WO2011148698A1 - Mems switch - Google Patents

Mems switch Download PDF

Info

Publication number
WO2011148698A1
WO2011148698A1 PCT/JP2011/055743 JP2011055743W WO2011148698A1 WO 2011148698 A1 WO2011148698 A1 WO 2011148698A1 JP 2011055743 W JP2011055743 W JP 2011055743W WO 2011148698 A1 WO2011148698 A1 WO 2011148698A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
fixed terminal
layer
movable
mems switch
Prior art date
Application number
PCT/JP2011/055743
Other languages
French (fr)
Japanese (ja)
Inventor
知徳 藤井
健太郎 中村
泰成 入枝
貴之 高野
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2011148698A1 publication Critical patent/WO2011148698A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/0013Structures dimensioned for mechanical prevention of stiction, e.g. spring with increased stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/01Switches
    • B81B2201/012Switches characterised by the shape
    • B81B2201/018Switches not provided for in B81B2201/014 - B81B2201/016

Definitions

  • the present invention relates to a MEMS (Micro Electro Mechanical Systems) switch.
  • a MEMS switch has a multilayer structure created by using a known thin film forming method.
  • This MEMS switch has a first fixed terminal composed of the end of the first signal line, a second fixed terminal composed of the end of the second signal line, and a movable terminal composed of a conductive layer formed on the movable lever. Both signal lines are made conductive by bringing the movable terminals into contact with both fixed terminals, while the two signal lines are made non-conductive by releasing the contact.
  • FIG. 1B and 1C front, back, top, bottom, left, and right are referred to as top, bottom, front, back, left, and right, respectively, toward the paper surface of FIG.
  • the orientations corresponding to these in FIGS. 1B and 1C are also referred to.
  • the first signal line 101 and the second signal line 102 have a rectangular shape when viewed from above, and the tips of the first signal line 101 and the second signal line 102 have a predetermined interval (no symbol). It is arranged to face each other in parallel.
  • the end of the first signal line 101 is used as the first fixed terminal 101a, and the end of the second signal line 102 is used as the second fixed terminal 102a.
  • the movable lever (no symbol) is formed on the lever body 103 having a rectangular shape when viewed from above, an insulating layer 104 formed on the lever body 103, and formed on the insulating layer 104 so that the shape when viewed from above is rectangular. And a movable terminal 105 made of a conductive layer.
  • the movable terminal 105 is arranged so that the upper surface thereof faces the lower surfaces of both the fixed terminals 101a and 102a in parallel with a predetermined distance CL101.
  • a drive actuator (not shown) is operated to displace the movable terminal 105 of the movable lever upward, and the displacement causes the upper surface of the movable terminal 105 to be moved to the lower surfaces of both the fixed terminals 101a and 102a.
  • both signal lines 101 and 102 can be brought into conduction.
  • the operation of the drive actuator is stopped to return the movable terminal 105 of the movable lever to the initial position, and the upper surface of the movable terminal 105 and the lower surfaces of both the fixed terminals 101a and 102a By releasing the surface contact, both signal lines 101 and 102 in the conductive state can be brought into a non-conductive state.
  • This MEMS switch is configured such that both the signal lines 101 and 102 are brought into conduction by bringing the upper surface of the movable terminal 105 into surface contact with the lower surfaces of both the fixed terminals 101a and 102a. Therefore, the van der Waals force and meniscus are provided. Due to force or the like, there is a possibility that the phenomenon that the movable terminal 105 sticks to both the fixed terminals 101a and 102a in a conductive state, so-called stiction, may occur. When stiction occurs, it is difficult to release the contact between the upper surface of the movable terminal 105 and the lower surfaces of both the fixed terminals 101a and 102a even if the operation of the drive actuator is stopped.
  • Patent Document 1 Another known example of the MEMS switch (see Patent Document 1) will be described with reference to FIG.
  • the front, back, top, bottom, left, and right are referred to as the top, bottom, front, back, left, and right, respectively, as viewed in FIG. 2A.
  • the directions corresponding to these in FIG. 2C are also referred to.
  • the first signal line 201 and the second signal line 202 have a rectangular shape when viewed from above, and the tips of the first signal line 201 and the second signal line 202 have a predetermined interval (no symbol). It is arranged to face each other in parallel.
  • the end of the first signal line 201 is used as the first fixed terminal 201a
  • the end of the second signal line 202 is used as the second fixed terminal 202a.
  • a plurality of hemispherical protrusions 201b and 202b are provided on the lower surfaces of the fixed terminals 201a and 202a so as to face the upper surface of the movable terminal 205 described later.
  • the movable lever (without reference numeral) is formed on the lever body 203 having a rectangular shape when viewed from above, an insulating layer 204 formed on the lever body 203, and on the insulating layer 204 so that the shape when viewed from above is rectangular. And a movable terminal 205 made of a conductive layer.
  • the movable terminal 205 is arranged so that the upper surface thereof faces the lower ends of the plurality of hemispherical protrusions 201b and 202b of the fixed terminals 201a and 202a in parallel with a predetermined distance CL201.
  • a drive actuator (not shown) is actuated to displace the movable terminal 205 of the movable lever upward, and the displacement causes the upper surface of the movable terminal 205 to move to the plurality of fixed terminals 201a and 202a.
  • the signal lines 201 and 202 can be brought into conduction by bringing the lower ends of the hemispherical protrusions 201b and 202b into multipoint contact.
  • FIG. 2 (B) the operation of the drive actuator is stopped and the movable terminal 205 of the movable lever is returned to the initial position, and the upper surface of the movable terminal 205 and a plurality of fixed terminals 201a and 202a.
  • This MEMS switch is configured to bring both signal lines 201 and 202 into a conductive state by bringing the upper surface of the movable terminal 205 into multipoint contact with the lower ends of the plurality of hemispherical protrusions 201b and 202b of both fixed terminals 201a and 202a. Therefore, compared with the surface contact type MEMS switch of FIG. 1, the contact area between the movable terminal 205 and the fixed terminals 201a and 202a in the conductive state can be reduced. Can be suppressed.
  • At least the heights of the plurality of hemispherical protrusions 201b on the first fixed terminal 201a side are equal to each other, and the second fixed terminal 202a side
  • the heights of the plurality of hemispherical protrusions 202b need to be the same.
  • the height of the hemispherical protrusions 201b and 202b is on the order of ⁇ m or nm, and the hemispherical protrusions 201b and 202b are formed using a known thin film forming method,
  • the height of the plurality of hemispherical protrusions 201b on the first fixed terminal 201a side is likely to vary, and the height of the plurality of hemispherical protrusions 202b on the second fixed terminal 202a side is also likely to vary.
  • This variation in height causes variations in the number of contact points in the multi-point contact, so that the contact area between the movable terminal 205 and both signal lines 201 and 202 in the conductive state is likely to vary, and the contact There is a high possibility that transmission loss will vary due to variations in area. That is, although the multipoint contact type MEMS switch shown in FIG. 2 can suppress the occurrence of the stiction, it is difficult to perform stable signal transmission in a conductive state.
  • An object of the present invention includes providing a MEMS switch that can suppress the occurrence of stiction in a conductive state and can perform stable signal transmission in the conductive state.
  • an embodiment of the present invention is provided in a first fixed terminal composed of an end of a first signal line, a second fixed terminal composed of an end of a second signal line, and a movable lever.
  • the first signal is obtained by bringing the movable terminal into contact with the first fixed terminal and the second fixed terminal.
  • a MEMS switch for bringing a line and a second signal line into a conductive state and releasing the contact to bring the first signal line and the second signal line into a non-conductive state, wherein the first fixed terminal and the second fixed terminal are respectively
  • the end edge of the first terminal is closest to the movable terminal, and the portion excluding the end edge has a cross-sectional shape farther from the movable terminal than the end edge. Make line contact with the edge of the terminal.
  • both signal lines are made conductive by bringing the movable terminal into line contact with the edges of both fixed terminals, compared to the conventional surface contact type MEMS switch,
  • the contact area between the movable terminal and both fixed terminals can be reduced. That is, the reduction of the contact area can surely suppress the occurrence of stiction (a phenomenon in which the movable terminal sticks to both fixed terminals in the conductive state).
  • the line contact can be reliably performed over the entire predetermined contact area, the contact area between the movable terminal and both fixed terminals in the conductive state varies as compared with the conventional multi-point contact type MEMS switch. It can be suppressed. That is, it is possible to suppress a variation in transmission loss by suppressing the variation in the contact area, and to perform stable signal transmission in a conductive state.
  • each embodiment of the present invention it is possible to provide a MEMS switch that can suppress the occurrence of stiction in a conductive state and can perform stable signal transmission in the conductive state.
  • FIG. 1A is a partial top view of a MEMS switch showing a known example
  • FIG. 1B is a cross-sectional view taken along line S101-S101 in FIG. 1A
  • FIG. It is sectional drawing which shows the state which carried out.
  • 2A is a partial top view of a MEMS switch showing another known example
  • FIG. 2B is a cross-sectional view taken along line S201-S201 in FIG. 2A
  • FIG. 3 is a top view of the MEMS switch showing the first embodiment of the present invention.
  • 4A is a sectional view taken along line S11-S11 in FIG. 3
  • FIG. 4B is a sectional view taken along line S12-S12 in FIG.
  • FIG. 4C is taken along line S13-S13 in FIG. It is sectional drawing which follows.
  • 5 (A) and 5 (B) are diagrams for explaining the operation of the MEMS switch shown in FIG. 1
  • FIG. 5 (C) is a diagram showing a contact area of both fixed terminals with respect to the movable terminal.
  • FIG. 6 is a view showing a modification of the shape of both fixed terminals shown in FIG. 7A and 7B are diagrams for explaining an example of a method for obtaining both the fixed terminals shown in FIG. 4A and the both fixed terminals shown in FIG.
  • FIG. 8A is a partial top view of a MEMS switch showing a second embodiment of the present invention
  • FIG. 8B is a diagram showing a contact area of both fixed terminals with respect to a movable terminal.
  • FIG. 9A is a partial top view of a MEMS switch showing a third embodiment of the present invention
  • FIG. 9B is a diagram showing a contact area of both fixed terminals with respect to the movable terminal.
  • FIG. 10A is a partial top view of a MEMS switch showing a fourth embodiment of the present invention
  • FIG. 10B is a diagram showing a contact area of both fixed terminals with respect to a movable terminal.
  • FIG. 11 is a top view of a MEMS switch showing a fifth embodiment of the present invention.
  • the front, back, top, bottom, left, and right are referred to as top, bottom, front, back, left, and right, respectively, and correspond to these in other drawings.
  • the direction is also referred to.
  • FIG. 8A, FIG. 9A, FIG. 10A, FIG. 11 and the drawings corresponding thereto the reference regarding the orientation follows the same rules as in FIG.
  • the MEMS switch 10-1 has a multi-layer structure created by using a known thin film forming method, and the front-rear dimension can be about 3.0 mm and the left-right dimension can be about 1.5 mm.
  • the base layer 11 is formed using Si or the like as a material so that the top view shape is rectangular.
  • An insulating layer 12 made of SiO 2 or the like is formed on the entire upper surface of the base layer 11.
  • the base layer 11 and the insulating layer 12 are formed with through holes 11a and 12a having a U-shape when viewed from above.
  • a movable lever ML having a rectangular shape when viewed from above, which is composed of a part 11b of the base layer 11 and a part 12b of the insulating layer 12.
  • a plurality (three in the figure) of through-holes 11b1 and 12b1 are formed in front of the center of the movable lever ML in the front-rear direction.
  • the rear part of the movable lever ML from the through holes 11b1 and 12b1 corresponds to the main body part MLa
  • the front part of the through holes 11b1 and 12b1 corresponds to the movable part MLb
  • the part in which the through holes 11b1 and 12b1 are formed Corresponds to the hinge part MLc.
  • the first electrode layer 13 is formed on the upper surface (the upper surface of the portion 12b of the insulating layer 12) of the movable lever ML so as to extend from the upper surface to the rear side.
  • the first electrode layer 13 is formed so that its top view shape forms a rectangle, and has an overhang portion 13a whose top view shape forms a rectangle on the right side of the rear part.
  • the first electrode layer 13 has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and a Pt layer having a thickness of 200 nm formed thereon.
  • a piezoelectric layer 14 made of PZT or the like is formed on the upper surface of the first electrode layer 13 (excluding the overhanging portion 13 a) in the same top view shape as the first electrode layer 13.
  • the second electrode layer 15 is formed on the upper surface of the piezoelectric layer 14 in the same top view shape as the piezoelectric layer 14.
  • the second electrode layer 15 has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and a Pt layer having a thickness of 200 nm formed thereon.
  • the first electrode layer 13, the piezoelectric layer 14, and the second electrode layer 15 constitute a drive actuator (no symbol) for deforming the body portion MLa of the movable lever ML so as to warp.
  • a movable terminal MT made of a conductive layer is formed on the upper surface of the movable portion MLb of the movable lever ML (the upper surface of the part 12b of the insulating layer 12) so that the shape of the upper surface when viewed from above is rectangular.
  • the movable terminal MT (conductive layer) has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.
  • a power input terminal 16 made of a conductive layer is formed on the upper surface of the rear portion of the second electrode layer 15 so that the shape of the upper surface view is rectangular.
  • the power input terminal 16 (conductive layer) has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.
  • the ground terminal 17 made of a conductive layer is formed on the upper surface of the overhanging portion 13a of the first electrode layer 13 so that the shape of the top view is rectangular.
  • the ground terminal 17 (conductive layer) has, for example, a multilayer structure composed of a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.
  • a first signal line SL11 having a predetermined width made of a conductive layer and a second signal line SL12 made of a conductive layer and having the same width as the first signal line SL11 are arranged on the left and right sides of the movable terminal MT. It is formed so as to be symmetrical with respect to the center in the direction.
  • the first signal line SL11 (conductive layer) and the second signal line SL12 (conductive layer) are, for example, (1) a Ti layer having a thickness of 5 nm, an Au layer having a thickness of 200 nm formed thereon, and an upper layer thereof.
  • a multi-layer structure (four-layer structure) composed of a 3 ⁇ m thick Au layer formed thereon and a 200 nm thick SiO 2 layer formed thereon, and (2) a 5 nm thick Ti layer and formed thereon. And a multilayer structure (three-layer structure) composed of an Au layer having a thickness of 200 nm and an Au layer having a thickness of 3 ⁇ m formed thereon.
  • the first signal line SL11 has a portion joined to the insulating layer 12 and a non-joined portion continuous with the portion.
  • An end portion (right end portion in the figure) of the non-joined portion has a cross-sectional shape inclined toward the movable terminal MT, and the end portion is used as the first fixed terminal FT11.
  • the second signal line SL12 has a portion joined to the insulating layer 12 and a non-joined portion continuous with the portion, and an end portion (left end portion in the figure) of the non-joined portion is connected to the movable terminal MT. The end portion is used as the second fixed terminal FT12.
  • both fixed terminals FT11 and FT12 face each other in parallel in the left-right direction with a predetermined interval (no symbol).
  • the end edges of both fixed terminals FT11 and FT12 face the upper surface of the movable terminal MT in parallel with a predetermined distance CL11.
  • represents the tilt angle of both fixed terminals FT11 and FT12.
  • the inclination angle ⁇ is 1 to 45 degrees, preferably 3 to 5 degrees.
  • the power input terminal 16 and the ground terminal 17 are connected to a variable DC power supply (not shown), and the power input terminal 16 is connected to the variable DC power supply.
  • a drive voltage is applied to.
  • the piezoelectric layer 14 of the driving actuator is contracted by the piezoelectric effect, and the main body MLa of the movable lever ML is warped up by the contraction.
  • the movable terminal MT on the movable portion MLc is displaced upward, and the displacement causes the upper surface of the movable terminal MT to come into contact with the edges of both the fixed terminals FT11 and FT12 so as to slightly push the movable terminal MTc.
  • the upper surface of the MT is in line contact with the edges of the fixed terminals FT11 and FT12 under a predetermined contact pressure (see FIGS. 5A and 5B).
  • the movable portion MLb warps together with the main end portion MLa, but since there is a hinge portion MLc which is more flexible than the movable portion MLb, the movable terminal MT contacts the edges of the fixed terminals FT11 and FT12.
  • the movable part MLb tilts by utilizing the flexibility of the hinge part MLc, and the tilting causes the upper surface of the movable terminal MT to be in line contact with the edges of the fixed terminals FT11 and FT12.
  • the upper surface of the movable terminal MT is in contact so as to slightly push up the edges of the fixed terminals FT11 and FT12, even if the edges of the fixed terminals FT11 and FT12 are displaced in the vertical direction, this push-up action is performed.
  • This offsets the displacement, and the upper surface of the movable terminal MT is surely in line contact with the end edges of the fixed terminals FT11 and FT12. That is, the line contact between the movable terminal MT and the fixed terminals FT11 and FT12 is, as shown in FIG. 5C, a predetermined contact area CR11 and CR12 according to the width of the edge of the fixed terminals FT11 and FT12. It is reliably performed over substantially the entire area.
  • the upper surface of the movable terminal MT comes into contact with the edges of the fixed terminals FT11 and FT12 slightly pushed up. If the fixed terminals FT11 and FT12 have appropriate rigidity and the inclination angle ⁇ is appropriately set based on the rigidity and the pushing force, the line contact is shown in FIG. This can be ensured over substantially the entire contact area CR11 and CR12. In other words, even if the upper surface of the movable terminal MT contacts with the upper edges of the fixed terminals FT11 and FT12 pushed up, the line contact can be ensured without any problem, and the line contact does not become a surface contact.
  • the application of the drive voltage to the power input terminal 16 may be canceled.
  • the operation of the drive actuator is stopped, the movable lever ML is restored, the movable terminal MT is returned to the initial position, and the upper surface of the movable terminal MT and the edges of the fixed terminals FT11 and FT12 are connected.
  • the line contact is released (see FIG. 4A).
  • the two fixed terminals FT11 and FT12 have cross-sectional shapes inclined toward the movable terminal MT.
  • the fixed terminals FT11 ′ and FT12 ′ are movable terminals. Even when a cross-sectional shape curved toward the MT is employed, the line contact and the release thereof can be similarly performed.
  • the cross-sectional shapes of the two fixed terminals are not limited to those shown in FIGS. 4A and 6. In short, the edges of the two fixed terminals are closest to the movable terminal MT and the edges are excluded. Even if a portion whose cross-sectional shape is further away from the movable terminal MT than the end edge is used as both the fixed terminals, the line contact and the release can be similarly performed.
  • both signal lines SL11 and SL12 are formed.
  • both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) need to be inclined or curved.
  • both signal lines SL11 and SL12 are “formed on the 5 nm thick Ti layer, the 200 nm thick Au layer formed thereon, and the 3 ⁇ m thick Au layer formed thereon.
  • a case of having a “multilayer structure (four-layer structure) composed of a SiO 2 layer having a thickness of 200 nm” will be described as an example, and a first method example will be specifically described with reference to FIG. 7A corresponds to a Ti layer having a thickness of 5 nm, LA12 corresponds to an Au layer having a thickness of 200 nm, LA13 corresponds to an Au layer having a thickness of 3 ⁇ m, and LA14 corresponds to an SiO 2 layer having a thickness of 200 nm.
  • both signal lines SL11 and SL12 are formed by forming a Ti layer LA11 by DC sputtering on a patterned resist (not shown) and forming an Au layer LA12 by DC sputtering on the Ti layer LA11.
  • the substrate temperature is set to 300 ° C., which is higher than the normal temperature, and the temperature is lowered to 20 ° C. after the formation of the SiO 2 layer LA14.
  • both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) have the cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG.
  • both signal lines SL11 and SL12 are “a multilayer structure (3 nm comprising a Ti layer having a thickness of 5 nm, an Au layer having a thickness of 200 nm formed thereon, and an Au layer having a thickness of 3 ⁇ m formed thereon.
  • a second method example will be specifically described with reference to FIG. 7B corresponds to a Ti layer having a thickness of 5 nm
  • LA 22 corresponds to an Au layer having a thickness of 200 nm
  • LA 23 corresponds to an Au layer having a thickness of 3 ⁇ m.
  • both signal lines SL11 and SL12 form a Ti layer LA21 by DC sputtering on the patterned resist RE, form an Au layer LA22 by DC sputtering on the Ti layer LA21, and form Ti layers LA21 and SL21.
  • a step of forming a plating seed layer (no symbol) made of the Au layer L22, a step of forming an Au layer LA23 on the plating seed layer by electrolytic plating, and a step of removing the resist RE used for forming the plating seed layer Created through.
  • a resist that can be heated and shrunk for example, a novolac positive resist is used, and as a step before removing the resist RE, the resist RE is heated at 180 ° C. for 1 hour. A step of heating and holding is performed.
  • both fixed terminals (FT11 and FT12, FT11 'and FT12') have the cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG.
  • the surface contact type MEMS shown in FIG. Compared with the switch, the contact area between the movable terminal MT and the fixed terminals FT11 and FT12 in the conductive state can be reduced. That is, the reduction of the contact area can surely suppress the occurrence of stiction (a phenomenon in which the movable terminal MT sticks to both the fixed terminals FT11 and FT12 in the conductive state).
  • the MEMS switch 10-2 is different from the MEMS switch 10-1 described in the first embodiment, as shown in FIG. 8A, both fixed terminals rather than the width W11 of both signal lines SL21 and SL22. This is because the width W12 of the tip (edge) of FT21 and FT22 is reduced.
  • the line contact between the movable terminal MT and both the fixed terminals FT21 and FT22 is, as shown in FIG. 8B, a predetermined contact area CR21 corresponding to the width W12 of the edges of the both fixed terminals FT21 and FT21. And substantially over the entire region of CR22.
  • the contact area of the fixed terminals FT21 and FT22 with respect to the movable terminal MT can be easily adjusted by changing the width W12 of the edges of the fixed terminals FT21 and FT22.
  • the MEMS switch 10-3 is different from the MEMS switch 10-1 described in the first embodiment, as shown in FIG. 9A, the top view shape is substantially the tip of the first fixed terminal FT31.
  • Two convex portions FT31a forming a semicircular shape are integrally formed, and two convex portions 32a having a substantially semicircular shape when viewed from the top are symmetrical to the convex portion FT31a at the tip of the second fixed terminal FT31. In this way, it is integrally formed.
  • the same number of convex portions FT31a and 32a are integrally formed at the tips of both fixed terminals FT31 and FT32.
  • the line contact between the movable terminal MT and the fixed terminals FT31 and FT32 is, as shown in FIG. 9B, a predetermined contact area corresponding to the shape (arc) of the edge of each convex portion FT31a and FT32a. This is ensured over substantially the entire region of CR31 and CR32.
  • the following effect (4) can be obtained.
  • the contact area of the fixed terminals FT31 and FT32 with respect to the movable terminal MT can be easily adjusted by changing the size and number of the convex portions FT31a and FT32a. This effect can be similarly obtained even when one convex portion FT31a and FT32a are integrally formed at the tips of both fixed terminals FT31 and FT32, or when three or more convex portions FT31a and FT32a are integrally formed. Even when the top-view shape of each of the convex portions FT31a and FT32a is a U-shape or a rectangle, the same can be obtained.
  • the MEMS switch 10-4 is different from the MEMS switch 10-1 described in the first embodiment, as shown in FIG. 10A, the top view shape is substantially the tip of the first fixed terminal FT41.
  • Two convex portions FT41a having a semicircular shape are integrally formed, and one convex portion 42a having a substantially semicircular shape when viewed from above is integrally formed at the tip of the second fixed terminal FT41.
  • the number of convex portions FT41a integrally formed at the tips of both fixed terminals FT41 is different from the number of convex portions FT42a integrally formed at the tips of FT42.
  • the line contact between the movable terminal MT and the fixed terminals FT41 and FT42 is a predetermined contact corresponding to the shape (arc) of the edge of each convex portion FT41a and FT42a, as shown in FIG. This is ensured over substantially the entire region CR41 and CR42.
  • the following effects (5) and (6) can be obtained.
  • the contact area of the fixed terminals FT41 and FT42 with respect to the movable terminal MT can be easily adjusted by changing the size and number of the convex portions FT41a and FT42a.
  • This effect is obtained when three or more convex portions FT41a are integrally formed at the tip of the first fixed terminal FT41 and two or more convex portions FT42a are integrally formed at the tip of the second fixed terminal FT42.
  • the same can be obtained when the top-view shapes of the parts FT41a and FT42a are U-shaped or rectangular.
  • This MEMS switch 10-5 differs from the MEMS switch 10-1 described in the first embodiment in that the longitudinal dimensions of the base layer 11 ′ and the insulating layer 12 ′ are increased as shown in FIG.
  • the movable lever ML composed of a part 11b ′ of the base layer 11 and a part 12b ′ of the insulating layer 12 is lengthened.
  • the movable lever ML ′ includes two main body parts MLa and one movable part MLb.
  • the first electrode layer 13, the piezoelectric layer 14, and the first electrode layer 13 constituting the drive actuator are also formed on the upper surface of the main body MLa on the front side (ie, the point changed from the cantilever structure to the double-sided structure).
  • the second electrode layer 15 is formed, and the power input terminal 16 and the ground terminal 17 corresponding to the drive actuator provided on the upper surface of the front body part MLa are added.
  • the movable terminal MT on the movable portion MLc is displaced upward, and the displacement causes the upper surface of the movable terminal MT to come into contact with the edges of the fixed terminals FT11 and FT12 so as to slightly lift the movable terminal MTc.
  • the upper surface of the terminal MT is in line contact with the edges of the fixed terminals FT11 and FT12 under a predetermined contact pressure (see FIGS. 5A and 5B).
  • the effects (1) and (2) described in the first embodiment can be obtained although the configuration of the movable lever ML 'and the like is different. Further, the features described in the second embodiment, the third embodiment, and the fourth embodiment can be appropriately adopted for the MEMS switch 10-5, and the effect (3) described in the second embodiment by the adoption. ), The effect (4) described in the third embodiment, and the effects (5) and (6) described in the fourth embodiment can be appropriately obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Contacts (AREA)

Abstract

Disclosed is a MEMS switch that minimizes closed-switch stiction and allows stable signal transmission when the switch is in a closed state. A first fixed terminal (FT11) and second fixed terminal (FT12) in the disclosed MEMS switch (10-1) have a cross-sectional shape in which the ends of said fixed terminals approach the closest to a movable terminal (MT) and the parts of said fixed terminals other than said ends are farther from the movable terminal (MT) than said ends are. When the switch is closed, the movable terminal (MT) contacts the ends of the first fixed terminal (FT11) and the second fixed terminal (FT12), with each contact area constituting a line.

Description

MEMSスイッチMEMS switch
 本発明は、MEMS(Micro Electro Mechanical Systems)スイッチに関する。 The present invention relates to a MEMS (Micro Electro Mechanical Systems) switch.
 ダイオードやFET等を用いた半導体スイッチは周波数が高くなるに従って伝送損失増加やアイソレーション低下等の特性悪化を生じる。しかしながら、MEMSスイッチはこのような特性悪化を生じ難いことから、高周波回路、例えば数GHz~数百GHzの高周波信号が流れる回路に用いるのに好適なスイッチングデバイスとして着目されている。 Semiconductor switches using diodes, FETs, etc., deteriorate in characteristics such as transmission loss increase and isolation decrease as the frequency increases. However, since the MEMS switch is unlikely to cause such deterioration of characteristics, it is attracting attention as a switching device suitable for use in a high-frequency circuit, for example, a circuit through which a high-frequency signal of several GHz to several hundred GHz flows.
 一般に、MEMSスイッチは、公知の薄膜形成手法を用いて作成された多層構造を有している。このMEMSスイッチは、第1信号線路の端部から成る第1固定端子と、第2信号線路の端部から成る第2固定端子と、可動レバーに形成された導電層から成る可動端子とを有しており、両固定端子に可動端子を接触させることによって両信号線路を導通状態とし、一方、該接触を解くことによって両信号線路を非導通状態とする。 Generally, a MEMS switch has a multilayer structure created by using a known thin film forming method. This MEMS switch has a first fixed terminal composed of the end of the first signal line, a second fixed terminal composed of the end of the second signal line, and a movable terminal composed of a conductive layer formed on the movable lever. Both signal lines are made conductive by bringing the movable terminals into contact with both fixed terminals, while the two signal lines are made non-conductive by releasing the contact.
 先ず、図1を参照して、MEMSスイッチの一公知例について説明する。この説明では、説明の便宜上、図1(A)の紙面に向かって手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称する。図1(B)及び図1(C)のこれらに相当する向きも同様に称する。 First, a known example of a MEMS switch will be described with reference to FIG. In this description, for convenience of explanation, front, back, top, bottom, left, and right are referred to as top, bottom, front, back, left, and right, respectively, toward the paper surface of FIG. The orientations corresponding to these in FIGS. 1B and 1C are also referred to.
 図1(A)及び図1(B)に示されるように、第1信号線路101及び第2信号線路102は上面視形状が矩形を成していて、各々の先端が所定間隔(符号無し)をおいて平行に向き合うように配置されている。第1信号線路101の端部は第1固定端子101aとして用いられ、第2信号線路102の端部は第2固定端子102aとして用いられる。 As shown in FIGS. 1 (A) and 1 (B), the first signal line 101 and the second signal line 102 have a rectangular shape when viewed from above, and the tips of the first signal line 101 and the second signal line 102 have a predetermined interval (no symbol). It is arranged to face each other in parallel. The end of the first signal line 101 is used as the first fixed terminal 101a, and the end of the second signal line 102 is used as the second fixed terminal 102a.
 可動レバー(符号無し)は、上面視形状が矩形を成すレバー本体103と、該レバー本体103上に形成された絶縁層104と、上面視形状が矩形を成すように該絶縁層104上に形成された導電層から成る可動端子105と、を有している。可動端子105は、その上面が両固定端子101a及び102aの下面と所定間隔CL101をおいて平行に向き合うように配置されている。 The movable lever (no symbol) is formed on the lever body 103 having a rectangular shape when viewed from above, an insulating layer 104 formed on the lever body 103, and formed on the insulating layer 104 so that the shape when viewed from above is rectangular. And a movable terminal 105 made of a conductive layer. The movable terminal 105 is arranged so that the upper surface thereof faces the lower surfaces of both the fixed terminals 101a and 102a in parallel with a predetermined distance CL101.
 図1(C)に示されるように、不図示の駆動アクチュエータを作動させて可動レバーの可動端子105を上方に変位させ、該変位によって可動端子105の上面を両固定端子101a及び102aの下面に面接触させることによって、両信号線路101と102とを導通状態とすることができる。一方、図1(B)に示されるように、駆動アクチュエータの作動を停止して可動レバーの可動端子105を初期位置に復帰させ、該可動端子105の上面と両固定端子101a及び102aの下面との面接触を解除することによって、導通状態にある両信号線路101及び102を非導通状態とすることができる。 As shown in FIG. 1C, a drive actuator (not shown) is operated to displace the movable terminal 105 of the movable lever upward, and the displacement causes the upper surface of the movable terminal 105 to be moved to the lower surfaces of both the fixed terminals 101a and 102a. By making surface contact, both signal lines 101 and 102 can be brought into conduction. On the other hand, as shown in FIG. 1B, the operation of the drive actuator is stopped to return the movable terminal 105 of the movable lever to the initial position, and the upper surface of the movable terminal 105 and the lower surfaces of both the fixed terminals 101a and 102a By releasing the surface contact, both signal lines 101 and 102 in the conductive state can be brought into a non-conductive state.
 このMEMSスイッチは、可動端子105の上面を両固定端子101a及び102aの下面に面接触させることによって両信号線路101及び102が導通状態となるように構成されているため、ファンデルワールス力やメニスカス力等を原因として、導通状態で可動端子105が両固定端子101a及び102aに張り付く現象、所謂、スティクションを生じる恐れがある。スティクションを生じた場合には、駆動アクチュエータの作動を停止しても、可動端子105の上面と両固定端子101a及び102aの下面との接触を解除することが困難となる。 This MEMS switch is configured such that both the signal lines 101 and 102 are brought into conduction by bringing the upper surface of the movable terminal 105 into surface contact with the lower surfaces of both the fixed terminals 101a and 102a. Therefore, the van der Waals force and meniscus are provided. Due to force or the like, there is a possibility that the phenomenon that the movable terminal 105 sticks to both the fixed terminals 101a and 102a in a conductive state, so-called stiction, may occur. When stiction occurs, it is difficult to release the contact between the upper surface of the movable terminal 105 and the lower surfaces of both the fixed terminals 101a and 102a even if the operation of the drive actuator is stopped.
 次に、図2を参照して、MEMSスイッチの他の公知例(特許文献1を参照)について説明する。この説明では、説明の便宜上、図2(A)の紙面に向かって手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称し、図2(B)及び図2(C)のこれらに相当する向きも同様に称する。 Next, another known example of the MEMS switch (see Patent Document 1) will be described with reference to FIG. In this description, for convenience of explanation, the front, back, top, bottom, left, and right are referred to as the top, bottom, front, back, left, and right, respectively, as viewed in FIG. 2A. The directions corresponding to these in FIG. 2C are also referred to.
 図2(A)及び図2(B)に示されるように、第1信号線路201及び第2信号線路202は上面視形状が矩形を成していて、各々の先端が所定間隔(符号無し)をおいて平行に向き合うように配置されている。第1信号線路201の端部は第1固定端子201aとして用いられ、第2信号線路202の端部は第2固定端子202aとして用いられる。また、両固定端子201a及び202aの下面それぞれには、複数の半球状突起201b及び202bが後記可動端子205の上面と向き合うように設けられている。 As shown in FIGS. 2 (A) and 2 (B), the first signal line 201 and the second signal line 202 have a rectangular shape when viewed from above, and the tips of the first signal line 201 and the second signal line 202 have a predetermined interval (no symbol). It is arranged to face each other in parallel. The end of the first signal line 201 is used as the first fixed terminal 201a, and the end of the second signal line 202 is used as the second fixed terminal 202a. A plurality of hemispherical protrusions 201b and 202b are provided on the lower surfaces of the fixed terminals 201a and 202a so as to face the upper surface of the movable terminal 205 described later.
 可動レバー(符号無し)は、上面視形状が矩形を成すレバー本体203と、該レバー本体203上に形成された絶縁層204と、上面視形状が矩形を成すように該絶縁層204上に形成された導電層から成る可動端子205と、を有している。可動端子205は、その上面が両固定端子201a及び202aの複数の半球状突起201b及び202bの下端と所定間隔CL201をおいて平行に向き合うように配置されている。 The movable lever (without reference numeral) is formed on the lever body 203 having a rectangular shape when viewed from above, an insulating layer 204 formed on the lever body 203, and on the insulating layer 204 so that the shape when viewed from above is rectangular. And a movable terminal 205 made of a conductive layer. The movable terminal 205 is arranged so that the upper surface thereof faces the lower ends of the plurality of hemispherical protrusions 201b and 202b of the fixed terminals 201a and 202a in parallel with a predetermined distance CL201.
 図2(C)に示されるように、不図示の駆動アクチュエータを作動して可動レバーの可動端子205を上方に変位させ、該変位によって可動端子205の上面を両固定端子201a及び202aの複数の半球状突起201b及び202bの下端に多点接触させることによって両信号線路201と202とを導通状態とすることができる。一方、図2(B)に示されるように、駆動アクチュエータの作動を停止して可動レバーの可動端子205を初期位置に復帰させ、該可動端子205の上面と両固定端子201a及び202aの複数の半球状突起201b及び202bの下端との多点接触を解除することによって導通状態にある両信号線路201及び202を非導通状態とすることができる。 As shown in FIG. 2C, a drive actuator (not shown) is actuated to displace the movable terminal 205 of the movable lever upward, and the displacement causes the upper surface of the movable terminal 205 to move to the plurality of fixed terminals 201a and 202a. The signal lines 201 and 202 can be brought into conduction by bringing the lower ends of the hemispherical protrusions 201b and 202b into multipoint contact. On the other hand, as shown in FIG. 2 (B), the operation of the drive actuator is stopped and the movable terminal 205 of the movable lever is returned to the initial position, and the upper surface of the movable terminal 205 and a plurality of fixed terminals 201a and 202a. By releasing the multipoint contact with the lower ends of the hemispherical protrusions 201b and 202b, both signal lines 201 and 202 in the conductive state can be brought into a non-conductive state.
 このMEMSスイッチは、可動端子205の上面を両固定端子201a及び202aの複数の半球状突起201b及び202bの下端に多点接触させることによって両信号線路201及び202を導通状態となるように構成されているため、図1の面接触タイプのMEMSスイッチと比べて、導通状態における可動端子205と両固定端子201a及び202aとの接触面積を減少させることができ、該接触面積の減少によって前記スティクションの発生を抑制することが可能である。 This MEMS switch is configured to bring both signal lines 201 and 202 into a conductive state by bringing the upper surface of the movable terminal 205 into multipoint contact with the lower ends of the plurality of hemispherical protrusions 201b and 202b of both fixed terminals 201a and 202a. Therefore, compared with the surface contact type MEMS switch of FIG. 1, the contact area between the movable terminal 205 and the fixed terminals 201a and 202a in the conductive state can be reduced. Can be suppressed.
 図2に示したMEMSスイッチにおいて前記多点接触を実現するには、少なくとも、第1固定端子201a側の複数の半球状突起201bの高さを互いに同じにし、且つ、第2固定端子202a側の複数の半球状突起202bの高さを互いに同じにする必要がある。 In order to realize the multipoint contact in the MEMS switch shown in FIG. 2, at least the heights of the plurality of hemispherical protrusions 201b on the first fixed terminal 201a side are equal to each other, and the second fixed terminal 202a side The heights of the plurality of hemispherical protrusions 202b need to be the same.
 しかしながら、半球状突起201b及び202bの高さはμmオーダー或いはnmオーダーであり、しかも、半球状突起201b及び202bは公知の薄膜形成手法を用いて形成されるものであることから、実際上、第1固定端子201a側の複数の半球状突起201bの高さにバラツキが生じ易く、且つ、第2固定端子202a側の複数の半球状突起202bの高さにもバラツキを生じ易い。 However, since the height of the hemispherical protrusions 201b and 202b is on the order of μm or nm, and the hemispherical protrusions 201b and 202b are formed using a known thin film forming method, The height of the plurality of hemispherical protrusions 201b on the first fixed terminal 201a side is likely to vary, and the height of the plurality of hemispherical protrusions 202b on the second fixed terminal 202a side is also likely to vary.
 この高さのバラツキは前記多点接触の接触点数にバラツキを生じさせる要因となるため、導通状態における可動端子205と両信号線路201及び202との接触域の面積にバラツキを生じ易く、該接触域面積のバラツキによって伝送損失にバラツキが生じる可能性が高い。即ち、図2に示した多点接触タイプのMEMSスイッチは、前記スティクションの発生を抑制できるものの、導通状態において安定した信号伝送を行うことが困難である。 This variation in height causes variations in the number of contact points in the multi-point contact, so that the contact area between the movable terminal 205 and both signal lines 201 and 202 in the conductive state is likely to vary, and the contact There is a high possibility that transmission loss will vary due to variations in area. That is, although the multipoint contact type MEMS switch shown in FIG. 2 can suppress the occurrence of the stiction, it is difficult to perform stable signal transmission in a conductive state.
特開2007-012558号公報JP 2007-012558 A
 本発明の目的は、導通状態におけるスティクションの発生を抑制できると共に導通状態において安定した信号伝送を行えるMEMSスイッチを提供することを含む。 An object of the present invention includes providing a MEMS switch that can suppress the occurrence of stiction in a conductive state and can perform stable signal transmission in the conductive state.
 前記目的を達成するため、本発明の一実施形態は、第1信号線路の端部から成る第1固定端子と、第2信号線路の端部から成る第2固定端子と、可動レバーに設けられた導電層から成り、且つ、第1固定端子及び第2固定端子と間隔をおいて向き合う可動端子とを有し、第1固定端子及び第2固定端子に可動端子を接触させることによって第1信号線路及び第2信号線路を導通状態とすると共に該接触を解くことによって第1信号線路及び第2信号線路を非導通状態とするMEMSスイッチであって、第1固定端子及び第2固定端子は各々の端縁が可動端子に最も近づき、且つ、端縁を除く部分が該端縁よりも可動端子から離れた断面形状を成していて、導通状態において可動端子は第1固定端子及び第2固定端子の端縁に線接触する。 In order to achieve the above object, an embodiment of the present invention is provided in a first fixed terminal composed of an end of a first signal line, a second fixed terminal composed of an end of a second signal line, and a movable lever. The first fixed terminal and the second fixed terminal, and a movable terminal facing the first fixed terminal and the second fixed terminal at an interval. The first signal is obtained by bringing the movable terminal into contact with the first fixed terminal and the second fixed terminal. A MEMS switch for bringing a line and a second signal line into a conductive state and releasing the contact to bring the first signal line and the second signal line into a non-conductive state, wherein the first fixed terminal and the second fixed terminal are respectively The end edge of the first terminal is closest to the movable terminal, and the portion excluding the end edge has a cross-sectional shape farther from the movable terminal than the end edge. Make line contact with the edge of the terminal.
 このMEMSスイッチによれば、可動端子を両固定端子の端縁に線接触させることによって両信号線路を導通状態とするものであるため、従前の面接触タイプのMEMSスイッチと比べて、導通状態における可動端子と両固定端子との接触面積を減少できる。即ち、この接触面積の減少によってスティクション(導通状態で可動端子が両固定端子に張り付く現象)の発生を確実に抑制することができる。 According to this MEMS switch, since both signal lines are made conductive by bringing the movable terminal into line contact with the edges of both fixed terminals, compared to the conventional surface contact type MEMS switch, The contact area between the movable terminal and both fixed terminals can be reduced. That is, the reduction of the contact area can surely suppress the occurrence of stiction (a phenomenon in which the movable terminal sticks to both fixed terminals in the conductive state).
 また、前記線接触を所定の接触域の全域に亘って確実に行えるので、従前の多点接触タイプのMEMSスイッチと比べて、導通状態における可動端子と両固定端子との接触域面積にバラツキを生じることを抑制できる。即ち、この接触域面積のバラツキの抑制によって伝送損失にバラツキが生じることを抑制して、導通状態において安定した信号伝送を行うことができる。 In addition, since the line contact can be reliably performed over the entire predetermined contact area, the contact area between the movable terminal and both fixed terminals in the conductive state varies as compared with the conventional multi-point contact type MEMS switch. It can be suppressed. That is, it is possible to suppress a variation in transmission loss by suppressing the variation in the contact area, and to perform stable signal transmission in a conductive state.
 本発明の各実施形態によれば、導通状態におけるスティクションの発生を抑制できると共に導通状態において安定した信号伝送を行えるMEMSスイッチを提供することができる。 According to each embodiment of the present invention, it is possible to provide a MEMS switch that can suppress the occurrence of stiction in a conductive state and can perform stable signal transmission in the conductive state.
 本発明の前記目的とそれ以外の目的、構成特徴、及び作用効果は、以下の説明と添付図面によってさらに明らかとなる。 The above object and other objects, structural features, and operational effects of the present invention will be further clarified by the following description and attached drawings.
図1(A)は一公知例を示すMEMSスイッチの部分上面図、図1(B)は図1(A)のS101-S101線に沿う断面図、図1(C)は両信号線路が導通した状態を示す断面図である。1A is a partial top view of a MEMS switch showing a known example, FIG. 1B is a cross-sectional view taken along line S101-S101 in FIG. 1A, and FIG. It is sectional drawing which shows the state which carried out. 図2(A)は他の公知例を示すMEMSスイッチの部分上面図、図2(B)は図2(A)のS201-S201線に沿う断面図、図2(C)は両信号線路が導通した状態を示す断面図である。2A is a partial top view of a MEMS switch showing another known example, FIG. 2B is a cross-sectional view taken along line S201-S201 in FIG. 2A, and FIG. It is sectional drawing which shows the state which conduct | electrically_connected. 図3は本発明の第1実施形態を示すMEMSスイッチの上面図である。FIG. 3 is a top view of the MEMS switch showing the first embodiment of the present invention. 図4(A)は図3のS11-S11線に沿う断面図、図4(B)は図3のS12-S12線に沿う断面図、図4(C)は図3のS13-S13線に沿う断面図である。4A is a sectional view taken along line S11-S11 in FIG. 3, FIG. 4B is a sectional view taken along line S12-S12 in FIG. 3, and FIG. 4C is taken along line S13-S13 in FIG. It is sectional drawing which follows. 図5(A)及び図5(B)は図1に示したMEMSスイッチの動作説明図、図5(C)は可動端子に対する両固定端子の接触域を示す図である。5 (A) and 5 (B) are diagrams for explaining the operation of the MEMS switch shown in FIG. 1, and FIG. 5 (C) is a diagram showing a contact area of both fixed terminals with respect to the movable terminal. 図6は図4(A)に示した両固定端子の形状変形例を示す図である。FIG. 6 is a view showing a modification of the shape of both fixed terminals shown in FIG. 図7(A)及び図7(B)は図4(A)に示した両固定端子と図6に示した両固定端子を得る方法例を説明する図である。7A and 7B are diagrams for explaining an example of a method for obtaining both the fixed terminals shown in FIG. 4A and the both fixed terminals shown in FIG. 図8(A)は本発明の第2実施形態を示すMEMSスイッチの部分上面図、図8(B)は可動端子に対する両固定端子の接触域を示す図である。FIG. 8A is a partial top view of a MEMS switch showing a second embodiment of the present invention, and FIG. 8B is a diagram showing a contact area of both fixed terminals with respect to a movable terminal. 図9(A)は本発明の第3実施形態を示すMEMSスイッチの部分上面図、図9(B)は可動端子に対する両固定端子の接触域を示す図である。FIG. 9A is a partial top view of a MEMS switch showing a third embodiment of the present invention, and FIG. 9B is a diagram showing a contact area of both fixed terminals with respect to the movable terminal. 図10(A)は本発明の第4実施形態を示すMEMSスイッチの部分上面図、図10(B)は可動端子に対する両固定端子の接触域を示す図である。FIG. 10A is a partial top view of a MEMS switch showing a fourth embodiment of the present invention, and FIG. 10B is a diagram showing a contact area of both fixed terminals with respect to a movable terminal. 図11は本発明の第5実施形態を示すMEMSスイッチの上面図である。FIG. 11 is a top view of a MEMS switch showing a fifth embodiment of the present invention.
 第1実施形態
 先ず、図3~図7を参照して、本発明を適用したMEMSスイッチ10-1について説明する。この説明では、説明の便宜上、図3の紙面に向かって手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称し、他の図のこれらに相当する向きも同様に称する。図8(A)、図9(A)、図10(A)、図11及びこれらに相当する図面においても、向きに関する言及は図3の場合と同様の規則に従う。
First Embodiment First, a MEMS switch 10-1 to which the present invention is applied will be described with reference to FIGS. In this description, for convenience of explanation, the front, back, top, bottom, left, and right are referred to as top, bottom, front, back, left, and right, respectively, and correspond to these in other drawings. The direction is also referred to. In FIG. 8A, FIG. 9A, FIG. 10A, FIG. 11 and the drawings corresponding thereto, the reference regarding the orientation follows the same rules as in FIG.
 このMEMSスイッチ10-1は、公知の薄膜形成手法を用いて作成された多層構造を有しており、前後寸法は約3.0mm、左右寸法は約1.5mmとすることができる。 The MEMS switch 10-1 has a multi-layer structure created by using a known thin film forming method, and the front-rear dimension can be about 3.0 mm and the left-right dimension can be about 1.5 mm.
 図3と図4(A)~図4(C)に示されるように、ベース層11は、Si等を材料として上面視形状が矩形を成すように形成される。該ベース層11の上面全域には、SiO2等を材料とする絶縁層12が形成されている。また、ベース層11及び絶縁層12には
、上面視形状がコ字形を成す貫通孔11a及び12aが形成されている。該貫通孔11a及び12aの内側には、ベース層11の一部11b及び絶縁層12の一部12bから構成された上面視形状が矩形を成す可動レバーMLが形成されている。
As shown in FIGS. 3 and 4 (A) to 4 (C), the base layer 11 is formed using Si or the like as a material so that the top view shape is rectangular. An insulating layer 12 made of SiO 2 or the like is formed on the entire upper surface of the base layer 11. The base layer 11 and the insulating layer 12 are formed with through holes 11a and 12a having a U-shape when viewed from above. Inside the through holes 11a and 12a, there is formed a movable lever ML having a rectangular shape when viewed from above, which is composed of a part 11b of the base layer 11 and a part 12b of the insulating layer 12.
 可動レバーMLの前後方向中央よりも前側には、複数(図中は3個)の貫通孔11b1及び12b1が形成されている。該可動レバーMLの貫通孔11b1及び12b1よりも後側部分は本体部MLaに該当し、貫通孔11b1及び12b1よりも前側部分は可動部MLbに該当し、貫通孔11b1及び12b1が形成された部分はヒンジ部MLcに該当する。 A plurality (three in the figure) of through-holes 11b1 and 12b1 are formed in front of the center of the movable lever ML in the front-rear direction. The rear part of the movable lever ML from the through holes 11b1 and 12b1 corresponds to the main body part MLa, the front part of the through holes 11b1 and 12b1 corresponds to the movable part MLb, and the part in which the through holes 11b1 and 12b1 are formed. Corresponds to the hinge part MLc.
 可動レバーMLの本体部MLaの上面(絶縁層12の一部12bの上面)には、該上面から後側に及ぶように、第1電極層13が形成される。第1電極層13は,その上面視形状が矩形を成すように形成され、上面視形状が矩形を成す張出部13aをその後部右側に一体に有している。この第1電極層13は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのPt層とから成る多層構造を有する。また、第1電極層13(張出部13aを除く)の上面には、PZT等を材料とする圧電層14が該第1電極層13と同じ上面視形状で形成されている。さらに、圧電層14の上面には、第2電極層15が該圧電層14と同じ上面視形状で形成されている。この第2電極層15は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのPt層とから成る多層構造を有する。これら第1電極層13、圧電層14及び第2電極層15は、可動レバーMLの本体部MLaを反り上がるように変形させるための駆動アクチュエータ(符号無し)を構成している。 The first electrode layer 13 is formed on the upper surface (the upper surface of the portion 12b of the insulating layer 12) of the movable lever ML so as to extend from the upper surface to the rear side. The first electrode layer 13 is formed so that its top view shape forms a rectangle, and has an overhang portion 13a whose top view shape forms a rectangle on the right side of the rear part. The first electrode layer 13 has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and a Pt layer having a thickness of 200 nm formed thereon. In addition, a piezoelectric layer 14 made of PZT or the like is formed on the upper surface of the first electrode layer 13 (excluding the overhanging portion 13 a) in the same top view shape as the first electrode layer 13. Further, the second electrode layer 15 is formed on the upper surface of the piezoelectric layer 14 in the same top view shape as the piezoelectric layer 14. The second electrode layer 15 has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and a Pt layer having a thickness of 200 nm formed thereon. The first electrode layer 13, the piezoelectric layer 14, and the second electrode layer 15 constitute a drive actuator (no symbol) for deforming the body portion MLa of the movable lever ML so as to warp.
 可動レバーMLの可動部MLbの上面(絶縁層12の一部12bの上面)には、導電層から成る可動端子MTがその上面視形状が矩形となるように形成されている。この可動端子MT(導電層)は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とから成る多層構造を有する。 A movable terminal MT made of a conductive layer is formed on the upper surface of the movable portion MLb of the movable lever ML (the upper surface of the part 12b of the insulating layer 12) so that the shape of the upper surface when viewed from above is rectangular. The movable terminal MT (conductive layer) has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.
 第2電極層15の後部上面には、導電層から成る電源入力端子16がその上面視形状が矩形となるように形成されている。この電源入力端子16(導電層)は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とから成る多層構造を有する。 A power input terminal 16 made of a conductive layer is formed on the upper surface of the rear portion of the second electrode layer 15 so that the shape of the upper surface view is rectangular. The power input terminal 16 (conductive layer) has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.
 第1電極層13の張出部13aの上面には、導電層から成るグランド端子17がその上面視形状が矩形となるように形成されている。このグランド端子17(導電層)は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とから成る多層構造を有する。 The ground terminal 17 made of a conductive layer is formed on the upper surface of the overhanging portion 13a of the first electrode layer 13 so that the shape of the top view is rectangular. The ground terminal 17 (conductive layer) has, for example, a multilayer structure composed of a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.
 絶縁層12の前部上面には、導電層から成る所定幅の第1信号線路SL11と、導電層から成り第1信号線路SL11と同一幅の第2信号線路SL12とが、可動端子MTの左右方向中央を基準として左右対称形となるように形成されている。これら第1信号線路SL11(導電層)及び第2信号線路SL12(導電層)は、例えば、(1)厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とその上に形成された厚さ200nmのSiO2層とから成る多層構造(4層構造)や、(2)厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とから成る多層構造(3層構造)を有する。 On the upper surface of the front portion of the insulating layer 12, a first signal line SL11 having a predetermined width made of a conductive layer and a second signal line SL12 made of a conductive layer and having the same width as the first signal line SL11 are arranged on the left and right sides of the movable terminal MT. It is formed so as to be symmetrical with respect to the center in the direction. The first signal line SL11 (conductive layer) and the second signal line SL12 (conductive layer) are, for example, (1) a Ti layer having a thickness of 5 nm, an Au layer having a thickness of 200 nm formed thereon, and an upper layer thereof. A multi-layer structure (four-layer structure) composed of a 3 μm thick Au layer formed thereon and a 200 nm thick SiO 2 layer formed thereon, and (2) a 5 nm thick Ti layer and formed thereon. And a multilayer structure (three-layer structure) composed of an Au layer having a thickness of 200 nm and an Au layer having a thickness of 3 μm formed thereon.
 図4(A)から分かるように、第1信号線路SL11は絶縁層12に接合した部分と該部分と連続する非接合部分とを有する。該非接合部分の端部(図中の右端部)は可動端子MTに向かって傾いた断面形状を成していて、該端部は第1固定端子FT11として用いられている。これと同様に、第2信号線路SL12は絶縁層12に接合した部分と該部分と連続する非接合部分とを有し、該非接合部分の端部(図中の左端部)は可動端子MTに向かって傾いた断面形状を成していて、該端部は第2固定端子FT12として用いられている。また、両固定端子FT11及びFT12の先端は左右方向に所定間隔(符号無し)をおいて平行に向き合っている。両固定端子FT11及びFT12の端縁は可動端子MTの上面と所定間隔CL11をおいて平行に向き合っている。図4(A)中のθは両固定端子FT11及びFT12の傾き角度を示す。該傾き角度θは1~45度、好ましくは3~5度である。 As can be seen from FIG. 4A, the first signal line SL11 has a portion joined to the insulating layer 12 and a non-joined portion continuous with the portion. An end portion (right end portion in the figure) of the non-joined portion has a cross-sectional shape inclined toward the movable terminal MT, and the end portion is used as the first fixed terminal FT11. Similarly, the second signal line SL12 has a portion joined to the insulating layer 12 and a non-joined portion continuous with the portion, and an end portion (left end portion in the figure) of the non-joined portion is connected to the movable terminal MT. The end portion is used as the second fixed terminal FT12. Further, the distal ends of both fixed terminals FT11 and FT12 face each other in parallel in the left-right direction with a predetermined interval (no symbol). The end edges of both fixed terminals FT11 and FT12 face the upper surface of the movable terminal MT in parallel with a predetermined distance CL11. In FIG. 4A, θ represents the tilt angle of both fixed terminals FT11 and FT12. The inclination angle θ is 1 to 45 degrees, preferably 3 to 5 degrees.
 前記MEMSスイッチ10-1において、両信号線路SL11及びSL12を導通状態とするときには、電源入力端子16とグランド端子17を不図示の可変直流電源に接続して、該可変直流電源から電源入力端子16に駆動電圧を印加する。この駆動電圧の印加により、駆動アクチュエータの圧電層14に圧電効果による縮みが生じ、該縮みによって可動レバーMLの本体部MLaが反り上がるように変形する。該変形に伴って可動部MLc上の可動端子MTが上方に変位し、該変位によって可動端子MTの上面が両固定端子FT11及びFT12の端縁を僅かに押し上げるように接触して、該可動端子MTの上面が両固定端子FT11及びFT12の端縁に所定接触圧下で線接触する(図5(A)及び図5(B)を参照)。 In the MEMS switch 10-1, when both the signal lines SL11 and SL12 are brought into conduction, the power input terminal 16 and the ground terminal 17 are connected to a variable DC power supply (not shown), and the power input terminal 16 is connected to the variable DC power supply. A drive voltage is applied to. By applying this driving voltage, the piezoelectric layer 14 of the driving actuator is contracted by the piezoelectric effect, and the main body MLa of the movable lever ML is warped up by the contraction. Along with the deformation, the movable terminal MT on the movable portion MLc is displaced upward, and the displacement causes the upper surface of the movable terminal MT to come into contact with the edges of both the fixed terminals FT11 and FT12 so as to slightly push the movable terminal MTc. The upper surface of the MT is in line contact with the edges of the fixed terminals FT11 and FT12 under a predetermined contact pressure (see FIGS. 5A and 5B).
 可動部MLbは本端部MLaと共に反り上がるが、両者の間にはこれらよりも可撓性に富むヒンジ部MLcが存在するため、可動端子MTが両固定端子FT11及びFT12の端縁に接触し始めると可動部MLbはヒンジ部MLcの可撓性を利用して傾動し、該傾動によって可動端子MTの上面は両固定端子FT11及びFT12の端縁に確実に線接触する。また、可動端子MTの上面は両固定端子FT11及びFT12の端縁を僅かに押し上げるように接触するため、両固定端子FT11及びFT12の端縁に上下方向の位置ズレがある場合でも、この押し上げ作用によって該位置ズレが相殺されて可動端子MTの上面は両固定端子FT11及びFT12の端縁に確実に線接触する。即ち、可動端子MTと両固定端子FT11及びFT12との線接触は、図5(C)に示したように、両固定端子FT11及びFT12の端縁の幅に準ずる所定の接触域CR11及びCR12の実質的に全領域に亘って確実に行われる。 The movable portion MLb warps together with the main end portion MLa, but since there is a hinge portion MLc which is more flexible than the movable portion MLb, the movable terminal MT contacts the edges of the fixed terminals FT11 and FT12. When it starts, the movable part MLb tilts by utilizing the flexibility of the hinge part MLc, and the tilting causes the upper surface of the movable terminal MT to be in line contact with the edges of the fixed terminals FT11 and FT12. Further, since the upper surface of the movable terminal MT is in contact so as to slightly push up the edges of the fixed terminals FT11 and FT12, even if the edges of the fixed terminals FT11 and FT12 are displaced in the vertical direction, this push-up action is performed. This offsets the displacement, and the upper surface of the movable terminal MT is surely in line contact with the end edges of the fixed terminals FT11 and FT12. That is, the line contact between the movable terminal MT and the fixed terminals FT11 and FT12 is, as shown in FIG. 5C, a predetermined contact area CR11 and CR12 according to the width of the edge of the fixed terminals FT11 and FT12. It is reliably performed over substantially the entire area.
 前記接触過程では可動端子MTの上面が両固定端子FT11及びFT12の端縁を僅かに押し上げるようにして接触する。該両固定端子FT11及びFT12に適度な剛性を持たせ、且つ、傾き角度θを該剛性及び押し上げ力等に基づいて適切に設定しておけば、前記線接触を図5(C)に示した接触域CR11及びCR12の実質的に全領域に亘って確実に行うことができる。即ち、可動端子MTの上面が両固定端子FT11及びFT12の端縁を押し上げるようにして接触しても、前記線接触を問題無く確保できるし、該線接触が面接触になることも無い。 In the contact process, the upper surface of the movable terminal MT comes into contact with the edges of the fixed terminals FT11 and FT12 slightly pushed up. If the fixed terminals FT11 and FT12 have appropriate rigidity and the inclination angle θ is appropriately set based on the rigidity and the pushing force, the line contact is shown in FIG. This can be ensured over substantially the entire contact area CR11 and CR12. In other words, even if the upper surface of the movable terminal MT contacts with the upper edges of the fixed terminals FT11 and FT12 pushed up, the line contact can be ensured without any problem, and the line contact does not become a surface contact.
 一方、導通状態にある両信号線路SL11及びSL12を非導通状態とするときには、電源入力端子16への駆動電圧の印加を解除すれば良い。この駆動電圧の印加解除により、駆動アクチュエータの作動が停止し、可動レバーMLが復元して可動端子MTが初期位置に復帰し、可動端子MTの上面と両固定端子FT11及びFT12の端縁との線接触が解除される(図4(A)を参照)。 On the other hand, when the signal lines SL11 and SL12 in the conductive state are brought into the non-conductive state, the application of the drive voltage to the power input terminal 16 may be canceled. By releasing the application of the drive voltage, the operation of the drive actuator is stopped, the movable lever ML is restored, the movable terminal MT is returned to the initial position, and the upper surface of the movable terminal MT and the edges of the fixed terminals FT11 and FT12 are connected. The line contact is released (see FIG. 4A).
 図4(A)には両固定端子FT11及びFT12として可動端子MTに向かって傾いた断面形状のものを示したが、図6に示したように、両固定端子FT11’及びFT12’として可動端子MTに向かって湾曲した断面形状のものを採用しても、同様に線接触及びその解除を行うことができる。両固定端子の断面形状は図4(A)及び図6に示したものに限られるものではなく、要するに、両固定端子の各々の端縁が可動端子MTに最も近づき、且つ、端縁を除く部分が該端縁よりも可動端子MTから離れた断面形状を成しているものを両固定端子として用いても、同様にして線接触及びその解除を行うことができる。 In FIG. 4A, the two fixed terminals FT11 and FT12 have cross-sectional shapes inclined toward the movable terminal MT. However, as shown in FIG. 6, the fixed terminals FT11 ′ and FT12 ′ are movable terminals. Even when a cross-sectional shape curved toward the MT is employed, the line contact and the release thereof can be similarly performed. The cross-sectional shapes of the two fixed terminals are not limited to those shown in FIGS. 4A and 6. In short, the edges of the two fixed terminals are closest to the movable terminal MT and the edges are excluded. Even if a portion whose cross-sectional shape is further away from the movable terminal MT than the end edge is used as both the fixed terminals, the line contact and the release can be similarly performed.
 図4(A)に示した両固定端子FT11及びFT12を含む両信号線路SL11及びSL12と、図6に示した両固定端子FT11’及びFT12’を含む両信号線路SL11及びSL12は、各々の厚さが極薄であることから、形成後に折り曲げ加工を施して図4(A)に示した断面形状や図6に示した断面形状とすることは現実的には困難であり、実用的でも無い。 Both signal lines SL11 and SL12 including both fixed terminals FT11 and FT12 shown in FIG. 4A and both signal lines SL11 and SL12 including both fixed terminals FT11 ′ and FT12 ′ shown in FIG. Since it is extremely thin, it is practically difficult to bend and form the cross-sectional shape shown in FIG. 4A or the cross-sectional shape shown in FIG. .
 依って、両固定端子(FT11及びFT12、FT11’及びFT12’)を図4(A)に示した断面形状や図6に示した断面形状とするには、両信号線路SL11及びSL12を形成する過程で両固定端子(FT11及びFT12、FT11’及びFT12’)を傾斜或いは湾曲させることが必要となる。以下に、各種実験を経て明らかとなった好適な方法例について説明する。 Therefore, in order to make both the fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) have the cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG. 6, both signal lines SL11 and SL12 are formed. In the process, both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) need to be inclined or curved. Below, the suitable example of a method clarified through various experiments is demonstrated.
 (第1の方法例)
 第1の方法例は、両固定端子(FT11及びFT12、FT11’及びFT12’)を含む両信号線路SL11及びSL12を形成する過程で、少なくとも両固定端子に対応する部分に内部応力(圧縮応力や引張応力等)を生じさせて、該内部応力によって同部分を傾斜或いは湾曲させることをその基本的な考え方とする。
(First method example)
In the first method example, in the process of forming both signal lines SL11 and SL12 including both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′), internal stress (compressive stress or The basic idea is to generate a tensile stress or the like, and to incline or curve the portion by the internal stress.
 ここで、両信号線路SL11及びSL12が「厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とその上に形成された厚さ200nmのSiO2層とから成る多層構造(4層構造)」を有する場合を例に挙げ、第1の方法例を図7(A)を参照して具体的に説明する。因みに、図7(A)中のLA11は厚さ5nmのTi層、LA12は厚さ200nmのAu層、LA13は厚さ3μmのAu層、LA14は厚さ200nmのSiO2層に該当する。 Here, both signal lines SL11 and SL12 are “formed on the 5 nm thick Ti layer, the 200 nm thick Au layer formed thereon, and the 3 μm thick Au layer formed thereon. A case of having a “multilayer structure (four-layer structure) composed of a SiO 2 layer having a thickness of 200 nm” will be described as an example, and a first method example will be specifically described with reference to FIG. 7A corresponds to a Ti layer having a thickness of 5 nm, LA12 corresponds to an Au layer having a thickness of 200 nm, LA13 corresponds to an Au layer having a thickness of 3 μm, and LA14 corresponds to an SiO 2 layer having a thickness of 200 nm.
 この場合、両信号線路SL11及びSL12は、パターン整形されたレジスト(図示省略)上にDCスパッタリングによりTi層LA11を形成し、このTi層LA11上にDCスパッタリングによりAu層LA12を形成して、Ti層LA11及びAu層L12から成るメッキシード層(符号無し)を形成するステップ、メッキシード層上に電解メッキによりAu層LA13を形成するステップ、Au層LA12上にプラズマCVDまたはRFスパッタリングによりSiO2層LA14を形成するステップ、及びメッキシード層を形成する際に用いたレジストを除去するステップ、を経て作成される。SiO2層LA14を形成するステップでは、基板温度を常温よりも高い300℃とし、SiO2層LA14を形成した後に該温度を20℃に降下させる。 In this case, both signal lines SL11 and SL12 are formed by forming a Ti layer LA11 by DC sputtering on a patterned resist (not shown) and forming an Au layer LA12 by DC sputtering on the Ti layer LA11. A step of forming a plating seed layer (no symbol) comprising the layer LA11 and the Au layer L12, a step of forming an Au layer LA13 by electrolytic plating on the plating seed layer, and a SiO 2 layer by plasma CVD or RF sputtering on the Au layer LA12 It is created through the step of forming LA14 and the step of removing the resist used in forming the plating seed layer. In the step of forming the SiO 2 layer LA14, the substrate temperature is set to 300 ° C., which is higher than the normal temperature, and the temperature is lowered to 20 ° C. after the formation of the SiO 2 layer LA14.
 SiO2層LA14の線膨張係数はAu層LA13の線膨張係数よりも小さいことから、前記温度降下過程では上側のSiO2層LA14よりも下側のAu層LA13が大きく収縮する(図7(A)中の矢印を参照)。この収縮量の差に基づく圧縮応力によってSiO2層LA14及びAu層LA13が下向きに傾斜或いは湾曲し、これに伴って厚さの薄いメッキシード層(Ti層LA11+Au層LA12)も下向きに傾斜或いは湾曲する。これにより、両固定端子(FT11及びFT12、FT11’及びFT12’)が図4(A)に示した断面形状や図6に示した断面形状となる。 Since the linear expansion coefficient of the SiO 2 layer LA14 is smaller than the linear expansion coefficient of the Au layer LA13, the lower Au layer LA13 contracts more greatly than the upper SiO 2 layer LA14 during the temperature drop process (FIG. 7A). ) See the arrow in the middle). The SiO 2 layer LA14 and the Au layer LA13 are inclined or curved downward due to the compressive stress based on the difference in shrinkage, and accordingly, the thin plating seed layer (Ti layer LA11 + Au layer LA12) is also inclined or curved downward. To do. Thereby, both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) have the cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG.
 実験によれば、両固定端子(FT11及びFT12、FT11’及びFT12’)の長さを90μmとして前記具体方法を実施したところ、該両固定端子の端縁をその基端に対して約1.2μm下げることができた。また、作成後の両固定端子が置かれる雰囲気温度を常温内(20±15℃)で変化させても、前記1.2μmの数値に実質的な変化は見られなかった。 According to experiments, when the specific method was carried out with the lengths of both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) being 90 μm, the edges of the fixed terminals were approximately 1. It could be lowered by 2 μm. In addition, even when the ambient temperature in which both the fixed terminals were created was changed within normal temperature (20 ± 15 ° C.), no substantial change was observed in the numerical value of 1.2 μm.
 (第2の方法例)
 第2の方法例は、両固定端子(FT11及びFT12、FT11’及びFT12’)を含む両信号線路SL11及びSL12を形成する過程で、少なくとも両固定端子に対応する部分に塑性変形を生じさせて、該塑性変形によって同部分を傾斜或いは湾曲させることをその基本的な考え方とする。
(Second method example)
In the second method example, in the process of forming both signal lines SL11 and SL12 including both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′), at least a portion corresponding to both fixed terminals is caused to undergo plastic deformation. The basic idea is to incline or curve the same part by plastic deformation.
 ここで、両信号線路SL11及びSL12が「厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とから成る多層構造(3層構造)」を有する場合を例に挙げ、第2の方法例を図7(B)を参照して具体的に説明する。因みに、図7(B)中のLA21は厚さ5nmのTi層、LA22は厚さ200nmのAu層、LA23は厚さ3μmのAu層に該当する。 Here, both signal lines SL11 and SL12 are “a multilayer structure (3 nm comprising a Ti layer having a thickness of 5 nm, an Au layer having a thickness of 200 nm formed thereon, and an Au layer having a thickness of 3 μm formed thereon. A second method example will be specifically described with reference to FIG. 7B corresponds to a Ti layer having a thickness of 5 nm, LA 22 corresponds to an Au layer having a thickness of 200 nm, and LA 23 corresponds to an Au layer having a thickness of 3 μm.
 この場合、両信号線路SL11及びSL12は、パターン整形されたレジストRE上にDCスパッタリングによりTi層LA21を形成し、このTi層LA21上にDCスパッタリングによりAu層LA22を形成して、Ti層LA21及びAu層L22から成るメッキシード層(符号無し)を形成するステップ、メッキシード層上に電解メッキによりAu層LA23を形成するステップ、及びメッキシード層を形成する際に用いたレジストREを除去するステップ、を経て作成される。メッキシード層を形成する際に用いるレジストREには、加熱収縮可能なもの、例えばノボラック系ポジレジストを使用すると共に、レジストREを除去する前ステップとして、該レジストREを温度180℃、時間1hで加熱保持するステップを実施する。 In this case, both signal lines SL11 and SL12 form a Ti layer LA21 by DC sputtering on the patterned resist RE, form an Au layer LA22 by DC sputtering on the Ti layer LA21, and form Ti layers LA21 and SL21. A step of forming a plating seed layer (no symbol) made of the Au layer L22, a step of forming an Au layer LA23 on the plating seed layer by electrolytic plating, and a step of removing the resist RE used for forming the plating seed layer , Created through. As the resist RE used for forming the plating seed layer, a resist that can be heated and shrunk, for example, a novolac positive resist is used, and as a step before removing the resist RE, the resist RE is heated at 180 ° C. for 1 hour. A step of heating and holding is performed.
 レジストREは加熱収縮可能であることから、前記加熱過程では該レジストREが収縮する(図7(B)中の矢印を参照)。この収縮に伴ってその上のメッキシード層(Ti層LA21+Au層LA22)及びAu層LA23が下方に塑性変形して下向きに傾斜或いは湾曲する。これにより、両固定端子(FT11及びFT12、FT11’及びFT12’)が図4(A)に示した断面形状や図6に示した断面形状となる。 Since the resist RE can be heated and shrunk, the resist RE shrinks during the heating process (see the arrow in FIG. 7B). With this contraction, the plating seed layer (Ti layer LA21 + Au layer LA22) and Au layer LA23 thereon are plastically deformed downward and inclined or curved downward. Thereby, both fixed terminals (FT11 and FT12, FT11 'and FT12') have the cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG.
 実験によれば、両固定端子(FT11及びFT12、FT11’及びFT12’)の長さを40μmとして前記具体方法を実施したところ、該両固定端子の端縁をその基端に対して約2.0μm下げることができた。 According to experiments, when the above-mentioned specific method was carried out with the length of both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) being 40 μm, the edges of the two fixed terminals were approximately 2. It could be lowered by 0 μm.
 また、前記具体方法を、「厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とその上に形成された厚さ200nmのSiO2層とから成る多層構造(4層構造)」を有する両信号線路SL11及びSL12の作成に適用した場合でも、前記同様に、両固定端子(FT11及びFT12、FT11’及びFT12’)を図4(A)に示した断面形状や図6に示した断面形状とすることができた。 In addition, the specific method is described as follows: “Ti layer having a thickness of 5 nm, Au layer having a thickness of 200 nm formed thereon, Au layer having a thickness of 3 μm formed thereon, and a thickness of 200 nm formed thereon. Even when applied to the production of both signal lines SL11 and SL12 having a “multilayer structure (four-layer structure) made of SiO 2 layers”, both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) are used in the same manner as described above. The cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG. 6 could be obtained.
 以上説明したMEMSスイッチ10-1によれば、下記効果(1)及び(2)を得ることができる。 According to the MEMS switch 10-1 described above, the following effects (1) and (2) can be obtained.
 (1)可動端子MTの上面を両固定端子FT11及びFT12の端縁に線接触させることによって両信号線路SL11及びSL12を導通状態とするものであるため、図1に示した面接触タイプのMEMSスイッチと比べて、導通状態における可動端子MTと両固定端子FT11及びFT12との接触面積を減少できる。即ち、この接触面積の減少によってスティクション(導通状態で可動端子MTが両固定端子FT11及びFT12に張り付く現象)の発生を確実に抑制することができる。 (1) Since the signal lines SL11 and SL12 are brought into conduction by bringing the upper surface of the movable terminal MT into line contact with the end edges of the fixed terminals FT11 and FT12, the surface contact type MEMS shown in FIG. Compared with the switch, the contact area between the movable terminal MT and the fixed terminals FT11 and FT12 in the conductive state can be reduced. That is, the reduction of the contact area can surely suppress the occurrence of stiction (a phenomenon in which the movable terminal MT sticks to both the fixed terminals FT11 and FT12 in the conductive state).
 (2)前記線接触を所定の接触域CR11及びCR12の実質的に全領域に亘って確実に行えるので、図2に示した多点接触タイプのMEMSスイッチと比べて、導通状態における可動端子MTと両固定端子FT11及びFT12との接触域の面積にバラツキが生じることを抑制できる。そして、接触域の面積のバラツキの抑制によって伝送損失にバラツキが生じることを抑制して、導通状態において安定した信号伝送を行うことができる。 (2) Since the line contact can be surely performed over substantially all the predetermined contact areas CR11 and CR12, the movable terminal MT in the conductive state as compared with the multipoint contact type MEMS switch shown in FIG. And variation in the area of the contact area between the fixed terminals FT11 and FT12 can be suppressed. And it can suppress that a transmission loss varies by suppression of variation in the area of a contact area, and can perform stable signal transmission in a conduction state.
 第2実施形態
 次に、図8を参照して、本発明を適用したMEMSスイッチ10-2について説明する。
Second Embodiment Next, a MEMS switch 10-2 to which the present invention is applied will be described with reference to FIG.
 このMEMSスイッチ10-2が、第1実施形態で説明したMEMSスイッチ10-1と異なるところは、図8(A)に示したように、両信号線路SL21及びSL22の幅W11よりも両固定端子FT21及びFT22の先端(端縁)の幅W12を小さくした点にある。 The MEMS switch 10-2 is different from the MEMS switch 10-1 described in the first embodiment, as shown in FIG. 8A, both fixed terminals rather than the width W11 of both signal lines SL21 and SL22. This is because the width W12 of the tip (edge) of FT21 and FT22 is reduced.
 この場合の可動端子MTと両固定端子FT21及びFT22との線接触は、図8(B)に示したように、両固定端子FT21及びFT21の端縁の幅W12に相当する所定の接触域CR21及びCR22の実質的に全領域に亘って確実に行われる。 In this case, the line contact between the movable terminal MT and both the fixed terminals FT21 and FT22 is, as shown in FIG. 8B, a predetermined contact area CR21 corresponding to the width W12 of the edges of the both fixed terminals FT21 and FT21. And substantially over the entire region of CR22.
 このMEMSスイッチ10-2によれば、第1実施形態で説明した効果(1)及び(2)に加えて、下記効果(3)を得ることができる。 According to the MEMS switch 10-2, in addition to the effects (1) and (2) described in the first embodiment, the following effect (3) can be obtained.
 (3)両固定端子FT21及びFT22の端縁の幅W12を変えることによって、可動端子MTに対する両固定端子FT21及びFT22の接触域を容易に調整することができる。 (3) The contact area of the fixed terminals FT21 and FT22 with respect to the movable terminal MT can be easily adjusted by changing the width W12 of the edges of the fixed terminals FT21 and FT22.
 第3実施形態
 次に、図9を参照して、本発明を適用したMEMSスイッチ10-3について説明する。
Third Embodiment Next, a MEMS switch 10-3 to which the present invention is applied will be described with reference to FIG.
 このMEMSスイッチ10-3が、第1実施形態で説明したMEMSスイッチ10-1と異なるところは、図9(A)に示したように、第1固定端子FT31の先端に、上面視形状が略半円形を成す2個の凸部FT31aを一体形成すると共に、第2固定端子FT31の先端に、上面視形状が略半円形を成す2個の凸部32aを凸部FT31aと左右対称形となるように一体形成した点にある。要するに、両固定端子FT31及びFT32の先端それぞれに同数の凸部FT31a及び32aを一体形成した点にある。 The MEMS switch 10-3 is different from the MEMS switch 10-1 described in the first embodiment, as shown in FIG. 9A, the top view shape is substantially the tip of the first fixed terminal FT31. Two convex portions FT31a forming a semicircular shape are integrally formed, and two convex portions 32a having a substantially semicircular shape when viewed from the top are symmetrical to the convex portion FT31a at the tip of the second fixed terminal FT31. In this way, it is integrally formed. In short, the same number of convex portions FT31a and 32a are integrally formed at the tips of both fixed terminals FT31 and FT32.
 この場合の可動端子MTと両固定端子FT31及びFT32との線接触は、図9(B)に示したように、各凸部FT31a及びFT32aの端縁の形(円弧)に準ずる所定の接触域CR31及びCR32の実質的に全領域に亘って確実に行われる。 In this case, the line contact between the movable terminal MT and the fixed terminals FT31 and FT32 is, as shown in FIG. 9B, a predetermined contact area corresponding to the shape (arc) of the edge of each convex portion FT31a and FT32a. This is ensured over substantially the entire region of CR31 and CR32.
 このMEMSスイッチ10-3によれば、第1実施形態で説明した効果(1)及び(2)に加えて、下記効果(4)を得ることができる。 According to the MEMS switch 10-3, in addition to the effects (1) and (2) described in the first embodiment, the following effect (4) can be obtained.
 (4)各凸部FT31a及びFT32aの大きさや数を変えることによって、可動端子MTに対する両固定端子FT31及びFT32の接触域を容易に調整することができる。この効果は、両固定端子FT31及びFT32の先端それぞれに1個の凸部FT31a及びFT32aを一体形成した場合や3個以上の凸部FT31a及びFT32aを一体形成した場合でも同様に得ることができるし、各凸部FT31a及びFT32aの上面視形状をU字形や矩形とした場合でも同様に得ることができる。 (4) The contact area of the fixed terminals FT31 and FT32 with respect to the movable terminal MT can be easily adjusted by changing the size and number of the convex portions FT31a and FT32a. This effect can be similarly obtained even when one convex portion FT31a and FT32a are integrally formed at the tips of both fixed terminals FT31 and FT32, or when three or more convex portions FT31a and FT32a are integrally formed. Even when the top-view shape of each of the convex portions FT31a and FT32a is a U-shape or a rectangle, the same can be obtained.
 第4実施形態
 次に、図10を参照して、本発明を適用したMEMSスイッチ10-4について説明する。
Fourth Embodiment Next, a MEMS switch 10-4 to which the present invention is applied will be described with reference to FIG.
 このMEMSスイッチ10-4が、第1実施形態で説明したMEMSスイッチ10-1と異なるところは、図10(A)に示したように、第1固定端子FT41の先端に、上面視形状が略半円形を成す2個の凸部FT41aを一体形成すると共に、第2固定端子FT41の先端に、上面視形状が略半円形を成す1個の凸部42aを一体形成した点にある。要するに、両固定端子FT41の先端に一体形成される凸部FT41aの数とFT42の先端に一体形成される凸部FT42aの数とを異ならせた点にある。 The MEMS switch 10-4 is different from the MEMS switch 10-1 described in the first embodiment, as shown in FIG. 10A, the top view shape is substantially the tip of the first fixed terminal FT41. Two convex portions FT41a having a semicircular shape are integrally formed, and one convex portion 42a having a substantially semicircular shape when viewed from above is integrally formed at the tip of the second fixed terminal FT41. In short, the number of convex portions FT41a integrally formed at the tips of both fixed terminals FT41 is different from the number of convex portions FT42a integrally formed at the tips of FT42.
 この場合の可動端子MTと両固定端子FT41及びFT42との線接触は、図10(B)に示したように、各凸部FT41a及びFT42aの端縁の形(円弧)に相当する所定の接触域CR41及びCR42の実質的に全領域に亘って確実に行われる。 In this case, the line contact between the movable terminal MT and the fixed terminals FT41 and FT42 is a predetermined contact corresponding to the shape (arc) of the edge of each convex portion FT41a and FT42a, as shown in FIG. This is ensured over substantially the entire region CR41 and CR42.
 このMEMSスイッチ10-4によれば、第1実施形態で説明した効果(1)及び(2)に加えて、下記効果(5)及び(6)を得ることができる。 According to the MEMS switch 10-4, in addition to the effects (1) and (2) described in the first embodiment, the following effects (5) and (6) can be obtained.
 (5)各凸部FT41a及びFT42aの大きさや数を変えることによって、可動端子MTに対する両固定端子FT41及びFT42の接触域を容易に調整することができる。この効果は、第1固定端子FT41の先端に3個以上の凸部FT41aを一体形成し、且つ、第2固定端子FT42の先端に2個以上の凸部FT42aを一体形成した場合や、各凸部FT41a及びFT42aの上面視形状をU字形や矩形とした場合にも同様に得ることができる。 (5) The contact area of the fixed terminals FT41 and FT42 with respect to the movable terminal MT can be easily adjusted by changing the size and number of the convex portions FT41a and FT42a. This effect is obtained when three or more convex portions FT41a are integrally formed at the tip of the first fixed terminal FT41 and two or more convex portions FT42a are integrally formed at the tip of the second fixed terminal FT42. The same can be obtained when the top-view shapes of the parts FT41a and FT42a are U-shaped or rectangular.
 (6)図10(A)に示したように一方の2個の凸部FT41aの間に他方の凸部FT42aが向き合うように各凸部FT41a及びFT42aを配置することにより、両固定端子FT41及びFT42の先端同士の間隔を小さくすることが可能となり、これにより両固定端子FT41及びFT42間の信号伝送距離の短縮化を図って伝送損失を低減することができる。 (6) As shown in FIG. 10 (A), by arranging the convex portions FT41a and FT42a so that the other convex portion FT42a faces between the two convex portions FT41a, both the fixed terminals FT41 and It is possible to reduce the interval between the tips of the FT42, thereby shortening the signal transmission distance between the two fixed terminals FT41 and FT42 and reducing transmission loss.
 第5実施形態
 次に、図11を参照して、本発明を適用したMEMSスイッチ10-5について説明する。
Fifth Embodiment Next, a MEMS switch 10-5 to which the present invention is applied will be described with reference to FIG.
 このMEMSスイッチ10-5が、第1実施形態で説明したMEMSスイッチ10-1と異なるところは、図11に示したように、ベース層11’及び絶縁層12’の前後寸法を長くした点、ベース層11の一部11b’及び絶縁層12の一部12b’から構成された可動レバーMLの前後寸法を長くした点、可動レバーML’を2つの本体部MLaと1つの可動部MLbと2つのヒンジ部MLcとで構成した点(つまり、片持ち構造から両持ち構造に変更した点)、前側の本体部MLaの上面にも、駆動アクチュエータを構成する第1電極層13、圧電層14 及び第2電極層15をそれぞれ形成した点、及び前側の本体部MLaの上面に設けられた駆動アクチュエータに対応する電源入力端子16及びグランド端子17を追加した点にある。 This MEMS switch 10-5 differs from the MEMS switch 10-1 described in the first embodiment in that the longitudinal dimensions of the base layer 11 ′ and the insulating layer 12 ′ are increased as shown in FIG. The movable lever ML composed of a part 11b ′ of the base layer 11 and a part 12b ′ of the insulating layer 12 is lengthened. The movable lever ML ′ includes two main body parts MLa and one movable part MLb. The first electrode layer 13, the piezoelectric layer 14, and the first electrode layer 13 constituting the drive actuator are also formed on the upper surface of the main body MLa on the front side (ie, the point changed from the cantilever structure to the double-sided structure). The second electrode layer 15 is formed, and the power input terminal 16 and the ground terminal 17 corresponding to the drive actuator provided on the upper surface of the front body part MLa are added.
 このMEMSスイッチ10-5において、両信号線路SL11及びSL12を導通状態とするときには、2つの電源入力端子16と2つのグランド端子17を不図示の可変直流電源に接続して、該可変直流電源から2つの電源入力端子16に同一値の駆動電圧を印加する。この駆動電圧の印加により、前側及び後側の2つの駆動アクチュエータの圧電層14それぞれに圧電効果による縮みが生じ、該縮みによって可動レバーML’の2つの本体部MLaが反り上がるように変形する。これらの変形に伴って可動部MLc上の可動端子MTが上方に変位し、該変位によって可動端子MTの上面が両固定端子FT11及びFT12の端縁を僅かに押し上げるように接触して、該可動端子MTの上面が両固定端子FT11及びFT12の端縁に所定接触圧下で線接触する(図5(A)及び図5(B)を参照)。 In the MEMS switch 10-5, when both signal lines SL11 and SL12 are brought into conduction, two power input terminals 16 and two ground terminals 17 are connected to a variable DC power supply (not shown), and the variable DC power supply is connected. A drive voltage having the same value is applied to the two power input terminals 16. By applying this drive voltage, the piezoelectric layers 14 of the two drive actuators on the front side and the rear side are contracted due to the piezoelectric effect, and the two main body portions MLa of the movable lever ML ′ are warped up by the contraction. With these deformations, the movable terminal MT on the movable portion MLc is displaced upward, and the displacement causes the upper surface of the movable terminal MT to come into contact with the edges of the fixed terminals FT11 and FT12 so as to slightly lift the movable terminal MTc. The upper surface of the terminal MT is in line contact with the edges of the fixed terminals FT11 and FT12 under a predetermined contact pressure (see FIGS. 5A and 5B).
 一方、導通状態にある両信号線路SL11及びSL12を非導通状態とするときには、2つの電源入力端子16への駆動電圧の印加を解除すれば良い。この駆動電圧の印加解除により、2つの駆動アクチュエータの作動が停止し、可動レバーML’が復元して可動端子MTが初期位置に復帰し、可動端子MTの上面と両固定端子FT11及びFT12の端縁との線接触が解除される(図4(A)を参照)。 On the other hand, when both the signal lines SL11 and SL12 in the conductive state are brought into the non-conductive state, the application of the drive voltage to the two power input terminals 16 may be canceled. By releasing the application of the drive voltage, the operation of the two drive actuators is stopped, the movable lever ML ′ is restored, the movable terminal MT is returned to the initial position, and the upper surface of the movable terminal MT and the ends of the fixed terminals FT11 and FT12 are restored. The line contact with the edge is released (see FIG. 4A).
 このMEMSスイッチ10-5によれば、可動レバーML’等の構成が異なるものの、第1実施形態で説明した効果(1)及び(2)を得ることができる。また、このMEMSスイッチ10-5には第2実施形態と第3実施形態と第4実施形態で説明した特徴事項を適宜採用することができ、該採用によって第2実施形態で説明した効果(3)、第3実施形態で説明した効果(4)、第4実施形態で説明した効果(5)及び(6)を適宜得ることができる。 According to the MEMS switch 10-5, the effects (1) and (2) described in the first embodiment can be obtained although the configuration of the movable lever ML 'and the like is different. Further, the features described in the second embodiment, the third embodiment, and the fourth embodiment can be appropriately adopted for the MEMS switch 10-5, and the effect (3) described in the second embodiment by the adoption. ), The effect (4) described in the third embodiment, and the effects (5) and (6) described in the fourth embodiment can be appropriately obtained.
 10-1,10-2,10-3,10-4,10-5…MEMSスイッチ、SL11,SL21,SL31,SL41…第1信号線路、FT11,FT11’,FT21,FT31,FT41…第1固定端子、FT31a,FT41a…凸部、SL12,SL22,SL32,SL42…第2信号線路、FT12,FT12’,FT22,FT32,FT42…第2固定端子、FT32a,FT42a…凸部、CR11,CR12,CR21,CR22,CR31,CR32,CR41,CR42…接触域、ML,ML’…可動レバー、MT…可動端子。 10-1, 10-2, 10-3, 10-4, 10-5 ... MEMS switch, SL11, SL21, SL31, SL41 ... first signal line, FT11, FT11 ', FT21, FT31, FT41 ... first fixed Terminal, FT31a, FT41a ... convex portion, SL12, SL22, SL32, SL42 ... second signal line, FT12, FT12 ', FT22, FT32, FT42 ... second fixed terminal, FT32a, FT42a ... convex portion, CR11, CR12, CR21 , CR22, CR31, CR32, CR41, CR42 ... contact area, ML, ML '... movable lever, MT ... movable terminal.

Claims (7)

  1.  第1信号線路の端部から成る第1固定端子と、第2信号線路の端部から成る第2固定端子と、可動レバーに設けられた導電層から成り、且つ、第1固定端子及び第2固定端子と間隔をおいて向き合う可動端子とを有し、第1固定端子及び第2固定端子に可動端子を接触させることによって第1信号線路及び第2信号線路を導通状態とすると共に該接触を解くことによって第1信号線路及び第2信号線路を非導通状態とするMEMSスイッチであって、
     第1固定端子及び第2固定端子は各々の端縁が可動端子に最も近づき、且つ、端縁を除く部分が該端縁よりも可動端子から離れた断面形状を成していて、導通状態において可動端子は第1固定端子及び第2固定端子の端縁に線接触する。
    The first fixed terminal including the end portion of the first signal line, the second fixed terminal including the end portion of the second signal line, the conductive layer provided on the movable lever, and including the first fixed terminal and the second fixed terminal. A movable terminal facing the fixed terminal at an interval, and bringing the first signal line and the second signal line into a conductive state by bringing the movable terminal into contact with the first fixed terminal and the second fixed terminal; A MEMS switch that uncouples the first signal line and the second signal line by unwinding,
    Each of the first fixed terminal and the second fixed terminal has a cross-sectional shape in which each edge is closest to the movable terminal, and a portion excluding the edge is further away from the movable terminal than in the conductive state. The movable terminal makes line contact with the edges of the first fixed terminal and the second fixed terminal.
  2.  請求項1に記載のMEMSスイッチにおいて、
     第1固定端子及び第2固定端子は可動端子に向かって傾いた断面形状を成している。
    The MEMS switch according to claim 1, wherein
    The first fixed terminal and the second fixed terminal have a cross-sectional shape inclined toward the movable terminal.
  3.  請求項1に記載のMEMSスイッチにおいて、
     第1固定端子及び第2固定端子は可動端子に向かって湾曲した断面形状を成している。
    The MEMS switch according to claim 1, wherein
    The first fixed terminal and the second fixed terminal have a cross-sectional shape curved toward the movable terminal.
  4.  請求項1~3の何れか1項に記載のMEMSスイッチにおいて、
     第1固定端子及び第2固定端子の端縁の幅は第1信号線路及び第2信号線路の幅よりも小さい。
    The MEMS switch according to any one of claims 1 to 3,
    The widths of the edges of the first fixed terminal and the second fixed terminal are smaller than the widths of the first signal line and the second signal line.
  5.  請求項1~3の何れか1項に記載のMEMSスイッチにおいて、
     第1固定端子及び第2固定端子の先端それぞれには1個以上の凸部が一体形成されていて、導通状態において可動端子は第1固定端子及び第2固定端子の凸部の端縁に線接触する。
    The MEMS switch according to any one of claims 1 to 3,
    One or more convex portions are integrally formed at the tips of the first fixed terminal and the second fixed terminal, and the movable terminal is connected to the edges of the convex portions of the first fixed terminal and the second fixed terminal in the conductive state. Contact.
  6.  請求項5に記載のMEMSスイッチにおいて、
     第1固定端子の先端に一体形成された凸部の数と第2固定端子の先端に一体形成された凸部の数は同じである。
    The MEMS switch according to claim 5, wherein
    The number of convex portions integrally formed at the tip of the first fixed terminal is the same as the number of convex portions integrally formed at the tip of the second fixed terminal.
  7.  請求項5に記載のMEMSスイッチにおいて、
     第1固定端子の先端に一体形成された凸部の数と第2固定端子の先端に一体形成された凸部の数は異なる。
    The MEMS switch according to claim 5, wherein
    The number of convex portions integrally formed at the tip of the first fixed terminal is different from the number of convex portions integrally formed at the tip of the second fixed terminal.
PCT/JP2011/055743 2010-05-28 2011-03-11 Mems switch WO2011148698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010122487A JP5298072B2 (en) 2010-05-28 2010-05-28 MEMS switch
JP2010-122487 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148698A1 true WO2011148698A1 (en) 2011-12-01

Family

ID=45003691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055743 WO2011148698A1 (en) 2010-05-28 2011-03-11 Mems switch

Country Status (3)

Country Link
JP (1) JP5298072B2 (en)
TW (1) TW201203301A (en)
WO (1) WO2011148698A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697747B (en) * 2019-01-15 2020-07-01 台灣積體電路製造股份有限公司 Control method and testing method for micro-electro-mechanical systems device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311394A (en) * 2002-11-18 2004-11-04 Samsung Electronics Co Ltd Mems switch
JP2007196303A (en) * 2006-01-24 2007-08-09 Fujitsu Ltd Micro-structure manufacturing method and micro-structure
JP2009290153A (en) * 2008-06-02 2009-12-10 Taiyo Yuden Co Ltd Switched capacitor
JP2010061976A (en) * 2008-09-03 2010-03-18 Toshiba Corp Switch and esd protection element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311394A (en) * 2002-11-18 2004-11-04 Samsung Electronics Co Ltd Mems switch
JP2007196303A (en) * 2006-01-24 2007-08-09 Fujitsu Ltd Micro-structure manufacturing method and micro-structure
JP2009290153A (en) * 2008-06-02 2009-12-10 Taiyo Yuden Co Ltd Switched capacitor
JP2010061976A (en) * 2008-09-03 2010-03-18 Toshiba Corp Switch and esd protection element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697747B (en) * 2019-01-15 2020-07-01 台灣積體電路製造股份有限公司 Control method and testing method for micro-electro-mechanical systems device

Also Published As

Publication number Publication date
TW201203301A (en) 2012-01-16
JP2011249192A (en) 2011-12-08
JP5298072B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
US8319393B2 (en) Reduced voltage MEMS electrostatic actuation methods
US8570705B2 (en) MEMS sprung cantilever tunable capacitors and methods
JP4613165B2 (en) Switches for microelectromechanical systems
US7605675B2 (en) Electromechanical switch with partially rigidified electrode
EP1840924A2 (en) Piezoelectric MEMS switch and method of fabricating the same
US8451078B2 (en) CMOS-MEMS switch structure
JP5588663B2 (en) Micro electromechanical system switch
JP2004111360A (en) Switch
WO2010105827A1 (en) Mems structure with a flexible membrane and improved electric actuation means
US20050100269A1 (en) Micro actuator and optical switch using the actuator
JP4231062B2 (en) MEMS element
WO2011036808A1 (en) Switch element and circuit provided with switch element
WO2011148698A1 (en) Mems switch
JP2007259691A (en) Electrostatic drive method of mems, electrostatic actuator, and microswitch
JP5774779B2 (en) Electrostatic actuators and variable capacitance devices
US20080011593A1 (en) Microswitch with a first actuated portion and a second contact portion
US10439591B2 (en) MEMS device with large out-of-plane actuation and low-resistance interconnect and methods of use
JP2009252516A (en) Mems switch
US20070103843A1 (en) Electrostatic mems components permitting a large vertical displacement
JP5812096B2 (en) MEMS switch
Sluzewski Actuators of active piezoelectric or electrostrictive material
KR20040053127A (en) A micromechanical switch and method of manufacturing the same
JP2007026726A (en) Mems switch
JP2006142451A (en) Micro-actuator, optical device and optical switch using it, and microswitch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786398

Country of ref document: EP

Kind code of ref document: A1