WO2013077440A1 - Plant for producing spirostan-type triterpene - Google Patents

Plant for producing spirostan-type triterpene Download PDF

Info

Publication number
WO2013077440A1
WO2013077440A1 PCT/JP2012/080443 JP2012080443W WO2013077440A1 WO 2013077440 A1 WO2013077440 A1 WO 2013077440A1 JP 2012080443 W JP2012080443 W JP 2012080443W WO 2013077440 A1 WO2013077440 A1 WO 2013077440A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
plant
dna
base sequence
gene
Prior art date
Application number
PCT/JP2012/080443
Other languages
French (fr)
Japanese (ja)
Inventor
直行 梅基
大山 清
Original Assignee
キリンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンホールディングス株式会社 filed Critical キリンホールディングス株式会社
Publication of WO2013077440A1 publication Critical patent/WO2013077440A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon

Definitions

  • the present invention relates to a method for producing a triterpene glycoside that produces a spirostan type triterpene after hydrolysis in a solanaceous plant such as potato, a method for producing a spirostan type triterpene such as yamogenin or neotigogenin by hydrolysis of the triterpene glycoside,
  • the present invention relates to a method for producing a novel solanaceous plant such as potato that accumulates triterpene glycosides, and to a solanaceous plant such as potato for producing spirostan-type triterpenes.
  • Spirostan-type triterpenes are important as starting materials in the semisynthesis of steroidal drugs represented by corticosteroids and sex hormones.
  • Diosgenin is a representative example, and it is known that about 60% of all steroidal drugs are calculated from diosgenin (Non-patent Document 1).
  • the wild species of Mexican yam are mainly used as a material for making diosgenin.
  • commercial cultivation is also carried out due to problems of environmental destruction and resource depletion, but the unit yield of yam is generally 1.5-2t / 10a (Non-patent Document 2), and the cultivation period is 4-5 years. Therefore, the yield in terms of period is low.
  • Potato is a crop with a large unit yield of 4t / 10a (Statistical data of Hokkaido potato in 2003, Production and Distribution Promotion Division, Ministry of Agriculture, Forestry and Fisheries) in a cultivation period of about 4 to 5 months. It is. Although tomatoes have a long cultivation period, the unit yield is high at 9t / 10a (2005 Ministry of Agriculture, Forestry and Fisheries “Vegetable Production Shipment Statistics”), so the yield in terms of period is high. Therefore, if it becomes possible to produce spirostan-type triterpenes with potatoes and tomatoes, the effect is immeasurable.
  • Non-patent document 3 reviews the reports that spirostan-type triterpenes were detected in potatoes (Solanum tuberosum) and tomatoes (Solanum lycopersicum). It is reported that the published literature is from before 1966 and has been detected, and since then, quantitative reports have not been made even after the development of analytical techniques.
  • Non-Patent Document 5 reports substances detected in wild species belonging to the potato subsection forming tubers. However, the spirostan-type triterpenes detected here are diosgenin and tigogenin, and yamogenin and neotigogenin are structural isomers and different substances. Again, quantitative values have not been reported, and it is expected to be a wild species with extremely low cultivatability and unit yield.
  • Potatoes accumulate many glycoalkaloids with sugars such as chaconine and solanine in tuber buds (buds), flower tissues, and tubers irradiated with light.
  • Sapogenin which is a non-sugar part of chaconine and solanine, is solanidine, but it is known that this does not become a starting material in the semisynthesis of steroid pharmaceuticals (Non-patent Document 1).
  • Tomatoes also accumulate glycoalkaloids composed of tomatine in immature fruits and whole plants. However, there are no reports of attempts to change the glycoalkaloids of potatoes and tomatoes to spirostane-type triterpene accumulation.
  • Non-patent Document 1 Spirostane saponin has many unclear points regarding its own health functionality. Powdered yam tubers and their extracts are commercially available as alternatives to hormone replacement therapy. Although conversion to progesterone in the body is negative, the possibility of some other mechanism has been reported (Non-patent Document 1). Moreover, it is said that it is effective in nourishing tonic, and in recent years, there are reports of an anti-fatigue effect (Non-Patent Document 6) and a fat burning promoting action (Non-Patent Document 7). There are no known solanaceous plants such as potatoes that are effective in such nourishing tonic. Spirostan-type triterpenes have also been reported to prevent colorectal cancer (Non-patent Document 8) and hair growth effect (Patent Document 1).
  • the present invention relates to a method for producing a triterpene glycoside that produces a spirostan type triterpene after hydrolysis in a solanaceous plant such as potato, a method for producing a spirostan type triterpene such as yamogenin or neotigogenin by hydrolysis of the triterpene glycoside, It is an object of the present invention to provide a method for producing a novel solanaceous plant such as potato that accumulates triterpene glycosides, and to provide a solanaceous plant such as potato for producing spirostan-type triterpenes.
  • the present inventor has conducted extensive studies to elucidate the relationship between glycoalkaloid biosynthetic genes and spirostan-type triterpenes. As a result, it was found that by suppressing the biosynthetic gene, solanaceous plants such as potatoes accumulate triterpene glycosides that generate spirostan-type triterpenes after hydrolysis, and completed the present invention.
  • the present invention includes the following inventions.
  • a plant body of a solanaceous plant in which a gene encoding a glycoalkaloid biosynthetic enzyme is suppressed, and a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis can be accumulated in the plant body.
  • the solanaceous plant is potato, and the gene encoding a glycoalkaloid biosynthetic enzyme is a gene comprising any of the following DNAs (a) to (d) and / or the following (e) to (h): The plant according to [1], wherein the triterpene glycoside generates yamogenin by hydrolysis.
  • the solanaceous plant is a tomato
  • a gene encoding a glycoalkaloid biosynthetic enzyme is a gene comprising any of the following DNAs (i) to (l) and / or the following (m) to (p):
  • DNA consisting of the base sequence shown in SEQ ID NO: 4 (i) DNA consisting of the base sequence shown in SEQ ID NO: 4; (j) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 4 and encodes a protein having glycoalkaloid biosynthetic enzyme activity; (k) a DNA encoding a protein comprising a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 4 and having glycoalkaloid biosynthetic enzyme activity; (l) DNA comprising a degenerate isomer of the base sequence shown in SEQ ID NO: 4; (m) a DNA comprising the base sequence represented by SEQ ID NO: 23; (n) a DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 23 and encodes a protein having glycoalkaloid biosynthetic enzyme activity
  • [6] (i) a step of isolating a nucleic acid that is genomic DNA or RNA from a solanaceous plant, (ii) a step of reverse transcription and synthesizing cDNA when the nucleic acid of (i) is RNA; (iii) amplifying a gene fragment containing the base sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 21 or SEQ ID NO: 23 from the DNA obtained in the step (i) or (ii); (iv) determining the presence of mutations and / or polymorphisms in the DNA; And a method for selecting a plant having a mutation and / or polymorphism of a gene encoding a glycoalkaloid biosynthetic enzyme in a solanaceous plant.
  • a solanaceous plant body selected by the method of [6], having a mutation and / or polymorphism in a gene encoding a glycoalkaloid biosynthetic enzyme and suppressing the activity of the glycoalkaloid biosynthetic enzyme.
  • a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis can be accumulated, and a solanaceous plant such as potato in which the triterpene glycoside is accumulated is provided.
  • a solanaceous plant such as a potato characterized by containing the triterpene glycoside.
  • Spirostan-type triterpenes can be obtained by hydrolyzing the triterpene glycosides produced by these plants and removing the sugars.
  • Spirostan-type triterpenes can be used as a raw material for producing steroid compounds.
  • FIG. 2 shows the results of analyzing the homology of potato and tomato biosynthetic gene E using DNA analysis software GENETYX (Genetics) (continuation of FIG. 1-1). It is a figure which shows the result of having analyzed the homology of the biosynthetic gene E of a potato and a tomato with DNA analysis software GENETYX (Genetics company) (continuation of FIG. 1-2). The structure of the gene E suppression vector is shown.
  • FIG. 2 is a diagram showing the structure inside the right border (RB) and left border (LB) of the T-DNA of the gene part to be introduced, and the restriction enzyme site. It is a figure which shows the glycoalkaloid content of the in-vitro stem of a potato transformant. Error bars indicate standard deviation. It is a figure which shows the result of RT-PCR with respect to mRNA extracted from the invitro stem of a potato transformant. The glycoalkaloid content of the tuber epidermis of a potato transformant is shown. Error bars indicate standard deviation. It is a figure which shows the glycoalkaloid content of the young leaf of a tomato transformant. Error bars indicate standard deviation.
  • FIG. 7 shows the results of analyzing the homology of potato and tomato biosynthetic gene Y with DNA analysis software GENETYX (Genetics) (continuation of FIG. 7-1).
  • FIG. 7 shows the results of analyzing the homology of potato and tomato biosynthetic gene Y with DNA analysis software GENETYX (Genetics) (continuation of FIG. 7-2).
  • the structure of the gene Y suppression vector is shown.
  • FIG 8 is a diagram showing the structure inside the right border (RB) and left border (LB) of the T-DNA of the gene portion to be introduced, and the restriction enzyme site. It is a figure which shows the glycoalkaloid content of the in-vitro stem of a potato transformant. It is a figure which shows the result of RT-PCR with respect to mRNA extracted from the invitro stem of a potato transformant. It is a figure which shows the glycoalkaloid content of the epidermis of the tuber of a potato transformant. Error bars indicate standard deviation. It is a figure which shows the glycoalkaloid content of the young leaf of a tomato transformant. Error bars indicate standard deviation.
  • the solanaceous plant such as potato producing the glycoside of the spirostan-type triterpene of the present invention is a glycoalkaloid biosynthetic enzyme gene E (hereinafter referred to as gene E) and / or glycoalkaloid biosynthesizing a glycoalkaloid biosynthetic enzyme.
  • Synthetic enzyme gene Y (hereinafter referred to as gene Y), preferably gene E, is suppressed, and a glycolucaloid biosynthetic enzyme encoded by gene E and / or a glycolucaloid biosynthetic enzyme encoded by gene Y is expressed. Rather, these enzymes are deleted.
  • eggplants such as potato include potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), capsicum (Capsium annum) and the like.
  • gene E and / or gene Y is suppressed means that gene E and / or gene Y is not expressed, expression is decreased, or expression protein is expressed as gene E or gene. It means that the normal function of the expression product of Y is not maintained, that is, the enzyme activity is reduced or lost.
  • the suppression of the gene can be caused by the complete deletion, partial deletion of the gene, deletion of the base of the base sequence of the gene, substitution, addition, insertion or the like. It can also occur due to suppression by RNA interference with siRNA or the like.
  • the mutants in which the gene E and / or the gene Y of the present invention are suppressed include those in which these genes are artificially suppressed and those in which the gene is suppressed by a naturally occurring mutation in nature.
  • a triterpene glycoside that generates a spirostane-type triterpene after hydrolysis is a spirostan-type triterpene that is sugar-modified at position 3 in potato, a furostane-type triterpene that is sugar-modified at position 3, 26, or both, 16 It is characterized by the presence of a sugar chain which is a cholestane type triterpene in which the position, the 22nd position, the 26th position are oxidized, and the 3rd position, including the 3rd position, or a plurality thereof is sugar modified.
  • Hydrolysis of a triterpene glycoside that generates a spirostan-type triterpene after hydrolysis with an acid or the like removes the sugar chain by hydrolysis, thereby obtaining a non-sugar part (aglycone).
  • the non-sugar part, spirostan type triterpene can be used as a raw material for steroid pharmaceuticals.
  • Spirostan-type triterpenes which are non-sugar parts (aglycones) of the glycosides of spirostan-type triterpenes that can accumulate in solanaceous plants, include yamogenin (yamagenin), tigogenin (tigogenin), neotigogenin (neotigogenin), solaspigenin (solaspigenin) And neosolaspigenin.
  • Yamogenin accumulates in potatoes
  • neotigogenin accumulates in tomatoes
  • tigogenin accumulates in Cestrum diurnum
  • solaspigenin and neosorapigenin accumulates in Solanum hispidum.
  • glycoalkaloid biosynthetic enzymes encoded by glycoalkaloid biosynthetic enzymes E and Y are glycoalkaloid biosynthetic enzymes contained in solanaceae plants such as potatoes (Solanaceae). It is.
  • the solanaceous family such as potato includes potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), capsicum (Capsium annum) and the like.
  • the enzymes are membrane-bound cytochrome P450 monooxidase (gene E) and aminotransferase (gene Y).
  • the glycoalkaloid obtained by the enzyme includes glycoalkaloids synthesized in solanaceous plants such as potato, and examples include glycoalkaloids such as potato chaconine and solanine, and glycoalkaloids such as tomato tomatine.
  • Preferred steroid compounds that serve as substrates for the glycoalkaloid biosynthetic enzymes include cholesterols that are C-26-OH or C-26-oxo.
  • cholesterols include cholesterol, sitosterol, campesterol, stigmasterol, and brassicasterol.
  • the glycoalkaloid biosynthetic enzyme is a hydroxylase that transfers a hydroxyl group thereto.
  • SEQ ID NO: 1 shows the amino acid sequence of an enzyme derived from potato (Solanum tuberosum), and SEQ ID NO: 3 shows the amino acid sequence of an enzyme derived from tomato (Solanum lycopersicum).
  • SEQ ID NO: 20 or 22 shows the amino acid sequence of an enzyme derived from potato (Solanum tuberosum), and SEQ ID NO: 22 shows the amino acid sequence of an enzyme derived from tomato (Solanum lycopersicum).
  • the enzyme includes an amino acid sequence represented by SEQ ID NO: 1, an amino acid sequence represented by SEQ ID NO: 3, an amino acid sequence represented by SEQ ID NO: 20, or an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 22.
  • an enzyme composed of a protein having glycoalkaloid biosynthetic enzyme activity As the substantially identical amino acid sequence, one or several (1 to 10, preferably 1 to 7, more preferably 1 to 5, more preferably 1 to 3) of the amino acid sequence.
  • amino acid sequences deleted, substituted, inserted and / or added or the amino acid sequence and BLAST (Basic Local Alignment Search Tool at the National Center for Biological Information ( US National Biological Information Center Basic Local Alignment Search Tool)) etc. (for example, default or default parameters), calculated at least 85%, preferably 90% or more, more preferably 95% or more Particularly preferred is an amino acid sequence having a sequence identity of 97% or more.
  • BLAST Basic Local Alignment Search Tool at the National Center for Biological Information ( US National Biological Information Center Basic Local Alignment Search Tool)
  • the glycoalkaloid biosynthetic enzyme of the present invention includes a natural glycoalkaloid biosynthetic enzyme isolated from a plant and a recombinant glycoalkaloid biosynthetic enzyme produced by genetic engineering techniques.
  • Genes E and Y encoding glycoalkaloid biosynthetic enzymes are genes encoding a glycoalkaloid biosynthetic enzyme having an activity of binding a hydroxyl group to a steroid compound (gene E) or an activity of transferring an amino group (gene Y). .
  • the base sequence of the DNA of glycoalkaloid biosynthetic enzyme gene E is shown in SEQ ID NO: 2 or 4.
  • the base sequence of the DNA of glycoalkaloid biosynthetic enzyme gene Y is shown in SEQ ID NO: 21 or 23.
  • Fig.1-1 to Fig.1-3 show the results of analyzing the homology of gene E between potato and tomato with DNA analysis software GENETYX (Genetics)
  • Fig.7-1 to Fig.7-3 show the result of potato and tomato.
  • the result of analyzing the homology of gene Y with DNA analysis software GENETYX (Genetics) is shown.
  • DNA that hybridizes under stringent conditions with DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 2, 4, 21, or 23, base shown in SEQ ID NO: 2, 4, 21, or 23 Calculated using sequences and BLAST (Basic Local Alignment Search Tool Tool at the National National Center for Biological Information) (eg, using default or default parameters) DNA having a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, or the amino acid sequence of a protein encoded by the DNA Or 1 to several (1 to 10, preferably 1 to 7, more preferably 1 to 5, more preferably DNA encoding a protein comprising an amino acid sequence in which 1 to 3, more preferably 1 or 2 amino acids are deleted, substituted, inserted and / or added, and has glycoalkaloid biosynthetic enzyme activity It includes DNA encoding a protein having a protein.
  • BLAST Basic Local Alignment Search Tool Tool
  • stringent conditions are, for example, “1XSSC, 0.1% SDS, 37 ° C.” conditions, and more severe conditions are “0.5 XSSC, 0.1% SDS, 42 ° C.” conditions. There are more severe conditions such as “0.2XSSC, 0.1% SDS, 65 ° C.”.
  • the gene of the present invention includes DNA consisting of a degenerate isomer of the base sequence shown in SEQ ID NO: 2, 4, 21 or 23.
  • RNAi can be performed by expressing an RNA fragment complementary to a gene whose expression is to be suppressed in the plant.
  • a recombinant vector capable of expressing an RNA fragment may be introduced into a plant body.
  • the length of RNA used for RNAi is not limited.
  • the length of the oligo RNA of the present invention is, for example, 10 to 100 bases, preferably 15 to 25 bases, and more preferably 19 to 23 bases.
  • the gene may be deleted by a known homologous recombination method.
  • the homologous recombination method is a method in which only a target gene is arbitrarily modified by homologous gene recombination between a gene on a chromosome and foreign DNA, and for the purpose of dividing the sequence encoding the protein, Insert another DNA sequence into the exon.
  • a targeting vector may be designed and produced based on gene sequence information, and the gene to be suppressed may be homologously recombined using the targeting vector.
  • the vector incorporates a component related to expression or suppression of a gene such as a promoter, terminator, enhancer and the like, and contains a selection marker (for example, drug resistance gene, antibiotic resistance gene, reporter gene) as necessary.
  • a selection marker for example, drug resistance gene, antibiotic resistance gene, reporter gene
  • Constituent elements relating to gene expression and suppression are preferably incorporated into a recombinant vector in such a manner that they can function according to their properties. Such an operation can be appropriately performed by those skilled in the art.
  • the gene can be suppressed by an antisense method, a ribozyme method, a method using a retrovirus, a method using a transposon, or the like.
  • a recombinant vector used for suppressing the above gene By introducing a recombinant vector used for suppressing the above gene into a plant, a plant body in which the gene is suppressed can be obtained.
  • the method for introducing the recombinant vector is not particularly limited as long as it is a method for introducing DNA into a microorganism. For example, methods using calcium ions (Cohen et al., Proc. Natl. Acad. Sci., USA, 69: 2110 (1972)), electroporation method, tri-parental mate mating method and the like can be mentioned.
  • examples of a method for producing a transformed plant include a method using a virus, an Agrobacterium Ti plasmid, an Ri plasmid, etc.
  • the transformed plant is a plant cell transformed with the gene of the present invention.
  • the plant body can be regenerated from the plant cell by a known method.
  • Triterpene glycosides that produce spirostane-type triterpenes after hydrolysis can be produced by cultivating the plant obtained by the above method.
  • the present invention relates to mutation, single nucleotide polymorphism (SNP) of glycoalkaloid biosynthesis enzyme gene E and / or glycoalkaloid biosynthesis enzyme gene Y in plants.
  • SNP single nucleotide polymorphism
  • a method for detecting the presence of a polymorphism or gene expression mutation and selecting an individual in which glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y is suppressed.
  • Mutant individuals may be those caused by radiation, chemical treatment, UV irradiation, or spontaneous mutation.
  • genomic DNA and RNA are isolated from mutant individuals and plants of various varieties and breeding individuals, the latter being reverse transcribed to synthesize cDNA, and using DNA amplification technology, the glycoalkaloid biosynthetic enzyme gene Amplifying a gene fragment containing E and / or glycoalkaloid biosynthetic enzyme gene Y, and determining the presence of a mutation in the DNA.
  • kits such as DNeasy and RNeasy (Qiagen)
  • a commercially available kit for example, Superscript First Strand System (Invitrogen)
  • PCR and LAMP can be used as methods for amplifying gene fragments by using DNA amplification techniques. These represent a group of techniques based on the use of polymerases to achieve specific DNA sequence amplification (ie, increasing copy number) by a continuous polymerase reaction. This reaction can be used instead of cloning, but all that is needed is information about the nucleic acid sequence.
  • a primer complementary to the DNA sequence to be amplified is designed. The primer is then created by automated DNA synthesis.
  • DNA amplification methods are well known in the art and can be readily performed by one of ordinary skill in the art based on the teachings and instructions provided herein.
  • the TILLING method detects the mutants by determining the nucleotide sequence (Applied Biosystems) and using an enzyme that cleaves one side of the mismatched pair. , Genome Res 13: 524-530) and the like, and a method of detecting using the homology between the mutant gene and the normal gene may be used. These can be performed by comparing the sequence data obtained from this technique with the nucleotide sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 21 or SEQ ID NO: 23 relating to the gene portion.
  • step of determining the difference in mRNA amount in the step of determining the difference in mRNA amount, real-time PCR (Roche) is performed on the above cDNA using a primer prepared based on the nucleotide sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 21 or SEQ ID NO: 23.
  • -Quantitative PCR such as Diagnostic Light Cycler
  • the difference in the amount of mRNA can be determined by comparing with the amount of cDNA obtained from the variety “Sassy”.
  • a method for determining the presence of a mutation in the glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y as defined above is referred to as Solanaceae potato (Solanum tuberosum) or tomato Applies to materials obtained from (Solanum lycopersicum).
  • mutation or polymorphism of a gene encoding glycoalkaloid biosynthetic enzyme can be identified at the base level, and glycoalkaloid biosynthetic enzyme gene E and / or Alternatively, a plant having a mutation and / or polymorphism in the glycoalkaloid biosynthetic enzyme gene Y can be selected.
  • the present invention includes a plant having a mutation or polymorphism in the glycoalkaloid biosynthesis enzyme gene E and / or glycoalkaloid biosynthesis enzyme gene Y thus obtained.
  • glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloids are determined by determining mutations and polymorphisms, determining mRNA levels, and analyzing glycoalkaloid content and glycoside content of spirostan-type triterpenes, which will be described later. It is possible to select plants in which the ability to express biosynthetic enzyme gene Y or the activity of glycoalkaloid biosynthetic enzymes encoded by these genes is suppressed.
  • glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y or suppression of the activity of glycoalkaloid biosynthetic enzyme encoding these genes is a mutation such as an artificial mutation. Inhibition of gene expression ability or glycoalkaloid biosynthetic enzyme activity due to polymorphism and suppression of gene expression ability or glycoalkaloid biosynthetic enzyme activity due to polymorphism.
  • Suppression by mutation of glycoalkaloid biosynthetic enzyme activity of a plant refers to suppression of existing varieties contained in the plant species, and existing varieties include wild type but are wild species that appear in the natural state. However, it is not included in existing varieties unless it is already in industrial use.
  • Existing varieties refer to all varieties existing when a plant with suppressed glycoalkaloid biosynthetic enzyme activity is obtained, including varieties created by artificial manipulations such as mating and genetic manipulation. Moreover, in the suppression of activity, it is not necessary that the activity is suppressed for all existing varieties. If the activity is suppressed for a specific existing variety, “the activity of glycoalkaloid biosynthetic enzyme is suppressed. Included in “plant”.
  • Plant in which the activity of the glycoalkaloid biosynthetic enzyme is suppressed includes a plant in which the activity is suppressed by mutation in the natural state without being subjected to artificial manipulation, and the activity in the natural state is suppressed by the method of the present invention. Plants can be selected and can be established as new varieties. In addition, when a mutagenesis treatment is performed on an existing variety to produce a plant in which the activity of glycoalkaloid biosynthetic enzyme is suppressed, the comparison target may be the same existing variety as the mutagenesis treatment, Other existing varieties may be used.
  • Mutation of a gene encoding a glycoalkaloid biosynthetic enzyme by crossing a plant having a mutation or polymorphism with a gene encoding a glycoalkaloid biosynthetic enzyme created by selection or mutagenesis from the natural world Can be obtained as a new plant variety in which the expression of glycoalkaloid biosynthetic enzyme gene or glycoalkaloid biosynthetic enzyme activity is suppressed.
  • glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y the expression capacity of glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y or the plant in which the activity of glycoalkaloid biosynthetic enzyme encoded by these genes is suppressed with respect to existing varieties is: It includes plants in which the expression ability of glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y is reduced or lost relative to existing varieties.
  • Such a plant body has a low synthesis amount of glycoalkaloid biosynthetic enzyme or is unable to synthesize, and the content of glycoalkaloid biosynthetic enzyme in the plant body is low, or glycoalkaloid synthase is not present, or Glycoalkaloid synthase activity is low or lost.
  • glycoalkaloids are not produced in the plant body, and triterpene glycosides that produce spirostane-type triterpenes after hydrolysis accumulate.
  • the solanaceous plant is potato, the glycoside that becomes hydrolyzed when it is hydrolyzed accumulates in the plant containing the potato tubers, and if it is hydrolyzed, the glycoside that becomes hydrolyzed and becomes neotigogenin accumulates in the plant that contains the fruit. To do. Therefore, by breeding and cultivating such a plant, it is possible to produce a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis. Triterpene glycosides that produce spirostane-type triterpenes after hydrolysis accumulated in the plant can be isolated by known methods. That is, it can be extracted and isolated using an organic solvent.
  • the sugar chain is cleaved to obtain a spirostan-type triterpene that is a non-sugar part.
  • the spirostan-type triterpene can be used as a raw material for producing a steroid compound, and can produce a steroid drug or the like.
  • a plant of a solanaceous plant in which the gene encoding the glycoalkaloid biosynthetic enzyme of the present invention is suppressed a plant capable of accumulating in the plant a triterpene glycoside that generates a spirostan-type triterpene after hydrolysis.
  • the amount of yamogenin obtained when the obtained triterpene glycoside is hydrolyzed is 5 ⁇ g / 100 ⁇ mg dry weight or more, preferably 10 ⁇ g / 100 ⁇ mg dry weight or more, more preferably It is more than 20 ⁇ g / 100 mg mg dry weight, more preferably more than 30 ⁇ g / 100 mg mg dry weight, particularly preferably more than 40 ⁇ g / 100 mg mg dry weight.
  • the concentration is 10 ⁇ g / 100 ⁇ mg dry weight or more, preferably 20 ⁇ g / 100 ⁇ mg dry weight or more, more preferably 30 ⁇ g / 100 ⁇ mg dry weight or more, particularly preferably 40 ⁇ g / 100 ⁇ mg dry weight or more.
  • the amount of neotigogenin obtained when the obtained triterpene glycoside is hydrolyzed is a yamogenin equivalent, and is more than 8 ⁇ g / 100 mg mg dry weight, preferably more than 10 ⁇ g / 100 mg mg dry weight, more preferably Is more than 15 ⁇ g / 100 mg mg dry weight, particularly preferably more than 20 ⁇ g / 100 mg mg dry weight.
  • the plant body when a plant is bred and cultivated, by irradiating light, the plant body can accumulate a larger amount of triterpene glycosides that generate spirostan-type triterpenes after hydrolysis, resulting in a large amount of spirostane-type triterpenes. I can expect that.
  • Example 1 Acquisition of full-length sequence of glycoalkaloid biosynthesis candidate gene E mRNA was extracted from sprouting of potato (Solanum tuberosum) cultivar "Sassy” with RNeasy (Qiagen). Total cDNA synthesis was performed using the Superscript First Strand System (Invitrogen). It is said that the glycoalkaloid aglycone is made from cholesterol, but there is no confirmation (Non-patent Document 1). However, several hydroxylation processes are required even assuming they are made from closely related compounds. There are at least three possibilities for the hydroxylation process: cytochrome P450 type monooxygenase, dioxygenase, and NADPH-flavin reductase.
  • the P450 type is considered as a target, and the potato-expressed gene has been sprouting from the published DFCI Potato Gene Index (http://compbio.dfci.harvard.edu/tgi/plant.html) Release 11.0. We focused on the gene TC155233 from which many EST clones have been isolated.
  • PCR was performed using primers [U890: GAGGCTAAGAAAAAGAGAGAGAGA (SEQ ID NO: 6), U889: CGTTCTACAAAAACATCCAATTT (SEQ ID NO: 7)] (conditions: 95 ° C. for 5 minutes, (95 ° C. for 30 seconds, 55 ° C. for 30 seconds, 72 ° C.). 3 minutes) was performed 30 times at 72 ° C. for 10 minutes.
  • the amplified product was cloned using TOPOTA cloning kit sequencing (Invitrogen). Furthermore, the base sequence was determined using ABI310 (Applied Biosystems). The part containing ORF is shown in SEQ ID NO: 2, and the amino acid sequence of the enzyme encoded from the cDNA sequence is shown in SEQ ID NO: 1.
  • the homologous gene of tomato corresponds to SGN-U583521 of the solanaceous genome network (http://solgenomics.net/index.pl).
  • the part containing ORF is shown in SEQ ID NO: 4, and the amino acid sequence of the enzyme encoded from the cDNA sequence is shown in SEQ ID NO: 3.
  • SEQ ID NO: 4 When the nucleotide sequences of these genes were compared, the homology was 95%.
  • the genome sequence of this tomato homologous gene is also reported as SL1.00sc03540 of the solanaceous genome network, and it is reported that it contains seven introns. However, there is no report on any functions on the website (Figs. 1-1 to 1-3).
  • Example 2 Isolation of genomic gene of glycoalkaloid biosynthesis candidate gene E Genomic DNA was extracted from "Sassy” with RNeasy (Qiagen). Using the same primer as in Example 1 (U904: TGATAAGGAAATCCTGGGAGA (SEQ ID NO: 8), U901: AGAGAAGCCATGAAGGATGG (SEQ ID NO: 9)), the second intron was the enzyme PrimeSTAR HS DNA Polymerase (Takara Bio) and the primer (U898 : PCR was performed using GAAATACGCTACTACGGAAGAACC (SEQ ID NO: 10) and U899: CGTCATTTGCCTAATCTCATC (SEQ ID NO: 11)), and the base sequence of the full-length genomic DNA was determined (SEQ ID NO: 5). It was revealed that there are seven introns.
  • Example 3 Vector construction for producing a transformant of glycoalkaloid biosynthesis candidate gene E
  • a reverse complementary strand gene having a structure driven by a strong promoter Fragment expression commonly called RNAi method in plants
  • PCR was performed using primers [U675: GAGCTCTAGAGGTTTGGGACAGGAGGAAT (SEQ ID NO: 12), U676: GGATCCATATGCAAGCCTGTGCATCTTAT (SEQ ID NO: 13)] (conditions: 95 ° C for 5 minutes, (95 ° C for 30 seconds, 55 ° C). 30 seconds at 72 ° C. and 30 seconds at 72 ° C.) and 10 minutes at 72 ° C. to obtain gene fragments.
  • binary vector pKT11 Japanese Patent Laid-Open No.
  • a plant transformation vector pKT230 was prepared by ligating in the order of the direction and terminator of the nopaline synthase gene (FIG. 2).
  • Example 4 Production of potato-transformed plant body
  • the vector prepared in Example 3 was electroporated (Gelvin and Schilperoor, Plant Molecular Biology Manual, C2, 1-32 (1994), Kluwer Academic Publishers) It was introduced into Agrobacterium tumefaciens strain GV3110.
  • Agrobacterium tumefaciens strain GV3110 containing the vector was added to a YEB liquid medium containing 5 ppm of kanamycin [5 g / l beef extract, 1 g / l yeast extract, 5 g / l peptone, 5 g / l sucrose, 2 mM magnesium sulfate ( pH 7.2)], and cultured with shaking at 28 ° C. for 12 hours.
  • Potato transformation was carried out according to [Monma (1990) plant tissue culture 7: 57-63].
  • a microtuber obtained from the potato variety “Sassy” (Kirin Agribio) was sliced into 2 to 3 mm and used as a material for Agrobacterium infection. This was immersed in the above Agrobacterium solution and placed on a sterilized filter paper to remove excess Agrobacterium. Place on MS medium in petri dish (Zeatin 1ppm, IAA 0.1ppm, acetosyringone 100 ⁇ M and agar 0.8%) and culture for 3 days at 25 ° C for 16 hours (photon flux density 32 ⁇ E / m 2 s) / The test was conducted under no illumination for 8 hours.
  • TAAAGCACGAGGAAGCGGT SEQ ID NO: 14
  • GCACAACAGACAATCGGCT SEQ ID NO: 15
  • Example 5 Glycoalkaloid content of transformed plant and expression analysis of candidate gene E Glycoalkaline by the following method (Patent Publication 2011-27429) using liquid chromatography using an alkali-resistant reverse phase chromatography column The alkaloid content was measured.
  • Example 4 Thirty in vitro stems obtained in Example 4 were stretched for one month after passage, and 2-4 pieces were combined to make about 100 mg, 0.1% formic acid in 80% MeOH aq. 990 ⁇ L and brush as internal standard Noride (Brassino) 10 ⁇ g / 10 ⁇ L was added and crushed with a mixer mill (1/25 sec, 10 min, 4 ° C.). The obtained crushed material was subjected to centrifugation (10,000 rpm, 5 min, 4 ° C.) for alcohol precipitation.
  • Noride Bransino
  • RT-PCR used (conditions: 95 ° C for 5 minutes, (95 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 3 minutes) 25 times, 72 ° C for 5 minutes) It was not possible to observe whether there were few (FIG. 4). This reveals that the accumulation of glycoalkaloid is extremely reduced by suppressing the expression of the gene of candidate gene E, and it becomes clear that candidate gene E is a gene encoding a glycoalkaloid biosynthetic enzyme. It was. Along with the non-transformants, these five strains of in vitro plants were grown, and each of the three individuals was acclimated to a commercially available vegetable culture soil and cultivated in a biohazard greenhouse according to a standard method to harvest tubers. Each of these five strains (# 8, # 17, # 22, # 27, # 29) showed the same growth as the non-transformant and was able to harvest the same tuber (Table 1).
  • the three epidermis of each of the harvested tubers were peeled at about 1 mm, and the glycoalkaloid content was similarly analyzed.
  • the glycoalkaloids in the tubers were extremely low, and it was confirmed that it was less than that of “Sayaka”, which is known as a low variety of glycoalkaloids, measured by the same method. (Fig. 5).
  • Example 6 Production of tomato transformed plant body Tomato transformation was performed according to [Sun et al. (2006) Plant Cell Physiol. 47: 426-431.].
  • the Agrobacterium tumefaciens AGL0 strain containing the vector pKT230 prepared in Example 3 was cultured to obtain a bacterial solution for infection.
  • a section of 5 mm or less of the cotyledon of a sterile seed plant of the tomato (Solanum lycopersicum) experimental strain "Microtom” is immersed in the above Agrobacterium suspension, infected for 10 minutes, and then the leaf is placed on a sterilized filter paper. The excess Agrobacterium was removed.
  • MS medium (containing zeatin 1.5mg / l, acetosyringone 40 ⁇ M and gellite 0.3%) [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)]
  • MS medium 1 containing zeatin 1.5 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%) at 25 ° C. for 16 hours (photon flux density 32 ⁇ E / m 2 s) / 8 hours without It was passaged every 2 weeks under lighting conditions. Adventitious buds formed during this period, resulting in shoots.
  • the cells were transplanted to selective MS medium 2 (containing zeatin 1.0 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l, and gellite 0.3%), and the extended shoots were selected to a selective 1/2 concentration MS medium ( Rooted with kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%).
  • MS medium 2 containing zeatin 1.0 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l, and gellite 0.3%)
  • the extended shoots were selected to a selective 1/2 concentration MS medium ( Rooted with kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%).
  • a plant containing a kanamycin resistance gene as an exogenous gene from a plant that has developed a kanamycin resistance shoot is subjected to PCR (conditions: 95 ° C for 5 minutes, (95 ° C for
  • TAAAGCACGAGGAAGCGGT SEQ ID NO: 18
  • GCACAACAGACAATCGGCT SEQ ID NO: 19
  • the resulting 13 individuals were acclimated to a greenhouse and cultivated for about 1 month, weighed about 100 mg each from three newly developed young leaves, and liquid chromatography using an alkali-resistant column for reversed-phase chromatography similar to potato
  • 4 lines had a remarkably low tomatine content of 280 ⁇ g or less per 100 mg of fresh weight, which was 1/5 of the control (FIG. 6).
  • Example 7 Screening of glycoalkaloid biosynthesis candidate gene E mutant plant In vitro of potato passaged in MS medium [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)] containing 3% sucrose Plant irradiation with quantum beam irradiation (NIRS-HIMAC irradiation device, argon ion beam 500MeV / nucleon 0.1 to 3Gy, neon ion beam 400Mev / nucleon 0.2 to 3Gy, or carbon ion beam 290MeV / nucleon 0.5Gy to 5Gy) Mutation processing is performed. After the mutation treatment, leaves are collected from the grown plants and genomic DNA is collected by a conventional method.
  • NIRS-HIMAC irradiation device argon ion beam 500MeV / nucleon 0.1 to 3Gy, neon ion beam 400Mev / nucleon 0.2 to 3Gy, or carbon ion beam 290MeV
  • Example 8 Acquisition of full length sequence of glycoalkaloid biosynthesis candidate gene Y mRNA was extracted from sprouting of potato (Solanum tuberosum) cultivar "Sassy" with RNeasy (Qiagen). Total cDNA synthesis was performed using the Superscript First Strand System (Invitrogen). In recent years, Oyama et al. Have shown that the introduction of the amino group of glycoalkaloids via the 26th aldehyde (Abstracts of the 28th Annual Meeting of the Japanese Society for Plant Cell Biology (Sendai) (2010) p.165) . This amino group transfer reaction to aldehyde is expected to be mediated by aminotransferase, but no similar reaction is known at all.
  • a primer [U1008: caccATGGCCAAGACTACTAATGGATTT (SEQ ID NO: 24, 4 bases (cacc) is artificially added to the 5 ′ end to clone the gene into this primer), U1007: Using CCATCAAGTTTTTGTCCATGAG (SEQ ID NO: 25)], the gene was amplified by PCR (30 cycles, using Takara Bio Inc. PrimeSTAR HS DNAasePolymerase) at an annealing temperature of 55 ° C. This was cloned into a pENTRTM / D-TOPO entry vector (Invitrogen). The base sequences of the 8 independent clones obtained were determined using ABI310 (Applied Biosystems). The sequence thus obtained is SEQ ID NO: 20, and the amino acid sequence deduced therefrom is SEQ ID NO: 21. The amino acid sequence of pepper pAMT having different enzyme activities had 82.4% identity over the entire length.
  • the tomato homologous gene corresponds to SGN-U570903 of the solanaceous genome network (http://solgenomics.net/index.pl).
  • the part containing ORF is shown in SEQ ID NO: 23, and the amino acid sequence of the enzyme encoded from the cDNA sequence is shown in SEQ ID NO: 22.
  • the homology was 96.0%.
  • this gene is the amino acid sequence of the gene reported as gamma-aminobutyrateytransaminase subunit precursor isozyme 2 (GABA-T2) in tomato (Clark et al. J. Exp. Bot. (2009) 60: 3255-3267, Akihiro Plant Physiol. (2009) 60: 3255-3267) (Table 2), but it is not known that GABA-T2 is involved in glycoalkaloid biosynthesis.
  • GABA-T2 gamma-aminobutyrateytransaminase subunit precursor isozyme 2
  • the genome sequence of the tomato gene is reported as SL1.00sc03540, SL2.31ch12, and SL2.40ch12 of the eggplant genome network, and it has been reported that it contains 16 introns. However, there are no reports on the website.
  • Example 10 Construction of a vector for producing a suppression transformant of glycoalkaloid biosynthesis candidate gene Y
  • a reverse complementary strand gene having a structure driven by a strong promoter Fragment expression commonly called RNAi method in plants
  • PCR 30 cycles, Takara Bio Inc.
  • ExTaq DNA Polymerase was performed on the full-length cDNA obtained in Example 8 using primers [U895: GAGCTCTAGATATTTGATTTGCCACCTCCAT (SEQ ID NO: 26), U896: GGATCCATATGCTTACAAGCACAGCACCAA (SEQ ID NO: 27)] at an annealing temperature of 55 ° C.
  • the gene was amplified by This was cloned into a pCR4-TOPO vector (Invitrogen) to obtain a gene fragment.
  • binary vector pKT11 Japanese Patent Laid-Open No.
  • Example 11 Production of potato-transformed plant body
  • the vector prepared in Example 10 was subjected to electroporation (Edited by Gelvin and Schilperoor, Plant Molecular Biology Manual, C2, 1-32 (1994), Kluwer Academic Publishers). It was introduced into Agrobacterium tumefaciens strain GV3110.
  • Agrobacterium tumefaciens strain GV3110 containing the vector was added to a YEB liquid medium containing 5 ppm of kanamycin [5 g / l beef extract, 1 g / l yeast extract, 5 g / l peptone, 5 g / l sucrose, 2 mM magnesium sulfate ( pH 7.2)], and cultured with shaking at 28 ° C. for 12 hours. 1.5 ml of the culture solution was centrifuged at 10,000 rpm for 3 minutes, collected, and washed with 1 ml of LB medium to remove kanamycin.
  • Potato transformation was carried out according to [Monma (1990) plant tissue culture 7: 57-63].
  • Microtubers obtained from the potato variety “Sassy” (Japan Agribio Inc.) were sliced into 2 to 3 mm and used as materials for Agrobacterium infection. This was immersed in the above Agrobacterium solution and placed on a sterilized filter paper to remove excess Agrobacterium. Place on MS medium in petri dish (Zeatin 1ppm, IAA 0.1ppm, acetosyringone 100 ⁇ M and agar 0.8%) and culture for 3 days at 25 ° C for 16 hours (photon flux density 32 ⁇ E / m 2 s) / The test was conducted under no illumination for 8 hours.
  • TAAAGCACGAGGAAGCGGT SEQ ID NO: 28
  • GCACAACAGACAATCGGCT SEQ ID NO: 29
  • Example 12 Glycoalkaloid content of transformed plant and expression analysis of candidate gene Y 30 in vitro stems obtained in Example 11 were elongated for one month after passage, and 2 to 4 parts thereof were put together.
  • the glycoalkaloid content was measured by the following method (Patent Publication 2011-27429) using liquid chromatography using an alkali-resistant column for reverse phase chromatography.
  • Example 11 Twenty-five in vitro stems obtained in Example 11 were stretched for one month after passage, and 2 to 4 portions thereof were combined to make about 100 mg, 0.1% formic acid in 80% MeOH aq. 990 ⁇ L and a brush as an internal standard Noride (Brassino) 10 ⁇ g / 10 ⁇ L was added and crushed with a mixer mill (1/25 sec, 10 min, 4 ° C.). The obtained crushed material was subjected to centrifugation (10,000 rpm, 5 min, 4 ° C.) for alcohol precipitation.
  • Noride Bransino
  • the expression of mRNA of the Y gene was very small or could not be observed in the five low glycoalkaloid strains (FIG. 10). From this, it became clear that accumulation of glycoalkaloid is extremely reduced by suppressing the expression of the gene of candidate gene Y, and it became clear that candidate gene Y is a gene encoding glycoalkaloid biosynthetic enzyme. It was.
  • Example 13 Preparation of tubers from transformed plants of low-glycoalkaloid strains Three non-transformed plants and three in vitro plants of these five low-glycoalkaloid strains are proliferated, and three individuals are commercially available.
  • the tuber was harvested by acclimatizing to the vegetable culture soil and cultivating it in a biohazard greenhouse according to a standard method. Each of these three strains (# 9, # 11, # 22) showed the same growth as the non-transformant and was able to harvest the same tuber (Table 2).
  • Example 14 Production of tomato transformed plant body Tomato transformation was performed according to [Sun et al. (2006) Plant Cell Physiol. 47: 426-431.].
  • the Agrobacterium tumefaciens AGL0 strain containing the vector pKT230 prepared in Example 10 was cultured to obtain a bacterial solution for infection.
  • a 5 mm or less section of a cotyledon of a sterile seed plant of the tomato (Solanum lycopersicum) experimental strain “Microtom” is immersed in the above Agrobacterium suspension and infected for 10 minutes, and then the leaf is placed on a sterilized filter paper. The excess Agrobacterium was removed.
  • MS medium (containing zeatin 1.5mg / l, acetosyringone 40 ⁇ M and gellite 0.3%) [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)]
  • MS medium 1 containing zeatin 1.5 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%) at 25 ° C. for 16 hours (photon flux density 32 ⁇ E / m 2 s) / 8 hours without It was passaged every 2 weeks under lighting conditions. Adventitious buds formed during this period, resulting in shoots.
  • the cells were transplanted to selective MS medium 2 (containing zeatin 1.0 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l, and gellite 0.3%), and the extended shoots were selected to a selective 1/2 concentration MS medium ( Rooted with kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%).
  • An individual containing a kanamycin resistance gene as a foreign gene is detected by performing PCR using a primer that specifically amplifies the sequence of the kanamycin resistance gene from the plant body in which the shoot is grown. It was confirmed that the plant body was a transformed plant body.
  • Example 15 Screening of glycoalkaloid biosynthesis candidate gene Y mutant plant In vitro of potato passaged in MS medium [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)] containing 3% sucrose Plant irradiation with quantum beam irradiation (NIRS-HIMAC irradiation device, argon ion beam 500MeV / nucleon 0.1 to 3Gy, neon ion beam 400Mev / nucleon 0.2 to 3Gy, or carbon ion beam 290MeV / nucleon 0.5Gy to 5Gy) Mutation processing is performed. After the mutation treatment, leaves are collected from the grown plants and genomic DNA is collected by a conventional method.
  • NIRS-HIMAC irradiation device argon ion beam 500MeV / nucleon 0.1 to 3Gy, neon ion beam 400Mev / nucleon 0.2 to 3Gy, or carbon ion beam 290Me
  • PCR is performed using the above primers [U1008: caccATGGCCAAGACTACTAATGGATTT (SEQ ID NO: 24), U1007: CCATCAAGTTTTTGTCCATGAG (SEQ ID NO: 25)] to obtain a region containing the Y gene, and a gene cloning kit Cloning using etc.
  • the base sequence of the cloned region can be determined, and individuals with mutations in the Y gene can be selected.
  • Example 16 Production of spirostan-type triterpenes from potato gene-suppressed transformants Samples of 1 g of in vitro stems of potatoes (non-transformants, pKT230 # 8 and pKT250 # 9, # 22) obtained in the above example The following processing was extracted and analyzed.
  • pKT230 # 8 is the inhibitory transformant of glycoalkaloid biosynthetic enzyme E obtained in Example 4
  • pKT250 # 9, # 22 is the inhibitory transformant of glycoalkaloid biosynthetic enzyme Y obtained in Example 11. It is.
  • FIG. 13 shows a GC-MS total ion chromatogram of the transformant potato extract. A peak (solid arrow) not found in the non-transformant was observed.
  • FIG. 14 shows a combination of this part as a preparation of diosgenin and yamogenin.
  • the newly appearing peak d has the same retention time and mass spectrum as the peak b (retention time 17 minutes 50 seconds) of the yamogenin preparation.
  • the peak a mixed in the yamogenin preparation was 22 ⁇ O-spirostanol type (retention time 17 minutes 34 seconds) with the spiroketal ring of the yamogenin re-wound, and was different from the peak b (retention time 17 minutes 37 seconds) of the diosgenin preparation.
  • Peak c mixed with the yamogenin preparation was predicted to be neotigogenin reduced in the 5th position from the mass spectrum (retention time 18 minutes 02 seconds). As a result of quantification, it was revealed that 68.8 ⁇ g / 100 mg dry weight, 55.5 ⁇ g / 100 mg dry weight, 30.4 ⁇ g / 100 mg dry weight of pest 230 # 8, pKT250 # 9, # 22 . On the other hand, even in the non-transformant, there was a trace amount of yamogenin of 6.3 ⁇ g / 100 mg dry weight. This quantitative value is not cultivated under different conditions for the accumulation of spirostan-type triterpenes, and thus shows the potential for substance accumulation, and is not limited in any way.
  • Example 17 Prediction of accumulated product of potato tissue It was found that yamogenin can be obtained by hydrolysis from potato in which the expression of E gene or Y gene is suppressed, but the substance in potato is unknown. . Therefore, analysis was performed without hydrolysis. As a result, it was found that almost no yamogenin was obtained when hydrolysis was not performed (FIG. 15).
  • yamogenin that is sugar-modified at position 3 furosene-type triterpenes that are sugar-modified at position 3 or 26, or both, positions 16, 22, and 26 are oxidized, including position 3, A cholestane type triterpene in which one or a plurality of sugars are modified can be estimated.
  • Example 18 Production of spirostan-type triterpenes from different potato tissues
  • tuber of potato pKT230 # 8, # 17, # 29
  • suppressed E gene prepared in the above example
  • the amount of yamogenin obtained by hydrolyzing the accumulated glycoside was quantified.
  • the tuber peel was 49.7, 48.1, 24.6 ⁇ g / 100 mg dry weight
  • the germination was 95.6, 70.2, 102.5 ⁇ g / 100 mg dry weight (FIG. 16).
  • Example 19 Production of spirostan-type triterpenes from tomato gene-suppressed transformants Tomatoes (non-transformants, pKT230 # 13, pKT250 # 75) were cultivated in a greenhouse for about 1 month and newly developed young leaves 1 g was used as a sample, and it was carried out according to Example 16.
  • pKT230 # 13 is the inhibitory transformant of glycoalkaloid biosynthetic enzyme E obtained in Example 6, and
  • pKT250 # 9, # 22 is the inhibitory transformant of glycoalkaloid biosynthetic enzyme Y obtained in Example 14. It is.
  • Neotigogenin obtained by hydrolyzing the accumulated glycoside was quantified as a yamogenin equivalent.
  • neotigogenin can obtain 86.8 ⁇ g / 100 mg dry weight and 93.2 ⁇ g / 100 mg dry weight from pKT230 # 13 and pKT250 # 75 (FIG. 17).
  • the non-transformant contained a trace amount of neotigogenin of 5.7 ⁇ g / 100 mg dry weight (FIG. 17). This quantitative value shows the potential for substance accumulation because it was not cultivated under different conditions for accumulation of spirostan-type triterpenes.
  • the solanaceous plants such as potatoes in which triterpene glycosides that produce spirostane-type triterpenes after hydrolysis according to the present invention are accumulated can supply spirostane-type triterpenes as raw materials for steroid pharmaceuticals.
  • Glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y can be used to accumulate triterpene glycosides that produce spirostan-type triterpenes after hydrolysis that can be used as functional foods. Can be used for selection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Provided is a plant belonging to the family Solanaceae, such as potato, which can accumulate therein a triterpene glycoside that can produce a spirostan-type triterpene after being hydrolyzed. A plant belonging to the family Solanaceae, in which a gene encoding a glycoalkaloid synthetase is suppressed, and which can accumulate therein a triterpene glycoside that can produce a spirostan-type triterpene after being hydrolyzed.

Description

スピロスタン型トリテルペンを生産するための植物Plants for producing spirostan-type triterpenes
 本発明は、ジャガイモ等ナス科植物において加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を生産する方法、該トリテルペン配糖体の加水分解によりヤモゲニンやネオチゴゲニン等のスピロスタン型トリテルペンを生産する方法、該トリテルペン配糖体を蓄積する新規なジャガイモ等ナス科植物の作出方法、ならびにスピロスタン型トリテルペンを生産するためのジャガイモ等ナス科植物に関する。 The present invention relates to a method for producing a triterpene glycoside that produces a spirostan type triterpene after hydrolysis in a solanaceous plant such as potato, a method for producing a spirostan type triterpene such as yamogenin or neotigogenin by hydrolysis of the triterpene glycoside, The present invention relates to a method for producing a novel solanaceous plant such as potato that accumulates triterpene glycosides, and to a solanaceous plant such as potato for producing spirostan-type triterpenes.
 スピロスタン型トリテルペンは副腎皮質ホルモンや性ホルモンに代表されるステロイド医薬品の半合成における出発物質として重要である。ジオスゲニンはその代表例であり、全ステロイド医薬品の約6割がジオスゲニンから作られている計算となることが知られている(非特許文献1)。ジオスゲニンを作る材料としてはメキシコヤムイモの野性種が主に利用されている。しかし、環境破壊や資源枯渇の問題から商業的な栽培も行われているが、ヤムイモの単位収量は一般に1.5~2t/10a(非特許文献2)とされており、栽培期間が4~5年かかることから期間換算の収量は低い。ジャガイモは実質4~5ヶ月程度の栽培期間で4t/10a(平成15年北海道じゃがいもの統計データ 農林水産省生産局生産流通振興課)という大きい単位収量が得られ、期間換算の収量が極めて多い作物である。トマトは栽培期間は長いが、単位収量は9t/10aと多いので(平成17年度農林水産省「野菜生産出荷統計」)、期間換算の収量は高い。従って、ジャガイモやトマトでスピロスタン型トリテルペンを生産できるようになれば効果は計り知れない。 Spirostan-type triterpenes are important as starting materials in the semisynthesis of steroidal drugs represented by corticosteroids and sex hormones. Diosgenin is a representative example, and it is known that about 60% of all steroidal drugs are calculated from diosgenin (Non-patent Document 1). The wild species of Mexican yam are mainly used as a material for making diosgenin. However, commercial cultivation is also carried out due to problems of environmental destruction and resource depletion, but the unit yield of yam is generally 1.5-2t / 10a (Non-patent Document 2), and the cultivation period is 4-5 years. Therefore, the yield in terms of period is low. Potato is a crop with a large unit yield of 4t / 10a (Statistical data of Hokkaido potato in 2003, Production and Distribution Promotion Division, Ministry of Agriculture, Forestry and Fisheries) in a cultivation period of about 4 to 5 months. It is. Although tomatoes have a long cultivation period, the unit yield is high at 9t / 10a (2005 Ministry of Agriculture, Forestry and Fisheries “Vegetable Production Shipment Statistics”), so the yield in terms of period is high. Therefore, if it becomes possible to produce spirostan-type triterpenes with potatoes and tomatoes, the effect is immeasurable.
 非特許文献3ではジャガイモ(Solanum tuberosum)やトマト(Solanum lycopersicum)でスピロスタン型トリテルペンが検出されたという報告を総説しているが、その元になるのは非特許文献4の総説であり、さらに引用されている文献は1966年以前のものであり検出されたことだけが報告され、その後、分析技術が発展した後にも定量的な報告はなされていない。非特許文献5では塊茎を形成するジャガイモのサブセクションに属する野生種で検出される物質を報告している。しかし、ここでは検出されたスピロスタン型トリテルペンはジオスゲニンとチゴゲニンであり、ヤモゲニンとネオチゴゲニンとは、それぞれ構造異性体であり異なる物質である。ここでも定量値については報告されておらず、野生種であり栽培性・単位収量はきわめて低いことが予想される。 Non-patent document 3 reviews the reports that spirostan-type triterpenes were detected in potatoes (Solanum tuberosum) and tomatoes (Solanum lycopersicum). It is reported that the published literature is from before 1966 and has been detected, and since then, quantitative reports have not been made even after the development of analytical techniques. Non-Patent Document 5 reports substances detected in wild species belonging to the potato subsection forming tubers. However, the spirostan-type triterpenes detected here are diosgenin and tigogenin, and yamogenin and neotigogenin are structural isomers and different substances. Again, quantitative values have not been reported, and it is expected to be a wild species with extremely low cultivatability and unit yield.
 ジャガイモは塊茎の芽(萌芽)や花組織に、また光を照射された塊茎に、多くのチャコニンやソラニン等の糖を有するグリコアルカロイドを蓄積する。チャコニンやソラニンの非糖部であるサポゲニンはソラニジンであるが、これはステロイド医薬品の半合成における出発物質にはならないことが知られている(非特許文献1)。トマトも未熟果実や全草にトマチンを物質とするグリコアルカロイドを蓄積する。しかし、ジャガイモやトマトのグリコアルカロイドをスピロスタン型トリテルペン蓄積に変更することを試みた報告はない。 Potatoes accumulate many glycoalkaloids with sugars such as chaconine and solanine in tuber buds (buds), flower tissues, and tubers irradiated with light. Sapogenin, which is a non-sugar part of chaconine and solanine, is solanidine, but it is known that this does not become a starting material in the semisynthesis of steroid pharmaceuticals (Non-patent Document 1). Tomatoes also accumulate glycoalkaloids composed of tomatine in immature fruits and whole plants. However, there are no reports of attempts to change the glycoalkaloids of potatoes and tomatoes to spirostane-type triterpene accumulation.
 スピロスタン型サポニンは自体の健康機能性については不明な点が多い。粉末化したヤムイモ塊茎やその抽出物は、ホルモン補充療法の代替品として市販されている。体内でのプロゲステロンへの変換は否定的であるが、別の何らかのメカニズムの可能性が報告されている(非特許文献1)。また、滋養強壮に効果があるとされており、近年、抗疲労効果(非特許文献6)や脂肪燃焼促進作用(非特許文献7)の報告もある。ジャガイモ等ナス科植物でこのような滋養強壮に効果のあるものは知られていない。スピロスタン型トリテルペンには大腸癌予防の効果(非特許文献8)、発毛効果(特許文献1)も報告されている。 Spirostane saponin has many unclear points regarding its own health functionality. Powdered yam tubers and their extracts are commercially available as alternatives to hormone replacement therapy. Although conversion to progesterone in the body is negative, the possibility of some other mechanism has been reported (Non-patent Document 1). Moreover, it is said that it is effective in nourishing tonic, and in recent years, there are reports of an anti-fatigue effect (Non-Patent Document 6) and a fat burning promoting action (Non-Patent Document 7). There are no known solanaceous plants such as potatoes that are effective in such nourishing tonic. Spirostan-type triterpenes have also been reported to prevent colorectal cancer (Non-patent Document 8) and hair growth effect (Patent Document 1).
特開2006-273754JP 2006-273754
 本発明は、ジャガイモ等ナス科植物において加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を生産する方法、該トリテルペン配糖体の加水分解によりヤモゲニンやネオチゴゲニン等のスピロスタン型トリテルペンを生産する方法、該トリテルペン配糖体を蓄積する新規なジャガイモ等ナス科植物の作出方法、ならびにスピロスタン型トリテルペンを生産するためのジャガイモ等ナス科植物の提供を課題とする。 The present invention relates to a method for producing a triterpene glycoside that produces a spirostan type triterpene after hydrolysis in a solanaceous plant such as potato, a method for producing a spirostan type triterpene such as yamogenin or neotigogenin by hydrolysis of the triterpene glycoside, It is an object of the present invention to provide a method for producing a novel solanaceous plant such as potato that accumulates triterpene glycosides, and to provide a solanaceous plant such as potato for producing spirostan-type triterpenes.
 本発明者は、グリコアルカロイドの生合成遺伝子とスピロスタン型トリテルペンの関連について解明すべく鋭意研究を重ねた。その結果、該生合成遺伝子を抑制することによって、ジャガイモ等ナス科植物が加水分解後にスピロスタン型トリテルペンを生じるトリテルペンの配糖体を蓄積することを見出し、本発明を完成した。 The present inventor has conducted extensive studies to elucidate the relationship between glycoalkaloid biosynthetic genes and spirostan-type triterpenes. As a result, it was found that by suppressing the biosynthetic gene, solanaceous plants such as potatoes accumulate triterpene glycosides that generate spirostan-type triterpenes after hydrolysis, and completed the present invention.
即ち、本発明は以下の発明を包含する。 That is, the present invention includes the following inventions.
[1] グリコアルカロイド生合成酵素をコードする遺伝子が抑制されたナス科植物の植物体であって、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積し得る植物体。 [1] A plant body of a solanaceous plant in which a gene encoding a glycoalkaloid biosynthetic enzyme is suppressed, and a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis can be accumulated in the plant body.
[2] ナス科植物がジャガイモであり、グリコアルカロイド生合成酵素をコードする遺伝子が以下の(a)~(d)のいずれかのDNAからなる遺伝子および/または以下の(e)~(h)のいずれかのDNAからなる遺伝子であり、前記トリテルペン配糖体が加水分解によりヤモゲニンを生成するものである、[1]の植物体:
 (a) 配列番号2に示す塩基配列からなるDNA;
 (b) 配列番号2に示す塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
 (c) 配列番号2に示す塩基配列と80%以上の配列同一性を有する塩基配列からなり、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
 (d) 配列番号2に示す塩基配列の縮重異性体からなるDNA;
 (e) 配列番号21に示す塩基配列からなるDNA;
 (f) 配列番号21に示す塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
 (g) 配列番号21に示す塩基配列と80%以上の配列同一性を有する塩基配列からなり、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;および
 (h) 配列番号21に示す塩基配列の縮重異性体からなるDNA。
[2] The solanaceous plant is potato, and the gene encoding a glycoalkaloid biosynthetic enzyme is a gene comprising any of the following DNAs (a) to (d) and / or the following (e) to (h): The plant according to [1], wherein the triterpene glycoside generates yamogenin by hydrolysis.
(a) DNA consisting of the base sequence shown in SEQ ID NO: 2;
(b) a DNA that hybridizes with a DNA comprising a base sequence complementary to the DNA comprising the base sequence shown in SEQ ID NO: 2 under stringent conditions and encodes a protein having glycoalkaloid biosynthetic enzyme activity;
(c) DNA encoding a protein comprising a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 2 and having glycoalkaloid biosynthetic enzyme activity;
(d) DNA comprising a degenerate isomer of the base sequence shown in SEQ ID NO: 2;
(e) DNA consisting of the base sequence shown in SEQ ID NO: 21;
(f) a DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 21 and encodes a protein having glycoalkaloid biosynthetic enzyme activity;
(g) a DNA consisting of a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 21 and encoding a protein having glycoalkaloid biosynthetic enzyme activity; and (h) shown in SEQ ID NO: 21 DNA consisting of degenerate isomers of the base sequence.
[3] ナス科植物がトマトであり、グリコアルカロイド生合成酵素をコードする遺伝子が以下の(i)~(l)のいずれかのDNAからなる遺伝子および/または以下の(m)~(p)のいずれかのDNAからなる遺伝子であり、前記トリテルペン配糖体が加水分解によりネオチゴゲニンを生成するものである、[1]の植物体:
 (i) 配列番号4に示す塩基配列からなるDNA;
 (j) 配列番号4に示す塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
 (k) 配列番号4に示す塩基配列と80%以上の配列同一性を有する塩基配列からなり、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
 (l) 配列番号4に示す塩基配列の縮重異性体からなるDNA;
 (m) 配列番号23に示す塩基配列からなるDNA;
 (n) 配列番号23に示す塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
 (o) 配列番号23に示す塩基配列と80%以上の配列同一性を有する塩基配列からなり、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;および
 (p) 配列番号23に示す塩基配列の縮重異性体からなるDNA。
[3] The solanaceous plant is a tomato, and a gene encoding a glycoalkaloid biosynthetic enzyme is a gene comprising any of the following DNAs (i) to (l) and / or the following (m) to (p): The plant according to [1], wherein the triterpene glycoside generates neotigogenin by hydrolysis.
(i) DNA consisting of the base sequence shown in SEQ ID NO: 4;
(j) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 4 and encodes a protein having glycoalkaloid biosynthetic enzyme activity;
(k) a DNA encoding a protein comprising a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 4 and having glycoalkaloid biosynthetic enzyme activity;
(l) DNA comprising a degenerate isomer of the base sequence shown in SEQ ID NO: 4;
(m) a DNA comprising the base sequence represented by SEQ ID NO: 23;
(n) a DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 23 and encodes a protein having glycoalkaloid biosynthetic enzyme activity;
(o) a DNA comprising a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 23 and encoding a protein having glycoalkaloid biosynthetic enzyme activity; and (p) shown in SEQ ID NO: 23 DNA consisting of degenerate isomers of the base sequence.
[4] [1]~[3]のいずれかの植物体を栽培することにより、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積させる方法。 [4] A method of accumulating in a plant a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis by cultivating the plant of any one of [1] to [3].
[5] [1]~[3]のいずれかの植物体を栽培することにより、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積させ、
蓄積した該配糖体を単離し、
得られた該配糖体を加水分解し、糖鎖を除去することを含む、植物体を用いてスピロスタン型トリテルペンを生産する方法。
[5] By cultivating the plant body according to any one of [1] to [3], a triterpene glycoside that generates a spirostan-type triterpene after hydrolysis is accumulated in the plant body,
Isolating the accumulated glycoside,
A method for producing a spirostan-type triterpene using a plant body, comprising hydrolyzing the obtained glycoside and removing a sugar chain.
[6] (i) ゲノムDNAまたはRNAである核酸をナス科植物から単離する工程、
(ii) (i)の核酸がRNAである場合に逆転写しcDNAを合成する工程、
(iii) (i)または(ii)の工程で得られたDNAから配列番号2、配列番号4、配列番号21または配列番号23に示す塩基配列を含有する遺伝子断片を増幅する工程、ならびに
(iv) DNA中に突然変異および/または多型の存在を決定する工程、
とを含む、ナス科植物におけるグリコアルカロイド生合成酵素をコードする遺伝子の突然変異および/または多型の存在する植物体を選抜する方法。
[6] (i) a step of isolating a nucleic acid that is genomic DNA or RNA from a solanaceous plant,
(ii) a step of reverse transcription and synthesizing cDNA when the nucleic acid of (i) is RNA;
(iii) amplifying a gene fragment containing the base sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 21 or SEQ ID NO: 23 from the DNA obtained in the step (i) or (ii);
(iv) determining the presence of mutations and / or polymorphisms in the DNA;
And a method for selecting a plant having a mutation and / or polymorphism of a gene encoding a glycoalkaloid biosynthetic enzyme in a solanaceous plant.
[7] [6]の方法により選抜された、グリコアルカロイド生合成酵素をコードする遺伝子に突然変異および/または多型を有し、グリコアルカロイド生合成酵素の活性が抑制されたナス科植物体。 [7] A solanaceous plant body selected by the method of [6], having a mutation and / or polymorphism in a gene encoding a glycoalkaloid biosynthetic enzyme and suppressing the activity of the glycoalkaloid biosynthetic enzyme.
[8] [6]の方法により選抜された、グリコアルカロイド生合成酵素をコードする遺伝子の発現能が既存品種に対して抑制されているか、またはグリコアルカロイド生合成酵素の活性が既存品種に対して抑制されており、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積し得るナス科植物体。 [8] The expression ability of a gene encoding a glycoalkaloid biosynthetic enzyme selected by the method of [6] is suppressed relative to an existing variety, or the activity of a glycoalkaloid biosynthetic enzyme is compared with an existing variety A solanaceous plant that is inhibited and can accumulate triterpene glycosides that generate spirostan-type triterpenes after hydrolysis in the plant.
[9] [8]の植物体を育種することにより、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積させる方法。 [9] A method of accumulating in a plant a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis by breeding the plant according to [8].
[10] [8]の植物体を育種することにより、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積させ、
蓄積したスピロスタン型トリテルペンの配糖体を単離し、
得られたスピロスタン型トリテルペンの配糖体を加水分解し、糖鎖を除去することを含む、植物体を用いてスピロスタン型トリテルペンを生産する方法。
[10] By breeding the plant according to [8], a triterpene glycoside that generates a spirostan-type triterpene after hydrolysis is accumulated in the plant.
We isolated the accumulated glycosides of spirostan type triterpene,
A method for producing a spirostan-type triterpene using a plant body, comprising hydrolyzing a glycoside of the obtained spirostan-type triterpene and removing a sugar chain.
 本明細書は本願の優先権の基礎である日本国特許出願2011-258288号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2011-258288, which is the basis of the priority of the present application.
 本発明によれば、ジャガイモ等ナス科植物において、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を蓄積させることができ、該トリテルペン配糖体が蓄積されたジャガイモ等ナス科植物が提供される。本発明により該トリテルペン配糖体を含有していることを特徴とするジャガイモ等ナス科植物の作出が可能になる。これらの植物により生産されたトリテルペン配糖体を加水分解し糖を除去することによりスピロスタン型トリテルペンを得ることができる。スピロスタン型トリテルペンはステロイド化合物の製造原料として用いることができ、本発明のジャガイモ等ナス科植物を用いることにより、様々な有用な生理活性を示すステロイド化合物を大量かつ安価に生産できる。 According to the present invention, in a solanaceous plant such as potato, a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis can be accumulated, and a solanaceous plant such as potato in which the triterpene glycoside is accumulated is provided. . According to the present invention, it is possible to produce a solanaceous plant such as a potato characterized by containing the triterpene glycoside. Spirostan-type triterpenes can be obtained by hydrolyzing the triterpene glycosides produced by these plants and removing the sugars. Spirostan-type triterpenes can be used as a raw material for producing steroid compounds. By using the solanaceous plant such as potato of the present invention, steroid compounds exhibiting various useful physiological activities can be produced in large quantities and at low cost.
ジャガイモとトマトの生合成遺伝子Eの相同性をDNA解析ソフトGENETYX(ゼネティックス社)で解析した結果を示す図である。全般で非常に高い相同性が認められる。It is a figure which shows the result of having analyzed the homology of the biosynthesis gene E of a potato and a tomato with DNA analysis software GENETYX (Genetics company). Overall, very high homology is observed. ジャガイモとトマトの生合成遺伝子Eの相同性をDNA解析ソフトGENETYX(ゼネティックス社)で解析した結果を示す図である(図1-1の続き)。FIG. 2 shows the results of analyzing the homology of potato and tomato biosynthetic gene E using DNA analysis software GENETYX (Genetics) (continuation of FIG. 1-1). ジャガイモとトマトの生合成遺伝子Eの相同性をDNA解析ソフトGENETYX(ゼネティックス社)で解析した結果を示す図である(図1-2の続き)。It is a figure which shows the result of having analyzed the homology of the biosynthetic gene E of a potato and a tomato with DNA analysis software GENETYX (Genetics company) (continuation of FIG. 1-2). 遺伝子E抑制用ベクターの構造を示す。図2には、導入する遺伝子部分のT-DNAのライトボーダー(RB)、レフトボーダー(LB)の内部の構造、制限酵素部位を示す図である。The structure of the gene E suppression vector is shown. FIG. 2 is a diagram showing the structure inside the right border (RB) and left border (LB) of the T-DNA of the gene part to be introduced, and the restriction enzyme site. ジャガイモ形質転換体のin vitro茎のグリコアルカロイド含量を示す図である。エラーバーは標準偏差を示す。It is a figure which shows the glycoalkaloid content of the in-vitro stem of a potato transformant. Error bars indicate standard deviation. ジャガイモ形質転換体のin vitro茎から抽出したmRNAに対するRT-PCRの結果を示す図である。It is a figure which shows the result of RT-PCR with respect to mRNA extracted from the invitro stem of a potato transformant. ジャガイモ形質転換体の塊茎の表皮のグリコアルカロイド含量を示す。エラーバーは標準偏差を示す。The glycoalkaloid content of the tuber epidermis of a potato transformant is shown. Error bars indicate standard deviation. トマト形質転換体の若い葉のグリコアルカロイド含量を示す図である。エラーバーは標準偏差を示す。It is a figure which shows the glycoalkaloid content of the young leaf of a tomato transformant. Error bars indicate standard deviation. ジャガイモとトマトの生合成遺伝子Yの相同性をDNA解析ソフトGENETYX(ゼネティックス社)で解析した結果を示す図である。全般で非常に高い相同性が認められる。It is a figure which shows the result of having analyzed the homology of the biosynthesis gene Y of a potato and a tomato with DNA analysis software GENETYX (Genetics company). Overall, very high homology is observed. ジャガイモとトマトの生合成遺伝子Yの相同性をDNA解析ソフトGENETYX(ゼネティックス社)で解析した結果を示す図である(図7-1の続き)。FIG. 7 shows the results of analyzing the homology of potato and tomato biosynthetic gene Y with DNA analysis software GENETYX (Genetics) (continuation of FIG. 7-1). ジャガイモとトマトの生合成遺伝子Yの相同性をDNA解析ソフトGENETYX(ゼネティックス社)で解析した結果を示す図である(図7-2の続き)。FIG. 7 shows the results of analyzing the homology of potato and tomato biosynthetic gene Y with DNA analysis software GENETYX (Genetics) (continuation of FIG. 7-2). 遺伝子Y抑制用ベクターの構造を示す。図8には、導入する遺伝子部分のT-DNAのライトボーダー(RB)、レフトボーダー(LB)の内部の構造、制限酵素部位を示す図である。The structure of the gene Y suppression vector is shown. FIG. 8 is a diagram showing the structure inside the right border (RB) and left border (LB) of the T-DNA of the gene portion to be introduced, and the restriction enzyme site. ジャガイモ形質転換体のin vitro茎のグリコアルカロイド含量を示す図である。It is a figure which shows the glycoalkaloid content of the in-vitro stem of a potato transformant. ジャガイモ形質転換体のin vitro茎から抽出したmRNAに対するRT-PCRの結果を示す図である。It is a figure which shows the result of RT-PCR with respect to mRNA extracted from the invitro stem of a potato transformant. ジャガイモ形質転換体の塊茎の表皮のグリコアルカロイド含量を示す図である。エラーバーは標準偏差を示す。It is a figure which shows the glycoalkaloid content of the epidermis of the tuber of a potato transformant. Error bars indicate standard deviation. トマト形質転換体の若い葉のグリコアルカロイド含量を示す図である。エラーバーは標準偏差を示す。It is a figure which shows the glycoalkaloid content of the young leaf of a tomato transformant. Error bars indicate standard deviation. ジャガイモ形質転換体のin vitro茎から抽出したトリテルペンサポニンのGCチャートを示す図である。It is a figure which shows the GC chart of the triterpene saponin extracted from the in-vitro stem of the potato transformant. ジャガイモ形質転換体のin vitro茎から抽出したトリテルペンサポニンのGCチャートの拡大図を示す図である。It is a figure which shows the enlarged view of GC chart of the triterpene saponin extracted from the in-vitro stem of the potato transformant. ジャガイモ形質転換体のin vitro茎から抽出したトリテルペンサポニンのピークのマススペクトルを示す図である。a~dは図14-1のa~dに対応している。It is a figure which shows the mass spectrum of the peak of the triterpene saponin extracted from the in-vitro stem of the potato transformant. a to d correspond to a to d in FIG. ジャガイモ形質転換体のin vitro茎から抽出したトリテルペンサポニンの加水分解処理・未処理のGCチャートを示す図である。It is a figure which shows the GC chart of a hydrolysis process of the triterpene saponin extracted from the in-vitro stem of the potato transformant, and un-processed. ジャガイモ塊茎・萌芽から抽出したトリテルペンサポニンのGCチャートを示す図である。It is a figure which shows GC chart of the triterpene saponin extracted from the potato tuber and germination. トマト形質転換体の若い葉から抽出したトリテルペンサポニンのGCチャートを示す図である。It is a figure which shows the GC chart of the triterpene saponin extracted from the young leaf of the tomato transformant.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のスピロスタン型トリテルペンの配糖体(トリテルペンサポニン)を生産するジャガイモ等ナス科植物はグリコアルカロイド生合成酵素をコードするグリコアルカロイド生合成酵素遺伝子E(以下、遺伝子E)および/またはグリコアルカロイド生合成酵素遺伝子Y(以下、遺伝子Y)、好ましくは遺伝子Eが抑制されており、遺伝子Eによりコードされるグリコルカロイド生合成酵素および/または遺伝子Yによりコードされるグリコルカロイド生合成酵素が発現されず、これらの酵素を欠失している。ここで、ジャガイモ等ナス科には、ジャガイモ(Solanum tuberosum)、トマト(Solanum lycopersicum)、ナス(Solanum melongena)、トウガラシ(Capsium annum)等が含まれる。 The solanaceous plant such as potato producing the glycoside of the spirostan-type triterpene of the present invention (triterpene saponin) is a glycoalkaloid biosynthetic enzyme gene E (hereinafter referred to as gene E) and / or glycoalkaloid biosynthesizing a glycoalkaloid biosynthetic enzyme. Synthetic enzyme gene Y (hereinafter referred to as gene Y), preferably gene E, is suppressed, and a glycolucaloid biosynthetic enzyme encoded by gene E and / or a glycolucaloid biosynthetic enzyme encoded by gene Y is expressed. Rather, these enzymes are deleted. Here, eggplants such as potato include potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), capsicum (Capsium annum) and the like.
 ここで、遺伝子Eおよび/または遺伝子Yが抑制されているとは、遺伝子Eおよび/または遺伝子Yが発現しないか、発現が低下しているか、あるいは発現してもその発現タンパク質が遺伝子E又は遺伝子Yの発現産物の正常な機能を保持していない、すなわち酵素活性が低下しているか失われていることをいう。遺伝子の抑制は、遺伝子の全部の欠失、一部の欠失、遺伝子の塩基配列の塩基の欠失、置換、付加、挿入等により生じ得る。また、siRNA等によるRNA干渉による抑制によっても生じ得る。本発明の遺伝子Eおよび/または遺伝子Yが抑制されている変異体は、これらの遺伝子が人為的に抑制されたものも、自然界で天然に生じた変異により遺伝子が抑制されたものも含む。 Here, the expression that gene E and / or gene Y is suppressed means that gene E and / or gene Y is not expressed, expression is decreased, or expression protein is expressed as gene E or gene. It means that the normal function of the expression product of Y is not maintained, that is, the enzyme activity is reduced or lost. The suppression of the gene can be caused by the complete deletion, partial deletion of the gene, deletion of the base of the base sequence of the gene, substitution, addition, insertion or the like. It can also occur due to suppression by RNA interference with siRNA or the like. The mutants in which the gene E and / or the gene Y of the present invention are suppressed include those in which these genes are artificially suppressed and those in which the gene is suppressed by a naturally occurring mutation in nature.
 加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体とは、ジャガイモの中では3位に糖修飾されているスピロスタン型トリテルペン、3位か26位、もしくは両方に糖修飾されているフロスタン型トリテルペン、16位、22位、26位が酸化され、3位を含め、そのいずれか、もしくは複数が糖修飾されているコレスタン型トリテルペンである糖鎖の存在を特徴とする。 A triterpene glycoside that generates a spirostane-type triterpene after hydrolysis is a spirostan-type triterpene that is sugar-modified at position 3 in potato, a furostane-type triterpene that is sugar-modified at position 3, 26, or both, 16 It is characterized by the presence of a sugar chain which is a cholestane type triterpene in which the position, the 22nd position, the 26th position are oxidized, and the 3rd position, including the 3rd position, or a plurality thereof is sugar modified.
 加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を酸等により加水分解することにより糖鎖が加水分解により除去され、非糖部(アグリコン)が得られる。該非糖部であるスピロスタン型トリテルペンはステロイド医薬品の原料として利用することができる。 Hydrolysis of a triterpene glycoside that generates a spirostan-type triterpene after hydrolysis with an acid or the like removes the sugar chain by hydrolysis, thereby obtaining a non-sugar part (aglycone). The non-sugar part, spirostan type triterpene, can be used as a raw material for steroid pharmaceuticals.
 ナス科植物に蓄積し得るスピロスタン型トリテルペンの配糖体の非糖部(アグリコン)であるスピロスタン型トリテルペン(サポゲニン)として、ヤモゲニン(yamagenin)、チゴゲニン(tigogenin)、ネオチゴゲニン(neotigogenin)、ソラスピゲニン(solaspigenin)、ネオソラスピゲニン(neosolaspigenin)等が挙げられる。ヤモゲニンはジャガイモにおいて蓄積し、ネオチゴゲニンはトマトにおいて蓄積し、チゴゲニンはCestrum diurnumにおいて蓄積し、ソラスピゲニンおよびネオソラスピゲニンは、Solanum hispidumにおいて蓄積する。 Spirostan-type triterpenes (sapogenins), which are non-sugar parts (aglycones) of the glycosides of spirostan-type triterpenes that can accumulate in solanaceous plants, include yamogenin (yamagenin), tigogenin (tigogenin), neotigogenin (neotigogenin), solaspigenin (solaspigenin) And neosolaspigenin. Yamogenin accumulates in potatoes, neotigogenin accumulates in tomatoes, tigogenin accumulates in Cestrum diurnum, and solaspigenin and neosorapigenin accumulates in Solanum hispidum.
1.グリコアルカロイド生合成酵素遺伝子EおよびYがコードするグリコアルカロイド生合成酵素
 本発明の遺伝子EおよびYがコードするグリコアルカロイド生合成酵素は、ジャガイモ等ナス科植物(Solanaceae)に含まれるグリコアルカロイド生合成酵素である。ジャガイモ等ナス科には、ジャガイモ(Solanum tuberosum)、トマト(Solanum lycopersicum)、ナス(Solanum melongena)、トウガラシ(Capsium annum)等が含まれる。また、該酵素は、膜結合型のチトクロームP450モノオキシダーゼ(遺伝子E)とアミノトランスフェラーゼ(遺伝子Y)である。前記酵素により得られるグリコアルカロイドは、ジャガイモ等のナス科植物に合成されるグリコアルカロイドが含まれ、例えばジャガイモのチャコニン及びソラニン等のグリコアルカロイド、トマトのトマチン等のグリコアルカロイドが挙げられる。
1. Glycoalkaloid biosynthetic enzymes encoded by glycoalkaloid biosynthetic enzymes E and Y The glycoalkaloid biosynthetic enzymes encoded by genes E and Y of the present invention are glycoalkaloid biosynthetic enzymes contained in solanaceae plants such as potatoes (Solanaceae). It is. The solanaceous family such as potato includes potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), capsicum (Capsium annum) and the like. The enzymes are membrane-bound cytochrome P450 monooxidase (gene E) and aminotransferase (gene Y). The glycoalkaloid obtained by the enzyme includes glycoalkaloids synthesized in solanaceous plants such as potato, and examples include glycoalkaloids such as potato chaconine and solanine, and glycoalkaloids such as tomato tomatine.
 前記グリコアルカロイド生合成酵素の基質となる好ましいステロイド化合物としては、C-26-OH体もしくはC-26-oxo体であるコレステロール類が挙げられる。コレステロール類としては、コレステロール、シトステロール、カンペステロール、スティグマステロール、ブラシカステロールなどが挙げられる。前記グリコアルカロイド生合成酵素はこれらに水酸基を転移する水酸化酵素である。 Preferred steroid compounds that serve as substrates for the glycoalkaloid biosynthetic enzymes include cholesterols that are C-26-OH or C-26-oxo. Examples of cholesterols include cholesterol, sitosterol, campesterol, stigmasterol, and brassicasterol. The glycoalkaloid biosynthetic enzyme is a hydroxylase that transfers a hydroxyl group thereto.
 遺伝子Eがコードする酵素の全長アミノ酸配列は、配列番号1または3に示される。配列番号1はジャガイモ(Solanum tuberosum)由来の酵素のアミノ酸配列を示し、配列番号3はトマト(Solanum lycopersicum)由来の酵素のアミノ酸配列を示す。また、遺伝子Yがコードする酵素の全長アミノ酸配列は、配列番号20または22に示される。配列番号20はジャガイモ(Solanum tuberosum)由来の酵素のアミノ酸配列を示し、配列番号22はトマト(Solanum lycopersicum)由来の酵素のアミノ酸配列を示す。さらに、該酵素には、配列番号1に示されるアミノ酸配列、配列番号3に示されるアミノ酸配列、配列番号20に示されるアミノ酸配列または配列番号22に示されるアミノ酸配列と実質的に同一のアミノ酸配列を有し、グリコアルカロイド生合成酵素活性を有するタンパク質からなる酵素を包含する。ここで、実質的に同一のアミノ酸配列としては、当該アミノ酸配列に対して1または数個(1~10個、好ましくは1~7個、さらに好ましくは1~5個、さらに好ましくは1~3個、さらに好ましくは1個もしくは2個)のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列、または当該アミノ酸配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているアミノ酸配列が挙げられる。 The full-length amino acid sequence of the enzyme encoded by gene E is shown in SEQ ID NO: 1 or 3. SEQ ID NO: 1 shows the amino acid sequence of an enzyme derived from potato (Solanum tuberosum), and SEQ ID NO: 3 shows the amino acid sequence of an enzyme derived from tomato (Solanum lycopersicum). The full-length amino acid sequence of the enzyme encoded by gene Y is shown in SEQ ID NO: 20 or 22. SEQ ID NO: 20 shows the amino acid sequence of an enzyme derived from potato (Solanum tuberosum), and SEQ ID NO: 22 shows the amino acid sequence of an enzyme derived from tomato (Solanum lycopersicum). Further, the enzyme includes an amino acid sequence represented by SEQ ID NO: 1, an amino acid sequence represented by SEQ ID NO: 3, an amino acid sequence represented by SEQ ID NO: 20, or an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 22. And an enzyme composed of a protein having glycoalkaloid biosynthetic enzyme activity. Here, as the substantially identical amino acid sequence, one or several (1 to 10, preferably 1 to 7, more preferably 1 to 5, more preferably 1 to 3) of the amino acid sequence. , More preferably 1 or 2 amino acid sequences deleted, substituted, inserted and / or added, or the amino acid sequence and BLAST (Basic Local Alignment Search Tool at the National Center for Biological Information ( US National Biological Information Center Basic Local Alignment Search Tool))) etc. (for example, default or default parameters), calculated at least 85%, preferably 90% or more, more preferably 95% or more Particularly preferred is an amino acid sequence having a sequence identity of 97% or more.
 本発明のグリコアルカロイド生合成酵素は、植物体から単離された天然のグリコアルカロイド生合成酵素および遺伝子工学の手法により製造されたリコンビナントのグリコアルカロイド生合成酵素を含む。 The glycoalkaloid biosynthetic enzyme of the present invention includes a natural glycoalkaloid biosynthetic enzyme isolated from a plant and a recombinant glycoalkaloid biosynthetic enzyme produced by genetic engineering techniques.
2.グリコアルカロイド生合成酵素をコードする遺伝子EおよびY
 グリコアルカロイド生合成酵素をコードする遺伝子EおよびYは、ステロイド化合物に水酸基を結合する活性(遺伝子E)またはアミノ基を転移する活性(遺伝子Y)を持つグリコアルカロイド生合成酵素をコードする遺伝子である。
2. Genes E and Y encoding glycoalkaloid biosynthetic enzymes
Genes E and Y encoding a glycoalkaloid biosynthetic enzyme are genes encoding a glycoalkaloid biosynthetic enzyme having an activity of binding a hydroxyl group to a steroid compound (gene E) or an activity of transferring an amino group (gene Y). .
 グリコアルカロイド生合成酵素遺伝子EのDNAの塩基配列は、配列番号2または4に示される。また、グリコアルカロイド生合成酵素遺伝子YのDNAの塩基配列は、配列番号21または23に示される。図1-1~図1-3に、ジャガイモとトマトの遺伝子Eの相同性をDNA解析ソフトGENETYX(ゼネティックス社)で解析した結果を示し、図7-1~図7-3にジャガイモとトマトの遺伝子Yの相同性をDNA解析ソフトGENETYX(ゼネティックス社)で解析した結果を示す。さらに、配列番号2、4、21または23に示される塩基配列に相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA、配列番号2、4、21または23に示される塩基配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータを用いて)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているDNA、または前記DNAによりコードされるタンパク質のアミノ酸配列に対して1または数個(1~10個、好ましくは1~7個、さらに好ましくは1~5個、さらに好ましくは1~3個、さらに好ましくは1個もしくは2個)のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなるタンパク質をコードするDNAであって、グリコアルカロイド生合成酵素活性を有するタンパク質を有するタンパクをコードするDNAを包含する。ここで、「ストリンジェントな条件」とは、例えば、「1XSSC、0.1% SDS、37℃」程度の条件であり、より厳しい条件としては「0.5XSSC、0.1% SDS、42℃」程度の条件であり、さらに厳しい条件としては「0.2XSSC、0.1% SDS、65℃」程度の条件である。さらに、本発明の遺伝子は、配列番号2、4、21または23に示す塩基配列の縮重異性体からなるDNAを包含する。 The base sequence of the DNA of glycoalkaloid biosynthetic enzyme gene E is shown in SEQ ID NO: 2 or 4. The base sequence of the DNA of glycoalkaloid biosynthetic enzyme gene Y is shown in SEQ ID NO: 21 or 23. Fig.1-1 to Fig.1-3 show the results of analyzing the homology of gene E between potato and tomato with DNA analysis software GENETYX (Genetics), and Fig.7-1 to Fig.7-3 show the result of potato and tomato. The result of analyzing the homology of gene Y with DNA analysis software GENETYX (Genetics) is shown. Furthermore, DNA that hybridizes under stringent conditions with DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 2, 4, 21, or 23, base shown in SEQ ID NO: 2, 4, 21, or 23 Calculated using sequences and BLAST (Basic Local Alignment Search Tool Tool atat the National National Center for Biological Information) (eg, using default or default parameters) DNA having a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, or the amino acid sequence of a protein encoded by the DNA Or 1 to several (1 to 10, preferably 1 to 7, more preferably 1 to 5, more preferably DNA encoding a protein comprising an amino acid sequence in which 1 to 3, more preferably 1 or 2 amino acids are deleted, substituted, inserted and / or added, and has glycoalkaloid biosynthetic enzyme activity It includes DNA encoding a protein having a protein. Here, “stringent conditions” are, for example, “1XSSC, 0.1% SDS, 37 ° C.” conditions, and more severe conditions are “0.5 XSSC, 0.1% SDS, 42 ° C.” conditions. There are more severe conditions such as “0.2XSSC, 0.1% SDS, 65 ° C.”. Furthermore, the gene of the present invention includes DNA consisting of a degenerate isomer of the base sequence shown in SEQ ID NO: 2, 4, 21 or 23.
3.グリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yの抑制
 ナス科植物におけるグリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yは種々の方法を用いて人為的に抑制することができる。例えば、RNAiを利用することにより遺伝子の発現を抑制することができる。RNAiは植物体内で発現を抑制しようとする遺伝子に相補的なRNA断片を発現させることにより行うことができる。例えば、RNA断片を発現し得る組換えベクターを植物体に導入すればよい。RNAiに用いられるRNAは、その長さは限定されない。本発明のオリゴRNAの長さとしては、例えば、10~100塩基であり、好ましくは15~25塩基であり、さらに好ましくは19~23塩基である。
3. Suppression of glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y Glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y in solanaceous plants is artificially produced using various methods. Can be suppressed. For example, gene expression can be suppressed by using RNAi. RNAi can be performed by expressing an RNA fragment complementary to a gene whose expression is to be suppressed in the plant. For example, a recombinant vector capable of expressing an RNA fragment may be introduced into a plant body. The length of RNA used for RNAi is not limited. The length of the oligo RNA of the present invention is, for example, 10 to 100 bases, preferably 15 to 25 bases, and more preferably 19 to 23 bases.
 また、公知の相同組換え法により、遺伝子を欠失させてもよい。相同組換え法は、染色体上の遺伝子と外来DNAとの間で相同的遺伝子組換えによって目的の遺伝子だけを任意に改変する方法をいい、タンパク質をコードする配列を分断する目的で、その遺伝子のエクソンに別のDNA配列を挿入する。遺伝子の配列情報を基にターゲティングベクターを設計・作製し、該ターゲティングベクターを用いて抑制しようとする遺伝子を相同組換えすればよい。 Alternatively, the gene may be deleted by a known homologous recombination method. The homologous recombination method is a method in which only a target gene is arbitrarily modified by homologous gene recombination between a gene on a chromosome and foreign DNA, and for the purpose of dividing the sequence encoding the protein, Insert another DNA sequence into the exon. A targeting vector may be designed and produced based on gene sequence information, and the gene to be suppressed may be homologously recombined using the targeting vector.
 該ベクターには、プロモーター、ターミネーター、エンハンサー等の遺伝子の発現や抑制に関する構成要素が組込まれ、必要に応じて、選択マーカー(例えば、薬物耐性遺伝子、抗生物質耐性遺伝子、レポーター遺伝子)を含有する。遺伝子の発現や抑制に関する構成要素は、その性質に応じて、それぞれが機能し得る形で組換えベクターに組み込まれることが好ましい。そのような操作は、当業者であれば適切に行うことができる。 The vector incorporates a component related to expression or suppression of a gene such as a promoter, terminator, enhancer and the like, and contains a selection marker (for example, drug resistance gene, antibiotic resistance gene, reporter gene) as necessary. Constituent elements relating to gene expression and suppression are preferably incorporated into a recombinant vector in such a manner that they can function according to their properties. Such an operation can be appropriately performed by those skilled in the art.
 その他、アンチセンス法、リボザイム法、レトロウイルスを用いた方法、トランスポゾンを用いた方法等により遺伝子を抑制することができる。上記の遺伝子の抑制に用いる組換えベクターを植物に導入することにより遺伝子が抑制された植物体を得ることができる。組換えベクターの導入方法は、微生物にDNAを導入する方法であれば特に限定されるものではない。例えばカルシウムイオンを用いる方法(Cohenら、Proc. Natl. Acad. Sci., USA, 69:2110(1972)]、エレクトロポレーション法、トリペアレンタルメイティング(tri-parental mating)法等が挙げられる。また、形質転換植物体を作製する方法として、ウイルス、アグロバクテリウムのTiプラスミド、Riプラスミド等をベクターとして用いる方法が挙げられる。形質転換植物体は、本発明の遺伝子で形質転換した植物細胞を再生させることにより得ることができる。植物細胞からの植物体の再生は公知の方法により行うことができる。 In addition, the gene can be suppressed by an antisense method, a ribozyme method, a method using a retrovirus, a method using a transposon, or the like. By introducing a recombinant vector used for suppressing the above gene into a plant, a plant body in which the gene is suppressed can be obtained. The method for introducing the recombinant vector is not particularly limited as long as it is a method for introducing DNA into a microorganism. For example, methods using calcium ions (Cohen et al., Proc. Natl. Acad. Sci., USA, 69: 2110 (1972)), electroporation method, tri-parental mate mating method and the like can be mentioned. In addition, examples of a method for producing a transformed plant include a method using a virus, an Agrobacterium Ti plasmid, an Ri plasmid, etc. The transformed plant is a plant cell transformed with the gene of the present invention. The plant body can be regenerated from the plant cell by a known method.
 上記の方法により得られた植物を栽培することにより加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を生産することができる。 Triterpene glycosides that produce spirostane-type triterpenes after hydrolysis can be produced by cultivating the plant obtained by the above method.
4.遺伝子変異、多型個体、遺伝子発現変異の選抜
 本発明は、植物におけるグリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yの突然変異、一塩基多型(SNP)等の多型、遺伝子発現変異の存在を検出し、グリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yが抑制された個体を選抜するための方法を提供する。変異個体は放射線によるもの、化学処理によるもの、UV照射によるもの、自然突然変異によるものであっても構わない。
4. Selection of gene mutation, polymorphic individual, and gene expression mutation The present invention relates to mutation, single nucleotide polymorphism (SNP) of glycoalkaloid biosynthesis enzyme gene E and / or glycoalkaloid biosynthesis enzyme gene Y in plants. Provided is a method for detecting the presence of a polymorphism or gene expression mutation and selecting an individual in which glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y is suppressed. Mutant individuals may be those caused by radiation, chemical treatment, UV irradiation, or spontaneous mutation.
 この方法には、ゲノムDNAやRNAを変異個体や様々な品種や育成個体の植物から単離し、後者は逆転写しcDNAを合成する工程と、DNA増幅技術の使用によりDNAからグリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yを含有する遺伝子断片を増幅する工程と、このDNA中に突然変異の存在を決定する工程が含まれる。DNAやRNAを抽出する方法には市販のキット(例えばDNeasyやRNeasy(キアゲン社)など)が使用できる。cDNAを合成する方法も市販キット(例えばスーパースクリプト ファーストストランド システム(インビトロジェン社)など)を使うことができる。DNA増幅技術の使用により遺伝子断片を増幅する方法としては、いわゆるPCR法やLAMP法などの技術を用いることができる。これらは継続的なポリメラーゼ反応により特異的なDNA配列の増幅(つまり、コピー数を増やすこと)を達成するためにポリメラーゼを使用することを基にした、一群の技術を意味する。この反応は、クローニングの代わりに使用することができるが、必要であるのは、核酸配列に関する情報のみである。DNAの増幅を行うために、増幅しようとするDNAの配列に相補的なプライマーを設計する。次にそのプライマーを自動DNA合成により作成する。DNA増幅方法は、当技術分野で周知であり、本明細書中で与えられる教示及び指示に基づき、当業者であれば容易に行うことができる。いくつかのPCR法(ならびに関連技術)は、例えば、米国特許第4,683,195号、同第4,683,202号、同第4,800,159号、同第4,965,188号、およびInnisら編、PCR Protocols:A guide to method and applicationsで述べられている。 In this method, genomic DNA and RNA are isolated from mutant individuals and plants of various varieties and breeding individuals, the latter being reverse transcribed to synthesize cDNA, and using DNA amplification technology, the glycoalkaloid biosynthetic enzyme gene Amplifying a gene fragment containing E and / or glycoalkaloid biosynthetic enzyme gene Y, and determining the presence of a mutation in the DNA. Commercially available kits (such as DNeasy and RNeasy (Qiagen)) can be used for extracting DNA and RNA. As a method for synthesizing cDNA, a commercially available kit (for example, Superscript First Strand System (Invitrogen)) can be used. Techniques such as so-called PCR and LAMP can be used as methods for amplifying gene fragments by using DNA amplification techniques. These represent a group of techniques based on the use of polymerases to achieve specific DNA sequence amplification (ie, increasing copy number) by a continuous polymerase reaction. This reaction can be used instead of cloning, but all that is needed is information about the nucleic acid sequence. In order to amplify DNA, a primer complementary to the DNA sequence to be amplified is designed. The primer is then created by automated DNA synthesis. DNA amplification methods are well known in the art and can be readily performed by one of ordinary skill in the art based on the teachings and instructions provided herein. Several PCR methods (and related techniques) are described, for example, in US Pat. Nos. 4,683,195, 4,683,202, 4,800,159, 4,965,188, and edited by Innis et al., PCR® Protocols: Aguide-to-method-and-applications. It is stated.
 DNA中に突然変異や多型の存在を決定する工程では塩基配列の決定(アプライドバイオシステムズ社)やミスマッチペアの片側を切断する酵素を用いて突然変異体を検出するTILLING法(Tillら, 2003, Genome Res 13:524-530)など変異遺伝子と正常遺伝子の相同性を利用し検出する方法を用いればよい。これらは該技術から得られた配列データを遺伝子部分に関する配列番号2、配列番号4、配列番号21または配列番号23に表される塩基配列と比較することで行うことができる。 In the process of determining the presence of mutations and polymorphisms in DNA, the TILLING method (Till et al., 2003) detects the mutants by determining the nucleotide sequence (Applied Biosystems) and using an enzyme that cleaves one side of the mismatched pair. , Genome Res 13: 524-530) and the like, and a method of detecting using the homology between the mutant gene and the normal gene may be used. These can be performed by comparing the sequence data obtained from this technique with the nucleotide sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 21 or SEQ ID NO: 23 relating to the gene portion.
 mRNA量の違いを決定する工程では上記cDNAに対し、配列番号2、配列番号4、配列番号21または配列番号23に表される塩基配列に基づいて作製したプライマーを利用してリアルタイムPCR法(ロシュ・ダイアグノスティックス社ライトサイクラーなど)等の定量的PCRを採用すればよい。その後、例えば、品種「サッシー」から得られたcDNAの量と比較することでmRNA量の違いを決定することができる。 In the step of determining the difference in mRNA amount, real-time PCR (Roche) is performed on the above cDNA using a primer prepared based on the nucleotide sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 21 or SEQ ID NO: 23. -Quantitative PCR such as Diagnostic Light Cycler) may be employed. Thereafter, for example, the difference in the amount of mRNA can be determined by comparing with the amount of cDNA obtained from the variety “Sassy”.
 特に好ましい実施形態において、上記で定義したグリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yの変異の存在の決定方法を、ナス科植物(Solanaceae)のジャガイモ(Solanum tuberosum)またはトマト(Solanum lycopersicum)から得られた材料に適用する。 In a particularly preferred embodiment, a method for determining the presence of a mutation in the glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y as defined above is referred to as Solanaceae potato (Solanum tuberosum) or tomato Applies to materials obtained from (Solanum lycopersicum).
 上記の突然変異および/または多型を決定する方法により、グリコアルカロイド生合成酵素をコードする遺伝子の突然変異や多型を塩基レベルで同定することができ、さらにグリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yに突然変異および/または多型を有する植物体を選抜することができる。本発明はこのようにして得られたグリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yに突然変異や多型を有する植物体を包含する。 By the above-described method for determining mutation and / or polymorphism, mutation or polymorphism of a gene encoding glycoalkaloid biosynthetic enzyme can be identified at the base level, and glycoalkaloid biosynthetic enzyme gene E and / or Alternatively, a plant having a mutation and / or polymorphism in the glycoalkaloid biosynthetic enzyme gene Y can be selected. The present invention includes a plant having a mutation or polymorphism in the glycoalkaloid biosynthesis enzyme gene E and / or glycoalkaloid biosynthesis enzyme gene Y thus obtained.
 また、突然変異や多型の決定やmRNA量の違いの決定、さらに方法について後述するグリコアルカロイド含量やスピロスタン型トリテルペンの配糖体含量の分析により、グリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yの発現能またはこれらの遺伝子がコードするグリコアルカロイド生合成酵素の活性が抑制されている植物を選抜することが可能になる。 In addition, glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloids are determined by determining mutations and polymorphisms, determining mRNA levels, and analyzing glycoalkaloid content and glycoside content of spirostan-type triterpenes, which will be described later. It is possible to select plants in which the ability to express biosynthetic enzyme gene Y or the activity of glycoalkaloid biosynthetic enzymes encoded by these genes is suppressed.
 ここで、グリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yの発現能またはこれらの遺伝子をコードするグリコアルカロイド生合成酵素の活性の抑制とは、人為的突然変異等の突然変異による遺伝子の発現能またはグリコアルカロイド生合成酵素の活性の抑制ならびに多型による遺伝子の発現能またはグリコアルカロイド生合成酵素の活性が抑制されていることを含む。 Here, the expression ability of glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y or suppression of the activity of glycoalkaloid biosynthetic enzyme encoding these genes is a mutation such as an artificial mutation. Inhibition of gene expression ability or glycoalkaloid biosynthetic enzyme activity due to polymorphism and suppression of gene expression ability or glycoalkaloid biosynthetic enzyme activity due to polymorphism.
 ある植物のグリコアルカロイド生合成酵素活性の突然変異による抑制は、その植物の種に含まれる既存品種に対する抑制をいい、既存品種には野生型も含まれるが、自然状態で出現した野生種であっても、すでに産業上利用されている品種でなければ既存品種には含めない。既存の品種は、グリコアルカロイド生合成酵素活性が抑制された植物が得られたときに存在するすべての品種をいい、交配、遺伝子操作等の人為的操作により作出された品種を含む。また、活性の抑制において、すべての既存品種に対して、活性が抑制されている必要はなく、特定の既存品種に対して抑制されていれば、「グリコアルカロイド生合成酵素の活性が抑制された植物」に含まれる。「グリコアルカロイド生合成酵素の活性が抑制された植物」は、人為的操作を受けず自然状態で突然変異により活性が抑制された植物も含み、本発明の方法により、自然状態で活性が抑制された植物を選抜することができ、新たな品種として確立することもできる。また、ある既存品種に変異誘発処理を行い、グリコアルカロイド生合成酵素の活性が抑制された植物を作出した場合、比較対象は変異誘発処理を行った品種と同じ既存品種でもよいし、それ以外の他の既存品種でもよい。また、自然界からの選抜あるいは変異誘発処理により作出された、グリコアルカロイド生合成酵素をコードする遺伝子に突然変異や多型を有する植物を交配することにより、グリコアルカロイド生合成酵素をコードする遺伝子の変異が固定されグリコアルカロイド生合成酵素遺伝子の発現能またはグリコアルカロイド生合成酵素活性が抑制された植物新品種として得ることもできる。 Suppression by mutation of glycoalkaloid biosynthetic enzyme activity of a plant refers to suppression of existing varieties contained in the plant species, and existing varieties include wild type but are wild species that appear in the natural state. However, it is not included in existing varieties unless it is already in industrial use. Existing varieties refer to all varieties existing when a plant with suppressed glycoalkaloid biosynthetic enzyme activity is obtained, including varieties created by artificial manipulations such as mating and genetic manipulation. Moreover, in the suppression of activity, it is not necessary that the activity is suppressed for all existing varieties. If the activity is suppressed for a specific existing variety, “the activity of glycoalkaloid biosynthetic enzyme is suppressed. Included in “plant”. “Plant in which the activity of the glycoalkaloid biosynthetic enzyme is suppressed” includes a plant in which the activity is suppressed by mutation in the natural state without being subjected to artificial manipulation, and the activity in the natural state is suppressed by the method of the present invention. Plants can be selected and can be established as new varieties. In addition, when a mutagenesis treatment is performed on an existing variety to produce a plant in which the activity of glycoalkaloid biosynthetic enzyme is suppressed, the comparison target may be the same existing variety as the mutagenesis treatment, Other existing varieties may be used. Mutation of a gene encoding a glycoalkaloid biosynthetic enzyme by crossing a plant having a mutation or polymorphism with a gene encoding a glycoalkaloid biosynthetic enzyme created by selection or mutagenesis from the natural world Can be obtained as a new plant variety in which the expression of glycoalkaloid biosynthetic enzyme gene or glycoalkaloid biosynthetic enzyme activity is suppressed.
 例えば、植物がジャガイモ(Solanum tuberosum)の場合、既存品種として、「シンシア」、「サッシー」、「シェリー」、「男爵」、「メークイーン」、「さやか(農林登録番号:農林36号)」等がある。ここで、グリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yの発現能またはこれらの遺伝子がコードするグリコアルカロイド生合成酵素の活性が既存品種に対して抑制された植物とは、既存品種に対してグリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yの発現能が低下しているか失われた植物を含む。 For example, when the plant is potato (Solanum tuberosum), existing varieties include “Cynthia”, “Sassy”, “Sherry”, “Baron”, “Mae Queen”, “Sayaka (Agricultural Forestry Registration Number: Agriculture Forestry No.36)”, etc. There is. Here, the expression capacity of glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y or the plant in which the activity of glycoalkaloid biosynthetic enzyme encoded by these genes is suppressed with respect to existing varieties is: It includes plants in which the expression ability of glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y is reduced or lost relative to existing varieties.
 このような植物体は、グリコアルカロイド生合成酵素の合成量が低いか、又は合成できず、植物体中のグリコアルカロイド生合成酵素の含量が低いか、又はグリコアルカロイド合成酵素が存在せず、あるいはグリコアルカロイド合成酵素の活性が低いか又は喪失している。その結果、植物体内においてグリコアルカロイドが生産されず、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体が蓄積する。ナス科植物がジャガイモの場合は加水分解するとヤモゲニンになる配糖体がジャガイモの塊茎を含む植物体に蓄積し、トマトの場合は加水分解するとネオチゴゲニンになる配糖体が実を含む植物体に蓄積する。従って、このような植物を育種・栽培することにより加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を生産することができる。植物体に蓄積した加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体は公知の方法で単離することができる。すなわち、有機溶媒を用いて抽出単離することができる。植物体から得られた加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を酸等により加水分解することにより糖鎖が切断され、非糖部であるスピロスタン型トリテルペンが得られる。該スピロスタン型トリテルペンはステロイド化合物の製造原料として用いることができ、ステロイド医薬品等を製造することができる。 Such a plant body has a low synthesis amount of glycoalkaloid biosynthetic enzyme or is unable to synthesize, and the content of glycoalkaloid biosynthetic enzyme in the plant body is low, or glycoalkaloid synthase is not present, or Glycoalkaloid synthase activity is low or lost. As a result, glycoalkaloids are not produced in the plant body, and triterpene glycosides that produce spirostane-type triterpenes after hydrolysis accumulate. If the solanaceous plant is potato, the glycoside that becomes hydrolyzed when it is hydrolyzed accumulates in the plant containing the potato tubers, and if it is hydrolyzed, the glycoside that becomes hydrolyzed and becomes neotigogenin accumulates in the plant that contains the fruit. To do. Therefore, by breeding and cultivating such a plant, it is possible to produce a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis. Triterpene glycosides that produce spirostane-type triterpenes after hydrolysis accumulated in the plant can be isolated by known methods. That is, it can be extracted and isolated using an organic solvent. By hydrolyzing the triterpene glycoside that produces a spirostan-type triterpene after hydrolysis obtained from a plant body with an acid or the like, the sugar chain is cleaved to obtain a spirostan-type triterpene that is a non-sugar part. The spirostan-type triterpene can be used as a raw material for producing a steroid compound, and can produce a steroid drug or the like.
 本発明のグリコアルカロイド生合成酵素をコードする遺伝子が抑制されたナス科植物の植物体であって、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積し得る植物体においては、例えば植物がジャガイモの場合、得られたトリテルペン配糖体を加水分解した場合に得られるヤモゲニン量は、塊茎では5μg/100 mg 乾重量以上、好ましくは10μg/100 mg 乾重量以上、さらに好ましくは20μg/100 mg 乾重量以上、さらに好ましくは30μg/100 mg 乾重量以上、特に好ましくは40μg/100 mg 乾重量以上である。また、萌芽では10μg/100 mg 乾重量以上、好ましくは20μg/100 mg 乾重量以上、さらに好ましくは30μg/100 mg 乾重量以上、特に好ましくは40μg/100 mg 乾重量以上である。さらに、植物がトマトの場合、得られたトリテルペン配糖体を加水分解した場合に得られるネオチゴゲニン量はヤモゲニン当量で、8μg/100 mg 乾重量以上、好ましくは10μg/100 mg 乾重量以上、さらに好ましくは15μg/100 mg 乾重量以上、特に好ましくは20μg/100 mg 乾重量以上である。 In a plant of a solanaceous plant in which the gene encoding the glycoalkaloid biosynthetic enzyme of the present invention is suppressed, a plant capable of accumulating in the plant a triterpene glycoside that generates a spirostan-type triterpene after hydrolysis. For example, when the plant is a potato, the amount of yamogenin obtained when the obtained triterpene glycoside is hydrolyzed is 5 μg / 100 μmg dry weight or more, preferably 10 μg / 100 μmg dry weight or more, more preferably It is more than 20 μg / 100 mg mg dry weight, more preferably more than 30 μg / 100 mg mg dry weight, particularly preferably more than 40 μg / 100 mg mg dry weight. In the germination, the concentration is 10 μg / 100 μmg dry weight or more, preferably 20 μg / 100 μmg dry weight or more, more preferably 30 μg / 100 μmg dry weight or more, particularly preferably 40 μg / 100 μmg dry weight or more. Further, when the plant is a tomato, the amount of neotigogenin obtained when the obtained triterpene glycoside is hydrolyzed is a yamogenin equivalent, and is more than 8 μg / 100 mg mg dry weight, preferably more than 10 μg / 100 mg mg dry weight, more preferably Is more than 15 μg / 100 mg mg dry weight, particularly preferably more than 20 μg / 100 mg mg dry weight.
 また、植物を育種・栽培する際に、光を照射することにより、植物体に加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体がより多量に蓄積し得、その結果多量のスピロスタン型トリテルペンを得ることが期待できる。 In addition, when a plant is bred and cultivated, by irradiating light, the plant body can accumulate a larger amount of triterpene glycosides that generate spirostan-type triterpenes after hydrolysis, resulting in a large amount of spirostane-type triterpenes. I can expect that.
 以下、本発明を、実施例を示してより詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(実施例1)グリコアルカロイド生合成候補遺伝子Eの全長配列の取得
 ジャガイモ(Solanum tuberosum)の品種「サッシー」の萌芽からmRNAの抽出をRNeasy(キアゲン社)で行った。全cDNAの合成はスーパースクリプト ファーストストランド システム(インビトロジェン社)を用いて行った。グリコアルカロイドのアグリコンはコレステロールからできるといわれているが確証はない(非特許文献1)。しかし、近縁の化合物から作られると仮定しても幾つかの水酸化の過程が必要になる。水酸化の過程には少なくともチトクロームP450型モノオキシゲナーゼ、ジオキシゲナーゼ、NADPH-flavin リダクターゼの3種の可能性が考えられる。この中からP450型を標的に考え、ジャガイモの発現する遺伝子は公開されている情報のDFCI Potato Gene Index (http://compbio.dfci.harvard.edu/tgi/plant.html) Release 11.0から萌芽で多くのESTクローンが単離されている遺伝子TC155233に注目した。
(Example 1) Acquisition of full-length sequence of glycoalkaloid biosynthesis candidate gene E mRNA was extracted from sprouting of potato (Solanum tuberosum) cultivar "Sassy" with RNeasy (Qiagen). Total cDNA synthesis was performed using the Superscript First Strand System (Invitrogen). It is said that the glycoalkaloid aglycone is made from cholesterol, but there is no confirmation (Non-patent Document 1). However, several hydroxylation processes are required even assuming they are made from closely related compounds. There are at least three possibilities for the hydroxylation process: cytochrome P450 type monooxygenase, dioxygenase, and NADPH-flavin reductase. Of these, the P450 type is considered as a target, and the potato-expressed gene has been sprouting from the published DFCI Potato Gene Index (http://compbio.dfci.harvard.edu/tgi/plant.html) Release 11.0. We focused on the gene TC155233 from which many EST clones have been isolated.
 この配列を元にプライマー[U890: GAGGCTAAGAAAAAGAGAGAGAGA (配列番号6)、U889:CGTTCTACAAAAACATCCAATTT (配列番号7)]を用いてPCR(条件:95℃5分、(95℃30秒、55℃30秒、72℃3分)を30回、72℃10分)を行った。増幅産物をTOPOTAクローニングキットシークエンシング用(インビトロジェン社)を用いてクローニングした。さらにABI310(アプライドバイオシステムズ社)を用いて塩基配列を決定した。ORFを含む部分を配列番号2に、cDNA配列からコードされる酵素のアミノ酸配列を配列番号1に示す。 Based on this sequence, PCR was performed using primers [U890: GAGGCTAAGAAAAAGAGAGAGAGA (SEQ ID NO: 6), U889: CGTTCTACAAAAACATCCAATTT (SEQ ID NO: 7)] (conditions: 95 ° C. for 5 minutes, (95 ° C. for 30 seconds, 55 ° C. for 30 seconds, 72 ° C.). 3 minutes) was performed 30 times at 72 ° C. for 10 minutes. The amplified product was cloned using TOPOTA cloning kit sequencing (Invitrogen). Furthermore, the base sequence was determined using ABI310 (Applied Biosystems). The part containing ORF is shown in SEQ ID NO: 2, and the amino acid sequence of the enzyme encoded from the cDNA sequence is shown in SEQ ID NO: 1.
 なお、トマトの相同遺伝子は、ナス科ゲノムネットワーク(http://solgenomics.net/index.pl)の、SGN-U583521に相当する。ORFを含む部分を配列番号4に、cDNA配列からコードされる酵素のアミノ酸配列を配列番号3に示す。これらの遺伝子の塩基配列を比較したところ相同性は95%であった。このトマトの相同遺伝子のゲノム配列は同じくナス科ゲノムネットワークのSL1.00sc03540としてゲノム構造が掲載され7つのイントロンを含むことが報告されている。しかし、同ホームページには、なんら機能に関する報告はない(図1-1~1-3)。 The homologous gene of tomato corresponds to SGN-U583521 of the solanaceous genome network (http://solgenomics.net/index.pl). The part containing ORF is shown in SEQ ID NO: 4, and the amino acid sequence of the enzyme encoded from the cDNA sequence is shown in SEQ ID NO: 3. When the nucleotide sequences of these genes were compared, the homology was 95%. The genome sequence of this tomato homologous gene is also reported as SL1.00sc03540 of the solanaceous genome network, and it is reported that it contains seven introns. However, there is no report on any functions on the website (Figs. 1-1 to 1-3).
(実施例2)グリコアルカロイド生合成候補遺伝子Eのゲノム遺伝子の単離
 ゲノムDNAをRNeasy(キアゲン社)で「サッシー」から抽出した。実施例1と同じプライマー並びに(U904: TGATAAGGAAATCCTGGGAGA(配列番号8)、U901: AGAGAAGCCATGAAGGATGG(配列番号9))を用いて、さらに第2イントロンは酵素をPrimeSTAR HS DNA Polymerase(タカラバイオ社)とプライマー(U898: GAAATACGCTACTACGGAAGAACC(配列番号10)とU899: CGTCATTTGCCTAATCTCATC(配列番号11))を用いてPCRを行い、全長ゲノムDNAの塩基配列を決定した(配列番号5)。イントロンは7箇所あることが明らかになった。
(Example 2) Isolation of genomic gene of glycoalkaloid biosynthesis candidate gene E Genomic DNA was extracted from "Sassy" with RNeasy (Qiagen). Using the same primer as in Example 1 (U904: TGATAAGGAAATCCTGGGAGA (SEQ ID NO: 8), U901: AGAGAAGCCATGAAGGATGG (SEQ ID NO: 9)), the second intron was the enzyme PrimeSTAR HS DNA Polymerase (Takara Bio) and the primer (U898 : PCR was performed using GAAATACGCTACTACGGAAGAACC (SEQ ID NO: 10) and U899: CGTCATTTGCCTAATCTCATC (SEQ ID NO: 11)), and the base sequence of the full-length genomic DNA was determined (SEQ ID NO: 5). It was revealed that there are seven introns.
(実施例3)グリコアルカロイド生合成候補遺伝子Eの抑制形質転換体を作成するためのベクター構築
 遺伝子を形質転換によって抑制する方法としては、強力なプロモーターで駆動する構成を持つ逆方向の相補鎖遺伝子断片の発現(植物で一般的にRNAi法と呼ばれる)で行った[Chuangと Meyerowitz Proc Natl Acad Sci U S A., 97, 4985-90 (2000)、WesleyらPlant J., 27, 581-90 (2001)]。実施例1で取得した全長cDNAに対し、プライマー[U675: GAGCTCTAGAGGTTTGGGACAGGAGGAAT (配列番号12)、U676: GGATCCATATGCAAGCCTGTGCATCTTAT (配列番号13)]を用いてPCR(条件:95℃5分、(95℃30秒、55℃30秒、72℃30秒)を30回、72℃10分)を行い、遺伝子断片を取得した。バイナリーベクターpKT11(特開2001-161373号公報)を基本として、カルフラワーモザイクウイルスの35S RNAプロモーター、当該遺伝子断片を順方向、シロイヌナズナのフィトエンデサチュラーゼ遺伝子(AT4g14210)の第3イントロン、当該遺伝子断片を逆方向、ノパリン合成酵素遺伝子のターミネーターの順に連結を行い、植物形質転換用ベクターpKT230を作成した(図2)。
(Example 3) Vector construction for producing a transformant of glycoalkaloid biosynthesis candidate gene E In order to suppress a gene by transformation, a reverse complementary strand gene having a structure driven by a strong promoter Fragment expression (commonly called RNAi method in plants) [Chuang and Meyerowitz Proc Natl Acad Sci US A., 97, 4985-90 (2000), Wesley et al. Plant J., 27, 581-90 ( 2001)]. For the full-length cDNA obtained in Example 1, PCR was performed using primers [U675: GAGCTCTAGAGGTTTGGGACAGGAGGAAT (SEQ ID NO: 12), U676: GGATCCATATGCAAGCCTGTGCATCTTAT (SEQ ID NO: 13)] (conditions: 95 ° C for 5 minutes, (95 ° C for 30 seconds, 55 ° C). 30 seconds at 72 ° C. and 30 seconds at 72 ° C.) and 10 minutes at 72 ° C. to obtain gene fragments. Based on binary vector pKT11 (Japanese Patent Laid-Open No. 2001-161373), the 35S RNA promoter of calflower mosaic virus, the gene fragment is forward, the third intron of Arabidopsis phytoene desaturase gene (AT4g14210), the gene fragment is reversed A plant transformation vector pKT230 was prepared by ligating in the order of the direction and terminator of the nopaline synthase gene (FIG. 2).
(実施例4)ジャガイモ形質転換植物体の作出
 実施例3で作製したベクターをエレクトロポレーション法(GelvinとSchilperoor編, Plant Molecular Biology Manual, C2, 1-32 (1994), Kluwer Academic Publishers)により、アグロバクテリウム・ツメファシエンスGV3110株に導入した。ベクターを含むアグロバクテリウム・ツメファシエンスGV3110株を、50ppmのカナマイシンを含むYEB液体培地[5g/lビ-フエキス、1g/l酵母エキス、5g/lペプトン、5g/lスクロ-ス、2mM硫酸マグネシウム(pH7.2)]にて28℃、12時間振とう培養した。培養液1.5 mlを10,000rpm、3分間遠心して集菌後、カナマイシンを除くために1mlのLB培地で洗浄した。更に10,000rpm、3分間遠心して集菌後、1.5 mlの3%蔗糖を含むMS培地[Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)]に再懸濁し、感染用菌液とした。
(Example 4) Production of potato-transformed plant body The vector prepared in Example 3 was electroporated (Gelvin and Schilperoor, Plant Molecular Biology Manual, C2, 1-32 (1994), Kluwer Academic Publishers) It was introduced into Agrobacterium tumefaciens strain GV3110. Agrobacterium tumefaciens strain GV3110 containing the vector was added to a YEB liquid medium containing 5 ppm of kanamycin [5 g / l beef extract, 1 g / l yeast extract, 5 g / l peptone, 5 g / l sucrose, 2 mM magnesium sulfate ( pH 7.2)], and cultured with shaking at 28 ° C. for 12 hours. 1.5 ml of the culture solution was centrifuged at 10,000 rpm for 3 minutes, collected, and washed with 1 ml of LB medium to remove kanamycin. After further centrifugation at 10,000 rpm for 3 minutes, the cells were collected and resuspended in MS medium [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)] containing 1.5 ml of 3% sucrose. It was.
 ジャガイモの形質転換は[門馬(1990)植物組織培養7:57-63]に従い実施した。ジャガイモ品種「サッシー」(キリンアグリバイオ社)から得られたマイクロチューバーを2~3mmにスライスし、アグロバクテリウム感染用の材料とした。これを上記のアグロバクテリウムの菌液に浸した後、滅菌済みの濾紙上に置いて過剰のアグロバクテリウムを除いた。シャーレ内のMS培地(Zeatin 1ppm, IAA 0.1ppm, アセトシリンゴン100μM、及び寒天0.8%を含む)上に置き、培養は3日間25℃、16時間照明(光量子束密度32μE/m2s)/8時間無照明の条件下で行った。ついで、アセトシリンゴンの代わりにカルベニシリン250ppmを含んだ培地で1週間培養した。その後、さらにカナマイシン50 ppmを含む培地上に移し、2週間ごとに継代した。この間に不定芽が形成し、シュートを生じた。伸張したシュートをカルベニシン250 ppm及びカナマイシン100 ppmを含み、植物生長調節物質を含まないMS培地に置床した。発根したシュートをカナマイシン耐性の生長した植物体の中から外来遺伝子としてカナマイシン耐性遺伝子を含有する個体を、PCR(条件:95℃5分、(95℃30秒、55℃30秒、72℃1分)を30回、72℃10分)を行うことで検出し、該再分化植物体が形質転換植物体であることを確認した。ここで、カナマイシン耐性遺伝子の配列を特異的に増幅するプライマーとして、TAAAGCACGAGGAAGCGGT(配列番号14)、及びGCACAACAGACAATCGGCT(配列番号15)を用いた。以上から、ベクターpKT230が導入されたジャガイモの形質転換植物体30系統を取得した。 Potato transformation was carried out according to [Monma (1990) plant tissue culture 7: 57-63]. A microtuber obtained from the potato variety “Sassy” (Kirin Agribio) was sliced into 2 to 3 mm and used as a material for Agrobacterium infection. This was immersed in the above Agrobacterium solution and placed on a sterilized filter paper to remove excess Agrobacterium. Place on MS medium in petri dish (Zeatin 1ppm, IAA 0.1ppm, acetosyringone 100μM and agar 0.8%) and culture for 3 days at 25 ° C for 16 hours (photon flux density 32μE / m 2 s) / The test was conducted under no illumination for 8 hours. Subsequently, it was cultured for 1 week in a medium containing 250 ppm of carbenicillin instead of acetosyringone. Thereafter, the cells were further transferred onto a medium containing 50 ppm kanamycin and subcultured every 2 weeks. Adventitious buds formed during this period, resulting in shoots. The stretched shoots were placed in MS medium containing carbenicin 250 ppm and kanamycin 100 ppm and no plant growth regulator. Individuals containing a kanamycin resistance gene as an exogenous gene from a plant having grown rooted shoots in kanamycin resistance were subjected to PCR (conditions: 95 ° C. for 5 minutes, (95 ° C. for 30 seconds, 55 ° C. for 30 seconds, 72 ° C. 1 Min) was performed 30 times at 72 ° C. for 10 minutes, and the redifferentiated plant body was confirmed to be a transformed plant body. Here, TAAAGCACGAGGAAGCGGT (SEQ ID NO: 14) and GCACAACAGACAATCGGCT (SEQ ID NO: 15) were used as primers for specifically amplifying the kanamycin resistance gene sequence. From the above, 30 potato transformed plants into which vector pKT230 was introduced were obtained.
(実施例5)形質転換植物体のグリコアルカロイド含量と候補遺伝子Eの発現解析
 アルカリ耐性の逆相クロマトグラフィー用カラムを用いた液体クロマトグラフィーを用いた以下の方法(特許公開2011-27429)によりグリコアルカロイド含量を測定した。
(Example 5) Glycoalkaloid content of transformed plant and expression analysis of candidate gene E Glycoalkaline by the following method (Patent Publication 2011-27429) using liquid chromatography using an alkali-resistant reverse phase chromatography column The alkaloid content was measured.
 実施例4で得られた30個体のin vitro茎を継代後一ヶ月伸張させ、その部分を2-4本をまとめて約100mgにし0.1%ギ酸 in 80%MeOH aq. 990μLおよび内部標準としてブラシノライド(ブラシノ社)10μg/10μLを添加し、ミキサーミルで破砕した(1/25 sec, 10 min, 4℃)。得られた破砕物を遠心分離(10,000 rpm, 5 min, 4℃)に供しアルコール沈殿を行った。上清25μLを分取し、0.1%ギ酸水で475μLを加え、マルチスクリーンソルビナート(ミリポア社)でフィルターろ過しLC-MS(島津製作社、LCMS-2010EV、またはウォーターズ社、Alliance e2795 Q-micro)を用い解析した。LCの条件はカラム(XBridgeTMShield RP18-5(φ2.1×150 mm, ウォーターズ社))で移動相(A:10 mM炭酸水素アンモニウム水(pH 10):B:アセトニトリル=40:60)アイソクラティック(カラムオーブン:40℃)で分離し解析した。標準品(チャコニン、ソラニン(いずれもシグマ・アルドリッチ社))を用いて定量した。 Thirty in vitro stems obtained in Example 4 were stretched for one month after passage, and 2-4 pieces were combined to make about 100 mg, 0.1% formic acid in 80% MeOH aq. 990 μL and brush as internal standard Noride (Brassino) 10 μg / 10 μL was added and crushed with a mixer mill (1/25 sec, 10 min, 4 ° C.). The obtained crushed material was subjected to centrifugation (10,000 rpm, 5 min, 4 ° C.) for alcohol precipitation. Collect 25 μL of supernatant, add 475 μL with 0.1% formic acid, filter with Multiscreen Solbinate (Millipore), and LC-MS (Shimadzu Corporation, LCMS-2010EV, or Waters, Alliance e2795 Q-micro ) And analyzed. LC conditions were a column (XBridge TM Shield RP18-5 (φ2.1 × 150 mm, Waters)) and mobile phase (A: 10 mM ammonium hydrogen carbonate aqueous solution (pH 10): B: acetonitrile = 40: 60) They were separated and analyzed with a cratic (column oven: 40 ° C.). Quantification was performed using a standard product (chaconine, solanine (both from Sigma-Aldrich)).
 30個体のうち5系統(#8, #17, #22, #27, #29)においてはグリコアルカロイドの蓄積が再現性よく低かったことから、低くなかった1系統(#2)と遺伝子を導入していない対照の個体2つを同じくin vitro茎を液体窒素で粉砕し、半分をグリコアルカロイド含量の測定、半分をmRNAの抽出をRNeasy(キアゲン社)で行い、全cDNAの合成はスーパースクリプト ファーストストランド システム(インビトロジェン社)を用いて行った。これらの個体はグリコアルカロイドの蓄積が非形質転換体(2個体)と比較して極めて低く(図3)、さらにプライマー [U887: TAAGGGACTCAAGGCTCGAA (配列番号16)、U886: TTCCTCTTTGGCTTTCTCCA (配列番号17)]を用いたRT-PCR(条件:95℃5分、(95℃30秒、55℃30秒、72℃3分)を25回、72℃5分)の結果、mRNAの発現はいずれの個体も極めて少ないか観察できなかった(図4)。このことから、候補遺伝子Eの遺伝子の発現を抑制することによってグリコアルカロイドの蓄積が極端に減少することが明らかとなり、候補遺伝子Eはグリコアルカロイド生合成酵素をコードする遺伝子であることが明らかとなった。非形質転換体とともに、これら5系統のin vitro植物を増殖し、各3個体を市販されている野菜用の培養土に馴化しバイオハザード温室で定法に従い栽培し塊茎を収穫した。この5系統の各個体(#8, #17, #22, #27, #29)は非形質転換体と同等の生育を示し、同等の塊茎を収穫することができた(表1)。
Figure JPOXMLDOC01-appb-T000001
In 5 strains (# 8, # 17, # 22, # 27, # 29) out of 30 individuals, the accumulation of glycoalkaloids was low with good reproducibility. Two non-control individuals were also crushed in vitro with liquid nitrogen, half was measured for glycoalkaloid content, half was extracted with RNeasy (Qiagen), and total cDNA synthesis was Superscript Fast. The strand system (Invitrogen) was used. These individuals have extremely low glycoalkaloid accumulation compared to non-transformants (2 individuals) (Fig. 3), and primers [U887: TAAGGGACTCAAGGCTCGAA (SEQ ID NO: 16), U886: TTCCTCTTTGGCTTTCTCCA (SEQ ID NO: 17)]. RT-PCR used (conditions: 95 ° C for 5 minutes, (95 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 3 minutes) 25 times, 72 ° C for 5 minutes) It was not possible to observe whether there were few (FIG. 4). This reveals that the accumulation of glycoalkaloid is extremely reduced by suppressing the expression of the gene of candidate gene E, and it becomes clear that candidate gene E is a gene encoding a glycoalkaloid biosynthetic enzyme. It was. Along with the non-transformants, these five strains of in vitro plants were grown, and each of the three individuals was acclimated to a commercially available vegetable culture soil and cultivated in a biohazard greenhouse according to a standard method to harvest tubers. Each of these five strains (# 8, # 17, # 22, # 27, # 29) showed the same growth as the non-transformant and was able to harvest the same tuber (Table 1).
Figure JPOXMLDOC01-appb-T000001
 さらに収穫した塊茎各3つの中央部表皮を約1mmで剥離し同様にグリコアルカロイド含量を解析した。その結果、驚くべきことに、塊茎でのグリコアルカロイドは極めて低く、同様な方法で測定した、グリコアルカロイドの低い品種として知られている「さやか」と比較しても、それ以下であることが確認できた(図5)。 Further, the three epidermis of each of the harvested tubers were peeled at about 1 mm, and the glycoalkaloid content was similarly analyzed. As a result, surprisingly, the glycoalkaloids in the tubers were extremely low, and it was confirmed that it was less than that of “Sayaka”, which is known as a low variety of glycoalkaloids, measured by the same method. (Fig. 5).
(実施例6)トマト形質転換植物体の作出
 トマトの形質転換は[Sunら (2006) Plant Cell Physiol. 47:426-431.]に従い実施した。(実施例3)で作製したベクターpKT230を含むアグロバクテリウム・ツメファシエンスAGL0株を培養し感染用菌液とした。トマト(Solanum lycopersicum)実験系統「マイクロトム」の無菌播種植物体の子葉の5mm以下の切片を、上記のアグロバクテリウム懸濁液に浸し、10分間感染した後、滅菌済みの濾紙上に葉を置いて過剰のアグロバクテリウムを除いた。シャーレ内の共存MS培地(ゼアチン1.5mg/l、アセトシリンゴン40μM及びゲルライト0.3%を含む)[Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)]上に葉を置き、シャーレを暗所で3日間25℃で培養した。切片は選択MS培地1(ゼアチン1.5mg/l、カナマイシン100mg/l、オーグメンチン375mg/l及びゲルライト0.3%を含む)で25℃、16時間照明(光量子束密度32μE/m2s)/8時間無照明の条件下で2週間ごとに継代した。この間に不定芽が形成し、シュートを生じた。さらにシュートを伸張させるため、選択MS培地2(ゼアチン1.0mg/l、カナマイシン100mg/l、オーグメンチン375mg/l及びゲルライト0.3%を含む)に移植し、伸張したシュートは選択1/2濃度MS培地(カナマイシン100mg/l、オーグメンチン375mg/l及びゲルライト0.3%を含む)で発根させた。シュートをカナマイシン耐性の生長した植物体の中から外来遺伝子としてカナマイシン耐性遺伝子を含有する個体を、PCR(条件:95℃5分、(95℃30秒、55℃30秒、72℃1分)を30回、72℃10分)を行うことで検出し、該再分化植物体が形質転換植物体であることを確認した。ここで、カナマイシン耐性遺伝子の配列を特異的に増幅するプライマーとして、TAAAGCACGAGGAAGCGGT(配列番号18)、及びGCACAACAGACAATCGGCT(配列番号19)を用いた。以上から、ベクターpKT230が導入されたトマトの形質転換植物体13系統を取得した。得られた13個体を温室に馴化し約1ヶ月栽培し、新しく展開した若い葉の3枚から各約100mg秤量し、ジャガイモと同様にアルカリ耐性の逆相クロマトグラフィー用カラムを用いた液体クロマトグラフィーを用いた実施例5の方法によりグリコアルカロイド含量を測定した。ただし、分析条件は、移動相には、移動相A:10 mM炭酸水素アンモニウム水(pH 10)および移動相B:MeCNを、上記試料溶媒についてA:B=60:40の割合でアイソクラティック条件を用いた。13系統のうち4系統は対照の1/5である新鮮重100mgあたり280μg以下と顕著にトマチン含量が低かった(図6)。
(Example 6) Production of tomato transformed plant body Tomato transformation was performed according to [Sun et al. (2006) Plant Cell Physiol. 47: 426-431.]. The Agrobacterium tumefaciens AGL0 strain containing the vector pKT230 prepared in Example 3 was cultured to obtain a bacterial solution for infection. A section of 5 mm or less of the cotyledon of a sterile seed plant of the tomato (Solanum lycopersicum) experimental strain "Microtom" is immersed in the above Agrobacterium suspension, infected for 10 minutes, and then the leaf is placed on a sterilized filter paper. The excess Agrobacterium was removed. Place leaves on Petri dish MS medium (containing zeatin 1.5mg / l, acetosyringone 40μM and gellite 0.3%) [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)] Was cultured at 25 ° C. for 3 days in the dark. Sections were selected MS medium 1 (containing zeatin 1.5 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%) at 25 ° C. for 16 hours (photon flux density 32 μE / m 2 s) / 8 hours without It was passaged every 2 weeks under lighting conditions. Adventitious buds formed during this period, resulting in shoots. Further, in order to extend the shoots, the cells were transplanted to selective MS medium 2 (containing zeatin 1.0 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l, and gellite 0.3%), and the extended shoots were selected to a selective 1/2 concentration MS medium ( Rooted with kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%). A plant containing a kanamycin resistance gene as an exogenous gene from a plant that has developed a kanamycin resistance shoot is subjected to PCR (conditions: 95 ° C for 5 minutes, (95 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 1 minute). This was detected 30 times at 72 ° C. for 10 minutes, and it was confirmed that the redifferentiated plant was a transformed plant. Here, TAAAGCACGAGGAAGCGGT (SEQ ID NO: 18) and GCACAACAGACAATCGGCT (SEQ ID NO: 19) were used as primers for specifically amplifying the kanamycin resistance gene sequence. From the above, 13 transgenic plant lines of tomato introduced with the vector pKT230 were obtained. The resulting 13 individuals were acclimated to a greenhouse and cultivated for about 1 month, weighed about 100 mg each from three newly developed young leaves, and liquid chromatography using an alkali-resistant column for reversed-phase chromatography similar to potato The glycoalkaloid content was measured by the method of Example 5 using However, the analysis conditions are: mobile phase A: 10 mM ammonium hydrogen carbonate aqueous solution (pH 10) and mobile phase B: MeCN for the mobile phase, isocratic ratio of A: B = 60: 40 for the above sample solvent. Conditions were used. Of the 13 lines, 4 lines had a remarkably low tomatine content of 280 μg or less per 100 mg of fresh weight, which was 1/5 of the control (FIG. 6).
(実施例7)グリコアルカロイド生合成候補遺伝子E変異植物のスクリーニング
 3%蔗糖を含むMS培地[Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)]などで継代したジャガイモのインビトロ植物体に量子ビーム照射(NIRS-HIMAC照射装置、アルゴンイオンビーム500MeV/核子を0.1から3Gyまたは、ネオンイオンビーム400Mev/核子を0.2から3Gy、または炭素イオンビーム290MeV/核子を0.5Gyから5Gy)で変異処理を行う。変異処理後、生育した植物体からそれぞれ葉を採取し常法によりゲノムDNAを採取する。当該ゲノムDNAをテンプレートとしてプライマー[U890: GAGGCTAAGAAAAAGAGAGAGAGA (配列番号6)、U889:CGTTCTACAAAAACATCCAATTT (配列番号7)、U904: TGATAAGGAAATCCTGGGAGA(配列番号8)、U901: AGAGAAGCCATGAAGGATGG(配列番号9))、さらに第2イントロンは酵素をPrimeSTAR HS DNA Polymerase(タカラバイオ社)とプライマー(U898: GAAATACGCTACTACGGAAGAACC(配列番号10)とU899: CGTCATTTGCCTAATCTCATC(配列番号11)]を用いて構造遺伝子を、PCRを行い、E遺伝子の含まれる領域を取得し、さらに遺伝子クローニング用キットなどを用いてクローニングする。クローニングされた領域の塩基配列を決定し、E遺伝子に変異の生じた個体を選抜することができる。
(Example 7) Screening of glycoalkaloid biosynthesis candidate gene E mutant plant In vitro of potato passaged in MS medium [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)] containing 3% sucrose Plant irradiation with quantum beam irradiation (NIRS-HIMAC irradiation device, argon ion beam 500MeV / nucleon 0.1 to 3Gy, neon ion beam 400Mev / nucleon 0.2 to 3Gy, or carbon ion beam 290MeV / nucleon 0.5Gy to 5Gy) Mutation processing is performed. After the mutation treatment, leaves are collected from the grown plants and genomic DNA is collected by a conventional method. Primers [U890: GAGGCTAAGAAAAAGAGAGAGAGA (SEQ ID NO: 6), U889: CGTTCTACAAAAACATCCAATTT (SEQ ID NO: 7), U904: TGATAAGGAAATCCTGGGAGA (SEQ ID NO: 8), U901: AGAGAAGCCATGAAGGATGG (SEQ ID NO: 9), and the second intron Using the enzyme, PrimeSTAR HS DNA Polymerase (Takara Bio Inc.) and primers (U898: GAAATACGCTACTACGGAAGAACC (SEQ ID NO: 10) and U899: CGTCATTTGCCTAATCTCATC (SEQ ID NO: 11)), PCR was performed, and the region containing the E gene was determined. Furthermore, it is cloned using a gene cloning kit, etc. The nucleotide sequence of the cloned region can be determined, and individuals with mutations in the E gene can be selected.
(実施例8)グリコアルカロイド生合成候補遺伝子Yの全長配列の取得
 ジャガイモ(Solanum tuberosum)の品種「サッシー」の萌芽からmRNAの抽出をRNeasy(キアゲン社)で行った。全cDNAの合成はスーパースクリプト ファーストストランド システム(インビトロジェン社)を用いて行った。近年、大山らはグリコアルカロイドのアミノ基の導入は26位のアルデヒド体を経由することを示している(第28回日本植物細胞分子生物学会(仙台)大会 講演要旨集(2010)p.165 )。このアルデヒド体へのアミノ基転移反応にはアミノトランスフェラーゼが介在することが予想されるが、類似する反応は全く知られていない。そこで、同じナス科のトウガラシで、全く違う構造体であるバニリンからバニリルアミンを触媒する酵素をコードする遺伝子pAMTを参考とすることとした(Langら Plant J. (2009) 59: 953-961)。ナス科ゲノムネットワーク(http://solgenomics.net/index.pl)に登録されているunigeneをNCBI Blast法によって検索したところ、相同性の指標であるE valueが極めて低く、アライメントした際のアミノ酸の同一性が80%以上の遺伝子断片を6つ見出すことができた(SGN-U268561, SGN-U268558, SGN-U277939, SGN-U268560, SGN-U268559, SGN-U274756)。この中から萌芽で多くのESTクローンが単離されている遺伝子SGN-U268561に注目した。
(Example 8) Acquisition of full length sequence of glycoalkaloid biosynthesis candidate gene Y mRNA was extracted from sprouting of potato (Solanum tuberosum) cultivar "Sassy" with RNeasy (Qiagen). Total cDNA synthesis was performed using the Superscript First Strand System (Invitrogen). In recent years, Oyama et al. Have shown that the introduction of the amino group of glycoalkaloids via the 26th aldehyde (Abstracts of the 28th Annual Meeting of the Japanese Society for Plant Cell Biology (Sendai) (2010) p.165) . This amino group transfer reaction to aldehyde is expected to be mediated by aminotransferase, but no similar reaction is known at all. Therefore, we decided to refer to the gene pAMT that encodes an enzyme that catalyzes vanillylamine from vanillin, which is a completely different structure, in the same solanaceous pepper (Lang et al. Plant J. (2009) 59: 953-961). When unigene registered in the solanaceous genome network (http://solgenomics.net/index.pl) was searched by NCBI Blast method, E value, which is an index of homology, was extremely low, and the amino acid of the aligned amino acid Six gene fragments having an identity of 80% or more could be found (SGN-U268561, SGN-U268558, SGN-U277939, SGN-U268560, SGN-U268559, SGN-U274756). We focused on the gene SGN-U268561, from which many EST clones have been isolated.
 この配列を元にプライマー[U1008: caccATGGCCAAGACTACTAATGGATTT (配列番号24、このプライマーには、遺伝子をベクターにクローニングするため、5’末端に4塩基(cacc)が人工的に付加されている。)、U1007: CCATCAAGTTTTTGTCCATGAG (配列番号25)]を用いてアニール温度55℃でPCR(30サイクル、タカラバイオ社 PrimeSTAR HS DNA Polymeraseを使用)によって遺伝子を増幅した。これをpENTRTM/D-TOPOエントリーベクター(インビトロジェン社)へクローニングした。得られた8個の独立クローンについてABI310(アプライドバイオシステムズ社)を用いて塩基配列を決定した。これにより得られた配列は、配列番号20であり、それから推定されるアミノ酸配列は配列番号21である。酵素活性が異なるトウガラシpAMTのアミノ酸配列に対しては全長に渡って82.4%の同一性を有していた。 Based on this sequence, a primer [U1008: caccATGGCCAAGACTACTAATGGATTT (SEQ ID NO: 24, 4 bases (cacc) is artificially added to the 5 ′ end to clone the gene into this primer), U1007: Using CCATCAAGTTTTTGTCCATGAG (SEQ ID NO: 25)], the gene was amplified by PCR (30 cycles, using Takara Bio Inc. PrimeSTAR HS DNAasePolymerase) at an annealing temperature of 55 ° C. This was cloned into a pENTRTM / D-TOPO entry vector (Invitrogen). The base sequences of the 8 independent clones obtained were determined using ABI310 (Applied Biosystems). The sequence thus obtained is SEQ ID NO: 20, and the amino acid sequence deduced therefrom is SEQ ID NO: 21. The amino acid sequence of pepper pAMT having different enzyme activities had 82.4% identity over the entire length.
 なお、トマトの相同遺伝子は、ナス科ゲノムネットワーク(http://solgenomics.net/index.pl)の、SGN-U570903に相当する。ORFを含む部分を配列番号23に、cDNA配列からコードされる酵素のアミノ酸配列を配列番号22に示す。トマトとジャガイモの遺伝子の塩基配列を比較したところ相同性は96.0%であった。驚くべきことに当該遺伝子はトマトのgamma-aminobutyrate transaminase subunit precursor isozyme 2(GABA-T2)として報告されている遺伝子のアミノ酸配列(Clarkら J. Exp. Bot. (2009) 60: 3255-3267, Akihiroら Plant Cell Physiol. (2009) 60: 3255-3267)と98.9%の同一性を有していたが(表2)、GABA-T2がグリコアルカロイドの生合成に関わることは知られていない。 Note that the tomato homologous gene corresponds to SGN-U570903 of the solanaceous genome network (http://solgenomics.net/index.pl). The part containing ORF is shown in SEQ ID NO: 23, and the amino acid sequence of the enzyme encoded from the cDNA sequence is shown in SEQ ID NO: 22. When the nucleotide sequences of the tomato and potato genes were compared, the homology was 96.0%. Surprisingly, this gene is the amino acid sequence of the gene reported as gamma-aminobutyrateytransaminase subunit precursor isozyme 2 (GABA-T2) in tomato (Clark et al. J. Exp. Bot. (2009) 60: 3255-3267, Akihiro Plant Physiol. (2009) 60: 3255-3267) (Table 2), but it is not known that GABA-T2 is involved in glycoalkaloid biosynthesis.
(実施例9)グリコアルカロイド生合成候補遺伝子Yのゲノム遺伝子の同定
 ジャガイモ遺伝子のゲノム配列は最近報告された(Xuら Nature (2011) 475: 189-197)。ゲノム配列はPotato Genome Sequencing Consortium Data ReleaseのHP(http://potatogenomics.plantbiology.msu.edu/index.html)で公開されている。この配列を元にYのゲノム遺伝子を決定することが可能である。
(Example 9) Identification of genome gene of glycoalkaloid biosynthesis candidate gene Y The genome sequence of the potato gene was recently reported (Xu et al. Nature (2011) 475: 189-197). The genome sequence is published on the website of Potato Genome Sequencing Consortium Data Release (http://potatogenomics.plantbiology.msu.edu/index.html). It is possible to determine the Y genomic gene based on this sequence.
 トマト遺伝子のゲノム配列は同じくナス科ゲノムネットワークのSL1.00sc03540、SL2.31ch12、SL2.40ch12として3つのゲノム構造が掲載され16のイントロンを含むことが報告されている。しかし、同ホームページには、なんら機能に関する報告はない。 The genome sequence of the tomato gene is reported as SL1.00sc03540, SL2.31ch12, and SL2.40ch12 of the eggplant genome network, and it has been reported that it contains 16 introns. However, there are no reports on the website.
(実施例10)グリコアルカロイド生合成候補遺伝子Yの抑制形質転換体を作成するためのベクター構築
 遺伝子を形質転換によって抑制する方法としては、強力なプロモーターで駆動する構成を持つ逆方向の相補鎖遺伝子断片の発現(植物で一般的にRNAi法と呼ばれる)で行った[Chuangと Meyerowitz Proc Natl Acad Sci U S A., 97, 4985-90 (2000)、WesleyらPlant J., 27, 581-90 (2001)]。実施例8で取得した全長cDNAに対し、プライマー[U895: GAGCTCTAGATATTTGATTTGCCACCTCCAT (配列番号26)、U896: GGATCCATATGCTTACAAGCACAGCACCAA (配列番号27)]を用いてアニール温度55℃でPCR(30サイクル、タカラバイオ社 ExTaq DNA Polymeraseを使用)によって遺伝子を増幅した。これをpCR4-TOPOベクター(インビトロジェン社)へクローニングし、遺伝子断片を取得した。バイナリーベクターpKT11(特開2001-161373号公報)を基本として、カルフラワーモザイクウイルスの35S RNAプロモーター、当該遺伝子断片を順方向、シロイヌナズナのフィトエンデサチュラーゼ遺伝子(AT4g14210)の第3イントロン、当該遺伝子断片を逆方向、カルフラワーモザイクウイルスの35S RNAターミネーターの順に連結を行い、植物形質転換用ベクターpKT250を作成した(図8)。
(Example 10) Construction of a vector for producing a suppression transformant of glycoalkaloid biosynthesis candidate gene Y As a method for suppressing a gene by transformation, a reverse complementary strand gene having a structure driven by a strong promoter Fragment expression (commonly called RNAi method in plants) [Chuang and Meyerowitz Proc Natl Acad Sci US A., 97, 4985-90 (2000), Wesley et al. Plant J., 27, 581-90 ( 2001)]. PCR (30 cycles, Takara Bio Inc. ExTaq DNA Polymerase) was performed on the full-length cDNA obtained in Example 8 using primers [U895: GAGCTCTAGATATTTGATTTGCCACCTCCAT (SEQ ID NO: 26), U896: GGATCCATATGCTTACAAGCACAGCACCAA (SEQ ID NO: 27)] at an annealing temperature of 55 ° C. The gene was amplified by This was cloned into a pCR4-TOPO vector (Invitrogen) to obtain a gene fragment. Based on binary vector pKT11 (Japanese Patent Laid-Open No. 2001-161373), the 35S RNA promoter of calflower mosaic virus, the gene fragment is forward, the third intron of Arabidopsis phytoene desaturase gene (AT4g14210), the gene fragment is reversed Ligation was performed in the order of the 35S RNA terminator of the calf mosaic mosaic virus to prepare a plant transformation vector pKT250 (FIG. 8).
(実施例11)ジャガイモ形質転換植物体の作出
 実施例10で作製したベクターをエレクトロポレーション法(GelvinとSchilperoor編, Plant Molecular Biology Manual, C2, 1-32 (1994), Kluwer Academic Publishers)により、アグロバクテリウム・ツメファシエンスGV3110株に導入した。ベクターを含むアグロバクテリウム・ツメファシエンスGV3110株を、50ppmのカナマイシンを含むYEB液体培地[5g/lビ-フエキス、1g/l酵母エキス、5g/lペプトン、5g/lスクロ-ス、2mM硫酸マグネシウム(pH7.2)]にて28℃、12時間振とう培養した。培養液1.5 mlを10,000rpm、3分間遠心して集菌後、カナマイシンを除くために1mlのLB培地で洗浄した。更に10,000rpm、3分間遠心して集菌後、1.5 mlの3%蔗糖を含むMS培地[Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)]に再懸濁し、感染用菌液とした。
(Example 11) Production of potato-transformed plant body The vector prepared in Example 10 was subjected to electroporation (Edited by Gelvin and Schilperoor, Plant Molecular Biology Manual, C2, 1-32 (1994), Kluwer Academic Publishers). It was introduced into Agrobacterium tumefaciens strain GV3110. Agrobacterium tumefaciens strain GV3110 containing the vector was added to a YEB liquid medium containing 5 ppm of kanamycin [5 g / l beef extract, 1 g / l yeast extract, 5 g / l peptone, 5 g / l sucrose, 2 mM magnesium sulfate ( pH 7.2)], and cultured with shaking at 28 ° C. for 12 hours. 1.5 ml of the culture solution was centrifuged at 10,000 rpm for 3 minutes, collected, and washed with 1 ml of LB medium to remove kanamycin. After further centrifugation at 10,000 rpm for 3 minutes, the cells were collected and resuspended in MS medium [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)] containing 1.5 ml of 3% sucrose. It was.
 ジャガイモの形質転換は[門馬(1990)植物組織培養7:57-63]に従い実施した。ジャガイモ品種「サッシー」(ジャパンアグリバイオ社)から得られたマイクロチューバーを2~3mmにスライスし、アグロバクテリウム感染用の材料とした。これを上記のアグロバクテリウムの菌液に浸した後、滅菌済みの濾紙上に置いて過剰のアグロバクテリウムを除いた。シャーレ内のMS培地(Zeatin 1ppm, IAA 0.1ppm, アセトシリンゴン100μM、及び寒天0.8%を含む)上に置き、培養は3日間25℃、16時間照明(光量子束密度32μE/m2s)/8時間無照明の条件下で行った。ついで、アセトシリンゴンの代わりにカルベニシリン250ppmを含んだ培地で1週間培養した。その後、さらにカナマイシン50 ppmを含む培地上に移し、2週間ごとに継代した。この間に不定芽が形成し、シュートを生じた。伸張したシュートをカルベニシン250 ppm及びカナマイシン100 ppmを含み、植物生長調節物質を含まないMS培地に置床した。発根したシュートをカナマイシン耐性の生長した植物体の中から外来遺伝子としてカナマイシン耐性遺伝子を含有する個体を、PCR(条件:95℃5分、(95℃30秒、55℃30秒、72℃1分)を30回、72℃10分)を行うことで検出し、該再分化植物体が形質転換植物体であることを確認した。ここで、カナマイシン耐性遺伝子の配列を特異的に増幅するプライマーとして、TAAAGCACGAGGAAGCGGT(配列番号28)、及びGCACAACAGACAATCGGCT(配列番号29)を用いた。以上から、ベクターpKT250が導入されたジャガイモの形質転換植物体25系統を取得した。 Potato transformation was carried out according to [Monma (1990) plant tissue culture 7: 57-63]. Microtubers obtained from the potato variety “Sassy” (Japan Agribio Inc.) were sliced into 2 to 3 mm and used as materials for Agrobacterium infection. This was immersed in the above Agrobacterium solution and placed on a sterilized filter paper to remove excess Agrobacterium. Place on MS medium in petri dish (Zeatin 1ppm, IAA 0.1ppm, acetosyringone 100μM and agar 0.8%) and culture for 3 days at 25 ° C for 16 hours (photon flux density 32μE / m 2 s) / The test was conducted under no illumination for 8 hours. Subsequently, it was cultured for 1 week in a medium containing 250 ppm of carbenicillin instead of acetosyringone. Thereafter, the cells were further transferred onto a medium containing 50 ppm kanamycin and subcultured every 2 weeks. Adventitious buds formed during this period, resulting in shoots. The stretched shoots were placed in MS medium containing carbenicin 250 ppm and kanamycin 100 ppm and no plant growth regulator. Individuals containing a kanamycin resistance gene as an exogenous gene from a plant having grown rooted shoots in kanamycin resistance were subjected to PCR (conditions: 95 ° C. for 5 minutes, (95 ° C. for 30 seconds, 55 ° C. for 30 seconds, 72 ° C. 1 Min) was performed 30 times at 72 ° C. for 10 minutes, and the redifferentiated plant body was confirmed to be a transformed plant body. Here, TAAAGCACGAGGAAGCGGT (SEQ ID NO: 28) and GCACAACAGACAATCGGCT (SEQ ID NO: 29) were used as primers for specifically amplifying the kanamycin resistance gene sequence. From the above, 25 potato transformed plants into which the vector pKT250 was introduced were obtained.
(実施例12)形質転換植物体のグリコアルカロイド含量と候補遺伝子Yの発現解析
 実施例11で得られた30個体のin vitro茎を継代後一ヶ月伸張させ、その部分2~4本をまとめて約100mgにしアルカリ耐性の逆相クロマトグラフィー用カラムを用いた液体クロマトグラフィーを用いた以下の方法(特許公開2011-27429)によりグリコアルカロイド含量を測定した。
(Example 12) Glycoalkaloid content of transformed plant and expression analysis of candidate gene Y 30 in vitro stems obtained in Example 11 were elongated for one month after passage, and 2 to 4 parts thereof were put together. The glycoalkaloid content was measured by the following method (Patent Publication 2011-27429) using liquid chromatography using an alkali-resistant column for reverse phase chromatography.
 実施例11で得られた25個体のin vitro茎を継代後一ヶ月伸張させ、その部分を2~4本をまとめて約100mgにし0.1%ギ酸 in 80%MeOH aq. 990μLおよび内部標準としてブラシノライド(ブラシノ社)10μg/10μLを添加し、ミキサーミルで破砕した(1/25 sec, 10 min, 4℃)。得られた破砕物を遠心分離(10,000 rpm, 5 min, 4℃)に供しアルコール沈殿を行った。上清25μLを分取し、0.1%ギ酸水で475μLを加え、マルチスクリーンソルビナート(ミリポア社)でフィルターろ過しLC-MS(島津製作社、LCMS-2010EV、またはウォーターズ社、Alliance e2795 Q-micro)を用い解析した。LCの条件はカラム(XBridgeTMShield RP18-5(φ2.1×150 mm, ウォーターズ社))で移動相(A:10 mM炭酸水素アンモニウム水(pH 10):B:アセトニトリル=40:60)アイソクラティック(カラムオーブン:40℃)で分離し解析した。標準品(チャコニン、ソラニン(いずれもシグマ・アルドリッチ社))を用いて定量した。 Twenty-five in vitro stems obtained in Example 11 were stretched for one month after passage, and 2 to 4 portions thereof were combined to make about 100 mg, 0.1% formic acid in 80% MeOH aq. 990 μL and a brush as an internal standard Noride (Brassino) 10 μg / 10 μL was added and crushed with a mixer mill (1/25 sec, 10 min, 4 ° C.). The obtained crushed material was subjected to centrifugation (10,000 rpm, 5 min, 4 ° C.) for alcohol precipitation. Collect 25 μL of supernatant, add 475 μL with 0.1% formic acid, filter with Multiscreen Solbinate (Millipore), and LC-MS (Shimadzu Corporation, LCMS-2010EV, or Waters, Alliance e2795 Q-micro ) And analyzed. LC conditions were a column (XBridge TM Shield RP18-5 (φ2.1 × 150 mm, Waters)) and mobile phase (A: 10 mM ammonium hydrogen carbonate aqueous solution (pH 10): B: acetonitrile = 40: 60) They were separated and analyzed with a cratic (column oven: 40 ° C.). Quantification was performed using a standard product (chaconine, solanine (both from Sigma-Aldrich)).
 得られた25個体のin vitro茎から2回の分析を繰り返すことで、5系統(#1, #9, #11, #15, #22)においてはグリコアルカロイドの蓄積が再現性よく低いことを確認した。これら低グリコアルカロイド5系統、低くなかった2系統(#8, #25)、遺伝子を導入していない対照の個体1つのin vitro茎を約200mg採取し、液体窒素で粉砕し、半分をグリコアルカロイド含量の測定、半分をmRNAの測定を行った。低グリコアルカロイド5系統はグリコアルカロイドの蓄積が非形質転換体(1個体)や低くはならなかった2系統と比較して極めて低いことが再確認できた(図9)。各系統から、全RNAの抽出はRNeasy(キアゲン社)で、全cDNAの合成はスーパースクリプト ファーストストランド システム(インビトロジェン社)を用いて行った。プライマー [U935: TGGGGTGTTGGTACATATTTTG (配列番号30)、U1007: TTCCTCTTTGGCTTTCTCCA (配列番号31)]を用いたRT-PCR(条件:95℃5分、(95℃30秒、55℃30秒、72℃3分)を25回、72℃5分)の結果、Y遺伝子のmRNAの発現は低グリコアルカロイド5系統では、極めて少ないか観察できなかった(図10)。このことから、候補遺伝子Yの遺伝子の発現を抑制することによってグリコアルカロイドの蓄積が極端に減少することが明らかとなり、候補遺伝子Yはグリコアルカロイド生合成酵素をコードする遺伝子であることが明らかとなった。 By repeating the analysis twice from the obtained 25 in vitro stems, the accumulation of glycoalkaloids in 5 lines (# 1, # 9, # 11, # 15, # 22) is low with good reproducibility. confirmed. About 5 mg of these low glycoalkaloids, 2 that were not low (# 8, # 25), and about 200 mg of invitro stalk from one control individual that had not been transfected with the gene, ground with liquid nitrogen, and half of the glycoalkaloid The content was measured, and half was measured for mRNA. It was reconfirmed that 5 low glycoalkaloid strains had extremely low glycoalkaloid accumulation compared to non-transformant (1 individual) and 2 strains that did not decrease (FIG. 9). From each line, total RNA was extracted with RNeasy (Qiagen), and total cDNA was synthesized with Superscript® First Strand® system (Invitrogen). RT-PCR using primers [U935: 分 TGGGGTGTTGGTACATATTTTG (SEQ ID NO: 30), U1007: TTCCTCTTTGGCTTTCTCCA (SEQ ID NO: 31)] (conditions: 95 ° C for 5 minutes, (95 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 3 minutes) As a result of 25 times at 72 ° C. for 5 minutes, the expression of mRNA of the Y gene was very small or could not be observed in the five low glycoalkaloid strains (FIG. 10). From this, it became clear that accumulation of glycoalkaloid is extremely reduced by suppressing the expression of the gene of candidate gene Y, and it became clear that candidate gene Y is a gene encoding glycoalkaloid biosynthetic enzyme. It was.
(実施例13)低グリコアルカロイド系統の形質転換植物体から塊茎の作成
 非形質転換体とともに、これら低グリコアルカロイド5系統のうち3系統のin vitro植物を増殖し、各3個体を市販されている野菜用の培養土に馴化しバイオハザード温室で定法に従い栽培し塊茎を収穫した。この3系統の各個体(#9, #11, #22)は非形質転換体と同等の生育を示し、同等の塊茎を収穫することができた(表2)。
Figure JPOXMLDOC01-appb-T000002
(Example 13) Preparation of tubers from transformed plants of low-glycoalkaloid strains Three non-transformed plants and three in vitro plants of these five low-glycoalkaloid strains are proliferated, and three individuals are commercially available. The tuber was harvested by acclimatizing to the vegetable culture soil and cultivating it in a biohazard greenhouse according to a standard method. Each of these three strains (# 9, # 11, # 22) showed the same growth as the non-transformant and was able to harvest the same tuber (Table 2).
Figure JPOXMLDOC01-appb-T000002
 さらに収穫した塊茎各3つの中央部表皮を約1mmで剥離し同様にグリコアルカロイド含量を解析した。その結果、驚くべきことに、塊茎でのグリコアルカロイドは極めて低いことが確認できた(図11)。 Further, the three epidermis of each of the harvested tubers were peeled at about 1 mm, and the glycoalkaloid content was similarly analyzed. As a result, it was surprisingly confirmed that the glycoalkaloid in the tuber was extremely low (FIG. 11).
(実施例14)トマト形質転換植物体の作出
 トマトの形質転換は[Sunら (2006) Plant Cell Physiol. 47:426-431.]に従い実施した。実施例10で作製したベクターpKT230を含むアグロバクテリウム・ツメファシエンスAGL0株を培養し感染用菌液とした。トマト(Solanum lycopersicum)実験系統「マイクロトム」の無菌播種植物体の子葉を5mm以下の切片を、上記のアグロバクテリウム懸濁液に浸し、10分間感染した後、滅菌済みの濾紙上に葉を置いて過剰のアグロバクテリウムを除いた。シャーレ内の共存MS培地(ゼアチン1.5mg/l、アセトシリンゴン40μM及びゲルライト0.3%を含む)[Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)]上に葉を置き、シャーレを暗所で3日間25℃で培養した。切片は選択MS培地1(ゼアチン1.5mg/l、カナマイシン100mg/l、オーグメンチン375mg/l及びゲルライト0.3%を含む)で25℃、16時間照明(光量子束密度32μE/m2s)/8時間無照明の条件下で2週間ごとに継代した。この間に不定芽が形成し、シュートを生じた。さらにシュートを伸張させるため、選択MS培地2(ゼアチン1.0mg/l、カナマイシン100mg/l、オーグメンチン375mg/l及びゲルライト0.3%を含む)に移植し、伸張したシュートは選択1/2濃度MS培地(カナマイシン100mg/l、オーグメンチン375mg/l及びゲルライト0.3%を含む)で発根させた。シュートをカナマイシン耐性の生長した植物体の中から外来遺伝子としてカナマイシン耐性遺伝子を含有する個体を、上述のカナマイシン耐性遺伝子の配列を特異的に増幅するプライマーによるPCRを行うことで検出し、該再分化植物体が形質転換植物体であることを確認した。ベクターpKT250が導入されたトマトの形質転換植物体30系統を取得した。得られた30系統を温室に馴化し約1ヶ月栽培し、新しく展開した若い葉の3枚から各約100mg秤量し、ジャガイモと同様に実施例5の方法によりグリコアルカロイド含量(αトマチン量、標品のαトマチンはシグマ・アルドリッチ社)を測定した。ただし、分析条件は移動相A:移動相B=60:40の割合を用いた。30系統のうち14系統は対照の平均である新鮮重100mgあたり266μgの1/5以下(< 53μg)と顕著にトマチン含量が低かった(図12)。
(Example 14) Production of tomato transformed plant body Tomato transformation was performed according to [Sun et al. (2006) Plant Cell Physiol. 47: 426-431.]. The Agrobacterium tumefaciens AGL0 strain containing the vector pKT230 prepared in Example 10 was cultured to obtain a bacterial solution for infection. A 5 mm or less section of a cotyledon of a sterile seed plant of the tomato (Solanum lycopersicum) experimental strain “Microtom” is immersed in the above Agrobacterium suspension and infected for 10 minutes, and then the leaf is placed on a sterilized filter paper. The excess Agrobacterium was removed. Place leaves on Petri dish MS medium (containing zeatin 1.5mg / l, acetosyringone 40μM and gellite 0.3%) [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)] Was cultured at 25 ° C. for 3 days in the dark. Sections were selected MS medium 1 (containing zeatin 1.5 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%) at 25 ° C. for 16 hours (photon flux density 32 μE / m 2 s) / 8 hours without It was passaged every 2 weeks under lighting conditions. Adventitious buds formed during this period, resulting in shoots. Further, in order to extend the shoots, the cells were transplanted to selective MS medium 2 (containing zeatin 1.0 mg / l, kanamycin 100 mg / l, augmentin 375 mg / l, and gellite 0.3%), and the extended shoots were selected to a selective 1/2 concentration MS medium ( Rooted with kanamycin 100 mg / l, augmentin 375 mg / l and gellite 0.3%). An individual containing a kanamycin resistance gene as a foreign gene is detected by performing PCR using a primer that specifically amplifies the sequence of the kanamycin resistance gene from the plant body in which the shoot is grown. It was confirmed that the plant body was a transformed plant body. Thirty tomato transgenic plants into which vector pKT250 was introduced were obtained. The obtained 30 lines were acclimated to a greenhouse and cultivated for about 1 month, weighed about 100 mg each from three newly developed young leaves, and the glycoalkaloid content (α-tomatine content, standard amount) by the method of Example 5 in the same manner as potatoes. The product α-tomatine was measured by Sigma-Aldrich. However, the ratio of mobile phase A: mobile phase B = 60: 40 was used as analysis conditions. Of the 30 lines, 14 lines had significantly lower tomatine content, less than 1/5 (<53 μg) of 266 μg per 100 mg of fresh weight, which is the average of the control (FIG. 12).
(実施例15)グリコアルカロイド生合成候補遺伝子Y変異植物のスクリーニング
 3%蔗糖を含むMS培地[Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)]などで継代したジャガイモのインビトロ植物体に量子ビーム照射(NIRS-HIMAC照射装置、アルゴンイオンビーム500MeV/核子を0.1から3Gyまたは、ネオンイオンビーム400Mev/核子を0.2から3Gy、または炭素イオンビーム290MeV/核子を0.5Gyから5Gy)で変異処理を行う。変異処理後、生育した植物体からそれぞれ葉を採取し常法によりゲノムDNAを採取する。当該ゲノムDNAをテンプレートとして上述のプライマー[U1008: caccATGGCCAAGACTACTAATGGATTT (配列番号24)、U1007: CCATCAAGTTTTTGTCCATGAG (配列番号25)]を用いてPCRを行い、Y遺伝子の含まれる領域を取得し、さらに遺伝子クローニング用キットなどを用いてクローニングする。クローニングされた領域の塩基配列を決定し、Y遺伝子に変異の生じた個体を選抜することができる。
(Example 15) Screening of glycoalkaloid biosynthesis candidate gene Y mutant plant In vitro of potato passaged in MS medium [Murashige & Skoog, Physiol. Plant., 15, 473-497 (1962)] containing 3% sucrose Plant irradiation with quantum beam irradiation (NIRS-HIMAC irradiation device, argon ion beam 500MeV / nucleon 0.1 to 3Gy, neon ion beam 400Mev / nucleon 0.2 to 3Gy, or carbon ion beam 290MeV / nucleon 0.5Gy to 5Gy) Mutation processing is performed. After the mutation treatment, leaves are collected from the grown plants and genomic DNA is collected by a conventional method. Using the genomic DNA as a template, PCR is performed using the above primers [U1008: caccATGGCCAAGACTACTAATGGATTT (SEQ ID NO: 24), U1007: CCATCAAGTTTTTGTCCATGAG (SEQ ID NO: 25)] to obtain a region containing the Y gene, and a gene cloning kit Cloning using etc. The base sequence of the cloned region can be determined, and individuals with mutations in the Y gene can be selected.
(実施例16)ジャガイモの遺伝子抑制形質転換体からのスピロスタン型トリテルペンの生産
 上記実施例で得たジャガイモ(非形質転換体、pKT230 #8とpKT250 #9, #22)のin vitro茎1gをサンプルとし以下の処理から抽出、分析を行った。pKT230 #8は実施例4で得られたグリコアルカロイド生合成酵素Eの抑制形質転換体であり、pKT250 #9, #22は実施例11で得られたグリコアルカロイド生合成酵素Yの抑制形質転換体である。
(Example 16) Production of spirostan-type triterpenes from potato gene-suppressed transformants Samples of 1 g of in vitro stems of potatoes (non-transformants, pKT230 # 8 and pKT250 # 9, # 22) obtained in the above example The following processing was extracted and analyzed. pKT230 # 8 is the inhibitory transformant of glycoalkaloid biosynthetic enzyme E obtained in Example 4, and pKT250 # 9, # 22 is the inhibitory transformant of glycoalkaloid biosynthetic enzyme Y obtained in Example 11. It is.
 凍結乾燥した植物サンプル10 mgを2 mLのCHCl3-MeOH溶液 (1:1) で3回抽出した。窒素ガスを吹き付け溶媒を除去した残渣にMeOH 1 mLと4 MのHCl 1 mLを加えて、80℃ で1時間反応させ、加水分解した。反応混合物を2 mLのhexane-Ethyl acetate溶液 (1:2)で3回抽出し、得られた有機層に窒素ガスを吹き付け溶媒を除去した。得られた残渣にN-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA, SIGMA) を加え、80℃で30分間処理した溶液をGC-MS分析の試料とした。 10 mg of lyophilized plant sample was extracted 3 times with 2 mL of CHCl 3 -MeOH solution (1: 1). Nitrogen gas was blown into the residue, and 1 mL of MeOH and 1 mL of 4 M HCl were added to the residue, and the mixture was reacted at 80 ° C. for 1 hour for hydrolysis. The reaction mixture was extracted three times with 2 mL of hexane-Ethyl acetate solution (1: 2), and the resulting organic layer was blown with nitrogen gas to remove the solvent. A solution obtained by adding N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA, SIGMA) to the obtained residue and treating at 80 ° C. for 30 minutes was used as a sample for GC-MS analysis.
 GC-MS分析の条件を以下に示す。EI (70eV)、イオン源温度 250℃、カラムはDB-1 (30 m×0.25 mm, 0.25-μm; J&W Scientific)、試料導入部温度250℃、カラム昇温プログラム:80℃、1分間保持、 11分間で300℃まで上昇させて23分間保持、 境界面温度 280℃、キャリアーガスはHe (1.0 mL/min (DB-1))、試料導入はスプリットレスで行った。蓄積産物の同定は標品をGCの保持時間ならびにMSスペクトルを比較することで決定した。ヤモゲニンについてはファイトラボ社から購入した標品を用いて定量した。 The conditions for GC-MS analysis are shown below. EI (70eV), ion source temperature 250 ° C, column is DB-1 (30 m × 0.25 mm, 0.25-μm; J & W Scientific), sample introduction part temperature 250 ° C, column heating program: 80 ° C, hold for 1 minute, The temperature was raised to 300 ° C. in 11 minutes and maintained for 23 minutes, the interface temperature at 280 ° C., the carrier gas was He は (1.0 mL / min (DB-1)), and the sample was introduced in a splitless manner. Accumulation product identification was determined by comparing GC retention time and MS spectra. Gyeogenin was quantified using a sample purchased from Phyto Rabo.
 形質転換体ジャガイモの抽出物のGC-MSのトータルイオンクロマトグラムを図13に示す。非形質転換体にはないピーク(実線矢印)が認められた。この部分をジオスゲニンとヤモゲニンの標品としてあわせたものが図14である。新たに出現したピークdはヤモゲニン標品のピークb(保持時間17分50秒)と保持時間とマススペクトルが一致した。ヤモゲニン標品に混在するピークaはヤモゲニンのスピロケタール環が巻きなおした22βO-スピロスタノール型(保持時間17分34秒)でジオスゲニン標品のピークb(保持時間17分37秒)とは異なっていた。ヤモゲニン標品に混在するピークcはマススペクトルから5位が還元されたネオチゴゲニンと予想された(保持時間18分02秒)。定量の結果、pKT230 #8、pKT250 #9, #22からは68.8 μg/100 mg 乾重量、55.5 μg/100 mg 乾重量、30.4 μg/100 mg 乾重量のヤモゲニンを得られることが明らかになった。一方、非形質転換体においても6.3μg/100mg 乾重量という微量のヤモゲニンが存在した。なお、この定量値は、スピロスタン型トリテルペンの蓄積に対して条件を変えて栽培したわけではないことから、物質蓄積に対する潜在性を示しているものであって、なんら限定されるものではない。 Fig. 13 shows a GC-MS total ion chromatogram of the transformant potato extract. A peak (solid arrow) not found in the non-transformant was observed. FIG. 14 shows a combination of this part as a preparation of diosgenin and yamogenin. The newly appearing peak d has the same retention time and mass spectrum as the peak b (retention time 17 minutes 50 seconds) of the yamogenin preparation. The peak a mixed in the yamogenin preparation was 22βO-spirostanol type (retention time 17 minutes 34 seconds) with the spiroketal ring of the yamogenin re-wound, and was different from the peak b (retention time 17 minutes 37 seconds) of the diosgenin preparation. . Peak c mixed with the yamogenin preparation was predicted to be neotigogenin reduced in the 5th position from the mass spectrum (retention time 18 minutes 02 seconds). As a result of quantification, it was revealed that 68.8 μg / 100 mg dry weight, 55.5 μg / 100 mg dry weight, 30.4 μg / 100 mg dry weight of pest 230 # 8, pKT250 # 9, # 22 . On the other hand, even in the non-transformant, there was a trace amount of yamogenin of 6.3 μg / 100 mg dry weight. This quantitative value is not cultivated under different conditions for the accumulation of spirostan-type triterpenes, and thus shows the potential for substance accumulation, and is not limited in any way.
 グリコアルカロイド生合成遺伝子であるC遺伝子やD遺伝子を抑制した形質転換体のジャガイモやトマト(特願2010-108445)を用いて同様な抽出、分析を実施したが、スピロスタン型トリテルペンは検出できなかった。このことは、グリコアルカロイド生合成遺伝子すべてに遺伝子を抑制すると蓄積するわけではなく、E遺伝子やY遺伝子を抑制することで、特異的に蓄積することを示している。 The same extraction and analysis were performed using potato and tomato (Japanese Patent Application No. 2010-108445), a transformant that suppressed glycoalkaloid biosynthesis genes C and D, but no spirostan-type triterpene was detected. . This indicates that accumulation does not occur when genes are suppressed in all glycoalkaloid biosynthetic genes, but accumulation occurs specifically by suppressing E and Y genes.
(実施例17)ジャガイモ組織の蓄積産物の推測
 E遺伝子又はY遺伝子の発現が抑制されたジャガイモから加水分解することでヤモゲニンを得ることができることがわかったが、ジャガイモ中での物質は不明である。そこで、加水分解をせずに分析を行った。その結果、加水分解を行わない場合は、ほとんどヤモゲニンが得られないことがわかった(図15)。ジャガイモの中では3位に糖修飾されているヤモゲニン、3位か26位、もしくは両方に糖修飾されているフロスタン型トリテルペン、16位、22位、26位が酸化され、3位を含め、そのいずれか、もしくは複数が糖修飾されているコレスタン型トリテルペンが推定できる。
(Example 17) Prediction of accumulated product of potato tissue It was found that yamogenin can be obtained by hydrolysis from potato in which the expression of E gene or Y gene is suppressed, but the substance in potato is unknown. . Therefore, analysis was performed without hydrolysis. As a result, it was found that almost no yamogenin was obtained when hydrolysis was not performed (FIG. 15). Among potatoes, yamogenin that is sugar-modified at position 3, furosene-type triterpenes that are sugar-modified at position 3 or 26, or both, positions 16, 22, and 26 are oxidized, including position 3, A cholestane type triterpene in which one or a plurality of sugars are modified can be estimated.
(実施例18)異なるジャガイモ組織からのスピロスタン型トリテルペンの生産
 上記、実施例で作成したE遺伝子を抑制したジャガイモ(pKT230 #8, #17, #29)の塊茎と、そこから出た萌芽での、蓄積された配糖体を加水分解して得られたヤモゲニン量を定量した。その結果、塊茎の皮では、それぞれ49.7, 48.1, 24.6 μg/100 mg 乾重量、萌芽では95.6, 70.2, 102.5 μg/100 mg 乾重量(図16)であった。一方、非形質転換体でも塊茎の皮で2.8μg/100 mg 乾重量、萌芽で7.9μg/100 mg 乾重量という微量のヤモゲニンが存在した(図16)。この定量値は、スピロスタン型トリテルペンの蓄積に対して条件を変えて栽培したわけではないことから、物質蓄積に対する潜在性を示しているものであって、なんら限定されるものではない。一般に、光照射した場合にグリコアルカロイド量は上昇することが知られている。このことから、光照射した場合に、さらに多量のスピロスタン型トリテルペンを得ることが期待できる。
(Example 18) Production of spirostan-type triterpenes from different potato tissues In the above-described tuber of potato (pKT230 # 8, # 17, # 29) with suppressed E gene prepared in the above example, and germination The amount of yamogenin obtained by hydrolyzing the accumulated glycoside was quantified. As a result, the tuber peel was 49.7, 48.1, 24.6 μg / 100 mg dry weight, and the germination was 95.6, 70.2, 102.5 μg / 100 mg dry weight (FIG. 16). On the other hand, even in the non-transformant, trace amounts of yamogenin of 2.8 μg / 100 mg dry weight in the tuber peel and 7.9 μg / 100 mg dry weight in the germination were present (FIG. 16). Since this quantitative value was not cultivated under different conditions for the accumulation of spirostan-type triterpenes, it shows the potential for substance accumulation and is not limited in any way. Generally, it is known that the amount of glycoalkaloid increases when irradiated with light. From this, it is expected that a larger amount of spirostan type triterpene can be obtained when irradiated with light.
(実施例19)トマトの遺伝子抑制形質転換体からのスピロスタン型トリテルペンの生産
 トマト(非形質転換体、pKT230 #13、pKT250 #75)は温室に馴化し約1ヶ月栽培し、新しく展開した若い葉1gをサンプルとし実施例16に従い実施した。pKT230 #13は実施例6で得られたグリコアルカロイド生合成酵素Eの抑制形質転換体であり、pKT250 #9, #22は実施例14で得られたグリコアルカロイド生合成酵素Yの抑制形質転換体である。蓄積された配糖体を加水分解して得られたネオチゴゲニンはヤモゲニン当量として定量した。その結果、ネオチゴゲニンがpKT230 #13、pKT250 #75からは86.8 μg/100 mg 乾重量、93.2 μg/100 mg 乾重量を得られることが明らかになった(図17)。一方、非形質転換体では5.7μg/100 mg 乾重量という微量のネオチゴゲニンが存在した(図17)。なお、この定量値は、スピロスタン型トリテルペンの蓄積に対して条件を変えて栽培したわけではないことから、物質蓄積に対する潜在性を示しているものである。
(Example 19) Production of spirostan-type triterpenes from tomato gene-suppressed transformants Tomatoes (non-transformants, pKT230 # 13, pKT250 # 75) were cultivated in a greenhouse for about 1 month and newly developed young leaves 1 g was used as a sample, and it was carried out according to Example 16. pKT230 # 13 is the inhibitory transformant of glycoalkaloid biosynthetic enzyme E obtained in Example 6, and pKT250 # 9, # 22 is the inhibitory transformant of glycoalkaloid biosynthetic enzyme Y obtained in Example 14. It is. Neotigogenin obtained by hydrolyzing the accumulated glycoside was quantified as a yamogenin equivalent. As a result, it was revealed that neotigogenin can obtain 86.8 μg / 100 mg dry weight and 93.2 μg / 100 mg dry weight from pKT230 # 13 and pKT250 # 75 (FIG. 17). On the other hand, the non-transformant contained a trace amount of neotigogenin of 5.7 μg / 100 mg dry weight (FIG. 17). This quantitative value shows the potential for substance accumulation because it was not cultivated under different conditions for accumulation of spirostan-type triterpenes.
 本発明の加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体が蓄積されたジャガイモ等ナス科植物は、ステロイド医薬品の原料となるスピロスタン型トリテルペンを供給することができる。グリコアルカロイド生合成酵素遺伝子Eおよび/またはグリコアルカロイド生合成酵素遺伝子Yを、機能性食品として可能性のある加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を蓄積させ得るジャガイモ等ナス科植物品種の選抜に利用することができる。 The solanaceous plants such as potatoes in which triterpene glycosides that produce spirostane-type triterpenes after hydrolysis according to the present invention are accumulated can supply spirostane-type triterpenes as raw materials for steroid pharmaceuticals. Glycoalkaloid biosynthetic enzyme gene E and / or glycoalkaloid biosynthetic enzyme gene Y can be used to accumulate triterpene glycosides that produce spirostan-type triterpenes after hydrolysis that can be used as functional foods. Can be used for selection.
配列番号5~19および24~31 プライマー
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
SEQ ID NOs: 5-19 and 24-31 Primers All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (10)

  1.  グリコアルカロイド生合成酵素をコードする遺伝子が抑制されたナス科植物の植物体であって、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積し得る植物体。 A plant body of a solanaceous plant in which a gene encoding a glycoalkaloid biosynthetic enzyme is suppressed, and a triterpene glycoside that generates a spirostan-type triterpene after hydrolysis can be accumulated in the plant body.
  2.  ナス科植物がジャガイモであり、グリコアルカロイド生合成酵素をコードする遺伝子が以下の(a)~(d)のいずれかのDNAからなる遺伝子および/または以下の(e)~(h)のいずれかのDNAからなる遺伝子であり、前記トリテルペン配糖体が加水分解によりヤモゲニンを生成するものである、請求項1記載の植物体:
     (a) 配列番号2に示す塩基配列からなるDNA;
     (b) 配列番号2に示す塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
     (c) 配列番号2に示す塩基配列と80%以上の配列同一性を有する塩基配列からなり、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
     (d) 配列番号2に示す塩基配列の縮重異性体からなるDNA;
     (e) 配列番号21に示す塩基配列からなるDNA;
     (f) 配列番号21に示す塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
     (g) 配列番号21に示す塩基配列と80%以上の配列同一性を有する塩基配列からなり、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;および
     (h) 配列番号21に示す塩基配列の縮重異性体からなるDNA。
    The solanaceous plant is potato, and the gene encoding the glycoalkaloid biosynthetic enzyme is a gene comprising any of the following DNAs (a) to (d) and / or any of the following (e) to (h) The plant body according to claim 1, wherein the triterpene glycoside generates yamogenin by hydrolysis:
    (a) DNA consisting of the base sequence shown in SEQ ID NO: 2;
    (b) a DNA that hybridizes with a DNA comprising a base sequence complementary to the DNA comprising the base sequence shown in SEQ ID NO: 2 under stringent conditions and encodes a protein having glycoalkaloid biosynthetic enzyme activity;
    (c) DNA encoding a protein comprising a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 2 and having glycoalkaloid biosynthetic enzyme activity;
    (d) DNA comprising a degenerate isomer of the base sequence shown in SEQ ID NO: 2;
    (e) DNA consisting of the base sequence shown in SEQ ID NO: 21;
    (f) a DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 21 and encodes a protein having glycoalkaloid biosynthetic enzyme activity;
    (g) a DNA consisting of a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 21 and encoding a protein having glycoalkaloid biosynthetic enzyme activity; and (h) shown in SEQ ID NO: 21 DNA consisting of degenerate isomers of the base sequence.
  3.  ナス科植物がトマトであり、グリコアルカロイド生合成酵素をコードする遺伝子が以下の(i)~(l)のいずれかのDNAからなる遺伝子および/または以下の(m)~(p)のいずれかのDNAからなる遺伝子であり、前記トリテルペン配糖体が加水分解によりネオチゴゲニンを生成するものである、請求項1記載の植物体:
     (i) 配列番号4に示す塩基配列からなるDNA;
     (j) 配列番号4に示す塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
     (k) 配列番号4に示す塩基配列と80%以上の配列同一性を有する塩基配列からなり、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
     (l) 配列番号4に示す塩基配列の縮重異性体からなるDNA;
     (m) 配列番号23に示す塩基配列からなるDNA;
     (n) 配列番号23に示す塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;
     (o) 配列番号23に示す塩基配列と80%以上の配列同一性を有する塩基配列からなり、かつ、グリコアルカロイド生合成酵素活性を有するタンパク質をコードするDNA;および
     (p) 配列番号23に示す塩基配列の縮重異性体からなるDNA。
    The solanaceous plant is a tomato, and the gene encoding a glycoalkaloid biosynthetic enzyme is a gene comprising any of the following DNAs (i) to (l) and / or any of the following (m) to (p) The plant according to claim 1, wherein the triterpene glycoside produces neotigogenin by hydrolysis.
    (i) DNA consisting of the base sequence shown in SEQ ID NO: 4;
    (j) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 4 and encodes a protein having glycoalkaloid biosynthetic enzyme activity;
    (k) a DNA encoding a protein comprising a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 4 and having glycoalkaloid biosynthetic enzyme activity;
    (l) DNA comprising a degenerate isomer of the base sequence shown in SEQ ID NO: 4;
    (m) a DNA comprising the base sequence represented by SEQ ID NO: 23;
    (n) a DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 23 and encodes a protein having glycoalkaloid biosynthetic enzyme activity;
    (o) a DNA comprising a base sequence having 80% or more sequence identity with the base sequence shown in SEQ ID NO: 23 and encoding a protein having glycoalkaloid biosynthetic enzyme activity; and (p) shown in SEQ ID NO: 23 DNA consisting of degenerate isomers of the base sequence.
  4.  請求項1~3のいずれか1項に記載の植物体を栽培することにより、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積させる方法。 A method for accumulating in a plant a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis by cultivating the plant according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか1項に記載の植物体を栽培することにより、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積させ、
    蓄積した該配糖体を単離し、
    得られた該配糖体を加水分解し、糖鎖を除去することを含む、植物体を用いてスピロスタン型トリテルペンを生産する方法。
    By cultivating the plant according to any one of claims 1 to 3, a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis is accumulated in the plant,
    Isolating the accumulated glycoside,
    A method for producing a spirostan-type triterpene using a plant body, comprising hydrolyzing the obtained glycoside and removing a sugar chain.
  6.  (i) ゲノムDNAまたはRNAである核酸をナス科植物から単離する工程、
    (ii) (i)の核酸がRNAである場合に逆転写しcDNAを合成する工程、
    (iii) (i)または(ii)の工程で得られたDNAから配列番号2、配列番号4、配列番号21または配列番号23に示す塩基配列を含有する遺伝子断片を増幅する工程、ならびに
    (iv) DNA中に突然変異および/または多型の存在を決定する工程、
    とを含む、ナス科植物におけるグリコアルカロイド生合成酵素をコードする遺伝子の突然変異および/または多型の存在する植物体を選抜する方法。
    (i) isolating a nucleic acid that is genomic DNA or RNA from a solanaceous plant;
    (ii) a step of reverse transcription and synthesizing cDNA when the nucleic acid of (i) is RNA;
    (iii) amplifying a gene fragment containing the base sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 21 or SEQ ID NO: 23 from the DNA obtained in the step (i) or (ii);
    (iv) determining the presence of mutations and / or polymorphisms in the DNA;
    And a method for selecting a plant having a mutation and / or polymorphism of a gene encoding a glycoalkaloid biosynthetic enzyme in a solanaceous plant.
  7.  請求項6に記載の方法により選抜された、グリコアルカロイド生合成酵素をコードする遺伝子に突然変異および/または多型を有し、グリコアルカロイド生合成酵素の活性が抑制されたナス科植物体。 A solanaceous plant body selected by the method according to claim 6, having a mutation and / or polymorphism in a gene encoding a glycoalkaloid biosynthetic enzyme and suppressing the activity of the glycoalkaloid biosynthetic enzyme.
  8.  請求項6に記載の方法により選抜された、グリコアルカロイド生合成酵素をコードする遺伝子の発現能が既存品種に対して抑制されているか、またはグリコアルカロイド生合成酵素の活性が既存品種に対して抑制されており、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積し得るナス科植物体。 The expression ability of a gene encoding a glycoalkaloid biosynthetic enzyme selected by the method according to claim 6 is suppressed for an existing variety, or the activity of a glycoalkaloid biosynthetic enzyme is suppressed for an existing variety A solanaceous plant that can accumulate triterpene glycosides that generate spirostane-type triterpenes after hydrolysis in the plant.
  9.  請求項8記載の植物体を育種することにより、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積させる方法。 A method for accumulating in a plant a triterpene glycoside that produces a spirostan-type triterpene after hydrolysis by breeding the plant according to claim 8.
  10.  請求項8記載の植物体を育種することにより、加水分解後にスピロスタン型トリテルペンを生じるトリテルペン配糖体を植物体中に蓄積させ、
    蓄積したスピロスタン型トリテルペンの配糖体を単離し、
    得られたスピロスタン型トリテルペンの配糖体を加水分解し、糖鎖を除去することを含む、植物体を用いてスピロスタン型トリテルペンを生産する方法。
    By breeding the plant body according to claim 8, a triterpene glycoside that produces a spirostane-type triterpene after hydrolysis is accumulated in the plant body,
    We isolated the accumulated glycosides of spirostan type triterpene,
    A method for producing a spirostan-type triterpene using a plant body, comprising hydrolyzing a glycoside of the obtained spirostan-type triterpene and removing a sugar chain.
PCT/JP2012/080443 2011-11-25 2012-11-26 Plant for producing spirostan-type triterpene WO2013077440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011258288 2011-11-25
JP2011-258288 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013077440A1 true WO2013077440A1 (en) 2013-05-30

Family

ID=48469879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080443 WO2013077440A1 (en) 2011-11-25 2012-11-26 Plant for producing spirostan-type triterpene

Country Status (2)

Country Link
JP (1) JPWO2013077440A1 (en)
WO (1) WO2013077440A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203914A1 (en) 2013-06-18 2014-12-24 キリン株式会社 Gene encoding enzyme capable of oxidizing position-16 in steroid backbone, and plant body in which expression of said gene is reduced

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025011A1 (en) * 2009-08-28 2011-03-03 キリンホールディングス株式会社 Protein having glycoalkaloid biosynthase activity, and gene encoding same
WO2012029804A1 (en) * 2010-08-31 2012-03-08 キリンホールディングス株式会社 Protein having glycoalkaloid biosynthase activity and gene encoding same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025011A1 (en) * 2009-08-28 2011-03-03 キリンホールディングス株式会社 Protein having glycoalkaloid biosynthase activity, and gene encoding same
WO2012029804A1 (en) * 2010-08-31 2012-03-08 キリンホールディングス株式会社 Protein having glycoalkaloid biosynthase activity and gene encoding same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"95463.1 Cold Sweetening C Solanum tuberosum cDNA clone 95463 5-, mRNA sequence", 2 November 2005 (2005-11-02), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/nucest/DV625156> [retrieved on 20051102] *
"Solanum lycopersicum cDNA, clone: LEFL1002CA08, HTC in leaf.", 1 May 2010 (2010-05-01), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/nuccore/AK319823> [retrieved on 20121211] *
KRITS P. ET AL.: "Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes.", PLANTA, vol. 227, 2007, pages 143 - 150, XP019563614, doi:10.1007/s00425-007-0602-3 *
SATORU SAWAI ET AL.: "Production of Triterpenoids by Recombinant Yeast", BIO INDUSTRY, vol. 28, no. 12, 12 November 2011 (2011-11-12), pages 6 - 12 *
SOLANUM LYCOPERSICUM LEGABA-TP2 MRNA FOR GAMMA AMINOBUTYRATE TRANSAMINASE ISOFORM2, COMPLETE CDS., 26 September 2008 (2008-09-26), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/nuccore/AB359917> [retrieved on 20121211] *
YAMANAKA T. ET AL.: "Isolation, Characterization, and Surfactant Properties of the Major Triterpenoid Glycosides from Unripe Tomato Fruits.", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 56, 2008, pages 11432 - 11440 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203914A1 (en) 2013-06-18 2014-12-24 キリン株式会社 Gene encoding enzyme capable of oxidizing position-16 in steroid backbone, and plant body in which expression of said gene is reduced

Also Published As

Publication number Publication date
JPWO2013077440A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
Umemoto et al. Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway
JP5794918B2 (en) Protein having glycoalkaloid biosynthetic enzyme activity and gene encoding the same
JP5794770B2 (en) Protein having glycoalkaloid biosynthetic enzyme activity and gene encoding the same
JP6038040B2 (en) Protein having glycoalkaloid biosynthetic enzyme activity and gene encoding the same
WO2019163601A1 (en) Transgenic plant and use thereof
WO2013077440A1 (en) Plant for producing spirostan-type triterpene
JP6018915B2 (en) Method for producing pentacyclic triterpene compound wherein position 28 is a hydroxymethyl group or a carboxyl group
JP5902801B2 (en) Gene encoding enzyme reducing position 24 of steroid skeleton and plant body in which expression of said gene is reduced
CA2916187C (en) Gene encoding enzyme that oxidizes position 16 of steroid skeleton and plant in which expression level of the gene is lowered
JP2020036591A (en) Plants with increased resistance to colorado potato beetles, method of producing the same, and method of determining resistance to colorado potato beetles in plants
JP5951004B2 (en) Plants in which the expression of a glycoalkaloid biosynthetic enzyme gene is suppressed or the activity of the enzyme is altered
JP7448255B2 (en) Plants with increased resistance to Colorado potato beetle, methods for producing the same, and methods for determining resistance to Colorado potato beetles in plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851130

Country of ref document: EP

Kind code of ref document: A1