WO2011052773A1 - 無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法 - Google Patents

無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法 Download PDF

Info

Publication number
WO2011052773A1
WO2011052773A1 PCT/JP2010/069451 JP2010069451W WO2011052773A1 WO 2011052773 A1 WO2011052773 A1 WO 2011052773A1 JP 2010069451 W JP2010069451 W JP 2010069451W WO 2011052773 A1 WO2011052773 A1 WO 2011052773A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
power base
high power
low power
wireless terminal
Prior art date
Application number
PCT/JP2010/069451
Other languages
English (en)
French (fr)
Inventor
琢 中山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP10826903A priority Critical patent/EP2498547A1/en
Priority to CN2010800485483A priority patent/CN102598798A/zh
Priority to US13/505,720 priority patent/US8958842B2/en
Priority to JP2011538519A priority patent/JP5432278B2/ja
Publication of WO2011052773A1 publication Critical patent/WO2011052773A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a radio communication system having a high power base station, a low power base station having a transmission output smaller than that of the high power base station, and a radio terminal located in a communication area formed by the high power base station.
  • the present invention relates to a high power base station, a low power base station, and a wireless terminal in the wireless communication system, and a wireless communication method in the wireless communication system.
  • a wide service area is divided into communication area units called cells, and base stations responsible for radio communication with radio terminals in the communication area are arranged for each communication area. It covers a wide service area.
  • a base station a high power base station (so-called macro cell base station) having a large transmission output is used.
  • low-power base stations (so-called picocell base stations or femtocell base stations) whose transmission output is smaller than that of high-power base stations have attracted attention.
  • the load of the high power base station can be distributed to the low power base stations.
  • a wireless communication environment in which a high power base station and a low power base station are used together is referred to as a heterogeneous environment (see, for example, Non-Patent Document 1).
  • the wireless terminal is present even though a wireless terminal exists in the vicinity of the low-power base station.
  • the received power and SINR Signal toInterference and Noise Ratio
  • the high power base station is selected as the connection destination of the wireless terminal, in other words, the communication area of the low power base station is narrowed, and the load balancing effect is achieved despite the installation of the low power base station. It can happen that it cannot be obtained.
  • an object of the present invention is to provide a radio communication system, a high power base station, a low power base station, a radio terminal, and a radio communication method capable of appropriately distributing the load of the high power base station.
  • the present invention has the following features.
  • the first feature of the present invention is that a high power base station (high power base station 100), a low power base station (low power base station 200) having a transmission output smaller than that of the high power base station, and the high power base
  • a wireless communication system wireless communication system 1 having a wireless terminal (wireless terminal 300) located in a communication area formed by a station, and communication quality between the wireless terminal and the low power base station is predetermined.
  • a connection destination candidate setting unit (a connection destination candidate setting unit 124, a connection destination candidate setting unit 224, a connection destination candidate setting unit 323) that excludes the high-power base station from the connection destination candidates of the wireless terminal when the value is greater than or equal to the value It is a summary to provide.
  • the high power base station when the communication quality between the wireless terminal and the low power base station is equal to or higher than a predetermined value, the high power base station is connected regardless of the communication quality with the high power base station. Exclude from wireless terminal connection destination candidates. Therefore, when the communication quality between the wireless terminal and the low power base station is equal to or higher than a predetermined value, the wireless terminal is connected to the low power base station and appropriately distributes the load of the high power base station. It becomes possible to make it.
  • connection destination candidate setting unit corresponds to the highest communication quality when the communication quality between the wireless terminal and the low power base station does not exceed a predetermined value.
  • the gist is that either the high power base station or the low power base station is a connection destination candidate.
  • a third feature of the present invention is summarized in that the predetermined value is communication quality when an error rate of control information transmitted from the low power base station to the wireless terminal is a specified value.
  • a fourth feature of the present invention is summarized in that the predetermined value is a value that increases as the usage rate of radio resources for control information in the high power base station increases.
  • a high power base station a low power base station having a transmission output smaller than that of the high power base station, and a wireless terminal located in a communication area formed by the high power base station.
  • the high-power base station in a wireless communication system having a connection destination of the wireless terminal when the communication quality between the wireless terminal and the low-power base station is a predetermined value or higher
  • the gist is to include a connection destination candidate setting unit that is excluded from candidates.
  • a high power base station a low power base station having a transmission output smaller than that of the high power base station, and a wireless terminal located in a communication area formed by the high power base station.
  • the high power base station is connected to the connection destination of the wireless terminal.
  • the gist is to include a connection destination candidate setting unit that is excluded from candidates.
  • a high power base station a low power base station having a transmission output smaller than that of the high power base station, and a radio terminal located in a communication area formed by the high power base station.
  • the wireless terminal in a wireless communication system having a communication quality between the wireless terminal and the low power base station that is equal to or higher than a predetermined value, the high power base station is determined from the connection destination candidates of the wireless terminal.
  • the gist is to provide a connection destination candidate setting unit to be excluded.
  • a high power base station a low power base station having a transmission output smaller than that of the high power base station, and a wireless terminal located in a communication area formed by the high power base station.
  • a high power base station a low power base station having a transmission output smaller than that of the high power base station, and a radio terminal located in a communication area formed by the high power base station.
  • a radio communication method in a radio communication system having the low power base station when the communication quality between the radio terminal and the low power base station is a predetermined value or more, the high power base station The gist is to include a step of excluding from wireless terminal connection destination candidates.
  • a high power base station a low power base station having a transmission output smaller than that of the high power base station, and a wireless terminal located in a communication area formed by the high power base station.
  • a wireless communication method in a wireless communication system having the wireless terminal when communication quality between the wireless terminal and the low power base station is equal to or higher than a predetermined value, Including the step of excluding the connection destination candidates.
  • a radio communication system a high power base station, a low power base station, a radio terminal, and a radio communication method that can appropriately distribute the load of the high power base station.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a high power base station according to the first and third embodiments of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the low power base station according to the first and second embodiments of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the radio terminal according to the first embodiment of the present invention.
  • FIG. 5 is a sequence diagram showing an operation example of the wireless communication system according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a high power base station according to the second embodiment of the present invention.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a high power base station according to the first and third embodiments of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the low power
  • FIG. 7 is a block diagram showing a configuration of a radio terminal according to the second and third embodiments of the present invention.
  • FIG. 8 is a sequence diagram showing an operation example of the radio communication system according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a low power base station according to the third embodiment of the present invention.
  • FIG. 10 is a sequence diagram showing an operation example of the radio communication system according to the third embodiment of the present invention.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 1 according to an embodiment of the present invention.
  • the wireless communication system 1 has, for example, a configuration based on LTE Release 9 which is a 3.9th generation (3.9G) mobile phone system and LTE-Advanced which is positioned as a 4th generation (4G) mobile phone system.
  • LTE Release 9 which is a 3.9th generation (3.9G) mobile phone system
  • LTE-Advanced which is positioned as a 4th generation (4G) mobile phone system.
  • the radio communication system 1 includes a high power base station (high output power base station, high output base station) (for example, macro cell base) that forms a large cell (for example, macro cell) MC1 in a heterogeneous environment. Station) 100, and low power base stations (low output power base stations, small output base stations) (for example, pico cell base stations) 200a and low power base stations forming small cells (for example, pico cells) PC1 and small cells PC2, respectively. 200b.
  • a pico cell is also referred to as a hot zone.
  • the radius of the large cell MC1 is, for example, about 1 [km] to several [km]
  • the radius of each of the small cell PC1 and the small cell PC2 is, for example, about several tens [m] to 100 [m].
  • small cell PC1 and the small cell PC2 are not distinguished, they are simply referred to as “small cell PC”, and when the low power base station 200a and the low power base station 200b are not distinguished, they are simply referred to as “low power base station 200”. ".
  • the high power base station 100 is installed at a location based on a station placement design in which a communication carrier considers inter-cell interference.
  • the low power base station 200 is installed in the large cell MC1 in order to distribute the load in the high power base station 100.
  • the high power base station 100 is connected to the core network 500 via a dedicated line.
  • the low power base station 200 is connected to the core network 500 through a dedicated line.
  • the low power base station 200 may be connected to the core network via a general public line such as ADSL or FTTH.
  • connection destination candidates for the wireless terminal 300 are set at the time of initial connection such as when the power of the wireless terminal 300 is turned on.
  • FIG. 2 is a functional block diagram showing the configuration of the high power base station 100 in the first embodiment.
  • the high power base station 100 includes an antenna unit 101, a wireless communication unit 110, a control unit 120, a storage unit 130, and a wired communication unit 140.
  • the wireless communication unit 110 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, and the like, and transmits and receives a wireless signal via the antenna unit 101.
  • the wireless communication unit 110 performs encoding and modulation of a transmission signal and demodulation and decoding of a reception signal.
  • the control unit 120 is configured using, for example, a CPU, and controls various functions included in the high power base station 100.
  • the storage unit 130 is configured using, for example, a memory, and stores various types of information used for controlling the high power base station 100 and the like.
  • the wired communication unit 140 communicates with the low power base station 200 via the core network 500.
  • the control unit 120 includes a transmission processing unit 121 and a reception processing unit 122.
  • the transmission processing unit 121 performs processing for transmitting control information using a control information channel (PDCCH: Physical-Downlink-Control-CHannel) in a resource block (RB) that is a radio resource in the downlink direction.
  • Control information (PDCCH control information) in the PDCCH is transmitted via the radio communication unit 110 and the antenna unit 101.
  • the reception processing unit 122 receives a connection request from the wireless terminal 300 via the antenna unit 101 and the wireless communication unit 110 when the wireless terminal 300 described later sets the high power base station 100 as a connection destination candidate. I do.
  • the control unit 120 performs processing for connecting the wireless terminal 300 in response to the connection request.
  • FIG. 3 is a functional block diagram showing the configuration of the low power base station 200 in the first embodiment.
  • the low power base station 200 includes an antenna unit 201, a wireless communication unit 210, a control unit 220, a storage unit 230, and a wired communication unit 240.
  • the wireless communication unit 210 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, and the like, and transmits and receives a wireless signal via the antenna unit 201. In addition, the wireless communication unit 210 performs encoding and modulation of a transmission signal and demodulation and decoding of a reception signal.
  • RF radio frequency
  • BB baseband
  • the control unit 220 is configured using, for example, a CPU, and controls various functions provided in the low power base station 200.
  • the storage unit 230 is configured using, for example, a memory, and stores various types of information used for controlling the low power base station 200 and the like.
  • the wired communication unit 240 communicates with the high power base station 100 via the core network 500.
  • the control unit 220 includes a transmission processing unit 221 and a reception processing unit 222.
  • the transmission processing unit 221 performs processing for transmitting control information using a control information channel (PDCCH) in a resource block (RB) that is a downlink radio resource.
  • Control information (PDCCH control information) in the PDCCH is transmitted via the wireless communication unit 210 and the antenna unit 201.
  • the reception processing unit 222 receives a connection request from the wireless terminal 300 via the antenna unit 201 and the wireless communication unit 210 when the wireless terminal 300 described later sets the low power base station 200 as a connection destination candidate. I do.
  • the control unit 220 performs processing for connecting the wireless terminal 300 in response to the connection request.
  • FIG. 4 is a functional block diagram showing the configuration of the radio terminal 300 in the first embodiment.
  • the wireless terminal 300 includes an antenna unit 301, a wireless communication unit 310, a control unit 320, a storage unit 330, a monitor 340, a microphone 342, a speaker 344, and an operation unit 346.
  • the wireless communication unit 310 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, or the like, and transmits and receives a wireless signal via the antenna unit 301. In addition, the wireless communication unit 310 performs encoding and modulation of the transmission signal and demodulation and decoding of the reception signal.
  • RF radio frequency
  • BB baseband
  • the control unit 320 is configured using, for example, a CPU, and controls various functions provided in the wireless terminal 300.
  • the storage unit 330 is configured using, for example, a memory, and stores various types of information used for controlling the wireless terminal 300 and the like.
  • the monitor 340 displays an image received via the control unit 320 and displays operation details (input telephone number, address, etc.).
  • the microphone 342 collects sound and outputs sound data based on the collected sound to the control unit 320.
  • the speaker 344 outputs sound based on the sound data acquired from the control unit 320.
  • the operation unit 346 is composed of a numeric keypad, function keys, and the like, and is an interface used for inputting user operation details.
  • the control unit 320 includes a reception processing unit 321, a communication quality acquisition unit 322, a connection destination candidate setting unit 323, and a transmission processing unit 324.
  • the reception processing unit 321 performs processing for receiving PDCCH control information from the high power base station 100 via the antenna unit 301 and the wireless communication unit 310, and processing for receiving PDCCH control information from the low power base station 200. I do.
  • the reception processing unit 321 can estimate the cell ID, which is identification information of the base station that is the transmission source of the PDCCH control information, based on information in the synchronization channel (SCH) at the initial stage of connection.
  • the reception processing unit 321 decodes control information transmitted from the base station using the PDSCH in processing in a layer higher than the physical layer and the data link layer, so that the transmission source is the high power base station.
  • Information (transmission output identification information) for identifying whether it is a low power base station or the PDCCH usage rate in the high power base station 100 can be acquired.
  • the communication quality acquisition unit 322 measures the reception power of the PDCCH control information received by the reception processing unit 321.
  • connection destination candidate setting unit 323 sets either the high power base station 100 or the low power base station 200 as a connection destination candidate based on the received power of each PDCCH control information.
  • connection destination candidate setting unit 323 determines whether the transmission source of each PDCCH control information is the high power base station 100 or the low power base station 200.
  • PDCCH control information whose source is the high power base station 100 is referred to as high power PDCCH control information
  • PDCCH control information whose source is the low power base station 200 is referred to as low power PDCCH control information.
  • connection destination candidate setting unit 323 determines whether or not the reception power of the low power PDCCH control information is greater than or equal to a predetermined value.
  • the predetermined value is a reception power of the low power PDCCH control information when the error rate of the low power PDCCH control information transmitted from the low power base station 200 in the wireless terminal 300 is a predetermined value, and is determined in advance. It is stored in the storage unit 330.
  • connection destination candidate setting unit 323 Prior to the determination process, the connection destination candidate setting unit 323 reads a predetermined value stored in the storage unit 330. Next, connection destination candidate setting section 323 corrects the predetermined value based on the usage rate of PDCCH in high power base station 100. Here, the connection destination candidate setting unit 323 performs correction so that the predetermined value increases as the PDCCH usage rate in the high power base station 100 increases.
  • connection destination candidate setting unit 323 determines whether or not the received power of the low power PDCCH control information is equal to or greater than a predetermined value after correction.
  • low power PDCCH control information is transmitted from each of the low power base stations 200a and 200b.
  • the connection destination candidate setting unit 323 determines whether at least one of the received power of the low power PDCCH control information is equal to or greater than a predetermined value after correction.
  • the connection destination candidate setting unit 323 excludes the high power base station 100 from the connection destination candidates. In other words, when the received power of the low power PDCCH control information is equal to or greater than the corrected predetermined value, the connection destination candidate setting unit 323 determines whether the low power base station 200 includes the low power PDCCH control information regardless of the received power of the high power PDCCH control information. The low power base station 200 having the highest received power of the corresponding low power PDCCH control information is set as a connection destination candidate.
  • the connection destination candidate setting unit 323 includes the PDCCH control information corresponding to the maximum received power among the received PDCCH control information. Either the high power base station 100 or the low power base station 200 that is a transmission source base station is set as a connection destination candidate.
  • the transmission processing unit 324 transmits either the high power base station 100 or the low power base station 200 set as the connection destination candidate by the connection destination candidate setting unit 323 via the wireless communication unit 310 and the antenna unit 301. Process to send connection request.
  • FIG. 5 is a sequence diagram showing an operation example of the radio communication system 1 in the first embodiment.
  • step S101 the high power base station 100 transmits high power PDCCH control information.
  • the radio terminal 300 receives the high power PDCCH control information.
  • step S102 the low power base station 200 transmits low power PDCCH control information.
  • the radio terminal 300 receives the low power PDCCH control information.
  • step S103 the radio terminal 300 measures the received power of the received high power PDCCH control information and low power PDCCH control information.
  • step S104 the radio terminal 300 corrects the predetermined value to be higher as the PDCCH usage rate is higher, based on the PDCCH usage rate in the high power base station 100.
  • step S105 the radio terminal 300 determines whether or not the received power of the low power PDCCH control information is equal to or greater than a predetermined value after correction.
  • step S106 the radio terminal 300 excludes the high power base station 100 from the connection destination candidates, and among the low power base stations 200, The low power base station 200 having the highest received power of the low power PDCCH control information is set as a connection destination candidate.
  • step S107 the wireless terminal 300 transmits a connection request to the low power base station 200 that is a connection destination candidate.
  • the low power base station 200 receives the connection request.
  • step S108 the radio terminal 300 receives the received high power PDCCH control information and low power PDCCH control information.
  • the high power base station 100 or the low power base station 200 which is the base station of the transmission source of the PDCCH control information corresponding to the maximum received power is set as a connection destination candidate.
  • step S109 the radio terminal 300 transmits a connection request to either the high power base station 100 or the low power base station 200 that is a connection destination candidate. Either the high power base station 100 or the low power base station 200 receives the connection request.
  • connection destination of the wireless terminal 300 is initially the connection destination of the wireless terminal 300 when the high power base station 100 is connected and a handover is performed to switch from the high power base station 100 to the low power base station 200. Candidates are set.
  • FIG. 6 is a functional block diagram showing the configuration of the high power base station 100 in the second embodiment.
  • the high power base station 100 includes an antenna unit 101, a wireless communication unit 110, a control unit 120, a storage unit 130, and a wired communication unit 140.
  • the control unit 120 is configured using, for example, a CPU, and controls various functions included in the high power base station 100.
  • the control unit 120 includes a transmission processing unit 121, a reception processing unit 122, a communication quality acquisition unit 123, and a connection destination candidate setting unit 124.
  • the transmission processing unit 121 performs processing for transmitting high power PDCCH control information using the PDCCH.
  • the high power PDCCH control information is transmitted via the radio communication unit 110 and the antenna unit 101.
  • the reception processing unit 122 performs processing for receiving various information from the wireless terminal 300 via the antenna unit 101 and the wireless communication unit 110.
  • the communication quality acquisition unit 123 acquires the reception power of the high power PDCCH control information and the reception power of the low power PDCCH control information, which are measured by the wireless terminal 300, among various types of information received by the reception processing unit 122.
  • the received power of the high power PDCCH control information and the received power of the low power PDCCH control information include the base station IDs of the corresponding base stations, respectively.
  • connection destination candidate setting unit 124 sets either the high power base station 100 or the low power base station 200 as a connection destination candidate based on the reception power of the high power PDCCH control information and the reception power of the low power PDCCH control information. .
  • connection destination candidate setting unit 124 performs substantially the same processing as the connection destination candidate setting unit 323 in the control unit 320 of the wireless terminal 300 in the first embodiment. That is, the connection destination candidate setting unit 124 determines whether the transmission source of each PDCCH control information is the high power base station 100 or the low power base station 200.
  • connection destination candidate setting unit 323 determines whether or not the reception power of the low power PDCCH control information is greater than or equal to a predetermined value.
  • the predetermined value is a reception power of the low power PDCCH control information when the error rate of the low power PDCCH control information transmitted from the low power base station 200 in the wireless terminal 300 is a predetermined value, and is determined in advance. It is stored in the storage unit 130.
  • connection destination candidate setting unit 124 Prior to the determination process, the connection destination candidate setting unit 124 reads a predetermined value stored in the storage unit 130. Next, the connection destination candidate setting unit 124 acquires the usage rate of the PDCCH in the high power base station 100, and corrects the predetermined value to be higher as the usage rate of the PDCCH in the high power base station 100 is higher.
  • connection destination candidate setting unit 124 determines whether or not the received power of the low power PDCCH control information is equal to or greater than a predetermined value after correction.
  • low power PDCCH control information is transmitted from each of the low power base station 200a and the low power base station 200b to the radio terminal 300, and the received power is measured.
  • the connection destination candidate setting unit 124 determines whether at least one of the received power of the low power PDCCH control information is equal to or greater than a predetermined value after correction.
  • the connection destination candidate setting unit 124 excludes the high power base station 100 from the connection destination candidates. In other words, when the reception power of the low power PDCCH control information is equal to or greater than the predetermined value after correction, the connection destination candidate setting unit 124 determines whether the low power base station 200 The low power base station 200 having the highest received power of the corresponding low power PDCCH control information is set as a connection destination candidate.
  • connection destination candidate setting unit 124 is a high-power base station that is the base station that is the transmission source of the PDCCH control information with the maximum received power 100 or the low power base station 200 is set as a connection destination candidate.
  • the transmission processing unit 125 sends the wireless terminal 300 to the low power base station 200 via the wired communication unit 140.
  • a handover request that is a connection request is transmitted.
  • the transmission destination of the handover request is determined by the base station ID corresponding to the low power base station 200 as the connection destination candidate.
  • the transmission processing unit 125 instructs the wireless terminal 300 to switch the connection destination from the high power base station 100 to the low power base station 200 as a connection destination candidate via the wireless communication unit 110 and the antenna unit 101.
  • a certain handover instruction is transmitted.
  • connection destination candidate setting unit 124 when the high power base station 100 is set as a connection destination candidate by the connection destination candidate setting unit 124, processing related to handover is not performed, and the state where the radio terminal 300 is connected to the high power base station 100 is maintained. .
  • FIG. 7 is a functional block diagram showing the configuration of the radio terminal 300 in the second embodiment.
  • the wireless terminal 300 includes an antenna unit 301, a wireless communication unit 310, a control unit 320, a storage unit 330, a monitor 340, a microphone 342, a speaker 344, and an operation unit 346.
  • the processing of the antenna unit 301, the wireless communication unit 310, the storage unit 330, the monitor 340, the microphone 342, the speaker 344, and the operation unit 346 is the same as that of the wireless terminal 300 in the first embodiment shown in FIG. Omitted.
  • the control unit 320 is configured using, for example, a CPU, and controls various functions provided in the wireless terminal 300.
  • the control unit 320 includes a reception processing unit 321, a communication quality acquisition unit 322, and a transmission processing unit 324.
  • the reception processing unit 321 performs processing for receiving high-power PDCCH control information from the high-power base station 100 via the antenna unit 301 and the wireless communication unit 310, and low-power PDCCH control information from the low-power base station 200. Process to receive.
  • the communication quality acquisition unit 322 measures the received power of the high power PDCCH control information and the received power of the low power PDCCH control information.
  • the transmission processing unit 324 receives the high power PDCCH control information reception power and the low power PDCCH control information from the high power base station 100 to which the radio terminal 300 is connected via the radio communication unit 310 and the antenna unit 301.
  • the received power is transmitted.
  • the received power of the high power PDCCH control information and the received power of the low power PDCCH control information include the base station ID of the corresponding base station.
  • FIG. 8 is a sequence diagram showing an operation example of the radio communication system 1 in the second embodiment.
  • step S201 the high power base station 100 transmits high power PDCCH control information.
  • the radio terminal 300 receives the high power PDCCH control information.
  • step S202 the low power base station 200 transmits low power PDCCH control information.
  • the radio terminal 300 receives the low power PDCCH control information.
  • step S203 the radio terminal 300 measures the received power of the received high power PDCCH control information and low power PDCCH control information.
  • step S204 the radio terminal 300 transmits the received power of the high power PDCCH control information and the received power of the low power PDCCH control information to the high power base station 100.
  • the high power base station 100 receives the reception power of the high power PDCCH control information and the reception power of the low power PDCCH control information.
  • step S205 the high power base station 100 performs correction so that the predetermined value increases as the PDCCH usage rate in the high power base station 100 increases.
  • step S206 the high power base station 100 determines whether or not the received power of the low power PDCCH control information is greater than or equal to a predetermined value after correction.
  • step S207 the high power base station 100 excludes the high power base station 100 from the connection destination candidates, and the low power base station 200 Among them, the low power base station 200 having the highest received power of the corresponding low power PDCCH control information is set as a connection destination candidate.
  • step S208 the high power base station 100 transmits a handover request to the low power base station 200 which is a connection destination candidate.
  • the low power base station 200 receives the handover request. Thereafter, the low power base station 200 performs a process related to a handover in which the connection destination of the wireless terminal 300 is switched from the high power base station 100 to the low power base station 200.
  • step S209 the high power base station 100 issues a handover instruction to the radio terminal 300.
  • the radio terminal 300 receives the handover instruction. Thereafter, the radio terminal 300 performs processing related to handover in which the connection destination of the radio terminal 300 is switched from the high power base station 100 to the low power base station 200.
  • step S210 the high power base station 100 determines the PDCCH control information with the maximum received power. Either the high power base station 100 or the low power base station 200 that is a transmission source base station is set as a connection destination candidate.
  • step S211 the high power base station 100 transmits a handover request to the low power base station 200 that is the connection destination candidate.
  • the low power base station 200 receives the handover request. Thereafter, the low power base station 200 performs a process related to a handover in which the connection destination of the wireless terminal 300 is switched from the high power base station 100 to the low power base station 200.
  • step S212 the high power base station 100 issues a handover instruction to the radio terminal 300.
  • the radio terminal 300 receives the handover instruction.
  • the wireless terminal 300 performs processing related to handover in which the connection destination of the wireless terminal 300 is switched from the high power base station 100 to the low power base station 200.
  • FIG. 9 is a functional block diagram showing the configuration of the low power base station 200 in the third embodiment.
  • the low power base station 100 includes an antenna unit 201, a wireless communication unit 210, a control unit 220, a storage unit 230, and a wired communication unit 240.
  • the processing of the antenna unit 201, the wireless communication unit 210, the storage unit 230, and the wired communication unit 240 is the same as that of the low power base station 200 in the first embodiment shown in FIG.
  • the control unit 220 is configured using, for example, a CPU, and controls various functions provided in the low power base station 200.
  • the control unit 220 includes a transmission processing unit 221, a reception processing unit 222, a communication quality acquisition unit 223, and a connection destination candidate setting unit 224.
  • the transmission processing unit 221 performs processing for transmitting low-power PDCCH control information using the PDCCH.
  • the low power PDCCH control information is transmitted via the radio communication unit 210 and the antenna unit 201.
  • the reception processing unit 222 performs processing for receiving various information from the wireless terminal 300 via the antenna unit 201 and the wireless communication unit 210.
  • the communication quality acquisition unit 223 acquires the reception power of the high power PDCCH control information and the reception power of the low power PDCCH control information, which are measured by the wireless terminal 300, among various types of information received by the reception processing unit 222.
  • the received power of the high power PDCCH control information and the received power of the low power PDCCH control information include the base station IDs of the corresponding base stations, respectively.
  • connection destination candidate setting unit 224 sets either the high power base station 100 or the low power base station 200 as a connection destination candidate based on the reception power of the high power PDCCH control information and the reception power of the low power PDCCH control information. .
  • connection destination candidate setting unit 224 performs substantially the same processing as the connection destination candidate setting unit 323 in the control unit 320 of the wireless terminal 300 in the first embodiment. That is, the connection destination candidate setting unit 224 determines whether the transmission source of each PDCCH control information is the high power base station 100 or the low power base station 200.
  • connection destination candidate setting unit 223 determines whether or not the received power of the low power PDCCH control information is a predetermined value or more.
  • the predetermined value is the received power of the low power PDCCH control information when the error rate of the low power PDCCH control information transmitted from the low power base station 200 in the wireless terminal 300 is a predetermined value (eg, 1%). , Predetermined and stored in the storage unit 130.
  • connection destination candidate setting unit 224 Prior to the determination process, the connection destination candidate setting unit 224 reads a predetermined value stored in the storage unit 230. Next, based on the PDCCH usage rate in the high power base station 100, the connection destination candidate setting unit 224 performs correction such that the higher the usage rate, the higher the predetermined value.
  • connection destination candidate setting unit 224 determines whether or not the received power of the low power PDCCH control information is equal to or greater than a predetermined value after correction.
  • low power PDCCH control information is transmitted from each of the low power base station 200a and the low power base station 200b to the radio terminal 300, and the received power is measured.
  • the connection destination candidate setting unit 224 determines whether at least one of the received power of the low power PDCCH control information is equal to or greater than a predetermined value after correction.
  • the connection destination candidate setting unit 224 excludes the high power base station 100 from the connection destination candidates. In other words, when the received power of the low power PDCCH control information is equal to or greater than the predetermined value after correction, the connection destination candidate setting unit 224 determines whether the low power base station 200 includes the low power base station 200 regardless of the received power of the high power PDCCH control information. The low power base station 200 having the highest received power of the corresponding low power PDCCH control information is set as a connection destination candidate.
  • connection destination candidate setting unit 224 is a high power base station that is a base station that is the transmission source of the PDCCH control information with the maximum received power 100 or the low power base station 200 is set as a connection destination candidate.
  • a handover request which is a request for connecting the wireless terminal 300, is transmitted to either the high power base station 100 or another low power base station 200 via the wired communication unit 240.
  • the transmission destination of the handover request is determined by the base station ID corresponding to the high power base station 100 or the low power base station 200 as a connection destination candidate.
  • the transmission processing unit 225 transmits the connection destination from the low power base station 200 to the wireless terminal 300 via the wireless communication unit 210 and the antenna unit 201 as a connection destination candidate and other low power base stations.
  • a handover instruction that is an instruction to switch to the power base station 200 is transmitted.
  • connection destination candidate setting unit 224 when the own low power base station 200 is set as a connection destination candidate by the connection destination candidate setting unit 224, processing related to handover is not performed, and the state where the wireless terminal 300 is connected to the own low power base station 200 is maintained. Is done.
  • FIG. 10 is a sequence diagram illustrating an operation example of the radio communication system 1 according to the third embodiment. In the following, it is assumed that the wireless terminal 300 is initially connected to the low power base station 200a among the low power base stations 200a and 200b.
  • step S301 the high power base station 100 transmits high power PDCCH control information.
  • the radio terminal 300 receives the high power PDCCH control information.
  • step S302 the low power base station 200 transmits low power PDCCH control information.
  • the radio terminal 300 receives the low power PDCCH control information.
  • step S303 the radio terminal 300 measures the received power of the received high power PDCCH control information and low power PDCCH control information.
  • step S304 the radio terminal 300 transmits the received power of the high power PDCCH control information and the received power of the low power PDCCH control information to the low power base station 200a.
  • the low power base station 200a receives the reception power of the high power PDCCH control information and the reception power of the low power PDCCH control information.
  • step S305 the low power base station 200a corrects the predetermined value to be higher as the PDCCH usage rate in the high power base station 100 is higher.
  • step S306 the low power base station 200a determines whether or not the received power of the low power PDCCH control information is equal to or greater than a predetermined value after correction.
  • the low power base station 200a excludes the high power base station 100 from the connection destination candidates, and the low power base stations 200a and 200b. Among them, the low power base station 200 having the highest received power of the corresponding low power PDCCH control information is set as a connection destination candidate.
  • step S308 the low power base station 200a transmits a handover request to the low power base station 200b that is the connection destination candidate.
  • the low power base station 200b receives the handover request. Thereafter, the low power base station 200b performs a process related to the handover in which the connection destination of the wireless terminal 300 is switched from the low power base station 200a to the low power base station 200b.
  • step S309 the low power base station 200a issues a handover instruction to the radio terminal 300.
  • the radio terminal 300 receives the handover instruction. Thereafter, the wireless terminal 300 performs processing related to handover in which the connection destination of the wireless terminal 300 is switched from the low power base station 200a to the low power base station 200b.
  • step S310 the low power base station 200a determines that the received power of the PDCCH control information with the maximum received power is the maximum.
  • step S311 the low power base station 200a transmits a handover request to the low power base station 200b that is the connection destination candidate.
  • the low power base station 200b receives the handover request. Thereafter, the low power base station 200b performs a process related to the handover in which the connection destination of the wireless terminal 300 is switched from the low power base station 200a to the low power base station 200b.
  • step S311 the low power base station 200a transmits a handover request to the high power base station 100 that is the connection destination candidate.
  • the high power base station 100 receives the handover request. Thereafter, the high power base station 100 performs processing related to the handover in which the connection destination of the wireless terminal 300 is switched from the low power base station 200a to the high power base station 100.
  • step S312 the low power base station 200a issues a handover instruction to the radio terminal 300.
  • the radio terminal 300 receives the handover instruction. Thereafter, the radio terminal 300 performs processing related to handover in which the connection destination of the radio terminal 300 is switched from the low power base station 200a to the low power base station 200b or the high power base station 100.
  • the wireless terminal 300 determines that the high-power base station receives the low-power PDCCH control information received from the low-power base station 200 when the received power is a predetermined value or more. Regardless of the received power of the high power PDCCH control information from the station 100, the high power base station 100 is excluded from the connection destination candidates of the wireless terminal 300.
  • the high power base station 100 when the reception power of the low power PDCCH control information from the low power base station 200 in the wireless terminal 300 is equal to or greater than a predetermined value, Regardless of the received power of the high power PDCCH control information from the high power base station 100, the high power base station 100 is excluded from the connection destination candidates of the wireless terminal 300.
  • the low power base station 200 when the reception power of the low power PDCCH control information from the low power base station 200 in the wireless terminal 300 is equal to or greater than a predetermined value, Regardless of the received power of the high power PDCCH control information from the high power base station 100, the high power base station 100 is excluded from the connection destination candidates of the wireless terminal 300.
  • the radio terminal 300 when the reception power of the low power PDCCH control information is equal to or higher than a predetermined value, the radio terminal 300 is connected to the low power base station 200, and the communication area (coverage) of the low power base station 200 is substantially reduced. Area) will be larger than before. Thereby, it becomes possible to distribute the load of the high power base station 100 appropriately. Further, even when the radio terminal 300 is connected to the low power base station 200, the quality of the PDCCH is maintained. Since the control information transmitted using the PDCCH includes PDSCH allocation information, PUSCH allocation information, and the like, the PDCCH quality is maintained, so that not only the characteristics of the downlink link but also the uplink link The characteristics can also be improved.
  • the predetermined value is the received power when the error rate of the low power PDCCH control information from the low power base station 200 in the wireless terminal 300 becomes a specified value. Therefore, even when the low power base station 200 is the connection destination of the radio terminal 300, the error rate of the low power PDCCH control information can be maintained below a specified value.
  • the predetermined value is a value that increases as the PDCCH usage rate in the high power base station 100 increases.
  • the connection destination candidate of the radio terminal 300 is the lower power base station. The possibility of becoming 200 can be reduced, and further, the possibility of receiving interference from the high power base station 100 can be reduced.
  • the received power of the high power PDCCH control information and the low power PDCCH control information in the radio terminal 300 is used as the communication quality between the radio terminal 300 and the high power base station 100 and the low power base station 200.
  • the received power of other signals from the high power base station 100 and the low power base station 200 in the wireless terminal 300 is used as the communication quality between the wireless terminal 300 and the high power base station 100 and the low power base station 200. It may be used.
  • the SINR of signals from the high power base station 100 and the low power base station 200 in the radio terminal 300 may be used as the communication quality between the radio terminal 300 and the high power base station 100 and the low power base station 200. Good.
  • the high power base station 100 is a macro cell base station that forms a macro cell
  • the low power base station 200 is a pico cell base station that forms a pico cell.
  • the station 100 and the low power base station 200 are not limited to these, and it is sufficient that the transmission output of the low power base station 200 is smaller than the transmission output of the high power base station 100.
  • the high power base station 100 is a macro cell base station that forms a macro cell
  • the low power base station 300 is a micro cell base station that forms a micro cell or a femto base station that forms a femto cell. Can do.
  • the low power base station 200 can be a femto cell base station that forms a femto cell. Further, when the high power base station 100 is a pico cell base station forming a pico cell, the low power base station 200 can be a femto cell base station forming a femto cell.
  • the wireless communication system 1 is configured based on LTE Release 9 or LTE-Advanced, but may be configured based on other communication standards.
  • the wireless communication system, high power base station, low power base station, wireless terminal, and wireless communication method of the present invention can appropriately distribute the load of the high power base station and are useful as a wireless communication system and the like. .

Abstract

 高電力基地局100は、無線端末300における、低電力基地局200からの低電力PDCCH制御情報の受信電力が所定値以上である場合には、高電力基地局100からの高電力PDCCH制御情報の受信電力にかかわらず、高電力基地局100を無線端末300の接続先候補から除外し、低電力基地局200を接続先候補として、無線端末300の接続先が高電力基地局100から低電力基地局200に切り替わるハンドオーバに関わる処理を行う。

Description

無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法
 本発明は、高電力基地局と、当該高電力基地局よりも送信出力が小さい低電力基地局と、当該高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムと、当該無線通信システムにおける高電力基地局、低電力基地局及び無線端末と、当該無線通信システムにおける無線通信方法とに関する。
 従来、セルラ方式の無線通信システムにおいては、広範なサービスエリアをセルと呼ばれる通信エリア単位に分割し、通信エリア内の無線端末との無線通信を受け持つ基地局を通信エリア毎に配置することで、広範なサービスエリアを面的にカバーしている。このような基地局としては、送信出力が大きい高電力基地局(いわゆる、マクロセル基地局)が使用されている。
 近年では、高電力基地局よりも送信出力が小さい低電力基地局(いわゆる、ピコセル基地局又はフェムトセル基地局)が注目されている。低電力基地局を高電力基地局のセル内に設置することで、高電力基地局の負荷を低電力基地局に分散させることが可能になる。なお、高電力基地局と低電力基地局とが混在して使用される無線通信環境は、ヘテロジーニアス環境(Heterogeneous Deployment)と称される(例えば、非特許文献1参照)。
 しかしながら、ヘテロジーニアス環境では、例えば、高電力基地局の近傍に低電力基地局が設置されるような場合には、低電力基地局の近傍に無線端末が存在するにもかかわらず、当該無線端末において、高電力基地局からの信号の受信電力やSINR(Signal to Interference and Noise Ratio)が、低電力基地局からの信号の受信電力やSINRよりも高くなることがある。その結果、無線端末の接続先として高電力基地局が選択される、換言すれば、低電力基地局の通信エリアが狭くなり、低電力基地局を設置したにもかかわらず、負荷分散の効果を得られないことが起こり得る。
 そこで、本発明は、高電力基地局の負荷を適切に分散させることが可能な無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような特徴を有している。本発明の第1の特徴は、高電力基地局(高電力基地局100)と、前記高電力基地局よりも送信出力が小さい低電力基地局(低電力基地局200)と、前記高電力基地局が形成する通信エリア内に位置する無線端末(無線端末300)とを有する無線通信システム(無線通信システム1)であって、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外する接続先候補設定部(接続先候補設定部124、接続先候補設定部224、接続先候補設定部323)を備えることを要旨とする。
 このような無線通信システムは、無線端末と低電力基地局との間の通信品質が所定値以上である場合には、高電力基地局との間の通信品質に関わらず、高電力基地局を無線端末の接続先候補から除外する。従って、無線端末と低電力基地局との間の通信品質が所定値以上である場合には、無線端末は、低電力基地局に接続することになり、高電力基地局の負荷を適切に分散させることが可能となる。
 本発明の第2の特徴は、前記接続先候補設定部は、前記無線端末と前記低電力基地局との間の通信品質が所定値を超えていない場合に、最も高い通信品質に対応する前記高電力基地局及び前記低電力基地局の何れかを接続先候補とすることを要旨とする。
 本発明の第3の特徴は、前記所定値は、前記低電力基地局から前記無線端末へ送信される制御情報の誤り率が規定値となる場合の通信品質であることを要旨とする。
 本発明の第4の特徴は、前記所定値は、前記高電力基地局における制御情報用の無線リソースの使用率が大きいほど、高くなる値であることを要旨とする。
 本発明の第5の特徴は、高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける前記高電力基地局であって、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外する接続先候補設定部を備えることを要旨とする。
 本発明の第6の特徴は、高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける前記低電力基地局であって、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外する接続先候補設定部を備えることを要旨とする。
 本発明の第7の特徴は、高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける前記無線端末であって、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外する接続先候補設定部を備えることを要旨とする。
 本発明の第8の特徴は、高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける無線通信方法であって、前記高電力基地局が、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外するステップを含むことを要旨とする。
 本発明の第9の特徴は、高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける無線通信方法であって、前記低電力基地局が、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外するステップを含むことを要旨とする。
 本発明の第10の特徴は、高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける無線通信方法であって、前記無線端末が、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外するステップを含むことを要旨とする。
 本発明の特徴によれば、高電力基地局の負荷を適切に分散させることが可能な無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法を提供することができる。
図1は、本発明の実施形態に係る無線通信システムの全体概略構成図である。 図2は、本発明の第1及び第3の実施形態に係る高電力基地局の構成を示すブロック図である。 図3は、本発明の第1及び第2実施形態に係る低電力基地局の構成を示すブロック図である。 図4は、本発明の第1実施形態に係る無線端末の構成を示すブロック図である。 図5は、本発明の第1実施形態に係る無線通信システムの動作例を示すシーケンス図である。 図6は、本発明の第2実施形態に係る高電力基地局の構成を示すブロック図である。 図7は、本発明の第2及び第3の実施形態に係る無線端末の構成を示すブロック図である。 図8は、本発明の第2実施形態に係る無線通信システムの動作例を示すシーケンス図である。 図9は、本発明の第3の実施形態に係る低電力基地局の構成を示すブロック図である。 図10は、本発明の第3の実施形態に係る無線通信システムの動作例を示すシーケンス図である。
 次に、図面を参照して、本発明の実施形態を説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (無線通信システムの構成)
 図1は、本発明の実施形態に係る無線通信システム1の全体概略構成図である。無線通信システム1は、例えば、第3.9世代(3.9G)携帯電話システムであるLTE Release9 や、第4世代(4G)携帯電話システムとして位置づけられているLTE-Advancedに基づく構成を有する。
 図1に示すように、無線通信システム1は、ヘテロジーニアス環境において、大セル(例えば、マクロセル)MC1を形成する高電力基地局(高出力電力基地局、大出力基地局)(例えば、マクロセル基地局)100と、小セル(例えば、ピコセル)PC1及び小セルPC2をそれぞれ形成する低電力基地局(低出力電力基地局、小出力基地局)(例えば、ピコセル基地局)200a及び低電力基地局200bとを有する。ピコセルは、ホットゾーンとも称される。大セルMC1の半径は、例えば1[km]から数[km]程度であり、小セルPC1及び小セルPC2のそれぞれの半径は、例えば数十[m]から100[m]程度である。
 なお、以下においては、小セルPC1及び小セルPC2を区別しないときは単に「小セルPC」と称し、低電力基地局200a及び低電力基地局200bを区別しないときは単に「低電力基地局200」と称する。
 高電力基地局100は、通信事業者がセル間干渉を考慮した置局設計に基づく場所に設置される。一方、低電力基地局200は、高電力基地局100における負荷を分散させるために、大セルMC1内に設置される。
 高電力基地局100は、専用線を介してコアネットワーク500に接続されている。一方、低電力基地局200は、専用線を介してコアネットワーク500に接続されている。但し、低電力基地局200は、ADSLやFTTH等の一般公衆回線を介してコアネットワークに接続されることもある。
 (1)第1実施形態
 以下、第1実施形態における、高電力基地局、低電力基地局及び無線端末の構成と、無線通信システムの動作とについて説明する。第1実施形態では、無線端末300の電源が投入された場合等の初期接続時における、当該無線端末300の接続先候補の設定が行われる。
 (1.1)高電力基地局の構成
 図2は、第1実施形態における高電力基地局100の構成を示す機能ブロック図である。図2に示すように、高電力基地局100は、アンテナ部101、無線通信部110、制御部120、記憶部130及び有線通信部140を有する。
 無線通信部110は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、アンテナ部101を介して、無線信号の送受信を行う。また、無線通信部110は、送信信号の符号化及び変調と、受信信号の復調及び復号とを行う。
 制御部120は、例えばCPUを用いて構成され、高電力基地局100が具備する各種の機能を制御する。記憶部130は、例えばメモリを用いて構成され、高電力基地局100の制御等に用いられる各種の情報を記憶する。有線通信部140は、コアネットワーク500を介して、低電力基地局200との通信を行う。
 制御部120は、送信処理部121及び受信処理部122を有する。
 送信処理部121は、下り方向の無線リソースであるリソースブロック(RB)内の制御情報チャネル(PDCCH:Physical Downlink Control CHannel)を用いて制御情報を送信する処理を行う。PDCCH内の制御情報(PDCCH制御情報)は、無線通信部110及びアンテナ部101を介して送信される。
 受信処理部122は、後述する無線端末300が接続先候補として高電力基地局100を設定した場合、当該無線端末300からの接続要求を、アンテナ部101及び無線通信部110を介して受信する処理を行う。制御部120は、無線端末300からの接続要求を受信した場合、当該接続要求に応じて、無線端末300を接続する処理を行う。
 (1.2)低電力基地局の構成
 図3は、第1実施形態における低電力基地局200の構成を示す機能ブロック図である。図3に示すように、低電力基地局200は、アンテナ部201、無線通信部210、制御部220、記憶部230及び有線通信部240を有する。
 無線通信部210は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、アンテナ部201を介して、無線信号の送受信を行う。また、無線通信部210は、送信信号の符号化及び変調と、受信信号の復調及び復号とを行う。
 制御部220は、例えばCPUを用いて構成され、低電力基地局200が具備する各種の機能を制御する。記憶部230は、例えばメモリを用いて構成され、低電力基地局200の制御等に用いられる各種の情報を記憶する。有線通信部240は、コアネットワーク500を介して、高電力基地局100との通信を行う。
 制御部220は、送信処理部221及び受信処理部222を有する。
 送信処理部221は、下り方向の無線リソースであるリソースブロック(RB)内の制御情報チャネル(PDCCH)を用いて制御情報を送信する処理を行う。PDCCH内の制御情報(PDCCH制御情報)は、無線通信部210及びアンテナ部201を介して送信される。
 受信処理部222は、後述する無線端末300が接続先候補として低電力基地局200を設定した場合、当該無線端末300からの接続要求を、アンテナ部201及び無線通信部210を介して受信する処理を行う。制御部220は、無線端末300からの接続要求を受信した場合、当該接続要求に応じて、無線端末300を接続する処理を行う。
 (1.3)無線端末の構成
 図4は、第1実施形態における無線端末300の構成を示す機能ブロック図である。図4に示すように、無線端末300は、アンテナ部301、無線通信部310、制御部320、記憶部330、モニタ340、マイク342、スピーカ344及び操作部346を有する。
 無線通信部310は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、アンテナ部301を介して、無線信号の送受信を行う。また、無線通信部310は、送信信号の符号化及び変調と、受信信号の復調及び復号とを行う。
 制御部320は、例えばCPUを用いて構成され、無線端末300が具備する各種の機能を制御する。記憶部330は、例えばメモリを用いて構成され、無線端末300の制御等に用いられる各種の情報を記憶する。
 モニタ340は、制御部320を介して受信した画像を表示したり、操作内容(入力電話番号やアドレスなど)を表示したりする。マイク342は、音声を集音し、集音された音声に基づく音声データを制御部320へ出力する。スピーカ344は、制御部320から取得した音声データに基づいて音声を出力する。操作部346は、テンキーやファンクションキーなどによって構成され、ユーザの操作内容を入力するために用いられるインタフェースである。
 制御部320は、受信処理部321、通信品質取得部322、接続先候補設定部323及び送信処理部324を含む。
 受信処理部321は、アンテナ部301及び無線通信部310を介して、高電力基地局100からのPDCCH制御情報を受信する処理を行うとともに、低電力基地局200からのPDCCH制御情報を受信する処理を行う。受信処理部321は、PDCCH制御情報の送信元の基地局の識別情報であるセルIDを、接続の初期段階における、同期チャネル(SCH)内の情報によって推定することができる。また、受信処理部321は、物理層やデータリンク層よりも上位のレイヤの処理において、基地局からPDSCHを用いて送信される制御情報を解読することにより、送信元が高電力基地局であるか低電力基地局であるかを識別する情報(送信出力識別情報)と、高電力基地局100におけるPDCCHの使用率とを取得することができる。
 通信品質取得部322は、受信処理部321によって受信されたPDCCH制御情報の受信電力を測定する。
 接続先候補設定部323は、各PDCCH制御情報の受信電力に基づいて、高電力基地局100及び低電力基地局200の何れかを接続先候補として設定する。
 具体的には、接続先候補設定部323は、各PDCCH制御情報の送信元が高電力基地局100であるか、低電力基地局200であるかを判定する。以下、送信元が高電力基地局100であるPDCCH制御情報を高電力PDCCH制御情報と称し、送信元が低電力基地局200であるPDCCH制御情報を低電力PDCCH制御情報と称する。
 次に、接続先候補設定部323は、低電力PDCCH制御情報の受信電力が所定値以上であるか否かを判定する。所定値は、無線端末300において低電力基地局200から送信される低電力PDCCH制御情報の誤り率が、ある規定値となる場合における、低電力PDCCH制御情報の受信電力であり、予め定められ、記憶部330に記憶されている。
 判定処理に先立って、接続先候補設定部323は、記憶部330に記憶された所定値を読み出す。次に、接続先候補設定部323は、高電力基地局100におけるPDCCHの使用率に基づいて、所定値を補正する。ここで、接続先候補設定部323は、高電力基地局100におけるPDCCHの使用率が高いほど、所定値が高くなるように補正を行う。
 その後、接続先候補設定部323は、低電力PDCCH制御情報の受信電力が補正後の所定値以上であるか否かを判定する。本実施形態では、低電力基地局200a及び200bのそれぞれから低電力PDCCH制御情報が送信される。この場合、接続先候補設定部323は、低電力PDCCH制御情報の受信電力の少なくとも何れかが補正後の所定値以上であるか否かを判定する。
 低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、接続先候補設定部323は、高電力基地局100を接続先候補から除外する。換言すれば、低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、接続先候補設定部323は、高電力PDCCH制御情報の受信電力に関わらず、低電力基地局200のうち、対応する低電力PDCCH制御情報の受信電力が最も高い低電力基地局200を接続先候補として設定する。
 一方、低電力PDCCH制御情報の受信電力が補正後の所定値未満である場合、接続先候補設定部323は、受信されたPDCCH制御情報のうち、対応する受信電力が最大であるPDCCH制御情報の送信元の基地局である高電力基地局100及び低電力基地局200の何れかを接続先候補として設定する。
 送信処理部324は、接続先候補設定部323によって接続先候補として設定された高電力基地局100及び低電力基地局200の何れかに対して、無線通信部310及びアンテナ部301を介して、接続要求を送信する処理を行う。
 (1.4)無線通信システムの動作
 図5は、第1実施形態における無線通信システム1の動作例を示すシーケンス図である。
 ステップS101において、高電力基地局100は、高電力PDCCH制御情報を送信する。無線端末300は、高電力PDCCH制御情報を受信する。ステップS102において、低電力基地局200は、低電力PDCCH制御情報を送信する。無線端末300は、低電力PDCCH制御情報を受信する。
 ステップS103において、無線端末300は、受信した高電力PDCCH制御情報及び低電力PDCCH制御情報の受信電力を測定する。
 ステップS104において、無線端末300は、高電力基地局100におけるPDCCHの使用率に基づいて、所定値が、PDCCHの使用率が高いほど、高くなるように補正する。
 ステップS105において、無線端末300は、低電力PDCCH制御情報の受信電力が補正後の所定値以上であるか否かを判定する。
 低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、ステップS106において、無線端末300は、高電力基地局100を接続先候補から除外し、低電力基地局200のうち、対応する低電力PDCCH制御情報の受信電力が最も高い低電力基地局200を接続先候補として設定する。
 ステップS107において、無線端末300は、接続先候補である低電力基地局200へ接続要求を送信する。低電力基地局200は、接続要求を受信する。
 一方、ステップS105において、低電力PDCCH制御情報の受信電力が補正後の所定値未満であると判定された場合、ステップS108において、無線端末300は、受信した高電力PDCCH制御情報及び低電力PDCCH制御情報のうち、対応する受信電力が最大であるPDCCH制御情報の送信元の基地局である高電力基地局100及び低電力基地局200の何れかを接続先候補として設定する。
 ステップS109において、無線端末300は、接続先候補である高電力基地局100及び低電力基地局200の何れかへ接続要求を送信する。高電力基地局100及び低電力基地局200の何れかは、接続要求を受信する。
 (2)第2実施形態
 以下、第2実施形態における、高電力基地局、低電力基地局及び無線端末の構成と、無線通信システムの動作とについて説明する。第2実施形態では、当初、無線端末300の接続先が高電力基地局100であり、当該高電力基地局100から低電力基地局200へ切り替わるハンドオーバが行われる時において、無線端末300の接続先候補の設定が行われる。
 (2.1)高電力基地局の構成
 図6は、第2実施形態における高電力基地局100の構成を示す機能ブロック図である。図6に示すように、高電力基地局100は、アンテナ部101、無線通信部110、制御部120、記憶部130及び有線通信部140を有する。
 アンテナ部101、無線通信部110、記憶部130及び有線通信部140の処理は、図2に示す第1実施形態における高電力基地局100と同様であるので、その説明は省略する。
 制御部120は、例えばCPUを用いて構成され、高電力基地局100が具備する各種の機能を制御する。この制御部120は、送信処理部121、受信処理部122、通信品質取得部123及び接続先候補設定部124を有する。
 送信処理部121は、PDCCHを用いて高電力PDCCH制御情報を送信する処理を行う。高電力PDCCH制御情報は、無線通信部110及びアンテナ部101を介して送信される。
 受信処理部122は、無線端末300からの各種情報を、アンテナ部101及び無線通信部110を介して受信する処理を行う。
 通信品質取得部123は、受信処理部122によって受信された各種情報のうち、無線端末300において測定された、高電力PDCCH制御情報の受信電力と、低電力PDCCH制御情報の受信電力とを取得する。ここで、高電力PDCCH制御情報の受信電力と、低電力PDCCH制御情報の受信電力とには、それぞれ対応する基地局の基地局IDが含まれている。
 接続先候補設定部124は、高電力PDCCH制御情報の受信電力及び低電力PDCCH制御情報の受信電力に基づいて、高電力基地局100及び低電力基地局200の何れかを接続先候補として設定する。
 具体的には、接続先候補設定部124は、第1実施形態における無線端末300の制御部320内の接続先候補設定部323とほぼ同様の処理を行う。すなわち、接続先候補設定部124は、各PDCCH制御情報の送信元が高電力基地局100であるか、低電力基地局200であるかを判定する。
 次に、接続先候補設定部323は、低電力PDCCH制御情報の受信電力が所定値以上であるか否かを判定する。所定値は、無線端末300において低電力基地局200から送信される低電力PDCCH制御情報の誤り率が、ある規定値となる場合における、低電力PDCCH制御情報の受信電力であり、予め定められ、記憶部130に記憶されている。
 判定処理に先立って、接続先候補設定部124は、記憶部130に記憶された所定値を読み出す。次に、接続先候補設定部124は、高電力基地局100におけるPDCCHの使用率を取得し、高電力基地局100におけるPDCCHの使用率が高いほど、所定値が高くなるように補正を行う。
 その後、接続先候補設定部124は、低電力PDCCH制御情報の受信電力が補正後の所定値以上であるか否かを判定する。本実施形態では、低電力基地局200a及び低電力基地局200bのそれぞれから無線端末300へ低電力PDCCH制御情報が送信され、受信電力が測定される。この場合、接続先候補設定部124は、低電力PDCCH制御情報の受信電力の少なくとも何れかが補正後の所定値以上であるか否かを判定する。
 低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、接続先候補設定部124は、高電力基地局100を接続先候補から除外する。換言すれば、低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、接続先候補設定部124は、高電力PDCCH制御情報の受信電力に関わらず、低電力基地局200のうち、対応する低電力PDCCH制御情報の受信電力が最も高い低電力基地局200を接続先候補として設定する。
 一方、低電力PDCCH制御情報の受信電力が補正後の所定値未満である場合、接続先候補設定部124は、受信電力が最大であるPDCCH制御情報の送信元の基地局である高電力基地局100及び低電力基地局200の何れかを接続先候補として設定する。
 送信処理部125は、接続先候補設定部124によって接続先候補として低電力基地局200が設定された場合、当該低電力基地局200に対して、有線通信部140を介して、無線端末300を接続する要求であるハンドオーバ要求を送信する。ハンドオーバ要求の送信先は、接続先候補としての低電力基地局200に対応する基地局IDにより判別される。更に、送信処理部125は、無線端末300に対して、無線通信部110及びアンテナ部101を介して、接続先を高電力基地局100から接続先候補としての低電力基地局200へ切り替える指示であるハンドオーバ指示を送信する。
 一方、接続先候補設定部124によって接続先候補として高電力基地局100が設定された場合、ハンドオーバに関わる処理は行われず、無線端末300が高電力基地局100に接続された状態が維持される。
 (2.2)低電力基地局の構成
 低電力基地局200の構成は、図3に示す第1実施形態における低電力基地局200の構成と同様であるので、その説明は省略する。
 (2.3)無線端末の構成
 図7は、第2実施形態における無線端末300の構成を示す機能ブロック図である。図7に示すように、無線端末300は、アンテナ部301、無線通信部310、制御部320、記憶部330、モニタ340、マイク342、スピーカ344及び操作部346を有する。
 アンテナ部301、無線通信部310、記憶部330、モニタ340、マイク342、スピーカ344及び操作部346の処理は、図4に示す第1実施形態における無線端末300と同様であるので、その説明は省略する。
 制御部320は、例えばCPUを用いて構成され、無線端末300が具備する各種の機能を制御する。この制御部320は、受信処理部321、通信品質取得部322及び送信処理部324を含む。
 受信処理部321は、アンテナ部301及び無線通信部310を介して、高電力基地局100からの高電力PDCCH制御情報を受信する処理を行うとともに、低電力基地局200からの低電力PDCCH制御情報を受信する処理を行う。
 通信品質取得部322は、高電力PDCCH制御情報の受信電力と、低電力PDCCH制御情報の受信電力とを測定する。
 送信処理部324は、無線端末300が接続している高電力基地局100に対して、無線通信部310及びアンテナ部301を介して、高電力PDCCH制御情報の受信電力と、低電力PDCCH制御情報の受信電力とを送信する処理を行う。上述したように、高電力PDCCH制御情報の受信電力と、低電力PDCCH制御情報の受信電力とには、それぞれ対応する基地局の基地局IDが含まれている。
 (2.4)無線通信システムの動作
 図8は、第2実施形態における無線通信システム1の動作例を示すシーケンス図である。
 ステップS201において、高電力基地局100は、高電力PDCCH制御情報を送信する。無線端末300は、高電力PDCCH制御情報を受信する。ステップS202において、低電力基地局200は、低電力PDCCH制御情報を送信する。無線端末300は、低電力PDCCH制御情報を受信する。
 ステップS203において、無線端末300は、受信した高電力PDCCH制御情報及び低電力PDCCH制御情報の受信電力を測定する。
 ステップS204において、無線端末300は、高電力PDCCH制御情報の受信電力及び低電力PDCCH制御情報の受信電力を高電力基地局100へ送信する。高電力基地局100は、高電力PDCCH制御情報の受信電力及び低電力PDCCH制御情報の受信電力を受信する。
 ステップS205において、高電力基地局100は、当該高電力基地局100におけるPDCCHの使用率が高いほど、所定値が高くなるように補正を行う。
 ステップS206において、高電力基地局100は、低電力PDCCH制御情報の受信電力が補正後の所定値以上であるか否かを判定する。
 低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、ステップS207において、高電力基地局100は、当該高電力基地局100を接続先候補から除外し、低電力基地局200のうち、対応する低電力PDCCH制御情報の受信電力が最も高い低電力基地局200を接続先候補として設定する。
 ステップS208において、高電力基地局100は、接続先候補である低電力基地局200へハンドオーバ要求を送信する。低電力基地局200は、ハンドオーバ要求を受信する。その後、低電力基地局200は、無線端末300の接続先が高電力基地局100から低電力基地局200へ切り替わるハンドオーバに関わる処理を行う。
 更に、ステップS209において、高電力基地局100は、無線端末300に対して、ハンドオーバ指示を行う。無線端末300は、ハンドオーバ指示を受信する。その後、無線端末300は、当該無線端末300の接続先が高電力基地局100から低電力基地局200へ切り替わるハンドオーバに関わる処理を行う。
 一方、ステップS206において、低電力PDCCH制御情報の受信電力が補正後の所定値未満であると判定された場合、ステップS210において、高電力基地局100は、受信電力が最大であるPDCCH制御情報の送信元の基地局である高電力基地局100及び低電力基地局200の何れかを接続先候補として設定する。
 接続先候補が低電力基地局200である場合、ステップS211において、高電力基地局100は、接続先候補である低電力基地局200へハンドオーバ要求を送信する。低電力基地局200は、ハンドオーバ要求を受信する。その後、低電力基地局200は、無線端末300の接続先が高電力基地局100から低電力基地局200へ切り替わるハンドオーバに関わる処理を行う。
 更に、ステップS212において、高電力基地局100は、無線端末300に対して、ハンドオーバ指示を行う。無線端末300は、ハンドオーバ指示を受信する。その後、無線端末300は、当該無線端末300の接続先が高電力基地局100から低電力基地局200へ切り替わるハンドオーバに関わる処理を行う。
 (3)第3実施形態
 以下、第3実施形態における、高電力基地局、低電力基地局及び無線端末の構成と、無線通信システムの動作とについて説明する。第3実施形態では、当初、無線端末300の接続先が低電力基地局200であり、当該低電力基地局200から高電力基地局100や他の低電力基地局200へ切り替わるハンドオーバが行われる時において、無線端末300の接続先候補の設定が行われる。
 (3.1)高電力基地局の構成
 高電力基地局100の構成は、図2に示す第1実施形態における高電力基地局100の構成と同様であるので、その説明は省略する。
 (3.2)低電力基地局の構成
 図9は、第3実施形態における低電力基地局200の構成を示す機能ブロック図である。図9に示すように、低電力基地局100は、アンテナ部201、無線通信部210、制御部220、記憶部230及び有線通信部240を有する。
 アンテナ部201、無線通信部210、記憶部230及び有線通信部240の処理は、図3に示す第1実施形態における低電力基地局200と同様であるので、その説明は省略する。
 制御部220は、例えばCPUを用いて構成され、低電力基地局200が具備する各種の機能を制御する。この制御部220は、送信処理部221、受信処理部222、通信品質取得部223及び接続先候補設定部224を有する。
 送信処理部221は、PDCCHを用いて低電力PDCCH制御情報を送信する処理を行う。低電力PDCCH制御情報は、無線通信部210及びアンテナ部201を介して送信される。
 受信処理部222は、無線端末300からの各種情報を、アンテナ部201及び無線通信部210を介して受信する処理を行う。
 通信品質取得部223は、受信処理部222によって受信された各種情報のうち、無線端末300において測定された、高電力PDCCH制御情報の受信電力と、低電力PDCCH制御情報の受信電力とを取得する。ここで、高電力PDCCH制御情報の受信電力と、低電力PDCCH制御情報の受信電力とには、それぞれ対応する基地局の基地局IDが含まれている。
 接続先候補設定部224は、高電力PDCCH制御情報の受信電力及び低電力PDCCH制御情報の受信電力に基づいて、高電力基地局100及び低電力基地局200の何れかを接続先候補として設定する。
 具体的には、接続先候補設定部224は、第1実施形態における無線端末300の制御部320内の接続先候補設定部323とほぼ同様の処理を行う。すなわち、接続先候補設定部224は、各PDCCH制御情報の送信元が高電力基地局100であるか、低電力基地局200であるかを判定する。
 次に、接続先候補設定部223は、低電力PDCCH制御情報の受信電力が所定値以上であるか否かを判定する。所定値は、無線端末300において低電力基地局200から送信される低電力PDCCH制御情報の誤り率が、ある規定値(例えば1%)となる場合における、低電力PDCCH制御情報の受信電力であり、予め定められ、記憶部130に記憶されている。
 判定処理に先立って、接続先候補設定部224は、記憶部230に記憶された所定値を読み出す。次に、接続先候補設定部224は、高電力基地局100におけるPDCCHの使用率に基づいて、当該使用率が高いほど、所定値が高くなるように補正を行う。
 その後、接続先候補設定部224は、低電力PDCCH制御情報の受信電力が補正後の所定値以上であるか否かを判定する。本実施形態では、低電力基地局200a及び低電力基地局200bのそれぞれから無線端末300へ低電力PDCCH制御情報が送信され、受信電力が測定される。この場合、接続先候補設定部224は、低電力PDCCH制御情報の受信電力の少なくとも何れかが補正後の所定値以上であるか否かを判定する。
 低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、接続先候補設定部224は、高電力基地局100を接続先候補から除外する。換言すれば、低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、接続先候補設定部224は、高電力PDCCH制御情報の受信電力に関わらず、低電力基地局200のうち、対応する低電力PDCCH制御情報の受信電力が最も高い低電力基地局200を接続先候補として設定する。
 一方、低電力PDCCH制御情報の受信電力が補正後の所定値未満である場合、接続先候補設定部224は、受信電力が最大であるPDCCH制御情報の送信元の基地局である高電力基地局100及び低電力基地局200の何れかを接続先候補として設定する。
 送信処理部225は、接続先候補設定部224によって接続先候補として、高電力基地局100、及び、自低電力基地局200以外の他の低電力基地局200の何れかが設定された場合、高電力基地局100及び他の低電力基地局200の何れかに対して、有線通信部240を介して、無線端末300を接続する要求であるハンドオーバ要求を送信する。ハンドオーバ要求の送信先は、接続先候補としての高電力基地局100や低電力基地局200に対応する基地局IDにより判別される。更に、送信処理部225は、無線端末300に対して、無線通信部210及びアンテナ部201を介して、接続先を低電力基地局200から接続先候補としての高電力基地局100及び他の低電力基地局200のへ切り替える指示であるハンドオーバ指示を送信する。
 一方、接続先候補設定部224によって接続先候補として自低電力基地局200が設定された場合、ハンドオーバに関わる処理は行われず、無線端末300が自低電力基地局200に接続された状態が維持される。
 (3.3)無線端末の構成
 無線端末300の構成は、図7に示す第2実施形態における無線端末300の構成と同様であるので、その説明は省略する。
 (3.4)無線通信システムの動作
 図10は、第3実施形態における無線通信システム1の動作例を示すシーケンス図である。なお、以下においては、無線端末300は、当初、低電力基地局200a及び200bのうち、低電力基地局200aに接続しているものとする。
 ステップS301において、高電力基地局100は、高電力PDCCH制御情報を送信する。無線端末300は、高電力PDCCH制御情報を受信する。ステップS302において、低電力基地局200は、低電力PDCCH制御情報を送信する。無線端末300は、低電力PDCCH制御情報を受信する。
 ステップS303において、無線端末300は、受信した高電力PDCCH制御情報及び低電力PDCCH制御情報の受信電力を測定する。
 ステップS304において、無線端末300は、高電力PDCCH制御情報の受信電力及び低電力PDCCH制御情報の受信電力を低電力基地局200aへ送信する。低電力基地局200aは、高電力PDCCH制御情報の受信電力及び低電力PDCCH制御情報の受信電力を受信する。
 ステップS305において、低電力基地局200aは、高電力基地局100におけるPDCCHの使用率が高いほど、所定値が高くなるように補正を行う。
 ステップS306において、低電力基地局200aは、低電力PDCCH制御情報の受信電力が補正後の所定値以上であるか否かを判定する。
 低電力PDCCH制御情報の受信電力が補正後の所定値以上である場合、ステップS307において、低電力基地局200aは、高電力基地局100を接続先候補から除外し、低電力基地局200a及び200bのうち、対応する低電力PDCCH制御情報の受信電力が最も高い低電力基地局200を接続先候補として設定する。
 接続先候補が低電力基地局200bである場合、ステップS308において、低電力基地局200aは、接続先候補である低電力基地局200bへハンドオーバ要求を送信する。低電力基地局200bは、ハンドオーバ要求を受信する。その後、低電力基地局200bは、無線端末300の接続先が低電力基地局200aから低電力基地局200bへ切り替わるハンドオーバに関わる処理を行う。
 更に、ステップS309において、低電力基地局200aは、無線端末300に対して、ハンドオーバ指示を行う。無線端末300は、ハンドオーバ指示を受信する。その後、無線端末300は、当該無線端末300の接続先が低電力基地局200aから低電力基地局200bへ切り替わるハンドオーバに関わる処理を行う。
 一方、ステップS306において、低電力PDCCH制御情報の受信電力が補正後の所定値未満であると判定された場合、ステップS310において、低電力基地局200aは、受信電力が最大であるPDCCH制御情報の送信元の基地局である高電力基地局100、低電力基地局200a及び200bの何れかを接続先候補として設定する。
 接続先候補が低電力基地局200bである場合、ステップS311において、低電力基地局200aは、接続先候補である低電力基地局200bへハンドオーバ要求を送信する。低電力基地局200bは、ハンドオーバ要求を受信する。その後、低電力基地局200bは、無線端末300の接続先が低電力基地局200aから低電力基地局200bへ切り替わるハンドオーバに関わる処理を行う。
 また、接続先候補が高電力基地局100である場合、ステップS311において、低電力基地局200aは、接続先候補である高電力基地局100へハンドオーバ要求を送信する。高電力基地局100は、ハンドオーバ要求を受信する。その後、高電力基地局100は、無線端末300の接続先が低電力基地局200aから高電力基地局100へ切り替わるハンドオーバに関わる処理を行う。
 更に、ステップS312において、低電力基地局200aは、無線端末300に対して、ハンドオーバ指示を行う。無線端末300は、ハンドオーバ指示を受信する。その後、無線端末300は、当該無線端末300の接続先が低電力基地局200aから低電力基地局200bあるいは高電力基地局100へ切り替わるハンドオーバに関わる処理を行う。
 (4)作用・効果
 第1実施形態における無線通信システム1では、無線端末300は、低電力基地局200からの低電力PDCCH制御情報の受信電力が所定値以上である場合には、高電力基地局100からの高電力PDCCH制御情報の受信電力にかかわらず、高電力基地局100を無線端末300の接続先候補から除外する。
 また、第2実施形態における無線通信システム1では、高電力基地局100は、無線端末300における、低電力基地局200からの低電力PDCCH制御情報の受信電力が所定値以上である場合には、高電力基地局100からの高電力PDCCH制御情報の受信電力にかかわらず、高電力基地局100を無線端末300の接続先候補から除外する。
 また、第3実施形態における無線通信システム1では、低電力基地局200は、無線端末300における、低電力基地局200からの低電力PDCCH制御情報の受信電力が所定値以上である場合には、高電力基地局100からの高電力PDCCH制御情報の受信電力にかかわらず、高電力基地局100を無線端末300の接続先候補から除外する。
 従って、低電力PDCCH制御情報の受信電力が所定値以上である場合には、無線端末300は、低電力基地局200に接続することになり、実質的に低電力基地局200の通信エリア(カバレッジエリア)が従来よりも拡大する。これにより、高電力基地局100の負荷を適切に分散させることが可能となる。また、無線端末300が低電力基地局200に接続しても、PDCCHの品質は維持される。PDCCHを用いて送信される制御情報には、PDSCHの割り当て情報、PUSCHの割り当て情報等が含まれるため、PDCCHの品質が維持されることにより、下り方向のリンクの特性のみならず上り方向のリンクの特性をも向上させることができる。
 また、所定値は、無線端末300における低電力基地局200からの低電力PDCCH制御情報の誤り率が規定値となる場合の受信電力である。従って、低電力基地局200が無線端末300の接続先となった場合にも、低電力PDCCH制御情報の誤り率を規定値以下に維持することが可能となる。
 更には、所定値は、高電力基地局100におけるPDCCHの使用率が大きいほど、高くなる値である。高電力基地局100におけるPDCCHの使用率が大きいほど、無線端末300が低電力基地局200に接続された場合、高電力基地局100からの干渉を受ける可能性が高まる。従って、高電力基地局100におけるPDCCHの使用率が大きいほど、高くなるようにすることで、高電力基地局100におけるPDCCHの使用率が大きいほど、無線端末300の接続先候補が低電力基地局200になる可能性を減らし、更には、高電力基地局100からの干渉を受ける可能性を減らすことができる。
 (5)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、無線端末300と高電力基地局100及び低電力基地局200との間の通信品質として、無線端末300における高電力PDCCH制御情報及び低電力PDCCH制御情報の受信電力を用いたが、無線端末300における、高電力基地局100及び低電力基地局200からの他の信号の受信電力を、無線端末300と高電力基地局100及び低電力基地局200との間の通信品質として用いてもよい。また、無線端末300における、高電力基地局100及び低電力基地局200からの信号のSINRを、無線端末300と高電力基地局100及び低電力基地局200との間の通信品質として用いてもよい。
 また、上述した実施形態では、高電力基地局100が、マクロセルを形成するマクロセル基地局であり、低電力基地局200が、ピコセルを形成するピコセル基地局である場合について説明したが、高電力基地局100と低電力基地局200は、これらに限定されず、低電力基地局200の送信出力が高電力基地局100の送信出力よりも小さいという関係にあればよい。例えば、高電力基地局100が、マクロセルを形成するマクロセル基地局である場合には、低電力基地局300は、マイクロセルを形成するマイクロセル基地局あるいはフェムトセルを形成するフェムト基地局とすることができる。また、高電力基地局100が、マイクロセルを形成するマイクロセル基地局である場合には、低電力基地局200は、フェムトセルを形成するフェムトセル基地局とすることができる。更には、高電力基地局100が、ピコセルを形成するピコセル基地局である場合には、低電力基地局200は、フェムトセルを形成するフェムトセル基地局とすることができる。
 また、上述した実施形態では、無線通信システム1は、LTE Release 9やLTE-Advancedに基づく構成であったが、他の通信規格に基づく構成であってもよい。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
 なお、日本国特許出願第2009-251668号(2009年11月2日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明の無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法は、高電力基地局の負荷を適切に分散させることが可能であり、無線通信システム等として有用である。

Claims (10)

  1.  高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムであって、
     前記無線通信システムは、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外する接続先候補設定部を備える無線通信システム。
  2.  前記接続先候補設定部は、前記無線端末と前記低電力基地局との間の通信品質が所定値を超えていない場合に、最も高い通信品質に対応する前記高電力基地局及び前記低電力基地局の何れかを接続先候補とする請求項1に記載の無線通信システム。
  3.  前記所定値は、前記低電力基地局から前記無線端末へ送信される制御情報の誤り率が規定値となる場合の通信品質である請求項1又は2に記載の無線通信システム。
  4.  前記所定値は、前記高電力基地局における制御情報用の無線リソースの使用率が大きいほど、高くなる値である請求項1又は2に記載の無線通信システム。
  5.  高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける前記高電力基地局であって、
     前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外する接続先候補設定部を備える高電力基地局。
  6.  高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける前記低電力基地局であって、
     前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外する接続先候補設定部を備える低電力基地局。
  7.  高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける前記無線端末であって、
     前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外する接続先候補設定部を備える無線端末。
  8.  高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける無線通信方法であって、
     前記高電力基地局が、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外するステップを含む無線通信方法。
  9.  高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける無線通信方法であって、
     前記低電力基地局が、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外するステップを含む無線通信方法。
  10.  高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局と、前記高電力基地局が形成する通信エリア内に位置する無線端末とを有する無線通信システムにおける無線通信方法であって、
     前記無線端末が、前記無線端末と前記低電力基地局との間の通信品質が所定値以上である場合に、前記高電力基地局を前記無線端末の接続先候補から除外するステップを含む無線通信方法。
PCT/JP2010/069451 2009-11-02 2010-11-01 無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法 WO2011052773A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10826903A EP2498547A1 (en) 2009-11-02 2010-11-01 Wireless communication system, high-power base station, low-power base station, wireless terminal, and wireless communication method
CN2010800485483A CN102598798A (zh) 2009-11-02 2010-11-01 无线通信系统、高功率基站、低功率基站、无线终端及无线通信方法
US13/505,720 US8958842B2 (en) 2009-11-02 2010-11-01 Radio communication system, high-power base station, low-power base station, radio terminal, and radio communication method
JP2011538519A JP5432278B2 (ja) 2009-11-02 2010-11-01 無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009251668 2009-11-02
JP2009-251668 2009-11-02

Publications (1)

Publication Number Publication Date
WO2011052773A1 true WO2011052773A1 (ja) 2011-05-05

Family

ID=43922194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069451 WO2011052773A1 (ja) 2009-11-02 2010-11-01 無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法

Country Status (6)

Country Link
US (1) US8958842B2 (ja)
EP (1) EP2498547A1 (ja)
JP (1) JP5432278B2 (ja)
KR (1) KR20120081207A (ja)
CN (1) CN102598798A (ja)
WO (1) WO2011052773A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521530A (ja) * 2013-05-13 2016-07-21 アルカテル−ルーセント 通信システムにおいてデュアル・コネクティビティを有するユーザ機器のモビリティを決定するための方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984346B2 (ja) * 2011-08-15 2016-09-06 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248090A (ja) * 1997-03-05 1998-09-14 Tsushin Hoso Kiko 移動体通信におけるフェージングを応用した速度検出方式
JP2005223447A (ja) * 2004-02-03 2005-08-18 Sony Ericsson Mobilecommunications Japan Inc 無線通信方法、無線通信システム及び無線通信端末
JP2006101442A (ja) * 2004-09-30 2006-04-13 Nec Corp 移動通信システム、基地局制御装置、無線基地局装置
WO2008129812A1 (ja) * 2007-03-23 2008-10-30 Panasonic Corporation 無線通信基地局装置及び無線通信方法
JP2009246598A (ja) * 2008-03-31 2009-10-22 Nec Corp 移動通信システム及び移動端末装置並びにセル選択方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249090A (ja) * 1997-03-07 1998-09-22 Toshiko Kobayashi 洗濯用と干しもの用の兼用網袋
US20090016278A1 (en) 2004-08-05 2009-01-15 Mitsubishi Electric Corporation Base station, mobile communication terminal equipment, and primary cell determination method
CN100574500C (zh) 2005-11-25 2009-12-23 中兴通讯股份有限公司 一种移动通信系统中保证实时业务服务质量的装置及方法
CN100584072C (zh) * 2007-02-13 2010-01-20 华为技术有限公司 信道质量指示调整方法和基站节点
JP5000381B2 (ja) 2007-05-30 2012-08-15 京セラ株式会社 通信システム、閾値管理サーバ、無線通信装置及び通信方法
JP2009147531A (ja) 2007-12-12 2009-07-02 Mitsubishi Electric Corp ハンドオーバ制御方法および無線通信システム
US20100027510A1 (en) * 2008-08-04 2010-02-04 Qualcomm Incorporated Enhanced idle handoff to support femto cells
US8599880B1 (en) * 2009-09-29 2013-12-03 Sprint Spectrum L.P. Utilizing the mobile-station simultaneous hybrid dual receive (SHDR) capability to improve femtocell performance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248090A (ja) * 1997-03-05 1998-09-14 Tsushin Hoso Kiko 移動体通信におけるフェージングを応用した速度検出方式
JP2005223447A (ja) * 2004-02-03 2005-08-18 Sony Ericsson Mobilecommunications Japan Inc 無線通信方法、無線通信システム及び無線通信端末
JP2006101442A (ja) * 2004-09-30 2006-04-13 Nec Corp 移動通信システム、基地局制御装置、無線基地局装置
WO2008129812A1 (ja) * 2007-03-23 2008-10-30 Panasonic Corporation 無線通信基地局装置及び無線通信方法
JP2009246598A (ja) * 2008-03-31 2009-10-22 Nec Corp 移動通信システム及び移動端末装置並びにセル選択方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KYOCERA: "Downlink Performance Evaluation in Heterogeneous Deployment Configurations 1 and 4", 3GPP TSG-RAN WG1 #59, RL-094777, 3GPP, 9 November 2009 (2009-11-09), XP050352806 *
KYOCERA: "Technical Aspects of Heterogeneous Networks", 3GPP TSG-RAN WG1 #59, RL-094775, 3GPP, 9 November 2009 (2009-11-09), XP008154844 *
KYOCERA: "Uplink and PDCCH performance evaluation in heterogeneous deployment configurations 1 and 4", 3GPP TSG-RAN WG1 #58BIS, RL-093856, 3GPP, 12 October 2009 (2009-10-12), XP050388362 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521530A (ja) * 2013-05-13 2016-07-21 アルカテル−ルーセント 通信システムにおいてデュアル・コネクティビティを有するユーザ機器のモビリティを決定するための方法

Also Published As

Publication number Publication date
US8958842B2 (en) 2015-02-17
US20120220332A1 (en) 2012-08-30
JP5432278B2 (ja) 2014-03-05
CN102598798A (zh) 2012-07-18
EP2498547A1 (en) 2012-09-12
KR20120081207A (ko) 2012-07-18
JPWO2011052773A1 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
EP3678406B1 (en) Electronic device and method for wireless communications
RU2494555C2 (ru) Передача информации о состоянии нагрузки узла в самоорганизующейся сети
JP5654659B2 (ja) 無線通信システム、基地局、無線端末、及びプロセッサ
US9319999B2 (en) Communication control device, communication control method, communication system, and terminal device which takes into account at least one proximate multi-mode terminal serviced by a plurality of communication services
RU2601427C2 (ru) Устройство связи и способ связи
US8243641B2 (en) Method and apparatus for transmitting and receiving signal in a wireless communication system
JP5141831B2 (ja) 移動体通信システム、基地局装置及び無線周波数変更方法
JP5647453B2 (ja) 無線通信システム、無線中継局、無線端末、及び通信制御方法
WO2014119112A1 (ja) 通信制御装置、通信制御方法、プログラム及び端末装置
WO2011024310A1 (ja) 移動体通信システム、移動局装置、基地局装置及び電波干渉低減方法
US10715993B2 (en) Electronic apparatus, information processing device and information processing method
EP3209045B1 (en) Communications control device, base station, and communication control method
JP5061192B2 (ja) 無線通信装置および送信方法
KR20190022672A (ko) 무선 통신 방법 및 무선 통신 디바이스
US20200120557A1 (en) Wireless communication method and wireless communication device
JP5410941B2 (ja) 無線通信システム、基地局及び通信制御方法
KR101410994B1 (ko) 이동 통신 시스템, 디지털 신호 처리 장치 및 그 시스템에서의 동시 전송 영역 설정 방법
JP5432278B2 (ja) 無線通信システム、高電力基地局、低電力基地局、無線端末及び無線通信方法
KR20110023726A (ko) 무선통신 시스템에서 펨토 기지국의 서비스 상태 정보 전송방법
JP5375579B2 (ja) 無線基地局及び通信方法
KR20180079405A (ko) 무선 통신 디바이스 및 무선 통신 방법
CN104094639A (zh) 无线通信系统、通信方法、基站装置以及移动终端
CN107612624B (zh) 通信中继装置、通信中继系统、方法以及记录介质
KR102438410B1 (ko) 네트워크 제어 단말 및 네트워크 노드를 위한 전자 디바이스 및 방법
JP2011124733A (ja) 無線通信システム、無線基地局及び通信制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048548.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826903

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010826903

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010826903

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011538519

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13505720

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127012087

Country of ref document: KR

Kind code of ref document: A