図27Aに示すように、交差点から右折方向へ流出した車両のプローブ情報から、当該車両の交差点から停止位置までの距離Eが閾値Td以上である場合、右折方向への流出が円滑でないと判定する。閾値Tdは、例えば、右折方向へ流出可能な青時間(例えば、直左青、右折矢などの合計時間)をG、交差点への流入路の飽和交通流率をs、平均車頭間隔をhとするとTd=s×h×Gとすることができる。すなわち、車両の停止位置の交差点からの距離Eが、1サイクル分の右折可能時間の間に通過することができる車両台数に対応する距離以上であれば、右折方向への流出が円滑でないと判定する。 FIG. 27 is an explanatory diagram showing an example of a method for determining the smoothness of the outflow in a specific outflow direction based on the stop position of the vehicle 10. As shown in FIG. 27A, if the distance E from the intersection of the vehicle to the stop position is greater than or equal to a threshold value Td from the probe information of the vehicle that has flowed in the right turn direction from the intersection, it is determined that the flow in the right turn direction is not smooth. . The threshold value Td is, for example, G for the blue time that can flow in the right turn direction (for example, the total time for right blue, right turn arrow, etc.), s for the saturated traffic flow rate of the inflow path to the intersection, and h for the average vehicle head distance. Then, Td = s × h × G can be obtained. That is, if the distance E from the intersection of the stop position of the vehicle is equal to or greater than the distance corresponding to the number of vehicles that can pass during the possible turn time for one cycle, it is determined that the flow in the right turn direction is not smooth. To do.
 また、図27Bに示すように、交差点から車両の停止位置までの距離Eが閾値Td未満である場合、右折方向への流出が円滑であると判定する。このように、右折車両のプローブ情報を抽出し、右折車両の停止位置を求めることにより、右折方向への流出が円滑であるか否かを判定することができ、右折車両を計測するための車両感知器の設置が不要になる。 Further, as shown in FIG. 27B, when the distance E from the intersection to the stop position of the vehicle is less than the threshold value Td, it is determined that the flow in the right turn direction is smooth. Thus, by extracting the probe information of the right turn vehicle and obtaining the stop position of the right turn vehicle, it is possible to determine whether or not the outflow in the right turn direction is smooth, and the vehicle for measuring the right turn vehicle It is not necessary to install a sensor.
 旅行時間算出部403は、取得されたプローブ情報から、交差点を右折方向へ流出した車両の旅行時間(例えば、交差点の流入路の上流側の地点と特定の流出方向の道路の交差点付近の地点との間の道路区間を通過するのに要した時間)を算出する。円滑度判定部103は、旅行時間Tが閾値Th以上である場合、右折方向へ流出する車両の前方には信号待ち等の車両が多く存在するので、流出の円滑度合は良くない(悪い)と判定する。 The travel time calculation unit 403 determines, based on the acquired probe information, the travel time of the vehicle that has flowed out of the intersection in the right turn direction (for example, a point on the upstream side of the inflow path of the intersection and a point near the intersection of the road in the specific outflow direction The time required to pass through the road section between is calculated. When the travel time T is equal to or greater than the threshold Th, the smoothness determination unit 103 indicates that there are many vehicles waiting for traffic lights in front of the vehicle that flows in the right turn direction, so that the smoothness of the outflow is not good (bad). judge.
 図28は車両10の旅行時間に基づく特定の流出方向の流出の円滑度合を判定する方法の一例を示す説明図である。交差点20の流入路21の地点Aと、交差点20の右折方向の流出路31の地点Bとの間を道路区間L21とする。地点Aは、例えば、交差点20から200m~300m程度の地点とすることができるが、これに限定されるものではない。また、地点Bは、交差点20から10m程度の地点とすることができるが、これに限定されるものではなく、交差点20の停止線の位置でもよい。 FIG. 28 is an explanatory diagram showing an example of a method for determining the smoothness of the outflow in a specific outflow direction based on the travel time of the vehicle 10. A section between the point A of the inflow path 21 of the intersection 20 and the point B of the outflow path 31 in the right turn direction of the intersection 20 is defined as a road section L21. The point A can be, for example, about 200 m to 300 m from the intersection 20, but is not limited thereto. Moreover, although the point B can be made into the point about 10 m from the intersection 20, it is not limited to this, The position of the stop line of the intersection 20 may be sufficient.
 旅行時間算出部403は、右折方向へ流出した車両のプローブ情報に基づいて、道路区間L21を通過するのに要した旅行時間を算出する。旅行時間算出部403は、算出した旅行時間と基準旅行時間との差分時間Tを求める。 The travel time calculation unit 403 calculates the travel time required to pass the road section L21 based on the probe information of the vehicle that has flowed in the right turn direction. The travel time calculation unit 403 obtains a difference time T between the calculated travel time and the reference travel time.
 円滑度判定部401は、旅行時間の差分時間Tが閾値Th以上である場合、右折方向への流出が円滑でないと判定する。閾値Thは、例えば、信号灯器2の略1サイクル長である。略サイクル長とは、例えば、1サイクル長±10%程度の時間長である。旅行時間の差分時間Tが略1サイクル長より大きいか否かを判定することにより、2回の信号待ちを検出することができ、右折方向への流出が円滑であるか否かを精度良く判定することができる。 The smoothness determination unit 401 determines that the outflow in the right turn direction is not smooth when the difference time T of the travel time is equal to or greater than the threshold Th. The threshold Th is, for example, approximately one cycle length of the signal lamp device 2. The approximate cycle length is, for example, a time length of about 1 cycle length ± 10%. By determining whether or not the difference time T of the travel time is greater than approximately one cycle length, it is possible to detect two signal waits and accurately determine whether or not the flow in the right turn direction is smooth. can do.
 また、円滑度判定部401は、旅行時間の差分時間Tが閾値Th未満である場合、右折方向への流出が円滑であると判定する。 Also, the smoothness determination unit 401 determines that the outflow in the right turn direction is smooth when the difference time T of the travel time is less than the threshold Th.
 停止回数算出部404は、取得されたプローブ情報から、交差点を右折方向へ流出した車両の停止回数C(例えば、交差点の流入路の上流側から右折方向の流出路の交差点付近の地点まで走行する間に停止した回数)を算出する。円滑度判定部401は、停止回数Cが閾値Tc以上である場合、右折方向へ流出する車両の前方には信号待ち等の車両が多く存在するので、流出の円滑度合は良くない(悪い)と判定し、停止回数Cが閾値Tc未満である場合、右折方向の流出の円滑度合は良いと判定する。 The stop count calculation unit 404 travels from the acquired probe information to the stop count C of the vehicle that has flowed out of the intersection in the right turn direction (for example, from the upstream side of the intersection inflow path to the point near the intersection of the right turn outflow path). The number of times of stopping in the meantime) is calculated. When the number of stops C is equal to or greater than the threshold value Tc, the smoothness determination unit 401 has a lot of vehicles waiting for traffic lights in front of the vehicle that flows in the right turn direction, and the smoothness of the outflow is not good (bad). If the number of stops C is less than the threshold value Tc, it is determined that the smoothness of the outflow in the right turn direction is good.
 閾値Tcは、停止回数を求める道路区間の長さに応じて適宜設定することができる。例えば、停止回数を求める道路区間の始点が交差点の上流側であって、通常の速度で走行する車両が信号サイクルの1サイクル程度の時間で交差点まで到達することができる地点である場合、閾値Tcを2とすることができる。すなわち、1回の停止は、信号サイクルの途中の赤信号で停止したものであり、2回以上停止した場合には、信号待ち等の車両が多く存在し、右折方向の流出が円滑ではないと考えられる。 The threshold value Tc can be appropriately set according to the length of the road section for which the number of stops is calculated. For example, when the starting point of the road section for obtaining the number of stops is upstream of the intersection and the vehicle traveling at a normal speed can reach the intersection in about one cycle of the signal cycle, the threshold value Tc Can be 2. In other words, one stop is a stop at a red signal in the middle of the signal cycle. If there are two or more stops, there are many vehicles waiting for a signal, etc. Conceivable.
 図29は実施の形態5の信号制御装置400による円滑度合の判定条件と判定結果の一例を示す説明図である。図29に示すように、流出が円滑であるか否かの判定に車両の停止位置Eを用いる場合、停止位置E(交差点との距離)が閾値Td以上である場合、円滑度は悪いと判定し、停止位置Eが閾値Td未満である場合、円滑度は良いと判定する。 FIG. 29 is an explanatory diagram illustrating an example of smoothness determination conditions and determination results by the signal control apparatus 400 according to the fifth embodiment. As shown in FIG. 29, when the stop position E of the vehicle is used to determine whether or not the outflow is smooth, it is determined that the smoothness is poor when the stop position E (distance to the intersection) is equal to or greater than the threshold value Td. When the stop position E is less than the threshold value Td, it is determined that the smoothness is good.
 また、旅行時間、より具体的には、旅行時間の差分時間Tが閾値Th以上である場合、円滑度は悪いと判定し、旅行時間の差分時間Tが閾値Th未満である場合、円滑度は良いと判定する。また、停止回数Cが閾値Tc以上である場合、円滑度は悪いと判定し、停止回数Cが閾値Tc未満である場合、円滑度は良いと判定する。 Further, when the travel time, more specifically, when the difference time T of the travel time is greater than or equal to the threshold Th, it is determined that the smoothness is poor, and when the difference time T of the travel time is less than the threshold Th, the smoothness is Judge as good. Further, when the number of stops C is equal to or greater than the threshold Tc, it is determined that the smoothness is poor, and when the number of stops C is less than the threshold Tc, it is determined that the smoothness is good.
 なお、円滑度の判定には、停止位置、旅行時間又は停止回数のいずれを用いてもよく、あるいは組み合わせて判定することもできる。すなわち、円滑度判定部401は、停止位置算出部402、旅行時間算出部403、停止回数算出部404のいずれか1つを具備すればよい。 For smoothness determination, any of the stop position, travel time, and number of stops may be used, or may be determined in combination. In other words, the smoothness determination unit 401 may include any one of the stop position calculation unit 402, the travel time calculation unit 403, and the stop frequency calculation unit 404.
 交通量判定部405は、交差点に流入する流入路の交通量が所定値以下であるか否かを判定する交通量判定手段としての機能を有する。交通量は、例えば、単位時間当たりの車両の通過台数である。そして、制御部101は、流入路の交通量が所定値(例えば、飽和流率×全流出方向の青時間の和/サイクル長)以下である場合に、信号情報設定部109に対して右折矢の時間を延長させる。すなわち、信号情報設定部109は、右折方向の流出が円滑でない場合に、交差点に流入する流入路の交通量が所定値(例えば、飽和流率×全流出方向の青時間の和/サイクル長)以下であるときは、青時間を延長する。 The traffic volume determination unit 405 has a function as traffic volume determination means for determining whether or not the traffic volume of the inflow path flowing into the intersection is equal to or less than a predetermined value. The traffic volume is, for example, the number of vehicles passing per unit time. Then, the control unit 101 turns right with respect to the signal information setting unit 109 when the traffic volume of the inflow path is equal to or less than a predetermined value (for example, saturated flow rate × sum of blue hours in all outflow directions / cycle length). Extend the time. That is, when the outflow in the right turn direction is not smooth, the signal information setting unit 109 determines that the traffic volume of the inflow path flowing into the intersection is a predetermined value (for example, saturation flow rate × sum of blue hours in all outflow directions / cycle length). Extend the blue hour if:
 流入路の交通量が所定値を超える場合には、交差点へ流入する車両(例えば、直進車両など)の台数が多いので、特定の流出方向の青時間だけを延長するよりも、むしろ直進方向の青時間を延長する必要がある。したがって、右折方向の青時間だけを延長したとしても、交通状況の改善は望めないので、青時間の延長を行わない。これにより、適切な信号制御を実現することができる。 If the traffic volume on the inflow route exceeds the specified value, there are many vehicles (for example, straight-ahead vehicles) that flow into the intersection, so rather than extending only the blue hours in a specific outflow direction, The blue hours need to be extended. Therefore, even if only the blue hours in the right turn direction are extended, the improvement of the traffic situation cannot be expected, so the blue hours are not extended. Thereby, appropriate signal control can be realized.
 図30は交差点の右折方向の円滑度合の様子の他の例を示す模式図である。図30に示すように、交差点20の流入路を走行する車両(右折車両だけでなく直進車両も含む)が多い場合(すなわち、流入路の交通量が所定値を超える場合)、右折方向の右折矢の時間だけを延長するよりも、むしろ直進方向の青時間を延長する必要がある。そこで、図30に示すような場合には、青時間の延長を行わない。 FIG. 30 is a schematic diagram showing another example of the smoothness degree in the right turn direction at the intersection. As shown in FIG. 30, when there are many vehicles (including not only right-turn vehicles but also straight-ahead vehicles) traveling along the inflow path of the intersection 20 (that is, when the traffic volume of the inflow path exceeds a predetermined value), turn right in the right turn direction. It is necessary to extend the blue time in the straight direction rather than extending only the arrow time. Therefore, in the case shown in FIG. 30, the blue time is not extended.
 渋滞判定部406は、交差点を流出する流出路(例えば、右折方向の流出路、直進方向の流出路など)が渋滞しているか否かを判定する渋滞判定手段としての機能を有する。渋滞判定部406は、流出方向の道路に車両感知器等が設置されている場合には、車両感知器等で計測した交通量に基づいて渋滞か否かを判定する。また、車両感知器等が設置されていない場合には、渋滞判定部406は、右折方向へ流出した車両のプローブ情報に基づいて渋滞か否かを判定する。 The traffic jam judgment unit 406 has a function as traffic jam judgment means for judging whether or not an outflow route that flows out from an intersection (eg, an outflow route in a right turn direction, an outflow route in a straight line direction) is congested. When a vehicle detector or the like is installed on the road in the outflow direction, the traffic jam determination unit 406 determines whether there is a traffic jam based on the traffic volume measured by the vehicle sensor or the like. If no vehicle detector or the like is installed, the traffic jam determination unit 406 determines whether there is traffic jam based on the probe information of the vehicle that has flowed in the right turn direction.
 そして、制御部101は、渋滞判定部406で渋滞していないと判定した場合に、信号情報設定部109に対して右折矢の時間を延長させる。すなわち、信号情報設定部109は、右折方向の流出が円滑でない場合に、交差点を流出する流出路(例えば、右折方向の流出路、直進方向の流出路など)が渋滞していないときは、青時間を延長する。 When the traffic jam determination unit 406 determines that there is no traffic jam, the control unit 101 causes the signal information setting unit 109 to extend the time of the right turn arrow. That is, the signal information setting unit 109 determines that when the outflow in the right turn direction is not smooth and the outflow path that flows out of the intersection (for example, the outflow path in the right turn direction or the outflow path in the straight direction) is not congested. Extend time.
 例えば、右折方向の道路が渋滞している場合には、当該道路の下流側の交差点の青時間を延長する必要がある。したがって、右折方向の青時間だけを延長したとしても、交通状況の改善は望めないので、青時間の延長を行わない。これにより、適切な信号制御を実現することができる。 For example, when the road in the right turn direction is congested, it is necessary to extend the blue hours at the intersection on the downstream side of the road. Therefore, even if only the blue hours in the right turn direction are extended, the improvement of the traffic situation cannot be expected, so the blue hours are not extended. Thereby, appropriate signal control can be realized.
 図31は交差点の右折方向の円滑度合の様子の他の例を示す模式図である。図31に示すように、交差点20の右折方向の道路が渋滞している場合、右折方向の右折矢の時間だけを延長するよりも、むしろ右折方向の下流側の交差点の青時間を延長する必要がある。そこで、図31に示すような場合には、青時間の延長を行わない。なお、流出方向が直進方向の場合も同様である。 FIG. 31 is a schematic diagram showing another example of the smoothness degree in the right turn direction of the intersection. As shown in FIG. 31, when the road in the right turn direction at the intersection 20 is congested, it is necessary to extend the blue time at the intersection on the downstream side in the right turn direction rather than extending only the time of the right turn arrow in the right turn direction. There is. Therefore, in the case shown in FIG. 31, the blue time is not extended. The same applies when the outflow direction is the straight direction.
 制御部101は、右折方向への流出が円滑でないと判定した場合に、当該右折方向への流出が円滑になったときは、信号情報設定部109に対して右折矢の時間を短縮する。例えば、延長前の青時間に戻すように指示する。なお、延長前の青時間に戻さなくても延長した青時間を短縮すればよい。これにより、右折方向に対して過度の青時間を付与することを防止することができ、適切な信号制御を実現することができる。 When the control unit 101 determines that the flow in the right turn direction is not smooth and the flow in the right turn direction becomes smooth, the control unit 101 shortens the time of the right turn arrow with respect to the signal information setting unit 109. For example, an instruction is given to return to the blue time before the extension. In addition, what is necessary is just to shorten the extended blue time, without returning to the blue time before extension. Thereby, it can prevent giving excessive blue time with respect to the right turn direction, and can implement | achieve appropriate signal control.
 また、制御部101は、信号情報設定部109により右折矢の時間を延長した場合、延長時点から所定時間経過後に右折矢の時間を短縮するよう信号情報設定部109に指示する。例えば、延長前の青時間に戻すように指示する。なお、延長前の青時間に戻さなくても延長した青時間を短縮すればよい。所定時間は、例えば、信号サイクルで2~3サイクル相当の時間とすることができる。右折矢の時間を延長したままの状態を長時間継続することにより、右折方向に対して過度の青時間を付与する事態を抑制し、青時間延長の結果を所定時間後に見極めて、流出が円滑であれば当初設定された信号制御パラメータを用いて信号制御を行うことができ、また未だ流出が円滑でない場合には、再度青時間を延長すればよいので、適切な信号制御を実現することができる。 Further, when the signal information setting unit 109 extends the time of the right turn arrow, the control unit 101 instructs the signal information setting unit 109 to shorten the time of the right turn arrow after a predetermined time has elapsed since the extension. For example, an instruction is given to return to the blue time before the extension. In addition, what is necessary is just to shorten the extended blue time, without returning to the blue time before extension. The predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle. By continuing the state of extending the time of the right turn arrow for a long time, the situation of giving excessive blue time to the right turn direction is suppressed, and the result of the blue time extension is observed after a predetermined time, and the outflow is smooth. If so, signal control can be performed using the initially set signal control parameters, and if the outflow is still not smooth, it is sufficient to extend the blue time again, so that appropriate signal control can be realized. it can.
 次に、実施の形態5の信号制御装置400の動作について説明する。図32は実施の形態5の信号制御装置400の処理手順の一例を示すフローチャートである。実施の形態5の信号制御装置400は、所定時間(例えば、5分、10分など時間)、車両のプローブ情報を取得し、取得後、右折方向への流出が円滑であるか否かを判定し、円滑でない場合には右折矢の時間を延長する。右折矢の時間の延長後、信号サイクルの数サイクル程度(例えば、5分、10分程度)の間、延長した右折矢時間で信号制御を行う。 Next, the operation of the signal control apparatus 400 according to the fifth embodiment will be described. FIG. 32 is a flowchart illustrating an example of a processing procedure of the signal control device 400 according to the fifth embodiment. The signal control device 400 according to the fifth embodiment acquires the probe information of the vehicle for a predetermined time (for example, 5 minutes, 10 minutes, etc.), and determines whether the flow in the right turn direction is smooth after the acquisition. If it is not smooth, extend the time of the right turn arrow. After extending the time of the right turn arrow, the signal control is performed with the extended right turn time for several signal cycles (for example, about 5 minutes and 10 minutes).
 制御部101は、車両のプローブ情報を取得し(S101)、交差点の流入路、流出路(例えば、右折方向又は直進方向の道路)の交通量を取得する(S102)。なお、右折方向又は直進方向の流出路の交通量は、車両感知器の計測データでもよく、あるいは右折車両又は直進車両のプローブ情報でもよい。 The control unit 101 acquires vehicle probe information (S101), and acquires the traffic volume of an inflow path and an outflow path (for example, a road in a right turn direction or a straight direction) at an intersection (S102). Note that the traffic volume on the outflow path in the right turn direction or straight direction may be measured data from a vehicle detector, or may be probe information of a right turn vehicle or a straight ahead vehicle.
 制御部101は、流入路の交通量が所定値以下であるか否かを判定し(S103)、交通量が所定値以下である場合(S103でYES)、右折流出路が渋滞しているか否かを判定する(S104)。 The control unit 101 determines whether or not the traffic volume of the inflow path is equal to or less than a predetermined value (S103). If the traffic volume is equal to or less than the predetermined value (YES in S103), whether or not the right turn outflow path is congested. Is determined (S104).
 右折流出路が渋滞していない場合(S104でNO)、制御部101は、右折車両の停止位置を算出し(S105)、算出した停止位置Eが閾値Td以上であるか否かを判定する(S106)。停止位置Eが閾値Td以上である場合(S106でYES)、制御部101は、右折現示の青時間(右折矢の時間)を延長する(S107)。 When the right turn outflow route is not congested (NO in S104), the control unit 101 calculates the stop position of the right turn vehicle (S105), and determines whether the calculated stop position E is equal to or greater than the threshold Td (S105). S106). When the stop position E is equal to or greater than the threshold value Td (YES in S106), the control unit 101 extends the blue time (right turn arrow time) for showing the right turn (S107).
 制御部101は、所定時間(例えば、信号数サイクル程度の時間)経過したか否かを判定し(S108)、所定時間経過していない場合(S108でNO)、ステップS108の処理を続ける。所定時間経過した場合(S108でYES)、制御部101は、右折現示の青時間を元に戻し(S109)、処理を終了する。 The control unit 101 determines whether or not a predetermined time (for example, a time of several signal cycles) has elapsed (S108). If the predetermined time has not elapsed (NO in S108), the processing of step S108 is continued. When the predetermined time has elapsed (YES in S108), the control unit 101 restores the blue time of the right turn display (S109) and ends the process.
 停止位置Eが閾値Td未満である場合(S106でNO)、制御部101は、右折現示の青時間を維持し(S110)、処理を終了する。流入路の交通量が所定値を超える場合(S103でNO)、あるいは、右折流出路が渋滞している場合(S104でYES)、制御部101は、処理を終了する。 When the stop position E is less than the threshold value Td (NO in S106), the control unit 101 maintains the blue time of the right turn display (S110) and ends the process. When the traffic volume of the inflow path exceeds a predetermined value (NO in S103), or when the right turn outflow path is congested (YES in S104), the control unit 101 ends the process.
 上述の処理手順において、ステップS108の所定時間経過を判定する処理の代わりに、停止位置Eが閾値Td未満になったか否かを判定し、停止位置Eが閾値Td未満になった場合に右折現示の青時間を元に戻すようにしてもよい。 In the above processing procedure, instead of the process of determining the elapse of the predetermined time in step S108, it is determined whether or not the stop position E is less than the threshold value Td, and when the stop position E is less than the threshold value Td, the right turn The indicated blue hour may be restored.
 上述の処理手順において、停止位置を算出する代わりに、旅行時間又は停止回数を算出して右折現示の青時間を延長するようにしてもよい。 In the above processing procedure, instead of calculating the stop position, the travel time or the number of stops may be calculated to extend the blue time of the right turn display.
 上述の図32に例示する処理では、流入路の交通量が所定値以下でない場合、あるいは右折流出路が渋滞している場合には、停止位置が閾値以上であるか否かの判定を行わない構成となっているが、これに限定されるものではなく、円滑度判定を常に行った上で、交通量の判定、あるいは渋滞の判定を行う構成とすることもできる。 In the process illustrated in FIG. 32 described above, if the traffic volume of the inflow path is not less than a predetermined value, or if the right turn outflow path is congested, it is not determined whether the stop position is greater than or equal to the threshold value. Although it is configured, the present invention is not limited to this, and it is also possible to adopt a configuration in which determination of traffic volume or determination of traffic jam is performed after smoothness determination is always performed.
 上述の実施の形態5では、特定の流出方向として右折方向の場合について説明したが、特定の流出方向は、左折方向又は直進方向であってもよい。 In Embodiment 5 described above, the case of the right turn direction as the specific outflow direction has been described. However, the specific outflow direction may be a left turn direction or a straight traveling direction.
 実施の形態5の信号制御装置400は、CPU、RAMなどを備えた汎用コンピュータを用いて実現することもできる。すなわち、図32に示すような各処理手順を定めたコンピュータプログラムをコンピュータに備えられたRAMにロードし、コンピュータプログラムをCPUで実行することにより、コンピュータ上で信号制装置100を実現することができる。 The signal control apparatus 400 according to the fifth embodiment can be realized using a general-purpose computer including a CPU, a RAM, and the like. That is, the signal control device 100 can be realized on a computer by loading a computer program that defines each processing procedure as shown in FIG. 32 into a RAM provided in the computer and executing the computer program by the CPU. .
 開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
(実施の形態2、3についての付記)
 実施の形態2、3に関し、さらに以下の付記を開示する。
 (付記1)交差点の信号灯器の灯色を制御するための信号制御装置において、前記交差点に流入する流入路を走行する車両の位置及び該位置を通過する時刻を含むプローブ情報により得られた該車両の走行状態を示す情報に基づいて車両の停止位置を特定する特定手段と、該特定手段で特定した停止位置に基づいて前記流入路に対する青時間の過不足を判定する判定手段とを備えることを特徴とする信号制御装置。
 (付記2)前記交差点に流入する一の流入路の交通量に基づいて該流入路の負荷率を算出する算出手段を備え、前記判定手段は、前記算出手段で算出した前記一の流入路の負荷率及び前記交差点で前記一の流入路と交差する他の流入路上の停止位置に基づいて各流入路に対する青時間の過不足を判定するように構成してあることを特徴とする付記1の信号制御装置。
 (付記3)前記判定手段は、前記交差点で交差する少なくとも2つの流入路上の停止位置に基づいて各流入路に対する青時間の過不足を判定するように構成してあることを特徴とする付記1の信号制御装置。
 (付記4)前記判定手段で青時間に余裕がある流入路と青時間が不足している流入路とが存在すると判定した場合、前記余裕がある流入路に対する青時間の所定量を前記不足している流入路に対する青時間に割り当てるべく信号情報を設定する設定手段を備えることを特徴とする付記1乃至3のいずれか1つの信号制御装置。
 (付記5)前記設定手段は、前記判定手段で所定時間の間、青時間が不足している流入路が存在しないと判定した場合、各流入路に対する青時間を標準値に戻すように構成してあることを特徴とする付記4の信号制御装置。
 (付記6)前記設定手段は、所定量の青時間を割り当てた場合に、前記判定手段で青時間に余裕がある流入路と青時間が不足している流入路とが存在すると再度判定したときは、その都度所定量の青時間の割り当てを繰り返すように構成してあることを特徴とする付記4又は5の信号制御装置。
 (付記7)前記交差点に流入する流入路の優先順位を予め定めておき、前記設定手段は、前記判定手段で複数の流入路に対する青時間に余裕があると判定した場合、前記複数の流入路のうち優先順位の低い流入路に対する青時間の所定量を前記不足している流入路に対する青時間に割り当てるように構成してあることを特徴とする付記4乃至6のいずれか1つの信号制御装置。
 (付記8)前記交差点に流入する流入路の優先順位を予め定めておき、前記設定手段は、前記判定手段で複数の流入路に対して青時間が不足していると判定した場合、前記余裕がある流入路に対する青時間の所定量を前記複数の流入路のうち優先順位の高い流入路に対する青時間に割り当てるように構成してあることを特徴とする付記4乃至6のいずれか1つの信号制御装置。
 (付記9)前記判定手段は、前記交差点から流入路上の停止位置までの距離が第1閾値以上である場合、該流入路に対する青時間が不足していると判定するように構成してあることを特徴とする付記1乃至8のいずれか1つの信号制御装置。
 (付記10)前記判定手段は、前記交差点から流入路上の停止位置までの距離が前記第1閾値より小さい第2閾値以下である場合、該流入路に対する青時間に余裕があると判定するように構成してあることを特徴とする付記9の信号制御装置。
 (付記11)コンピュータに、交差点の信号灯器の灯色を制御するためのステップを実行させるためのコンピュータプログラムにおいて、コンピュータに、前記交差点に流入する流入路を走行する車両の位置及び該位置を通過する時刻を含むプローブ情報により得られた該車両の走行状態を示す情報に基づいて車両の停止位置を特定するステップと、特定した停止位置に基づいて前記信号灯器の青時間の過不足を判定するステップとを実行させることを特徴とするコンピュータプログラム。
 (付記12)交差点の信号灯器の灯色を制御するための信号制御装置による信号制御方法において、前記交差点に流入する流入路を走行する車両の位置及び該位置を通過する時刻を含むプローブ情報により得られた該車両の走行状態を示す情報に基づいて車両の停止位置を特定するステップと、特定された停止位置に基づいて前記信号灯器の青時間の過不足を判定するステップとを含むことを特徴とする信号制御方法。
 付記1、11、12にあっては、交差点に流入する流入路を走行する車両の位置及び該位置を通過する時刻を含むプローブ情報により得られた該車両の走行状態を示す情報に基づいて車両の流入路上の停止位置を特定し、特定した停止位置に基づいて流入路に対する青時間の過不足を判定する。走行状態を示す情報は、例えば、路上装置を介して車載装置から受信することができるプローブ情報(アップリンク情報)であり、所定の周期(例えば、1秒)毎の車両の位置及び時刻、車載装置(車両)の識別コードなどを含む。青時間の過不足は、青時間が不足しているか、あるいは青時間に余裕があるかを示す。例えば、ある流入路上の車両の停止位置が、交差点から比較的離れている場合には、停止した車両と交差点との間には相当数の停止車両が存在していると考えられ、当該流入路に対する青時間は不足していると判定する。また、ある流入路上の車両の停止位置が、交差点から比較的近い場合には、停止した車両と交差点との間に存在する停止車両が少なく、単に赤信号で停止したものと考えられ、当該流入路に対する青時間に余裕があると判定する。車両の停止位置を特定することで青時間の過不足を判定することができる。
 付記2にあっては、交差点に流入する一の流入路の交通量に基づいて当該流入路の負荷率を算出する。交差点で主道路(例えば、幹線道路)と従道路とが交差する場合、主道路(一の流入路)の交通量を車両感知器などで検出し、検出した交通量に基づいて負荷率を算出する。負荷率は、例えば、流入路の飽和交通流率に対する流入流量(台/単位時間)の割合として求めることができる。飽和交通流率は、流入路の能力を示し、例えば、1時間当たり1800台である。流入路の負荷率が大きい場合には、当該流入路に対する青時間は不足していると判定することができ、流入路の負荷率が小さい場合には、当該流入路に対する青時間に余裕があると判定することができる。そして、算出した一の流入路(主道路)の負荷率及び交差点で当該一の流入路と交差する他の流入路(従道路)上の車両の停止位置に基づいて各流入路に対する青時間の過不足を判定する。主道路の負荷率及び従道路上の車両の停止位置を特定することで青時間の過不足を判定することができる。
 付記3にあっては、交差点で交差する少なくとも2つの流入路上の車両の停止位置に基づいて各流入路に対する青時間の過不足を判定する。すなわち、各流入路上の車両の停止位置を特定することで各流入路に対する青時間の過不足を判定することができる。
 付記4にあっては、青時間に余裕がある流入路と青時間が不足している流入路とが存在すると判定した場合、青時間に余裕がある流入路に対する青時間の所定量を青時間が不足している流入路に対する青時間に割り当てるべく信号情報を設定する。所定量は、例えば、2秒、3秒などである。例えば、交差点に流入する流入路に対する青時間が標準値である場合、青時間が不足している流入路に対する青時間を標準値から所定量増やすとともに、青時間に余裕がある流入路に対する青時間を標準値から所定量減らす。所定量をサイクル長(例えば、90秒)に比べて小さい値(2秒、3秒、4秒など)にすることにより、青時間の過不足に応じて青時間を微調整することができる。また、アップリンク情報の取得量が少ない場合に少ない情報量に基づいて青時間の調整幅を大きくし過ぎた結果、却って青時間の過不足を助長する事態が生じることを防止することができる。
 付記5にあっては、所定時間の間、青時間が不足している流入路が存在しないと判定した場合、各流入路に対する青時間を標準値に戻す。所定時間は、例えば、信号サイクルで2~3サイクル相当の時間とすることができる。交通状況によって青時間を標準値から増減させた場合に、例えば、所定時間経過後に青時間の不足が解消したときには、青時間を標準値に戻すことにより、当初設定された信号制御パラメータを用いて信号制御を行うことができる。
 付記6にあっては、所定量の青時間を割り当てた場合に、青時間に余裕がある流入路と青時間が不足している流入路とが存在すると再度判定したときは、その都度所定量(例えば、2秒、3秒、4秒など)の青時間の割り当てを繰り返す。例えば、青時間が不足している流入路に対する青時間を所定量増やすとともに、青時間に余裕がある流入路に対する青時間を所定量減らす。そして、再度青時間の過不足を判定した場合に、未だ青時間に余裕がある流入路と青時間が不足している流入路とが存在するときは、再度同様の割り当てを繰り返す。なお、所定量ずつの青時間の増減は、青時間の上限値又は下限値に達した時に終了する。これにより、青時間の過不足に応じて青時間を微調整することができる。また、アップリンク情報の取得量が比較的多い場合には、時々刻々変化する交通状況に応じてリアルタイムで青時間の調整を行うことができる。
 付記7にあっては、交差点に流入する流入路の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある流入路であり、優先順位が低いほど青時間を短くすることができる流入路である。そして、複数の流入路に対する青時間に余裕があると判定した場合、当該複数の流入路のうち優先順位の低い流入路を選択し、選択した流入路に対する青時間の所定量を青時間が不足している流入路に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の流入路に対する青時間に余裕があるときは、最も青時間を短くすることができ優先順位が低い流入路に対する青時間を所定量減らす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。
 付記8にあっては、交差点に流入する流入路の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある流入路であり、優先順位が低いほど青時間を短くすることができる流入路である。そして、複数の流入路に対して青時間が不足していると判定した場合、青時間に余裕がある流入路に対する青時間の所定量を複数の流入路のうち優先順位の高い流入路に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の流入路に対する青時間が不足しているときは、最も青時間を長くする必要があり優先順位が高い流入路に対する青時間を所定量増やす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。
 付記9にあっては、交差点から流入路上の車両の停止位置までの距離が第1閾値以上である場合、当該流入路に対する青時間が不足していると判定する。第1閾値TH1は、例えば、当該流入路に対する青時間をG、当該流入路の飽和交通流率をs、平均車頭間隔をhとするとTH1=s×h×Gとすることができる。すなわち、車両の停止位置の交差点からの距離が、1サイクル分の青時間の間に通過することができる車両台数に対応する距離以上であれば、青時間が不足していると判定する。これにより、停止車両の位置を特定することにより青時間が不足していることを判定することができる。
 付記10にあっては、交差点から流入路上の車両の停止位置までの距離が第1閾値TH1より小さい第2閾値TH2以下である場合、当該流入路に対する青時間に余裕があると判定する。第2閾値TH2は、例えば、当該流入路に対する青時間をG、青時間の所定の変動量をΔG、当該流入路の飽和交通流率をs、平均車頭間隔をhとするとTH2=s×h×(G-ΔG)とすることができる。すなわち、車両の停止位置の交差点からの距離が、1サイクル分の青時間から所定の変動量を差し引いた時間の間に通過することができる車両台数に対応する距離以下であれば、青時間に余裕があると判定する。これにより、停止車両の位置を特定することにより青時間に余裕があることを判定することができる。
(Additional notes about Embodiments 2 and 3)
The following additional notes are disclosed with respect to the second and third embodiments.
(Supplementary note 1) In a signal control device for controlling the color of a signal lamp at an intersection, the signal obtained by probe information including the position of a vehicle traveling on an inflow path flowing into the intersection and the time passing through the position A specifying unit that specifies a stop position of the vehicle based on information indicating a traveling state of the vehicle; and a determination unit that determines whether the blue time is excessive or insufficient with respect to the inflow path based on the stop position specified by the specifying unit. A signal control device.
(Additional remark 2) It has a calculation means to calculate the load factor of the inflow path based on the traffic volume of the inflow path flowing into the intersection, and the determination means has the one inflow path calculated by the calculation means. The supplementary note 1 is characterized in that it is configured to determine the excess or deficiency of the blue hours for each inflow path based on a load factor and a stop position on another inflow path that intersects the one inflow path at the intersection. Signal control device.
(Additional remark 3) The said determination means is comprised so that the excess and deficiency of the blue time with respect to each inflow path may be determined based on the stop position on the at least 2 inflow path which cross | intersects at the said intersection. Signal control device.
(Supplementary Note 4) If the determination means determines that there is an inflow channel with a margin of blue time and an inflow channel with a short period of blue time, the predetermined amount of blue time for the inflow channel with the margin is insufficient. The signal control device according to any one of appendices 1 to 3, further comprising setting means for setting signal information to be assigned to the blue time for the inflow path.
(Additional remark 5) The said setting means is comprised so that the blue time with respect to each inflow path may be returned to a standard value, when the determination means determines that there is no inflow path where the blue time is insufficient for a predetermined time. The signal control device according to appendix 4, wherein
(Additional remark 6) When the said setting means determines again that the inflow path which has a margin in blue time, and the inflow path where the blue time is insufficient exists in the said determination means, when the predetermined amount of blue hours is allocated Is configured to repeat the allocation of a predetermined amount of blue time each time, the signal control device according to appendix 4 or 5,
(Supplementary Note 7) When the priority order of the inflow passages flowing into the intersection is determined in advance, and the setting means determines that the blue time for the plurality of inflow passages has a margin in the determination means, the plurality of inflow passages The signal control device according to any one of appendices 4 to 6, wherein a predetermined amount of green time for an inflow channel with a lower priority is assigned to the blue time for the inflow channel having a lower priority. .
(Supplementary note 8) Priorities of inflow paths flowing into the intersection are determined in advance, and when the setting means determines that the green time is insufficient for a plurality of inflow paths by the determination means, the margin The signal according to any one of appendices 4 to 6, wherein a predetermined amount of blue hours for a certain inflow path is assigned to a blue time for an inflow path with a higher priority among the plurality of inflow paths. Control device.
(Supplementary note 9) When the distance from the intersection to the stop position on the inflow path is equal to or greater than the first threshold, the determination means is configured to determine that the blue time for the inflow path is insufficient. Any one of the supplementary notes 1 to 8, characterized by:
(Supplementary Note 10) When the distance from the intersection to the stop position on the inflow path is equal to or less than a second threshold value that is smaller than the first threshold value, the determination unit determines that the blue time for the inflow path has a margin. The signal control device according to appendix 9, wherein the signal control device is configured.
(Additional remark 11) In the computer program for making a computer perform the step for controlling the light color of the signal light apparatus of an intersection, the position of the vehicle which drive | works the inflow path which flows into the said intersection in a computer, and this position are passed. A step of specifying a stop position of the vehicle based on information indicating a traveling state of the vehicle obtained from probe information including a time to perform the determination, and determining whether the blue time of the signal lamp is excessive or insufficient based on the specified stop position A computer program for executing the steps.
(Additional remark 12) In the signal control method by the signal control apparatus for controlling the lamp color of the signal lamp at the intersection, by the probe information including the position of the vehicle traveling on the inflow path flowing into the intersection and the time passing through the position Including a step of specifying a stop position of the vehicle based on the obtained information indicating the running state of the vehicle, and a step of determining whether the signal lamp is in excess or deficiency of the blue time based on the specified stop position. A characteristic signal control method.
In Appendices 1, 11, and 12, the vehicle is based on information indicating the traveling state of the vehicle obtained from the probe information including the position of the vehicle traveling on the inflow path flowing into the intersection and the time passing through the position. The stop position on the inflow path is identified, and the excess or deficiency of the blue time for the inflow path is determined based on the identified stop position. The information indicating the traveling state is, for example, probe information (uplink information) that can be received from the in-vehicle device via the road device, and the position and time of the vehicle every predetermined period (for example, 1 second), in-vehicle Includes the identification code of the device (vehicle). The excess or deficiency of the blue hours indicates whether the blue hours are insufficient or there is a margin in the blue hours. For example, if the stop position of a vehicle on a certain inflow path is relatively far from the intersection, it is considered that there are a considerable number of stopped vehicles between the stopped vehicle and the intersection. It is determined that the blue time for is insufficient. If the stop position of a vehicle on a certain inflow path is relatively close to the intersection, there are few stopped vehicles between the stopped vehicle and the intersection. It is determined that there is room in the blue hours for the road. By specifying the stop position of the vehicle, it is possible to determine whether the blue hours are excessive or insufficient.
In Appendix 2, the load factor of the inflow path is calculated based on the traffic volume of one inflow path that flows into the intersection. When the main road (for example, a main road) and a secondary road intersect at an intersection, the traffic volume on the main road (one inflow road) is detected by a vehicle detector and the load factor is calculated based on the detected traffic volume. To do. The load factor can be obtained, for example, as a ratio of the inflow flow rate (unit / unit time) to the saturated traffic flow rate of the inflow channel. The saturated traffic flow rate indicates the capacity of the inflow path, and is, for example, 1800 vehicles per hour. When the load factor of the inflow channel is large, it can be determined that the blue time for the inflow channel is insufficient. When the load factor of the inflow channel is small, the blue time for the inflow channel has a margin. Can be determined. Then, based on the calculated load factor of one inflow path (main road) and the stop position of the vehicle on another inflow path (secondary road) that intersects the one inflow path at the intersection, the blue hour of each inflow path Determine excess or deficiency. By specifying the load factor of the main road and the stop position of the vehicle on the secondary road, it is possible to determine whether the blue hours are excessive or insufficient.
In Supplementary Note 3, the excess or deficiency of the blue time for each inflow path is determined based on the stop positions of the vehicles on at least two inflow paths that intersect at the intersection. That is, by specifying the stop position of the vehicle on each inflow path, it is possible to determine whether the blue time is excessive or insufficient for each inflow path.
In Supplementary Note 4, if it is determined that there is an inflow channel with a margin of blue time and an inflow channel with a short period of blue time, the predetermined amount of blue time for the inflow channel with a margin of blue time is determined as the blue hour. The signal information is set so as to be allocated to the blue time for the inflow channel in which there is a shortage. The predetermined amount is, for example, 2 seconds, 3 seconds, or the like. For example, if the blue time for an inflow channel that flows into an intersection is a standard value, the blue time for an inflow channel that lacks blue time is increased by a predetermined amount from the standard value, and the blue time for an inflow channel that has a margin of blue time Reduce the standard value by a predetermined amount. By setting the predetermined amount to a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds), the blue time can be finely adjusted according to the excess or deficiency of the blue time. In addition, when the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
In Supplementary Note 5, when it is determined that there is no inflow channel with insufficient blue time for a predetermined time, the blue time for each inflow channel is returned to the standard value. The predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle. When the blue hour is increased or decreased from the standard value depending on the traffic situation, for example, when the shortage of the blue hour is resolved after the lapse of a predetermined time, the signal control parameter set initially is used by returning the blue hour to the standard value. Signal control can be performed.
In Supplementary Note 6, when a predetermined amount of blue hours is allocated, if it is determined again that there are inflow channels with sufficient blue hours and inflow channels with insufficient blue hours, each time a predetermined amount Repeat the blue time allocation (eg 2 seconds, 3 seconds, 4 seconds, etc.). For example, while increasing the blue time for an inflow channel with insufficient blue time by a predetermined amount, the blue time for the inflow channel with a margin of blue time is decreased by a predetermined amount. Then, when it is determined again that the blue hours are excessive or insufficient, if there are still inflow channels with sufficient blue hours and inflow channels with insufficient blue hours, the same assignment is repeated again. Note that the increase / decrease in the blue time by a predetermined amount ends when the upper limit value or lower limit value of the blue time is reached. Thereby, the blue time can be finely adjusted according to the excess or deficiency of the blue time. In addition, when the amount of uplink information acquired is relatively large, the blue time can be adjusted in real time according to the traffic situation that changes from moment to moment.
In Supplementary Note 7, the priority order of the inflow path flowing into the intersection is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there. If it is determined that there is room in the blue hours for a plurality of inflow paths, an inflow path with a lower priority is selected from the plurality of inflow paths, and the predetermined amount of blue time for the selected inflow paths is insufficient for the blue time Assign to the blue hour for the current inflow. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of inflow paths, the blue time for the inflow road with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
In Supplementary Note 8, the priority order of the inflow channels flowing into the intersection is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority, the longer it is necessary to lengthen the green time. The lower the priority, the shorter the time the blue time can be shortened. is there. If it is determined that there is a shortage of blue time for a plurality of inflow channels, a predetermined amount of blue time for an inflow channel with a margin of blue time is set to a blue amount for an inflow channel with a higher priority among the plurality of inflow channels. Assign to time. For example, when the intersection is five or more roads and the blue hours for a plurality of inflow paths are insufficient, the blue time needs to be made the longest, and the blue time for the inflow road with a higher priority is increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
In Supplementary Note 9, when the distance from the intersection to the stop position of the vehicle on the inflow path is equal to or greater than the first threshold, it is determined that the blue time for the inflow path is insufficient. For example, the first threshold value TH1 may be TH1 = s × h × G, where G is the blue time for the inflow path, s is the saturation traffic flow rate of the inflow path, and h is the average vehicle head distance. That is, if the distance from the intersection of the stop position of the vehicle is equal to or greater than the distance corresponding to the number of vehicles that can pass during the blue time for one cycle, it is determined that the blue time is insufficient. Thereby, it can be determined that the green time is insufficient by specifying the position of the stopped vehicle.
In Supplementary Note 10, when the distance from the intersection to the stop position of the vehicle on the inflow path is equal to or less than the second threshold value TH2 which is smaller than the first threshold value TH1, it is determined that the blue time for the inflow path has a margin. The second threshold value TH2 is, for example, TH2 = s × h, where G is the blue time for the inflow route, ΔG is the predetermined fluctuation amount of the blue time, s is the saturation traffic flow rate of the inflow route, and h is the average vehicle head distance. X (G−ΔG). That is, if the distance from the intersection of the stop position of the vehicle is equal to or less than the distance corresponding to the number of vehicles that can pass during the time obtained by subtracting the predetermined fluctuation amount from the blue time for one cycle, Judge that there is room. Thereby, it can be determined that there is a margin in the green time by specifying the position of the stopped vehicle.
(実施の形態4についての付記)
 実施の形態4に関し、さらに以下の付記を開示する。
 (付記1)交差点の信号灯器の灯色を制御するための信号制御装置において、前記交差点を含む道路区間での旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて前記道路区間に対する青時間が不足しているか否かを判定する判定手段とを備えることを特徴とする信号制御装置。
 (付記2)前記判定手段で青時間に余裕がある道路区間と青時間が不足している道路区間とが存在すると判定した場合、前記余裕がある道路区間に対する青時間の一部を前記不足している道路区間に対する青時間に割り当てるべく信号情報を設定する設定手段を備えることを特徴とする付記1の信号制御装置。
 (付記3)前記設定手段は、前記判定手段で青時間に余裕があると判定した道路区間又は青時間が不足していると判定した道路区間のいずれかが存在しないと判定した場合、増減した青時間を元の青時間に戻すように構成してあることを特徴とする付記2の信号制御装置。
 (付記4)任意の道路区間に対する青時間が標準値より長い場合に、前記判定手段で前記道路区間に対する青時間に余裕があると判定したときは、該道路区間に対する青時間の一部を他の道路区間に割り当てるべく信号情報を設定する設定手段を備えることを特徴とする付記1の信号制御装置。
 (付記5)前記道路区間の優先順位を予め定めておき、前記設定手段は、前記判定手段で複数の道路区間に対する青時間に余裕があると判定した場合、前記複数の道路区間のうち優先順位の低い道路区間に対する青時間の一部を前記不足している道路区間に対する青時間に割り当てるように構成してあることを特徴とする付記2又は3の信号制御装置。
 (付記6)前記道路区間の優先順位を予め定めておき、前記設定手段は、前記判定手段で複数の道路区間に対する青時間が不足していると判定した場合、前記余裕がある道路区間に対する青時間の一部を前記複数の道路区間のうち優先順位の高い道路区間に対する青時間に割り当てるように構成してあることを特徴とする付記2又は3の信号制御装置。
 (付記7)前記交差点を含む道路区間を走行する車両の走行状態を示す情報に基づいて前記道路区間での旅行時間を算出する旅行時間算出手段を備え、前記判定手段は、前記旅行時間算出手段で算出した旅行時間を用いて前記道路区間に対する青時間が不足しているか否かを判定するように構成してあることを特徴とする付記1乃至6のいずれか1つの信号制御装置。
 (付記8)前記閾値は、前記信号灯器の略サイクル長であることを特徴とする付記1乃至7のいずれか1つの信号制御装置。
 (付記9)コンピュータに、交差点の信号灯器の灯色を制御するためのステップを実行させるためのコンピュータプログラムにおいて、コンピュータに、前記交差点を含む道路区間での旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて前記道路区間に対する青時間が不足しているか否かを判定するステップとを実行させることを特徴とするコンピュータプログラム。
 (付記10)交差点の信号灯器の灯色を制御するための信号制御装置による信号制御方法において、前記交差点を含む道路区間での旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて前記道路区間に対する青時間が不足しているか否かを判定するステップとを含むことを特徴とす信号制御方。
 付記1、9又は10にあっては、交差点を含む道路区間での旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて道路区間に対する青時間が不足しているか否か(不足か又は余裕があるか)を判定する。道路区間は、例えば、交差点に流入する流入路の上流側の地点を始端とし、交差点の流出地点を終端とする区間である。走行状態を示す情報は、例えば、路上装置を介して車載装置から受信することができるアップリンク情報であり、所定の周期(例えば、1秒)毎の車両の位置及び時刻、車載装置(車両)の識別コードなどを含む。基準旅行時間は、例えば、渋滞していないときの標準的な旅行時間とすることができる。青時間の判定は、青時間が不足しているか、あるいは青時間に余裕があるかを判定する。例えば、道路区間の旅行時間と基準旅行時間との差分が閾値以上である場合、当該道路区間に対する青時間は不足していると判定する。また、道路区間の旅行時間と基準旅行時間との差分が閾値より小さい場合には、当該道路区間に対する青時間には余裕があると判定する。道路区間の旅行時間により、当該道路区間に対する青時間の過不足を判定することができる。
 付記2にあっては、青時間に余裕がある道路区間と青時間が不足している道路区間とが存在すると判定した場合、余裕がある道路区間に対する青時間の一部(例えば、所定量)を不足している道路区間に対する青時間に割り当てるべく信号情報を設定する。所定量は、例えば、2秒、3秒、4秒などである。例えば、青時間に余裕がある道路区間に対する青時間を所定量減らし、青時間が不足している道路区間に対する青時間に加える。所定量をサイクル長(例えば、90秒)に比べて小さい値(2秒、3秒、4秒など)にすることにより、青時間の過不足に応じて青時間を微調整することができる。また、アップリンク情報の取得量が少ない場合に少ない情報量に基づいて青時間の調整幅を大きくし過ぎた結果、却って青時間の過不足を助長する事態が生じることを防止することができる。
 付記3にあっては、青時間に余裕があると判定した道路区間又は青時間が不足していると判定した道路区間のいずれかが存在しないと判定した場合、増減した青時間を元の青時間に戻す。交通状況によって青時間を標準値から増減させた場合に、例えば、青時間の過不足が解消したときには、青時間を標準値に戻すことにより、当初設定された信号制御パラメータを用いて信号制御を行うことができる。
 付記4にあっては、任意の道路区間に対する青時間が標準値より長い場合に、当該道路区間に対する青時間に余裕があると判定したときは、当該道路区間に対する青時間の一部(例えば、所定量)を他の道路区間(例えば、青時間が不足している道路区間、あるいは青時間に余裕がある道路区間でもよい)に割り当てる。これにより、交通量が減少した場合に、青時間を標準値に戻すことが可能となる。
 付記5にあっては、道路区間の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある道路区間であり、優先順位が低いほど青時間を短くすることができる道路区間である。そして、複数の道路区間に対する青時間に余裕があると判定した場合、複数の道路区間のうち優先順位の低い道路区間に対する青時間の一部(例えば、所定量)を不足している道路区間に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の道路区間に対する青時間に余裕があるときは、最も青時間を短くすることができ優先順位が低い道路区間に対する青時間を所定量減らす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。
 付記6にあっては、道路区間の優先順位を予め定めておく。優先順位は、過去の交通状況の実績により定めることができ、優先順位が高いほど青時間を長くする必要がある道路区間であり、優先順位が低いほど青時間を短くすることができる道路区間である。そして、複数の道路区間に対する青時間が不足していると判定した場合、余裕がある道路区間に対する青時間の一部(例えば、所定量)を複数の道路区間のうち優先順位の高い道路区間に対する青時間に割り当てる。例えば、交差点が五差路以上である場合に複数の道路区間に対する青時間が不足しているときは、最も青時間を長くする必要があり優先順位が高い道路区間に対する青時間を所定量増やす。これにより、五差路以上の交差点であっても青時間の過不足を調整することができる。
 付記7にあっては、交差点を含む道路区間を走行する車両の走行状態を示す情報に基づいて道路区間での旅行時間を算出し、算出した旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて道路区間に対する青時間が不足しているか否か(不足か又は余裕があるか)を判定する。道路区間の旅行時間を算出することにより、当該道路区間に対する青時間の過不足を判定することができる。
 付記8にあっては、閾値は、信号灯器の略サイクル長である。略サイクル長とは、例えば、サイクル長±10%程度の時間長である。これにより、道路区間の旅行時間により、2回の信号待ちを検出することができ、青時間の過不足を精度良く判定することができる。
(Supplementary note about Embodiment 4)
The following additional remarks are disclosed regarding the fourth embodiment.
(Supplementary note 1) In the signal control device for controlling the color of the signal lamp at the intersection, depending on whether the difference between the travel time in the road section including the intersection and the reference travel time is smaller or larger than the threshold value A signal control apparatus comprising: determination means for determining whether or not the green time for the road section is insufficient.
(Supplementary note 2) When it is determined by the determination means that there is a road section with a margin of blue time and a road section with a lack of blue time, a part of the blue time for the road section with the margin is insufficient. The signal control apparatus according to appendix 1, further comprising setting means for setting signal information so as to be assigned to the green time for a road section.
(Additional remark 3) The said setting means increased / decreased when it was determined that either the road section determined by the said determination means that there was a margin in the blue time or the road section determined that the blue time was insufficient did not exist The signal control device according to appendix 2, wherein the blue time is returned to the original blue time.
(Supplementary Note 4) If the blue time for an arbitrary road section is longer than the standard value and the determination means determines that the blue time for the road section has a margin, a part of the blue time for the road section is The signal control apparatus according to appendix 1, further comprising setting means for setting signal information to be assigned to a road section.
(Supplementary Note 5) When the priority order of the road sections is determined in advance, and the setting means determines that the blue time for the plurality of road sections has a margin in the determination means, the priority order among the plurality of road sections The signal control device according to appendix 2 or 3, wherein a part of the green time for a low road section is allocated to the blue time for the insufficient road section.
(Supplementary Note 6) When the priority order of the road section is determined in advance, and the setting means determines that the blue time for a plurality of road sections is insufficient by the determination means, The signal control apparatus according to appendix 2 or 3, wherein a part of the time is assigned to a blue hour for a road section having a higher priority among the plurality of road sections.
(Supplementary Note 7) A travel time calculating unit that calculates a travel time in the road section based on information indicating a traveling state of a vehicle traveling on the road section including the intersection is provided, and the determination unit includes the travel time calculating unit. The signal control device according to any one of appendices 1 to 6, wherein the travel time calculated in (1) is used to determine whether or not the blue time for the road section is insufficient.
(Supplementary note 8) The signal control device according to any one of supplementary notes 1 to 7, wherein the threshold value is a substantially cycle length of the signal lamp.
(Additional remark 9) In the computer program for making a computer perform the step for controlling the light color of the signal light apparatus of an intersection, the difference of the travel time in the road area containing the said intersection and reference | standard travel time is made into a computer. And a step of determining whether or not the blue time for the road section is insufficient depending on whether the road section is smaller or larger than a threshold value.
(Additional remark 10) In the signal control method by the signal control apparatus for controlling the lamp color of the signal lamp at the intersection, the difference between the travel time in the road section including the intersection and the reference travel time is smaller or larger than the threshold value And determining whether or not the green time for the road section is insufficient.
In Appendix 1, 9 or 10, whether or not the green time for the road section is insufficient depending on whether the difference between the travel time in the road section including the intersection and the reference travel time is smaller or larger than the threshold (Whether it is deficient or has room). The road section is, for example, a section that starts at a point upstream of the inflow path that flows into the intersection and ends at the outflow point of the intersection. The information indicating the traveling state is, for example, uplink information that can be received from the in-vehicle device via the road device, and the position and time of the vehicle every predetermined period (for example, 1 second), the in-vehicle device (vehicle). Including the identification code. The reference travel time can be, for example, a standard travel time when there is no traffic jam. In the determination of the blue time, it is determined whether the blue time is insufficient or the blue time has a margin. For example, when the difference between the travel time of the road section and the reference travel time is equal to or greater than the threshold, it is determined that the blue time for the road section is insufficient. Further, when the difference between the travel time of the road section and the reference travel time is smaller than the threshold value, it is determined that the blue time for the road section has a margin. Based on the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section.
In Appendix 2, if it is determined that there is a road section with a margin of blue time and a road section with a short period of blue time, a part of the blue time for a road section with a margin (for example, a predetermined amount) Signal information is set to allocate the blue hour for the road section lacking. The predetermined amount is, for example, 2 seconds, 3 seconds, 4 seconds, or the like. For example, the blue time for a road section with sufficient blue time is reduced by a predetermined amount and added to the blue time for a road section where the blue time is insufficient. By setting the predetermined amount to a smaller value (2 seconds, 3 seconds, 4 seconds, etc.) than the cycle length (for example, 90 seconds), the blue time can be finely adjusted according to the excess or deficiency of the blue time. In addition, when the amount of uplink information acquired is small, it is possible to prevent a situation in which excessive adjustment of the blue hours is promoted as a result of excessively adjusting the adjustment range of the blue hours based on a small amount of information.
In Supplementary Note 3, if it is determined that there is no road segment that has been determined to have sufficient blue hours or that the road segment has been determined to have insufficient blue hours, the increased or decreased blue hours are Go back in time. When the blue hour is increased or decreased from the standard value according to traffic conditions, for example, when the excess or deficiency of the blue hour is resolved, the signal control is performed using the initially set signal control parameters by returning the blue hour to the standard value. It can be carried out.
In Appendix 4, if the green time for any road section is longer than the standard value and it is determined that the blue time for the road section has a margin, a part of the blue time for the road section (for example, (Predetermined amount) is allocated to another road section (for example, a road section having a shortage of blue hours or a road section having a margin of blue hours). This makes it possible to return the blue hour to the standard value when the traffic volume decreases.
In Appendix 5, the priority order of road sections is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there. If it is determined that there is a margin in green time for a plurality of road sections, a road section that lacks a part (for example, a predetermined amount) of blue hours for a road section with a low priority among the plurality of road sections. Assign to blue hours. For example, when the intersection is five-way or more and there is a margin in the blue hours for a plurality of road sections, the blue hours for the road sections with the lowest priority can be reduced by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
In Appendix 6, the priority order of road sections is determined in advance. The priority order can be determined by past traffic conditions. The higher the priority order, the longer the road time needs to be. The lower the priority order, the shorter the road time. is there. If it is determined that the blue hours for a plurality of road sections are insufficient, a part (for example, a predetermined amount) of the blue hours for a road section with a margin is assigned to a road section with a higher priority among the plurality of road sections. Assign to blue hours. For example, when the intersection is more than a five-way road and the blue hours for a plurality of road sections are insufficient, the blue hours need to be made the longest and the blue hours for the road sections with higher priority are increased by a predetermined amount. Thereby, the excess or deficiency of the blue time can be adjusted even at an intersection of five or more roads.
In Appendix 7, the travel time in the road section is calculated based on the information indicating the traveling state of the vehicle traveling on the road section including the intersection, and the difference between the calculated travel time and the reference travel time is smaller than the threshold value. Alternatively, it is determined whether or not the green time for the road section is insufficient (whether it is insufficient or has a margin) depending on whether it is large. By calculating the travel time of the road section, it is possible to determine whether the blue time is excessive or insufficient for the road section.
In Appendix 8, the threshold is the approximate cycle length of the signal lamp. The approximate cycle length is, for example, a cycle length of about ± 10%. Thereby, it is possible to detect two signal waits based on the travel time of the road section, and it is possible to accurately determine whether the blue hours are excessive or insufficient.
(実施の形態5についての付記)
 実施の形態5に関し、さらに以下の付記を開示する。
 (付記1)交差点からの特定の流出方向に対して他の流出方向とは独立に通行許可を付与する信号灯器を制御するための信号制御装置において、前記特定の流出方向へ進行した車両の位置及び該位置を通過する時刻を含むプローブ情報に基づいて、前記特定の流出方向への流出が円滑であるか否かを判定する円滑度判定手段と、該円滑度判定手段で流出が円滑でないと判定した場合、前記特定の流出方向に対する青時間を延長する青時間設定手段とを備えることを特徴とする信号制御装置。
 (付記2)前記円滑度判定手段は、前記特定の流出方向へ進行した車両の停止位置、旅行時間又は停止回数に基づいて、流出が円滑であるか否かを判定するように構成してあることを特徴とする信号制御装置。
 (付記3)前記交差点に流入する流入路の交通量が所定値以下であるか否かを判定する交通量判定手段を備え、前記青時間設定手段は、前記交通量判定手段で交通量が所定値以下であると判定した場合、青時間を延長するように構成してあることを特徴とする信号制御装置。
 (付記4)前記交差点を流出する流出路が渋滞しているか否かを判定する渋滞判定手段を備え、前記青時間設定手段は、前記渋滞判定手段で渋滞していないと判定した場合、青時間を延長するように構成してあることを特徴とする信号制御装置。
 (付記5)前記青時間設定手段は、前記円滑度判定手段により前記特定の流出方向への流出が円滑でないと判定した場合に、該特定の流出方向への流出が円滑になったときは、青時間を短縮するように構成してあることを特徴とする信号制御装置。
 (付記6)前記青時間設定手段は、青時間を延長した場合、延長時点から所定時間経過後に青時間を短縮するように構成してあることを特徴とする信号制御装置。
 (付記7)コンピュータに、交差点からの特定の流出方向に対して他の流出方向とは独立に通行許可を付与する信号灯器を制御させるためのコンピュータプログラムにおいて、コンピュータに、前記特定の流出方向へ進行した車両の位置及び該位置を通過する時刻を含むプローブ情報に基づいて、前記特定の流出方向への流出が円滑であるか否かを判定するステップと、流出が円滑でないと判定した場合、前記特定の流出方向に対する青時間を延長させるステップとを実行させることを特徴とするコンピュータプログラム。
 (付記8)交差点からの特定の流出方向に対して他の流出方向とは独立に通行許可を付与する信号灯器を制御するための信号制御装置による信号制御方法において、前記特定の流出方向へ進行した車両の位置及び該位置を通過する時刻を含むプローブ情報に基づいて、前記特定の流出方向への流出が円滑であるか否かを判定するステップと、流出が円滑でないと判定された場合、前記特定の流出方向に対する青時間を延長させるステップとを含むことを特徴とする信号制御方法。
 付記1、7、8にあっては、特定の流出方向へ進行した車両の位置及び位置を通過する時刻を含むプローブ情報に基づいて、当該特定の流出方向への流出が円滑であるか否かを判定する。特定の流出方向とは、他の流出方向とは独立に同一の方向からの流入車両に対して通行許可を付与する流出方向であり、例えば、右折青矢を備えた交差点の右折方向である。なお、特定の流出方向は、右折方向に限らず左折方向も含むことができる。プローブ情報は、例えば、路上装置を介して車載装置から取得することができ、所定の周期(例えば、1秒)毎の車両の位置及び時刻、車載装置(車両)の識別コードなどを含む。
 取得したプローブ情報に基づいて、特定の流出方向への流出が円滑であるか否かを判定し、流出が円滑でないと判定した場合、特定の流出方向に対する青時間を延長する。特定の流出方向への流出が円滑であるか否かは、取得したプローブ情報から特定の流出方向へ走行した車両のプローブ情報を抽出し、当該車両がどの程度円滑に交差点を通過することができたか否かで判定する。円滑度の判定には、例えば、車両の停止位置が交差点からどの程度離れていたか、車両の旅行時間がどの程度であったか、あるいは車両が交差点を通過するまでの間にどの程度停止を繰り返したかなどの交通指標を使用することができる。
 プローブ情報に基づいて特定の流出方向の流出の円滑度合を判定し、円滑な流出が行われていない場合には、特定の流出方向の通行を許可するための青時間を延長するので、車両感知器などの交通感応制御に必要な設備を交差点毎に設けることなく、交通状況の変化に対応して、交差点からの特定の流出方向に対する適切な信号制御を実現することができる。
 付記2にあっては、特定の流出方向へ進行した車両の停止位置、旅行時間又は停止回数に基づいて流出が円滑であるか否かを判定する。流出が円滑であるか否かの判定に車両停止位置を用いる場合、取得したプローブ情報から車両の停止位置(例えば、交差点からの距離でもよい)を求め、停止位置と交差点との距離が閾値以上である場合、特定の流出方向へ流出する車両の前方には信号待ち等の車両が多く存在するので、流出の円滑度合は良くない(悪い)と判定することができる。
 また、車両の旅行時間を用いる場合、取得したプローブ情報から車両の旅行時間(例えば、交差点の流入路の上流側の地点と特定の流出方向の道路の交差点付近の地点との間の道路区間を通過するのに要した時間)を求め、旅行時間が閾値以上である場合、特定の流出方向へ流出する車両の前方には信号待ち等の車両が多く存在するので、流出の円滑度合は良くない(悪い)と判定することができる。
 また、車両の停止回数を用いる場合、取得したプローブ情報から車両の停止回数(例えば、交差点の流入路の上流側から特定の流出方向の道路の交差点付近の地点まで走行する間に停止した回数)を求め、停止回数が閾値以上である場合、特定の流出方向へ流出する車両の前方には信号待ち等の車両が多く存在するので、流出の円滑度合は良くない(悪い)と判定することができる。
 付記3にあっては、交差点に流入する流入路の交通量を取得する。交差点の流入路の上流地点に、例えば、車両感知器等を備えている場合、当該流入路の交通量を取得する。交通量は、例えば、単位時間当たりの車両の通過台数である。そして、取得した交通量が所定値(例えば、飽和流率×全流出方向の青時間の和/サイクル長)以下である場合に、青時間を延長する。流入路の交通量が所定値を超える場合には、交差点へ流入する車両(例えば、直進車両など)の台数が多いので、特定の流出方向の青時間だけを延長するよりも、むしろ直進方向の青時間を延長する必要がある。したがって、特定の流出方向の青時間だけを延長したとしても、交通状況の改善は望めないので、青時間の延長を行わない。これにより、適切な信号制御を実現することができる。
 付記4にあっては、交差点を流出する流出路(例えば、右折方向の流出路、直進方向の流出路など)が渋滞しているか否かを判定する。渋滞しているか否かの判定は、流出方向の道路に車両感知器等が設置されている場合には、車両感知器等で計測した交通量に基づいて判定することができる。また、車両感知器等が設置されていない場合には、当該流出方向へ流出した車両のプローブ情報に基づいて判定することができる。そして、渋滞していないと判定した場合に、青時間を延長する。交差点を流出する流出路が渋滞している場合には、当該道路の下流側の交差点の青時間を延長する必要がある。したがって、特定の流出方向の青時間だけを延長したとしても、交通状況の改善は望めないので、青時間の延長を行わない。これにより、適切な信号制御を実現することができる。
 付記5にあっては、特定の流出方向への流出が円滑でないと判定した場合に、当該特定の流出方向への流出が円滑になったときは、青時間を短縮する。例えば、延長前の青時間に戻す。これにより、特定の流出方向に対して過度の青時間を付与することを防止することができ、適切な信号制御を実現することができる。
 付記6にあっては、青時間を延長した場合、延長時点から所定時間経過後に青時間を短縮する。例えば、延長前の青時間に戻す。所定時間は、例えば、信号サイクルで2~3サイクル相当の時間とすることができる。青時間を延長したままの状態を長時間継続することにより、特定の流出方向に対して過度の青時間を付与する事態を抑制し、青時間延長の結果を所定時間後に見極めて、流出が円滑であれば当初設定された信号制御パラメータを用いて信号制御を行うことができ、また未だ流出が円滑でない場合には、再度青時間を延長すればよいので、適切な信号制御を実現することができる。
(Supplementary note about Embodiment 5)
Regarding the fifth embodiment, the following additional notes are further disclosed.
(Supplementary note 1) In a signal control apparatus for controlling a signal lamp that gives a passage permission independently of other outflow directions with respect to a specific outflow direction from an intersection, the position of the vehicle that has traveled in the specific outflow direction And smoothness determination means for determining whether or not the outflow in the specific outflow direction is smooth based on the probe information including the time passing through the position, and the smoothness determination means that the outflow is not smooth And a blue time setting means for extending the blue time with respect to the specific outflow direction when determined.
(Supplementary Note 2) The smoothness determination means is configured to determine whether or not the outflow is smooth based on the stop position, travel time, or number of stops of the vehicle that has traveled in the specific outflow direction. A signal control device.
(Additional remark 3) It is provided with the traffic volume determination means which determines whether the traffic volume of the inflow path which flows in into the said intersection is below a predetermined value, The said blue time setting means has a traffic volume predetermined by the said traffic volume determination means. A signal control device configured to extend the blue time when it is determined that the value is less than or equal to the value.
(Additional remark 4) It is provided with the traffic congestion determination means which determines whether the outflow path which flows out out of the said intersection is congested, and the said blue time setting means determines that there is no traffic jam by the said traffic congestion determination means. A signal control device characterized in that the signal control device is extended.
(Supplementary Note 5) When the green time setting means determines that the smoothness determining means does not smoothly flow out in the specific outflow direction, and the outflow in the specific outflow direction is smooth, A signal control device configured to shorten the blue time.
(Additional remark 6) The said blue time setting means is comprised so that blue time may be shortened after progress for a predetermined time, when blue time is extended.
(Supplementary note 7) In a computer program for causing a computer to control a signal lamp that grants a passage permission independently of other outflow directions with respect to a specific outflow direction from an intersection, the computer in the specific outflow direction When determining whether or not the outflow in the specific outflow direction is smooth based on the probe information including the position of the vehicle that has traveled and the time of passing the position, and when determining that the outflow is not smooth, And a step of extending a blue time for the specific outflow direction.
(Supplementary note 8) In a signal control method by a signal control device for controlling a signal lamp that gives a passage permission independently of other outflow directions with respect to a specific outflow direction from an intersection, it proceeds in the specific outflow direction A step of determining whether or not the outflow in the specific outflow direction is smooth based on the probe information including the position of the vehicle and the time of passing the position, and if it is determined that the outflow is not smooth, Extending the blue time for the specific outflow direction.
In Appendices 1, 7, and 8, whether or not the outflow in the specific outflow direction is smooth based on the probe information including the position of the vehicle traveling in the specific outflow direction and the time passing the position Determine. The specific outflow direction is an outflow direction that grants passage permission to an inflow vehicle from the same direction independently of other outflow directions, for example, a right turn direction of an intersection with a right turn blue arrow. The specific outflow direction can include not only the right turn direction but also the left turn direction. The probe information can be acquired from, for example, a vehicle-mounted device via a road device, and includes the position and time of the vehicle every predetermined cycle (for example, 1 second), the identification code of the vehicle-mounted device (vehicle), and the like.
Based on the acquired probe information, it is determined whether or not the outflow in the specific outflow direction is smooth. If it is determined that the outflow is not smooth, the blue time for the specific outflow direction is extended. Whether or not the outflow in a specific outflow direction is smooth can be determined by extracting the probe information of the vehicle traveling in the specific outflow direction from the acquired probe information and how smoothly the vehicle can pass through the intersection. Judgment is based on whether or not. For smoothness determination, for example, how far the stop position of the vehicle is from the intersection, how long the vehicle traveled, or how many stops the vehicle was repeated before passing the intersection, etc. The traffic indicator can be used.
Based on the probe information, the degree of smoothness of the outflow in a specific outflow direction is determined. If smooth outflow is not performed, the blue time for permitting passage in the specific outflow direction is extended. Appropriate signal control for a specific outflow direction from an intersection can be realized in response to a change in traffic conditions without providing facilities necessary for traffic sensitive control such as a vessel at each intersection.
In Supplementary Note 2, it is determined whether or not the outflow is smooth based on the stop position, travel time, or number of stops of the vehicle that has traveled in the specific outflow direction. When the vehicle stop position is used to determine whether or not the outflow is smooth, the stop position of the vehicle (for example, the distance from the intersection) may be obtained from the acquired probe information, and the distance between the stop position and the intersection is equal to or greater than the threshold value. In this case, since there are many vehicles waiting for a signal or the like ahead of the vehicle that flows out in a specific outflow direction, it can be determined that the smoothness of the outflow is not good (bad).
When using the travel time of the vehicle, the travel time of the vehicle (for example, the road section between the point upstream of the inflow path of the intersection and the point near the intersection of the road in the specific outflow direction is obtained from the acquired probe information. If the travel time is equal to or greater than the threshold, there are many vehicles waiting for traffic lights in front of the vehicle that flows in a specific direction, so the smoothness of the outflow is not good. It can be determined that it is bad.
In addition, when using the number of times of stop of the vehicle, the number of times of stop of the vehicle from the acquired probe information (for example, the number of times of stop while traveling from the upstream side of the inflow path of the intersection to the point near the intersection of the road in the specific outflow direction) If the number of stops is equal to or greater than the threshold value, there are many vehicles waiting for traffic lights in front of the vehicle that flows out in a specific outflow direction, so it is determined that the smoothness of outflow is not good (bad). it can.
In Appendix 3, the traffic volume of the inflow path flowing into the intersection is acquired. For example, when a vehicle detector or the like is provided at the upstream point of the inflow path of the intersection, the traffic volume of the inflow path is acquired. The traffic volume is, for example, the number of vehicles passing per unit time. And when the acquired traffic volume is below a predetermined value (for example, saturation flow rate x sum of blue hours in all outflow directions / cycle length), the blue hours are extended. If the traffic volume on the inflow route exceeds the specified value, there are many vehicles (for example, straight-ahead vehicles) that flow into the intersection, so rather than extending only the blue hours in a specific outflow direction, The blue hours need to be extended. Therefore, even if only the blue hours in a specific outflow direction are extended, the improvement of the traffic situation cannot be expected, so the blue hours are not extended. Thereby, appropriate signal control can be realized.
In Supplementary Note 4, it is determined whether or not an outflow path (for example, an outflow path in a right turn direction or an outflow path in a straight line direction) flowing out from an intersection is congested. Whether or not there is a traffic jam can be determined based on the traffic volume measured by the vehicle detector or the like when a vehicle detector or the like is installed on the road in the outflow direction. Further, when a vehicle detector or the like is not installed, the determination can be made based on the probe information of the vehicle that has flowed out in the outflow direction. When it is determined that there is no traffic jam, the blue time is extended. When the outflow route that flows out from the intersection is congested, it is necessary to extend the green time at the intersection on the downstream side of the road. Therefore, even if only the blue hours in a specific outflow direction are extended, the improvement of the traffic situation cannot be expected, so the blue hours are not extended. Thereby, appropriate signal control can be realized.
In Appendix 5, when it is determined that the outflow in the specific outflow direction is not smooth, the outflow in the specific outflow direction becomes smooth, and the green time is shortened. For example, return to the blue time before the extension. Thereby, it can prevent giving excessive blue time with respect to a specific outflow direction, and can implement | achieve appropriate signal control.
In Supplementary Note 6, when the blue time is extended, the blue time is shortened after a predetermined time has elapsed since the extension. For example, return to the blue time before the extension. The predetermined time can be, for example, a time corresponding to 2 to 3 cycles in a signal cycle. By maintaining the extended blue hours for a long time, it is possible to prevent excessive blue hours from being given in a specific outflow direction, and to observe the results of the extended blue hours after a predetermined time, so that the outflow is smooth. If so, signal control can be performed using the initially set signal control parameters, and if the outflow is still not smooth, it is sufficient to extend the blue time again, so that appropriate signal control can be realized. it can.
 1 交通信号制御機
 2 信号灯器
 3 路上装置
 5 車載装置
 101 制御部
 102 通信部
 103 通行頻度算出部(算出手段)
 104 記憶部
 105 選択部(選択手段)
 106 旅行時間算出部(旅行時間算出手段)
 107 停止位置特定部(特定手段)
 108 青時間判定部(判定手段)
 109 信号情報設定部(設定手段)
 110 負荷率算出部(負荷率算出手段)
 401 円滑度判定部
 402 停止位置算出部
 403 旅行時間算出部
 404 停止回数算出部
 405 交通量判定部
 406 渋滞判定部
DESCRIPTION OF SYMBOLS 1 Traffic signal controller 2 Signal lamp 3 Road equipment 5 Vehicle-mounted apparatus 101 Control part 102 Communication part 103 Traffic frequency calculation part (calculation means)
104 storage unit 105 selection unit (selection means)
106 travel time calculation unit (travel time calculation means)
107 Stop position specifying part (specifying means)
108 Blue time determination unit (determination means)
109 Signal information setting section (setting means)
110 Load factor calculation unit (load factor calculation means)
401 Smoothness determination unit 402 Stop position calculation unit 403 Travel time calculation unit 404 Stop frequency calculation unit 405 Traffic volume determination unit 406 Congestion determination unit

Claims (28)

  1.  車両の走行状態を示す情報を送信する送信手段を有する該車両の通行量に応じて交差点に流入する流入路に対する信号灯器の灯色を制御するための信号制御装置において、
     前記通行量に基づいて、任意の時間帯で前記送信手段を有する車両の通行頻度を算出する算出手段と、
     該算出手段で算出した通行頻度に応じて、前記信号灯器の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択する選択手段と
     を備えることを特徴とする信号制御装置。
    In the signal control device for controlling the color of the signal lamp for the inflow path flowing into the intersection according to the amount of traffic of the vehicle having transmission means for transmitting information indicating the running state of the vehicle,
    A calculation means for calculating the traffic frequency of the vehicle having the transmission means in an arbitrary time zone based on the traffic volume;
    Selecting means for selecting one signal control method from among a plurality of signal control methods determined in advance to control the blue time of the signal lamp according to the traffic frequency calculated by the calculating means. A signal control device.
  2.  前記複数の信号制御方式は、
     車両の走行状態を示す情報に基づく交通指標を用いる信号制御方式と該交通指標を用いない信号制御方式とを含み、
     前記選択手段は、
     前記算出手段で算出した通行頻度の大小に応じて前記交通指標を用いる信号制御方式か該交通指標を用いない信号制御方式かを選択するように構成してあることを特徴とする請求項1に記載の信号制御装置。
    The plurality of signal control methods are:
    Including a signal control method using a traffic index based on information indicating the running state of the vehicle and a signal control method not using the traffic index,
    The selection means includes
    The signal processing method using the traffic indicator or the signal control method not using the traffic indicator is selected according to the traffic frequency calculated by the calculating means. The signal control apparatus as described.
  3.  前記複数の信号制御方式は、
     車両の走行状態を示す情報に基づく交通指標に応じて、該交通指標毎に定めた複数の信号制御パラメータの中から一の信号制御パラメータを決定する第2の信号制御方式を含むことを特徴とする請求項1又は請求項2に記載の信号制御装置。
    The plurality of signal control methods are:
    Including a second signal control method for determining one signal control parameter from among a plurality of signal control parameters determined for each traffic index according to a traffic index based on information indicating a running state of the vehicle, The signal control device according to claim 1 or 2.
  4.  前記複数の信号制御方式は、
     時間帯毎に定めた複数の信号制御パラメータの中から時刻に応じて一の信号制御パラメータを決定する第1の信号制御方式を含むことを特徴とする請求項1乃至請求項3のいずれか1項に記載の信号制御装置。
    The plurality of signal control methods are:
    4. The method according to claim 1, further comprising: a first signal control method for determining one signal control parameter according to time from a plurality of signal control parameters determined for each time zone. The signal control device according to item.
  5.  前記複数の信号制御方式は、
     時刻及び車両の走行状態を示す情報に基づく交通指標に応じて、時間帯毎及び該交通指標毎に定めた複数の信号制御パラメータの中から一の信号制御パラメータを決定する第3の信号制御方式を含むことを特徴とする請求項1又は請求項2に記載の信号制御装置。
    The plurality of signal control methods are:
    A third signal control method for determining one signal control parameter from among a plurality of signal control parameters determined for each time zone and for each traffic index according to a traffic index based on information indicating the time and the running state of the vehicle The signal control apparatus according to claim 1, further comprising:
  6.  前記選択手段は、
     前記算出手段で算出した通行頻度が第1閾値より小さい場合、前記第1の信号制御方式を選択し、前記第1閾値以上である場合、前記第2又は第3の信号制御方式のいずれかを選択するように構成してあることを特徴とする請求項1乃至請求項5のいずれか1項に記載の信号制御装置。
    The selection means includes
    When the traffic frequency calculated by the calculating means is smaller than the first threshold, the first signal control method is selected, and when the traffic frequency is equal to or higher than the first threshold, either the second or third signal control method is selected. The signal control device according to claim 1, wherein the signal control device is configured to be selected.
  7.  前記選択手段は、
     前記算出手段で算出した通行頻度が前記第1閾値より大きい第2閾値以上である場合、前記第2の信号制御方式を選択するように構成してあることを特徴とする請求項6に記載の信号制御装置。
    The selection means includes
    The configuration according to claim 6, wherein the second signal control method is selected when the traffic frequency calculated by the calculating means is equal to or greater than a second threshold value that is greater than the first threshold value. Signal control device.
  8.  前記選択手段は、
     前記算出手段で算出した通行頻度が前記第1閾値以上であって前記第2閾値より小さい場合、前記第3の信号制御方式を選択するように構成してあることを特徴とする請求項7に記載の信号制御装置。
    The selection means includes
    8. The third signal control method is selected when the traffic frequency calculated by the calculating means is equal to or higher than the first threshold and smaller than the second threshold. The signal control apparatus as described.
  9.  前記交差点に流入する流入路を走行する車両の位置及び該位置を通過する時刻を含むプローブ情報により得られた該車両の走行状態を示す情報に基づいて車両の停止位置を特定する特定手段と、
     該特定手段で特定した停止位置に基づいて前記流入路に対する青時間の過不足を判定する第1判定手段と
     を備え、
     前記選択手段は、
     前記第3の信号制御方式に代えて、前記第1判定手段で判定した判定結果に基づいて信号制御パラメータを決定する第4の信号制御方式を選択するように構成してあることを特徴とする請求項6乃至請求項8のいずれか1項に記載の信号制御装置。
    Identifying means for identifying a stop position of the vehicle based on information indicating a traveling state of the vehicle obtained from probe information including a position of the vehicle traveling on the inflow path flowing into the intersection and a time passing through the position;
    First determining means for determining whether the inflow passage is excessive or insufficient based on the stop position specified by the specifying means;
    The selection means includes
    Instead of the third signal control method, a fourth signal control method for determining a signal control parameter based on the determination result determined by the first determination unit is selected. The signal control apparatus according to any one of claims 6 to 8.
  10.  前記交差点に流入する一の流入路の交通量に基づいて該流入路の負荷率を算出する負荷率算出手段を備え、
     前記第1判定手段は、
     前記負荷率算出手段で算出した前記一の流入路の負荷率及び前記交差点で前記一の流入路と交差する他の流入路上の停止位置に基づいて各流入路に対する青時間の過不足を判定するように構成してあることを特徴とする請求項9に記載の信号制御装置。
    A load factor calculating means for calculating the load factor of the inflow path based on the traffic volume of the one inflow path flowing into the intersection;
    The first determination means includes
    Based on the load factor of the one inflow path calculated by the load factor calculating means and the stop position on the other inflow path that intersects the one inflow path at the intersection, it is determined whether the blue time is excessive or insufficient for each inflow path. The signal control device according to claim 9, wherein the signal control device is configured as described above.
  11.  前記第1判定手段は、
     前記交差点で交差する少なくとも2つの流入路上の停止位置に基づいて各流入路に対する青時間の過不足を判定するように構成してあることを特徴とする請求項9に記載の信号制御装置。
    The first determination means includes
    The signal control device according to claim 9, wherein the signal control device is configured to determine whether the blue time is excessive or insufficient for each inflow path based on stop positions on at least two inflow paths that intersect at the intersection.
  12.  前記第1判定手段で青時間に余裕がある流入路と青時間が不足している流入路とが存在すると判定した場合、前記余裕がある流入路に対する青時間の所定量を前記不足している流入路に対する青時間に割り当てるべく信号情報を設定する第1設定手段を備えることを特徴とする請求項9乃至請求項11のいずれか1項に記載の信号制御装置。 When it is determined by the first determination means that there is an inflow channel with a margin of blue time and an inflow channel with a lack of blue time, the predetermined amount of blue time for the inflow channel with the margin is insufficient. The signal control device according to claim 9, further comprising a first setting unit that sets signal information to be assigned to a blue time for an inflow channel.
  13.  前記第1設定手段は、
     前記第1判定手段で所定時間の間、青時間が不足している流入路が存在しないと判定した場合、各流入路に対する青時間を標準値に戻すように構成してあることを特徴とする請求項12に記載の信号制御装置。
    The first setting means includes
    When the first determination means determines that there is no inflow channel having a shortage of blue time for a predetermined time, the blue time for each inflow channel is configured to return to a standard value. The signal control device according to claim 12.
  14.  前記第1設定手段は、
     所定量の青時間を割り当てた場合に、前記第1判定手段で青時間に余裕がある流入路と青時間が不足している流入路とが存在すると再度判定したときは、その都度所定量の青時間の割り当てを繰り返すように構成してあることを特徴とする請求項12又は請求項13に記載の信号制御装置。
    The first setting means includes
    When a predetermined amount of blue hours is allocated, when it is determined again by the first determination means that there is an inflow channel with a margin of blue time and an inflow channel with insufficient blue time, a predetermined amount of The signal control apparatus according to claim 12 or 13, wherein the blue time allocation is repeated.
  15.  前記交差点に流入する流入路の優先順位を予め定めておき、
     前記第1設定手段は、
     前記第1判定手段で複数の流入路に対する青時間に余裕があると判定した場合、前記複数の流入路のうち優先順位の低い流入路に対する青時間の所定量を前記不足している流入路に対する青時間に割り当てるように構成してあることを特徴とする請求項12乃至請求項14のいずれか1項に記載の信号制御装置。
    Predetermining the priority order of the inflow path flowing into the intersection,
    The first setting means includes
    When it is determined by the first determination means that there is a margin in blue hours for a plurality of inflow channels, a predetermined amount of blue time for an inflow channel having a low priority among the plurality of inflow channels is determined for the inflow channel that is insufficient. The signal control device according to claim 12, wherein the signal control device is configured to be assigned to a blue hour.
  16.  前記交差点に流入する流入路の優先順位を予め定めておき、
     前記第1設定手段は、
     前記第1判定手段で複数の流入路に対して青時間が不足していると判定した場合、前記余裕がある流入路に対する青時間の所定量を前記複数の流入路のうち優先順位の高い流入路に対する青時間に割り当てるように構成してあることを特徴とする請求項12乃至請求項14のいずれか1項に記載の信号制御装置。
    Predetermining the priority order of the inflow path flowing into the intersection,
    The first setting means includes
    When it is determined by the first determination means that the green time is insufficient for a plurality of inflow channels, a predetermined amount of the blue time for the inflow channel having the margin is determined to be an inflow having a higher priority among the plurality of inflow channels. The signal control device according to any one of claims 12 to 14, wherein the signal control device is configured to be assigned to a blue hour for a road.
  17.  前記第1判定手段は、
     前記交差点から流入路上の停止位置までの距離が第1距離閾値以上である場合、該流入路に対する青時間が不足していると判定するように構成してあることを特徴とする請求項9乃至請求項16のいずれか1項に記載の信号制御装置。
    The first determination means includes
    10. The apparatus according to claim 9, wherein when the distance from the intersection to the stop position on the inflow path is equal to or greater than a first distance threshold, it is determined that the blue time for the inflow path is insufficient. The signal control device according to claim 16.
  18.  前記第1判定手段は、
     前記交差点から流入路上の停止位置までの距離が前記第1距離閾値より小さい第2距離閾値以下である場合、該流入路に対する青時間に余裕があると判定するように構成してあることを特徴とする請求項17に記載の信号制御装置。
    The first determination means includes
    When the distance from the intersection to the stop position on the inflow path is equal to or less than a second distance threshold value that is smaller than the first distance threshold value, it is determined that the blue time for the inflow path has a margin. The signal control device according to claim 17.
  19.  前記交差点を含む道路区間での旅行時間と基準旅行時間との差分が閾値より小又は大であるかに応じて前記道路区間に対する青時間が不足しているか否かを判定する第2判定手段を備え、
     前記選択手段は、
     前記第3の信号制御方式に代えて、前記第2判定手段で判定した判定結果に基づいて信号制御パラメータを決定する第5の信号制御方式を選択するように構成してあることを特徴とする請求項6乃至請求項8のいずれか1項に記載の信号制御装置。
    Second determination means for determining whether or not the blue time for the road section is insufficient according to whether a difference between a travel time in a road section including the intersection and a reference travel time is smaller or larger than a threshold value; Prepared,
    The selection means includes
    Instead of the third signal control method, a fifth signal control method for determining a signal control parameter based on the determination result determined by the second determination means is selected. The signal control apparatus according to any one of claims 6 to 8.
  20.  前記第2判定手段で青時間に余裕がある道路区間と青時間が不足している道路区間とが存在すると判定した場合、前記余裕がある道路区間に対する青時間の一部を前記不足している道路区間に対する青時間に割り当てるべく信号情報を設定する第2設定手段を備えることを特徴とする請求項19に記載の信号制御装置。 When it is determined by the second determination means that there is a road section with a margin of blue time and a road section with a lack of blue time, a part of the blue time for the road section with the margin is insufficient. 20. The signal control device according to claim 19, further comprising second setting means for setting signal information to be allocated to a blue hour for a road section.
  21.  前記第2設定手段は、
     前記第2判定手段で青時間に余裕があると判定した道路区間又は青時間が不足していると判定した道路区間のいずれかが存在しないと判定した場合、増減した青時間を元の青時間に戻すように構成してあることを特徴とする請求項20に記載の信号制御装置。
    The second setting means includes
    When it is determined that there is no road section determined by the second determination means that there is a margin in green time or a road section determined that the blue time is insufficient, the increased or decreased blue time is determined as the original blue time. 21. The signal control device according to claim 20, wherein the signal control device is configured so as to return to the above.
  22.  任意の道路区間に対する青時間が標準値より長い場合に、前記第2判定手段で前記道路区間に対する青時間に余裕があると判定したときは、該道路区間に対する青時間の一部を他の道路区間に割り当てるべく信号情報を設定する第3設定手段を備えることを特徴とする請求項19に記載の信号制御装置。 When the blue time for an arbitrary road section is longer than the standard value, when the second determination means determines that there is a margin in the blue time for the road section, a part of the blue time for the road section is replaced with another road. The signal control device according to claim 19, further comprising third setting means for setting signal information to be assigned to a section.
  23.  前記道路区間の優先順位を予め定めておき、
     前記第2設定手段は、
     前記第2判定手段で複数の道路区間に対する青時間に余裕があると判定した場合、前記複数の道路区間のうち優先順位の低い道路区間に対する青時間の一部を前記不足している道路区間に対する青時間に割り当てるように構成してあることを特徴とする請求項20又は請求項21に記載の信号制御装置。
    Predetermining the priorities of the road sections,
    The second setting means includes
    If the second determination means determines that there is a margin in the blue hours for a plurality of road sections, a part of the blue hours for the road sections having a low priority among the plurality of road sections is provided for the insufficient road section. The signal control device according to claim 20 or 21, wherein the signal control device is configured to be assigned to a blue hour.
  24.  前記道路区間の優先順位を予め定めておき、
     前記第2設定手段は、
     前記第2判定手段で複数の道路区間に対する青時間が不足していると判定した場合、前記余裕がある道路区間に対する青時間の一部を前記複数の道路区間のうち優先順位の高い道路区間に対する青時間に割り当てるように構成してあることを特徴とする請求項20又は請求項21に記載の信号制御装置。
    Predetermining the priorities of the road sections,
    The second setting means includes
    If it is determined by the second determination means that the blue hours for a plurality of road sections are insufficient, a part of the blue hours for the road sections with a margin is assigned to a road section having a higher priority among the plurality of road sections. The signal control device according to claim 20 or 21, wherein the signal control device is configured to be assigned to a blue hour.
  25.  前記交差点を含む道路区間を走行する車両の走行状態を示す情報に基づいて前記道路区間での旅行時間を算出する旅行時間算出手段を備え、
     前記第2判定手段は、
     前記旅行時間算出手段で算出した旅行時間を用いて前記道路区間に対する青時間が不足しているか否かを判定するように構成してあることを特徴とする請求項19乃至請求項24のいずれか1項に記載の信号制御装置。
    A travel time calculating means for calculating a travel time in the road section based on information indicating a traveling state of a vehicle traveling on the road section including the intersection;
    The second determination means includes
    25. The apparatus according to claim 19, wherein the travel time calculated by the travel time calculation means is used to determine whether or not the blue time for the road section is insufficient. 2. The signal control device according to item 1.
  26.  前記閾値は、前記信号灯器の略サイクル長であることを特徴とする請求項19乃至請求項25のいずれか1項に記載の信号制御装置。 The signal control device according to any one of claims 19 to 25, wherein the threshold value is a substantially cycle length of the signal lamp.
  27.  コンピュータに、車両の走行状態を示す情報を送信する送信手段を有する該車両の通行量に応じて交差点に流入する流入路に対する信号灯器の灯色を制御するためのステップを実行させるためのコンピュータプログラムにおいて、
     コンピュータに、
     前記通行量に基づいて、任意の時間帯で前記送信手段を有する車両の通行頻度を算出するステップと、
     算出した通行頻度に応じて、前記信号灯器の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択するステップと
     を実行させることを特徴とするコンピュータプログラム。
    A computer program for causing a computer to execute a step for controlling the light color of a signal lamp for an inflow path flowing into an intersection according to the amount of traffic of the vehicle, having transmission means for transmitting information indicating the running state of the vehicle In
    On the computer,
    Calculating the traffic frequency of the vehicle having the transmission means in an arbitrary time zone based on the traffic volume;
    Selecting one signal control method from a plurality of predetermined signal control methods for controlling the blue time of the signal lamp according to the calculated traffic frequency. .
  28.  車両の走行状態を示す情報を送信する送信手段を有する該車両の通行量に応じて交差点に流入する流入路に対する信号灯器の灯色を制御するための信号制御装置による信号制御方法において、
     前記通行量に基づいて、任意の時間帯で前記送信手段を有する車両の通行頻度を算出するステップと、
     算出された通行頻度に応じて、前記信号灯器の青時間を制御するために予め定めた複数の信号制御方式の中から一の信号制御方式を選択するステップと
     を含むことを特徴とする信号制御方法。
    In the signal control method by the signal control device for controlling the color of the signal lamp for the inflow path flowing into the intersection according to the amount of traffic of the vehicle having transmission means for transmitting information indicating the running state of the vehicle,
    Calculating the traffic frequency of the vehicle having the transmission means in an arbitrary time zone based on the traffic volume;
    Selecting one signal control method from a plurality of signal control methods determined in advance to control the blue time of the signal lamp according to the calculated traffic frequency. Method.
PCT/JP2011/074012 2010-12-21 2011-10-19 Signal control device, computer program and signal control method WO2012086301A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010284925A JP5605212B2 (en) 2010-12-21 2010-12-21 Signal control apparatus, computer program, and signal control method
JP2010-284925 2010-12-21
JP2010-284926 2010-12-21
JP2010284926A JP5678645B2 (en) 2010-12-21 2010-12-21 Signal control apparatus, computer program, and signal control method
JP2010293186A JP5672001B2 (en) 2010-12-28 2010-12-28 Signal control apparatus, computer program, and signal control method
JP2010-293186 2010-12-28
JP2011-051897 2011-03-09
JP2011051897A JP5729028B2 (en) 2011-03-09 2011-03-09 Signal control apparatus, computer program, and signal control method

Publications (1)

Publication Number Publication Date
WO2012086301A1 true WO2012086301A1 (en) 2012-06-28

Family

ID=46313585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074012 WO2012086301A1 (en) 2010-12-21 2011-10-19 Signal control device, computer program and signal control method

Country Status (1)

Country Link
WO (1) WO2012086301A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071545A (en) * 2012-09-27 2014-04-21 Sumitomo Electric Ind Ltd Remaining-vehicle determination device, computer program, and remaining-vehicle determination method
CN104794915A (en) * 2015-05-11 2015-07-22 清华大学 Continuous intersection traffic control method and device
CN105551239A (en) * 2015-12-08 2016-05-04 北京云星宇交通科技股份有限公司 Travelling time prediction method and device
WO2016098361A1 (en) * 2014-12-15 2016-06-23 住友電気工業株式会社 Road-side control device, computer program, and information processing method
WO2016136616A1 (en) * 2015-02-23 2016-09-01 住友電気工業株式会社 Traffic index generation device, traffic index generation method, and computer program
CN112598902A (en) * 2020-12-09 2021-04-02 安徽百诚慧通科技有限公司 Intersection turning unbalance degree characterization method and device, electronic equipment and storage medium
CN113327422A (en) * 2021-06-04 2021-08-31 上海和数软件有限公司 Intelligent traffic regulation and control method and system based on block chain
CN114333301A (en) * 2021-12-06 2022-04-12 北京东土正创科技有限公司 Traffic signal control optimization method and system and traffic signal optimization equipment
CN114868424A (en) * 2019-12-24 2022-08-05 株式会社自动网络技术研究所 In-vehicle wireless communication device, wireless communication system, and wireless communication method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11272982A (en) * 1998-03-23 1999-10-08 Hitachi Ltd Method and device for estimating travel time
JP2005352615A (en) * 2004-06-09 2005-12-22 Hitachi Ltd Traffic volume control system using probe car for traffic volume control area and probe car information collection distribution center
JP2007241987A (en) * 2006-02-07 2007-09-20 Matsushita Electric Ind Co Ltd Method and device for generating traffic information
JP2009245341A (en) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd Link information creation device, link information creation method, and program
JP2009245294A (en) * 2008-03-31 2009-10-22 Sumitomo Electric Ind Ltd Traffic signal control device and method, arrival profile estimation device and computer program
JP2010044529A (en) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd Traffic signal control device, traffic parameter calculation device, computer program, traffic signal control method, and traffic parameter calculation method
JP2010177749A (en) * 2009-01-27 2010-08-12 Sumitomo Electric Ind Ltd Communication control device, and roadside communication apparatus equipped with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11272982A (en) * 1998-03-23 1999-10-08 Hitachi Ltd Method and device for estimating travel time
JP2005352615A (en) * 2004-06-09 2005-12-22 Hitachi Ltd Traffic volume control system using probe car for traffic volume control area and probe car information collection distribution center
JP2007241987A (en) * 2006-02-07 2007-09-20 Matsushita Electric Ind Co Ltd Method and device for generating traffic information
JP2009245341A (en) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd Link information creation device, link information creation method, and program
JP2009245294A (en) * 2008-03-31 2009-10-22 Sumitomo Electric Ind Ltd Traffic signal control device and method, arrival profile estimation device and computer program
JP2010044529A (en) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd Traffic signal control device, traffic parameter calculation device, computer program, traffic signal control method, and traffic parameter calculation method
JP2010177749A (en) * 2009-01-27 2010-08-12 Sumitomo Electric Ind Ltd Communication control device, and roadside communication apparatus equipped with the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071545A (en) * 2012-09-27 2014-04-21 Sumitomo Electric Ind Ltd Remaining-vehicle determination device, computer program, and remaining-vehicle determination method
WO2016098361A1 (en) * 2014-12-15 2016-06-23 住友電気工業株式会社 Road-side control device, computer program, and information processing method
US10186148B2 (en) 2014-12-15 2019-01-22 Sumitomo Electric Industries, Ltd. Roadside control apparatus, computer program, and information processing method
JPWO2016136616A1 (en) * 2015-02-23 2017-12-07 住友電気工業株式会社 Traffic index generation device, traffic index generation method, and computer program
WO2016136616A1 (en) * 2015-02-23 2016-09-01 住友電気工業株式会社 Traffic index generation device, traffic index generation method, and computer program
US10249183B2 (en) 2015-02-23 2019-04-02 Sumitomo Electric Industries, Ltd. Traffic index generation device, traffic index generation method, and computer program
CN104794915B (en) * 2015-05-11 2017-08-11 清华大学 A kind of continuous intersection vehicle passing control method and device
CN104794915A (en) * 2015-05-11 2015-07-22 清华大学 Continuous intersection traffic control method and device
CN105551239A (en) * 2015-12-08 2016-05-04 北京云星宇交通科技股份有限公司 Travelling time prediction method and device
CN114868424A (en) * 2019-12-24 2022-08-05 株式会社自动网络技术研究所 In-vehicle wireless communication device, wireless communication system, and wireless communication method
CN112598902A (en) * 2020-12-09 2021-04-02 安徽百诚慧通科技有限公司 Intersection turning unbalance degree characterization method and device, electronic equipment and storage medium
CN112598902B (en) * 2020-12-09 2022-08-16 安徽百诚慧通科技股份有限公司 Intersection turning unbalance degree characterization method and device, electronic equipment and storage medium
CN113327422A (en) * 2021-06-04 2021-08-31 上海和数软件有限公司 Intelligent traffic regulation and control method and system based on block chain
CN114333301A (en) * 2021-12-06 2022-04-12 北京东土正创科技有限公司 Traffic signal control optimization method and system and traffic signal optimization equipment
CN114333301B (en) * 2021-12-06 2023-09-26 北京东土正创科技有限公司 Traffic signal control optimization method, system and traffic signal optimization equipment

Similar Documents

Publication Publication Date Title
WO2012086301A1 (en) Signal control device, computer program and signal control method
JP5482827B2 (en) Traffic index calculation device, method and computer program
JP5277786B2 (en) Emergency vehicle priority control apparatus, computer program, and emergency vehicle priority control method
JP5470664B2 (en) Traffic signal control device and computer program
JP5625953B2 (en) Signal control apparatus, computer program, and signal control method
JP2009176235A (en) Traffic signal controller, computer program and traffic signal control method
JP4935988B2 (en) Traffic system, traffic signal controller and signal controller
CN107421556A (en) Guidance path method for pushing and device
JP2005182219A (en) Traffic signal controller and traffic signal control method and storage medium
US20200124435A1 (en) Distributed route determination system
US20200135019A1 (en) Signal control device, signal control system, and signal control method
JP5018600B2 (en) Traffic signal control apparatus and method, arrival profile estimation apparatus, and computer program
JP2015099560A (en) Travel support device, computer program, and manufacturing method of computer program
JP2016133942A (en) Traffic index calculation device, traffic index calculation method and computer program
JP2016186822A (en) Information communication device
JP5018599B2 (en) Traffic signal control apparatus and method, arrival profile estimation apparatus, and computer program
JP2011022713A (en) Communication system and roadside communication apparatus
JP5605212B2 (en) Signal control apparatus, computer program, and signal control method
JP7195205B2 (en) Vehicle driving support device
CN108806285A (en) A kind of crossroad signal method of adjustment and device based on array radar
JP5445471B2 (en) Signal control apparatus, computer program, and signal control method
JP4320625B2 (en) Traffic signal control method and control apparatus for implementing the method
JP2011128680A (en) Traffic flow measuring system, in-vehicle equipment, and roadside communication device
JP5672001B2 (en) Signal control apparatus, computer program, and signal control method
CN106683420B (en) Scenic spot motor vehicle quantity overload regulation and control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851922

Country of ref document: EP

Kind code of ref document: A1