JP2011249192A - Mems switch - Google Patents

Mems switch Download PDF

Info

Publication number
JP2011249192A
JP2011249192A JP2010122487A JP2010122487A JP2011249192A JP 2011249192 A JP2011249192 A JP 2011249192A JP 2010122487 A JP2010122487 A JP 2010122487A JP 2010122487 A JP2010122487 A JP 2010122487A JP 2011249192 A JP2011249192 A JP 2011249192A
Authority
JP
Japan
Prior art keywords
terminal
fixed terminal
layer
movable
mems switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010122487A
Other languages
Japanese (ja)
Other versions
JP5298072B2 (en
Inventor
Noriyoshi Fujii
知徳 藤井
Kentaro Nakamura
中村  健太郎
Yasunari Irie
泰成 入枝
Takayuki Takano
貴之 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2010122487A priority Critical patent/JP5298072B2/en
Priority to TW100106079A priority patent/TW201203301A/en
Priority to PCT/JP2011/055743 priority patent/WO2011148698A1/en
Publication of JP2011249192A publication Critical patent/JP2011249192A/en
Application granted granted Critical
Publication of JP5298072B2 publication Critical patent/JP5298072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/0013Structures dimensioned for mechanical prevention of stiction, e.g. spring with increased stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/01Switches
    • B81B2201/012Switches characterised by the shape
    • B81B2201/018Switches not provided for in B81B2201/014 - B81B2201/016

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a MEMS switch capable of suppressing the occurrence of stiction in a conducting state and performing stable signal transmission in a conducting state.SOLUTION: In a fixed terminal FT11 and a second fixed terminal FT12 of a MEMS switch 10-1, respective end edges are closest to a movable terminal MT, a portion other than the end edges forms a cross-sectional shape separated from the movable terminal MT more than the end edges, and the movable terminal MT is brought into line contact with the end edges of the first fixed terminal FT11 and the second fixed terminal FT12 in a conducting state.

Description

本発明は、MEMS(Micro Electro Mechanical Systems)スイッチに関する。   The present invention relates to a MEMS (Micro Electro Mechanical Systems) switch.

ダイオードやFET等を用いた半導体スイッチは周波数が高くなるに従って伝送損失増加やアイソレーション低下等の特性悪化を生じる。しかしながら、MEMSスイッチはこのような特性悪化を生じ難いことから、高周波回路、例えば数GHz〜数百GHzの高周波信号が流れる回路に用いるのに好適なスイッチングデバイスとして着目されている。   Semiconductor switches using diodes, FETs, and the like cause characteristics deterioration such as transmission loss increase and isolation decrease as the frequency increases. However, since the MEMS switch is unlikely to cause such characteristic deterioration, it has been attracting attention as a switching device suitable for use in a high-frequency circuit, for example, a circuit in which a high-frequency signal of several GHz to several hundred GHz flows.

一般に、MEMSスイッチは、公知の薄膜形成手法を用いて作成された多層構造を有している。このMEMSスイッチは、第1信号線路の端部から成る第1固定端子と、第2信号線路の端部から成る第2固定端子と、可動レバーに形成された導電層から成る可動端子とを有しており、両固定端子に可動端子を接触させることによって両信号線路を導通状態とすると共に該接触を解くことによって両信号線路を非導通状態とする機能を発揮する。   In general, the MEMS switch has a multilayer structure created by using a known thin film forming method. This MEMS switch has a first fixed terminal composed of the end of the first signal line, a second fixed terminal composed of the end of the second signal line, and a movable terminal composed of a conductive layer formed on the movable lever. In addition, both the signal lines are brought into a conductive state by bringing the movable terminals into contact with both the fixed terminals, and the function of bringing the both signal lines into a non-conductive state by releasing the contact is exhibited.

先ず、図1を引用して、MEMSスイッチの一公知例について説明する。この説明では、説明の便宜上、図1(A)の手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称し、図1(B)及び図1(C)のこれらに相当する向きも同様に称する。   First, a known example of a MEMS switch will be described with reference to FIG. In this description, for convenience of description, the front, back, top, bottom, left, and right of FIG. 1A are referred to as top, bottom, front, back, left, and right, respectively, and FIG. The directions corresponding to these in C) are also referred to.

図1(A)及び図1(B)に示したように、第1信号線路101及び第2信号線路102は上面視形状が矩形を成していて、各々の先端が所定間隔(符号無し)をおいて平行に向き合うように配置されている。第1信号線路101の端部は第1固定端子101aとして用いられ、第2信号線路102の端部は第2固定端子102aとして用いられている。   As shown in FIGS. 1 (A) and 1 (B), the first signal line 101 and the second signal line 102 have a rectangular shape when viewed from above, and the tips of the first signal line 101 and the second signal line 102 have a predetermined interval (no symbol). It is arranged to face each other in parallel. The end of the first signal line 101 is used as the first fixed terminal 101a, and the end of the second signal line 102 is used as the second fixed terminal 102a.

可動レバー(符号無し)は、上面視形状が矩形を成すレバー本体103と、該レバー本体103上に形成された絶縁層104と、上面視形状が矩形を成すように該絶縁層104上に形成された導電層から成る可動端子105と、を有している。可動端子105は、その上面が両固定端子101a及び102aの下面と所定間隔CL101をおいて平行に向き合うように配置されている。   The movable lever (no symbol) is formed on the lever body 103 having a rectangular shape when viewed from above, an insulating layer 104 formed on the lever body 103, and formed on the insulating layer 104 so that the shape when viewed from above is rectangular. And a movable terminal 105 made of a conductive layer. The movable terminal 105 is arranged so that the upper surface thereof faces the lower surfaces of both the fixed terminals 101a and 102a in parallel with a predetermined distance CL101.

両信号線路101及び102を導通状態とするときには、図1(C)に示したように、図示省略の駆動アクチュエータを作動して可動レバーの可動端子105を上方に変位させ、該変位によって可動端子105の上面を両固定端子101a及び102aの下面に面接触させる。一方、導通状態にある両信号線路101及び102を非導通状態とするときには、図1(B)に示したように、駆動アクチュエータの作動を停止して可動レバーの可動端子105を初期位置に復帰させ、該可動端子105の上面と両固定端子101a及び102aの下面との面接触を解除する。   When both the signal lines 101 and 102 are in a conductive state, as shown in FIG. 1C, a drive actuator (not shown) is operated to displace the movable terminal 105 of the movable lever upward, and the displacement causes the movable terminal to move. The upper surface of 105 is brought into surface contact with the lower surfaces of both fixed terminals 101a and 102a. On the other hand, when both the signal lines 101 and 102 in the conducting state are brought into the non-conducting state, the operation of the driving actuator is stopped and the movable terminal 105 of the movable lever is returned to the initial position as shown in FIG. The surface contact between the upper surface of the movable terminal 105 and the lower surfaces of the fixed terminals 101a and 102a is released.

このMEMSスイッチは、可動端子105の上面を両固定端子101a及び102aの下面に面接触させることによって両信号線路101及び102を導通状態とするものであるため、ファンデルワールス力やメニスカス力等を原因として、導通状態で可動端子105が両固定端子101a及び102aに張り付く現象、所謂、スティクションを生じる恐れがある。スティクションを生じた場合には、駆動アクチュエータの作動を停止しても、可動端子105の上面と両固定端子101a及び102aの下面との接触を解除することが困難となる。   This MEMS switch makes both signal lines 101 and 102 conductive by bringing the upper surface of the movable terminal 105 into surface contact with the lower surfaces of both fixed terminals 101a and 102a, so that van der Waals force, meniscus force, etc. As a cause, there is a possibility that a phenomenon that the movable terminal 105 sticks to both the fixed terminals 101a and 102a in a conductive state, that is, so-called stiction occurs. When stiction occurs, it is difficult to release the contact between the upper surface of the movable terminal 105 and the lower surfaces of both the fixed terminals 101a and 102a even if the operation of the drive actuator is stopped.

次に、図2を引用して、MEMSスイッチの他の公知例(特許文献1を参照)について説明する。この説明では、説明の便宜上、図2(A)の手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称し、図2(B)及び図2(C)のこれらに相当する向きも同様に称する。   Next, another known example of the MEMS switch (see Patent Document 1) will be described with reference to FIG. In this description, for convenience of explanation, the front, back, top, bottom, left, and right of FIG. 2A are referred to as top, bottom, front, back, left, and right, respectively, and FIG. The directions corresponding to these in C) are also referred to.

図2(A)及び図2(B)に示したように、第1信号線路201及び第2信号線路202は上面視形状が矩形を成していて、各々の先端が所定間隔(符号無し)をおいて平行に向き合うように配置されている。第1信号線路201の端部は第1固定端子201aとして用いられ、第2信号線路202の端部は第2固定端子202aとして用いられている。また、両固定端子201a及び202aの下面それぞれには、複数の半球状突起201b及び202bが後記可動端子205の上面と向き合うように設けられている。   As shown in FIGS. 2 (A) and 2 (B), the first signal line 201 and the second signal line 202 have a rectangular shape when viewed from above, and the tips of the first signal line 201 and the second signal line 202 have a predetermined interval (no symbol). It is arranged to face each other in parallel. The end of the first signal line 201 is used as the first fixed terminal 201a, and the end of the second signal line 202 is used as the second fixed terminal 202a. A plurality of hemispherical protrusions 201b and 202b are provided on the lower surfaces of the fixed terminals 201a and 202a so as to face the upper surface of the movable terminal 205 described later.

可動レバー(符号無し)は、上面視形状が矩形を成すレバー本体203と、該レバー本体203上に形成された絶縁層204と、上面視形状が矩形を成すように該絶縁層204上に形成された導電層から成る可動端子205と、を有している。可動端子205は、その上面が両固定端子201a及び202aの複数の半球状突起201b及び202bの下端と所定間隔CL201をおいて平行に向き合うように配置されている。   The movable lever (without reference numeral) is formed on the lever body 203 having a rectangular shape when viewed from above, an insulating layer 204 formed on the lever body 203, and on the insulating layer 204 so that the shape when viewed from above is rectangular. And a movable terminal 205 made of a conductive layer. The movable terminal 205 is arranged so that the upper surface thereof faces the lower ends of the plurality of hemispherical protrusions 201b and 202b of the fixed terminals 201a and 202a in parallel with a predetermined distance CL201.

両信号線路201及び202を導通状態とするときには、図2(C)に示したように、図示省略の駆動アクチュエータを作動して可動レバーの可動端子205を上方に変位させ、該変位によって可動端子205の上面を両固定端子201a及び202aの複数の半球状突起201b及び202bの下端に多点接触させる。一方、導通状態にある両信号線路201及び202を非導通状態とするときには、図2(B)に示したように、駆動アクチュエータの作動を停止して可動レバーの可動端子205を初期位置に復帰させ、該可動端子205の上面と両固定端子201a及び202aの複数の半球状突起201b及び202bの下端との多点接触を解除する。   When both the signal lines 201 and 202 are in a conductive state, as shown in FIG. 2C, a driving actuator (not shown) is operated to displace the movable terminal 205 of the movable lever upward, and the displacement causes the movable terminal to move. The upper surface of 205 is brought into multipoint contact with the lower ends of the plurality of hemispherical protrusions 201b and 202b of both fixed terminals 201a and 202a. On the other hand, when both the signal lines 201 and 202 in the conductive state are brought into the non-conductive state, as shown in FIG. 2B, the operation of the drive actuator is stopped and the movable terminal 205 of the movable lever is returned to the initial position. Then, the multipoint contact between the upper surface of the movable terminal 205 and the lower ends of the plurality of hemispherical protrusions 201b and 202b of the fixed terminals 201a and 202a is released.

このMEMSスイッチは、可動端子205の上面を両固定端子201a及び202aの複数の半球状突起201b及び202bの下端に多点接触させることによって両信号線路201及び202を導通状態とするものであるため、図1に示した面接触タイプのMEMSスイッチと比べて、導通状態における可動端子205と両固定端子201a及び202aとの接触面積を減少でき、該接触面積の減少によって前記スティクションの発生を抑制することが可能である。   In this MEMS switch, both signal lines 201 and 202 are brought into conduction by bringing the upper surface of the movable terminal 205 into multipoint contact with the lower ends of the plurality of hemispherical protrusions 201b and 202b of the fixed terminals 201a and 202a. Compared with the surface contact type MEMS switch shown in FIG. 1, the contact area between the movable terminal 205 and the fixed terminals 201a and 202a in the conductive state can be reduced, and the occurrence of the stiction is suppressed by reducing the contact area. Is possible.

ところで、図2に示したMEMSスイッチにおいて前記多点接触を実現するには、少なくとも、第1固定端子201a側の複数の半球状突起201bの高さを同じにし、且つ、第2固定端子202a側の複数の半球状突起202bの高さを同じにする必要がある。   By the way, in order to realize the multipoint contact in the MEMS switch shown in FIG. 2, at least the heights of the plurality of hemispherical protrusions 201b on the first fixed terminal 201a side are the same and the second fixed terminal 202a side is provided. The plurality of hemispherical protrusions 202b must have the same height.

しかしながら、半球状突起201b及び202bの高さはμmオーダー或いはnmオーダーであり、しかも、半球状突起201b及び202bは公知の薄膜形成手法を用いて形成されるものであることから、実際上、第1固定端子201a側の複数の半球状突起201bの高さにバラツキが生じ易く、且つ、第2固定端子202a側の複数の半球状突起202bの高さにもバラツキを生じ易い。   However, since the height of the hemispherical protrusions 201b and 202b is on the order of μm or nm, and the hemispherical protrusions 201b and 202b are formed using a known thin film forming method, The height of the plurality of hemispherical protrusions 201b on the first fixed terminal 201a side is likely to vary, and the height of the plurality of hemispherical protrusions 202b on the second fixed terminal 202a side is also likely to vary.

この高さのバラツキは前記多点接触の接触点数にバラツキを生じさせる要因となるため、導通状態における可動端子205と両信号線路201及び202との接触域にバラツキを生じ易く、該接触域のバラツキによって伝送損失にバラツキが生じる可能性が高い。即ち、図2に示した多点接触タイプのMEMSスイッチは、前記スティクションの発生を抑制できるものの、導通状態において安定した信号伝送を行うことが困難である。   This variation in height is a factor that causes variations in the number of contact points in the multipoint contact. Therefore, the contact region between the movable terminal 205 and both signal lines 201 and 202 in the conductive state is likely to vary, and the contact region There is a high possibility that transmission loss will vary due to variations. That is, although the multipoint contact type MEMS switch shown in FIG. 2 can suppress the occurrence of the stiction, it is difficult to perform stable signal transmission in a conductive state.

特開2007−012558号公報JP 2007-012558 A

本発明の目的は、導通状態におけるスティクションの発生を抑制できると共に導通状態において安定した信号伝送を行えるMEMSスイッチを提供することにある。   The objective of this invention is providing the MEMS switch which can suppress generation | occurrence | production of the stiction in a conduction | electrical_connection state, and can perform the stable signal transmission in a conduction | electrical_connection state.

前記目的を達成するため、本発明は、第1信号線路の端部から成る第1固定端子と、第2信号線路の端部から成る第2固定端子と、可動レバーに設けられた導電層から成り、且つ、第1固定端子及び第2固定端子と間隔をおいて向き合う可動端子とを有し、第1固定端子及び第2固定端子に可動端子を接触させることによって第1信号線路及び第2信号線路を導通状態とすると共に該接触を解くことによって第1信号線路及び第2信号線路を非導通状態とするMEMSスイッチであって、第1固定端子及び第2固定端子は各々の端縁が可動端子に最も近づき、且つ、端縁を除く部分が該端縁よりも可動端子から離れた断面形状を成していて、導通状態において可動端子は第1固定端子及び第2固定端子の端縁に線接触する。   In order to achieve the above object, the present invention includes a first fixed terminal formed of an end portion of a first signal line, a second fixed terminal formed of an end portion of a second signal line, and a conductive layer provided on a movable lever. And having a movable terminal facing the first fixed terminal and the second fixed terminal at an interval, and bringing the movable terminal into contact with the first fixed terminal and the second fixed terminal. A MEMS switch for bringing a signal line into a conducting state and releasing the contact to bring the first signal line and the second signal line into a non-conducting state, wherein the first fixed terminal and the second fixed terminal have respective edges The portion closest to the movable terminal and excluding the edge has a cross-sectional shape farther from the movable terminal than the edge, and the movable terminal is the edge of the first fixed terminal and the second fixed terminal in the conductive state. Touch the line.

このMEMSスイッチによれば、可動端子を両固定端子の端縁に線接触させることによって両信号線路を導通状態とするものであるため、従前の面接触タイプのMEMSスイッチと比べて、導通状態における可動端子と両固定端子との接触面積を減少できる。即ち、この接触面積の減少によってスティクション(導通状態で可動端子が両固定端子に張り付く現象)の発生を確実に抑制することができる。   According to this MEMS switch, since both signal lines are made conductive by bringing the movable terminal into line contact with the edges of both fixed terminals, compared to the conventional surface contact type MEMS switch, The contact area between the movable terminal and both fixed terminals can be reduced. That is, the reduction of the contact area can surely suppress the occurrence of stiction (a phenomenon in which the movable terminal sticks to both fixed terminals in the conductive state).

また、前記線接触を所定の接触域をもってしてバラツキ無く行えるので、従前の多点接触タイプのMEMSスイッチと比べて、導通状態における可動端子と両固定端子との接触域にバラツキを生じることを抑制できる。即ち、このバラツキの抑制によって伝送損失にバラツキが生じることを抑制して、導通状態において安定した信号伝送を行うことができる。   In addition, since the line contact can be performed with a predetermined contact area without variation, the contact area between the movable terminal and both fixed terminals in the conductive state may vary as compared with the conventional multipoint contact type MEMS switch. Can be suppressed. That is, by suppressing this variation, it is possible to suppress a variation in transmission loss and perform stable signal transmission in a conductive state.

本発明によれば、導通状態におけるスティクションの発生を抑制できると共に導通状態において安定した信号伝送を行えるMEMSスイッチを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the stiction in a conduction | electrical_connection state can be suppressed, and the MEMS switch which can perform the stable signal transmission in a conduction | electrical_connection state can be provided.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

図1(A)は一公知例を示すMEMSスイッチの部分上面図、図1(B)は図1(A)のS101−S101線に沿う断面図、図1(C)は両信号線路が導通した状態を示す断面図である。1A is a partial top view of a MEMS switch showing a known example, FIG. 1B is a cross-sectional view taken along line S101-S101 in FIG. 1A, and FIG. It is sectional drawing which shows the state which carried out. 図2(A)は他の公知例を示すMEMSスイッチの部分上面図、図2(B)は図2(A)のS201−S201線に沿う断面図、図2(C)は両信号線路が導通した状態を示す断面図である。2A is a partial top view of a MEMS switch showing another known example, FIG. 2B is a cross-sectional view taken along line S201-S201 in FIG. 2A, and FIG. It is sectional drawing which shows the state which conducted. 図3は本発明の第1実施形態を示すMEMSスイッチの上面図である。FIG. 3 is a top view of the MEMS switch showing the first embodiment of the present invention. 図4(A)は図3のS11−S11線に沿う断面図、図4(B)は図3のS12−S12線に沿う断面図、図4(C)は図3のS13−S13線に沿う断面図である。4A is a sectional view taken along line S11-S11 in FIG. 3, FIG. 4B is a sectional view taken along line S12-S12 in FIG. 3, and FIG. 4C is taken along line S13-S13 in FIG. It is sectional drawing which follows. 図5(A)及び図5(B)は図1に示したMEMSスイッチの動作説明図、図5(C)は可動端子に対する両固定端子の接触域を示す図である。5 (A) and 5 (B) are diagrams for explaining the operation of the MEMS switch shown in FIG. 1, and FIG. 5 (C) is a diagram showing a contact area of both fixed terminals with respect to the movable terminal. 図6は図4(A)に示した両固定端子の形状変形例を示す図4(A)対応図である。FIG. 6 is a diagram corresponding to FIG. 4 (A) showing a modification of the shape of both the fixed terminals shown in FIG. 4 (A). 図7(A)及び図7(B)は図4(A)に示した両固定端子と図6に示した両固定端子を得る方法例の説明図である。7A and 7B are explanatory diagrams of an example of a method for obtaining both the fixed terminals shown in FIG. 4A and the both fixed terminals shown in FIG. 図8(A)は本発明の第2実施形態を示すMEMSスイッチの部分上面図、図8(B)は可動端子に対する両固定端子の接触域を示す図である。FIG. 8A is a partial top view of a MEMS switch showing a second embodiment of the present invention, and FIG. 8B is a diagram showing a contact area of both fixed terminals with respect to a movable terminal. 図9(A)は本発明の第3実施形態を示すMEMSスイッチの部分上面図、図9(B)は可動端子に対する両固定端子の接触域を示す図である。FIG. 9A is a partial top view of a MEMS switch showing a third embodiment of the present invention, and FIG. 9B is a diagram showing a contact area of both fixed terminals with respect to the movable terminal. 図10(A)は本発明の第4実施形態を示すMEMSスイッチの部分上面図、図10(B)は可動端子に対する両固定端子の接触域を示す図である。FIG. 10A is a partial top view of a MEMS switch showing a fourth embodiment of the present invention, and FIG. 10B is a diagram showing a contact area of both fixed terminals with respect to a movable terminal. 図11は本発明の第5実施形態を示すMEMSスイッチの上面図である。FIG. 11 is a top view of a MEMS switch showing a fifth embodiment of the present invention.

[第1実施形態]
先ず、図3〜図7を引用して、本発明を適用したMEMSスイッチ10-1について説明する。この説明では、説明の便宜上、図3の手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称し、他の図のこれらに相当する向きも同様に称する。
[First Embodiment]
First, a MEMS switch 10-1 to which the present invention is applied will be described with reference to FIGS. In this description, for convenience of explanation, the front, back, top, bottom, left, and right in FIG. 3 are referred to as top, bottom, front, back, left, and right, and the directions corresponding to these in other drawings are also the same. Called.

このMEMS10-1は、公知の薄膜形成手法を用いて作成された多層構造を有しており、原寸で言えば前後寸法は約3.0mm、左右寸法は約1.5mmである。   The MEMS 10-1 has a multi-layer structure formed by using a known thin film forming method. In terms of the original size, the front-rear dimension is about 3.0 mm, and the left-right dimension is about 1.5 mm.

図3と図4(A)〜図4(C)に示したように、ベース層11は、Si等を材料として上面視形状が矩形を成すように形成されており、該ベース層11の上面全域には、SiO2等を材料とする絶縁層12が形成されている。また、ベース層11及び絶縁層12には、上面視形状がコ字形を成す貫通孔11a及び12aが形成されており、該貫通孔11a及び12aの内側には、ベース層11の一部11b及び絶縁層12の一部12bから構成された上面視形状が矩形を成す可動レバーMLが形成されている。 As shown in FIGS. 3 and 4 (A) to 4 (C), the base layer 11 is formed using Si or the like as a material so as to form a rectangular shape in top view, and the upper surface of the base layer 11 is formed. An insulating layer 12 made of SiO 2 or the like is formed over the entire area. Further, the base layer 11 and the insulating layer 12 are formed with through holes 11a and 12a having a U-shape when viewed from above. Inside the through holes 11a and 12a, a part 11b of the base layer 11 and A movable lever ML having a rectangular shape when viewed from the top, which is constituted by a part 12b of the insulating layer 12, is formed.

可動レバーMLの前後方向中央よりも前側には、複数(図中は3個)の貫通孔11b1及び12b1が形成されており、該可動レバーMLの貫通孔11b1及び12b1よりも後側部分は本体部MLaに該当し、貫通孔11b1及び12b1よりも前側部分は可動部MLbに該当し、貫通孔11b1及び12b1が形成された部分はヒンジ部MLcに該当する。   A plurality (three in the figure) of through holes 11b1 and 12b1 are formed on the front side of the center of the movable lever ML in the front-rear direction, and the rear part of the movable lever ML from the through holes 11b1 and 12b1 is the main body. The part corresponding to the part MLa corresponds to the movable part MLb in front of the through holes 11b1 and 12b1, and the part in which the through holes 11b1 and 12b1 are formed corresponds to the hinge part MLc.

可動レバーMLの本体部MLaの上面(絶縁層12の一部12bの上面)には、該上面から後側に及ぶようにして、第1電極層13がその上面視形状が矩形を成すように形成されており、該第1電極層13は上面視形状が矩形を成す張出部13aをその後部右側に一体に有している。この第1電極層13は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのPt層とから成る多層構造を有する。また、第1電極層13(張出部13aを除く)の上面には、PZT等を材料とする圧電層14が該第1電極層13と同じ上面視形状で形成されている。さらに、圧電層14の上面には、第2電極層15が該圧電層14と同じ上面視形状で形成されている。この第2電極層15は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのPt層とから成る多層構造を有する。これら第1電極層13、圧電層14及び第2電極層15は、可動レバーMLの本体部MLaを反り上がるように変形させるための駆動アクチュエータ(符号無し)を構成している。   The upper surface of the main body MLa of the movable lever ML (the upper surface of the part 12b of the insulating layer 12) extends from the upper surface to the rear side so that the first electrode layer 13 has a rectangular shape when viewed from above. The first electrode layer 13 is integrally provided with an overhanging portion 13a having a rectangular shape in a top view on the right side of the rear portion. The first electrode layer 13 has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and a Pt layer having a thickness of 200 nm formed thereon. In addition, a piezoelectric layer 14 made of PZT or the like is formed on the upper surface of the first electrode layer 13 (excluding the overhanging portion 13 a) in the same top view shape as the first electrode layer 13. Further, the second electrode layer 15 is formed on the upper surface of the piezoelectric layer 14 in the same top view shape as the piezoelectric layer 14. The second electrode layer 15 has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and a Pt layer having a thickness of 200 nm formed thereon. The first electrode layer 13, the piezoelectric layer 14, and the second electrode layer 15 constitute a drive actuator (no symbol) for deforming the body portion MLa of the movable lever ML so as to warp.

可動レバーMLの可動部MLbの上面(絶縁層12の一部12bの上面)には、導電層から成る可動端子MTがその上面視形状が矩形となるように形成されている。この可動端子MT(導電層)は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とから成る多層構造を有する。   A movable terminal MT made of a conductive layer is formed on the upper surface of the movable portion MLb of the movable lever ML (the upper surface of the part 12b of the insulating layer 12) so that the shape of the movable terminal MT when viewed from above is rectangular. The movable terminal MT (conductive layer) has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.

第2電極層15の後部上面には、導電層から成る電源入力端子16がその上面視形状が矩形となるように形成されている。この電源入力端子16(導電層)は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とから成る多層構造を有する。   A power input terminal 16 made of a conductive layer is formed on the rear upper surface of the second electrode layer 15 so that the shape of the upper surface view is rectangular. The power input terminal 16 (conductive layer) has, for example, a multilayer structure including a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.

第1電極層13の張出部13aの上面には、導電層から成るグランド端子17がその上面視形状が矩形となるように形成されている。このグランド端子17(導電層)は、例えば、厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とから成る多層構造を有する。   A ground terminal 17 made of a conductive layer is formed on the upper surface of the overhanging portion 13a of the first electrode layer 13 so that the shape of the top view is rectangular. The ground terminal 17 (conductive layer) has, for example, a multilayer structure composed of a Ti layer having a thickness of 5 nm and an Au layer having a thickness of 200 nm formed thereon.

絶縁層12の前部上面には、導電層から成る所定幅の第1信号線路SL11と、導電層から成り第1信号線路SL11と同一幅の第2信号線路SL12とが、可動端子MTの左右方向中央を境として左右対称形となるように形成されている。これら第1信号線路SL11(導電層)及び第2信号線路SL12(導電層)は、例えば、(1)厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とその上に形成された厚さ200nmのSiO2層とから成る多層構造(4層構造)や、(2)厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とから成る多層構造(3層構造)を有する。 On the upper surface of the front portion of the insulating layer 12, a first signal line SL11 having a predetermined width made of a conductive layer and a second signal line SL12 made of a conductive layer and having the same width as the first signal line SL11 are arranged on the left and right sides of the movable terminal MT. It is formed so as to be symmetrical with respect to the center in the direction. The first signal line SL11 (conductive layer) and the second signal line SL12 (conductive layer) are, for example, (1) a Ti layer having a thickness of 5 nm, an Au layer having a thickness of 200 nm formed thereon, and an upper layer thereof. A multi-layer structure (four-layer structure) composed of a 3 μm thick Au layer formed thereon and a 200 nm thick SiO 2 layer formed thereon, and (2) a 5 nm thick Ti layer and formed thereon. And a multilayer structure (three-layer structure) composed of an Au layer having a thickness of 200 nm and an Au layer having a thickness of 3 μm formed thereon.

図4(A)から分かるように、第1信号線路SL11は絶縁層12に接合した部分と該部分と連続する非接合部分とを有し、該非接合部分の端部(図中の右端部)は可動端子MTに向かって傾いた断面形状を成していて、該端部は第1固定端子FT11として用いられている。これと同様に、第2信号線路SL12は絶縁層12に接合した部分と該部分と連続する非接合部分とを有し、該非接合部分の端部(図中の左端部)は可動端子MTに向かって傾いた断面形状を成していて、該端部は第2固定端子FT12として用いられている。また、両固定端子FT11及びFT12の先端は左右方向に所定間隔(符号無し)をおいて平行に向き合っており、両固定端子FT11及びFT12の端縁は可動端子MTの上面と所定間隔CL11をおいて平行に向き合っている。図4(A)中のθは両固定端子FT11及びFT12を傾き角度を示すもので、該傾き角度θは1〜45度、好ましくは3〜5度である。   As can be seen from FIG. 4A, the first signal line SL11 has a portion joined to the insulating layer 12 and a non-joined portion continuous with the portion, and an end portion of the non-joined portion (right end portion in the figure). Has a cross-sectional shape inclined toward the movable terminal MT, and the end portion is used as the first fixed terminal FT11. Similarly, the second signal line SL12 has a portion joined to the insulating layer 12 and a non-joined portion continuous with the portion, and an end portion (left end portion in the figure) of the non-joined portion is connected to the movable terminal MT. The end portion is used as the second fixed terminal FT12. The tips of the fixed terminals FT11 and FT12 face each other in parallel in the left-right direction with a predetermined interval (no symbol), and the edges of the fixed terminals FT11 and FT12 are spaced from the upper surface of the movable terminal MT by a predetermined interval CL11. And face each other in parallel. In FIG. 4A, θ represents an inclination angle of both the fixed terminals FT11 and FT12, and the inclination angle θ is 1 to 45 degrees, preferably 3 to 5 degrees.

前記MEMSスイッチ10-1において、両信号線路SL11及びSL12を導通状態とするときには、電源入力端子16とグランド端子17を図示省略の可変直流電源に接続して、該可変直流電源から電源入力端子16に駆動電圧を印加する。この駆動電圧の印加により、駆動アクチュエータの圧電層14に圧電効果による縮みが生じ、該縮みによって可動レバーMLの本体部MLaが反り上がるように変形し、該変形に伴って可動部MLc上の可動端子MTが上方に変位し、該変位によって可動端子MTの上面が両固定端子FT11及びFT12の端縁を僅かに押し上げるように接触して、該可動端子MTの上面が両固定端子FT11及びFT12の端縁に所定接触圧下で線接触する(図5(A)及び図5(B)を参照)。   In the MEMS switch 10-1, when both the signal lines SL11 and SL12 are brought into conduction, the power input terminal 16 and the ground terminal 17 are connected to a variable DC power supply (not shown), and the power input terminal 16 is connected to the variable DC power supply. A drive voltage is applied to. By applying this drive voltage, the piezoelectric layer 14 of the drive actuator contracts due to the piezoelectric effect, and the contraction causes the main body portion MLa of the movable lever ML to be warped up, and in accordance with the deformation, the movable portion MLc moves on the movable portion MLc. The terminal MT is displaced upward, and due to the displacement, the upper surface of the movable terminal MT comes into contact so as to slightly push up the edges of the fixed terminals FT11 and FT12, and the upper surface of the movable terminal MT is in contact with the fixed terminals FT11 and FT12. Line contact is made with the edge under a predetermined contact pressure (see FIGS. 5A and 5B).

可動部MLbは本端部MLaと共に反り上がるが、両者の間にはこれらよりも可撓性に富むヒンジ部MLcが存在するため、可動端子MTが両固定端子FT11及びFT12の端縁に接触し始めると可動部MLbはヒンジ部MLcの可撓性を利用して傾動し、該傾動によって可動端子MTの上面は両固定端子FT11及びFT12の端縁に確実に線接触する。また、可動端子MTの上面は両固定端子FT11及びFT12の端縁を僅かに押し上げるように接触するため、両固定端子FT11及びFT12の端縁に上下方向の位置ズレがある場合でも、この押し上げ作用によって該位置ズレが相殺されて可動端子MTの上面は両固定端子FT11及びFT12の端縁に確実に線接触する。即ち、可動端子MTと両固定端子FT11及びFT12との線接触は、図5(C)に示したように、両固定端子FT11及びFT12の端縁の幅に準ずる所定の接触域CR11及びCR12をもってしてバラツキ無く行われる。   The movable portion MLb warps together with the main end portion MLa, but since there is a hinge portion MLc which is more flexible than the movable portion MLb, the movable terminal MT contacts the edges of the fixed terminals FT11 and FT12. When it starts, the movable part MLb tilts by utilizing the flexibility of the hinge part MLc, and the tilting causes the upper surface of the movable terminal MT to be in line contact with the edges of the fixed terminals FT11 and FT12. Further, since the upper surface of the movable terminal MT is in contact so as to slightly push up the edges of the fixed terminals FT11 and FT12, even if the edges of the fixed terminals FT11 and FT12 are displaced in the vertical direction, this push-up action is performed. This offsets the displacement, and the upper surface of the movable terminal MT is surely in line contact with the end edges of the fixed terminals FT11 and FT12. That is, the line contact between the movable terminal MT and both the fixed terminals FT11 and FT12 has a predetermined contact area CR11 and CR12 according to the width of the edge of the both fixed terminals FT11 and FT12, as shown in FIG. And it is performed without variation.

前記接触過程では可動端子MTの上面が両固定端子FT11及びFT12の端縁を僅かに押し上げるようにして接触するが、該両固定端子FT11及びFT12に適度な剛性を持たせ、且つ、傾き角度θを該剛性及び押し上げ力等に基づいて適切に設定しておけば、前記線接触を図5(C)に示した接触域CR11及びCR12をもってして支障無く行うことができる。即ち、可動端子MTの上面が両固定端子FT11及びFT12の端縁を押し上げるようにして接触しても、前記線接触を問題無く確保できるし、該線接触が面接触になることも無い。   In the contact process, the upper surface of the movable terminal MT contacts the fixed terminals FT11 and FT12 by slightly pushing up the edges of the fixed terminals FT11 and FT12. The fixed terminals FT11 and FT12 have an appropriate rigidity and have an inclination angle θ. Is appropriately set based on the rigidity, push-up force and the like, the line contact can be performed without any trouble with the contact areas CR11 and CR12 shown in FIG. In other words, even if the upper surface of the movable terminal MT contacts with the upper edges of the fixed terminals FT11 and FT12 pushed up, the line contact can be ensured without any problem, and the line contact does not become a surface contact.

一方、導通状態にある両信号線路SL11及びSL12を非導通状態とするときには、電源入力端子16への駆動電圧の印加を解除すれば良い。この駆動電圧の印加解除により、駆動アクチュエータの作動が停止し、可動レバーMLが復元して可動端子MTが初期位置に復帰し、可動端子MTの上面と両固定端子FT11及びFT12の端縁との線接触が解除される(図4(A)を参照)。   On the other hand, when the signal lines SL11 and SL12 in the conductive state are brought into the non-conductive state, the application of the drive voltage to the power input terminal 16 may be canceled. By releasing the application of the drive voltage, the operation of the drive actuator is stopped, the movable lever ML is restored, the movable terminal MT is returned to the initial position, and the upper surface of the movable terminal MT and the edges of the fixed terminals FT11 and FT12 are connected. The line contact is released (see FIG. 4A).

図4(A)には両固定端子FT11及びFT12として可動端子MTに向かって傾いた断面形状のものを示したが、図6に示したように、両固定端子FT11’及びFT12’として可動端子MTに向かって湾曲した断面形状のものを採用しても、前記同様の線接触及びその解除を行うことができる。両固定端子の断面形状は図4(A)及び図6に示したものに限られるものではなく、要するに、両固定端子の各々の端縁が可動端子MTに最も近づき、且つ、端縁を除く部分が該端縁よりも可動端子MTから離れた断面形状を成しているものを両固定端子として用いても、前記同様の線接触及びその解除を行うことができる。   In FIG. 4A, the two fixed terminals FT11 and FT12 have cross-sectional shapes inclined toward the movable terminal MT. However, as shown in FIG. 6, the fixed terminals FT11 ′ and FT12 ′ are movable terminals. Even when a cross-sectional shape curved toward the MT is employed, the same line contact and release as described above can be performed. The cross-sectional shapes of the two fixed terminals are not limited to those shown in FIGS. 4A and 6. In short, the edges of the two fixed terminals are closest to the movable terminal MT and the edges are excluded. Even if a portion having a cross-sectional shape that is farther from the movable terminal MT than the end edge is used as both the fixed terminals, the same line contact and release as described above can be performed.

ところで、図4(A)に示した両固定端子FT11及びFT12を含む両信号線路SL11及びSL12と、図6に示した両固定端子FT11’及びFT12’を含む両信号線路SL11及びSL12は、各々の厚さが極薄であることから、形成後に折り曲げ加工を施して図4(A)に示した断面形状や図6に示した断面形状とすることは現実的には困難であり、実用的でも無い。   By the way, both signal lines SL11 and SL12 including both fixed terminals FT11 and FT12 shown in FIG. 4A and both signal lines SL11 and SL12 including both fixed terminals FT11 ′ and FT12 ′ shown in FIG. Therefore, it is practically difficult to obtain a cross-sectional shape shown in FIG. 4A or a cross-sectional shape shown in FIG. But no.

依って、両固定端子(FT11及びFT12、FT11’及びFT12’)を図4(A)に示した断面形状や図6に示した断面形状とするには、両信号線路SL11及びSL12を形成する過程で両固定端子(FT11及びFT12、FT11’及びFT12’)を傾斜或いは湾曲できるような工夫が必要となる。以下に、各種実験を経て明らかとなった好適な方法例について説明する。   Therefore, in order to make both the fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) have the cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG. 6, both signal lines SL11 and SL12 are formed. In the process, it is necessary to devise such that both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) can be inclined or curved. Below, the suitable example of a method clarified through various experiments is demonstrated.

(第1の方法例)
第1の方法例は、
・両固定端子(FT11及びFT12、FT11’及びFT12’)を含む両信号線路S L11及びSL12を形成する過程で、少なくとも両固定端子に対応する部分に内部応 力(圧縮応力や引張応力等)を生じさせて、該内部応力によって同部分を傾斜或いは湾 曲させること
をその基本的な考え方とする。
(First method example)
The first example method is
・ In the process of forming both signal lines SL11 and SL12 including both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′), internal stresses (compression stress, tensile stress, etc.) at least in the part corresponding to both fixed terminals The basic idea is to cause the same part to be inclined or bend by the internal stress.

ここで、両信号線路SL11及びSL12が「厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とその上に形成された厚さ200nmのSiO2層とから成る多層構造(4層構造)」を有する場合を例に挙げ、第1の方法例を図7(A)を引用して具体的に説明する。因みに、図7(A)中のLA11は厚さ5nmのTi層、LA12は厚さ200nmのAu層、LA13は厚さ3μmのAu層、LA14は厚さ200nmのSiO2層に該当する。 Here, both signal lines SL11 and SL12 are “formed on the 5 nm thick Ti layer, the 200 nm thick Au layer formed thereon, and the 3 μm thick Au layer formed thereon. A case of having a “multi-layer structure (four-layer structure) composed of a SiO 2 layer having a thickness of 200 nm” will be described as an example, and a first method example will be specifically described with reference to FIG. 7A corresponds to a Ti layer having a thickness of 5 nm, LA12 corresponds to an Au layer having a thickness of 200 nm, LA13 corresponds to an Au layer having a thickness of 3 μm, and LA14 corresponds to an SiO 2 layer having a thickness of 200 nm.

この場合、両信号線路SL11及びSL12は、
・パターン整形されたレジスト(図示省略)上にDCスパッタリングによりTi層LA1 1を形成し、このTi層LA11上にDCスパッタリングによりAu層LA12を形成 して、Ti層LA11及びAu層L12から成るメッキシード層(符号無し)を形成す るステップ
・メッキシード層上に電解メッキによりAu層LA13を形成するステップ
・Au層LA12上にプラズマCVDまたはRFスパッタリングによりSiO2層LA14 を形成するステップ
・メッキシード層を形成する際に用いたレジストを除去するステップ
を経て作成されるが、SiO2層LA14を形成するステップでは、基板温度を常温よりも高い300℃とし、SiO2層LA14を形成した後に該温度を20℃に降下させる。
In this case, both signal lines SL11 and SL12 are
-A Ti layer LA11 is formed by DC sputtering on a patterned resist (not shown), an Au layer LA12 is formed by DC sputtering on this Ti layer LA11, and plating comprising the Ti layer LA11 and the Au layer L12 is performed. Step of forming seed layer (no symbol) Step of forming Au layer LA13 by electrolytic plating on plating seed layer Step of forming SiO 2 layer LA14 by plasma CVD or RF sputtering on Au layer LA12 It is created through a step of removing the resist used when forming the layer. In the step of forming the SiO 2 layer LA14, the substrate temperature is set to 300 ° C., which is higher than room temperature, and the SiO 2 layer LA14 is formed. The temperature is lowered to 20 ° C.

SiO2層LA14の線膨張係数はAu層LA13の線膨張係数よりも小さいことから、前記温度降下過程では上側のSiO2層LA14よりも下側のAu層LA13が大きく収縮し(図7(A)中の矢印を参照)、該収縮量の差に基づく圧縮応力によってSiO2層LA14及びAu層LA13が下向きに傾斜或いは湾曲し、これに伴って厚さの薄いメッキシード層(Ti層LA11+Au層LA12)も下向きに傾斜或いは湾曲して、両固定端子(FT11及びFT12、FT11’及びFT12’)が図4(A)に示した断面形状や図6に示した断面形状となる。 Since the linear expansion coefficient of the SiO 2 layer LA14 is smaller than the linear expansion coefficient of the Au layer LA13, the lower Au layer LA13 contracts more greatly than the upper SiO 2 layer LA14 during the temperature drop process (FIG. 7A). ), The SiO 2 layer LA14 and the Au layer LA13 are inclined or curved downward due to the compressive stress based on the difference in contraction amount, and accordingly, a thin plating seed layer (Ti layer LA11 + Au layer) LA12) is also inclined or curved downward, and both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) have the cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG.

実験によれば、両固定端子(FT11及びFT12、FT11’及びFT12’)の長さを90μmとして前記具体方法を実施したところ、該両固定端子の端縁をその基端に対して約1.2μm下げることができた。また、作成後の両固定端子が置かれる雰囲気温度を常温内(20±15℃)で変化させても、前記1.2μmの数値に問題となるような変化は見られなかった。   According to experiments, when the specific method was carried out with the lengths of both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) being 90 μm, the edges of the fixed terminals were approximately 1. It could be lowered by 2 μm. Further, even when the ambient temperature in which both the fixed terminals were created was changed within the room temperature (20 ± 15 ° C.), no significant change was observed in the numerical value of 1.2 μm.

(第2の方法例)
第2の方法例は、
・両固定端子(FT11及びFT12、FT11’及びFT12’)を含む両信号線路S L11及びSL12を形成する過程で、少なくとも両固定端子に対応する部分に塑性変 形を生じさせて、該塑性変形によって同部分を傾斜或いは湾曲させること
をその基本的な考え方とする。
(Second method example)
The second example method is
-In the process of forming both signal lines SL11 and SL12 including both fixed terminals (FT11 and FT12, FT11 'and FT12'), plastic deformation is caused at least in a portion corresponding to both fixed terminals, and the plastic deformation The basic idea is to incline or bend the same part.

ここで、両信号線路SL11及びSL12が「厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とから成る多層構造(3層構造)」を有する場合を例に挙げ、第2の方法例を図7(B)を引用して具体的に説明する。因みに、図7(B)中のLA21は厚さ5nmのTi層、LA22は厚さ200nmのAu層、LA23は厚さ3μmのAu層に該当する。   Here, both signal lines SL11 and SL12 are “a multilayer structure (3 nm comprising a Ti layer having a thickness of 5 nm, an Au layer having a thickness of 200 nm formed thereon, and an Au layer having a thickness of 3 μm formed thereon. The case of having a “layer structure” ”will be taken as an example, and a second method example will be specifically described with reference to FIG. 7B corresponds to a Ti layer having a thickness of 5 nm, LA 22 corresponds to an Au layer having a thickness of 200 nm, and LA 23 corresponds to an Au layer having a thickness of 3 μm.

この場合、両信号線路SL11及びSL12は、
・パターン整形されたレジストRE上にDCスパッタリングによりTi層LA21を形成 し、このTi層LA21上にDCスパッタリングによりAu層LA22を形成して、T i層LA21及びAu層L22から成るメッキシード層(符号無し)を形成するステッ プ
・メッキシード層上に電解メッキによりAu層LA23を形成するステップ
・メッキシード層を形成する際に用いたレジストREを除去するステップ
を経て作成されるが、メッキシード層を形成する際に用いるレジストREには加熱収縮可能なもの、例えばノボラック系ポジレジストを使用すると共に、レジストREを除去する前ステップとして、該レジストREを温度180℃、時間1hで加熱保持するステップを実施する。
In this case, both signal lines SL11 and SL12 are
A Ti layer LA21 is formed on the patterned resist RE by DC sputtering, an Au layer LA22 is formed on the Ti layer LA21 by DC sputtering, and a plating seed layer composed of the Ti layer LA21 and the Au layer L22 ( It is created through a step of forming an Au layer LA23 by electrolytic plating on a step / plating seed layer that has no reference number) and a step of removing the resist RE used in forming the plating seed layer. As the resist RE used for forming the layer, a heat-shrinkable resist, for example, a novolac positive resist is used, and as a step before removing the resist RE, the resist RE is heated and held at a temperature of 180 ° C. for 1 hour. Perform the steps.

レジストREは加熱収縮可能であることから、前記加熱過程では該レジストREが収縮し(図7(B)中の矢印を参照)、該収縮に伴ってその上のメッキシード層(Ti層LA21+Au層LA22)及びAu層LA23が下方に塑性変形して下向きに傾斜或いは湾曲して、両固定端子(FT11及びFT12、FT11’及びFT12’)が図4(A)に示した断面形状や図6に示した断面形状となる。   Since the resist RE can be heated and shrunk, the resist RE shrunk during the heating process (see the arrow in FIG. 7B), and the plating seed layer (Ti layer LA21 + Au layer thereon) accompanying the shrinkage. LA22) and Au layer LA23 are plastically deformed downward and inclined or curved downward, and both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) are shown in the cross-sectional shape shown in FIG. The cross-sectional shape is as shown.

実験によれば、両固定端子(FT11及びFT12、FT11’及びFT12’)の長さを40μmとして前記具体方法を実施したところ、該両固定端子の端縁をその基端に対して約2.0μm下げることができた。   According to experiments, when the above-mentioned specific method was carried out with the length of both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) being 40 μm, the edges of the two fixed terminals were approximately 2. It could be lowered by 0 μm.

また、前記具体方法を、「厚さ5nmのTi層とその上に形成された厚さ200nmのAu層とその上に形成された厚さ3μmのAu層とその上に形成された厚さ200nmのSiO2層とから成る多層構造(4層構造)」を有する両信号線路SL11及びSL12の作成に適用した場合でも、前記同様に、両固定端子(FT11及びFT12、FT11’及びFT12’)を図4(A)に示した断面形状や図6に示した断面形状とすることができた。 In addition, the specific method is described as follows: “Ti layer having a thickness of 5 nm, Au layer having a thickness of 200 nm formed thereon, Au layer having a thickness of 3 μm formed thereon, and a thickness of 200 nm formed thereon. Even when applied to the production of both signal lines SL11 and SL12 having a “multilayer structure (four-layer structure) made of SiO 2 layers”, both fixed terminals (FT11 and FT12, FT11 ′ and FT12 ′) are used in the same manner as described above. The cross-sectional shape shown in FIG. 4A and the cross-sectional shape shown in FIG. 6 could be obtained.

以上説明したMEMSスイッチ10-1によれば、下記効果(1)及び(2)を得ることができる。   According to the MEMS switch 10-1 described above, the following effects (1) and (2) can be obtained.

(1)可動端子MTの上面を両固定端子FT11及びFT12の端縁に線接触させることによって両信号線路SL11及びSL12を導通状態とするものであるため、図1に示した面接触タイプのMEMSスイッチと比べて、導通状態における可動端子MTと両固定端子FT11及びFT12との接触面積を減少できる。即ち、この接触面積の減少によってスティクション(導通状態で可動端子MTが両固定端子FT11及びFT12に張り付く現象)の発生を確実に抑制することができる。   (1) Since the signal lines SL11 and SL12 are brought into conduction by bringing the upper surface of the movable terminal MT into line contact with the end edges of the fixed terminals FT11 and FT12, the surface contact type MEMS shown in FIG. Compared with the switch, the contact area between the movable terminal MT and the fixed terminals FT11 and FT12 in the conductive state can be reduced. That is, the reduction of the contact area can surely suppress the occurrence of stiction (a phenomenon in which the movable terminal MT sticks to both the fixed terminals FT11 and FT12 in the conductive state).

(2)前記線接触を所定の接触域CR11及びCR12をもってしてバラツキ無く行えるので、図2に示した多点接触タイプのMEMSスイッチと比べて、導通状態における可動端子MTと両固定端子FT11及びFT12との接触域にバラツキを生じることを抑制できる。即ち、このバラツキの抑制によって伝送損失にバラツキが生じることを抑制して、導通状態において安定した信号伝送を行うことができる。   (2) Since the line contact can be performed with the predetermined contact areas CR11 and CR12 without variations, the movable terminal MT and the fixed terminals FT11 in the conductive state and the fixed terminals FT11 and FT11 in the conductive state can be compared with the multipoint contact type MEMS switch shown in FIG. It is possible to suppress variation in the contact area with the FT12. That is, by suppressing this variation, it is possible to suppress a variation in transmission loss and perform stable signal transmission in a conductive state.

[第2実施形態]
次に、図8を引用して、本発明を適用したMEMSスイッチ10-2について説明する。ここでの説明では、説明の便宜上、図8(A)の手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称し、図8(B)のこれらに相当する向きも同様に称する。
[Second Embodiment]
Next, a MEMS switch 10-2 to which the present invention is applied will be described with reference to FIG. In this description, for convenience of explanation, the front, back, top, bottom, left, and right of FIG. 8A are respectively referred to as top, bottom, front, back, left, and right, and those of FIG. The direction corresponding to is also referred to similarly.

このMEMSスイッチ10-2が、[第1実施形態]で説明したMEMSスイッチ10-1と異なるところは、図8(A)に示したように、
・両信号線路SL21及びSL22の幅W11よりも両固定端子FT21及びFT22の 先端(端縁)の幅W12を小さくした点
にある。
The difference between the MEMS switch 10-2 and the MEMS switch 10-1 described in the first embodiment is that, as shown in FIG.
The width W12 of the tips (edges) of the fixed terminals FT21 and FT22 is smaller than the width W11 of the signal lines SL21 and SL22.

この場合の可動端子MTと両固定端子FT21及びFT22との線接触は、図8(B)に示したように、両固定端子FT21及びFT21の端縁の幅W12に準ずる所定の接触域CR21及びCR22をもってしてバラツキ無く行われる。   In this case, the line contact between the movable terminal MT and the fixed terminals FT21 and FT22 is, as shown in FIG. 8B, a predetermined contact area CR21 according to the width W12 of the edges of the fixed terminals FT21 and FT21. With CR22, it is performed without variation.

このMEMSスイッチ10-2によれば、[第1実施形態]で説明した効果(1)及び(2)に加えて、下記効果(3)を得ることができる。   According to the MEMS switch 10-2, in addition to the effects (1) and (2) described in the first embodiment, the following effect (3) can be obtained.

(3)両固定端子FT21及びFT22の端縁の幅W12を変えることによって、可動端子MTに対する両固定端子FT21及びFT22の接触域を容易に調整することができる。   (3) By changing the width W12 of the edges of the fixed terminals FT21 and FT22, the contact area of the fixed terminals FT21 and FT22 with respect to the movable terminal MT can be easily adjusted.

[第3実施形態]
次に、図9を引用して、本発明を適用したMEMSスイッチ10-3について説明する。ここでの説明では、説明の便宜上、図9(A)の手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称し、図9(B)のこれらに相当する向きも同様に称する。
[Third Embodiment]
Next, a MEMS switch 10-3 to which the present invention is applied will be described with reference to FIG. In this description, for convenience of explanation, the front, back, top, bottom, left, and right in FIG. 9A are referred to as top, bottom, front, back, left, and right, respectively, and those in FIG. The direction corresponding to is also referred to similarly.

このMEMSスイッチ10-3が、[第1実施形態]で説明したMEMSスイッチ10-1と異なるところは、図9(A)に示したように、
・第1固定端子FT31の先端に、上面視形状が略半円形を成す2個の凸部FT31aを 一体形成すると共に、第2固定端子FT31の先端に、上面視形状が略半円形を成す2 個の凸部32aを凸部FT31aと左右対称形となるように一体形成した点
にある。要するに、両固定端子FT31及びFT32の先端それぞれに同じ数の凸部FT31a及び32aを一体形成した点にある。
The difference between the MEMS switch 10-3 and the MEMS switch 10-1 described in the first embodiment is that, as shown in FIG.
Two protrusions FT31a having a substantially semicircular shape when viewed from above are integrally formed at the tip of the first fixed terminal FT31, and the shape when viewed from above is substantially semicircular at the tip of the second fixed terminal FT31. The point is that the individual protrusions 32a are integrally formed so as to be symmetrical with the protrusion FT31a. In short, the same number of convex portions FT31a and 32a are integrally formed at the tips of both fixed terminals FT31 and FT32.

この場合の可動端子MTと両固定端子FT31及びFT32との線接触は、図9(B)に示したように、各凸部FT31a及びFT32aの端縁の形(円弧)に準ずる所定の接触域CR31及びCR32をもってしてバラツキ無く行われる。   In this case, the line contact between the movable terminal MT and the fixed terminals FT31 and FT32 is, as shown in FIG. 9B, a predetermined contact area corresponding to the shape (arc) of the edge of each convex portion FT31a and FT32a. It is performed without variation with CR31 and CR32.

このMEMSスイッチ10-3によれば、[第1実施形態]で説明した効果(1)及び(2)に加えて、下記効果(4)を得ることができる。   According to the MEMS switch 10-3, in addition to the effects (1) and (2) described in the [first embodiment], the following effect (4) can be obtained.

(4)各凸部FT31a及びFT32aの大きさや数を変えることによって、可動端子MTに対する両固定端子FT31及びFT32の接触域を容易に調整することができる。この効果は、両固定端子FT31及びFT32の先端それぞれに1個の凸部FT31a及びFT32aを一体形成した場合や3個以上の凸部FT31a及びFT32aを一体形成した場合でも同様に得ることができるし、各凸部FT31a及びFT32aの上面視形状をU字形や矩形とした場合でも同様に得ることができる。   (4) By changing the size and number of the convex portions FT31a and FT32a, the contact area of the fixed terminals FT31 and FT32 with respect to the movable terminal MT can be easily adjusted. This effect can be similarly obtained even when one convex portion FT31a and FT32a are integrally formed at the tips of both fixed terminals FT31 and FT32, or when three or more convex portions FT31a and FT32a are integrally formed. Even when the top-view shape of each of the convex portions FT31a and FT32a is a U-shape or a rectangle, the same can be obtained.

[第4実施形態]
次に、図10を引用して、本発明を適用したMEMSスイッチ10-4について説明する。ここでの説明では、説明の便宜上、図10(A)の手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称し、図10(B)のこれらに相当する向きも同様に称する。
[Fourth Embodiment]
Next, a MEMS switch 10-4 to which the present invention is applied will be described with reference to FIG. In this description, for convenience of explanation, the front, back, top, bottom, left, and right of FIG. 10A are respectively referred to as top, bottom, front, back, left, and right, and those of FIG. The direction corresponding to is also referred to similarly.

このMEMSスイッチ10-4が、[第1実施形態]で説明したMEMSスイッチ10-1と異なるところは、図10(A)に示したように、
・第1固定端子FT41の先端に、上面視形状が略半円形を成す2個の凸部FT41aを 一体形成すると共に、第2固定端子FT41の先端に、上面視形状が略半円形を成す1 個の凸部42aを一体形成した点
にある。要するに、両固定端子FT41及びFT42の先端それぞれに異なる数の凸部FT41a及び42aを一体形成した点にある。
The difference between the MEMS switch 10-4 and the MEMS switch 10-1 described in the first embodiment is that, as shown in FIG.
Two protrusions FT41a having a substantially semicircular shape when viewed from the top are integrally formed at the tip of the first fixed terminal FT41, and the shape when viewed from the top is approximately semicircular at the tip of the second fixed terminal FT41. The point is that the convex portions 42a are integrally formed. In short, a different number of convex portions FT41a and 42a are integrally formed at the tips of both fixed terminals FT41 and FT42.

この場合の可動端子MTと両固定端子FT41及びFT42との線接触は、図10(B)に示したように、各凸部FT41a及びFT42aの端縁の形(円弧)に準ずる所定の接触域CR41及びCR42をもってしてバラツキ無く行われる。   In this case, as shown in FIG. 10B, the line contact between the movable terminal MT and the fixed terminals FT41 and FT42 is a predetermined contact area corresponding to the shape (arc) of the edge of each convex portion FT41a and FT42a. It is performed without variation with CR41 and CR42.

このMEMSスイッチ10-4によれば、[第1実施形態]で説明した効果(1)及び(2)に加えて、下記効果(5)及び(6)を得ることができる。   According to the MEMS switch 10-4, in addition to the effects (1) and (2) described in the first embodiment, the following effects (5) and (6) can be obtained.

(5)各凸部FT41a及びFT42aの大きさや数を変えることによって、可動端子MTに対する両固定端子FT41及びFT42の接触域を容易に調整することができる。この効果は、第1固定端子FT41の先端に3個以上の凸部FT41aを一体形成し、且つ、第2固定端子FT42の先端に2個以上の凸部FT42aを一体形成した場合でも同様に得ることができるし、各凸部FT41a及びFT42aの上面視形状をU字形や矩形とした場合でも同様に得ることができる。   (5) The contact area of the fixed terminals FT41 and FT42 with respect to the movable terminal MT can be easily adjusted by changing the size and number of the convex portions FT41a and FT42a. This effect is similarly obtained even when three or more convex portions FT41a are integrally formed at the tip of the first fixed terminal FT41 and two or more convex portions FT42a are integrally formed at the tip of the second fixed terminal FT42. The same can be obtained even when the top-view shape of each of the convex portions FT41a and FT42a is a U-shape or a rectangle.

(6)図10(A)に示したように一方の2個の凸部FT41aの間に他方の凸部FT42aが向き合うように各凸部FT41a及びFT42aを配置すれば、両固定端子FT41及びFT42の先端同士の間隔を小さくすることが可能となるので、両固定端子FT41及びFT42間の信号伝送距離の短縮化を図って伝送損失低減に貢献することができる。   (6) If each convex part FT41a and FT42a are arrange | positioned so that the other convex part FT42a may face between one two convex part FT41a as shown to FIG. 10 (A), both fixed terminal FT41 and FT42. Therefore, it is possible to reduce the signal transmission distance between the fixed terminals FT41 and FT42, thereby contributing to the reduction of transmission loss.

[第5実施形態]
次に、図11を引用して、本発明を適用したMEMSスイッチ10-5について説明する。ここでの説明では、説明の便宜上、図11の手前、奥、上、下、左、右をそれぞれ上、下、前、後、左、右と称する。
[Fifth Embodiment]
Next, a MEMS switch 10-5 to which the present invention is applied will be described with reference to FIG. In this description, for convenience of description, the front, back, top, bottom, left, and right of FIG. 11 are referred to as top, bottom, front, back, left, and right, respectively.

このMEMSスイッチ10-5が、[第1実施形態]で説明したMEMSスイッチ10-1と異なるところは、図11に示したように、
・ベース層11’及び絶縁層12’の前後寸法を長くした点
・ベース層11’及び絶縁層12’に矩形を成す2つの貫通孔11a’及び12a’を平 行に形成して、ベース層11の一部11b’及び絶縁層12の一部12b’から構成さ れた可動レバーMLの前後寸法を長くした点
・可動レバーML’を2つの本体部MLaと1つの可動部MLbと2つのヒンジ部MLc とで構成した点(片持ち構造から両持ち構造に変更した点)
・各本体部MLaの上面に、駆動アクチュエータを構成する第1電極層13、圧電層14 及び第2電極層をそれぞれ形成した点
・前側の本体部MLaの上面に設けられた駆動アクチュエータに対応する電源入力端子1 6及びグランド端子17を追加した点
にある。
This MEMS switch 10-5 is different from the MEMS switch 10-1 described in the first embodiment as shown in FIG.
-Longitudinal dimensions of the base layer 11 'and the insulating layer 12'-Two through holes 11a 'and 12a' forming a rectangle in the base layer 11 'and the insulating layer 12' are formed in parallel to form the base layer The movable lever ML composed of a part 11b ′ of the eleventh part and a part 12b ′ of the insulating layer 12 has a longer front / rear dimension. The movable lever ML ′ has two main parts MLa, one movable part MLb, and two parts. Point constructed with hinge part MLc (point changed from cantilever structure to double-sided structure)
The point that the first electrode layer 13, the piezoelectric layer 14 and the second electrode layer constituting the drive actuator are formed on the upper surface of each main body MLa. Corresponding to the drive actuator provided on the upper surface of the front main body MLa. The power source input terminal 16 and the ground terminal 17 are added.

このMEMSスイッチ10-5において、両信号線路SL11及びSL12を導通状態とするときには、2つの電源入力端子16と2つのグランド端子17を図示省略の可変直流電源に接続して、該可変直流電源から2つの電源入力端子16に同一値の駆動電圧を印加する。この駆動電圧の印加により、2つの駆動アクチュエータの圧電層14に圧電効果による縮みが生じ、該縮みによって可動レバーML’の2つの本体部MLaが反り上がるように変形し、該変形に伴って可動部MLc上の可動端子MTが上方に変位し、該変位によって可動端子MTの上面が両固定端子FT11及びFT12の端縁を僅かに押し上げるように接触して、該可動端子MTの上面が両固定端子FT11及びFT12の端縁に所定接触圧下で線接触する(図5(A)及び図5(B)を参照)。   In the MEMS switch 10-5, when both the signal lines SL11 and SL12 are brought into conduction, two power input terminals 16 and two ground terminals 17 are connected to a variable DC power supply (not shown), and the variable DC power supply is connected to the MEMS switch 10-5. A drive voltage having the same value is applied to the two power input terminals 16. By applying this drive voltage, the piezoelectric layer 14 of the two drive actuators contracts due to the piezoelectric effect, and the contraction causes the two main body portions MLa of the movable lever ML ′ to warp and move along with the deformation. The movable terminal MT on the part MLc is displaced upward, and due to the displacement, the upper surface of the movable terminal MT comes into contact so as to slightly push up the edges of the fixed terminals FT11 and FT12. Line contact is made under a predetermined contact pressure with the edges of the terminals FT11 and FT12 (see FIGS. 5A and 5B).

一方、導通状態にある両信号線路SL11及びSL12を非導通状態とするときには、2つの電源入力端子16への駆動電圧の印加を解除すれば良い。この駆動電圧の印加解除により、2つの駆動アクチュエータの作動が停止し、可動レバーML’が復元して可動端子MTが初期位置に復帰し、可動端子MTの上面と両固定端子FT11及びFT12の端縁との線接触が解除される(図4(A)を参照)。   On the other hand, when the signal lines SL11 and SL12 in the conductive state are brought into the non-conductive state, the application of the drive voltage to the two power input terminals 16 may be canceled. By releasing the application of the drive voltage, the operation of the two drive actuators is stopped, the movable lever ML ′ is restored, the movable terminal MT is returned to the initial position, and the upper surface of the movable terminal MT and the ends of the fixed terminals FT11 and FT12 are restored. The line contact with the edge is released (see FIG. 4A).

このMEMSスイッチ10-5によれば、可動レバーML’等の構成が異なるものの、[第1実施形態]で説明した効果(1)及び(2)を得ることができる。また、このMEMSスイッチ10-5には[第2実施形態]と[第3実施形態]と[第4実施形態]で説明した特徴事項を適宜採用することができ、該採用によって[第2実施形態]で説明した効果(3)、[第3実施形態]で説明した効果(4)、[第4実施形態]で説明した効果(5)及び(6)を適宜得ることができる。   According to the MEMS switch 10-5, the effects (1) and (2) described in the first embodiment can be obtained, although the configuration of the movable lever ML 'and the like is different. In addition, the features described in [Second Embodiment], [Third Embodiment], and [Fourth Embodiment] can be appropriately adopted for the MEMS switch 10-5. The effect (3) described in the embodiment, the effect (4) described in the third embodiment, and the effects (5) and (6) described in the fourth embodiment can be appropriately obtained.

10-1,10-2,10-3,10-4,10-5…MEMSスイッチ、SL11,SL21,SL31,SL41…第1信号線路、FT11,FT11’,FT21,FT31,FT41…第1固定端子、FT31a,FT41a…凸部、SL12,SL22,SL32,SL42…第2信号線路、FT12,FT12’,FT22,FT32,FT42…第2固定端子、FT32a,FT42a…凸部、CR11,CR12,CR21,CR22,CR31,CR32,CR41,CR42…接触域、ML,ML’…可動レバー、MT…可動端子。   10-1, 10-2, 10-3, 10-4, 10-5 ... MEMS switch, SL11, SL21, SL31, SL41 ... first signal line, FT11, FT11 ', FT21, FT31, FT41 ... first fixed Terminal, FT31a, FT41a ... convex portion, SL12, SL22, SL32, SL42 ... second signal line, FT12, FT12 ', FT22, FT32, FT42 ... second fixed terminal, FT32a, FT42a ... convex portion, CR11, CR12, CR21 , CR22, CR31, CR32, CR41, CR42 ... contact area, ML, ML '... movable lever, MT ... movable terminal.

Claims (7)

第1信号線路の端部から成る第1固定端子と、第2信号線路の端部から成る第2固定端子と、可動レバーに設けられた導電層から成り、且つ、第1固定端子及び第2固定端子と間隔をおいて向き合う可動端子とを有し、第1固定端子及び第2固定端子に可動端子を接触させることによって第1信号線路及び第2信号線路を導通状態とすると共に該接触を解くことによって第1信号線路及び第2信号線路を非導通状態とするMEMSスイッチであって、
第1固定端子及び第2固定端子は各々の端縁が可動端子に最も近づき、且つ、端縁を除く部分が該端縁よりも可動端子から離れた断面形状を成していて、導通状態において可動端子は第1固定端子及び第2固定端子の端縁に線接触する。
The first fixed terminal including the end portion of the first signal line, the second fixed terminal including the end portion of the second signal line, the conductive layer provided on the movable lever, and including the first fixed terminal and the second fixed terminal. A movable terminal facing the fixed terminal at an interval, and bringing the first signal line and the second signal line into a conductive state by bringing the movable terminal into contact with the first fixed terminal and the second fixed terminal; A MEMS switch that uncouples the first signal line and the second signal line by unwinding,
Each of the first fixed terminal and the second fixed terminal has a cross-sectional shape in which each edge is closest to the movable terminal, and a portion excluding the edge is further away from the movable terminal than in the conductive state. The movable terminal makes line contact with the edges of the first fixed terminal and the second fixed terminal.
請求項1に記載のMEMSスイッチにおいて、
第1固定端子及び第2固定端子は可動端子に向かって傾いた断面形状を成している。
The MEMS switch according to claim 1, wherein
The first fixed terminal and the second fixed terminal have a cross-sectional shape inclined toward the movable terminal.
請求項1に記載のMEMSスイッチにおいて、
第1固定端子及び第2固定端子は可動端子に向かって湾曲した断面形状を成している。
The MEMS switch according to claim 1, wherein
The first fixed terminal and the second fixed terminal have a cross-sectional shape curved toward the movable terminal.
請求項1〜3の何れか1項に記載のMEMSスイッチにおいて、
第1固定端子及び第2固定端子の端縁の幅は第1信号線路及び第2信号線路の幅よりも小さい。
The MEMS switch according to any one of claims 1 to 3,
The widths of the edges of the first fixed terminal and the second fixed terminal are smaller than the widths of the first signal line and the second signal line.
請求項1〜3の何れか1項に記載のMEMSスイッチにおいて、
第1固定端子及び第2固定端子の先端それぞれには1個以上の凸部が一体形成されていて、導通状態において可動端子は第1固定端子及び第2固定端子の凸部の端縁に線接触する。
The MEMS switch according to any one of claims 1 to 3,
One or more convex portions are integrally formed at the tips of the first fixed terminal and the second fixed terminal, and the movable terminal is connected to the edges of the convex portions of the first fixed terminal and the second fixed terminal in the conductive state. Contact.
請求項5に記載のMEMSスイッチにおいて、
第1固定端子の先端に一体形成された凸部の数と第2固定端子の先端に一体形成された凸部の数は同じである。
The MEMS switch according to claim 5, wherein
The number of convex portions integrally formed at the tip of the first fixed terminal and the number of convex portions integrally formed at the tip of the second fixed terminal are the same.
請求項5に記載のMEMSスイッチにおいて、
第1固定端子の先端に一体形成された凸部の数と第2固定端子の先端に一体形成された凸部の数は異なる。
The MEMS switch according to claim 5, wherein
The number of convex portions integrally formed at the tip of the first fixed terminal is different from the number of convex portions integrally formed at the tip of the second fixed terminal.
JP2010122487A 2010-05-28 2010-05-28 MEMS switch Expired - Fee Related JP5298072B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010122487A JP5298072B2 (en) 2010-05-28 2010-05-28 MEMS switch
TW100106079A TW201203301A (en) 2010-05-28 2011-02-23 Mems switch
PCT/JP2011/055743 WO2011148698A1 (en) 2010-05-28 2011-03-11 Mems switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010122487A JP5298072B2 (en) 2010-05-28 2010-05-28 MEMS switch

Publications (2)

Publication Number Publication Date
JP2011249192A true JP2011249192A (en) 2011-12-08
JP5298072B2 JP5298072B2 (en) 2013-09-25

Family

ID=45003691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122487A Expired - Fee Related JP5298072B2 (en) 2010-05-28 2010-05-28 MEMS switch

Country Status (3)

Country Link
JP (1) JP5298072B2 (en)
TW (1) TW201203301A (en)
WO (1) WO2011148698A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697747B (en) * 2019-01-15 2020-07-01 台灣積體電路製造股份有限公司 Control method and testing method for micro-electro-mechanical systems device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311394A (en) * 2002-11-18 2004-11-04 Samsung Electronics Co Ltd Mems switch
JP2007196303A (en) * 2006-01-24 2007-08-09 Fujitsu Ltd Micro-structure manufacturing method and micro-structure
JP2009290153A (en) * 2008-06-02 2009-12-10 Taiyo Yuden Co Ltd Switched capacitor
JP2010061976A (en) * 2008-09-03 2010-03-18 Toshiba Corp Switch and esd protection element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311394A (en) * 2002-11-18 2004-11-04 Samsung Electronics Co Ltd Mems switch
JP2007196303A (en) * 2006-01-24 2007-08-09 Fujitsu Ltd Micro-structure manufacturing method and micro-structure
JP2009290153A (en) * 2008-06-02 2009-12-10 Taiyo Yuden Co Ltd Switched capacitor
JP2010061976A (en) * 2008-09-03 2010-03-18 Toshiba Corp Switch and esd protection element

Also Published As

Publication number Publication date
TW201203301A (en) 2012-01-16
JP5298072B2 (en) 2013-09-25
WO2011148698A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
US8570705B2 (en) MEMS sprung cantilever tunable capacitors and methods
US8319393B2 (en) Reduced voltage MEMS electrostatic actuation methods
JP4613165B2 (en) Switches for microelectromechanical systems
US6731492B2 (en) Overdrive structures for flexible electrostatic switch
TWI466374B (en) Electronic device, variable capacitor, micro switch, method of driving the micro switch and mems type electronic device
US6057520A (en) Arc resistant high voltage micromachined electrostatic switch
JP5588663B2 (en) Micro electromechanical system switch
US8451078B2 (en) CMOS-MEMS switch structure
JP2003503816A (en) Micromachined electrostatic switch for high pressure
JP2008311225A (en) Electromechanical element, driving method of electromechanical element, and electronic equipment using the same
JP2004111360A (en) Switch
JP5276178B2 (en) Switch element and circuit with switch element
JP4231062B2 (en) MEMS element
JP5298072B2 (en) MEMS switch
JP5774779B2 (en) Electrostatic actuators and variable capacitance devices
JP2007259691A (en) Electrostatic drive method of mems, electrostatic actuator, and microswitch
JP2013051297A (en) Variable capacitance device
US10439591B2 (en) MEMS device with large out-of-plane actuation and low-resistance interconnect and methods of use
JP5812096B2 (en) MEMS switch
KR20200027831A (en) Operating method for electromechanical switching device
US20070103843A1 (en) Electrostatic mems components permitting a large vertical displacement
JP5869694B2 (en) Electrostatic actuator, variable capacitance device, and driving method of electrostatic actuator
JP2007026726A (en) Mems switch
Sluzewski Actuators of active piezoelectric or electrostrictive material
JP2008300301A (en) Microswitch and its driving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees