WO2012029914A1 - Method for producing pentacyclic triterpene compound having hydroxymethyl group or carboxyl group at 28-position - Google Patents

Method for producing pentacyclic triterpene compound having hydroxymethyl group or carboxyl group at 28-position Download PDF

Info

Publication number
WO2012029914A1
WO2012029914A1 PCT/JP2011/069922 JP2011069922W WO2012029914A1 WO 2012029914 A1 WO2012029914 A1 WO 2012029914A1 JP 2011069922 W JP2011069922 W JP 2011069922W WO 2012029914 A1 WO2012029914 A1 WO 2012029914A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
group
seq
dna
pentacyclic triterpene
Prior art date
Application number
PCT/JP2011/069922
Other languages
French (fr)
Japanese (ja)
Inventor
俊哉 村中
光 關
エリ オデット 福島
直行 梅基
Original Assignee
キリンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンホールディングス株式会社 filed Critical キリンホールディングス株式会社
Priority to JP2012531963A priority Critical patent/JP6018915B2/en
Publication of WO2012029914A1 publication Critical patent/WO2012029914A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)

Definitions

  • the present invention relates to a method for producing a pentacyclic triterpene compound in which the 28-position is a hydroxymethyl group or a carboxyl group, an enzyme that can be used in the method, and a DNA encoding the enzyme.
  • the present invention also relates to a cell and a transgenic plant for producing the above compound.
  • Triterpene is a natural product formed of six isoprene units, and more than 100 skeletons have been reported in nature (Non-patent Document 1).
  • the most common triterpenes found in plants are oleanane type ( ⁇ -amylin, taraxerol, germanicol, oleanolic acid, etc.), followed by ursan type ( ⁇ -amylin, ursolic acid, etc.), lupine type (lupeol, betulinic acid, etc.), etc.
  • ursan type ⁇ -amylin, ursolic acid, etc.
  • lupine type laupeol, betulinic acid, etc.
  • Triterpenes are known to have physiologically active substances that exhibit anticancer and anti-inflammatory effects, and have become an important chemical structure pool for new drugs (Non-patent Document 2).
  • Non-patent Documents 3 and 4 As patent documents, for pentacyclic triterpenes having a carboxyl group at the 28-position, an external skin preparation for aging (Patent Document 1), glutathione production promoting action (Patent Document 2), for improving or preventing fatigued eyes Orally administered composition (patent document 3), hyaluronidase inhibitor (patent document 4), prevention and improvement of metabolic syndrome (patent document 5), endothelin receptor antagonist (patent document 6), TGF- ⁇ inhibitor (patent document) 7), an anti-pruritic agent (Patent Document 8) and the like have been reported.
  • pentacyclic triterpene compounds having a carboxyl group at position 28, such as oleanolic acid are produced only in plants, and natural products (plant roots and peels).
  • oleanolic acid supplier website MP Biomedicals (USA) is ginseng (Panax ginseng), Changsha Nutramax is olive (Orea europaea), Gentianaceae (Sertia milensis plant) major), Aralia chinensis, and Cucurbitaceae (Hemsleya), all of which are said to be extracts from plants.
  • Patent Document 9 The extraction method is reported in US Patent (Patent Document 9) and European Patent (Patent Document 10). Also, conversion by organic synthesis from ⁇ -amylin or the like is extremely difficult and has not been established as an industry, and a method for efficiently synthesizing a pentacyclic triterpene compound having a carboxyl group at the 28-position such as oleanolic acid is required. It was.
  • Non-patent Document 6 An enzyme that hydroxylates position 24 of oleanane-type triterpene, a biosynthetic enzyme of soyasapogenol B, and a gene of the enzyme (Non-patent Document 6), an enzyme that oxidizes position 11 of oleanane-type triterpene, a biosynthetic enzyme of glycyrrhizin, and An enzyme gene (Non-patent Document 7) has been identified. However, olives, beets, chixetninjin, etc., which are said to accumulate a large amount of oleanolic acid or its derivatives, have not undergone molecular biological analysis, nor have biochemical studies on the accumulation of oleanolic acid. There was no clue to analyze. Candidate genes could not be extracted even in the analysis using grapes, whose molecular biological analysis has progressed somewhat.
  • the present inventors have been interested in the general oxidation of secondary metabolites of Medicago truncatula and have proceeded with the analysis.
  • Sites where oxidation reaction can occur in the oleanane type triterpene skeleton are the 11th, 16th, 23 / 24th, 28th and 30th positions.
  • a formyl group (—CHO) or a hydroxymethyl group In some cases, the oxidation proceeds to CH 2 OH) and further to a carboxyl group (Non-patent Document 8).
  • cytochrome P450 type monooxygenase 246 types in Arabidopsis whose genome sequence has already been clarified, and 356 types in rice, and are the largest enzyme family occupying 1% of plant genome genes. Shares essential pathways not only for secondary metabolism of plants but also for biosynthesis and metabolism of plant hormones and lipids.
  • Non-Patent Documents 9 and 10 Most of the P450 genes have been discovered only by analyzing the genome sequence with a computer, and the physiological function is often unknown (Non-patent Document 10, p. 84).
  • Non-Patent Document 11 reports changes in saponin content after several treatments on cultured cells of Taruma palm.
  • Table 1 of this document by treatment with methyl jasmonate, hederagenin (a pentacyclic triterpene compound, which is further hydroxylated at position 23), Soyasapogenol E (a non-pentacyclic triterpene compound, positions 2 and 24) The position is hydroxylated and the 22nd position is oxidized), bayogenin (a pentacyclic triterpene compound, and the 2nd and 23rd positions are hydroxylated), medicagenic acid (pentacyclic triterpene) Compound, which is further hydroxylated at the 2-position and carboxylated at the 24-position), zanhaic acid (a pentacyclic triterpene compound, further hydroxylated at the 2-position and the 16-position, and 24 And soyasapogenol E (a non-pentacyclic triterpene compound, hydroxylated
  • Non-Patent Document 12 it was reported that 184 P450s induced by these methyl jasmonates and 37 regions of the genome undecoding region were traced as probes, and about 10% of them were induced by methyl jasmonate. Furthermore, as an induction example of 10%, Mtr. 868.1.
  • S1 (CYP716A12) genes have been found from exhaustive analysis, but their functions are unknown.
  • some of the 184 and 37 probe data listed in the Supplemental Data Set 4 online are not specified, but some of the biosynthesis of secondary metabolites that were altered by treatment of cultured cells.
  • it is concluded that it is a candidate gene related to saponin, the relationship with saponin synthesis and pentacyclic triterpene synthesis in which position 28 is a carboxyl group such as oleanolic acid has not been clarified.
  • An object of the present invention is to provide a method for producing a pentacyclic triterpene compound in which position 28 is a hydroxymethyl group or a carboxyl group, such as plant-derived oleanolic acid, and cells and transgenic plants that produce the pentacyclic triterpene compound Is to provide.
  • the inventors of the present invention have intensively studied to achieve the above object. At that time, although not remarkable, attention was paid to the talum coconut which accumulates triterpene saponin-related compounds, and two kinds of genes (CYP93E2 and CYP716A12) that are expressed cooperatively when expressing the ⁇ -amylin gene that synthesizes the triterpene are expressed in I looked up at silico.
  • CYP93E2 was found to be a gene that converts position 24 of oleanane-type triterpene, which is an existing reaction, to a hydroxymethyl group or a carboxyl group.
  • Another candidate gene CYP716A12 is an unexpected gene that encodes an enzyme having an activity to convert the 28-position of a pentacyclic triterpene to a hydroxymethyl group or a carboxyl group, which has not been found so far. I found this time.
  • this gene it has become possible to efficiently produce pentacyclic triterpenes having a carboxyl group at the 28-position, such as oleanolic acid, which could not be produced by microorganisms until now.
  • a gene having the same function was obtained from a plant accumulating the pentacyclic triterpenes, and this time it was clarified that the enzyme activity in the yeast production system is equivalent or higher.
  • a transgenic plant or microorganism capable of producing a pentacyclic triterpene compound in which the 28th position is a hydroxymethyl group or a carboxyl group and comparing and analyzing the expression of the original gene to select individuals or tissues It was shown that the accumulation amount of the pentacyclic triterpene compound in which the 28-position is a hydroxymethyl group or a carboxyl group can be modified. Furthermore, surprisingly, CYP716A12 was able to convert the 28-position into a hydroxymethyl group or a carboxyl group not only for the oleanane type but also for the ursan type and lupine type pentacyclic triterpenes.
  • Taruma palm mainly accumulates oleanane type triterpenes, and it is probable that it has an enzyme using oleanane type as a substrate.
  • the structure of the E ring portion is greatly different between the oleanane type and the ulsan type or lupine type. This shows that CYP716A12, which has enzyme activity at position 28, does not recognize the difference between the E-ring part adjacent to position 28, which is a result that is significantly different from the previous analysis of the specificity of plant P450. I cannot help saying that.
  • the present invention has been completed based on these findings.
  • the present invention includes the following features.
  • A DNA encoding a protein comprising the amino acid sequence shown in any one of SEQ ID NOs: 2 to 8
  • B including an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 2 to 8, and a methyl group at position 28 of the pentacyclic triterpene Which encodes a protein having an activity of converting acetylene into a hydroxymethyl group or a carboxyl group
  • C including an amino acid sequence having 70% or more sequence identity with the amino acid sequence shown in any of SEQ ID NOs: 2 to 8, and the methyl group at position 28 of the pentacyclic triterpene as a hydroxymethyl group or a carboxyl group
  • D DNA comprising the base sequence shown in any of SEQ ID NOs: 10 to 16
  • E hybridizing under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in any of SEQ ID NOs
  • a processed product of the culture is a concentrate of the culture, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, a freeze-dried product of the cell, Surfactant treated product of bacterial cells, ultrasonic treated product of the bacterial cells, mechanically ground treated product of the bacterial cells, solvent treated product of the bacterial cells, enzyme treated product of the bacterial cells, protein of the bacterial cells.
  • the method according to (13) above which is a fraction, an immobilized product of the microbial cell, or an enzyme preparation obtained by extraction from the microbial cell.
  • the pentacyclic triterpene or derivative thereof having the hydroxymethyl group or the carboxyl group at position 28 in the medium wherein the protein described in (1) and the substrate and the pentacyclic triterpene or derivative thereof are present in an aqueous medium. And collecting a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 or a derivative thereof from the medium, and a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 or a derivative thereof.
  • Manufacturing method is a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 or a derivative thereof.
  • DNA selected from the group consisting of the following (a) to (f).
  • A DNA encoding a protein comprising the amino acid sequence shown in any one of SEQ ID NOs: 4 and 6 to 8
  • B including an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 4 and 6 to 8, and at the 28th position of the pentacyclic triterpene DNA encoding a protein having an activity of converting a methyl group into a hydroxymethyl group or a carboxyl group
  • C an amino acid sequence having 70% or more of the amino acid sequence shown in any one of SEQ ID NOs: 4 and 6 to 8, and the methyl group at position 28 of the pentacyclic triterpene being a hydroxymethyl group or a carboxyl
  • D DNA comprising the base sequence shown in any one of SEQ ID NOs: 12 and 14 to 16
  • E It hybridizes under stringent conditions with a DNA having a base sequence complementary to the base
  • DNA encoding a protein having an activity of converting to a hydroxymethyl group or a carboxyl group (F) a base sequence having 70% or more sequence identity to the base sequence shown in any of SEQ ID NOs: 12 and 14 to 16, and the methyl group at position 28 of the pentacyclic triterpene is a hydroxymethyl group or a carboxyl
  • Triterpene compounds, especially oleanolic acid, ursolic acid, betulinic acid, and substituted derivatives thereof can be produced in large quantities and at low cost.
  • the activity expression of the enzyme protein which has the activity which converts the 28th-position methyl group of a pentacyclic triterpene compound into a carboxyl group, and the DNA which codes it can be adjusted.
  • the activity of this gene can be adjusted.
  • Mass spectrum (MS) of beet homologous gene expressing yeast GC chart of olive homologous gene expression yeast. Mass spectrum (MS) of olive homologous gene expressing yeast. GC chart of yeast expressing coffee homologous genes. Mass spectrum (MS) of coffee homologous gene expressing yeast.
  • the electrophoretic diagram which shows the expression of the oleanolic acid synthase gene in the leaf and pericarp (CTAB) of grape cultivar "Campbell berry A". Structural formulas of betulin in which the methyl group at position 28 of lupeol is converted to a hydroxymethyl group and betulinic acid in which the methyl group at position 28 is further converted to a carboxyl group. GC chart of the expression of C.
  • the enzyme protein of the present invention is a protein having an enzyme activity for converting the 28-position methyl group of a pentacyclic triterpene compound into a hydroxymethyl group or a carboxyl group, and is a pentacyclic triterpene compound such as oleanane type, ulsan type or lupine type.
  • a protein having the ability to convert the 28-position methyl group into a hydroxymethyl group or a carboxyl group (FIGS. 1, 11 and 13). In this specification, such conversion ability is referred to as “position 28 oxidase activity”, and an enzyme protein having such conversion ability is referred to as “position 28 oxidase”.
  • Plants containing the above-mentioned enzymes include, for example, leguminous talum palm (Medicago truncatula), solanaceae tomato (Solanum lycopersicum), leguminous cypress (Lotus japonicus), oleaceae (Olea europaea), Plant species such as (Beta vulgaris), Rubiaceae coffee (Coffea Arabica), and Grapeaceae grapes (Vitis spp.) Are included. It has also been revealed for the first time that the enzyme of the present invention is a kind of membrane-bound cytochrome P450 monooxidase.
  • plants containing the above enzymes include plants that naturally produce oleanane-type, ulsan-type, or lupine-type pentacyclic triterpene compounds, such as clove, assembly, gentian, karin, ume, thyme, jujube, beetle, murine, Examples include plants that produce oleanolic acid such as sunflower, oysters, loquat, forsythia, hawthorn, chixen carrot, and sugar beet, and plants that produce betulinic acid such as clove, sweet potato, jujube, oysters, and birch.
  • oleanolic acid such as sunflower, oysters, loquat, forsythia, hawthorn, chixen carrot, and sugar beet
  • betulinic acid such as clove, sweet potato, jujube, oysters, and birch.
  • the pentacyclic triterpene compound having a hydroxymethyl group or a carboxyl group at position 28 obtained by the enzyme of the present invention includes a triterpene synthesized by a plant or a derivative thereof, such as oleanolic acid (3 ⁇ -hydroxylene-12-en- 28-oic acid), oleanic acid (3-oxoolan-12-en-28-ic acid) ursolic acid (3 ⁇ -hydroxyurs-12-en-28-oic acid), betulinic acid (3 ⁇ -hydroxyrup-20 (29) -En-28-oic acid), salts thereof, derivatives thereof, and the like.
  • oleanolic acid (3 ⁇ -hydroxylene-12-en- 28-oic acid
  • oleanic acid (3-oxoolan-12-en-28-ic acid)
  • ursolic acid (3 ⁇ -hydroxyurs-12-en-28-oic acid
  • betulinic acid (3 ⁇ -hydroxyrup-20 (29) -En-28-oic acid
  • the salt examples include alkali metal salts such as sodium salt and potassium salt, ammonium and ammonium salts with organic amines such as aliphatic amines, aromatic amines, saturated amines and unsaturated amines.
  • the carboxylate may be formed during the production of the target triterpene compound by the method of the present invention, or may be salted by neutralization after the production of the compound.
  • the derivative is a cyclization reaction of the above pentacyclic triterpene compound using, for example, the biosynthetic intermediate 2,3-oxosqualene, such as the 1-position, 2-position, 11-position, 12-position, 29-position, and 30-position.
  • the biosynthetic intermediate 2,3-oxosqualene such as the 1-position, 2-position, 11-position, 12-position, 29-position, and 30-position.
  • the hydrogen atom at a position that is considered to have little influence on the oxidase activity at position 28 is another substituent, such as a lower alkyl group (methyl, ethyl, propyl, butyl, etc.), halogen (fluorine, chlorine, bromine, iodine), Hydroxyl group, ester group (acetoxy, propanoyloxy, etc.), acyl group (formyl, acetyl, propionyl, etc.), alkoxy group (methoxy, ethoxy, propoxy, etc.), amino group, mono- or di-lower alkylamino group (methylamino) , Dimethylamino, ethylamino, etc.), amide group, lower alkylamide group (eg, acetamide), oxo group, cyano , A nitro group, a lower alkylthio group (methylthio, ethylthio, etc.), a compound substituted with a
  • Preferred triterpene compounds that serve as substrates for the 28-position hydroxylase of the present invention include ⁇ -amylin (olean-12-en-3 ⁇ -ol), ⁇ -amylin (urs-12-en-3 ⁇ -ol), lupeol (lup- 20 (29) -en-3 ⁇ -ol) and pentacyclic triterpene compounds such as derivatives thereof.
  • the substitution position and substituent of the substituted derivative are the same as those exemplified above.
  • a pentacyclic triterpene compound in which the methyl group at the 28-position is converted into a hydroxymethyl group or a carboxyl group from the compound serving as a substrate by the action of the 28-position oxidase is obtained.
  • NM_179572 and No. NM_106546 (Arabidopsis thaliana).
  • ⁇ -amylin synthase see M.C. Morita et al. , Eur. J. Biochem. 267: 3453-3460 (2000).
  • These synthases may be present in plants such as barley, beans, peanuts, sugar beets, wheat, oats, potatoes, garlic, onions, asparagus, tea, rice, rye, soybeans, strawberries, sunflowers, tomatoes, etc.
  • Transgenic plants regenerated from the transformed cells or plant cells obtained in this way are further incorporated with a DNA encoding the 28-position oxidase so that they can be expressed, whereby oleanolic acid, ursolic acid, betulinic acid, etc. It is possible to produce a pentacyclic triterpene having a carboxylate at position 28.
  • the 28-position oxidase that can be used in the present invention is not limited to the following, but is derived from, for example, Taruma palm, tomato, Miyakogusa, olive, beet, coffee, and grape, and each includes, for example, SEQ ID NOs: 2 to 8.
  • the enzyme that can be used in the present invention includes a protein having an amino acid sequence partially having a mutation in the amino acid sequences shown in SEQ ID NOs: 2 to 8 and having oleanolic acid synthase activity.
  • an enzyme comprising any one of the amino acid sequences of SEQ ID NOs: 4 and 6-8, and a DNA encoding the enzyme, specifically SEQ ID NOs: 12 and 14
  • the DNA containing the base sequence shown in any one of ⁇ 16 is novel because the full-length sequence and function have not been known so far.
  • the “partially mutated amino acid sequence” is one or more, preferably 1 or several, for example 1 to 10, preferably 1 to 7 in the amino acid sequences shown in SEQ ID NOs: 2 to 8. , More preferably 1 to 5, more preferably 1 to 3, more preferably 1 or 2 amino acid sequences deleted, substituted, inserted and / or added, or the amino acid sequence , At least 60%, at least 70%, at least 80%, at least when calculated using known algorithms for homology searches such as BLAST, FASTA (eg, using default or default parameters) 85%, preferably at least 90%, more preferably at least 95%, particularly preferably at least 7%, and is has an amino acid sequence which has 98% or 99% sequence identity.
  • the sequence identity between enzyme proteins containing the amino acid sequences shown in SEQ ID NOs: 2 to 8 is about 70 to about 80%.
  • sequence identity means, for example, when two amino acid sequences or base (nucleotide) sequences are aligned (however, gaps may or may not be introduced, but preferably Introducing gaps) refers to the percentage of the number of identical amino acids or bases relative to the total number of amino acids or bases containing the gaps.
  • the 28th oxidase of the present invention includes a natural 28th oxidase isolated from a plant and a recombinant 28th oxidase produced by a genetic engineering technique.
  • DNA is intended to encompass genomic DNA, genes, cDNA and chemically modified DNA.
  • the DNA encoding the 28-position oxidase used in the present invention is obtained by oxidizing the methyl group at the 28-position of a specific pentacyclic triterpene compound, particularly an oleanane type, ursan type or lupine type pentacyclic triterpene compound. It is a DNA encoding an enzyme having an activity of converting to a methyl group or a carboxyl group.
  • the DNA encoding the 28th oxidase includes, for example, base sequences encoding the amino acid sequences shown in SEQ ID NOs: 2 to 8, and specifically, the base sequences shown in SEQ ID NOs: 10 to 16, respectively. Is included.
  • the DNA encoding the 28-position oxidase that can be used in the present invention is also a DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to each base sequence shown in SEQ ID NOs: 10 to 16, or When calculated using the nucleotide sequences shown in SEQ ID NOs: 10 to 16 and a known algorithm for homology search such as BLAST, FASTA (eg, using default or default parameters), DNA having sequence identity of 60%, at least 70%, at least 80%, at least 85%, preferably at least 90%, more preferably at least 95%, particularly preferably at least 97%, 98% or 99%, or In the amino acid sequence of the protein encoded by these DNAs 1 or more, preferably 1 or several, for example 1 to 10, preferably 1 to 7, more preferably 1 to 5, more preferably 1 to 3, more preferably 1 or 2 Is a DNA encoding a protein containing an amino acid sequence in which a single amino acid is deleted, substituted, inserted and / or added, but includes
  • DNAs are DNA homologues (analogues), analogs (analogues) or mutants containing the nucleotide sequences shown in SEQ ID NOs: 10 to 16.
  • Such DNA can be used in plants producing oleanolic acid, ursolic acid or betulinic acid, such as clove, assembly, gentian, carin, ume, in addition to talum, tomato, cypress, olive, beet, coffee and grape. Hybridization, PCR amplification from roots, seeds, etc.
  • stringent conditions used in the present specification is, for example, a condition of “1 ⁇ SSC, 0.1% SDS, 37 ° C.”, and more severe (medium stringent) conditions include The conditions are about “0.5 ⁇ SSC, 0.1% SDS, 42 ° C.”, and more severe (high stringency) conditions are “0.1 to 0.2 ⁇ SSC, 0.1% SDS, The condition is about “65 ° C.”.
  • an operation of washing at 0.1 ⁇ SSC, 0.1% SDS, 55 to 68 ° C. may be included, and the stringency can be increased by this operation.
  • the 1 ⁇ SSC buffer is 150 mM sodium chloride, 15 mM sodium citrate, pH 7.0.
  • DNA encoding the 28-position oxidase that can be used in the present invention also includes DNA containing a sequence (degenerate sequence) based on the degeneracy of the genetic code in the base sequences shown in SEQ ID NOs: 10 to 16.
  • the DNA of the present invention is a protein having 28-position oxidase activity, that is, the following (a) to (c): (A) a protein comprising the amino acid sequence shown in any one of SEQ ID NOs: 2 to 8; (B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 2 to 8, and having 28th oxidase activity ; (C) a protein comprising an amino acid sequence having 70% or more sequence identity with any of the amino acid sequences shown in SEQ ID NOs: 2 to 8, and having 28th position oxidase activity; A protein selected from the group consisting of
  • the DNA comprises the following (d) to (g): (D) a DNA comprising the base sequence shown in any of SEQ ID NOs: 10 to 16; (E) a protein that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA comprising the base sequence shown in any one of SEQ ID NOs: 10 to 16 and has a 28th position oxidase activity DNA to do; (F) a DNA comprising a base sequence having 70% or more sequence identity to the base sequence shown in any of SEQ ID NOs: 10 to 16, and encoding a protein having 28th oxidase activity; (G) DNA containing a degenerate sequence in the base sequence shown in any of SEQ ID NOs: 10 to 16; Is selected from the group consisting of
  • Recombinant Vector The DNA of the present invention is inserted into a suitable vector containing regulatory sequences to allow it to be expressed.
  • the recombinant DNA thus obtained is a recombinant vector.
  • any vector that can be used in prokaryotic or eukaryotic cells is intended, for example, bacteria (Escherichia, Pseudomonas, Bacillus, Rhodococcus, etc.), filamentous fungi (Aspergillus, Neurospora, Fusarium) , Trichoderma genus, Penicillium genus), basidiomycetes (white rot fungi etc.), yeasts (Saccharomyces genus, Pichia genus, Candida genus etc.) and other microorganism vectors, plant cell vectors, insect cell vectors and the like.
  • bacteria Erscherichia, Pseudomonas, Bacillus, Rhodococcus, etc.
  • filamentous fungi Aspergillus, Neurospora, Fusarium
  • Trichoderma genus Trichoderma genus
  • Penicillium genus Penicillium genus
  • basidiomycetes white rot fungi etc.
  • bacterial vectors include pBR, pUC, pET, pBluescript series vectors
  • yeast vectors include, but are not limited to, pDR196, pYES-DEST 52, Yip5, Yrp17, Yep24, and the like.
  • plant cell vectors include, but are not limited to, pGWB vector, pBiEl2-GUS, pIG121-Hm, pBI121, pBiHyg-HSE, pB119, pBI101, pGV3850, pABH-Hm1, and the like.
  • Nonlimiting examples include pBM030, pBM034, pBK283, and the like.
  • the vector used in the present invention incorporates components related to the expression, regulation, and secretion of genes such as a promoter, terminator, enhancer, Shine-Dalgarno sequence, ribosome binding sequence, signal sequence, etc. (For example, drug resistance gene, reporter gene).
  • Promoters include, but are not limited to, lac promoter, trp promoter, recA promoter, tac promoter, ⁇ PL promoter, T7 promoter, CaMV35S promoter, ADH1 promoter, GAL promoter, PHO5 promoter, PGK promoter, GAPDH promoter and the like.
  • Drug resistance genes include kanamycin resistance gene, ampicillin resistance gene, hygromycin resistance gene and the like.
  • Reporter genes include lacZ gene, GFP gene, GUS gene, luciferase gene and the like.
  • Other selectable markers include, for example, NPTII gene, dihydrofolate reductase gene and the like.
  • the components related to gene expression, regulation, and secretion are incorporated into the recombinant vector in such a manner that they can function according to their properties. Such an operation can be appropriately performed by those skilled in the art.
  • Transformant is a transformant carrying the recombinant vector of the present invention.
  • a transformant can be obtained by introducing a recombinant vector into which a DNA encoding position 28 oxidase is inserted into a host cell so that the target DNA can be expressed.
  • Host cells that are suitable for vectors may be used. Examples thereof include microbial cells such as bacteria, filamentous fungi and yeast, plant cells, insect cells (such as Sf9), and animal cells. Yeast, filamentous fungi, insect cells or plant cells are preferred.
  • the host cell is a cell having a biosynthetic system of pentacyclic triterpene compounds such as ⁇ -amylin, ⁇ -amylin and lupeol, or a cell not having the biosynthetic system, exogenously When (or exogenously) any of cells into which DNA encoding a triterpene synthase such as ⁇ -amylin synthase, ⁇ -amylin synthase, lupeol synthase and the like is incorporated so that it can be expressed, Furthermore, since DNA encoding oleanolic acid synthase is included so that it can be expressed, ursolic acid, oleanolic acid, and betulinic acid can be produced by culturing these cells in a medium containing an appropriate substrate.
  • Cells that have a biosynthetic system for pentacyclic triterpene compounds such as ⁇ -amylin, ⁇ -amylin, and lupeol are originally equipped with such biosynthetic systems, such as plant cells, certain yeast cells, and filamentous fungal cells. Cells are included.
  • the cell which does not have said biosynthesis system includes the cell etc. which exogenously contain the genome area
  • the exogenous genomic region is usually derived from a plant and can be inserted into a vector such as a plasmid, phagemid, BAC, PAC, YAC, virus, etc. and transferred into a host cell.
  • the cells overexpress oleanolic acid synthase in some cases.
  • the host cell is a eukaryotic cell, it is possible to secrete the enzyme outside the cell by ligating a signal sequence to the 5 'end of the DNA encoding oleanolic acid synthase.
  • the method for introducing a recombinant vector is not particularly limited as long as it is a method for introducing DNA into a microorganism.
  • a method using calcium ions [Cohen, S .; N. et al. : Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)], electroporation method, tri-parental mating method, Agrobacterium method, protoplast or spheroplast fusion method, particle gun method and the like.
  • a method for producing a transformed plant body also referred to as “transgenic plant”
  • an Agrobacterium method using a virus vector, an Agrobacterium Ti plasmid, an Ri plasmid, or the like as a vector can be preferably used.
  • the host plant is not particularly limited, and examples thereof include monocotyledonous plants such as rice, wheat and corn, and dicotyledonous plants such as soybean, rapeseed, tomato and potato.
  • a transformed plant can be obtained by regenerating a plant from a plant cell transformed with a vector containing DNA encoding oleanolic acid synthase. Regeneration of the plant body from the plant cell can be performed by a known method such as callus culture.
  • the protein of the present invention is prepared by using the method described in Molecular Cloning 2nd Edition, Current Protocols in Molecular Biology, etc.
  • the DNA encoding the protein can be produced by expressing it in a host cell. Based on the DNA encoding the protein of the present invention, if necessary, a DNA fragment of an appropriate length containing a portion encoding the protein of the present invention is prepared. Moreover, the production rate of the protein can be improved by substituting the base in the base sequence of the protein-encoding portion so as to be an optimal codon for host expression.
  • the recombinant DNA is prepared by inserting the DNA fragment downstream of the promoter of an appropriate expression vector.
  • a transformant producing the protein of the present invention can be obtained by introducing the recombinant DNA into a host cell suitable for the expression vector.
  • Any host cell can be used as long as it can express the target gene, such as bacteria, yeast, animal cells, insect cells, and plant cells.
  • the expression vector is capable of autonomous replication in the above host cell or can be integrated into a chromosome, and contains a promoter at a position where the DNA of the present invention or the DNA used in the production method of the present invention can be transcribed. Used.
  • the recombinant DNA having the DNA of the present invention or the DNA used in the production method of the present invention is capable of autonomous replication in a prokaryotic organism, and at the same time a promoter, ribosome It is preferably a recombinant DNA composed of a binding sequence, DNA of the present invention or DNA used in the production method of the present invention, and transcription termination sequence. A gene that controls the promoter may also be included.
  • pBTrp2 As expression vectors, pBTrp2, pBTac1, pBTac2 (all manufactured by Boehringer Mannheim), pHelix1 (manufactured by Roche Diagnostics), pKK233-2 (manufactured by Amersham Pharmacia Biotech), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by Qiagen), pET-3 (manufactured by Novagen), pKYP10 (Japanese Patent Laid-Open No. 58-110600), pKYP200 [Agri. Biol. Chem.
  • Any promoter can be used as long as it functions in a host cell such as Escherichia coli.
  • promoters derived from Escherichia coli or phage such as trp promoter (Ptrp), lac promoter (Plac), PL promoter, PR promoter, PSE promoter, SPO1 promoter, SPO2 promoter, penP promoter and the like can be mentioned.
  • an artificially designed and modified promoter such as a promoter in which two Ptrps are connected in series, a tac promoter, a lacT7 promoter, and a let I promoter can be used.
  • a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the start codon is adjusted to an appropriate distance (eg, 6 to 18 bases).
  • a transcription termination sequence is not necessarily required, but a transcription termination sequence should be placed immediately below the structural gene. Is preferred.
  • Prokaryotes include microorganisms belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Pseudomonas, etc. Can give.
  • any method can be used as long as it is a method for introducing DNA into the host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci. , USA, 69, 2110 (1972)]
  • protoplast method Japanese Patent Laid-Open No. Sho 63-248394
  • electroporation method Nucleic Acids Res. 16, 6127 (1988)].
  • yeast strains for example, YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15 and the like can be used as an expression vector.
  • Any promoter may be used as long as it functions in yeast strains.
  • PHO5 promoter PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock polypeptide promoter And promoters such as MF ⁇ 1 promoter and CUP 1 promoter.
  • Host cells include the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Swaniomyces (Schwanimyces)
  • yeast strains belonging to the genus Candida and the like and specifically, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactyclone Lancetis ( richosporonpullulans), Shiwaniomaisesu-Arubiusu (Schwanniomycesalluvius), Pichia pastoris (Pichiapastoris), it is possible to increase the Candida utilis (Candidautilis) and the like.
  • any method can be used as long as it is a method for introducing DNA into yeast.
  • electroporation method [Methods Enzymol. , 194, 182 (1990)]
  • spheroplast method Proc. Natl. Acad. Sci. USA, 81, 4889 (1984)]
  • lithium acetate method [J. Bacteriol. , 153, 163 (1983)].
  • expression vectors include, for example, pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 (JP-A-3-22979), pAS3-3 (JP-A-2-222775), pCDM8 [Nature, 329, 840 (1987)], pcDNAI / Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 [J. Biochem, 101, 1307 (1987)], pAGE210, pAMo, pAMoA and the like can be used.
  • CMV cytomegalovirus
  • SV40 early promoter or metallothionein promoter SV40 early promoter or metallothionein promoter
  • retrovirus Promoters heat shock promoters
  • SR ⁇ promoters SR ⁇ promoters
  • an enhancer of human CMV IE gene may be used together with a promoter.
  • Host cells include mouse myeloma cells, rat myeloma cells, mouse hybridoma cells, human cells such as Namalwa cells or Namalva KJM-1 cells, human fetal kidney cells, human leukemia cells, African green monkey kidney cells CHO cells which are Chinese hamster cells, HBT5637 (Japanese Patent Laid-Open No. 63-299), and the like.
  • mice myeloma cells As mouse myeloma cells, SP2 / 0, NSO, etc., as rat myeloma cells, YB2 / 0, etc., as human embryonic kidney cells, HEK293 (ATCC CRL-1573), as human leukemia cells, as BALL-1, etc., Africa Examples of green monkey kidney cells include COS-1, COS-7, and the like.
  • any method can be used as long as it is a method for introducing DNA into animal cells.
  • electroporation method Japanese Patent Laid-Open No. Hei. 2-227075
  • lipofection method Japanese Patent Laid-Open No. Hei. 2-227075
  • Virology, 52, 456 (1973) a method for introducing DNA into animal cells.
  • electroporation method Japanese Patent Laid-Open No. Hei. 2-227075
  • lipofection method Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)]
  • Virology 52, 456 (1973), and the like.
  • Baculovirus Expression Vectors A Laboratory Manual, W., et al. H. Proteins are produced by the methods described in Freeman and Company, New York (1992), Current Protocols in Molecular Biology, Molecular Biology, A Laboratory Manual, Bio / Technology, 6, 47 (1988), etc. can do.
  • the recombinant gene transfer vector and baculovirus are co-introduced into insect cells to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further infected into insect cells to produce proteins. it can.
  • Examples of the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen) and the like.
  • baculovirus for example, Autographa californica nucleopolyhydrosis virus, which is a virus that infects night-spotted insects, can be used.
  • podocytes of Spodoptera frugiperda podocytes of Spodoptera frugiperda, ovary cells of Trichoplusiani, cultured cells derived from silkworm ovary, and the like can be used.
  • Spodoptera frugiperda ovary cells such as Sf9, Sf21 (Baculovirus Expression Vectors A Laboratory Manual), etc., Trichopulcia ni ovary cells High 5, BTI-TN-5B1-4 (manufactured by Invitrogen), etc.
  • Examples of the cultured cells derived from silkworm ovary include Bombyxmori N4.
  • Examples of the method for co-introducing the recombinant gene introduction vector and the baculovirus into insect cells for preparing a recombinant virus include, for example, the calcium phosphate method (Japanese Patent Laid-Open No. 227075), the lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • expression vectors include Ti plasmids and tobacco mosaic virus vectors.
  • Any promoter may be used as long as it functions in plant cells, and examples thereof include cauliflower mosaic virus (CaMV) 35S promoter, rice actin 1 promoter and the like.
  • CaMV cauliflower mosaic virus
  • rice actin 1 promoter examples thereof include cauliflower mosaic virus (CaMV) 35S promoter, rice actin 1 promoter and the like.
  • host cells include plant cells such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat and barley.
  • any method can be used as long as it is a method for introducing DNA into plant cells.
  • a method using Agrobacterium JP 59-140885, JP 60). -70080, WO94 / 00977
  • electroporation method Japanese Patent Laid-Open No. Sho 60-251887
  • a method using a particle gun Gene gun
  • Patent No. 2606856, Patent No. 2517813 Patent No. 2606856, Patent No. 2517813
  • the transformant obtained as described above is cultured in a medium, the protein of the present invention is produced and accumulated in the culture, and the protein can be produced by collecting from the culture.
  • Examples of the host of the transformant for producing the protein of the present invention include microbial cells such as bacteria, filamentous fungi and yeast, plant cells, insect cells (Sf9 and the like), animal cells and the like. Yeast, filamentous fungi, insect cells or plant cells are preferred.
  • the method of culturing the above transformant in a medium can be performed according to a usual method used for host culture.
  • the medium As a medium for culturing a transformant obtained by using a prokaryote such as Escherichia coli or a eukaryote such as yeast as a host, the medium contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the organism, Either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
  • a prokaryote such as Escherichia coli or a eukaryote such as yeast
  • the medium contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the organism
  • Either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
  • the carbon source may be anything that can be assimilated by the organism, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, organic acids such as acetic acid and propionic acid, ethanol, Alcohols such as propanol can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein A hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented cells, digests thereof, and the like can be used.
  • monopotassium phosphate dipotassium phosphate
  • magnesium phosphate magnesium sulfate
  • sodium chloride ferrous sulfate
  • manganese sulfate copper sulfate
  • calcium carbonate calcium carbonate
  • Cultivation is usually performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is preferably 15 to 40 ° C., and the culture time is usually 5 hours to 7 days.
  • the pH is maintained at 3.0 to 9.0.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.
  • antibiotics such as ampicillin and tetracycline may be added to the medium as needed during the culture.
  • an inducer may be added to the medium as necessary.
  • an inducer For example, isopropyl- ⁇ -D-thiogalactopyranoside is used when cultivating a microorganism transformed with an expression vector using the lac promoter, and indole acrylic is used when culturing a microorganism transformed with an expression vector using the trp promoter.
  • An acid or the like may be added to the medium.
  • a generally used RPMI 1640 medium J. Am. Med. Assoc. , 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], DMEM medium [Virology, 8, 396 (1959)], 199 medium [Proc. Soc. Biol. Med. 73, 1 (1950)] or a medium obtained by adding fetal bovine serum or the like to these mediums.
  • Cultivation is usually performed for 1 to 7 days under conditions such as pH 6 to 8, 25 to 40 ° C., and the presence of 5% CO 2 .
  • antibiotics such as kanamycin, penicillin, streptomycin and the like may be added to the medium as needed during culture.
  • TNM-FH medium manufactured by Farmingen
  • Sf-900 II SFM medium manufactured by Life Technologies
  • ExCell400 ExCell405 all manufactured by JRH Biosciences
  • Grace's Insect Medium (Nature, 195, 788 (1962)] and the like
  • Cultivation is usually carried out for 1 to 5 days under conditions of pH 6-7, 25-30 ° C.
  • an antibiotic such as gentamicin may be added to the medium as needed during the culture.
  • a transformant obtained using a plant cell as a host can be cultured as a cell or differentiated into a plant cell or organ.
  • a medium for culturing the transformant a commonly used Murashige and Skoog (MS) medium, White medium, or a medium in which plant hormones such as auxin and cytokinin are added to these mediums or the like is used. be able to.
  • Cultivation is usually carried out for 3 to 60 days under conditions of pH 5 to 9 and 20 to 40 ° C.
  • antibiotics such as kanamycin and a hygromycin
  • a transformant derived from a microorganism, insect cell, animal cell, or plant cell having a recombinant DNA in which the DNA encoding the protein of the present invention is linked to an expression vector is cultured according to a normal culture method.
  • the protein of the present invention can be produced and accumulated, and the protein can be produced by collecting the protein from the culture.
  • the production method of the protein of the present invention includes a method of producing in the host cell, a method of secreting it out of the host cell, or a method of producing it on the outer membrane of the host cell.
  • the structure can be changed.
  • the protein of the present invention When the protein of the present invention is produced in the host cell or on the host cell outer membrane, the method of Paulson et al. [J. Biol. Chem. , 264, 17619 (1989)], the method of Lowe et al. [Proc. Natl. Acad. Sci. USA, 86, 8227 (1989), Genes Develop. , 4, 1288 (1990)], or by applying the method described in JP-A-05-336963, WO94 / 23021, etc., the protein can be actively secreted outside the host cell.
  • the protein can be actively secreted outside the host cell. it can.
  • the production amount can be increased by using a gene amplification system using a dihydrofolate reductase gene or the like.
  • Inventive proteins can also be produced.
  • the transformant producing the protein of the present invention is an animal individual or a plant individual, it is raised or cultivated according to a usual method, the protein is produced and accumulated, and the protein is collected from the animal individual or plant individual. Thus, the protein can be produced.
  • a transgenic non-human animal into which the DNA of the present invention or the DNA used in the production method of the present invention is introduced is bred, and the protein of the present invention is produced and accumulated in the animal.
  • the protein can be produced by collecting the protein from the inside. Examples of the place where the protein in the animal is produced and accumulated include milk of the animal (Japanese Patent Laid-Open No. 63-309192), eggs and the like. Any promoter can be used as long as it functions in animals.
  • a casein promoter, ⁇ casein promoter, ⁇ lactoglobulin promoter, whey acidity, which is a mammary cell specific promoter can be used.
  • a protein promoter or the like is preferably used.
  • a transgenic plant into which a DNA encoding the protein of the present invention has been introduced is known [tissue culture, 20 (1994), tissue culture, 21 (1995). ), Trends Biotechnol. , 15, 45 (1997)], producing and accumulating the protein in the plant, and collecting the protein from the plant to produce the protein.
  • the cells are collected by centrifugation after culturing, suspended in an aqueous buffer, and then subjected to an ultrasonic crusher, a French press, a manton. Cells are disrupted with a Gaurin homogenizer, dynomill, etc. to obtain a cell-free extract.
  • an ordinary enzyme isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, diethylamino Anion exchange chromatography method using resin such as ethyl (DEAE) -Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei Co., Ltd.), Cation exchange chromatography method using resin such as S-Sepharose FF (manufactured by Pharmacia) Hydrophobic chromatography using resin such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, electrophoresis methods such as isoelectric focusing etc.
  • a solvent extraction method ethyl (DEAE) -Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei Co., Ltd.)
  • the protein when the protein is produced by forming an insoluble substance in the cell, the protein is similarly collected from the precipitate fraction obtained by crushing and centrifuging the cell, and the protein is obtained by a usual method. After recovery, the protein insoluble matter is solubilized with a protein denaturant.
  • the solubilized solution is diluted or dialyzed into a solution that does not contain a protein denaturant or the protein denaturant has such a concentration that the protein is not denatured.
  • a purified sample can be obtained by the same isolation and purification method.
  • the protein of the present invention or a derivative such as a sugar modification product thereof is secreted outside the cell, the protein or its derivative such as a sugar adduct can be recovered in the culture supernatant.
  • a soluble fraction is obtained by treating the culture by a technique such as centrifugation as described above, and a purified preparation is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
  • the protein of the present invention can be produced as a fusion protein with another protein, and purified using affinity chromatography using a substance having an affinity for the fused protein.
  • affinity chromatography using a substance having an affinity for the fused protein.
  • the protein of the present invention can be produced as a fusion protein with a Flag peptide and purified by affinity chromatography using an anti-Flag antibody [Proc. Natl. Acad. Sci. USA, 86, 8227 (1989), Genes Develop. , 4, 1288 (1990)]. Furthermore, it can also be purified by affinity chromatography using an antibody against the protein itself.
  • the protein of the present invention is produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) or the tBoc method (t-butyloxycarbonyl method). be able to. It can also be chemically synthesized using peptide synthesizers such as Advanced ChemTech, Perkin Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation.
  • peptide synthesizers such as Advanced ChemTech, Perkin Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation.
  • the present invention relates to a method for producing a triterpene compound having a hydroxymethyl group or a carboxyl group at the 28th position, in the presence of a protein having an exogenous 28th oxidase activity or 28th position oxidation in a cell-free system or using cells or plants.
  • exogenous means not an enzyme or its gene itself inherent in a cell or plant, but the cell or plant, or the reaction system of the above pentacyclic triterpene compound raw material. Means that the enzyme or DNA encoding the enzyme is introduced.
  • the present invention also provides a pentacyclic triterpene compound in which the 28-position methyl group is converted to a hydroxymethyl group or a carboxyl group by the above-described conversion method, and the compound is recovered.
  • a method for producing a pentacyclic triterpene compound converted into a hydroxymethyl group or a carboxyl group is provided.
  • the 28th oxidase is covalently bonded or non-covalently attached to a support such as a crude, semi-purified or purified, or a polysaccharide, a porous polymer, a porous inorganic material (eg, glass, mineral, ceramics, etc.). It may be used in the reaction system as an enzyme immobilized by binding, or the cell or the plant itself producing the enzyme may be used in the reaction system.
  • the 28-position oxidase that can be used in the present invention is a kind of membrane-bound cytochrome P450 monooxidase, and can be obtained by the above-described production method.
  • the substrate of the 28th oxidase such as ⁇ -amylin
  • the substrate of the 28th oxidase is used in the culture solution of transformed microorganisms (for example, yeast, filamentous fungi) or insect cells.
  • transformed microorganisms for example, yeast, filamentous fungi
  • ⁇ -amylin, lupeol, or substituted derivatives thereof can produce pentacyclic triterpene compounds in which the 28-position is hydroxymethylated or carboxylated.
  • pentacyclic triterpenes such as ⁇ -amylin as a substrate
  • pentacyclic triterpene compounds in which the 28-position is hydroxymethylated or carboxylated can be produced efficiently. Is possible.
  • yeast has a pathway for biosynthesis of DMAPP (dimethylallyl pyrophosphate) in the cytosol (mevalonate pathway), introduction of the mevalonate pathway into E. coli, squalene epoxidase, and oxide squalene cyclase It has been reported that it was possible to produce and enhance precursors and substrates [Harada and Misawa 2009, Appl Microbiol Biotechnol 84: 1021-31, Nakano et al. 2007 Biosci. Biotech. Biochem. 71: 2543-2550].
  • the GIL77 strain of Saccharomyces cerevisiae T. Kushiro et al., Eur. J. Biochem.
  • a mutant strain thereof is a plasmid that can express DNA encoding ⁇ -amylin synthase. It is known to produce ⁇ -amylin when transformed (H. Hayashi et al., Biol. Pharm. Bull. 24: 912-916 (2001)).
  • a pentacyclic triterpene compound in which position 28 is hydroxymethylated or carboxylated by simultaneously expressing other genes (for example, substrate biosynthetic enzyme genes) and DNA encoding position 28 oxidase using these methods Can be produced.
  • a metabolite by expressing a similar membrane-bound cytochrome P450 monooxidase Chang et al. [2007 Nat.
  • the target pentacyclic triterpene compound can be produced by overexpressing the 28-position oxidase in the transgenic plant and recovered from roots, seeds, and the like.
  • a cell-free extract containing the 28-position oxidase is prepared from the culture medium of the transformant, and a part thereof is ⁇ -amylin, ⁇ -amylin, lupeol, or the like.
  • a pentacyclic triterpene compound in which the 28-position is hydroxymethylated or carboxylated can be produced by carrying out a conversion reaction in addition to a buffer containing a pentacyclic triterpene compound such as a substituted derivative of.
  • the harvested cell suspension or the transformed plant in an appropriate amount of buffer is crushed by a homogenizer, an ultrasonic crusher or a French press, and then centrifuged to obtain a cell-free extract.
  • an antioxidant, an enzyme stabilizer, a polyphenol adsorbent, a metal ligand and the like can be added to the buffer.
  • it is effective to purify the polypeptide such as centrifugation using an ultracentrifuge, salting out using ammonium sulfate, gel filtration, ion exchange chromatography, affinity chromatography, electrophoresis. Methods such as the method can be used alone or in combination.
  • the above pentacyclic triterpene and coenzyme as substrates are added to the buffer containing the obtained polypeptide and incubated.
  • a coenzyme NADH or NADPH can be used, and an NADPH reconstitution system using glucose-6-phosphate and glucose-6-phosphate dehydrogenase can be used in combination. It is also possible to perform an oxidation reaction by adding NADPH-P450 reductase other than NADPH-P450 reductase produced by the transformant from the outside.
  • the protein of the present invention is added in an amount of 0.01 to 100 mg, preferably 0.1 to 10 mg per mg of triterpene used as a substrate.
  • the pentacyclic triterpene used as a substrate is added to the reaction aqueous medium at the beginning or in the middle of the reaction so as to have a concentration of 0.1 to 500 g / L, preferably 0.2 to 200 g / L.
  • the aqueous medium used in the above production method may be an aqueous medium of any component and composition as long as it does not inhibit the formation reaction of a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at the 28-position.
  • buffers such as phosphate, carbonate, acetate, borate, citrate, and tris. Further, it may contain alcohols such as methanol and ethanol, esters such as ethyl acetate, ketones such as acetone, and amides such as acetamide.
  • the formation reaction of a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at the 28-position is 2 to 150 in an aqueous medium under conditions of pH 5 to 11, preferably pH 6 to 10, 20 to 50 ° C., preferably 25 to 45 ° C.
  • the time is preferably 6 to 120 hours.
  • a transformant producing the protein of the present invention which can be produced by the above method, can be mentioned. Furthermore, NADPH-P450 reductase other than NADPH-P450 reductase produced by the host can be added from the outside.
  • a processed product of the culture As a processed product of the culture, a concentrate of the culture, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, a freeze-dried product of the cell, the cell Treated product of surfactant, sonicated product of cell, mechanically ground product of cell, solvent-treated product of cell, enzyme-treated product of cell, protein fraction of cell Products, immobilized products of the cells, enzyme preparations obtained by extraction from the cells, and the like.
  • the kind of pentacyclic triterpene used as a substrate, the concentration and timing of addition, and the produced pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 are produced by the enzymatic production of (1) above. Same as the law.
  • the aqueous medium used in the production method using the culture of microorganisms or the treated product of the culture as an enzyme source was used as an enzyme source.
  • a transformant or a culture solution of microorganisms can also be used as an aqueous medium.
  • a surfactant or an organic solvent may be added to the aqueous medium.
  • the surfactant include nonionic surfactants such as polyoxyethylene / octadecylamine (for example, Nimine S-215, manufactured by NOF Corporation), cetyltrimethylammonium / bromide and alkyldimethyl / benzylammonium chloride (for example, cation F2-40E).
  • Catalytic surfactants such as Nippon Oil & Fats Co., Ltd., anionic surfactants such as lauroyl and sarcosinate, and tertiary amines such as alkyldimethylamine (eg, tertiary amine FB, manufactured by Nippon Oil & Fats Co., Ltd.) Any one may be used as long as it promotes the generation of the triterpene, and one kind or a mixture of several kinds can be used.
  • the surfactant is usually used at a concentration of 0.1 to 50 g / l.
  • the organic solvent include xylene, toluene, aliphatic alcohol, acetone, ethyl acetate and the like, and are usually used at a concentration of 0.1 to 50 ml / l.
  • the amount of the enzyme source varies depending on the specific activity of the enzyme source, etc., for example, as wet cell weight per 1 mg of pentacyclic triterpene used as a substrate Add 5 to 1000 mg, preferably 10 to 400 mg.
  • the formation reaction of a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at the 28-position is 2 to 150 in an aqueous medium under conditions of pH 5 to 11, preferably pH 6 to 10, 20 to 50 ° C., preferably 25 to 45 ° C.
  • the time is preferably 6 to 120 hours.
  • the triterpene having a 28-position hydroxymethyl group or carboxyl group generated and accumulated in an aqueous medium is collected by a normal method using activated carbon, an ion exchange resin or the like, or organic Extraction with a solvent, crystallization, thin layer chromatography, high performance liquid chromatography and the like can be performed.
  • Such mutation may be caused by artificial mutation treatment such as chemical treatment such as radiation, UV irradiation, mutagen, or the like in a plant having the oxidase gene at position 28 and capable of producing a pentacyclic triterpene compound. Can be induced by mutation.
  • the above-mentioned method for selecting a mutant oleanolic acid synthase gene includes isolating genomic DNA and mRNA from mutant individuals, plants of various varieties and breeding individuals, and in the case of mRNA, synthesizing cDNA by reverse transcription. Amplifying a gene fragment containing an oleanolic acid synthase gene from genomic DNA or cDNA by using DNA amplification techniques and determining the presence of a mutation in the DNA.
  • a commercially available kit for example, DNeasy or RNeasy (Qiagen)
  • a commercially available kit for example, Superscript First Strand System (Invitrogen)
  • a technique such as a so-called PCR method or LAMP method can be used.
  • PCR method a technique based on the use of polymerases to achieve specific DNA sequence amplification (ie, increasing copy number) by a continuous polymerase reaction. This reaction can be used instead of cloning, but all that is needed is information about the nucleic acid sequence.
  • a primer complementary to the DNA sequence to be amplified is designed.
  • the primer is prepared by automatic DNA synthesis.
  • DNA amplification methods are well known in the art and can be readily performed by one of ordinary skill in the art based on the teachings and instructions provided herein.
  • PCR methods (as well as related techniques) are described, for example, in U.S. Pat. Nos. 4,683,195, 4,683,202, 4,800,159, 4,965,188. , And edited by Innis et al., PCR Protocols: A guide to Method and Applications.
  • the base sequence (Applied Biosystems) or the TILLING method (Till method) for detecting a mutant using an enzyme that cleaves one side of a mismatched pair is used. et al., 2003, Genome Res 13: 524-530), and the like. These can be performed by comparing the sequence data obtained from this technique with the base sequence of the gene encoding the 28th position oxidase relating to the gene portion, for example, the base sequences as shown in SEQ ID NOs: 10 to 16.
  • a real-time PCR method (Roche Diagnostics, Inc.) using a primer prepared based on the base sequence of the gene encoding the 28-position oxidase whose sequence is known is used for the cDNA.
  • Quantitative PCR such as a light cycler manufactured by the company may be employed.
  • the difference in the amount of mRNA can be determined by comparing with the amount of cDNA obtained from the grape variety “Campbell Berry A”.
  • the method for determining the presence of the 28th position oxidase gene mutation as described above is applied to a material obtained from olive (Olea europea).
  • the mutation or polymorphism of the gene encoding the 28th oxidase can be identified at the base level, and the gene encoding the 28th oxidase is suddenly changed.
  • a plant having a mutation and / or polymorphism can be selected to obtain a gene encoding a mutant 28-position oxidase.
  • the expression ability of the 28-position oxidase-encoding gene or the activity of the 28-position oxidase is changed by determining the mutation, polymorphism, or determining the amount of mRNA.
  • the expression capacity of the gene encoding the 28th oxidase or the change in the activity of the 28th oxidase refers to the alteration of the gene expression capacity or the activity of the 28th oxidase by mutation such as an artificial mutation. It means that the gene expression ability or the 28-position oxidase activity differs depending on the type.
  • Modification by mutation of the 28th position oxidase activity of a plant refers to modification of an existing variety contained in the plant species, and the existing variety includes a wild type.
  • the existing varieties refer to all varieties for obtaining plants in which the gene encoding the 28th oxidase is modified, and include varieties created by artificial manipulation such as mating and genetic manipulation.
  • the activity modification does not have to be changed for all existing varieties. If the activity is modified for a specific existing variety, “plants with modified activity of the 28th oxidase” "include.
  • Plant in which the activity of the 28th oxidase is modified includes a plant whose activity is modified by mutation in a natural state without being subjected to artificial manipulation, and a plant whose activity has been changed in the natural state by the above selection method. Can be selected and can be established as a new variety.
  • the comparison target may be an existing variety that has undergone mutagenesis treatment, or other existing variety But you can.
  • the existing varieties include “Nevady Robronco”, “Manzanillo”, “Mission”, “Lecchino” and the like.
  • the expression ability of the gene encoding the 28th oxidase or the plant in which the activity of the 28th oxidase is modified with respect to the existing variety refers to the expression ability of the gene encoding the 28th oxidase with respect to the existing variety.
  • the present invention also includes a plant in which the expression ability of the gene encoding such a 28-position oxidase or the activity of the 28-position oxidase is modified with respect to an existing variety.
  • the plant having a mutation or polymorphism in the gene encoding the 28-position oxidase thus obtained is produced by the method of the present invention to produce a pentacyclic triterpene compound in which the 28-position is a hydroxymethyl group or a carboxyl group. Can be used for.
  • the probe ID Mtr.37298.1.S1_at (co-expression coefficient 0.9441) having a higher co-expression count belongs to the CYP72 clan and was not analyzed.
  • CYP93E2 gene of Taruma palm Palm tree and Ecotype R108-1 were grown in an artificial meteorograph (23 ° C, 16 hours long), and total RNA from the leaves, stems and roots of the plant 4 weeks after germination.
  • First-strand cDNA synthesis was performed using 1 ⁇ g of the total RNA obtained and SMART RACE cDNA amplification kit (Clontech) according to the attached protocol.
  • oligo DNA at the position corresponding to the N-terminus and C-terminus of the polypeptide (514 amino acids) of CYP93E2 (GenBank accession number, ABC59085), that is, SEQ ID NO: 17 (caccATGCTTGAAATCCAAGGCTACGTAGTATT)
  • SEQ ID NO: 18 TTAGGCAGAAGAGAATGGAACAAAATGTGGAAC
  • PCR was performed at an annealing temperature of 58 ° C. (30 cycles, using KOD plus ver. 2 polymerase manufactured by TOYOBO).
  • the primer of SEQ ID NO: 17 Since it is necessary for cloning into pENTR TM / D-TOPO (registered trademark) entry vector (Invitrogen), the primer of SEQ ID NO: 17 has an artificially 4 base (cacc) at the 5 ′ end. Has been added. As a result of PCR, an approximately 1.5 kb DNA fragment was amplified to the same extent when any first-strand cDNA was used as a template. A DNA fragment amplified from the stem-derived first strand cDNA was cloned into a pENTR TM / D-TOPO entry vector (production of entry clones), and the polynucleotide sequences of the three independent clones obtained were determined. The sequence thus obtained is SEQ ID NO: 9, and the polypeptide sequence deduced therefrom (SEQ ID NO: 1) has 99% identity to the amino acid sequence of ABC59085 registered in GenBank. It was.
  • PCR Isolation of CYP716A12 gene of Taruma corpuscord corresponding to N-terminal and C-terminal of polypeptide (479 amino acids) of CYP716A12 (GenBank accession number, ABC59076) using 2 ⁇ l each of the three first-strand cDNAs prepared in Example 2 as templates PCR was carried out at an annealing temperature of 58 ° C. (30 cycles, using KOD plus ver.2 polymerase manufactured by TOYOBO) using the oligo DNA at the position, that is, SEQ ID NO: 19 (caccATGGAGCCTAATTTCTATCTCTCCCT) and SEQ ID NO: 20 (TTAAGCTTTGTGTGGATAAAGGCGA) as primers. .
  • the primer of SEQ ID NO: 19 Since it is necessary for cloning into the pENTR TM / D-TOPO (registered trademark) entry vector (Invitrogen), the primer of SEQ ID NO: 19 has an artificial 4 base (cacc) at the 5 'end. Has been added. As a result of PCR, an approximately 1.5 kb DNA fragment was amplified to the same extent when any first-strand cDNA was used as a template. A DNA fragment amplified from stem-derived first strand cDNA was cloned into a pENTR TM / D-TOPO entry vector, and the polynucleotide sequences of the three independent clones obtained were determined. The sequence thus obtained is SEQ ID NO: 10, and the polypeptide sequence deduced therefrom (SEQ ID NO: 2) has 99% identity to the amino acid sequence of ABC59076 registered in GenBank. It was.
  • yeast expression vector pYES3-ADH-OSC1 of the Lotus japonicus ⁇ -amylin synthase (OSC1) gene cDNA Using Lotus japonicus, which is an advanced model plant of legumes, ⁇ -amylin synthase A yeast expression vector for the (OSC1) gene was constructed.
  • Miyakogusa OSC1 gene cDNA introduction plasmid (Sawai et al. (2006) Plant Sci 170: 247-257) was digested with KpnI and XbaI to excise the OSC1 cDNA region.
  • pAUR123 (TaKaRa) was digested with KpnI and XbaI and ligated with DNA ligation Kit Ver. 2.1 (TaKaRa) to obtain pAUR123-OSC1.
  • the PADH1 to TADH1 region of pAUR123-OSC1 was treated with KOD-Plus-DNA polymerase (TOYOBO) at 94 ° C for 2 minutes after treatment with both primers of SEQ ID NO: 21 (GGATGATCCACTAGTGGATCCTCTAGCTCCCTAACATGTAGGTGG) and SEQ ID NO: 22 (TAATGCAGGGCCGCAGGATCCGTGTGGAAGAACGATTACAACAGG) PCR consisting of 20 cycles of 94 ° C.
  • the region except pYES3 / CT (Invitrogen) from 1st to 960th bases is KOD-Plus-DNA polymerase using both SEQ ID NO: 23 (TGCGGCCCTGCATTAATGAATCGGCCAACG) and SEQ ID NO: 24 (ACTAGTGGATCATCCCCACGCGCCCTGTAG).
  • TOYOBO performed PCR as described above. Both PCR products were ligated using In-Fusion Dry-Down PCR Cloning Kit (clontech) to obtain Miyakogusa OSC1 yeast expression vector pYES3-ADH-OSC1.
  • LjCPR1-introduced plasmid (pBluescript SK (-)) as a template, using both primers of SEQ ID NO: 25 (GGGCGGCCGCACTAGTATCGATGGAAGAATCAAGCTCCATGAAG) and SEQ ID NO: 26 (TTAATTAATCACCATACATCACGCAAATAC) for 2 minutes at 94 ° C with KOD-Plus-DNA polymerase (TOYOBO) After the treatment, PCR consisting of 15 cycles (94 ° C. 20 seconds ⁇ 60 ° C. 40 seconds ⁇ 68 ° C. 120 seconds) was performed. Then, it kept warm at 68 degreeC for 2 minutes.
  • the PCR product was ligated with pT7Blue T-vector (Novagen) using TAget Clone -Plus- (TOYOBO). After confirming the base sequence, it was digested with NotI and PacI, and the yeast expression vector pESC-LEU (Stratagene) was similarly digested with NotI and PacI. Then, both were ligated using DNA ligation Kit Ver. 2.1 (TaKaRa), and the yeast expression vector pESC-LjCPR1 of LjCPR1 was obtained. Next, the pAM-PAT-GW vector (a gift from Dr. Bekir Ulker and Imre E.
  • Somssich of Max Planck Institute was double digested with restriction enzymes XhoI and SpeI, and a DNA fragment containing the Gateway conversion cassette (Invitrogen) was obtained. Cut out.
  • PELC-MCS2-GW was constructed by ligating the obtained DNA fragment with a larger fragment of two fragments obtained by double digestion of SalI and NheI with pESC-LjCPR1.
  • E. coli DB3.1 strain Invitrogen
  • yeast simultaneous expression vector pELC-CYP93E2 of LjCPR1 and CYP93E2 The plasmid (entry clone) having the polynucleotide shown in SEQ ID NO: 9 prepared in Example 2 and pELC-MCS2-GW were mixed, and Gateway LR Clonase II Enzyme
  • Gateway LR Clonase II Enzyme By transferring the DNA fragment shown in SEQ ID NO: 9 to pELC-MCS2-GW by a base sequence-specific recombination reaction (attL x attR reaction) using Mix (Invitrogen), the gene shown in LjCPR1 and SEQ ID NO: 9 A co-expression vector pELC-CYP93E2 was obtained.
  • yeast simultaneous expression vector pELC-CYP716A12 of LjCPR1 and CYP716A12 The plasmid (entry clone) having the polynucleotide shown in SEQ ID NO: 10 prepared in Example 3 and pELC-MCS2-GW were mixed, and Gateway LR Clonase II Enzyme By transferring the DNA fragment shown in SEQ ID NO: 10 to pELC-MCS2-GW by base sequence-specific recombination reaction (attL x attR reaction) using Mix (Invitrogen), the gene shown in LjCPR1 and SEQ ID NO: 10 A co-expression vector pELC-CYP716A12 was obtained.
  • the yeast extract containing two vectors pYES3-ADH-OSC1 and pELC-CYP93E2 ( Figure 2, GC chart shown as OSC1 / LjCPR1 / CYP93E2) is unique. Two typical peaks (peak 1 and peak 2) were detected. Among them, the mass spectrum of peak 1 agreed very well with the mass spectrum of 24-hydroxy ⁇ -amylin (24-OH- ⁇ -amyrin). From the mass spectrum pattern, peak 2 was 24 acid ( ⁇ -amyrin-24-oic acid), which was a further oxidized compound.
  • ⁇ -amylin (dotted arrow) was detected from the yeast extract carrying the two vectors pYES3-ADH-OSC1 and pESC-LjCPR1 (Fig. 2, GC chart shown as OSC1 / LjCPR1) but peaked. Compounds corresponding to 1 and peak 2 were not detected. From the above results, CYP93E2 hydroxylates and further oxidizes the 24-position of ⁇ -amylin produced in yeast expressing ⁇ -amylin synthase (OSC1), and 24-OH- ⁇ -amyrin and ⁇ -amyrin-24- It was revealed that oic acid can be generated.
  • OSC1 ⁇ -amylin synthase
  • Yeast having the two vectors pYES3-ADH-OSC1 and pELC-CYP716A12 was cultured, extracted, and extracted by the method described in Example 10. The extract was analyzed. From the yeast extract (Fig. 3, GC chart shown as OSC1 / LjCPR1 / CYP716A12) carrying two vectors, pYES3-ADH-OSC1 and pELC-CYP716A12, in addition to ⁇ -amylin (dotted arrow), it is unique Two typical peaks (peak 1 and peak 2) were detected.
  • peak 2 agreed very well with the mass spectrum of the oleanolic acid preparation. Thus, it was found that peak 2 corresponds to oleanolic acid. Peak 1 was erythridiol in which the 28-position of ⁇ -amylin was hydroxylated from the mass spectrum pattern.
  • ⁇ -amylin (arrow) was detected from the yeast extract (Fig. 3, GC chart shown as OSC1 / LjCPR1) containing two vectors pYES3-ADH-OSC1 and pESC-LjCPR1, but peak 1 And no compound corresponding to peak 2 was detected. From the above results, it was clarified that CYP716A12 can generate oleanolic acid by converting the 28-position methyl group of ⁇ -amylin produced in yeast expressing ⁇ -amylin synthase (OSC1) into a carboxyl group.
  • CYP716A14 Artemisia annua putative taxadiene 5-alpha-hydroxylase
  • CYP716D4 Stevia rebaudiana ent-kaurenoic acid 13-hydroxylase
  • CYP716D6 Artemisia annua putative taxane 13-alpha-hydroxylase
  • the plasmid (entry clone) having the polynucleotide shown in SEQ ID NO: 10 and the destination vector pYES-DESTTM52 (Invitrogen) produced in Example 3 were mixed, By using Gateway LR Clonase II Enzyme Mix (Invitrogen), the DNA fragment represented by SEQ ID NO: 10 is transferred to pYES-DESTTM52 by base sequence-specific recombination reaction (GATEWAYTM attL x attR reaction). The yeast expression vector pDEST52-CYP716A12 of the gene was obtained.
  • the yeast carrying the two vectors pYES3-ADH-OSC1 and pELC-CYP93E2 prepared in Example 10 was transformed with pDEST52-CYP716A12 or pYES2 (Invitrogen) corresponding to the empty vector.
  • the cultured yeast was collected by centrifugation at 3000 g for 10 minutes, suspended in 10 ml of SC-Trp / Leu / Ura-glucose medium supplemented with galactose (20 mg / ml) and hemin chloride (13 ⁇ g / ml), 30
  • the cells were cultured at 135 ° C. for 2 days. After 5 ml of ethyl acetate was added to the yeast culture and mixed, the ethyl acetate extract was recovered. This operation was repeated three times. The ethyl acetate extract was concentrated under reduced pressure.
  • yeast extract (Fig. 4: GC chart shown as bAS / CPR / CYP93E2 / CYP716A12) containing three vectors pYES3-ADH-OSC1, pESC-CYP93E2, and pDEST52-CYP716A12
  • ⁇ -amyrin-24-oicoacid, erythridiol, and oleanolic acid peaks shown in (Example 10) and (Example 11), four specific peaks was detected.
  • the mass spectrum of peak 1 (FIG. 5) agreed very well with the mass spectrum of the standard hederagenin.
  • LEFL3159E12 was found from the full-length tomato cDNA database (http://www.pgb.kazusa.or.jp/kaftom/blast.html).
  • the full length coding region deduced from LEFL3159E12 is SEQ ID NO: 11, and the polypeptide sequence deduced therefrom is SEQ ID NO: 3.
  • SEQ ID NO: 3 had 74.2% identity to the amino acid sequence of CYP716A12.
  • AV768711 corresponding to a partial sequence of Miyakogusa cDNA fragment was found.
  • a cDNA clone (MWL008g03) containing the sequence of AV768711 was obtained from National BioResource Project Miyakogusa soybean, and the full-length sequence of Miyakogusa-derived cDNA contained in MWL008g03 was determined.
  • the full-length coding region deduced from MWL008g03 is SEQ ID NO: 12, and the polypeptide sequence deduced therefrom is SEQ ID NO: 4.
  • SEQ ID NO: 4 had 79.5% identity to the amino acid sequence of CYP716A12.
  • the Blast search site http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?) Of NCBI (The National Center for Biotechnology, Information, advances, science, and health) has been published.
  • NCBI National Center for Biotechnology, Information, advances, science, and health
  • the gene sequence accession no. XM_002268434.1 (Vitis vinifera hypothetical protein LOC100251813) predicted from the genome sequence was found. This sequence could be expected to encode the full length.
  • accession no. GO244188.1 (OEAA-070810_Plate3p13.b1 cDNA library from Olive leaves and fruits Olea europaea cDNA, mRNA sequence) was found. Although this sequence does not contain the full-length gene, it could be expected to contain a C-terminal sequence from homology analysis.
  • accession no. GT020247.1 (TransId-279278 CarCatBudEnri2 Coffea arabica cDNA clone CarCatBudEnri2_59-D09- PAL17d similar to Cytochrome P450 monooxygenase CYP716A12-Medicago truncatula (Barrel medic), mRNA sequence.) was found. Although this sequence does not contain the full-length gene, it could be expected to contain a C-terminal sequence from homology analysis.
  • RNA was extracted using the CTAB (Cetyltrimethylammonium bromide) method (Chang et al., 1993. Plan Mol Biol Rep 11: 113-116).
  • CTAB Cetyltrimethylammonium bromide
  • Total cDNA synthesis was performed using the Superscript First Strand System (Invitrogen). Using this cDNA as a template, PCR was performed at a primer sequence number 27 (U910: caccATGGAGGTGTTCTTCCTCTC) and sequence number 28 (U911: CTATGGTTTGCGAGGATGGA) at an annealing temperature of 55 ° C.
  • the portion corresponding to the N-terminus and C-terminus of (Example 14) is primer SEQ ID NO: 29 (U908: caccATGGAGCTCTTCTTCCTTT) and SEQ ID NO: 30 (U909: TTAAGCAGCAACAATTTGAGGAT), PCR at an annealing temperature of 55 ° C.
  • sequence obtained thereby was SEQ ID NO: 15, and the polypeptide sequence deduced therefrom (SEQ ID NO: 7) had 78.0% identity to the amino acid sequence of CYP716A12.
  • This vector was designated as pTOPO-PSOlive.
  • RNA was extracted with RNeasy (Qiagen), and total cDNA was synthesized using GeneRacer TM kit (Invitrogen).
  • the N-terminal sequence was determined from a partial sequence of (Example 14) using a primer (SEQ ID NO: 34 U914: CGCTCACAAACAATCTGGAA) and a 5'race primer attached to the GeneRacer TM kit.
  • the yeast INVSc1 strain was transformed with pYES3-ADH-OSC1, and then the resulting transformed yeast was transformed with pELC-Grape, pELCBeet, pELC-Olive, or pELC-Coffee.
  • peak 2 agreed very well with the mass spectrum of the oleanolic acid preparation, and peak 2 was found to correspond to oleanolic acid.
  • Peak 1 was erythridiol in which the 28-position of ⁇ -amylin was hydroxylated from the mass spectrum pattern.
  • the CYP716A12 homologous gene product obtained from grape, beet, and olive that accumulates oleanolic acid has a methyl group at the 28th position of ⁇ -amylin produced in yeast expressing ⁇ -amylin synthase (OSC1). It was revealed that it can be converted to a carboxyl group to produce oleanolic acid. It could also be shown that its activity is much higher than the gene of Taruma palm.
  • cDNA was synthesized by SuperScript III first strand synthesis system (Invitrogen).
  • Primers CACTTTCTGGCTAGCTTGCCG (SEQ ID NO: 37): U919 and CATGAATATCTCATCTTTTG (SEQ ID NO: 38): U920) were prepared based on the oleanolic acid synthase gene SEQ ID NO. 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, 72 ° C. for 3 minutes) were performed 25 times, 72 ° C. for 5 minutes).
  • pAUR123 (TaKaRa) from 5968 to 6959 bases (PADH1 to TADH1 region) with SEQ ID NO: 39 (GGATGATCCACTAGTGGATCCTCTAGCTCCCTAACATGTAGGTGG) and SEQ ID NO: 40 (TAATGCAGGGCCGCAGGATCCGTGTGGAAGAACGATTACAACAGG) using both primers (DNA) by KODTO PlusBO
  • SEQ ID NO: 39 GGATGATCCACTAGTGGATCCTCTAGCTCCCTAACATGTAGGTGG
  • SEQ ID NO: 40 TAATGCAGGGCCGCAGGATCCGTGTGGAAGAACGATTACAACAGG
  • the region except pYES3 / CT (Invitrogen) from 1st to 960th bases is KOD-Plus- DNA polymerase using both SEQ ID NO: 41 (TGCGGCCCTGCATTAATGAATCGGCCACG) and SEQ ID NO: 42 (ACTAGTGGATCATCCCCACGCGCCCTGTAG).
  • TOYOBO performed PCR as described above. Both PCR products were ligated using In-Fusion Dry-Down PCR Cloning Kit (clontech) to obtain a pYES3 / CT (AUR) vector.
  • the obtained pYES3 / CT (AUR) vector was cleaved with a restriction enzyme SmaI and ligated with Gateway-Vector-Conversion-System-Reading-frame-B (Invitrogen) to construct a pYES3 / CT (AUR) -Gateway-1 vector.
  • RNA was prepared from a stron of G. uralensis.
  • First-strand cDNA synthesis was performed using 1 ⁇ g of the total RNA obtained and SMART RACE cDNA amplification kit (Clontech) according to the attached protocol.
  • SMART RACE cDNA amplification kit (Clontech) according to the attached protocol.
  • Using 2 ⁇ l each of the obtained first strand cDNA as a template the 5 ′ non-specific sequence of the rupeol synthase gene mRNA sequence (AB116228, Hayashi et al. 2004 Biol. Pharm. Bull.
  • a DNA fragment of about 2.3 kb amplified as a result of PCR was cloned into a pENTR TM / D-TOPO entry vector (production of entry clones), and the polynucleotide sequences of the three independent clones obtained were determined.
  • the sequence thus obtained was SEQ ID NO: 45, and the polypeptide sequence deduced therefrom (SEQ ID NO: 46) had 99% identity to the amino acid sequence of Spanish licorice lupeol synthase. .
  • a plasmid (entry clone) having a lupeol synthase (GuLUS) gene from Ural licorice mixed with pYES3 / CT (AUR) -Gateway-1 vector, and base sequence specific using GatewayGateLR Clonase II Enzyme Mix (Invitrogen)
  • the recombination reaction (attL x attR reaction) to transfer the DNA fragment shown in SEQ ID NO: 3 to pYES3 / CT (AUR) -Gateway-1 to obtain the Ural licorice GuLUS gene yeast expression vector pYES3-ADH-LUS It was.
  • transgenic yeast that co-expresses CYP716A12 homologous genes obtained from GuLUS and CYP716A12, GuLUS and grape, beet, olive and coffee, and transformed yeast (pYES3-ADH-LUS and pELC-CYP716A12, pELC-Grape, pELC -Beet, pELC-Olive, pELC-Coffee) Confirmation of product
  • the yeast INVSc1 strain was transformed with pYES3-ADH-LUS, and then the resulting transformed yeast was transformed into pELC-CYP716A12.
  • pELC-Grape pELC-Beet
  • pELC-Olive pELC-Coffee
  • transformed yeast that co-expresses CYP716A12 homologous genes obtained from GuLUS and CYP716A12, GuLUS and grape, beet, olive, and coffee. Obtained. About the yeast which hold
  • CYP716A12 and homologous genes can convert betulinic acid by converting the 28-position methyl group of lupeol produced in yeast expressing lupeol synthase (LUS) to a carboxyl group.
  • the positions corresponding to the N-terminal and C-terminal from the same paper are the primer SEQ ID NO: 47 (U921: caccATGTGGAAGCTTAAGATTGCTG) and SEQ ID NO: 48 (U922: TTACAGGCTTTGAGATGACCA)
  • the gene was amplified by PCR at an annealing temperature of 55 ° C. (30 cycles, using PrimeSTAR HS DNA Polymerase manufactured by Takara Bio Inc.). This was cloned into a pENTR TM / D-TOPO entry vector (Invitrogen). Polynucleotide sequences were determined for the 8 independent clones obtained. The sequence obtained thereby was SEQ ID NO: 49, and the polypeptide sequence deduced therefrom (SEQ ID NO: 50) had 99.7% identity to the amino acid sequence of the paper.
  • a plasmid (entry clone) containing the ⁇ -amylin synthase (OeOEA) gene derived from olive and pYES3 / CT (AUR) -Gateway-1 vector are mixed, and base sequence specific using GatewayGateLR Clonase II Enzyme Mix (Invitrogen) By recombination reaction (attL x attR reaction), the DNA fragment shown in SEQ ID NO: 3 was transferred to pYES3 / CT (AUR) -Gateway-1 to obtain olive OeOEA gene yeast expression vector pYES3-ADH-OEA .
  • the yeast INVSc1 strain was transformed with pYES3-ADH-OEA, pELC-Grape, pELC-Beet, pELC-Olive, pELC-Coffee.
  • the obtained transformed yeast was transformed with pELC-CYP716A12 to obtain a transformed yeast co-expressing CYP716A12 homologous genes obtained from OeOEA and CYP716A12, GuLUS and grape, beet, olive and coffee. .
  • the yeast extract carrying two vectors, pYES-ADH-OeOEA and pELC-CYP716A12 (FIG. 18, GC chart indicated as CPR / aAS / CYP716A12) is specific.
  • peak 1 and peak 2 Two peaks (peak 1 and peak 2) were detected. Among them, the mass spectrum of peak 1 agreed very well with the mass spectrum of Ubaol. Thus, it was found that peak 1 corresponds to ubaol. The mass spectrum of peak 2 agreed very well with the mass spectrum of the ursolic acid preparation. Thus, it was found that peak 2 corresponds to ursolic acid.
  • ⁇ -amylin (dotted arrow) was detected from the yeast extract (Fig. 12, GC chart indicated as CPR / aAS) containing two vectors pYES-ADH-OeOEA and pESC-LjCPR1, but peak 1 No compound corresponding to peak 2 was detected.
  • CYP716A12 and homologous genes can convert ursolic acid by converting the methyl group at position 28 of ⁇ -amylin generated in yeast expressing ⁇ -amylin synthase (aAS) to a carboxyl group. It was.
  • the method for producing a pharmacologically active pentacyclic triterpene compound using the 28-position oxidase and the gene encoding the same of the present invention is useful because it enables mass production as compared with a natural extraction method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A method for enzymatically converting a methyl group at the 28-position of a pentacyclic triterpene compound of, for example, the oleanane- ursane- or lupane-type into a hydroxymethyl group or a carboxyl group, either in a cell-free system or using cells or a plant, in the presence of a protein, which has an enzymatic activity of converting a methyl group at the 28-position of an exogenous pentacyclic triterpene into a hydroxymethyl group or a carboxyl group, or under the expression of DNA encoding said protein; and a method for producing a pentacyclic triterpene compound having a hydroxymethyl group or a carboxyl group at the 28-position with the use of the aforesaid method.

Description

28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物の製造方法Method for producing pentacyclic triterpene compound wherein position 28 is a hydroxymethyl group or a carboxyl group
 本発明は、28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物の製造方法、ならびに、該方法に使用可能な酵素および該酵素をコードするDNAに関する。 The present invention relates to a method for producing a pentacyclic triterpene compound in which the 28-position is a hydroxymethyl group or a carboxyl group, an enzyme that can be used in the method, and a DNA encoding the enzyme.
 本発明はまた、上記化合物の生産用の細胞およびトランスジェニック植物に関する。 The present invention also relates to a cell and a transgenic plant for producing the above compound.
 トリテルペンは6つのイソプレン単位で形成された天然物で、自然界で100以上の骨格が報告されている(非特許文献1)。植物に見られるトリテルペンでもっとも多いものはオレアナン型(βアミリン、タラキセロール、ゲルマニコール、オレアノール酸等)で、続いてウルサン型(αアミリン、ウルソール酸等)、ルパン型(ルペオール、ベツリン酸等)などの五環系トリテルペンがある。トリテルペンには、抗癌作用や抗炎症作用を示す生理活性物質が知られ、新しい医薬品の重要な化学構造プールになっている(非特許文献2)。28位にカルボキシル基を有する五環系トリテルペン化合物の代表として挙げられるオレアノール酸やウルソン酸についても生理活性があることが報告されている(非特許文献3、4)。特許文献としては、28位にカルボキシル基を有する五環系トリテルペンについて、エージング対応用の皮膚外用剤(特許文献1)、グルタチオン産生促進作用(特許文献2)、疲れ目の改善または予防のための経口投与組成物(特許文献3)、ヒアルロニダーゼ阻害剤(特許文献4)、メタボリックシンドロームの予防および改善(特許文献5)、エンドセリン受容体拮抗物質(特許文献6)、TGF-β阻害剤(特許文献7)、抗掻痒剤(特許文献8)等が報告されている。このようにオレアノール酸などの28位にカルボキシル基を有する五環系トリテルペン化合物の重要性が脚光を浴びる一方で、そのような化合物は、植物でしか生産されず、天然物(植物の根や果皮)から単に抽出して利用されている。例えば、オレアノール酸の供給元のホームページ上の情報によるとMP Biomedicals社(米国)はオタネニンジン(Panax ginseng)、Changsha Nutramax 社はオリーブ(Olea europaea)、リンドウ科植物(Swertia mileensis)、セリ科植物(Astrantia major)、ウコギ科タラノキ(Aralia chinensis)、ウリ科植物(Hemsleya)をあげており、いずれも植物からの抽出物であるとしている。抽出法については米国特許(特許文献9)や欧州特許(特許文献10)に報告がある。また、βアミリン等からの有機合成による変換も極めて困難であり工業としては成り立っておらず、オレアノール酸などの28位にカルボキシル基を有する五環系トリテルペン化合物を効率的に合成する手法が求められていた。 Triterpene is a natural product formed of six isoprene units, and more than 100 skeletons have been reported in nature (Non-patent Document 1). The most common triterpenes found in plants are oleanane type (β-amylin, taraxerol, germanicol, oleanolic acid, etc.), followed by ursan type (α-amylin, ursolic acid, etc.), lupine type (lupeol, betulinic acid, etc.), etc. There is a pentacyclic triterpene. Triterpenes are known to have physiologically active substances that exhibit anticancer and anti-inflammatory effects, and have become an important chemical structure pool for new drugs (Non-patent Document 2). It has been reported that oleanolic acid and ursonic acid, which are representative of pentacyclic triterpene compounds having a carboxyl group at the 28-position, also have physiological activity (Non-patent Documents 3 and 4). As patent documents, for pentacyclic triterpenes having a carboxyl group at the 28-position, an external skin preparation for aging (Patent Document 1), glutathione production promoting action (Patent Document 2), for improving or preventing fatigued eyes Orally administered composition (patent document 3), hyaluronidase inhibitor (patent document 4), prevention and improvement of metabolic syndrome (patent document 5), endothelin receptor antagonist (patent document 6), TGF-β inhibitor (patent document) 7), an anti-pruritic agent (Patent Document 8) and the like have been reported. Thus, while the importance of pentacyclic triterpene compounds having a carboxyl group at position 28, such as oleanolic acid, has attracted attention, such compounds are produced only in plants, and natural products (plant roots and peels). ) Is simply extracted from and used. For example, according to the information on the oleanolic acid supplier website, MP Biomedicals (USA) is ginseng (Panax ginseng), Changsha Nutramax is olive (Orea europaea), Gentianaceae (Sertia milensis plant) major), Aralia chinensis, and Cucurbitaceae (Hemsleya), all of which are said to be extracts from plants. The extraction method is reported in US Patent (Patent Document 9) and European Patent (Patent Document 10). Also, conversion by organic synthesis from β-amylin or the like is extremely difficult and has not been established as an industry, and a method for efficiently synthesizing a pentacyclic triterpene compound having a carboxyl group at the 28-position such as oleanolic acid is required. It was.
 しかしながら、28位にカルボキシル基を有する五環系トリテルペン化合物の合成酵素、つまりはオレアナン型、ウルサン型又はルパン型等の五環系トリテルペンの28位メチル基をカルボキシル基に変換し得る酵素はこれまで全く不明であった。また、酵素反応はきわめて特異的であり、オレアナン型、ウルサン型又はルパン型の酵素同士に関係があると示唆する報告もなかった。関連の研究では、オレアノール酸合成酵素の基質であるβアミリンを作る酵素および該酵素の遺伝子は同定されている(非特許文献5)。ソヤサポゲノールBの生合成酵素であるオレアナン型トリテルペンの24位を水酸化する酵素および該酵素の遺伝子(非特許文献6)、グリチルリチンの生合成酵素であるオレアナン型トリテルペンの11位を酸化する酵素および該酵素の遺伝子(非特許文献7)は同定されている。しかしオレアノール酸またはその誘導体を多く蓄積するとされるオリーブ、ビート、チクセツニンジンらは、分子生物学的解析が進んでおらず、またオレアノール酸の蓄積に関する生化学的な研究も行われておらず、解析する手がかりがなかった。やや分子生物学的な解析が進んでいるブドウを用いた解析でも候補遺伝子を抽出することもできなかった。 However, synthesizing enzymes for pentacyclic triterpene compounds having a carboxyl group at the 28-position, that is, enzymes capable of converting the methyl group at the 28-position of pentacyclic triterpenes such as oleanane type, ursan type or lupine type to the carboxyl group so far It was completely unknown. In addition, there was no report suggesting that the enzyme reaction was very specific and related to oleanane type, ulsan type or lupine type enzymes. In related research, an enzyme that produces β-amylin, which is a substrate for oleanolic acid synthase, and a gene for the enzyme have been identified (Non-patent Document 5). An enzyme that hydroxylates position 24 of oleanane-type triterpene, a biosynthetic enzyme of soyasapogenol B, and a gene of the enzyme (Non-patent Document 6), an enzyme that oxidizes position 11 of oleanane-type triterpene, a biosynthetic enzyme of glycyrrhizin, and An enzyme gene (Non-patent Document 7) has been identified. However, olives, beets, chixetninjin, etc., which are said to accumulate a large amount of oleanolic acid or its derivatives, have not undergone molecular biological analysis, nor have biochemical studies on the accumulation of oleanolic acid. There was no clue to analyze. Candidate genes could not be extracted even in the analysis using grapes, whose molecular biological analysis has progressed somewhat.
 本発明者らはタルウマゴヤシ(Medicago truncatula)の二次代謝産物の酸化全般に興味を持ち解析を進めてきた。オレアナン型トリテルペン骨格に酸化反応が起こりうる部位は11位、16位、23/24位、28位、30位で、さらに、メチル基の酸化によっては、ホルミル基(-CHO)やヒドロキシメチル基(CHOH)、さらにカルボキシル基まで酸化が進行する場合もある(非特許文献8)。23/24位、28位、30位の酸化の場合はヒドロキシメチル基への変換とその後のカルボキシル基への変換までが1段階であるのか2段階であるのかは不明であった。さらに、二次代謝の酸化にかかわる酵素としては、少なくともチトクロームP450型モノオキシゲナーゼ、ジオキシゲナーゼ、NADPH-flavinリダクターゼの3種の可能性が考えられる。このうちP450型遺伝子は、すでにゲノム配列が明らかになっているシロイヌナズナでは246種類、イネでは356種類が存在しており、植物ゲノム遺伝子の1%を占める最大酵素ファミリーである。植物の二次代謝のみならず、植物ホルモンや脂質の生合成・代謝に必須な経路を分担し、活性も水酸化のみならずエポキシ化、O-脱メチル反応、N-脱メチル反応、スルホキシド化、NO合成の反応を行うことが、近年の研究で一部明らかになってきているが、大部分のP450の機能は不明のままである(非特許文献9、10)。P450遺伝子の大部分はゲノム配列を計算機で解析することだけで発見されたものが多く生理的機能は不明なことが多い(非特許文献10、p.84)。 The present inventors have been interested in the general oxidation of secondary metabolites of Medicago truncatula and have proceeded with the analysis. Sites where oxidation reaction can occur in the oleanane type triterpene skeleton are the 11th, 16th, 23 / 24th, 28th and 30th positions. Furthermore, depending on the oxidation of the methyl group, a formyl group (—CHO) or a hydroxymethyl group ( In some cases, the oxidation proceeds to CH 2 OH) and further to a carboxyl group (Non-patent Document 8). In the case of oxidation at the 23 / 24-position, 28-position and 30-position, it was unclear whether the conversion to the hydroxymethyl group and the subsequent conversion to the carboxyl group were one step or two steps. Furthermore, there are three possible possibilities for enzymes involved in secondary metabolism oxidation: cytochrome P450 type monooxygenase, dioxygenase, and NADPH-flavin reductase. Among them, P450 type genes are 246 types in Arabidopsis whose genome sequence has already been clarified, and 356 types in rice, and are the largest enzyme family occupying 1% of plant genome genes. Shares essential pathways not only for secondary metabolism of plants but also for biosynthesis and metabolism of plant hormones and lipids. Activity is not only hydroxylation but also epoxidation, O-demethylation, N-demethylation, sulfoxidation Although some recent studies have revealed that NO synthesis reactions are performed, the functions of most P450s remain unclear (Non-Patent Documents 9 and 10). Most of the P450 genes have been discovered only by analyzing the genome sequence with a computer, and the physiological function is often unknown (Non-patent Document 10, p. 84).
 非特許文献11では、タルウマゴヤシの培養細胞に幾つかの処理を施してサポニン含量の変化が報告されている。該文献の表1ではジャスモン酸メチル処理によって、ヘデラゲニン(五環系トリテルペン化合物であり、さらに23位が水酸化されている。)、ソヤサポゲノールE(非五環系トリテルペン化合物であり、2位と24位が水酸化され、かつ、22位が酸化されている。)、バヨゲニン(五環系トリテルペン化合物であり、さらに2位と23位が水酸化されている。)、メジカゲン酸(五環系トリテルペン化合物であり、さらに2位が水酸化され、かつ、24位がカルボキシル化されている。)、ザンハ酸(五環系トリテルペン化合物であり、さらに2位と16位が水酸化され、かつ、24位がカルボキシル化されている。)、ソヤサポゲノールE(非五環系トリテルペン化合物であり、2位、22位、24位が水酸化されている。)等の増加を報告している。しかしジャスモン酸メチルは防御反応と密接に関連したホルモンであり、他の二次代謝産物やカルス形状の変化も起きていることが予想される。非特許文献12では、これらジャスモン酸メチルによって誘導されるP450を184個、さらにゲノム未解読領域の37領域をプローブとして追跡し、そのうちの約10%がジャスモン酸メチルによって誘導されることが報告され、さらに、その10%のうちの誘導例として、Mtr.8618.1.S1(CYP93E2)遺伝子、CYP72ファミリーであるMedtr4g032760、Medtr4g032910、Mtr.37299.1.S1_at、Mtr.37298.1.S1の4つの遺伝子、Mtr.43018.1.S1(CYP716A12)遺伝子が網羅的解析から見出されているがそれらの機能は不明である。また、この文献では、Supplemental Data Set 4 online に掲載されている184個と37プローブすべてのデータのうち特定していない幾つかが、培養細胞に処理を施して変化した二次代謝産物の生合成に関わる遺伝子の候補と結論付けているものの、サポニン合成やオレアノール酸等28位がカルボキシル基である五環系トリテルペン合成との関係については明らかにされていない。 Non-Patent Document 11 reports changes in saponin content after several treatments on cultured cells of Taruma palm. In Table 1 of this document, by treatment with methyl jasmonate, hederagenin (a pentacyclic triterpene compound, which is further hydroxylated at position 23), Soyasapogenol E (a non-pentacyclic triterpene compound, positions 2 and 24) The position is hydroxylated and the 22nd position is oxidized), bayogenin (a pentacyclic triterpene compound, and the 2nd and 23rd positions are hydroxylated), medicagenic acid (pentacyclic triterpene) Compound, which is further hydroxylated at the 2-position and carboxylated at the 24-position), zanhaic acid (a pentacyclic triterpene compound, further hydroxylated at the 2-position and the 16-position, and 24 And soyasapogenol E (a non-pentacyclic triterpene compound, hydroxylated at positions 2, 22, and 24). It has reported. However, methyl jasmonate is a hormone closely related to defense responses, and other secondary metabolites and changes in callus shape are also expected. In Non-Patent Document 12, it was reported that 184 P450s induced by these methyl jasmonates and 37 regions of the genome undecoding region were traced as probes, and about 10% of them were induced by methyl jasmonate. Furthermore, as an induction example of 10%, Mtr. 868.1. The S1 (CYP93E2) gene, CYP72 family Medtr4g032760, Medtr4g032910, Mtr. 37299.1. S1_at, Mtr. 37298.1. Four genes of S1, Mtr. 43018.1. S1 (CYP716A12) genes have been found from exhaustive analysis, but their functions are unknown. In addition, in this document, some of the 184 and 37 probe data listed in the Supplemental Data Set 4 online are not specified, but some of the biosynthesis of secondary metabolites that were altered by treatment of cultured cells. Although it is concluded that it is a candidate gene related to saponin, the relationship with saponin synthesis and pentacyclic triterpene synthesis in which position 28 is a carboxyl group such as oleanolic acid has not been clarified.
特開2010-138154号公報JP 2010-138154 A 特開2010-105937号公報JP 2010-105937 A 特開2008-007417号公報JP 2008-007417 A 特開2006-124322号公報JP 2006-124322 A 特開2005-097216号公報Japanese Patent Laying-Open No. 2005-097216 特開2003-252843号公報JP 2003-252843 A 特開2000-159793号公報JP 2000-159793 A 特開平11-012178号公報Japanese Patent Laid-Open No. 11-012178 米国特許第6700014号明細書US Pat. No. 6700014 欧州特許第0894517号明細書European Patent No. 0894517
 本発明の目的は、植物由来のオレアノール酸等の28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物を製造する方法、ならびに、該五環系トリテルペン化合物を生産する細胞およびトランスジェニック植物を提供することである。 An object of the present invention is to provide a method for producing a pentacyclic triterpene compound in which position 28 is a hydroxymethyl group or a carboxyl group, such as plant-derived oleanolic acid, and cells and transgenic plants that produce the pentacyclic triterpene compound Is to provide.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた。その際、著量ではないがトリテルペンサポニン関連化合物を蓄積するタルウマゴヤシに着目し、トリテルペンを合成するβアミリン遺伝子を発現している際に協調的に発現する遺伝子2種(CYP93E2とCYP716A12)をin silicoで探しだした。該候補遺伝子を前駆体であるβアミリンを蓄積する酵母において発現させることによって、CYP93E2は既存の反応であるオレアナン型トリテルペンの24位をヒドロキシメチル基またはカルボキシル基に変換する遺伝子であることがわかったが、もうひとつの候補遺伝子CYP716A12は、予想しなかったことであるが、今まで見つかっていない五環系トリテルペンの28位をヒドロキシメチル基またはカルボキシル基に変換する活性を持つ酵素をコードする遺伝子であることを今回見出した。そして、この遺伝子を利用することによって、これまで微生物で生産することができなかったオレアノール酸等の28位にカルボキシル基を有する五環系トリテルペン類を効率よく生産することが可能となった。さらにまた上記五環系トリテルペン類を蓄積する植物から、同一の機能を有する遺伝子を取得し、酵母における生産系で酵素活性が同等もしくはそれ以上であることを今回明らかにした。また、28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物生産性のトランスジェニック植物や微生物を作製することや、元々ある該遺伝子の発現を比較および解析し個体や組織を選抜することによって、28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物の蓄積量を改変することが可能になることを示した。さらに、驚くべきことに、CYP716A12はオレアナン型のみならず、ウルサン型やルパン型の五環系トリテルペンについても28位をヒドロキシメチル基またはカルボキシル基に変換することができた。タルウマゴヤシはオレアナン型トリテルペンを主に蓄積しており、オレアナン型を基質とする酵素を有していたことに蓋然性がある。しかしオレアナン型とウルサン型又はルパン型は、E環部分の構造が大きく異なる。28位に酵素活性を持つCYP716A12が、28位と隣接するE環部分の違いを認識しないことを示しており、今までの植物P450の特異性の解析からは著しく外れた結果であり、想定外の結果といわざるを得ない。これらの知見に基づいて本発明を完成させるに至った。 The inventors of the present invention have intensively studied to achieve the above object. At that time, although not remarkable, attention was paid to the talum coconut which accumulates triterpene saponin-related compounds, and two kinds of genes (CYP93E2 and CYP716A12) that are expressed cooperatively when expressing the β-amylin gene that synthesizes the triterpene are expressed in I looked up at silico. By expressing the candidate gene in yeast that accumulates β-amylin as a precursor, CYP93E2 was found to be a gene that converts position 24 of oleanane-type triterpene, which is an existing reaction, to a hydroxymethyl group or a carboxyl group. However, another candidate gene CYP716A12 is an unexpected gene that encodes an enzyme having an activity to convert the 28-position of a pentacyclic triterpene to a hydroxymethyl group or a carboxyl group, which has not been found so far. I found this time. By using this gene, it has become possible to efficiently produce pentacyclic triterpenes having a carboxyl group at the 28-position, such as oleanolic acid, which could not be produced by microorganisms until now. Furthermore, a gene having the same function was obtained from a plant accumulating the pentacyclic triterpenes, and this time it was clarified that the enzyme activity in the yeast production system is equivalent or higher. In addition, producing a transgenic plant or microorganism capable of producing a pentacyclic triterpene compound in which the 28th position is a hydroxymethyl group or a carboxyl group, and comparing and analyzing the expression of the original gene to select individuals or tissues It was shown that the accumulation amount of the pentacyclic triterpene compound in which the 28-position is a hydroxymethyl group or a carboxyl group can be modified. Furthermore, surprisingly, CYP716A12 was able to convert the 28-position into a hydroxymethyl group or a carboxyl group not only for the oleanane type but also for the ursan type and lupine type pentacyclic triterpenes. Taruma palm mainly accumulates oleanane type triterpenes, and it is probable that it has an enzyme using oleanane type as a substrate. However, the structure of the E ring portion is greatly different between the oleanane type and the ulsan type or lupine type. This shows that CYP716A12, which has enzyme activity at position 28, does not recognize the difference between the E-ring part adjacent to position 28, which is a result that is significantly different from the previous analysis of the specificity of plant P450. I cannot help saying that. The present invention has been completed based on these findings.
 したがって、本発明は、以下の特徴を包含する。 Therefore, the present invention includes the following features.
(1) 五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質。 (1) A protein having an activity of converting a methyl group at position 28 of a pentacyclic triterpene to a hydroxymethyl group or a carboxyl group.
(2) マメ科、ナス科、ブドウ科、アカザ科またはモクセイ科またはアカネ科に属する植物に由来する、上記(1)記載のタンパク質。 (2) The protein according to (1) above, which is derived from a plant belonging to legumes, eggplants, vines, red crustaceans, oleaceae or red crabaceae.
(3) タルウマゴヤシ、トマト、ミヤコグサ、ブドウ、ビート、オリーブまたはコーヒーに由来する、上記(1)または(2)記載のタンパク質。 (3) The protein according to (1) or (2) above, which is derived from talum palm, tomato, Miyakogusa, grape, beet, olive or coffee.
(4) 以下の(a)~(c)からなる群から選択される、上記(1)記載のタンパク質。 (4) The protein according to (1) above, which is selected from the group consisting of the following (a) to (c).
 (a) 配列番号2~8のいずれかに示すアミノ酸配列を含むタンパク質
 (b) 配列番号2~8のいずれかに示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列を含むタンパク質
 (c) 配列番号2~8のいずれかに示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を含むタンパク質
(5) 五環系トリテルペンがオレアナン型、ウルサン型またはルパン型トリテルペンである、上記(1)~(4)のいずれかに記載のタンパク質。
(A) a protein comprising the amino acid sequence shown in any of SEQ ID NOs: 2 to 8 (b) one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 2 to 8 (C) a protein comprising an amino acid sequence having 70% or more sequence identity to the amino acid sequence shown in any of SEQ ID NOs: 2 to 8 (5) a pentacyclic triterpene is oleanane type, ursan type or The protein according to any one of (1) to (4) above, which is a lupine-type triterpene.
(6) チトクロームP450に属する、上記(1)~(5)のいずれかに記載のタンパク質。 (6) The protein according to any one of (1) to (5) above, which belongs to cytochrome P450.
(7) 以下の(a)~(f)からなる群から選択されるDNAを含有する組換え体DNA。 (7) Recombinant DNA containing DNA selected from the group consisting of (a) to (f) below.
 (a) 配列番号2~8のいずれかに示すアミノ酸配列を含むタンパク質をコードするDNA
 (b) 配列番号2~8のいずれかに示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
 (c) 配列番号2~8のいずれかに示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
 (d) 配列番号10~16のいずれかに示す塩基配列を含むDNA
 (e) 配列番号10~16のいずれかに示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
 (f) 配列番号10~16のいずれかに示す塩基配列と70%以上の配列同一性を有する塩基配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
(8) 上記(7)記載の組換え体DNAを含む形質転換体。
(A) DNA encoding a protein comprising the amino acid sequence shown in any one of SEQ ID NOs: 2 to 8
(B) including an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 2 to 8, and a methyl group at position 28 of the pentacyclic triterpene Which encodes a protein having an activity of converting acetylene into a hydroxymethyl group or a carboxyl group
(C) including an amino acid sequence having 70% or more sequence identity with the amino acid sequence shown in any of SEQ ID NOs: 2 to 8, and the methyl group at position 28 of the pentacyclic triterpene as a hydroxymethyl group or a carboxyl group DNA encoding a protein having an activity to convert
(D) DNA comprising the base sequence shown in any of SEQ ID NOs: 10 to 16
(E) hybridizing under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in any of SEQ ID NOs: 10 to 16, and replacing the methyl group at position 28 of the pentacyclic triterpene with hydroxymethyl DNA encoding a protein having an activity of converting to a group or carboxyl group
(F) a base sequence having 70% or more sequence identity to the base sequence shown in any of SEQ ID NOs: 10 to 16, and the methyl group at position 28 of the pentacyclic triterpene as a hydroxymethyl group or a carboxyl group DNA encoding a protein having an activity to convert
(8) A transformant comprising the recombinant DNA according to (7) above.
(9) 形質転換体が微生物または植物を宿主として得られる形質転換体である、上記(8)記載の形質転換体。 (9) The transformant according to (8) above, wherein the transformant is a transformant obtained using a microorganism or a plant as a host.
(10) 微生物が酵母である、上記(9)記載の形質転換体。 (10) The transformant according to (9) above, wherein the microorganism is yeast.
(11) 28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を生成する能力を有する、上記(8)~(10)のいずれかに記載の形質転換体。 (11) The transformant according to any one of (8) to (10) above, which has the ability to produce a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 or a derivative thereof.
(12) 上記(8)~(11)のいずれかに記載の形質転換体を培地に培養し、培養物中に(4)記載のタンパク質を生成、蓄積させ、該培養物より該蛋白質を採取することを含む、上記タンパク質の製造法。 (12) The transformant according to any of (8) to (11) above is cultured in a medium, the protein according to (4) is produced and accumulated in the culture, and the protein is collected from the culture A method for producing the protein, comprising:
(13) 上記(8)~(11)のいずれかに記載の形質転換体の培養物または該培養物の処理物を酵素源に用い、該酵素源、および基質としての五環系トリテルペンまたはその誘導体を水性媒体中に存在せしめ、該媒体中に28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を生成、蓄積させ、該媒体から28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を採取する、28位にメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体の製造法。 (13) Using the culture of the transformant according to any one of (8) to (11) above or a processed product of the culture as an enzyme source, the enzyme source, and a pentacyclic triterpene as a substrate or its The derivative is present in an aqueous medium, and a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 or a derivative thereof is produced and accumulated in the medium, and a hydroxymethyl group or a carboxyl group is located at position 28 from the medium. A method for producing a pentacyclic triterpene or derivative thereof having a methyl group or a carboxyl group at position 28, wherein the pentacyclic triterpene or derivative thereof is collected.
(14) 培養物の処理物が、培養物の濃縮物、培養物の乾燥物、培養物を遠心分離して得られる菌体、該菌体の乾燥物、該菌体の凍結乾燥物、該菌体の界面活性剤処理物、該菌体の超音波処理物、該菌体の機械的摩砕処理物、該菌体の溶媒処理物、該菌体の酵素処理物、該菌体の蛋白質分画物、該菌体の固定化物あるいは該菌体より抽出して得られる酵素標品であることを特徴とする、上記(13)記載の製造法。 (14) A processed product of the culture is a concentrate of the culture, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, a freeze-dried product of the cell, Surfactant treated product of bacterial cells, ultrasonic treated product of the bacterial cells, mechanically ground treated product of the bacterial cells, solvent treated product of the bacterial cells, enzyme treated product of the bacterial cells, protein of the bacterial cells The method according to (13) above, which is a fraction, an immobilized product of the microbial cell, or an enzyme preparation obtained by extraction from the microbial cell.
(15) (1)記載のタンパク質および基質としての五環系トリテルペンまたはその誘導体を水性媒体中に存在せしめ、該媒体中に28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を生成、蓄積させ、該媒体から28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を採取する、28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体の製造法。 (15) The pentacyclic triterpene or derivative thereof having the hydroxymethyl group or the carboxyl group at position 28 in the medium, wherein the protein described in (1) and the substrate and the pentacyclic triterpene or derivative thereof are present in an aqueous medium. And collecting a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 or a derivative thereof from the medium, and a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 or a derivative thereof. Manufacturing method.
(16) 基質としての五環系トリテルペンが、βアミリン、αアミリン、又はルペオールである、上記(13)~(15)のいずれかに記載の製造法。 (16) The production method according to any one of (13) to (15) above, wherein the pentacyclic triterpene as a substrate is β-amylin, α-amylin, or lupeol.
(17) 以下の(a)~(f)からなる群から選択されるDNA。 (17) DNA selected from the group consisting of the following (a) to (f).
 (a) 配列番号4、6~8のいずれかに示すアミノ酸配列を含むタンパク質をコードするDNA
 (b) 配列番号4、6~8のいずれかに示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
 (c) 配列番号4、6~8のいずれかに示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
 (d) 配列番号12、14~16のいずれかに示す塩基配列を含むDNA
 (e) 配列番号12、14~16のいずれかに示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
 (f) 配列番号12、14~16のいずれかに示す塩基配列と70%以上の配列同一性を有する塩基配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
 本発明の五環系トリテルペンの28位のメチル基をヒドロキシル基またはカルボキシル基に変換する酵素活性を有するタンパク質により、有用な生理活性を示す、28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物、とりわけオレアノール酸、ウルソール酸、ベツリン酸、およびそれらの置換誘導体を大量かつ安価に生産できる。本発明によれば、五環系トリテルペン化合物の28位のメチル基をカルボキシル基に変換する活性を有する酵素タンパク質とそれをコードするDNAの活性発現の調整を行うことができ、該遺伝子の活性が増強された植物および微生物を作製する方法、オレアノール酸などの28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンの生産が変更された植物が提供される。本発明により上記五環系トリテルペン化合物、とりわけオレアノール酸、ウルソール酸、ベツリン酸、およびそれらの置換誘導体の過剰発現に特徴がある植物の作出が可能である。
(A) DNA encoding a protein comprising the amino acid sequence shown in any one of SEQ ID NOs: 4 and 6 to 8
(B) including an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 4 and 6 to 8, and at the 28th position of the pentacyclic triterpene DNA encoding a protein having an activity of converting a methyl group into a hydroxymethyl group or a carboxyl group
(C) an amino acid sequence having 70% or more of the amino acid sequence shown in any one of SEQ ID NOs: 4 and 6 to 8, and the methyl group at position 28 of the pentacyclic triterpene being a hydroxymethyl group or a carboxyl DNA encoding a protein having activity of converting to a group
(D) DNA comprising the base sequence shown in any one of SEQ ID NOs: 12 and 14 to 16
(E) It hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in any of SEQ ID NOs: 12 and 14 to 16, and has a methyl group at position 28 of a pentacyclic triterpene. DNA encoding a protein having an activity of converting to a hydroxymethyl group or a carboxyl group
(F) a base sequence having 70% or more sequence identity to the base sequence shown in any of SEQ ID NOs: 12 and 14 to 16, and the methyl group at position 28 of the pentacyclic triterpene is a hydroxymethyl group or a carboxyl DNA encoding a protein having activity of converting to a group
A pentacyclic system in which the 28-position is a hydroxymethyl group or a carboxyl group, showing useful physiological activity by a protein having an enzyme activity that converts the methyl group at the 28-position of the pentacyclic triterpene of the present invention into a hydroxyl group or a carboxyl group Triterpene compounds, especially oleanolic acid, ursolic acid, betulinic acid, and substituted derivatives thereof can be produced in large quantities and at low cost. ADVANTAGE OF THE INVENTION According to this invention, the activity expression of the enzyme protein which has the activity which converts the 28th-position methyl group of a pentacyclic triterpene compound into a carboxyl group, and the DNA which codes it can be adjusted, The activity of this gene can be adjusted. Provided are methods for producing enhanced plants and microorganisms, plants with altered production of pentacyclic triterpenes having a hydroxymethyl group or a carboxyl group at position 28, such as oleanolic acid. According to the present invention, it is possible to produce plants characterized by overexpression of the above pentacyclic triterpene compounds, especially oleanolic acid, ursolic acid, betulinic acid, and substituted derivatives thereof.
βアミリンの28位のメチル基がヒドロキシメチル基に変換されたエリトロジオールと、さらに28位のメチル基がカルボキシル基に変換されたオレアノール酸の構造式。Structural formulas of erythrodiol in which the 28-position methyl group of β-amylin is converted to a hydroxymethyl group and oleanolic acid in which the 28-position methyl group is converted to a carboxyl group. タルウマゴヤシCYP93E2発現酵母のGCチャート。GC chart of yeast expressing CYP93E2. タルウマゴヤシCYP716A12発現酵母のGCチャート。GC chart of yeast expressing CYP716A12. タルウマゴヤシCYP716A12発現酵母のマススペクトル(MS)。Mass spectrum (MS) of yeast expressing CYP716A12. タルウマゴヤシCYP93E2とCYP716A12発現酵母のGCチャート。GC chart of yeast expressing CYP93E2 and CYP716A12. 図4のピーク1のMS。MS of peak 1 in FIG. ブドウ相同遺伝子発現酵母のGCチャート。GC chart of grape homologous gene expression yeast. ブドウ相同遺伝子発現酵母のマススペクトル(MS)。Mass spectrum (MS) of grape homologous gene expressing yeast. ビート相同遺伝子発現酵母のGCチャート。GC chart of yeast expressing beet homologous genes. ビート相同遺伝子発現酵母のマススペクトル(MS)。Mass spectrum (MS) of beet homologous gene expressing yeast. オリーブ相同遺伝子発現酵母のGCチャート。GC chart of olive homologous gene expression yeast. オリーブ相同遺伝子発現酵母のマススペクトル(MS)。Mass spectrum (MS) of olive homologous gene expressing yeast. コーヒー相同遺伝子発現酵母のGCチャート。GC chart of yeast expressing coffee homologous genes. コーヒー相同遺伝子発現酵母のマススペクトル(MS)。Mass spectrum (MS) of coffee homologous gene expressing yeast. ブドウ品種「キャンベル・ベリーA」の葉と果皮(CTAB)でのオレアノール酸合成酵素遺伝子の発現を示す電気泳動図。The electrophoretic diagram which shows the expression of the oleanolic acid synthase gene in the leaf and pericarp (CTAB) of grape cultivar "Campbell berry A". ルペオールの28位のメチル基がヒドロキシメチル基に変換されたベツリンと、さらに28位のメチル基がカルボキシル基に変換されたベツリン酸の構造式。Structural formulas of betulin in which the methyl group at position 28 of lupeol is converted to a hydroxymethyl group and betulinic acid in which the methyl group at position 28 is further converted to a carboxyl group. ルペオールを発現する酵母においてのタルウマゴヤシCYP716A12発現のGCチャート。GC chart of the expression of C. coconut palm CYP716A12 in yeast expressing lupeol. ルペオールを発現する酵母においてのタルウマゴヤシCYP716A12発現のマススペクトル(MS)。Mass spectrum (MS) of Taruma palm CYP716A12 expression in yeast expressing lupeol. ルペオールを発現する酵母においてのブドウ相同遺伝子発現のGCチャート。GC chart of grape homologous gene expression in yeast expressing lupeol. ルペオールを発現する酵母においてのブドウ相同遺伝子発現のマススペクトル(MS)。Mass spectrum (MS) of grape homologous gene expression in yeast expressing lupeol. ルペオールを発現する酵母においてのビート相同遺伝子発現のGCチャート。GC chart of beet homologous gene expression in yeast expressing lupeol. ルペオールを発現する酵母においてのビート相同遺伝子発現のマススペクトル(MS)。Mass spectrum (MS) of beet homologous gene expression in yeast expressing lupeol. ルペオールを発現する酵母においてのオリーブ相同遺伝子発現のGCチャート。GC chart of olive homologous gene expression in yeast expressing lupeol. ルペオールを発現する酵母においてのオリーブ相同遺伝子発現のマススペクトル(MS)。Mass spectrum (MS) of olive homologous gene expression in yeast expressing lupeol. ルペオールを発現する酵母においてのコーヒー相同遺伝子発現のGCチャート。GC chart of coffee homologous gene expression in yeast expressing lupeol. ルペオールを発現する酵母においてのコーヒー相同遺伝子発現のマススペクトル(MS)。Mass spectrum (MS) of coffee homologous gene expression in yeast expressing lupeol. αアミリンの28位のメチル基がヒドロキシメチル基に変換されたウバオールと、さらに28位のメチル基がカルボキシル基に変換されたウルソール酸の構造式。Structural formulas of ubaol in which the methyl group at position 28 of α-amylin is converted to a hydroxymethyl group, and ursolic acid in which the methyl group at position 28 is further converted to a carboxyl group. αアミリンを発現する酵母においてのタルウマゴヤシCYP716A12発現のGCチャート。GC chart of the expression of Caryobol CYP716A12 in yeast expressing α-amylin. αアミリンを発現する酵母においてのタルウマゴヤシCYP716A12発現のマススペクトル(MS)。Mass spectrum (MS) of Taruma palm CYP716A12 expression in yeast expressing α-amylin. αアミリンを発現する酵母においてのブドウ相同遺伝子発現のGCチャート。GC chart of grape homologous gene expression in yeast expressing α-amylin. αアミリンを発現する酵母においてのブドウ相同遺伝子発現のマススペクトル(MS)。Mass spectrum (MS) of grape homologous gene expression in yeast expressing α-amylin. αアミリンを発現する酵母においてのビート相同遺伝子発現のGCチャート。GC chart of beet homologous gene expression in yeast expressing α-amylin. αアミリンを発現する酵母においてのビート相同遺伝子発現のマススペクトル(MS)。Mass spectrum (MS) of beet homologous gene expression in yeast expressing α-amylin. αアミリンを発現する酵母においてのオリーブ相同遺伝子発現のGCチャート。GC chart of olive homologous gene expression in yeast expressing α-amylin. αアミリンを発現する酵母においてのオリーブ相同遺伝子発現のマススペクトル(MS)。Mass spectrum (MS) of olive homologous gene expression in yeast expressing α-amylin. αアミリンを発現する酵母においてのコーヒー相同遺伝子発現のGCチャート。GC chart of coffee homologous gene expression in yeast expressing α-amylin. αアミリンを発現する酵母においてのコーヒー相同遺伝子発現のマススペクトル(MS)。Mass spectrum (MS) of coffee homologous gene expression in yeast expressing α-amylin.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
1. 五環系トリテルペン化合物の28位メチル基をヒドロキシメチル基またはカルボキシル基に変換する酵素タンパク質(「28位酸化酵素」)
 本発明の酵素タンパク質は、五環系トリテルペン化合物の28位メチル基をヒドロキシメチル基またはカルボキシル基に変換する酵素活性を有するタンパク質であり、オレアナン型、ウルサン型又はルパン型などの五環系トリテルペン化合物の28位メチル基をヒドロキシメチル基またはカルボキシル基に変換する能力を有するタンパク質である(図1、11及び13)。本明細書では、そのような変換能を、「28位酸化酵素活性」、そのような変換能を有する酵素タンパク質を「28位酸化酵素」と言う。
1. Enzyme protein that converts the 28-position methyl group of a pentacyclic triterpene compound into a hydroxymethyl group or a carboxyl group ("28-position oxidase")
The enzyme protein of the present invention is a protein having an enzyme activity for converting the 28-position methyl group of a pentacyclic triterpene compound into a hydroxymethyl group or a carboxyl group, and is a pentacyclic triterpene compound such as oleanane type, ulsan type or lupine type. Is a protein having the ability to convert the 28-position methyl group into a hydroxymethyl group or a carboxyl group (FIGS. 1, 11 and 13). In this specification, such conversion ability is referred to as “position 28 oxidase activity”, and an enzyme protein having such conversion ability is referred to as “position 28 oxidase”.
 上記酵素を含む植物には、例えばマメ科のタルウマゴヤシ(Medicago truncatula)、ナス科のトマト(Solanum lycopersicum)、マメ科のミヤコグサ(Lotus japonicus)、モクセイ科のオリーブ(Olea europea)、アカザ科のビート(Beta vulgaris)、アカネ科のコーヒー(Coffea Arabica)、ブドウ科のブドウ(Vitis spp.)等の植物種が含まれる。また、本発明の酵素は、膜結合型チトクロームP450モノオキシダーゼの1種であることが今回初めて明らかになった。 Plants containing the above-mentioned enzymes include, for example, leguminous talum palm (Medicago truncatula), solanaceae tomato (Solanum lycopersicum), leguminous cypress (Lotus japonicus), oleaceae (Olea europaea), Plant species such as (Beta vulgaris), Rubiaceae coffee (Coffea Arabica), and Grapeaceae grapes (Vitis spp.) Are included. It has also been revealed for the first time that the enzyme of the present invention is a kind of membrane-bound cytochrome P450 monooxidase.
 上記酵素を含む他の植物には、オレアナン型、ウルサン型又はルパン型の五環系トリテルペン化合物を天然で生成する植物、例えばクローブ、センブリ、ゲンチアナ、カリン、ウメ、タイム、ナツメ、キンモクセイ、ネズミモチ、サンシュユ、カキ、ビワ、レンギョウ、サンザシ、チクセツニンジン、サトウダイコンなどのオレアノール酸を生成する植物、クローブ、タイソウ、ナツメ、カキ、カバノキ科植物などのベツリン酸を生成する植物などが含まれる。 Other plants containing the above enzymes include plants that naturally produce oleanane-type, ulsan-type, or lupine-type pentacyclic triterpene compounds, such as clove, assembly, gentian, karin, ume, thyme, jujube, beetle, murine, Examples include plants that produce oleanolic acid such as sunflower, oysters, loquat, forsythia, hawthorn, chixen carrot, and sugar beet, and plants that produce betulinic acid such as clove, sweet potato, jujube, oysters, and birch.
 本発明の酵素により得られる28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物は、植物によって合成されるトリテルペンまたはその誘導体が含まれ、例えばオレアノール酸(3β-hydroxyolean-12-en-28-oic acid)、オレアノン酸(3-oxoolean-12-en-28-oic acid)ウルソール酸(3β-hydroxyurs-12-en-28-oic acid)、ベツリン酸(3β-hydroxylup-20(29)-en-28-oic acid)、それらの塩、それらの誘導体などが挙げられる。 The pentacyclic triterpene compound having a hydroxymethyl group or a carboxyl group at position 28 obtained by the enzyme of the present invention includes a triterpene synthesized by a plant or a derivative thereof, such as oleanolic acid (3β-hydroxylene-12-en- 28-oic acid), oleanic acid (3-oxoolan-12-en-28-ic acid) ursolic acid (3β-hydroxyurs-12-en-28-oic acid), betulinic acid (3β-hydroxyrup-20 (29) -En-28-oic acid), salts thereof, derivatives thereof, and the like.
 塩としては、ナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニアや、脂肪族アミン、芳香族アミン、飽和アミン、不飽和アミンなどの有機アミンとのアンモニウム塩などが含まれる。カルボン酸塩は、本発明方法による目的トリテルペン化合物の生成の間に形成されてもよいし、あるいは、該化合物の生成後に中和処理により塩形成を行ってもよい。 Examples of the salt include alkali metal salts such as sodium salt and potassium salt, ammonium and ammonium salts with organic amines such as aliphatic amines, aromatic amines, saturated amines and unsaturated amines. The carboxylate may be formed during the production of the target triterpene compound by the method of the present invention, or may be salted by neutralization after the production of the compound.
 誘導体は、上記五環系トリテルペン化合物の、例えば1位、2位、11位、12位、29位、30位などの、生合成中間体2,3-オキソスクアレンを原料とするその環化反応および28位酸化酵素活性に影響の少ないと思われる位置の水素原子が、別の置換基、例えば低級アルキル基(メチル、エチル、プロピル、ブチルなど)、ハロゲン(フッ素、塩素、臭素、ヨウ素)、水酸基、エステル基(アセトキシ、プロパノイルオキシなど)、アシル基(ホルミル、アセチル、プロピオニルなど)、アルコキシ基(メトキシ、エトキシ、プロポキシなど)、アミノ基、モノ-もしくはジ-低級アルキルアミノ基(メチルアミノ、ジメチルアミノ、エチルアミノなど)、アミド基、低級アルキルアミド基(アセタミドなど)、オキソ基、シアノ基、ニトロ基、低級アルキルチオ基(メチルチオ、エチルチオなど)、スルフォニル基(メシル、エチルスルホニルなど)などの官能基で置換された化合物、28位カルボキシル基の(低級)アルキルエステル化または(低級)アルキル-もしくは(低級)ジアルキル-アミド化化合物などを含む。さらに、これらの部位の水酸基、ヒドロキシメチル基またはカルボキシル基にブドウ糖などの単糖や複数の糖がつくトリテルペンサポニンでもかまわない。 The derivative is a cyclization reaction of the above pentacyclic triterpene compound using, for example, the biosynthetic intermediate 2,3-oxosqualene, such as the 1-position, 2-position, 11-position, 12-position, 29-position, and 30-position. And the hydrogen atom at a position that is considered to have little influence on the oxidase activity at position 28 is another substituent, such as a lower alkyl group (methyl, ethyl, propyl, butyl, etc.), halogen (fluorine, chlorine, bromine, iodine), Hydroxyl group, ester group (acetoxy, propanoyloxy, etc.), acyl group (formyl, acetyl, propionyl, etc.), alkoxy group (methoxy, ethoxy, propoxy, etc.), amino group, mono- or di-lower alkylamino group (methylamino) , Dimethylamino, ethylamino, etc.), amide group, lower alkylamide group (eg, acetamide), oxo group, cyano , A nitro group, a lower alkylthio group (methylthio, ethylthio, etc.), a compound substituted with a functional group such as a sulfonyl group (mesyl, ethylsulfonyl, etc.), (lower) alkyl esterification of the 28-position carboxyl group or (lower) alkyl- Or (lower) dialkyl-amidated compounds. Further, triterpene saponins in which a monosaccharide such as glucose or a plurality of sugars are attached to the hydroxyl group, hydroxymethyl group or carboxyl group of these sites may be used.
 本発明の28位水酸化酵素の基質となる好ましいトリテルペン化合物としては、βアミリン(olean-12-en-3β-ol)、αアミリン(urs-12-en-3β-ol)、ルペオール(lup-20(29)-en-3β-ol)、これらの誘導体などの五環系トリテルペン化合物が挙げられる。置換誘導体の置換位置および置換基は、上記例示と同様である。本発明の方法により、28位酸化酵素の作用によって基質となる化合物から28位のメチル基がヒドロキシメチル基またはカルボキシル基に変換された五環系トリテルペン化合物が得られる。 Preferred triterpene compounds that serve as substrates for the 28-position hydroxylase of the present invention include β-amylin (olean-12-en-3β-ol), α-amylin (urs-12-en-3β-ol), lupeol (lup- 20 (29) -en-3β-ol) and pentacyclic triterpene compounds such as derivatives thereof. The substitution position and substituent of the substituted derivative are the same as those exemplified above. By the method of the present invention, a pentacyclic triterpene compound in which the methyl group at the 28-position is converted into a hydroxymethyl group or a carboxyl group from the compound serving as a substrate by the action of the 28-position oxidase is obtained.
 これら基質は2,3-オキシドスクアレンから、βアミリン合成酵素の作用によってβアミリンが合成され、ルペオール合成酵素の作用によってルペオールが合成され、ならびに、αアミリン合成酵素の作用によってαアミリンが合成される(P.M.Dewick, Medicinal Natural Product, 3rd ed., John Wiley & Sons, 2009)。これらの合成酵素に関する配列情報およびクローニングについては、種々の植物の例えば根や種子由来のcDNAライブラリーからクローニングされて配列決定されており、すでに公知である。βアミリン合成酵素については、H. Hayashi et al., Biol. Pharma. Bull. 24(8):912-916 (2001)、T. Kushiro et al., Eur. J. Biochem. 256:238-244 (1998)、米国特許No. 7,186,884、WO 2003/095615、EMBL Accession No. AY095999およびAAM23264.1(Glycine max)などに記載されている。ルペオール合成酵素については、J. B. Herrera et al., Phytochemistry 49(7):1905-1911 (1998)、T. Kushiro et al., J.Am. Chem. Soc. 122(29):6816-6824 (2000)、GenBank (NCBI) Accession No. NM_179572およびNo. NM_106546 (Arabidopsis thaliana)などに記載されている。αアミリン合成酵素については、M. Morita et al., Eur. J. Biochem. 267:3453-3460 (2000)などに記載されている。これらの合成酵素は、例えばオオムギ、マメ、ピーナッツ、シュガービート、コムギ、オートムギ、馬鈴薯、ニンニク、タマネギ、アスパラガス、茶、イネ、ライムギ、ダイズ、イチゴ、ヒマワリ、トマトなどの植物に存在することが知られている(米国特許No. 7,186,884)ので、必要に応じて、これらの植物から上記文献記載のクローニング手法を用いて上記のβアミリン合成酵素、αアミリン合成酵素およびルペオール合成酵素をコードするDNAを取得し、周知のDNA組換え技術、PCR法などを使用して該DNAを微生物細胞または植物細胞に導入して該合成酵素を発現するようにすることも可能である。このようにして得られた形質転換細胞または植物細胞から再生されたトランスジェニック植物は、これにさらに28位酸化酵素をコードするDNAを発現可能に組み込むことによって、オレアノール酸、ウルソール酸、ベツリン酸などの、28位がカルボキシル化された五環系トリテルペンを生成可能になる。 These substrates are synthesized from 2,3-oxide squalene by the action of β-amylin synthase, β-amylin is synthesized by the action of lupeol synthase, and α-amylin is synthesized by the action of α-amylin synthase. (P.M. Dewick, Medicinal Natural Product, 3rd ed., John Wiley & Sons, 2009). The sequence information and cloning relating to these synthases have already been known by cloning and sequencing from cDNA libraries derived from various plants such as roots and seeds. For β-amylin synthase, see H.C. Hayashi et al. , Biol. Pharma. Bull. 24 (8): 912-916 (2001), T.M. Kushiro et al. , Eur. J. Biochem. 256: 238-244 (1998), U.S. Pat. 7,186,884, WO 2003/095615, EMBL Accession No. AY095999 and AAM23264.1 (Glycine max). For lupeol synthase, see J. et al. B. Herrera et al. , Phytochemistry 49 (7): 1905-1911 (1998), T .; Kushiro et al. , J. Am. Chem. Soc. 122 (29): 6816-6824 (2000), GenBank (NCBI) Accession No. NM_179572 and No. NM_106546 (Arabidopsis thaliana). For α-amylin synthase, see M.C. Morita et al. , Eur. J. Biochem. 267: 3453-3460 (2000). These synthases may be present in plants such as barley, beans, peanuts, sugar beets, wheat, oats, potatoes, garlic, onions, asparagus, tea, rice, rye, soybeans, strawberries, sunflowers, tomatoes, etc. As known (US Patent No. 7,186,884), if necessary, the above-mentioned β-amylin synthase, α-amylin synthase and lupeol synthase can be obtained from these plants using the cloning method described in the above-mentioned literature. It is also possible to obtain a DNA encoding, and introduce the DNA into a microbial cell or plant cell using a known DNA recombination technique, PCR method or the like to express the synthetic enzyme. Transgenic plants regenerated from the transformed cells or plant cells obtained in this way are further incorporated with a DNA encoding the 28-position oxidase so that they can be expressed, whereby oleanolic acid, ursolic acid, betulinic acid, etc. It is possible to produce a pentacyclic triterpene having a carboxylate at position 28.
 本発明で使用可能な28位酸化酵素は、以下のものに限定されないが、例えばタルウマゴヤシ、トマト、ミヤコグサ、オリーブ、ビート、コーヒーおよびブドウ由来のものであり、それぞれ、例えば配列番号2~8に示されるアミノ酸配列を含む酵素を包含する。さらに、本発明で使用可能な該酵素は、配列番号2~8に示されるアミノ酸配列に部分的に変異を有するアミノ酸配列を含み、かつ、オレアノール酸合成酵素活性を有するタンパク質を包含する。 The 28-position oxidase that can be used in the present invention is not limited to the following, but is derived from, for example, Taruma palm, tomato, Miyakogusa, olive, beet, coffee, and grape, and each includes, for example, SEQ ID NOs: 2 to 8. Includes an enzyme comprising the amino acid sequence shown. Furthermore, the enzyme that can be used in the present invention includes a protein having an amino acid sequence partially having a mutation in the amino acid sequences shown in SEQ ID NOs: 2 to 8 and having oleanolic acid synthase activity.
 上記の特定のアミノ酸配列を含むオレアノール酸合成酵素のなかで、配列番号4及び6~8のいずれかのアミノ酸配列を含む酵素、並びに、該酵素をコードするDNA、具体的に配列番号12及び14~16のいずれかに示される塩基配列を含むDNAは、全長配列及び機能についてこれまで知られていなかったために、新規である。 Among the oleanolic acid synthases containing the specific amino acid sequence described above, an enzyme comprising any one of the amino acid sequences of SEQ ID NOs: 4 and 6-8, and a DNA encoding the enzyme, specifically SEQ ID NOs: 12 and 14 The DNA containing the base sequence shown in any one of ˜16 is novel because the full-length sequence and function have not been known so far.
 ここで、「部分的に変異を有するアミノ酸配列」としては、配列番号2~8に示されるアミノ酸配列において1もしくは複数、好ましくは1もしくは数個、例えば、1~10個、好ましくは1~7個、さらに好ましくは1~5個、さらに好ましくは1~3個、さらに好ましくは1個もしくは2個、のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列、または該アミノ酸配列と、BLAST、FASTAなどの相同性検索のための公知のアルゴリズム(例えば、デフォルトすなわち初期設定のパラメータを使用する。)を用いて計算したときに、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも85%、好ましくは少なくとも90%、さらに好ましくは少なくとも95%、特に好ましくは少なくとも97%、98%もしくは99%の配列同一性を有しているアミノ酸配列が挙げられる。因みに、上記配列番号2~8に示されるアミノ酸配列を含む酵素タンパク質間の配列同一性は約70~約80%である。 Here, the “partially mutated amino acid sequence” is one or more, preferably 1 or several, for example 1 to 10, preferably 1 to 7 in the amino acid sequences shown in SEQ ID NOs: 2 to 8. , More preferably 1 to 5, more preferably 1 to 3, more preferably 1 or 2 amino acid sequences deleted, substituted, inserted and / or added, or the amino acid sequence , At least 60%, at least 70%, at least 80%, at least when calculated using known algorithms for homology searches such as BLAST, FASTA (eg, using default or default parameters) 85%, preferably at least 90%, more preferably at least 95%, particularly preferably at least 7%, and is has an amino acid sequence which has 98% or 99% sequence identity. Incidentally, the sequence identity between enzyme proteins containing the amino acid sequences shown in SEQ ID NOs: 2 to 8 is about 70 to about 80%.
 本明細書で使用する「配列同一性」は、例えば2つのアミノ酸配列または塩基(ヌクレオチド)配列をアラインメントしたとき(ただしギャップを導入してもよいしギャップを導入しなくてもよいが、好ましくはギャップを導入する。)、ギャップを含むアミノ酸または塩基の総数に対する同一アミノ酸または塩基の数の割合(%)を指す。 As used herein, “sequence identity” means, for example, when two amino acid sequences or base (nucleotide) sequences are aligned (however, gaps may or may not be introduced, but preferably Introducing gaps) refers to the percentage of the number of identical amino acids or bases relative to the total number of amino acids or bases containing the gaps.
 本発明の28位酸化酵素は、植物体から単離された天然の28位酸化酵素および遺伝子工学的手法により製造された組換え28位酸化酵素を含む。 The 28th oxidase of the present invention includes a natural 28th oxidase isolated from a plant and a recombinant 28th oxidase produced by a genetic engineering technique.
2. 28位酸化酵素をコードするDNA
 本明細書中で使用する「DNA」という用語は、ゲノムDNA、遺伝子、cDNAおよび化学修飾DNAを包含するものとする。
2. DNA encoding position 28 oxidase
As used herein, the term “DNA” is intended to encompass genomic DNA, genes, cDNA and chemically modified DNA.
 本発明で使用する28位酸化酵素をコードするDNAは、ある特定の五環系トリテルペン化合物、とりわけオレアナン型、ウルサン型又はルパン型の五環系トリテルペン化合物の28位のメチル基を酸化してヒドロキシメチル基またはカルボキシル基に変換する活性を有する酵素をコードするDNAである。 The DNA encoding the 28-position oxidase used in the present invention is obtained by oxidizing the methyl group at the 28-position of a specific pentacyclic triterpene compound, particularly an oleanane type, ursan type or lupine type pentacyclic triterpene compound. It is a DNA encoding an enzyme having an activity of converting to a methyl group or a carboxyl group.
 上記の28位酸化酵素をコードするDNAは、例えば上記配列番号2~8に示されるアミノ酸配列をそれぞれコードする塩基配列を含むものであり、具体的には配列番号10~16に示される塩基配列を含むものである。 The DNA encoding the 28th oxidase includes, for example, base sequences encoding the amino acid sequences shown in SEQ ID NOs: 2 to 8, and specifically, the base sequences shown in SEQ ID NOs: 10 to 16, respectively. Is included.
 本発明で使用可能な28位酸化酵素をコードするDNAはまた、配列番号10~16に示される各塩基配列に相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA、あるいは、配列番号10~16に示される塩基配列と、BLAST、FASTAなどの相同性検索のための公知のアルゴリズム(例えば、デフォルトすなわち初期設定のパラメータを使用する。)を用いて計算したときに、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも85%、好ましくは少なくとも90%、さらに好ましくは少なくとも95%、特に好ましくは少なくとも97%、98%もしくは99%の配列同一性を有するDNA、あるいは、これらのDNAによりコードされるタンパク質のアミノ酸配列に対して1もしくは複数、好ましくは1もしくは数個、例えば、1~10個、好ましくは1~7個、さらに好ましくは1~5個、さらに好ましくは1~3個、さらに好ましくは1個もしくは2個、のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列を含むタンパク質をコードするDNAであるが、ただし28位酸化酵素活性を有するタンパク質をコードするDNAを包含する。 The DNA encoding the 28-position oxidase that can be used in the present invention is also a DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to each base sequence shown in SEQ ID NOs: 10 to 16, or When calculated using the nucleotide sequences shown in SEQ ID NOs: 10 to 16 and a known algorithm for homology search such as BLAST, FASTA (eg, using default or default parameters), DNA having sequence identity of 60%, at least 70%, at least 80%, at least 85%, preferably at least 90%, more preferably at least 95%, particularly preferably at least 97%, 98% or 99%, or In the amino acid sequence of the protein encoded by these DNAs 1 or more, preferably 1 or several, for example 1 to 10, preferably 1 to 7, more preferably 1 to 5, more preferably 1 to 3, more preferably 1 or 2 Is a DNA encoding a protein containing an amino acid sequence in which a single amino acid is deleted, substituted, inserted and / or added, but includes a DNA encoding a protein having 28-position oxidase activity.
 これらのDNAは、配列番号10~16に示される塩基配列を含むDNAのホモログ(相同体)、アナログ(類似体)または変異体である。このようなDNAは、タルウマゴヤシ、トマト、ミヤコグサ、オリーブ、ビート、コーヒーおよびブドウの他に、オレアノール酸、ウルソール酸またはベツリン酸を産生する植物、例えば前述のクローブ、センブリ、ゲンチアナ、カリン、ウメ、タイム、ナツメ、キンモクセイ、ネズミモチ、サンシュユ、カキ、ビワ、レンギョウ、サンザシ、チクセツニンジン、サトウダイコン、クローブ、タイソウ、ナツメ、カキ、カバノキ科植物などの植物の根、種子などからハイブリダイゼーション、PCR増幅などによって得ることが可能である。 These DNAs are DNA homologues (analogues), analogs (analogues) or mutants containing the nucleotide sequences shown in SEQ ID NOs: 10 to 16. Such DNA can be used in plants producing oleanolic acid, ursolic acid or betulinic acid, such as clove, assembly, gentian, carin, ume, in addition to talum, tomato, cypress, olive, beet, coffee and grape. Hybridization, PCR amplification from roots, seeds, etc. of plants such as thyme, jujube, cinnamon, mouse mochi, sanshuyu, oyster, loquat, forsythia, hawthorn, chikutsujinjin, sugar beet, clove, taisou, jujube, oyster, birch family Etc. can be obtained.
 本明細書中で使用する「ストリンジェントな条件」という用語は、例えば、「1×SSC、0.1% SDS、37℃」程度の条件であり、より厳しい(中ストリンジェントな)条件としては「0.5×SSC、0.1% SDS、42℃」程度の条件であり、さらに厳しい(高ストリンジェントな)条件としては「0.1~0.2×SSC、0.1% SDS、65℃」程度の条件である。ハイブリダイゼーションの後でさらに、例えば0.1×SSC、0.1% SDS、55~68℃で洗浄を行う操作を含んでもよく、この操作によってストリンジェンシーを高めることができる。ここで、1×SSCバッファーは、150 mM塩化ナトリウム、15 mMクエン酸ナトリウム、pH7.0である。 The term “stringent conditions” used in the present specification is, for example, a condition of “1 × SSC, 0.1% SDS, 37 ° C.”, and more severe (medium stringent) conditions include The conditions are about “0.5 × SSC, 0.1% SDS, 42 ° C.”, and more severe (high stringency) conditions are “0.1 to 0.2 × SSC, 0.1% SDS, The condition is about “65 ° C.”. After the hybridization, for example, an operation of washing at 0.1 × SSC, 0.1% SDS, 55 to 68 ° C. may be included, and the stringency can be increased by this operation. Here, the 1 × SSC buffer is 150 mM sodium chloride, 15 mM sodium citrate, pH 7.0.
 ハイブリダイゼーション条件やPCR反応の手順については、例えばF.M. Ausbel et al., Short Protocols in Molecular Biology, 3rd ed., John Wiley & Sons, 1995などに記載されている。 For hybridization conditions and PCR reaction procedures, see, for example, F.A. M.M. Ausbel et al. , Short Protocols in Molecular Biology, 3rd ed. , John Wiley & Sons, 1995, and the like.
 さらに、本発明で使用可能な28位酸化酵素をコードするDNAは、配列番号10~16に示す塩基配列において遺伝暗号の縮重に基く配列(縮重配列)を含むDNAも包含する。 Furthermore, the DNA encoding the 28-position oxidase that can be used in the present invention also includes DNA containing a sequence (degenerate sequence) based on the degeneracy of the genetic code in the base sequences shown in SEQ ID NOs: 10 to 16.
 本発明のDNAは、上記のとおり、28位酸化酵素活性を有するタンパク質、すなわち以下の(a)~(c):
 (a) 配列番号2~8のいずれかに示すアミノ酸配列を含むタンパク質;
 (b) 配列番号2~8のいずれかに示すに示すアミノ酸配列において1または数個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列を含み、かつ、28位酸化酵素活性を有するタンパク質;
 (c) 配列番号2~8のいずれかに示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を含み、かつ、28位酸化酵素活性を有するタンパク質;
のいずれかからなる群から選択されるタンパク質をコードする。
As described above, the DNA of the present invention is a protein having 28-position oxidase activity, that is, the following (a) to (c):
(A) a protein comprising the amino acid sequence shown in any one of SEQ ID NOs: 2 to 8;
(B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 2 to 8, and having 28th oxidase activity ;
(C) a protein comprising an amino acid sequence having 70% or more sequence identity with any of the amino acid sequences shown in SEQ ID NOs: 2 to 8, and having 28th position oxidase activity;
A protein selected from the group consisting of
 さらに具体的には、上記DNAは、以下の(d)~(g): 
 (d) 配列番号10~16のいずれかに示す塩基配列を含むDNA;
 (e) 配列番号10~16のいずれかに示す塩基配列を含むDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、28位酸化酵素活性を有するタンパク質をコードするDNA;
 (f) 配列番号10~16のいずれかに示す塩基配列と70%以上の配列同一性を有する塩基配列を含み、かつ、28位酸化酵素活性を有するタンパク質をコードするDNA;
 (g) 配列番号10~16のいずれかに示す塩基配列において縮重配列を含むDNA;
のいずれかからなる群から選択される。
More specifically, the DNA comprises the following (d) to (g):
(D) a DNA comprising the base sequence shown in any of SEQ ID NOs: 10 to 16;
(E) a protein that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA comprising the base sequence shown in any one of SEQ ID NOs: 10 to 16 and has a 28th position oxidase activity DNA to do;
(F) a DNA comprising a base sequence having 70% or more sequence identity to the base sequence shown in any of SEQ ID NOs: 10 to 16, and encoding a protein having 28th oxidase activity;
(G) DNA containing a degenerate sequence in the base sequence shown in any of SEQ ID NOs: 10 to 16;
Is selected from the group consisting of
3. 組換えベクター
 本発明のDNAは、それを発現可能にするために、制御配列を含む適切なベクターに挿入される。このようにして得られた組換え体DNAが組換えベクターである。
3. Recombinant Vector The DNA of the present invention is inserted into a suitable vector containing regulatory sequences to allow it to be expressed. The recombinant DNA thus obtained is a recombinant vector.
 ベクターとしては、原核または真核生物の細胞で使用可能なあらゆるベクターを意図し、例えば細菌(エシェリシア属、シュードモナス属、バチルス属、ロドコッカス属など)、糸状菌(アスペルギルス属、ニューロスポラ属、フザリウム属、トリコデルマ属、ペニシリウム属など)、担子菌(白色腐朽菌など)、酵母(サッカロマイセス属、ピチア属、カンジダ属など)等の微生物用ベクター、植物細胞用ベクター、昆虫細胞用ベクターなどを使用できる。 As the vector, any vector that can be used in prokaryotic or eukaryotic cells is intended, for example, bacteria (Escherichia, Pseudomonas, Bacillus, Rhodococcus, etc.), filamentous fungi (Aspergillus, Neurospora, Fusarium) , Trichoderma genus, Penicillium genus), basidiomycetes (white rot fungi etc.), yeasts (Saccharomyces genus, Pichia genus, Candida genus etc.) and other microorganism vectors, plant cell vectors, insect cell vectors and the like.
 例えば、細菌用ベクターとしては、pBR、pUC、pET、pBluescriptシリーズのベクター類などが挙げられ、酵母用ベクターとしては、非限定的にpDR196、pYES-DEST 52、Yip5、Yrp17、Yep24などが挙げられ、植物細胞用ベクターとしては、非限定的にpGWB vector、pBiEl2-GUS、pIG121-Hm、pBI121、pBiHyg-HSE、pB119、pBI101、pGV3850、pABH-Hm1などが挙げられ、昆虫細胞用ベクターとしては、非限定的にpBM030、pBM034、pBK283などが挙げられる。 For example, bacterial vectors include pBR, pUC, pET, pBluescript series vectors, and yeast vectors include, but are not limited to, pDR196, pYES-DEST 52, Yip5, Yrp17, Yep24, and the like. Examples of plant cell vectors include, but are not limited to, pGWB vector, pBiEl2-GUS, pIG121-Hm, pBI121, pBiHyg-HSE, pB119, pBI101, pGV3850, pABH-Hm1, and the like. Nonlimiting examples include pBM030, pBM034, pBK283, and the like.
 本発明において使用されるベクターには、プロモーター、ターミネーター、エンハンサー、シャインダルガルノ配列、リボソーム結合配列、シグナル配列等の遺伝子の発現、調節、分泌に関する構成要素が組込まれ、必要に応じて、選択マーカー(例えば、薬剤耐性遺伝子、レポーター遺伝子)を含有する。 The vector used in the present invention incorporates components related to the expression, regulation, and secretion of genes such as a promoter, terminator, enhancer, Shine-Dalgarno sequence, ribosome binding sequence, signal sequence, etc. (For example, drug resistance gene, reporter gene).
 プロモーターには、lacプロモーター、trpプロモーター、recAプロモーター、tacプロモーター、λPLプロモーター、T7プロモーター、CaMV35Sプロモーター、ADH1プロモーター、GALプロモーター、PHO5プロモーター、PGKプロモーター、GAPDHプロモーターなどが非限定的に含まれる。 Promoters include, but are not limited to, lac promoter, trp promoter, recA promoter, tac promoter, λPL promoter, T7 promoter, CaMV35S promoter, ADH1 promoter, GAL promoter, PHO5 promoter, PGK promoter, GAPDH promoter and the like.
 薬剤耐性遺伝子には、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ハイグロマイシン耐性遺伝子などが含まれる。レポーター遺伝子には、lacZ遺伝子、GFP遺伝子、GUS遺伝子、ルシフェラーゼ遺伝子などが含まれる。その他の選択マーカーには、例えばNPTII遺伝子、ジヒドロ葉酸レダクターゼ遺伝子などが含まれる。 Drug resistance genes include kanamycin resistance gene, ampicillin resistance gene, hygromycin resistance gene and the like. Reporter genes include lacZ gene, GFP gene, GUS gene, luciferase gene and the like. Other selectable markers include, for example, NPTII gene, dihydrofolate reductase gene and the like.
 遺伝子の発現、調節、分泌に関する構成要素は、その性質に応じて、それぞれが機能し得る形で組換えベクターに組み込まれることが好ましい。そのような操作は、当業者であれば適切に行うことができる。 It is preferable that the components related to gene expression, regulation, and secretion are incorporated into the recombinant vector in such a manner that they can function according to their properties. Such an operation can be appropriately performed by those skilled in the art.
4. 形質転換体
 本発明の形質転換体は、本発明の組換えベクターを保持する形質転換体である。形質転換体は、28位酸化酵素をコードするDNAを挿入した組換えベクターを、目的DNAが発現し得るように宿主細胞中に導入することにより得ることができる。
4). Transformant The transformant of the present invention is a transformant carrying the recombinant vector of the present invention. A transformant can be obtained by introducing a recombinant vector into which a DNA encoding position 28 oxidase is inserted into a host cell so that the target DNA can be expressed.
 宿主細胞は、ベクターに適したものを使用すればよい。例えば、細菌、糸状菌、酵母等の微生物細胞、植物細胞、昆虫細胞(Sf9など)、動物細胞などが挙げられる。好ましくは、酵母、糸状菌、昆虫細胞または植物細胞である。 Host cells that are suitable for vectors may be used. Examples thereof include microbial cells such as bacteria, filamentous fungi and yeast, plant cells, insect cells (such as Sf9), and animal cells. Yeast, filamentous fungi, insect cells or plant cells are preferred.
 上記の宿主細胞が、αアミリン、βアミリン、ルペオールなどの五環系トリテルペン化合物の生合成系を有している細胞、あるいは、該生合成系を有していない細胞であっても外因的に(または外来的に)αアミリン合成酵素、βアミリン合成酵素、ルペオール合成酵素などのトリテルペン合成酵素をコードするDNAが発現可能に組み込まれた細胞のいずれかである場合には、上記の形質転換によってさらにオレアノール酸合成酵素をコードするDNAが発現可能に含まれるため、これらの細胞を適当な基質を含む培地で培養することによってウルソール酸、オレアノール酸、ベツリン酸を生産することができる。 Even if the host cell is a cell having a biosynthetic system of pentacyclic triterpene compounds such as α-amylin, β-amylin and lupeol, or a cell not having the biosynthetic system, exogenously When (or exogenously) any of cells into which DNA encoding a triterpene synthase such as α-amylin synthase, β-amylin synthase, lupeol synthase and the like is incorporated so that it can be expressed, Furthermore, since DNA encoding oleanolic acid synthase is included so that it can be expressed, ursolic acid, oleanolic acid, and betulinic acid can be produced by culturing these cells in a medium containing an appropriate substrate.
 αアミリン、βアミリン、ルペオールなどの五環系トリテルペン化合物の生合成系を有している細胞には、植物細胞やある特定の酵母細胞、糸状菌細胞のように本来該生合成系を備えている細胞が含まれる。また、上記の生合成系を有していない細胞には、該生合成系に関わる酵素類のゲノム領域を外因的に含む細胞などが包含される。外因的ゲノム領域は、通常、植物由来であり、例えばプラスミド、ファージミド、BAC、PAC、YAC、ウイルスなどのベクターに挿入されて宿主細胞内に移入されうる。 Cells that have a biosynthetic system for pentacyclic triterpene compounds such as α-amylin, β-amylin, and lupeol are originally equipped with such biosynthetic systems, such as plant cells, certain yeast cells, and filamentous fungal cells. Cells are included. Moreover, the cell which does not have said biosynthesis system includes the cell etc. which exogenously contain the genome area | region of the enzymes involved in this biosynthesis system. The exogenous genomic region is usually derived from a plant and can be inserted into a vector such as a plasmid, phagemid, BAC, PAC, YAC, virus, etc. and transferred into a host cell.
 いずれにしても、上記例示の細胞の形質転換によって、該細胞は、場合により誘導的に、オレアノール酸合成酵素を過剰発現する。宿主細胞が真核細胞の場合には、オレアノール酸合成酵素をコードするDNAの5’端にシグナル配列を連結することによって細胞外への該酵素の分泌を可能にする。 In any case, due to transformation of the above-exemplified cells, the cells overexpress oleanolic acid synthase in some cases. When the host cell is a eukaryotic cell, it is possible to secrete the enzyme outside the cell by ligating a signal sequence to the 5 'end of the DNA encoding oleanolic acid synthase.
 組換えベクターの導入方法は、微生物にDNAを導入する方法であれば特に限定されるものではないが、例えばカルシウムイオンを用いる方法[Cohen, S.N.et al.:Proc. Natl. Acad. Sci., USA, 69:2110 (1972)]、エレクトロポレーション法、トリペアレンタルメイティング(tri-parental mating)法、アグロバクテリウム法、プロトプラストもしくはスフェロプラスト融合法、パーティクルガン法などが含まれる。 The method for introducing a recombinant vector is not particularly limited as long as it is a method for introducing DNA into a microorganism. For example, a method using calcium ions [Cohen, S .; N. et al. : Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)], electroporation method, tri-parental mating method, Agrobacterium method, protoplast or spheroplast fusion method, particle gun method and the like.
 さらにまた、形質転換植物体(「トランスジェニック植物」とも称する。)を作出する方法として、ウイルスベクター、アグロバクテリウムのTiプラスミド、Riプラスミド等をベクターとして用いるアグロバクテリウム法が好適に使用できる。宿主植物としては、特に限定されないが、例えばイネ、ムギ、トウモロコシ等の単子葉植物、ダイズ、ナタネ、トマト、バレイショ等の双子葉植物が挙げられる。形質転換植物体は、オレアノール酸合成酵素をコードするDNAを含むベクターで形質転換された植物細胞から植物体を再生させることにより得ることができる。植物細胞からの植物体の再生は公知の方法、例えばカルス培養等により行うことができる。 Furthermore, as a method for producing a transformed plant body (also referred to as “transgenic plant”), an Agrobacterium method using a virus vector, an Agrobacterium Ti plasmid, an Ri plasmid, or the like as a vector can be preferably used. The host plant is not particularly limited, and examples thereof include monocotyledonous plants such as rice, wheat and corn, and dicotyledonous plants such as soybean, rapeseed, tomato and potato. A transformed plant can be obtained by regenerating a plant from a plant cell transformed with a vector containing DNA encoding oleanolic acid synthase. Regeneration of the plant body from the plant cell can be performed by a known method such as callus culture.
5. 本発明のタンパク質の製造法
 本発明のタンパク質は、モレキュラー・クローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された方法等を用い、例えば以下の方法により、本発明のタンパク質をコードするDNAを宿主細胞中で発現させて、製造することができる。本発明のタンパク質をコードするDNAをもとにして、必要に応じて、本発明のタンパク質をコードする部分を含む適当な長さのDNA断片を調製する。また、該タンパク質をコードする部分の塩基配列を、宿主の発現に最適なコドンとなるように、塩基を置換することにより、該タンパク質の生産率を向上させることができる。
5. Production method of the protein of the present invention The protein of the present invention is prepared by using the method described in Molecular Cloning 2nd Edition, Current Protocols in Molecular Biology, etc. The DNA encoding the protein can be produced by expressing it in a host cell. Based on the DNA encoding the protein of the present invention, if necessary, a DNA fragment of an appropriate length containing a portion encoding the protein of the present invention is prepared. Moreover, the production rate of the protein can be improved by substituting the base in the base sequence of the protein-encoding portion so as to be an optimal codon for host expression.
 該DNA断片を適当な発現ベクターのプロモーターの下流に挿入することにより、組換え体DNAを作製する。該組換え体DNAを、該発現ベクターに適合した宿主細胞に導入することにより、本発明のタンパク質を生産する形質転換体を得ることができる。 The recombinant DNA is prepared by inserting the DNA fragment downstream of the promoter of an appropriate expression vector. A transformant producing the protein of the present invention can be obtained by introducing the recombinant DNA into a host cell suitable for the expression vector.
 宿主細胞としては、細菌、酵母、動物細胞、昆虫細胞等、植物細胞等、目的とする遺伝子を発現できるものであればいずれも用いることができる。発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中への組込が可能で、本発明のDNAまたは本発明の製造法に用いられるDNAを転写できる位置にプロモーターを含有しているものが用いられる。 Any host cell can be used as long as it can express the target gene, such as bacteria, yeast, animal cells, insect cells, and plant cells. The expression vector is capable of autonomous replication in the above host cell or can be integrated into a chromosome, and contains a promoter at a position where the DNA of the present invention or the DNA used in the production method of the present invention can be transcribed. Used.
 細菌等の原核生物を宿主細胞として用いる場合は、本発明のDNAまたは本発明の製造法に用いられるDNAを有する組換え体DNAは、原核生物中で自立複製可能であると同時に、プロモーター、リボソーム結合配列、本発明のDNAまたは本発明の製造法に用いられるDNA、転写終結配列より構成された組換え体DNAであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。 When a prokaryotic organism such as a bacterium is used as a host cell, the recombinant DNA having the DNA of the present invention or the DNA used in the production method of the present invention is capable of autonomous replication in a prokaryotic organism, and at the same time a promoter, ribosome It is preferably a recombinant DNA composed of a binding sequence, DNA of the present invention or DNA used in the production method of the present invention, and transcription termination sequence. A gene that controls the promoter may also be included.
 発現ベクターとしては、pBTrp2、pBTac1、pBTac2(いずれもベーリンガーマンハイム社製)、pHelix1(ロシュ・ダイアグノスティクス社製)、pKK233-2(アマシャム・ファルマシア・バイオテク社製)、pSE280(インビトロジェン社製)、pGEMEX-1(プロメガ社製)、pQE-8(キアゲン社製)、pET-3(ノバジェン社製)、pKYP10(特開昭58-110600)、pKYP200[Agric.Biol.Chem.,48,669(1984)]、pLSA1[Agric.Biol.Chem.,53,277(1989)]、pGEL1[Proc.Natl.Acad.Sci.,USA,82,4306(1985)]、pBluescriptII SK(+)、pBluescript II KS(-)(ストラタジーン社製)、pTrS30[エシェリヒア・コリJM109/pTrS30(FERM BP-5407)より調製]、pTrS32[エシェリヒア・コリJM109/pTrS32(FERM BP-5408)より調製]、pPAC31(WO98/12343)、pUC19[Gene,33,103(1985)]、pSTV28(宝酒造社製)、pUC118(宝酒造社製)、pPA1(特開昭63-233798)等を例示することができる。 As expression vectors, pBTrp2, pBTac1, pBTac2 (all manufactured by Boehringer Mannheim), pHelix1 (manufactured by Roche Diagnostics), pKK233-2 (manufactured by Amersham Pharmacia Biotech), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by Qiagen), pET-3 (manufactured by Novagen), pKYP10 (Japanese Patent Laid-Open No. 58-110600), pKYP200 [Agri. Biol. Chem. , 48, 669 (1984)], pLSA1 [Agric. Biol. Chem. , 53, 277 (1989)], pGEL1 [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)], pBluescript II SK (+), pBluescript II KS (-) (manufactured by Stratagene), pTrS30 [Escherichia coli JM109 / pTrS30 (FERM BP-5407)] [prepared from pTrS32] Escherichia coli JM109 / pTrS32 (FERM BP-5408)], pPAC31 (WO 98/12343), pUC19 [Gene, 33, 103 (1985)], pSTV28 (Takara Shuzo), pUC118 (Takara Shuzo), pPA1 (Japanese Patent Laid-Open No. 63-233798) can be exemplified.
 プロモーターとしては、エシェリヒア・コリ等の宿主細胞中で機能するものであればいかなるものでもよい。例えば、trpプロモーター(Ptrp)、lacプロモーター(Plac)、PLプロモーター、PRプロモーター、PSEプロモーター等の、大腸菌やファージ等に由来するプロモーター、SPO1プロモーター、SPO2プロモーター、penPプロモーター等をあげることができる。またPtrpを2つ直列させたプロモーター、tacプロモーター、lacT7プロモーター、let Iプロモーターのように人為的に設計改変されたプロモーター等も用いることができる。 Any promoter can be used as long as it functions in a host cell such as Escherichia coli. For example, promoters derived from Escherichia coli or phage, such as trp promoter (Ptrp), lac promoter (Plac), PL promoter, PR promoter, PSE promoter, SPO1 promoter, SPO2 promoter, penP promoter and the like can be mentioned. In addition, an artificially designed and modified promoter such as a promoter in which two Ptrps are connected in series, a tac promoter, a lacT7 promoter, and a let I promoter can be used.
 リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。 It is preferable to use a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the start codon is adjusted to an appropriate distance (eg, 6 to 18 bases).
 本発明のDNAまたは本発明の製造法に用いられるDNAを発現ベクターに結合させた組換え体DNAにおいては、転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。 In the recombinant DNA in which the DNA of the present invention or the DNA used in the production method of the present invention is bound to an expression vector, a transcription termination sequence is not necessarily required, but a transcription termination sequence should be placed immediately below the structural gene. Is preferred.
 原核生物としては、エシェリヒア属、セラチア(Serratia)属、バチルス属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ミクロバクテリウム属(Microbacterium)、シュードモナス(Pseudomonas)属に属する微生物等をあげることができる。 Prokaryotes include microorganisms belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Pseudomonas, etc. Can give.
 組換え体DNAの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc.Natl.Acad.Sci.,USA,69,2110(1972)]、プロトプラスト法(特開昭63-248394)、エレクトロポレーション法[Nucleic Acids Res.,16,6127(1988)]等をあげることができる。 As a method for introducing recombinant DNA, any method can be used as long as it is a method for introducing DNA into the host cell. For example, a method using calcium ions [Proc. Natl. Acad. Sci. , USA, 69, 2110 (1972)], protoplast method (Japanese Patent Laid-Open No. Sho 63-248394), electroporation method [Nucleic Acids Res. 16, 6127 (1988)].
 酵母菌株を宿主細胞として用いる場合には、発現ベクターとして、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)、YCp50(ATCC37419)、pHS19、pHS15等を用いることができる。 When yeast strains are used as host cells, for example, YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15 and the like can be used as an expression vector.
 プロモーターとしては、酵母菌株中で機能するものであればいずれのものを用いてもよく、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal 1プロモーター、gal 10プロモーター、ヒートショックポリペプチドプロモーター、MFα1 プロモーター、CUP 1プロモーター等のプロモーターをあげることができる。 Any promoter may be used as long as it functions in yeast strains. For example, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock polypeptide promoter And promoters such as MFα1 promoter and CUP 1 promoter.
 宿主細胞としては、サッカロマイセス(Saccharomyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、クルイベロマイセス(Kluyveromyces)属、トリコスポロン(Trichosporon)属、シワニオマイミセス(Schwanniomyces)属、ピチア(Pichia)属、またはキャンディダ(Candida)属等に属する酵母菌株をあげることができ、具体的には、サッカロマイセス・セレビシエ(Saccharomycescerevisiae)、シゾサッカロマイセス・ポンベ(Schizosaccharomycespombe)、クルイベロマイセス・ラクティス(Kluyveromyceslactis)、トリコスポロン・プルランス(Trichosporonpullulans)、シワニオマイセス・アルビウス(Schwanniomycesalluvius)、ピチア・パストリス(Pichiapastoris)、キャンディダ・ウティリス(Candidautilis)等をあげることができる。 Host cells include the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Swaniomyces (Schwanimyces) Examples include yeast strains belonging to the genus Candida and the like, and specifically, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactyclone Lancetis ( richosporonpullulans), Shiwaniomaisesu-Arubiusu (Schwanniomycesalluvius), Pichia pastoris (Pichiapastoris), it is possible to increase the Candida utilis (Candidautilis) and the like.
 組換え体DNAの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法[Methods Enzymol.,194,182(1990)]、スフェロプラスト法[Proc.Natl.Acad.Sci.,USA,81,4889(1984)]、酢酸リチウム法[J.Bacteriol.,153,163(1983)]等をあげることができる。 As a method for introducing recombinant DNA, any method can be used as long as it is a method for introducing DNA into yeast. For example, electroporation method [Methods Enzymol. , 194, 182 (1990)], spheroplast method [Proc. Natl. Acad. Sci. USA, 81, 4889 (1984)], lithium acetate method [J. Bacteriol. , 153, 163 (1983)].
 動物細胞を宿主として用いる場合には、発現ベクターとして、例えば、pcDNAI、pcDM8(フナコシ社より市販)、pAGE107(特開平3-22979)、pAS3-3(特開平2-227075)、pCDM8[Nature,329,840(1987)]、pcDNAI/Amp(インビトロジェン社製)、pREP4(インビトロジェン社製)、pAGE103[J.Biochem,101,1307(1987)]、pAGE210、pAMo、pAMoA等を用いることができる。 When animal cells are used as hosts, expression vectors include, for example, pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 (JP-A-3-22979), pAS3-3 (JP-A-2-222775), pCDM8 [Nature, 329, 840 (1987)], pcDNAI / Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 [J. Biochem, 101, 1307 (1987)], pAGE210, pAMo, pAMoA and the like can be used.
 プロモーターとしては、動物細胞中で機能するものであればいずれも用いることができ、例えば、サイトメガロウイルス(CMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーターあるいはメタロチオネインのプロモーター、レトロウイルスのプロモーター、ヒートショックプロモーター、SRαプロモーター等をあげることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。 Any promoter can be used as long as it functions in animal cells. For example, cytomegalovirus (CMV) IE (immediate early) gene promoter, SV40 early promoter or metallothionein promoter, retrovirus Promoters, heat shock promoters, SRα promoters, and the like. In addition, an enhancer of human CMV IE gene may be used together with a promoter.
 宿主細胞としては、マウス・ミエローマ細胞、ラット・ミエローマ細胞、マウス・ハイブリドーマ細胞、ヒトの細胞であるナマルバ(Namalwa)細胞またはナマルバKJM-1細胞、ヒト胎児腎臓細胞、ヒト白血病細胞、アフリカミドリザル腎臓細胞、チャイニーズ・ハムスターの細胞であるCHO細胞、HBT5637(特開昭63-299)等をあげることができる。 Host cells include mouse myeloma cells, rat myeloma cells, mouse hybridoma cells, human cells such as Namalwa cells or Namalva KJM-1 cells, human fetal kidney cells, human leukemia cells, African green monkey kidney cells CHO cells which are Chinese hamster cells, HBT5637 (Japanese Patent Laid-Open No. 63-299), and the like.
 マウス・ミエローマ細胞としては、SP2/0、NSO等、ラット・ミエローマ細胞としてはYB2/0等、ヒト胎児腎臓細胞としてはHEK293(ATCC CRL-1573)、ヒト白血病細胞としてはBALL-1等、アフリカミドリザル腎臓細胞としてはCOS-1、COS-7等をあげることができる。 As mouse myeloma cells, SP2 / 0, NSO, etc., as rat myeloma cells, YB2 / 0, etc., as human embryonic kidney cells, HEK293 (ATCC CRL-1573), as human leukemia cells, as BALL-1, etc., Africa Examples of green monkey kidney cells include COS-1, COS-7, and the like.
 組換え体DNAの導入方法としては、動物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法[Cytotechnology,3,133(1990)]、リン酸カルシウム法(特開平2-227075)、リポフェクション法[Proc.Natl.Acad.Sci.,USA,84,7413(1987)]、Virology,52,456(1973)に記載の方法等をあげることができる。 As a method for introducing recombinant DNA, any method can be used as long as it is a method for introducing DNA into animal cells. For example, electroporation method [Cytotechnology, 3, 133 (1990)], calcium phosphate method (Japanese Patent Laid-Open No. Hei. 2-227075), lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)], Virology, 52, 456 (1973), and the like.
 昆虫細胞を宿主として用いる場合には、例えばBaculovirus Expression Vectors,A Laboratory Manual,W.H.Freeman and Company,New York(1992)、カレント・プロトコールズ・イン・モレキュラー・バイオロジー、Molecular Biology,A Laboratory Manual、Bio/Technology,6,47(1988)等に記載された方法によって、タンパク質を生産することができる。 In the case of using insect cells as a host, for example, Baculovirus Expression Vectors, A Laboratory Manual, W., et al. H. Proteins are produced by the methods described in Freeman and Company, New York (1992), Current Protocols in Molecular Biology, Molecular Biology, A Laboratory Manual, Bio / Technology, 6, 47 (1988), etc. can do.
 即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、タンパク質を生産させることができる。 That is, the recombinant gene transfer vector and baculovirus are co-introduced into insect cells to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further infected into insect cells to produce proteins. it can.
 該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、pBlueBacIII(いずれもインビトロジェン社製)等をあげることができる。 Examples of the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen) and the like.
 バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus)等を用いることができる。 As the baculovirus, for example, Autographa californica nucleopolyhydrosis virus, which is a virus that infects night-spotted insects, can be used.
 昆虫細胞としては、スポドプテラ・フルギペルダ(Spodopterafrugiperda)の卵巣細胞、トリコプルシア・ニ(Trichoplusiani)の卵巣細胞、カイコ卵巣由来の培養細胞等を用いることができる。 As the insect cells, podocytes of Spodoptera frugiperda, ovary cells of Trichoplusiani, cultured cells derived from silkworm ovary, and the like can be used.
 スポドプテラ・フルギペルダの卵巣細胞としてはSf9、Sf21(バキュロウイルス・イクスプレッション・ベクターズ ア・ラボラトリー・マニュアル)等、トリコプルシア・ニの卵巣細胞としてはHigh5、BTI-TN-5B1-4(インビトロジェン社製)等、カイコ卵巣由来の培養細胞としてはボンビクス・モリ(Bombyxmori)N4等をあげることができる。 Spodoptera frugiperda ovary cells such as Sf9, Sf21 (Baculovirus Expression Vectors A Laboratory Manual), etc., Trichopulcia ni ovary cells High 5, BTI-TN-5B1-4 (manufactured by Invitrogen), etc. Examples of the cultured cells derived from silkworm ovary include Bombyxmori N4.
 組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法(特開平2-227075)、リポフェクション法[Proc.Natl.Acad.Sci.,USA,84,7413(1987)]等をあげることができる。 Examples of the method for co-introducing the recombinant gene introduction vector and the baculovirus into insect cells for preparing a recombinant virus include, for example, the calcium phosphate method (Japanese Patent Laid-Open No. 227075), the lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
 植物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、Tiプラスミド、タバコモザイクウイルスベクター等をあげることができる。 When plant cells are used as host cells, examples of expression vectors include Ti plasmids and tobacco mosaic virus vectors.
 プロモーターとしては、植物細胞中で機能するものであればいずれのものを用いてもよく、例えば、カリフラワーモザイクウイルス(CaMV)の35Sプロモーター、イネアクチン1プロモーター等をあげることができる。 Any promoter may be used as long as it functions in plant cells, and examples thereof include cauliflower mosaic virus (CaMV) 35S promoter, rice actin 1 promoter and the like.
 宿主細胞としては、タバコ、ジャガイモ、トマト、ニンジン、ダイズ、アブラナ、アルファルファ、イネ、コムギ、オオムギ等の植物細胞等をあげることができる。 Examples of host cells include plant cells such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat and barley.
 組換えベクターの導入方法としては、植物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、アグロバクテリウム(Agrobacterium)を用いる方法(特開昭59-140885、特開昭60-70080、WO94/00977)、エレクトロポレーション法(特開昭60-251887)、パーティクルガン(遺伝子銃)を用いる方法(特許第2606856、特許第2517813)等をあげることができる。 As a method for introducing a recombinant vector, any method can be used as long as it is a method for introducing DNA into plant cells. For example, a method using Agrobacterium (JP 59-140885, JP 60). -70080, WO94 / 00977), electroporation method (Japanese Patent Laid-Open No. Sho 60-251887), a method using a particle gun (gene gun) (Patent No. 2606856, Patent No. 2517813), and the like.
 酵母、動物細胞、昆虫細胞または植物細胞により発現させた場合には、糖あるいは糖鎖が付加されたタンパク質を得ることができる。 When expressed in yeast, animal cells, insect cells, or plant cells, a protein with a sugar or sugar chain added can be obtained.
 以上のようにして得られる形質転換体を培地に培養し、培養物中に本発明のタンパク質を生成蓄積させ、該培養物から採取することにより、該タンパク質を製造することができる。 The transformant obtained as described above is cultured in a medium, the protein of the present invention is produced and accumulated in the culture, and the protein can be produced by collecting from the culture.
 本発明のタンパク質を製造するための上記形質転換体の宿主としては、細菌、糸状菌、酵母等の微生物細胞、植物細胞、昆虫細胞(Sf9など)、動物細胞などが挙げられる。好ましくは、酵母、糸状菌、昆虫細胞または植物細胞である。 Examples of the host of the transformant for producing the protein of the present invention include microbial cells such as bacteria, filamentous fungi and yeast, plant cells, insect cells (Sf9 and the like), animal cells and the like. Yeast, filamentous fungi, insect cells or plant cells are preferred.
 上記形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。 The method of culturing the above transformant in a medium can be performed according to a usual method used for host culture.
 エシェリヒア・コリ等の原核生物あるいは酵母等の真核生物を宿主として得られた形質転換体を培養する培地としては、該生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。 As a medium for culturing a transformant obtained by using a prokaryote such as Escherichia coli or a eukaryote such as yeast as a host, the medium contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the organism, Either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
 炭素源としては、該生物が資化し得るものであればよく、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類等を用いることができる。 The carbon source may be anything that can be assimilated by the organism, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, organic acids such as acetic acid and propionic acid, ethanol, Alcohols such as propanol can be used.
 窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸もしくは有機酸のアンモニウム塩、その他の含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体、およびその消化物等を用いることができる。 Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein A hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented cells, digests thereof, and the like can be used.
 無機塩としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を用いることができる。 As the inorganic salt, monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like can be used.
 培養は、通常振盪培養または深部通気攪拌培養等の好気的条件下で行う。培養温度は15~40℃がよく、培養時間は、通常5時間~7日間である。培養中pHは3.0~9.0に保持する。pHの調整は、無機または有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニア等を用いて行う。 Cultivation is usually performed under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is preferably 15 to 40 ° C., and the culture time is usually 5 hours to 7 days. During the culture, the pH is maintained at 3.0 to 9.0. The pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.
 また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。 Moreover, antibiotics such as ampicillin and tetracycline may be added to the medium as needed during the culture.
 プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。 When culturing a microorganism transformed with an expression vector using an inducible promoter as a promoter, an inducer may be added to the medium as necessary. For example, isopropyl-β-D-thiogalactopyranoside is used when cultivating a microorganism transformed with an expression vector using the lac promoter, and indole acrylic is used when culturing a microorganism transformed with an expression vector using the trp promoter. An acid or the like may be added to the medium.
 動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地[J.Am.Med.Assoc.,199,519(1967)]、イーグル(Eagle)のMEM培地[Science,122,501(1952)]、DMEM培地[Virology,8,396(1959)]、199培地[Proc.Soc.Biol.Med.,73,1(1950)]またはこれら培地に牛胎児血清等を添加した培地等を用いることができる。 As a medium for culturing a transformant obtained using animal cells as a host, a generally used RPMI 1640 medium [J. Am. Med. Assoc. , 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], DMEM medium [Virology, 8, 396 (1959)], 199 medium [Proc. Soc. Biol. Med. 73, 1 (1950)] or a medium obtained by adding fetal bovine serum or the like to these mediums.
 培養は、通常pH6~8、25~40℃、5%CO存在下等の条件下で1~7日間行う。 Cultivation is usually performed for 1 to 7 days under conditions such as pH 6 to 8, 25 to 40 ° C., and the presence of 5% CO 2 .
 また、培養中必要に応じて、カナマイシン、ペニシリン、ストレプトマイシン等の抗生物質を培地に添加してもよい。 In addition, antibiotics such as kanamycin, penicillin, streptomycin and the like may be added to the medium as needed during culture.
 昆虫細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているTNM-FH培地(ファーミンジェン社製)、Sf-900 II SFM培地(ライフ・テクノロジーズ社製)、ExCell400、ExCell405[いずれもJRHバイオサイエンシーズ社製]、Grace’s Insect Medium[Nature,195,788(1962)]等を用いることができる。 As a medium for culturing a transformant obtained using insect cells as a host, commonly used TNM-FH medium (manufactured by Farmingen), Sf-900 II SFM medium (manufactured by Life Technologies), ExCell400 ExCell405 [all manufactured by JRH Biosciences], Grace's Insect Medium [Nature, 195, 788 (1962)] and the like can be used.
 培養は、通常pH6~7、25~30℃等の条件下で1~5日間行う。 Cultivation is usually carried out for 1 to 5 days under conditions of pH 6-7, 25-30 ° C.
 また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。 In addition, an antibiotic such as gentamicin may be added to the medium as needed during the culture.
植物細胞を宿主として得られた形質転換体は、細胞として、または植物の細胞や器官に分化させて培養することができる。該形質転換体を培養する培地としては、一般に使用されているムラシゲ・アンド・スクーグ(MS)培地、ホワイト(White)培地、またはこれら培地にオーキシン、サイトカイニン等、植物ホルモンを添加した培地等を用いることができる。 A transformant obtained using a plant cell as a host can be cultured as a cell or differentiated into a plant cell or organ. As a medium for culturing the transformant, a commonly used Murashige and Skoog (MS) medium, White medium, or a medium in which plant hormones such as auxin and cytokinin are added to these mediums or the like is used. be able to.
 培養は、通常pH5~9、20~40℃の条件下で3~60日間行う。 Cultivation is usually carried out for 3 to 60 days under conditions of pH 5 to 9 and 20 to 40 ° C.
また、培養中必要に応じて、カナマイシン、ハイグロマイシン等の抗生物質を培地に添加してもよい。 Moreover, you may add antibiotics, such as kanamycin and a hygromycin, to a culture medium as needed during culture | cultivation.
 上記のとおり、本発明のタンパク質をコードするDNAを発現ベクターに連結した組換え体DNAを保有する微生物、昆虫細胞、動物細胞、あるいは植物細胞由来の形質転換体を、通常の培養方法に従って培養し、本発明のタンパク質を生成蓄積させ、該培養物より該タンパク質を採取することにより、該タンパク質を製造することができる。 As described above, a transformant derived from a microorganism, insect cell, animal cell, or plant cell having a recombinant DNA in which the DNA encoding the protein of the present invention is linked to an expression vector is cultured according to a normal culture method. The protein of the present invention can be produced and accumulated, and the protein can be produced by collecting the protein from the culture.
 本発明のタンパク質の生産方法としては、宿主細胞内に生産させる方法、宿主細胞外に分泌させる方法、あるいは宿主細胞外膜上に生産させる方法があり、選択した方法に応じて、生産させるタンパク質の構造を変えることができる。 The production method of the protein of the present invention includes a method of producing in the host cell, a method of secreting it out of the host cell, or a method of producing it on the outer membrane of the host cell. The structure can be changed.
 本発明のタンパク質が宿主細胞内あるいは宿主細胞外膜上に生産される場合、ポールソンらの方法[J.Biol.Chem.,264,17619(1989)]、ロウらの方法[Proc.Natl.Acad.Sci.,USA,86,8227(1989)、Genes Develop.,4,1288(1990)]、または特開平05-336963、WO94/23021等に記載の方法を準用することにより、該タンパク質を宿主細胞外に積極的に分泌させることができる。 When the protein of the present invention is produced in the host cell or on the host cell outer membrane, the method of Paulson et al. [J. Biol. Chem. , 264, 17619 (1989)], the method of Lowe et al. [Proc. Natl. Acad. Sci. USA, 86, 8227 (1989), Genes Develop. , 4, 1288 (1990)], or by applying the method described in JP-A-05-336963, WO94 / 23021, etc., the protein can be actively secreted outside the host cell.
 すなわち、遺伝子組換えの手法を用いて、本発明のタンパク質の活性部位を含むタンパク質の手前にシグナルペプチドを付加した形で生産させることにより、該タンパク質を宿主細胞外に積極的に分泌させることができる。 That is, by using a gene recombination technique to produce a protein containing the active site of the protein of the present invention in the form of a signal peptide added, the protein can be actively secreted outside the host cell. it can.
 また、特開平2-227075号公報に記載されている方法に準じて、ジヒドロ葉酸還元酵素遺伝子等を用いた遺伝子増幅系を利用して生産量を上昇させることもできる。 Further, according to the method described in JP-A-2-227075, the production amount can be increased by using a gene amplification system using a dihydrofolate reductase gene or the like.
 さらに、遺伝子導入した動物または植物の細胞を再分化させることにより、遺伝子が導入された動物個体(トランスジェニック非ヒト動物)または植物個体(トランスジェニック植物)を造成し、これらの個体を用いて本発明のタンパク質を製造することもできる。 Furthermore, by redifferentiating the cells of the transgenic animal or plant, the animal individual (transgenic non-human animal) or plant individual (transgenic plant) into which the gene has been introduced is created, Inventive proteins can also be produced.
 本発明のタンパク質を生産する形質転換体が動物個体または植物個体の場合は、通常の方法に従って、飼育または栽培し、該タンパク質を生成蓄積させ、該動物個体または植物個体より該タンパク質を採取することにより、該タンパク質を製造することができる。 When the transformant producing the protein of the present invention is an animal individual or a plant individual, it is raised or cultivated according to a usual method, the protein is produced and accumulated, and the protein is collected from the animal individual or plant individual. Thus, the protein can be produced.
 動物個体を用いて本発明のタンパク質を製造する方法としては、例えば公知の方法[Am.J.Clin.Nutr.,63,639S(1996)、Am.J.Clin.Nutr.,63,627S(1996)、Bio/Technology,9,830(1991)]に準じて遺伝子を導入して造成した動物中に本発明のタンパク質を生産する方法があげられる。 As a method for producing the protein of the present invention using an individual animal, for example, a known method [Am. J. et al. Clin. Nutr. 63, 639S (1996), Am. J. et al. Clin. Nutr. 63, 627S (1996), Bio / Technology, 9, 830 (1991)], a method for producing the protein of the present invention in an animal constructed by introducing a gene.
 動物個体の場合は、例えば、本発明のDNAまたは本発明の製造法に用いられるDNAを導入したトランスジェニック非ヒト動物を飼育し、本発明のタンパク質を該動物中に生成、蓄積させ、該動物中より該タンパク質を採取することにより、該タンパク質を製造することができる。該動物中の該タンパク質を生成、蓄積させる場所としては、例えば、該動物のミルク(特開昭63-309192)、卵等をあげることができる。この際に用いられるプロモーターとしては、動物で機能するものであればいずれも用いることができるが、例えば、乳腺細胞特異的なプロモーターであるαカゼインプロモーター、βカゼインプロモーター、βラクトグロブリンプロモーター、ホエー酸性プロテインプロモーター等が好適に用いられる。 In the case of an animal individual, for example, a transgenic non-human animal into which the DNA of the present invention or the DNA used in the production method of the present invention is introduced is bred, and the protein of the present invention is produced and accumulated in the animal. The protein can be produced by collecting the protein from the inside. Examples of the place where the protein in the animal is produced and accumulated include milk of the animal (Japanese Patent Laid-Open No. 63-309192), eggs and the like. Any promoter can be used as long as it functions in animals. For example, a casein promoter, β casein promoter, β lactoglobulin promoter, whey acidity, which is a mammary cell specific promoter, can be used. A protein promoter or the like is preferably used.
 植物個体を用いて本発明のタンパク質を製造する方法としては、例えば本発明のタンパク質をコードするDNAを導入したトランスジェニック植物を公知の方法[組織培養,20(1994)、組織培養,21(1995)、Trends Biotechnol.,15,45(1997)]に準じて栽培し、該タンパク質を該植物中に生成、蓄積させ、該植物中より該タンパク質を採取することにより、該タンパク質を生産する方法があげられる。 As a method for producing the protein of the present invention using an individual plant, for example, a transgenic plant into which a DNA encoding the protein of the present invention has been introduced is known [tissue culture, 20 (1994), tissue culture, 21 (1995). ), Trends Biotechnol. , 15, 45 (1997)], producing and accumulating the protein in the plant, and collecting the protein from the plant to produce the protein.
 本発明のタンパク質を生産する形質転換体を用いて製造された本発明のタンパク質を単離・精製する方法としては、通常の酵素の単離、精製法を用いることができる。 As a method for isolating and purifying the protein of the present invention produced using the transformant that produces the protein of the present invention, a usual enzyme isolation and purification method can be used.
 例えば、本発明のタンパク質が、細胞内に溶解状態で生産された場合には、培養終了後、細胞を遠心分離により回収し、水系緩衝液にけん濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。 For example, when the protein of the present invention is produced in a dissolved state in cells, the cells are collected by centrifugation after culturing, suspended in an aqueous buffer, and then subjected to an ultrasonic crusher, a French press, a manton. Cells are disrupted with a Gaurin homogenizer, dynomill, etc. to obtain a cell-free extract.
 該無細胞抽出液を遠心分離することにより得られる上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等レジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。 From the supernatant obtained by centrifuging the cell-free extract, an ordinary enzyme isolation and purification method, that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, diethylamino Anion exchange chromatography method using resin such as ethyl (DEAE) -Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei Co., Ltd.), Cation exchange chromatography method using resin such as S-Sepharose FF (manufactured by Pharmacia) Hydrophobic chromatography using resin such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, electrophoresis methods such as isoelectric focusing etc. Alternatively, it can be used in combination to obtain a purified preparation.
 また、該タンパク質が細胞内に不溶体を形成して生産された場合は、同様に細胞を回収後破砕し、遠心分離を行うことにより得られた沈殿画分より、通常の方法により該タンパク質を回収後、該タンパク質の不溶体をタンパク質変性剤で可溶化する。 In addition, when the protein is produced by forming an insoluble substance in the cell, the protein is similarly collected from the precipitate fraction obtained by crushing and centrifuging the cell, and the protein is obtained by a usual method. After recovery, the protein insoluble matter is solubilized with a protein denaturant.
 該可溶化液を、タンパク質変性剤を含まないあるいはタンパク質変性剤の濃度がタンパク質が変性しない程度に希薄な溶液に希釈、あるいは透析し、該タンパク質を正常な立体構造に構成させた後、上記と同様の単離精製法により精製標品を得ることができる。 The solubilized solution is diluted or dialyzed into a solution that does not contain a protein denaturant or the protein denaturant has such a concentration that the protein is not denatured. A purified sample can be obtained by the same isolation and purification method.
 本発明のタンパク質またはその糖修飾体等の誘導体が細胞外に分泌された場合には、培養上清に該タンパク質またはその糖付加体等の誘導体を回収することができる。 When the protein of the present invention or a derivative such as a sugar modification product thereof is secreted outside the cell, the protein or its derivative such as a sugar adduct can be recovered in the culture supernatant.
 即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより可溶性画分を取得し、該可溶性画分から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。 That is, a soluble fraction is obtained by treating the culture by a technique such as centrifugation as described above, and a purified preparation is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
 また、本発明のタンパク質を他のタンパク質との融合タンパク質として生産し、融合したタンパク質に親和性をもつ物質を用いたアフィニティークロマトグラフィーを利用して精製することもできる。例えば、ロウらの方法[Proc.Natl.Acad.Sci.,USA,86,8227(1989)、Genes Develop.,4,1288(1990)]、特開平5-336963、WO94/23021に記載の方法に準じて、本発明のタンパク質をプロテインAとの融合タンパク質として生産し、イムノグロブリンGを用いるアフィニティークロマトグラフィーにより精製することができる。 Alternatively, the protein of the present invention can be produced as a fusion protein with another protein, and purified using affinity chromatography using a substance having an affinity for the fused protein. For example, the method of Law et al. [Proc. Natl. Acad. Sci. USA, 86, 8227 (1989), Genes Develop. , 4, 1288 (1990)], JP-A-5-336963, WO94 / 23021, the protein of the present invention is produced as a fusion protein with protein A, and affinity chromatography using immunoglobulin G is used. Can be purified.
 また、本発明のタンパク質をFlagペプチドとの融合タンパク質として生産し、抗Flag抗体を用いるアフィニティークロマトグラフィーにより精製することができる[Proc.Natl.Acad.Sci.,USA,86,8227(1989)、Genes Develop.,4,1288(1990)]。更に、該タンパク質自身に対する抗体を用いたアフィニティークロマトグラフィーで精製することもできる。 In addition, the protein of the present invention can be produced as a fusion protein with a Flag peptide and purified by affinity chromatography using an anti-Flag antibody [Proc. Natl. Acad. Sci. USA, 86, 8227 (1989), Genes Develop. , 4, 1288 (1990)]. Furthermore, it can also be purified by affinity chromatography using an antibody against the protein itself.
 上記で取得されたタンパク質のアミノ酸配列情報を基に、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等の化学合成法により、本発明のタンパク質を製造することができる。また、Advanced ChemTech社、パーキン・エルマー社、Pharmacia社、Protein Technology Instrument社、Synthecell-Vega社、PerSeptive社、島津製作所等のペプチド合成機を利用して化学合成することもできる。 Based on the amino acid sequence information of the protein obtained above, the protein of the present invention is produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) or the tBoc method (t-butyloxycarbonyl method). be able to. It can also be chemically synthesized using peptide synthesizers such as Advanced ChemTech, Perkin Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation.
6. 28位にヒドロキシメチル基またはカルボキシル基を有するトリテルペン化合物の製造方法
 本発明は、無細胞系で、あるいは細胞又は植物を用いて、外因性の28位酸化酵素活性を有するタンパク質存在下または28位酸化酵素をコードするDNAの発現下で、αアミリン、βアミリン、ルペオールなどの五環系トリテルペン化合物の28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する方法を提供する。
6). TECHNICAL FIELD The present invention relates to a method for producing a triterpene compound having a hydroxymethyl group or a carboxyl group at the 28th position, in the presence of a protein having an exogenous 28th oxidase activity or 28th position oxidation in a cell-free system or using cells or plants. Provided is a method for converting a methyl group at position 28 of a pentacyclic triterpene compound such as α-amylin, β-amylin, or lupeol into a hydroxymethyl group or a carboxyl group under the expression of DNA encoding the enzyme.
 本明細書で使用される「外因性」とは、細胞または植物が本来もつ酵素またはその遺伝子自体ではなく、該細胞または植物に、あるいは上記の五環系トリテルペン化合物原料の反応系に、人為的に該酵素またはそれをコードするDNAを導入することを意味する。 As used herein, “exogenous” means not an enzyme or its gene itself inherent in a cell or plant, but the cell or plant, or the reaction system of the above pentacyclic triterpene compound raw material. Means that the enzyme or DNA encoding the enzyme is introduced.
 本発明はまた、上記の変換方法によって28位のメチル基がヒドロキシメチル基またはカルボキシル基に変換された五環系トリテルペン化合物を生成し、該化合物を回収することを含む、28位のメチル基がヒドロキシメチル基またはカルボキシル基に変換された五環系トリテルペン化合物の製造方法を提供する。 The present invention also provides a pentacyclic triterpene compound in which the 28-position methyl group is converted to a hydroxymethyl group or a carboxyl group by the above-described conversion method, and the compound is recovered. Provided is a method for producing a pentacyclic triterpene compound converted into a hydroxymethyl group or a carboxyl group.
 本発明では、28位酸化酵素は、粗製、半精製もしくは精製された、あるいは多糖類、多孔性ポリマー、多孔性無機物(例えばガラス、鉱物、セラミックス等)などの支持体などに共有結合もしくは非共有結合によって固定化された、酵素として反応系で使用されてもよいし、該酵素を産生する細胞または植物体自体が反応系で使用されてもよい。 In the present invention, the 28th oxidase is covalently bonded or non-covalently attached to a support such as a crude, semi-purified or purified, or a polysaccharide, a porous polymer, a porous inorganic material (eg, glass, mineral, ceramics, etc.). It may be used in the reaction system as an enzyme immobilized by binding, or the cell or the plant itself producing the enzyme may be used in the reaction system.
 本発明で使用可能な28位酸化酵素は膜結合型チトクロームP450モノオキシダーゼの一種であり、上述の製造法で得ることができる。 The 28-position oxidase that can be used in the present invention is a kind of membrane-bound cytochrome P450 monooxidase, and can be obtained by the above-described production method.
 DNA組換え技術によって、高い酵素活性を持ったタンパク質の発現が可能であるため、形質転換微生物(例えば、酵母、糸状菌)や昆虫細胞の培養液に上記28位酸化酵素の基質、例えばαアミリン、βアミリン、ルペオール、またはそれらの置換誘導体、を添加することにより、28位がヒドロキシメチル化またはカルボキシル化された五環系トリテルペン化合物を生産することができる。例えば、形質転換微生物の培養液にβ-アミリン等の五環系トリテルペン類を基質として投与することにより、28位がヒドロキシメチル化またはカルボキシル化された五環系トリテルペン化合物を効率的に大量に生産することが可能である。 Since the protein having high enzyme activity can be expressed by the DNA recombination technique, the substrate of the 28th oxidase, such as α-amylin, is used in the culture solution of transformed microorganisms (for example, yeast, filamentous fungi) or insect cells. , Β-amylin, lupeol, or substituted derivatives thereof, can produce pentacyclic triterpene compounds in which the 28-position is hydroxymethylated or carboxylated. For example, by administering pentacyclic triterpenes such as β-amylin as a substrate to the culture solution of transformed microorganisms, a large amount of pentacyclic triterpene compounds in which the 28-position is hydroxymethylated or carboxylated can be produced efficiently. Is possible.
 特に酵母がサイトゾルにDMAPP(ジメチルアリルピロリン酸)を生合成する経路(メバロン酸経路)を有していることや、大腸菌にメバロン酸経路を導入することやスクワレンエポキシダーゼ、オキシドスクワレン環化酵素で前駆体や基質を生産・増強することを可能にしたことが報告されている[原田と三沢2009 Appl Microbiol Biotechnol 84:1021-31,仲野ら2007 Biosci. Biotech. Biochem. 71:2543-2550]。例えば、Saccharomyces cerevisiaeのGIL77株(T. Kushiro et al., Eur. J. Biochem. 256:238-244 (1998))又はその変異株をβアミリン合成酵素をコードするDNAを発現可能に含むプラスミドで形質転換するとき、βアミリンを産生することが知られている(H. Hayashi et al., Biol. Pharm. Bull. 24:912-916 (2001))。これらの方法を利用して他の遺伝子(例えば基質生合成酵素遺伝子)と28位酸化酵素をコードするDNAを同時に発現させることによって、28位がヒドロキシメチル化またはカルボキシル化された五環系トリテルペン化合物を生産することが可能となる。類似の膜結合型チトクロームP450モノオキシダーゼを発現し代謝物を得た例としては、大腸菌ではChangら[2007 Nat. Chem. Biol. 3:274-277]の報告がある。また、酵母では関ら[2008 PNAS 105:14204-14209]の報告があるので、このような方法を組み合わせることで目的の五環系トリテルペン化合物を生産することが可能となる。また、トランスジェニック植物において28位酸化酵素を過剰発現させて目的の五環系トリテルペン化合物を生成し、根や種子等から回収することもできる。 In particular, yeast has a pathway for biosynthesis of DMAPP (dimethylallyl pyrophosphate) in the cytosol (mevalonate pathway), introduction of the mevalonate pathway into E. coli, squalene epoxidase, and oxide squalene cyclase It has been reported that it was possible to produce and enhance precursors and substrates [Harada and Misawa 2009, Appl Microbiol Biotechnol 84: 1021-31, Nakano et al. 2007 Biosci. Biotech. Biochem. 71: 2543-2550]. For example, the GIL77 strain of Saccharomyces cerevisiae (T. Kushiro et al., Eur. J. Biochem. 256: 238-244 (1998)) or a mutant strain thereof is a plasmid that can express DNA encoding β-amylin synthase. It is known to produce β-amylin when transformed (H. Hayashi et al., Biol. Pharm. Bull. 24: 912-916 (2001)). A pentacyclic triterpene compound in which position 28 is hydroxymethylated or carboxylated by simultaneously expressing other genes (for example, substrate biosynthetic enzyme genes) and DNA encoding position 28 oxidase using these methods Can be produced. As an example of expressing a metabolite by expressing a similar membrane-bound cytochrome P450 monooxidase, Chang et al. [2007 Nat. Chem. Biol. 3: 274-277]. Moreover, since there is a report of Seki et al. [2008 PNAS 105: 14204-14209] in yeast, it is possible to produce the target pentacyclic triterpene compound by combining such methods. In addition, the target pentacyclic triterpene compound can be produced by overexpressing the 28-position oxidase in the transgenic plant and recovered from roots, seeds, and the like.
(1)酵素的製造法
 無細胞系では、上記形質転換体の培養液から28位酸化酵素を含有する無細胞抽出液を調製し、その一部を、αアミリン、βアミリン、ルペオール、またはそれらの置換誘導体などの五環系トリテルペン化合物を含有するバッファーに加えて変換反応を行うことによって、28位がヒドロキシメチル化またはカルボキシル化された五環系トリテルペン化合物を製造することができる。
(1) Enzymatic production method In a cell-free system, a cell-free extract containing the 28-position oxidase is prepared from the culture medium of the transformant, and a part thereof is α-amylin, β-amylin, lupeol, or the like. A pentacyclic triterpene compound in which the 28-position is hydroxymethylated or carboxylated can be produced by carrying out a conversion reaction in addition to a buffer containing a pentacyclic triterpene compound such as a substituted derivative of.
 収穫した細胞の懸濁液、あるいは適量のバッファー中の形質転換植物を、ホモジナイザー、超音波破砕機あるいはフレンチプレス等により破砕後、遠心分離して無細胞抽出液を得る。バッファーには、ポリペプチドの失活を防ぐため、抗酸化剤、酵素の安定化剤、ポリフェノール吸着剤、金属配位子などを添加することができる。さらに比活性を高めるにはポリペプチドを精製することが有効であり、超遠心機による遠心分離法、硫安等による塩析方、ゲル濾過法、イオン交換クロマトグラフィー法、アフィニティクロマトグラフィー法、電気泳動法などの手法を単独で、あるいは組み合わせて用いることができる。得られたポリペプチドを含むバッファーに、基質となる上記の五環系トリテルペンおよび補酵素を添加してインキュベートする。補酵素としてはNADHあるいはNADPHが利用でき、グルコース-6-リン酸とグルコース-6-リン酸デヒドロゲナーゼを用いたNADPH再構成系も併用できる。また、形質転換体が産生するNADPH-P450リダクターゼ以外のNADPH - P450リダクターゼを外部から加えて酸化反応を行うことも可能である。 The harvested cell suspension or the transformed plant in an appropriate amount of buffer is crushed by a homogenizer, an ultrasonic crusher or a French press, and then centrifuged to obtain a cell-free extract. In order to prevent inactivation of the polypeptide, an antioxidant, an enzyme stabilizer, a polyphenol adsorbent, a metal ligand and the like can be added to the buffer. In order to further increase the specific activity, it is effective to purify the polypeptide, such as centrifugation using an ultracentrifuge, salting out using ammonium sulfate, gel filtration, ion exchange chromatography, affinity chromatography, electrophoresis. Methods such as the method can be used alone or in combination. The above pentacyclic triterpene and coenzyme as substrates are added to the buffer containing the obtained polypeptide and incubated. As a coenzyme, NADH or NADPH can be used, and an NADPH reconstitution system using glucose-6-phosphate and glucose-6-phosphate dehydrogenase can be used in combination. It is also possible to perform an oxidation reaction by adding NADPH-P450 reductase other than NADPH-P450 reductase produced by the transformant from the outside.
 上記製造法において、本発明のタンパク質は、基質として用いるトリテルペン1mgあたり0.01~100mg、好ましくは0.1mg~10mg添加する。 In the above production method, the protein of the present invention is added in an amount of 0.01 to 100 mg, preferably 0.1 to 10 mg per mg of triterpene used as a substrate.
 上記製造法において、基質として用いる五環系トリテルペンは、0.1~500g/L、好ましくは0.2~200g/Lの濃度になるように反応水性媒体に初発または反応途中に添加する。上記製造法で用いられる水性媒体としては、28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンの生成反応を阻害しない限り、いかなる成分、組成の水性媒体であってもよく、例えば、水、りん酸塩、炭酸塩、酢酸塩、ほう酸塩、クエン酸塩、トリスなどの緩衝液などをあげることができる。また、メタノール、エタノールなどのアルコール類、酢酸エチルなどのエステル類、アセトンなどのケトン類、アセトアミドなどのアミド類を含有していてもよい。 In the above production method, the pentacyclic triterpene used as a substrate is added to the reaction aqueous medium at the beginning or in the middle of the reaction so as to have a concentration of 0.1 to 500 g / L, preferably 0.2 to 200 g / L. The aqueous medium used in the above production method may be an aqueous medium of any component and composition as long as it does not inhibit the formation reaction of a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at the 28-position. And buffers such as phosphate, carbonate, acetate, borate, citrate, and tris. Further, it may contain alcohols such as methanol and ethanol, esters such as ethyl acetate, ketones such as acetone, and amides such as acetamide.
 28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンの生成反応は水性媒体中、pH5~11、好ましくはpH6~10、20~50℃、好ましくは25~45℃の条件で2~150時間、好ましくは6~120時間行う。 The formation reaction of a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at the 28-position is 2 to 150 in an aqueous medium under conditions of pH 5 to 11, preferably pH 6 to 10, 20 to 50 ° C., preferably 25 to 45 ° C. The time is preferably 6 to 120 hours.
(2)形質転換体または微生物の培養物もしくは培養物の処理物を酵素源として用いる製造法
 形質転換体または微生物の培養物もしくは培養物の処理物を酵素源として用いる28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンの製造法としては、本発明のタンパク質を生産する能力を有する形質転換体の培養物もしくは培養物の処理物を酵素源に用い、該酵素源、および五環系トリテルペンを水性媒体中に存在せしめ、該媒体中に28位ヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンを生成、蓄積させ、該媒体から28位ヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンを採取する製造法をあげることができる。
(2) Production method using transformant or microorganism culture or treatment of culture as enzyme source Transformant or microorganism culture or treatment of culture as enzyme source As a method for producing a pentacyclic triterpene having a carboxyl group, a culture of a transformant having the ability to produce the protein of the present invention or a processed product of the culture is used as an enzyme source, the enzyme source, and the pentacyclic system A triterpene having a 28-position hydroxymethyl group or a carboxyl group is produced by accumulating a triterpene in an aqueous medium to form and accumulate a pentacyclic triterpene having a 28-position hydroxymethyl group or a carboxyl group in the medium. The manufacturing method which collects can be mention | raise | lifted.
 上記製造法に用いられる形質転換体としては、上記4.や5.の方法により製造することができる、本発明のタンパク質を生産する形質転換体をあげることができる。さらに宿主が産生するNADPH-P450リダクターゼ以外のNADPH-P450リダクターゼを外部から加えることも可能である。 As the transformant used in the above production method, 4. And 5. A transformant producing the protein of the present invention, which can be produced by the above method, can be mentioned. Furthermore, NADPH-P450 reductase other than NADPH-P450 reductase produced by the host can be added from the outside.
 培養物の処理物としては、培養物の濃縮物、培養物の乾燥物、培養物を遠心分離して得られる菌体、該菌体の乾燥物、該菌体の凍結乾燥物、該菌体の界面活性剤処理物、該菌体の超音波処理物、該菌体の機械的摩砕処理物、該菌体の溶媒処理物、該菌体の酵素処理物、該菌体のタンパク質分画物、該菌体の固定化物あるいは該菌体より抽出して得られる酵素標品などをあげることができる。 As a processed product of the culture, a concentrate of the culture, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, a freeze-dried product of the cell, the cell Treated product of surfactant, sonicated product of cell, mechanically ground product of cell, solvent-treated product of cell, enzyme-treated product of cell, protein fraction of cell Products, immobilized products of the cells, enzyme preparations obtained by extraction from the cells, and the like.
 上記製造法において、基質として用いる五環系トリテルペンの種類、使用濃度および添加時期、並びに生産される28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンは、上記(1)の酵素的製造法のものと同様である。 In the above production method, the kind of pentacyclic triterpene used as a substrate, the concentration and timing of addition, and the produced pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 are produced by the enzymatic production of (1) above. Same as the law.
 また、微生物の培養物または該培養物の処理物を酵素源とした製造法において用いられる水性媒体としては、上記(1)の酵素的製造法に用いられる水性媒体に加え、酵素源として用いた形質転換体または微生物の培養液も水性媒体として用いることができる。 In addition to the aqueous medium used in the enzymatic production method of (1) above, the aqueous medium used in the production method using the culture of microorganisms or the treated product of the culture as an enzyme source was used as an enzyme source. A transformant or a culture solution of microorganisms can also be used as an aqueous medium.
 また必要に応じて、水性媒体中に界面活性剤あるいは有機溶媒を添加してもよい。界面活性剤としては、ポリオキシエチレン・オクタデシルアミン(例えばナイミーンS-215、日本油脂社製)などの非イオン界面活性剤、セチルトリメチルアンモニウム・ブロマイドやアルキルジメチル・ベンジルアンモニウムクロライド(例えばカチオンF2-40E、日本油脂社製)などのカチオン系界面活性剤、ラウロイル・ザルコシネートなどのアニオン系界面活性剤、アルキルジメチルアミン(例えば三級アミンFB、日本油脂社製)などの三級アミン類など、五環系トリテルペンの生成を促進するものであればいずれでもよく、1種または数種を混合して使用することもできる。界面活性剤は、界面活性剤は、通常0.1~50g/lの濃度で用いられる。有機溶剤としては、キシレン、トルエン、脂肪族アルコール、アセトン、酢酸エチルなどが挙げられ、通常0.1~50ml/lの濃度で用いられる。 If necessary, a surfactant or an organic solvent may be added to the aqueous medium. Examples of the surfactant include nonionic surfactants such as polyoxyethylene / octadecylamine (for example, Nimine S-215, manufactured by NOF Corporation), cetyltrimethylammonium / bromide and alkyldimethyl / benzylammonium chloride (for example, cation F2-40E). Catalytic surfactants such as Nippon Oil & Fats Co., Ltd., anionic surfactants such as lauroyl and sarcosinate, and tertiary amines such as alkyldimethylamine (eg, tertiary amine FB, manufactured by Nippon Oil & Fats Co., Ltd.) Any one may be used as long as it promotes the generation of the triterpene, and one kind or a mixture of several kinds can be used. As the surfactant, the surfactant is usually used at a concentration of 0.1 to 50 g / l. Examples of the organic solvent include xylene, toluene, aliphatic alcohol, acetone, ethyl acetate and the like, and are usually used at a concentration of 0.1 to 50 ml / l.
 培養物または該培養物の処理物を酵素源として用いる場合、該酵素源の量は、当該酵素源の比活性等により異なるが、例えば、基質として用いる五環系トリテルペン1mgあたり湿菌体重量として5~1000mg、好ましくは10~400mg添加する。 When a culture or a processed product of the culture is used as an enzyme source, the amount of the enzyme source varies depending on the specific activity of the enzyme source, etc., for example, as wet cell weight per 1 mg of pentacyclic triterpene used as a substrate Add 5 to 1000 mg, preferably 10 to 400 mg.
 28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンの生成反応は水性媒体中、pH5~11、好ましくはpH6~10、20~50℃、好ましくは25~45℃の条件で2~150時間、好ましくは6~120時間行う。 The formation reaction of a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at the 28-position is 2 to 150 in an aqueous medium under conditions of pH 5 to 11, preferably pH 6 to 10, 20 to 50 ° C., preferably 25 to 45 ° C. The time is preferably 6 to 120 hours.
 上記(1)または(2)の製造法において、水性媒体中に生成、蓄積した28位ヒドロキシメチル基またはカルボキシル基を有するトリテルペンの採取は、活性炭やイオン交換樹脂などを用いる通常の方法あるいは、有機溶媒による抽出、結晶化、薄層クロマトグラフィー、高速液体クロマトグラフィー等により行うことができる。 In the production method of (1) or (2) above, the triterpene having a 28-position hydroxymethyl group or carboxyl group generated and accumulated in an aqueous medium is collected by a normal method using activated carbon, an ion exchange resin or the like, or organic Extraction with a solvent, crystallization, thin layer chromatography, high performance liquid chromatography and the like can be performed.
7. 28位酸化酵素遺伝子の変異、多型または遺伝子発現変異の選抜
 本発明による28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物の製造方法においては、植物において28位酸化酵素遺伝子の突然変異、一塩基多型(SNP)等の多型、または遺伝子発現変異の存在を検出し、そのような変異や多型をもつ該遺伝子のなかから、28位酸化酵素活性が高く28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物の生産性を高める変異型遺伝子を選抜することができる。そのような変異は、28位酸化酵素遺伝子を有する、かつ、五環系トリテルペン化合物生産能をもつ植物において、放射線、UV照射、変異原等の化学処理などの人工的突然変異処理、あるいは自然突然変異、によって誘導することができる。
7. Selection of 28th Oxidase Gene Mutation, Polymorphism or Gene Expression Mutation According to the method for producing a pentacyclic triterpene compound in which the 28th position is a hydroxymethyl group or a carboxyl group according to the present invention, the 28th position oxidase gene is suddenly changed in plants. The presence of a mutation, a polymorphism such as a single nucleotide polymorphism (SNP), or a gene expression mutation is detected, and the 28-position oxidase activity is high and the 28-position is hydroxy from the gene having such a mutation or polymorphism. Mutant genes that enhance the productivity of pentacyclic triterpene compounds that are methyl or carboxyl groups can be selected. Such mutation may be caused by artificial mutation treatment such as chemical treatment such as radiation, UV irradiation, mutagen, or the like in a plant having the oxidase gene at position 28 and capable of producing a pentacyclic triterpene compound. Can be induced by mutation.
 上記の変異型オレアノール酸合成酵素遺伝子の選抜のための方法には、ゲノムDNAやmRNAを変異個体、様々な品種や育成個体の植物から単離し、mRNAの場合には逆転写しcDNAを合成したのち、DNA増幅技術の使用によりゲノムDNAまたはcDNAからオレアノール酸合成酵素遺伝子を含有する遺伝子断片を増幅する工程と、このDNA中に突然変異の存在を決定する工程が含まれる。DNAやRNAを抽出する方法には市販のキット(例えばDNeasyやRNeasy(キアゲン社)など)が使用できる。cDNAを合成する方法も市販キット(例えばスーパースクリプト ファーストストランド システム(インビトロジェン社)など)を使うことができる。 The above-mentioned method for selecting a mutant oleanolic acid synthase gene includes isolating genomic DNA and mRNA from mutant individuals, plants of various varieties and breeding individuals, and in the case of mRNA, synthesizing cDNA by reverse transcription. Amplifying a gene fragment containing an oleanolic acid synthase gene from genomic DNA or cDNA by using DNA amplification techniques and determining the presence of a mutation in the DNA. A commercially available kit (for example, DNeasy or RNeasy (Qiagen)) can be used for the method of extracting DNA or RNA. As a method for synthesizing cDNA, a commercially available kit (for example, Superscript First Strand System (Invitrogen)) can be used.
 DNA増幅技術の使用により遺伝子断片を増幅する方法としては、いわゆるPCR法やLAMP法などの技術を用いることができる。これらは継続的なポリメラーゼ反応により特異的なDNA配列の増幅(つまり、コピー数を増やすこと)を達成するためにポリメラーゼを使用することを基にした、一群の技術である。この反応は、クローニングの代わりに使用することができるが、必要であるのは、核酸配列に関する情報のみである。DNAの増幅を行うために、増幅しようとするDNAの配列に相補的なプライマーを設計する。次にそのプライマーを自動DNA合成により作製する。DNA増幅方法は、当技術分野で周知であり、本明細書中で与えられる教示及び指示に基づき、当業者であれば容易に行うことができる。いくつかのPCR法(ならびに関連技術)は、例えば、米国特許第4,683,195号、同第4,683,202号、同第4,800,159号、同第4,965,188号、およびInnisら編、PCR Protocols:A guide to Method and Applicationsで述べられている。 As a method of amplifying a gene fragment by using DNA amplification technology, a technique such as a so-called PCR method or LAMP method can be used. These are a group of techniques based on the use of polymerases to achieve specific DNA sequence amplification (ie, increasing copy number) by a continuous polymerase reaction. This reaction can be used instead of cloning, but all that is needed is information about the nucleic acid sequence. In order to amplify DNA, a primer complementary to the DNA sequence to be amplified is designed. Next, the primer is prepared by automatic DNA synthesis. DNA amplification methods are well known in the art and can be readily performed by one of ordinary skill in the art based on the teachings and instructions provided herein. Some PCR methods (as well as related techniques) are described, for example, in U.S. Pat. Nos. 4,683,195, 4,683,202, 4,800,159, 4,965,188. , And edited by Innis et al., PCR Protocols: A guide to Method and Applications.
 上記DNA中に突然変異や多型の存在を決定する工程では、塩基配列の決定(アプライドバイオシステムズ社)や、ミスマッチペアの片側を切断する酵素を用いて突然変異体を検出するTILLING法(Till et al., 2003, Genome Res 13:524-530)など変異遺伝子と正常遺伝子の相同性を利用し検出する方法を用いればよい。これらは該技術から得られた配列データを遺伝子部分に関する28位酸化酵素をコードする遺伝子の塩基配列、例えば配列番号10~16に示されるような塩基配列と比較することによって行うことができる。 In the step of determining the presence of mutations or polymorphisms in the DNA, the base sequence (Applied Biosystems) or the TILLING method (Till method) for detecting a mutant using an enzyme that cleaves one side of a mismatched pair is used. et al., 2003, Genome Res 13: 524-530), and the like. These can be performed by comparing the sequence data obtained from this technique with the base sequence of the gene encoding the 28th position oxidase relating to the gene portion, for example, the base sequences as shown in SEQ ID NOs: 10 to 16.
 mRNA量の違いを決定する工程では、上記cDNAに対し、配列既知の28位酸化酵素をコードする遺伝子の塩基配列に基づいて作製したプライマーを利用してリアルタイムPCR法(ロシュ・ダイアグノスティックス社製のライトサイクラーなど)等の定量的PCRを採用すればよい。その後、例えば、ブドウ品種「キャンベル ベリーA」から得られたcDNAの量と比較することでmRNA量の違いを決定することができる。 In the step of determining the difference in the amount of mRNA, a real-time PCR method (Roche Diagnostics, Inc.) using a primer prepared based on the base sequence of the gene encoding the 28-position oxidase whose sequence is known is used for the cDNA. Quantitative PCR such as a light cycler manufactured by the company may be employed. Thereafter, for example, the difference in the amount of mRNA can be determined by comparing with the amount of cDNA obtained from the grape variety “Campbell Berry A”.
 特に好ましい実施形態において、上述したような28位酸化酵素遺伝子変異の存在の決定方法を、オリーブ(Olea europea)から得られた材料に適用する。 In a particularly preferred embodiment, the method for determining the presence of the 28th position oxidase gene mutation as described above is applied to a material obtained from olive (Olea europea).
 上記の突然変異および/または多型を決定する方法により、28位酸化酵素をコードする遺伝子の突然変異や多型を塩基レベルで同定することができ、さらに28位酸化酵素をコードする遺伝子に突然変異および/または多型を有する植物体を選抜し、変異型28位酸化酵素をコードする遺伝子を得ることができる。 By the method for determining the mutation and / or polymorphism described above, the mutation or polymorphism of the gene encoding the 28th oxidase can be identified at the base level, and the gene encoding the 28th oxidase is suddenly changed. A plant having a mutation and / or polymorphism can be selected to obtain a gene encoding a mutant 28-position oxidase.
 また、突然変異や多型の決定やmRNA量の違いの決定により、28位酸化酵素をコードする遺伝子の発現能または28位酸化酵素の活性が変化している植物を選抜することが可能になる。ここで、28位酸化酵素をコードする遺伝子の発現能または28位酸化酵素の活性の変化とは、人為的突然変異等の突然変異による遺伝子の発現能または28位酸化酵素の活性の改変および多型による遺伝子の発現能または28位酸化酵素の活性が異なっていることを意味する。 In addition, it is possible to select plants in which the expression ability of the 28-position oxidase-encoding gene or the activity of the 28-position oxidase is changed by determining the mutation, polymorphism, or determining the amount of mRNA. . Here, the expression capacity of the gene encoding the 28th oxidase or the change in the activity of the 28th oxidase refers to the alteration of the gene expression capacity or the activity of the 28th oxidase by mutation such as an artificial mutation. It means that the gene expression ability or the 28-position oxidase activity differs depending on the type.
 ある植物の28位酸化酵素活性の突然変異による改変は、その植物の種に含まれる既存品種に対する改変をいい、既存品種には野生型も含まれる。既存の品種は、28位酸化酵素をコードする遺伝子が改変された植物を得るためのすべての品種をいい、交配、遺伝子操作等の人為的操作により作出された品種を含む。また、活性の改変において、すべての既存品種に対して、活性が変化している必要はなく、特定の既存品種に対して改変されていれば、「28位酸化酵素の活性が改変された植物」に含まれる。「28位酸化酵素の活性が改変された植物」は、人為的操作を受けず自然状態で突然変異により活性が改変された植物も含み、上記の選抜方法により、自然状態で活性が変化した植物を選抜することができ、新たな品種として確立することもできる。また、ある既存品種に変異誘発処理を行い、28位酸化酵素の活性が改変された植物を作出した場合、比較対象は変異誘発処理を行った既存品種でもよいし、それ以外の他の既存品種でもよい。また、自然状態で選抜された活性が変化した植物又は変異誘発処理により活性が変化した植物を交配することにより、28位酸化酵素をコードする遺伝子の変異が固定された新品種として得ることもできる。 Modification by mutation of the 28th position oxidase activity of a plant refers to modification of an existing variety contained in the plant species, and the existing variety includes a wild type. The existing varieties refer to all varieties for obtaining plants in which the gene encoding the 28th oxidase is modified, and include varieties created by artificial manipulation such as mating and genetic manipulation. In addition, in the activity modification, the activity does not have to be changed for all existing varieties. If the activity is modified for a specific existing variety, “plants with modified activity of the 28th oxidase” "include. “Plant in which the activity of the 28th oxidase is modified” includes a plant whose activity is modified by mutation in a natural state without being subjected to artificial manipulation, and a plant whose activity has been changed in the natural state by the above selection method. Can be selected and can be established as a new variety. In addition, when a mutagenesis treatment is performed on an existing variety and a plant with modified 28-position oxidase activity is produced, the comparison target may be an existing variety that has undergone mutagenesis treatment, or other existing variety But you can. In addition, by mating a plant whose activity has been selected in a natural state or a plant whose activity has been changed by mutagenesis treatment, it can be obtained as a new variety in which the mutation of the gene encoding the 28th oxidase is fixed. .
 例えば、植物がオリーブ(Olea europea)の場合、既存品種として、「ネバディロブロンコ」、「マンザニロ」、「ミッション」、「レッチーノ」等がある。ここで、28位酸化酵素をコードする遺伝子の発現能または28位酸化酵素の活性が既存品種に対して改変された植物とは、既存品種に対して28位酸化酵素をコードする遺伝子の発現能が増強あるいは減少した植物を含み、さらに、28位酸化酵素の活性が既存品種に対して上昇あるいは低下した植物を含む。本発明は、このような28位酸化酵素をコードする遺伝子の発現能または28位酸化酵素の活性が既存品種に対して改変された植物体も包含する。 For example, when the plant is olive (Olea europea), the existing varieties include “Nevady Robronco”, “Manzanillo”, “Mission”, “Lecchino” and the like. Here, the expression ability of the gene encoding the 28th oxidase or the plant in which the activity of the 28th oxidase is modified with respect to the existing variety refers to the expression ability of the gene encoding the 28th oxidase with respect to the existing variety. Includes plants in which the activity of the 28th position oxidase is increased or decreased relative to existing varieties. The present invention also includes a plant in which the expression ability of the gene encoding such a 28-position oxidase or the activity of the 28-position oxidase is modified with respect to an existing variety.
 このようにして得られた28位酸化酵素をコードする遺伝子に突然変異や多型を有する植物は、本発明の方法によって、28位がヒドロキシメチル基またはカルボキシル基である五環系トリテルペン化合物の製造のために使用することができる。 The plant having a mutation or polymorphism in the gene encoding the 28-position oxidase thus obtained is produced by the method of the present invention to produce a pentacyclic triterpene compound in which the 28-position is a hydroxymethyl group or a carboxyl group. Can be used for.
(実施例)
 以下、本発明を、実施例を示してより詳しく説明するが、本発明の範囲はこれらに限定されるものではない。
(Example)
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, the scope of the present invention is not limited to these.
共発現解析を用いたトリテルペンサポニン生合成関連候補P450の選抜
 タルウマゴヤシの遺伝子共発現解析データベース(http://bioinfo.noble.org/gene-atlas/v2/correlation_search_form.php、Version: V2 (July 2009)# of Experiments: 64, # of GeneChips: 156)を利用して、β-アミリン合成酵素遺伝子(プローブID = Mtr.32384.1.S1_s_at)と共発現係数0.8以上を示す遺伝子配列プローブ221見つかった。このうちプローブ配列の相同性を検索していったところ、シトクロームP450モノオキシゲナーゼ遺伝子断片を示すものとして、CYP93E2(プローブID = Mtr.8618.1.S1_at、共発現係数0.791)とCYP716A12(プローブID = Mtr.43018.1.S1_at、共発現係数0.8566)をβ-アミリン合成酵素遺伝子と共発現をしている可能性のあるP450遺伝子として見出し以下の解析を進めた。ただし、より高い共発現計数を持つプローブID=Mtr.37298.1.S1_at(共発現係数0.9441)はCYP72クランに属すると考え解析を行わなかった。
Selection of candidate P450 for triterpene saponin biosynthesis using co-expression analysis Gene co-expression analysis database of Taruma palm (http://bioinfo.noble.org/gene-atlas/v2/correlation_search_form.php, Version: V2 (July 2009 ) # of Experiments: 64, # of GeneChips: 156), a gene sequence probe 221 having a β-amylin synthase gene (probe ID = Mtr.32384.1.S1_s_at) and a co-expression coefficient of 0.8 or more was found. As a result of searching for homology among the probe sequences, CYP93E2 (probe ID = Mtr.8618.1.S1_at, co-expression coefficient 0.791) and CYP716A12 (probe ID = Mtr. 43018.1.S1_at, co-expression coefficient 0.8566) was found as a P450 gene possibly co-expressed with β-amylin synthase gene, and the following analysis was advanced. However, the probe ID = Mtr.37298.1.S1_at (co-expression coefficient 0.9441) having a higher co-expression count belongs to the CYP72 clan and was not analyzed.
タルウマゴヤシCYP93E2遺伝子の単離
 タルウマゴヤシ、エコタイプR108-1を人工気象器内(23℃、日長16時間)で育成し、発芽後4週間目の植物の葉、茎、根からそれぞれトータルRNAを調製した。得られたトータルRNAを1μg用いて、SMART RACE cDNA amplification kit (Clontech社)を用いて添付のプロトコルに従いファーストストランドcDNA合成を行った。
Isolation of CYP93E2 gene of Taruma palm Palm tree and Ecotype R108-1 were grown in an artificial meteorograph (23 ° C, 16 hours long), and total RNA from the leaves, stems and roots of the plant 4 weeks after germination. Was prepared. First-strand cDNA synthesis was performed using 1 μg of the total RNA obtained and SMART RACE cDNA amplification kit (Clontech) according to the attached protocol.
 3種のファーストストランドcDNA各2μlを鋳型として、CYP93E2(GenBankアクセション番号、ABC59085)のポリペプチド(514アミノ酸)のN末端とC末端に相当する箇所のオリゴDNA、すなわち配列番号17(caccATGCTTGAAATCCAAGGCTACGTAGTATT)と配列番号18(TTAGGCAGAAGAGAATGGAACAAAATGTGGAAC)、をプライマーに用い、アニール温度58℃でPCR(30サイクル、TOYOBO社製 KOD plus ver.2 polymeraseを使用)を行った。なお、pENTRTM/D-TOPO(登録商標)エントリーベクター(Invitrogen社)へのクローニングの際に必要であることから、配列番号17のプライマーには、5’末端に4塩基(cacc)が人工的に付加されている。PCRの結果、いずれのファーストストランドcDNAを鋳型に用いた場合にも、約1.5kbのDNA断片が同程度増幅された。茎由来のファーストストランドcDNAから増幅されたDNA断片をpENTRTM/D-TOPOエントリーベクターにクローニング(エントリークローンの作製)し、得られた3個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列は、配列番号9であり、それから推定されるポリペプチド配列(配列番号1)は、GenBankに登録されているABC59085のアミノ酸配列に対して99%の同一性を有していた。 Using 2 μl of each of the three first-strand cDNAs as templates, oligo DNA at the position corresponding to the N-terminus and C-terminus of the polypeptide (514 amino acids) of CYP93E2 (GenBank accession number, ABC59085), that is, SEQ ID NO: 17 (caccATGCTTGAAATCCAAGGCTACGTAGTATT) Using SEQ ID NO: 18 (TTAGGCAGAAGAGAATGGAACAAAATGTGGAAC) as a primer, PCR was performed at an annealing temperature of 58 ° C. (30 cycles, using KOD plus ver. 2 polymerase manufactured by TOYOBO). Since it is necessary for cloning into pENTR / D-TOPO (registered trademark) entry vector (Invitrogen), the primer of SEQ ID NO: 17 has an artificially 4 base (cacc) at the 5 ′ end. Has been added. As a result of PCR, an approximately 1.5 kb DNA fragment was amplified to the same extent when any first-strand cDNA was used as a template. A DNA fragment amplified from the stem-derived first strand cDNA was cloned into a pENTR / D-TOPO entry vector (production of entry clones), and the polynucleotide sequences of the three independent clones obtained were determined. The sequence thus obtained is SEQ ID NO: 9, and the polypeptide sequence deduced therefrom (SEQ ID NO: 1) has 99% identity to the amino acid sequence of ABC59085 registered in GenBank. It was.
タルウマゴヤシCYP716A12遺伝子の単離
 実施例2で作製した3種のファーストストランドcDNA各2μlを鋳型として、CYP716A12(GenBankアクセション番号、ABC59076)のポリペプチド(479アミノ酸)のN末端とC末端に相当する箇所のオリゴDNA、すなわち配列番号19(caccATGGAGCCTAATTTCTATCTCTCCCT)と配列番号20(TTAAGCTTTGTGTGGATAAAGGCGA)、をプライマーに用い、アニール温度58℃でPCR(30サイクル、TOYOBO社製 KOD plus ver.2 polymeraseを使用)を行った。なお、pENTRTM/D-TOPO(登録商標)エントリーベクター(Invitrogen社)へのクローニングの際に必要であることから、配列番号19のプライマーには、5’末端に4塩基(cacc)が人工的に付加されている。PCRの結果、いずれのファーストストランドcDNAを鋳型に用いた場合にも、約1.5kbのDNA断片が同程度増幅された。茎由来のファーストストランドcDNAから増幅されたDNA断片をpENTRTM/D-TOPOエントリーベクターにクローニングし、得られた3個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列は、配列番号10であり、それから推定されるポリペプチド配列(配列番号2)は、GenBankに登録されているABC59076のアミノ酸配列に対して99%の同一性を有していた。
Isolation of CYP716A12 gene of Taruma corpuscord corresponding to N-terminal and C-terminal of polypeptide (479 amino acids) of CYP716A12 (GenBank accession number, ABC59076) using 2 μl each of the three first-strand cDNAs prepared in Example 2 as templates PCR was carried out at an annealing temperature of 58 ° C. (30 cycles, using KOD plus ver.2 polymerase manufactured by TOYOBO) using the oligo DNA at the position, that is, SEQ ID NO: 19 (caccATGGAGCCTAATTTCTATCTCTCCCT) and SEQ ID NO: 20 (TTAAGCTTTGTGTGGATAAAGGCGA) as primers. . Since it is necessary for cloning into the pENTR / D-TOPO (registered trademark) entry vector (Invitrogen), the primer of SEQ ID NO: 19 has an artificial 4 base (cacc) at the 5 'end. Has been added. As a result of PCR, an approximately 1.5 kb DNA fragment was amplified to the same extent when any first-strand cDNA was used as a template. A DNA fragment amplified from stem-derived first strand cDNA was cloned into a pENTR / D-TOPO entry vector, and the polynucleotide sequences of the three independent clones obtained were determined. The sequence thus obtained is SEQ ID NO: 10, and the polypeptide sequence deduced therefrom (SEQ ID NO: 2) has 99% identity to the amino acid sequence of ABC59076 registered in GenBank. It was.
ミヤコグサβ-アミリン合成酵素(OSC1)遺伝子cDNAの酵母発現ベクターpYES3-ADH-OSC1の構築
 マメ科のモデル植物としてEST及びゲノム解析が進んでいるミヤコグサ(Lotus japonicus)を用いて、β-アミリン合成酵素(OSC1)遺伝子の酵母発現ベクターを構築した。ミヤコグサOSC1遺伝子cDNA導入プラスミド(Sawai et al. (2006) Plant Sci 170: 247-257)をKpnI、XbaIで消化し、OSC1 cDNA領域を切り出した。pAUR123(TaKaRa社)も同様にKpnI、XbaIで消化し、DNA ligation Kit Ver. 2.1(TaKaRa社)で両者をライゲーションし、pAUR123-OSC1を得た。pAUR123-OSC1のPADH1からTADH1領域を配列番号21(GGATGATCCACTAGTGGATCCTCTAGCTCCCTAACATGTAGGTGG)及び配列番号22(TAATGCAGGGCCGCAGGATCCGTGTGGAAGAACGATTACAACAGG)の両プライマーを用いて、KOD-Plus-DNAポリメラーゼ(TOYOBO社)により94℃で2分間処理した後、(94℃20秒間→55℃40秒間→68℃90秒間)×20サイクルからなるPCRを行った。その後、68℃で2分間保温した。また、pYES3/CT(Invitrogen社)の1番から960番塩基(PGAL1からCYC1TT)を除く領域を配列番号23(TGCGGCCCTGCATTAATGAATCGGCCAACG)及び配列番号24(ACTAGTGGATCATCCCCACGCGCCCTGTAG)の両プライマーを用いてKOD-Plus- DNAポリメラーゼ(TOYOBO社)により前記と同様にPCRを行った。両PCR産物をIn-Fusion Dry-Down PCR Cloning Kit(clontech社)を用いて結合し、ミヤコグサOSC1酵母発現ベクターpYES3-ADH-OSC1を得た。
Construction of yeast expression vector pYES3-ADH-OSC1 of the Lotus japonicus β-amylin synthase (OSC1) gene cDNA Using Lotus japonicus, which is an advanced model plant of legumes, β-amylin synthase A yeast expression vector for the (OSC1) gene was constructed. Miyakogusa OSC1 gene cDNA introduction plasmid (Sawai et al. (2006) Plant Sci 170: 247-257) was digested with KpnI and XbaI to excise the OSC1 cDNA region. Similarly, pAUR123 (TaKaRa) was digested with KpnI and XbaI and ligated with DNA ligation Kit Ver. 2.1 (TaKaRa) to obtain pAUR123-OSC1. The PADH1 to TADH1 region of pAUR123-OSC1 was treated with KOD-Plus-DNA polymerase (TOYOBO) at 94 ° C for 2 minutes after treatment with both primers of SEQ ID NO: 21 (GGATGATCCACTAGTGGATCCTCTAGCTCCCTAACATGTAGGTGG) and SEQ ID NO: 22 (TAATGCAGGGCCGCAGGATCCGTGTGGAAGAACGATTACAACAGG) PCR consisting of 20 cycles of 94 ° C. for 20 seconds → 55 ° C. for 40 seconds → 68 ° C. for 90 seconds) × 20 cycles. Then, it kept warm at 68 degreeC for 2 minutes. In addition, the region except pYES3 / CT (Invitrogen) from 1st to 960th bases (PGAL1 to CYC1TT) is KOD-Plus-DNA polymerase using both SEQ ID NO: 23 (TGCGGCCCTGCATTAATGAATCGGCCAACG) and SEQ ID NO: 24 (ACTAGTGGATCATCCCCACGCGCCCTGTAG). (TOYOBO) performed PCR as described above. Both PCR products were ligated using In-Fusion Dry-Down PCR Cloning Kit (clontech) to obtain Miyakogusa OSC1 yeast expression vector pYES3-ADH-OSC1.
ミヤコグサチトクロームP450還元酵素を含む酵母発現ベクターpELC-MCS2-GWの構築
 ミヤコグサESTデータベース(かずさDNA研究所)を検索し、シロイヌナズナチトクロームP450還元酵素とアミノ酸レベルで70%以上の相同性を有する核酸配列を選抜した。全長コード領域を含むと思われるESTクローン(accession no. AV778635)をかずさDNA研究所より入手し、DNA配列を決定した(以下、LjCPR1とする)。LjCPR1導入プラスミド(pBluescript SK (-))を鋳型にして、配列番号25(GGGCGGCCGCACTAGTATCGATGGAAGAATCAAGCTCCATGAAG)及び配列番号26(TTAATTAATCACCATACATCACGCAAATAC)の両プライマーを用い、KOD-Plus- DNAポリメラーゼ(TOYOBO社)により94℃で2分間処理した後、(94℃20秒間→60℃40秒間→68℃120秒間)×15サイクルからなるPCRを行った。その後、68℃で2分間保温した。PCR産物をTAget Clone -Plus-(TOYOBO社)を用いて、pT7Blue T-vector(Novagen社)とライゲーションした。塩基配列を確認後、NotI、PacIで消化し、また酵母発現用ベクターpESC-LEU(Stratagene社)も同様にNotI, PacIで消化した。その後、DNA ligation Kit Ver. 2.1(TaKaRa社)を用いて両者をライゲーションし、LjCPR1の酵母発現ベクターpESC-LjCPR1を得た。次に、pAM-PAT-GWベクター(Max Planck InstituteのBekir Ulker博士とImre E. Somssich博士より贈与)を制限酵素XhoI及びSpeIで二重消化し、Gateway conversion cassette(Invitrogen社)を含むDNA断片を切り出した。得られたDNA断片を、pESC-LjCPR1をSalIとNheIの二重消化して得られる2つの断片のうち大きい断片と連結することによってpELC-MCS2-GWを構築した。pELC-MCS2-GWの構築には、大腸菌DB3.1株(Invitrogen社)を使用した。
Construction of the yeast expression vector pELC-MCS2-GW containing Miyakogusa cytochrome P450 reductase Searching the Miyakogusa EST database (Kazusa DNA Research Institute) for nucleic acid sequences having at least 70% homology with Arabidopsis cytochrome P450 reductase at the amino acid level Selected. An EST clone (accession no. AV778635) that appears to contain the full-length coding region was obtained from Kazusa DNA Research Laboratories, and the DNA sequence was determined (hereinafter referred to as LjCPR1). Using LjCPR1-introduced plasmid (pBluescript SK (-)) as a template, using both primers of SEQ ID NO: 25 (GGGCGGCCGCACTAGTATCGATGGAAGAATCAAGCTCCATGAAG) and SEQ ID NO: 26 (TTAATTAATCACCATACATCACGCAAATAC) for 2 minutes at 94 ° C with KOD-Plus-DNA polymerase (TOYOBO) After the treatment, PCR consisting of 15 cycles (94 ° C. 20 seconds → 60 ° C. 40 seconds → 68 ° C. 120 seconds) was performed. Then, it kept warm at 68 degreeC for 2 minutes. The PCR product was ligated with pT7Blue T-vector (Novagen) using TAget Clone -Plus- (TOYOBO). After confirming the base sequence, it was digested with NotI and PacI, and the yeast expression vector pESC-LEU (Stratagene) was similarly digested with NotI and PacI. Then, both were ligated using DNA ligation Kit Ver. 2.1 (TaKaRa), and the yeast expression vector pESC-LjCPR1 of LjCPR1 was obtained. Next, the pAM-PAT-GW vector (a gift from Dr. Bekir Ulker and Imre E. Somssich of Max Planck Institute) was double digested with restriction enzymes XhoI and SpeI, and a DNA fragment containing the Gateway conversion cassette (Invitrogen) was obtained. Cut out. PELC-MCS2-GW was constructed by ligating the obtained DNA fragment with a larger fragment of two fragments obtained by double digestion of SalI and NheI with pESC-LjCPR1. For construction of pELC-MCS2-GW, E. coli DB3.1 strain (Invitrogen) was used.
LjCPR1とCYP93E2の酵母同時発現ベクターpELC-CYP93E2の構築
 実施例2で作製した、配列番号9に示すポリヌクレオチドを有するプラスミド(エントリークローン)とpELC-MCS2-GWとを混合し、Gateway LR Clonase II Enzyme Mix(Invitrogen社)を用いて塩基配列特異的な組み換え反応(attL x attR反応)により、配列番号9で示すDNA断片をpELC-MCS2-GWに移し替えることでLjCPR1と配列番号9に示す遺伝子の同時発現ベクターpELC-CYP93E2を得た。
Construction of yeast simultaneous expression vector pELC-CYP93E2 of LjCPR1 and CYP93E2 The plasmid (entry clone) having the polynucleotide shown in SEQ ID NO: 9 prepared in Example 2 and pELC-MCS2-GW were mixed, and Gateway LR Clonase II Enzyme By transferring the DNA fragment shown in SEQ ID NO: 9 to pELC-MCS2-GW by a base sequence-specific recombination reaction (attL x attR reaction) using Mix (Invitrogen), the gene shown in LjCPR1 and SEQ ID NO: 9 A co-expression vector pELC-CYP93E2 was obtained.
LjCPR1とCYP716A12の酵母同時発現ベクターpELC-CYP716A12の構築
 実施例3で作製した、配列番号10に示すポリヌクレオチドを有するプラスミド(エントリークローン)とpELC-MCS2-GWとを混合し、Gateway LR Clonase II Enzyme Mix(Invitrogen社)を用いて塩基配列特異的な組み換え反応(attL x attR反応)により、配列番号10で示すDNA断片をpELC-MCS2-GWに移し替えることでLjCPR1と配列番号10に示す遺伝子の同時発現ベクターpELC-CYP716A12を得た。
Construction of yeast simultaneous expression vector pELC-CYP716A12 of LjCPR1 and CYP716A12 The plasmid (entry clone) having the polynucleotide shown in SEQ ID NO: 10 prepared in Example 3 and pELC-MCS2-GW were mixed, and Gateway LR Clonase II Enzyme By transferring the DNA fragment shown in SEQ ID NO: 10 to pELC-MCS2-GW by base sequence-specific recombination reaction (attL x attR reaction) using Mix (Invitrogen), the gene shown in LjCPR1 and SEQ ID NO: 10 A co-expression vector pELC-CYP716A12 was obtained.
OSC1とCYP93E2を同時発現する形質転換酵母の作製
 INVSc1株(Invitrogen社)(MATa his3D1 leu2 trp1-289 ura3-52 MATAlpha his3D1 leu2 trp1-289 ura3-52)の形質転換は、Frozen-EZ Yeast Transformation II(Zymo Research社)を用いて行った。最初に、酵母INVSc1株をpYES3-ADH-OSC1で形質転換し、続いて、得られた形質転換酵母をpELC-CYP93E2あるいはコントロールとしてpESC-LjCPR1で形質転換した。
Preparation of transformed yeast expressing both OSC1 and CYP93E2 INVSc1 strain (Invitrogen) (MATa his3D1 leu2 trp1-289 ura3-52 MATAlpha his3D1 leu2 trp1-289 ura3-52) was transformed into Frozen-EZ Yeast Transformation II ( Zymo Research). First, the yeast INVSc1 strain was transformed with pYES3-ADH-OSC1, and then the resulting transformed yeast was transformed with pELC-CYP93E2 or pESC-LjCPR1 as a control.
OSC1とCYP716A12を同時発現する形質転換酵母の作製
 実施例8と同様に、酵母INVSc1株をpYES3-ADH-OSC1で形質転換し、続いて、得られた形質転換酵母をpELC-CYP716A12で形質転換した。
Preparation of transformed yeast co-expressing OSC1 and CYP716A12 As in Example 8, the yeast INVSc1 strain was transformed with pYES3-ADH-OSC1, and then the resulting transformed yeast was transformed with pELC-CYP716A12 .
形質転換酵母(pYES3-ADH-OSC1、pELC-CYP93E2)における生成物の確認
 pYES3-ADH-OSC1、pELC-CYP93E2の2つのベクターを保持する酵母を5mlのSC-Trp/Leu培地30℃、135rpm、1日間培養した。培養した酵母を3000g、10分間遠心することにより集菌し、ガラクトース(20mg/ml)、塩化ヘミン(13μg/ml)を添加した10mlのSC-Trp/Leu-グルコース培地に懸濁し、30℃、135rpm、2日間培養した。酵母培養液に5mlの酢酸エチルを加え混合した後、酢酸エチル抽出物を回収した。この操作を3回繰り返した。酢酸エチル抽出物を減圧下で濃縮した。pYES3-ADH-OSC1、pESC-LjCPR1の2つのベクターを保持する酵母についても同様に、培養、抽出を行なった。酢酸エチル区は溶媒を乾燥除去した後、N-メチル-N-トリメチルシリルトリフルオロアセトアミドを加え、80℃で30分間加熱し、トリメチルシリルエーテル体に誘導体化しGC-MS分析の試料とした。変換物の同定は標品をGCの保持時間ならびにMSスペクトルを比較することで決定した。
Confirmation of product in transformed yeast (pYES3-ADH-OSC1, pELC-CYP93E2) Yeast holding two vectors pYES3-ADH-OSC1 and pELC-CYP93E2 was added to 5 ml of SC-Trp / Leu medium at 30 ° C., 135 rpm, Cultured for 1 day. The cultured yeast was collected by centrifugation at 3000 g for 10 minutes, suspended in 10 ml SC-Trp / Leu-glucose medium supplemented with galactose (20 mg / ml) and hemin chloride (13 μg / ml), 30 ° C. Cultured at 135 rpm for 2 days. After 5 ml of ethyl acetate was added to the yeast culture and mixed, the ethyl acetate extract was recovered. This operation was repeated three times. The ethyl acetate extract was concentrated under reduced pressure. In the same manner, yeast carrying two vectors pYES3-ADH-OSC1 and pESC-LjCPR1 was cultured and extracted. In the ethyl acetate section, after removing the solvent by drying, N-methyl-N-trimethylsilyltrifluoroacetamide was added, and the mixture was heated at 80 ° C. for 30 minutes to be derivatized into a trimethylsilyl ether and used as a sample for GC-MS analysis. The identity of the transformant was determined by comparing the retention time of GC with the MS spectrum.
 pYES3-ADH-OSC1及びpELC-CYP93E2の2つのベクターを保持する酵母の抽出物(図2、OSC1/LjCPR1/CYP93E2と示したGCチャート)からは、β-アミリン(点線矢印)に加えて、特異的な2本のピーク(ピーク1とピーク2)が検出された。その内、ピーク1のマススペクトルは24-ヒドロキシβ-アミリン(24-OH-β-amyrin)のマススペクトルと非常に良く一致した。ピーク2はマススペクトルパターンから、さらに酸化された化合物である24のacid(β-amyrin-24-oic acid)であった。一方、pYES3-ADH-OSC1及びpESC-LjCPR1の2つのベクターを保持する酵母の抽出物(図2、OSC1/LjCPR1と示したGCチャート)からはβ-アミリン(点線矢印)は検出されたがピーク1およびピーク2に相当する化合物は検出されなかった。以上の結果から、CYP93E2は、β-アミリン合成酵素(OSC1)を発現する酵母において生じるβ-アミリンの24位を水酸化、さらに酸化し、24-OH-β-amyrinとβ-amyrin-24-oic acidを生成し得ることが明らかとなった。 In addition to β-amylin (dotted arrow), the yeast extract containing two vectors pYES3-ADH-OSC1 and pELC-CYP93E2 (Figure 2, GC chart shown as OSC1 / LjCPR1 / CYP93E2) is unique. Two typical peaks (peak 1 and peak 2) were detected. Among them, the mass spectrum of peak 1 agreed very well with the mass spectrum of 24-hydroxy β-amylin (24-OH-β-amyrin). From the mass spectrum pattern, peak 2 was 24 acid (β-amyrin-24-oic acid), which was a further oxidized compound. On the other hand, β-amylin (dotted arrow) was detected from the yeast extract carrying the two vectors pYES3-ADH-OSC1 and pESC-LjCPR1 (Fig. 2, GC chart shown as OSC1 / LjCPR1) but peaked. Compounds corresponding to 1 and peak 2 were not detected. From the above results, CYP93E2 hydroxylates and further oxidizes the 24-position of β-amylin produced in yeast expressing β-amylin synthase (OSC1), and 24-OH-β-amyrin and β-amyrin-24- It was revealed that oic acid can be generated.
形質転換酵母(pYES3-ADH-OSC1、pELC-CYP716A12)における生成物の確認
 pYES3-ADH-OSC1、pELC-CYP716A12の2つのベクターを保持する酵母について、実施例10に示した方法により培養、抽出ならびに、抽出物の分析を行なった。pYES3-ADH-OSC1及びpELC-CYP716A12の2つのベクターを保持する酵母の抽出物(図3、OSC1/LjCPR1/CYP716A12と示したGCチャート)からは、β-アミリン(点線矢印)に加えて、特異的な2本のピーク(ピーク1とピーク2)が検出された。その内、ピーク2のマススペクトルはオレアノール酸の標品のマススペクトルと非常に良く一致した。これにより、ピーク2は、オレアノール酸に相当することが判明した。ピーク1はマススペクトルパターンから、β-アミリンの28位が水酸化されたエリトリジオールであった。
Confirmation of Product in Transformed Yeast (pYES3-ADH-OSC1, pELC-CYP716A12) Yeast having the two vectors pYES3-ADH-OSC1 and pELC-CYP716A12 was cultured, extracted, and extracted by the method described in Example 10. The extract was analyzed. From the yeast extract (Fig. 3, GC chart shown as OSC1 / LjCPR1 / CYP716A12) carrying two vectors, pYES3-ADH-OSC1 and pELC-CYP716A12, in addition to β-amylin (dotted arrow), it is unique Two typical peaks (peak 1 and peak 2) were detected. Among them, the mass spectrum of peak 2 agreed very well with the mass spectrum of the oleanolic acid preparation. Thus, it was found that peak 2 corresponds to oleanolic acid. Peak 1 was erythridiol in which the 28-position of β-amylin was hydroxylated from the mass spectrum pattern.
 一方、pYES3-ADH-OSC1及びpESC-LjCPR1の2つのベクターを保持する酵母の抽出物(図3、OSC1/LjCPR1と示したGCチャート)からはβ-アミリン(矢印)は検出されたがピーク1およびピーク2に相当する化合物は検出されなかった。以上の結果から、CYP716A12は、β-アミリン合成酵素(OSC1)を発現する酵母において生じるβ-アミリンの28位メチル基をカルボキシル基に変換し、オレアノール酸を生成し得ることが明らかとなった。 On the other hand, β-amylin (arrow) was detected from the yeast extract (Fig. 3, GC chart shown as OSC1 / LjCPR1) containing two vectors pYES3-ADH-OSC1 and pESC-LjCPR1, but peak 1 And no compound corresponding to peak 2 was detected. From the above results, it was clarified that CYP716A12 can generate oleanolic acid by converting the 28-position methyl group of β-amylin produced in yeast expressing β-amylin synthase (OSC1) into a carboxyl group.
このことは以下のことから驚くべきことである。いままでにトリテルペンの酸化の過程ではCYP93、CYP88、CYP72のファミリーにのみ活性が確認されており、CYP716ファミリーに属するものではなかった。さらにP450の命名を行っているNelson博士のHP(http://drnelson.uthsc.edu/cytochromeP450.html)のJune 22, 2010更新版によると機能推定や同定されているCYP716ファミリーには3つの配列(CYP716A14 Artemisia annua putative taxadiene 5-alpha-hydroxylase、CYP716D4 Stevia rebaudiana ent-kaurenoic acid 13-hydroxylase、CYP716D6 Artemisia annua putative taxane 13-alpha-hydroxylase)がある。いずれもトリテルペンではなくジテルペンの骨格に水酸化を行う酵素をコードするとしている。またCYP716A12をNCBIのblastPで相同検索すると、トップ100の配列の中で酵素活性が特定されているものは上記3配列のほかにQ8W4T9.1 Taxane 13-alpha-hydroxylase (97%領域においてE value= 2e-104以下同じ)、AAU93341.1 taxadiene 5-alpha hydroxylase(94% 3e-101)、AAN52360.1 5-alpha-taxadienol-10-beta-hydroxylase(94% 2e-97)、AAO66199.1 taxane 14b-hydroxylase(95% 3e-95)、AAS89065.2 taxoid 2-alpha-hydroxylase(93% 1e-92)、Q9AXM6.1 5-alpha-taxadienol-10-beta-hydroxylase(94% 4e-92)、AAT47183.1 taxoid 10-beta hydroxylase(94% 1e-91)、AAV54171.1 taxoid 2-alpha-hydroxylase(97% 3e-91)等で、酵素の種類はこれだけであった。いずれもこれらはトリテルペンではなくジテルペンを酸化する酵素をコードするとしている。これらの情報からはCYP716ファミリーの遺伝子がトリテルペンの酸化能を有するとは考えられなかった。 This is surprising from the following. So far, in the process of triterpene oxidation, activity has been confirmed only in the CYP93, CYP88, and CYP72 families, and not in the CYP716 family. Furthermore, according to the June 22, 2010 update of Dr. Nelson's HP (http://drnelson.uthsc.edu/cytochromeP450.html), which names P450, there are three sequences in the CYP716 family that have been estimated and identified. (CYP716A14 Artemisia annua putative taxadiene 5-alpha-hydroxylase, CYP716D4 Stevia rebaudiana ent-kaurenoic acid 13-hydroxylase, CYP716D6 Artemisia annua putative taxane 13-alpha-hydroxylase). Both code for enzymes that perform hydroxylation on the skeleton of diterpenes, not triterpenes. When homologous search of CYP716A12 is performed with NCBI blastP, the top 100 sequences whose enzyme activity is specified are Q8W4T9.1 Taxane 13-alpha-hydroxylase (E value = 97% in the 97% region). 2e-104 and the same), AAU93341.1 taxadiene 5-alpha hydroxylase (94% 3e-101), AAN52360.1 5-alpha-taxadienol-10-beta-hydroxylase (94% 2e-97), AAO66199.1 taxane 14b -hydroxylase (95% 3e-95), AAS89065.2 taxoid 2-alpha-hydroxylase (93% 1e-92), Q9AXM6.1 5-alpha-taxadienol-10-beta-hydroxylase (94% 4e-92), AAT47183 .1 taxoid 10-beta hydroxylase (94% 1e-91), AAV54171.1 taxoid 2-alpha-hydroxylase (97% 3e-91), and so on. In both cases, they code for enzymes that oxidize diterpenes, not triterpenes. From these information, it was not considered that the genes of CYP716 family have triterpene oxidation ability.
OSC1とCYP93E2およびCYP716A12を同時発現する形質転換酵母の作製
 実施例3において作製した、配列番号10に示すポリヌクレオチドを有するプラスミド(エントリークローン)とデスティネーションベクターpYES-DESTTM52(Invitrogen社)を混合し、Gateway LR Clonase II Enzyme Mix(Invitrogen社)を用いて塩基配列特異的な組み換え反応(GATEWAYTM attL × attR反応)により、配列番号10で示すDNA断片をpYES-DESTTM52に移し替えることで配列番号10に示す遺伝子の酵母発現ベクターpDEST52-CYP716A12を得た。次に、実施例10において作製した、pYES3-ADH-OSC1とpELC-CYP93E2の2つのベクターを保持する酵母にpDEST52-CYP716A12、又は空ベクターに相当するpYES2(Invitrogen社)で形質転換した。
Production of transformed yeast co-expressing OSC1, CYP93E2 and CYP716A12 The plasmid (entry clone) having the polynucleotide shown in SEQ ID NO: 10 and the destination vector pYES-DESTTM52 (Invitrogen) produced in Example 3 were mixed, By using Gateway LR Clonase II Enzyme Mix (Invitrogen), the DNA fragment represented by SEQ ID NO: 10 is transferred to pYES-DESTTM52 by base sequence-specific recombination reaction (GATEWAYTM attL x attR reaction). The yeast expression vector pDEST52-CYP716A12 of the gene was obtained. Next, the yeast carrying the two vectors pYES3-ADH-OSC1 and pELC-CYP93E2 prepared in Example 10 was transformed with pDEST52-CYP716A12 or pYES2 (Invitrogen) corresponding to the empty vector.
形質転換酵母(pYES3-ADH-OSC1、pELC-CYP93E2、pDEST52-CYP716A12)における生成物の確認
 pYES3-ADH-OSC1、pELC-CYP93E2、pDEST52-CYP716A12の3つのベクターを保持する酵母を5mlのSC-Trp/Leu/Ura培地30℃、135rpm、1日間培養した。培養した酵母を3000g、10分間遠心することにより集菌し、ガラクトース(20mg/ml)、塩化ヘミン(13μg/ml)を添加した10mlのSC-Trp/Leu/Ura-グルコース培地に懸濁し、30℃、135rpm、2日間培養した。酵母培養液に5mlの酢酸エチルを加え混合した後、酢酸エチル抽出物を回収した。この操作を3回繰り返した。酢酸エチル抽出物を減圧下で濃縮した。pYES3-ADH-OSC1、pELC-CYP93E2、pYES2の3つのベクターを保持するコントロールの酵母についても同様に、培養、抽出を行なった。酢酸エチル区は溶媒を乾燥除去した後、N-メチル-N-トリメチルシリルトリフルオロアセトアミドを加え、80℃で30分間加熱し、トリメチルシリルエーテル体に誘導体化しGC-MS分析の試料とした。
Confirmation of product in transformed yeast (pYES3-ADH-OSC1, pELC-CYP93E2, pDEST52-CYP716A12) 5 ml of SC-Trp containing 3 vectors of pYES3-ADH-OSC1, pELC-CYP93E2, and pDEST52-CYP716A12 / Leu / Ura medium was cultured at 30 ° C., 135 rpm for 1 day. The cultured yeast was collected by centrifugation at 3000 g for 10 minutes, suspended in 10 ml of SC-Trp / Leu / Ura-glucose medium supplemented with galactose (20 mg / ml) and hemin chloride (13 μg / ml), 30 The cells were cultured at 135 ° C. for 2 days. After 5 ml of ethyl acetate was added to the yeast culture and mixed, the ethyl acetate extract was recovered. This operation was repeated three times. The ethyl acetate extract was concentrated under reduced pressure. In the same manner, culture and extraction were performed for the control yeast carrying the three vectors pYES3-ADH-OSC1, pELC-CYP93E2, and pYES2. In the ethyl acetate section, after removing the solvent by drying, N-methyl-N-trimethylsilyltrifluoroacetamide was added, and the mixture was heated at 80 ° C. for 30 minutes to be derivatized into a trimethylsilyl ether and used as a sample for GC-MS analysis.
 pYES3-ADH-OSC1、pESC-CYP93E2、pDEST52-CYP716A12の3つのベクターを保持する酵母の抽出物(図4:bAS/CPR/CYP93E2/CYP716A12と示したGCチャート)からは、β-アミリンに加えて、(実施例10)と(実施例11)で示した24-OH-β-amyrin、β-amyrin-24-oic acid、エリトリジオール、オレアノール酸のピークの他に特異的な4本のピークが検出された。その内、ピーク1のマススペクトル(図5)はヘデラゲニンの標品のマススペクトルと非常に良く一致した。 In addition to β-amylin, the yeast extract (Fig. 4: GC chart shown as bAS / CPR / CYP93E2 / CYP716A12) containing three vectors pYES3-ADH-OSC1, pESC-CYP93E2, and pDEST52-CYP716A12 In addition to the 24-OH-β-amyrin, β-amyrin-24-oicoacid, erythridiol, and oleanolic acid peaks shown in (Example 10) and (Example 11), four specific peaks Was detected. Among them, the mass spectrum of peak 1 (FIG. 5) agreed very well with the mass spectrum of the standard hederagenin.
 一方、対照実験として行ったpYES3-ADH-OSC1、pESC-CYP93E2、pYES2の3つのベクターを保持する酵母の抽出物(図4:OSC1/CPR/CYP93E2と示したGCチャート)からは28位に水酸化もしくはさらに酸になったものは検出されなかった。以上の結果から、β-アミリン合成酵素(OSC1)を発現する酵母において、CYP93E2とCYP716A12を同時発現させることによって、β-アミリンを基本骨格にもつオレアノール酸および類縁トリテルペノイドを生成し得ることが明らかとなった。 On the other hand, from the yeast extract containing the three vectors pYES3-ADH-OSC1, pESC-CYP93E2, and pYES2 (Fig. 4: GC chart shown as OSC1 / CPR / CYP93E2) that was used as a control experiment, No oxidation or further acidification was detected. From the above results, it is clear that oleanolic acid and related triterpenoids with β-amylin as the basic skeleton can be produced by co-expressing CYP93E2 and CYP716A12 in yeast expressing β-amylin synthase (OSC1). became.
CYP716A12相同遺伝子の公開データベースからの配列抽出
 本発明のオレアナン型トリテルペンの28位のメチル基を酸化する活性を有する酵素が、タルウマゴヤシに限定されないことを検証するために、相同性検索により、数種の植物の公開ESTデータベースに登録されている塩基配列の中から、CYP716A12の全長コード領域と高い塩基配列同一性を示すポリヌクレオチド配列を探索した。
Sequence Extraction from Public Database of CYP716A12 Homologous Genes In order to verify that the enzyme having the activity to oxidize the methyl group at position 28 of the oleanane-type triterpene of the present invention is not limited to Taruma palm by homology search, A polynucleotide sequence having high base sequence identity with the full-length coding region of CYP716A12 was searched from among the base sequences registered in the public EST database of plants.
 トマトの完全長cDNAデータベースである(http://www.pgb.kazusa.or.jp/kaftom/blast.html)からLEFL3159E12を見出した。LEFL3159E12から推定される全長コード領域は配列番号11であり、それから推定されるポリペプチド配列は配列番号3である。配列番号3はCYP716A12のアミノ酸配列に対して74.2%の同一性を有していた。 LEFL3159E12 was found from the full-length tomato cDNA database (http://www.pgb.kazusa.or.jp/kaftom/blast.html). The full length coding region deduced from LEFL3159E12 is SEQ ID NO: 11, and the polypeptide sequence deduced therefrom is SEQ ID NO: 3. SEQ ID NO: 3 had 74.2% identity to the amino acid sequence of CYP716A12.
 ミヤコグサの公開ESTデータベース(http://est.kazusa.or.jp/en/plant/lotus/EST/blast.html)から、ミヤコグサcDNA断片の部分配列に相当するAV768711を見出した。AV768711の配列を含むcDNAクローン(MWL008g03)を、ナショナルバイオリソースプロジェクトミヤコグサ・ダイズから入手し、MWL008g03に含まれるミヤコグサ由来cDNAの全長配列を決定した。MWL008g03から推定される全長コード領域は配列番号12であり、それから推定されるポリペプチド配列は配列番号4である。配列番号4はCYP716A12のアミノ酸配列に対して79.5%の同一性を有していた。 From the public EST database of Miyakogusa (http://est.kazusa.or.jp/en/plant/lotus/EST/blast.html), AV768711 corresponding to a partial sequence of Miyakogusa cDNA fragment was found. A cDNA clone (MWL008g03) containing the sequence of AV768711 was obtained from National BioResource Project Miyakogusa soybean, and the full-length sequence of Miyakogusa-derived cDNA contained in MWL008g03 was determined. The full-length coding region deduced from MWL008g03 is SEQ ID NO: 12, and the polypeptide sequence deduced therefrom is SEQ ID NO: 4. SEQ ID NO: 4 had 79.5% identity to the amino acid sequence of CYP716A12.
 ブドウの公開されているゲノム情報をNCBI(The National Center for Biotechnology Information advances science and health)が持つBlast検索サイト(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?)を利用して、ゲノム配列から予想される遺伝子配列accession no. XM_002268434.1 (Vitis vinifera hypothetical protein LOC100251813)を見出した。この配列は全長をコードすることが予想できた。 The Blast search site (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?) Of NCBI (The National Center for Biotechnology, Information, advances, science, and health) has been published. The gene sequence accession no. XM_002268434.1 (Vitis vinifera hypothetical protein LOC100251813) predicted from the genome sequence was found. This sequence could be expected to encode the full length.
 ビートの公開されているcDNAデータ情報をDFCI(Dana-Farber Cancer Institute, Harvard School of Public Health)が持つGene Index Projectサイト(http://compbio.dfci.harvard.edu/tgi/tgipage.html)を利用してBeet Release 2.0 (May 19, 2008)の情報から1つの遺伝子断片であるTC8082を見出した。一方、NCBIのBlast検索サイトでビートの公開されているESTデータ情報から1つの遺伝子断片であるaccession no. FG344256.1(SF_01-a06 Bv_T1 Beta vulgaris subsp. vulgaris cDNA clone SF_01-a06 reverse, mRNA sequence.)を見出した。両方の配列とも全長の遺伝子を含んでいないが、相同性の解析から、TC8082はN末端配列を、FG344256.1はC末端配列を、それぞれ含むことが予想できた。 The Gene Index Project site (http://compbio.dfci.harvard.edu/tgi/tgipage.html) of the DFCI (Dana-Farber Cancer Institute, Harvard School of Public Public Health) Using the information of Beet Release 2.0 (May 19, 2008), we found one gene fragment, TC8082. Meanwhile, accession no. FG344256.1 (SF_01-a06 Bv_T1 Beta vulgaris subsp. Vulgaris cDNA clone SF_01-a06 reverse, mRNA sequence. ) Was found. Although both sequences do not contain the full-length gene, TC8082 could be expected to contain an N-terminal sequence and FG344256.1 would contain a C-terminal sequence from homology analysis.
 オリーブの公開されているESTデータ情報をNCBIのBlast検索サイトでオリーブの公開されているデータ情報から1つの遺伝子断片であるaccession no. GO244188.1(OEAA-070810_Plate3p13.b1 cDNA library from Olive leaves and fruits Olea europaea cDNA, mRNA sequence)を見出した。本配列は全長の遺伝子を含んでいないが、相同性の解析から、C末端配列を含むことが予想できた。 From the published EST data information of olives to the NCBI Blast search site, the accession no. GO244188.1 (OEAA-070810_Plate3p13.b1 cDNA library from Olive leaves and fruits Olea europaea cDNA, mRNA sequence) was found. Although this sequence does not contain the full-length gene, it could be expected to contain a C-terminal sequence from homology analysis.
 コーヒーの公開されているESTデータ情報をNCBIのBlast検索サイトでオリーブの公開されているデータ情報から1つの遺伝子断片であるaccession no. GT020247.1(TransId-279278 CarCatBudEnri2 Coffea arabica cDNA clone CarCatBudEnri2_59-D09-PAL17d similar to Cytochrome P450 monooxygenase CYP716A12 - Medicago truncatula (Barrel medic), mRNA sequence.)を見出した。本配列は全長の遺伝子を含んでいないが、相同性の解析から、C末端配列を含むことが予想できた。 From the published data information of olives on the NCBI Blast search site, accession no. GT020247.1 (TransId-279278 CarCatBudEnri2 Coffea arabica cDNA clone CarCatBudEnri2_59-D09- PAL17d similar to Cytochrome P450 monooxygenase CYP716A12-Medicago truncatula (Barrel medic), mRNA sequence.) Was found. Although this sequence does not contain the full-length gene, it could be expected to contain a C-terminal sequence from homology analysis.
CYP716A12相同遺伝子の全長配列の取得
 実施例14で得た配列のうち、オレアノール酸を含むことが報告されているブドウ(CasadoとHeredia1、J. Exp. Bot.,50, 175-182, 1999)、ビート(Connolly、Phytochemistry, 37, 1994, 1667-1670)、オリーブ(Bianchiら、Phytochemistry, 32, 1992, 49-52)と、ウルソール酸を蓄積することが知られているコーヒー(Jagerら、Molecules 2009, 14, 2016-2031)から全長配列を取得を試みた。
Acquisition of full-length sequence of CYP716A12 homologous gene Among the sequences obtained in Example 14, grapes that are reported to contain oleanolic acid (Casado and Heredia1, J. Exp. Bot., 50, 175-182, 1999), Beets (Connolly, Phytochemistry, 37, 1994, 1667-1670), olives (Bianchi et al., Phytochemistry, 32, 1992, 49-52) and coffee known to accumulate ursolic acid (Jager et al., Molecules 2009) , 14, 2016-2031).
 ブドウについては、食料品店で購入した生食用に販売されているブドウ(品種レッドグローブ)の果皮を液体窒素にて破砕した。CTAB(Cetyltrimethylammonium bromide)法(Changら、1993. Plan Mol Biol Rep 11: 113-116)を用いて全RNAを抽出した。全cDNAの合成はスーパースクリプト ファーストストランド システム(インビトロジェン社)を用いて行った。このcDNAを鋳型に用い、(実施例14)のN末端とC末端に相当する箇所をプライマー配列番号27(U910:caccATGGAGGTGTTCTTCCTCTC)と配列番号28(U911:CTATGGTTTGCGAGGATGGA)、で、アニール温度55℃でPCR(30サイクル、タカラバイオ社製 PrimeSTAR HS DNA Polymeraseを使用)によって遺伝子を増幅した。これをpENTRTM/D-TOPOエントリーベクター(Invitrogen社)へクローニングした。得られた8個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列は、配列番号13であり、それから推定されるポリペプチド配列(配列番号5)は、GenBankに登録されているXM_002268434.1のアミノ酸配列に対して100%の同一性を有していた。CYP716A12のアミノ酸配列に対しては75.3%の同一性を有していた。このベクターをpTOPO-PSGrapeとした。 For grapes, the peel of grapes (variety red glove) sold for raw consumption purchased at a grocery store was crushed with liquid nitrogen. Total RNA was extracted using the CTAB (Cetyltrimethylammonium bromide) method (Chang et al., 1993. Plan Mol Biol Rep 11: 113-116). Total cDNA synthesis was performed using the Superscript First Strand System (Invitrogen). Using this cDNA as a template, PCR was performed at a primer sequence number 27 (U910: caccATGGAGGTGTTCTTCCTCTC) and sequence number 28 (U911: CTATGGTTTGCGAGGATGGA) at an annealing temperature of 55 ° C. corresponding to the N-terminus and C-terminus of (Example 14). The gene was amplified by 30 cycles (using PrimeSTAR HS DNA Polymerase manufactured by Takara Bio Inc.). This was cloned into a pENTR / D-TOPO entry vector (Invitrogen). Polynucleotide sequences were determined for the 8 independent clones obtained. The sequence thus obtained is SEQ ID NO: 13, and the polypeptide sequence (SEQ ID NO: 5) deduced therefrom has 100% identity to the amino acid sequence of XM_002268434.1 registered in GenBank. Was. The amino acid sequence of CYP716A12 had 75.3% identity. This vector was designated as pTOPO-PSGrape.
 ビートについては、デトロイトダークレッド(タキイ種苗社)の種子を市販の培養土に播種後、一週間後の全草を液体窒素にて破砕した。RNAの抽出はRNeasy(キアゲン社)で行い、全cDNAの合成はスーパースクリプト ファーストストランド システム(インビトロジェン社)を用いて行った。(実施例14)のN末端とC末端に相当する箇所をプライマー配列番号29(U908:caccATGGAGCTCTTCTTCCTTT)と配列番号30(U909:TTAAGCAGCAACAATTTGAGGAT)、で、アニール温度55℃でPCR(30サイクル、タカラバイオ社製 PrimeSTAR HS DNA Polymeraseを使用)によって遺伝子を増幅した。これをpENTRTM/D-TOPOエントリーベクター(Invitrogen社)へクローニングした。得られた8個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列は、配列番号14であり、それから推定されるポリペプチド配列(配列番号6)は、CYP716A12のアミノ酸配列に対しては71.2%の同一性を有していた。このベクターをpTOPO-PSBeetとした。 For beets, seeds of Detroit Dark Red (Takii Seed & Seed Co., Ltd.) were sown on commercially available culture soil, and the whole plant one week later was crushed with liquid nitrogen. RNA was extracted with RNeasy (Qiagen), and total cDNA was synthesized using Superscript First Strand System (Invitrogen). The portion corresponding to the N-terminus and C-terminus of (Example 14) is primer SEQ ID NO: 29 (U908: caccATGGAGCTCTTCTTCCTTT) and SEQ ID NO: 30 (U909: TTAAGCAGCAACAATTTGAGGAT), PCR at an annealing temperature of 55 ° C. The gene was amplified by using PrimeSTAR HS DNA Polymerase. This was cloned into a pENTR / D-TOPO entry vector (Invitrogen). Polynucleotide sequences were determined for the 8 independent clones obtained. The sequence obtained thereby was SEQ ID NO: 14, and the polypeptide sequence deduced therefrom (SEQ ID NO: 6) had 71.2% identity to the amino acid sequence of CYP716A12. This vector was designated as pTOPO-PSBeet.
 オリーブについては、品種ネバディロブロンコの葉を液体窒素にて破砕した。RNAの抽出はRNeasy(キアゲン社)で行い、全cDNAの合成はGeneRacerTM キット(インビトロジェン社)を用いて行った。(実施例14)の一部配列からプライマー(配列番号31 U912:ATTCCCCAGGAGCTTTTGAT)とGeneRacerTM キット付属の5’raceプライマーを用いてN末端配列を決定した。N末端とC末端に相当する箇所をプライマー配列番号32(U916:caccATGGAGTTCTTCTATGTCTCTCTTC)と配列番号33(U907: TTAAGCATTAAGGGGATAAAGAC)、で、アニール温度55℃でPCR(30サイクル、タカラバイオ社製 PrimeSTAR HS DNA Polymeraseを使用)によって遺伝子を増幅した。これをpENTRTM/D-TOPOエントリーベクター(Invitrogen社)へクローニングした。得られた8個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列は、配列番号15であり、それから推定されるポリペプチド配列(配列番号7)は、CYP716A12のアミノ酸配列に対しては78.0%の同一性を有していた。このベクターをpTOPO-PSOliveとした。 For olives, the leaves of the cultivar Nevadiro bronco were crushed with liquid nitrogen. RNA was extracted with RNeasy (Qiagen), and total cDNA was synthesized using GeneRacer kit (Invitrogen). The N-terminal sequence was determined from a partial sequence of (Example 14) using a primer (SEQ ID NO: 31 U912: ATTCCCCAGGAGCTTTTGAT) and a 5'race primer attached to the GeneRacer TM kit. Place the primer corresponding to N-terminal and C-terminal with primer SEQ ID NO: 32 (U916: caccATGGAGTTCTTCTATGTCTCTCTTC) and SEQ ID NO: 33 (U907: TTAAGCATTAAGGGGATAAAGAC), PCR at 30 ° C annealing temperature (30 cycles, PrimeSTAR HS DNA Polymerase manufactured by Takara Bio Inc.) Use) to amplify the gene. This was cloned into a pENTR / D-TOPO entry vector (Invitrogen). Polynucleotide sequences were determined for the 8 independent clones obtained. The sequence obtained thereby was SEQ ID NO: 15, and the polypeptide sequence deduced therefrom (SEQ ID NO: 7) had 78.0% identity to the amino acid sequence of CYP716A12. This vector was designated as pTOPO-PSOlive.
 コーヒーについては、品種ブルーマウンテンの葉を液体窒素にて破砕した。RNAの抽出はRNeasy(キアゲン社)で行い、全cDNAの合成はGeneRacerTM キット(インビトロジェン社)を用いて行った。(実施例14)の一部配列からプライマー(配列番号34 U914:CGCTCACAAACAATCTGGAA)とGeneRacerTM キット付属の5’raceプライマーを用いてN末端配列を決定した。N末端とC末端に相当する箇所をプライマー配列番号35(U917:caccATGGAGTTTTTCTATGTCTCTTTG)と配列番号36(U906: TTAGGCCTTGTGTGGAAAAA)で、アニール温度55℃でPCR(30サイクル、タカラバイオ社製 PrimeSTAR HS DNA Polymeraseを使用)によって遺伝子を増幅した。これをpENTRTM/D-TOPOエントリーベクター(Invitrogen社)へクローニングした。得られた8個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列は、配列番号16であり、それから推定されるポリペプチド配列(配列番号8)は、CYP716A12のアミノ酸配列に対しては71.3%の同一性を有していた。このベクターをpTOPO-PSCoffeeとした。 For coffee, the leaves of cultivar Blue Mountain were crushed with liquid nitrogen. RNA was extracted with RNeasy (Qiagen), and total cDNA was synthesized using GeneRacer kit (Invitrogen). The N-terminal sequence was determined from a partial sequence of (Example 14) using a primer (SEQ ID NO: 34 U914: CGCTCACAAACAATCTGGAA) and a 5'race primer attached to the GeneRacer TM kit. PCR corresponding to primer sequence number 35 (U917: caccATGGAGTTTTTCTATGTCTCTTTG) and sequence number 36 (U906: TTAGGCCTTGTGTGGAAAAA) at the annealing temperature of 55 ° C (30 cycles, using PrimeSTAR HS DNA Polymerase manufactured by Takara Bio Inc.) ) Amplified the gene. This was cloned into a pENTR / D-TOPO entry vector (Invitrogen). Polynucleotide sequences were determined for the 8 independent clones obtained. The sequence obtained thereby was SEQ ID NO: 16, and the polypeptide sequence deduced therefrom (SEQ ID NO: 8) had 71.3% identity to the amino acid sequence of CYP716A12. This vector was designated as pTOPO-PSCoffee.
OSC1とCYP716A12相同遺伝子を同時発現する形質転換酵母の作製
 実施例15で作製した、各4つのプラスミド(pTOPO-PSGrape, pTOPO-PSBeet, pTOPO-PSOlive, pTOPO-PSCoffee)とpELC-MCS2-GWとをそれぞれ混合し、Gateway LR Clonase II Enzyme Mix(Invitrogen社)を用いて塩基配列特異的な組み換え反応(attL x attR反応)により、それぞれをpELC-MCS2-GWに移し替えることでLjCPR1とそれぞれの遺伝子の同時発現ベクターpELC-Grape, pELCBeet, pELC-Olive, pELC-Coffeeを得た。実施例8と同様に、酵母INVSc1株をpYES3-ADH-OSC1で形質転換し、続いて、得られた形質転換酵母をpELC-Grape、pELCBeet、pELC-Olive、またはpELC-Coffeeで形質転換した。
Preparation of transformed yeast co-expressing OSC1 and CYP716A12 homologous genes Each of the four plasmids (pTOPO-PSGrape, pTOPO-PSBeet, pTOPO-PSOlive, pTOPO-PSCoffee) and pELC-MCS2-GW prepared in Example 15 By mixing each, and transferring each to pELC-MCS2-GW by base sequence specific recombination reaction (attL x attR reaction) using Gateway LR Clonase II Enzyme Mix (Invitrogen), LjCPR1 and each gene The coexpression vectors pELC-Grape, pELCBeet, pELC-Olive, and pELC-Coffee were obtained. As in Example 8, the yeast INVSc1 strain was transformed with pYES3-ADH-OSC1, and then the resulting transformed yeast was transformed with pELC-Grape, pELCBeet, pELC-Olive, or pELC-Coffee.
形質転換酵母(pYES3-ADH-OSC1とpELC-Grape、pYES3-ADH-OSC1とpELC-Beet、pYES3-ADH-OSC1とpELC-Olive、pYES3-ADH-OSC1とpELC-Coffee)における生成物の確認
 pYES3-ADH-OSC1、pELC-CYP716A12の2つのベクターを保持する酵母について、実施例10に示した方法により培養、抽出ならびに、抽出物の分析を行なった。pYES3-ADH-OSC1とpELC-Grape、pYES3-ADH-OSC1とpELC-Beet、pYES3-ADH-OSC1とpELC-Olive、pYES3-ADH-OSC1とpELC-Coffeeの各々2つのベクターを保持する4種の酵母の抽出物(図6~図9、OSC1/LjCPR1/Grape、OSC1/LjCPR1/Beet、OSC1/LjCPR1/Olive、OSC1/LjCPR1/Coffeeと示したGCチャート)からは、β-アミリン(点線矢印)に加えて、特異的な2本のピーク(ピーク1とピーク2)が検出された。その内、ピーク2のマススペクトルはオレアノール酸の標品のマススペクトルと非常に良く一致し、ピーク2はオレアノール酸に相当することが判明した。ピーク1はマススペクトルパターンから、β-アミリンの28位が水酸化されたエリトリジオールであった。
Confirmation of products in transformed yeast (pYES3-ADH-OSC1 and pELC-Grape, pYES3-ADH-OSC1 and pELC-Beet, pYES3-ADH-OSC1 and pELC-Olive, pYES3-ADH-OSC1 and pELC-Coffee) pYES3 -Yeast holding two vectors of -ADH-OSC1 and pELC-CYP716A12 were cultured, extracted and analyzed by the method described in Example 10. Four types of pYES3-ADH-OSC1 and pELC-Grape, pYES3-ADH-OSC1 and pELC-Beet, pYES3-ADH-OSC1 and pELC-Olive, and pYES3-ADH-OSC1 and pELC-Coffee. From the yeast extract (Figures 6 to 9, OSC1 / LjCPR1 / Grape, OSC1 / LjCPR1 / Beet, OSC1 / LjCPR1 / Olive, GC chart shown as OSC1 / LjCPR1 / Coffee), β-amylin (dotted arrow) In addition, two specific peaks (peak 1 and peak 2) were detected. Among them, the mass spectrum of peak 2 agreed very well with the mass spectrum of the oleanolic acid preparation, and peak 2 was found to correspond to oleanolic acid. Peak 1 was erythridiol in which the 28-position of β-amylin was hydroxylated from the mass spectrum pattern.
 以上の結果から、オレアノール酸を蓄積するブドウ、ビート、オリーブから得られたCYP716A12の相同遺伝子産物は、β-アミリン合成酵素(OSC1)を発現する酵母において生じるβ-アミリンの28位のメチル基をカルボキシル基に変換し、オレアノール酸を生成し得ることが明らかとなった。その活性はタルウマゴヤシの遺伝子よりもはるかに高活性であることも示すことができた。一方、五環系トリテルペン化合物であるウルソール酸を蓄積するコーヒーでもβ-アミリンの28位のメチル基をカルボキシル基に変換し、オレアノール酸を生成し得ることが明らかとなった。 From the above results, the CYP716A12 homologous gene product obtained from grape, beet, and olive that accumulates oleanolic acid has a methyl group at the 28th position of β-amylin produced in yeast expressing β-amylin synthase (OSC1). It was revealed that it can be converted to a carboxyl group to produce oleanolic acid. It could also be shown that its activity is much higher than the gene of Taruma palm. On the other hand, it was clarified that coffee that accumulates ursolic acid, which is a pentacyclic triterpene compound, can convert the methyl group at the 28-position of β-amylin to a carboxyl group to produce oleanolic acid.
ブドウ組織での遺伝子発現解析
 ブドウ品種「キャンベル ベリーA」の葉と果皮(CTAB)を用いて全RNAを抽出した。cDNAはSuperScript IIIファーストストランド合成システム(インビトロジェン)で合成した。ブドウのオレアノール酸合成酵素遺伝子である配列番号13に基づいてプライマー(CACTTTCTGGCTAGCTTGCCG(配列番号37):U919とCATGAATATCTCATCTTTTG(配列番号38):U920)を作製しRT-PCR(条件:95℃5分、(95℃30秒、55℃30秒、72℃3分)を25回、72℃5分)を行った。ブドウにおいてオレアノール酸は果皮に対して葉ではその含量が1/10以下であることが知られている(GRNCAREVICとRADLER (1971) A review of the surface lipids of grapes and their importance in the drying process. Am. J. Enol. Vitic. 22 : 80-86.)。図10に示すように果皮では葉に対してのオレアノール酸合成酵素遺伝子の発現が高いことがわかった。このようにオレアノール酸含量の高い組織の同定が遺伝子の発現解析で可能であり、オレアノール酸化合物と組成との相関を解析することで、組織含量の増加のみならず、品種評価、QTLなどの遺伝子解析が可能になり、遺伝子発現マーカーを作製することができることが示された。
Gene expression analysis in grape tissue Total RNA was extracted using leaves and pericarp (CTAB) of grape cultivar "Campbell berry A". cDNA was synthesized by SuperScript III first strand synthesis system (Invitrogen). Primers (CACTTTCTGGCTAGCTTGCCG (SEQ ID NO: 37): U919 and CATGAATATCTCATCTTTTG (SEQ ID NO: 38): U920) were prepared based on the oleanolic acid synthase gene SEQ ID NO. 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, 72 ° C. for 3 minutes) were performed 25 times, 72 ° C. for 5 minutes). It is known that the content of oleanolic acid in grapes is less than 1/10 of that in the leaves (GRNCAREVIC and RADLER (1971) A review of the surface lipids of grapes and their importance in the drying process. J. Enol. Vitic. 22: 80-86.). As shown in FIG. 10, it was found that the expression of the oleanolic acid synthase gene was high in the pericarp on the leaves. In this way, identification of tissues with high oleanolic acid content is possible by gene expression analysis, and by analyzing the correlation between oleanolic acid compounds and composition, genes such as variety evaluation and QTL are not only increased Analysis has become possible, and it has been shown that gene expression markers can be produced.
ウラルカンゾウ由来ルペオール合成酵素(GuLUS)遺伝子cDNAの酵母発現ベクターpYES-ADH-GuLUSの構築
 最初に、ウラルカンゾウ由来ルペオール合成酵素(GuLUS1)遺伝子の導入に使用したpYES3/CT(AUR)-Gateway-1ベクターを以下に示す方法により作製した。
Construction of the yeast expression vector pYES-ADH-GuLUS for the Uralcanus-derived lupeol synthase (GuLUS) gene cDNA First, pYES3 / CT (AUR) -Gateway-1 used to introduce the Uralcanus-derived lupeol synthase (GuLUS1) gene The vector was produced by the method shown below.
 pAUR123(TaKaRa社)の5968番から6959番塩基(PADH1からTADH1領域)を配列番号39(GGATGATCCACTAGTGGATCCTCTAGCTCCCTAACATGTAGGTGG)及び配列番号40(TAATGCAGGGCCGCAGGATCCGTGTGGAAGAACGATTACAACAGG)の両プライマーを用いて、KOD-Plus-DNAポリメラーゼ(TOYOBO社)により94℃で2分間処理した後、(94℃20秒間→55℃40秒間→68℃90秒間)×20サイクルからなるPCRを行った。その後、68℃で2分間保温した。また、pYES3/CT(Invitrogen社)の1番から960番塩基(PGAL1からCYC1TT)を除く領域を配列番号41(TGCGGCCCTGCATTAATGAATCGGCCAACG)及び配列番号42(ACTAGTGGATCATCCCCACGCGCCCTGTAG)の両プライマーを用いてKOD-Plus- DNAポリメラーゼ(TOYOBO社)により前記と同様にPCRを行った。両PCR産物をIn-Fusion Dry-Down PCR Cloning Kit(clontech社)を用いて結合し、pYES3/CT(AUR)ベクターを得た。得られたpYES3/CT(AUR)ベクターを制限酵素SmaIで切断し、Gateway Vector Conversion System Reading frame B (Invitrogen社)と連結することでpYES3/CT(AUR)-Gateway-1ベクターを構築した。 pAUR123 (TaKaRa) from 5968 to 6959 bases (PADH1 to TADH1 region) with SEQ ID NO: 39 (GGATGATCCACTAGTGGATCCTCTAGCTCCCTAACATGTAGGTGG) and SEQ ID NO: 40 (TAATGCAGGGCCGCAGGATCCGTGTGGAAGAACGATTACAACAGG) using both primers (DNA) by KODTO PlusBO After treatment at 94 ° C. for 2 minutes, PCR consisting of 20 cycles of (94 ° C. for 20 seconds → 55 ° C. for 40 seconds → 68 ° C. for 90 seconds) was performed. Then, it kept warm at 68 degreeC for 2 minutes. In addition, the region except pYES3 / CT (Invitrogen) from 1st to 960th bases (PGAL1 to CYC1TT) is KOD-Plus- DNA polymerase using both SEQ ID NO: 41 (TGCGGCCCTGCATTAATGAATCGGCCACG) and SEQ ID NO: 42 (ACTAGTGGATCATCCCCACGCGCCCTGTAG). (TOYOBO) performed PCR as described above. Both PCR products were ligated using In-Fusion Dry-Down PCR Cloning Kit (clontech) to obtain a pYES3 / CT (AUR) vector. The obtained pYES3 / CT (AUR) vector was cleaved with a restriction enzyme SmaI and ligated with Gateway-Vector-Conversion-System-Reading-frame-B (Invitrogen) to construct a pYES3 / CT (AUR) -Gateway-1 vector.
 次に、ウラルカンゾウ(G.uralensis)のストロンからトータルRNAを調製した。得られたトータルRNAを1μg用いて、SMART RACE cDNA amplification kit (Clontech社)を用いて添付のプロトコルに従いファーストストランドcDNA合成を行った。得られたファーストストランドcDNA各2μlを鋳型として、スペインカンゾウから単離されていたルペオール合成酵素遺伝子のmRNA配列(AB116228、Hayashiら2004 Biol. Pharm. Bull. 27: 1086-1092)の5’の非翻訳領域および翻訳終止コドンを含む箇所に設計したPCRプライマー配列番号43(5’側=CACCGTACTACTAGGCGAGGCAATTAAAGCG)と配列番号44(3’側=TGGTCAATAACTGTGAGCACACAAGACT)を用いて、アニール温度53℃でPCR(30サイクル、TOYOBO社製 KOD plus ver.2 polymeraseを使用)を行った。なお、pENTRTM/D-TOPOエントリーベクター(Invitrogen社)へのクローニングの際に必要であることから、配列番号追加1のプライマーには、5’末端に4塩基(cacc)が人工的に付加されている。PCRの結果増幅された約2.3kbのDNA断片をpENTRTM/D-TOPOエントリーベクターにクローニング(エントリークローンの作製)し、得られた3個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列は、配列番号45であり、それから推定されるポリペプチド配列(配列番号46)は、スペインカンゾウのルペオール合成酵素のアミノ酸配列に対して99%の同一性を有していた。 Next, total RNA was prepared from a stron of G. uralensis. First-strand cDNA synthesis was performed using 1 μg of the total RNA obtained and SMART RACE cDNA amplification kit (Clontech) according to the attached protocol. Using 2 μl each of the obtained first strand cDNA as a template, the 5 ′ non-specific sequence of the rupeol synthase gene mRNA sequence (AB116228, Hayashi et al. 2004 Biol. Pharm. Bull. 27: 1086-1092) isolated from Spanish licorice Using PCR primers SEQ ID NO: 43 (5 'side = CACCGTACTACTAGGCGAGGCAATTAAAGCG) and SEQ ID NO: 44 (3' side = TGGTCAATAACTGTGAGCACACAAGACT) designed at locations including the translation region and translation stop codon, PCR was performed at an annealing temperature of 53 ° C (30 cycles, TOYOBO KOD plus ver.2 polymerase manufactured by the company was used). Since it is necessary for cloning into the pENTR / D-TOPO entry vector (Invitrogen), 4 bases (cacc) are artificially added to the 5 ′ end of the primer with SEQ ID NO: 1. ing. A DNA fragment of about 2.3 kb amplified as a result of PCR was cloned into a pENTR / D-TOPO entry vector (production of entry clones), and the polynucleotide sequences of the three independent clones obtained were determined. The sequence thus obtained was SEQ ID NO: 45, and the polypeptide sequence deduced therefrom (SEQ ID NO: 46) had 99% identity to the amino acid sequence of Spanish licorice lupeol synthase. .
 ウラルカンゾウ由来ルペオール合成酵素(GuLUS)遺伝子を有するプラスミド(エントリークローン)とpYES3/CT(AUR)-Gateway-1ベクターとを混合し、Gateway LR Clonase II Enzyme Mix(Invitrogen社)を用いて塩基配列特異的な組み換え反応(attL x attR反応)により、配列番号追加3で示すDNA断片をpYES3/CT(AUR)-Gateway-1に移し替えることでウラルカンゾウGuLUS遺伝子酵母発現ベクターpYES3-ADH-LUSを得た。 A plasmid (entry clone) having a lupeol synthase (GuLUS) gene from Ural licorice mixed with pYES3 / CT (AUR) -Gateway-1 vector, and base sequence specific using GatewayGateLR Clonase II Enzyme Mix (Invitrogen) The recombination reaction (attL x attR reaction) to transfer the DNA fragment shown in SEQ ID NO: 3 to pYES3 / CT (AUR) -Gateway-1 to obtain the Ural licorice GuLUS gene yeast expression vector pYES3-ADH-LUS It was.
GuLUSとCYP716A12、GuLUSとブドウ、ビート、オリーブ、コーヒーから得られたCYP716A12の相同遺伝子を同時発現する形質転換酵母の作製と形質転換酵母(pYES3-ADH-LUSとpELC-CYP716A12, pELC-Grape, pELC-Beet, pELC-Olive, pELC-Coffee)における生成物の確認
 実施例8と同様に、酵母INVSc1株をpYES3-ADH-LUSで形質転換し、続いて、得られた形質転換酵母をpELC-CYP716A12, pELC-Grape, pELC-Beet, pELC-Olive, pELC-Coffeeで形質転換し、GuLUSとCYP716A12、GuLUSとブドウ、ビート、オリーブ、コーヒーから得られたCYP716A12の相同遺伝子を同時発現する形質転換酵母を得た。これらの2つのベクターを保持する酵母について、実施例10に示した方法により培養、抽出ならびに、抽出物の分析を行なった。pYES3-ADH-LUS及びpELC-CYP716A12の2つのベクターを保持する酵母の抽出物(図12、LUS/CPR/CYP716A12と示したGCチャート)からは、ルペオール(点線矢印)に加えて、特異的な2本のピーク(ピーク1、ピーク2)が検出された。その内、ピーク1のマススペクトルはベツリンの標品のマススペクトルと非常に良く一致した。これにより、ピーク1は、ベツリンに相当することが判明した。また、ピーク2のマススペクトルはベツリン酸の標品のマススペクトルと非常に良く一致した。これにより、ピーク2は、ベツリン酸に相当することが判明した。
Construction of transgenic yeast that co-expresses CYP716A12 homologous genes obtained from GuLUS and CYP716A12, GuLUS and grape, beet, olive and coffee, and transformed yeast (pYES3-ADH-LUS and pELC-CYP716A12, pELC-Grape, pELC -Beet, pELC-Olive, pELC-Coffee) Confirmation of product In the same manner as in Example 8, the yeast INVSc1 strain was transformed with pYES3-ADH-LUS, and then the resulting transformed yeast was transformed into pELC-CYP716A12. , pELC-Grape, pELC-Beet, pELC-Olive, pELC-Coffee, and transformed yeast that co-expresses CYP716A12 homologous genes obtained from GuLUS and CYP716A12, GuLUS and grape, beet, olive, and coffee. Obtained. About the yeast which hold | maintains these two vectors, it culture | cultivated by the method shown in Example 10, extraction, and the analysis of the extract were performed. From the yeast extract carrying the two vectors pYES3-ADH-LUS and pELC-CYP716A12 (Figure 12, GC chart indicated as LUS / CPR / CYP716A12), in addition to lupeol (dotted arrow), specific Two peaks (peak 1 and peak 2) were detected. Among them, the mass spectrum of peak 1 agreed very well with the mass spectrum of the betulin preparation. This revealed that peak 1 corresponds to betulin. The mass spectrum of peak 2 agreed very well with the mass spectrum of the betulinic acid preparation. This revealed that peak 2 corresponds to betulinic acid.
 一方、pYES3-ADH-LUS及びpESC-LjCPR1の2つのベクターを保持する酵母の抽出物(図12、LUS/CPRと示したGCチャート)からはルペオール(点線矢印)は検出されたがピーク1、ピーク2に相当する化合物は検出されなかった。同様にタルウマゴヤシのCYP716A12の代わりにブドウ(図13)、ビート(図14)、オリーブ(図15)、コーヒー(図16)から得られたCYP716A12の相同遺伝子でもベツリン(ピーク1)とベツリン酸(ピーク2)が得られた。以上の結果から、CYP716A12および相同遺伝子は、ルペオール合成酵素(LUS)を発現する酵母において生じるルペオールの28位のメチル基をカルボキシル基に変換し、ベツリン酸を生成し得ることが明らかとなった。 On the other hand, lupeol (dotted arrow) was detected from the yeast extract carrying the two vectors pYES3-ADH-LUS and pESC-LjCPR1 (FIG. 12, GC chart indicated as LUS / CPR), but peak 1 No compound corresponding to peak 2 was detected. Similarly, betulin (peak 1) and betulinic acid (peak 1) and betulinic acid (peak 1) and homologous genes of CYP716A12 obtained from grape (Fig. 13), beet (Fig. 14), olive (Fig. 15) and coffee (Fig. 16) instead of CYP716A12 Peak 2) was obtained. From the above results, it was revealed that CYP716A12 and homologous genes can convert betulinic acid by converting the 28-position methyl group of lupeol produced in yeast expressing lupeol synthase (LUS) to a carboxyl group.
オリーブ由来αアミリン合成酵素(OeOEA)遺伝子cDNAの酵母発現ベクターpYES-ADH-OeOEAの構築
 αアミリンのみを生成する遺伝子は知られていない。しかし我々はSaimaruらの報告(Chem. Pharm. Bull. 55 :784-788 (2007))から、当該遺伝子は、主にαアミリンを生成することを読み取り本遺伝子を使うこととした。(実施例15)で得られた得られたファーストストランドcDNAを鋳型として、同論文からN末端とC末端に相当する箇所をプライマー配列番号47(U921:caccATGTGGAAGCTTAAGATTGCTG)と配列番号48(U922: TTACAGGCTTTGAGATGACCA)、で、アニール温度55℃でPCR(30サイクル、タカラバイオ社製 PrimeSTAR HS DNA Polymeraseを使用)によって遺伝子を増幅した。これをpENTRTM/D-TOPOエントリーベクター(Invitrogen社)へクローニングした。得られた8個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列は、配列番号49であり、それから推定されるポリペプチド配列(配列番号50)は、同論文のアミノ酸配列に対しては99.7%の同一性を有していた。
Construction of yeast expression vector pYES-ADH-OeOEA of olive-derived α-amylin synthase (OeOEA) gene cDNA No gene that produces only α-amylin is known. However, from the report of Saimaru et al. (Chem. Pharm. Bull. 55: 784-788 (2007)), we read that the gene mainly produces α-amylin and decided to use this gene. Using the obtained first-strand cDNA obtained in (Example 15) as a template, the positions corresponding to the N-terminal and C-terminal from the same paper are the primer SEQ ID NO: 47 (U921: caccATGTGGAAGCTTAAGATTGCTG) and SEQ ID NO: 48 (U922: TTACAGGCTTTGAGATGACCA) The gene was amplified by PCR at an annealing temperature of 55 ° C. (30 cycles, using PrimeSTAR HS DNA Polymerase manufactured by Takara Bio Inc.). This was cloned into a pENTR / D-TOPO entry vector (Invitrogen). Polynucleotide sequences were determined for the 8 independent clones obtained. The sequence obtained thereby was SEQ ID NO: 49, and the polypeptide sequence deduced therefrom (SEQ ID NO: 50) had 99.7% identity to the amino acid sequence of the paper.
 オリーブ由来αアミリン合成酵素(OeOEA)遺伝子を有するプラスミド(エントリークローン)とpYES3/CT(AUR)-Gateway-1ベクターとを混合し、Gateway LR Clonase II Enzyme Mix(Invitrogen社)を用いて塩基配列特異的な組み換え反応(attL x attR反応)により、配列番号追加3で示すDNA断片をpYES3/CT(AUR)-Gateway-1に移し替えることでオリーブOeOEA遺伝子酵母発現ベクターpYES3-ADH-OEAを得た。 A plasmid (entry clone) containing the α-amylin synthase (OeOEA) gene derived from olive and pYES3 / CT (AUR) -Gateway-1 vector are mixed, and base sequence specific using GatewayGateLR Clonase II Enzyme Mix (Invitrogen) By recombination reaction (attL x attR reaction), the DNA fragment shown in SEQ ID NO: 3 was transferred to pYES3 / CT (AUR) -Gateway-1 to obtain olive OeOEA gene yeast expression vector pYES3-ADH-OEA .
OeOEAとCYP716A12、GuLUSとブドウ、ビート、オリーブ、コーヒーから得られたCYP716A12の相同遺伝子を同時発現する形質転換酵母の作製と形質転換酵母(pYES3-ADH-OEAとpELC-CYP716A12, pELC-Grape, pELCBeet, pELC-Olive, pELC-Coffee)における生成物の確認
 実施例8と同様に、酵母INVSc1株をpYES3-ADH-OEA, pELC-Grape, pELC-Beet, pELC-Olive, pELC-Coffeeで形質転換し、続いて、得られた形質転換酵母をpELC-CYP716A12で形質転換し、OeOEAとCYP716A12、GuLUSとブドウ、ビート、オリーブ、コーヒーから得られたCYP716A12の相同遺伝子を同時発現する形質転換酵母を得た。これらの2つのベクターを保持する酵母について、実施例10に示した方法により培養、抽出ならびに、抽出物の分析を行なった。pYES-ADH-OeOEA及びpELC-CYP716A12の2つのベクターを保持する酵母の抽出物(図18、CPR/aAS/CYP716A12と示したGCチャート)からは、αアミリン(点線矢印)に加えて、特異的な2本のピーク(ピーク1、ピーク2)が検出された。その内、ピーク1のマススペクトルはウバオールの標品のマススペクトルと非常に良く一致した。これにより、ピーク1は、ウバオールに相当することが判明した。また、ピーク2のマススペクトルはウルソール酸の標品のマススペクトルと非常に良く一致した。これにより、ピーク2は、ウルソール酸に相当することが判明した。
OeOEA and CYP716A12, GuLUS and CYP716A12 homologous genes obtained from grapes, beets, olives and coffee, and the generation of transformed yeasts (pYES3-ADH-OEA and pELC-CYP716A12, pELC-Grape, pELCBeet , pELC-Olive, pELC-Coffee) In the same manner as in Example 8, the yeast INVSc1 strain was transformed with pYES3-ADH-OEA, pELC-Grape, pELC-Beet, pELC-Olive, pELC-Coffee. Subsequently, the obtained transformed yeast was transformed with pELC-CYP716A12 to obtain a transformed yeast co-expressing CYP716A12 homologous genes obtained from OeOEA and CYP716A12, GuLUS and grape, beet, olive and coffee. . About the yeast which hold | maintains these two vectors, it culture | cultivated by the method shown in Example 10, extraction, and the analysis of the extract were performed. In addition to α-amylin (dotted arrow), the yeast extract carrying two vectors, pYES-ADH-OeOEA and pELC-CYP716A12 (FIG. 18, GC chart indicated as CPR / aAS / CYP716A12) is specific. Two peaks (peak 1 and peak 2) were detected. Among them, the mass spectrum of peak 1 agreed very well with the mass spectrum of Ubaol. Thus, it was found that peak 1 corresponds to ubaol. The mass spectrum of peak 2 agreed very well with the mass spectrum of the ursolic acid preparation. Thus, it was found that peak 2 corresponds to ursolic acid.
 一方、pYES-ADH-OeOEA及びpESC-LjCPR1の2つのベクターを保持する酵母の抽出物(図12、CPR/aASと示したGCチャート)からはαアミリン(点線矢印)は検出されたがピーク1、ピーク2に相当する化合物は検出されなかった。同様にタルウマゴヤシのCYP716A12の代わりにブドウ(図19)、ビート(図20)、オリーブ(図21)、コーヒー(図22)から得られたCYP716A12の相同遺伝子でもウバオール(ピーク1)とウルソール酸(ピーク2)が得られた。以上の結果から、CYP716A12および相同遺伝子は、αアミリン合成酵素(aAS)を発現する酵母において生じるαアミリンの28位のメチル基をカルボキシル基に変換し、ウルソール酸を生成し得ることが明らかとなった。 On the other hand, α-amylin (dotted arrow) was detected from the yeast extract (Fig. 12, GC chart indicated as CPR / aAS) containing two vectors pYES-ADH-OeOEA and pESC-LjCPR1, but peak 1 No compound corresponding to peak 2 was detected. Similarly, CYP716A12 homologous genes obtained from grapes (Fig. 19), beets (Fig. 20), olives (Fig. 21), and coffee (Fig. 22) instead of CYP716A12 of tarumago palm also have ubaol (peak 1) and ursolic acid ( Peak 2) was obtained. From the above results, it is clear that CYP716A12 and homologous genes can convert ursolic acid by converting the methyl group at position 28 of α-amylin generated in yeast expressing α-amylin synthase (aAS) to a carboxyl group. It was.
比較例1Comparative Example 1
ブドウからのオレアノール酸合成遺伝子候補の特定
 実施例18のとおりブドウではオレアノール酸は果皮に多く含まれている。果皮のESTデータベースとして前述のDCFI(Release 7.0 (April 17, 2010))にはGreen Grape Skin Triplex2 Library (326 EST) 、Ripe Grape Skin Triplex2 Library (588 EST)、Green Grape Berry Skins Lambda Triplex2 Library (226 EST)、Ripe Grape Berry Skins Lambda Triplex2 Library (79 EST)が登録されている。この中からはP450として考えられる遺伝子断片、さらにはCYP716A16に相同な遺伝子は見出すことはできなかった。
Identification of oleanolic acid synthesis gene candidates from grapes As in Example 18, grapes are rich in oleanolic acid in the skin. The DCFI (Release 7.0 (April 17, 2010)) mentioned above as the EST database for the pericarp contains Green Grape Skin Triplex2 Library (326 EST), Ripe Grape Skin Triplex2 Library (588 EST), Green Grape Berry Skins Lambda Triplex2 Library (226 EST ), Ripe Grape Berry Skins Lambda Triplex2 Library (79 EST) is registered. Among them, a gene fragment considered as P450 and further a gene homologous to CYP716A16 could not be found.
 本発明の28位酸化酵素及びそれをコードする遺伝子を用いる、薬理活性のある五環系トリテルペン化合物の生産方法は、天然からの抽出法に比べて大量生産を可能にするため有用である。 The method for producing a pharmacologically active pentacyclic triterpene compound using the 28-position oxidase and the gene encoding the same of the present invention is useful because it enables mass production as compared with a natural extraction method.
配列番号17~44、47、48: プライマー Sequence number 17-44, 47, 48: Primer

Claims (17)

  1.  五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質。 A protein having the activity of converting the methyl group at position 28 of a pentacyclic triterpene to a hydroxymethyl group or a carboxyl group.
  2.  マメ科、ナス科、ブドウ科、アカザ科またはモクセイ科またはアカネ科に属する植物に由来する、請求項1記載のタンパク質。 2. The protein according to claim 1, which is derived from a plant belonging to legumes, eggplants, vines, red crustaceae, oleaceae or rhesaceae.
  3.  タルウマゴヤシ、トマト、ミヤコグサ、ブドウ、ビート、オリーブまたはコーヒーに由来する、請求項1または2記載のタンパク質。 The protein according to claim 1 or 2, which is derived from Taruma palm, tomato, Miyakogusa, grape, beet, olive or coffee.
  4.  以下の(a)~(c)からなる群から選択される、請求項1記載のタンパク質。
     (a) 配列番号2~8のいずれかに示すアミノ酸配列を含むタンパク質
     (b) 配列番号2~8のいずれかに示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列を含むタンパク質
     (c) 配列番号2~8のいずれかに示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を含むタンパク質
    The protein according to claim 1, which is selected from the group consisting of the following (a) to (c).
    (A) a protein comprising the amino acid sequence shown in any of SEQ ID NOs: 2 to 8 (b) one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 2 to 8 (C) a protein comprising an amino acid sequence having 70% or more sequence identity with the amino acid sequence shown in any of SEQ ID NOs: 2 to 8
  5.  五環系トリテルペンがオレアナン型、ウルサン型またはルパン型トリテルペンである、請求項1~4のいずれか1項に記載のタンパク質。 The protein according to any one of claims 1 to 4, wherein the pentacyclic triterpene is oleanane type, ursan type, or lupine type triterpene.
  6.  チトクロームP450に属する、請求項1~5のいずれか1項に記載のタンパク質。 The protein according to any one of claims 1 to 5, which belongs to cytochrome P450.
  7.  以下の(a)~(f)からなる群から選択されるDNAを含有する組換え体DNA。
     (a) 配列番号2~8のいずれかに示すアミノ酸配列を含むタンパク質をコードするDNA
     (b) 配列番号2~8のいずれかに示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
     (c) 配列番号2~8のいずれかに示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
     (d) 配列番号10~16のいずれかに示す塩基配列を含むDNA
     (e) 配列番号10~16のいずれかに示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
     (f) 配列番号10~16のいずれかに示す塩基配列と70%以上の配列同一性を有する塩基配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
    Recombinant DNA containing DNA selected from the group consisting of the following (a) to (f).
    (A) DNA encoding a protein comprising the amino acid sequence shown in any one of SEQ ID NOs: 2 to 8
    (B) including an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 2 to 8, and a methyl group at position 28 of the pentacyclic triterpene Which encodes a protein having an activity of converting acetylene into a hydroxymethyl group or a carboxyl group
    (C) including an amino acid sequence having 70% or more sequence identity with the amino acid sequence shown in any of SEQ ID NOs: 2 to 8, and the methyl group at position 28 of the pentacyclic triterpene as a hydroxymethyl group or a carboxyl group DNA encoding a protein having an activity to convert
    (D) DNA comprising the base sequence shown in any of SEQ ID NOs: 10 to 16
    (E) hybridizing under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in any of SEQ ID NOs: 10 to 16, and replacing the methyl group at position 28 of the pentacyclic triterpene with hydroxymethyl DNA encoding a protein having an activity of converting to a group or carboxyl group
    (F) a base sequence having 70% or more sequence identity to the base sequence shown in any of SEQ ID NOs: 10 to 16, and the methyl group at position 28 of the pentacyclic triterpene as a hydroxymethyl group or a carboxyl group DNA encoding a protein having an activity to convert
  8.  請求項7記載の組換え体DNAを含む形質転換体。 A transformant comprising the recombinant DNA according to claim 7.
  9.  形質転換体が微生物または植物を宿主として得られる形質転換体である、請求項8記載の形質転換体。 The transformant according to claim 8, wherein the transformant is a transformant obtained using a microorganism or a plant as a host.
  10.  微生物が酵母である、請求項9記載の形質転換体。 The transformant according to claim 9, wherein the microorganism is yeast.
  11.  28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を生成する能力を有する、請求項8~10のいずれか1項に記載の形質転換体。 The transformant according to any one of claims 8 to 10, which has the ability to produce a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28 or a derivative thereof.
  12.  請求項8~11のいずれか1項に記載の形質転換体を培地に培養し、培養物中に請求項4記載のタンパク質を生成、蓄積させ、該培養物より該蛋白質を採取することを含む、前記タンパク質の製造法。 Culturing the transformant according to any one of claims 8 to 11 in a medium, producing and accumulating the protein according to claim 4 in the culture, and collecting the protein from the culture The method for producing the protein.
  13.  請求項8~11のいずれか1項に記載の形質転換体の培養物または該培養物の処理物を酵素源に用い、該酵素源、および基質としての五環系トリテルペンまたはその誘導体を水性媒体中に存在せしめ、該媒体中に28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を生成、蓄積させ、該媒体から28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を採取する、28位にメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体の製造法。 A transformant culture according to any one of claims 8 to 11 or a processed product of the culture is used as an enzyme source, and the enzyme source and a pentacyclic triterpene or derivative thereof as a substrate are used as an aqueous medium. A pentacyclic triterpene or a derivative thereof having a hydroxymethyl group or a carboxyl group at the 28-position in the medium, and accumulating in the medium, and a pentacyclic system having a hydroxymethyl group or a carboxyl group at the 28-position from the medium A method for producing a pentacyclic triterpene or a derivative thereof having a methyl group or a carboxyl group at the 28-position by collecting the triterpene or a derivative thereof.
  14.  培養物の処理物が、培養物の濃縮物、培養物の乾燥物、培養物を遠心分離して得られる菌体、該菌体の乾燥物、該菌体の凍結乾燥物、該菌体の界面活性剤処理物、該菌体の超音波処理物、該菌体の機械的摩砕処理物、該菌体の溶媒処理物、該菌体の酵素処理物、該菌体の蛋白質分画物、該菌体の固定化物あるいは該菌体より抽出して得られる酵素標品であることを特徴とする、請求項13記載の製造法。 A processed product of the culture is a concentrate of the culture, a dried product of the culture, a cell obtained by centrifuging the culture, a dried product of the cell, a freeze-dried product of the cell, Surfactant treated product, ultrasonic treated product of the bacterial cell, mechanically ground treated product of the bacterial cell, solvent treated product of the bacterial cell, enzyme treated product of the bacterial cell, protein fraction of the bacterial cell The production method according to claim 13, which is an immobilized product of the microbial cell or an enzyme preparation obtained by extraction from the microbial cell.
  15.  請求項1記載のタンパク質および基質としての五環系トリテルペンまたはその誘導体を水性媒体中に存在せしめ、該媒体中に28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を生成、蓄積させ、該媒体から28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体を採取する、28位にヒドロキシメチル基またはカルボキシル基を有する五環系トリテルペンまたはその誘導体の製造法。 The protein according to claim 1 and the pentacyclic triterpene or derivative thereof as a substrate are present in an aqueous medium to produce a pentacyclic triterpene or derivative thereof having a hydroxymethyl group or a carboxyl group at position 28 in the medium. A process for producing a pentacyclic triterpene having a hydroxymethyl group or a carboxyl group at position 28, or a derivative thereof having the hydroxymethyl group or carboxyl group at the 28th position, which is accumulated, and collecting the medium.
  16.  基質としての五環系トリテルペンが、βアミリン、αアミリン又はルペオールである、請求項13~15のいずれか1項に記載の製造法。 The production method according to any one of claims 13 to 15, wherein the pentacyclic triterpene as a substrate is β-amylin, α-amylin or lupeol.
  17.  以下の(a)~(f)からなる群から選択されるDNA。
     (a) 配列番号4、6~8のいずれかに示すアミノ酸配列を含むタンパク質をコードするDNA
     (b) 配列番号4、6~8のいずれかに示すアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
     (c) 配列番号4、6~8のいずれかに示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
     (d) 配列番号12、14~16のいずれかに示す塩基配列を含むDNA
     (e) 配列番号12、14~16のいずれかに示す塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
     (f) 配列番号12、14~16のいずれかに示す塩基配列と70%以上の配列同一性を有する塩基配列を含み、かつ、五環系トリテルペンの28位のメチル基をヒドロキシメチル基またはカルボキシル基に変換する活性を有するタンパク質をコードするDNA
    DNA selected from the group consisting of the following (a) to (f).
    (A) DNA encoding a protein comprising the amino acid sequence shown in any one of SEQ ID NOs: 4 and 6 to 8
    (B) including an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in any of SEQ ID NOs: 4 and 6 to 8, and at the 28th position of the pentacyclic triterpene DNA encoding a protein having an activity of converting a methyl group into a hydroxymethyl group or a carboxyl group
    (C) an amino acid sequence having 70% or more of the amino acid sequence shown in any one of SEQ ID NOs: 4 and 6 to 8, and the methyl group at position 28 of the pentacyclic triterpene being a hydroxymethyl group or a carboxyl DNA encoding a protein having activity of converting to a group
    (D) DNA comprising the base sequence shown in any one of SEQ ID NOs: 12 and 14 to 16
    (E) It hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence shown in any of SEQ ID NOs: 12 and 14 to 16, and has a methyl group at position 28 of a pentacyclic triterpene. DNA encoding a protein having an activity of converting to a hydroxymethyl group or a carboxyl group
    (F) a base sequence having 70% or more sequence identity to the base sequence shown in any of SEQ ID NOs: 12 and 14 to 16, and the methyl group at position 28 of the pentacyclic triterpene is a hydroxymethyl group or a carboxyl DNA encoding a protein having activity of converting to a group
PCT/JP2011/069922 2010-09-01 2011-09-01 Method for producing pentacyclic triterpene compound having hydroxymethyl group or carboxyl group at 28-position WO2012029914A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531963A JP6018915B2 (en) 2010-09-01 2011-09-01 Method for producing pentacyclic triterpene compound wherein position 28 is a hydroxymethyl group or a carboxyl group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010196222 2010-09-01
JP2010-196222 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029914A1 true WO2012029914A1 (en) 2012-03-08

Family

ID=45772989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069922 WO2012029914A1 (en) 2010-09-01 2011-09-01 Method for producing pentacyclic triterpene compound having hydroxymethyl group or carboxyl group at 28-position

Country Status (2)

Country Link
JP (1) JP6018915B2 (en)
WO (1) WO2012029914A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047651A1 (en) * 2015-09-18 2017-03-23 神戸天然物化学株式会社 Transformant, and terpenoid production method
CN116218799A (en) * 2023-01-12 2023-06-06 中国中医科学院中药研究所 CYP450 enzyme protein for catalyzing beta-amyrin 16 alpha hydroxylation, coding gene and application thereof
CN117625569A (en) * 2024-01-26 2024-03-01 东北林业大学 RrCYP450 protein, coding gene and application thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"P450 sequences in CYP family order", 20 September 2007 (2007-09-20), Retrieved from the Internet <URL:<http://drnelson.uthsc.edu/Vitis.genpept.htm>> [retrieved on 20110927] *
CARELLI, M. ET AL.: "Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins.", PLANT CELL, vol. 23, no. 8, August 2011 (2011-08-01), pages 3070 - 3081, XP055023719, doi:10.1105/tpc.111.087312 *
DATABASE GENBANK [online] 20 March 2009 (2009-03-20), "Vitis vinifera hypothetical protein LOC100251813 (LOC100251813), mRNA", retrieved from http://www.ncbi.nlm.nih.gov/ nuccore/225445687 Database accession no. XM_002268434 *
ERY ODETTE FUKUSHIMA ET AL.: "Kyohatsugen Kaiseki ni yoru, Medicago truncatula no Triterpensaponin Seigosei Kanren P450 no Dotei", PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, vol. 52, March 2011 (2011-03-01), pages 174 *
ERY ODETTE FUKUSHIMA ET AL.: "Triterpensaponin Seigosei ni Kakawaru Medicago truncatula P450 no Kino Kaiseki", JAPANESE SOCIETY FOR PLANT CELL AND MOLECULAR BIOLOGY TAIKAI SYMPOSIUM KOEN YOSHISHU, vol. 27, 2009, pages 166 *
LI, L. ET AL.: "Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula.", PLANTA, vol. 226, 2007, pages 109 - 123, XP019517499, doi:10.1007/s00425-006-0473-z *
NAOUMKINA, M. A. ET AL.: "Genomic and Coexpression Analyses Predict Multiple Genes Involved in Triterpene Saponin Biosynthesis in Medicago truncatula.", PLANT CELL, vol. 22, March 2010 (2010-03-01), pages 850 - 866, XP055023717, doi:10.1105/tpc.109.073270 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047651A1 (en) * 2015-09-18 2017-03-23 神戸天然物化学株式会社 Transformant, and terpenoid production method
JPWO2017047651A1 (en) * 2015-09-18 2018-06-07 神戸天然物化学株式会社 Transformant and method for producing terpenoid
CN116218799A (en) * 2023-01-12 2023-06-06 中国中医科学院中药研究所 CYP450 enzyme protein for catalyzing beta-amyrin 16 alpha hydroxylation, coding gene and application thereof
CN117625569A (en) * 2024-01-26 2024-03-01 东北林业大学 RrCYP450 protein, coding gene and application thereof
CN117625569B (en) * 2024-01-26 2024-05-10 东北林业大学 RrCYP450 protein, coding gene and application

Also Published As

Publication number Publication date
JPWO2012029914A1 (en) 2013-10-31
JP6018915B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP7057765B2 (en) Recombinant production of steviol glycosides
Cárdenas et al. The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism
US10806119B2 (en) Plant with altered content of steroidal alkaloids
Umemoto et al. Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway
JP5794918B2 (en) Protein having glycoalkaloid biosynthetic enzyme activity and gene encoding the same
Bauer et al. Highly conserved progesterone 5β-reductase genes (P5βR) from 5β-cardenolide-free and 5β-cardenolide-producing angiosperms
US20230279444A1 (en) Metabolic engineering
JP5794770B2 (en) Protein having glycoalkaloid biosynthetic enzyme activity and gene encoding the same
JP7122715B2 (en) Hydroxylase gene and uses thereof
US20070231864A1 (en) Vanillin production
JP6018915B2 (en) Method for producing pentacyclic triterpene compound wherein position 28 is a hydroxymethyl group or a carboxyl group
Nakayasu et al. Characterization of C‐26 aminotransferase, indispensable for steroidal glycoalkaloid biosynthesis
JP6038040B2 (en) Protein having glycoalkaloid biosynthetic enzyme activity and gene encoding the same
WO2012157677A1 (en) Gene coding for enzyme that reduces position 24 of steroid skeleton
WO2019163601A1 (en) Transgenic plant and use thereof
WO2007119639A1 (en) Gene encoding lignan-methylating enzyme
JP5902801B2 (en) Gene encoding enzyme reducing position 24 of steroid skeleton and plant body in which expression of said gene is reduced
JP2020036591A (en) Plants with increased resistance to colorado potato beetles, method of producing the same, and method of determining resistance to colorado potato beetles in plants
WO2013077440A1 (en) Plant for producing spirostan-type triterpene
HUE025455T2 (en) Plants with increased hyaluronan production
WO2009084439A1 (en) Lignan hydroxylase
WO2011121456A2 (en) Nucleic acids and protein sequences of costunolide synthase
JP6673834B2 (en) Meleolide biosynthesis gene cluster and uses thereof
WO2021176557A1 (en) Plant having enhanced resistance against colorado potato beetle and method for producing same, and method for evaluating resistance against colorado potato beetle in plant
Ohno et al. Identification of a novel chalcone reductase gene for isoliquiritigenin biosynthesis in dahlia (Dahlia variabilis)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821929

Country of ref document: EP

Kind code of ref document: A1